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ABSTRACT 

 

Accurate modeling of runoff is useful in urban and environmental planning, 

flood and water resources management. In this research, a hybrid model has been 

developed for Brahmaputra River flow forecasting based on wavelet and artificial 

neural network (ANN) methods. In this current study, discrete wavelet transform was 

linked to ANN naming Wavelet Artificial Neural Network (WANN) for flow 

forecasting. Ten year daily flow data from January 1990 to December 1999 of Pandu 

and Pancharatna stations on Brahmaputra River, which carries heavy flood in 

monsoon season in the North-East region of India, were used in the study. The 

observed flow data were decomposed (up to 7 level) to multiresolution time series via 

discrete wavelet transform using Daubechies wavelets of order ranging from 1 (db1) 

to 5 (db5). Then multiresolution time series data were fed as input to ANN to get the 

forecasted discharge values. Daily data were used to forecast flow values for lead 

times 2, 3, 4, 7 and 14 day, weekly data were used to forecast flow values for lead 

times 1 week and 2 week, and monthly data were used to forecast flow values for lead 

time 1 month. The root mean square error (RMSE), determination coefficient (R
2
), 

mean absolute error (MAE), BIAS (B), and scatter index (SI) were adopted to 

evaluate the model‟s performance. It was found that for all lead times WANN model 

has given better and consistent results compared to conventional ANN model. It was 

mainly because of multiresolution time series used as inputs. Also it was found that, 

model efficiency increases with increase in wavelet order, giving best results for db5 

mother wavelet for all lead times for both the stations. Also, there has been significant 

impact of decomposition level on WANN model efficiency as observed in the study.  

Keywords: Wavelet transform, artificial neural network, streamflow, Daubechies 

wavelet, time series. 
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CHAPTER 1 

INTRODUCTION 

1.1 INTRODUCTION 

It is no longer possible to consider streamflow and other hydrologic processes 

as stationary (Milly et al, 2008). Nearly all the methods developed for the planning, 

management and operation of water resources systems assume stationarity of 

hydrologic processes. Non-stationarity can result from myriad human influences 

ranging from agricultural and urban land use modifications, to climate change and 

modifications to water infrastructure. Non-stationarity reduces uncertainty (because it 

explains part of variability). Inappropriate claim of non-stationarity results in 

underestimation of variability, uncertainty and risk. Analysis of hydrologic time series 

data and study of their fluctuations are two of the key issues to have an insight into 

the data, to identify pattern, trend or correlations and to understand the past and 

current behaviour of the flow. In addition to these, identifying the distribution of the 

analysed data is very important and necessary for understanding the dynamics of 

watershed behaviour as well as to determine when particular events will occur. 

Hydrologic time series data appears to be noisy as well as non-stationary. The 

noise characteristic indicates the unavailability of complete information from past 

behaviour of flow conditions to fully capture dependency between future and past 

flow. The information that is excluded in the forecasting model is considered as noise 

while the non-stationary characteristic indicates the distribution of hydrologic time 

series changing over time. Therefore, hydrologic time series forecasting is considered 

as one of the most challenging tasks of time series analysis (Banhatti and Deka, 

2012).  

Hydrological Time series usually have seasonal variations and long-term and 

short-term fluctuations, which may not be limited to the mean of the series but may 

also effect its overall variance structure. Typically, during the rainy season (south 

west monsoon period in India), such series are characterized by patterns like trends 
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and localized abrupt changes. The variations observed in hydrological time series are 

due to various hydrological processes operating in different time scales such as 

intraday, diurnal, several days, seasonal, annual and long term. 

Short term variations may be due to local meteorological factors which cause 

the time series to become noisy and show periodicities of different scales. There are 

many hydraulic variables that effect flow and time series of these variables may 

possess the characteristics pertaining to non-stationary, non-linear and volatile time 

series having many outliers. Intermediate term variations may be due to more regional 

meteorological and seasonal factors. On the other hand, long term variations could be 

due to slow changes in urbanization and land use change over a long term period 

which effects the flow rate in the long run. Thus time series may present trend and 

nonstationary characteristics. Annual and inter-annual variations may be due to the 

weather and climate factors such as monsoon cycles in the tropical countries. In fact, 

the variations due to weather and meteorological factors are larger than variation due 

to long term changes in flow rate. Thus, to investigate the effectiveness of perennial 

river flow behaviour, one may need to separate the variations due to various factors in 

the time series.  

River flow forecasting hours, days, months or possibly longer in advance is 

required for effective operation of water resources systems so that water authorities 

can administer water reserves optimally for various water users such as hydropower 

generation, agricultural, domestic, etc.(Deka and Chandramoulli, 2005). Flow 

forecasting is also important from view point of flood management. Forecasting of 

hydrological time series can be done by using stochastic models like Auto regressive 

(AR), Auto regressive moving average (ARMA) and Auto regressive integrated 

moving average (ARIMA) etc. These models are basically time series models and 

have a limited ability to capture nonstationarities and nonlinearities. 

Recently soft computing techniques such as artificial neural network (ANN), 

fuzzy logic (FL) and genetic algorithm (GA) have been gaining popularity since last 

decade due to their versatility in handling non linearity and tp some extent to handle 

non stationary nature. Soft computing techniques offer effective approach for 

handling large amount of dynamic, non-linear and noisy data, especially when the 

underlying physical relationships are not fully understood (Nourani et al., 2011).  
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1.2 ARTIFICIAL NEURAL NETWORK MODEL 

ANN is a mathematical model which mimics the function of human brain. It 

has the ability to identify the relationship from given patterns and solve large scale 

complex problems such as non-linear modeling pattern recognition, classification, 

association and control. Recently neural network models are successfully applied in 

rainfall-runoff modeling, runoff forecasting, evaporation estimation, precipitation 

forecasting, water quality modeling, ground water level forecasting, significant wave 

height forecasting and many others. Chandramouli and Deka (2005) developed 

decision support model using artificial neural network for optimal operation of a 

reservoir in South India. Tayfur and Singh (2006) predicted event based rainfall- 

runoff using artificial neural network and fuzzy logic models and compared the test 

results with kinematic wave approximation. The ASCE Task Committee (2000 II) 

reviews hydrologic applications of ANN. 

 ANN is suitable for handling large amount of dynamic, noisy and non-linear 

data, especially for partially understood underlying physical processes. This makes 

them effective to time series modelling problems of data-driven nature (Nourani et al., 

2009 a). In spite of suitable flexibility of ANN, it may not be able to cope with non-

stationary data if pre-processing of the input and output data is not performed (Cannas 

et al., 2006). As nonstationary signals are frequently encountered in a variety of 

engineering fields such as water resources and earthquake, hybridization of ANN with 

other techniques may provide effective modelling. ANN as black-box models, with 

two advantages of low quantitative data demands and simple formulation (Cheng et 

al., 2008), are used widely for the task. However, they have many drawbacks due to 

their black-box properties and also they are not suitable when the data is non-

stationary.  

  For overcoming these drawbacks, many methods are often combined with 

black box models to forecast hydrologic time series. Present studies and practical 

applications indicate better performance of hybrid models rather than single model. 

Among the former, combination of wavelet analysis with black-box models has 

become a prevalent approach to conduct hydrologic time series forecasting.  
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1.3 WAVELET TRANSFORM 

With regards to spectral analysis of time series, the introduction of wavelet 

functions has triggered new light into the analysis of non-stationary and noisy 

environment / phenomena (Rioul & Vellerli, 1991). Foufoula-Georgion and Kumar 

(1994) described the basic properties that make Wavelet analysis a powerful tool for 

geophysical applications.  

In the last decade, wavelet transform (WT) has become a useful technique for 

analysing variations, periodicities, and trends in time series (Lu 2002; Coulibaly and 

Burn, 2004; Partal and Kucuk, 2006 a). A wavelet transformation is a strong 

mathematical signal processing tool like Fourier Transformation with the ability of 

analyzing both stationary as well as non stationary data, and to produce both time and 

frequency information with a higher resolution, which is not available from the 

traditional transformation (Fourier Transform and Short Time Fourier Transform). 

WT provides multi resolution analysis specifically at low scales (high frequency) it 

gives better time resolution and poor frequency resolution and at high scales (low 

frequency) it gives better frequency resolution and poor time resolution. In actual 

practice for all time series signals, such information is important. A non-stationary 

time series can be decomposed into certain number of stationary time series by WT. 

Then different single prediction methods are combined with wavelet transform to 

improve the prediction accuracy.  

 Wavelet theory (Mallat, 1989 a) was first developed in the end of 1980s of last 

century. In recent times, it has been applied in many fields, such as signal process, 

image compression, voice code, pattern recognition, hydrology, earthquake 

investigation and many other non-linear science fields. The researches and 

applications of wavelet analysis have already begun in hydrology and water resources. 

The document (Li et al., 1997) points out the potential applications of wavelet 

analysis to hydrology and water resources. Li et al. (1999) probed long time interval 

forecast of hydrological time series with combining neural network models with 

wavelet transform. Wang et al. (2000) had proposed a wavelet transform stochastic 

simulation model, which generated synthetic streamflow sequences that are 

statistically similar to observed streamflow sequences. The multitime scale 

characteristics of hydrological variables had been studied by Wang et al. (2002). 
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Wavelet analysis has been a hot research tool in time series analysis due to its 

multiresolution function (Zhou et al., 2008). Various studies demonstrated the 

effectiveness of this practice due to this ability of wavelet analysis (Wensheng and 

Jing, 2003; Nourani et al., 2008; Kisi, 2009 a; Goyal, 2013; Rathinasamy et al., 2013). 

1.4 PROBLEM BACKGROUND 

Identification of the multi-temporal scale characteristics of hydrologic series is 

very important for understanding complicated hydrologic processes (Labat, 2005; 

Neupauer et al. 2006), but conventional time series analysis methods cannot 

sufficiently meet this need. Wavelet coefficients under different scales reflect 

different characteristics of the series: positive coefficient values correspond to wet 

seasons and minus values correspond to dry season, and zero point corresponds to the 

turnover point from wet to dry season, or from dry to wet season; and absolute values 

of wavelet coefficients show the significance of characteristics: bigger absolute 

wavelet coefficient values reflect more statistical significance of the characteristics, 

and vice versa. Wavelet analysis has been widely and maturely applied in various 

geographic basins and regions worldwide for tackling the complex characteristics of 

hydrologic processes under multi-temporal scales. The multiresolution approach may 

be useful for the analysis of multi-scale features, detection of singularities, analysis of 

transient phenomena of non-stationary series and fractal processes (Salvatore et al., 

2012). 

Many new understandings and conclusions about the variability of hydrologic 

processes have been gained from the wavelet point of view. However, as a small shift 

in the input series would cause very different output wavelet coefficients (Chen and 

Xie, 2007), the stability of wavelet transform results should be further analyzed and 

understood. 

Since last decade, many researchers observed that coupling wavelet transforms 

with ANN could improve hydrological forecast significantly (Partal & Cigizoglu, 

2008; Zhou et al. 2008; Kisi, 2008, 2009; Adamowski & Karen, 2010). These studies 

found that coupled wavelet ANN models generally provided more accurate forecasts 

than other models. Empirical results show that networks trained with preprocessed 

data performed better than networks trained on un-decomposed, noisy raw data. In 
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most of the hybrid models, WT is used as pre-processing technique. The wavelet-

transformed data aid in improving the model performance by capturing helpful 

information on various resolution levels. Due the above mentioned advantages of WT, 

it has been found that the hybridization of wavelet transformation with other models 

like ANN, FL, ANFIS, linear models, etc., improved the results significantly 

compared to the single regular model (Deka and Prahlada, 2012). 

Motivated by the effective pre-processing capability of wavelets and the 

predictive power of ANN models, it is proposed to evolve a unified framework for 

analyzing non-stationary time series. The proposed study will investigate the 

effectiveness of wavelet-based pre-processing for an ANN system for forecasting 

non-stationary hydrological time series. In addition, non-coupled ANN methods were 

used for comparison. Five forecasting horizons (2, 3, 4, 7, and 14 days ahead) for 

daily time series, two forecasting horizons (1, and 2 week ahead) for weekly data, and 

one forecasting horizon (1 month ahead) for monthly time series were considered. 

Also, the impact of various filter banks such as Haar and Daubechies of type db2, 

db3, db4, and db5 along with various decomposition levels on a single back 

propagation multilayered neural network for the prediction of daily, weekly and 

monthly discharge was investigated. 

1.5 STUDY AREA 

The Brahmaputra River in India forms a complex river system characterized 

by the most dynamic and unique water and sediment transport pattern. The river 

originates as Tsangpo, the source of which is at 31
0
30′ N and 82

0
E in Tibet, in a great 

glacier mass in the Kailash range of the Himalayas to the east of the Mansarovar Lake 

(elevation 5300 m) and flows through China, India, and Bangladesh for a total 

distance of 2880 km before emptying into the Bay of Bengal through a joint channel 

with the Ganga. The basin lies between latitudes 24
0
13′ and 31

0
30′ North and 

longitudes 82
0
 and 96

0
4 ′ East. In Tibet, where it is called Tsangpo, the Brahmaputra 

flows eastward for 1100 km along the bottom of a longitudinal graben parallel to and 

about 160 km north of the Himalayas. At the extreme eastern end of its course in 

Tibet, the Tsangpo suddenly enters a deep narrow gorge at Pe (3500 m), which skirts 

around the Namcha Barwa peak (7755 m) and continued southward across the 
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Himalayan ranges. The gradient of the river in the gorge section ranges from about 

4.3 m. to 16.8 m. per km. On entering India, the Tsangpo, now called Dihang, 

traverses 226 km of mountainous course before debouching onto the Assam plain near 

Pasighat (elevation 155 m.). At the exit of the gorge the slope of the river is only 0.27 

m. per km. Near Kobo, 52 km. south of Pasighat, two rivers (Dibang and Lohit) meet 

the Dihang river, and the combined flow, called Brahmaputra, moves westward 

thorough Assam for 720 km. until near Dhubri, where it swerves to the south and 

enters Bangladesh. The Brahmaputra has a gradient of 0.09-0.17 m/km. near 

Dibrugarh at the head of the valley and is further reduced to about 0.1 m/km. near 

Guwahati (Pandu).  

The Brahmaputra is the fourth largest river in the world in terms of average 

discharge at mouth, with a flow of 19,830 cumec (Goswami, 1985). The study area is 

located in the international river basin of Brahmaputra main stream within India. 

Pandu (u/s) and Pancharatna (d/s) stations are selected for the study. Ten year daily 

flow data for these two stations were collected from Water Resources Department, 

Assam, India. The catchment area upto Pandu station is 500,000 km
2
 and upto 

Pancharatna it is 5,32,000 km
2
. The annual rainfall in the Assam part is 2300 mm. 

The hydrologic regime of the river responds to the seasonal rhythm of the monsoons 

and to the freez-thaw cycle of the Himalayan snow. The rainy season (June to 

October) accounts for 82 % of the mean annual flow at the Pancharatna. The 

discharge is highly fluctuating in nature. Discharge per unit drainage area in the 

Brahmaputra Basin River is among the highest of major rivers of the world. Large 

variations of discharge within a short span of time are noticed during the flood season, 

with maximum difference of about 17000 cumecs in 24 hours (June 7-8, 1990) and 

24000 cumecs in 48 hours (June 7-9, 1990) (Sharma J. N. 2005) being recorded in the 

rising limb. The locations of the two discharge gauging stations are shown in Fig. 1.1 

and the longitudinal profile of Brahmaputra River is shown in Fig. 1.2. 

In this major river, due to the topographic restrictions, no major hydraulic 

structure exist as of now and no water diversion is done between the gauging sites. 
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Fig.1.1 Location of the gauging sites 

 

 

 

 Fig. 1.2 Longitudinal profile of the Brahmaputra River (Goswami, 1985) 
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1.6 ORGANIZATION OF THE THESIS 

 This thesis comprises of five chapters as follows: 

Chapter 1 Introduction: presents the relevant information pertaining to time series 

and further deals with overview of the conceptual basis for the research, and study 

area. 

Chapter 2 Literature Review: deals with a brief discussion about the work carried 

out by previous researchers using ANN and hybrid WANN models for hydrologic 

time series forecasting and the objectives of the study. 

Chapter 3 Methodology and Model Development: this chapter describes the basics 

of wavelet transform and artificial neural network. This also deals with the procedure 

for developing ANN and WANN models. 

Chapter 4 Results and Discussion: this chapter describes the method of evaluation 

and goes on to present the analysis of the results obtained from the developed ANN 

and WANN models. 

Chapter 5 Summary and Conclusions: represents summary of the research work 

carried out, contribution and conclusions. Further, the future scope is included 

towards the end.  
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CHAPTER 2 

LITERATURE REVIEW 

 

2.1 INTRODUCTION 

Streamflow, which is known an integrated process of atmospheric and 

topographic processes, is of prime importance to water resources planning. Recently, 

Artificial Intelligence (AI) techniques have shown great ability in modeling and 

forecasting non-linear hydrological time series incorporating machine learning in 

hydrology. Classical time series models such as ARMA (Autoregressive moving 

average) and ARIMA (Auto regressive integrated moving average) are basically 

linear models assuming that data are stationary, and have a limited ability to capture 

non-stationarities and non-linearity in data series. On the other hand, soft computing 

normally utilizes tolerance to uncertainties, imprecision, and partial truth associated 

with input information in order to come up with robust solution, handling non-

linearities and non-stationarities effectively. 

2.2 LITERATURE REVIEW 

In the following sections the work carried out by various researchers in the 

field of Hydrology and Water Resources Engineering using artificial neural network 

(ANN), Wavelet –ANN (WANN) hybrid models, and wavelet techniques combined 

with other soft computing techniques like fuzzy logic (FL), genetic algorithm (GA), 

etc. are discussed in brief. 

2.2.1 Using ANN Models  

Christian et. al., (1998), studied ANNs for flow forecasting in two flood-

prone UK catchments using real hydrometric data. Given relatively brief calibration 

data sets it was possible to construct robust models of 15-min flows with six hour lead 

times for the Rivers Amber and Mole. Comparisons were made between the 

performance of the ANN and those of conventional flood forecasting systems. The 

results obtained for validation forecasts were of comparable quality to those obtained 
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from operational systems for the River Amber. The ability of the ANN to cope with 

missing data and to "learn" from the event currently being forecast in real time were 

observed. 

Cigizoglu and Kisi (2005), low forecasting performance by artificial neural 

networks (ANNs) is generally considered to be dependent on the data length. In this 

study k-fold partitioning, a statistical method, was employed in the ANN training 

stage. The method was found useful in the case of using the conventional feed-

forward back propagation algorithm. It was shown that with a data period much 

shorter than the whole training duration similar flow prediction performance could be 

obtained. Prediction performance and convergence velocity were compared between 

three different back propagation algorithms, Levenberg–Marquardt, conjugate 

gradient and gradient descent. The LM technique was found advantageous giving 

more satisfactory performance. 

Wu J. S. et al., (2005) Used ANN for watershed-runoff and stream-flow 

forecasts conducted on a small urban watershed in Greensboro, North Carolina. Two 

ANN-hydrologic forecasting models for watershed runoff prediction model to predict 

storm water runoff at a gauged location near the watershed outlet and another stream 

flow forecasting model was formulated to forecast river flows at downstream. Results 

obtained from both model applications were very encouraging even with a relatively 

small number of storm events employed for training and testing.  

Ozgur Kişi, (2007 a), studied using ANN‟s algorithms for short term daily 

streamflow forecasting. Four different ANN algorithms, namely, back propagation, 

conjugate gradient, cascade correlation, and Levenberg–Marquardt were applied to 

continuous streamflow data of the North Platte River in the United States. The models 

were verified with untrained data. The results from the different algorithms were 

compared with each other. The correlation analysis was used in the study and found to 

be useful for determining appropriate input vectors to the ANNs. 

Ozgur Kişi., (2007 b), investigated the abilities of range-dependent neural 

networks (RDNN) to improve the accuracy of streamflow-suspended sediment rating 

curve in daily suspended sediment estimation. A comparison was made between the 

estimates provided by the RDNN and those of the following models: Artificial neural 

networks (ANN), linear regression (LR), range dependent linear regression (RDLR), 
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sediment rating curve (SRC) and range-dependent sediment rating curve (RDSRC). 

The daily streamflow and suspended sediment data belonging to two stations-

Calleguas Station and Santa Clara Station operated by the US Geological Survey were 

used as case studies. Based on comparison of the results, it was found that the RDNN 

model gave better estimates than the other techniques. RDLR technique was also 

found to perform better than the single ANN model. 

Surinder et al., (2008), studied an ANN based modeling technique to study 

the influence of different combinations of meteorological parameters on evaporation 

from a reservoir. Several input combination were tried so as to find out the 

importance of different input parameters in predicting the evaporation. The prediction 

accuracy of Artificial Neural Network had also been compared with the accuracy of 

linear regression for predicting evaporation. The comparison demonstrated superior 

performance of ANN over linear regression approach. The highest correlation 

coefficient (0.960) along with lowest root mean square error (0.865) was obtained 

with the input combination of air temperature, wind speed, sunshine hours and mean 

relative humidity. The findings of this study suggest the usefulness of ANN technique 

in predicting the evaporation losses from reservoirs. 

Solaimani K. (2009), utilized ANN for modeling the rainfall runoff 

relationship in a catchment area located in a semiarid region of Iran by adopting feed 

forward back propagation for the rainfall forecasting with various algorithms with 

performance of multi-layer perceptions. The monthly stream flow of Jarahi Watershed 

was analyzed in order to calibrate of the given models. The monthly hydrometric and 

climatic were ranged from 1969 to 2000. The results extracted from the comparative 

study indicated that the ANN was more appropriate and efficient to predict the river 

runoff than classical regression model. 

Zadeh et al. (2010), studied (ANN) models for predicting daily flows from 

Khosrow Shirin watershed located in the northwest part of Fars province in Iran. A 

Multi-Layer Perceptron (MLP) neural network was developed using five input vector 

using 5-year data record adopting Levenberg–Marquardt (LM) algorithm. It was 

found that antecedent precipitation and discharge with 1 day time lag as an input 

vector best predicted daily flows. Also, comparison of MLPs showed that an increase 

in input data was not always useful. The predicted outflow showed that the tangent 
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sigmoid activation function performed better than the logistic sigmoid activation 

function. 

Besaw et al., (2010) studied two artificial neural networks (ANNs) to forecast 

streamflow in ungauged basins. The model inputs include time-lagged records of 

precipitation and temperature. In addition, recurrent feedback loops allow the ANN 

streamflow estimates to be used as model inputs. Streamflows from sub-basins in 

Northern Vermontare were used to train and test the methods. To predict streamflow 

in an ungauged basin, the recurrent ANNs were trained on climate-flow data from one 

basin and used to forecast streamflow in a nearby basin with different (more 

representative) climate inputs. One of the key results of this work was that these 

recurrent flow predictions were being driven by time-lagged locally-measured climate 

data. A scaling ratio, based on a relationship between bank full discharge and basin 

drainage area, accounted for the change in drainage area from one basin to another. 

Hourly streamflow predictions were superior to those using daily data for the small 

streams tested due to loss of critical lag times through up scaling. The ANNs selected 

in this work always converged, avoiding stochastic training algorithms, and are 

applicable in small ungauged basins. 

Mehmet et al. (2009), carried out study on the issue of flow forecast based on 

the soil and water assessment tool (SWAT) and artificial neural network (ANN) 

models. In this study, the ANNs were applied to the daily flow of the Pracana basin in 

Portugal. A comparison of ANN models and a process- based model SWAT was 

conducted based on their prediction accuracy. The ANN model was found to be more 

successful than the SWAT in relation to better forecast of peak flow. The SWAT 

model results revealed a better value of mean squared error. The study revealed that 

ANNs can be powerful tools in daily flow forecasts. 

Asadi S. et al. (2013), proposed a hybrid intelligent model for runoff 

prediction of Aghchai watershed. The model was a combination of data pre-

processing methods, genetic algorithm and Levenberg-Marquardt (LM) algorithm for 

learning feed forward neural networks. The authors used data pre-processsing 

methods such as data transformation, input variables selection and data clustering for 

improving accuracy. The results showed that the prediction of runoff was more 

accurate than ANN, and adaptive neuro fuzzy inference system (ANFIS) models.     
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2.2.2 Using Hybrid Models of WANN  

The wavelet-ANN is another reliable hybrid model used in time series 

forecasting problems. Recently, wavelet transform analysis has become a popular 

analysis tool due to its ability to analyse simultaneously both spectral and temporal 

information within the signal. Some of the recent works carried out in Hydrology are 

discussed below. 

Addison et al. (2001), used wavelet transform analysis to a variety of open 

channel wake flows. Feature location was undertaken using a continuous wavelet 

transform, and both turbulent statistical analysis and thresholding of the turbulent 

signal components were undertaken using a discrete wavelet transform. It was found 

that the continuous wavelet transform was the preferred method for feature detection 

within fluid velocity time signals. 

Wensheng Wang et al., (2003), carried out a multi-time scale prediction of 

ground water level at Beijing and daily discharge of Yangtze River Basin at China 

using Hybrid Model of Wavelet-Neural Network. Through a Trous algorithm and 

three-layer neural network forecasting results were carried out. 12 years of shallow 

monthly ground water level data were used, 9 years for calibration and 3 years for 

validation. Daily discharge data of 8 years were used for training and 2 years for 

testing. The comparisons revealed that the model increased the forecasted accuracy 

and prolonged the length time of prediction. The proposed WANN model focused on 

improving the precision and prolonging the forecasting time period. 

Kim and Valdes, (2003) developed nonlinear model for drought forecasting 

based on a conjunction of wavelet transforms and neural networks in the Conchos 

river basin in Maxico. The results indicated that the conjunction model using dyadic 

wavelet transform significantly improved the ability of neural network in forecasting. 

