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ABSTRACT

Brain and liver tumors are the life-threatening diseases due to low survival rate.

Hence, accurate diagnosis of brain and liver tumors is necessary to provide effective

treatment. Medical imaging techniques like Computed Tomography (CT) and Mag-

netic Resonance Imaging (MRI) help in acquiring images of the tumor. The visual

analysis of these medical images by the radiologist is time consuming, subjective and

inaccurate. The needle biopsy of the tumor provides accurate diagnosis but it is

an invasive technique and generally not recommended. In order to overcome these

drawbacks, there is a need to develop Computer-Aided Diagnosis (CAD) system for

assisting the radiologist in fast and accurate diagnosis of tumors. Therefore, this the-

sis proposes an effective and efficient CAD system for tumor detection, classification,

Content-Based Image Retrieval (CBIR), and 3D reconstruction to provide complete

assistance to the radiologist in the diagnosis of brain and liver tumors.

In the first methodology, this thesis aims at tumor detection, by proposing au-

tomatic, effective and efficient segmentation methods for brain and liver tumors on

medical images. The brain tumor is detected using the proposed segmentation tech-

nique based on Modified Fuzzy C-Means (MFCM) clustering algorithm. The liver

tumor is detected using the proposed segmentation technique based on the automatic

region growing algorithm.

In the second methodology, this thesis targets at identification of the type of

brain/liver tumor as benign or malignant, by proposing an effective and efficient

tumor classification scheme. Precisely, the proposed scheme represents the tumor

characteristics using its significant features, selects most discriminating features using

a two-level feature selection technique consisting of Information Gain (IG) based

feature ranking and Independent Component Analysis (ICA) based feature section

methods. Then, the tumor is classified using an ensemble classifier consisting of

Support Vector Machine (SVM), Artificial Neural Network (ANN) and k-Nearest

Neighbor (k-NN) classifiers.

In the third methodology, this thesis proposes two CBIR methods based on im-

age rotation correction and rotation invariant features to assist the radiologist in

brain/liver tumor diagnosis based on past resolved cases. In order to provide fast

retrieval of tumor images from the database, the tumor features in the database are

indexed using the proposed indexing technique called as Cluster with IG-ICA and

KD-tree (CIKD). The features in the database are partitioned into different groups



using modified k-means clustering which identifies the number of clusters and initial

cluster centers automatically.

In the fourth methodology, this thesis aims to build the 3D model of the brain/liver

tumor, by proposing an effective and efficient 3D reconstruction scheme. Precisely,

it proposes an enhanced shape-based interpolation algorithm to estimate missing

slices in a given set of brain/liver tumor slices. Further, the 3D mesh simplification

algorithm is proposed to reduce the number of triangles in the reconstructed mesh

and accelerate the rendering phase. The tumor volume is also computed to assist the

radiologist in estimating the stage of cancer.

Experiments are carried out on a dataset consisting of MRI images of the brain

tumor and CT images of the liver tumor. Experimental results demonstrate that the

proposed CAD system is automatic, effective and efficient in the diagnosis of brain

and liver tumors.

Keywords: Computer-aided diagnosis, Brain tumor, Liver tumor, Segmen-

tation, Classification, Content-based image retrieval, 3D reconstruction.
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Chapter 1

Introduction

This chapter introduces concepts of brain and liver tumors, and their types. Further,

this chapter also gives an overview of the role of various medical imaging techniques

and Computer-Aided Diagnosis (CAD) system in the analysis of cancer. In addition

to this, challenges in the development of a CAD system and motivations for the

present research work are discussed.

1.1 Medical Background on Cancer

The human body is made up of several types of living cells. Most cells in the body

grow and then divide in an orderly way to form new cells as they are needed to keep

the body healthy. When cells become old or damaged, they die and replaced with

new cells; however, sometimes this orderly process goes wrong. The genetic material

of a cell can be damaged or changed, producing mutations that affect normal cell

growth and division. When this happens, cells do not die when they should and new

cells form when the body does not need them. The extra cells form an abnormal

mass of tissue called a tumor which becomes cancerous when it invades and destroys

healthy tissues of organs (DeVita et al. 2012).

For years, cancer has been one of the biggest threats to human life. It is expected

to become the leading cause of death over the next few decades. Based on the statistics

from the World Health Organization (WHO)1, cancer accounted for 7.6 million deaths

which are around 13% of all deaths worldwide in the year 2011. Deaths caused by

1World health organization cancer fact sheets. http://www.who.int/mediacentre/factsheets/
fs297/en/index.html
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cancer are projected to increase in the future, with an estimated 11 million people

dying from cancer in the year 2030. Brain and liver tumors are the most dangerous

type of cancers. This is because the brain controls various organs and thus the brain

cancer impairs the functionality of other organs. Whereas the liver processes the

blood of the entire body and thus the cells of the liver tumor may travel along with

the blood and affect many other organs. According to the statistics published by

American Society of Clinical Oncology, the five year relative survival rate of people

with brain/ liver cancer is lesser (10-20%) when compared to tumors of other organs.

Hence, early detection and accurate diagnosis of these cancers is important to cure

deadly disease (Jemal et al. 2011). Liver tumor is the fifth most common cause of

cancer related death among men and ninth most among women. Brain tumor is the

second most common cause of cancer related death among men and fifth most among

women. Although brain tumors can occur at any age, studies show that they are

most common in two age groups. The first group is children 3 to 12 years old; the

second is adults 50 to 70 years old. Liver tumor occurs most often in people older

than 60 years.

1.1.1 The Brain and Tumor

Brain contains billions of nerves that can simultaneously process the information in

our body, operate on internal organs, generate thoughts, store and recall memories

and, control movements (Sporns 2011). The brain is made of mainly gray and white

matter arranged in distinct layers; the nerve cells in the brain known as neurons make

up the gray matter. The neurons transmit and gather electrochemical signals that are

communicated via a network of millions of nerve fibers; the glial cells of nerve fibers

make up the white matter. The brain is protected by the skull, covering of three thin

membranes called meninges, and cerebrospinal fluid. Brain has three major parts: the

cerebrum, the cerebellum, and the brain stem (Crossman and Neary 2010). These

parts work together, but each has special functions. The cerebrum is the largest

part of the brain which synthesizes the sensory information into perceptions of the

world around us. It also controls speech and emotions as well as reading, thinking,

and learning. The cerebellum lies behind and below the cerebrum and controls the

complex actions like walking, talking, etc. The brain stem connects the brain with

the spinal cord and controls the basic body functions.
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The brain tumor is composed of cells that exhibit unrestrained growth of the brain.

Brain tumors can arise either from the brain itself, or its coverings, or the nerves at

the base of the brain, or even from outside the brain (Greenberg et al. 1999). The

risk factors and symptoms of brain tumor are given as follows:

Risk Factors

The following are the risk factors that may raise an individual’s chance of developing

a brain tumor (Cook et al. 2011):

• Exposure to Radiation: Exposure to ionizing radiation can cause cell damage

and increase the likelihood of developing brain cancer.

• Age: Brain tumors are more common in children 3 to 12 years old and adults

50 to 70 years old.

• Weakened Immunity: People with Acquired Immunodeficiency Syndrome (AIDS)

have a slightly increased risk of brain cancer.

