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ABSTRACT

Due to the exponential growth of multimedia technologies, numerous pirated contents

are proliferating on the Internet and causing huge piracy as well as copyright issues.

Therefore, this thesis investigates four different methodologies for combating piracy

namely, Content-Based video Copy Detection (CBCD), duplicate video registration,

geometric distortions computation and pirate position estimation in a movie theater.

In the first methodology, this thesis targets CBCD problem, by introducing differ-

ent copy detection techniques, which employ efficient video fingerprints for detecting

duplicate video clips. Precisely, this research work attempts to solve some of the is-

sues of the CBCD domain, by proposing novel video copy detection techniques, that

employ color, motion activity, audio and multimodal signatures.

In the second methodology, this thesis addresses the problem of video copy local-

ization, by proposing robust registration schemes, which guarantee the accurate frame

alignments of the pirate video with the master content. Specifically, this research

study contributes robust temporal as well as spatio-temporal registration frameworks,

which exploit visual-audio fingerprints for obtaining frame-to-frame alignments of the

two video sequences.

In the third methodology, this thesis aims at geometric distortions estimation, by

presenting a framework using visual-audio features, which computes the geometric

distortions present in the duplicate video. In the fourth methodology, this thesis

attempts to emphasize the capability of video fingerprints towards the pirate position

estimation problem, by performing a Case study for investigating the illegal capture

location in a theater.

Video copy detection, tracking, distortion estimation and pirate position approxi-

mation frameworks presented in this thesis, are evaluated with extensive experiments

on different datasets. More specifically, the experimental results demonstrate the ef-

ficiency of the proposed methods over standard datasets such as TRECVID dataset,

Open Video Project dataset, CC WEB VIDEO collection and real datasets com-

prising camcorded versions of popular movies. Further, In-Theater experiments and

evaluations demonstrate the satisfactory performance of the proposed forensic frame-

work in terms of statistical results, 2D and 3D views of position estimations.

Keywords: Content-Based video Copy Detection (CBCD), Video copy registration,

Geometric distortions estimation, Camcorder piracy, Video fingerprinting.
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Chapter 1

Introduction

1.1 Introduction of Piracy

Due to the exponential growth of multimedia and Internet technologies, numerous

pirated (unauthorized or illegal copies) movies as well as videos are proliferating on

the Internet, which cause huge piracy issues. In addition, due to the existence of

these pirated clips, web search engines are facing severe problems for monitoring

and managing their digital contents. For example, for a sample set of 24 popular

queries from YouTube 1, Google Video 2 and Yahoo! Video 3, the search results are

comprising 27% duplicates or near-duplicates (Wu et al. 2007). On the other hand,

due to the easily available multimedia applications, simple steps are sufficient to

duplicate, manipulate and distribute a video content. As a result, the downloading

as well as distribution of illegal video contents on the Internet is unprecedented,

which in turn triggers Internet piracy and also copyright issues. In this way, piracy

is creating a devastating impact on the entertainment industry.

Strictly speaking, due to movie piracy, worldwide motion picture industry is los-

ing billions of dollars from the past few years. For instance, the latest Canadian

Motion Picture Distributors Association (CMPDA)-20114 report alarms that, 133

million pirated movies are viewed in Canada in 2010. This report also estimates

the total loss to Canadian economy as C$895 million in 2010 due to movie piracy.

Moreover, according to Motion Picture Association (MPA)5, over 90% of the pirated

1YouTube. Available: http://www.youtube.com.
2Google Video. Available: http://www.video.google.com.
3Yahoo! Video. Available: http://www.video.yahoo.com.
4Economic consequences of movie piracy- CMPDA Feb 2011 report. http://www.mpa-canada.

org/press/IPSOS-OXFORD-ECONOMICS-Report_February-17-2011.pdf
52005 US Piracy Fact Sheet. Motion Picture Association of America. http://www.mpaa.org/

USPiracyFactSheet.pdf
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Introduction 2

versions of newly released movies are created by camcorder piracy, which denotes

illegal camcorder captures in theaters. Precisely, a typical camcorder piracy scenario

is illustrated as follows:

◦ First, a pirate illegally captures a film in a movie theater using the camcorder

and sells the recorded movie to replicators or illicit source labs.

◦ Then, the replicators illegally duplicate the recorded movies and rapidly produce

thousands of pirated DVDs for sale.

◦ Consequently, the unauthorized copies of movies are distributed and down-

loaded through illegal file sharing networks, which cause Internet piracy.

In this way, the pirated versions of movies appear on the Internet or on the street

market, within hours of official release of a movie.

Thanks to technical advances in camcorders, camcorder piracy is raised as a major

issue for the movie industry over the past few years. Therefore, video copy detection

as well as tracking methods are very much essential for restricting piracy and also

for effective video retrieval. Due to these reasons, duplicate video detection and

tracking techniques are evolving as active research fields from the past decades. More

precisely, video copy detection techniques are required to prevent downloading as well

as distribution of illegal contents on the Internet and as a result Internet piracy can

be controlled. Further, illegal video investigation frameworks are needed to track the

movie pirates, which eventually leads to reduction of camcorder piracy.

1.2 Motivation

Combating camcorder piracy requires duplicate video detection followed by the pre-

cise frame alignments of the duplicate video with the master content, in order to

estimate the distortion model and camcorder capture location in a theater. In ad-

dition, detection and tracking of video copies are also useful in a large number of

applications. Possible categories of applications include:

• Digital Copyrights Protection and Content Management

Copy detection techniques are used to identify the illegal videos and restrict

their distribution on the Internet; hence, they deter copyright violations. Fur-

ther, duplicate video detection methods check the integrity of user uploads in

User Generated Content (UGC) websites such as YouTube and thus, assist in

digital content management.
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• Content-Based Video Retrieval (CBVR)

Massive growth of illegal videos is becoming a serious issue for online video

repositories. For example, Cheung and Zakhor (2000) showed that, each web

video in the database of size 45,000 clips, includes an average of five similar

copies. Further, Yahoo!6 search engine returned 2 to 3 duplicates among the top

ten retrievals for some popular queries (Liu et al. 2007). Therefore, identification

and tracking of illegal video clips, enhance the retrieval capabilities of the CBVR

system by eliminating duplicate contents.

• Video Indexing and Mining

Duplicate video detection techniques are useful to efficiently index the video

contents, since they provide compact fingerprints and support faster similarity

searches (Sarkar et al. 2008). In addition, copy detection methods enable scal-

able mining of huge video databases by identifying the content links between

the video sequences and their modified versions (Poullot et al. 2008).

• Identification of TV Commercials

Copy identification methods are employed to search the repeated instances of

a video clip inside a long video or video collection (Schoeffmann and Boeszo-

ermenyi 2011). For example, if the companies want to monitor whether their

commercials are broadcasted or not, for planning their marketing strategies,

then it requires the identification of repeated instances (here, commercials) in

a specific broadcast timeslot.

• Tracking News Stories

Information association is very essential in this digital era. Duplicate content

identification and tracking techniques can be used for semantically linking the

news stories on the same topic across different sources, in order to provide a

comprehensive view to the audience (Zhai and Shah 2005).

Though duplicate video detection and tracking methods are investigated from the

past several years in the multimedia research; yet, efficient illegal video detection and

investigation are really challenging issues, as they require compact fingerprints and

involve considerable computational costs.

1.3 Issues and Challenges

Whether the problem is copy detection or pirate video alignment or distortion estima-

tion, the major challenge lies often in compact representation of the video sequence

6Yahoo!. Available: http://www.yahoo.com.
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using efficient fingerprints/feature descriptors. Hence, some of the prominent chal-

lenges of these problem domains are listed below:

◦ Fingerprints extraction

Video fingerprints play a vital role in determining the performance of the video

copy detection as well as tracking system, since huge databases need to be

checked. Henceforth, while extracting fingerprints, the following properties

must be considered:

− Robustness

Must be invariant to different patterns generated by the same source video.

− Discrimination ability

Two perceptually different videos must have distinguishable signatures.

− Compactness

Support low dimensional representation.

− Computationally efficient

Examine thousands of videos using minimum amount of computations.

− Fast search

Find a match in a very large database within a finite amount of time.

◦ Computational cost

A major demanding issue in most of the copy detection systems is, the compu-

tational cost of feature extraction and similarity matching tasks, since multi-

dimensional data is involved.

◦ Size of the problem space

In duplicate detection systems the problem space is extremely large, which

involves millions of video sequences. For instance, YouTube has to process 20

hours of uploaded videos in every minute (Junee 2009), which in turn demands

computationally efficient real-time solutions.

1.4 The Complete Research Framework

The research work described in this Doctoral thesis comprises the following method-

ologies/fields, which can be used to track as well as control video piracy as follows:

1) Video copy detection

2) Pirate video tracking/registration

3) Geometric distortions estimation

4) Use case: Pirate position estimation and identification
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Figure 1.1 shows the complete research framework carried out in this study, which

comprises four different methodologies as illustrated below.
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Figure 1.1: The complete research framework

1) Video copy detection: Video copy detection is commonly known as fingerprint-

based video identification or more generally Content-Based video Copy Detection

(CBCD). A video copy/pirate video is a distorted video sequence derived from the

master/database video by applying several video editing and transformations such as

noise, cropping, zooming and caption insertions. In CBCD, a video copy is detected

by comparing the fingerprints of the query video with the fingerprints of the database

videos. Here, the media (image, audio etc.,) itself acts like a fingerprint to assess

a duplicate video, which is similar to human fingerprints; hence called as video fin-

gerprints. This research work targets CBCD problem, by introducing different copy

detection schemes to detect illegal videos, which employ fingerprints derived from

visual, audio and multimodal signatures.

2) Pirate video tracking/registration: After copy detection, it is essential

to compute the accurate frame-to-frame alignments of the pirate content with the

master sequence. For this purpose, video copy tracking techniques are presented in

this thesis, which locate the given query clip within the master video content and
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compute frame matches of two video sequences. More precisely, this research study

targets pirate video tracking problem, by presenting robust spatial and temporal

registration schemes to guarantee the accurate frame alignments of the copied video

with the master content. In this research work, the terms tracking or registration

define a way of mapping the pirate and master sequences with an objective to calculate

frame-to-frame alignments.

3) Geometric distortions estimation: It is known that, when the pirate is

recording a movie in a theater using a camcorder, the captured image is geometrically

distorted, because capturing axis is not perpendicular to the screen. Therefore, the

resultant geometric distortions in the illegal video need to be estimated, so that the

subsequent forensic activities such as detecting embedded watermarks and estimating

illegal capture locations can be carried out. For this reason, distortion estimation

schemes are introduced in this thesis, which estimate the geometric distortions present

in the duplicate video in terms of projective matrix.

4) Pirate position estimation and identification: Besides geometric dis-

tortion estimation, the application of video fingerprints could be further extended to

estimate the illegal capture location in a theater. Specifically, it is possible to estimate

the pirate position in a theater, by performing in-depth analysis of geometric distor-

tions and the theater projective geometry. On the other hand, preventing camcorder

piracy, by introducing forensic tracking frameworks to identify the movie pirate, is

certainly not the aim of this thesis. Instead of that, this research study attempts to

highlight the capability of video fingerprints towards the pirate position estimation

problem. In other words, current research work tries to prove that, the illegal capture

location in a theater could be approximated, by performing the exhaustive inves-

tigation of geometric distortions and the theater projective geometry. To validate

this viewpoint, In-Theater experiments are conducted and evaluated as a case study

in this research work. More specifically, the purpose of the use case is to emphasize

the ability of the video fingerprints towards the pirate position estimation problem.

It is, therefore certainly not the main goal of this thesis, to propose pirate position

estimation frameworks, which could be used by theater owners for pin pointing exact

seats and identifying the actual pirates.

1.5 Summary of Contributions

This thesis introduces different CBCD techniques for detecting the illegal video se-

quences on the Internet and thereby limits Internet piracy. Further, this research

study also presents several pirate video tracking techniques, which compute spatio-



Introduction 7

temporal frame alignments and estimate geometric distortion model of two video

sequences, by employing multimodal fingerprints. Furthermore, this thesis investi-

gates a forensic tracking framework, that attempts to estimate the illegal capture

location in a theater with the help of audio-visual fingerprints. Brief explanation of

each of the contributions is given below:

• Content-Based Video Copy Detection (CBCD) Schemes

? Using Color-Based Visual Features

Color is one of the dominant and distinguishing visual feature of an image;

hence, this thesis first introduces two CBCD techniques, that employ com-

pact and computationally efficient visual fingerprints derived from Dom-

inant Color Descriptors (DCDs) of MPEG-7 standard (Manjunath et al.

2002) to detect duplicate video contents. More precisely, DCD indicates

the complete color information of an image with a small number of rep-

resentative/dominant colors. The Generalized Lloyd algorithm (GLA) is

the most extensively used algorithm to extract the dominant colors of an

image (Lloyd 1982); yet, GLA suffers due to its expensive computational

cost. From another perspective, a main challenging issue in CBCD sys-

tems is, the computational cost of fingerprints extraction and similarity

matching, because huge video databases need to be checked. To solve this

issue, compact feature descriptors with low computational cost are needed

for effective video copy detection systems. Therefore, the current research

study proposes a novel CBCD framework, which exploits a simple and

computationally inexpensive DCD extraction scheme for detecting illegal

videos, compared to the existing methods. In addition, this framework

also incorporates an adaptive signature pruning method, which noticeably

reduces the total DCD’s extracted from a video sequence.

Although two images may have similar dominant colors, but the spatial dis-

tribution of same color pixels in the two images, may not be always same.

Based on this aspect, this thesis introduces an another video copy detec-

tion technique, by enhancing the previously proposed CBCD framework,

which integrates spatial coherency factor along with the dominant color

values. Specifically, spatial coherency describes the spatial distribution

of pixels associated with each dominant color, i.e. pixels of same color

are how much co-located. Inclusion of this spatial coherency factor in the

video fingerprints significantly improves the detection performance. Ex-

periments conducted on a database of 101 video sequences, demonstrate
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the efficiency of the proposed CBCD schemes in terms of standard Pre-

cision and Recall metrics against various video transformations such as

zooming, noise, resolution change and rotation.

? Using Motion Activity Features

Motion features contribute significant information about a video content.

However, in the CBCD literature motion vectors are considered as poor

descriptors (Hampapur et al. 2001), due to the following reasons:

a) They are close to zero values when captured at normal frame rates;

b) Raw motion vectors are noisy in nature and

c) Huge amount of information is needed to describe the motion content.

In addition, frame-based motion features may describe the temporal con-

tent of a video clip, yet they may not effectively characterize the overall

activity of a video sequence. To tackle these discrepancies, this thesis in-

troduces a new CBCD method, that integrates the temporal behavior and

spatial distribution of motion activity for describing the overall activity of

a video sequence. More precisely, the proposed CBCD framework employs

the robust video fingerprints derived from the attributes of Motion Activity

Descriptor of MPEG-7 standard (Manjunath et al. 2002) such as motion

intensity, dominant direction and spatial distribution of activity for the

copy detection task. Further, clustering based pruned search is performed,

to speed up the similarity matching process. Experiments conducted on

75 hours of TRECVID 2007 Sound and Vision dataset7, prove the im-

proved detection efficiency of the proposed CBCD technique compared to

reference methods.

? Using Audio Fingerprints

Acoustic features are significant and powerful in describing a video content;

hence their exploitation may considerably enhance the performance of the

copy detection task. On the other hand, past acoustic investigations prove

that, the most important perceptual audio features exist in the frequency

domain (Tang et al. 2009). By considering these factors, this thesis con-

tributes a novel video copy detection system using robust audio spectral

features. More precisely, spectral descriptors including Centroid, Energy,

Roll-off and Flux are extracted from power spectrum of the audio signal.

However, direct processing of resultant spectral features is computation-

7TRECVID 2010 Guidelines [Online]. Available: http://www.nlpir.nist.gov/projects/

tv2010/tv2010.html.
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ally expensive; hence they are combined into SPectral Descriptive (SPD)

words and utilized as video fingerprints for the CBCD task. The experi-

ments evaluated on 75 hours of TRECVID 2008 dataset, demonstrate the

better accuracy of the proposed CBCD framework, when compared to the

reference methods.

Mel-Frequency Cepstral Coefficients (MFCCs) are widely used by the audio

processing community to obtain discriminative performance with reason-

able noise robustness (Rabiner and Juang 1993). By keeping this factor in

mind, this thesis presents an another copy detection technique, by enhanc-

ing the previously presented CBCD method, which incorporates MFCCs

and spectral descriptors for detecting duplicate video sequences. Specifi-

cally, MFCCs and four spectral descriptors are extracted from the spectral

decomposition of the downsampled audio signal. Then, the resultant intra-

frame features are concatenated into Multi-Feature (MF) vectors, which

effectively represent frame-level and clip-level audio content of a video.

After this step, Principal Component Analysis (PCA) is applied on the

MF vectors, in order to get compact video fingerprints. Experiments con-

ducted on 25 hours of TRECVID 2007 dataset prove the efficiency of the

proposed scheme against 16 different types of video modifications such as

color change, pattern insertion, moving caption and combined attacks.

? Using Multimodal Features

In general, if audio content is available, then the joint utilization of visual-

audio fingerprints for detecting illegal videos may significantly improve the

copy detection performance. Based on this aspect, this thesis contributes

a robust CBCD framework, which employs visual fingerprints derived from

DCDs and audio signatures extracted from MFCCs for detecting duplicate

videos. More precisely, a novel visual signature called as Spatio-Temporal

DCDs are generated, which effectively characterize the region-based dom-

inant color features as well as temporal color information present in the

given video. Then, the resultant visual signatures are jointly employed

along with the robust audio fingerprints for identifying the duplicate video

clips. The results tested on 100 hours of TRECVID 2008 and 2009 datasets

indicate that, the proposed framework consistently outperforms the refer-

ence methods against 17 different types of video transformations.

Usually, exploiting several complementary features of a video sequence

for the copy detection task, not only improves the detection performance,
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but also widens the coverage to more number of video transformations.

Based on this viewpoint, this thesis proposes a new copy detection system,

which integrates motion activity features and audio spectral descriptors

to detect the pirate video sequences. More specifically, Motion Activity

(MA) words describing the spatio-temporal activity of a video as well as

Spectral Descriptive (SD) signatures illustrating audio spectrum of a clip

are jointly utilized for detecting illegal videos. Experiments on 200 hours of

TRECVID 2009 dataset, prove the better detection rates of the proposed

in terms of standard Precision, Recall and F-Measure metrics.

• Pirate Video Tracking Techniques

? Temporal Registration

Tracking piracy needs illegal video detection followed by the accurate frame

alignments of the duplicate video with the master content, in order to es-

timate the geometric distortion model of the two video sequences. In this

perspective, this thesis contributes a new temporal registration technique,

that exploits MFCCs and motion activity features for obtaining frame-to-

frame alignments of the two video contents. More precisely, the proposed

registration scheme first extracts the robust motion profile, which describes

the temporal and spatial motion activity of video contents. Then, it se-

lects the most similar segment of the master video by employing sliding

window-based dynamic programming technique. After this step, multi-

features based frame matching scheme is employed in order to obtain the

accurate frame alignments of the pirate video with the master content.

Experiments are conducted on a master database comprising 150 hours of

TRECVID-2008, 2009 datasets and a query dataset including 850 video

clips. The registration results demonstrate the robustness of the proposed

framework against a wide range of video transformation types such as scal-

ing, temporal, filtering, geometric and combined distortions.

? Spatio-Temporal Registration Using Visual Features

Followed by the temporal registration scheme, this thesis presents a spatio-

temporal alignment technique for mapping the pirate and master video

contents, which employs visual signatures derived from Speeded Up Robust

Features (SURF) descriptors (Bay et al. 2008). Precisely, first the proposed

registration scheme computes a new visual signature called as 1-D SURF of

video contents, which are subsequently mapped to achieve temporal frame-
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to-frame matches. Then, a small set of representative frame pairs from the

two video sequences are extracted and consecutively mapped by means of

their SURF key points in order to get accurate geometric frame alignments.

Experiments are carried out on a master database consisting 100 hours of

TRECVID 2009 dataset plus another 30 hours of real data comprising

camcorded copies of master sequences. The experimental results indicated

in terms of percentage of perfectly Matched Frames (MF ) and Average

Distance (AD) between frame indexes, demonstrate the efficiency of the

proposed scheme against a broad range of video transformations.

? Spatio-Temporal Registration Using Visual-Audio Features

Generally, if audio content is available, then the joint exploitation of visual-

audio fingerprints for alignment task, could enhance the registration accu-

racy to a greater extent. Based on this aspect, this thesis contributes a new

spatio-temporal registration framework, which utilizes content-based mul-

timodal signatures for obtaining the accurate frame alignments of pirate

and master video sequences. More precisely, first the proposed registration

framework introduces a new visual fingerprint denoted as 1-D visual profile,

which is extracted from SURF key points of frames. Then, the most similar

segment of the master video known as Candidate Segment is selected using

dynamic time warping (DTW) algorithm, which substantially reduces the

frame matching cost. Further, the proposed framework employs a mul-

timodal frame matching scheme, which aligns visual-acoustic fingerprints

and noticeably reduces false frame matches. Furthermore, principal frames

extraction algorithm is introduced, which extracts the most similar frames

from the temporally aligned master and pirate video sequences. Finally,

the resultant principal frames are mapped using their SURF descriptors

in terms of control points, to get accurate spatial frame alignments.

The proposed spatio-temporal registration framework is evaluated on three

different datasets, namely TRECVID Sound & Vision dataset, CC WEB

VIDEO dataset 8 and a set of real data comprising camcorded versions of

master videos. The TRECVID master database includes approximately

190 hours of data collected from TRECVID 2008 as well as 2009 datasets

and 750 query video clips. The CC WEB VIDEO master database con-

sists of 24 most viewed videos provided by CC WEB VIDEO collection.

The CC WEB VIDEO query dataset includes approximately 600 video

8CC WEB VIDEO: Near-Duplicate Web Video Dataset. http://vireo.cs.cityu.edu.hk/

webvideo/
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files with two different classes of distortions namely formatting and con-

tent modifications. To evaluate the performance of proposed framework

against the camcorder captured video clips, a database of 30 master video

sequences and 75 camcorded copies ranging from 1.55min to 15min are

considered. The proposed spatio-temporal registration framework achieves

promising results in terms of better MF and AD rates compared to the

reference methods. Frame alignment using the sliding window technique,

is an another beneficial characteristic of the proposed framework, which

demonstrates that, the effective performance can be obtained with the low-

est computational cost, although the fingerprint extraction cost is higher.

• Geometric Distortions Estimation Method

Estimating geometric distortions in the pirate video is prerequisite, in order to

proceed with the forensic activities such as approximating the pirate position in

theater and recovering embedded watermarks. Therefore, this thesis contributes

a new distortion model estimation framework, that employs multimodal finger-

prints compared to the existing visual-features based methods. More specifi-

cally, the proposed framework first introduces a novel visual fingerprint, denoted

as Compact Spatio-Temporal (CST) SURF signature, which represents spatial

and temporal content of videos. Then, robust audio signatures derived from

MFCCs and CST-SURF signatures are utilized to obtain the accurate frame

alignments of pirate and master video contents. Further, it presents the Most

Similar Segment selection algorithm to obtain effective temporal alignments,

by using Minimum Weight Perfect Bipartite Matching technique. Furthermore,

the proposed framework introduces stable frame pairs selection algorithm, for

extracting the most similar frame pairs and also two filtering policies for obtain-

ing the robust key point pairs. After this step, the proposed scheme estimates

the geometric distortion model in terms of 8-parameter homographic matrix

using Normalized Direct Linear Transformation (DLT) algorithm (Hartley and

Ziserman 2004). The results of experiments on 7 popular movies and 84 cam-

corded copies of movies prove the promising results of the proposed framework

compared to the reference methods.

• Pirate Position Estimation Framework

Followed by the estimation of geometric distortion model, the resultant visual-

audio fingerprints could also be successfully exploited for approximating the po-

sition of pirate in a theater. In order to prove this view, this thesis contributes
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a forensic tracking framework using acoustic-visual features for estimating the

position of the pirate in a movie theater. More specifically, first the proposed

position estimation framework computes spatio-temporal frame alignments of

the source movie and pirate video contents by making use of both the acoustic

as well as visual features. Then, the geometric distortions in the pirate video

are estimated in terms of 3×3 projective matrix. Consequently, the camcorder

optical axis to the screen perpendicular is determined by redefining the the-

ater projective geometry and eventually the position of the pirate in the movie

theater is estimated.

To analyze the performance of the proposed position estimation framework,

the experiments are conducted in a large-scale test environment with 176 seats

and ten arbitrary locations are employed for camcorder captures. The statistical

analysis of position estimation results demonstrate the satisfactory performance

of the proposed forensic framework. More precisely, the mean absolute error of

estimation results is (38.25, 22.45, 11.11)cm and the standard deviation of the

estimation errors is (22.26, 12.97, 7.29)cm respectively. Further, mean width

error ranges from 2.5-63.5cm, while mean depth error ranges from 0.6-30.1cm.

This estimation accuracy is quite reasonable, as the distance between two seats

in a row is about 35cm and the distance between two rows is about 100cm

respectively.

1.6 Outline of the Thesis

This thesis is organized as follows. Chapter 2 first introduces the concepts of content-

based video copy detection, tracking, distortion model computation and pirate posi-

tion estimation methodologies followed by the discussion of respective state-of-the-art

techniques. Chapter 3 illustrates the proposed CBCD techniques, that employ fea-

tures such as color, motion activity, audio and multimodal signatures for detecting

illegal videos.

Chapter 4 describes video copy registration frameworks, which focus on spatial

and temporal alignments of the pirate video with the master sequence. The key

contribution of this chapter is, a novel spatio-temporal registration technique using

visual-audio fingerprints for the localization of video copies. Further, this chapter de-

tails the experimental evaluations on 3 different datasets, which prove the efficiency

and effectiveness of the proposed framework against a wide range of video transfor-

mations. Chapter 5 addresses geometric distortion estimation problem by proposing
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a new framework to estimate the geometric distortions in video copies, by employing

acoustic and visual features. The experimental evaluations on popular movies and

their camcorded versions, demonstrate the consistent performance of the proposed

scheme compared to the reference methods.

Chapter 6 describes the case study involving In-Theater experiments, that deals

with pirate position estimation problem. Precisely, this chapter details the proposed

forensic tracking framework, that exploits visual-audio fingerprints for estimating the

position of the pirate in a movie theater. The experimental results in terms of top,

isometric and 3-D views of actual as well as estimated camcorder locations, prove

the satisfactory performance of the proposed forensic tracking framework. Chapter 7

summarizes the contributions and highlights the possible directions for future work.

1.7 Summary

This chapter first introduces the piracy problem in terms of Internet as well as Cam-

corder piracy issues, followed by their devastating impact on the entertainment in-

dustry. To deal with these issues, a research framework comprising four different

methodologies namely, CBCD, video copy registration, geometric distortions estima-

tion and pirate position approximation is introduced in this chapter. Further, this

chapter also describes some of the prominent challenges of these problem domains,

followed by the summary of contributions of the current research study.



Chapter 2

Literature Survey

2.1 Content-Based Video Copy Detection (CBCD)

2.1.1 Why CBCD?

digital watermarking and Content-Based video Copy Detection (CBCD) techniques

are widely used in the literature to detect illegal video contents (Sarkar et al. 2010).

The watermarking approach embeds an identifier (watermark) in to the master video

before distribution and checks the identifier in the query video to detect whether

it is copyrighted or not. The alternative CBCD techniques employ the media (like

image, audio, video etc.,), that contain unique information for detecting illegal video

clips (Chiu et al. 2010). In other words, CBCD methods utilize video fingerprints

extracted from the content-based features to assess a video copy (Esmaeili et al.

2011). Watermarking-based systems are well studied and explored, whereas CBCD

approaches are still in the early stages (Li et al. 2010). However, the CBCD techniques

are more successful compared to digital watermarking methods due to the following

key features:

◦ Fingerprint generation neither destroys nor damages the video content.

◦ More robust than fragile watermarking techniques, since the fingerprints remain

mostly unchanged even after various video modifications.

◦ Capable of detecting video copies, even if the master video is not watermarked.

◦ Fingerprint extraction is possible even after the distribution of digital media,

whereas embedding watermarks is difficult after distribution, since the media

gets distorted.

Hence, the complementary CBCD methods are emerging as primary tools for dealing

with digital video piracy and also generated a great deal of research interest recently.

15



Literature Survey 16

2.1.2 Related work

In the copy detection literature, considerable efforts are made to propose efficient

video fingerprints and effective similarity matching techniques. Early research on

CBCD can be broadly classified into two groups namely, global features and local

descriptors techniques.

Global descriptors/features based CBCD methods

Global descriptors summarize the global statistics of low level features in the entire

frame; hence they are also called as frame-level descriptors (Chiu and Wang 2010).

Initial work in this group comes from Shivakumar (1999) and Indyk (2000), in which

fingerprinting technique is introduced to identify the pirated video sequences on the

Internet. Hampapur et al. (2001) performed a comparative study of different de-

scriptors such as motion, intensity and color-based signatures, that are employed in

the CBCD domain. At present, global features such as the Ordinal measure (Hua

et al. 2004; Chaisorn et al. 2010) and color histograms (Naphade and Yeo 2000; Liu

et al. 2007) are very popular in the CBCD domain. However, Ordinal measure is

less sensitive to block-based modifications such as logo insertions and subtitles. On

the other hand, color histograms are highly susceptible to global and local color vari-

ations. Hoad et al. (2006) introduced color-shift and centroid based descriptors to

identify the duplicate video sequences. Color-shift descriptor is less effective to black

and white contents, whereas centroid-based descriptor gives poor performance for

pixel luminance degradations.

Kim et al. (2008) introduced a group based copy detection scheme using video

linkage, which transforms a video into a group of frames. Xu et al. (2009) and

Uchida et al. (2012) presented CBCD approaches based on DCT coefficients for

detecting duplicate video contents, which are less effective against image cropping

attacks. Cui et al. (2010) presented a copy detection method based on the Slice

Entropy Scattergraph (SES), that utilizes spatio-temporal video slices to identify the

video copies. Zhang and Zou (2010) proposed a CBCD technique, which operates

directly in the DCT domain and obtains edge information in video frames in order

to detect video copies.

Xu et al. (2012) introduced Eudemon system, for online video frame copy detec-

tion, which uses Earth Movers Distance (EMD) similarity measure; yet it suffers due

to complex EMD computations. Gupta et al. (2012) introduced a copy detection

system using nearest neighbor mapping based on sliding window mechanism. How-

ever, this method scores poor results for the sequence of temporally invariant frames.
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Recently, Jiang et al. (2013) proposed a copy detection framework, which employs a

frame-level descriptor computed from relative mean intensity of frames. This method

is robust against video modifications such as rotation and flipping; yet, it is less effec-

tive towards region-oriented transformations. Though global descriptors are compact

and effective for frame-level transformations; yet they are less robust against region-

based attacks such as letter-box insertions, picture-in-picture and cropping.

Local features based CBCD schemes

Due to the limited capability of global descriptors, many researchers introduced lo-

cal descriptors, which compute a set of interest points to facilitate local matching.

For instance, SIFT (Lowe 2004) and SURF (Bay et al. 2008) descriptors are widely

popular in the CBCD domain, since they are more robust than global descriptors

in handling several video manipulations (Law-To et al. 2007). Visual words or Bag-

of-words model is introduced by Poullot et al. (2008) and Ren et al. (2009) in

order to detect illegal video contents. Selecting perfect vocabulary size is a critical

issue in bag-of-words model, which may result in poor retrieval rates. Natsev et al.

(2010) designed a video copy detection system, that uses SIFT and color correlogram

descriptors for detecting duplicate videos.

Roth et al. (2010) and Zhang et al. (2010) introduced CBCD systems by employ-

ing SURF descriptors, which require multidimensional index structures for indexing

the video signatures. Recently, Ren et al. (2012) introduced a pirate video detection

technique, which employs global as well as local detectors as signatures; however, it

performs poor for complicated attacks such as camcording. Although, local descrip-

tors are more robust than global descriptors; still, they are computationally expensive

and require multidimensional indexing structures.

Notable CBCD methods using visual features

There are notable works in the literature on CBCD problem, which utilize only visual

signatures for detecting illegal videos. For example, Kim and Vasudev (2005) pro-

posed a spatio-temporal sequence matching scheme for detecting video copies, which

performs spatial matching using ordinal signatures and temporal matching using tem-

poral signatures extracted from the image frames. Joly et al. (2007) introduced a copy

detection technique by employing Harris detector (Schmid and Mohr 1997) and pro-

posed a new probabilistic similarity search technique to retrieve video copies. Though

this method provides very good performance in terms of robustness and discrimina-

tion; yet it suffers due to its computational complexity. Further from database point
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of view, the redundancy of local features proves problematic for searching speed. On

the other hand, the authors addressed only a few kinds of distortions such as resize,

shift, contrast, gamma correction and noise addition; while this technique fails to

handle modifications such as pattern insertion, moving captions and flipping.

Chiu et al. (2008) proposed a probabilistic framework for identifying duplicate

videos, which transforms the copy detection task into a shortest-path problem and

computes matching pairs of frames between the video sequences. This method uses

compact visual signatures; that is, only 9D ordinal signature is generated for a block

of size 3×3. However, the ordinal signature they use, limits the resistance to region-

based attacks such as zooming, cropping and pattern insertions. Furthermore, the

authors experimented on a limited set of distortions such as brightness enhancement,

speed change and resize, while transformations such as noise, pattern insertion, zoom

in and color change are not tackled in their study. Douza et al. (2010) introduced an

image-based approach, which employs local feature indexing method and a spatio-

temporal post filtering step to identify the video copies.

Küçüktunç et al. (2010) presented a copy detection framework by employing

MPEG-7 descriptors, facial shot mapping and activity subsequence matching tech-

niques, which is less effective against complex transformations such as camcording and

picture-in-picture. Sarkar et al. (2010) designed a duplicate video detection frame-

work using color layout descriptors and proposed a non-metric distance measure to

search efficiently in the high-dimensional space. however, this scheme may score inac-

curate results, if the query video contains portions of multiple master video sequences.

Chiu and Wang (2010) introduced a time-series linear search (TLS) method for de-

tecting illegal videos, which combines compact video signatures derived from min

hash theory and efficient fingerprint generation process based on heap operations.

As mentioned in Section 1.5, motion features are considered as poor descriptors in

the CBCD literature (Hampapur et al. 2001), since they are close to zero values, when

they are captured at normal frame rates (25-30 fps). However, Tasdemir and Cetin

(2010) attempted to employ motion features for their CBCD task, by capturing frames

at a lower rate (i.e. 5fps) and using motion vector magnitudes. Though, the proposed

motion vector-based signatures are resistant to illumination and color changes; still,

they fail to describe the spatio-temporal motion activity of a video sequence.

Wei et al. (2011) presented a frame fusion based copy detection scheme, which

exploits Viterbi-like dynamic programming algorithm with on-line backtracking strat-

egy for detecting copied videos. Esmaeili et al. (2011) proposed a CBCD system,

which utilizes fingerprints extracted from special images of videos and introduced a

fast approximate search algorithm to identify the duplicate video contents. Recently,
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Lei et al. (2012) introduced a video sequence matching method based on the in-

variance of color correlation of RGB components. This method achieves satisfactory

performance in terms of both time and space complexity. However, it fails to provide

better detection rates for transformations such as camcording, color phase modifica-

tion and color adjustment; since, they considerably alter the color components of the

video sequences.

CBCD frameworks using audio and multimodal signatures

Though audio content is an essential information source of a video sequence; yet, only

very few attempts are made to detect video copies using acoustic signatures. For in-

stance, Itoh et al. (2010) utilized acoustic power features for their copy detection task.

Although this method is efficient; still, its high computational cost may degrade the

performance of the system. Anguera et al. (2009) designed a multimodal video copy

detection scheme by fusing visual fingerprints extracted from luminance variations

and audio signatures derived from spectral coefficients. However, this method fails to

provide better accuracy for region-based attacks such as logo insertions and subtitles.

Saracoğlu et al. (2009) presented a framework by employing coarse visual-audio

fingerprints for identifying video copies. Although the performance of this method

is reasonably good, still it is less effective against video attacks such as picture-in

picture, due to the limitations of the proposed global descriptors. Moreover, the

authors combined the audio-visual fingerprints in a simplified manner based on deci-

sion scores, which may not guarantee a stable performance for all the cases. Tian et

al. (2011) presented a video copy detection framework, which exploits visual-audio

features and sequential pyramid matching technique for detecting duplicate videos.

However, this method uses simple fusion strategy, which may not provide optimum

performance for complicated video transformations such as camcording and combined

attacks. Recently, Wu and Zhao (2012) presented a multimodal copy detection ap-

proach, which integrates DCT, SIFT and audio features for detecting video copies.

However, the computational cost of this scheme is slightly high, since it involves

complex computations.

2.1.3 Research challenges of the CBCD Domain

Numerous state-of-the-art CBCD schemes are exploiting only visual signatures of

videos for detecting video copies. Instead, if the video content is utilized in an intuitive

and natural way, then the performance of a copy detection system can be significantly

improved (Roopalakshmi and Reddy 2010). By keeping the above factors in mind,
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this thesis highlights some of the research challenges in the context of CBCD domain:

? Utilization of Audio Fingerprints

Audio content is an indispensable information source of a video sequence. How-

ever, most studies on CBCD concentrate only on visual signatures, while very

few efforts are made to exploit audio features. From piracy perspective, in

most of the copy detection cases, the audio data is less manipulated compared

to its counterpart (Saracoğlu et al. 2009). Therefore, the combined utilization

of visual-audio fingerprints for the copy detection task, not only enhances the

detection performance, but also extends the coverage to more number of video

editing and transformations.

? Fingerprints using MPEG-7 Descriptors

A major challenge in most of the copy detection systems is, the computational

cost of fingerprint extraction and similarity matching tasks, since huge amount

of databases need to be verified. Though, feature extraction can be done ef-

fectively and efficiently using compressed domain features such as MPEG-7

descriptors; still, it is not much explored in the CBCD domain.

? Complicated Image Transformations

In CBCD paradigm, for video transformations such as rotation, scaling, zoom-

ing and brightness change, numerous solutions are proposed. However, compli-

cated video manipulations such as camcorder captures, picture-inside-picture,

gamma-corrections and combined visual-audio attacks pose specific challenges

in the context of CBCD domain.

? Incorporating Visual Cues

Most studies in CBCD, concentrate on low level features which describe the

image content; yet, there is a semantic gap between the low level image features

and user’s high level representation of images. In order to handle this disparity,

if visual cues are incorporated in the copy detection task, then the detection

performance can be significantly enhanced.

? Combining Content and Context

In video copy detection, when a query video is presented, huge database of

videos need to be compared, to confirm whether it is copied or not. Hence, if

the contextual information is also incorporated along with the video content

for detecting the video copies, then the detection accuracy can be considerably

improved.

? Using Compact Video Fingerprints

In CBCD systems, multi-dimensional master videos need to be checked to detect
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duplicate videos; hence, compact representation of a video sequence using effi-

cient fingerprints is a major challenge, which considerably affects the detection

performance of the CBCD system.

? Employing Effective Indexing Techniques

A main challenging issue in most of the CBCD systems is, the computational

cost of indexing task, since huge database of videos need to processed. There-

fore, effective indexing techniques could be employed for enhancing the detection

performance of the given CBCD system.

? Exploiting Efficient Similarity Matching Methods

If efficient similarity matching techniques are exploited, then the computational

cost of the CBCD framework could be reduced to a greater extent, which in

turn may considerably improve the effectiveness of the CBCD framework. From

another perspective, if the pirate video is derived from multiple master video

sequences, then effective similarity matching algorithms are essential to ensure

the best matching master video.

? Using Appropriate Fusion Schemes

It is known that, exploiting both the visual-audio features of a video sequence

for the CBCD problem, not only enhances the detection accuracy, but also

widens the coverage to more number of video modifications. For this reason,

suitable fusion schemes are required for combining the audio-visual fingerprints

in an effective manner.

This research study attempts to solve some of these issues, by proposing various

copy detection schemes, which employ video signatures such as color, audio, motion

activity and multimodal features. The contributions of this thesis towards the CBCD

problem are illustrated in Chapter 3.

2.2 Video Copy Tracking/Registration

2.2.1 Basics of pirate video registration

Fighting against video piracy needs duplicate detection as the first step, which aims to

find out the best matching master video for the given pirate/query clip. As mentioned

in Section 2.1.1., content-based video copy detection (CBCD) techniques use content-

based features of the media to detect duplicate video sequences; thus, they are widely

popular. However, existing CBCD schemes do not deal with the accurate frame-to-

frame alignments of a pirate video with the master sequence, since their ultimate goal
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is to detect the duplicate video clips by comparing the perceptual similarity between

the two video sequences.

On the other hand, in case of illegal camcorder captures, the captured images

are mostly distorted, since the capturing axis is not exactly perpendicular to the

theater screen. Due to this reason, significant frame misalignments exist between the

pirate video and the master sequence, where the misalignments could be temporal,

geometric or combination of both. Therefore, followed by copy detection, accurate

frame alignments of the pirate video with the master content is very much essential,

for a number of applications such as estimation of geometric distortions, detection of

forensic watermarks and approximation of the pirate location in a movie theater.

2.2.2 State-of-the-art schemes and their shortcomings

The research of pirate video registration is a brand new and the early research con-

centrates on visual features for perfectly registering the pirate video frames with the

master sequence. For instance, Delannay et al. (2003) presented a temporal reg-

istration technique using key frames to compute frame alignments of watermarked

documents, in which frame rates are assumed constant. However, in case of high

motion activity, this scheme extracts different sets of key frames from the pirate and

master video sequences.