Cannas B. et al., (2006), studied the river-flow forecasting one month ahead 

with Neural Networks and Wavelet Analysis using monthly runoff data for the Tirso 

Basin, Italy. The data set was split into three parts- first 40 years was used for training, 

next 9 years for cross validation and last 20 years for testing. The reconstruction of 

the data was done by traditional feed forward, MLP networks. For the non-stationary 

and seasonal irregularity of runoff time series, the best results were obtained using 
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data clustering and discrete wavelet transform combination. Tests showed that neural 

networks trained with pre-processed data showed better performance. 

Zhou et al. (2008) developed monthly discharge predictor-corrector model 

based on wavelet decomposition using 52 years records of monthly discharge at 

Yichang station of Yangtze River. The decomposed times series data were used as 

input to ARMA model for prediction which improved the prediction accuracy. 

Rao et al., (2009), carried out modelling using hydrological time series data 

adopting Wavelet-Neural Network for four west flowing rivers in India namely 

Kollur,( 22 years data from 1981-2002), Seethanadi (26 years data from 1973-1998),  

Varahi( 26 years 1978-2003) and Gowrihole (25 years data from 1979-2003). The 

models of WANN having different antecedent values of the time series showed 

minimum RMSE (0.88 to 0.54 m), high correlation coefficient (0.93 to 0.96) and 

highest efficiency (87.21 to 92.86 %) during validation period.  The results of daily 

streamflow and monthly groundwater level series modelling indicated that the 

performances of WANN Models were more effective than ANN Models. He 

recommended that the models developed for streamflow and groundwater levels 

would be useful for water resources planning in the Western Ghats and for ground 

water management in coastal aquifers. 

Nourani et al., (2009 a), studied the rainfall-runoff modelling using Wavelet -

ANN approach for predictions of runoff discharge one day ahead of the Ligvanchai 

watershed at Tabriz, Iran. The daily rainfall and runoff time series for 21 years were 

used. The time series were decomposed upto four levels by using Haar, Daubechies 

(db2), Symlet (sym3) and Coiflet (coif1). The Study showed that both short and long 

term runoff discharges could be predicted satisfactorilly. The model results showed 

the high merit of Haar wavelet in comparison with the others. They also 

recommended that Wavelet Transform could be used for trend analysis in watersheds. 

Kisi, O. (2009 a), developed neurowavelet (NW) model by combining two 

methods discrete wavelet transform (DWT) and artificial neural network (ANN), for 1 

day ahead intermittent streamflow forecasting and results were compared with those 

of the single ANN model. Intermittent streamflow data from two stations in the 

Thrace Region, the European part of Turkey, in the northwest part of the country were 

used in the study. In NW model, the original time series were decomposed into a five 
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subtime series components by Mallat DWT algorithm. The correlation coefficients 

between each subtime series and original intermittent streamflow time series were 

found. These correlation values provide information for the determination of effective 

wavelet components on streamflow. The new subtime series having high correlation 

coefficient were used as input to the ANN model. The NW model was found to be 

much better than the ANN in high flow estimation. The test results showed that the 

DWT could significantly increase the accuracy of the ANN model in modelling 

intermittent streamflows. 

Rajaee T. et al. (2010), investigated the prediction of daily suspended 

sediment load one day ahead with wavelet and neuro-fuzzy combination model using 

time series data of discharge and suspended sediment load as input in a gauging 

station from the Pecos River in USA. Results showed that the wavelet analysis and 

neuro-fuzzy (WNF) model performed better predictions rather than neuro-fuzzy and 

sediment rating curve. The cumulative suspended sediment load estimated by this 

technique was closer to the actual data. The WNF model considered periodic and 

stochastic characteristics of suspended sediment phenomenon and may provide 

suitable constrictions not clearly seen in the suspended sediment rating curve. The 

model also could be employed to stimulate hysteresis phenomenon, while the 

sediment rating curve method is incapable in this event. 

Adamowski and Karen, (2010), investigated a method based on coupling 

discrete wavelet transform (WA) and ANN for flow forecasting applications in non-

perennial rivers in semi-arid watersheds at lead times of 1 and 3 days for two different 

rivers in Cyprus. The discrete trous wavelet transform was used to decompose flow 

time series data into 8 levels wavelet coefficients which were used as inputs to 

Levenberg Marquardt artificial neural network models to forecast flow. WA-ANN 

model provided more accurate results than regular ANN.  

Shiri and Kisi, (2010), studied short-term and long term streamflow 

forecasting using a wavelet and neuro-fuzzy conjunction model to investigate the 

daily, monthly and yearly streamflows at Derecikviran station on Filyos River in the 

Western Black Sea region of Turkey using 31 years of streamflow data. The results 

obtained showed that the neuro-fuzzy (NF) and wavelet-neuro-fuzzy (WNF) models 

increased the accuracy of the single NF models especially in forecasting yearly 



 17 

streamflow. Also the single NF and WNF models were compared with each other by 

adding periodicity components into the inputs. The comparison of the results 

indicated that adding periodicity component generally increased the model‟s accuracy. 

Kisi, O. (2010) developed neuro-wavelet models for daily suspended sediment 

estimation for two stations on Tongue River in Montana using daily streamflow and 

suspended sediment data. The comparison of results revealed that the developed 

model could increase the estimation accuracy. 

Adamowski and Chan . (2011), developed hybrid wavelet transforms-neural 

network for monthly groundwater level forecasting using monthly total precipitation, 

monthly average temperature and average ground water levels as input variables. The 

original data was decomposed into a series of details using a modified version of a 

trous DWT. The WANN models were found to provide more accurate monthly 

average ground water level forecasts compared to the ANN and ARIMA models.  

Nourani et al., (2011), studied two hybrid artificial intelligence (AI) models 

for two watersheds located in Azerbaijan, Iran, for modeling rainfall–runoff process. 

Two hybrid AI-based models which were reliable in capturing the periodicity features 

of the process were introduced for modeling. In the first model, the SARIMAX 

(Seasonal Auto Regressive Integrated Moving Average with exogenous input)-ANN 

model, an ANN was used to find the non-linear relationship among the residuals of 

the fitted linear SARIMAX model. In the second model, the wavelet-ANFIS model, 

wavelet transform was linked to the ANFIS concept and the main time series of two 

variables (rainfall and runoff) were decomposed into some multi-frequency time 

series by wavelet transform. Afterwards, these time series were imposed as input data 

to the ANFIS to predict the runoff discharge one time step ahead. The obtained results 

showed that, although the proposed models can predict both short and long terms 

runoff discharges by considering seasonality effects, the second model was relatively 

more appropriate because it used the multi-scale time series of rainfall and runoff data 

in the ANFIS input layer. 

Kisi and Shiri (2011) developed precipitation forecasting model using 

wavelet-genetic programming and wavelet-neuro-fuzzy conjunction. They found that 

hybrid wavelet-genetic programming model was of better performance than hybrid 

wavelet-neuro-fuzzy model.  
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 Rajaee T. et al. (2011), developed artificial neural network (ANN), wavelet 

analysis and ANN combination (WANN), multilinear regression (MLR), and 

sediment rating curve (SRC) models for daily suspended sediment load (S) modeling 

in the Iowa gauging station in the US. In the WANN model, discrete wavelet 

transform was linked to the ANN method. For this purpose, the observed time series 

of river discharge (Q) and S were decomposed into 5 levels by discrete wavelet 

transform (DWT) which were imposed as input to ANN to predict one day ahead S. A 

complex Morlet wavelet technique was applied to analyze wavelet construction of 

daily Q and S. The number of nodes in the input in WANN model was determined by 

(i +1) × 2, because this model uses two variables (Q and S) and each time series is 

decomposed into i, i = (1,2,…,5) detailed time series and approximation time series.  

This study was aimed at examining the effects of the employed mother wavelet 

type on the proposed WANN model efficiency. Seven different mother wavelets were 

used [viz. Daubechies-2 (db2) (the most popular wavelet), the Haar wavelet (a simple 

wavelet), and some irregular wavelets such as Bior1.1, Rboi1.1, Coif1, Sym1, and 

Mayer wavelets]. 

It was found that, increasing the decomposition level, in levels over Level 1, 

decreases the model‟s performance, because high decomposition levels lead to a large 

number of parameters with complex nonlinear relationships in the ANN technique. 

The WANN model was more accurate in predicting the S and its performance was 

better than the ANN, MLR, and SRC models. 

Wang et al. (2011), utilized wavelet transform method for synthetic 

generation of daily streamflow in Jinsha river of China. Daily streamflow sequences 

with different frequency components were decomposed into the series of wavelet 

coefficients at various resolution levels using wavelet decomposition algorithm. 

Based on these sampled subseries, a large number of synthetic daily streamflow 

sequences were obtained using wavelet reconstruction algorithm. They concluded that 

this newly developed method was able to assess the of probability distributions type 

and of dependence structure. 

 Abghari  et al. (2012), developed wavelet neural network hybrid model for 

prediction of daily pan evaporation using Mexian hat and polyWOGI mother 

wavelets. Results showed that Mexican hat wavelet neural network in the best 
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topology presents 96.04 % accuracy, while polyWOGI wavelet neural network 

presents 91.03 % accuracy in testing period. The MLP model with standard sigmoid 

function resulted in 87.63 % accuracy in testing period. Comparison showed Mexican 

hat neural network had better accuracy.   

Nayak et al. (2013), developed wavelet neural network (WNN) hybrid model 

for Malprabha river (India) flow forecasting using rainfall, runoff and evaporation as 

inputs to ANN and WNN models. They used Daubechies wavelet of order 5 (db5) for 

one time step ahead forecasting. Results of this study had been compared by 

developing standard ANN and NAM models. Results indicated that the WANN model 

performed better than ANN and NAM models.  

Krisnna B. (2013). Main purpose of the study was to examine the capability 

of two pre-processing techniques such as wavelets and moving average (MA) 

methods in combination with feed forward neural networks and multiple linear 

regression (MLR) in the prediction of daily inflow values of Malprabha river, India. 

Two NN structures namely back propagation (BP) and radial basis (RB) algorithms 

were used. Daily data of rainfall, reservoir inflow and discharge for 11 years were 

used in the study. The author found that optimal input combination based on the 

method suggested by Sudheer et al. (2002). The time series data were decomposed 

into 3 levels using mother wavelets db5, db1, db2, db6, Bior1.1, Coif 1, Meyer, 

rbio1.1 and sym3. Results indicated that the hybrid WNN model performed better 

compared to ANN and MLR models.    

Nourani et al. (2013), in this research, a two level self organizing map (SOM) 

clustering technique was used to identify spatially homogeneous clusters of 

precipitation satellite data, and to choose the most operative and effective data for a 

feed forward neural network (FFNN) to model rainfall-runoff process on daily and 

multi-step (2, 3 and 4 day) ahead time scale. The WT was used to extract dynamic and 

multi-scale features of the non-stationary runoff time series and to remove noise. The 

authors used db4 and Haar wavelets. The performance of the coupled SOM-FFNN 

model was compared to the newly proposed SOM-WT-FFNN model. Also these two 

models were compared with auto regressive integrated moving average with 

exogeneous input (ARIMAX) model. It was found that the application of WT to the 

runoff data increased the performance of the FFNN rainfall-runoff models in 
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predicting runoff peak values by removing noise. Also, it was found that db4 wavelet 

was superior to Haar wavelet for runoff forecasting.    

Karthikeyan and Nagesh Kumar (2013), in this paper the predictability of 

wavelet based and Empirical Mode Decomposition (EMD) based time series 

modeling techniques were studied under various case studies of monthly total stream 

flow (4 non-stationary sites) and monthly total rainfall (two non stationary sites) 

locations. The time series data was decomposed using these two techniques. The 

predictability was checked for six and twelve months ahead forecasts.  It was 

observed that the wavelet based method has better prediction capability over EMD. 

Other than the works mentioned above, some other researchers had developed 

rain-fall runoff models using wavelet – artificial neural network (WANN) 

(Adamowski J., 2008; Adamowski et al., 2009; Chou, 2004; Kisi, 2011; Kisi et al., 

2013; Venkata Ramana et al., 2013). Applications of WANN models have been found 

in other fields like wave height forecasting, urban water demand forecasting, drought, 

evapotranspiration, etc in the literature (Campisi et al., 2012; Deka et al., 2010; 

Prahlada and Deka, 2011; Partal, 2009; Shirmohammadi et al., 2013). Recently 

wavelet transformations had been combined with other soft computing techniques like 

regression, fuzzy logic, genetic algorithm, support vector machine (Kisi, 2011; Kisi 

and Cimen, 2012; Partal and Kisi, 2007; Wang et al. 2011). Maheswaran and Khosa 

(2012) studied comparative study of different wavelets for hydrologic forecasting, 

Sang and Wang (2008) studied wavelets selection method in hydrologic series 

wavelet analysis, Sang Y. F. (2012) has given a practical guide to discrete wavelet 

decomposition of hydrologic time series. 

2.3 SUMMARY OF LITERATURE REVIEW AND RESEARCH OBJECTIVES 

Most of the previous studies were carried out using selective type of mother 

wavelet.  Also, the effect of decomposition level on model forecasting ability for 

stream flow forecasting was not well documented so far. Again the forecasting 

accuracy for multi-step lead-time using short term and long term time series data was 

not addressed comprehensively so far. The potential of Daubechies wavelet of various 

orders in analysing hydrologic time series behavior has been explored thinly so far, 

that require further threadbare study. 
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 Keeping all this in mind, it is proposed to develop a hybrid model combining 

wavelet and artificial neural network with the following objectives: 

1.  To investigate the potential and forecasting ability of the hybrid model by 

combining Wavelet - Artificial Neural Network (WANN) using time series 

data of various temporal scales. 

2.  Development of various WANN hybrid models for multistep lead times and 

their performance evaluated and results compared with single ANN models.  

3.  To assess the influence of different decomposition levels for various short 

term as well as long term flow forecasting on the model performance. 

4.  To investigate the proper selection of mother wavelets within the domain of 

Daubechies wavelet of various orders for better forecasting accuracy. 
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CHAPTER 3 

METHODOLOGY AND MODEL DEVELOPMENT 

This chapter is divided into two parts A) Methodology and, B) Model 

development. In the first part, in this research, hybrid models combing Wavelet 

Transform (WT) and Artificial Neural Network (ANN) are developed, the basics of 

WT and ANN are discussed, while in the second part the procedure for model 

development is discussed.  

3.1 METHODOLOGY 

Wavelet theory has been applied in many fields, such as signal process, image 

compression, voice code, pattern recognition, hydrology, earthquake investigation and 

many other non-linear science fields. Wavelet theory is discussed thoroughly in Labat 

et al. (2000) and Mallat (1998).  

Signals whose frequency content does not change with time are called 

stationary signals. In other words, the frequency content of stationary signals does not 

change in time. In stationary signals it is not necessary to know at what times 

frequency components exist, since all frequency components exist at all times. 

  Mathematical transformations (viz. Fourier transform (FT), Short Time 

Fourier transform (STFT), Wavelet Transform (WT), etc. are applied to time domain 

signals (raw signals) to obtain further information from that signal that is not readily 

available in the raw signals. The above mentioned mathematical transformation 

techniques are briefly described in the following sections. 

3.1.1 Fourier Transform (FT)  

 If the FT of a signal in time domain is taken, the frequency-amplitude 

representation of that signal is obtained. That is we have a plot with one axis being the 

frequency and the other being the amplitude. This plot tells us how much of each 

frequency exists in the raw signal. But it doesn‟t tell about what spectral component 
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exists at any given time instant i.e. the time information is lost. So FT is not suitable 

for non-stationary data. The FT is defined by the following two equations: 

 dtetxF tj2).()(                                            (3.1) 

deFtx tj2).()(                                            (3.2) 

In the above equation  stands for frequency, t stands for time and x(t) denotes time 

domain signal. Equation (3.1) is FT of x(t) and equation (3.2) is inverse FT of F( ). 

In Eq. (3.1), the signal x(t), is multiplied with an exponential term, at some certain 

frequency „ ‟, and then integrated over all the times. This integral is calculated for 

every value of „ ‟. If the value of this integration is large, then this means that the 

signal has a major component of „ ‟ in it. 

3.1.2 Short Time Fourier Transform (STFT)        

The STFT is an improvement on the FT because it provides a measure of time 

and frequency resolutions. The difference between STFT and FT is that in STFT, the 

signal is divided into small enough segments, where these segments (portions) of the 

signal can be assumed to be stationary. For this purpose, a window function „w’ is 

chosen. The width of this window must be equal to the segment of the signal where its 

stationarity is valid. This window is first located at the very beginning of the signal. 

The window function and signal are then multiplied. This product is assumed to be 

another signal, whose FT is to be taken. In other words, FT of this product is taken, 

just like taking FT of any signal. The next step is shifting this window to new 

location, multiplying with the signal, and taking FT of the product. This procedure is 

followed until the end of the signal is reached.  

STFT is defined as 

   dtetwtxtSTFT tj

t

.)].().([),( 2*                                 (3.3) 

In the above equation x(t) denotes raw signal, w(t) denotes window function, and * is 

complex conjugate. Wide window gives good frequency resolution, but poor time 

resolution. Narrow window gives good time resolution, but poor frequency resolution. 
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The use of a fixed window size at all times and for all frequencies is a limitation of 

this method. 

 In short, FT of a signal in time domain gives information about how much of 

each frequency exists in the raw signal without giving the information about time 

(Misiti et al.2010). So FT is not suitable for non-stationary data. On the other hand, 

STFT provides a measure of time and frequency resolutions, but the use of a fixed 

window size at all times and for all frequencies is a limitation of this method. 

3.1.3. Wavelet Transformation 

The wavelet representation addresses the above limitation, by adaptively 

partitioning the time-frequency plane, using a range of window sizes. At high 

frequencies, the wavelet transform gives up some frequency resolution compared to 

the Fourier transform. Figure 3.1 shows representation of the effect of using FT and 

WT. WT provides multi resolution analysis i.e. at low scales (high frequency) it gives 

better time resolution (represented by compact width of time window as shown in 

Fig.3.1) and poor frequency resolution (represented by wider width of scale window 

as shown in Fig.3.1) and at high scales (low frequency) it gives better frequency 

resolution and poor time resolution and in actual practice for all the time series signals 

such information is important. The lower scales (i.e. compressed wavelet) trace the 

abrupt change or high frequency of a signal and the higher scales (i.e. stretched 

wavelet) trace the slowly progressing occurrences or low-frequency component of the 

signal. The wavelet transform breaks the signal into its wavelets (small wave) which 

are scaled and shifted versions of the original wavelet so called mother wavelet.  

The wavelet transformation is divided into two types: 

1) Continuous wavelet transform (CWT) 

2) Discrete wavelet transform (DWT) 

3.1.3.1 Continuous wavelet transform (CWT) 

The basic objective of the CWT is to achieve a complete time-scale 

representation of localized and transient phenomenon occurring at different time 

scales (Labat, 2008). The Continuous Wavelet Transform (CWT) of a signal x(t) is 

given by the Eq. 3.4.  
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Fig 3.1. Fourier Transform and Wavelet Transformation 
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),( *                                (3.4)  

In the above equation, the transformed signal is a function of two variables, a and b, 

the scale and translation factors, respectively, of the function (t). * corresponds to 

complex conjugate (Mallat, 1998). (t) is the transforming function, and is called the 

mother wavelet, which is defined mathematically as  

                           0)( dtt                                                    (3.5) 

 The term translation is related to the location of the window, as the window is 

shifted through the signal. This term, obviously, corresponds to time information in 

the transform domain. The scale parameter is defined as 1/frequency. Low 

frequencies (high scales) correspond to a global information of a signal (that usually 

spans the entire signals), whereas high frequencies (low scales) correspond to a 

detailed information of a hidden pattern in the signal (that usually lasts a relatively 

short time).  

 The CWT is computed by changing the scale of the analysis window, shifting 

the window in time, multiplying by the signal, and integrating over all times. 

 The original signal is reconstructed using the inverse wavelet transform as 

f = frequency 

Time 

1/f 

WT 

Time 

f 

STFT 
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where C  is admissibility constant. 

The generation of wavelet coefficients for a time series involves five steps 

(Misiti et al.2010): 

i) Given a signal x(t) and a wavelet function Ψ(t), compare the wavelet to a section at 

the start of the signal. (Fig. 3.2 a). 

ii) Compute the coefficient, (say C1,1; scale = 1, time = 1), which is an indication of 

the correlation of the wavelet function with the selected section of the signal. 

iii) Shift the wavelet to the right (and find coefficient C1,2; scale = 1, time = 2) and 

repeat steps (i) and (ii) until the entire signal is covered. (Fig. 3.2 b). 

iv) Dilate (scale) the wavelet (and find coefficient C2,1; scale = 2, time = 1) and 

repeat steps (i) through (iii). (Fig. 3.2 c). 

v) Repeat steps (i) through (iv) for all scales to obtain coefficients at all scales and at 

different sections of the original signal. 
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Fig. 3.2. Generating wavelet coefficients from a time series 

3.1.3.2 Discrete wavelet transform (DWT) 

Usually all hydrological times series data are observed at discrete time 

intervals, rather than continuous time. A discretization of Eq. 3.4 based on the 

trapezoidal rule is the simplest discretization of the continuous wavelet transform. 

Calculating the CWT coefficients at every possible scale is a fair amount of work, and 

it generates a lot of data. CWT produces N
2
 coefficients from a data set of length N. 

Hence redundant information is locked up within the coefficients, which may or may 

not be a desirable property (Rajaee T. et al., 2011, Nourani et al., 2009 b). If one 

chooses scales and positions based on the powers of two (dyadic scales and positions) 

then the analysis will be much more efficient as well as accurate, which will provide 
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N transform coefficients. This transform is called discrete wavelet, and has the form 

as 

      
m

o

m

oo

m

o

nm
a

anbt

a
t

1
,

                                     (3.7)             

where m and n are integers that control the wavelet dilation and translation, 

respectively; bo is the location parameter and must be greater than zero; ao is a 

specified fixed dilation step greater than 1. From this equation, it can be seen that the 

translation step nboao
m
 depends upon the dilation, ao

m
. The most common and 

simplest choice for parameters ao and bo are 2 and 1 (time steps), respectively. This 

power of two logarithmic scaling of the translations and dilations is known as the 

dyadic grid arrangement (Mallat, 1989 b) and is defined as  

            )2(2)( 2/

, ntt mm

nm                                        (3.8) 

For discrete time series, xt, where xt occurs at discrete time t, the discrete 

wavelet transform becomes  

            t

N

i

mm

nm xntW )2(2
1

0

2/

,                                       (3.9) 

where Wm,n = wavelet coefficient for the discrete wavelet of scale a = 2
m
 and location 

b = 2
m
n. Eq. (3.7) considers a finite time series, xt, t = 0, 1, 2,…, N - 1, and N is an 

integer power of 2: N = 2
M

; n is time translation parameter. This gives the range of n 

and m as, respectively, 0 < n < 2
M-m

 - 1 and 1 < m < M. At the largest wavelet scale 

(i.e. 2
m
 where m = M) only one wavelet is required to cover the time interval, and only 

one coefficient is produced. At the next scale (2
m-1

), two wavelets cover the time 

interval, hence two coefficients are produced, and so on down to m = 1. At m = 1, the 

a scale is 2
1
, i.e. 2

M-1
 or N/2 coefficients are required to describe the signal at this 

scale. The total number of wavelet coefficients for a discrete time series of length N = 

2
M

 is then 1 + 2 + 4 + 8+ …+ 2
M-1

 = N-1.  

 In addition to this, a signal smoothed component, W , is added, which is the signal 

mean. Thus, a time series of length N is broken into N components, i.e. with zero 

redundancy. The inverse discrete transform is given by (Mallat, 1998): 

)2(2
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                             (3.10) 
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or in a simple format as  

)()(
1

tWtWx
M

m

mt                                           (3.11) 

where  W (t) is the approximation sub-signal at level M and Wm(t) are the detail sub-

signals at levels m = 1, 2,…., M. The detail wavelet coefficients, Wm(t) can capture 

small features of interpretational value in the data. The residual term W (t) represents 

background information of the data. 

DWT operates two sets of functions viewed as high-pass (wavelet function) 

and low-pass (scaling function) filters. The original time series are passed through 

high-pass and low-pass filters (as shown in Fig. 3.3) and down sampled by two (i.e 

throwing away every second data point) (Deka and Prahalada, 2012). After passing 

the signal through high pass and low pass filters, detailed (D1, D2,…., Dn, which are 

high frequency components of the original signal) and approximation coefficients (A1, 

A2,….An, which are low frequency components of the origininal signal), respectively, 

are obtained. At any n
th

 decomposition level there will be one series of approximation 

coefficients at n
th
 level (i.e. An) and n series of detailed coefficients (i.e. D1, D2,…., 

Dn), hence there will be total n+1 coefficients and the sum of An + D1 + D2 + ……+ 

Dn is equal to the original signal x(t).  

 

Fig.3.3. Wavelet decomposition tree 

 After wavelet decomposition it is required to reconstruct the singnal. The 

process of asembling back into original signal without loss of information is called 

Level 2 DWT coefficients 
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reconstruction or synthesis. In wavelet reconstruction the decomposed approximation 

and detail doefficients are upsampled by two and then they are passed through low 

pass and high pass filters, respectively, as shown in Fig. 3.4 to get the original signal. 

The wavelet reconstruction process consists of upsampling and filtering. Upsampling 

is the process of lengthing a signal component by inserting zeros between samples.  

 

 

 

 

 

Fig. 3.4 Wavelet reconstruction tree 

3.1.4 Artificial Neural Network (ANN)  

Definition of ANN According to Haykin (1998): A neural network is a 

massively parallel distributed processor that has a natural propensity for storing 

experiential knowledge and making it available for use. It resembles the brain in two 

respects: 

–Knowledge is acquired by the network through a learning process. 

–Inter neuron connection strengths known as synaptic weights are used to store the 

knowledge. 

ANN has gained popularity among Hydrologist in recent decades due to its 

large array of applications in the field of Engineering and research. The first neuron 

was produced in 1943 by the neurophysiologist Warren McCulloch and the logician 

Walter Pits. Thereafter, till 1969 Minsky and Papert wrote a book in which they 

generalized the limitations of Artificial Neural Networks. The era of renaissance 

started with John Hopfield in 1984 introducing recurrent neural network architecture. 