• Heredity: Brain tumors occur in people with a family history of brain tumors

or genetic syndromes.

• Exposure to Chemicals: Exposures to solvents, pesticides, oil products, rubber,

or vinyl chloride may increase the risk of developing a brain tumor.

• Other Factors: Exposure to electromagnetic fields from power lines and trans-

formers, and infection with certain viruses can cause brain tumors.

Symptoms

As the tumor grows it damages the nearby brain tissue. The functions of the differ-

ent parts of the body are controlled by different parts of the brain. Therefore, the

symptoms depend on the affected part of the brain and the size of the affected part.

For example, one or more of the following symptoms may develop in a patient having

the brain tumor (Freedman 2009; DeVita et al. 2012):

◦ Weakness of muscles in the arm, leg, part of the face, or eyes.

◦ Problems with balance, vision, hearing, speech or communication.

◦ Loss of smell.

◦ Dizziness or unsteadiness.
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◦ Numbness or weakness in a part of the body.

◦ Personality changes.

◦ hormone variations.

1.1.2 The Liver and Tumor

The liver is the largest organ in the body located in the upper right side of the ab-

domen and is responsible for numerous metabolic, regulatory, transport, and immune

functions and thus maintains the body’s overall health (Clavien 2011). The liver

consists of two main lobes: right and left lobes. There are networks of tubes inside

the two lobes that carry bile from the liver to the intestine. Bile is a substance that

helps carry away wastes and is needed for the breakdown and absorption of dietary

fats. The liver filters both toxic chemicals and bacteria from the blood and it uses

nutrients in the blood to provide energy to the body.

Liver tumor is due to the growth and spread of unhealthy cells in the liver. The

liver can be affected by primary liver cancer, which arises in the liver, or by sec-

ondary cancer which forms on other sites and then spreads to the liver (Scheppach et

al. 2004). The liver is more susceptible to cancer cells traveling in the blood stream

as it processes the blood of the entire body. Thus, most of the liver tumors are sec-

ondary or metastatic tumors. The risk factors and symptoms of liver tumor are given

below.

Risk Factors

The following are the risk factors that may raise an individual’s chance of developing

liver tumors (Clavien 2011; Scheppach et al. 2004):

• Cirrhosis: This progressive and irreversible condition causes scar tissue to form

in the liver and increases the chance of developing liver tumor.

• Diabetes: People with blood sugar disorder have a high risk of liver tumor.

• Alcohol Abuse: Consuming high amounts of alcohol daily over many years can

lead to irreversible liver damage and increase the risk of liver tumor.

• Obesity: Having an unhealthy body mass index increases the risk of liver tumor.

• Hepatitis: Chronic infection with hepatitis B or C virus increases the risk of

liver cancer.
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• Other Factors: Less common risk factors for liver cancer include exposure to

arsenic in drinking water, certain chemicals in plastics, or abuse of anabolic

steroids. Also, a food contaminant called aflatoxin and genetic diseases such as

hemochromatosis increases a person’s risk for liver cancer.

Symptoms

The symptoms of liver tumor may be different for each person. Cancer of the liver

does not usually show noticeable symptoms until it has reached an advanced stage.

Thus, liver cancer can go undetected for many days before there are any indications

that something might be wrong. Most of the following symptoms are a result of liver

damage (Scheppach et al. 2004):

◦ Weight loss

◦ Decrease in appetite

◦ Nausea and vomiting

◦ General weakness and/or fatigue

◦ Fever

◦ Enlarged liver

◦ Abdominal pain

◦ Jaundice

1.1.3 Types of Tumor

Tumors of the brain/liver are categorized according to several factors, including where

they are located, the type of cells involved, and how quickly they grow (DeVita et

al. 2012; Westphal 2009). The general categories of tumors are as follows:

• Benign vs. Malignant: Benign tumors are slow growing, non-cancerous and

do not spread to the surrounding tissue. Malignant tumors, on the other hand,

are cancerous, fast growing, aggressive, invade nearby tissue and also are more

likely to recur after treatment.

• Primary vs. Secondary: A primary tumor is a tumor growing at the anatom-

ical site where tumor progression began and proceeded to yield a cancerous

mass. A secondary tumor is made of cells that have spread to the organ from
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other parts of the body. Primary tumors may be benign or malignant, whereas

secondary tumors are always malignant.

• Localized vs. Invasive: A localized tumor is confined to one area of the

organ, whereas an invasive tumor spreads to the surrounding areas.

Following are the examples of brain and liver tumors:

− Benign Brain Tumor: Chrodomas, Schwannomas, Craniopharyngiomas, Menin-

giomas, Pituitary adenoma, etc.

− Malignant Brain Tumor: Gliomas, Astrocytomas, Ependymomas, Medulloblas-

tomas, Oligodendrogliomas, etc.

− Benign Liver Tumor: Adenoma, Hemangioma, Focal Nodular Hyperplasia, Fi-

broma, Lipoma, etc.

− Malignant Liver Tumor: Hepatocellular Carcinoma, Angiosarcomas, Hepato-

blastoma, Cholangiocarcinoma, etc.

1.1.4 Cancer Treatment

There are three main types of tumor treatments, namely chemotherapy, radiotherapy

and surgery (Haskell 2001), and these are used alone or in various combinations. The

physician chooses the appropriate treatment for an individual based on the type of

tumor, its grade, and the patient’s age and general state of health. Following are the

treatments used for curing brain/liver tumor (Greenberg et al. 1999; Clavien 2011):

• Chemotherapy: It is a treatment which uses anti-cancer medicines to kill can-

cer cells, or to stop them from multiplying. Some of the anti-cancer medicines

are taken orally, others are given via a drip into the veins. Chemotherapy is

mainly used for the treatment of malignant tumors.

• Radiotherapy: It uses high-energy X-rays to kill tumor cells and it is often

used following a surgery when it is not possible to remove the entire tumor

with surgery. Radiotherapy is occasionally used for treating benign tumors,

but mostly used for treating malignant ones.

• Surgery: The surgical treatment involves the removal of the tumor without

damaging the surrounding healthy tissue. Surgery is often the main treatment

for benign tumors and primary malignant tumors.
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1.1.5 Medical Imaging Techniques

Once a brain/liver tumor is clinically suspected based on symptoms, radiologic eval-

uation is required to determine the location, the type, the extent of the tumor and

its relationship to the surrounding structures. This information is very important in

deciding between the different forms of therapy, such as surgery, radiotherapy, and

chemotherapy. It also helps in monitoring treatment response as well as patient’s

prognosis.

Medical imaging has played a major role in clinical diagnosis and treatment for

years, allowing radiologists to examine specific sections of the human body with-

out resorting to invasive surgical procedures. Current technologies provide a wide

range of possibilities for brain/liver imaging, chief among them being Magnetic Reso-

nance Imaging (MRI), Computed Tomography (CT), Ultrasonography (US), Positron

Emission Tomography (PET), and Single Photon Emission Computed Tomography

(SPECT) (Freedman 2009; Clavien 2011). Images may be enhanced by introducing

contrast agents during image acquisition to provide clear information about the tumor

region on the organ being scanned. The working principles, benefits and drawbacks

of the imaging methods (Bushberg et al. 2002) used in the diagnosis of brain and liver

tumors are explained below:

Ultrasonography

Ultrasonography is a fundamental technique for imaging the liver and its working

principle is based on high frequency sound waves called ultrasound whose frequency

lies above the audible range of normal human hearing, about 20 kHz. The frequency

used in diagnostic ultrasound is typically in the range of 2 to 18 MHz (Cobbold 2007).