Cheng (2003) proposed an algorithm for temporally matching two video contents

using dynamic programming. Though, this method scores good registration results;

yet it is severely altered by distortions such as noise addition. Cheng and Isnardi

(2003) developed a spatial, temporal and histogram registration scheme by including

contextual costs, which can be applied to detect forensic watermark information. In

2004, Cheng reviewed and compared three different video registration algorithms,

which detect forensic watermarks in digital cinema applications.

Chupeau et al. (2006) exploited color histograms to map two video sequences

using dynamic programming. This scheme achieves poor results for region-based

transformations, because of the global descriptive nature of color histograms. In

2007, Chupeau et al. presented a registration scheme for estimating the distortion

model and compensating geometric distortions in video copies. This method attempts

to match the pirate video frames with the master sequence as a prerequisite for re-

covering the embedded watermarks. Chen et al. (2008) utilized temporal ordinal

measurements for matching two video contents. Although this method achieves pre-

cise temporal localization; still, it is much affected by picture-in-picture and cropping

transformations. Baudry et al. (2009) employed both the local and global descriptors
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for aligning two video sequences. However, this method provides poor registration re-

sults for low motion frames and complex transformations such as letter-box insertions

and subtitles.

Lee et al. (2009) presented a video frame matching scheme using dynamic pro-

gramming, which considerably decreases the probability of matching errors by incor-

porating an effective matching cost function. However, this frame matching scheme

addresses only a few types of video attacks such as frame insertions, shuffle, removal

and compression attacks. Recently, Baudry et al. (2010) designed a temporal reg-

istration technique for video copies, in which wavelet coefficients are hierarchically

encoded in order to get video fingerprints. Though, this registration technique guar-

antees accurate alignments, the encoding of wavelet coefficients is expensive in terms

of CPU and memory.

To summarize, existing pirate video registration techniques employ only visual

features of videos for achieving accurate frame-to-frame alignments of the pirate and

master video sequences (Delannay et al. 2003; Cheng 2003; Cheng and Isnardi 2003;

Chupeau et al. 2006; Chupeau et al. 2007; Chen and Stentiford 2008; Baudry et al.

2009; Lee et al. 2009; Baudry et al. 2010). Although, audio content constitutes an

important information source of a video; yet, no attempts are made to exploit acoustic

features for obtaining the accurate frame alignments of the master and duplicate

video contents. Further, from the video-piracy point of view, in most of the illegal

camcorder captures, the audio content is less affected compared to its counterpart (i.e.

visual data)(Saracoğlu et al. 2009). Due to the above reasons, if the visual and audio

fingerprints are jointly exploited for the registration task, then the accuracy could be

considerably enhanced. Therefore, promising frameworks for pirate video registration,

which exploit visual and acoustic features in a unified framework are needed.

From another perspective, most of the current video copy registration schemes

are concentrating on the alignment of watermarked documents (Delannay et al. 2003;

Cheng 2003; Cheng and Isnardi 2003; Chupeau et al. 2006); while very few efforts

are made to address the alignment of non-watermarked video sequences. However, it

is to be noted that, all master/copyrighted contents are not watermarked (Lefèbvre

et al. 2009). Therefore, novel video copy registration frameworks, which could com-

pute accurate frame-to-frame alignments of the pirate video with the master sequence,

irrespective of presence/absence of forensic watermarks are required.

This thesis attempts to address the shortcomings of the existing registration

schemes, by introducing different spatial as well as temporal alignment frameworks,

which exploit content-based multimodal features. More precisely, the proposed frame-

works, locate a given pirate clip within the master content and compute the accurate
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frame alignments of two video sequences, even in the absence of forensic watermarks.

Thus, the scholarly contributions of this thesis towards the pirate video registration

problem are described in Chapter 4.

2.3 Geometric Distortions Estimation

2.3.1 Estimating geometric distortions in video copies

Due to the exponential growth of multimedia technologies and online streaming ac-

tivities, numerous illegal videos are proliferating on the Internet and causing digital

video piracy. Therefore, rigorous countermeasures and forensic activities are needed

to control Internet piracy as well as camcorder piracy. Further, it is observed that,

in most of the illegal camcorder captures, the capturing axis is not perpendicular

to the screen, which results in distorted images. Because of this reason, significant

frame misalignments exist between the pirate and master video sequences, where the

misalignments might be temporal, geometric or combination of both. Therefore, esti-

mation of geometric distortion model between the pirate and master video contents is

a prerequisite step, for approximating the illegal capture location in a movie theater.

2.3.2 Geometric distortions and 2-D homography

As mentioned above, in illegal camcorder captures, the captured images are coupled

with severe geometric distortions. The resultant geometric distortions can be well

described by perspective projection, which models the imaging process of a pinhole

camera. Strictly speaking, a projective transformation or a homography is an invert-

ible mapping of points and lines on the projective plane P2, which is defined as follows

(Hartley and Ziserman 2004):

A mapping h : P2 −→ P2 is a projectivity if and only if there exists a non-singular

3×3 matrix H such that for any point in P2 represented by a vector x, it is true that

h(x) = Hx.

Precisely, the projective transformation deals with 2D to 2D transformations.

Perspective projection indicates the projection of 3D points in space to 2D points in

the image plane. More specifically, perspective projection occurs, when a camera takes

the image of world and displays the result on the its image plane. A planar projective

transformation is a linear transformation on homogeneous 3-vectors represented by a
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non-singular 3×3 matrix as (Hartley and Ziserman 2004),

x′1 = Hx1, where H =

 h11 h12 h13

h21 h22 h23

h31 h32 h33

 (2.1)

Here H is a homogeneous matrix; hence, only the ratio of matrix elements is signifi-

cant in the homogeneous form of representation. There are eight independent ratios

amongst the nine elements of H; thus, a projective transformation has eight degrees

of freedom (DoF). In this way, four 2D to 2D point correspondences derived from

the source and pirate video frames are required in order to estimate the 8-parameter

homographic matrix H, which represents the distortion model between the two videos.

2.3.3 Related work and research challenges

In the literature, there exist only a very few papers, which focus on estimation of

geometric distortions in illegal video contents. For example, Delannay et al. (2001)

presented a framework for estimating and compensating the geometric distortions

in pirated contents, which occur due to handy cam attacks. The authors employed

displacement vectors to estimate the distortions and utilized 12-parameters bilinear

transformation model for compensating the distortions. Though, this method is useful

in digital cinema applications; yet, it is specifically designed to estimate the distortions

in watermarked documents. Furthermore, the performance of this method is more

sensitive to the underlying watermark embedding algorithm.

Chupeau et al. (2007) introduced a technique for estimating and compensating

the geometric distortions in video copies. In this scheme, first the master and du-

plicate video contents are temporally mapped by utilizing a visual descriptor based

on luminance values. After this step, from the temporally registered frames, the pro-

jective matrix is estimated and distortion compensations are performed in order to

recover the embedded watermark information.

To summarize, existing works on estimation of geometric distortions in video

copies are employing only visual signatures of the video sequences (Delannay et al.

2001; Chupeau et al. 2007). However, as described earlier in Section 2.2.2, audio con-

tent is a powerful source of any video, which remains less affected compared to visual

data in illegal captures. In addition, if audio data is available, then the combined

utilization of visual-acoustic fingerprints for estimating distortions, would possibly en-

hance the estimation accuracy. Therefore, promising approaches utilizing multimodal

fingerprints are required for estimating geometric distortions in video copies.
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From another perspective, current distortion estimation approaches are concen-

trating towards estimating the geometric distortions in watermarked video contents

(Delannay et al. 2001; Chupeau et al. 2007). However, it is well known that, all

copyrighted/master contents are not watermarked (Lefèbvre et al. 2009). Therefore,

robust frameworks employing visual-audio features for the estimation of geometric dis-

tortions in illegal videos are needed, which are useful for both the watermarked as well

as non-watermarked video contents. This thesis attempts to solve these discrepancies,

by contributing a novel distortion estimation framework, which utilizes content-based

multimodal features. Precisely, the scholarly contribution of this thesis towards the

geometric distortion estimation problem is illustrated in Chapter 5.

2.4 Pirate Position Estimation

2.4.1 Estimating the position of the pirate in a theater

As described in Section 1.1, the exponential growth of on-line publishing activities are

increasing the proliferation of illegal video contents on the Internet at an impressive

rate, which leads to video piracy. Further, 90% of the pirated versions of movies

are created by illegal camcorder captures in theaters. Hence, camcorder piracy is

emerging as a serious issue for the entertainment industry from the past few years,

which needs to be solved.

Recently, digital cinema system is introduced to uniformly project and distribute

motion pictures and also to protect digital cinema. Strictly speaking, Digital Cinema

Initiatives (DCI)1 is the entity, that is created to establish the technical specifications

and requirements for mastering, distributing as well as theatrical playback of digital

cinema content. DCI defines a forensic watermarking system for copyright protection

and also specifies that, the payload of the forensic watermark should contain time

stamp and the theater information of movie playback. Thus, the forensic watermark

helps to detect and warn the designated theater against camcorder piracy. However,

as per the requirements for protecting digital cinema, detecting the theater and time

stamp information is not sufficient, it is necessary to identify the pirate so that the

number of piracy suspects is restricted.

On the other hand, as explained in Section 1.4, followed by video copy detection,

tracking and distortions estimation, the resultant (i.e. precomputed) video finger-

prints could also be exploited for estimating the position of the movie pirate in a

1Digital Cinema System Specification Version 1.2. Digital Cinema Initiatives, LLC, 2008. [On-
line]. Available: http://www.dcimovies.com/DCIDigitalCinemaSystemSpecv1_2.pdf.
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theater. More precisely, in order to emphasize the capability of video fingerprints

towards pirate location estimation problem, In-theater experiments are evaluated as

a Case study in this research work. Therefore, addressing movie piracy by means of

identifying the exact pirate and bringing him/her to justice, surely falls beyond the

scope of this thesis. Further, it is certainly possible to estimate the pirate location

in a movie theater, by performing exhaustive investigation of the theater projective

geometry and the geometric distortion model between the two video sequences. In

order to prove this viewpoint, a Case-study is conducted in this research work towards

the pirate position estimation problem, with the following assumptions:

◦ Since the ability of precomputed video fingerprints towards the pirate location

estimation problem is to be validated, the position approximation is imple-

mented by utilizing content-based feature descriptors/key points; though, it

might be slightly complicated.

◦ Although position estimation problem is extremely well studied in computer

vision literature; yet, this thesis focuses specifically on In-theater location ap-

proximations with the help of Perspective projection.

Based on these assumptions, only relevant existing literature is discussed in the

subsequent section as given below.

2.4.2 Existing frameworks and their limitations

The research of pirate position estimation is quite challenging, hence only very few

attempts are made to approximate the illegal capture location in a movie theater.

Chupeau et al. (2008) presented a forensic tracking framework using visual signatures

to determine the camcorder viewing axis and derived the approximate position of the

pirate in a theater. This framework estimates the capture location using the control

points derived from the temporally aligned source and pirate video frames. However,

this scheme employs only visual signatures for aligning the two video contents and

estimating the homographic distortion model.

Nakashima et al. (2009) proposed a position estimation system, which embeds

audio watermarking signal into the movie soundtrack and utilizes detection strength

for deriving the position of the pirate in a theater. Still, the estimation accuracy

of their system mainly depends on the interior construction of the theater such as

location or number of loudspeakers and microphones. Further, the performance of

their approach may severely affected by the environmental factors such as background

noise and frequency response of the auditorium. Furthermore, their position estima-
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tion framework is less robust against attacks such as pitch shifting, lossy compression

and collusion, which may decrease the detection strength of the system.

Recently, Lee et al. (2010) presented a framework for estimating the position of the

pirate using a video watermarking scheme based on local-auto correlation function

(LACF). The authors employed corner points of the video frames and estimated

the projective transformation using LACF, from which the position of the pirate is

estimated. However, the watermark embedding process of this framework needs to

be done in real-time and the embedded watermark must survive to camcorder piracy.

To summarize, existing pirate position estimation frameworks are employing only

watermarking techniques for approximating the location of pirate in a movie theater

(Nakashima et al. 2009; Lee et al. 2010). However, watermarking techniques suffer

due to these drawbacks:

a) Fragile in nature.

b) Insertion/extraction of watermarks involve complicated procedures.

c) Embedding and decoding of watermarks may damage the video content.

In addition, current position estimation schemes are using only visual features of

videos for approximating the illegal capture location in a theater (Chupeau et al.

2008). However, if both the visual-acoustic fingerprints are jointly employed, then

the position estimation accuracy might be enhanced. Therefore, promising forensic

tracking schemes utilizing content-based multimodal features are needed, which can

estimate the pirate position in a movie theater.

This thesis attempts to solve the issues of existing position estimation techniques,

by presenting a forensic tracking scheme, which employs content-based multimodal

features. The scholarly contribution of this thesis towards the pirate position estima-

tion problem is discussed in Chapter 6.

2.5 Outcome of Literature Survey

Generally, a video comprises a collection of multimodal features such as visual, audio,

motion activity and textual information. In CBCD literature, numerous state-of-the-

art techniques are primarily focusing on the visual features of the video contents.

However, exploiting audio fingerprints for detecting video copies is essential due to

the following reasons:

(a) The audio content constitutes an indispensable information source of a video.

(b) In case of illegal camcorder captures, the audio content is less altered compared

to visual data.
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Therefore, promising methods employing visual and acoustic features for detecting

video copies are required, which can significantly enhance the detection accuracy of

a CBCD system.

Most studies on pirate video registration and distortion model estimation utilize

only visual features of the video sequences, while not much efforts are made to employ

acoustic features. Further, existing schemes are focusing on the alignment of water-

marked documents, while limited efforts are made towards non-watermarked video

contents, even though all copyrighted contents are not watermarked. Therefore, ro-

bust frameworks employing visual-acoustic fingerprints are needed for aligning the

pirate video with the master content and estimating geometric distortions in video

copies, which can be used irrespective of presence/absence of forensic watermarks.

State-of-the-art forensic tracking frameworks employ watermarking techniques to

estimate the position of the pirate in a theater. However, watermarks are fragile

in nature and may destroy the video content. Therefore, promising forensic track-

ing frameworks utilizing content-based multimodal features are required, which can

estimate the location of the pirate in a movie theater.

2.6 Problem Statement

Based on the outcome of the literature survey, this research study attempts to solve

the mentioned issues, by contributing novel and efficient techniques. Precisely, the

problem statement of this research study is defined as follows, To develop effective and

efficient frameworks for detecting, tracking video copies and also for estimating the

geometric distortions as well as the illegal capture location in a theater, and thereby

restrict video piracy. More specifically, the objectives of the current research study

are illustrated as follows.

2.7 Research Objectives

(a) To develop efficient CBCD methods, by employing compact video fingerprints

or feature descriptors for detecting the duplicate video sequences.

(b) To design new spatio-temporal video copy registration frameworks in order to

guarantee the accurate frame alignments of the copied clip with the master

video sequence.

(c) To present robust distortion estimation techniques, in order to compute the

geometric distortions present in the illegal video.
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(d) To propose novel pirate position estimation frameworks, so as to approximate

the illegal capture location in a theater, by performing in-depth analysis of

theater projective geometry and distortion model of the duplicate video.

In this way, designing efficient methods based on (a)-(d) objectives, to restrict

digital video piracy as well as camcorder piracy is the primary goal of this thesis. To

accomplish these objectives, the research framework comprising four different method-

ologies is implemented, as specified in Section 1.4. More precisely, various modules

of the current research framework, followed by the contributions with respect to each

of the modules are clearly illustrated in the subsequent chapters.

2.8 Experimental Datasets

Initially, a set of video sequences collected from Open Video Project2 are employed

in this research study, to evaluate the proposed copy detection methods. Since, Open

Video Project datasets are readily available and also popularly utilized in the copy

detection problem domain (Chiu et al. 2010; Chiu et al. 2008), they are exploited for

implementing the CBCD task.

Followed by the satisfactory performance of the proposed CBCD techniques on

Open Video Project datasets, TRECVID3 datasets are also utilized in this research

study, because of the widespread usage of the latter datasets. Specifically, TRECVID

2007, 2008, 2009 Sound and Vision datasets are obtained and utilized for the copy

detection as well as registration experiments. Though TRECVID Sound and Vi-

sion datasets are extensively popular in the CBCD literature (Chiu and Wang 2010;

Küçüktunç et al. 2010; Wei et al. 2011), only subsets of TRECVID database videos

are employed for duplicate video detection and registration experiments, due to the

following reasons:

◦ TRECVID database size is huge; hence, exploiting the complete database (all

2007, 2008 and 2009 datasets) is quite challenging in terms of size constraints.

◦ Further, using a subgroup of TRECVID database videos, that is, either 2007 or

2008 or 2009 datasets, is common in the CBCD literature. For instance, Wei et

al. (2011) employed 200 hours of TRECVID 2008 dataset for detecting illegal

video clips.

2http://www.open-video.org
3TRECVID 2010 Guidelines [Online]. Available: http://www.nlpir.nist.gov/projects/

tv2010/tv2010.html.
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◦ Furthermore, combining two or more category of TRECVID database videos

for the copy detection task, is also popular in the CBCD domain. For exam-

ple, Küçüktunç et al. (2010) utilized 100 hours of TRECVID 2007 sound &

vision data, plus another 100 hours of TRECVID 2008 sound & vision data for

implementing their video copy detection task.

Based on these factors, this thesis utilizes different groups of TRECVID database

videos for implementing the proposed video copy detection and tracking frameworks.

Further, this research work also employs popular CC WEB VIDEO datasets for

video copy registration experiments. Specifically, CC WEB VIDEO collection in-

cludes 24 top favorite videos collected from YouTube, Google Video and Yahoo! Video

followed by the duplicate and near-duplicate video clips of the corresponding master

video sequences.

Furthermore, in order to assess the performance of the proposed frameworks

against camcorder captured videos, the present research work also utilizes a set of

real data comprising camcorded copies of master video sequences. The experimental

setup of each of the proposed frameworks in terms of dataset generation is clearly

illustrated in the appropriate sections of the subsequent chapters.

2.9 Summary

This chapter describes the problem domains such as content-based video copy de-

tection (CBCD), video copy registration, distortion computation and pirate position

estimation. Further, this chapter also illustrates the existing literature and their cor-

responding limitations with respect to these four problem areas. Specifically, this

chapter also summarizes the some of the prominent state-of-the art techniques of

CBCD and pirate video registration domains along with their drawbacks in Tables

2.1-2.3 as follows:
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Table 2.1: State-of-the-art CBCD techniques

Author/Authors Method description Limitations

Hua et al. 2004; Uses Ordinal Measure using Less sensitive to block-based

Chiu et al. 2008 average intensities of blocks modifications

Hoad and Zobel 2006 Color-shift and Centroid- Less effective to

based descriptors B/W contents and pixel

are used luminance degradations

Naphade and Yeo 2000; YUV/RGB/HSV color Highly susceptible to global

Liu et al. 2007; space and histogram and local color variations

Chiu et al. 2010 distributions are exploited

Xu et al. 2009 Uses DCT coefficients in Less effective against image

Uchida et al. 2012 the compressed domain cropping attacks

Gupta et al. 2012 Uses nearest neighbor mapping Scores poor for

based on sliding window temporally invariant frames

Roth et al. 2010; Employ SURF (Speeded UP Require multi-dimensional

Zhang et al. 2010 Robust Features)-based index structures

fingerprints of frames for indexing

Ren et al. 2012 Global descriptors Scores poor results

and local features for complicated attacks

of frames is used such as Camcording

Kim and Vasudev 2005 Spatial matching using Achieves low PR

ordinal signatures and rates for combined

temporal matching using and region-based

temporal signatures of video transformations

frames are employed
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Table 2.2: State-of-the-art CBCD techniques (contd..)

Joly et al. 2007 Uses Harris detector High computational

and new probabilistic complexity

similarity search technique

Chiu et al. 2008 Probabilistic framework for Low resistance to

transforming the CBCD task region-based attacks

into a shortest-path problem such as cropping

Küçüktunç et al. 2010 MPEG-7 descriptors, facial Less effective

shot mapping and against complex

activity subsequence matching video transformations

technique are utilized

Sarkar et al. 2010 Color layout descriptors Performs poor for the

and non-metric distance query clip, containing

measure are employed parts of multiple

master sequences

Tasdemir and Cetin 2010 Motion vector magnitudes Fails to describe

of frames are exploited spatio-temporal motion

activity of video sequences

Saracoğlu et al. 2009 Utilizes coarse visual-audio Fails for transformations

fingerprints such as camcording, color

phase modification

and color adjustment

Lei et al. 2012 Invariance of color correlation Less effective against

of RGB components region-based attacks

of frames are employed such as cropping

Jiang et al. 2013 Frame level descriptor Scores poor results for

using relative intensity region-oriented

of frames is used transformations
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Table 2.3: State-of-the-art video copy registration methods

Author/Authors Method description Limitations

Delannay et al. 2003 Temporal registration technique Extracts different sets

using key frames of key frames in case

for watermarked documents high motion activity

Cheng and Isnardi 2003 Spatial, temporal and Severely altered by

histogram registration scheme distortions such as

including contextual costs noise addition

Chupeau et al. 2006 Uses color histograms Achieves poor results

and mapped sequences for region-based

using dynamic programming transformations

Chen and Stentiford 2008 Uses temporal ordinal Much affected by

measurements for mapping picture-in-picture

sequences & cropping transformations

Baudry et al. 2009 Employs both the Provides poor results

local and global for low motion frames

descriptors for matching & complex transformations

Lee et al. 2009 Video frame matching Deals only a few

scheme using dynamic types of video attacks

programming and effective & such as frame insertions

matching cost function shuffle and removal

Baudry et al. 2010 Wavelet coefficients are Encoding of wavelet

hierarchically encoded in coefficients is expensive

to get signatures & in terms of CPU

matching cost function and memory



Chapter 3

Content-Based Video Copy

Detection (CBCD) Schemes

This thesis elaborates the scholarly contributions towards the Content-Based video

Copy Detection problem in this chapter. More precisely, this chapter attempts to solve

some of the challenges of CBCD domain as mentioned in Section 2.1.3, by contributing

different pirate video detection methods. The proposed CBCD techniques employ

video fingerprints derived from features such as audio, visual and motion activity, in

order to detect illegal video sequences, which are illustrated in the subsequent sections

of this chapter.

3.1 Copy Detection Using Color Features

Color is one of the principal visual features of an image; hence, this thesis presents

two CBCD techniques, that employ Dominant Color Descriptor (DCD) of MPEG-7

standard (Manjunath et al. 2002), to facilitate the detection of duplicate videos, as

detailed below.

3.1.1 CBCD scheme based on dominant color features

Dominant Color Descriptor (DCD)1of MPEG-7 standard effectively describes the

color information in an image, by capturing the dominant or representative colors

of that image. Specifically, DCD compactly represents the color distribution present

in an image, with a small number of dominant colors and their relative distribution.

1ISO/IEC/JTC1/SC29/WG11 MPEG 2001/N4358, Text of ISO/IEC 15938-3/FDIS Information
technology - Multimedia content description interface - Part 3 Visual, Sydney, Australia, July 2001

35
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More precisely, MPEG-7 standard defines DCD as,

DCD = {{ci, pi}, vi, s}, i ∈ [1 : m] (3.1)

Here, ci represents 3D color vector, while pi indicates the percentage of distribution

of each dominant color so that
∑
pi = 1 and m represents the total dominant colors

of an image (Deng et al. 2001). Two optional fields, spatial coherency s and color

variance vi, precisely characterize the color distribution in spatial and color space do-

mains respectively (Manjunath et al. 2002). Specifically, spatial coherency describes

the spatial distribution of pixels associated with each representative color. Color

variance explains the variation of color values of the pixels in the surroundings of a

corresponding representative color.

In the past literature, most of the works utilize color clustering algorithms such

as Generalized Lloyd Algorithm (GLA)(Lloyd 1982) to extract DCDs from an image

(Yang et al. 2008; Deng et al. 2001). However, GLA suffers due to the following limi-

tations: (a) It is computationally intensive; (b) Its efficiency mainly depends upon the

initial specifications such as number of clusters, distance and centroid. From another

perspective, a major demanding issue in CBCD systems is, the computational cost

of fingerprint extraction and similarity matching tasks, because huge video databases

need to be processed. In order to address these issues, new copy detection frameworks

using compact video fingerprints need to be explored, which result in less computa-

tional cost. Based on this aspect, this thesis first proposes a novel CBCD technique,

which utilizes compact fingerprints derived from DCDs for the copy detection task

with less computational cost. More precisely, the main contributions of the proposed

video copy detection method are given by,

◦ A novel DCDs extraction technique, which is simple and compact, compared to

the existing techniques.

◦ An adaptive video signature pruning method, which considerably reduces the

total number of visual signatures of the given video.

The framework of the proposed copy detection scheme including video fingerprints

extraction and similarity matching is described as follows.

Proposed CBCD framework based on dominant color features

Figure 3.1 describes the framework of the proposed scheme, in which dominant color

descriptors derived from the master and query video frames are employed for execut-

ing the copy detection task. Precisely, in the proposed CBCD scheme, the frequency
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imaging method introduced by Kashiwagi and Oe (2007) is extended, in order to

extract DCDs of images in an easy and compact manner.

 
Model Video Query Video 

                                                                

Frequency Image 

 

 

 
Frequency Image 

                                                     

  
Feature Descriptors Feature Descriptors 

   

 

   

         Report a Copy 

 

Representative 
Dominant Colors 

Similarity   
Matching Fingerprint

Database

DCD DCD DCD DCD 
DCDDCD

Figure 3.1: Proposed CBCD framework based on dominant color features

Precisely, Frequency Image is a feature image,in which each pixel indicates the

frequency of the same color pixels. More precisely, in the proposed CBCD framework,

first key frames are obtained from the model video using uniform sampling method.

Then, for each key frame, frequency images representing the distribution of same

feature pixels is calculated. After this step, an adaptive pruning strategy is applied

in order to get the final set of dominant color descriptors of a video sequence and the

resultant DCDs of master videos are stored in the fingerprint database. Whenever

user presents a query video, frequency images are generated and DCDs are extracted

in the similar manner from the query video frames. Then, the fingerprints of the

query video are compared with the respective master video feature sequences and

consequently, the copy detection results are reported.

Video fingerprints extraction

In the proposed copy detection framework, using uniform sampling at the rate of

10frames/sec (fps), key frames are obtained from the master and the copied video
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contents. Without the loss of generality, the proposed scheme employs RGB color

space and Look-up tables (LUTs) for computing DCDs. Precisely, R,G and B col-

ors are considered as three features of an image and every pixel is replaced by the

frequency value of same feature pixels. The resultant pixel frequencies of an im-

age is collectively called as Frequency/Feature Image, which is further processed for

calculating the dominant colors and their distribution percentages in the given image.

Though, color histograms are widely popular in the literature, the Frequency

Images differ from color histograms, in the following aspects:

? Frequency Images are more informative than the color histograms, since they

explicitly indicate frequency of every pixel in an image.

? For a given color image, multi-dimensional histograms are needed to specify

the complete color distribution; whereas 1-dimensional Frequency Images are

sufficient to describe the color distribution of that image.

Due to these reasons, Frequency Images are employed in the proposed CBCD frame-

work to extract DCDs of an image.

On the other hand, it is observed that, Consecutive images in a video sequence

may have very similar color statistics (Roytman and Gotsman 1995). Based on this

aspect, a new video signature pruning method is introduced, by exploiting the color

similarity existing in the temporal domain, in order to efficiently describe the color

content of the given video. Specifically, the proposed signature pruning method con-

siderably reduces the total number of DCDs of the given video sequence, by exploiting

the temporal color statistics. To validate this statement, two sets of experiments are

conducted for extracting DCDs-based fingerprints. In the first method, (called as

Baseline method), the DCDs extracted from the Frequency Images are considered as

fingerprints of the corresponding video sequences. In the second method ( named as

Pruning based adaptive method), the DCD of each frame is compared with that of

the previous frame, and if the similarity between the DCDs exceeds the threshold,

then the latter DCD is considered as a new representative color of the given video se-

quence. Experiments are conducted for different threshold values ranging from 25-46

and based on the results the threshold value is set as 35.

Table 3.1 shows the details of the extracted feature descriptors, using both the

Baseline as well as Pruning based adaptive methods for 1, 3 and 5 minutes videos re-

spectively. Results from Table 3.1 shows that, the Pruning based adaptive extraction

method reduces the total number of feature descriptors by 58%, 31% and 29% for

1, 3 and 5 minutes videos respectively. In this way, Pruning based adaptive method

substantially decreases the total fingerprints of the video sequence, when compared to
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Table 3.1: Comparison of total number of extracted feature descriptors

S.No Duration Total no.of feature descriptors Reduction (in %)

(in minutes) Baseline method Pruning based

adaptive method

1 1 247 144 58

2 3 1150 352 31

3 5 1445 407 29

the Baseline technique. Further, as mentioned Section 1.3, a main challenging prob-

lem in most of the CBCD systems, is the computational cost of signatures extraction

and similarity matching activities. Since, Pruning based adaptive scheme noticeably

reduces the total fingerprints of a given video and thereby also decreases the similarity

matching cost. Due to these reasons, the Pruning based adaptive DCDs extraction

method is employed in the proposed framework to implement the copy detection task.

Fingerprint matching

While extracting DCDs of images, it is observed that, single dominant color is nec-

essary for an image. However, each image can be effectively represented using 3

to 5 dominant colors. Since the number of representative colors is less, the feature

descriptors are indexed based upon their dominant color values. Therefore, finger-

print matching of the proposed framework includes searching the database for similar

color distributions same as the input query, which involves searching for each of the

dominant colors separately. If F1 and F2 are two dominant color descriptors such

that,

F1 = {{ci, pi}, i = 1, 2, .., N1}, (3.2)

F2 = {{bj, qj}, j = 1, 2, .., N2}, (3.3)

where ci, bj are the dominant color vectors and pi, qj are their distribution percentages

respectively. Here, N1 and N2 represent the total dominant colors. Then the distance

Dist between two DCDs (F1 and F2) can be computed as follows (Manjunath et al.

2002),

Dist (F1, F2) =

N1∑
i=1

p2
i +

N2∑
j=1

q2
j −

N1∑
i=1

N2∑
j=1

2ai,j pi qj (3.4)
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where ai,j is the similarity coefficient between the color vectors ci and bj, which is

calculated as,

ai,j =

1− di,j
dm

if di,j ≤ Td

0 if di,j > Td
(3.5)

where di,j is the Euclidean distance between two colors ci and bj. The threshold Td

is the maximum distance used to judge whether two color features are similar or not.

The distance dm = α × Td ,where α is set as 1.2 as specified in (Deng et al. 2001).

Different Td values ranging from 20 to 45 are experimented and based on the results,

Td is set as 25 in the proposed copy detection framework.

3.1.2 CBCD using integrated dominant color features

In general, two images may have similar dominant colors, but the spatial distribution

of same color pixels in the two images may not be same always. Therefore, if the

dominant color features are exploited along with their spatial correlation information,

then the performance of the copy detection systems can be improved. Based on this

aspect, this thesis contributes an another copy detection technique, by enhancing

the previous CBCD scheme described in Section 3.1.1, which integrates the spatial

coherency factor along with the dominant color features for the copy detection task.

Since spatial coherency uniquely characterizes the color distribution in the spatial

domain, the integration of spatial coherency value with the dominant color features

improves the CBCD system performance. The proposed CBCD framework including

video signatures extraction and matching is illustrated as follows.

Proposed CBCD framework using integrated color features

Figure 3.2 shows the schematic diagram of the proposed duplicate video detection

framework, in which first uniform frame sampling technique is used to extract the

key frames from the master video contents. Then, Frequency Images are generated

as described in Section 3.1.1 and consequently dominant color descriptors of frames

are calculated. In addition to dominant colors and their percentage of distribution,

spatial coherency values are also exploited to generate the video fingerprints. Then

the resultant fingerprints are stored in the fingerprint database of the video sequences.

Whenever user uploads a query video, the dominant color descriptors are extracted

from the query video frames and the respective video signatures are generated. Fi-

nally, the video fingerprints of the query and master video sequences are compared,

in order to obtain the copy detection results.
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Figure 3.2: Proposed CBCD framework using integrated color features

Video signatures generation

In this method, key frames are extracted using uniform sampling technique with the

frame rate of 10fps. Then RGB color space is employed to compute the Frequency

Images and consequently dominant colors and their respective distribution values

are calculated, as described in Section 3.1.1. The spatial correlation between the

dominant colors of an image is computed as follows: First, a video frame is divided

into 2×2 blocks; Second, for each block, the maximum distance between two dominant

color pixels is computed; Third, the resultant distance is normalized into 1-5 values

and considered as spatial coherency factor of the given frame.

Similarity matching

In the proposed copy detection scheme, the video signatures of the master and query

video sequences are compared by exploiting the dominant color descriptors as follows.

Let R1 and R2 be two dominant color descriptors such that,

R1 = {{ci, pi}, i = 1, 2, .., N1}, (3.6)

R2 = {{bj, qj}, j = 1, 2, .., N2}, (3.7)

Then the distance Dist between the dominant color features R1 and R2 is computed,

as specified in Equations (3.4), (3.5). Here, spatial coherency values of dominant

colors are also employed for the copy detection task. Therefore, the dissimilarity
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DisDC between the two descriptors R1 and R2 is computed as follows,

DisDC = wa |sm − sq| Dist (R1, R2) + wb Dist (R1, R2) (3.8)

where sm and sq represent the spatial coherency values of master and query video

frames respectively. Here, wa and wb are fixed weights, which are set to 0.3 and 0.7

respectively, as specified in (Cieplinski 2001).

3.1.3 Experimental setup

To evaluate the performance of the proposed CBCD techniques (described in Sections

3.1.1 and 3.1.2), two sets of experiments are conducted and the results are indicated

in terms of detection accuracy and efficiency. In order to facilitate the discussion of

experimental results, hereafter the two proposed CBCD methods are denoted as,

CBCD scheme1: The proposed CBCD method employing only dominant colors

and their percentage of distribution values.

CBCD scheme2: The proposed CBCD technique exploiting dominant colors and

their distribution percentages along with the spatial coherency values.

As mentioned in Section 2.8, in order to evaluate the proposed CBCD schemes,

different video sequences collected from Open Video Project dataset are employed in

this research study. More precisely, a video database containing 101 video sequences

of Open Video Project dataset is utilized for the copy detection task. The video

database contains approximately 305297 frames and the video content includes news,

documentaries, education, movies, natural scenes and landscapes. From the video

database, 15 videos ranging from 5 to 8 seconds are randomly selected and eight

different transformations given by, 1) Blurring, 2) Zooming-in, 3) Zooming-out, 4)

Contrast Change, 5) Rotation, 6) Random Noise Addition, 7) Image Ratio and 8)

Resolution Change are applied to generate query clips. The resultant 120 (15×8)

video copies constitute the query dataset of the proposed copy detection frameworks.

Evaluation metrics

To measure the detection accuracy of the proposed CBCD schemes, standard Preci-

sion (P) and Recall (R) metrics are employed, which are given by,

Precision = TP/(TP + FP ), (3.9)

Recall = TP/(TP + FN), (3.10)
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where, True Positives (TP) are positive examples, which are correctly labeled as

positives and False Positives (FP) indicate to negative examples incorrectly labeled

as positives. False Negatives (FN) represent to positive examples incorrectly labeled

as negatives. A detection result is considered as correct, if there is any overlap with

the region from which the query is extracted.

Detection accuracy of CBCD scheme1

Table 3.2 shows the detection results of the reference and proposed methods for

different video transformations such as blurring, zooming in, zooming out and contrast

change. Specifically, in Table 3.2, Recall and Precision rates of the proposed CBCD

scheme1 is compared with the corresponding PR rates of Algorithm (1), in which

the PR rates fall within the correct intervals. Algorithm (1) is proposed by Cho et

al. (2009), in which Ordinal measure is utilized for identifying the duplicate video

contents. Table 3.2 results prove that, the proposed CBCD scheme1 achieves better

Table 3.2: PR rates of CBCD scheme1 (at correct intervals)

Transforms Blurring Zoom-in Zoom-out Contrast
R P R P R P R P

Algorithm (1) 0.2 0.3 0.2 0.45 0.2 0.42 0.2 0.51
0.4 0.65 0.4 0.5 0.4 0.71 0.4 0.64
0.6 0.74 0.6 0.62 0.6 0.78 0.6 0.71
0.8 0.78 0.8 0.65 0.8 0.86 0.8 0.65
1.0 0.85 1.0 0.70 1.0 0.68 1.0 0.67

Proposed 0.2 0.48 0.2 0.81 0.2 0.73 0.2 0.74
method 0.4 0.75 0.4 0.73 0.4 0.78 0.4 0.69

0.6 0.85 0.6 0.76 0.6 0.85 0.6 0.79
0.8 0.79 0.8 0.69 0.8 0.89 0.8 0.74
1.0 0.88 1.0 0.85 1.0 0.71 1.0 0.70

precision rates compared to Algorithm (1) for the given recall values. Precisely, for

recall values 0.4 and above, the proposed CBCD scheme1 scores good precision rates,

which vary between 0.69-0.89; whereas the precision rates of the reference method fall

between 0.4-0.86. In this way, Table 3.2 results prove the better detection accuracy

of the proposed CBCD scheme1 compared to the reference method.

Further, the PR rates of the proposed and the reference methods, which fall

between error intervals are indicated in Table 3.3. The results given in Table 3.3

demonstrate that, the proposed CBCD scheme1 provides better detection accuracy
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Table 3.3: PR rates of CBCD scheme1 (at error intervals)

Transforms Blurring Zoom-in Zoom-out Contrast
R P R P R P R P

Algorithm (1) 0.12 0.09 0.14 0.07 0.21 0.10 0.17 0.05
0.35 0.23 0.30 0.21 0.36 0.20 0.29 0.19
0.57 0.38 0.62 0.47 0.54 0.38 0.45 0.32
0.74 0.59 0.84 0.59 0.79 0.52 0.72 0.59

Proposed 0.18 0.10 0.12 0.10 0.19 0.13 0.19 0.11
method 0.32 0.27 0.38 0.23 0.28 0.20 0.32 0.20

0.64 0.54 0.67 0.52 0.46 0.35 0.56 0.39
0.83 0.72 0.89 0.76 0.83 0.69 0.84 0.68

compared to the detection rates of the reference method, although the PR results are

falling between irregular intervals.

Table 3.4 indicates the detection results of the reference and proposed methods

for various video attacks such as rotation, image ratio, noise addition and resolution

change. Specifically, in Table 3.4, Recall and Precision rates of the proposed CBCD

scheme1 is compared with the respective PR rates of Algorithm (1), in which the

PR results fall within the correct intervals. Table 3.4 results demonstrates that, the

Table 3.4: PR rates CBCD scheme1 (at correct intervals)

Transforms Rotation Image ratio Noise Resolution
R P R P R P R P

Algorithm (1) 0.2 0.45 0.2 0.55 0.2 0.33 0.2 0.55
0.4 0.6 0.4 0.59 0.4 0.49 0.4 0.59
0.6 0.53 0.6 0.63 0.6 0.51 0.6 0.63
0.8 0.64 0.8 0.68 0.8 0.62 0.8 0.68
1.0 0.72 1.0 0.79 1.0 0.79 1.0 0.79

Proposed 0.2 0.64 0.2 0.67 0.2 0.66 0.2 0.67
method 0.4 0.68 0.4 0.68 0.4 0.72 0.4 0.68

0.6 0.75 0.6 0.72 0.6 0.78 0.6 0.72
0.8 0.89 0.8 0.89 0.8 0.89 0.8 0.79
1.0 0.88 1.0 0.89 1.0 0.78 1.0 0.85

proposed CBCD scheme1 achieves better precision rates compared to Algorithm(1)

for the given recall values. In addition, Table 3.5 shows the detection results of

the proposed and the reference methods falling between error intervals. The results

given in Table 3.5 proves that, the proposed CBCD scheme1 provides better PR
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Table 3.5: PR rates of CBCD scheme1 (at error intervals)

Transforms Rotation Image-ratio Noise Resolution
R P R P R P R P

Algorithm (1) 0.14 0.08 0.11 0.9 0.12 0.04 0.17 0.12
0.39 0.20 0.29 0.14 0.28 0.12 0.32 0.19
0.53 0.39 0.48 0.29 0.45 0.24 0.53 0.24
0.70 0.55 0.69 0.46 0.68 0.38 0.75 0.48

Proposed 0.17 0.11 0.19 0.12 0.17 0.10 0.19 0.13
method 0.35 0.28 0.33 0.27 0.32 0.23 0.38 0.23

0.68 0.43 0.72 0.56 0.54 0.37 0.62 0.49
0.89 0.66 0.85 0.69 0.84 0.62 0.86 0.63

rates compared to that of the reference method, though the precision as well as recall

measurements are not coming under correct intervals.

Detection efficiency of CBCD scheme1

To evaluate the efficiency, computational cost involving the detection of a single du-

plicate video is considered. Precisely, the detection efficiency of the proposed CBCD

scheme1 is evaluated by comparing its computational cost with that of Kim and

Nam’s method (2009). Kim and Nam employed luminance of frames as feature de-

scriptors for their CBCD task. The experiments are conducted on a standard PC

with 3.2 GHz CPU and 2 GB RAM. Table 3.6 gives the computational cost details

of both the proposed and reference methods. The results from Table 3.6 show that,

the proposed CBCD scheme1 is more efficient compared to Kim and Nam’s method,

since it reduces the total computational cost up to 65%.