Neural network is an inter connected group of artificial neurons, that can be 

used as computational model for information processing based on connectionist 

approach to computation. These are non–linear statistical data modeling tools, which 

can be used as model to develop a good relationship between input and output. 

h(n) 

g(n) 

x(t) 
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Mathematically, an ANN can be treated as universal approximators having an ability 

to learn from examples without the need of explicit physics.  

In most of hydrologic time series models three layer-feedforward (Fig. 3.4) 

type of artificial neural network is used (Jain and Chalisgaonkar, 2000; Raghuwanshi 

et al., 2006; Tayfur, 2006). In the present study, feedforward ANN with Lavenberg-

Marquardt (LM) learning function and Tangent Sigmoid as transfer function, which 

are discussed in the following sections, were used. The ANN was trained using LM 

technique because it is more powerful and faster than the conventional gradient 

descent technique (Kisi, 2009 d).  

3.1.4.1. Three layered feed forward ANN 

 A three layered feedforward ANN has an input layer, an output layer, and one 

hidden layers between the input and output layers. Each of the neurons in a layer is 

connected to all the neurons of the next layer, and the neurons in one layer are 

connected only to the neurons of the immediate next layer (Fig. 3.5). The strength of 

the signal passing from one neuron to the other depends on the weight of the 

interconnections. The hidden layers enhance the network‟s ability to model complex 

functions. 

A three-layer feedforward ANN along with a typical processing element is 

shown in Fig. 3.5. Information passes from the input to the output side. The data 

passing through the connections from one neuron to another are manipulated by 

weights that control the strength of a passing signal. The nodes in one layer are 

connected to those in the next, but not to those in the same layer. Thus, the output of a 

node in a layer is only dependent on the inputs it receives from previous layers and 

the corresponding weights. The architecture of a typical neuron is also shown in Fig. 

3.5. Each node multiplies every input by its weight, sums the product, and then passes 

the sum through a transfer function to produce its result. This transfer function is 

usually a steadily increasing S-shaped curve, called a sigmoid function. The 

attenuation at the upper and lower limbs of the „„S‟‟ constrains the raw sums smoothly 

within fixed limits. The transfer function also introduces a nonlinearity that further 

enhances the network‟s ability to model complex functions (Jain and Chalisgaonkar, 
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2000). The sigmoid function is continuous, differentiable everywhere, and 

monotonically increasing. 

 

Fig. 3.5 Typical thee layer feed-forward ANN 

3.1.4.2 Training of ANN 

In general, it is assumed that the ANN does not have any prior knowledge 

about the problem. The data enter the network through the input layer. The nodes in 

the input layer are not computational nodes and simply broadcast the data over 

weighted connections to the hidden nodes. The ANNs are trained with a set of input 

and known output pairs called the training set. At the beginning of training the 
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network weights are initialized, either with a set of random values or based on some 

previous experience. The weights are optimized to get a specific response from an 

ANN. This process of optimization is called learning/training and is similar to 

calibration of a hydrological model. 

As mentioned earlier, the middle layer neurons take the weighted inputs and 

sums them. To make a single value output from each neuron, the sum is used in an 

equation called a transfer function to create an output value. The Levenberg- 

Marquardt (LM) algorithm, a standard second-order nonlinear least-squares 

technique, based on the backpropagation process to increase the speed and efficiency 

of the training was used for training the ANN models. 

 Suppose Xn represents the input vector, Wnj represents the weights between 

input nodes and hidden nodes, Wjk represents the weights between hidden nodes and 

output nodes, NETj and NETk represent the sum of the inputs of the networks, and Hj 

and Yk represent the transferred results of a sigmoid function of two networks. The 

activation value at any node (here j
th

 node), except the input layer nodes, is calculated 

as 

nnjj XWNET                                            (3.12) 

This activation value is propagated through an output function at each (here jth) 

neuron. Activation function could be Sigmoid (Logistic), Hyperbolic tangent (tan-

sigmoid, Inverse tangent, threshold, Gaussian radial basis, and Linear, while the first 

two are the most commonly used in the hydrological modeling (Dawson and Wilby, 

2001). In the present study, the hyperbolic tangent sigmoid (Fig. 3.6) function was 

preferred to the logistic function because a multilayer perceptron may learn faster (in 

terms of the number of epochs required) when the sigmoid function is symmetric than 

when it is asymmetric (Adeloye and Munari, 2006; Haykin, 1998). Tan-sigmoid 

transfer function is given by the following formula  
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Similarly 

jjkk HWNET                                               (3.14) 
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Fig. 3.6. Tan-Sigmoid transfer function 

                                  

The effect of input is propagated through layers, and the function value for 

each neuron in the output layer is computed. The sum of the nonlinear least-squares 

between the observed (target) output, Tk, and computed output, Yk, defines the error 

signal, E, that is to be propagated back 
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where E
pt

 = individual pattern error, and N = number of patterns (observations). 

If there are m output units, Eq. (3.16) can be written as 
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The total system error is given by 
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where E = total system error for all the patterns and is also called a target error. The 

neural network model stops iteration for training, when E becomes smaller than the 

target error. This error signal is propagated back, and weights are adjusted to reduce 

the difference between the desired and computed outputs. In order to find optimal 

weights (W) and bias (b), training or learning processes must be employed to 

minimize the error. A number of training algorithms were developed for error back 

propagation learning. In this study Levenberg-Marquardt (LM) algorithm is used to 

train the network. LM algorithm has the fasted convergence amongst all algorithms 

and it would be able to obtain the lowest mean square error in many cases (Cigizoglu 
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and Kisi, 2005; Beale et al. 2012; Lam et al. 2012). LM is a combination of steepest 

descent and Gaussian-Newton method. Suppose, we have a function E(W) which is to 

be minimized with respect to the parameter vector W, then Newton's method would be 

(Hagan and Menhaj, 1994) 

)()]([ 12 WEWEW                                    (3.19) 

where 2 E(W) is the Hessian matrix and ∆E is the gradient. If we assume that E(W) 

is a sum of squares function 
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Then it can be shown that 
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where J(W)is the Jacobian matrix 
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where Ω and N are the number of weights and the number of patterns, respectively. In 

other words the Jacobian will have as many columns as the number of weights, and 

the number of rows will be equal to the product of Ω and N and 

)().()( 2

1

WEWEWS n

N

i

n                                  (3.24) 

According to the Gauss-Newton method, S(W) ≈ 0,  and the one step weight update 

equation becomes: 

)()()]()([ 1 WEWJWJWJW TT
                             (3.25) 

Applying the Levenberg-Marquardt modification to the Gauss-Newton method, the 

equation becomes: 

)()(])()([ 1 WEWJIWJWJW TT
                            (3.26) 
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where I is the identity matrix and µ > 0 which is modified by some factor β in each 

epoch. For large values of µ, the algorithm becomes steepest descent with the slope of 

(1/ µ) which is standard backpropagation, and for small values of µ, the algorithm 

becomes Gauss-Newton method. In the next step, again the network is trained with 

the new weight: 

WWW EpochEpoch 1
                                       (3.27) 

The sum of squares error (E(W)) is recomputed using new weights - if E(W) is 

increased, µ is multiplied by a factor β and if it is reduced µ is divided by β. This 

procedure will be iterated again and again until the E(W) has been reduced to the error 

goal, which then the algorithm is assumed to be converged.   

This updating of weights is continued until the required level of accuracy is 

obtained between the target values and computed outputs. After such learning is over, 

the weights are frozen. A data set, that the ANN has not encountered before, is 

presented to validate its performance. Depending on the outcome, either the ANN has 

to be retrained or it can be implemented for its designated use.  

3.2 MODEL DEVELOPMENT  

3.2.1. Flow Chart  

 In this research, hybrid models, combining wavelet and artificial neural network 

(WANN), are developed for Brahmaputra river flow prediction at two stations namely 

Pandu (u/s) and Pancharatna (d/s) located on Brahmaputra River for the following 

short term and long term time series with multiple time step lead times: 

i) Using daily data: Lead times – 2, 3, 4, 7 and 14 day. 

ii) Using weekly data: Lead times – 1 and 2 week. 

iii) Using monthly data: Lead time – 1 month. 

Here weekly and monthly data means discharge is observed on weekly and 

monthly basis, respectively. The flow chart for model development is shown Fig.3.7. 
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Fig.3.7. Flow chart of model development 

3.2.2 Statistical Properties of Observed Flow 

To develop models, ten year daily (from Jan 1990 to Dec 1999) flow data at 

the two stations namely, Pandu (u/s) and Pancharatna (d/s), were collected from 

Water Resources Department, Assam, India. The observed time series discharge at 

Pandu and Pancharatna stations are shown in Fig. 3.8 and 3.9, respectively.  

Time series data 

Data normalization 

Data Pre-process using 

DWT with different 

Daubechies wavelets 

Raw data decomposition 

into Approximation and 

Detail coefficients (Ai, D1, 

D2, …, Di) 

WANN Model 

development using input to 

ANN as (Ai, D1, D2,…Di) 

Performance evaluation 

Selection of best model 

Comparison of 

model 

performance 

Development of ANN 

model (FFBP) 

Selection of input 

combination based on 

ACF 

WANN ANN 

Performance evaluation 

Selection of best model 

Selection of best 

model 



 38 

0

10000

20000

30000

40000

50000

60000

70000

1 365 729 1093 1457 1821 2185 2549 2913 3277 3641

Time in day (Jan 1990 to Dec 1999)

O
b

se
r
v

e
d

 d
is

c
h

a
r
g

e
 (

c
u

m
e
c
)

Pandu St.

 

Fig. 3.8. Observed flow series (Pandu Station) 
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Fig. 3.9. Observed flow series (Pancharatna Station) 

From the Figures 3.8 and 3.9 it is seen that, the discharge is highly non-

stationary, especially, during raining season (June to September of every year). In the 

rising limb (during February to April), also, the discharge is fluctuating because of the 

contribution of flow due to snow melting.  

The statistical characteristics of flow data are shown in the Table 3.1 below 

which reveals high variability. In the table Qmean, Qmax, Qmin, Sd and Cx denotes the 

mean, maximum, minimum, standard deviation and skewness, respectively.  
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Table 3.1. Statistical properties of flow data 

Statistical 

Parameter 
Pandu Station   Pancharatna Station 

Training Testing All  Training Testing All 

Daily data 

Qmean (m
3/s) 17803 19426 18256  16159 16236 16161 

Qmax (m
3/s) 58200 54100 58200  59832 76236 76236 

Qmin (m
3/s) 3008 5567 3008  2628 1723 1723 

Sd (m
3/s) 10508 10662 10579  11783 12388 11965 

Cx 0.507 0.698 0.563  0.726 0.968 0.809 

Weekly data 

Qmean (m
3/s) 17998 18952 18284  16258 16391 16130 

Qmax (m
3/s) 55800 54100 55800  56244 64284 64284 

Qmin (m
3/s) 3175 5544 3175  2628 1723 1723 

Sd (m
3/s) 10515 10968 10651  11957 12952 11966 

Cx 0.495 0.771 0.586  0.786 1.146 0.830 

Monthly data 

Qmean (m
3/s) 18030 18271 18104  15704 15779 15727 

Qmax (m
3/s) 43900 44200 44200  42901 40728 42901 

Qmin (m
3/s) 3586 5567 3586  3081 3081 3081 

Sd (m
3/s) 10245 10332 10229  11325 11677 11382 

Cx 0.429 0.758 0.521  0.557 0.782 0.618 

Table 3.1 reveals that the discharge is fluctuating highly in nature at both the 

stations during study period (Pandu station: minimum = 3008 cumec, maximum = 

58200 cumec; Pancharatna station: minimum = 1723 cumec, maximum = 76236 

cumec). Standard deviation for Pandu and Pancharatna stations are found to be 10579 

cumec and 11965 cumec, respectively, indicating wide dispersion of values from the 

average one. Also, the observed flows show high positive coefficient of skewness 

(Pandu: Cx = 0.563; Pancharatna: Cx = 0.809), indicating data has more scattered 

distribution about mean. To examine the testing capability of the models, two stations 

with different statistical properties are chosen for study.  

3.2.3 Input Selection in ANN and WANN Model 

There is no fixed rule for deciding the number of parameters in the input layer 

of ANN. In any time series forecasting, the values of future time step (Qt+n) is bound 

to be dependent on antecedent values i.e. Qt, Qt-1, Qt-2, …, Qt-j. But it is difficult to 

decide how many lags in past would result in better efficiency i.e. the value of j (lag) 

is not known a priori.  Determining j plays an important role in hydrologic time series 

forecasting because this may help in avoiding loss of information that may result if 

key input variables are omitted, also prevent unnecessary inclusion of input variables 

which may create problem in training of ANN.  
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Table 3.2. Correlation coefficients for the flow series (Pandu station) 

Output
@

 

(Qt+n) 

Input (Qt-j)
#
 

Qt Qt-1 Qt-2 Qt-3 Qt-4 Qt-5 Qt-6 Qt-7 Qt-8 Qt-9 

Daily data 

Qt+2 
0.984 0.972 0.959 0.947 0.935 0.924 0.914 0.905 0.897 0.889 

Qt+3 
0.972 0.959 0.947 0.935 0.924 0.914 0.905 0.897 0.890 0.884 

Qt+4 
0.959 0.947 0.935 0.924 0.914 0.905 0.897 0.890 0.884 0.877 

Qt+7 
0.924 0.914 0.905 0.897 0.890 0.884 0.878 0.872 0.867 0.861 

Qt+14 
0.872 0.866 0.861 0.855 0.850 0.844 0.838 0.832 0.825 0.816 

Weekly data 

Qt+1 
0.919 0.863 0.822 0.764 0.703 0.638 0.567 0.485 0.400  

Qt+2 
0.863 0.822 0.763 0.702 0.637 0.566 0.483 0.398 0.309  

Monthly data 

Qt+1 
0.74 0.43 0.03 -0.38 -0.67 -0.77 -0.68 -0.40   

@#
n and j are lead time and lag, respectively, in the units of respective time series.  
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Table 3.3. Correlation coefficients for the flow series (Pancharatna station) 

Output
@

 

(Qt+n) 

Input (Qt-j)
#
 

Qt Qt-1 Qt-2 Qt-3 Qt-4 Qt-5 Qt-6 Qt-7 Qt-8 Qt-9 

Daily data 

Qt+2 
0.983 0.971 0.957 0.942 0.929 0.915 0.903 0.891 0.880 0.871 

Qt+3 
0.970 0.957 0.942 0.928 0.915 0.902 0.891 0.880 0.870 0.862 

Qt+4 
0.957 0.942 0.928 0.915 0.902 0.891 0.880 0.870 0.862 0.854 

Qt+7 
0.915 0.902 0.891 0.880 0.870 0.862 0.854 0.846 0.839 0.832 

Qt+14 
0.846 0.839 0.832 0.825 0.818 0.812 0.805 0.799 0.792 0.784 

Weekly data 

Qt+1 
0.912 0.842 0.793 0.730 0.664 0.601 0.531 0.456 0.372  

Qt+2 
0.842 0.793 0.729 0.664 0.600 0.530 0.454 0.371 0.276  

Monthly data 

Qt+1 
0.72 0.42 -0.04 -0.42 -0.72 -0.82 -0.72 -0.42   

@#
n and j are lead time and lag, respectively, in the units of respective time series.  
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Fig. 3.10. Auto-correlation plot of the flow series for Pandu station (daily data) 
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Fig.3.11 Auto-correlation plot of the flow series for Pancharatna Stn. (daily data) 

Many researchers (Krishna, 2013; Nayak et al., 2013) have employed the 

method suggested by Sudheer et al. (2002), which utilizes the statistical properties 

such as cross-, auto-, and partial-auto-correlation of the data series in identifying a 

unique input vector that best represents the process for the basin. In the present study 

the input vectors to models are selected based on the auto-correlation coefficient 

(shown in Table 3.2 and 3.3) between the variables in question. Figures 3.10 and 

3.11 show auto-correlation plots of the flow series for Pandu (daily data) and 

Pancharatna (daily data) stations, respectively. Figures 3.10 and 3.11 reveal that, the 
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time series data is highly non-stationary as in non stationary series the auto correlation 

coefficient do not decay to zero as they decay exponentially to zero in stationary 

series.  

Based on auto correlation, the following combinations containing different 

numbers of input values were considered for the input layer to predict the value of 

discharge for different lead times. 

1. Qt; 

2. Qt, Q(t-1); 

3. Qt, Q(t-1), Q(t-2); 

4. Qt, Q(t-1), Q(t-2), Q(t-3); 

5. Qt, Q(t-1), Q(t-2), Q(t-3), Q(t-4); 

6. Qt, Q(t-1), Q(t-2), Q(t-3), Q(t-4), Q(t-5); 

7. Qt, Q(t-1), Q(t-2), Q(t-3), Q(t-4), Q(t-5), Q(t-6)) 

After finding input combinations using auto-correlation, the optimal input 

combinations for every lead time and for every time series is finalized using trial and 

error procedure by varying number of neurons in hidden layer from 1 to 20 using 

three layer FFBP network and Lavenberg-Marquardt as training algorithm with tansig 

as activation function. For the selection of optimal input combinations the total 

number of trials taken were 1120 {7 (no. of input combinations) × 20 (no. of neurons) 

× 8 (no. of lead times) for all time series i.e. daily, weekly, and monthly). The optimal 

combinations, shown in Table 3.4, were selected based on lowest RMSE. 

Table 3.4 ANN and WANN structure in terms of input and output parameters 

Model No. Time series Input parameter
@

 Output parameter
#
 Q(t+n) 

1 

Daily 

Qt, Q(t-1) Q(t+2) 

2 Qt, Q(t-1), Q(t-2) Q(t+3) 

3 Qt, Q(t-1), Q(t-2), Q(t-3) Q(t+4) 

4 Qt, Q(t-1), Q(t-2), Q(t-3) Q(t+7) 

5 Qt, Q(t-1), Q(t-2), Q(t-3) Q(t+14) 

6 
Weekly 

Qt, Q(t-1), Q(t-2), Q(t-3) Q(t+1) 

7 Qt, Q(t-1), Q(t-2), Q(t-3) Q(t+2) 

8 Monthly Qt, Q(t-1), Q(t-2), Q(t-3) Q(t+1) 

@Qt is current discharge value and Q(t-1), Q(t-2), Q(t-3) are 1, 2 and 3 time step past discharge values. # n = lead 

time in the unit of respective time series. 
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3.2.4 ANN Model Development 

 Multilayer perceptron (MLP) feed forward backpropagation ANN models without 

data pre-processing were developed to forecast river discharge for multiple lead times 

using short term and long term time series data. In most of the hydrologic time series 

modeling, three layer-feedforward type of artificial neural network is used (Tayfur, 

2006). A three-layer (which contains one input layer, one hidden layer, and one output 

layer) feedforward backpropagation artificial neural network were applied in the 

study. ANN application for simulation of discharge consists of two stages – training 

(learning) and testing. The process of training the ANN was carried out with 

Lavenberg-Marquardt (LM) learning function and Tangent Sigmoid as transfer 

function for all lead times with respective input combinations mentioned in Table 3.4. 

LM technique was used because it is more powerful and faster than the conventional 

gradient descent technique (Kisi, 2009 c). After training, the process of testing was 

carried out. For training and testing first 70 % and last 30 % data, respectively, were 

used. Each MLP was trained with 1–20 hidden neurons in the hidden layer with 

Levenberg–Marquardt back propagation as the training algorithm with tansig 

activation function to optimize the parameters. For all lead times the numbers of 

neurons in the hidden layer is found by trial-and-error method (Krishna, 2013; 

Moossavi, 2013). The time series data before going through the network are usually 

normalized between 0 and 1 (Nourani et al., 2009 a). So the time series flow data 

during training and testing period is normalized by dividing the discharge value by the 

maximum discharge. Model with low RMSE in testing period is treated as best model. 

The optimal learning rate and momentum coefficient used as 0.4 and 0.6, respectively. 

The termination of iteration was kept at 1000.   

3.2.5 WANN Model Development 

 After developing ANN models for both the stations, hybrid wavelet transform 

– artificial neural network (WANN) models were developed for the same stations. In 

WANN models, first of all, the normalized input data were decomposed into 

approximation and detail coefficients using discrete wavelet transform (DWT). As all 

hydrological data are observed at discrete time interval, in all WANN models, discrete 

wavelet transform (DWT) was used for processing of time series data in the form of 
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approximations and details at different levels so that gross and small features of a 

signal can be separated (Deka and Prahalada, 2012). From the basics of DWT, the 

maximum level of decomposition is given by the following formula  

L = 2
M

                                                      (3.28) 

hence,         M =  [ln L / ln 2]                                                 (3.29) 

 where L is length of data and M is maximum decomposition level. At largest scale 

(decomposition level) only one wavelet is required to cover the entire length of signal 

and only one coefficient is produced). In our study the lengths of data points for daily, 

weekly and monthly time series during training period are 2557, 365, and 84, 

respectively. As per the equation 3.29, maximum decomposition level is 11, 8, and 6 

(only integer values are taken) for daily, weekly, and monthly data, respectively. 

However, in our study we have used 7  decomposition levels for daily (2
1
 day mode, 

2
2
 day mode, …, 2

7
 day mode) and weekly (2

1
 week mode, 2

2
 week mode, …, 2

7
 

week mode) data, while 5 for monthly data (2
1
 month mode, 2

2
 month mode, …, 2

5
 

month mode), because the optimum level of decomposition for daily and weekly data 

was found to lie between 4 and 6, while for monthly 2 and 3, for both the stations. 

WANN models were developed using the Daubechies function of order 1 to 5 

(Fig.3.13) and multiresolution level ranging from 1 to 7 for each order of the function 

(dbilj, i = 1,…, 5 and j = 1, 2,..,7). In which db refers to the Daubechies function, i is 

the order of the function, l is the resolution and j is the level of resolution. The choice 

of mother wavelet depends on the data to be analyzed (Nayak et al. 2013). The shapes 

of db2 to db5 wavelets are similar to the observed flow series data and that is why 

these wavelets are used in the present study. However, it was learnt from previous 

studies that different mother wavelets may be used for improvement of model 

performance. For a model with j resolution levels there are j+1 decomposed time 

series (one approximation Aj and j detailed i.e. D1, D2, ….., Dj). (For example for 4 

day lead time the optimum input parameters are Qt, Q(t-1), Q(t-2), Q(t-3) and if these 

inputs are to be decomposed into, say, 4 levels, then there would be 5 decomposed 

series (A4, D1, D2, D3, D4) for each input parameter, and hence total there would be 5 

(number of decomposed series) × 4 (number of input parameters) = 20 inputs to 

ANN). These coefficients of details and approximations were used as input to ANN 

component of the hybrid model to obtain predicted output. The output signals were 
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kept as original series without decomposition. A multilayer perceptron (MLP) 

feedforward backpropagation ANN was trained with 2 to 15 neurons in hidden layer 

using Levenberg-Marquardt training algorithm with tansig as activation function. The 

schematic diagram of proposed WANN model is shown in Fig. 3.12. 

 

Fig. 3.12. Schematic diagram of the proposed WANN model 

3.2.5.1 Selection of Mother Wavelets  

In this study wavelet transforms are used for their denoising capabilities in 

order to improve ANN forecasting accuracy. Torrence and Compo (1998) described 

wavelet as a tool to analyze variation of power within a time series. Because of 

compact support in which wavelets are defined, wavelet filter banks are well suited to 

decompose, manipulate and represent non stationary time series. Fundamental 

manuals and practicals guide to wavelet analysis were provoded by Torrence and 

Compo, 1998; Daubechies, 1992; Mayer, 1992. 

 In the present study, the focus is on discrete wavelet transform since it 

produces a useful multiresolution in time frequency analysis compared to continuous 

wavelet transform which needs a very large memory space with large computational 

time. One of the most important families of DWT is the orthonormal wavelet 

transform which is extremely fast algorithm and widely used for analyzing 

nonstationary data. Orthogonality property provides independency for the detail 

coefficients and therefore allows the addition of one or more of the detail coefficients 

of different levels to the approximation coefficient of the first level in different 

combinations for purposes of various analyses. 

The choice of the mother wavelet depends on the data to be analyzed. In this 

study, dealing with very irregular signal shape, an irregular wavelet, Daubechies 



 47 

wavelets (Db) of order 1 (db1) to 5 (db5) have been opted. Daubechies wavelets of 

order 1 to 5 are shown in Fig. 3.13. All Daubechies wavelets of order N (dbN) are 

asymmetric, orthogonal and biorthogonal. They are compactly supported wavelets 

with extremal phase and highest number of vanishing moments for a given support 

width (Misiti, 2010). The support width of Daubechies wavelet is equal to 2N-1. 

Daubechies wavelets have no explicit expression except for db1 (haar). The wavelets 

having compact support or narrow window function are suitable for local analysis of 

the signal.  

The Haar (db1) wavelet is the simple, fast, memory efficient and exactly 

reversible without edge effects that are problem with other wavelet transforms. The 

major limitation of Haar wavelet is that the signal denoising is not always so 

effective, due to the fact that the transform cannot compress the energy of the original 

signal into a few high energy values lying above the noise threshold. Hence, Haar 

wavelet transform is not useful in compression and noise removal of signal 

processing. 