In order to acquire the image of the organ, a transducer sends a small pulse of ultra-

sound into the body. As the ultrasound waves penetrate tissues of different acoustic

impedances along the path of transmission, some are reflected back to the transducer

(echo signals) and some continue to penetrate deeper. The echo signals returned from

many sequential coplanar pulses are processed and combined to generate an image.

The advantages of ultrasonography are: good soft tissue contrast, availability, rel-

atively low cost and absence of ionizing radiation. It also provides real-time scanning

of soft tissue structures. The limitations of ultrasonography are: operator depen-

dency, and poor spatial resolution of the image due to blurring.
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Computed Tomography

The CT imaging technique can be used to detect brain/liver tumors and its working

principle is based on passing multiple x-ray beams at different angles through the

body to build up a cross-sectional image of the organ (Seeram 2010). The CT imaging

system is comprised of a motorized table that moves the patient through a circular

opening and an X-ray machine that rotates around the patient as he moves through.

Detectors record the radiation exiting the patient’s body and this creates an X-ray

snapshot. Many different snapshots are collected during one complete rotation of

the X-ray machine and then the computer assembles the series of X-ray images into

a cross section. Thus, a CT scan produces a series of cross-sectional images of the

organ being scanned. In the conventional CT, the X-ray tube rotates around the

patient while the table is immobile. After one scan is over, the table moves and

the procedure is repeated; thus it requires more image acquisition time. Recent

technological advances in CT technology, such as spiral and multi-detector CT have

further improved the performance of conventional CT scanners in terms of image

acquisition speed and resolution. In spiral CT, X-ray tube rotation and patient table

translation are performed simultaneously. Multi-detector CT uses multiple detector

rows as opposed to one detector row in spiral CT, and thus it can obtain multiple

slices in a single rotation.

The advantages of CT are fast image acquisition, imaging soft tissues as well as

bones, and less expensive. The main limitation is that it uses ionizing radiations to

generate images of the organ and hence cannot be used for scanning the pregnant

women. Also, sometimes the contrast agents used during the CT imaging lead to

allergic reactions in patients (Huang et al. 2006).

Magnetic Resonance Imaging

The MRI technique can be used to acquire a set of cross-sectional images of the brain

as well as liver. It makes use of magnetic field and radio waves to acquire the image

of the organ being scanned (Hashemi et al. 2012). The MRI unit consists of a large

cylindrical shaped tube surrounded by circular magnet. An electric current passes

through the coils of the unit to create a magnetic field. In order to perform the MRI

scan, the patient is made to lie within the electromagnetic field created. The human

body is mainly composed of water containing hydrogen atoms. Normally, the nuclei
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of the body’s atoms spin on axes aligned in different directions. But, the MRI’s

powerful magnetic field realigns the protons of the body’s hydrogen atoms so that

they all spin along the same axis. The MRI machine sends radio waves in the area

of the body being scanned and causes the atoms to change from low energy to high

energy states. When radio waves are switched off, the atoms fall back to their low

energy states. As they do this, they lose their energy giving off signals which are then

picked up by the MRI machine. A computer processes these signals and produces an

image of the organ being scanned.

MRI uses many different types of images, such as T1-weighted, T2-weighted,

diffusion-weighted, and magnetic susceptibility-weighted. These images are produced

with different types of imaging parameters, such as repetition time (TR) and echo

time (TE). T1-weighted and T2-weighted are the most commonly used MRI images

for diagnosing brain/liver tumors. On T1-weighted image, water appears dark and fat

appears bright, whereas on T2-weighted image, water appears bright and fat appears

dark. Advantages of MRI are: absence of ionizing radiations, high resolution and soft

tissue contrast. The contrast material used in MRI exams is less likely to produce an

allergic reaction. Disadvantages of MRI are: long examination time, relatively high

cost, and limited availability. MRI is rarely used as the first diagnostic modality,

except for the brain and soft tissue tumors. Indications for MRI are usually difficult

clinical cases that are not resolved after US or CT examinations.

Nuclear Imaging

Nuclear imaging uses low doses of radioactive substances to detect tumors. During

a nuclear imaging, the radioactive tracer, which is formulated to collect in specific

organs, bones or tissues, is injected into the body (Greenberg et al. 1999; Clavien

2011). Sensors in the scanner detect the radioactivity as the tracer accumulates in

different regions of the organ. A computer uses the data gathered by the sensors

to construct multicolored images that show where the compound acts in the organ.

Allergies, side effects and other reactions are extremely rare in nuclear imaging, as

very small doses of tracer are used.

Two major instruments used in nuclear imaging for detection of cancer are PET

and SPECT scanners. PET and SPECT rely on similar principles to produce im-

ages of the organ. The important differences in instrumentation, radiochemistry, and

experimental applications are dictated by differences in their respective physics of
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photon emission. Generally, SPECT tracers deteriorate more slowly than PET trac-

ers. Hence, SPECT requires longer scan periods than PET. The PET is more versatile

than SPECT and produces more detailed images with a higher degree of resolution.

In the present research work, MRI and CT images are used to analyze the brain

and liver tumors, respectively due to their superior image quality. MRI is used in

the analysis of brain tumor because MRI has a much greater soft tissue contrast,

depict anatomy in greater detail and is more sensitive to abnormalities within the

brain when compared to CT. CT is used in the analysis of liver tumor because it

allows better evaluation of the involvement of extra-hepatic tissues, including bones,

bowel and lymph nodes when compared to MRI. The presence of cancer can be

suspected on the basis of symptoms and findings on the medical images obtained

through non-invasive imaging techniques such as US, CT, MRI PET, or SPECT.

Definitive diagnosis of cancer can be made only based on the needle biopsy which

involves taking a sample of the abnormal tissue of the organ for examination under a

microscope. However, needle biopsy is an invasive technique and hence generally not

recommended by the radiologist (Huo et al. 2009). Therefore, non-invasive diagnosis

of the cancer can be provided by the CAD system and the diagnosis process involves

identifying the region, type and severity of the cancer.

1.2 Computer-Aided Diagnosis (CAD)

The benefit of medical image examination in terms of its ability to yield an accurate

diagnosis of the cancer depends on the quality of both the image acquisition and

image interpretation. During the past century, the role and contribution of radiology

to medical diagnosis has expanded tremendously due to the advances in the imaging

modalities, such as CT and MRI. The medical images obtained by various imaging

techniques are interpreted by the radiologists. However, images interpreted by hu-

mans are limited due to non-systematic search patterns of humans, the presence of

noise in the image, and the complex disease states requires the integration of a vast

area of image data and clinical information (Kopec et al. 2003). Hence, manual in-

terpretation of medical images for diagnosis of cancer is laborious, time consuming

and subjective.