Table 3.6: Computational cost comparison of CBCD scheme1

Task Kim and Nam’s method (in secs) Proposed scheme1 (in secs)
1 min 3 min 5 min 1 min 3 min 5 min

Fingerprint extraction 16.00 51.00 97.00 13.98 34.84 52.56
Fingerprint matching 6.50 18.70 27.80 0.64 1.14 2.68

Total cost 22.500 69.700 124.800 14.634 35.989 55.250
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Detection accuracy of CBCD scheme2

Table 3.7 compares the precision and recall rates of baseline DCD, proposed DCD

and Cho et al.’s (2009) methods. Precisely, the baseline DCD method denotes the

proposed CBCD scheme1, in which fingerprints are generated using dominant colors

and their distribution values. In Table 3.7, the proposed DCD method denotes CBCD

scheme2, which employs dominant color features and their spatial correlation values.

Cho et al. (2009) employed ordinal measure signatures for detecting video copies.

Table 3.7: Copy detection results of CBCD scheme2

Transforms Baseline DCD (%) Cho’s method (%) Proposed DCD (%)
Precision Recall Precision Recall Precision Recall

Blurring 98.1 83.2 90.1 78.8 100 95.6
Brightness 96.4 81.4 92.3 77.1 100 98.7
Noise addition 90.5 73.3 83.5 65.3 100 92.5
Zooming out 93.7 69.4 84.1 59.2 99.2 84.4
Image ratio 88.6 61.9 66.6 60.8 98.1 79.6
Zooming in 91.3 57.8 59.7 52.4 100 63.7
Image resize 92.4 58.1 73.6 51.9 100 69.3
Rotation 94.4 64.4 69.5 61.5 98.6 78.4

The results from Table 3.7 prove that, the proposed DCD method provides better

precision and recall values. Therefore, the proposed CBCD scheme2 improves the

detection accuracy (up to 24%) compared to the baseline DCD method. The results

also show that, the proposed DCD method provides better detection results and sig-

nificantly increases detection accuracy up to 38.1% compared to Cho et al.’s method.

Detection efficiency of CBCD scheme2

Figure 3.3 compares the computational cost of the proposed CBCD scheme2 with the

reference methods. Specifically, Figure 3.3 shows the computational costs of Kim’s

method (Kim and Nam 2009), baseline DCD and the proposed DCD methods. Here,

the baseline DCD method denotes CBCD scheme1, whereas proposed DCD method

represents CBCD scheme2.

The experiments are conducted on a standard PC with 3.2 GHz CPU and 2 GB

RAM. Though, the computational cost of the proposed DCD method is slightly higher

compared to baseline DCD method (up to 12%); yet it provides improved detection

results. However, the proposed DCD method is more efficient compared to Kim and
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Figure 3.3: Comparison of computational cost

Nam’s method. Precisely, Figure 3.3 results prove that, the proposed DCD method

is 3 times faster than Kim and Nam’s method, since it reduces total computational

cost upto 91%.

3.2 CBCD Scheme Using Motion Activity Features

Motion features contribute important information about a video content. Therefore,

motion-features based video analysis is used in several applications such as video

retrieval, summarization (Divakaran et al. 2001) and characterization (Koprinska and

Carrato 2001). However, as mentioned in Section 1.5., motion features are considered

as poor descriptors in the CBCD literature(Hampapur et al. 2001), since the raw

motion vectors are noisy in nature. Further, the conventional motion features describe

the temporal content of a video clip; yet they fail to describe the overall activity

of a video sequence. To solve these issues, this thesis contributes a novel CBCD

framework, by fusing temporal behavior and spatial distribution of motion activity.

Precisely, the main contributions of the proposed CBCD framework are given by,

◦ Describing the spatial and temporal activity of a video sequence, when compared

to the conventional temporal motion vector approaches.

◦ Combining robust motion activity features such as dominant direction, motion

intensity, and spatial distribution of activity to achieve the copy detection task.

◦ Performing matching using clustering to speed up the similarity mapping task.
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The framework of the proposed CBCD method in terms of features extraction and

signature matching techniques is detailed below.

3.2.1 CBCD framework using motion activity features

The block diagram of the proposed copy detection framework is shown in Figure 3.4,

and the relevant symbols are described in Table 3.8.
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Figure 3.4: Proposed CBCD framework using motion features

Table 3.8: Description of notations used in Figure 3.4

Notation Description Notation Description
N Total videos in the DB VQ Query video file
Vi i-th master video in DB V P r

i r-th fingerprint of i-th video
Vi, such that r={1, 2, 3, ..., k}

A Intensity of activity B Spatial distribution of activity
(No. of active regions)

C Dominant direction of activity D Average MV magnitude

MW j
Q j-th MA word of VQ V P r

Q r-th video fingerprint of VQ
MW j

i j-th MA word of Vi, VN N-th master video in DB
such that j ={1, 2,.. m}

m Number of MA words of Vi k Number of signatures of Vi

The proposed framework consists of two main stages: Master video processing
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stage (off-line) and Query video processing stage (on-line). In the off-line stage, mo-

tion activity based features including intensity of action, spatial distribution, domi-

nant direction of activity and average motion vector magnitudes are extracted from

the master video frames. Then the resultant features are further processed and Mo-

tion Activity (MA) words are computed. MA words integrate raw motion activity

features; hence, they comprehensively indicate the overall activity of the video se-

quences. In order to obtain the compact representation of MA words, the proposed

framework employs widely popular K-means clustering algorithm and consequently

the resultant cluster centroids are stored as the video fingerprints of the corresponding

video sequences.

In the on-line stage, motion activity signatures are derived from the query video

frames and MA words are calculated. The resultant MA words are clustered and

the respective centroids are stored as video fingerprints. After this step, similarity

matching task is performed by employing the clustering technique for detecting the

video copies.

Fingerprint Extraction

In the proposed framework, different attributes of the MPEG-7 motion activity de-

scriptor and average motion vector magnitude of frames are jointly exploited for

implementing the CBCD task. The reasons for this joint exploitation are: First,

average motion vector magnitudes provide better frame-level content of video clips;

Second, entire activity of the video sequence can be effectively characterized, by uti-

lizing different attributes of the motion activity descriptor. The MPEG-7 motion

activity descriptor and motion activity features extraction are illustrated as follows.

MPEG-7 Motion Activity Descriptor: This descriptor captures the intensity

of activity or pace of action in a video segment (Jeannin and Divakaran 2001). For

instance, a high speed car chase denotes a high activity sequence, while an interview

scene represents a low activity sequence. The motion activity descriptor is defined in

terms of the following four attributes as given by,

Motion activity = {I,Dir, Spatial, T emporal} (3.11)

where I indicates intensity of motion activity using an integer value and Dir rep-

resents the dominant direction of activity. Spatial distribution of activity (Spatial)

indicates the number of active regions in a frame and temporal distribution attribute

(Temporal) represents the variation of activity over the duration of a video sequence.
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Motion Intensity (I ): This attribute provides an effective temporal description

of a video shot in terms of different intensity levels (Sun et al. 2001). The statistical

properties of motion vectors such as average and standard deviation, can be used

to calculate the intensity of motion activity. The Average Motion Vector magnitude

(AMV) and Standard deviation of Motion Vector magnitude (SMV) of a frame are

given by,

AMV =
1

MN
×

M∑
i=1

N∑
j=1

mv(i, j) (3.12)

SMV =

√√√√ 1

MN
×

M∑
i=1

N∑
j=1

|mv(i, j)− AMV |2 (3.13)

where mv(i, j) indicates the motion vector of (i, j)-th block and M×N is the frame size

in terms of macro blocks. In the proposed copy detection approach, SMV of macro

blocks is employed to compute the motion intensity. SMV values are quantized into

the range of 1-5 as per MPEG-7 standard (Jeannin and Divakaran 2001), which are

given in Table 3.9.

Table 3.9: Quantization thresholds for MPEG-1 video

Activity value Range of SMV
1 0 ≤ SMV <3.9
2 3.9 ≤ SMV < 10.7
3 10.7 ≤ SMV <17.1
4 17.1 ≤ SMV <32
5 32 ≤ SMV

Spatial Distribution of Activity (Spatial): This attribute represents, whether

the activity is spread across many regions or confined to one region (Savakis et al.

2003). The segmentation of frame into n×n regions has an active role in determining

the exact number of active regions in a given frame. Smaller values of n may leave

important semantic content, while larger values of n increases the computational

complexity.

In order to solve this issue, experiments are conducted for different n values rang-

ing from 2 to 5 and the maximum accuracy is achieved when n=3. Therefore, in the

proposed framework, spatial distribution of motion activity of frames is computed,

by segmenting the frame into 3×3 regions. Algorithm 3.1, calculating the spatial

distribution of activity in a frame is described in Figure 3.5.
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Algorithm 3.1: Computing Spatial Distribution of Activity

1: Calculate Spatial Activity Matrix (SAM) of each frame as given by,

SAM =

{
magmv(i, j) if magmv(i, j) ≥ AMV

0 otherwise
(3.14)

where magmv(i, j) is the magnitude of motion vector of block (i, j).

2: Segment SAM of each frame into non overlapping blocks of size 3×3.

3: Compute the mean motion distribution (MMD) of r-th block of k-th frame as
given by,

MMD(r) =
Sum of SAM values

Size of r
(3.15)

4: Sort the regions of a frame in the ascending order of MMD values.

5: Regions with higher MMD values are considered as active regions of a given
frame.

Figure 3.5: Algorithm to compute the spatial distribution of activity

Dominant Direction of Activity (Dir): Dominant motion directions of a video

clip provide important information about its overall activity. Here, the objective

is not to calculate the accurate direction of motion of all objects, but to compute

the approximate dominant directions for enhancing the robustness of the proposed

CBCD system. Therefore, in the proposed framework, the direction vector (Dir)

represents the dominant direction of activity by computing the total motion in four

major directions, which is formulated as (Benini et al. 2005),

Dir = {Up,Down, Left, Right} (3.16)

Let mvx(k) and mvy(k), be the two components of motion vector of k-th block and

N indicates total number of blocks, then the motion activity in four directions are

calculated as,

Up =
N∑
k=1

(mvy(k)), if mvy ≤ 0 (3.17)

Down =
N∑
k=1

(mvy(k)), if mvy > 0 (3.18)
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Left =
N∑
k=1

(mvx(k)), if mvx > 0 (3.19)

Right =
N∑
k=1

(mvx(k)), if mvx ≤ 0 (3.20)

The largest value of Dir provides dominant direction of motion in a given frame.

Direct processing of resultant raw motion activity features is computationally ex-

pensive. Therefore, motion activity signatures are first normalized and consequently

concatenated into informative MA words. However, the dimension of MA words is

large. Hence, K-means clustering algorithm is used to obtain low dimensional repre-

sentation of MA words.

Fingerprint matching

In the proposed CBCD system, the video signatures of master and duplicate video se-

quences are grouped into clusters. In experiments, the number of clusters for a video

content ranges from 55-213. The cluster centroids of the master and query video

sequences are compared and the similarity scores are evaluated against a confidence

measure. The reference dataset is experimented with different confidence values vary-

ing between 0.50 and 0.75, to reduce the number of false positives. In experiments,

good detection accuracy is obtained, when the confidence value is 0.65 and thus it is

employed in the proposed copy detection task.

If R1 and Q1 are reference and query video clips, fpr and fpq are their correspond-

ing video fingerprints, then the similarity score (S ) between R1 and Q1 is computed

using Manhattan distance metric as given by,

S(R1, Q1) =
m∑
i=1

n∑
j=1

|fpr(i)− fpq(j)| (3.21)

where m and n indicate total video signatures of R1 and Q1 respectively. When the

similarity score exceeds the confidence measure, then the query video is indicated as

a duplicate video.

3.2.2 Reference database and query dataset construction

As described in Section 2.8, followed by the better performance of the proposed

CBCD techniques on Open Video Project datasets, this research study also exploits

TRECVID datasets for evaluating the copy detection task. Specifically, the master

database includes 75 hours of TRECVID 2007 database videos, covering a wide variety
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of contents. If the sampling rates of video sequences are different, then the resultant

motion vectors will also be different. To overcome this problem, the entire video

data is transformed into 10 frames/sec using resampling technique and the resultant

dataset is utilized as the reference database for the proposed CBCD task.

For experimentation purpose, eleven video clips are selected from the reference

database and one video clip is collected from the non-reference database, in order to

generate the query dataset. Precisely, the query data set totally includes twelve video

clips (11+1), while the duration of these clips vary from 15-25 seconds. By applying

ten different Transformations given by, T1) Brightness change, T2) Noise addition,

T3) Blurring, T4) Color change, T5) Pattern insertion, T6) Moving caption insertion,

T7) Slow motion, T8) Fast forward, T9) Cropping and T10) Picture-inside-picture,

to the query dataset totally 120 (12×10) video copies are created, which serve as

the query clips for the proposed CBCD task. Each video copy is used to detect

the corresponding video sequence in the reference database. Figure 3.6 illustrates the

sample frames from the transformed query videos. To measure the detection accuracy,

      
Source 

         
                                         Brightness change            Noise addition                      Blurring                         Color change 

         
                                          Pattern insertion              Moving caption                       Cropping                Pictureinsidepicture 

 

Figure 3.6: Example frames from the transformed query videos

the proposed framework also employs F-measure metric along with Precision and

Recall, which is given by,

F -Measure =
2× Precision×Recall
Precision+Recall

(3.22)

where F-measure represents the robustness and discrimination ability of a system.
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3.2.3 Copy detection results and discussion

Table 3.10 gives the detection results of Ordinal measure (Hua et al. 2004), Tasdemir’s

method (Tasdemir and Cetin 2010) and proposed method for T1-T5 transformations.

The Ordinal measure (Hua et al. 2004) is a popular global descriptor, which is ex-

Table 3.10: Copy detection results (in %) for T1-T5 transformations

Transformations Ordinal Tasdemir’s Proposed
Type Metric Measure (%) Method (%) Method (%)

T1
P 56.93 70.15 82.85
R 50.19 68.09 75.00

F-M 53.34 69.10 78.72

T2
P 41.69 42.17 50.00
R 40.48 41.18 46.15

F-M 41.07 41.66 47.99

T3
P 56.86 55.81 57.14
R 79.14 72.56 92.30

F-M 66.15 63.09 70.58

T4
P 59.26 60.01 63.63
R 67.79 69.27 84.83

F-M 63.23 64.30 72.71

T5
P 79.68 79.82 82.85
R 80.24 79.47 85.29

F-M 79.95 79.64 84.05

tracted as follows: Segments the image into N blocks; Then, sorts the blocks according

to their average intensity level and the ranking order of blocks are treated as Ordinal

signatures. Tasdemir’s method utilizes average motion vector magnitudes of frames

as fingerprints for the copy detection task.

For T3 (Blurring) transformation, Ordinal measure performs well (66.15%) com-

pared to Tasdemir’s method (63.09%), due to its global descriptive properties. How-

ever, the proposed method (70.58%) outperforms Ordinal measure, as it uses spatial

and temporal motion activity features. For T5 (Pattern insertion) transformation,

both Tasdemir’s method and Ordinal measure give very similar results (79.95% &

79.64%), which are less than that of the proposed method (84.05%).

Results from Table 3.10 demonstrate the better detection accuracy of the proposed

method compared to the reference methods. Integration of spatial as well as tem-

poral motion activity features for the copy detection task is the exact reason for the

improved performance of the proposed method (84.05%). Table 3.11 shows the copy

detection results of the proposed and reference methods for T6-T10 transformations

and the results demonstrate that, the proposed method scores better performance
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compared to the reference methods.

Table 3.11: Copy detection results (in %) for T6-T10 transformations

Transformations Ordinal Tasdemir’s Proposed
Type Metric Measure (%) Method (%) Method (%)

T6
P 70.64 74.58 82.50
R 71.15 72.94 84.61

F-M 70.89 73.75 83.54

T7
P 71.35 71.87 75.00
R 59.18 70.35 87.80

F-M 64.69 71.10 80.89

T8
P 60.10 62.71 65.85
R 61.54 69.64 84.37

F-M 66.15 63.09 70.58

T9
P 68.29 65.83 80.00
R 73.58 69.98 82.75

F-M 70.83 67.84 81.35

T10
P 61.54 60.17 100.00
R 43.67 66.73 74.54

F-M 51.09 63.28 85.41

For T10 (Picture-inside-picture) transformation, Ordinal measure gives poor Re-

call rate (43.67%) when compared to proposed and Tasdemir’s methods. But the

proposed approach provides better Recall (74.54%), Precision (100%) rates when

compared to that of Ordinal measure (43.67% & 61.54%) and Tasdemir’s methods

(66.73% & 60.17%). The reason for the improved performance of proposed method

is, the inclusion of dominant direction of activity as one of the features for the CBCD

task. In this way, the proposed CBCD scheme improves the detection accuracy up to

13.9%, compared to the reference methods.

3.3 CBCD Systems Using Acoustic Fingerprints

Acoustic features are robust and powerful in describing a video content; yet they

are not completely utilized for the emerging Content-Based video Copy Detection

(CBCD) problem. On the other hand, as mentioned in Section 1.5., in most of the

CBCD cases, the audio content is less affected compared to the visual part. Therefore,

it is possible to detect illegal videos using their audio features, even the visual content

is badly distorted. By considering these factors, this thesis contributes two copy

detection techniques, which employ audio spectral features for detecting video copies,

as illustrated below.
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3.3.1 Video copy detection using audio spectral features

Audio content is an important information source of video sequence; hence they are

widely used in video parsing, indexing and scene categorization approaches (Tsekeri-

dou and Pitas 2001; Zhu et al. 2009). Further, past acoustic investigations prove that,

the most important perceptual audio features are existing in the frequency domain

(Li et al. 2003; Jie et al. 2009). Therefore, the main objective of the proposed CBCD

approach is to show that, the robust audio spectral features can be efficiently utilized

for the copy detection task. Specifically, the main contributions of the proposed copy

detection scheme are given by,

◦ Novel copy detection framework, which uses audio features, compared to the

state-of-the art visual content based CBCD methods.

◦ Calculating compact spectral descriptive words, which combine the robust spec-

tral features such as signal energy, roll-off, centroid and flux.

◦ Clustering based pruned similarity matching to speed up the fingerprint map-

ping process.

The proposed copy detection system including framework, spectral features extraction

and fingerprints matching is detailed as follows.

Proposed CBCD framework using audio spectral features

Figure 3.7 shows the block diagram of the proposed copy detection framework, which

comprises two stages: Off-line or Master video processing stage and On-line or Query

video processing stage.
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Figure 3.7: Proposed CBCD framework using audio spectral features
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In the off-line stage, spectral descriptors including centroid, energy, roll-off and

flux are extracted from the master video sequences. These features are further pro-

cessed and Spectral Descriptive (SPD) words are computed. SPD words integrate

raw spectral features; hence they summarize the overall audio content of a given

video sequence. K-means clustering is employed to obtain low-dimensional represen-

tation of SPD words and consequently, the centroids are used as video fingerprints

of master video sequences. In the on-line stage, spectral descriptors are extracted

from the query video frames and the respective SPD words are calculated. Then the

resulting SPD words are clustered and then the cluster centroids are stored as video

fingerprints. After this step, clustering based similarity matching is performed for

identifying the duplicate videos.

Spectral descriptors extraction

First the audio signal is down sampled to 22050 Hz, in order to decrease the amount

of data to be processed. The magnitude spectrum of the audio signal is almost sta-

tionary for 10-30ms of window length (Rabiner and Juang 1993). Therefore, the

down sampled audio signal is segmented into 11.60ms windows using Hamming win-

dow function with an overlapping factor of 86%. Then, audio spectral descriptors

including centroid, energy, roll-off and flux are extracted from the short term power

spectrum of audio signals, as described below.

Spectral Centroid (SC): Spectral centroid is a timbral feature, which illustrates

the brightness of a sound signal (Park 2010). Generally, sound with brighter quality

consists of more amount of high frequency components, compared to sound with dark

quality. In sound synthesis techniques, spectral centroid is proved to be an important

descriptor (Li et al. 2003), which indicates the center of gravity of the signal spectrum.

The spectral centroid (SC) is computed as,

SC =

N∑
k=1

k × xd[k]

N∑
k=1

xd[k]

(3.23)

Where xd[k] represents the magnitude of kth frequency bin of dth frame and N is

the frame length. The statistical properties of spectral centroid such as mean, stan-

dard deviation and log amplitude are used in various speech analysis and recognition

algorithms (Park 2010; West 2008). The average frequency distribution values are

utilized as spectral centroids in the proposed CBCD task.
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Figure 3.8 shows the example spectral centroid plot of master and copied video

sequences. Here, the video copy is created by applying 3 combined transformations

including mp3 compression, cropping and pattern insertion. The centroid plots in-

dicate a very high similarity (up to 98.7%) between the master and copied feature

sequences and thus prove the robust nature of the spectral descriptor used in the

proposed CBCD task.
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Figure 3.8: Similarity of spectral centroid plots of master and copied videos

Spectral Energy (SE): This descriptor calculates the average short term power

of the input signal (West 2008). In this proposed work, the sum of squared magnitude

of samples is utilized to calculate the spectral energy, as given by,

SE =
1

N

N∑
k=1

|xd(k)|2 (3.24)

where N is the length of the frame. Figure 3.9 shows the example spectral energy

plot of master and copied video files. Figure 3.9 curves indicate a very high similarity

(up to 95.8%) between the two feature sequences and thus proves the robustness of

the spectral energy features used in the proposed CBCD framework.

Spectral Roll-off (SR): This feature is commonly referred to as skew present in

the shape of the power spectrum. Precisely, the roll-off point defines the frequency

boundary, in which 85% of the power spectrum energy resides. Therefore, this de-

scriptor is widely used to differentiate between constant as well as highly transient
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Figure 3.9: Similarity of signal energy plots of master and copied videos

sounds (Burka 2010). The spectral roll-off can be calculated as (Park 2010),

SR =
R∑

k=0

xd[k] = 0.85
N−1∑
k=0

xd[k] (3.25)

where N represents the frame length and xd[k] indicates the magnitude components

of kth frequency bin and R indictes the frequency roll-off point with 85% of energy.

Spectral Flux (SF ): Generally, speech signals change at a faster rate, compared

to music signals (Park 2010). Spectral flux defines the amount of energy difference

between consecutive analysis frames (Burka 2010), which is computed as follows,

SF = | xdf [k]− xdf-1[k] | (3.26)

where xd[k] represents magnitude of kth frequency component and f ,f -1 indicate

current and previous frames respectively. Spectral flux is mainly utilized to compare

musical and speech signals.

The dimension of resultant spectral descriptors is large (10240/sec), as a result,

direct processing of raw features is computationally expensive. Therefore, the resul-

tant feature descriptors are combined into highly informative SPD words. K-means

clustering is used to get the compact representation of SPD words. In experiments,

the number of clusters of the video sequences vary between 47-413, based upon the

individual video contents.
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Fingerprint matching

In the proposed duplicate video detection framework, L1-norm Manhattan distance

metric is used to compute the similarity between the two video clips. If Mk is kth

master video and Q is query video clip, then fm and fq are their corresponding video

fingerprints. The similarity score (Sim) between Mk and Q is computed as,

Sim(Mk, Q) =
m∑
i=1

n∑
j=1

|(fm(i)− fq(j)| (3.27)

where m, n represent the size of master and query video signatures respectively.

The Sim scores are compared against the predefined confidence measure in order to

detect the video copies. In the proposed framework, different confidence measures

ranging from 0.55-0.73 are experimented and 0.70 confidence measure provides better

accuracy, hence it is employed in the proposed copy detection task.

Experimental setup

As mentioned in Section 2.8, TRECVID 2008 Sound and Vision dataset is utilized for

evaluating the proposed method. Precisely, the video database contains 75 hours of

video covering a wide variety of content including documentaries and science. Table

3.12 lists the audio and visual transformations considered in the proposed CBCD task.

In the experiments, seven video clips from the reference database and two video clips

Table 3.12: List of visual and audio attacks considered in the proposed CBCD system

Type Transformations
T1 Blurring
T2 Color change
T3 Slow motion
T4 Fast forward
T5 Pattern insertion
T6 Moving caption insertion
T7 Cropping
T8 Picture-inside-picture
T9 Mp3 compression
T10 singleband companding
T11 Multiband companding
T12 Combination of 3 transformations

(Cropping, pattern insertion and mp3 compression)

from Open Video Project are used as query video sequences. The transformations
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listed in Table 3.12 are applied to the nine query video sequences, while the duration

of these clips vary from 20 to 25 seconds. The resulting 108 (12×9) video clips are

employed as query video clips for the proposed copy detection task. To measure the

detection accuracy of the proposed scheme, standard performance metrics such as

Precision, Recall and F-Measure metrics as specified in Equations (3.9), (3.10) and

(3.22) are utilized.

Copy detection results and discussion

The accuracy of the proposed copy detection method is compared with Ordinal mea-

sure (Hua et al. 2004) and Itoh et al.’s (Itoh et al. 2010) methods. The Ordinal

measure is extracted as follows: First, the image is partitioned into N blocks; Then,

the blocks are sorted according to their average intensity values and consequently, the

ranking order of blocks are considered as ordinal signatures. Itoh’s method employs

significant points in acoustic data for identifying duplicate videos, which is executed

as follows: First acoustical power envelopes of the input signal are computed; Then

the significant points denoting local minimum/maximum values are extracted from

the power envelopes, and used as fingerprints for the copy detection task.

Table 3.13 lists the detection results of the proposed and reference methods for

T1-T6 transformations. The results from Table 3.13 prove that, the proposed method

enhances detection accuracy by 29.78%, when compared to the reference methods.

More precisely, for T3 (slow motion) transformation, Ordinal measure provides

poor recall rate (58.45%), when compared to that of Itoh’s method (61.97%). The

global descriptive nature of Ordinal measure is the reason for this poor performance.

Although Itoh’s method performs better than the Ordinal measure for T1-T6 trans-

formations; yet, the proposed method outperforms Itoh’s method for all six trans-

formations. Specifically, the proposed method scores better recall rate (100%), when

compared to that of Ordinal measure (70.11%) and Itoh’s method (70.16%) for T4

(fast forward) transformation. The robust nature of the audio spectral features is the

exact reason for the better performance of the proposed CBCD method.

Table 3.14 lists the detection results of the proposed and reference methods for T7-

T12 transformations and the results demonstrate that, the proposed method improves

the detection accuracy by 25.91%, when compared with the reference methods.

For T12 (3 combined transformations), Ordinal measure results in very poor pre-

cision, recall rates (58.33% & 51.29%), compared to that of Itoh’s (68.39% & 65.11%)

and proposed methods (95.96% & 93.21%). Ordinal measure is much affected by

region-based transformations; hence, it yields poor results for T12. The detection
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Table 3.13: Detection results (in %) for T1-T6 Transformations

Transformations Ordinal Itoh’s Proposed
Type Metric Measure (%) Method(%) Method (%)

T1
P 76.24 79.09 100.00
R 70.58 69.08 79.48

F-M 73.30 73.74 88.56

T2
P 65.35 81.57 97.89
R 79.14 78.34 96.37

F-M 71.58 79.92 97.12

T3
P 61.22 71.58 99.39
R 58.45 61.97 99.40

F-M 59.80 66.42 99.39

T4
P 74.29 79.59 99.69
R 70.11 70.16 100.00

F-M 72.13 74.57 99.84

T5
P 68.36 81.62 99.09
R 69.16 79.31 98.86

F-M 64.07 80.44 98.13

T6
P 59.69 80.66 97.42
R 69.16 74.31 98.86

F-M 64.07 77.35 98.13

Table 3.14: Detection results (in %) for T7-T12 Transformations

Transformations Ordinal Itoh’s Proposed
Type Metric Measure (%) Method (%) Method (%)

T7
P 74.24 85.61 99.00
R 68.86 80.25 92.66

F-M 71.44 82.84 95.72

T8
P 72.69 88.19 94.44
R 71.10 80.27 90.26

F-M 71.88 84.04 92.30

T9
P 73.65 60.24 97.22
R 72.58 62.33 97.29

F-M 73.11 61.27 97.25

T10
P 80.06 74.31 93.44
R 73.64 72.59 90.28

F-M 76.71 73.44 91.83

T11
P 66.28 69.34 90.36
R 61.15 60.22 92.22

F-M 63.61 64.46 91.28

T12
P 58.33 68.39 95.96
R 51.29 65.11 93.21

F-M 54.58 66.71 94.57
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scores of the proposed method is slightly less for T10-T12 transformations, since

spectral descriptors are much altered by these three transformations. However, the

proposed method provides better detection results compared to the reference methods

by integrating the four robust spectral features for the copy detection task.

3.3.2 CBCD system using audio fingerprints and PCA

MFCCs (Mel-Frequency Cepstral Coefficients) are widely used by the audio processing

community to get discriminative performance with reasonable noise robustness (Park

2010). Therefore, this thesis enhances the previous CBCD framework described in

Section 3.3.1, by contributing an another copy detection method, which integrates

MFCCs and spectral descriptors along with PCA (Principal Component Analysis) for

detecting video copies. Specifically, the contributions of the proposed copy detection

method are given by,

◦ Presenting a novel copy detection method by exploiting spectral audio features

and MFCCs, compared to conventional visual content based CBCD techniques.

◦ Construction of multi-feature vectors, by concatenating various spectral feature

sequences such as MFCCs and spectral descriptors.

◦ Dimensionality reduction of multi-feature vectors using PCA.

The framework of the proposed copy detection method along with the fingerprints

extraction and similarity matching techniques is described as follows.

Proposed framework using audio fingerprints and PCA

The block diagram of the proposed copy detection framework is shown in Figure 3.10

and the relevant notations are described in Table 3.15.

The proposed framework comprises two main components: Off-line (Master video

processing) and Online (query video processing). In the off-line stage, audio spectral

features including MFCCs and spectral descriptors are extracted from the master

video sequences. These intra-frame features are concatenated into high-dimensional

Multi-Feature (MF) vectors of predefined window size. Since MF vectors combine

raw features (both intra and inter-frame features), they effectively represent frame-

level as well as clip-level information of video contents. Then PCA is applied on

high-dimensional MF vectors, in order to get low dimensional representation. The

sequence of principal components are subsequently combined and stored as finger-

prints of master video sequences. In the online stage, MF vectors are calculated,

after extracting audio spectral features from the query video frames. Then, principal
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Figure 3.10: Proposed CBCD framework using audio features and PCA

Table 3.15: Description of notations used in Figure 3.10

Notation Description Notation Description
N Number of master videos TQ Total frames of query video VQ
Vi ith master video in the DB FSQ Feature set extracted from VQ
n Total frames of video Vi PCi

j jth Principal component of Vi
Ti ith frame of video Vi, Xi Audio fingerprint of ith video Vi

where Vi = {T1, T2, .., Tn} where Xi = {PCi
j, ...., PC

i
m}

FSi
n Feature Set extracted from MFj jth MF vector matrix of Vi,

nth frame of Vi where j = {1, 2, .., p}
ZQ Dimension of MFQ of VQ PCQ

j jth principal component of VQ
Zi

j Dimension of jth MF of Vi where j = {1, 2, ..,m}

components of the query video are calculated from MF vectors, and compared against

the fingerprints of the master videos. Finally, L2-norm distance based comparison

gives the output of proposed CBCD task.

Fingerprint extraction

As described in Section 3.3.1, first the audio signal is down sampled and then seg-

mented into 11.60ms windows with an overlap factor of 86% using Hamming window

function. After this step, the spectral representation of each analysis window is com-
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puted by applying FFT (Fast-Fourier transform). From the spectral decomposition,

two sets of features are extracted: Mel-Frequency Cepstral Coefficients (MFCCs) and

spectral distribution descriptors.

MFCCs extraction: The MFCCs are based on the discrete cosine transform of

log amplitude Mel-frequency spectrum (Park 2010). In the proposed scheme, FFT

spectrum is divided into 24 bands and 40 triangular band pass filters that are placed

using Mel-scale. Generally, first 15 cepstrum coefficients are employed in speech

signal processing (Park 2010); hence, first 15 MFCC are calculated to capture short

term spectral features of video frames and employed in the proposed copy detection

framework.

Spectral distribution descriptors: In the proposed CBCD framework, the spec-

tral descriptors such as Spectral Centroid, Energy, Roll-off and Flux are calculated as

specified in Equations (3.23)-(3.26), for describing the power spectrum of the input

audio signal. The output of the audio features extraction process results in the con-

version of 11.60ms frames into a stream of feature vectors with 6 feature values. The

resulting feature sequences are concatenated into MF vectors of length 580ms. Since

the dimension of MF vector is very high (in the order of 15000), it is not feasible to

perform any computations. In order to obtain the compact representation of the MF

vectors, two different techniques are employed: (a) Instead of using all 15 MFCCs of

frames, only MFCC means and variances are considered in the feature sets of frames;

(b) PCA is applied to obtain the low dimensional representation of MF vectors.

Principal component analysis Given d-dimensional MF vectors MFi ,such that

i={1, 2, 3, ..., N}, the mean vector M (Burka 2010) is given by,

M =
1

N

N∑
i=1

MFi (3.28)

The mean subtracted data set is given by B = MFi - M . The covariance matrix

(Cov) is given by,

Cov =
1

N − 1
BBT (3.29)

where BT represents transpose of B. Finally, the eigenvectors V and eigen values λ are

calculated directly from the covariance matrix by solving the generalized eigenvector

problem (Burka 2010) for,

Cov.V = λ.V (3.30)

In the experiments, only K eigenvectors with largest eigen values are considered as

fingerprints, where K varies between 2 to 8.
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Fingerprint matching

In the proposed CBCD framework, similarity matching is performed using weighted

L2 Euclidean distance calculations. If P1 and Q1 are master and query video se-

quences, then fp and fq are their corresponding video fingerprints. The master video

fingerprint fp includes pi eigenvectors and the corresponding λi eigen values, while the

query video fingerprint fq contains qj eigen vectors and the corresponding σj eigen

values. The distance (Dist) between pi and qj (Gu et al. 2004) is given by,

Dist (i, j) = |pi − qj|2 (3.31)

In general, eigen vectors with large eigen values specify the most significant relation-

ships between data dimensions and hence the inclusion of eigen values in similarity

calculations improves the performance of the CBCD system. Therefore, a weighting

factor is considered in the experiments, which is given by,

W (i, j) =
1√
λ2
i

.
1√
σ2
i

(3.32)

The similarity (SM) between two video sequences P1 andQ1 is defined as the weighted

sum of similarity between their fingerprints, given by

SM (P1, Q1) =

fp∑
i=1

fq∑
j=1

W (i, j) Dist(i, j) (3.33)

Experimental setup

The proposed CBCD system is evaluated on TRECVID-2007 Sound & Vision data

set. Table 3.16 represents the list of video transformations considered in the proposed

CBCD framework, while Figure 3.11 illustrates all the transformations with example

frames, extracted from the transformed query videos.

Precisely, the video database includes 25 hours of video covering a wide variety of

content. The format of the reference video clips is 352×288 pixels and 30 frames/sec.

In the experiments, seven video clips are selected from the reference dataset and

one video clip collected from Open Video Project serves as the non-reference video

stream. The sixteen types of transformations listed in Table 3.16 are applied to the

resultant eight query video clips, while the duration of these clips varies from 30 to

45 seconds. The resulting 128 (16×8) video sequences are used as query video clips

for the proposed CBCD task.
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Table 3.16: List of transformations considered in the proposed CBCD framework

Category Type Description
T1: Brightness change Increase brightness by 15% -25%
T2: Noise Addition Adding 15% random noise
T3: Rotation Rotating up to 90◦

T4: Blurring Blurring by 20%
T5: Horizontal flip Horizontal mirroring up to 90◦

Transformations T6: Vertical flip Vertical mirroring up to 100◦

-Level 1 (TL1) T7: Color change Changing color spectrum
T8: Pattern insertion Pattern is inserted into selective frames
T9: Moving caption insertion Entire video includes moving caption
T10: Slow motion Halve the video speed
T11: Fast forward Double the video speed
T12: Zooming in Zoom in by 15%
T13: Combination of 3 Applying 3 transformations

transformations of TL1 amongst T1-T5
Transformations T14: Combination of 5 Applying 5 transformations
-Level 2 (TL2) transformations of TL1 amongst T1-T4, T6-T8

T15: Combination of 8 Applying 8 transformations
transformations of TL1 amongst T1-T5, T7, T8, T10 and T12

T16: Combination of 10 Applying 10 transformations
transformations of TL1 amongst T1-T12

 

Source                                                        

            
     T1: Brightness       T2: Noise                    T3: Rotation             T4: Blur         T5: Horizontal Flip T6: Vertical Flip     T7:Color Change 

                
T10: Slow Motion                                                         T11: Fast Forward 

              
   T8: Pattern insertion T9: Moving caption   T12: Zoom         T13: 3 of TL1          T14: 5 of TL1        T15: 8 of TL1        T16: 10 of TL1 

 
 Figure 3.11: Example frames from the transformed query videos
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Copy detection results

The copy detection results of the proposed CBCD method is compared with Cao’s

method (Cao and Zhu 2009) and baseline methods. Cao and Zhu (2009) employed the

mean values of YCbCr components as the feature descriptors for their copy detection

task. Baseline method uses only MFCC means and variances as feature descriptors.

Table 3.17 compares the PR rates of baseline method, Cao’s method and proposed

methods for the first eight transformations of type TL1.

Table 3.17: PR rates for T1-T8 of TL1 transformations

Transformations Cao’s Method Baseline Method Proposed Method

T1
P 0.70943 0.72775 0.85714

R 0.69604 0.81861 0.96428

T2
P 0.71621 0.82901 1.00000

R 0.71542 0.80142 0.96825

T3
P 0.69654 0.83675 1.00000

R 0.67554 0.78864 0.92461

T4
P 0.62910 0.71076 0.91541

R 0.64839 0.67785 0.96923

T5
P 0.74472 0.88675 1.00000

R 0.69843 0.73652 0.88405

T6
P 0.76871 0.81843 1.00000

R 0.57983 0.54908 0.79602

T7
P 0.64911 0.71453 1.00000

R 0.60152 0.62303 0.87341

T8
P 0.63301 0.78994 1.00000

R 0.58973 0.61952 0.83554

For T8 transformation (Pattern insertion), Cao’s Method gives poor recall rate

(0.58973), when compared to that of the proposed method (0.83544). The reason for

the poor performance of Cao’s method is, the limited capability of global descrip-

tors. Further, the proposed method yields good precision rates compared to baseline

method, especially for T8 and T2 transformations. For Flipping transformation (T6)

baseline method gives poor recall rate (0.54908) compared to that of proposed method

(0.79602). Therefore, results from Table 3.17 prove that, the proposed method yields

better detection rates compared to Cao’s method and baseline methods.

Table 3.18 shows the precision and recall rates of Cao’s method, baseline and

proposed methods for T9-T16 transformations. Since TL2 transformations include

multiple video editing tasks, the overall detection rates are slightly less compared to
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Table 3.18: PR rates for T9-T16 of TL1 and TL2 transformations

Transformations Cao’s Method Baseline Method Proposed Method

T9
P 0.60812 0.73564 1.00000

R 0.43867 0.61762 0.87342

T10
P 0.49972 0.54921 0.74332

R 0.49889 0.63544 0.83747

T11
P 0.61367 0.65990 0.83875

R 0.40175 0.59211 0.79002

T12
P 0.61832 0.72178 0.99642

R 0.53761 0.65156 0.85714

T13
P 0.68120 0.78805 0.99218

R 0.40961 0.52865 0.69543

T14
P 0.63592 0.79664 0.97564

R 0.50183 0.65271 0.85285

T15
P 0.64883 0.78853 0.96605

R 0.54241 0.64400 0.81824

T16
P 0.59971 0.69904 0.90679

R 0.48762 0.52743 0.79775

that of TL1 type transformations. Although, T16 transformation includes ten types of

complicated video editing activities, still the proposed method scores better precision

rates (0.90679), compared to that of Cao’s method and baseline methods. For T15

and T16 transformations, the recall rates of Cao’s method is poor (0.54241 & 0.48762),

because YCbCr values are significantly affected by combined visual distortions. In this

way, Table 3.18 results demonstrate the improved detection accuracy of the proposed

CBCD scheme compared to the reference methods.

3.4 Copy Detection System Using DCDs and Au-

dio Features

As discussed in Section 2.1.3., most studies on Content Based video Copy Detection

(CBCD) concentrate only on the visual signatures, while very few efforts are made

to exploit audio features. However, audio data if present, is an essential source of a

video; hence, the integration of visual-acoustic fingerprints for the CBCD task signifi-

cantly improves the copy detection performance. Further, the combined utilization of

visual and audio fingerprints not only improves the copy detection performance, but

also useful in many applications such as video retrieval, management and multimedia
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fingerprinting.

On the other hand, existing works on DCDs exploit only global description of dom-

inant color features in an image. Therefore, promising algorithms extracting region-

based dominant color features and exploiting temporal color statistics are required, in

order to provide compact visual fingerprints using color features. Based on these fac-

tors, this thesis contributes a new CBCD framework, which integrates novel visual

signatures extracted from Dominant Color Descriptors (DCDs) and robust acous-

tic fingerprints derived from Mel-Frequency Cepstral Coefficients (MFCCs) to detect

duplicate videos. Precisely, the contributions of the proposed CBCD framework are

given by,

◦ A novel DCD extraction algorithm denoted as RGB-Feature Image is intro-

duced, which efficiently extracts the dominant color features from an image.

◦ A new visual signature called as Spatio-Temporal DCDs is presented, which

effectively characterizes the region-based dominant color features and temporal

color information present in a video sequence.

◦ A new approach for fusing visual-audio fingerprints is proposed, which employs

combination rule and weight factor strategies.

The proposed copy detection system including framework, visual-audio fingerprints

extraction and fusion is illustrated below.