The Daubechies wavelets are a family of orthogonal wavelets defining a 

discrete wavelet transform and characterized by maximal number of vanishing 

moments for some given support. With each wavelet type of this class, there is a 

scaling function (father wavelet) which generates an orthogonal multiresolution 

analysis. The daubechies wavelets are continuous; thus they are more computationally 

expensive to use than the Haar wavelet. Daubechies wavelets use overlapping 

windows, so the high frequency coefficient spectrum reflects all high frequency 

changes. Therefore Daubechies wavelets are useful in compression and noise removal 

of signal processing.  
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   (a) db1 

 

            

                        (b) db2                                                              (c) db3     

 

          

                               (d) db4                                                              (e) db5 

Fig. 3.13. Daubechies wavelets of order 1 to 5 

 

 

 

0 

-1 

0 0.5 1 

1 



 49 

 3.2.6 Performance Criteria 

Following measures of evaluation have been used to compare the performance 

of the various models. 
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where RMSE, R
2
,MAE, B, SI, N, obsQ , comQ , and obsQ  are root-mean squared error 

(RMSE), determination coefficient (R
2
), mean absolute error (MAE), bias (B), scatter 

index (SI), number of observations, observed data, computed values, mean of 

observed data, respectively. The RMSE provides a good measure of goodness of fit 

at high flows, whereas MAE measures a more balanced perspective of the goodness of 

the fit at moderate flows (Karunanithi et al. 1994). Models with low RMSE are treated 

as best models. R
2
 is a correlation measure between computed and observed data. It 

provides a measure of the ability of a model to predict flows which are different from 

mean and its value ranges from -∞ at worst case to +1 for a perfect correlation. A R
2
 

of 0.9 and above is very satisfactory, 0.8 to 0.9 represents a fairly good model, and 

below 0.8 is deemed unsatisfactory (Dawson and Wilby, 2001). The BIAS (B) 

indicates whether the model is overestimating (B>1) or underestimating (B<1) 
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compared to the observed values. B = 1 indicates non-biased model performance. 

Scatter index is scalable measure of model precision. The model becomes more 

precise as the SI reaches zero. (Salvatore et al. 2012). 
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CHAPTER 4 

RESULTS AND DISCUSSION 

4.1 INTRODUCTION 

In this research, the applicability and generalization capability of wavelet 

transformation (WT) as a preprocessing technique combined with artificial neural 

network (ANN) is investigated using case study of forecasting Brahmaputra River 

flow using daily (short term), weekly (long term), and monthly (long term) time series 

data for multiple lead times. Ten year daily time series data for the two stations 

namely Pandu (u/s) and Pancharatna (d/s) located on Brahmaputra River are used in 

the study. The above two stations, spaced 140 km apart, were selected due to highly 

varied statistical parameters of observed flow at the stations. (Refer Table 3.1, pp 

39). As mentioned earlier in Chapter 3 the discharge is fluctuating highly in nature at 

both the stations during study period. To examine the testing capability of the models, 

two stations with different statistical properties are chosen for study. 

Using daily time series data, forecasting is carried out for lead times 2, 3, 4, 7, 

and 14 day. Using weekly time series data forecasting is carried out for lead times of 

1, and 2 week, while using monthly data forecasting is carried out for lead time of 1 

month. Total seven input combinations were finalized based on auto-correlations for 

flow series. Then the optimal input combinations for every lead time and for every 

time series is finalized using trial and error procedure by varying the number of 

neurons in hidden layer from 1 to 20 using three layer FFBP network and Lavenberg-

Marquardt as training algorithm with tansig as activation function. To forecast 2, and 

3 day ahead flow values the optimal input combinations obtained were i) Qt, Q(t-1), 

and ii) Qt, Q(t-1), Q(t-2), respectively. And for all other lead times (for daily, weekly and 

monthly time series data) the input combinations obtained were Qt, Q(t-1), Q(t-2), Q(t-3), 

where Qt is current discharge value and Q(t-1), Q(t-2), Q(t-3) are 1, 2 and 3 time step past 

discharge values.  

 At the first stage, for Pandu station, a multilayer perceptron (MLP) feed 

forward backpropagation ANN models without data pre-processing was developed to 
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forecast river discharge for multiple lead times for both short term and long time 

series data. In most of the hydrologic time series modeling, three layer-feedforward 

type of artificial neural network is used (Tayfur, 2006). In the present study, 

backpropagation algorithm with Lavenberg-Marquardt (LM) learning function and 

Tangent Sigmoid as transfer function were used. The ANN was trained using LM 

technique because it is more powerful and faster than the conventional gradient 

descent technique (Kisi, 2009 a). Each MLP was trained with 1–20 hidden neurons in 

the hidden layer with Levenberg–Marquardt back propagation as the training 

algorithm with tansig activation function to optimize the parameters. For all lead 

times the numbers of neurons in the hidden layer is found by trial-and-error method 

(Krishna, 2013; Moossavi, 2013). The time series data before going through the 

network are usually normalized between 0 and 1 (Nourani et al., 2009 a). So the time 

series flow data is normalized by dividing the discharge value by the maximum 

discharge. The model with low RMSE in testing period is treated as best model.  

 In the second stage, hybrid wavelet transform – artificial neural network 

(WANN) models were developed for Pandu station. As all hydrological data are 

observed at discrete time interval, in all WANN models, discrete wavelet transform 

(DWT) was used for processing of time series data in the form of approximations and 

details at different levels.  

In the third stage, studies were carried out for Pancharatna station for which 

data is highly non stationary (high standard deviation and skewness coefficient) 

compared to Pandu station.  Here the same models which have given best results for 

Pandu station for 2, 3, 4, 7 and 14 day lead times (using daily data), are used to 

predict flow at Pancharatna station for the same lead times i.e. 2, 3, 4, 7 and 14 day 

using daily data. While new models by carrying all runs (similar to Pandu station) are 

developed for lead times of 1 week, 2 week using weekly data and 1 month using 

monthly data.  

For the above applications, out of 10 years data, first 7 years data (Jan 1990 to 

Dec 1996) are used for training, and remaining 3 years data (Jan 1997 to Dec 1999) 

for testing. The results of daily, weekly, and monthly scale are discussed in the 

following sections.  
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4.2 MODEL RESULTS FOR DAILY TIME SERIES DATA 

 Optimum results (low RMSE) of model runs (for both ANN & WANN) carried 

out by varying order of Daubechies wavelet and decomposition level for daily time 

series data for both the stations are shown in following tables (Table 4.1 to 4.5).  

Table 4.1 A: Values of statistical parameters for ANN and WANN models  

Lead time: 2 day (Pandu Station - Daily data) 
Model 

type 

Training period  Testing period Optimum 

ANN 

structure 
RMSE R

2
 MAE BIAS S.I.  RMSE R

2
 MAE BIAS S.I. 

ANN 1636.55 0.976 974.65 1.001 0.092  1636.18 0.976 993.00 0.993 0.084 2-8-1 

db1l1 1485.20 0.980 849.82 0.999 0.083  1542.21 0.979 879.64 0.991 0.079 4-2-1 
db1l2 1321.02 0.984 728.16 0.999 0.074  1463.97 0.981 813.70 0.991 0.075 6-2-1 
db1l3 1222.00 0.986 705.35 0.999 0.068  1297.23 0.985 748.74 0.992 0.067 8-2-1 
db1l4 1190.93 0.987 684.83 0.999 0.067  1223.86 0.987 715.25 0.996 0.063 10-2-1 

db1l5 1189.69 0.987 706.26 1.000 0.067  1220.89 0.987 733.79 0.996 0.063 12-2-1 
db1l6 1197.51 0.987 713.33 1.000 0.067  1244.62 0.986 740.97 0.994 0.064 14-2-1 
db1l7 1188.43 0.987 676.74 0.999 0.067  1274.47 0.985 736.45 0.994 0.065 16-2-1 

db2l1 1455.52 0.981 864.24 1.002 0.082  1537.45 0.979 889.81 0.990 0.079 4-2-1 

db2l2 1179.96 0.987 654.91 1.001 0.066  1186.49 0.987 639.63 0.993 0.061 6-2-1 
db2l3 989.61 0.991 563.45 0.999 0.055  1038.13 0.990 566.18 0.995 0.053 8-2-1 

db2l4 944.40 0.992 549.48 1.001 0.053  970.41 0.992 550.04 0.998 0.049 10-2-1 
db2l5 963.36 0.991 586.37 1.002 0.054  1016.72 0.991 580.58 0.995 0.052 12-2-1 
db2l6 952.05 0.992 540.04 1.001 0.053  1045.44 0.992 575.79 0.997 0.054 14-2-1 
db2l7 988.46 0.991 647.45 1.001 0.055  1093.56 0.989 667.21 0.992 0.056 16-2-1 

db3l1 1402.81 0.982 854.19 1.001 0.079  1548.26 0.979 877.24 0.989 0.079 4-3-1 
db3l2 1075.41 0.989 679.74 1.001 0.060  1101.86 0.989 677.97 0.991 0.057 6-3-1 

db3l3 811.47 0.994 483.83 1.000 0.045  885.96 0.993 521.04 0.997 0.045 8-3-1 

db3l4 786.87 0.994 495.86 1.003 0.044  806.45 0.994 481.36 1.001 0.041 10-3-1 
db3l5 781.55 0.994 499.18 0.998 0.044  845.66 0.994 493.39 0.996 0.043 12-3-1 
db3l6 784.69 0.994 510.26 1.001 0.044  862.10 0.993 503.63 0.998 0.044 14-3-1 
db3l7 743.62 0.995 486.09 1.002 0.042  930.94 0.992 522.29 0.998 0.048 16-3-1 

db4l1 1469.43 0.980 870.12 1.000 0.082  1553.88 0.979 925.33 0.992 0.08 4-2-1 
db4l2 1054.99 0.990 647.89 1.000 0.059  1150.42 0.988 660.90 0.992 0.059 6-2-1 

db4l3 807.45 0.994 529.92 1.000 0.045  871.39 0.993 549.15 0.994 0.045 8-2-1 
db4l4 727.89 0.995 507.51 1.002 0.041  842.58 0.994 568.61 0.988 0.043 10-2-1 

db4l5 723.54 0.995 488.40 1.001 0.040  779.20 0.995 509.81 0.999 0.041 12-2-1 
db4l6 722.81 0.995 491.05 1.000 0.040  794.83 0.994 524.36 0.998 0.041 14-2-1 
db4l7 717.38 0.995 483.57 1.001 0.040  805.61 0.994 536.13 0.997 0.041 16-2-1 

db5l1 1478.73 0.980 868.50 1.000 0.083  1521.88 0.980 899.95 0.992 0.078 4-2-1 
db5l2 1126.53 0.988 701.75 1.001 0.063  1105.43 0.989 667.74 0.995 0.057 6-2-1 
db5l3 816.09 0.994 527.68 0.999 0.046  873.91 0.993 534.26 0.995 0.045 8-2-1 

db5l4 741.49 0.995 461.91 1.000 0.041  824.55 0.994 477.71 0.997 0.042 10-2-1 

db5l5 741.35 0.995 473.51 1.001 0.041  774.72 0.995 470.21 0.998 0.039 12-2-1 
db5l6 739.58 0.995 480.16 1.001 0.041  801.52 0.994 475.64 0.998 0.041 14-2-1 
db5l7 739.38 0.995 468.72 0.999 0.041  807.13 0.994 473.05 0.998 0.041 16-2-1 

Note: RMSE and MAE are in cumec unit. 

Table 4.1 B: Values of statistical parameters for ANN and WANN models  

Lead time: 2 day (Pancharatna station - Daily data)  
Model 

type 

Training period  Testing period Optimum 

ANN 

structure 
RMSE R

2
 MAE BIAS S.I.  RMSE R

2
 MAE BIAS S.I. 

ANN 1764.66 0.977 1044.28 1.002 0.109  2463.33 0.960 1401.83 1.014 0.152 2-8-1 

db1l5 1199.43 0.989 757.47 1.008 0.074  1795.99 0.979 1144.51 1.018 0.110 12-2-1 
db2l4 960.30 0.993 540.14 1.001 0.059  1415.36 0.987 796.43 1.007 0.087 10-2-1 
db3l4 813.84 0.995 469.56 1.001 0.050  1202.33 0.990 698.70 1.007 0.074 10-3-1 
db4l5 723.40 0.996 440.35 1.002 0.045  1153.34 0.991 672.40 1.006 0.071 12-2-1 

db5l5 652.40 0.997 413.09 1.001 0.040  974.58 0.994 609.54 1.006 0.060 12-2-1 
Note: RMSE and MAE are in cumec unit. 



 54 

Table 4.2 A: Values of statistical parameters for ANN and WANN models 

Lead time: 3 day (Pandu Station - Daily data) 

Model 

type 

Training period  Testing period Optimum 

ANN 

structure 
RMSE R

2
 MAE BIAS S.I.  RMSE R

2
 MAE BIAS S.I. 

ANN 2262.62 0.954 1389.6 0.999 0.127  2254.51 0.955 1423.98 0.991 0.116 3-11-1 

db1l1 2055.77 0.962 1258.2 0.999 0.115  2082.04 0.962 1294.01 0.986 0.107 6-2-1 
db1l2 1575.73 0.977 935.84 1.002 0.088  1669.46 0.975 1003.68 0.995 0.086 9-2-1 
db1l3 1427.93 0.981 875.97 1.001 0.080  1501.37 0.980 917.45 0.995 0.077 12-2-1 

db1l4 1383.34 0.983 863.32 1.003 0.078  1493.03 0.980 913.71 0.997 0.076 15-2-1 
db1l5 1384.38 0.983 852.07 1.001 0.078  1527.15 0.979 929.20 0.996 0.078 18-2-1 
db1l6 1368.10 0.983 851.20 1.001 0.077  1527.99 0.979 935.53 0.997 0.078 21-2-1 
db1l7 1394.94 0.982 881.42 1.003 0.078  1551.61 0.979 938.12 0.995 0.079 24-2-1 

db2l1 2071.29 0.961 1313.5 1.004 0.116  2087.91 0.961 1323.76 0.988 0.107 6-2-1 
db2l2 1380.19 0.983 817.67 0.997 0.077  1520.80 0.979 944.40 1.010 0.078 9-2-1 
db2l3 1128.58 0.988 676.23 1.000 0.063  1267.89 0.989 721.82 0.996 0.065 12-2-1 
db2l4 1097.36 0.989 690.32 1.001 0.061  1230.67 0.987 725.55 0.995 0.063 15-2-1 

db2l5 1082.54 0.989 658.76 1.001 0.061  1224.49 0.987 696.77 0.999 0.063 18-2-1 
db2l6 1098.20 0.989 707.63 1.005 0.062  1247.35 0.986 747.51 1.002 0.064 21-2-1 
db2l7 1099.16 0.989 709.11 1.002 0.062  1262.20 0.986 737.72 0.998 0.065 24-2-1 

db3l1 2058.30 0.962 1260.5 1.001 0.115  2168.10 0.958 1346.32 0.987 0.111 6-2-1 
db3l2 1346.97 0.983 836.16 1.004 0.075  1358.82 0.984 888.53 0.998 0.069 9-2-1 
db3l3 1019.89 0.990 613.18 1.002 0.057  1102.39 0.989 644.53 0.997 0.056 12-2-1 
db3l4 983.27 0.991 592.15 1.000 0.055  1008.81 0.991 601.56 0.998 0.052 15-2-1 

db3l5 982.73 0.991 571.09 0.999 0.055  999.68 0.991 580.31 0.998 0.051 18-2-1 
db3l6 985.13 0.991 574.80 1.000 0.055  1025.59 0.991 591.24 0.998 0.053 21-2-1 
db3l7 984.53 0.991 575.62 0.999 0.055  1039.87 0.990 596.10 0.995 0.053 24-2-1 

db4l1 2034.75 0.962 1247.32 1.001 0.114  2167.35 0.958 1372.66 0.989 0.111 6-2-1 
db4l2 1314.27 0.984 845.16 1.001 0.074  1260.99 0.986 808.31 0.994 0.065 9-2-1 
db4l3 890.09 0.993 573.58 1.000 0.050  952.42 0.992 577.72 0.998 0.049 12-2-1 
db4l4 860.35 0.993 559.78 0.999 0.048  937.84 0.992 552.77 0.997 0.048 15-2-1 

db4l5 872.36 0.993 573.29 1.001 0.049  925.38 0.992 557.69 0.998 0.047 18-2-1 
db4l6 855.84 0.993 549.61 1.000 0.048  928.20 0.992 548.72 0.998 0.048 21-2-1 
db4l7 854.76 0.993 547.20 0.999 0.048  950.72 0.992 548.10 0.997 0.049 24-2-1 

db5l1 2031.40 0.963 1226.82 0.998 0.114  2109.51 0.961 1312.74 0.990 0.108 6-3-1 

db5l2 1113.05 0.989 731.44 1.001 0.062  1137.23 0.989 736.44 0.995 0.058 9-3-1 
db5l3 756.94 0.995 463.44 0.999 0.042  848.19 0.994 514.54 1.000 0.044 12-3-1 
db5l4 729.57 0.995 452.10 0.999 0.041  791.78 0.994 474.78 0.999 0.041 15-3-1 
db5l5 727.98 0.995 446.72 0.999 0.041  787.11 0.994 472.75 0.999 0.040 18-3-1 

db5l6 735.84 0.995 452.62 0.999 0.041  784.13 0.995 470.08 0.999 0.040 21-3-1 
db5l7 783.60 0.994 527.88 1.001 0.044  824.68 0.994 516.47 0.997 0.042 24-3-1 

Note: RMSE and MAE are in cumec unit. 

 

 

Table 4.2 B: Values of statistical parameters for ANN and WANN models 

Lead time: 3 day (Pancharatna station - Daily data) 

Model 

type 

Training period  Testing period Optimum 

ANN 

structure 
RMSE R

2
 MAE BIAS S.I.  RMSE R

2
 MAE BIAS S.I. 

ANN 2422.19 0.958 1491.4 1.003 0.149  3157.79 0.935 1859.03 1.018 0.194 3-11-1 

db1l4 1520.95 0.983 906.48 0.998 0.094  2239.51 0.967 1357.38 1.005 0.138 15-2-1 
db2l5 1195.08 0.989 700.71 1.001 0.074  1702.97 0.981 983.77 1.006 0.105 18-2-1 
db3l5 1014.17 0.992 649.58 1.006 0.062  1371.69 0.988 906.18 1.016 0.084 18-2-1 
db4l5 865.09 0.995 536.88 0.999 0.053  1356.89 0.988 782.60 1.005 0.083 18-2-1 

db5l6 764.10 0.996 496.09 0.999 0.047  1144.08 0.991 720.30 1.006 0.070 21-3-1 

Note: RMSE and MAE are in cumec unit. 
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Table 4.3 A: Values of statistical parameters for ANN and WANN models  

Lead time: 4 day (Pandu Station - Daily data) 

Model 

type 

Training period  Testing period Optimum 

ANN 

structure 
RMSE R

2
 MAE BIAS S.I.  RMSE R

2
 MAE BIAS S.I. 

ANN 2743.17 0.932 1773.40 1.002 0.154  2727.18 0.934 1792.17 0.988 0.140 4-19-1 

db1l1 2544.66 0.941 1641.70 1.001 0.143  2931.22 0.924 1778.92 0.993 0.150 8-3-1 
db1l2 2273.00 0.953 1409.30 1.002 0.123  2299.02 0.953 1415.33 0.988 0.118 12-3-1 
db1l3 1914.25 0.967 1091.50 0.999 0.107  1957.61 0.966 1129.12 0.994 0.100 16-3-1 
db1l4 1881.86 0.968 1184.30 1.006 0.105  1905.49 0.968 1164.51 0.992 0.098 20-3-1 

db1l5 1821.45 0.970 1082.70 1.000 0.102  1846.17 0.970 1099.22 0.998 0.095 24-3-1 
db1l6 1854.61 0.967 1126.80 1.002 0.104  1938.38 0.967 1180.88 0.998 0.099 28-3-1 
db1l7 1963.98 0.965 1305.60 1.005 0.110  2214.79 0.957 1383.03 0.988 0.114 32-3-1 

db2l1 2578.67 0.939 1616.30 0.999 0.145  2700.99 0.935 1701.41 0.981 0.138 8-2-1 
db2l2 1937.04 0.966 1226.30 0.999 0.109  1956.79 0.966 1215.68 0.987 0.100 12-2-1 
db2l3 1657.63 0.975 1155.90 1.009 0.093  1855.42 0.969 1153.46 0.983 0.095 16-2-1 
db2l4 1291.09 0.985 802.63 0.999 0.072  1305.94 0.985 781.37 0.995 0.067 20-2-1 

db2l5 1297.26 0.985 839.71 1.004 0.073  1305.12 0.985 788.04 0.999 0.067 24-2-1 
db2l6 1289.24 0.985 848.63 1.001 0.072  1358.15 0.984 827.26 0.998 0.069 28-2-1 
db2l7 1300.12 0.985 865.85 1.003 0.073  1445.81 0.981 900.14 0.996 0.074 32-2-1 

db3l1 2594.78 0.939 1629.40 0.999 0.145  2667.94 0.937 1716.67 0.982 0.137 8-2-1 
db3l2 1656.63 0.975 1045.90 1.001 0.093  1832.61 0.970 1147.39 0.990 0.094 12-2-1 
db3l3 1096.44 0.989 723.51 1.003 0.061  1198.73 0.987 758.64 0.998 0.061 16-2-1 
db3l4 1027.58 0.990 681.92 0.999 0.057  1192.68 0.987 750.27 0.994 0.061 20-2-1 

db3l5 1011.27 0.991 668.16 1.001 0.057  1136.34 0.988 718.48 0.998 0.058 24-2-1 
db3l6 1013.04 0.991 663.26 1.001 0.057  1162.38 0.988 718.28 0.997 0.059 28-2-1 
db3l7 1027.41 0.990 640.93 0.999 0.057  1165.10 0.988 698.99 0.995 0.059 32-2-1 

db4l1 2622.39 0.937 1712.62 1.009 0.147  2660.76 0.937 1764.44 0.988 0.136 8-2-1 
db4l2 1684.13 0.974 1037.49 0.999 0.094  1705.27 0.974 1062.52 0.989 0.087 12-2-1 
db4l3 1048.64 0.990 685.48 1.002 0.059  1075.87 0.989 661.02 0.997 0.055 16-2-1 
db4l4 987.43 0.991 618.57 1.001 0.055  1029.18 0.991 608.59 0.998 0.053 20-2-1 

db4l5 984.67 0.991 637.70 0.999 0.055  1003.16 0.991 626.22 0.998 0.051 24-2-1 
db4l6 990.65 0.991 647.20 1.002 0.055  1034.08 0.990 655.49 1.000 0.053 28-2-1 
db4l7 1000.96 0.991 635.14 1.001 0.056  1054.22 0.990 623.69 0.997 0.054 32-2-1 

db5l1 2596.07 0.939 1619.85 1.003 0.146  2586.61 0.941 1659.72 0.987 0.133 8-2-1 

db5l2 1640.08 0.975 1014.84 1.001 0.092  1661.74 0.975 1029.26 0.992 0.085 12-2-1 
db5l3 980.04 0.991 619.74 1.001 0.055  999.23 0.991 621.25 0.997 0.051 16-2-1 
db5l4 935.45 0.992 605.48 1.006 0.052  938.45 0.992 587.69 1.000 0.048 20-2-1 

db5l5 914.17 0.992 567.40 1.001 0.051  911.97 0.993 557.09 0.999 0.046 24-2-1 
db5l6 907.57 0.992 558.07 1.001 0.051  942.25 0.992 569.61 0.999 0.048 28-2-1 
db5l7 918.04 0.992 546.53 0.999 0.051  978.32 0.991 587.81 0.996 0.050 32-2-1 

Note: RMSE and MAE are in cumec unit. 