With the advancement of computer technology, radiologists have an opportunity

to improve their image interpretation capabilities. Many attempts have been made
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by computer scientists to assist a radiologist in detection and diagnosis of cancer

by developing CAD systems. CAD is multidisciplinary which integrates diagnostic

imaging with computer science, image processing, pattern recognition, and artificial

intelligence technologies (Stoitsis et al. 2006). CAD can be defined as a diagnosis

made by a radiologist who uses the output from a computerized analysis of medical

images as a second opinion in detecting tumors and making diagnostic decisions (Doi

2007). The radiologist’s image reading sensitivity can be increased and accurate

diagnosis can be provided with the support of CAD system. Hence, cancer can be

detected in early stages and cured without much difficulty with the help of CAD

system.

As shown in Figure 1.1, computer-aided diagnosis of tumors on medical images

consists of five steps: image acquisition, preprocessing, segmentation, feature extrac-

tion and selection, and classification (Kim et al. 2011)). The medical images acquired

through imaging techniques, such as US, CT, MRI, PET, or SPECT are input to the

CAD system for diagnosis of cancer. The steps of CAD are explained as follows: 
 

Medical Image  
 

Preprocessing  
 

Segmentation 
     

Feature Extraction 
and Selection 

 

 

                                 
Classification 

Decision Making 
 

                                                 

 

Figure 1.1: Computer-Aided Diagnosis of Tumor
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Preprocessing

Images acquired by medical imaging devices may contain artifacts and noise and this

makes the image analysis very difficult. Thus, preprocessing step makes the image

suitable for further processing by improving the quality of the image. It involves var-

ious tasks such as elimination of artifacts, noise reduction and contrast enhancement.

Segmentation

In order to characterize the tumor, the location of the tumor on the given medical

image has to be identified. Thus, the segmentation step subdivides the image into

different regions based on certain properties to delineate the region of interest in the

given image.

Feature Extraction and Selection

In this step, various features of the segmented tumor are extracted to represent the

characteristics of the tumor. The features extracted may be shape, size, texture, av-

erage gray level, etc. However, a large number of features degrade the performance of

the classifier. Thus, the feature selection step is required to reduce the dimensionality

of the feature space and keep only a set of features which are most discriminating

and helpful for the classifier in identifying the type of tumor.

Classification

The selected features of the tumor are fed to the classifier to determine the class of the

segmented tumor, and the classifier used can be supervised or unsupervised. Super-

vised classifier identifies the type of the tumor based on the given examples, whereas

unsupervised classifier does not need any examples or training to identify the type of

tumor. Finally, the radiologist makes the diagnostic decision on the suspicious region

in the medical image based upon the output of the CAD system.
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1.3 Challenges

The challenges that must be addressed for the development of an effective and efficient

CAD system are as follows:

• Cancer Detection

The detection of tumor on a given medical image is challenging as the medical

image shows other tissues or organs adjacent to the tumor. Some of the organs

are very closely located and have similar intensities in medical images. In such

cases it becomes difficult to segment the tumor, since the organ has to be

extracted and then its tumor. Hence, to properly delineate the tumor region on

the medical image one should have the knowledge about the characteristics of

a medical image, anatomy of the organ, and the difference between normal and

abnormal tissues.

• Automation

Since the aim of the CAD system is to provide computer assisted character-

ization of tissues, all phases in the CAD system starting from preprocessing

to classification should be automatic. However, achieving this goal is difficult,

since in some phases like segmentation it requires the input from the radiologist.

Automating the segmentation task is challenging due to the complex anatomy

and the diverse shapes of organs.

• Accuracy

The important characteristic desired in the CAD system is to achieve high

sensitivity in cancer diagnosis with the fewest number of false positives. If the

information given by the CAD system is flawed, then the radiologist’s decision

that is based on such information has the potential to be flawed as well. Thus,

a large number of false positives would reduce the efficiency of the radiologist

and clinical acceptance of the CAD system. But, to make the system more

accurate, it needs to be trained with various types of tumor cases, which is a

difficult process.

• Efficiency

In addition to accuracy, efficiency is also an important feature of the CAD

system. In a clinical environment, routinely a large number of images are gen-

erated and thus the analysis of these images should be fast. If the CAD system

is slower than the manual interpretation of images, then the radiologist does
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not find it useful. Early diagnosis of the cancer helps in providing the appropri-

ate treatment at the right time and hence improves the survival chance of the

patient.

• Noisy Images

Images acquired from medical imaging modalities such as CT or MRI are usually

affected by noise. The presence of noise corrupts the information in the image

and thus increases the false positive rate in cancer diagnosis. Hence, CAD

system must have denoising algorithms which eliminate the noise as well as

retain the border and shape of regions in the medical image.

• Learning from Radiologist

A radiologist uses multiple criteria for diagnosing tumors on medical images.

Although algorithms could be developed by learning from positive and negative

cases (training by example), algorithms are likely to be more successful if based

on features that are proven clinically relevant (i.e., based on anatomy or pathol-

ogy). The features which radiologists find useful include: anatomic knowledge,

image characteristics, shape, and texture. Hence, incorporating the knowledge

of the radiologist into the CAD system is a challenging task.

1.4 Motivation

The CAD system can offer better diagnosis support to physicians by automatically

identifying the presence of pathology using quantitative features of disease. There

are several papers published (Zhang et al. 2008; Fujita et al. 2010; Wu et al. 2012)

on the development of CAD systems for diagnosis of brain and liver tumors. There

is, however, still a long way to go before CAD systems become widely used in clinics

and screening centers. The most important need is to demonstrate that the accuracy

of interpretation of medical images with the CAD system is better than the accuracy

without the CAD system. The research work in this thesis focuses on the development

of the CAD system for the diagnosis of brain and liver tumors and is motivated by

the following factors:

? Curing the malicious disease like cancer requires early detection and diagnosis.

But, the cancer characteristics are not much emphasized in the early stage and
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hence difficult for the radiologist to understand the pathology by image reading.

? Brain and liver cancers are the most serious type of cancers as brain and liver

are related to the most important functions of the body. Also, survival rate

of patients with brain/liver cancer is very low. Hence, accurate diagnosis is

required to provide appropriate treatment at the right time.

? Medical images are too complex due to varied textures, overlapping tissues, and

substantial variation across the screening population. This leads to difficulty in

detection and diagnosis of cancer.

? Direct analysis of the medical images by the physician is less accurate (Kopec

et al. 2003). But, 100% accuracy is expected in the medical field for effective

diagnosis of tumors and to provide optimal treatment.

? A large number of images have to be analyzed by the radiologist each day which

requires fast processing. But, visual analysis of medical images is tedious and

exhaustive.

? Analysis of medical images is subjective; one radiologist may choose a particular

lesion as a candidate, while another radiologist may find this lesion insignificant.

Consequently, some lesions are being missed or misinterpreted.

? The automated software tools of the CAD system provide several benefits in the

clinical environment, such as accurate diagnosis, improved training in diagnostic

techniques, increased diagnostic speed and reduced cost.

1.5 Outline of the Thesis

The remainder of this thesis is organized as follows. Chapter 2 includes the re-

view of the existing CAD methods for brain/liver tumor segmentation, classification,

Content-Based Image Retrieval (CBIR), and 3D reconstruction. Followed by this lit-

erature review, we highlight the research issues in the exiting CAD methods. Then

the problem statement, objectives and the research framework derived based on the

identified research issues in the development of CAD system are presented. Further,

the description of the brain and liver tumor datasets used in the experiments of our

research work is presented.