3.4.1 Proposed CBCD system using DCDs & audio features

The overview of the proposed CBCD framework is shown in Figure 3.12 and the

relevant symbols are explained in Table 3.19. The proposed framework consists of two

main stages: off-line (Master video processing) and online (query video processing).

In the off-line stage, visual fingerprints based on dominant color features and audio

fingerprints based on MFCCs are extracted from master video contents. The resultant

visual-audio fingerprints are stored in the fingerprint database.

In the online stage, when a query clip is given, resampling technique is employed

in order to synchronize the query and master video frame rates. Then visual and

acoustic fingerprints are extracted from the query video. After this step, audio-visual

fingerprints are matched separately and the individual matching results are combined,

in order to compute the detection results. The visual-audio fingerprints extraction

and fusion techniques are detailed below.
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Figure 3.12: Proposed CBCD system using DCDs and audio features

Table 3.19: Description of notations used in Figure 3.12

Notation Definition Notation Description
Vi ith master video N Number of master videos

T j
i jth frame of Vi, MF b

i bth MFCC feature of Vi,
where j = {1, 2, .., n} where b = {1, 2, ..k}

Zj
i Dimension of jth MFCC V Fj Visual fingerprint of Vj,

features of Vi and V Fj ∈ [DC l
i , ..., DC

k
i ]

DC l
i lth DCD of Vi, l = {1, 2, .., k} TQ Number of frames of VQ

SV j
i jth singular value of Vi, AFj Audio fingerprint of Vj,

where j = {1, 2, ..,m} where AFj ∈ [SV l
j , .., SV

m
j ]

MFQ MFCC features of VQ DCj
Q jth DCD of VQ, j = {1, 2, .., t}

AFQ Audio fingerprint of VQ, V FQ Visual fingerprint of VQ
where AFQ ∈ [SV i

Q, ..., SV
r
Q] V FQ ∈ [DCi

Q, .., DC
t
Q]

SV i
Q ith singular value of VQ, t and r Total visual and audio

where i = {1, 2, .., r} fingerprints of VQ

3.4.2 Visual-audio fingerprints generation

As described in Section 3.1.1, Dominant Color Descriptor (DCD) of MPEG-7 standard

effectively describes the color information in an image, by capturing the dominant or
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representative colors from that image (Manjunath et al. 2002). In the past studies,

color clustering algorithm such as Generalized Lloyd algorithm (GLA) (Lloyd 1982)

is widely utilized to extract DCDs from an image (Yang et al. 2008; Deng et al. 2001);

but GLA suffers due to its high computational cost.

In order to solve this problem, a novel DCD extraction scheme denoted as RGB-

Feature Image is proposed to efficiently extract the dominant colors from an image.

More precisely, the proposed CBCD system expands the frequency imaging method

introduced by Kashiwagu and Oe (2007) and derives a novel DCD extraction scheme

called as RGB-Feature Image. Without the loss of generality, RGB color space is

employed in the proposed framework to compute RGB-Feature Images, which extracts

dominant colors and their relative distribution present in an image. Algorithm 3.2,

given in Figure 3.13 details the steps used to compute the RGB-Feature Image from

a given image/region.

Algorithm 3.2: RGB-Feature Image Computation

1: Let C(x, y) be a color image having m× n pixels.

2: Translate each pixel pci of C(x, y) to a color histogram space HS, where 1 ≤ i ≤
(m× n).

3: Calculate the frequency of each color in HS.

4: The frequency value in HS corresponding to each pci of C(x, y) is denoted as
µhs
i .

5: Construct RGB feature image R(x, y), by replacing each pixel value with the
frequency value, which is formulated as,

R(x, y) = ∀ pci ∃ C(x, y) : µhs
i 7→ pci (3.34)

6: Compute dominant colors from the dominant frequencies of R(x, y).

7: Calculate the distribution of each dominant color in C(x, y) in terms of per-
centages.

8: To improve robustness, the percentage of distribution of each dominant color is
normalized using the formula given by,

σi =
pdi

Σpdi
, i ∈ [1 : r]. (3.35)

where σi is the normalized distribution value and pdi is the percentage of dis-
tribution of ith dominant color and r indicates total dominant colors.

Figure 3.13: RGB-Feature Image computation algorithm
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Most studies in DCD extraction exploit spatial information and provide only the

global description of dominant colors in an image. For example, Yang et al. (2008)

and Deng et al. (2001) extract dominant colors from the whole image/frame and

utilize global description of colors to characterize an image. However, such global

color descriptions may be inadequate to obtain precise localization of dominant colors

in an image. In practice, many video or movie scenes exist with same dominant color

patterns; though they have entirely different contents.

 (a)  (b)

Figure 3.14: Sample images having same global description of dominant colors irre-
spective of their different contents. (a) Image-1 having two horizontal lines with gray
level 200 and background with gray level 50. (b) Image-2 having two cross lines with
gray level 200 and background with gray level 50.

For instance, the images given in Figure 3.14(a)-(b) show the scenario in which

global description of dominant colors is same irrespective of their contents; hence, in

this case, global color description fails to differentiate these two images. Therefore,

region-wise distribution information of dominant colors is essential in many applica-

tions such as content-based image retrieval and indexing.

On the other hand, it is to be noted that, Consecutive images in a video sequence

have very similar color statistics (Roytman and Gotsman 1995). Thus, the proposed

copy detection framework exploits the color similarity existing in the temporal domain

for efficiently describing the color information of a video. Further, on average 3-8

dominant colors are needed to represent an image (Deng et al. 2001). Hence minimum

number of DCDs extracted from a video Vi of size N frames is N × 3, and size of the

visual signature becomes approximatelyN×3×4 (4digits/DCD). If size of N increases,

then the computational cost also increases. However, compact visual signatures are

needed to enhance the detection performance of a CBCD system.

In order to tackle the above mentioned issues, a new visual signature called as

Spatio-Temporal DCDs is presented, which efficiently characterizes the color informa-

tion of a given image. Precisely, Spatio-Temporal DCDs extract region-based domi-

nant color features and exploit color statistics present in the consecutive frames, in

order to provide efficient visual fingerprints of video sequences. Algorithm 3.3,given
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in Figure 3.15 illustrates the steps used to compute Spatio-Temporal DCD signatures

of a video file. Figure 3.16 illustrates Spatio-Temporal DCDs extraction from the

sample frames on a 2×2 blocks. Experiments are conducted with different block sizes

ranging from 2-6 for Spatio-Temporal DCD extraction. Since, 2×2 blocks provide

better accuracy, hence it is employed in the proposed CBCD task.

Algorithm 3.3: Spatio-Temporal DCDs Computation

a: Let the video Vi ∈ {fi|1 ≤ i ≤ n}, where fk is the kth frame and n is total
frames of Vi.

b: Segment each fk into non-overlapping blocks of size 2×2.

c: Compute RGB feature image for each block using the algorithm given in Figure
3.15.

d: Extract dominant colors and their normalized distribution values for each block
of fk.

e: Repeat steps (3)-(5) for frame fk+1.

f: Let dci,jk be jth dominant color of ith region of fk.

g: Compute the dominant color featuresDF from the frame fk+1 using the formula,

DFi,j
k+1 =

{
dci,jk dist ≤ T

dci,jk+1 dist > T
(3.36)

where 1 ≤ i ≤ 4, 1 ≤ j ≤ 12 and 1 ≤ k ≤ n. Here, the distance dist indicates
the distance between two colors dci,jk and dci,jk+1 of frames fk and fk+1 respec-
tively. The threshold T is the minimum distance used to judge the similarity
between two colors of consecutive frames and T is set to 15 in this work.

Figure 3.15: Algorithm for computing Spatio-Temporal DCDs

In order to emphasize the benefits of the proposed Spatio-Temporal DCD scheme,

two sets of experiments are performed namely, spatial DCDs and Spatio-Temporal

DCDs extraction. In (Roopalakshmi and Reddy July-2011), spatial DCD extraction

scheme is employed, in which DCDs extracted from RGB-Feature Images are consid-

ered as visual signatures of video files. Table 3.20 shows total color features extracted

by the spatial and Spatio-Temporal DCD methods for different video sequences. Ta-

ble 3.20 results indicates that, the proposed Spatio-Temporal DCD scheme, reduces

the amount of dominant color features up to 59%; hence, the Spatio-Temporal DCD

scheme is more compact and profitable than the conventional spatial DCD extraction

methods.
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Figure 3.16: Spatio-Temporal DCDs extraction. (a) A video clip with three frames
partitioned into 2×2 regions. (b) RGB-Feature Image of each region. (c) Comparing
dominant color features of each region with time series

Audio fingerprints generation

In this proposed framework, Mel-Frequency Cepstral Coefficients (MFCCs) are em-

ployed, to obtain the acoustic fingerprints from the video contents. MFCCs are highly

robust and discriminative spectral features; thus, they are widely used in video in-

dexing and segmentation methods (Boreczky and Wilcox 1998). In the mel-frequency

cepstrum, the frequency bands are equally spaced on mel-scale, which closely approx-

imates response of the human hearing systems with respect to different frequencies

(Park 2010; Wang et al. 2000). This frequency warping allows better representation

of sound signals in automatic speech recognition applications. Further, MFCCs rep-

resent perceptual feature of the audio signals very well. Therefore, it is quite difficult

to alter MFCCs, even for manipulations such as mp3 compression. Due to these

reasons, perceptually robust MFCCs are utilized to extract the audio signatures of

video contents.

Figure 3.17 shows the block diagram of audio fingerprints generation technique

based on MFCC features. Specifically, first the audio signal is down sampled and

consequently segmented into 11.60ms windows using Hamming windowing with an

overlap factor of 76% (Roopalakshmi and Reddy Sep-2011). Further, important per-

ceptual audio descriptors present in the frequency domain (Wang et al. 2000). There-
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Table 3.20: Number of dominant color features extracted -A comparison

S.No Duration Total DCDs extracted Reduction
(in minutes) Spatial DCD Spatio-temporal DCD (in %)

1 1-10 3198 1284 59.849
2 11-20 19902 9680 51.361
3 21-30 29502 16818 42.993
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Figure 3.17: Block diagram of MFCCs extraction

fore, spectral representation of each analysis window is computed by applying Fourier

transformations. Let fi be the frame, that is partitioned into N equal segments of

length M , denoted as fi,q, where q = 1, 2, ..., N (Chen et al. 2011; Özer et al. 2005).

The M points (DFT) of the input audio signal AS is computed as ,

AS(k) =
M−1∑
i=0

fi,q(i)e
−j2Πik/M , 0 ≤ k ≤M − 1 (3.37)

Then a filterbank of T triangular filters is defined, which is denoted asHmk, m=1,2,...,T.

The log-energy spectrum present at the output of each filter is given as,

Ψ(k) = ln

[
M−1∑
k=0

|AS(k)|2Hm(k)

]
, 1 ≤ m ≤ T (3.38)

Finally, the Mel-frequency cepstrum is computed as the DCT of the T filter outputs

as given by,

c(n) =
T∑

m=1

Ψ(m)cos

[
πn(m− 0.5)

T

]
, 1 ≤ n ≤ T (3.39)

Equation (3.39) typically results in 24-40 MFCC terms. For speech signals the

first 13 cepstrum coefficients are often utilized (Chen et al. 2011); hence, first 13

features are considered for the proposed CBCD task.
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The MFCCs calculation in Equation (3.39) results in an F×N matrix, where F

rows indicate the number of frames and N consists of 13 MFCC features extracted

from a frame. Then singular value decomposition (SVD) is applied to effectively

summarize the MFCC feature matrix. Precisely, the F×N matrix is decomposed as

S = U
∑
V T , where S is F×N input matrix to be summarized, U is F×F orthogonal

matrix,
∑

is an F×N diagonal matrix consisting of the singular values of S and V is

N×N orthogonal matrix. Generally few larger singular values are utilized to provide

the summarization of matrix S. The proposed CBCD framework employs six to eight

singular values for the copy detection task.

In addition, normalized singular values are utilized in this study, in order to im-

prove the robustness of the audio signature against various media manipulations such

as band compression. Precisely, normalized singular values are exploited as acoustic

fingerprints, which are computed as follows,

δi =
si − smin

smax − smin

(3.40)

where δi is the normalized value of ith singular value si. The smin, smax indicate min-

imum and maximum singular values respectively. Figure 3.18 shows the normalized

singular value curves of the master and copied videos, in which the duplicate video

is created by applying Mp3 compression at a bit rate of 64kbps. The curves plotted
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Figure 3.18: Curves showing similarity between the normalized singular values of
master and duplicate video sequences.

in Figure 3.18 indicate a very high similarity between the master and duplicate video
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contents; hence, prove the perceptual robustness of the proposed audio fingerprints.

3.4.3 Fusing visual-audio fingerprints

In the proposed CBCD framework, two strategies are employed for fusing visual-

audio fingerprints in order to detect duplicate videos, namely combination rule and

weighting factor. The purpose of the combination rule is to choose the best matching

result, by integrating the independent visual and audio content similarity matches.

Further, in some duplication/copy cases, the audio content may be unavailable, ei-

ther partially or completely destroyed ; hence, weight factors are set to visual-audio

fingerprints, to indicate their reasonable contribution in the similarity matching task.

Figure 3.19 indicates the flowchart illustrating the fusion of visual-audio fingerprints.

The similarity matching of visual and acoustic fingerprints and the fusion technique

are detailed below.
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Figure 3.19: The flowchart showing fusion of visual-audio fingerprints
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Similarity matching of visual fingerprints

In this step, the database is searched for similar dominant color distributions same

as the input query. Let MV and QV be master and query video clips, V Fm and V Fq

are their corresponding visual fingerprints which are given by,

V Fm = {(ci, pi) | i = 1, 2, 3, ...,M}, (3.41)

V Fq = {(bj, qj) | j = 1, 2, 3, ..., N}, (3.42)

where M , N indicate the total DCDs of MV and QV clips respectively. The similarity

DSvis between the visual signatures of the MV and QV is computed as specified in

MPEG-7 standard (Manjunath et al. 2002) as follows,

DSvis(V Fm, V Fq) =
M∑
i=1

p2
i +

N∑
j=1

q2
j −

M∑
i=1

N∑
j=1

2ai,j pi qj (3.43)

Here ai,j is the similarity coefficient between two color vectors ci and bj, which is

computed as described in Equation (3.5) as follows,

ai,j =

1− di,j
dmax

if di,j ≤ Td

0 if di,j > Td
(3.44)

where di,j is the Euclidean distance between color vectors ci and bj. The threshold

Td is the maximum distance used to judge whether two colors are similar or not. The

distance dmax = α × Td , where α is set to 1.2, as specified in (Deng et al. 2001).

The threshold Td mainly depends upon the distortions applied to the query video and

in case of combined distortions the distance values would be higher. Therefore, the

selection of Td significantly affects the detection performance of the proposed system.

In order to handle this issue, the reference dataset is tested with different Td values

ranging from 0.15-0.69. The Td values in the range of 0.29-0.36 are yielding better

results for the transformations considered in the proposed framework.

Similarity matching of audio fingerprints

Let the acoustic fingerprints AFm and AFq of master and duplicate video sequences

are given by,

AFm = {σk| k = 1, 2, 3, ..., P}, (3.45)

AFq = {λl | l = 1, 2, 3, ..., R}, (3.46)
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where P , R indicate the total singular values of MV and QV clips respectively. Then,

the similarity DSaud between the acoustic signatures of master and the duplicate

videos is calculated using Manhattan distance measure as follows,

DSaud(AFm, AFq) =
P∑

k=1

R∑
l=1

|σk − λl| (3.47)

Decision fusion

The similarity results from visual-audio fingerprints are combined to detect video

copies using the combination rule given by,

DSfin = W ×DSvis + (1−W )×DSaud (3.48)

where, DSfin is the final similarity distance and W is the weighting factor. In the

proposed framework, the visual and audio weight factors are empirically set as 0.65

and 0.35 respectively. Thus, the final similarity distance DSfin between the master

video MV and query clip QV is given by,

DSfin(MV,QV ) = 0.65×DSvis + 0.35×DSaud (3.49)

3.4.4 Experiments and performance evaluation

The experimental setup of the proposed CBCD system including master database and

query dataset construction followed by the detection results is illustrated as follows.

Master database and query dataset construction

As described in Section 2.8, the proposed method is evaluated on TRECVID Sound

& Vision data set, which is widely popular in the CBCD domain (Küçüktunç et al.

2010). Precisely, the master database comprises 40h of TRECVID-2008 Sound &

Vision data, plus another 60h of TRECVID-2009 Sound & Vision data, which covers

a wide variety of contents. All the video sequences are transformed into the uniform

format: 352×288 pixels and 15fps. Resampling procedure is employed to synchronize

the frame rates of master and query video clips. For example, 2s query clip with 60fps

becomes a 240-frame sequence after implementing the resampling procedure.

Seventeen video manipulations listed in Table 3.21 are considered in the proposed

CBCD framework, which commonly occur in illegal video contents. Thirty video

sequences are randomly selected from the master database, where the duration of
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these clips vary between 32-45 seconds. Five video clips, collected from Open Video

Project are used as non-reference data, in order to test false positives. The seventeen

types of transformations listed in Table 3.21 are applied to the query dataset for

generating final query video clips. The resulting 595 (35×17) video sequences are

used as query clips for the proposed copy detection task. Each query clip is used to

detect the corresponding video sequence in the master database.

Accuracy comparison

The following seven methods are evaluated:

(1) Spatio-temporal DCD (abbreviated as ’ST-DCD’);

(2) MFCCs-based signature (’MFC’);

(3) Combination of methods (1) and (2)(’ST-DCD+MFC’);

(4) Cao and Zhu’s method (2009) (’CZ’);

(5) Hua et al.’s method (2004) (’HUA’);

(6) Itoh et al.’s method (2010) (’IT’);

(7) Hua et al.’s method+Itoh et al.’s method (’HUA+IT’).

Table 3.21: Transformations used in the proposed system using DCD & MFCCs

# Type Description
T1 Random noise Add 19% gaussian noise
T2 Blurring Blurring by 26%
T3 Rotation Rotating by 20◦ to 45◦

T4 Brightness change Increase brightness by 19% -25%
T5 Flip Horizontal flip by 90◦-100◦

T6 Color change Change color spectrum
T7 Pattern insertion Insert text pattern into selected frames
T8 Moving caption Insert moving titles into entire video
T9 Zooming Zoom in to the frame by 17%
T10 Slow motion Halve the video speed
T11 Fast forward Double the video speed
T12 Mp3 compression Change audio file format
T13 Single band comp. Compress only specific frequency band
T14 Multiband comp. Compress different frequency bands independently
T15 Combination of 3 15% noise, 20% blurring & 15% brightness
T16 Combination of 5 17% noise, 21% blurring, 15% brightness,

rotation & pattern insertion
T17 Combination of 8 19% noise, 25% blurring, 15% brightness, color change,

pattern insertion, moving caption, fast forward & 15% zoom

The methods (1),(2) and (3) include different combinations of the proposed tech-

niques. In method (1), dominant color descriptors are extracted in a spatio-temporal
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manner, using the procedure explained in Section 3.4.2 and utilized for the copy detec-

tion task. In method (2), MFCCs based audio signatures are employed for detecting

video copies. In method (3), spatio-temporal dominant color features and MFCCs-

based audio fingerprints are integrated with weighting factors, to detect duplicate

video clips.

Cao and Zhu’s method (2009) is based on YCbCr components of images. First,

mean and the sum of weighted mean of YCbCr values are computed to generate image

signatures. Then the image signatures and temporal order of the images are used to

construct signatures of video sequences. In this method, L1-norm distance is used to

calculate the similarity between two video clips.

Hua et al.’s method (2004) uses Ordinal measure, which is a widely popular visual

fingerprint in the CBCD domain (Kim and Vasudev 2005). It is implemented as

follows: Video frames are partitioned into 3×3 blocks and the corresponding average

intensities of blocks are computed. From the block intensities, a 9-D ordinal signature

reflecting the frame’s relative intensity distribution is computed. Then the temporal

shape of ordinal signatures is computed and sequence shape similarity algorithm is

employed to detect duplicate video sequences.

Itoh et al.’s method (2010) uses acoustic power based fingerprints for the CBCD

task and it is implemented as follows: First power of audio signals are calculated using

sliding window scheme and acoustical power envelopes are generated by using power

vs time sequences. Then the significant points indicating local minimum/maximum

values are extracted from the power envelopes and matched using dynamic program-

ming for the copy detection task.

In method (7), for the purpose of comparison, methods (5) and (6) are com-

bined, to detect duplicate videos, which is implemented as follows: Ordinal measure

is utilized as a visual signature, which is specified in method (5). Audio fingerprints

extracted from acoustic power features are employed, as specified in method (6). Vi-

sual and audio fingerprints are matched separately using L1-norm distance, in order

to measure the similarity between two video contents.

Detection accuracy

Table 3.22 lists the precision and recall rates of seven compared methods for T1-

T6 transformations. The transformations include random noise, blurring, rotation,

brightness change, flip and color change. The bold font indicates the highest precision

and recall scores in the table. Method (3) provides better results compared to the

reference methods for all seven transformations in terms of higher PR rates.
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Table 3.22: Copy detection results for T1-T6 transformations

Attacks ST-DCD MFC ST-DCD+ CZ HUA IT HUA
Type Metric (1) (2) MFC(3) (4) (5) (6) +IT(7)

T1
P 64.18 90.64 91.59 45.68 60.43 80.64 82.91
R 70.54 88.31 89.04 40.91 58.09 75.42 76.55

T2
P 60.92 90.51 91.35 51.53 58.13 79.68 81.41
R 62.37 89.59 90.56 57.11 57.46 71.53 70.65

T3
P 71.68 91.86 93.83 67.34 51.65 82.37 84.09
R 62.59 90.75 90.76 62.28 49.72 84.44 85.39

T4
P 74.45 89.91 93.51 50.16 62.91 72.86 79.16
R 72.16 90.88 91.69 53.55 61.49 74.93 76.66

T5
P 79.36 91.36 92.97 68.04 48.59 79.66 79.98
R 74.18 88.45 89.10 61.95 50.47 76.08 77.46

T6
P 34.02 90.54 90.59 49.62 50.51 80.52 82.73
R 30.47 89.35 89.56 50.38 48.68 80.06 81.64

Methods (2) and (6) generally perform well in terms of good PR rates. This is be-

cause, audio fingerprints are less affected by visual attacks. The recall rate of Method

(1) declines sharply for color change type. This is because color spectrum changes

might alter DCD’s property substantially. However, because of the integrated usage

of MFCCs, proposed method (3) gains more robust performance than the reference

methods in this transformation category.

Cao and Zhu’s method (2009) scores well for rotation and flip types in terms of

good precision rates. However, it fails to score better PR rates for random noise (T1)

type, because luminance (mean YCbCr) values vary widely after applying gaussian

noise. Hua et al.’s method (2004) gives poor precision value for flipping (T5) type.

This is because, block intensities are much affected by mirroring the contents, which

may significantly change ordinal signatures.

Method (7) yields better PR rates for all T1-T6 types compared to all other

methods, except method (3). However, proposed method (method (3)) outperforms

method (7) by improving the detection accuracy in terms of up to 15% enhancement

in PR rates. Though the spatio-temporal DCDs and MFCCs-based audio signatures

have their own benefits and constraints, they balance each other very well; hence, the

integration of these two robust features results in consistent performance of method

(3) compared to other methods. The detection accuracy of method (3) provides a

good evidence to support this viewpoint.

Table 3.23 shows the detection results of seven compared methods for T7-T12
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types, including pattern insertion, moving caption, zooming, slow motion, fast for-

ward and mp3 compression. Cao and Zhu’s method (2009) yields low precision rates

for zooming and pattern insertion types. This is due to the limited capability of

global descriptors, which are less robust against region based attacks.

Table 3.23: Copy detection results for T7-T12 transformations

Attacks ST-DCD MFC ST-DCD+ CZ HUA IT HUA
Type Metric (1) (2) MFC(3) (4) (5) (6) +IT(7)

T7
P 69.38 89.46 90.52 49.05 54.61 68.92 81.35
R 65.49 85.37 88.04 51.43 53.35 64.84 70.27

T8
P 66.05 87.28 90.06 51.89 55.10 66.30 71.86
R 60.37 86.05 87.42 51.48 52.85 65.85 69.12

T9
P 72.34 90.53 91.73 50.54 59.18 79.16 83.49
R 70.63 88.14 89.92 56.33 50.78 74.58 81.61

T10
P 64.57 79.52 82.54 54.19 60.84 64.52 68.94
R 62.45 73.91 79.68 51.75 60.79 61.08 63.27

T11
P 71.28 74.68 79.24 50.61 65.15 69.35 70.86
R 69.37 72.43 75.54 55.38 62.23 64.16 66.19

T12
P 88.62 70.66 90.13 71.55 72.06 59.34 75.13
R 85.05 67.51 85.92 70.93 70.45 47.23 77.46

Hua et al.’s method (2004) performs poorly for pattern insertion and moving

caption types in terms of recall rates. The reason is that, their method generates

very different video signatures for master and query clips after inserting text patterns

or moving captions. Even the shape similarity scheme cannot compensate for the large

differences between the query and master video signatures; hence results in poor recall

rates. For slow motion (T10) and fast forward (T11) types, methods (1)-(3) utilize

resampling technique to synchronize the master and query video contents; hence these

methods achieve high detection accuracy compared to other reference methods. On

the other hand, for slow motion and fast forward types, methods (4)-(7) match the

master and query sequences directly without resampling.

The recall rate of Itoh et al.’s method (2010) declines sharply for mp3 compres-

sion type. This is because, the acoustical power envelopes vary substantially after

applying mp3 compression. Yet, the proposed methods (methods (2) and (3)) using

MFCCs are less affected in this category. Method (7) yields nearly similar accuracy

rates for all T7-T12 types compared with the proposed method(3). However, mp3

compression has a limited impact on MFCCs, hence method(3) reduces false positive

rate effectively and achieves good accuracy compared to method(7).
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Table 3.24 lists the copy detection results of seven compared methods for T13-

T17 types including single, multi band compressions and combination of multiple

visual attacks. Cao and Zhu’s method (2009) performs good for single and multiband

compression types; however, it fails to score better results for combined attacks. This

is because, adding the gaussian noise and changing color spectrum would substantially

vary luminance values.

Table 3.24: Copy detection results for T13-T17 transformations

Attacks ST-DCD MFC ST-DCD+ CZ HUA IT HUA
Type Metric (1) (2) MFC(3) (4) (5) (6) +IT(7)

T13
P 87.34 75.28 90.71 75.64 77.65 56.26 81.69
R 82.92 76.24 84.46 72.91 79.52 52.79 80.91

T14
P 85.43 73.46 89.63 70.33 76.51 50.33 79.34
R 81.88 71.05 80.86 67.85 72.97 48.81 76.88

T15
P 57.46 85.64 87.38 50.11 54.09 78.86 80.62
R 51.26 81.27 82.22 45.20 51.12 81.94 81.47

T16
P 45.12 80.59 80.78 38.51 40.56 71.34 75.67
R 43.84 77.16 77.39 41.62 42.81 70.89 72.62

T17
P 31.76 79.44 80.05 28.99 30.94 70.25 76.92
R 32.58 72.38 72.89 30.34 31.55 66.53 69.85

It is observed that, the performance of Hua et al.’s method (2004) is severely

degraded in T16 and T17 types in terms of low precision rates. This is because, noise

and pattern insertions generate different video fingerprints for master and query video

clips; hence, more number of false positives are retrieved from the master dataset,

which results in low precision rates. Itoh et al.’s method (2010) generally scores well

for all five transformations except for multiband compression type in terms of low

recall rate. This is because, different local minimum/maximum significant points

are produced from the power envelopes of query and master contents after applying

multiband compression type.

Among all the methods, method (3) and (7) achieve better accuracy rates for

all T13-T17 types. However, because of the combined utilization of spatio-temporal

dominant color features and cepstral features, method (3) is more accurate and pro-

vides better PR rates compared to method (7). The accuracy rates of method (3)

shown in Table 3.21 are evident to support this viewpoint.

The experimental results indicate that, for all seventeen transformations, method

(3) consistently outperforms all the reference methods. The integrated usage of two

complementary features namely, spatio-temporal DCDs and MFCCs to detect du-
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plicate videos, is the exact reason for the effective performance of method (3). To

summarize, the experimental results prove that, the combination of two complemen-

tary features in method(3) not only enhances the detection performance, but also

widens the coverage to more number of video transformations.

3.5 CBCD System Using Motion Activity and Spec-

tral Descriptors

It is known that, motion activity features contribute an essential information about

a video content. On the other hand, it is stated in the CBCD literature that, copy

detection using only visual features may not be efficient against a wide variety of

transformations (Küçüktunç et al. 2010). Therefore, exploiting multimodal features

for the copy detection task, first enhances the detection accuracy and then conse-

quently extends the coverage to more number of video modifications. By considering

these aspects, this thesis contributes a novel CBCD system, which employs visual

fingerprints derived from motion activity features and acoustic fingerprints extracted

from spectral descriptors, in order to identify the illegal video sequences. Specifically,

the contributions of the proposed copy detection system are given by,

◦ Novel copy detection system using visual-audio features is introduced, compared

to existing visual feature-based CBCD schemes.

◦ An algorithm for computing the spatial distribution of motion activity in terms

of number of active regions is presented.

◦ Informative Motion Activity (MA) and Spectral Descriptive (SD) words are

computed, which efficiently describe a given video content.

◦ Similarity matching using Clustering to speed up the matching task.

The framework of the proposed CBCD system, including the extraction of motion

activity features and audio spectral descriptors followed by the fingerprints fusion is

illustrated as follows.

3.5.1 Proposed CBCD system using motion & audio features

The proposed copy detection framework is shown in Figure 3.20 and the relevant

notations are described in Table 3.25.

Initially, motion activity and audio spectral features are extracted from the master

and pirate video sequences. More precisely, motion activity features include number
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Figure 3.20: Proposed CBCD framework using motion activity & audio features

Table 3.25: Description of notations used in Figure 3.20

Notation Description Notation Description
N Number of master videos G Audio spectral roll-off value
Vi i-th master video in database H Spectral flux of audio signal

A Intensity of motion activity MAj
i j-th MA word of Vi, j ={1,..,m}

B Number of active regions SDj
i j-th SD word of Vi, j ={1,..,m}

C Dominant direction of activity SFP r
Q r-th spectral fingerprint of VQ

D Mean motion vector magnitude MFP r
Q r-th motion fingerprint of VQ

E Audio spectral centroid m Number of MA/ SD words of Vi
F Energy of spectrum p Number of video signatures of VQ

of active regions, motion intensity, dominant direction of activity and the standard

deviation of motion vector magnitude of a frame; while the audio spectral descriptors

include spectral centroid, energy, roll-off and flux. Then the resultant motion activity

and spectral features are further processed and the corresponding Motion Activity

(MA) and Spectral Descriptive (SD) words are computed.

MA words comprehensively represent overall motion activity, whereas SD words

summarize the audio profile of video sequences. To obtain the low-dimensional rep-

resentation of MA and SD words of video sequences, K-means clustering algorithm

is utilized. The resulting cluster centroids are considered as fingerprints of video se-

quences. After this step, clustering based pruned search is performed and the copy

detection results are reported.
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3.5.2 Video fingerprints extraction

The proposed CBCD framework jointly exploits the motion activity features and

audio spectral signatures for detecting the duplicate video clips, which are extracted

as follows.

Motion activity features extraction

In any video content, the motion activity spans from high to low levels. As men-

tioned in Section 3.2.1., MPEG-7 Motion activity descriptor captures pace of action

or intensity of activity in a video segment (Jeannin and Divakaran 2001). As de-

scribed in Equation (3.11), the motion activity descriptor includes the following four

attributes given by, motion intensity (I ), dominant direction of activity (Dir), spatial

distribution of activity (Spatial) and temporal distribution of activity (Temporal).

Motion Intensity (I): This attribute represents an effective temporal description

of a video shot in terms of different intensity levels (Sun et al. 2001). In the proposed

framework, SMV of blocks are utilized for computing motion intensity, as specified in

Equations (3.12) and (3.13). MPEG-7 standard defines motion activity values ranging

from 1-5, based upon the respective SMV values (Jeannin and Divakaran 2001), in

which the quantization thresholds are recommended mainly for MPEG-1 videos, as

shown in Table 3.9. However, the reference video database includes different file

formats such as MPEG-1 and MPEG-4. Therefore, different threshold values are

experimented and finally the threshold values given in Table 3.26 are utilized for

computing the motion intensity in the proposed copy detection system.

Table 3.26: New quantization thresholds used in proposed CBCD task

Activity value Range of SMV
1 0 ≤ SMV <2.5
2 2.5 ≤ SMV < 9.7
3 9.7 ≤ SMV <16.1
4 16.1 ≤ SMV <24.4
5 24.4 ≤ SMV

Dominant Direction of Activity (Dir): In the proposed CBCD framework, the

approximate dominant directions of motion activity are computed in order to improve

the robustness of the copy detection task. Specifically, in the proposed system, the

direction vector (Dir), which indicates the total amount of motion activity in four
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major directions including left, right, down and up is computed using the Equations

(3.16)- (3.20) respectively. The highest value of Dir provides the dominant direction

of motion activity in a given frame.

Spatial Distribution of Activity (Spatial): This attribute represents, whether

the activity is confined to one region or spread across multiple regions (Savakis et al.

2003). As mentioned in Section 3.2.1., the partition of a frame into k × k regions,

plays an important role in predicting the actual no. of active regions in the given

frame. However, smaller values of k eliminates important semantic content, while

larger values of k increases computational load. To tackle this problem, the data set

is experimented with different k values ranging from 2 to 5. Maximum accuracy rate

(85.36%) is achieved at k = 3; therefore, spatial distribution of activity of frames is

computed by segmenting the frames into 3×3 regions. The Algorithm 3.1 described

in Figure 3.5 is enhanced and described in Algorithm 3.4 of Figure 3.21, which accu-

rately computes the number of active regions. More precisely, Spatial Activity Matrix

(SAM) and Mean Motion Distribution (MMD) calculations are elaborately explained

in Algorithm 3.4 of Figure 3.21, which computes number of active regions in a frame.

Further, the direct processing of extracted raw motion activity features is compu-

tationally expensive; hence, K-means clustering is employed to obtain the compact

representation of the resultant motion activity features. Furthermore, motion vectors

provide sufficient feature description, when they are captured at lower frame rates

(Tasdemir and Cetin 2010). Hence, experiments are performed with different frame

rates ranging from 4 to 10 and in this proposed scheme 5 fps is used for extracting

motion features because of its high detection performance.

Spectral features extraction

From the down sampled audio signal, 11.60ms windows with an overlap factor of 86%

using Hamming window function (Roopalakshmi and Reddy Sep-2011) are generated,

as described in Section 3.3.1. Then, spectral features such as centroid, roll-off, en-

ergy and flux are extracted from the short term power spectrum of audio signals, as

specified in Equations (3.23)-(3.26) respectively.

Fingerprint matching

In the proposed system, motion activity and spectral features of video files are grouped

into clusters using K-means clustering. Let Rk and Q be the kth reference and query

video clips; and mpr and mpq be their corresponding motion activity features. In sim-
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Algorithm 3.4: Computing Number of Active Regions in a Frame

1: Calculate Spatial Activity Matrix (SAM) of frame F using the equation,

SAM(F ) =

{
mv(i, j) if mv(i, j) ≥ AMV

0 otherwise
(3.50)

where mv(i, j) is the motion vector magnitude of block (i, j), such that i = { 1,
2, 3, ..., M} and j ={ 1, 2, 3, ..., N}. This SAM computation of F retains only
high activity blocks of F .

2: Segment SAM(F ) into 3×3 non overlapping blocks of size W×H, where W=
M
3

and H= N
3

. The motion activity of k-th region Rk of F is computed as,

Rk(F ) =
W∑
x=1

H∑
y=1

Bm(x, y) (3.51)

where k ∈ {1, 2, 3, ..., 9} , Bm is the m-th block of Rk and m ∈ {1, 2, 3, ...,
W×H}.

3: Extract mean motion distribution (MMD) of Rk of F as follows:

MMD(Rk(F )) =

W∑
x=1

H∑
y=1

Bm(x, y)

W ×H
(3.52)

4: Sort the MMD values of all regions of a frame in the ascending order.

5: Regions with higher MMD values (MMD ≥ α×AMV , where α is set as 2.4)
are treated as active regions of a given frame.

Figure 3.21: Algorithm to compute number of active regions in a frame

ilarity matching tasks, performance of the comparative Manhattan distance measure

is better compared to the simple absolute distance measure. Therefore, the similarity

Simmo between motion activity features of Rk and Q segments is computed using

comparative Manhattan distance measure as given by,

Simmo(Rk, Q) =
m∑
i=1

n∑
j=1

|mpr(i)−mpq(j)|
|mpr(i)|+ |mpq(j)|

(3.53)



Content-Based Video Copy Detection (CBCD) Schemes 91

where m and n indicate size of motion fingerprints of Rk and Q respectively. Then

the resultant Simmo scores are compared against the Confidence Measure(CM1) for

obtaining the matching results. The reference database is experimented with different

confidence thresholds ranging from 0.50 to 0.75 to reduce false positive rates. Better

detection results are obtained for 0.60 threshold, thus it is set as CM1 in the proposed

copy detection task.

Let spr and spq be audio spectral fingerprints of videos Rk and Q respectively.

Different distance measures are tested on the experimental dataset and the results

proved better for squared Euclidean distance measure. Thus, the similarity Simsp

between spectral features of Rk and Q is computed as,

Simsp(Rk, Q) =
a∑

i=1

b∑
j=1

(spr(i)− spq(j))2 (3.54)

where a and b indicate size of spectral fingerprints of Rk and Q respectively. The

Simsp scores are evaluated against the confidence threshold (CM2), which is set as

0.69 based on experimental results.

The final similarity score Finalss between Rk and Q is computed as,

Finalss =

1 if Simmo ≥ CM1& Simsp ≥ CM2

0 otherwise
(3.55)

Based upon Finalss scores, the copy detection results are computed.

3.5.3 Experimental setup and results

The experimental setup of the proposed copy detection framework, including reference

and query dataset construction followed by the detection results are described below.

Reference database and query dataset construction

As mentioned in Section 2.8, TRECVID-2009 Sound & Vision dataset is utilized

for evaluating the performance of the proposed copy detection framework. More

precisely, the reference video database includes 200 hours of video covering a wide

variety of content. The motion vectors are efficient, when they are captured at lower

frame rates (Tasdemir and Cetin 2010); hence, different frame rates ranging from 4-10

are experimented, and 6fps is utilized in the proposed framework for extracting the

motion features because of its high detection accuracy. Table 3.27 lists the visual and

audio transformations used in the proposed CBCD system.
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Table 3.27: List of transformations considered in the proposed CBCD system using
motion and audio features

Type Category Description
T1 Fast forward Double the video speed
T2 Slow motion Halve the video speed
T3 Color change Changing color spectrum
T4 Blurring Blurring by 20%
T5 Brightness change Increase brightness by 25%
T6 Noise addition Add 15% random noise
T7 Pattern insertion Insert text pattern into selected frames
T8 Moving caption insertion Insert moving titles into entire video
T9 Cropping Crop top & bottom frame regions by 15% each
T10 Picture-inside-picture Insert smaller resolution picture into selected frames
T11 Mp3 compression Change audio file format
T12 Single band compression Compress only specific frequency band
T13 Multi band compression Compress different frequency bands independently
T14 Combination of 3 Cropping by 18%, 20% of noise & moving caption

In the experiments, 45 video sequences are selected from the reference database

and fourteen types of transformations listed in Table 3.27 are applied to those 45

videos, in order to generate query video clips. The resulting 630 (45×14) video

sequences are treated as query clips for the proposed copy detection task, where the

duration of these clips vary between 30-45 seconds. Each duplicate video is used to

identify the corresponding video sequence in the master database.

Copy detection results and discussion

The following five methods are implemented for performance evaluation:

(1) Ordinal measure (Hua et al. 2004) (abbreviated as ”OM”);

(2) Tasdemir et al.’s method (Tasdemir and Cetin 2010) (”KT”);

(3) Motion activity features (”MA”);

(4) Audio spectral descriptors (”SD”);

(5) Combination of motion activity and audio spectral features (”MA+SD”).

The methods-(3), (4) and (5) include different combinations of the proposed tech-

niques. More Specifically, in method (3), motion activity features including motion

intensity, dominant directions and spatial distribution of activity are used for the copy

detection task. In method (4), four spectral descriptors including spectral centroid,

signal energy, spectral roll-off and spectral flux are considered for detecting video
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copies. In method (5), both the proposed motion activity and spectral features are

combined and evaluated for identifying the illegal video sequences.

Ordinal measure (method (1)) is one of the widely used global signature in the

CBCD literature (Hua et al. 2004; Kim and Vasudev 2005), which is extracted as

follows. Each video frame is partitioned into 4×4 blocks and normalized average

intensity of blocks are calculated. The blocks are ranked in ascending order according

to their resultant intensity values and ranking order of a block is known as the frame’s

ordinal measure. Euclidean distance metric is used to calculate the similarity between

ordinal measure values of master and query video sequences.

Tasdemir et al.’s method (2010) is based on mean motion vector magnitudes of

video frames, which is implemented as follows: First, frames are sampled at a rate

of 5 frames/sec and motion vector magnitudes of macro blocks are extracted. Then,

normalized average motion vector magnitude of frames are computed and stored as

video signatures. The similarity between motion vector magnitudes of master and

query clips are calculated using L2-norm distance measure.