 

 

Table 4.3 B: Values of statistical parameters for ANN and WANN models 

Lead time: 4 day (Pancharatna station - Daily data) 

 
Model 

type 

Training period  Testing period Optimum 

ANN 

structure 
RMSE R

2
 MAE BIAS S.I.  RMSE R

2
 MAE BIAS S.I. 

ANN 3133.09 0.929 2067.41 1.005 0.194  3890.35 0.901 2566.07 1.031 0.239 4-19-1 

db1l5 1918.22 0.973 1229.16 1.008 0.118  2590.84 0.956 1717.58 1.018 0.159 24-3-1 
db2l5 1431.04 0.985 868.66 1.001 0.088  1986.38 0.974 1137.20 1.009 0.122 24-2-1 
db3l5 1280.06 0.988 790.25 1.001 0.079  1683.59 0.982 1034.97 1.004 0.104 24-2-1 
db4l5 1082.75 0.991 691.25 1.004 0.067  1579.20 0.984 982.56 1.012 0.097 24-2-1 

db5l5 965.52 0.993 612.51 1.003 0.059  1335.98 0.988 823.89 1.008 0.082 24-2-1 

Note: RMSE and MAE are in cumec unit. 
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Table 4.4 A: Values of statistical parameters for ANN and WANN models 

Lead time: 7 day (Pandu Station - Daily data) 

  
Model 

type 

Training period  Testing period Optimum 

ANN 

structure 
RMSE R

2
 MAE BIAS S.I.  RMSE R

2
 MAE BIAS S.I. 

ANN 3853.05 0.865 2618.31 1.001 0.212  3834.86 0.872 2481.24 0.971 0.207 4-3-1 

db1l1 3760.31 0.812 2553.92 1.001 0.206  3765.29 0.876 2410.94 0.969 0.203 8-2-1 
db1l2 3475.55 0.890 2355.15 1.004 0.191  3497.16 0.893 2278.59 0.976 0.189 12-2-1 
db1l3 2981.96 0.919 1934.73 1.008 0.164  2989.86 0.922 1762.10 0.978 0.161 16-2-1 
db1l4 2560.24 0.940 1645.00 1.005 0.141  2635.71 0.939 1578.13 0.986 0.142 20-2-1 
db1l5 2538.58 0.941 1619.22 1.001 0.139  2487.56 0.946 1482.93 0.991 0.134 24-2-1 

db1l6 2422.39 0.945 1557.51 1.010 0.133  2468.65 0.947 1491.13 1.002 0.133 28-2-1 

db1l7 2624.39 0.937 1808.85 1.007 0.144  2662.73 0.938 1643.74 0.984 0.144 32-2-1 

db2l1 3752.16 0.872 2559.08 1.005 0.206  3743.96 0.878 2475.67 0.979 0.202 8-2-1 
db2l2 3518.24 0.888 2317.81 1.003 0.193  3422.78 0.898 2261.76 0.986 0.185 12-2-1 
db2l3 2537.32 0.942 1665.39 1.008 0.139  2544.47 0.943 1560.36 0.979 0.137 16-2-1 
db2l4 2173.03 0.957 1487.58 1.012 0.119  2245.68 0.956 1318.36 0.984 0.121 20-2-1 

db2l5 1896.09 0.967 1188.29 1.004 0.104  1659.89 0.976 1002.77 0.997 0.0897 24-2-1 
db2l6 1850.22 0.969 1242.94 1.002 0.101  1862.44 0.969 1159.95 0.992 0.1006 28-2-1 

db2l7 1964.51 0.965 1229.79 0.998 0.108  1871.77 0.969 1133.32 0.986 0.101 32-2-1 

db3l1 3739.91 0.873 2514.77 1.004 0.205  3761.41 0.877 2518.45 0.983 0.203 8-2-1 
db3l2 3435.34 0.893 2319.89 1.006 0.189  3420.30 0.898 2194.52 0.979 0.175 12-2-1 
db3l3 2106.51 0.958 1444.77 0.999 0.115  2180.25 0.958 1400.14 0.991 0.118 16-2-1 
db3l4 1593.15 0.977 1072.26 1.000 0.087  1691.33 0.975 1070.79 0.996 0.091 20-2-1 
db3l5 1498.24 0.979 980.02 0.999 0.082  1629.66 0.977 990.70 0.994 0.088 24-2-1 

db3l6 1494.88 0.979 984.06 1.002 0.082  1623.20 0.977 995.99 0.997 0.088 28-2-1 
db3l7 1547.07 0.978 1069.14 1.000 0.085  1706.08 0.975 1111.52 0.992 0.092 32-2-1 

db4l1 3780.54 0.870 2589.45 1.006 0.207  3766.10 0.876 2429.88 0.973 0.203 8-2-1 
db4l2 3378.23 0.896 2300.12 1.005 0.185  3307.23 0.905 2101.06 0.976 0.178 12-2-1 
db4l3 1930.42 0.966 1259.56 1.003 0.106  2011.94 0.965 1297.45 0.992 0.109 16-2-1 
db4l4 1503.90 0.979 959.52 1.000 0.083  1524.60 0.979 932.09 0.996 0.082 20-2-1 

db4l5 1461.88 0.981 950.01 1.001 0.080  1480.65 0.981 913.54 0.995 0.080 24-2-1 
db4l6 1478.74 0.980 932.35 1.000 0.081  1526.47 0.979 918.39 0.994 0.082 28-2-1 
db4l7 1393.70 0.982 934.99 1.001 0.076  1717.46 0.974 1076.92 1.000 0.093 32-2-1 

db5l1 3770.14 0.871 2638.85 1.015 0.207  3715.21 0.879 2504.05 0.989 0.201 8-2-1 
db5l2 3325.56 0.899 2218.80 1.003 0.182  3277.65 0.906 2057.40 0.975 0.177 12-2-1 
db5l3 1690.98 0.974 1165.66 1.002 0.093  1743.09 0.973 1090.56 0.993 0.094 16-2-1 
db5l4 1291.66 0.985 848.31 1.002 0.071  1262.39 0.986 788.16 0.996 0.068 20-2-1 

db5l5 1239.79 0.986 806.40 1.000 0.068  1248.16 0.986 768.34 0.996 0.067 24-2-1 
db5l6 1221.19 0.986 791.69 1.001 0.067  1249.34 0.986 770.06 0.997 0.067 28-2-1 
db5l7 1246.60 0.986 807.52 0.999 0.068  1271.73 0.986 798.13 0.994 0.069 32-2-1 

Note: RMSE and MAE are in cumec unit. 
 

 

Table 4.4 B: Values of statistical parameters for ANN and WANN models 

Lead time: 7 day (Pancharatna station - Daily data) 

 
Model 

type 

Training period  Testing period Optimum 

ANN 

structure 
RMSE R

2
 MAE BIAS S.I.  RMSE R

2
 MAE BIAS S.I. 

ANN 4308.72 0.866 2801.05 1.002 0.266  5185.33 0.825 3441.99 1.032 0.318 4-3-1 

db1l6 2830.19 0.942 1961.30 1.004 0.175  4131.69 0.889 2942.38 1.016 0.254 28-2-1 
db2l5 2038.56 0.970 1408.02 1.004 0.126  2894.02 0.945 1927.13 1.024 0.178 24-2-1 
db3l6 1683.52 0.979 1151.42 1.003 0.104  2525.32 0.958 1639.74 1.013 0.155 28-2-1 
db4l5 1430.24 0.985 918.64 1.001 0.088  2045.91 0.973 1281.54 1.008 0.126 24-2-1 

db5l5 1411.79 0.986 896.52 1.001 0.087  1771.43 0.979 1127.24 1.007 0.109 24-2-1 

Note: RMSE and MAE are in cumec unit. 
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Table 4.5 A: Values of statistical parameters for ANN and WANN models  

Lead time: 14 day (Pandu Station - Daily data) 

Model 

type 

Training period  Testing period Optimum 

ANN 

structure 
RMSE R

2
 MAE BIAS S.I.  RMSE R

2
 MAE BIAS S.I. 

ANN 4907.49 0.780 3576.03 1.002 0.275  5488.50 0.732 3947.75 0.954 0.279 4-1-1 

db1l1 4817.71 0.789 3441.27 0.992 0.270  5823.80 0.699 4045.09 0.948 0.297 8-8-1 
db1l2 4812.20 0.789 3545.42 1.020 0.270  5286.64 0.752 3816.84 0.975 0.269 12-8-1 
db1l3 4507.15 0.815 3130.46 0.999 0.253  5204.55 0.759 3620.07 0.963 0.265 16-8-1 
db1l4 3865.85 0.864 2603.53 0.999 0.217  5100.61 0.769 3329.82 0.959 0.260 20-8-1 
db1l5 3168.86 0.909 2102.05 0.998 0.178  4106.67 0.85 2765.57 0.978 0.209 24-8-1 

db1l6 2771.41 0.93 1962.28 1.007 0.155  3720.03 0.877 2485.80 0.991 0.189 28-8-1 
db1l7 2706.19 0.933 1887.95 1.002 0.152  4013.96 0.857 2701.82 0.978 0.204 32-8-1 

db2l1 4885.56 0.783 3564.96 1.008 0.274  5458.75 0.735 3936.44 0.964 0.278 8-3-1 

db2l2 4816.79 0.789 3454.82 0.994 0.270  5457.22 0.736 3872.70 0.949 0.278 12-3-1 
db2l3 4543.95 0.812 3085.65 0.979 0.255  5432.43 0.738 3631.44 0.936 0.277 16-3-1 
db2l4 3189.25 0.907 2048.57 0.999 0.179  4284.64 0.837 2679.13 0.981 0.218 20-3-1 
db2l5 2700.42 0.995 1860.77 1.004 0.151  3291.19 0.904 2071.54 0.966 0.166 24-3-1 

db2l6 2619.77 0.938 1831.58 1.004 0.147  2919.68 0.924 1924.33 0.976 0.149 28-3-1 
db2l7 2634.58 0.937 1804.53 0.999 0.148  2950.23 0.923 1962.05 0.971 0.150 32-3-1 

db3l1 4885.59 0.783 3545.71 1.001 0.274  5547.27 0.727 3937.69 0.948 0.283 8-2-1 

db3l2 4795.08 0.791 3536.24 1.009 0.269  5443.48 0.737 3894.96 0.957 0.277 12-2-1 
db3l3 4485.24 0.817 3113.22 1.003 0.252  5162.39 0.763 3547.50 0.955 0.263 16-2-1 
db3l4 3233.59 0.905 2258.12 0.999 0.181  3916.88 0.864 2508.19 0.964 0.199 20-2-1 
db3l5 2428.78 0.946 1656.16 1.003 0.136  2703.44 0.935 1810.59 0.982 0.138 24-2-1 
db3l6 2228.95 0.955 1452.60 0.999 0.125  2480.17 0.945 1636.81 0.993 0.126 28-2-1 

db3l7 2237.72 0.954 1462.82 1.006 0.126  2434.86 0.947 1642.17 1.001 0.124 32-2-1 

db4l1 4867.54 0.785 3533.37 1.001 0.273  5488.52 0.732 3927.24 0.953 0.279 8-2-1 
db4l2 4756.76 0.794 3436.21 1.005 0.267  5314.93 0.749 3806.54 0.959 0.271 12-2-1 

db4l3 4461.18 0.819 3127.51 1.005 0.250  5123.90 0.767 3543.09 0.958 0.261 16-2-1 
db4l4 3027.74 0.917 2087.62 1.007 0.169  3549.75 0.888 2355.28 0.973 0.181 20-2-1 
db4l5 2312.40 0.951 1577.28 0.999 0.129  2418.94 0.948 1582.84 0.978 0.123 24-2-1 

db4l6 2173.61 0.957 1437.45 1.003 0.122  2321.45 0.952 1524.53 0.986 0.118 28-2-1 
db4l7 2237.51 0.954 1553.02 1.007 0.125  2448.96 0.947 1586.02 0.983 0.125 32-2-1 

db5l1 4871.26 0.784 3571.83 1.006 0.273  5587.47 0.723 4108.05 0.965 0.285 8-2-1 
db5l2 4733.27 0.796 3398.59 1.001 0.266  5288.24 0.752 3764.32 0.957 0.269 12-2-1 

db5l3 4479.21 0.818 3132.75 0.998 0.251  4634.11 0.809 3300.98 0.968 0.236 16-2-1 
db5l4 2780.46 0.929 1977.46 1.008 0.156  3213.09 0.908 2160.44 0.975 0.164 20-2-1 
db5l5 1962.85 0.965 1326.28 0.997 0.110  2401.44 0.949 1545.91 0.991 0.122 24-2-1 

db5l6 1946.40 0.965 1261.87 0.999 0.109  2228.35 0.956 1433.47 0.997 0.113 28-2-1 
db5l7 1961.61 0.965 1305.11 1.001 0.110  2246.58 0.955 1463.31 0.992 0.114 32-2-1 

Note: RMSE and MAE are in cumec unit. 

 

 

Table 4.5 B: Values of statistical parameters for ANN and WANN models 

Lead time: 14 day (Pancharatna station - Daily data) 

Model 

type 

Training period  Testing period Optimum 

ANN 

structure 
RMSE R

2
 MAE BIAS S.I.  RMSE R

2
 MAE BIAS S.I. 

ANN 5704.97 0.765 4035.67 1.014 0.353  7084.21 0.673 5116.37 1.068 0.433 4-1-1 

db1l6 4173.09 0.874 2765.27 1.007 0.258  4913.55 0.843 3425.92 1.036 0.300 28-8-1 
db2l6 3071.96 0.932 2062.78 1.004 0.190  4716.30 0.855 3017.38 1.038 0.288 28-3-1 
db3l7 2420.95 0.958 1737.07 1.014 0.149  3848.56 0.904 2663.88 1.031 0.235 32-2-1 
db4l6 2254.95 0.963 1450.11 0.997 0.139  3328.27 0.928 2173.63 1.001 0.203 28-2-1 

db5l6 2100.07 0.968 1423.29 1.002 0.129  3100.53 0.937 2027.85 1.013 0.189 28-2-1 

Note: RMSE and MAE are in cumec unit. 
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4.2.1 ANN Model Results  

 It can be seen from Table 4.1 – 4.5 that for ANN model for Pandu station in 

testing period the values of determination coefficient (R
2
), root mean squared error 

(RMSE), mean absolute error (MAE), changes with respect to lead time forecast. The 

R
2
 values were found to decrease from 0.976 for 2 day lead time to 0.732 for 14 day 

lead time. The RMSE increases from 1636.18 cumec for 2 day lead time to 5488.50 

cumec for 14 day lead time. Also, MAE values increase from 993.00 to 3947.75 

cumec for 2 day and 14 day lead times, respectively. BIAS values are decreasing with 

lead time (2 day lead time: 0.993; 14 day lead time: 0.954), indicating models 

underestimation capacity is increasing. Also, scatter index is increasing from 0.084 

for 2 day lead time to 0.279 for 14 day lead time, indicating models precision is 

decreasing. While, during training period, the R
2
 values were found to decrease from 

0.976 for 2 day lead time to 0.780 for 14 day lead time. RMSE increases from 

1636.55 cumec for 2 day lead time to 4907.49 cumec for 14 day lead time. Also, 

MAE values increased from 974.65 to 3576.03 cumec for 2 day and 14 day lead 

times, respectively. BIAS values are very close to 1 for all lead times, indicating 

model is unbiased. Also, scatter index is increasing from 0.092 for 2 day lead time to 

0.275 for 14 day lead time, indicating models precision is decreasing. Similar trend is 

observed for Pancharatna station. In comparison with Pancharatna, Pandu station 

results are better. 

 It is found that the model efficiency is decreasing with increase in lead time. 

This may be due to significant fluctuations of the data around mean values such as 

high standard deviation (Table 3.1, pp 39). Tables 4.1 – 4.5 also show optimum 

ANN structure (e.g. for 3 day lead time, the meaning of 3-11-1 is that, 3 neurons in 

input layer, 11 neurons in hidden layer and 1 neuron in output layer). 

4.2.2 WANN Model Results 

 The normalized observed data was decomposed using Daubechies wavelets of 

order 1 (db1) to 5 (db5) upto 7
th
 level decomposition, which were fed as input to 

ANN, making the model as WANN(dbi), where i is the order of Daubechies wavelet. 

Figs. 4.1 (b – f) show approximation coefficients obtained using db1 to db5 wavelets 

along with observed flow data (Fig. 4.1 a) for Pandu station (daily data) during 
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training period. Fig. 4.1 reveals that with increase in wavelet order the approximation 

signal becomes more and smoother (stationary). Fig. 4.2 shows the details and 

approximation signals at decomposition level 5 using db5 as mother wavelet for the 

whole daily data of Pandu station. From Fig. 4.2 it is clear that, high frequency 

components of the original time series are captured in the first resolution level and 

with increase in decomposition level (scale) signal becomes more and more smoother 

(stationary). The number of neurons in hidden layer was computed by trial-and-error 

method and performances of these are tabulated in Table 4.1 – 4.5. Results of Table 

4.1 – 4.5 reveal that the performance of wavelet based hybrid WANN model is much 

better than the regular ANN model in testing period.  

 For Pandu station (during training period), from the analysis it was found that 

the value of R
2
 decreased from 0.995 (db5l5 – WANN(db5)) for 2 day lead time to 

0.965 (db5l6 – WANN(db5)) for 14 day lead time, while for ANN model this 

decrease was from 0.976 to 0.780. Also, the RMSE values increased from 741.35 

(db5l5) to 1946.40 (db5l6) cumec for 2 day and 14 day lead time, respectively, while 

for ANN model this increase was from 1636.55 to 4907.49 cumec. The MAE values 

were found to increase from 473.51 (db5l5) to  1261.87 (db5l6) cumec for 2 day and 

14 day lead time, respectively, while for ANN model this increase was from 974.65 to 

3576.03 cumec. The scatter index was found to increase from 0.041 (db5l5) to 0.109 

(db5l6) for 2 day and 14 day lead time, respectively, while for ANN model this 

increase was from 0.092 to 0.275. While BIAS values are found to very close to 1.For 

Pandu station (during testing period), from the analysis it was found that the value of 

R
2
 decreased from 0.995  (db5l5 – WANN(db5)) for 2 day lead time to 0.956 (db5l6 – 

WANN(db5)) for 14 day lead time, while for ANN model this decrease was from 

0.976 to 0.732. Also, the RMSE values increased from 774.72 (db5l5) to 2228.35 

(db5l6) cumec for 2 day and 14 day lead time, respectively, while for ANN model this 

increase was from 1636.18 to 5488.50 cumec. The MAE values were found to 

increase from 470.21 (db5l5) to  1433.47 (db5l6) cumec for 2 day and 14 day lead 

time, respectively, while for ANN model this increase was from 993.00 to 3947.75 

cumec. The scatter index was found to increase from 0.039 (db5l5) to 0.113 (db5l6) 

for 2 day and 14 day lead time, respectively, while for ANN model this increase was  
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Fig. 4.1 (a) Observed daily flow (Pandu St.), Approximation coefficient at level 5 

using (b) db1, (c) db2, (d) db3, (e) db4, (f) db5 mother wavelets  
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Fig. 4.2. Decomposition (approximation & detail) at level 5 using db5 wavelet 

 

from 0.084 to 0.279. While BIAS values are found to very close to 1. It was found 

that for all WANN models, during training period BIAS values are slightly greater 

than 1 (indicating overestimation), while these are slightly less than 1 (indicating 

underestimation) during testing period of Pandu station. This may be due to extreme 

value lying in the training period. 

 For Pancharatna station (during training period), from the analysis, it was 

found that the value of R
2
 decreased from 0.997 (db5l5 – WANN(db5)) for 2 day lead 

time to 0.968 (db5l6 – WANN(db5)) for 14 day lead time, while for ANN model this 

decrease was from 0.977 to 0.765. Also, the RMSE values increased from 652.40 

(db5l5) to 2100.07 (db5l6) cumec for 2 day and 14 day lead time, respectively, while 

for ANN model this increase was from 1764.66 to 5704.97 cumec. The MAE values 

were found to increase from 413.09 (db5l5) to 1423.29 (db5l6) cumec for 2 day and 

14 day lead time, respectively, while for ANN model this increase was from 1044.28 

to 4035.67 cumec. The scatter index was found to increase from 0.040 (db5l5) to 

0.129 (db5l6) for 2 day and 14 day lead time, respectively, while for ANN model this 
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increase was from 0.109 to 0.353. Here, also, BIAS values are found to be very close 

to 1. For Pancharatna station (during testing period), from the analysis, it was found 

that the value of R
2
 decreased from 0.994 (db5l5 – WANN(db5)) for 2 day lead time 

to 0.937 (db5l6 – WANN(db5)) for 14 day lead time, while for ANN model this 

decrease was from 0.960 to 0.673. Also, the RMSE values increased from 974.58 

(db5l5) to 3100.53 (db5l6) cumec for 2 day and 14 day lead time, respectively, while 

for ANN model this increase was from 2463.33 to 7084.21 cumec. The MAE values 

were found to increase from 609.54 (db5l5) to 2027.85 (db5l6) cumec for 2 day and 

14 day lead time, respectively, while for ANN model this increase was from 1401.83 

to 5116.37 cumec. The scatter index was found to increase from 0.060 (db5l5) to 

0.189 (db5l6) for 2 day and 14 day lead time, respectively, while for ANN model this 

increase was from 0.152 to 0.433. Here, also, BIAS values are found to be very close 

to 1. It was found that for all WANN models, during testing period BIAS values are 

slightly greater than 1 (indicating overestimation), while these are slightly less than 1 

(indicating underestimation) during training period of Pancharatna station, which 

result is exactly opposite to Pandu station. This was due to extreme value lying in the 

testing period.  

The above discussion and study of Table 4.1 – 4.5 reveal that, in comparison 

with regular ANN model all WANN models have given better results for all lead 

times. The WANN model was found more accurate because wavelet transform 

decomposes the non-stationary time series data into several stationary approximation 

and details time series. In hybrid WANN model, wavelet transform takes care of non-

stationarity while ANN handles non-linearity. Also river flow time series are 

characterized by non-linearity, non-stationarity and seasonality, which ANN models 

may not be able to cope without pre-processing of the input data. 

4.2.3 Comparison among WANN Models With Different Daubechies Wavelets 

 In the present study, the results obtained by WANN models using db1 to db5 

mother wavelets are also compared. Results of Table 4.1 – 4.5 depict that WANN 

model with db5 mother wavelet [WANN(db5)] model has shown better performance 

compared to  WANN(db1) to WANN(db4) models for both the stations. For 2 day 

lead time for Pandu station in training period (Table 4.1 A), from the analysis, it was 
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found that the value of R
2
 increased from 0.987 for db1l5 – WANN(db1) model to 

0.995 for db5l5 – WANN(db5) model, while for Pancharatna station (Table 4.1 B) 

this increase was from 0.989 to 0.997 for the same models. Also, for Pandu station the 

RMSE values decreased from 1189.69 for db1l5 – WANN(db1) model to 741.35 

cumec for db5l5 – WANN(db5), while for Pancharatna station this decrease was from 

1199.43 to 652.40 cumec for the same models. For Pandu station the MAE values 

were found to decrease from 706.26 for db1l5 – WANN(db1) model to 473.51 cumec 

for db5l5 – WANN(db5), while for Pancharatna station this decrease was from 757.47 

to 413.09 cumec for the same models. For Pandu station the scatter index was found 

to decrease from 0.067 for db1l5 – WANN(db1) model to 0.041 for db5l5 – 

WANN(db5), while for Pancharatna station this decrease was from 0.074 to 0.040. As 

discussed earlier, BIAS values are found to be very close to 1 for all the models. For 2 

day lead time for Pandu station in testing period (Table 4.1 A), from the analysis, it 

was found that the value of R
2
 increased from 0.987 for db1l5 – WANN(db1) model 

to 0.995 for db5l5 – WANN(db5) model, while for Pancharatna station (Table 4.1 B) 

this increase was from 0.979 to 0.994 for the same models. Also, for Pandu station the 

RMSE values decreased from 1220.89 for db1l5 – WANN(db1) model to 774.72 

cumec for db5l5 – WANN(db5), while for Pancharatna station this decrease was from 

1795.99 to 974.58 cumec for the same models. For Pandu station the MAE values 

were found to decrease from 733.79 for db1l5 – WANN(db1) model to 470.21 cumec 

for db5l5 – WANN(db5), while for Pancharatna station this decrease was from 

1144.51 to 609.54 cumec for the same models. For Pandu station the scatter index 

was found to decrease from 0.063 for db1l5 – WANN(db1) model to 0.039 for db5l5 

– WANN(db5), while for Pancharatna station this decrease was from 0.110 to 0.060. 

As discussed earlier, BIAS values are found to be very close to 1 for all the models. 

 The above discussion and the careful study of Table 4.1 A and B, reveal that 

WANN model‟s forecasting performance increases with increase in wavelet order, 

giving best results for db5 mother wavelet for both the stations and similar 

performance was observed for other lead times also. From the observed time series 

flow data (Fig. 3.8 & 3.9, pp 38), it seems to have high frequency during monsoon 

season (June to September i.e. 4 months of every year), while comparatively low 

frequency in non-monsoon season (i.e. during remaining 8 months). The wavelets 
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having wider support are capable of capturing low frequencies. On the other hand, 

wavelets having smaller support are capable of capturing high frequencies. db5 

wavelet support width is 9 (see Fig. 3.13, pp 48) (support width of Daubechies 

wavelet is equal to 2 i - 1, where i = Daubechies wavelet order (Misiti, M. et al. 

2010)), while db1, db2, db3 and db4 wavelets have support widths 1, 3, 5 and 7, 

respectively. In short, the db5 wavelet has a reasonable support and also has good 

time-frequency localization property and these together enable the model to capture 

both the underlying trend (Fig. 4.1) as well as the short term variablities in the time 

series better than db1 to db4 wavelet based forecast model. This observation is in 

congruence with the results obtained by Nourani et al. (2013), who showed that 

higher order mother wavelet (db4) provided comparatively better outcomes than 

lower order Haar (db1) wavelet. Another reason for having better results for db5 

mother wavelet could be that its form is similar to the observed runoff signal 

fluctuation. Figure 4.3 shows effect of Daubechies wavelet order on determination 

coefficient (R
2
) for lead times 3, 7, and 14 day for Pandu station. Fig. 4.3 reveals that, 

for the all the lead times R
2
 is maximum for db5 mother wavelet.  

 

Fig. 4.3. Effect of Daubechies wavelet order on determination coefficient (R
2
) for 

lead times 3, 7, and 14 day for Pandu station 

 To assess the potential of WANN model to preserve statistical properties, an 

analysis is carried out for testing period, the results of which are shown in the Table 

4.6 and 4.7 below. From these tables it was revealed that the statistical properties 

(mean, standard deviation and skewness coefficient) for almost all WANN models 
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were same as that of the observed one except for some models in higher lead time 

(e.g. for WANN(db1) model for lead time 14 day, Sd = 11699 cumec, while the 

observed is 12388 cumec). Also, from the Tables 4.6 and 4.7, it was observed that 

the peak was fairly well estimated by WANN(db3) model (the error was limited 14.94 

% for Pandu station and 23.31 % for Pancharatna station for highest lead time i.e. 14 

day). However, the overall performance of WANN(db5) model is better. This may be 

due to spike like feature of db3 wavelet which is similar to sudden spikes of observed 

peak. As far as % error in low flow computation is concerned, almost all WANN 

models have worked fairly for Pandu station (error was limited to -14.22 %), but the 

error is high for Pancharatna station. This is due to peak lies in testing period for 

Pancharatna station. Time lag to peak was, also, fairly computed by all WANN 

models both the stations.  