In Chapter 3, we describe our proposed methods for automatic brain tumor seg-

mentation based on Modified Fuzzy C-Means (MFCM) clustering algorithm and liver

tumor segmentation based on an automatic region growing algorithm. The validation
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of the proposed tumor segmentation methods is performed by comparing the results

of the proposed methods with the radiologists’ segmentation results.

In Chapter 4, we present the proposed tumor classification scheme for identifying

the type of brain/liver tumor in the medical image as benign or malignant. This in-

volves the explanation of the various phases of the approach, such as feature extraction

for representation of the tumor, two-level feature selection for deriving most salient

features, and tumor classification by ensemble classifier. The performance evaluation

of the proposed tumor classification scheme is presented in terms of effectiveness and

efficiency.

In Chapter 5, we introduce two proposed CBIR methods based on the hierarchical

framework for retrieving similar pathology bearing brain/liver tumor images from the

medical database to assist the radiologist in the diagnosis of brain and liver tumors.

The first method uses an image rotation correction technique, and the second method

uses the rotation invariant features to handle the misalignment of images. The pro-

posed indexing structure called as Cluster with IG-ICA and KD-tree (CIKD) for fast

retrieval of images is also presented. The proposed modified k-means clustering algo-

rithm automatically initializes the number of clusters and their centers. Experimental

results demonstrate the effectiveness and efficiency of the proposed CBIR methods.

In Chapter 6, we present the proposed enhanced shape-based interpolation algo-

rithm and mesh simplification algorithm for 3D reconstruction of brain/liver tumor.

In this chapter, we also discuss the method for computation of tumor volume in or-

der to assist the radiologist in predicting the stage of cancer. Experimental results

illustrate the accuracy and efficiency of the proposed methods.

Finally, Chapter 7 summarizes the contributions of the research work and high-

lights possible directions for future work. Appendix I presents the GUI designed for

the proposed CAD system.

1.6 Summary

This chapter introduced brain and liver tumors, their treatment methods, medical

imaging techniques for acquiring the images of the brain/liver, and the role of the

CAD system in the diagnosis of cancer. The research challenges and the motivations

in the development of CAD system were discussed. This chapter also gave details on

the organization of the thesis.
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Chapter 2

Literature Review

This chapter presents the review of the existing CAD methods for analysis of brain

and liver tumors on medical images. Further, the chapter also gives the problem state-

ment, objectives, and the research framework to solve the challenging issues present in

the existing CAD methods. The CAD system can consist of different subsystems such

as tumor detection, classification, image retrieval, and 3D reconstruction to provide

complete assistance to the radiologist in the diagnosis of tumors. Each subsystem

is associated with different functionalities useful in diagnosis of tumors. Tumor de-

tection helps in identifying the cancer affected region on medical image and tumor

classification determines the type of the segmented tumor. The image retrieval sub-

system retrieves similar images of the tumor from the medical database to assist the

radiologist in diagnosing the tumor based on the relevant cases. Further, 3D recon-

struction builds the 3D model of the tumor to provide information on the complexity

and severity of the tumor. Following are the details of the various state-of-the-art

approaches of computer-aided tumor detection, characterization, image retrieval, and

3D reconstruction.

2.1 Tumor Detection

The segmentation subdivides an image into its constituent parts to extract the re-

gion of interest. Segmentation is the important task in medical image analysis to

detect the region or boundary of anatomical structures. The tumor segmentation

helps the radiologist in locating the pathology, quantification of tumor volume and

surgical planning (Liu et al. 2011). Hence, accurate tumor segmentation is a key
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issue in analyzing the cancer. The manual labeling of tumor on medical image is

a time consuming task and considerable variation is observed between different la-

belers. Hence, clinical researchers are focusing on computer-aided automatic image

segmentation techniques to achieve high segmentation accuracy. Several brain/liver

tumor segmentation techniques are proposed in the literature. Some of them are

semi-automatic and some are fully automatic. Semi-automatic methods require user

intervention, whereas automatic methods provide fast and user independent segmen-

tation. Automatic segmentation of the brain tumor on MRI images is the challenging

task as brain consists of various regions such as White Matter (WM), Gray Matter

(GM), Cerebrospinal Fluid (CSF) (Cobzas et al. 2007). Automatic segmentation of

liver tumor is also another challenging task because of variations in shape and scales

of the organ across different patients, existence of neighboring structures with similar

intensity and the unclear boundary between adjacent organs in the abdominal CT

image (Priyadarshini and Selvathi 2012). A variety of brain/liver segmentation meth-

ods are proposed in the literature and these can be classified into different categories:

threshold-based, region-based, cluster-based, deformation-based, and model-based.

2.1.1 Threshold-Based Segmentation

The threshold-based segmentation method determines intensity values, called thresh-

olds which separate pixel intensities in the image into different regions. The threshold

selection is a major task in this method of segmentation for properly partitioning the

image into several regions. However, threshold selection from the medical image is a

difficult process due to the presence of noise in the image and complex distribution

of tissue intensities. Thus, thresholding is combined with other methods for tumor

segmentation and it can be used as the pre-processing and/or post-processing step of

segmentation. Park et al. (2005) computed optimal threshold for liver tumor segmen-

tation based on statistical analysis of histogram under the liver mask, but this method

fails on poorly contrasted or inhomogeneous lesions. Another similar threshold based

method but in combination with active contour is proposed by Taheri et al. (2010)

for brain tumor segmentation. However, this method is based on the assumption

that the histograms of the tumor and adjacent non-tumor regions slightly overlap

with each other; such an assumption seldom holds for the medical image. Moltz et

al. (2008) utilized the pixel intensity thresholding to extract the liver region from
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the abdominal CT image for the analysis of liver metastases. However, the threshold

value is selected in the confidence interval and hence segmentation results are not

effective. Seo et al. (2005) segmented the liver tumor using the optimal threshold

calculated by composite hypotheses and minimum total probability error. Promising

results are shown, even if the approach produces diverse false positives, especially

for small tumors. Choudary et al. (2008) segmented the liver tumor using a multi-

thresholding algorithm and further refined the segmentation with region growing and

level set based methods. This method is semi-automatic, since the slice and threshold

are selected manually for tumor segmentation.

2.1.2 Region-Based Segmentation

The region-based segmentation subdivides the image into several homogeneous re-

gions based on certain properties of the regions. There exist several region-based

methods for tumor segmentation such as region growing, split and merge, watershed

segmentation, etc. The region growing method (Adams and Bischof 1994) requires

two parameters namely seed point and threshold. Given a seed point, the region

grows by extracting all pixels connected to the initial seed point with their intensity

value within the threshold. The tumor segmentation methods based on region grow-

ing (Venkatachalam et al. 2004; Qi et al. 2008; Weglinski and Fabijanska 2011) are

semi-automatic, since these methods require the manual selection of the seed point

and threshold value. Hence, they consume a lot of time to arrive at accurate results.

Fan et al. (2005) improved the region growing algorithm with automatic seed selec-

tion. But, the threshold selection was manual and the resulting over-segmentation

problem was solved using region merging, which is computationally expensive. Hence,

the method consumes more time. Poonguzhali and Ravindran (2006) automated the

seed selection based on image texture, but the threshold value was selected based on

iterative thresholding of the image. Hence, this method cannot effectively segment

tumors in case of overlapping tissue intensities.