Table 3.28 lists the detection results of five compared methods for T1-T5 trans-

formations, which demonstrate the improved performance of method (5)(by 36.19%)

when compared to the reference methods. For T2 transformation, method (4) yields

Table 3.28: Copy detection results (in %) for T1-T5 transformations

Transformations OM (1) KT (2) MA (3) SD (4) MA+SD (5)

Fast forward
P 60.10 62.71 65.85 97.89 99.81
R 61.54 69.64 84.37 96.37 97.03

(T1) FM 60.81 65.99 73.96 97.12 98.40

Slow motion
P 71.35 71.87 75.00 90.02 90.02
R 59.18 70.35 87.80 79.48 92.76

(T2) FM 64.69 71.10 80.89 88.56 96.24

Color change
P 59.26 60.01 63.63 99.39 92.45
R 67.79 69.27 84.83 99.40 97.62

(T3) FM 63.23 64.30 72.71 99.39 98.79

Blurring
P 56.86 55.81 57.14 99.69 99.92
R 79.14 72.56 92.30 92.35 91.46

(T4) FM 66.15 63.09 70.58 99.84 99.95

Brightness change
P 56.93 70.15 82.85 90.14 91.18
R 70.19 68.09 75.00 89.92 91.93

(T5) FM 62.86 69.10 78.72 90.02 95.79

poor recall rate compared to method (5). The reason is, spectral features are much

affected by temporal attacks such as slow motion. Method (2) yields poor preci-
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sion rate for blurring (T4) transformation, because lot of false positives are retrieved

from the data set. The global descriptive nature of ordinal measure results in better

performance for blurring (T4) transformation when compared to method (2).

Table 3.29 indicates the detection results of five compared methods for T6-T10

transformations. Table 3.29 results demonstrate the enhanced performance of method

(5) by 35.02%, compared with the reference methods. Method (1) performs poor

for noise addition transformation, because random noise severely affects intensity

values of blocks. Methods (2) and (3) also score poor PR rates for noise addition

transformation due to the noisy nature of raw motion vectors. However methods (4)

and (5) using spectral descriptors are less affected in this category and thus provide

better detection results. For cropping attacks, Ordinal measure scores low results,

because the surrounding black borders on frame regions noticeably increase the false

positive rates.

Table 3.29: Copy detection results (in %) for T6-T10 transformations

Transformations OM (1) KT (2) MA (3) SD (4) MA+SD (5)

Noise addition
P 41.69 42.17 50.00 88.56 92.68
R 40.48 41.18 46.15 89.72 94.74

(T6) FM 41.07 41.66 47.99 89.13 92.79

Pattern insertion
P 79.68 79.82 82.85 99.09 99.96
R 80.24 79.47 85.29 98.80 98.85

(T7) FM 79.95 79.64 84.05 98.94 99.97

Moving caption
P 70.64 74.58 82.50 97.42 98.25
R 71.15 72.94 84.61 98.86 99.92

(T8) FM 70.89 73.75 83.54 98.13 99.95

Cropping
P 68.29 65.83 80.00 99.00 99.98
R 53.58 69.98 82.75 92.66 93.50

(T9) FM 60.04 67.84 81.35 95.72 96.63

Picture-inside-picture
P 61.54 60.17 95.19 94.44 96.04
R 43.67 66.73 74.54 90.26 99.01

(T10) FM 51.09 63.28 85.41 92.30 99.50

Table 3.30 shows the detection results of five compared methods for T11-T14

transformations. Ordinal measure gives very poor detection results for T14 transfor-

mation (3 combined). The reason is, the global descriptors are less robust against

region based attacks such as cropping. Motion activity features are less affected by au-

dio transformations such as Mp3 and band compressions; hence, Method(3) provides

better detection results for T11-T13, when compared to that of method (4). However,

method (5) outperforms method(4) by yielding better PR rates for T11-T14 trans-
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formations; joint utilization of motion and audio fingerprints for CBCD task, is the

exact reason for this better performance of method(5). So, Table 3.30 results prove

the improved accuracy of method (5) by 30.18% compared to the reference methods.

Table 3.30: Copy detection results (in %) for T11-T14 transformations

Transformations OM (1) KT (2) MA (3) SD (4) MA+SD(5)

Mp3 compression
P 73.65 79.91 83.72 67.22 99.17
R 72.58 68.29 70.51 57.29 97.35

(T11) FM 73.11 73.64 76.54 61.85 98.25

Single-band comp.
P 80.06 79.62 83.62 73.44 98.37
R 73.64 75.36 80.61 50.28 97.82

(T12) FM 76.71 77.43 82.08 59.69 98.09

Multi-band comp.
P 66.28 69.16 85.05 70.36 91.74
R 61.15 61.19 81.64 52.22 93.82

(T13) FM 63.61 64.93 83.31 59.94 92.76

Combination of 3
P 58.33 60.93 80.65 98.96 99.01
R 51.29 64.74 79.83 98.21 99.29

(T14) FM 54.58 62.77 80.23 98.58 99.64

Tables 3.28-3.30 results indicate that, the Method(4) using audio spectral descrip-

tors is scoring very good results compared to the method(3), which is based on motion

activity features. Specifically, method(4) achieves noticeably improved PR rates for

transformations such as Color change and Blurring when compared to the methods(3)

and (5). In other words, Table 3.28-3.30 results are favoring the audio spectral fea-

tures for the CBCD task compared to the motion activity signatures. However, this

observed phenomenon might be wrong due to these reasons:

i) First of all, audio spectral descriptors are not much affected by visual attacks

such as color change and blurring; hence, method(4)(’SD ’) performs well for all

five transformations compared to the methods (3) and (5) (’MA+SD ’).

ii) on the other hand, motion activity signatures are greatly influenced by attacks

such as Fast forward and slow motion, hence methods(3) and (5), employing

motion activity descriptors provide poor scores compared to that of method (4).

iii) However, Mp3 and band compressions significantly alter the audio spectral de-

scriptors, hence method (3) achieves poor PR rates for T11-T13 transforma-

tions, compared to the PR rates of the methods (3) and (5) respectively.

iv) Though motion activity features and acoustic signatures have their own benefits

as well as limitations, they complement each other very well.



Content-Based Video Copy Detection (CBCD) Schemes 96

v) Therefore, the integrated utilization of motion activity and audio signatures for

the CBCD task, not only improves the detection accuracy, but also covers more

number of video transformations; The promising results of method (5) for all

T1-T14 transformations provide good evidence to support this viewpoint.

Computational cost comparison

To evaluate the effectiveness of proposed method, experiments are conducted on a

PC with 2.8GHz CPU and 3 GB RAM, where the code is implemented in MATLAB.

The total computational cost of all five methods including signatures extraction and

similarity matching are shown in Table 3.31. The computational costs are evalu-

ated, based on detecting a 35s query clip within 50 hours of master database. The

Table 3.31: Comparison of computational cost

Computational Cost OM KT MA SD MA+SD
(1) (2) (3) (4) (5)

Signature extraction 170.95 223.04 187.98 111.56 196.41
Signature matching 57.43 42.02 34.38 1.27 35.68
Total cost 228.38 265.06 222.36 112.83 232.09

total computational cost of method (5) is slightly high compared to method (1). Al-

though method (4) is the most cost effective method, its detection results are poor

for audio transformations, when compared to that of method (5). Thus results prove

that, method (5) significantly improves detection accuracy and widens the coverage

to more number of transformations at the cost of slight increase in computational

time. If feature extraction and matching procedures are implemented in parallel,

then computational time of proposed scheme can be substantially reduced.

The experimental results prove that the proposed techniques improve detection

accuracy by 30-35% compared to reference methods. Method (5), which combines

motion activity and audio features, provides consistently good performance for all

fourteen types of video transformations. The reason for the improved performance

of proposed method is, the integrated usage of robust spectral and spatio-temporal

motion activity features for the copy detection task.

3.6 Summary

This chapter discusses scholarly contributions towards the content-based video copy

detection (CBCD) problem, in which content-based features such as visual, motion
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activity and audio fingerprints are utilized for detecting video copies. More precisely,

first this chapter introduces two CBCD schemes, that employ compact and computa-

tionally efficient visual fingerprints derived from Dominant Color Descriptors (DCDs)

of MPEG-7 standard. Some of the significant contributions of the proposed CBCD

systems are simple DCDs extraction scheme and adaptive signature pruning mecha-

nisms. Though the two proposed CBCD schemes (here, DCDs-based schemes), are

providing good PR rates; yet, they are less effective against transformations such as

Color change and Camcording. To tackle this problem, DCDs based features could be

integrated with motion activity or acoustic fingerprints, which in turn considerably

improves the detection accuracy.

Second, this chapter proposes a novel copy detection system, which integrates

different attributes of MPEG-7 Motion Activity Descriptor such as motion intensity,

dominant direction and spatial distribution of activity for detecting illegal video se-

quences. Describing the spatio-temporal motion activity of a video sequence with the

help of various attributes of Motion Activity Descriptor is one of the important con-

tribution of the proposed copy detection system. However, motion activity features

are less effective against transformations such as fast forward. Therefore, the joint

utilization of motion activity features with visual as well as audio descriptors, might

enhance the robustness of the copy detection task.

As mentioned in Section 2.1.3, state-of-the-art CBCD techniques are employing

only visual features of videos for detecting video copies. However, audio content is

an important information source of a video sequence, which is less affected in most

of the illegal captures, compared to the visual data. To handle these issues, this

chapter thirdly introduces, two CBCD methods, which utilize acoustic fingerprints

derived from MFCC’s and spectral descriptors for identifying the duplicate video se-

quences. Computing compact spectral descriptive words and clustering-based pruned

similarity matching are some of the significant contributions of the proposed (audio

fingerprints-based) CBCD techniques. However, audio signatures are less effective

against modifications such as Mp3 and band compressions.

Further, if audio is available, then the joint utilization of visual-audio fingerprints

for the CBCD task, not only enhances the copy detection performance, but also

extends the coverage to more number of video attacks. Based on this aspect, this

chapter fourthly introduces a robust CBCD framework, which employs visual finger-

prints derived from DCDs and audio signatures extracted from MFCCs for detecting

illegal videos. RGB-Feature image computation, spatio-temporal DCDs extraction

and fusion strategies are some of the major contributions of the proposed CBCD

framework.
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Furthermore, this chapter fifthly introduces a novel CBCD system, which inte-

grates motion activity features and audio spectral descriptors for detecting pirate

video sequences. Computing number of active regions in a frame and motion activity

words are some of the principal contributions of the proposed CBCD system. The

two proposed CBCD frameworks (here, visual-audio fingerprints based methods), no-

ticeably improve the detection accuracy and subsequently address more number of

video transformations. However, due to the utilization of multimodal features, the

fingerprint extraction cost of the proposed methods may be slightly high. To tackle

this problem, fingerprints extraction and matching tasks could be implemented in

parallel fashion, which in turn may considerably reduce the computational cost.

Experiments evaluated on different datasets such as TRECVID and Open Video

Project datasets indicate the consistent performance of the proposed CBCD schemes

compared to the reference methods against a wide variety of video transformations.
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Chapter 4

Video Copy Tracking/Registration

Methods

Tracking piracy requires pirate video detection followed by the exact frame alignments

of the master and pirate video sequences, in order to estimate the geometric distor-

tions and illegal capture location in a theater. This thesis describes the scholarly

contributions towards the video copy registration problem in this chapter. Precisely,

this chapter attempts to solve the shortcomings of the existing registration methods

mentioned in Section 2.2.2., by presenting various video copy registration frameworks.

The proposed registration methods exploit content-based multimodal finferprints for

obtaining the spatial as well as temporal alignments of the pirate video with the

master sequence, which are detailed below.

4.1 Temporal Registration of Video Copies Using

Visual-Audio Features

This chapter first targets the temporal registration of a pirate video with the master

sequence, by introducing a new temporal alignment scheme, which utilizes visual-

audio fingerprints. More precisely, the main contribution of the proposed registration

scheme is, to provide accurate frame-to-frame mappiings of the two video sequences by

employing compact motion profile derived from motion vector magnitudes and audio

profile extracted from MFCCs (Park 2010) . Further, the proposed framework also

introduces a novel selection algorithm for selecting the most similar segment of master

sequence with the help of segmentation-based dynamic programming technique, which

noticeably reduces the frame matching cost. Furthermore, a new frame matching

scheme exploiting multimodal features is contributed, which significantly reduces false

100
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frame matches. The proposed temporal registration framework including motion

and acoustic profiles extraction followed by frame matching based on multimodal

fingerprints is illustrated below.

4.1.1 Proposed temporal registration framework

The block diagram of the proposed registration framework is shown in Figure 4.1,

which comprises of two phases: First, compact motion and acoustic profiles are de-

rived from the master and pirate video sequences. Second, the resultant temporal

signatures of the two video sequences are aligned using dynamic programming, to

achieve accurate frame-to-frame matches.
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dynamic programming 

2 . . . 
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Figure 4.1: Proposed temporal registration framework using multimodal features

More precisely, when a duplicate video is given, the master sequence is divided into

non-overlapping segments of size equal to the copy clip. Then, the similarity between

the query clip and the windowed segment is computed using the 1-D signatures derived

from motion and acoustic profiles of video sequences. The windowed segment with

minimum dissimilarity score is indicated as the candidate segment of the master video

and it is further analyzed using dynamic programming to get temporal frame-to-frame

alignments of the two video contents.

Problem formulation: Let M = {xi| i = 1, 2, ...,m} be the master video sequence,

where xi is ith frame of the master sequence. Let Q = {yj| j = 1, 2, ..., n} be the copy

clip, where yj is the jth frame of the video copy video and m >> n. Here Q is derived
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from M , after applying different video transformations such as blurring, rotation,

scaling and Mp3 compression. Here, the goal is to determine the exact location of

the subsequence R = {rk| k = 1, 2, ..., i + n− 1} in M , such that Q matches M and

as a result frame-to-frame matches of Q and R can be obtained.

Fingerprints extraction

Direct comparison of feature sequences of two video contents is computationally ex-

pensive, since the features are multi-dimensional in nature. Therefore, in the proposed

system, a video segment is compactly denoted using 1-D temporal signatures, which

are easy to compute as well as robust against various video modifications. The com-

pact temporal signatures including motion and acoustic profiles of video sequences

are computed as follows.

Compact motion profile extraction: Motion vectors are popular temporal fea-

tures; hence they are widely used in different video applications such as video sum-

marization (Divakaran et al. 2001) and segmentation (Koprinska and Carrato 2001).

However, as mentioned in Section 1.5., raw motion vectors are noisy in nature; there-

fore huge amount of information is needed for describing the motion content of a

video. In addition, motion vector magnitudes describe the temporal information of

a video content, yet they fail to illustrate spatial distribution of motion activity in

the given video sequence. In order to tackle these issues, the proposed framework

computes the compact motion profile of the video sequence, by integrating the tem-

poral motion information and spatial distribution of motion activity. Specifically,

the two attributes of MPEG-7 Motion Activity descriptor namely, motion intensity

(I ) and spatial distribution of activity (Spatial) as illustrated in Section 3.2.1 are

exploited, for obtaining the motion profile of the video sequences. More specifically,

as described in Equation (3.13), the Standard deviation of Motion Vector magnitude

(SMV) of macro blocks are utilized to compute the motion intensity in a video frame.

Further, spatial distribution of motion activity indicating the number of active regions

in a frame, is computed using the Algorithm 3.4 specified in Figure 3.21. Then, the

two resultant motion activity features are combined into 1-D motion signatures with

the help I-order Z-curves and consequently denoted as motion profile of the video

sequence.

Compact acoustic profile extraction: MFCCs are highly robust and discrimi-

native features, thus they are widely used in video parsing and indexing applications

(Tsekeridou and Pitas 2001). Further, MFCCs consider nonlinear property of the
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human hearing system with respect to different frequencies, hence they are popularly

used in automatic speech recognition systems (Wang et al. 2000).

In the proposed framework, MFCCs are computed using the discrete cosine trans-

form of the log amplitude Mel-frequency spectrum, as illustrated in Section 3.5.2.

However, raw MFCCs are noisy and may contain redundant data. To handle this

discrepancy, MFCC variance values are employed to generate 1-D acoustic profile of

video contents.

Introduction of dynamic programming: Dynamic programming is an effective

recursive technique, which is widely popular in sequence alignments and comparison

methods (Sankoff 2000). Precisely, the given two feature sequences can be optimally

aligned using dynamic programming as follows:

a) Computing minimum score matrix: 2-D score matrix computation is needed for

specifying the optimal alignment between the two sequences. Specifically, an

element SM(i, j) of score matrix SM provides minimum matching cost to match

the subsequences [0,1,.., i] with [0,1,.., j], which can be recursively computed as,

SM(i, j) = Min


SM(i− 1, j − 1)

SM(i, j − 1) +Wh

SM(i− 1, j) +Wv

+D(i, j) (4.1)

where Wh, Wv are the penalties associated with horizontal and vertical direc-

tions respectively. The D(i, j) is the difference between two feature sequences

associated with the elements i and j.

b) Determining the optimal alignment path: A trace-back step starting from the

diagonal element to the top left element is performed to compute the optimal

frame-to-frame matches.

Segmentation-based dynamic programming: The computational complexity

of dynamic programming to align two sequences of size a and b is O(ab); hence, if

the sequence size increases, the computational complexity also increases. In order

to solve this problem, only the frame alignments between the pirate clip and the

candidate segment are computed instead of the complete master sequence. Precisely,

the candidate segment of the master sequence is selected using the Algorithm 4.1,

specified in Figure 4.2, and it is aligned with the pirate video, so that the temporal

frame alignments of two video sequences can be obtained.
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Algorithm 4.1: Candidate Segment Selection

a: Segment the master sequence into consecutive non-overlapping blocks of length
equal to the copy video.

b: Compute compact motion and audio profiles for each segment.

c: Let a master sequence MS = {Si|i = 1, 2, ...,m}, where Si is the ith segment
and m is the total segments of the master video. Here, each segment S1 is
represented using compact motion and audio signatures as,

S1 = {mfi ∪ afj}, i = [1 : n]; j = [1 : p] (4.2)

where mfi is the ith motion based signature and afj is the jth MFCCs based
signature of S1 respectively.

d: Let the copy video CV is compactly represented using 1-D motion and acoustic
signatures as,

CV = {qmfk ∪ qafr}, k = [1 : n]; r = [1 : p] (4.3)

where qmfk is the kth motion based signature of CV and qafr is the rth MFCCs
based signature of CV .

e: The dissimilarity (dsim) between the query clip and the kth segment of master
sequence is computed using Manhattan distance as follows,

dsim(Sk, CV ) =
n∑

i=1

|mfk
i − qmfi|+

p∑
j=1

|afk
j − qafj| (4.4)

where Sk is the kth segment of MS. n and p indicate the size of motion and
audio feature sequences of video contents respectively.

f: Select the segment with lowest dsim value (dsim <=threshold) as the candidate
segment of master sequence. The threshold value is set as 0.38, after executing
experiments for different values varying between 0.30 and 0.60.

Figure 4.2: Candidate segment selection algorithm

Frame alignments using visual-audio fingerprints

Once the candidate segment is selected, then the motion as well as audio feature

sequences of query and candidate segments are matched separately using dynamic

programming in order to achieve accurate frame-to-frame alignments, which is illus-

trated below.
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Motion features based frame matching: Let CS be the candidate segment of

master sequence and QS be the query segment. Let mfk and qmfk be the motion

profiles of segments CS and QS respectively, such that k = {1, 2, ..., n} . The dis-

similarity (Dismot) between the motion profiles of CS and QS segments is computed

using comparative Manhattan distance measure as follows,

Dismot(CS(i), QS(i)) =
|(mf(i) − qmf(i))|
|(mf(i))|+ |(qmf(i))|

(4.5)

where i = {1, 2, ..., n} and n indicates total motion signatures. Then, the score matrix

SM is computed using Equations (4.1) and (4.5). After this step, the optimal align-

ments between CS and QS segments are computed and consequently the resultant

frame-to-frame matches based on motion signatures (FMmot) are calculated.

MFCCs based frame matching: Let afk and qafk be the MFCCs based signa-

tures of CS and QS segments respectively such that, CS ∈ { afk| k = 1, 2, ..., p}
and QS ∈ { qafk| k = 1, 2, ..., p}, where p indicates total audio signatures. Then,

the dissimilarity (Disaud) between audio signatures of CS and QS is computed using

squared Euclidean distance as follows,

Disaud(CS(j), QS(j)) = |(af(j) − qaf(j))
2| (4.6)

where j = {1, 2, ..., p}. After this step, the optimal alignments between audio profiles

of CS and QS segments are computed using Equations (4.1) and (4.6). Then, the

resultant frame-to-frame mappings based on audio signatures (FMaud) are calculated.

Decision fusion: Final frame matches (Finalfm) between the query and candidate

segments are computed as,

Finalfm = |FMmot ∩ FMaud|. (4.7)

where Finalfm indicates the frames mapped by both the motion as well as audio

fingerprints of CS and QS segments respectively.

4.1.2 Experimental setup

The proposed temporal registration framework is evaluated on TRECVID-2008 and

2009 Sound and Vision data sets. Precisely, the video database includes totally 100

hours of video (50 hours of 2008 data + 50 hours of 2009 data) covering a wide variety

of content. All the video clips are converted into uniform format: 352×288 pixels and
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5 frames/sec. Table 4.1 lists the different types of video transformations considered

in the proposed registration framework such as geometric, temporal, filtering, audio

and combined transformations. 50 video clips are randomly selected from the master

Table 4.1: Transformations considered in the proposed registration scheme

Transformation Type Description
Category

Geometric
Rotation Rotating by 15◦ to 25◦

Cropping Crop top & bottom regions by 20% each
Flipping Horizontal flip by 20◦-80◦

Temporal
Fast forward Double the video speed
Slow motion Halve the video speed

Pattern
Pattern insertion Insert text pattern into selected frames
Picture-in-picture Insert smaller resolution picture
Moving caption Insert moving titles into entire video

Filtering
Blurring Blurring by 28%
Noise addition Add 15% gaussian noise
Contrast change Increase contrast by 20%

Scaling
Zooming in Zoom in to the frame by 13%
Resolution change Change frame resolution to 150×120 pixels

Audio
Mp3 compression Change audio file format
Single band comp. Compress only specific frequency band
Multi band comp. Compress different frequency bands

Combined 3 combined Cropping by 18%, 20% of noise
& moving caption

video database, where the duration of these clips vary from 20-52 seconds. Seventeen

types of video transformations listed in Table 4.1 are applied to the 50 selected video

clips to generate the query dataset. The resulting 850 (50×17) video sequences are

treated as query video clips for the proposed temporal registration task.

Overview of methods evaluated: The following six methods are implemented

for evaluating the registration performance:

(1) The motion profile based matching without sliding window (’MV’);

(2) The motion features based matching with sliding window (’MV+SW’);

(3) MFCCs based matching without sliding window (’MFCC’);

(4) MFCCs based matching with sliding window (’MFCC+SW’);

(5) Chupeau et al.’s method (2006) (’CH’);

(6) Motion profile+ MFCCs+ sliding window (’ALL’);

The methods (1)-(4) and (6) evaluate different combinations of the proposed tech-

niques. Methods (1) and (3) utilize different video fingerprints (namely motion profile
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and MFCCs) to perform temporal alignment of two video sequences. Methods (2)

and (4) are implemented to measure the effect of sliding window technique for the

proposed registration task.

In method (1), the motion profile of the query clip is matched with the corre-

sponding signatures of the entire master sequence (i.e. query clip is mapped with all

segments of the master video). In method (2), sliding window mechanism is used to

map the motion features of the query segment with the respective features of the can-

didate segment. 1-D MFCC signatures of query video are matched with the acoustic

fingerprints of the entire master video sequence in method (3). In method (4), sliding

window approach is utilized to match the query MFCC features with the respective

features of the candidate segment.

Chupeau et al. (2006) employed color histograms for computing frame alignments

between the query and master video sequences, which is executed as follows: color

histograms (of size 512 bins) are obtained from consecutive video frames. Then, Eu-

clidean distance between color histograms of consecutive frames are used as temporal

fingerprints of video sequences.

Method (6) is implemented to assess the performance of proposed registration

framework, that exploits multimodal features for aligning frames. In method (6),

both the motion and MFCC signatures of query clip are matched separately with the

corresponding features of the candidate segment in order to get accurate frame-to-

frame alignments.

4.1.3 Registration results and discussion

The registration performance of six compared methods for different video transfor-

mations are discussed as follows.

Geometric and scaling transformations: Table 4.2 shows the registration ac-

curacy of six compared schemes/methods for geometric and scaling categories, which

include rotation, cropping, flipping, zooming in and resolution change transforma-

tions. Methods (3), (4) and (6) generally perform well, when compared to methods

(1), (2) and (5), because audio signatures are less affected visual attacks.

There is a slight improvement in the registration accuracy (by 3.2%) of method

(2), compared to that of method (1). The reason for this enhancement is, when the

sliding window scheme is employed, false positive rate is reduced. Similarly, method

(4) slightly enhances the registration accuracy compared to method (3)(by 1%), due

to the inclusion of sliding window technique, which decreases false positives.

Method (6) performs better for all six transformations by improving the regis-
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Table 4.2: Perfectly registered frames (in %) for geometric and scaling transformations

Transformations MV MV+SW MFCC MFCC CH ALL
Category Type (1) (2) (3) + SW(4) (5) (6)

Geometric
Rotation 54.45 58.67 91.82 91.82 58.83 93.29
Cropping 53.59 59.31 90.71 90.85 49.62 92.71
Flipping 46.72 50.77 90.63 91.69 50.07 94.68

Scaling
Zooming in 52.61 52.99 91.56 92.18 48.85 92.49
Resolution 57.61 59.45 89.57 90.37 49.26 93.18

tration accuracy (up to 41.9%) compared to the reference methods. Integration of

both motion and audio features for the registration task, is the exact reason for its

improved performance. On the other hand, Chupeau et al.’s method yields poor re-

sults for flipping and zooming transformations. The reason for the poor performance

of method (5) is, the limited capabilities of color histograms against region-based

transformations.

Temporal and caption transformations: Table 4.3 shows the registration ac-

curacy of six compared methods for temporal and caption based categories, which

include slow motion, fast forward, pattern insertion, picture-in-picture and moving

caption transformations. Method (5) gives poor results for caption based transfor-

mations. This is because, inserting text patterns would substantially change the

histogram based signatures. However, the proposed methods using MFCC features

(methods (3), (4) and (6)) are less affected by this category of transformations.

Table 4.3: Perfectly registered frames (in %) for temporal and caption transformations

Transformations MV MV+SW MFCC MFCC CH ALL
Category Type (1) (2) (3) + SW(4) (5) (6)

Temporal
Slow motion 53.08 54.96 65.71 66.77 51.63 90.83
Fast forward 45.15 48.27 62.93 62.93 50.74 88.75

Caption
Pattern ins. 61.57 65.15 90.53 90.62 45.71 91.03
Pic-in-pic 49.57 53.64 91.78 92.46 48.94 92.85
Moving cap. 53.02 55.25 89.96 90.05 46.68 91.94

It is observed that the method (6), which combines MFCC and motion features

for frame matching, significantly improves registration accuracy by 40-45% for all

five transformations listed in Table 4.3. Specifically, for fast forward transformation,

method (6) performs well and significantly increases registration accuracy up to 43.6%

when compared to the reference methods.
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Audio and filtering transformations: Table 4.4 shows the registration perfor-

mance of six compared methods for audio and filtering categories. Audio category

includes mp3, single band and multi band compressions, while filtering category in-

cludes blurring, noise addition and contrast change transformations.

Table 4.4: Perfectly registered frames (in %) for audio, filtering & combined types

Transformations MV MV+SW MFCC MFCC CH ALL
Category Type (1) (2) (3) + SW(4) (5) (6)

Audio
mp3 comp. 75.64 75.94 56.66 57.64 60.23 90.46
Single band 78.24 79.24 61.16 61.16 62.82 92.38
Multi band 76.06 76.06 61.63 61.97 61.56 91.57

Filtering
Blurring 57.70 59.31 78.59 79.38 62.77 90.34
Noise 52.91 56.18 85.34 85.98 56.98 92.49
Contrast 62.74 59.88 84.74 82.62 51.35 91.37

Combined 3 combined 41.68 45.16 80.67 82.56 42.85 89.56

The registration accuracy of only MFCC based methods (method (3) and (4))

degrade slightly for audio transformations. This is because the spectral descriptors

are much affected by single and multi band compressions. The motion features are

much affected by filtering attacks such as noise addition, which in turn reduces the

registration rates of methods (1) and (2) for filtering transformations. The Table 4.4

results demonstrate the improved performance of method (6) (up to 33.3%) for all

seven transformations compared to the reference method.

Computational cost comparison: To evaluate the effectiveness of the proposed

method, the code is implemented in MATLAB using a PC with 3GB RAM and

2.8GHz CPU. The total computational cost of all six methods including signatures

extraction and matching are shown in Table 4.5. The computational costs are mea-

sured using 24s query clip and 2944s master sequence for temporal registration. Pre-

cisely, method (1)-(6) take 234.63s, 177.58s, 150.36s, 103.54s, 182.09s and 173.06s

respectively to register a query clip of duration 24s with the master sequence.

The signature matching cost of method (2) is reduced drastically (nearly 96.5%)

when compared to that of method (1). The reason for this drastic reduction is, in

method (2) only the candidate segment motion features are matched with the query

clip features using sliding window scheme. Thus, method (2) reduces the computa-

tional time by 25% compared to method (1). There is a huge reduction (nearly 97.8%)

in the fingerprint matching cost of method (4), when compared to that of method

(3). This is because, in method (4) the MFCC features of query video are matched
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Table 4.5: Comparison of computational cost (in seconds)

Computational Cost MV MV+SW MFCC MFCC CH ALL
(1) (2) (3) + SW(4) (5) (6)

Signature extraction 176.95 175.57 103.98 102.49 156.41 171.39
Signature matching 57.68 2.02 46.38 1.06 25.68 1.67
Total cost 234.63 177.58 150.36 103.54 182.09 173.06

only with that of the candidate segment instead of the complete master video. Hence,

method (4) reduces the computational cost by 34% when compared to method (3).

The total computational cost of method (6) is slightly high compared to methods

(2)-(4). Although method (4) is the most cost effective method; however, its regis-

tration results are poor for audio transformations, when compared to that of method

(6). Thus Table 4.5 results prove that, method (6) significantly improves detection

accuracy by 25.6% and extends the coverage to more number of transformations at

the cost of slight increase in computational time.

The experimental results demonstrate the improved registration accuracy of the

proposed methods compared to the reference method. The reason is, the integration

of visual and acoustic features provide accurate temporal registration with reasonable

robustness against a wide variety of video transformations. In this way, method (6)

consistently provides better performance for all seven categories of video transforma-

tions compared to the reference methods.

4.2 Spatio-Temporal Registration Framework Us-

ing Visual Features

Spatio-temporal frame alignment of the illegal video with the master content is pre-

requisite, so as to estimate the geometric distortions and camcorder capture location

in a theater. Therefore, followed by the temporal registration scheme, this chap-

ter concentrates on spatio-temporal alignment of the pirate video with the master

sequence. Precisely, a novel spatio-temporal registration framework is contributed,

which employs robust visual signatures derived from SURF (Bay et al. 2008) de-

scriptors. Further, the proposed framework utilizes 1-D SURF signatures extracted

from SURF key points for the temporal alignment task, which are compact com-

pared to the current multi-dimensional SURF signatures (Roth et al. 2010; Zhang

et al. 2010). Furthermore, sliding window based dynamic programming technique is

utilized to decrease the fingerprint matching cost of the proposed framework. The
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proposed spatio-temporal registration framework including temporal and geometrical

frame alignments are described as follows.

4.2.1 Proposed registration scheme using visual features

The proposed spatio-temporal registration framework is shown in Figure 4.3, which

comprises two phases: temporal and geometric frame alignments. In the first phase,

when a query video is presented, the master sequence is segmented using a sliding

window of size equal to pirate clip. After this step, the similarity between each win-

dowed segment and the query video is computed using 1-D SURF signatures. Then,

the windowed segment with minimum distance score, is indicated as Most similar

segment of the master sequence. Consequently, optimal frame-to-frame alignments

of the pirate video with the Most similar segment are computed using dynamic pro-

gramming technique.
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Figure 4.3: Proposed spatio-temporal registration framework using visual features

In the second phase, SURF descriptors of temporally mapped frames are aligned

by means of enough key points, to obtain robust geometrical alignments. Temporal

and geometric alignments of the pirate video with the Most similar segment are

detailed below.
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Temporal alignment of frames

In the proposed framework, 1-D SURF signatures are employed for implementing the

temporal registration task described as follows.

Fingerprints extraction: SURF is an interest point based feature (Bay et al.

2008), which is popularly employed in the CBCD domain to identify duplicate video

clips (Roth et al. 2010; Zhang et al. 2010). SURF descriptor represents each key/interest

point using a higher dimensional feature vector, which is typically 64 integers/interest

point. However, each frame may contain multiple interest points; therefore, there

could be too much of information to index and search. Further, direct comparison

of SURF descriptors across all frames would be computationally expensive. On the

other hand, robust visual features illustrating both temporal and spatial contents are

needed to obtain accurate frame-to-frame alignments.

In order to tackle these problems, the proposed system computes 1-D SURF sig-

nature by combining both the spatial and temporal information. More specifically, a

video frame is divided into n × n regions and the 1-D SURF signature is calculated

as the mean value of region-wise count of SURF key points of a frame. However, the

segmentation of a frame into k× k regions, plays an important role in predicting the

registration accuracy. In this research work, k is set as 3, after executing experiments

for different k values ranging from 2-5.

Sliding window-based dynamic programming: The computational complexity

of dynamic programming to map two sequences of size N and M is O(NM); hence

if sequence size increases, then the performance of the algorithm decreases. In or-

der to overcome this discrepancy, frame matching between the query video and the

Most similar segment is performed instead of the entire master sequence. Figure 4.4

shows Algorithm 4.2, which is used to select the Most similar segment of the master

sequence.

Temporal frame alignments using dynamic programming: Let CS be the

Most similar segment of the master sequence and QS be the query clip. Let SF k
cs

and QSF k be the 1-D SURF signatures of segments CS and QS respectively as given

by,

CS ∈ {SF k
cs}nk=1 (4.12)

QS ∈ {QSF k}nk=1 (4.13)
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Algorithm 4.2: Most Similar Segment Selection

1: Segment the master sequence into overlapping blocks of length equal to the
query clip.

2: Extract 1-D SURF signatures for each segment.

3: Let a master sequence
MS = {s1, s2, s3, .., sm}, (4.8)

where si is the ith segment and m is the total segments of MS. Here, the 1-D
SURF signatures of si are denoted as,

si ∈ {SF k
i }nk=1, (4.9)

where SF k
i is kth visual signature of segment si.

4: Let QS be a query clip and the 1-D SURF signatures of QS are denoted as,

QS ∈ {QSF k | k = 1, 2, ..., n} (4.10)

where QSF k is kth visual signature and n is total SURF signatures of QS.

5: The similarity simseg between QS and the segment si is computed using Man-
hattan distance as follows,

simseg(si, QS) =
n∑

k=1

|SF k
i −QSF k| (4.11)

6: A master segment with minimum simseg value (i.e. simseg ≤ threshold) is
selected as the Most similar segment of MS. In this work, the threshold is
set as 0.48, after implementing experiments for different values ranging from
0.30-0.60.

Figure 4.4: Most similar segment selection algorithm using sliding window

The distance between the visual signatures of CS and QS is computed using com-

parative Manhattan distance as follows,

distsurf (CS(j), QS(j)) =
|SF j

cs −QSF j|
|SF j

cs|+ |QSF j|
(4.14)

where j = [1 : n] and n is the total SURF signatures of video segments. Then

score matrix SM is calculated using Equations (4.1) and (4.14). After this step, the

optimal alignment path is determined and Temporal Frame Alignments (TFA) based
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on SURF signatures is calculated as,

TFA ∈ {{cvx, qvy}, 1 ≤ x ≤ n, 1 ≤ y ≤ n} (4.15)

Here, cvx and qvy indicate the frame matches of Most similar segment and query

video respectively.

Geometric alignment of frames

Performing geometric alignment across all temporally aligned frames is not feasible

due to computational load. Furthermore, all video frames may not provide essential

key points to enable accurate geometric registration.

In order to tackle these issues, a small set of representative frames are utilized

for the geometric registration framework. The SURF descriptors and the score ma-

trices computed for the temporal registration provide important guidelines to select

the representative frames. More specifically, frame pairs with lower distance score

are considered and mapped in terms of their key points, so as to provide accurate

pixel correspondences of frames. Two control points are mapped, only if the squared

Euclidean distance between their feature vectors is minimum. Figure 4.5 shows the

sample Most similar segment and query clip frames, which are geometrically mapped

in terms of their key/interest point pairs. Here, query video is generated by applying

random noise transformation.

Figure 4.5: Pairs of matched interest points of Most similar segment(left) and pirate
(right) video frames. Here, random noise transformation is applied for creating the
pirate video.
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4.2.2 Experimental setup and results

Master database and query dataset construction: The proposed spatio-temporal

registration framework is validated on 100h of TRECVID-2009 Sound and Vision

data, plus another 30h of real data comprising camcorded copies of master video se-

quences. All the video clips are converted into uniform format:352×288 pixels and

15fps using resampling technique. Table 4.6 lists the video transformations used in the

proposed framework, which cover most of the manipulations specified in TRECVID-

2009 copy detection task.

Table 4.6: Transformations considered in the proposed framework using visual fea-
tures

# Category Description
T1 Rotation Rotating by 15◦-20◦

T2 Random noise Add 20% gaussian noise
T3 Blurring Blur by 21%
T4 Brightness change Increase brightness by 15%
T5 Cropping Crop top & bottom regions by 25% each
T6 Picture-in-picture Insert smaller resolution picture
T7 Zoom in Zoom in to the frame by 18%
T8 Slow motion Halve the video speed
T9 Fast forward Double the video speed
T10 Pattern insertion Insert text pattern into selected frames
T11 Moving caption Insert moving titles into entire video
T12 3 combined 20% cropping, 15% noise & moving caption
T13 5 combined 17% noise, 20% blurring, 17% brightness,

cropping & pattern insertion

From the master database, 45 video clips of duration 20-45s are randomly selected

and transformations listed in Table 4.6 are applied to generate the query dataset. In

addition, 48 camcorded copies of duration 35-115s are generated from 25 master

video sequences. Thus, the resulting 633 ((45×13)+ 48) video sequences are treated

as query clips for the proposed temporal registration task. Geometric registration is

implemented on a set of 32 representative frames selected from the temporally aligned

query and candidate segments.

Evaluated methods: The accuracy of the following three methods are evaluated:

(1) 1-D SURF signatures (abbreviated as ’SURF’);

(2) Chupeau et al.’s method (2006) (’CHE’);

(3) 1-D SURF signatures + sliding window (’ALL’);
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The methods (1) and (3) evaluated different combinations of the proposed tech-

niques. In method (1), 1-D SURF signatures of the query video are mapped with

respective signatures of the entire master sequence (i.e. query clip is matched with

all segments of the master sequence).

Chupeau et al.’s method (2006) uses color histograms for computing frame-to-

frame correspondences between the query and master video sequences. In this method,

the distance between color histograms of successive frames are used as temporal fin-

gerprints of video sequences. Method (3) uses sliding window mechanism to align

SURF signatures of the query segment with the respective features of the Most simi-

lar segment instead of the entire master sequence. The Most similar segment of the

master video is selected using the algorithm explained in Figure 4.4.

Temporal registration results: Table 4.7 shows the temporal registration accu-

racy of three compared methods for T1-T7 types. The results are denoted in terms

of percentage of perfectly Matched Frames (denoted as ’MF’) and Average Distance

between true and estimated frame indexes (indicated as ’AD’).

Table 4.7: Temporal registration results for T1-T7 types.

Attacks SURF (1) CHE (2) ALL (3)
MF AD MF AD MF AD

Rotation 75.18 2.0 56.69 3.1 81.18 1.1
Random noise 86.31 1.9 51.46 1.9 88.64 1.2
Blurring 76.76 2.3 59.34 2.5 80.15 1.2
Brightness 83.18 2.8 58.61 2.8 85.98 1.7
Cropping 79.54 3.4 34.28 3.6 82.59 1.2
Picture-in-picture 78.26 2.1 36.14 2.9 82.64 1.5
Zoom in 74.42 2.2 61.37 2.5 77.25 1.1

Method (3) scores better results for all seven transformations and improves regis-

tration accuracy up to 31.5% compared to the reference method. The joint utilization

of robust SURF signatures and the sliding window scheme is the exact reason for the

enhanced performance of method (3). In addition, method (3) yields more accurate

results compared to method (2), as the AD values are always less than two.

On the other hand, Chupeau et al.’s method (2006) scores poor results for cropping

and picture-in-picture types in terms of low MF and high AD rates. This is because,

cropping introduces black borders on top and bottom regions; therefore, very different

video signatures are generated for master and query segments.
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Table 4.8 lists the temporal registration performance of the three compared meth-

ods for T8-T13 types. Method (3) generally performs well for all eight transforma-

tions and enhances the registration accuracy (by 34.53%) compared to the reference

method.

Table 4.8: Temporal registration results for T8-T13 types.

Attacks SURF (1) CHE (2) ALL (3)
MF AD MF AD MF AD

Slow motion 87.76 5.1 50.28 4.2 88.11 3.1
Fast forward 85.45 4.8 54.67 5.4 87.34 4.7
Pattern insertion 78.63 1.4 45.19 2.6 80.10 1.2
Moving caption 66.36 1.5 48.31 2.1 69.86 1.3
3 combined 85.49 5.2 50.28 5.2 88.42 3.9
5 combined 79.61 4.6 40.59 5.1 82.68 2.9

For pattern insertion and 5 combined types, the MF rates of method (2) decline

sharply. This is because, inserting patterns/captions substantially changes histogram

bin values. In case of combined types, histogram signatures of query and candidate

segments are severely affected by the addition of gaussian noise and insertion of text

patterns. Yet, the proposed methods (1) and (3) using SURF signatures are less

affected by this category.