Table 4.6. Statistical properties of the observed and computed flow using WANN 

models during testing period for Pandu Station 

Parameter Lead time 

(day) 

Observed WANN 

(db1) 

WANN 

(db2) 

WANN 

(db3) 

WANN 

(db4) 

WANN 

(db5) 

Qmean (m
3/s) 

2 

19426 

19356 19391 19445 19407 19395 
3 19383 19437 19397 19408 19435 

4 19443 19479 19439 19432 19458 
7 19544 19454 19453 19423 19436 
14 19454 19154 19645 19337 19564 

Sd (m
3/s) 

2 

10662 

10568 10573 10673 10735 10634 
3 10584 10619 10544 10593 10668 
4 10482 10665 10697 10609 10626 
7 10531 10501 10664 10718 10584 
14 10285 10098 10488 10156 10379 

Cx 

2 

0.698 

0.622 0.637 0.666 0.688 0.642 
3 0.644 0.654 0.635 0.626 0.714 
4 0.642 0.651 0.663 0.637 0.663 
7 0.647 0.667 0.704 0.734 0.718 
14 0.569 0.462 0.609 0.491 0.549 

% Error in 
peak* 

2 

54100 

11.55 8.06 4.44 5.10 8.81 

3 8.96 8.79 10.76 8.82 2.98 
4 6.56 10.6 4.81 11.46 8.19 
7 12.71 18.27 7.98 13.34 8.43 
14 14.35 27.49 14.94 19.58 18.62 

% Error in 
low flow 

computation* 

2 

5567 

1.31 3.70 2.75 2.13 3.16 
3 -1.60 5.01 2.62 3.89 1.34 
4 -4.69 1.53 -3.23 1.04 -3.82 
7 -3.74 6.05 3.59 3.00 5.32 

14 -14.22 -11.08 5.17 -9.55 -0.25 

Time lag to 

peak (day)# 

2 

- 

0 2 L 0 1A 1 L 
3 0 2 L 0 0 0 
4 0 0 0 0 0 
7 1 L 0 1 L 10 L 0 
14 1 A  15 A 21 A 7 A 1 L 

* positive – underestimation, negative – overestimation; # L =latter, A = ahead  
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Table 4.7. Statistical properties of the observed and computed flow using WANN 

models during testing period for Pancharatna Station 

Parameter Lead time 

(day) 

Observed WANN 

(db1) 

WANN 

(db2) 

WANN 

(db3) 

WANN 

(db4) 

WANN 

(db5) 

Qmean 

(m3/s) 

2 

16236 

16528 16359 16356 16343 16340 

3 16315 16331 16493 16320 16339 
4 16535 16381 16297 16438 16366 
7 16530 16663 16480 16402 16384 
14 16933 16960 16852 16372 16560 

Sd (m
3/s) 

2 

12388 

12140 12209 12192 12234 12187 
3 11972 12234 12266 12176 12150 
4 11814 12190 12187 12203 12184 
7 11553 12495 12110 12131 12152 

14 11699 12113 12353 12278 12051 

Cx 

2 

0.968 

0.931 0.961 0.954 0.960 0.973 
3 0.894 0.980 0.999 0.934 0.962 
4 0.854 0.955 0.939 0.929 0.944 
7 1.073 1.228 0.963 0.932 0.912 
14 0.986 0.947 0.964 0.996 0.842 

% Error in 
peak* 

2 

76236 

16.23 9.97 14.00 11.97 12.09 

3 23.97 9.79 8.88 20.69 11.10 
4 33.49 14.32 16.23 20.99 16.04 
7 33.70 1.36 23.90 23.11 19.09 
14 41.30 26.25 23.31 23.52 32.10 

% Error in 
low flow 

computatio
n* 

2 

1723 

-161.34 -139.12 -138.30 -125.71 -139.64 
3 -138.59 -132.03 -150.66 -140.80 -135.63 
4 -177.77 -134.24 -132.33 -143.01 -136.16 

7 -237.72 -200.29 -175.39 -137.67 -140.51 
14 -241.67 -148.17 -208.71 -126.46 -135.93 

Time lag to 
peak (day)# 

2 

- 

2 L 1 L 1 L 1 L 1 L 
3 2 L 2 L 0 1 L 1 L 
4 2 L 3 L 1 L 1 L 2 L 
7 3 L 2 L 0 2 L 1 L 
14 8 L 5 L 1 A 2 L 4 L 

* Positive – underestimation, negative – overestimation; # L =latter, A = ahead  

 

 The time series and scatter plots for ANN and WANN(db5) models for all 

lead times (i.e. 2, 3, 4, 7, and 14 day) for daily time series data are shown in the Fig. 

4.4 to Fig. 4.13.  
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Fig.4.4. Flow series and scatter plot between observed and ANN modeled flow 

for 2 day lead time (daily data) for Pandu station during testing period 
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Fig.4.5. Flow series and scatter plot between observed and WANN(db5) modeled 

flow for 2 day lead time (daily data) for Pandu station during testing period 
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Fig.4.6. Flow series and scatter plot between observed and ANN modeled flow 

for 4 day lead time (daily data) for Pandu station during testing period 
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Fig.4.7. Flow series and scatter plot between observed and WANN(db5) modeled 

flow for 4 day lead time (daily data) for Pandu station during testing period 
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Fig.4.8. Flow series and scatter plot between observed and ANN modeled flow 

for 14 day lead time (daily data) for Pandu station during testing period 
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Fig.4.9. Flow series and scatter plot between observed and WANN(db5) modeled 

flow for 14 day lead time (daily data) for Pandu station during testing period 
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Fig.4.10. Flow series and scatter plot between observed and ANN modeled flow 

for 3 day lead time (daily data) for Pancharatna station during testing period 
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Fig.4.11. Flow series and scatter plot between observed and WANN(db5) 

modeled flow for 3 day lead time (daily data) for Pancharatna station during 

testing period 
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Fig.4.12. Flow series and scatter plot between observed and ANN modeled flow 

for 7 day lead time (daily data) for Pancharatna station during testing period 
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Fig.4.13. Flow series and scatter plot between observed and WANN(db5) 

modeled flow for 7 day lead time (daily data) for Pancharatna station during 

testing period 
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 Figure 4.4 to Figure 4.13 shows flow series and scatter plots for ANN and 

WANN(db5) models for various lead times for Pandu and Pancharatna stations. In 

these figures the results of best WANN model (i.e. WANN(db5)) were compared with 

ANN models.  From these figures it was observed that the performance of 

WANN(db5), for all lead times and for both the stations, was superior compared to 

ANN models. 

 From Figure 4.5 (pp 68) (lead time: 2 day, Pandu stn, WANN(db5)), it was 

observed (from flow series plot) that WANN(db5) model was able to capture multiple 

peaks during all the three monsoon seasons. However, it was not able to capture 

highest peak during the monsoon season of June – September, 1998. The small 

multiple peaks in the rising limbs (occurred due to melting of snow in the Himalaya), 

as well as in the falling limbs, were well captured by the model. Figure 4.5 also 

depicts that, the model was able to capture low flows precisely. From the scatter plot 

of Fig. 4.5, it was observed that most of the points were very close to 45
o
 line (SI = 

0.039), with few points having higher magnitudes of observed flow on lower side, 

indicating models underestimation (BIAS = 0.998). The models performance was 

very satisfactory (R
2
 = 0.995, RMSE = 774.72 cumec, MAE = 470.21 cumec) 

(Dawson and Wilby, 2001). Similar trend was observed in Fig. 4.7 (pp 70) (lead time: 

4 day, Pandu stn., WANN(db5)).  

 As shown in Figure 4.9 (pp 72) (lead time: 14 day, Pandu stn, WANN(db5)), 

it was observed that, the multiple peaks in the monsoon season were not well captured 

by the model. Small multiple peaks in the rising and falling limb of hydrograph were, 

also, not captured properly. However, the model was able to capture low flows 

precisely (with % error = - 0.25). The overall models performance was very 

satisfactory (R
2
 = 0.956, RMSE = 2228.35 cumec). 

 In this study it was found that, with increase in lead time models performance 

decreases. This may be due to weak link existing between input and output data. 

However, the hybrid WANN models have shown that the use of WT as a 

preprocessing technique can produce predictions more accurate and this is due to WT 

extracts periods and seasonality.     

 Figure 4.11 (pp 74) shows time series and scatter plots for lead time 3 day 

(Pancharatna station) for WANN(db5) model. Flow series plot reveals that, the model 
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was able to capture multiple peaks in all monsoon seasons except the peak values. But 

it was not able to capture low flows more precisely. From the scatter plot, it was 

observed that the model computed values were close to observed with SI = 0.07, and 

BIAS = 1.006 (slightly overestimation). The models overall performance was very 

satisfactory (R
2
 =  0.991, RMSE = 1144.08 cumec, MAE = 720.30 cumec)  

 Figure 4.13 (pp 76) shows flow series and scatter plots of WANN(db5) model 

for lead time 7 day (Pancharatna station). From time series plot, it was observed that, 

due to increase in lead time, it was not able to capture multiple peaks, however, the 

modeled and observed values are well matched in the rising and falling limbs of 

hydrograph. Also model was not able to capture low flows precisely. However, 

models overall performance was very satisfactory (R
2
 = 0.979, RMSE = 1771.43 

cumec, MAE = 1127.24 cumec, BIAS = 1.007, and, SI = 0.109). 

 As mentioned earlier, the results of Pancharatna station are found to be 

comparatively poor than Pandu station, because of high non-stationarity and peak of 

overall time series lies in testing period. 
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Fig. 4.14. Discharge-frequency curve during testing period for lead time 2 day 

(daily data), Pancharatna Stn. 

 Figure 4.14 shows discharge-frequency curve (also known as flow-duration 

curve) in testing period for 2 day lead time for Pancharatna station. The flow-duration 

curve represents the cumulative frequency distribution and can be considered to 

represent the streamflow variation of an average year. The discharge ordinate Qt at 

any percentage probability Pt represents the flow magnitude in an average year that 
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can be expected to be equalled or exceeded Pt percent of time and is termed Pt % 

dependable flow. This is very important in the planning of water resources projects, in 

flood control studies, etc. it may be noted from Figure 4.14 that, WANN(db5) model 

captured high and low flows, but it was unable to capture medium flow (20,000 – 

40,000 cumec). 

 Figures 4.15 and 4.16 show flow series and scatter plots, respectively, for 

best WANN model (with low RMSE) for Daubechies wavelets of order db1 to db5 for 

lead time 4 day (Pancharatna station). From these plots it was observed that, with 

increase in wavelet order, the model‟s forecasting performance was increased. Also, it 

is worth to mention that, db3 wavelet (Fig. 4.15 c) was able to capture all the peaks in 

the monsoon season compared to other wavelets.  
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(e) 

Fig.4.15. Flow series plots between observed and (a) WANN(db1), (b) 

WANN(db2), (c) WANN(db3), (d) WANN(db4), (e) WANN(db5) modeled flow 

for 4 day lead time (daily data) for Pancharatna station during testing period 



 81 

0

10000

20000

30000

40000

50000

60000

70000

0 10000 20000 30000 40000 50000 60000 70000
Observed flow (cumec)

W
A

N
N

(d
b

1
) 

m
o

d
el

ed
 f

lo
w

 (
cu

m
ec

)

Lead time: 4 day (daily data) 

Pancharatna Stn.

0

10000

20000

30000

40000

50000

60000

70000

0 10000 20000 30000 40000 50000 60000 70000
Observed flow (cumec)

W
A

N
N

(d
b

2
) 

m
o
d

el
ed

 f
lo

w
 (

cu
m

ec
)

Lead time: 4 day (daily data) 

Pancharatna Stn.

 
                                      (a)                                                              (b) 

0

10000

20000

30000

40000

50000

60000

70000

0 10000 20000 30000 40000 50000 60000 70000
Observed flow (cumec)

W
A

N
N

(d
b

3
) 

m
o

d
el

ed
 f

lo
w

 (
cu

m
ec

)

Lead time: 4 day (daily data) 

Pancharatna Stn.

 

0

10000

20000

30000

40000

50000

60000

70000

0 10000 20000 30000 40000 50000 60000 70000
Observed flow (cumec)

W
A

N
N

(d
b

4
) 

m
o

d
el

ed
 f

lo
w

 (
cu

m
ec

)

Lead time: 4 day (daily data) 

Pacharatna Stn.

 
                                       (c)                                                                (d) 

  

0

10000

20000

30000

40000

50000

60000

70000

0 10000 20000 30000 40000 50000 60000 70000
Observed flow (cumec)

W
A

N
N

(d
b

5
) 

m
o
d

el
ed

 f
lo

w
 (

cu
m

ec
)

Lead time: 4 day (daily data) 

Pancharatna Stn.

 
(e) 

Fig.4.16. Scatter plots between observed and (a) WANN(db1), (b) WANN(db2), 

(c) WANN(db3), (d) WANN(db4), (e) WANN(db5) modeled flow for 4 day lead 

time (daily data) for Pancharatna station during testing period 
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4.2.4 Influence of Decomposition Level on Model Performance 

 It was also one of the main objectives of the present study, to assess the 

influence of decomposition level on WANN model performance. Deciding the 

optimal decomposition level of the time series data in wavelet analysis plays an 

important role in preserving the information and reducing the distortion of the 

datasets. However, there is no existing theory to specify the number of  

decomposition levels needed for any time series (Pandhiani et al. 2013). In the present 

study, the optimal level of decomposition was found by trial-and-error method as 

carried out by previous researchers (Deka and Prahlada, 2012, Moosavi et al. 2013). 

  As mentioned earlier, for daily time series data of length 2557 the maximum 

required number of decomposition levels are 11. However, in the present study, the 

normalized time series data is decomposed into maximum 7 levels. Because it was 

found that, the optimal level of decomposition (low RMSE) was found to lie between 

4 and 6 (depending on lead time) for daily data. 

 Careful study of Table 4.1 A – 4.5 A (pp 53 to 57) reveals that, with increase 

in decomposition level model‟s efficiency increases upto a certain level, thereafter it‟s 

starts declining. As mentioned earlier, high frequency components of the original time 

series are captured in the first resolution level and with increase in decomposition 

level (scale) signal becomes more and more smoother (stationary) (see Fig. 4.2, pp 

61), hence prediction errors were not increased with scale. The other reason might be, 

at the optimum scale the stretched baby wavelet coinciding with the original signal. 

After reaching the optimal level, the model‟s forecasting performance decreased 

because with increase in decomposition level, the number of neurons in input layer 

increased, creating complex non linear relationship, which ANN may not be able to 

cope. From Table 4.1 A – 4.5 A it was observed that, for low lead time (2, 3, and 4 

day) the optimum level was 4
th

 (2
4
-day mode i.e. 2 week) and 5

th
 (2

5
-day mode i.e. 1 

month), while for higher lead time (7 and 14 day) it was 5
th
 (2

5
 – day mode i.e. 1 

month) and 6
th

 (2
6
- day mode i.e. 2 month). It is worth to mention that, optimum level 

of decomposition increased with lead time. Figure 4.17 shows the effect of 

decomposition level on RMSE for WANN(db4) and WANN(db5) models for lead 

time 4 day (Pandu station). For both the models the optimum decomposition level was 

found to be 5.  
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Fig.4.17. Effect of decomposition level on RMSE (lead time: 4 day, Pandu Stn.) 

4.2.5 Analysis of Results for Monsoon Season of Testing Period 

Finally, as the Brahmaputra River carries heavy flood in the monsoon season 

(June to September), attempt was made to investigate the model‟s accuracy during 

monsoon period (for three years in testing period 1997 to 1999) for WANN(db5) 

model. Table 4.8 presents the values of statistical parameters for WANN(db5) model 

for monsoon season of testing period.  Table 4.8 depicts that, WANN(db5) model 

performed well for monsoon season giving very satisfactory results (except in case the 

of highest lead time 14 day), despite of high non-stationarity.   

Table 4.8. Values of statistical parameters for WANN(db5)  model for monsoon 

season (June to September) in testing period 

Year Pandu Station  Pancharatna Station 

RMSE R
2
 MAE BIAS S.I.  RMSE R

2
 MAE BIAS S.I. 

Lead time: 2 day 

1997 1002.92 0.962 637.45 1.000 0.035  1019.43 0.980 684.94 1.000 0.039 
1998 1359.43 0.970 964.25 0.998 0.037  1756.88 0.967 892.63 0.994 0.050 
1999 1150.23 0.936 864.99 0.999 0.039  1231.57 0.976 768.97 0.998 0.039 

Lead time: 3 day 

1997 1280.02 0.938 814.88 1.000 0.045  1302.26 0.968 789.61 1.000 0.049 
1998 1198.65 0.977 907.27 1.002 0.033  1949.73 0.960 1077.25 0.992 0.056 

1999 971.65 0.954 735.87 0.997 0.033  1483.78 0.965 966.63 0.996 0.047 

Lead time: 4 day 

1997 1344.17 0.931 997.9 1.000 0.047  1457.32 0.960 948.69 1.000 0.056 
1998 1361.19 0.970 1016.36 0.996 0.037  2460.41 0.936 1374.27 0.995 0.071 
1999 1531.10 0.887 1075.25 1.001 0.052  1711.08 0.953 1148.83 0.999 0.054 

Lead time: 7 day 

1997 1570.51 0.906 1192.17 1.000 0.056  2413.60 0.889 1679.33 1.000 0.092 
1998 1947.61 0.939 1507.31 0.986 0.053  2992.62 0.905 1855.51 1.000 0.086 
1999 2268.05 0.752 1636.47 0.997 0.077  2241.25 0.920 1577.54 1.000 0.071 

Lead time: 14 day 

1997 3130.39 0.628 2334.03 1.000 0.111  3998.42 0.697 3097.05 1.000 0.153 
1998 3605.32 0.791 2624.24 0.991 0.098  4771.57 0.759 3122.96 1.012 0.137 

1999 3264.38 0.486 2458.46 0.998 0.111  4954.74 0.608 4087.51 0.996 0.157 

Note: RMSE and MAE are in cumec unit. 
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Fig. 4.18. Flow series comparison between observed and WANN(db5) modeled 

flow for monsoon season (June 1998 to Sept 98) for lead time 2 day for (a) Pandu 

Stn. (b) Pancharatna Stn.  

 

 Figures 4.18 (a) and (b) show flow series plots between observed and 

WANN(db5) modeled for monsoon period for lead time 2 day for Pandu and 

Pancharatna stations, respectively. It was seen from these figures that, the model was 

able to capture all multiple peaks (except highest) fairly well. 

 

 



 85 

4.3 MODEL RESULTS FOR WEEKLY TIME SERIES DATA 

  Optimum results (with low RMSE) of model runs carried out by varying the 

order of Daubechies wavelet and decomposition level for weekly time series data for 

both the stations are shown in following tables (Table 4.9 to 4.12). Results of ANN 

models are also shown in the same tables for comparison. 

Table 4.9. Values of statistical parameters for ANN and WANN models  

Lead time: 1 week (Pandu Station - Weekly data)) 

 
Model 

type 

Training period  Testing period Optimum 

ANN 

structure 
RMSE R

2
 MAE BIAS S.I.  RMSE R

2
 MAE BIAS S.I. 

ANN 4253.35 0.835 2802.36 0.974 0.236  4971.35 0.791 3229.57 0.936 0.258 4-9-1 

db1l1 3371.47 0.896 2335.92 1.028 0.187  3795.24 0.878 2349.46 1.009 0.197 8-3-1 
db1l2 3073.10 0.914 2054.31 1.019 0.170  3313.25 0.907 2169.73 1.003 0.172 12-3-1 
db1l3 2955.61 0.920 2014.22 1.005 0.164  3209.93 0.913 2047.63 0.996 0.166 16-3-1 

db1l4 3032.01 0.916 2136.42 1.002 0.168  3191.31 0.914 2204.58 0.986 0.165 20-3-1 

db1l5 3145.45 0.910 2195.76 1.012 0.174  3524.75 0.895 2380.46 0.994 0.183 24-3-1 
db1l6 3100.37 0.912 2223.36 1.009 0.172  3615.08 0.889 2506.33 0.975 0.187 28-3-1 
db1l7 3171.45 0.908 2142.37 1.006 0.176  6472.64 0.646 5456.67 0.730 0.336 32-3-1 

db2l1 3006.36 0.918 2172.31 1.027 0.167  3177.57 0.915 2064.41 0.987 0.165 8-2-1 
db2l2 2078.57 0.961 1524.58 1.011 0.115  2934.43 0.927 1747.16 1.009 0.152 12-2-1 
db2l3 2091.44 0.960 1462.89 1.012 0.116  2727.80 0.937 1682.32 0.994 0.141 16-2-1 

db2l4 2306.50 0.951 1653.72 0.997 0.128  2665.58 0.940 1760.14 0.978 0.138 20-2-1 
db2l5 2336.56 0.950 1649.48 1.004 0.129  2784.72 0.934 1925.27 0.978 0.144 24-2-1 

db2l6 2398.07 0.947 1668.14 1.031 0.133  2798.72 0.934 1846.12 1.023 0.145 28-2-1 
db2l7 2568.22 0.939 1967.25 1.037 0.142  3041.83 0.922 2278.74 1.035 0.158 32-2-1 

db3l1 2309.94 0.951 1675.72 1.013 0.128  2475.77 0.948 1692.69 0.988 0.128 8-2-1 
db3l2 1814.14 0.970 1310.14 0.997 0.100  1873.59 0.970 1323.13 0.985 0.097 12-2-1 
db3l3 1778.55 0.971 1270.50 1.000 0.099  1787.55 0.973 1317.73 0.984 0.093 16-2-1 

db3l4 1757.86 0.972 1152.84 1.004 0.097  1682.11 0.976 1198.33 0.998 0.087 20-2-1 
db3l5 1861.91 0.968 1325.83 1.005 0.103  1854.61 0.971 1338.71 0.998 0.096 24-2-1 

db3l6 1878.92 0.968 1228.55 0.999 0.104  2139.52 0.961 1442.53 0.977 0.111 28-2-1 
db3l7 1995.40 0.964 1380.38 1.006 0.111  2562.44 0.944 1659.31 1.002 0.133 32-2-1 

db4l1 1847.05 0.967 1251.28 0.995 0.102  2177.37 0.960 1459.10 0.983 0.113 8-2-1 
db4l2 1557.11 0.978 1078.93 1.005 0.086  1824.73 0.972 1218.62 1.000 0.094 12-2-1 

db4l3 1527.76 0.979 1055.87 1.004 0.085  1656.87 0.977 1169.41 1.004 0.086 16-2-1 
db4l4 1531.49 0.978 1046.24 1.006 0.085  1670.28 0.976 1164.75 0.995 0.086 20-2-1 
db4l5 1591.07 0.977 1062.33 1.000 0.088  1756.29 0.974 1162.33 0.995 0.091 24-2-1 
db4l6 1600.79 0.976 1159.17 0.996 0.088  1905.21 0.969 1344.07 0.985 0.098 28-2-1 

db4l7 1868.14 0.968 1285.62 1.009 0.103  2113.58 0.962 1479.36 0.986 0.109 32-2-1 

db5l1 1842.49 0.969 1330.91 1.002 0.102  2158.83 0.961 1430.04 0.985 0.112 8-2-1 
db5l2 1365.61 0.983 943.10 1.002 0.075  1610.09 0.978 1067.38 1.004 0.083 12-2-1 

db5l3 1396.56 0.982 989.79 1.003 0.077  1486.71 0.981 1038.95 0.996 0.077 16-2-1 
db5l4 1364.79 0.983 936.04 1.005 0.075  1535.75 0.980 1036.75 0.999 0.079 20-2-1 
db5l5 1373.06 0.983 928.45 0.997 0.076  1570.69 0.979 1095.50 0.997 0.081 24-2-1 
db5l6 1390.95 0.982 943.51 0.998 0.077  1681.02 0.976 1142.09 0.984 0.087 28-2-1 

db5l7 1464.96 0.980 957.82 0.997 0.081  1973.75 0.967 1368.41 0.982 0.102 32-2-1 

Note: RMSE and MAE are in cumec unit. 
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Table 4.10: Values of statistical parameters for ANN and WANN models  

Lead time: 1 week (Pancharatna station - Weekly data) 

Model 

type 

Training period  Testing period Optimum 

ANN 

structure 
RMSE R

2
 MAE BIAS S.I.  RMSE R

2
 MAE BIAS S.I. 

ANN 4564.04 0.849 3163.04 1.006 0.282  5059.15 0.833 3587.53 1.019 0.309 4-4-1 

db1l1 3665.44 0.903 2400.94 0.955 0.227  3482.27 0.921 2470.42 0.970 0.212 8-3-1 
db1l2 3340.44 0.919 2128.13 1.013 0.207  3067.28 0.939 2248.44 1.009 0.187 12-3-1 

db1l3 3114.99 0.930 2127.94 1.015 0.193  2892.77 0.945 2168.33 1.030 0.176 16-3-1 
db1l4 3330.06 0.920 2215.56 0.977 0.206  3744.55 0.909 2717.51 1.001 0.228 20-3-1 
db1l5 3437.85 0.914 2387.07 1.018 0.213  3823.46 0.905 2794.40 1.035 0.233 24-3-1 
db1l6 3287.51 0.922 2165.78 0.989 0.203  4009.20 0.895 2701.62 0.941 0.245 28-3-1 
db1l7 3404.31 0.916 2359.86 1.033 0.211  4559.07 0.864 3239.25 1.048 0.278 32-3-1 

db2l1 2864.07 0.941 1985.76 1.011 0.177  3267.81 0.930 2313.87 1.024 0.199 8-2-1 
db2l2 2382.87 0.959 1700.36 1.017 0.147  3065.18 0.939 2061.85 1.021 0.187 12-2-1 

db2l3 2326.63 0.961 1528.78 0.998 0.144  2885.45 0.946 1718.94 1.007 0.176 16-2-1 

db2l4 2426.48 0.957 1805.62 1.013 0.150  2773.77 0.949 2116.93 1.015 0.169 20-2-1 
db2l5 2188.12 0.965 1559.33 1.006 0.135  3079.99 0.938 2022.60 0.998 0.188 24-2-1 
db2l6 2453.45 0.956 1622.87 1.002 0.152  3144.52 0.936 2023.66 0.997 0.192 28-2-1 
db2l7 2514.18 0.954 1818.09 1.011 0.155  3292.39 0.929 2229.47 0.997 0.201 32-2-1 

db3l1 2477.69 0.955 1729.21 1.013 0.153  3511.97 0.919 2346.34 1.025 0.214 8-2-1 
db3l2 2417.97 0.958 1650.03 0.987 0.149  2781.44 0.949 1845.41 0.998 0.169 12-2-1 

db3l3 2091.81 0.968 1439.68 1.001 0.129  2585.32 0.956 1791.36 1.001 0.158 16-2-1 

db3l4 2150.64 0.966 1611.31 1.010 0.133  2787.21 0.949 2015.73 1.014 0.170 20-2-1 
db3l5 2281.39 0.962 1584.69 0.999 0.141  2837.71 0.947 2030.76 1.018 0.173 24-2-1 
db3l6 2375.98 0.959 1666.59 1.015 0.147  2849.22 0.947 1979.25 1.023 0.174 28-2-1 
db3l7 2226.40 0.964 1589.14 1.009 0.138  2860.77 0.947 2030.73 0.998 0.174 32-2-1 

db4l1 2320.21 0.961 1580.33 0.996 0.143  3161.27 0.935 2132.03 0.998 0.193 8-2-1 
db4l2 2240.45 0.964 1658.34 1.017 0.138  2993.51 0.942 2164.95 1.028 0.183 12-2-1 
db4l3 1906.47 0.974 1238.63 1.007 0.118  2661.32 0.954 1599.98 1.017 0.162 16-2-1 

db4l4 1823.62 0.976 1215.12 0.998 0.112  2263.08 0.967 1433.70 1.012 0.138 20-2-1 
db4l5 1945.86 0.973 1378.48 1.003 0.120  2585.90 0.956 1773.88 1.014 0.158 24-2-1 
db4l6 2161.35 0.966 1486.09 1.007 0.134  2765.96 0.950 1886.71 1.005 0.169 28-2-1 
db4l7 2115.75 0.967 1471.29 1.010 0.131  2792.31 0.949 1961.70 1.004 0.170 32-2-1 

db5l1 2373.44 0.959 1748.93 1.016 0.147  3061.11 0.939 2210.72 1.020 0.186 8-2-1 
db5l2 2341.82 0.960 1926.12 1.027 0.145  2972.49 0.942 2383.71 1.044 0.181 12-2-1 
db5l3 1893.13 0.974 1362.39 1.005 0.117  2534.68 0.958 1845.51 1.002 0.155 16-2-1 

db5l4 1579.77 0.982 1128.34 1.005 0.098  2047.69 0.973 1363.31 1.007 0.125 20-2-1 

db5l5 1759.68 0.977 1356.10 1.004 0.109  2574.06 0.957 1936.51 1.007 0.157 24-2-1 
db5l6 1579.62 0.982 1116.46 0.999 0.098  2626.92 0.955 1875.64 0.993 0.160 28-2-1 
db5l7 2026.50 0.970 1442.49 1.004 0.125  2804.96 0.949 2034.28 0.997 0.171 32-2-1 