Wu et al. (2009) proposed complete automatic texture based region growing al-

gorithm for segmentation of organs in the abdominal MRI image. The authors have

assumed that the regions in MRI image have texture homogeneity, and thus their

algorithm incorrectly classifies the pixels in a complex textured surface of the organ.

Dongxiang and Tiankun (2009) used split and merge technique called a quad tree
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decomposition method for segmentation of the liver. This method is computationally

expensive, since it involves many splits and merges to extract the complete region

of interest. The watershed algorithm (Beucher and Meyer 1992) is widely used in

medical analysis due to its ability to produce complete division of the image into

regions (Ng et al. 2006); however, its main limitation is over-segmented image. Liu

et al. (2009) addressed this problem by combining watershed segmentation with re-

gion merging. The gray level threshold used in the region merging process was not

adaptive and thus it affected the accuracy of segmentation results. Hamarneh and Li

(2009) proposed enhanced watershed segmentation by utilizing prior shape and ap-

pearance knowledge to segment the medical image. Though this method eliminates

the over-segmentation problem, it cannot provide accurate segmentation results for

low contrast images.

2.1.3 Cluster-Based Segmentation

Clustering is the most popularly used method for medical image segmentation which

groups patterns in such a way that the samples of the same group are more simi-

lar to each other than samples in different groups. The most commonly used clus-

tering techniques for the medical images are k-means (MacQueen 1967) and Fuzzy

C-Means (FCM) (Bezdeck 1981) methods. Juang and Wu (2010) presented brain

tumor segmentation based on k-means clustering. Since k-means clustering provides

crisp partitioning of the image pixels, it cannot capture the uncertainty present in

MRI images of the brain. Further, k-means clustering is sensitive to cluster center

initializations and as a result, it may lead to the misrepresentation of image regions.

The FCM algorithm can handle the overlapping tissue intensities in MRI images, but

consumes a lot of time to partition the image into desired number of clusters (Cannon

et al. 2010). Recently, several methods have been proposed to improve the efficiency

of FCM. Al-Zoubi et al. (2007) proposed Fast FCM (FFCM) clustering method by

eliminating those points with membership value lower than a threshold value. The

choice of the threshold value is manual; hence this method is not very efficient.

Hemanth et al. (2009) proposed the effective FCM method to accelerate the seg-

mentation process based on the quantization and the aggregation of the data set.

However, there was not much improvement in the efficiency, since the data reduction

is based on clustering large feature set. Cai et al. (2007) presented a generalized
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framework for FCM clustering which guarantees robustness to noise and preserves

edge details. But, the main drawback is that it computes neighborhood term in the

each iteration and hence it is a time consuming process. The computationally efficient

FCM algorithm has been proposed by Murugavalli and Rajamani (2006) using paral-

lel processing technique, but the hardware implementation is not effective. Further,

de Vargas et al. (2011) reduced the number of iterations required for convergence by

presenting a new method of computing cluster centers based on crisp matrix derived

from the fuzzy membership matrix. Though this method could reduce total iterations

for convergence, there was not much improvement in the efficiency of the algorithm;

This is due to the computation of a crisp membership matrix in addition to the fuzzy

membership matrix in each iteration. Though several methods have been proposed to

accelerate the FCM algorithm, still the efficiency of the FCM could not be drastically

improved.

2.1.4 Deformation-Based Segmentation

The deformation-based method of image segmentation utilizes closed curves that

deform under internal and external forces to delineate object boundaries. Lu et

al. (2005) segmented tumor from the abdominal CT image of the liver using an active

contour model. Initial boundary required by the algorithm was manually placed

outside the tumor region. Thus, this method is semi-automatic and does not deform

to the exact boundary of the tumor in the presence of blurred edges. Krishnamurthy

et al. (2004) eliminated the drawback of manual placement of the contour by forming

the initial contour using the canny edge detection technique. However, this scheme

suffers from over-dependence on the edge detection step, which is unreliable in the

presence of noise and low contrast. Bhat and Kunte (2010) developed a mixed model

by combining watershed and active contour algorithms to get the initial contour

automatically in segmentation of the brain tumor. However, this method suffers from

the over-segmentation problem of the watershed algorithm. The level set method is

the popular deformation-based segmentation method, because of its ability to handle

complex geometries. However, the level set formulation entails tuning of parameters

with the help of user (Prastawa et al. 2004; Xie et al. 2005).
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2.1.5 Model-Based Segmentation

In model-based segmentation, the information extracted from medical images is incor-

porated into a supervised approach that uses labeled data and automatically learns a

model for segmentation. Moon et al. (2002) identified the tumor region by estimating

the distributions of normal tissue, tumor and edema from T1- and T2-weighted MR

image channels. This method fails in the case of large deformations in the brain and

it also requires multi-modal images for segmentation. Corso et al. (2008) proposed a

multi-scale framework based on Bayesian integration model to segment the tumor and

edema. However, image context information at different scales may have distinctive

characteristics, which cannot be successfully captured by a single statistical model.

Furthermore, the trained class model may also suffer from the inter-subject image

inconsistency. Menze et al. (2010) identified brain tumors based on the registration

of the brain image to a probabilistic brain atlas; but, the presence of the tumor makes

the registration a difficult task.

The classification techniques such as neural network (Zhu and Yan 1997) and sup-

port vector machine (SVM) (Zhou et al. 2008; Bauer et al. 2011) are also employed

to segment brain and liver tumors on medical images (Verma et al. 2008; Ghanavati

et al. 2012). Lee et al. (2003) combined neural network and fuzzy rules to segment

the liver on abdominal CT image. All these classification methods require manu-

ally selected data from various tissue types. Therefore, the accuracy of segmentation

technique depends on the accuracy and repeatability of the necessary manual inter-

vention. Wels et al. (2008) proposed a discriminative model based on Markov random

field to identify pediatric brain tumor on 3D MRI. But, their model is not trained to

identify all tissue types that occur within a pediatric brain tumor.

2.2 Tumor Classification

An accurate diagnosis of the tumor can be provided by assisting the radiologist with

computerized tissue characterization. It involves the use of computer analysis to

characterize or classify the tumor as benign or malignant based on the extracted

features. This process consists of three steps: feature extraction, feature selection

and classification. The feature extraction step is meant for describing the tumor

characteristics by extracting various features of the tumor. The feature selection
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step, then selects the most discriminating features from the extracted feature set in

order to improve the performance of the classifier. Finally, the classification step

determines the type of tumor as benign or malignant based on the selected features.

2.2.1 Feature Extraction and Classification Methods

Several feature extraction and classification methods have been proposed for tis-

sue characterization of brain and liver tumors on medical images. Fazel Zarandi

et al. (2011) developed a CAD system for diagnosing brain tumors using fuzzy rules

to handle the ambiguity in a set of symptoms, diagnosis, and phenomena of disease.