Geometric registration results: Table 4.9 shows the geometric registration re-

sults of the proposed method for different transformations such as rotation, cropping

and combined types. The registration results are denoted in terms of mean and maxi-

mum pixel distances between the geometrically mapped candidate and query segment

frames. The registration results of the proposed method is very efficient, because the

mean pixel distance is always less than one. The robust nature of powerful SURF

descriptors is the correct reason for this accurate geometric alignments.

Computational cost comparison: The proposed method is evaluated in MAT-

LAB using a PC with 2.8GHz and 3GB RAM. Table 4.10 indicates the total compu-

tational cost of all three methods including fingerprint extraction and frame matching

costs. The costs are measured by implementing the frame alignment of a 315s query

clip with the 2493s master sequence.

The frame matching cost of method (3) is drastically reduced compared to the

other two methods. The reason is, in method (3) query segment features are mapped

only with the corresponding Most similar segment signatures instead of the entire
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Table 4.9: Geometric registration results in terms of mean & maximum pixel distances

Attacks Mean dist. Max dist.
Rotation 0.912 1.592
Random noise 0.713 1.373
Blurring 0.777 1.346
Brightness change 0.810 1.368
Cropping 0.735 1.345
Picture-in-picture 0.628 1.349
Zoom in 0.665 1.160
Pattern insertion 0.681 1.283
Moving caption 0.625 1.346
3 combined 0.854 1.459
5 combined 0.881 1.496

Table 4.10: Comparison of computational cost (in seconds)

Computational Cost SURF (1) CHE (2) ALL (3)
Fingerprint extraction 176.95 166.41 176.39
Frame matching 47.68 45.68 1.47
Total cost 224.63 212.09 177.86

master sequence; hence false positives are removed effectively and consequently frame

matching cost is considerably reduced.

4.3 Spatio-Temporal Registration Framework Us-

ing Visual-Audio Features

As mentioned in Section 2.2.3, if audio content is available, then the joint exploita-

tion of visual-audio fingerprints for the alignment task, significantly enhances the

registration accuracy. Therefore, followed by spatio-temporal alignment using visual

features, this chapter also contributes a new spatio-temporal registration framework,

which utilizes multimodal fingerprints for obtaining accurate frame alignments of the

pirate and master video sequences. The main contributions of the proposed spatio-

temporal registration framework are given by,

◦ A new spatio-temporal registration framework is presented by exploiting visual

signatures extracted from SURF key points and audio fingerprints derived from

spectral centroid features.
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◦ A novel SURF-based visual-profile is introduced, which is compact (1-D) com-

pared to the existing multi-dimensional SURF-based fingerprinting methods

(Roth et al. 2010; Zhang et al. 2010). Roth et al. (2010) used 16-D SURF

descriptors, while Zhang et al. (2010) utilized 64-D SURF signatures for the

copy detection task.

◦ Robust acoustic features are also employed for the temporal registration task,

which considerably enhance the registration accuracy, compared to the existing

registration schemes (Chupeau et al. 2006; Baudry et al. 2010).

◦ An algorithm for selecting the candidate segment of the master video sequence

is proposed, using sliding window based Dynamic Time Warping (DTW) tech-

nique (Rabiner and Juang 1993), which substantially decreases the frame match-

ing cost.

◦ A multimodal frame matching scheme is introduced for aligning the acoustic

and visual fingerprints, which noticeably reduces false frame matches.

◦ Principal frames extraction algorithm is presented, which extracts the most

similar frames from the temporally aligned candidate and pirate video segments,

in order to implement the geometric registration task.

The proposed spatio-temporal registration framework including temporal alignment

of frames followed by multimodal frame matching and geometric frame alignments is

illustrated as follows.

4.3.1 Proposed spatio-temporal registration framework

Problem formulation: The proposed registration framework is formulated as fol-

lows: Let PS = {pi|i = 1, 2, ..., np} be a pirate video sequence with np frames, where

pi is ith copy frame; and let MS = {mj|j = 1, 2, ..., nm} be a master sequence with nm

frames, where mj is jth master frame and nm >> np. Here PS is derived from MS

after applying video attacks such as noise, cropping, camcording, caption insertion,

blurring and so on. The proposed framework selects a subsequence of MS denoted

as a candidate segment CS = {mj,mj+1, ..,mj+nc−1} with nc frames, using a sliding

window scheme. Here, the objective is to spatio-temporally map the duplicate and

master video sequences and as a result exact frame alignments of CS and PS can be

obtained.

Spatio-temporal registration framework using visual-audio features:

The proposed registration framework is given in Figure 4.6, which comprises two

stages namely, temporal and geometric frame alignments.
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Figure 4.6: Spatio-temporal registration framework using visual-audio features

In the first stage, when a query video is presented, then the master sequence is

scanned with a sliding window of size equal to query clip. In this step, similarity

between the video copy and the windowed segment is computed using their temporal

signatures extracted from SURF control points and spectral centroid descriptors.

The windowed sequence having minimum distance score is selected and indicated as

the candidate segment. After this step, audio-visual fingerprints of the candidate and

pirate video segments are mapped separately using DTW technique and consequently

mapping results are combined, in order to get temporal frame alignments.

In the second stage, from the temporally mapped and candidate and query video

segments, a set of most/highly similar frames are selected and denoted as principal

frames of two video sequences. The resultant principal frames are matched using their

SURF descriptors by means of enough interest points, in order to obtain accurate

spatial frame alignments.

4.3.2 Temporal alignment of frames

In the proposed framework, compact visual profile extracted from SURF signatures

and acoustic profile derived from spectral centroid features are jointly exploited for

obtaining the accurate temporal frame alignments, which is detailed below.
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1-D Visual profile extraction

In the proposed registration framework, SURF interest points-based signatures are

employed to extract the visual profile of video contents. SURF is a scale and rotation

invariant descriptor (Bay et al. 2008); hence it is widely used in the CBCD literature

to identify pirate video clips (Roth et al. 2010; Zhang et al. 2010; Yang et al. 2008).

As mentioned in Section 4.2.1., SURF descriptor represents each key point by means

of a multi-dimensional feature vector, normally 64 integers/interest point. Since each

frame contains multiple SURF key points; hence, too much of information needs to be

processed. Moreover, direct comparison of SURF feature descriptors across all frames

is computationally expensive. On the other hand, existing multi-dimensional SURF-

based fingerprinting methods utilize only spatial content of frames (Roth et al. 2010;

Zhang et al. 2010; Yang et al. 2008). However, to create robust visual fingerprints of

the given video sequence, both the temporal as well as spatial content of frames need

to be considered.

To tackle these problems, in the proposed framework, a video clip is compactly

indicated using 1-D SURF signatures extracted from SURF key points, which effi-

ciently illustrate the spatio-temporal information of frames. More precisely, a video

frame is segmented into n × n regions and 1-D SURF signatures are calculated as

the mean of differences between region-wise count of SURF key points of consecutive

frames. Figure 4.7 illustrates computation of 1-D SURF signatures from the sample

frames on a 3×3 partition.

The partition of a frame into n × n regions, plays an active role in predicting

the registration performance and computational cost. Smaller values of n increase

the computational burden, whereas larger values of n decrease the robustness of the

proposed system.

To handle this discrepancy, experiments are evaluated for different values of n

ranging between 2-8 and the corresponding registration results are compared. More

specifically, the proposed scheme is experimented on a dataset including 112 query

clips and 198 reference video sequences videos, where the query clips vary between

18-35 seconds. Figure 4.8 indicates the average registration accuracy achieved for

different n values and concludes that the maximum accuracy (91.8%) is achieved at

n=3. Thus, the value of n is set as 3 in the consequent experiments, which provides

the best balance of effectiveness and robustness.
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Figure 4.7: 1-D SURF signature extraction: (a) Video frames partitioned into 3 ×3
regions. (b) Region-wise count of SURF key points. (c) Computing 1-D signature
with time series

1-D Acoustic profile extraction

As mentioned in Section 3.3.1., spectral centroid is an important timbral descriptor,

which specifies the center of gravity of the signal spectrum (Rabiner and Juang 1993;

Park 2010). Precisely, centroid describes brightness of a sound signal and it is a highly

robust spectral feature (West 2008) ; hence, it is widely popular in speech recognition

applications (Eronen and Klapuri 2000). Furthermore, the most significant percep-

tual audio descriptors exist in the frequency domain (Li et al. 2003; Jie et al. 2009).

Due to these reasons, 1-D spectral centroid signatures are utilized to describe the

acoustic information of video sequences, which are computed as follows:

As described in Section 3.3.1., first the audio signal is down sampled and consequently

segmented into 11.60ms windows using Hamming windowing, where the window over-

lap factor is 80% (Roopalakshmi and Reddy Sep-2011). Then, from the power spec-

trum of the audio signal, the Spectral Centroid descriptor (SC) is computed using

the frequency distribution values as specified in Equation (3.23). As compared with

(Roopalakshmi and Reddy Sep-2011), the proposed framework employs absolute val-

ues of the spectral centroid features for the registration task. Further, normalization is
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Figure 4.8: ’k’ versus registration accuracy

applied to the resultant signatures in order to improve the robustness of the proposed

framework.

Introduction to Dynamic Time Warping (DTW)

Dynamic Time Warping (DTW) is extremely effective in synchronizing two time-

dependent sequences, since it minimizes shifting effects in time by allowing elastic

transformation of sequences (Rabiner and Juang 1993; Müller 2007). Therefore, DTW

technique is extensively employed in a broad range of applications such as speech

recognition (Senin 2008), sequence alignment and information retrieval (Müller 2007).

Given two time-dependent feature sequences X = {xi|1 ≤ i ≤ N} of length N and

Y = {yj|1 ≤ j ≤ M} of length M . A local cost measure C indicating the distance

between xi and yj is formulated as,

C(xi, yj) = Dist(xi, yj) (4.16)

where Dist denotes Manhattan distance measure in the proposed framework. To find

an alignment of X and Y , a warping path W = {w1, w2, ..., wL} with wl = (xl, yl) ∈
[1 : N ] × [1 : M ] for l ∈ [1 : L] needs to be computed. The accumulated Path Cost

PC associated with W of sequences X and Y is defined as,

PCW (X, Y ) =
L∑
l=1

C(xil , yjl) (4.17)

The objective of DTW technique is to find an optimal warping path of sequences X

and Y having minimal path cost among all possible warp paths (Müller 2007), which
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is denoted as,

DTW (X, Y ) = Wop = min{(PCW (X, Y )) | W ∈ PN×M} (4.18)

where Wop is the optimal warping path and PN×M indicates the set of all possible

warping paths. The optimal warping path Wop = {wp1, wp2, .., wpL} with wpl =

(xl, yl) ∈ [1 : N ] × [1 : M ] for l ∈ [1 : L]. The accumulated path cost (PCdtw) of

DTW (X, Y ) is denoted as,

PCdtw(X, Y ) =
L∑
l=1

C(xnl
, yml

) (4.19)

Let D(N,M) is the global cost matrix of size N×M. DTW technique calculates the

warping path Wop based on dynamic programming (Müller 2007) in three steps as

follows,

1: Initialization:

D(1, 1) = 0;

First column: D(i, 1) =
i∑

k=1

C(xk, y1), i ∈ [1 : N ];

First row: D(1, j) =
j∑

k=1

C(x1, yk), j ∈ [1 : M ];

2: Recursion:

All other elements of D(i, j) are recursively computed as,

D(i, j) = min{(D(i− 1, j − 1), D(i− 1, j), D(i, j − 1)) + C(xi, yj)} (4.20)

where i ∈ [1 : N ] and j ∈ [1 : M ].

3: Termination:

Once the entire D matrix is computed, backtracking is done to determine the

optimal alignments starting from Wop = (M,N) to Wop=(1,1).

In this research study, the optimal warping path Wop specifying the alignment of se-

quences X and Y , satisfies the following conditions:

a) Endpoint constraints:

For the warping path Wop, starting point is wp1 = (1, 1) and ending point is

wpL = (N,M).
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b) Monotonicity constraints:

In order to preserve temporal continuity, the warping function is monotonically

increasing as given by,

x1 ≤ x2 ≤ ... ≤ xL and y1 ≤ y2 ≤ ... ≤ yL.

c) Local continuity constraints:

This category constraints the slope of the warping path by means of limiting

long jumps in the alignment of X and Y sequences. Normally, the possibility

of huge changes in the feature sequences of consecutive frames is very low and

thus the step size condition is formulated as,

wpl+1 − wpl ∈ {(1, 0), (0, 1), (1, 1)} for l ∈ [1 : L− 1].

Sliding window based DTW

The computational complexity of DTW algorithm to match two sequences of size

M and N is O(MN); hence if sequence size increases, then the complexity of the

algorithm also increases. To deal with this issue, frame alignments between the

query clip and the candidate segment are computed instead of the complete master

sequence. Algorithm 4.3 given in Figure 4.9 explains the steps used to select the

candidate segment of the master sequence.

4.3.3 Multimodal frame matching

In this step, the audio-visual signatures of the two video sequences are aligned sepa-

rately and the resultant matches are combined into final temporal alignments. More

precisely, the multimodal frame matching scheme is implemented as follows.

Frame matching using visual signatures: Let CS be a candidate segment of

the master sequence with nc frames and PS be a pirate sequence with np frames. Let

V F be the visual fingerprint of CS such that, CS ∈ {V Fi| 1 ≤ i ≤ nvf} with nvf

signatures. Consider QV F is the visual fingerprint of PS such that PS ∈ {QV Fj| 1 ≤
j ≤ nqvf} with nqvf signatures. The proposed framework assumes that the length

of candidate sequence is equal to size of the query clip; hence, nvf ' nqvf . The

cost measure Cvis indicates the dissimilarity between two visual signatures, which is

computed using comparative Manhattan distance metric as follows,

Cvis(CSk, PSk) =
|(V Fk −QV Fk)|
|(V Fk)|+ |(QV Fk)|

, 1 ≤ k ≤ nvf . (4.25)
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Algorithm 4.3: Selection of the Candidate Segment

1: Divide the master sequence into overlapping segments of length equal to the
query clip.

2: Extract 1-D visual and audio profiles for each segment as described in Section
4.3.2.

3: Let a master sequence MS be,

MS ∈ {Si| 1 ≤ i ≤ m}, (4.21)

where Si is the i-th segment and m is total segments of MS. Here, each segment
Si of MS can be represented as,

Si ∈ {(V k
i ∪ Ar

i ) | 1 ≤ k ≤ n, 1 ≤ r ≤ p} (4.22)

where V k
i is k-th feature vector of visual fingerprint of Si and n indicates total

feature vectors. Here, Ar
i is r-th vector of audio fingerprint of Si and p represents

number of feature vectors.

4: Let a pirate sequence PS is compactly represented as,

PS ∈ {(QV k ∪QAr) | 1 ≤ k ≤ nq, 1 ≤ r ≤ pq} (4.23)

where QV k is the k-th feature vector of visual fingerprint of PS and nq is total
vectors. Here, QAr is r-th vector of audio fingerprint of PS and pq indicates
total feature vectors.

5: Compute the segment similarity Segsim between Sk of MS and PS using DTW
as follows,

Segsim(Sk, PS) = PCdtw(Vk, QV ) + PCdtw(Ak, QA) (4.24)

where PCdtw represents the accumulated path cost of optimally warped visual
sequences (i.e. Vk and QV ) and audio feature sequences(i.e. Ak and QA)
respectively.

6: Select Si having lowest Segsim value (i.e. distance score) as a candidate segment
of the master sequence for further comparison.

Figure 4.9: Selection of the candidate segment using visual-audio signatures

After this step, the optimal frame mappings between the visual signatures of two

video sequences are computed using DTW technique. The resultant frame matches

FMvis based on visual signatures is formulated as,

FMvis = {{cvi, pvj} | 1 ≤ i ≤ nc, 1 ≤ j ≤ np} (4.26)
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where cv and pv indicate the matching frames of candidate and pirate video sequences

respectively. Figure 4.10 shows the frame alignments of copy and candidate feature

sequences in terms of global cost matrix D and the optimally warped path. The dark

strips in matrix D indicate the high similarity between the two video contents.
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Figure 4.10: Frame alignments of copy and candidate feature sequences. (a) global
cost matrix D, darker regions indicate high similarity (b) optimally warped path

Frame mapping using acoustic signatures: Let SF be the spectral centroid-

based audio fingerprint of CS such that CS ∈ { SFm, |1 ≤ m ≤ nsf} with nsf

signatures. Let QSF be the audio fingerprint of PS such that PS = {QSFm|1 ≤
m ≤ nqsf} with nqsf signatures (in this study, nsf ' nqsf ). The cost measure Caud

indicating the difference between two audio fingerprints is calculated using squared

Euclidean distance measure as follows,

Caud(CSk, PSk) = |(SFk −QSFk)2|, 1 ≤ k ≤ nsf (4.27)

Then the optimal warping path illustrating the frame alignments of SF and QSF

signatures is computed using DTW algorithm. The resultant frame matches FMaud

based on audio spectral signatures is formulated as,

FMaud = {{csi, psj}| 1 ≤ i ≤ nc, 1 ≤ j ≤ np} (4.28)

where cs and ps indicate the matching frames of candidate and pirate sequences

respectively.
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Decision fusion: Frames mapped by both the visual and audio signatures are

considered as final frame matches of two video contents, which is given by,

FMfinal = {{FMvis} ∩ {FMaud}} (4.29)

where FMfinal provides frame-to-frame alignments of CS and PS sequences respec-

tively. The main benefit of the proposed multimodal frame matching technique is

that, since only frames with similar visual and audio features are mapped, it consid-

erably decreases false frame matches. In addition, the proposed matching technique

significantly enhances registration accuracy which is evident in Section 4.3.6.

4.3.4 Geometric alignment of frames

As mentioned in Section 4.2.1., geometric mappings across all temporally aligned

frames is not feasible due to computational load. Further, all video frames may not

provide necessary key points to enable accurate geometric registration.

In order to tackle this problem, a small set of highly similar frames denoted as

principal frames are employed for implementing the geometric registration task. The

SURF descriptors and DTW optimal paths computed for temporal registration task

provide significant guidelines for selecting the principal frames. More specifically,

principal frames are extracted from temporally aligned candidate and pirate feature

sequences using Algorithm 4.4, which is described in Figure 4.11. The resultant

principal frames are characterized by a list of interest points and their associated

SURF descriptors.

Two control points are matched only if the squared Euclidean distance between

their feature vectors is minimum. On the other hand, blind comparison of all feature

vectors of two frames is computationally expensive and may lead to false correspon-

dences. In order to solve this discrepancy, feature vectors with minimum feature

distances are computed and mapped in terms of their descriptors to provide accurate

pixel correspondences of frames.

4.3.5 Experimental setup

The proposed framework is evaluated on three different datasets, namely TRECVID

sound & vision data, CC WEB VIDEO dataset 1 and a set of real data consisting of

camcorded copies of master video sequences.

1CC WEB VIDEO: Near-Duplicate Web Video Dataset. http://vireo.cs.cityu.edu.hk/

webvideo/
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Algorithm 4.4: Principal Frames Extraction

1: Let the optimal warping path Wop specifies the alignment of two feature se-
quences V F and QV F , such that Wop = {wp1, wp2, .., wpL} with wpl =
(xl, yl) ∈ [1 : N ] × [1 : M ] for l ∈ [1 : L]. Here, V F and QV F represent
the visual fingerprints of candidate and pirate sequences respectively.

2: Consider a cost vector W c
op representing the feature distances in terms of cost

in each entry of optimal path Wop as follows,

W c
op = {wpc1, wpc2, .., wpcL}, (4.30)

where wpc1 indicates the cost given in entry wp1 and so on.

3: Sort the W c
op vector to generate the sorted list of costs represented in DTW

path.

4: Lower cost values in the W c
op vector indicate highly similar frames; hence select

frame pairs corresponding to lower cost values in W c
op as principal frames.

Figure 4.11: Principal frames extraction

Master video database and query dataset construction

TRECVID dataset: TRECVID sound & vision data is a benchmark dataset,

which covers a wide variety of contents including science news, reports, documen-

taries and educational programming. The TRECVID master database comprises

approximately 110h of sound & vision data used in TRECVID-2009 copy detection

task, plus another 80h of sound & vision data used in TRECVID-2008 copy detection

task. The proposed framework transforms the entire video data into the following

uniform format: 352×288 pixels and 15fps. It is not necessary to utilize every frame

in a video sequence for registration; hence, when a copy clip is given with a different

frame rate, it is resampled to 15fps, in order to synchronize it with the master se-

quence. For example, a 5-second copy clip with 60fps becomes a 240-frame sequence

after performing the resampling procedure.

In case of piracy, normally users capture videos by using camcorders and distribute

them with some modifications. Thus, most of the pirate videos suffer from distortions

such as camcording, photometric variations (lighting changes), editing operations

(pattern insertions), frame rate changes, format changes (mp3 format), cropping,

rotation attacks and so on; hence, in this context the fifteen types of transformations

listed in Table 4.11 are considered in the proposed framework for generating the query

dataset.
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Table 4.11: Transformations used in the proposed framework

# Category Description
T1 Zoom in Zoom in to the frame by 19%
T2 Slow motion Halve the video speed
T3 Fast forward Double the video speed
T4 Pattern insertion Insert text pattern into selected frames
T5 Moving caption Insert moving titles into entire video
T6 Rotation Rotating by 10◦ to 12◦

T7 Random noise Add 10% gaussian noise
T8 Blurring Blur by 13%
T9 Brightness change Increase brightness by 10%
T10 Cropping Crop top & bottom regions by 20% each
T11 Picture-in-picture Insert smaller resolution picture into frames
T12 3 combined Cropping by 15%, 10% of noise & moving caption
T13 5 combined 14% noise, 11% blurring, 14% brightness,

cropping & pattern insertion
T14 Mp3 compression Change audio file format
T15 Single band compression Compress only specific frequency band

Precisely, from the TRECVID master database, 50 video clips are randomly se-

lected and Table 4.11 transformations are applied to produce the query clips. The

resulting 750 (50×15) video sequences of duration 20-35s are used as query clips for

the proposed temporal registration task.

CC WEB VIDEO dataset: CC WEB VIDEO dataset includes video collections

from video sharing websites and search engines such as YouTube, Google Video and

Yahoo! Video. The CC WEB VIDEO master database includes 24 most viewed and

top favorite videos provided by CC WEB VIDEO collection. The representative snap-

shots of all 24 master videos are shown in Figure 4.12. From the CC WEB VIDEO

collection, duplicate and near-duplicate videos ranging from 15 to 25 are retrieved

for each of the master video. In total, the CC WEB VIDEO query dataset includes

approximately 600 video files with two different classes of distortions namely for-

matting and content distortions. Formatting distortions include changes in frame

rate, bit rate, encoding format and frame resolution. Photometric variations (light-

ing changes), editing variations (e.g., logo insertions) and content modifications such

as addition of unrelated frames with different content are categorized into content

distortions type.

Camcorded copies: To assess the performances of the proposed framework against

camcorder captured videos, the proposed scheme is evaluated on a dataset of 30

master videos and their camcorded versions. 75 camcorded copies of master videos
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Figure 4.12: Snapshots of 24 master videos of CC WEB VIDEO collection

ranging from 1.55 to 15 minutes are generated for the registration task. The quality

of camcorded copies varies from clean copies to heavily modified ones with a large

amount of lighting, cropping and compression distortions.

4.3.6 Evaluation results and discussion

Overview of the evaluated methods

The following six methods are implemented for evaluating performance:

(1) The SURF signatures based matching (abbreviated as ’SURF’);

(2) The spectral centroid features based matching (’SC’);

(3) SURF and spectral features without sliding window (’SURF+SC’);

(4) SURF and spectral signatures with sliding window (’ALL’);

(5) Chupeau et al.’s method (2006)(’CHE’);

(6) Baudry et al.’s method (2010)(’BA’);

The methods (1)-(4) evaluated different combinations of the proposed techniques.

Methods (1) and (2) use different video signatures (namely SURF and spectral cen-

troids) to implement the temporal registration of two video contents. Methods (3)

and (4) are implemented, to see the effect of sliding window scheme for the proposed

registration task.

In method (1), 1-D visual signatures of the pirate clip are matched with the

respective features of the entire master sequence (i.e. query clip is matched with all
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segments of the master sequence). In method (2), 1-D spectral signatures of the query

clip are mapped with the acoustic profile of the complete master sequence. Method (3)

utilizes both 1-D SURF and spectral centroid signatures for temporally registering

the video contents. In this method, visual-audio fingerprints of the query clip are

separately aligned with the corresponding features of the entire master sequence. In

method (4), the sliding window mechanism is employed to align multimodal signatures

of the copy clip with the corresponding features of the candidate segment, instead of

the entire master sequence. The candidate segment of the master sequence is selected

using Algorithm 1, as explained in Figure 4.9.

Chupeau et al.’s method (2006) utilizes color histograms for calculating frame-

to-frame correspondences between pirate and master contents. It is implemented as

follows: color histograms of size 512 bins are extracted from consecutive video frames.

A sequence of distances (Euclidean distance) between color histograms of successive

frames are utilized as temporal fingerprints of videos and dynamic programming is

applied to achieve temporal registration of frames.

Baudry et al.’s method (2010) is one of the latest methods, that uses fingerprints

based on wavelet coefficients for temporally registering the query and master video

sequences. In this method, first the difference between successive frames is com-

puted and transformed into wavelet coefficients. Then, the resultant coefficients are

hierarchically encoded and temporal frame alignments are computed using dynamic

programming.

Temporal registration results

The registration performances of six compared methods tested on different datasets

against various types of video transformations are discussed as follows.

Registration results for TRECVID dataset: Table 4.12 shows the temporal

registration results of six compared methods in terms of percentage of perfectly

Matched Frames (’MF’) for T1-T7 transformations. The bold font indicates the

highest MF scores in the table.

The performance of spectral centroid-based methods (methods (2),(3) and (4)) is

superior compared to the other methods for T1-T7 types. This is because, applying

transformations on the visual content would not affect acoustic features substantially.

Method (4) slightly improves the registration accuracy (by 1%) compared to that of

method (3), because of the incorporation of sliding window scheme, which reduces

false positives. Though 1-D SURF and spectral centroid signatures have their own

constraints, they balance each other very well; hence, their integrated usage in a
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Table 4.12: Registration results for T1-T7 types. MF:% of perfectly matched frames

Attacks SURF SC (2) SURF+ All (4) CHE (5) BA (6)
(1) SC(3)
MF MF MF MF MF MF

Zoom in 71.9 92.7 93.2 93.2 55.8 69.8
Slow motion 78.1 79.5 89.9 90.4 60.0 68.8
Fast forward 84.7 85.6 91.0 91.0 59.8 61.2
Pattern insertion 81.7 92.5 93.7 94.2 54.8 54.0
Moving caption 88.0 93.8 93.8 93.8 50.7 62.7
Rotation 84.6 92.8 95.2 95.2 68.9 59.8
Random noise 89.7 92.4 94.7 94.8 64.2 51.2

sliding window manner noticeably improves the registration accuracy. The improved

results of method (4) shown in Table 4.12 prove this view point.

On the other hand, Chupeau et al.’s method yields poor results for moving caption

and pattern insertion types in terms of low MF rates. This is because, inserting

patterns or adding captions noticeably changes color histogram properties. The MF

rate of Baudry et al.’s method declines sharply for random noise type. The reason is,

adding random noise might alter the wavelet coefficients substantially, which leads to

false fingerprints.

Table 4.13 lists the temporal registration accuracy of six compared methods for

T8-T15 types in terms of MF rates.

Table 4.13: Registration results for T8-T15 types. MF:% of perfectly matched frames

Attacks SURF SC (2) SURF+ ALL (4) CHE (5) BA (6)
(1) SC(3)
MF MF MF MF MF MF

Blurring 82.7 91.5 93.5 94.2 53.8 55.8
Brightness 90.0 95.8 95.9 95.9 62.0 59.7
Cropping 80.0 90.0 92.4 92.4 44.8 50.5
Picture-in-pic 75.4 92.3 92.9 93.0 39.7 42.0
3 combined 88.7 92.6 94.2 94.4 50.9 53.6
5 combined 89.1 92.7 92.8 93.1 53.9 44.8
Mp3 90.8 78.9 90.6 90.6 86.6 89.0
Single band 93.7 75.6 94.6 94.7 85.7 87.0

Method (4) generally performs well for all eight types and improves the MF rates
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(up to 15%) compared to the reference methods. Method (4) slightly enhances the

registration accuracy (by 1%) compared to method (3). The reason for this improve-

ment is, when the sliding window scheme is utilized, query features are matched only

with that of candidate segment and thus false positive rate is reduced. The MF rate

of Chupeau et al.’s method is severely decreased for cropping and picture-in-picture

types. This is because, cropping introduces black borders on top and bottom regions,

that might generate very different signatures for master and query clips. In case of

picture-in-picture type, insertion of picture produces different signature pattern for

the query video compared to the original file.

On the other hand, Baudry et al.’s method yields poor MF rates for picture-in-

picture and 5 combined types. In picture-in-picture type, there exists a discrepancy

between the wavelet coefficients extracted from master and query videos, because of

the insertion of a picture. This discrepancy leads to mismatches and thus reduces

the accuracy of method (6). In case of 5 combined type, the wavelet coefficients

vary widely after applying noise, cropping and pattern insertions and hence a lot of

mismatches are retrieved. The accuracy of method (2) is sharply reduced for mp3

and single band compression types. Audio spectral features are much affected by

these two types and hence MF rates decline sharply. Yet the proposed methods using

SURF features (methods (1), (3) and (4)) are less affected by these two types.

Although the SURF and spectral features have their own advantages and lim-

itations, they complement each other by their different characteristics; hence, the

combination of local and spectral features not only improves the registration accu-

racy, but also widens the coverage to more number of transformations. The promising

results of method (4) provide good evidence for supporting this viewpoint.

On the other hand, Table 4.12 and 4.13 results indicate that, the audio features-

based methods (here methods (2)-(4)) generally score better registration results com-

pared to the visual feature-based method (i.e. method (1)). In other words, the

registration results are concluding that the audio features are performing better than

spatial/SURF signatures; hence, acoustic fingerprints are to be preferred for pirate

video registration task. However, this observed phenomenon is certainly not true,

due to the reasons given below:

? Most of the transformations considered in the proposed registration framework,

fall under visual category of attacks (i.e. 13 out of 15 attacks are of visual

type). It is well known that, audio features are not much affected by visual

transformations such as blurring, noise, pattern insertion, moving caption and

picture-in-picture. Therefore, acoustic fingerprints are performing better com-
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pared to the visual features.

? If more number of audio transformations are applied to the query video clips,

then automatically the performance of the audio fingerprints might degrade to

a greater extent.

? Generally, for any video copy detection and tracking system, the performance

mainly depends, not only on the selection of visual/audio fingerprints, but also

the experimental setup as well as the type of transformations applied to the pi-

rate video sequences. Precisely, visual fingerprints may achieve superior results

against audio transformations and vice versa.

Figure 4.13(a) shows the registration results of six compared methods for T1-

T7 types, in terms of Average Distance between true and estimated frame indexes

(’AD’). The curves indicate the better performance of spectral signature based meth-

ods (methods (2), (3) and (4)), compared to other methods, because their AD rates

are always less than 1. It is clear that, method (4) yields lowest AD rates and sig-

nificantly improves accuracy compared to other methods. The combined utilization

of robust visual and acoustic features in a sliding window manner is the exact reason

for the enhanced performance of method (4).

SURF (1) SC (2) SURF+SC 
(3)

ALL (4) CHE (5) BA (6)
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Figure 4.13: Comparison of AD curves for different transformations: (a) T1-T7 (b)
T8-T15

Figure 4.13(b) indicates the registration results of six compared methods for T8-

T15 types in terms of their AD rates. The curves show the superior performance of
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method (4), compared to other methods because its AD rates are always less than

1. For T12 and T13 types, only visual features based methods (methods (1),(5) and

(6)) indicate poor results in terms of higher AD rates. However, spectral signature

based methods (methods (2),(3) and (4)) are less affected by this category.

Computational cost comparison

Table 4.14 shows the total time costs of methods (1)-(6), which includes signature

extraction and frame matching costs. The program is executed in MATLAB and run

on a PC with 2.8GHz CPU and 3GB RAM. The costs are measured by implementing

frame alignment of a 298s query clip with a 3041s master sequence.

Table 4.14: Computational cost comparison (in seconds)

Process SURF SC (2) SURF ALL (4) CHE (5) BA (6)
(1) +SC(3)

Signature 68.1 21.1 90.1 90.1 47.4 59.8
extraction
Frame matching 108.0 87.4 95.0 4.1 66.8 74.1
Total cost 176.1 108.5 185.1 94.2 114.2 133.9

The signature extraction cost of method (4) is higher (up to 47%), compared

to two reference methods. Interestingly, the frame matching cost of method (4) is

noticeably reduced (up to 94%) compared to methods (5) and (6). This is because, in

method (4) query clip signatures are aligned only with the corresponding candidate

segment features instead of the entire master sequence. Thus in method (4), the

usage of sliding window scheme significantly reduces the total time cost (up to 32%)

and yields the lowest computational cost.

Registration results for CC WEB VIDEO dataset

Table 4.15 lists the registration results of five compared methods for first 12 master

videos of CC WEB VIDEO dataset in terms of percentage of Incorrectly matched

Frames (’IF’). The bold font indicates the lowest IF scores in the table.

In case of the first master video, the visual content is affected by distortions

such as encoding format change and logo insertions; hence only visual feature based

methods (methods (1), (4) and (5)) yield higher IF rates. For the second master video,

few unrelated frames are added with same acoustic information; hence, method (2)

leads to lot of false matches. However, characteristics of SURF and spectral features
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Table 4.15: Registration results for 1-12 Master videos. IF: % of incorrectly matched
frames

# Video Name SURF (1) SC (2) SURF+ CHE (5) BA (6)
SC (3)

IF IF IF IF IF
1) The lion sleeps.. 15.7 13.9 10.4 28.1 26.4
2) Evolution of dance 24.4 42.3 23.6 29.5 30.4
3) Fold shirt 27.5 14.6 12.3 38.4 40.9
4) Cat massage 20.2 - 20.2 39.3 25.0
5) Ok go here it.. 40.5 34.0 23.1 55.6 53.9
6) Urban ninja 38.2 46.6 35.5 38.2 39.4
7) Real life Simpsons 41.4 52.6 39.1 43.3 42.2
8) Free hugs 39.1 25.6 20.6 42.0 40.2
9) Where the hell is Matt 21.6 13.3 11.2 29.1 34.2
10) U2 and green day 12.6 14.9 10.4 28.1 21.6
11) Little superstar 41.3 38.5 33.6 44.1 42.0
12) Napoleon dynamite.. 31.5 46.1 27.5 37.1 33.2

complement each other and hence method (3) improves accuracy and yields lowest

IF rate for the second video.

In case of fourth master video, acoustic information is removed and captions are

inserted to create the query videos; hence, method (2) leads to null matches. However,

method (3) scores lowest IF rates, because of the robust nature of SURF-based visual

signatures. For the fifth video, Chupeau et al. (2006) and Baudry et al. (2010)

methods score poorly in terms of higher IF rates. The reason is, visual descriptors

might be affected substantially due to the application of photometric and formatting

variations such as color, lighting, frame rate and resolution changes. For the ninth

video, Baudry et al.’s method gives highest IF rate compared to other methods. This

is because, editing and encoding format changes widely vary wavelet coefficients and

lead to lot of false positives.

Table 4.16 lists the registration accuracy of five compared methods for 13-24 mas-

ter videos of CC WEB VIDEO dataset in terms of IF rates. Among all the methods,

method (3) yields more accurate results against various types of formatting and edit-

ing attacks, due to the combined usage of visual and acoustic features.

Chupeau et al.’s method performs well for 22nd and 13th master videos but not as

well for the 23rd and 24th master videos. This is because, color histograms are robust

against lighting changes that are applied to the former videos, while the latter videos
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Table 4.16: Registration results for 13-24 Master videos. IF: % of incorrectly matched
frames

# Video Name SURF (1) SC (2) SURF+ CHE (5) BA (6)
SC (3)

IF IF IF IF IF
13) I will survive Jesus 9.2 10.5 7.2 19.2 15.4
14) Ronaldinho ping 12.5 11.1 11.0 20.9 19.5
15) White and Nerdy 15.6 10.2 10.0 25.6 21.8
16) Korean karaoke 26.0 35.5 24.1 32.5 31.0
17) Panic at the disco... 18.3 17.3 15.0 22.6 25.5
18) Bus uncle 27.2 42.6 25.7 28.5 32.6
19) Sony Bravia 20.7 40.2 30.1 31.5 33.3
20) Changes Tupac 35.1 20.6 18.5 40.7 38.2
21) Afternoon delight 12.5 11.2 11.1 19.6 20.5
22) Numa Gary 14.5 40.2 14.1 18.6 16.2
23) Shakira hips dont.. 40.3 36.2 33.5 41.3 42.5
24) India driving 49.3 25.6 23.1 52.8 50.9

suffer from combined lighting and editing attacks.

On the other hand, Baudry et al.’s method yields less accurate results for 24th

video in terms of higher IF rate. The reason is, 24th video is modified by editing

differences such as overlay text and addition of borders around frames, which in turn

noticeably vary wavelet coefficients.

Registration results for camcorded videos

In the subsequent experiments, for comparison purpose the following three methods

are evaluated:

(1) Chupeau et al.’s method (2006)(’CHE’);

(2) Baudry et al.’s method (2010)(’BA’);

(3) SURF+SC+sliding window for matching (’Proposed’);

Figure 4.14(a) lists the registration results of three compared methods in terms

of MF and AD rates. The proposed method gives extremely good results and im-

proves the MF rates (up to 44%), compared to two reference methods. Although

SURF and audio features have their own limitations, they balance each other; hence

the integrated utilization of visual and acoustic features significantly improves the

registration accuracy. The promising results of method (3) against heavily modified

camcorded copies of master videos support this view point.
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Figure 4.14: Comparison of accuracy and time cost(a)MF & AD rates(b)Total time

Among all the three methods, the proposed method yields more accurate results,

because the AD rate is lesser than the reference methods. Chupeau et al. (2006) and

Baudry et al. (2010) methods score poor MF rates compared to the proposed method.

The reason is, heavy cropping and compression distortions might substantially alter

visual descriptors such as color histograms and wavelets coefficients-based signatures.

Figure 4.14(b) shows the total time costs of methods (1)-(3), which includes fea-

ture extraction and frame matching costs. The costs are measured by implementing

the frame-to-frame mapping of a 215s query sequence with 2493s master sequence.

Although the feature extraction cost of proposed method is higher, its frame matching

cost is lower (by 97.5%) compared to the reference methods. This is because, query

clip features are aligned only with the candidate segment instead of the entire master

sequence. Thus in the proposed method usage of sliding window scheme noticeably

reduces the total time cost up to 46.8% and provides the lowest computational cost.

Geometric registration results

Table 4.17 shows the geometric registration results of the proposed method for differ-

ent video transformations in terms of mean and maximum pixel distances. Although

the query video (i.e., camcorded version of the master video) is modified by heavy

cropping, lighting and compression attacks; still the proposed method provides more

accurate results in terms of low pixel distances. The spatial registration performance
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of the proposed method is very efficient, because the mean pixel distance is always

less than one. The robust nature of powerful SURF descriptors is the exact reason

for this enhanced performance of the proposed method.

Table 4.17: Geometric registration results

Attacks Mean distance Maximum distance
Zoom in 0.60 1.20
Pattern insertion 0.62 1.30
Moving caption 0.62 1.24
Rotation 0.85 1.62
Random noise 0.63 1.30
Blurring 0.62 1.18
Brightness change 0.59 1.17
Cropping 0.63 1.41
Picture-in-picture 0.85 1.67
3 combined 0.62 1.12
5 combined 0.64 1.29
Camcording 0.69 1.23

Figure 4.15: Pairs of matched interest points of candidate(left) and query(right) video
frames; here, query is camcorded copy of the master video

For illustration purpose, temporally aligned master and query sequences are con-

sidered, which consists of 984 and 375 frames respectively. 74 principal frames are

selected from the temporally aligned video segments using Algorithm 2 described in

Figure 4.11 and utilized for the geometric alignment task. Figure 4.15 shows the ge-

ometrical mapping of the sample candidate and query frames, in which the extracted

control points are highlighted with crosses. Here, query video is generated as the

camcorded version of the master video.
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The experiments conducted on different datasets demonstrate that, the proposed

method consistently outperforms the reference methods for different types of trans-

formations. The proposed registration framework achieves promising results in terms

of higher MF and lower AD rates, by integrating visual and acoustic features for

the registration task. Frame matching in a sliding window manner is another good

characteristic of the proposed method which proves that, effective performance can

be achieved with lowest computational cost, though the feature extraction cost is

higher.

4.4 Summary

This chapter describes the scholarly contributions towards the video copy registration

problem, which target accurate frame-to-frame alignments of the pirate video with

master sequence.

More specifically, first this chapter contributes a new temporal registration scheme,

that employs multimodal fingerprints derived from MFCCs and motion activity fea-

tures for achieving temporal frame alignments of the pirate video with the master con-

tent. Followed by the temporal registration scheme, a robust spatio-temporal align-

ment framework is introduced, by employing SURF signatures in order to get accurate

frame-to-frame alignments of the two video sequences. Though SURF descriptors are

widely used in computer vision domain, introducing compact (1-D) SURF-based fin-

gerprints is one of the major contributions of the proposed registration methods.