Note: RMSE and MAE are in cumec unit. 
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Table 4.11. Values of statistical parameters for ANN and WANN models  

Lead time: 2 week (Pandu Station - weekly data) 

Model 

type 

Training period  Testing period Optimum 

ANN 

structure 
RMSE R

2
 MAE BIAS S.I.  RMSE R

2
 MAE BIAS S.I. 

ANN 4996.09 0.772 3687.47 1.029 0.277  5535.43 0.740 3815.19 0.959 0.285 4-3-1 

db1l1 4570.97 0.809 3213.85 1.015 0.253  5010.20 0.787 3630.94 0.985 0.258 8-2-1 
db1l2 4229.52 0.837 2812.14 0.995 0.235  4412.98 0.835 3086.60 0.966 0.227 12-2-1 
db1l3 3788.53 0.869 2559.43 1.019 0.210  4123.74 0.856 2723.09 0.993 0.212 16-2-1 

db1l4 3540.86 0.885 2404.59 0.995 0.196  4041.81 0.862 2844.18 0.971 0.208 20-2-1 
db1l5 3901.27 0.861 2713.31 0.990 0.216  4212.06 0.849 2873.39 0.974 0.217 24-2-1 
db1l6 3853.96 0.864 2764.46 1.013 0.214  4357.96 0.839 2953.74 0.979 0.224 28-2-1 

db1l7 3884.99 0.862 2855.52 1.002 0.215  7319.00 0.546 6175.60 0.698 0.376 32-2-1 

db2l1 4150.74 0.843 2902.25 1.021 0.230  4944.37 0.793 3337.09 0.956 0.254 8-3-1 
db2l2 3025.00 0.916 2045.91 0.986 0.168  4165.43 0.853 2662.51 0.966 0.214 12-3-1 
db2l3 3109.41 0.912 2285.42 1.020 0.172  3601.79 0.890 2284.24 0.979 0.185 16-3-1 

db2l4 2823.26 0.927 2008.83 1.008 0.157  3539.25 0.894 2277.47 0.979 0.182 20-3-1 
db2l5 3082.04 0.913 2364.87 1.015 0.171  3578.99 0.891 2483.83 0.989 0.184 24-3-1 
db2l6 2834.28 0.927 2060.57 1.017 0.157  3639.29 0.888 2385.57 1.003 0.187 28-3-1 

db2l7 2852.62 0.926 2140.09 1.002 0.158  4023.95 0.863 2681.75 0.983 0.207 32-3-1 

db3l1 3852.75 0.864 2725.29 1.003 0.214  4544.18 0.825 3034.36 0.965 0.234 8-2-1 
db3l2 2885.74 0.924 2106.57 1.013 0.160  3561.10 0.892 2348.00 0.980 0.183 12-2-1 
db3l3 2430.36 0.946 1679.37 0.994 0.135  3008.29 0.923 1895.19 0.980 0.155 16-2-1 

db3l4 2414.86 0.946 1681.73 1.002 0.134  2755.06 0.936 1871.04 0.992 0.141 20-2-1 
db3l5 2447.73 0.945 1790.54 1.032 0.136  2958.46 0.926 1983.15 1.012 0.152 24-2-1 
db3l6 2552.06 0.940 1897.45 0.999 0.141  3090.13 0.919 2042.05 0.982 0.159 28-2-1 
db3l7 2577.92 0.939 1936.72 1.028 0.143  3439.15 0.899 2248.78 0.989 0.177 32-2-1 

db4l1 4121.58 0.845 3132.04 1.050 0.228  4594.86 0.821 3305.95 1.007 0.236 8-2-1 
db4l2 2757.55 0.931 1963.60 1.004 0.153  3160.41 0.915 2075.16 0.969 0.162 12-2-1 
db4l3 2750.20 0.931 2193.34 1.048 0.152  2847.39 0.931 2127.76 1.023 0.146 16-2-1 

db4l4 2423.48 0.946 1725.33 1.008 0.134  2658.16 0.940 1838.39 0.999 0.136 20-2-1 
db4l5 2635.95 0.936 1930.40 0.998 0.146  2799.10 0.934 1968.66 0.979 0.144 24-2-1 
db4l6 2560.87 0.940 1858.09 1.006 0.142  3139.47 0.916 2221.86 0.959 0.161 28-2-1 
db4l7 2626.45 0.937 1960.36 1.021 0.146  3625.55 0.889 2706.45 1.024 0.186 32-2-1 

db5l1 3934.45 0.855 2944.65 1.016 0.236  4567.27 0.827 3100.34 0.975 0.232 8-2-1 
db5l2 3035.67 0.886 2534.68 1.034 0.196  2786.34 0.840 2678.67 0.986 0.197 12-2-1 
db5l3 2788.57 0.929 2054.09 1.009 0.154  2572.33 0.944 2149.73 0.990 0.132 16-2-1 

db5l4 2431.01 0.946 1713.44 1.011 0.135  2448.19 0.949 1662.32 1.001 0.126 20-2-1 
db5l5 2467.23 0.945 1894.34 1.023 0.138  2567.98 0.939 1730.56 1.045 0.139 24-2-1 
db5l6 2500.34 0.934 1989.04 0.994 0.141  2645.56 0.924 1903.98 0.993 0.146 28-2-1 
db5l7 2778.76 0.921 2012.34 1.045 0.158  2967.39 0.901 2167.36 1.023 0.176 32-2-1 

Note: RMSE and MAE are in cumec unit. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 88 

Table 4.12. Values of statistical parameters for ANN and WANN models  

Lead time: 2 week (Pancharatna station - Weekly data) 

Model 

type 

Training period  Testing period Optimum 

ANN 

structure 
RMSE R

2
 MAE BIAS S.I.  RMSE R

2
 MAE BIAS S.I. 

ANN 5597.84 0.773 3832.69 1.013 0.346  6844.01 0.695 4768.75 1.035 0.417 4-2-1 

db1l1 5155.64 0.808 3427.12 1.028 0.319  6923.43 0.687 4606.84 1.001 0.422 8-3-1 
db1l2 4352.76 0.863 3162.13 1.051 0.269  5850.92 0.777 4160.32 1.071 0.357 12-3-1 

db1l3 3935.02 0.888 2711.77 0.995 0.243  5798.48 0.781 4085.55 1.018 0.354 16-3-1 
db1l4 4099.65 0.878 2770.20 1.006 0.254  5913.22 0.772 4058.74 1.018 0.361 20-3-1 
db1l5 4422.57 0.858 3242.95 1.032 0.274  5955.77 0.769 4119.26 1.024 0.363 24-3-1 
db1l6 4226.03 0.871 3037.43 1.022 0.261  6092.31 0.758 4195.68 1.064 0.372 28-3-1 
db1l7 4067.89 0.880 2754.31 1.011 0.252  6528.42 0.722 4224.87 1.025 0.398 32-3-1 

db2l1 4780.48 0.835 3257.89 1.011 0.296  6951.86 0.685 4781.69 1.051 0.424 8-2-1 
db2l2 3639.43 0.904 2488.45 1.002 0.225  5471.57 0.805 3745.57 1.029 0.334 12-2-1 
db2l3 3256.55 0.923 2420.21 1.042 0.201  4694.27 0.856 3587.94 1.073 0.286 16-2-1 

db2l4 3165.58 0.927 2234.19 1.002 0.196  4559.19 0.865 3028.69 1.015 0.278 20-2-1 
db2l5 3333.45 0.919 2445.29 1.037 0.206  4693.73 0.856 3267.80 1.054 0.286 24-2-1 
db2l6 3860.11 0.892 2653.43 0.957 0.239  4719.78 0.855 3150.31 0.947 0.288 28-2-1 
db2l7 3417.12 0.915 2417.18 1.008 0.211  4869.39 0.845 3283.87 0.991 0.297 32-2-1 

db3l1 4643.64 0.844 3449.27 1.042 0.287  6816.09 0.697 4915.57 1.082 0.416 8-2-1 
db3l2 2918.18 0.938 2173.35 1.007 0.181  4000.43 0.896 2737.49 1.032 0.244 12-2-1 
db3l3 3193.21 0.926 2449.83 1.038 0.197  3757.68 0.908 2953.92 1.060 0.229 16-2-1 

db3l4 3003.69 0.935 2279.78 1.020 0.185  3331.07 0.928 2530.66 1.036 0.203 20-2-1 
db3l5 2926.94 0.938 2041.07 0.997 0.181  3420.48 0.924 2493.86 1.001 0.209 24-2-1 
db3l6 3060.02 0.932 2200.38 1.001 0.189  3640.13 0.914 2702.76 0.993 0.222 28-2-1 
db3l7 2995.27 0.935 2094.06 0.996 0.185  3802.77 0.906 2540.28 0.956 0.232 32-2-1 

db4l1 4432.53 0.858 3046.84 1.012 0.274  5436.34 0.807 3889.85 1.029 0.332 8-2-1 
db4l2 2980.24 0.936 2072.48 1.012 0.184  3837.26 0.904 2620.10 1.017 0.234 12-2-1 
db4l3 2977.87 0.936 2178.06 1.016 0.184  3570.31 0.917 2575.71 1.018 0.218 16-2-1 

db4l4 2693.94 0.947 1862.11 1.008 0.167  3275.13 0.930 2426.48 1.019 0.199 20-2-1 
db4l5 2859.44 0.941 2037.57 1.003 0.177  3281.89 0.929 2348.11 1.012 0.200 24-2-1 
db4l6 2892.44 0.939 1894.86 1.017 0.179  3544.91 0.918 2499.33 1.069 0.216 28-2-1 
db4l7 2910.33 0.939 2055.16 1.004 0.180  3630.26 0.914 2645.78 0.984 0.221 32-2-1 

db5l1 4446.69 0.857 2986.05 0.984 0.275  5423.41 0.808 3810.81 1.021 0.331 8-2-1 

db5l2 3026.06 0.934 2283.82 1.001 0.187  3437.66 0.923 2603.45 1.018 0.209 12-2-1 
db5l3 2669.86 0.948 1770.43 1.006 0.165  3165.24 0.935 2050.19 1.011 0.193 16-2-1 

db5l4 2656.32 0.949 1793.89 0.998 0.164  3117.17 0.937 2052.20 0.991 0.190 20-2-1 
db5l5 2906.63 0.939 2076.11 1.017 0.179  3436.19 0.923 2476.38 1.027 0.209 24-2-1 
db5l6 2837.08 0.942 1960.39 1.010 0.175  3592.71 0.916 2550.67 1.021 0.219 28-2-1 
db5l7 3038.90 0.933 2378.36 1.071 0.188  3748.39 0.908 2918.64 1.093 0.228 32-2-1 

Note: RMSE and MAE are in cumec unit. 

4.3.1 ANN Model Results  

 It can be seen from Table 4.9 and 4.11 that for ANN model for Pandu station 

in training and testing period the values of determination coefficient (R
2
), root mean 

squared error (RMSE), mean absolute error (MAE), change with respect to lead time 

forecast. In testing period the R
2
 values were found to decrease from 0.791 for 1 week 

lead time to 0.740 for 2 week lead time. The RMSE increases from 4971.35 cumec for 

1 week lead time to 5535.43 cumec for 2 week lead time. Also, MAE increases from 

3229.57 to 3815.19 cumec for 1 week and 2 week lead times, respectively. BIAS 

values are increasing with lead time (1 week lead time: 0.936; 2 week lead time: 
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0.959), indicating that the model‟s underestimating capacity is decreasing. Also, 

scatter index is increasing from 0.258 for 1 week lead time to 0.285 for 2 week lead 

time, indicating that model‟s precision is decreasing. While, during training period, 

the R
2
 values were found to decrease from 0.835 for 1 week lead time to 0.772 for 2 

week lead time. RMSE increases from 4253.35 cumec for 1 week lead time to 

4996.09 cumec for 2 week lead time. Also, MAE values increased from 2802.36 to 

3687.47 cumec for 1 week and 2 week lead times, respectively. BIAS values for 1 

week and 2 week lead times are found to be 0.974 (representing underestimation) and 

1.029 (representing overestimation), respectively. Also, scatter index is increasing 

from 0.236 for 1 week lead time to 0.277 for 2 week lead time, indicating that the 

model‟s precision is decreasing. The optimum ANN structures were 4-9-1 and 4-3-1 

for 1 week and 2 week lead times, respectively.  

 Similar trend is observed for Pancharatna station. For ANN models it can be 

seen from Table 4.10 and 4.12, in testing period, the R
2
 values were found to 

decrease from 0.833 for 1 week lead time to 0.695 for 2 week lead time. The RMSE 

increases from 5059.15 cumec for 1 week lead time to 6844.01 cumec for 2 week lead 

time. Also, MAE increases from 3587.53 to 4768.75 cumec for 1 week and 2 week 

lead times, respectively. BIAS values are increasing with lead time (1 week lead time: 

1.019; 2 week lead time: 1.035), indicating that the model‟s overestimation capacity is 

increasing. Also, scatter index is increasing from 0.309 for 1 week lead time to 0.417 

for 2 week lead time, indicating that model‟s precision is decreasing. While, during 

training period, the R
2
 values were found to decrease from 0.849 for 1 week lead time 

to 0.773 for 2 week lead time. RMSE increases from 4564.04 cumec for 1 week lead 

time to 5597.84 cumec for 2 week lead time. Also, MAE values increased from 

3163.04 to 3832.69 cumec for 1 week and 2 week lead times, respectively. BIAS 

values for 1 week and 2 week lead times are found to be 1.006 (representing 

overestimation) and 1.013 (representing overestimation), respectively. Also, scatter 

index is increasing from 0.282 for 1 week lead time to 0.346 for 2 week lead time, 

indicating that the model‟s precision is decreasing. The optimum ANN structures 

were 4-4-1 and 4-2-1 for 1 week and 2 week lead times, respectively. In comparison 

with Pancharatna, Pandu station results are better as observed flow data at 

Pancharatna station is highly non-stationary. 
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4.3.2 WANN Model Results 

 Similar to daily time series data models, the normalized observed data was 

decomposed using Daubechies wavelets of order 1 (db1) to 5 (db5) upto 7
th
 level 

decomposition, which were fed as input to ANN, making the model as WANN(dbi), 

where i is the order of Daubechies wavelet. The number of neurons in hidden layer 

was computed by trial-and-error method and performances of these are tabulated in 

Table 4.9 – 4.12. 

 Here also similar results are obtained as those of daily time series data models. 

Results of Table 4.9 – 4.12 reveal that the performance of wavelet based hybrid 

WANN model is much better than the regular ANN model in testing period. For 

Pandu station (during testing period; Table 4.9 and 4.11), from the analysis it was 

found that the value of R
2
 decreased from 0.981 (db5l3 – WANN(db5)) for 1 week 

lead time to 0.949 (db5l4 – WANN(db5)) for 2 week lead time, while for ANN model 

this decrease was from 0.791 to 0.740. Also, the RMSE values increased from 

1486.71 (db5l3) to 2448.19 (db5l4) cumec for 1 week and 2 week lead time, 

respectively, while for ANN model this increase was from 4971.35 to 5535.43 cumec. 

The MAE values were found to increase from 1038.95 (db5l3) to  1662.32 (db5l4) 

cumec for 1 week and 2 week lead time, respectively, while for ANN model this 

increase was from 3229.57 to 3815.19 cumec. The scatter index was found to increase 

from 0.077 (db5l3) to 0.126 (db5l4) for 1 week and 2 week lead time, respectively, 

while for ANN model this increase was from 0.258 to 0.285. BIAS values for 1 week 

and 2 week lead times are found to be 0.996 (representing underestimation) and 1.001 

(representing overestimation), respectively. For Pandu station (during training period; 

Table 4.9 and 4.11), from the analysis it was found that the value of R
2
 decreased 

from 0.982 (db5l3 – WANN(db5)) for 1 week lead time to 0.946 (db5l4 – 

WANN(db5)) for 2 week lead time, while for ANN model this decrease was from 

0.835 to 0.772. Also, the RMSE values increased from 1396.56 (db5l3) to 2431.01 

(db5l4) cumec for 1 week and 2 week lead time, respectively, while for ANN model 

this increase was from 4253.35 to 4996.09 cumec. The MAE values were found to 

increase from 989.79 (db5l3) to 1713.44 (db5l4) cumec for 1 week and 2 week lead 

time, respectively, while for ANN model this increase was from 2802.36 to 3687.47 

cumec. The scatter index was found to increase from 0.077 (db5l3) to 0.135 (db5l4) 
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for 1 week and 2 week lead time, respectively, while for ANN model this increase 

was from 0.236 to 0.277. BIAS values are found to be very close to one for both the 

lead times. It was found that for all WANN models, during training period BIAS 

values are slightly greater than 1 (indicating overestimation), while these are slightly 

less than 1 (indicating underestimation) during testing period of Pandu station.  

 For Pancharatna station (during testing period; Table 4.10 and 4.12), from the 

analysis, it was found that the value of R
2
 decreased from 0.973 (db5l4 – 

WANN(db5)) for 1 week lead time to 0.937 (db5l4 – WANN(db5)) for 2 week lead 

time, while for ANN model this decrease was from 0.833 to 0.695. Also, the RMSE 

values increased from 2047.69 (db5l4) to 3117.17 (db5l4) cumec for 1 week and 2 

week lead time, respectively, while for ANN model this increase was from 5059.15 to 

6844.01 cumec. The MAE values were found to increase from 1363.31 (db5l4) to 

2052.20 (db5l4) cumec for 1 week and 2 week lead time, respectively, while for ANN 

model this increase was from 3587.53 to 4768.75 cumec. The scatter index was found 

to increase from 0.125 (db5l4) to 0.190 (db5l4) for 1 week and 2 week lead time, 

respectively, while for ANN model this increase was from 0.309 to 0.417. For 

Pancharatna station (during training period; Table 4.10 and 4.12), from the analysis, 

it was found that the value of R
2
 decreased from 0.982 (db5l4 – WANN(db5)) for 1 

week lead time to 0.949 (db5l4 – WANN(db5)) for 2 week lead time, while for ANN 

model this decrease was from 0.849 to 0.773. Also, the RMSE values increased from 

1579.77 (db5l4) to 2656.32 (db5l4) cumec for 1 week and 2 week lead time, 

respectively, while for ANN model this increase was from 4564.04 to 5597.84 cumec. 

The MAE values were found to increase from 1128.34 (db5l4) to 1793.89 (db5l4) 

cumec for 1 week and 2 week lead time, respectively, while for ANN model this 

increase was from 3163.04 to 3832.69 cumec. The scatter index was found to increase 

from 0.098 (db5l4) to 0.164 (db5l4) for 1 week and 2 week lead time, respectively, 

while for ANN model this increase was from 0.282 to 0.346. It was found that for all 

WANN models, during training and testing period BIAS values are slightly greater 

than 1 (indicating overestimation).  

The above discussion and study of Tables 4.9 – 4.12 reveal that, in 

comparison with regular ANN model all WANN models have given better results for 

both the lead times. The WANN model was found more accurate because wavelet 
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transform decompose the non-stationary time series data into several stationary 

approximation and detail time series.  

4.3.3 Comparison among WANN Models with Different Daubechies Wavelets 

 The results obtained by WANN models using db1 to db5 mother wavelets are 

compared. Results of Tables 4.9 – 4.12 depict that WANN model with db5 mother 

wavelet [WANN(db5)] has shown better performance compared to  WANN(db1) to 

WANN(db4) models for both the stations.  

 For 1 week lead time for Pandu station in testing period (Table 4.9), from the 

analysis, it was found that the value of R
2
 increased from 0.914 for db1l4 – 

WANN(db1) model to 0.981 for db5l3 – WANN(db5) model, while for Pancharatna 

station (Table 4.10) this increase was from 0.945 (db1l3) to 0.973 (db5l4). Also, for 

Pandu station the RMSE values decreased from 3191.31 for db1l4 – WANN(db1) 

model to 1486.71 cumec for db5l3 – WANN(db5), while for Pancharatna station this 

decrease was from 2892.77 (db1l3) to 2047.69 (db5l4) cumec. For Pandu station the 

MAE values were found to decrease from 2204.58 (db1l4) to 1038.95 (db5l3) cumec, 

while for Pancharatna station this decrease was from 2168.33 (db1l3) to 1363.31 

(db5l4) cumec. For Pandu station the scatter index was found to decrease from 0.165 

(db1l4) to 0.077 (db5l3), while for Pancharatna station this decrease was from 0.176 

(db1l3) to 0.125 (db5l4). Similar results were obtained for 2 week lead time for both 

the stations (Table 4.11 and 4.12).  

 For 1 week lead time for Pandu station in training period (Table 4.9), from the 

analysis, it was found that the value of R
2
 increased from 0.916 for db1l4 – 

WANN(db1) model to 0.982 for db5l3 – WANN(db5) model, while for Pancharatna 

station (Table 4.10) this increase was from 0.930 (db1l3) to 0.982 (db5l4). Also, for 

Pandu station the RMSE values decreased from 3032.01 for db1l4 – WANN(db1) 

model to 1396.56 cumec for db5l3 – WANN(db5), while for Pancharatna station this 

decrease was from 3114.99 (db1l3) to 1579.77 (db5l4) cumec. For Pandu station the 

MAE values were found to decrease from 2136.42 (db1l4) to 989.79 (db5l3) cumec, 

while for Pancharatna station this decrease was from 2127.94 (db1l3) to 1128.34 

(db5l4) cumec. For Pandu station the scatter index was found to decrease from 0.168 

(db1l4) to 0.077 (db5l3), while for Pancharatna station this decrease was from 0.193 
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(db1l3) to 0.098 (db5l4). Similar results were obtained for 2 week lead time for both 

the stations (Table 4.11 and 4.12). 

 The above discussion and the careful study of Tables 4.9 to 4.12 reveal that, 

WANN model‟s forecasting performance increased with increase in wavelet order, 

giving best results for db5 mother wavelet for both the stations. Figure 4.19 shows 

variation of RMSE and MAE with Daubechies wavelet order for lead time 2 day 

(weekly data). Figure 4.19 depicts that, with increase in wavelet order number, the 

model‟s forecasting performance was increased, with best performance at 5
th
 order.    
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Fig.4.19. Variation of RMSE & MAE with Daubechies wavelet order in testing 

period for lead time 2 week (weekly data), Pancharatna Stn. 
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Fig.4.20. Percentage error distribution plots for (a) 1 week lead time (b) 2 week 

lead time, along with (c) observed flow during testing period for Pandu Stn. 
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Fig. 4.21. Scatter plots for weekly data in testing period for lead times (a) 1 week 

(Pandu Stn.), (b) 2 week (Pandu Stn.), (c) 1 week (Pancharatna Stn.), (d) 2 week 

(Pancharatna Stn.) 

 

 Percentage error plots for 1 and 2 week lead times for Pandu station during 

testing period are shown in Fig. 4.20 (a) and (b), respectively. From Figure. 4.20 (a), 

it is seen that for 1 week lead time the percentage error in peak flow computation was 

11.65 % (underestimation), while the maximum underestimation error was limited to 

18.94 %. On the other hand, the error in low flow computation was – 5.11 % 

(overestimation), while the maximum overestimation error was limited to – 19.58 %. 

Figure 4.20 (b) reveals that, for 2 week lead time the percentage error in peak flow 

computation was 8.06 % (underestimation), while the maximum underestimation 
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error was to 28.44 %. On the other hand, the error in low flow computation was – 

30.25 % (overestimation), while the maximum overestimation error was  – 41.03 %. 

Figure 4.21 shows scatter plots for 1 and 2 week lead times for Pandu and 

Pancharatna stations during testing period. From these plots it was observed that the 

results are very satisfactory (For Pandu station: R
2
 for 1 and 2 week lead times 0.981 

(SI = 0.077) and 0.949 (SI = 0.126), respectively; for Pancharatna station: R
2
 for 1 

and 2 week lead times 0.973 (SI = 0.125) and 0.937 (SI = 0.190), respectively.   

4.4 MODEL RESULTS FOR MONTHLY TIME SERIES DATA 

 Optimum results (with low RMSE) of model runs carried out by varying order 

of Daubechies wavelet and decomposition level for monthly time series data for lead 

time 1 month for both the stations are shown in following tables (Table 4.13 to 4.14). 

Results of ANN models are also shown in the same tables for comparison. 