Further, the authors have also considered mass effect and age of the brain as vi-

tal features for identifying benign and malignant tumors. This method resulted in

83.15% tumor classification accuracy. Moreover, tumors also possess other important

properties such as texture and shape, which will help in better characterization of

tumors. Since the malignant tumor grows aggressively, its boundary is more irregular

compared to benign tumor. Thus, Martin-Landrove et al. (2007) proposed a method

for characterization of lesions in the brain based on the analysis of irregularities of the

lesion contour on MRI images. The drawback of the method is that it is dependent

on the gradient-based edge detection algorithm which fails to extract the lesion con-

tour in the presence of noise and blurry edges. Huang et al. (2006) developed a CAD

system for classification of liver tumors on non-enhanced CT image based on auto-

covariance texture features and SVM classifier. This method achieved classification

accuracy of only 81.7% because of dependency on a single type of feature.

Mougiakakou et al. (2007) proposed a CAD system for characterization of liver

lesions on non-enhanced CT images using three distinct feature sets extracted using

first order statistics, spatial gray level dependence matrix and gray level difference

method. The classification of liver lesion was performed using ensemble classifier

consisting of multilayered neural networks; this method obtained classification accu-

racy of 84.96%. However, the learning process of neural network is computationally

intensive due to multiple stages of training with initial parameters. Several meth-

ods based on multichannel and multi-resolution analysis have been developed over

the years for texture representation of the tumor using Gabor filters and wavelet

transform (Ahmadian et al. 2004; Mala et al. 2006; Kumar et al. 2011). These are

capable of representing texture at multiple scales and resolutions, and thus help in
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the detailed analysis of images. Arizmendi et al. (2011) developed a method for bi-

nary classification of brain tumors using wavelet energy features and Bayesian neural

network; this method resulted in classification accuracy of 90%. But, this technique

is computationally expensive due to wavelet decomposition and analysis of the image

at multiple levels. Georgiadis et al. (2008) proposed a CAD system for discrimi-

nating between brain tumors on the MRI image by employing textural features and

probabilistic neural network, and obtained 94% classification accuracy. However, the

tumor could be better characterized by representing it with several features instead of

a single feature. Hence, to improve the diagnosis performance, several CAD systems

have been proposed to classify brain/liver tumors by integrating shape, intensity and

texture features from multiple sequences of medical images into pattern classification

methods such as SVM, neuro-fuzzy classifier, k-Nearest Neighbor (k-NN), and deci-

sion trees (Zacharaki et al. 2009; Zacharaki et al. 2011; Xu et al. 2011). However,

the classification performance obtained is not much effective, since these methods are

dependent on single classifiers.

2.2.2 Feature Selection Methods

Feature selection presents a key issue in many classification problems (Guyon and

Elisseeff 2003; Zöllner et al. 2012). Several feature selection methods have been

proposed for selecting discriminative features from a feature set (Saeys et al. 2007;

Jiang 2011) and the most popular among them are Sequential Forward Selection

(SFS), Sequential Backward Selection (SBS), Principal Component Analysis (PCA),

Independent Component Analysis (ICA), and Genetic Algorithm (GA). The SFS

method first selects the best single feature from the total set of features, and then

adds one feature at a time, which in combination with the previously selected features

maximizes the classifier performance. The SFS procedure discontinues when a feature

subset of fixed cardinality is selected or the classifier performance begins to degrade.

The SBS is the inverse of SFS, since in each step it deletes one feature from the feature

set (Pudil et al. 1994). Both SFS and SBS methods are computationally expensive,

since these are exhaustive approaches to feature selection.

PCA transforms the high-dimensional input feature space into a lower dimensional

feature space using eigenvectors corresponding to largest eigenvalues of the covariance

matrix (Fukunaga 1990). It gives a set of features that are uncorrelated but not sta-
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tistically independent. Hence, Hyvärinen et al. (1999) proposed ICA method, which

transforms the original input space into a feature space with dimensions that are in-

dependent of each other, and thus provides more significant features for classification.

GA searches for optimal set of features by assessing the search results based on an

evaluation function, which measures fitness of the selected features for the classifica-

tion (Raymer et al. 2000). However, GA-based feature selection is computationally

expensive due to the involvement of many complex operations and this method may

have a tendency to converge toward local optima rather than global optimum of the

problem.

2.3 Content-Based Image Retrieval

Medical image retrieval is an important component of CAD system, since it provides

the physician a decision support for disease diagnosis by retrieving relevant cases

(Quellec et al. 2011). Medical images of various patients suffering from brain/liver

tumors are maintained by the hospitals in the medical image database known as

Picture Archiving and Communication System (PACS) along with the diagnosis and

treatment information (Yuan et al. 2008). Text-based retrieval techniques are widely

used in PACS; these techniques use keywords from lab reports and associated text

from images for querying the image database. Although this approach can offer much

flexibility in query formulation, it suffers from several drawbacks, such as difficulty

in manual annotation of every image in the database and subjective description of

image based on human perception (Agarwal et al. 2009); thus, the text-based retrieval

leads to inaccurate retrieval results. Content-Based Image Retrieval (CBIR) retrieves

similar images from the database based on visual contents of the image such as shape,

texture, region location and gray level features (Muller et al. 2004). The success of the

CBIR system is mainly dependent on three factors, namely visual features, semantic

gap, and database indexing techniques.

2.3.1 Visual Features

The visual features of the image represent the knowledge or the content in the image.

The visual features used to retrieve general images may not apply to medical images.

The knowledge of the acquired medical images and disease characteristics is essential
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to extract appropriate features of the medical images. Color has got limited expressive

power in medical image retrieval as these images are in gray scale and the most vital

features in medical images are shape and texture. Traina et al. (2004) presented

an image retrieval system, where shape information about the various regions in the

brain is extracted to retrieve similar images from the database. This system was not

able to retrieve similar images in all the cases as it is based on global features of the

image. In medical radiology, the clinically useful information consists of variations in

the highly localized region of the image. Hence, attributes characterizing the local

regions are required and the Pathology Bearing Region (PBR) has to be segmented on

the medical image to extract local features. Fauzi et al. (2008) experimented with both

global features obtained from whole image and local features obtained from manually

segmented non-overlapping image blocks in retrieving similar CT brain images from

the database and achieved retrieval precision of 94%. Automatic segmentation of PBR

is necessary in CAD system for accurate and consistent results of diagnosis. During

medical image acquisition, there can be misalignment or rotation of images due to

movement of the patient and this misalignment problem can limit the application of

automated tools for image analysis. Thus, rotation invariant features are necessary

to develop robust and accurate medical CBIR systems.

Shape is an important visual feature for describing objects in the medical image.

Hence, the shape of the tumor can be characterized by region-based or contour-based

shape descriptors (Shahabi and Safar 2010). The region-based shape descriptors

like geometric moments (Shen et al. 2000), Legendre moments (Teague 1980) and

Zernike moments (Liao and Panlak 1997) describe the shape by considering the whole

area of the region of interest. While the contour-based techniques such as chain

codes (Freeman 1961), Curvature Scale Space (CSS)(Abbasi et al. 1999), and Fourier

Descriptors (FD) (Zhang and Lu 2002) concentrate only on the object contour for

shape description. Among these shape descriptors, FD is the most effective and

compact shape descriptor and it is also considered as the robust shape descriptor due

to its rotation invariance.