Further, the proposed spatio-temporal visual signatures (SURF-based) are efficient

when compared to the existing multidimensional SURF fingerprints, which define

only the spatial content.

On the other hand, spatio-temporal alignment of a large master video with the

small pirate clip is quite challenging in terms of computational cost. Therefore,

identifying the most similar segment of the master video for the registration task

is highly beneficial in terms of computational complexity. Due to this reason, the

proposed registration frameworks also contribute, the most similar segment as well as

most similar frames selection algorithms for enhancing the registration performance.

Inclusion of audio signatures in the alignment task, significantly improves the

registration accuracy. Therefore, this chapter also presents a novel spatio-temporal

registration framework, that utilizes new visual fingerprints derived from SURF key

points and audio signatures extracted from spectral centroid features for obtaining

accurate frame alignments of the two video sequences. To the best of our knowledge,

this is the first attempt, which proposes a spatio-temporal registration framework
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using multimodal features for obtaining the accurate frame alignments of the pirate

video with the master sequence. The proposed spatio-temporal registration frame-

work is evaluated on three different datasets, namely TRECVID sound & vision data,

CC WEB VIDEO dataset and a set of real data comprising camcorded versions of

master videos. Extensive evaluations on different datasets prove the efficiency and

effectiveness of the proposed framework compared to the reference methods against

various video transformations.
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Chapter 5

Geometric Distortions Estimation

Framework

Followed by video copy registration, estimating the geometric distortions in a pirate

video is prerequisite, in order to approximate the position of pirate in a movie theater

during the illegal capture. Therefore, this thesis illustrates the scholarly contribution

towards the geometric distortion estimation problem, in this chapter. Specifically,

this chapter attempts to address the issues of existing distortion estimation tech-

niques as described in Section 2.3.3, by contributing a new framework for geometric

distortions estimation, which employs visual and acoustic features. More specifically,

the proposed framework estimates geometric distortions in video copies, by incorpo-

rating novel visual fingerprints derived from SURF interest points and robust audio

signatures extracted from MFCCs of video contents, which is described below.

5.1 Estimating Geometric Distortions in Video Copies

As illustrated in Section 2.3.3, state-of-the-art techniques are exploiting only visual

features of videos for estimating the geometric distortions in watermarked video se-

quences; while no efforts are made towards acoustic features and non-watermarked

video contents. To handle these issues, this chapter proposes a novel distortion model

estimation framework, which exploits visual-audio fingerprints for the estimation task.

Precisely, the main contributions of the proposed framework are given by,

? A novel visual fingerprint denoted as Compact Spatio-Temporal (CST) SURF

signature is introduced, which describes the spatial and temporal content of

frames, when compared to the existing multi-dimensional SURF fingerprinting

methods (Zhang et al. 2010; Yang et al. 2008).

143
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? The proposed framework exploits both the visual-audio signatures to achieve

accurate temporal alignments and hence false frame matches are noticeably

reduced.

? A new and effective algorithm, for selecting the Most Similar (MS) segment of

the master video using bipartite matching is contributed, which considerably

reduces the frame matching cost.

? An efficient algorithm to select stable frame pairs of pirate video and MS seg-

ments is introduced, which results in accurate geometric frame alignments.

? The proposed framework also exploits distance measure and nearest neighbor

mapping policies to obtain robust key point pairs, which are used to estimate

the geometric distortions present in the duplicate video.

The proposed distortion estimation framework including temporal and geometric

frame alignments followed by distortions estimation is illustrated as follows.

5.2 Proposed Distortions Estimation Framework

The proposed framework for estimating geometric distortions is shown in Figure 5.1.,

which includes three stages: In the first stage, compact visual-acoustic fingerprints are

extracted from the master and pirate video sequences. Then, minimum weight perfect

bipartite graphs are constructed to compute the exact frame-to-frame alignments of

two video contents. More Precisely, master video segment with minimum matching

cost is selected by employing visual-audio fingerprints and denoted as the Most Similar

(MS) segment of the master video. After this step, pirate video and MS segment

frames are mapped to get temporal frame-to-frame matches.

In the second stage, from the temporally mapped frames, a small set of frames

denoted as stable frame pairs are extratced from the two video sequences. The resul-

tant frame pairs are aligned using their SURF descriptors by means of control points,

in order to achieve accurate geometric frame alignments. In the third stage, the pro-

posed scheme extracts robust key point pairs from the spatially mapped frames by

applying distance measure and nearest neighbor mapping policies. Finally, geometric

distortion model is estimated by employing the spatial coordinates of the resultant key

point pairs and Normalized Direct Linear Transformation (DLT) algorithm (Hartley

and Ziserman 2004).



Geometric Distortions Estimation Framework 145

 

Master 
video 

Temporal frame alignments 

 

Align frames 
of pirate & 
MS segments 

Temporally 
mapped frames 

Derive compact 
audio profile 

Select MS segment using segmentation 
based bipartite matching by exploiting 
visual-audio signatures 

Construct 
minimum 
weight 
perfect 
bipartite 
graphs   

Extract compact 
visual profile 
(CST SURF 
signatures)  

Pirate 
clip 

Geometric frame alignments 

Spatially 
mapped frames 

Distortion model estimation 

Estimated homographic 
distortion model  

Select stable 
frame pairs 

Map frames using 
SURF descriptors 

Apply mapping 
policies to filter 
key point pairs 

Extract spatial coordinates of 
key point pairs and apply 
Normalized DLT algorithm

Figure 5.1: Proposed geometric distortions estimation framework

5.2.1 Temporal frame alignments

The proposed framework first computes compact visual-audio profiles of two video

contents by exploiting CST SURF signatures and MFCCs respectively. The resultant

feature sequences are aligned using bipartite matching in order to obtain accurate

frame alignments of the pirate video with the master content, which is illustrated as

follows.

Compact Visual Profile Extraction

As mentioned in Section 4.2.1, SURF is a scale and rotation invariant descriptor

(Bay et al. 2008), which is popularly used in the copy detection literature to identify

duplicate videos (Yang et al. 2008). In SURF, each interest point is associated with

64-D feature vectors (Bay et al. 2008). Further, each frame may contain multiple

SURF interest points; hence direct comparison of SURF descriptors across all frames

would be computationally expensive. On the other hand, current works employ multi-

dimensional SURF fingerprints and consider only spatial content of frames (Yang et al.

2008). However, to generate a robust visual profile, spatial as well as temporal content
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of frames need to be considered.

In order to solve these issues, this chapter introduces a novel visual signature,

denoted as CST SURF signature, which effectively characterizes the spatio-temporal

content of frames. Specifically, Figure 5.2 details the Algorithm 5.1, which is used to

compute CST SURF signatures of the given video sequence. Figure 5.3 illustrates the

steps involved in the computation of CST SURF signatures from the sample frames

on a 2×2 partition.

Algorithm 5.1: CST SURF signatures Computation

1: Let V = {fi|i = 1, 2, 3, ..., n} be the video sequence comprising n frames, where
fi is i-th frame of V .

2: Segment the frame fi into 2×2 regions, such that fi = {rji }, where i ∈ [1 : n],
j ∈ [1 : 4].

3: Compute SURF key points of rji of fi and denote the count as Crji .

4: Calculate the differences between Crji and Crji+1, where i ∈[1:n], j ∈[1:4]. Then
normalize the differences into [0:5] range.

5: Apply I-order Z-curves on normalized differences to obtain compact visual fin-
gerprints.

6: The resultant fingerprints are denoted as Compact Spatio-Temporal (CST)
SURF signatures.

Figure 5.2: CST SURF signatures computation

SURF descriptors are poor at handling illumination variations, specifically non-

uniform types. However, the proposed CST SURF signatures consider only the dif-

ferences between region-wise count of SURF key points. In addition, the resultant dif-

ferences are normalized to compute CST SURF signatures. Therefore, the proposed

fingerprints are less affected by spatially varying illumination changes and guarantee

reasonable registration accuracy.

Compact Acoustic Profile Extraction

As described in Section 3.4.2., Mel-Frequency Cepstral Coefficients (MFCCs) are ro-

bust and highly discriminative spectral features; hence they are popularly used in

speech recognition and multimedia content analysis applications (Rabiner and Juang

1993; Park 2010). In addition, frequency warping in MFCCs represent the percep-

tual features of sound signals very well. Due to these reasons, perceptually robust
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Figure 5.3: CST-SURF signatures computation. (a) Video frames partitioned into
2×2 regions. (b)Computing differences between region-wise count of SURF key
points. (c) Region-wise normalized differences. (d) Applying I-order Z-curves and
computing CST SURF signature with time series

MFCCs are employed to extract the compact audio profile of video sequences, which

is illustrated as follows.

First an audio signal is down sampled to 22050 Hz and segmented into 11.60ms

windows with an overlap factor of 70% using Hamming window function (Roopalak-

shmi and Reddy Sep-2011). The MFCCs calculation results in a M×N matrix, where

M indicate the number of frames and N consists of 13 MFCC features of a frame.

This M×N matrix can be effectively summarized using Singular Value Decomposition

(SVD) technique as A = USV T , where A is M×N input matrix to be summarized, S

is an M×N diagonal matrix consisting of the singular values of A.

The proposed framework employs 4 to 6 singular values for extracting acoustic

signatures of video contents. Further, in order to improve the robustness of audio

signatures against various media distortions, normalized singular values are utilized

in this study. Figure 5.4 details the steps used to compute the compact acoustic
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signatures from the spectrum of audio signals.
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Figure 5.4: Compact acoustic signatures extraction

Introduction of Bipartite Matching

In order to obtain the temporal frame alignments of two video sequences, the frame

alignment problem is reduced into a graph theoretic problem called as Minimum

Weight Perfect Bipartite Matching (MWPBM) (Chartrand 1977; Goemans 2007),

which is illustrated below.

A graph G = (V,E) is said to be bipartite, if the vertex set V can be partitioned

into two sets V 1 and V 2, such that no edge in E has both endpoints in the same

set of bipartition. A matching M ⊆ E is a collection of edges such that every vertex

V is incident to at most one edge of M . A matching M is said to be perfect if its

cardinality is equal to |V 1| = |V 2|. Given a cost Cij for all (i, j) ∈ E, the cost of

matching M denoted as C(M) is given by,

C(M) =
∑

(i,j)∈M

Cij (5.1)

Minimum Weight Perfect Bipartite Matching (MWPBM) technique computes a

perfect matching Mmin with minimum matching cost C(M)min which is formulated

as,

C(M)min = min{C(M)} (5.2)

Mmin = {Mij| C(Mij) == C(M)min}, (i, j) ∈ E (5.3)

In other words, the goal of MWPBM is to find a perfect matching M , which minimizes

C(M), for every i ∈ V 1, j ∈ V 2.

Frame Alignments Using MWPBM

The proposed framework constructs a weighted bipartite graph and computes frame

alignments of two video contents using MWPBM as detailed below.
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Definition 1 (Video as set of frames): Let a master video MV is represented

as a group of frames: MV = {mf1,mf2, ...,mfnmv}, while a pirate video PV is

denoted as a set of frames: PV = {pf1, pf2, ..., pfnpv}. Here, nmv and npv indicate

number of master and pirate video frames respectively.

Definition 2 (Weighted bipartite graph): A weighted bipartite graph is said

to be a bipartite graph G such that,

G = {V,E,W} (5.4)

where V = {MV ∪PV }, E = {MV×PV } andW = {w(i, j)|w(i, j) = Dist(mfi, pfj)}.
Here, Dist indicates the distance between feature sequences of video frames mfi and

pfj respectively, which is explained below.

Let V Fmv be the visual signature of the master video MV such that, MV ∈
{V F i

mv| 1 ≤ i ≤ nmv} and V Fpv be the visual signature of the pirate video PV such

that, PV ∈ {V F j
pv| 1 ≤ j ≤ npv}. The distance Distvis between the two visual

feature sequences is computed using comparative Manhattan distance as follows,

Distvis(V Fmv, V Fpv) =
|(V F i

mv)− (V F j
pv)|

|(V Fmvi)|+ |(V Fpvj)|
(5.5)

where i ∈ [1 : nmv] and j ∈ [1 : npv] respectively.

ConsiderAFmv be the acoustic feature sequence ofMV such that, MV ∈ {AF k
mv| 1 ≤

k ≤ nmv} and AFpv be the audio signature of PV such that, PV ∈ {AF r
pv| 1 ≤ r ≤

npv}. The distance Distaud between the acoustic feature sequences of master and

pirate videos is computed using squared Euclidean distance as follows,

Distaud(AFmv, AFpv) = |(AF k
mv − AF r

pv)
2| (5.6)

where 1 ≤ k ≤ nmv and 1 ≤ r ≤ npv respectively.

Figure 5.5 shows the weighted bipartite graph used to model the master and pirate

video segments. Video frames form the vertices and the difference between their

feature sequences provide edge weights. The frame correspondences in the bipartite

graph is generated using Hungarian algorithm (Kuhn 1955).

Definition 3 (MWPBM): In the proposed framework, a perfect matching M is

computed, that provides minimum matching cost for every mfi ∈MV and pfj ∈ PV
using MWPBM technique. More precisely, MWPBM computes a perfect matching

Mmin with minimum matching cost C(M)min, which provides lowest cost for every

mfi ∈MV and pfj ∈ PV . Figure 5.5 indicates the sequence of frame pairs in dotted
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Figure 5.5: MWPBM technique to compute frame alignments. Dotted lines indicate
sequence of frame pairs and darker lines represent the frame alignments with lowest
possible cost.

lines and the frame alignments with the lowest possible cost in darker lines.

Segmentation-Based MWPBM

Mapping the pirate clip frames with the entire master video is computationally ex-

pensive, if the size of master video is large. More precisely, in order to align a master

sequence of nmv frames with the pirate clip having npv frames, MWPBM method

computes an edge set E ⊆ {nmv × npv}. Hence if nmv increases, the computational

complexity also increases.

In order to tackle this problem, this chapter computes the Most Similar (MS)

segment of the master video such that, the distance between the visual-audio feature

sequences of MS and the pirate segments is minimum. The Algorithm 5.2 given in

Figure 5.6 details the steps used to select the MS segment of the master sequence. In

(Roopalakshmi and Reddy 2013), sliding window based DTW technique is utilized to

compute the similar segment of the master video. However, length and overlapping

factor of a sliding window play a vital role in determining system accuracy and com-

putational cost. To solve this discrepancy, segmentation technique is exploited in the

proposed framework to select the MS segment of master video. Once the MS seg-

ment is selected, then the pirate video and MS segment frames are mapped to each

other, in order to obtain accurate temporal frame alignments. In this way, the joint

utilization of visual-audio fingerprints significantly reduces false frame mappings.
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Algorithm 5.2: Most Similar(MS) Segment Selection

1) Divide the master video into non-overlapping segments of length equal to the
pirate clip. The last segment having total frames < length of pirate clip is
padded with zero valued frames.

2) Let the master video MV be,

MV ∈ {Sk| 1 ≤ k ≤ ns}, (5.7)

where Sk is the k-th segment and ns is total segments of MV . Here, each
segment Sk of MV can be compactly represented as,

Sk ∈ {{V i
sk
∪ Aj

sk
} | 1 ≤ i ≤ nvsk , 1 ≤ j ≤ nask} (5.8)

where V i
sk

is i-th visual feature of Sk and nvsk indicates total visual signatures
of Sk. Here, Aj

sk
is j-th audio feature sequence of Sk and nask represents total

acoustic feature sequences of Sk.

3) Let the pirate video PV is compactly described as,

PV ∈ {{V k
q ∪ Ar

q} | 1 ≤ k ≤ nvq, 1 ≤ r ≤ naq} (5.9)

where V k
q is the k-th visual feature vector and nvq is total visual features of PV .

Here, Ar
q is r-th audio feature sequence and naq indicates total feature vectors

of PV .

4) Compute the distance between the visual-audio feature sequences of Sk and the
pirate video PV , where k ∈ [1 : ns].

5) Select the segment Sk having minimum matching cost (i.e. C(M)min) for both
the visual and audio feature sequences as the Most Similar (MS) segment of
MV , which is formulated as,

Simseg(Sk, PV ) = C(M)min(Vsk , Vq)+

C(M)min(Ask , Aq)
(5.10)

where C(M)min(Vsk , Vq) indicates the cost of minimum weight perfect matching
M , which aligns the two visual feature sequences Vsk and Vq respectively. Here,
C(M)min(Ask , Aq) indicates the cost of perfect matching M , which maps the
two acoustic feature vectors Ask and Aq of Sk and PV segments respectively.

Figure 5.6: Most Similar(MS) segment selection algorithm

5.2.2 Geometric frame alignments

From the previous section, temporally aligned frame pairs of pirate and master video

sequences are obtained. This section maps the resultant frame pairs by means of
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their SURF descriptors to get accurate geometric frame alignments. It is not fea-

sible to estimate the geometric distortions from all temporally aligned frames due

to computational load. Further, all video frames may not provide essential control

points to estimate accurate geometric distortions. On the other hand, frame misalign-

ments may considerably degrade the distortion estimation accuracy of the proposed

framework.

In order to solve these problems, the proposed framework selects a subset of

temporally aligned frame pairs denoted as stable frame pairs for estimating geometric

distortions. The edge weights and frame correspondences computed by MWPBM

algorithm supply important guidelines for selecting stable frame pairs of two video

contents. Algorithm 5.3 specified in Figure 5.7, describes the steps used to compute

the stable frame pairs of MS and pirate video segments. Finally the resultant frame

pairs are mapped by means of their SURF descriptors in order to obtain accurate

geometric alignments of master and pirate video contents.

Algorithm 5.3: Stable Frame Pairs Selection

a) Let MS be the most similar segment with nms frames such that MS ∈
{mf1,mf2, ...,mfnms} and let PV be the pirate video segment with npv frames
so that PV ∈ {pf1, pf2, ..., pfnpv}.

b) MWPBM computes a perfect matching Mmin of MS and PV segments with
minimum matching cost C(M)min. Specifically, Mmin can be represented as,

Mmin ∈ {{mfi, pfj}| 1 ≤ i ≤ nms, 1 ≤ j ≤ npv} (5.11)

where mf and pf indicate the frame pairs of MS and pirate segments with
minimum cost.

c) Select all the frame pairs of Mmin satisfying the given criteria as stable frame
pairs SFP of two video contents, which is formulated as,

SFP ∈ {{mfi, pfj}| Dist(mfi, pfj) ≤ (C(M)min/2)} (5.12)

Figure 5.7: Stable Frame Pairs selection algorithm

5.2.3 Geometric distortions estimation

The geometric frame alignments stage results in a list of key point pairs extracted

from pirate and master video sequences. In this section, first the stable and robust
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interest point pairs from the entire set of matched key points are obtained by utilizing

two filtering policies. Then the proposed framework exploits spatial coordinate values

of resultant key point pairs and Normalized DLT algorithm to estimate the geometric

distortions in the pirate video, which is illustrated below.

Key points Filtering

Blind comparison of all feature descriptors of a frame pair is not feasible due to the

computational cost. Further, direct comparison of all SURF descriptors of frame pairs

leads to false mappings. In order to tackle these discrepancies, this chapter employs

two policies for selecting robust key point pairs, which are described below.

Policy 1: The mapping criteria of two key points is determined using Squared

Euclidean distance measure as follows,

disdes(di, dj) = |(di − dj)2| (5.13)

where di, dj indicate the SURF descriptors derived from the MS and pirate video

frames; and disdes represents the distance between two feature descriptors di and dj

respectively. Two key points are matched only if their disdes ≤ threshold value, which

is set as 0.40 in experiments.

Policy 2: The proposed framework employs nearest neighbor mapping strategy

to filter out false key point matches. For each key point, the first and second nearest

neighbors with minimum distances are listed. Then the role of frame pairs is inverted

and the nearest neighbors are computed. If same correspondence is obtained for a

given key point pair in both the lists, then the resultant key points are matched and

retained; else the key point pair is discarded. After this step, the spatial locations of

resultant key point pairs are employed for estimating the geometric distortions in the

pirate video.

Distortion Estimation

As mentioned in Section 2.3.1., in case of a camcorder capture in a theater the re-

sulting images are coupled with severe geometric distortions, because the camcorder

capturing axis is not perpendicular to the screen. The resultant geometric distor-

tions can be described by perspective projection, which models the imaging process

of a pinhole camera. Projective transformation transforms a square into an arbitrary

quadrilateral, in which distance between the points and angle between the lines are

not preserved (Hartley and Ziserman 2004).
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Let x1 = (x1, y1, 1)T be the homogeneous vector, which represents spatial co-

ordinate values of a key point in MS segment frame and x2 = (x2, y2, 1)T be the

homogeneous vector that represents coordinate values of an interest point in the pi-

rate segment frame. A planar projective transformation is a linear transformation

on homogeneous 3-vectors represented by a non-singular 3×3 matrix as (Hartley and

Ziserman 2004),

x2 = Hx1, where H =

 h11 h12 h13

h21 h22 h23

h31 h32 h33

 (5.14)

Here H is a homogeneous matrix. Amongst the nine elements of H, there are eight

independent ratios and thus a projective transformation has eight degrees of freedom

(DOF) (Hartley and Ziserman 2004). Thus four 2-D to 2-D point correspondences

from MS and pirate segment frames are required to estimate the 8-parameter homo-

graphic matrix H.

In this study, the coefficients of H are determined using estimated point corre-

spondences and Normalized DLT algorithm (Hartley and Ziserman 2004). DLT is a

simple linear algorithm used to determine the solution for H, which is not invariant

to similarity transformations of the image. Precisely, the results of DLT algorithm

depends on the coordinate frame in which the points are expressed. Normalized DLT

algorithm provides a solution to this problem, by including initial data normaliza-

tion procedure in the basic DLT algorithm. In this way, Normalized DLT algorithm

computes the coefficients of H, which is invariant to arbitrary choices of scale and

coordinate origin. The data normalization of Normalized DLT algorithm includes

these steps: a) The points are translated so that their centroid is at the origin; b)

Then the points are scaled such that the average distance from the origin is equal to√
2 and c) This transformation is applied to each of the two images independently.

After this normalization step, DLT algorithm is applied to determine the coefficients

of H.

Lee et al. (2010) used corner points of two video frames and DLT algorithm to

estimate the homographic matrix H. The proposed framework utilizes spatial loca-

tions of stable and robust key points for estimating H. Furthermore, the framework

employs Normalized DLT algorithm to estimate H, which is more accurate compared

to DLT algorithm (Hartley and Ziserman 2004). In order to derive a linear solution
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for H, Equation (5.14) is expressed in terms of vector cross product as,

X ′i ×HXi = 0 (5.15)

where X ′i = (x′i, y
′
i, w

′
i) and if the j-th row of the matrix H is denoted by hTj , then we

can write,

HXi =

 hT1Xi

hT2Xi

hT3Xi

 (5.16)

The cross product in (5.16) is given explicitly as,

X ′i ×HXi =

 y′ih
T
3Xi − w′ihT2Xi

w′ih
T
1Xi − x′ihT3Xi

x′ih
T
2Xi − y′ihT1Xi

 (5.17)

Since hTj Xi = XT
i hj for j ∈ {1, 2, 3}, this gives a set of three equations in the entries

of H, which may be written in this form, 0T −w′iXT
i y′iX

T
i

w′iX
T
i 0T −x′iXT

i

−y′iXT
i x′iX

T
i 0T

 h = 0, h =

 h1

h2

h3

 (5.18)

Though there are three equations in (5.18), only two of them are linearly indepen-

dent, since these equations include homogeneous vectors (Hartley and Ziserman 2004),

which is written as,

Aih = 0 (5.19)

where Ai is the 2×9 matrix of (4.18) and i ∈ {1, 2, 3, 4}. Given four 2-D to 2-D point

correspondences, the rows of Ai are arranged into a single matrix A as,

Ah = 0, where A =
(
A1 A2 A3 A4

)T
(5.20)

In order to obtain the solution of (5.20), SVD of A is computed as,

A = UMV T (5.21)

where M is the diagonal matrix containing singular values in the descending order, U

is an orthogonal matrix of size 8 × 8 and V is an orthogonal 9 × 9 matrix. The last

column of V provides the values of h, from which matrix H can be determined.
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5.2.4 Performance evaluation and results

The proposed algorithm is evaluated on a real data set consisting of popular movies

and their camcorded copies. Table 5.1 lists the movies that constitute the master

data set of the proposed framework and Figure 5.8 shows the snapshot examples of

master videos.

Table 5.1: Master dataset

# Movie Title
1 Aliens Vs Avatars
2 Alvin And The Chipmunks
3 God Bless America
4 Intruders
5 Journey2 The Mysterious Island
6 Mission Impossible: Ghost Protocol
7 Titanic

 

          

        

Figure 5.8: Snapshot examples of the master dataset

The query set consists of totally 84 camcorded copies with different distortions and

the duration of copies vary between 40s to 3min. Precisely, the quality of camcorded

versions range from clean copies to heavily modified ones with a large amount of noise,

zooming in and perspective distortions. Further, resampling procedure is utilized in

order to synchronize master and pirate video sequences, where the frame rate is set

as 25 frames/sec.

Temporal registration results

The following six methods are evaluated:
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(1) CST SURF signatures (abbreviated as ’SU’);

(2) Compact audio signatures from MFCCs (’MF’);

(3) SU + MF without segmentation (’SU+MF’);

(4) SU + MF + segmentation (’SU+MF+SE’);

(5) Chupeau et al.’s method (2006) (’CH’);

(6) Chen and Stentiford’s method (2008) (’CS’);

The methods (1)-(4) evaluated different combinations of the proposed techniques.

Methods (1) and (2) employ visual and acoustic fingerprints (namely SURF and

MFCCs) for implementing the temporal registration task. Methods (3) and (4) are

executed in order to prove the effect of segmentation scheme in the proposed frame-

work.

In method (1), CST SURF signatures of the pirate video are temporally mapped

with the corresponding features of the entire master sequence. The compact acoustic

fingerprints of pirate clip are matched with the respective audio signatures of the

master sequence in method (2). In method (3) visual-audio fingerprints of the pirate

clip are separately aligned with the corresponding features of the entire master se-

quence. Method (4) temporally aligns the multimodal signatures of the pirate video

with the MS segment instead of entire master sequence.

Chupeau et al. (2006) used color histograms for computing temporal frame align-

ments, which is executed as follows: From consecutive frames, histograms of size 512

bins are generated. Then distances between color histograms of successive frames

and dynamic programming are utilized to get temporal frame alignments. Chen and

Stentiford (2008) employed ordinal measure for matching pirate and master video se-

quences, which is widely popular in Content-based video copy detection literature. In

this method, a video frame is divided into 2×2 grids and the corresponding temporal

ordinal measure is computed based on the grey values of ordinal ranking matrix, to

obtain precise temporal localization of frames.

Figure 5.9 shows the temporal registration results of six compared methods in

terms of percentage of Perfectly Matches Frames (PMF). The performance of meth-

ods (2)-(4) is superior compared to other methods in terms of higher PMF rates. This

is because, methods (2)-(4) employ MFCCs, which are robust against visual content-

based distortions such as zooming in, noise and camcording. Method (4) slightly

enhances PMF rates (by 1.6%) when compared to method (3). This is because, when

the segmentation scheme is employed, pirate clip features are matched only with the

MS segment features instead of the entire master sequence; hence lot of false posi-

tives are reduced. Method (4) scores well in terms of higher PMF rates and improves

the registration accuracy up to 19.3% compared to the reference methods. Although
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Figure 5.9: Temporal alignment results of methods (1)-(6). PMF rates: % of
perfectly matched frames

SURF and MFCCs have their own advantages and limitations they complement each

other very well; hence, their combination along with the segmentation scheme signif-

icantly improves the registration results. The enhanced results of method (4) shown

in Figure 5.9 provide a good evidence to support this view point.

On the other hand, Chupeau et al.’s method achieves poor results in terms of

low PMF rates. The reason is, noise and camcording distortions noticeably change

the histogram properties, hence registration accuracy is substantially reduced. Chen

and Stentiford’s method scores low PMF rates, since camcording distortions alter

the ordinal measure substantially, which leads to lot of false frame matches. Fur-

ther, cropping introduces black borders on bottom and top regions, which generates

different ordinal signatures for pirate and master sequences.

Figure 5.10 shows the temporal registration results of six compared methods in

terms of Average Distance between true and estimated frame indexes (AD). Figure

5.10 results indicate the superior performance of method (4) compared to two refer-

ence methods in terms of lower AD rates. Methods (1),(5) and (6) score poor results

in terms of higher AD rates. This is because, the methods using only visual signatures

are much affected by transformations such as noise, cropping and camcording. How-

ever, MFCC signatures based methods (methods (2)-(4)) are less affected by these

transformations; hence they score better AD rates.
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Figure 5.10: Temporal alignment results of methods (1)-(6). AD rates: average
distance between true & estimated frame indexes

Computational cost comparison

The proposed framework is executed in MATLAB and run on a PC with 2.8GHz CPU

and 3GB RAM. Table 5.2 shows the total computational costs of methods (1)-(6),

including fingerprinting extraction and frame alignment costs. The time costs are

measured by executing temporal frame alignment of a 108s query clip with a 4862s

master sequence.

Table 5.2: Comparison of Computational Cost

Task SU(1) MF (2) SU+MF(3) SU+MF CH(5) CS(6)
+SE(4)

Fingerprints 46.10 25.81 58.63 58.63 39.42 40.86
extraction
Frame alignment 33.64 11.27 27.80 8.26 30.35 29.17
Total cost 79.74 37.08 86.43 66.89 69.77 70.03

The fingerprint extraction cost of methods (3) and (4) are slightly higher com-

pared to the two reference methods. This is because, methods (3) and (4) exploit both

the visual and acoustic features. However, the frame alignment cost of method (4)

is considerably reduced (up to 72.5%) when compared to the two reference methods.

The reason for this drastic reduction is, in method (4) the multimodal features of the

pirate segment are mapped only with respective features of the MS segment rather
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than the entire master sequence. Thus in the proposed method, the usage of segmen-

tation scheme decreases the total time cost significantly and enhances effectiveness of

the proposed framework.

Geometric Alignment Results

In the subsequent experiments, for comparison purpose the following three methods

are evaluated:

(1) Chupeau et al.’s method (2006)(’CH’);

(2) Chen and Stentiford’s method (2008)(’CS’);

(3) SU +MF+ segmentation (’Proposed’);

n
n
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Figure 5.11: Geometric alignment results: Minimum & maximum pixel distances

Figure 5.11 indicates the geometric registration results of three compared methods

in terms of minimum and maximum pixel distances. The performance of the proposed

method is very accurate, because the minimum pixel distance< 0.5. Though the

pirate video is heavily modified by camcording, yet the proposed framework gives

more accurate results in terms of lowest pixel distances. The reason is, utilization

of stable frame pairs and their robust SURF descriptors for the geometric alignment

task.

Distortion Estimation Results

For illustration purpose, spatio-temporally aligned frame pairs shown in Figure 5.12

are considered. Initially 302 and 197 key points are extracted from MS and pirate

segment frames respectively, which is shown in Figure 5.12(a). Policy 1 described in
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(a) (b)

(c) (d)

Figure 5.12: Sample frames from MS (left) and pirate (right) segments. (a) All key
point pairs. (b) After applying Policy 1. (c) After applying Policy 2. (d) Final list
of matched key point pairs

Section 5.1.4 is applied and hence the number of key point matches of the two video

segments are reduced from 302 to 244 and 197 to 140 respectively, which is given in

Figure 5.12(b(b). After this step, the proposed framework applies Policy 2 in order to

retain the stable key point pairs, which in turn decreases the key point matches from

140 to 86 and 244 to 153 respectively, as shown in Figure 5.12(c). Finally, 44 robust

and stable matched key point pairs shown in Figure 5.12(d) are extracted and spatial

coordinate values of resultant key point pairs are employed to estimate the distortion

model. Precisely, geometric distortions in the pirate video frame is estimated and

represented using homogeneous matrix H as given by,

H =

 0.4081 0.1467 −8.4936

−0.1087 0.7377 −20.5361

−0.0007 0.0007 0.5645

 (5.22)
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GT =

 0.5062 0.0161 −10.9197

−0.0182 0.6012 −13.3173

−0.0002 0.0000 0.6206

 (5.23)

where (5.23) indicates ground truth values (GT ). The estimation results clearly

demonstrate the accuracy of the proposed framework, since the estimated distortions

slightly deviate from the ground truth values.

5.3 Summary

This chapter describes the scholarly contribution towards the geometric distortion

estimation problem, by presenting a new framework, which exploits visual and audio

features. To the best of our knowledge, this is the first attempt, which employs visual-

audio fingerprints for estimating geometric distortions in pirate video sequences.

Specifically, the proposed distortion estimation framework jointly utilizes novel

visual fingerprints derived from SURF key points and robust audio signatures ex-

tracted from MFCCs of video sequences for the estimation task. Further, presenting

algorithms to select Most Similar (MS) segment of the master video as well as Sta-

ble Frame Pairs of two video sequences, are some of the main contributions of the

proposed framework. Furthermore, the proposed distortion estimation framework

is evaluated on a real dataset consisting of 7 popular movies and their camcorded

versions. Experimental results demonstrate the promising results of the proposed

framework compared to the two reference methods.

However, frame misalignments may degrade the distortion estimation accuracy of

the proposed framework. To handle this issue, a sub-set of temporally aligned frame

pairs denoted as Stable Frame Pairs are utilized for estimating the geometric dis-

tortions. Though, robust key point pairs matching algorithms such as Least Median

of Squares or RANSAC may enhance the estimation accuracy; yet the enhancement

would be small. The possible reason could be the ratio of inliers and outliers, which

is one of the major constraint for these algorithms.
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Chapter 6

Case Study: Pirate Position

Estimation Framework

Followed by geometric distortions estimation, the resultant visual-acoustic finger-

prints can be efficiently employed for locating the position of the pirate in a movie

theater. From another perspective, combating camcorder piracy requires forensic

tracking systems to track the movie pirate, who is responsible for the illegal cap-

ture. Due to these reasons, this thesis describes the scholarly contribution towards

the pirate position estimation problem in this chapter. Precisely, the current chap-

ter illustrates a forensic tracking framework employing visual-acoustic fingerprints,

for investigating the position of the pirate in a movie theater. More precisely, the

proposed framework first determines the camcorder optical axis to the screen perpen-

dicular by redefining the theater projective geometry and consequently estimates the

location of the pirate in a movie theater, which is detailed as follows.

6.1 Estimating the Position of the Pirate

Fighting camcorder piracy needs not only the identification of the theater and show

time information, but also the estimation of camcorder location in a theater from

which a illegal recording was made, in order to find out the pirate as well as limit the

number of pirate suspects. On the other hand, addressing camcorder piracy, through

forensic frameworks for identifying the movie pirate, is certainly not the aim of this

thesis. Instead of that, this research study attempts to highlight the capability of

video fingerprints towards the pirate position estimation problem. In other words,

current research work tries to prove that, the illegal capture location in a theater

could be approximated, by performing in-depth analysis of geometric distortions and

163
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theater projective geometry. In order to validate this view-point, In-Theater experi-

ments are conducted and evaluated in this thesis. Therefore, this thesis contributes

a new forensic tracking framework exploiting visual-audio fingerprints, for estimating

the location of the pirate in a theater, by keeping the assumptions described in Sec-

tion 2.4.1. More precisely, the main contributions of the proposed forensic tracking

framework are listed below:

? The proposed framework demonstrates that the visual-audio fingerprints ex-

tracted from the master and the duplicate video sequences could be utilized for

finding the position of the pirate in a movie theater. This is a brand-new appli-

cation of the video fingerprinting technique, which helps to find out, where the

pirate was during illegal recording and consequently restricts camcorder piracy.

? Precisely, the proposed forensic tracking framework first introduces spatio-

temporal registration and geometric distortions estimation of the pirate video

with the master sequence by employing multimodal signatures irrespective of

presence/absence of watermarks in the video sequences. More specifically, in

the proposed framework, the spatio-temporal registration scheme introduced in

(Roopalakshmi and Reddy 2013) is extended, in order to estimate the position

of pirate in a movie theater. Further, a stable key point pairs selection algorithm

is presented, which efficiently extracts the most similar key point pairs from the

temporally aligned master and pirate video sequences.

? To the best of our knowledge, this is the first attempt, which exploits both

the visual and acoustic fingerprints for estimating the location of the pirate

in a theater, when compared to the conventional watermarking based forensic

tracking methods.

The proposed forensic tracking method including spatio-temporal frame alignments

and geometric distortions estimation followed by the pirate position approximation

is illustrated as follows.

6.1.1 Scenario for identifying a movie pirate

A scenario shown in Figure 6.1 is considered for the purpose of identifying the movie

pirate, which is defined as follows: (1) The pirate illegally records a movie using

a camcorder in a theater and uploads the illegal content on the Internet. (2) In

any anti-piracy strategy, copy identification is the first step; hence, here Content-

Based video Copy Detection (CBCD) technique is employed, which detects the best

matching master video for the given pirate clip. (3) After this step, a conventional
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watermarking system such as (Haitsma and Kalker 2001) is used to determine the

theater and the show time at which the illegal camcorder captures are made. (4) Then,

the proposed position estimation framework estimates the location of the pirate in

the movie theater in terms of specific seat information.

Internet

Content-Based 

video Copy 

Detection (CBCD) 

Theater and show 

time extraction

Position estimation 

framework

Person 

identification

Pirate
Uploading 

pirated video

Figure 6.1: Scenario for identifying a movie pirate

More precisely, after the copy detection task, spatio-temporal alignments and

estimation of distortion model between pirate and master video contents are prereq-

uisites, in order to approximate the capture location in a theater. Therefore, the

proposed position estimation framework computes spatio-temporal frame alignments

of the source movie and pirate video contents by exploiting visual-audio fingerprints.

Then, the proposed framework estimates the geometric distortions in the pirate video

in terms of the projective matrix. Consequently, the camcorder optical axis to the

screen perpendicular is determined by redefining the theater projective geometry and

eventually the position of the pirate in the theater is estimated by the position esti-

mation framework. (5) Finally, an electronic ticketing system may be used to identify

the exact person who illegally captured the movie. In this way, the proposed position

estimation framework restricts the number of piracy suspects and helps to identify

the pirate. This chapter work focuses on the position estimation framework shown in

Figure 6.1 with dotted lines, which is an essential component of this scenario.

6.1.2 Proposed pirate position estimation framework

The block diagram of the proposed position estimation framework is shown in Figure

6.2, which consists of three stages: In the first stage, the source movie and illegal

video contents are registered in order to obtain accurate frame-to-frame mappings,

such that the resultant frame pairs are both temporally and spatially aligned. Visual-

audio fingerprints are employed to get spatio-temporal frame alignments of two video
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contents using the registration scheme proposed in (Roopalakshmi and Reddy 2013).
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Figure 6.2: Block diagram of the proposed position estimation framework

More precisely, the two video sequences are compactly represented by exploiting

visual signatures extracted from SURF interest points and acoustic fingerprints de-

rived from spectral centroid features. Then a multimodal frame matching scheme

based on Dynamic Time Warping (DTW) is utilized to temporally align the visual

and acoustic feature sequences. From the temporally aligned video contents, most

similar frames denoted as principal frames are selected, which are further analyzed

in order to obtain stable key point pairs of two video sequences.

In the second stage, the geometric coordinates derived from key point pairs of

two video contents are employed to estimate the geometric distortions. Specifically,

the homographic matrix of projective geometry is determined by using the estimated

point-to-point correspondences and the Normalized DLT algorithm (Hartley and Zis-

erman 2004). In the third stage, theater projective geometry is redefined and the

coefficients of the homographic matrix are utilized to estimate the camcorder capture

location. Precisely, camcorder optical axis is determined by using the translation

and rotation parameters, obtained from the homographic matrix. After this step, the
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camcorder capture location is estimated by computing intersection of the camcorder

viewing axis and the theater seating plane.

6.1.3 Spatio-temporal frame alignments

At the beginning of this stage, first the source movie is scanned with a sliding win-

dow of length equal to the captured video clip. The similarity between the windowed

source movie sequence and the captured video clip is measured based on their tem-

poral signatures derived from SURF interest points and spectral centroid signatures.

The windowed source sequence with minimum dissimilarity is selected and denoted as

the candidate segment of source movie sequence. The details of the candidate segment

selection algorithm is given in (Roopalakshmi and Reddy 2013).

After this point, visual-audio fingerprints of the candidate segment and the cap-

tured video are matched separately using DTW technique. The resultant matching

results are fused in order to obtain temporal frame-to-frame alignments of two video

contents. Then principal frames are selected from the temporally aligned candi-

date and pirate video segments, using the algorithm described in (Roopalakshmi and

Reddy 2013).

As described in Section 4.3.5, the accuracy of the proposed spatio-temporal regis-

tration framework is assessed by performing evaluations on three different datasets,

namely TRECVID sound & vision data, CC WEB VIDEO dataset and a set of real

data consisting of camcorded copies of master video files. The proposed spatio-

temporal registration framework achieves promising results in terms of better MF

and AD rates compared to the reference methods.

In (Roopalakshmi and Reddy 2013), the principal frames of source movie and

captured video clips are mapped using their SURF descriptors to obtain accurate

spatial alignments. However, blind comparison of all SURF descriptors of two mapped

frames is computationally demanding. Further, direct comparison of all descriptors

of two frames may lead to lot of false matches. In order to handle these issues, the

proposed scheme employs a nearest neighbor based mapping strategy to select stable

key point pairs of temporally aligned frames, which is described below.

Stable Key Point Pairs Selection

The proposed framework attempts to filter out false key point matches by exploiting

Euclidean distance measure and nearest neighbor mapping strategies. Precisely, the

steps used to select the stable key point pairs of two mapped frames are detailed

in Figure 6.3. Then the geometric coordinates of stable key point pairs of resultant
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Algorithm 6.1: Stable Frame Pairs Selection

1: Let Fp and Fm be the temporally mapped frames of pirated video and master
video sequences respectively.