Table 4.13. Values of statistical parameters for ANN and WANN models  

Lead time: 1month (Pandu station - Monthly data) 

Model 

type 

Training period  Testing period Optimum 

ANN 

structure 
RMSE R

2
 MAE BIAS S.I.  RMSE R

2
 MAE BIAS S.I. 

ANN 4092.69 0.835 3100.18 1.025 0.226  5942.27 0.648 4804.58 0.982 0.299 4-2-1 

db1l1 3825.52 0.856 2761.39 1.032 0.211  4819.61 0.768 3868.79 1.004 0.242 8-2-1 

db1l2 2976.74 0.913 1935.74 1.004 0.164  4612.62 0.788 3501.61 0.995 0.232 12-2-1 

db1l3 3438.54 0.884 2732.79 1.019 0.189  4953.00 0.755 3766.09 0.987 0.249 16-2-1 
db1l4 4005.19 0.842 3286.64 1.049 0.221  5006.10 0.750 3966.60 0.957 0.252 20-2-1 
db1l5 3459.63 0.882 2272.74 0.984 0.191  5647.99 0.682 4446.82 0.917 0.284 24-2-1 

db2l1 2396.07 0.943 1838.47 0.999 0.132  3834.54 0.853 2944.95 0.979 0.192 8-2-1 
db2l2 2787.42 0.923 2314.14 1.014 0.153  3545.40 0.875 2949.42 0.979 0.178 12-2-1 

db2l3 2255.61 0.950 1638.45 0.970 0.124  3309.37 0.891 2558.16 0.942 0.166 16-2-1 
db2l4 3011.72 0.911 2159.10 1.028 0.166  4601.05 0.789 3691.55 1.019 0.231 20-2-1 
db2l5 2627.61 0.932 1842.99 0.997 0.145  5116.95 0.739 3686.47 1.009 0.257 24-2-1 

db3l1 2215.33 0.952 1812.16 1.026 0.122  3643.44 0.868 2622.40 1.003 0.183 8-2-1 
db3l2 1796.17 0.968 1354.25 1.012 0.099  3341.96 0.888 2515.15 1.022 0.168 12-2-1 

db3l3 1899.32 0.964 1410.12 0.979 0.105  3176.61 0.899 2764.69 0.977 0.159 16-2-1 
db3l4 2834.28 0.921 2075.39 1.029 0.156  3602.65 0.871 2863.46 0.965 0.181 20-2-1 
db3l5 2954.30 0.914 2132.95 0.999 0.163  4750.27 0.775 3606.75 1.097 0.239 24-2-1 

db4l1 2251.69 0.950 1762.24 0.973 0.124  3379.71 0.886 2637.40 0.935 0.170 8-2-1 
db4l2 2435.30 0.942 1999.69 0.995 0.134  3194.07 0.898 2526.04 0.968 0.160 12-2-1 

db4l3 2474.45 0.939 1799.88 0.989 0.136  2838.53 0.920 2116.38 0.981 0.143 16-2-1 
db4l4 2898.16 0.917 2101.88 0.946 0.160  4033.05 0.838 2944.99 0.937 0.203 20-2-1 
db4l5 2760.42 0.925 1988.09 0.984 0.152  4083.46 0.834 2762.07 1.036 0.205 24-2-1 

db5l1 2139.61 0.955 1681.68 1.001 0.118  3218.93 0.897 2482.58 0.957 0.162 8-2-1 

db5l2 2065.82 0.958 1636.31 0.979 0.114  2502.65 0.938 1930.91 0.959 0.126 12-2-1 
db5l3 2120.64 0.956 1566.37 0.989 0.117  2583.82 0.933 1995.68 0.972 0.130 16-2-1 
db5l4 1924.83 0.963 1434.88 1.007 0.106  3344.90 0.888 2603.41 0.967 0.168 20-2-1 

db5l5 2543.85 0.936 1680.14 0.989 0.140  3794.54 0.856 3078.67 0.941 0.191 24-2-1 

Note: RMSE and MAE are in cumec unit. 
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Table 4.14. Values of statistical parameters for ANN and WANN models  

Lead time: 1month (Pancharatna station - Monthly data) 

Model 

type 

Training period  Testing period Optimum 

ANN 

structure 
RMSE R

2
 MAE BIAS S.I.  RMSE R

2
 MAE BIAS S.I. 

ANN 4855.32 0.812 3741.13 1.059 0.308  6398.43 0.690 5065.36 0.994 0.373 4-2-1 

db1l1 3099.66 0.923 2163.24 1.003 0.197  6109.32 0.717 4088.52 1.018 0.356 8-2-1 
db1l2 3339.61 0.911 2609.88 1.016 0.212  5643.55 0.759 4150.72 0.958 0.329 12-2-1 

db1l3 2890.23 0.933 1793.16 1.016 0.183  5501.73 0.771 3364.14 0.996 0.321 16-2-1 
db1l4 3168.29 0.920 2408.29 0.988 0.201  5653.25 0.758 3959.87 0.962 0.329 20-2-1 
db1l5 3629.70 0.895 2241.10 0.969 0.230  5828.54 0.743 4084.68 0.979 0.339 24-2-1 

db2l1 3336.49 0.908 1877.12 0.965 0.214  5873.79 0.739 3986.49 0.897 0.342 8-2-1 
db2l2 3026.41 0.927 1966.99 0.980 0.192  5443.51 0.775 3890.61 0.915 0.317 12-2-1 

db2l3 2405.35 0.954 1592.07 1.003 0.152  4897.14 0.818 3530.13 0.901 0.285 16-2-1 
db2l4 3229.63 0.917 2247.89 1.071 0.205  5086.39 0.804 3863.59 1.025 0.296 20-2-1 

db2l5 4739.49 0.821 3857.83 1.125 0.300  6505.72 0.680 5380.60 1.045 0.379 24-2-1 

db3l1 2082.27 0.965 1510.68 0.991 0.132  4161.20 0.869 2734.23 0.957 0.243 8-2-1 
db3l2 2221.61 0.961 1563.50 1.021 0.141  3782.85 0.892 2869.75 0.987 0.221 12-2-1 

db3l3 2398.84 0.954 1867.36 1.013 0.152  3552.85 0.904 2595.75 0.975 0.207 16-2-1 
db3l4 3212.76 0.918 2395.75 0.958 0.204  4424.21 0.852 3307.03 0.968 0.258 20-2-1 
db3l5 2418.79 0.953 2017.51 1.034 0.153  5705.60 0.754 4259.40 0.948 0.334 24-2-1 

db4l1 2098.72 0.965 1615.09 0.995 0.133  3896.19 0.885 3198.18 0.962 0.227 8-2-1 

db4l2 1926.51 0.970 1446.06 1.007 0.122  3065.18 0.929 2542.75 1.001 0.179 12-2-1 
db4l3 1838.91 0.973 1207.52 0.987 0.117  3251.17 0.920 2317.69 0.957 0.189 16-2-1 
db4l4 3177.52 0.919 2049.65 0.964 0.201  3892.31 0.885 3063.06 0.906 0.227 20-2-1 
db4l5 2984.58 0.929 1990.77 1.020 0.189  6040.68 0.724 4369.89 1.059 0.352 24-2-1 

db5l1 2366.59 0.955 1755.19 0.973 0.150  3309.96 0.917 2581.24 0.925 0.193 8-2-1 

db5l2 1922.55 0.970 1420.10 1.024 0.122  2733.39 0.943 2082.22 0.963 0.159 12-2-1 
db5l3 1491.71 0.982 1077.16 1.010 0.094  2964.21 0.933 2244.17 0.986 0.173 16-2-1 
db5l4 2360.02 0.956 1810.36 1.005 0.149  3683.25 0.897 3031.05 0.959 0.215 20-2-1 

db5l5 3059.94 0.925 2277.62 1.069 0.194  5218.04 0.794 4070.13 0.998 0.304 24-2-1 

Note: RMSE and MAE are in cumec unit. 

4.4.1 ANN Model Results  

 It can be seen from Table 4.13 that for optimum ANN model for Pandu 

station during training period the values of determination coefficient (R
2
), root mean 

squared error (RMSE), mean absolute error (MAE) are 0.835, 4092.69 cumec, and 

3100.18, respectively, while during testing period these values are 0.648, 5942.27 

cumec, and 4804.58 cumec, respectively. On the other hand, for Pancharatna station 

(Table 4.14) during training period the values of R
2
, RMSE, and MAE are 0.818, 

4855.32 cumec, and 3741.13 cumec, respectively, while during testing period these 

values are 0.690, 6398.43 cumec, and 5065.36 cumec, respectively. During testing 

period, as the R
2
 values are very low representing a very weak correlation, ANN 

model can not be applied for monthly river flow prediction.          
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4.4.2 WANN Model Results 

 Similar to daily and weekly time series data models, the normalized observed 

data was decomposed using Daubechies wavelets of order 1 (db1) to 5 (db5) upto 5
th
 

level, which were fed as input to ANN. The number of neurons in hidden layer was 

computed by trial-and-error method and performances of these are tabulated in Table 

4.13 and 4.14. 

 Here also similar results are obtained as those of daily and weekly time series 

data models. It can be seen from Table 4.13 that for Pandu station during testing 

period, db5l2 – WANN(db5) model have shown best performance. The values of 

determination coefficient (R
2
), root mean squared error (RMSE), mean absolute error 

(MAE), BIAS and S.I. are 0.938, 2502.65 cumec, 1930.91 cumec, 0.959, and 0.126, 

respectively. Results of Table 4.14 reveal that, for Pancharatna station during testing 

period, db5l2 – WANN(db5) model have shown best performance. The values of 

determination coefficient (R
2
), root mean squared error (RMSE), mean absolute error 

(MAE), BIAS, and S.I. are 0.943, 2733.39 cumec, 2082.22 cumec,  0.963, and 0.159, 

respectively. Also, it can be seen from Table 4.13 that for Pandu station during 

training period, (db5l2 – WANN(db5) model the values of determination coefficient 

(R
2
), root mean squared error (RMSE), mean absolute error (MAE), BIAS and S.I. are 

0.958, 2065.82 cumec, and 1636.31 cumec, 0.979, and 0.114, respectively. Results of 

Table 4.14 reveal that, for Pancharatna station during training period, (db5l2 – 

WANN(db5) model), the values of determination coefficient (R
2
), root mean squared 

error (RMSE), mean absolute error (MAE), BIAS and S.I. are 0.970, 1922.55 cumec, 

and 1420.10 cumec, 1.024, and 0.122, respectively. 

 From the above discussion it is worth to mention that, in comparison with 

regular ANN model WANN model has given better results. The WANN model was 

found more accurate because wavelet transform decomposes the non-stationary time 

series data into several stationary approximation and detailed time series.  

4.4.3 Comparison among WANN Models with Different Daubechies Wavelets 

 The results obtained by WANN models using db1 to db5 mother wavelets are 

compared. Results of Table 4.13 and 4.14 depicts that WANN model with db5 



 99 

mother wavelet [WANN(db5)] has shown better performance compared to  

WANN(db1) to WANN(db4) models for both the stations.  

 For 1 month lead time for Pandu station in testing period (Table 4.13), from 

the analysis, it was found that the value of R
2
 increased from 0.788 for db1l2 – 

WANN(db1) model to 0.938 for db5l2 – WANN(db5) model, while for Pancharatna 

station (Table 4.14) this increase was from 0.771 (db1l3) to 0.943 (db5l2). Also, for 

Pandu station the RMSE values decreased from 4612.62 (db1l2) to 2502.65 (db5l2) 

cumec for, while for Pancharatna station this decrease was from 5501.73 (db1l3) to 

2733.39 (db5l2) cumec. For Pandu station the MAE values were found to decrease 

from 3501.61 (db1l2) to 1930.91 (db5l2) cumec, while for Pancharatna station this 

decrease was from 3364.14 (db1l3) to 2082.22 (db5l2) cumec. For Pandu station the 

scatter index was found to decrease from 0.232 (db1l2) to 0.126 (db5l2), while for 

Pancharatna station this decrease was from 0.321 (db1l3) to 0.159 (db5l2). For 1 

month lead time for Pandu station in training period (Table 4.13), from the analysis, it 

was found that the value of R
2
 increased from 0.913 for db1l2 – WANN(db1) model 

to 0.958 for db5l2 – WANN(db5) model, while for Pancharatna station (Table 4.14) 

this increase was from 0.933 (db1l3) to 0.970 (db5l2). Also, for Pandu station the 

RMSE values decreased from 2976.74 (db1l2) to 2065.82 (db5l2) cumec for, while 

for Pancharatna station this decrease was from 2890.23 (db1l3) to 1922.55 (db5l2) 

cumec. For Pandu station the MAE values were found to decrease from 1935.74 

cumec (db1l2) to 1636.31 (db5l2) cumec, while for Pancharatna station this decrease 

was from 1793.16 (db1l3) to 1420.10 (db5l2) cumec. For Pandu station the scatter 

index was found to decrease from 0.164 (db1l2) to 0.114 (db5l2), while for 

Pancharatna station this decrease was from 0.183 (db1l3) to 0.122 (db5l2).  

 The above discussion and the careful study of Table 4.13 and 4.14 reveal that, 

WANN model‟s forecasting performance increased with increase in wavelet order, 

giving best results for db5 mother wavelet for both the stations. 
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Fig.4.22. Scatter plots between observed and (a) ANN modeled (Pandu Stn.), (b) 

WANN(db5) modeled (Pandu Stn.), (c) ANN modeled (Pancharatna Stn.), (d) 

WANN(db5) modeled (Pancharatna Stn.) during testing period (lead time: 1 

month) 

 

Figure 4.22 shows scatter plots comparing ANN and WANN(db5) models for 

Pandu and Pancharatna stations for 1 month lead time during testing period. WANN 

model performed better than ANN model. WANN model captured extreme events 

fairly well, while ANN frequently failed to do so. Pancharatna station results are 

comparatively poor than Pandu due to high skewness coefficient (0.782) during 

testing period. 
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4.5 ACCURACY OF DEVELOPED MODELS IN SIMULATING HIGH 

FLOWS 

Table 4.15 - A. Accuracy of developed models in simulating high flows in testing 

period - Daily time series data 

Lead time 

(day) 

Pandu station  Pancharatna station 

Observed
*
 Modeled

*
 % error

#
  Observed

*
 Modeled

*
 % error

#
 

2 

54100 49333.62 8.81  76235.79 66615.93 12.62 

52800 47705.05 9.65  64284.09 67016.15 -4.25 

51100 46868.77 8.28  60988.12 63806.23 -4.62 

50600 48538.13 4.07  58692.19 62046.31 -5.71 

47700 45591.97 4.42  56462.55 52765.86 6.55 

47200 45171.92 4.30  56243.73 57142.63 -1.60 

46900 45865.04 2.21  55376.51 53610.86 3.19 

46500 45049.85 3.12  54734.83 49901.15 8.83 

46300 46207.67 0.20  52449.74 43759.40 16.57 

3 

54100 52483.84 2.99  76235.79 64754.69 15.06 

52800 51795.21 1.90  64284.09 67781.23 -5.44 

51100 50914.12 0.36  60988.12 63324.26 -3.83 

50600 50575.35 0.05  58692.19 56801.57 3.22 

47700 48040.72 -0.71  56462.55 50222.36 11.05 

47200 47809.55 -1.29  56243.73 60142.40 -6.93 

46900 48842.32 -4.14  55376.51 50228.62 9.30 

46500 45987.59 1.10  54734.83 48938.28 10.59 

46300 47878.10 -3.41  52449.74 42134.08 19.67 

4 

54100 49483.84 8.53  76235.79 59274.86 22.25 

52800 49120.59 6.97  64284.09 62978.95 2.03 

51100 48487.98 5.11  60988.12 64006.93 -4.95 

50600 48251.04 4.64  58692.19 55767.51 4.98 

47700 47741.07 -0.09  56462.55 47547.44 15.79 

47200 46230.40 2.05  56243.73 59968.51 -6.62 

46900 46412.02 1.04  55376.51 52489.83 5.21 

46500 46548.52 -0.10  54734.83 45018.34 17.75 

46300 46743.03 -0.96  52449.74 45950.70 12.39 

7 

54100 49388.42 8.71  76235.79 60163.91 21.08 

52800 48776.22 7.62  64284.09 61681.87 4.05 

51100 47315.04 7.41  60988.12 61424.00 -0.71 

50600 47847.18 5.44  58692.19 57412.28 2.18 

47700 45176.20 5.29  56462.55 43381.85 23.17 

47200 45855.80 2.85  56243.73 59102.61 -5.08 

46900 44612.00 4.88  55376.51 54412.53 1.74 

46500 46558.10 -0.12  54734.83 41739.93 23.74 

46300 42953.62 7.23  52449.74 41732.07 20.43 

14 

54100 43952.18 18.76  76235.79 50264.56 34.07 

52800 42155.52 20.16  64284.09 50710.60 21.11 

51100 40461.27 20.82  60988.12 51266.53 15.94 

50600 44026.75 12.99  58692.19 50150.72 14.55 

47700 38528.06 19.23  56462.55 40110.01 28.96 

47200 42151.15 10.70  56243.73 51756.62 7.98 

46900 41436.36 11.65  55376.51 49874.97 9.93 

46500 42969.04 7.59  54734.83 42586.03 22.20 

46300 40778.10 11.93  52449.74 46852.17 10.67 
*Observed and modeled values are in cumec. # Positive – underestimation, Negative - overestimation 
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Table 4.15 - B. Accuracy of developed models in simulating high flows in testing 

period - Weekly time series data 

Lead time 

(week) 

Pandu station  Pancharatna station 

Observed
*
 Modeled

*
 % error

#
  Observed

*
 Modeled

*
 % error

#
 

1 

54100 47795.86 11.65  64284.09 56867.90 11.54 

45800 41837.94 8.65  46282.53 40540.88 12.41 

45500 43278.53 4.88  43053.3 43035.99 0.04 

45500 45198.76 0.66  42901.48 44297.36 -3.25 

42000 39838.88 5.15  42155.62 41696.43 1.09 

41200 44714.79 -8.53  41431.39 35395.45 14.57 

39700 39955.11 -0.64  40728.18 38180.28 6.26 

2 

54100 49736.60 8.07  64284.09 48258.29 24.93 

45800 48989.89 -6.96  46282.53 33109.10 28.46 

45500 43760.21 3.82  43053.30 39420.59 8.44 

45500 46124.38 -1.37  42901.48 35573.03 17.08 

42000 37481.25 10.76  42155.62 43746.78 -3.77 

41200 42975.29 -4.31  41431.39 37353.50 9.84 

39700 44209.85 -11.36  40728.18 31935.40 21.59 
*Observed and modeled values are in cumec. # Positive – underestimation, Negative – overestimation. 

Table 4.15 - C. Accuracy of developed models in simulating high flows in testing 

period - Monthly time series data 

Lead time 

(month) 

Pandu station  Pancharatna station 

Observed
*
 Modeled

*
 % error

#
  Observed

*
 Modeled

*
 % error

#
 

1 

44200 39748.03 10.07  40728.18 38740.64 4.88 

38004 34668.60 8.78  39777.78 37628.31 5.40 

36521 37107.27 -1.61  39382.23 35267.02 10.45 

35214 34799.36 1.18  33983.22 30136.92 11.32 

32456 33926.33 -4.53  33782.10 36338.47 -7.57 

30456 32238.32 -5.85  29546.58 32489.12 -9.96 

27485 26903.45 2.12  27663.36 27936.39 -0.99 
*Observed and modeled values are in cumec. # Positive – underestimation, Negative – overestimation. 

 

For investigating the ability of WANN model in simulating the peak values, 

first few highest observed river flows in testing period were compared with their 

simulated values. Tables 4.15 A, B, and C show relative percentage error between 

observed daily, weekly and monthly river flow and their best fitted simulated values. 

Study of these tables reveals that, the hybrid WANN model is effective for flood and 

drought analysis.  
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CHAPTER 5 

SUMMARY AND CONCLUSIONS 

 5.1 SUMMARY OF WORK 

The main purpose of the present study is to examine the applicability and 

generalization capability of wavelet transformation (WT) as a preprocessing 

technique combined with artificial neural network (ANN) using case study of 

forecasting Brahmaputra River flow using daily (short term), weekly (long term), and 

monthly (long term) time series data for multiple lead times. Ten year daily time 

series data for the two stations namely Pandu (u/s) and Pancharatna (d/s) located on 

Brahmaputra River are used in the study. Out of 10 years data, first 7 years (70 %) 

data is used for training and remaining 3 years (30 %) data used for testing. The above 

two stations were selected due to highly varied statistical parameters of observed flow 

at these the stations. Using daily time series data, forecasting is carried out for lead 

times 2, 3, 4, 7, and 14 day. Using weekly time series data forecasting is carried out 

for lead times of 1, and 2 week, while using monthly data forecasting is carried out for 

lead time of 1 month. Total seven input combinations were finalized based on auto-

correlations for flow series. Then the optimal input combinations for every lead time 

and for every time series is finalized using trial and error procedure by varying 

number of neurons in hidden layer from 1 to 20 using three layer FFBP network and 

Lavenberg-Marquardt as training algorithm with tansig as activation function. For the 

selection of optimal input combinations the total number of trials taken were 1120 {7 

(no. of input combinations) × 20 (no. of neurons) × 8 (no. of lead times for all time 

series i.e. daily, weekly, and monthly). The optimal combinations were selected based 

on lowest RMSE. 

Then a three-layer feed forward backpropagation ANN models without data 

pre-processing were developed to forecast river discharge for multiple lead times for 

both short term and long time series data by varying the number the of neurons in 

hidden layer from 1 to 20. The total number of ANN models developed for Pandu 

station were 160 {20 (no. of neurons in hidden layer) × 8 (total no. of lead times for 
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all time series)}. The network is trained with Lavenberg-Marquardt training algorithm 

and tansig as activation function.  

After developing ANN models, hybrid wavelet transform-neural network 

(WANN) models are developed. In WANN model the original time series is 

decomposed into various decomposition levels (up to 7 levels) (approximation and 

details) using Daubechies wavelets of order 1 (db1) to 5 (db5), which is fed as input 

to ANN to get the output at the required lead time. For WANN model the number of 

neurons in hidden layer was varied from 2 to 15. For Pandu station for daily data the 

total number of WANN models developed are 3920 {14 (no. of neurons in hidden 

layer) × 7 (no. of decomposition levels) × 8 (no. of lead time) × 5 (no. of wavelets 

used). For Pandu station for weekly and monthly data the total number of WANN 

models developed are 980 (14 × 7 × 2 × 5) and 350 ((14 × 7 × 1 × 5), respectively. 

For developing WANN models for Pancharatna station for daily data, same 

optimum ANN structure obtained for Pandu station is used. Hence the total number of 

WANN models developed for Pancharatna station for daily data is 280 (1 × 7 × 8 × 

5). While for weekly and monthly data WANN models were developed by taking all 

runs similar to Pandu station. Hence for Pancharatna station for weekly and monthly 

data the total number of WANN models developed are 980 (14 × 7 × 2 × 5) and 350 

(14 × 7 × 1 × 5), respectively. Also, the effect of decomposition level on WANN 

model efficiency is studied. 

The models are evaluated through five performance measures: RMSE, MAE, 

R
2
, BIAS and Scatter Index. No contradicting results are occurred with respect to 

above performance indices.  

The data set which produces best forecast results are selected as proper data 

pre-processing technique for flow forecasting. The forecast results produced by 

optimum ANN model from each data set are compared with WANN model to select 

appropriate pre-processing technique. 
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5.2 CONCLUSIONS 

Following are the important conclusions drawn from this study: 

1. Use of wavelet transform as pre-processing technique is highly beneficial to 

improve forecasting accuracy that is revealed through the study. 

2. Model with small number of input nodes and their smaller corresponding network 

structure produces better forecast results. 

3. Adopting tansig activation function results first convergence and reduces 

complexity of ANN as observed in most cases of the study. 

4. Selection of input parameters based on auto-correlation coefficient helps in 

reducing computational time. 

5. In modeling higher fluctuatious of flow during monsoon period, it has been well 

predicted by the proposed WANN model.  

6. Compared to ANN models, all WANN forecasting models with Daubechies 

wavelets of order 1 (db1) to 5 (db5) have better results for multiple lead times for both 

short term and long term time series forecasting. 

7. WANN model‟s forecasting performance increases with increase in wavelet order, 

giving best results for db5 mother wavelet for all lead times for both the stations. The 

db5 wavelet has a reasonable support and also has good time-frequency localization 

property and these together enable the model to capture both the underlying trend as 

well as the short term variablities in the time series better than db1 to db4 wavelet 

based forecast model. 

8. For WANN models with db1 to db5 mother wavelets, the models efficiency 

increased with decomposition level up to a certain optimum level, there after it was 

decreased. The errors were not increased proportionately with the higher resolution as 

the random parts of original time series were mainly in the lower resolution level, and 

obviously the prediction errors were also mainly in the lower resolution level. 
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5.3 PROMINENT RESULTS FROM THE STUDY 

 Time series data has been preprocessed using wavelet transform to produce 

better forecast results using case study of two u/s and d/s gauging stations. 

 The proposed WANN hybrid approach, using Daubechies wavelets, reveals 

the high potential and ability to handle non stationary hydrologic time series.   

 The forecasting performance is also influenced by proper type of wavelet as 

well as decomposition level.  

 The time series of various temporal scales are well forecasted by proposed 

approach both for short term and long term forecasting along with multistep 

lead time consistently.  

 The proposed WANN model offers wide scope and high potential in 

handling hydrologic time series than other models as observed in the study. 

5.4 FUTURE SCOPE  

 The work can be extended with other type of wavelets to explore higher 

accuracy aspect. 

 Adaptive Neural Fuzzy Inference System (ANFIS), Fuzzy Logic (FL), 

Support Vector Machine (SVM) can be integrated with wavelet for further 

study to assess the performance under various data constraints. 

 Other hydrological time series variables such as rainfall, temperature, 

evapotranspiration can be used as model inputs to examine the forecasting 

performance of proposed WANN model. 

 To test the WANN models, these can be applied to sites with different hydro-

climatic condition. Also uncertainty estimation can be done. 
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