2: Here, the pirated video frame Fp ∈ {it1p, it2p, ..., itnp}, where itkp indicates the
kth interest point and n is total key points of video frame Fp. Also, Fm ∈
{it1m, it2m, ..., itkm}, where Itjm indicates the jth interest point and k is total key
points of master video frame Fm.

3: Compute the distance dist between each key point pair of two mapped frames
using Squared Euclidean distance measure as given by,

dist = |((itip)− (itjm))2| (6.1)

where i∈ [1 : n] and j∈ [1 : k].

4: List list the first and second nearest neighbors with minimum dist values for
each interest point.

5: Invert the role of frame pairs Fp and Fm.

6: Repeat the steps 3-5 and compute the nearest neighbors with minimum dist
values.

7: Select the key point pair, for which same correspondence is obtained in both
the lists.

8: The resultant key point pairs mapped in Fp and Fm frames, are denoted as
stable key point pairs.

Figure 6.3: Stable Key Point Pairs Selection Algorithm

frames are utilized to estimate the distortions model between the two video sequences.

6.1.4 Geometric distortion estimation

As described in Section 5.2.3, in case of camcorder capture in a movie theater, the

camcorder viewing axis is not perpendicular to the screen and consequently the cap-

tured images undergo severe geometric distortions. The resultant geometric distor-

tions can be well described by perspective projection, which replicates the imaging

process of a pinhole camera (Hartley and Ziserman 2004). In the proposed frame-

work, the geometric distortions in the video copy is estimated in terms of homographic

matrix H, as illustrated in Section 5.2.3.
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6.1.5 Pirate position estimation

In the previous subsection, geometric distortions in the captured movie clips are esti-

mated by means of the homographic matrix H. The coefficients of H matrix represent

translation and rotation parameters of the camcorder and camera calibration. Due to

the zooming operation of camcorder, the resultant parameters of H matrix represent

only the camcorder optical axis, but not the exact position of the camcorder.

In order to handle this issue, the proposed framework first performs camcorder

localization, by determining its optical axis which is specified by translation and

rotation parameters. Then in-depth analysis of theater geometry including its seating

plane is carried out, in order to estimate the actual capture location. Precisely, the

capture location is estimated by computing the intersection of the camcorder optical

axis and seating plane of the test environment. Therefore, the projective geometry

is redefined and the homographic matrix H is decomposed in order to estimate the

position of the camcorder, which is illustrated as follows.

Camera Projective Geometry

The proposed framework introduces the notation X for the world coordinate of the

screen represented by the homogeneous 4-vector (x, y, z, 1)T and X′ for the image

coordinate of the captured video represented by a homogeneous 3-vector (x′, y′, 1)T

as defined in Equation (5.14). Then the camera projection, which maps the world

and image coordinates is expressed in terms of matrix multiplication with P for the

3×4 homogeneous camera projection matrix as follows (Hartley and Ziserman 2004),

X ′ = PX (6.2)

in which P indicates the camera projection matrix for the pinhole model (Camcorders)

of central projection as given by,

P = K [R | t] (6.3)

where t = −RC and K is the camera calibration matrix. R is the 3×3 rotation

matrix indicating the orientation of camera coordinate frame, whereas C denotes the

coordinates of the camera origin in the world coordinate frame. The Equation (6.3)

can be expressed as,

P = K[R| −RC] (6.4)

The parameters contained in K are called internal camera parameters, while the
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parameters of R and C are called the external parameters of the camera. In case of

CCD cameras, the image coordinates and the principal point are measured in terms

of pixel dimensions; hence, the general form of the calibration matrix K of a CCD

camera is given by (Hartley and Ziserman 2004),

K =

 δxf s

δyf

1

 (6.5)

where f is the focal length of the camcorder. δx and δy represent the pixel dimensions

in the x - and y- directions respectively. s is referred as the skew parameter, which

is zero for most of the CCD cameras, since the x - and y- axis are perpendicular to

each other. The rotation matrix R represents rotation in each of the three x -, y- and

z -dimensions. If the rotations are performed in clockwise direction from the origin,

then the matrix R can be written as,

R = RxRyRz (6.6)

Thus the rotation matrix R is given by,

R =

 cosαycosαz cosαxsinαz − cosαzsinαxsinαy sinαxsinαz + cosαxsinαycosαz

−cosαysinαz cosαxcosαz − sinαxsinαysinαz −sinαxcosαz + cosαxsinαsinαz

−sinαy −cosαysinαx −sinαy + cosαysinαx


(6.7)

Projective Geometry

The 2-D view of the projective geometry consisting of a theater screen and a cam-

corder is indicated in Figure 6.4(a) and (b). The origin of the theater is shown as

O, which is Zs distance far from the screen. In Figure 6.4, the location of camcorder

is indicated by means of a translation as C and rotation as R, which is specified in

Equation(6.4). Computing the camera projection matrix P and decomposing it into

K,R and C leads to a trivial solution. This is because, the camera calibration matrix

K of the camcorder, which is used for illegal capture is not known. In addition, the

zooming operation of the camcorder makes the estimated distance from the origin as

unreliable one. In order to tackle this problem, the proposed framework redefines the

theater projective geometry to estimate the position of camcorder, which is illustrated

as follows.
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Figure 6.4: 2-D view of projective geometry. (a) Top view. (b) Side view. The origin
of the theater O is Zs distance far from the screen. R is the rotation denoting the
orientation of the camera coordinate frame and C indicates the coordinates of the
camera origin in the world coordinate frame.

Redefined Projective Geometry

The projective geometry shown in Figure 6.4 is redefined, so that the camcorder is

located at the origin. More precisely, displacement of the theater screen is considered

instead of the camcorder displacement. The proposed scheme assumes the displace-

ment of the theater screen from the its origin with a translation T = (Tx, Ty, Tz)

followed by a rotation R = (αx, αy, αz). Here, Tz is equal to zero, because origin of

the screen is moved along the screen plane. Also, the focal length of the camcorder

f used for piracy is not known; hence the proposed framework sets the focal length

f equal to the distance Zs between the camcorder and the theater screen. In the

redefined projective geometry the coordinates and the parameters are measured in

pixel dimensions.

Figure 6.5(a) and (b) illustrate the redefined projective geometry in terms of top

and side views. As per the redefined projective geometry, Equation (6.4) representing

the camera projection matrix P need to be modified. Specifically, C in (6.4) is

replaced to (Tx, Ty, 0) and the camera projection matrix according to the redefined
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Figure 6.5: 2-D view of redefined projective geometry. (a) Top view. (b) Side view.
Redefined projective geometry assumes the displacement of the theater screen instead
of camcorder displacement, so that the camcorder is located at the origin.

projective geometry is given by,

P = K

 R| −R

 Tx

Ty

0


 (6.8)

The optical axis of the camcorder and the capture location are estimated by using

Equation(6.8) as detailed below.

Camcorder Localization and Position Estimation

The camera projection matrix P in (6.8) is a 3×4 matrix and has 11 degrees of

freedom; hence at least six point-to-point correspondences are required to compute P

matrix. However, homographic matrix H with nine coefficients is already computed

in the previous subsection. In addition, the theater screen is assumed as planar

and hence the z -coordinates of the screen are omitted. Due to these reasons, the

proposed framework utilizes H matrix to compute the position of the camcorder as

follows. Equations (6.2) and (6.8) are concisely formulated as,

X ′ = K

 R| −R

 Tx

Ty

0


X (6.9)
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Let R1,R2 and R3 are the first, second and third columns of R respectively, then

Equation(6.9) is expressed as,

X ′ = K

 R1 R2 −R3

 Tx

Ty

0


X (6.10)

Equation(6.10) has the same form as Equation(6.2), hence the matrix in Equation(6.2)

is decomposed as follows,

H = K

 R1 R2 −R3

 Tx

Ty

0


X (6.11)

Nine equations shown in Equation(6.12) are obtained from (6.11), by decomposing

H.

h11 =
δfcosαycosαz

Zs − Txsinαy + Tycosαysinαx

h12 =
δf(cosαxsinαz − cosαzsinαxsinαy)

Zs − Txsinαy + Tycosαysinαx

h13 =
δf{Tx(cosαycosαz) + Ty(sinαzcosαx − cosαzsinαysinαx)}

Zs − Txsinαy + Tycosαysinαx

h21 =
fcosαysinαz

Zs − Txsinαy + Tycosαysinαx

h22 =
f(cosαxcosαz + sinαxsinαysinαz)

Zs − Txsinαy + Tycosαysinαx

h23 =
−f{Tx(sinαzcosαy) + Ty(cosαxcosαz + sinαxsinαysinαz)}

Zs − Txsinαy + Tycosαysinαx

h31 =
−sinαy

Zs − Txsinαy + Tycosαysinαx

h32 =
−cosαysinαx

Zs − Txsinαy + Tycosαysinαx

h33 =
Zs − Txsinαy + Tycosαysinαx

Zs − Txsinαy + Tycosαysinαx

(6.12)

The term h33 is a scale factor; hence the normalized representation of matrix H

is obtained by dividing all matrix entries with h33. For simplification purpose, the

proposed framework considers δ as pixel aspect ratio of the camcorder. In addition,

the term (−Txsinαy +Tycosαysinαx) in h33 is supposed to be small compared with Zs

and it is approximated with Zs. By eliminating the numerator f and the denominator
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Zs, the four equations in (6.12) are rewritten to obtain the four unknowns δ, αx, αy

and αz as follows,

h11 = δcosαycosαz

h12 = δ(cosαxsinαz − cosαzsinαxsinαy)

h21 = cosαysinαz

h22 = cosαxcosαz + sinαxsinαysinαz

(6.13)

In the next step, using δ, αx, αy and αz, Tx and Ty are computed by solving the two

equations given by,

h13 = δ{Tx(cosαycosαz) + Ty(sinαzcosαx − cosαzsinαysinαx)}

h23 = −{Tx(sinαzcosαy) + Ty(cosαxcosαz + sinαxsinαysinαz)}
(6.14)

By solving the equations in (6.14), Tx and Ty values are obtained in pixel dimensions.

The conversion of Tx and Ty from pixel dimensions to centimeters is formulated as,

Tx
′ =

hts
hcv

Tx ; Ty
′ =

hts
hcv

Ty (6.15)

where hts represents the height of the theater screen in centimeters and hcv stands for

height of the captured video in pixels. After this point, the camcorder optical axis

is fully specified by the translation T (Tx
′, Ty

′) and rotation R(αx, αy, αz) parameters.

Finally, the intersection of the camcorder optical axis with the theater seating plane

gives the estimated position of the camcorder in the theater.

6.1.6 In-theater experiments

To evaluate the estimation accuracy of the proposed framework, experiments are

conducted in a large-scale test environment, that is an auditorium with 176 seats.

The auditorium is about 17.83m wide and 12.69m long with 8 seating rows divided

into 4 sections. The screen in the auditorium is about 3.26m wide and 2.44m long.

So, the movie clips projected on the screen are displayed as 3.26m and 2.44m in the

vertical and horizontal directions respectively. The auditorium is having its own slope

between the seating rows; hence, the construction of the auditorium is measured in

order to determine the seating plane of our test environment. Figure 6.6(a) and (b)

indicate the top view and front view of the test environment. Ten different seats

denoted as a-j are arbitrarily selected for camcorder capture, which spread over the

entire seating plane of the test environment.
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Figure 6.6: (a) Top view of the test environment. The auditorium is 17.83m wide and
12.69m long with 176 seats and a screen size of 3.26m × 2.44m. (b) Front view of the
test environment. The test environment has 8 seating rows divided into 4 sections.

The HD-resolution clips of two popular movies namely, ’Journey2 The Mysterious

Island ’ and ’Alvin And The Chipmunks-Chipwrecked ’, were projected on to the screen.

Figure 6.7 shows the snapshot examples of camcorder captured video clips.

From each location, different video clips ranging between 18-67 seconds were cap-

tured using SONY DCR-SR20 camcorder and stored in 640×480 format. Then source

and captured video clips are spatio-temporally aligned as described in Section 6.1.3,

in order to estimate the geometric distortions and camcorder capture locations.

6.1.7 Estimation accuracy evaluation and discussion

Figures 6.8 to 6.16 indicate the experimental results of approximating the suspicious

seats where the camcorder capture is done. Figure 6.8(a)-(d) show the top view of

first four actual seats ’a-d’ and the estimated camcorder capture locations. More

precisely, in Figure 6.8(a) the actual camcorder location (here seat ’a’) is indicated

as a colored dark line (purple color), while colored dotted lines (pink color) represent

the estimated capture locations.

The top view of actual and estimated positions of the next four capture locations

are shown in Figure 6.9(a)-(d). Specifically, the actual seats ’e-h’ are indicated as

colored dark lines, while the respective estimated positions are indicated as colored

dotted lines in Figure 6.9(a)-(d). Figure 6.10(a)-(b) indicate the top view of two seats
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Figure 6.7: Snapshot examples of camcorder captured video clips

’i-j’ and their estimated camcorder capture locations. Precisely, the seats ’i-j’ are

represented as colored dark lines and the corresponding estimated capture locations

are indicated as colored dotted lines in Figure 6.10(a)-(b).

Figure 6.10(c)-(d) show the isometric view of first two actual camcorder locations

(’a-b’ ) and the respective estimated camcorder positions. Precisely, Figure 6.10(c)

depicts the seat ’a’ as a colored dark line, while the estimated capture locations are

shown as colored dotted lines. The actual seats c-f and the corresponding estimated

positions are indicated in Figure 6.11(a)-(d) as snapshots of isometric view of the

test environment. Figure 6.12(a)-(d) show the isometric view of the test environ-

ment, which represents the actual seats ’g-j’ and the respective estimated camcorder

recording locations. Specifically, The actual capture location is indicated as a colored

dark line, whereas colored dotted lines represent the estimated camcorder positions

as shown in Figure 6.12(a)-(d).

Figure 6.13 combines five seats a-e and the respective estimated camcorder loca-

tions shown in Figure 6.8(a)-(d) and Figure 6.9(a) into one graph. More precisely,

actual seats are indicated as plus symbols, while estimated camcorder positions are

shown as dashed circles. In Figure 6.13, the dotted circle boundaries show the largest

error from the actual ones.

Five actual seats f-j and the corresponding estimated positions of the camcorders

given in Figure 6.9(b)-(d) and Figure 6.10(a)-(b) are collectively represented in Figure

6.14. Specifically, in Figure 6.14, the actual seats are shown as plus symbols, while

the respective estimated positions are denoted as dashed circles. In Figure 6.14, the

dotted circle boundaries are set to indicate the largest error from the actual positions.

Figure 6.15 indicates the five actual seats a-e and their estimated results in terms
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Figure 6.8: (a)-(d): Top view of actual seats a-d and the respective estimated po-
sitions of the camcorder in the x-z plane of the test environment. The intersected
positions on the seating plane are determined according to the interior construction
of the auditorium. The actual capture location is indicated as a colored dark line,
while the colored dotted lines represent the estimated camcorder positions.

of all x -, y- and z - coordinate values in 3-D plots. Precisely, in Figure 6.15, the

actual capture locations a-e are indicated as star symbols, while estimated camcorder

positions are represented as circle symbols. Figure 6.16 indicates all x -, y- and z -

coordinate values of actual camcorder locations f-j and their estimated results in 3-D

plots. Specifically, in Figure 6.16, the star symbols are used to represent original

seats whereas circles are used to indicate estimated positions.
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Figure 6.9: (a)-(d): Top view of actual seats e-h and the corresponding estimated
locations of the camcorder in the x-z plane of the test environment. The actual
capture location is indicated as a colored dark line and colored dotted lines represent
the estimated camcorder positions.

Table 6.1 illustrates the numerical analysis of estimation results in terms of statisti-

cal measures expressed in centimeters, which include actual position, mean estimates,

mean absolute error and standard deviation along the principal axis. The mean ab-

solute error of the estimated errors for ten positions is (38.25, 22.45, 11.11) cm and

the standard deviation of the estimation errors for all ten capture locations is (22.26,

12.97, 7.29) cm respectively.
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Figure 6.10: (a)-(b): Top view of actual seats i-j and the corresponding estimated
locations of the camcorder in the x-z plane of the test environment. (c)-(d): Isometric
view of actual seats a-b and respective estimated positions of the camcorder in the x-z
plane of the test environment. The actual capture location is indicated as a colored
dark line and colored dotted lines represent the estimated camcorder positions.

From Table 6.1 results, it is observed that, the mean width error ranges from 2.5

cm to 63.5 cm, while mean depth error ranges from 0.6 cm to 30.1 cm. This estimation

accuracy is quite satisfactory, as the distance between two seats in a row is about 35 cm

and the distance between two rows is about 100 cm. The proposed algorithm utilizes

visual as well as acoustic fingerprints of the source movie sequence and the camcorder

captured video clip for estimating the camcorder positions. More precisely, from
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(a) (b)

(c) (d)

Figure 6.11: (a)-(d): Isometric view of actual seats c-f and respective estimated
positions of the camcorder in the x-z plane of the test environment. The intersected
positions on the seating plane are determined according to the interior construction
of the auditorium. The actual capture location is indicated as a colored dark line and
colored dotted lines represent the estimated camcorder positions.

the spatio-temporally aligned master and pirate video contents, only the geometric

coordinates of SURF descriptors are employed to estimate the distortion model and

camcorder locations. As per the definition of 2-D projective geometry, the resultant

geometric distortions are described by a non-singular 3×3 homographic matrix.

Specifically, the proposed estimation framework exploits the homographic matrix

H for localizing the camcorder. As a result of this camcorder localization, the pro-
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(a) (b)

(c) (d)

Figure 6.12: (a)-(d): Isometric view of actual seats g-j and corresponding estimated
capture locations in the x-z plane of the test environment. The actual capture location
is indicated as a colored dark line and colored dotted lines represent the estimated
camcorder positions.

posed algorithm provides camcorder optical axis which has only the origin and the

direction, but not the magnitude values. In the proposed framework, the magnitude

values are obtained by computing the intersection between the seating plane and the

camcorder optical axis. More precisely, the proposed scheme estimates the origin

and the direction of the camcorder optical axis, but not the exact position of the

camcorder. Therefore, if the estimated origin/direction have an error, then the er-
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Figure 6.13: +: Actual position, ◦: estimated positions. (a)-(b): Top views of
five actual seats a-e and the respective estimated camcorder positions in the x-z plane
of the test environment. Dashed circles show the estimated camcorder locations, while
the dotted circles show the largest error from the actual positions.

Table 6.1: Statistical analysis of camcorder position estimates (in cm)

Seats Actual position Mean estimates Mean abs. error Std. deviation
x y z x y z x y z x y z

a 513.5 144.5 745 485.5 194.9 743 28 50.4 2.0 16.1 29 1.2
b 293.2 74.8 874.4 356.7 75.1 845 63.5 0.3 29.4 33.5 0.2 16.9
c 55.3 67.7 945 69.2 49.6 946.9 13.9 18.1 1.9 18.2 10.4 2
d 199.9 207.1 754.7 262.5 220 745 62.6 12.9 9.7 31.4 7.5 5.6
e 207.8 240 1036.8 156.8 197.4 1045 51 42.6 8.2 26.4 24.6 4.7
f 789.5 240.7 1014.9 847.5 173 1045 58 67.7 30.1 29.1 39 17.4
g 54.3 45.3 646.1 67.5 50 645 13.2 4.7 1.1 19.1 2.7 0.6
h 78.7 227.7 553.8 141.7 233 544 63 5.3 9.8 31.7 3.2 5
i 148.2 34.4 848 150.7 49 847.4 2.5 14.6 0.6 2.5 8.5 1.2
j 618.6 63.7 945 591.8 71.6 926.7 26.8 7.9 18.3 14.6 4.6 18.3

ror is proportional to the magnitude also, which may vary the accuracy of position

estimation results.

The estimation results are very promising, because the proposed position esti-

mation framework employs only content-based visual and audio fingerprints for es-

timating camcorder positions without embedding any watermarks. Therefore, the

proposed framework can achieve satisfactory performances in digital cinema applica-
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Figure 6.14: +: Actual position, ◦: estimated positions. (a)-(b): Top views of
five actual seats f-j and the corresponding estimated locations in the x-z plane of the
test environment. Dashed circles indicate the estimated camcorder positions, while
the dotted circles represent the largest error from the actual ones.

(a) (b)

Figure 6.15: F: Actual positions, ◦: estimated positions. Five actual seats
a-e and the respective estimated camcorder positions of the test environment in 3-D
plots. (a) 3-D view 1 (b) 3-D view 2

tions. However, as per the digital cinema standards, the aspect ratio of the theater

screen varies between 1.85:1 to 2.35:1. But the screen aspect ratio of the test environ-

ment is about 1.33:1. Therefore, if the experiments are conducted in a real theater,
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(a) (b)

Figure 6.16: F: Actual positions, ◦: estimated positions. Five actual positions
f-j and the corresponding estimated camcorder positions of the test environment in
3-D plots. (a) 3-D view 1 (b) 3-D view 2

then the position estimation accuracy can be substantially improved.

6.2 Summary

This chapter illustrates the scholarly contribution towards the pirate position esti-

mation problem, by introducing a forensic tracking framework for investigating the

illegal capture location in a movie theater. Precisely, the proposed framework tracks

the position of the pirate in a theater by employing visual-audio fingerprints. More

precisely, first the proposed framework achieves spatio-temporal alignments of the

source movie and the illegal video by exploiting visual-audio fingerprints. Then, it

analyzes the geometric distortions in the pirate video and computes the projective

matrix. After this step, the camcorder optical axis to the screen perpendicular is cal-

culated by redefining the theater projective geometry and consequently the position

of the pirate is estimated. In this way, the proposed framework demonstrates that

the visual-audio fingerprints extracted from the master and duplicate video sequences

could be exploited successfully for finding the illegal capture location in a theater.

Further, the stable key point pairs selection algorithm, which efficiently extracts the

most similar key point pairs from the temporally aligned frames, is one of the main

contributions of the proposed framework.

Strictly speaking, The proposed position estimation methodology is a brand-new

application of the video fingerprinting technique, which helps to find out where the
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pirate was during illegal recording and subsequently restricts camcorder piracy. To

validate this view point, In-Theater experiments are carried out and evaluated. More

specifically, experiments are conducted in a large-scale test environment with 176 seats

and ten arbitrary locations are employed for camcorder captures. The statistical

analysis of position estimation results demonstrate the satisfactory performance of

the proposed framework. Specifically, the mean absolute error of estimation results is

(38.25, 22.45, 11.11) cm and the standard deviation of the estimation errors is (22.26,

12.97, 7.29) cm respectively. In addition, the position estimation results in terms of

top, isometric and 3-D views of actual and estimated camcorder locations demonstrate

the reasonable performance of the proposed framework in the test environment. The

proposed framework could be used for applications such as sensor forensics, which

attempts to identify the acquisition device that illegally captured the movie.

Related Publications

Journal Articles

1) R. Roopalakshmi and G. Ram Mohana Reddy, Estimating the Position of the

Pirate Using Content-Based Visual-Audio Fingerprints, submitted to Springer

Signal, Image and Video Processing.



Chapter 7

Conclusion and Future Work

Due to the massive growth of on-line publishing activities, pirated videos/movies are

proliferating on the Internet and causing huge piracy issues. Therefore, duplicate

video detection and tracking techniques are essential in order to restrict piracy as

well as copyright issues. Although video copy detection and registration techniques

are studied from the past several years, yet illegal video analysis is still a challenging

problem due to the constraints such as computational cost and fingerprint size. All the

work in this thesis is directed towards introducing efficient techniques for restricting

piracy, that involves video copy detection, registration of video copies, geometric

distortions estimation and approximation of the pirate location in a movie theater.

Specifically, this research work employs video fingerprints derived from content-based

features such as visual, audio, motion activity and multimodal signatures for achieving

the above mentioned tasks.

The first set of contributions of this thesis target at Content-Based video Copy

Detection (CBCD), by introducing novel video fingerprints for detecting video copies.

More precisely, this thesis first introduces two CBCD schemes, which employ visual

fingerprints derived from Dominant Color Descriptors (DCDs) for identifying illegal

video sequences. However, state-of-the-art CBCD schemes employ only visual features

for detecting video copies; hence, new copy detection schemes are proposed by utiliz-

ing acoustic features such as MFCCs and spectral descriptors. Further, this research

study presents an efficient copy detection method by integrating different attributes

of Motion Activity descriptor such as motion intensity and dominant direction of ac-

tivity for detecting illegal videos. On the other hand, the integrated exploitation of

visual-audio features for the CBCD task, not only enhances the detection accuracy;

but also widens the coverage to more number of video modifications. Based on this

aspect, this thesis proposes two robust CBCD frameworks, by jointly exploiting the

186
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visual-audio features such as DCDs, MFCCs, audio spectral descriptors and motion

activity features for identifying the duplicate video sequences. In future work, the

proposed CBCD techniques can be further enriched to address the following issues:

? Robustness against video transformations such as changing the foreground or

background content, camcording and combined visual-audio attacks can be en-

hanced. For the foreground or background change attacks, if the local features

such as SURF and SIFT are jointly utilized with audio signatures, then the de-

tection accuracy can be considerably improved. In case of camcording attacks,

normally the camcorded copies suffer from distortions such as zooming in, crop-

ping and brightness changes. On the other hand, robustness against combined

attacks is not fully achievable via visual fingerprints. Therefore, robust frame-

works employing global and local visual features along with acoustic signatures

are needed to deal with camcording and combined visual-audio transformations.

? In CBCD systems, high-dimensional reference databases need to be compared

in order to identify the duplicate videos. Therefore, popular indexing and sim-

ilarity matching algorithms such as locality sensitive hashing (LSH) can be

employed to achieve faster detection of video copies.

? The computational cost of the proposed CBCD systems can be further reduced,

if the fingerprints extraction and similarity matching tasks are executed in par-

allel computing paradigm.

? In the proposed copy detection methods, it is assumed that the video copy

is derived from a single master video. However, if the duplicate video contains

portions of multiple master videos, then efficient similarity matching techniques

are required to ensure the best matching video.

? While exploiting audio-visual features for detecting video copies, the fusion tech-

niques play a vital role in determining the copy detection accuracy. Therefore,

suitable fusion schemes at different levels such as decision-level and feature-level

can be adapted for combining the audio and visual features, which may improve

the copy detection performance.

The second set of contributions of this thesis attempt to address the video copy

registration problem, by presenting robust registration schemes for achieving accurate

frame alignments of the pirate clip and the master video sequences. Precisely, this

thesis first proposes a temporal registration scheme, which employs multimodal fin-

gerprints for obtaining temporal frame alignments of the pirate video with the master
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content. Further, this research work contributes a robust temporal-geometric align-

ment scheme, by employing SURF signatures. However, inclusion of audio signatures

in the registration task, significantly enhances the system accuracy. Therefore, this

study proposes a novel spatio-temporal registration framework, which exploits visual-

audio fingerprints for obtaining accurate frame alignments of the master and copied

video sequences. Extensive evaluations on three different datasets demonstrate the

consistent performance of the proposed framework against different video editing and

transformations. There is a scope for further improvement in the methods proposed

for video copy registration, which are given below:

? Efficient representation of a video sequence using compact fingerprints is the

major challenge in duplicate video registration schemes. Hence, further inves-

tigation can be carried out on new video features and fingerprint matching

techniques.

? For temporal alignment of frames, well-known pairwise sequence alignment algo-

rithms in bio-informatics such as Basic Local Alignment Search Tool (BLAST)

technique can be adapted, which ensure optimal mappings between two feature

sequences.

? The scalability of the proposed registration methods can be extended by in-

creasing size of the datasets used for experiments. Specifically, analysis using

large-sized camcorded datasets would be interesting to address the scalability

issues.

? Selecting subset of representative/key frames from the temporally synchronized

video sequences is necessary to improve the geometric registration accuracy.

Therefore, robust key frame filtering techniques can be adapted, which provide

representative frames having higher distribution of control points.

The third set of contributions of this thesis target at geometric distortions esti-

mation problem, by presenting a distortion estimation framework for computing the

distortion model. Precisely, this thesis presents a novel framework for estimating geo-

metric distortions in video copies, which incorporates visual fingerprints derived from

SURF signatures and audio signatures extracted from MFCCs. The fourth set of con-

tributions of this thesis attempt to address the movie pirates identification problem,

by introducing a forensic tracking framework to investigate the location of the pirate

in a movie theater. Specifically, this research work investigates a forensic tracking

framework, which employs visual-audio fingerprints to estimate the position of the
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pirate in a movie theater irrespective of presence/absence of watermarks. In-Theater

experimental results demonstrate the satisfactory performance of the proposed frame-

work. Further investigation on geometric distortions estimation and pirate position

approximation can be carried out as listed below:

? The accuracy of the distortion estimation approach can be enhanced, by employ-

ing robust estimation algorithms such as Random Sample Consensus (RANSAC)

or Least Median Squares, which map greatest number of point pairs between

two images.

? As per the digital cinema standards, aspect ratio of the theater screen varies be-

tween 1.85:1 to 2.35:1. However, the screen aspect ratio of the test environment

is about 1.33:1. Further, the test environment comprises a flat screen, whereas

actual theaters need screen curvatures for perfect projection. For these reasons,

if experiments are conducted in a real-theater, then the position estimation

accuracy of the proposed forensic framework can be substantially improved.

? The proposed position estimation framework can be further extended to appli-

cations such as sensor forensics, to verify whether two video clips are captured

by the same camcorder/acquisition device or not.

To summarize, this thesis attempts to provide efficient solutions for combating

Internet as well as camcorder piracy. Precisely, this research work introduces video

copy detection and tracking schemes, which prevent downloading and distribution of

illegal contents on the Internet and thereby restrict Internet piracy. In addition, this

thesis proposes a forensic tracking framework, which attempts to estimate the illegal

camcorder capture locations, so that the camcorder piracy can be controlled.
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Alatan, A. A., Çiloglu, T. (2009). ”Content Based Copy Detection with Coarse

Audio-Visual Fingerprints”. in proc. of Seventh Int. Workshop on Content-Based

Multimedia Indexing (CBMI. 213-218.

Sarkar, A., Ghosh, P., Moxley, E., and Manjunath, B. S. (2008). ”Video fingerprinting:

features for duplicate and similar video detection and querybased video retrieval”.

in Proc. of SPIE Multimedia Content Access: Algorithms and Systems II.

Sarkar, A., Singh, V., Ghosh, P., Manjunath, B. S., and Singh, A. (2010). ”Efficient

and Robust Detection of Duplicate Videos in a Large Database”. IEEE Transac-

tions on Circuits and Systems for Video Technology. 20:870-885.

Savakis, A., Sniatala, P., and Rudnicki, R. (2003). ”Real-time video annotation using

MPEG-7 motion activity descriptors” in Proc. of MIXDES’03.

Schmid, C., and Mohr, R. (1997). ”Local grayvalue invariants for image retrieval”.

IEEE Transactions on Pattern Analysis and Machine Intelligence. 19:530-535.

Schoeffmann, K., Boeszoermenyi, L.(2011). ”Video Sequence Identification in TV

Broadcasts”. Springer Advances in Multimedia Modeling. 129-139.

Senin, P. (2008). ”Dynamic Time Warping Algorithm Review”. Information and

Computer Science Dept., University of Hawaii.

Shivakumar. (1999) ”Detecting digital copyright violations on the Internet”. Ph.D.

Dissertation, Stanford University.

Sun, X., Ajay, D., and Manjunath, B. S. (2001). ”A motion activity descriptor and its

extraction in compressed domain”. in Proc. of IEEE Pacific-Rim Conf. Multimedia.

450-453.

Park, T.H. (2010). ”Introduction to digital signal processing- Computer musically

speaking”.World scientific Press.

Tang, J., Liu, G., and Guo, J. (2009) ”Improved Algorithms of Music Information

Retrieval based on Audio Fingerprint”. in proc. Third Int. Symp. on Intelligent

Inf. Tech. App. Workshops.

Tasdemir, K., and Cetin, A. E. (2010) ”Motion vector based features for content

based video copy detection”. in proc. of IEEE Int. Conf. on Pattern Recognition’10.

3134-3137. DOI:10.1109/ICPR.2010.767.

Park, T.H. (2010). ”Introduction to digital signal processing- Computer musically

speaking”.World scientific Press.

Tian, Y., Jiang, M., Mou, L., Fang, X., and Huang, T. (2011) ”A multimodal video

copy detection approach with sequential pyramid matching”. in proc. of 18th IEEE

Int. Conf. on Image Processing. 3629-3632.

Tsekeridou, S., and Pitas, I. (2001) ”Content-Based Video Parsing and Indexing

Based on AudioVisual Interaction”. IEEE Transactions on Circuits and Systems

for Video Technology. 11:522-535.



197

Uchida, Y., Takagi, K., and Sakazawa, S. (2012) ”Fast and accurate content-based

video copy detection using bag-of-global visual features”. IEEE Int. Conf. on

Acoustics, Speech, and Signal Processing ICASSP’12. 1029-1032.

Wang, Y., Liu, Z., and Huang, J. C. (2000) ”Multimedia Content Analysis using

both audio and visual cues”. IEEE Signal Processing Magazine. 12-36.

Wei, S., Zhao, Y., Zhu, C., Xu, C., and Zhu, Z. (2011) ”Frame Fusion for Video Copy

Detection”. IEEE Trans. Circuits Sys. Video Tech.. 21:15–28.

West, K. (2008) ”Novel techniques for Audio Music Classification and Search”. Doc-

toral Thesis.

Wu, X., Hauptmann, A. G., and Ngo, C. (2007) ”Practical elimination of neardupli-

cates from web video search ”. in Proc. of Int. Conf. on Multimedia. 218-227.

Wu, S., and Zhao, Z. (2012) ”A Multi modal content-based copy detection approach

”. in Proc. of 8th Int. Conf. computational Intelligence & security. 280-283.

Xu, Z., Ling, H., Zou, F., Lu, Z., Li, P., and Wang, T. (2009) ”Fast and robust video

copy detection scheme using full DCT coefficients”. in Proc. of IEEE Int. Conf.

on Multimedia & Expo. 434-437.

Xu, J., Bai, Q., Gu, Y., Tung, K.H.A., Wang, G., Yu, G., Zhang, Z. (2012) ”EU-

DEMON: A System for Online Video Frame Copy Detection by Earth Movers

Distance”. in Proc. of IEEE 28th Int. Conf. on Data Eng.. 1233-1236.

Yang, N. C., Chang, W. H., Kuo, C. M., Li, T. S. (2008) ”A fast MPEG-7 dominant

color extraction with new similarity measure for image retrieval”. Elsevier journal

of Visual Communication and Image Representation. 19: 92-105.

Yang, G., Chen, N., and Jiang, Q. (2012) ”A robust hashing algorithm based on

SURF for video copy detection”. Elsevier Computers & Security. 31: 33-39.

Zhai, Y., Shah, M. (2005) ”Tracking news stories across different sources”. in Proc.

13th annual ACM int. conf. on Multimedia. 2-10.

Zhang, Z., and Zou, J. (2010) ”Compressed Video Copy Detection Based on Edge

Analysis”. in Proc. 2010 IEEE Int. Conf. on Information and Automation. 2497-

2501.

Zhang, Z., Cao, C., Zhang, R., and Zou, J. (2010) ”Video Copy Detection Based on

Speeded Up Robust Features and Locality Sensitive Hashing”. in Proc. IEEE Int.

Conf. on Automation and Logistics. 13-18.

Zhu, S., Yan, J., and Liu, Y. (2009) ”Improving Semantic Scene Categorization

by Exploiting Audio-Visual Features”. in Proc. of Fifth Int. Conf. on Image and

Graphics. 435-440.



Publications

List of Publications/Communications Based on Thesis:

International Journals

1) R. Roopalakshmi, G. Ram Mohana Reddy, A Novel Spatio-Temporal Regis-

tration Framework for Video Copy Localization Based on Multimodal Features,

published in Elsevier Signal Processing Journal, Vol. 93, Issue 8, Pages

2339-2351, Aug’2013. ISSN: 0165-1684.

Available: http://dx.doi.org/10.1016/j.sigpro.2012.06.004.

2) R. Roopalakshmi and G. Ram Mohana Reddy, A Framework for Estimating Ge-

ometric Distortions in Video Copies Based on Visual-Audio Fingerprints, Pub-

lished in Springer Signal, Image and Video Processing (SIViP) Journal,

Vol.7, Issue 1, Jan’2013. ISSN: 1863-1703.

Available: http://link.springer.com/article/10.1007/s11760-013-0424-7.

3) R. Roopalakshmi, G. Ram Mohana Reddy, A Novel Approach to Video Copy

Detection Using Audio Fingerprints and PCA, Published in Elsevier Procedia

Computer Science Journal, Vol. 5, Pages 149-156, 2011. ISSN: 1877-0509.

Available: http://dx.doi.org/10.1016/j.procs.2011.07.021

4) R. Roopalakshmi and G. Ram Mohana Reddy, Estimating the Position of the

Pirate Using Content-Based Visual-Audio Fingerprints, submitted to Springer

Signal, Image and Video Processing.

5) R. Roopalakshmi and G. Ram Mohana Reddy, Robust Temporal Registration

Scheme for Video Copies Using Multimodal Features, submitted to Springer

Multimedia Systems.

Book Chapters

1) R. Roopalakshmi and G. Ram Mohana Reddy, Efficient Video Copy Detection

Using Simple and Effective Extraction of Color Features, published in Springer

Book titled, ’Advances in Computing and Communications’, CCIS, Vol. 193,

198



199

Part IV, Pages 473-480, 2011. ISSN: 1865-0929. Available:

http://link.springer.com/chapter/10.1007/978-3-642-22726-4_49.

2) R. Roopalakshmi and G. Ram Mohana Reddy, Content-Based Video Copy De-

tection Using Motion Activity and Acoustic Features, published in Springer Book

titled, ’Advances in Intelligent Systems and Computing’, Vol. 264, Pages 491-

504, 2014. ISSN: 2194-5357. Available:

http://link.springer.com/chapter/10.1007/978-3-319-04960-1_43.

Conference Publications

1) R. Roopalakshmi and G. Ram Mohana Reddy, Recent Trends in Content-Based

Video Copy Detection, in proc. of IEEE International Conference on Compu-

tational Intelligence and Computing Research (ICCIC), Coimbatore, India, pp.

1-5, Dec’2010.

Available: http://dx.doi.org/10.1109/ICCIC.2010.5705802.

2) Roopalakshmi, R. and Reddy, G.R.M. Compact and Efficient CBCD Scheme

Based on Integrated Color Features, in proc. of International Conference on

Recent Trends in Information Technology (ICRTIT), Anna University, Chennai,

India, pp. 880-883, June’2011.

Available: http://dx.doi.org/10.1109/ICRTIT.2011.5972370.

3) R. Roopalakshmi and G. Ram Mohana Reddy, Efficient Video Copy Detection

Using Simple and Effective Extraction of Color Features, in proc. of Inter-

national Conference on Advances in Computing and Communications (ACC-

2011), Kochi, India, pp. 473-480, July’2011.

Available: DOI:10.1007/978-3-642-22726-4_49.

4) R. Roopalakshmi, G. Ram Mohana Reddy, A Novel Approach to Video Copy

Detection Using Audio Fingerprints and PCA, in proc. of Second International

Conference on Ambient Systems, Networks and Technologies (ANT-2011), Ni-

agara Falls, Canada, 5, pp. 149-156, Sep’2011.

Available: DOI:10.1016/j.procs.2011.07.021.

5) Roopalakshmi, R. and Reddy, G.R.M. A Novel CBCD Approach Using MPEG-

7 Motion Activity Descriptors, in proc. of IEEE International Symposium on

Multimedia (ISM-2011), University of California, USA, pp. 179-184, Dec’2011.

Available: http://dx.doi.org/10.1109/ISM.2011.36.

6) R. Roopalakshmi and G. Ram Mohana Reddy, Towards a New Approach to

Video Copy Detection Using Acoustic Features, in proc. of IEEE 5th Interna-



200

tional Conference on Internet Multimedia Systems Architecture and Applica-

tions (IEEE IMSAA-2011), Indian Institute of Information Technology Banga-

lore (IIIT-B), India, pp. 1-5, Dec’2011.

Available: http://dx.doi.org/10.1109/IMSAA.2011.6156336.

7) R. Roopalakshmi and G. Ram Mohana Reddy, Robust Features for Accurate

Spatio-Temporal Registration of Video Copies, in proc. of IEEE International

Conference on Signal Processing and Communications (SPCOM-2012), Indian

Institute of Science (IISc), Bangalore, India, pp. 1-5, July’2012.

Available: http://dx.doi.org/10.1109/SPCOM.2012.6290006.

8) R. Roopalakshmi and G. Ram Mohana Reddy, Content-Based Video Copy De-

tection Using Motion Activity and Acoustic Features, in proc. of International

Symposium on Signal Processing and Intelligent Recognition Systems (SIRS-

2014), Indian Institute of Information Technology and Management-Kerala (II-

ITMK), India, pp. 491-504, March’2014.

Available: DOI:10.1007/978-3-319-04960-1_43



201

Brief Bio-Data

Roopalakshmi

Research Scholar

Information Technology Department

National Institute of Technology Karnataka Surathkal

P.O.Srinivasanagar

Mangalore 575025

Permanent address

Roopalakshmi, W/0 Nagendran V,

No-737, 9th cross, Vidyamanya Nagara,Vishwaneedam Post,

Bangalore-560091,

Karnataka.

Phone: 09972246013

Email: roopanagendran2002@gmail.com

Qualification

• M.Tech. Computer Science, Visvesvaraya Technological University (VTU), Kar-

nataka, 2008.


	COVER
	final_doc