Various texture description methods have been proposed in the literature of CBIR,

such as Gray Level Co-occurrence Matrix (GLCM) (Haralick et al. 1973), Tamura

(Tamura et al. 1978), wavelets (Yu et al. 2010), and Gabor filters (Manjunath et

al. 2001). The multichannel analysis algorithms such as wavelets and Gabor filters

have gained a lot of attention due to their ability to represent texture features at
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different frequencies and orientations, but these methods are not rotation invariant.

The Scale Invariant Feature Transform (SIFT) features proposed by Lowe (2004) are

widely used local descriptors in image retrieval tasks, since these features are invariant

to scale, rotation, and translation transformations. However, a significant drawback

with SIFT features is the large number of features generated and the computational

cost involved. The Speeded Up Robust Features (SURF) proposed by Bay et al.

(2008) are faster than SIFT features, but these are less effective when compared to

SIFT features in describing the image. There exist several other rotation invariant

texture descriptors like Local Binary Pattern (LBP) (Ojala et al. 2002), contourlet

transform (Arun and Menon 2009), polarograms (Davis 1981), and Markov random

field (Portar and Canagarajah 1997).

LBP is the most effective and simple texture descriptor as it filters out the noise

in the texture analysis (Ojala et al. 2002). But, the LBP fails in the presence of

flat areas, where all pixels in the neighborhood have nearly equal gray values. Also,

LBP does not consider the complete texture information in the image as it gives

more weightage to uniform patterns than non-uniform patterns. There exist several

methods to overcome the flat area problem of LBP such as Local Ternary Patterns

(LTP) (Tan and Triggs 2007) and Local Multiple Patterns (LMP) (Zhu and Wang

2012). But, these methods are computationally intensive due to texture analysis at

many complex levels. The similarity measure used for comparing images in CBIR

also has an impact on image retrieval results. Tsang et al. (2005) experimented

with various similarity measures and achieved a highest retrieval precision of 91.7%

with Jeffrey divergence and local texture features. Napel et al. (2010) utilized both

texture and boundary features for the retrieval of CT images of liver tumor, and

obtained retrieval precision of 95%. However, this method is not fully automatic as

segmentation of the liver tumor on CT image was performed manually and it also

suffers from inter- and intra-observer variability.

2.3.2 Semantic Gap

One of the inherent problems in CBIR systems is the semantic gap due to the incon-

sistency between the features extracted and the user interpretation of an image. In

the recent years, several methods have been proposed to eliminate the semantic gap

based on supervised classification, unsupervised classification and relevance feedback
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(Trpovski 2008). Suganya and Rajaram (2012) developed a CBIR system for liver

tumor diagnosis by incorporating relevance feedback to fill the semantic gap. But,

the relevance feedback consumes a lot of time to fine tune the system parameters,

since it involves the user feedback. Emmanuel et al. (2007) extracted multiple fea-

tures to characterize the tumor completely; but, a large number of features leads to

”curse of dimensionality” problem. Dube et al. (2006) retrieved brain tumors based

on classification and obtained accuracy of 87% as the system could not match the

images of subclasses. In order to enhance similarity learning, Rahman et al. (2007)

combined classification with clustering. But, the same feature set was used both for

classification and retrieval, and thus this method could not achieve high performance

in retrieving most similar medical images.

The k-means clustering algorithm (MacQueen 1967) is the widely used unsuper-

vised classification method because of its simplicity. However, it is sensitive to initial

cluster centers and thus it may give unstable and empty clusters in case of random ini-

tialization (Bishnu and Bhattacherjee 2012). There exist several methods for cluster

center initialization such as genetic programming-based (Babu and Murthy 1993), bi-

nary splitting-based (Linde et al. 1980), KD-tree based (Likas et al. 2003). But, these

are computationally intensive and parameter dependent. Further, k-means clustering

requires the user to specify the number of clusters in the dataset and this becomes

the difficult task if the user does not have any prior knowledge about the data. The

existing methods such as the one proposed by Kothari and Pitts (1999), Zhao et

al. (2011), and Fang et al. (2012) solved this problem by running the clustering algo-

rithm for a wide range of clusters and selecting the number of clusters that optimize

the cluster validity index. However, a single index may not give optimum results in

all the cases (Arbelaitz et al. 2013).

2.3.3 Feature Database Indexing Techniques

In addition to accuracy, efficiency is also the important performance factor to be

considered in the development of CBIR system. The radiologists are interested in a

fast retrieval of images relevant to the query image to accelerate the diagnosis process.

But, the advent of medical imaging techniques such as CT and MRI has lead to the

production of large amount of images in the hospitals every day, and thus the medical

image databases are steadily increasing in size. Hence, retrieval speed becomes an
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important issue in CBIR systems. In order to improve the retrieval performance, the

multi-dimensional features of the image must be indexed, and thus the existing CBIR

systems make use of various indexing schemes such as KD-tree, R-tree, R*-tree and

quad trees for fast retrieval of images from the database (Lu 2002). The indexing

techniques retrieve images similar to the query image without comparing each image

in the database and thus reduce the retrieval time. All these indexing structures

give worse performance in case of large-dimensional feature vectors. Extracting a

large number of visual features of an image leads to the ”curse of dimensionality”

problem, where the indexing, retrieval and similarity matching techniques collapse

(Wu et al. 2004). Thus, the retrieval accuracy and efficiency can be improved by

applying a feature reduction technique on the feature vectors.

2.4 3D Reconstruction of Tumor

Medical imaging techniques such as CT and MRI present the anatomic details of

3D tumor as a set of 2D parallel cross sectioned images. Representation of a 3D

data in the form of 2D projected slices results in loss of information and may lead

to erroneous interpretation of results (Crossingham et al. 2009). The radiologist may

have difficulty in imagining the 3D anatomy based on a set of 2D images. Hence, there

is a need for 3D reconstruction of the tumor from the set of 2D parallel cross sectioned

images of the tumor. 3D visualization enables better understanding of the topology of

the tumor, and enables measurements of tumor geometrical characteristics. Further,

the 3D model of the tumor is helpful in estimating the stage of tumor, surgical

planning, and biological research (Archip et al. 2006). Therefore, how to reconstruct

a trustworthy surface from the set of parallel 2D cross sections becomes a crucial

issue in biomedical 3D visualization. The 3D reconstruction of tumor involves several

steps such as inter-slice interpolation, 3D surface mesh generation, and rendering.

Several methods have been proposed for improving the steps of 3D reconstruction

with respect to effectiveness and efficiency.

2.4.1 Inter-Slice Interpolation Methods

Generally, MRI or CT imaging systems provide a limited number of slices of the

anatomical structure being scanned and these slices are not closely spaced. This
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limited number of slices is due to the technical limitations of the imaging device and

to reduce the patient’s exposure and examination time. However, it is not possible

to reconstruct accurate surfaces with such limited set of slices, and thus inter-slice

interpolation is a vital step in 3D reconstruction for estimating missing slices (Pan

et al. 2012). Inter-slice interpolation methods are divided into two groups: scene-

based and object-based. The scene-based methods interpolate gray values of the

present slices to fill the gray values of the missing slices. Examples of methods

belonging to this group are: nearest-neighbor interpolation (Lehmann et al. 1999),

linear interpolation (Goshtasby et al. 1992) and cubic spline interpolation (Meijering

et al. 2000). These methods have several drawbacks, such as generation of large

amounts of data for segmentation, artifacts are produced when contour locations

on adjacent slices shift considerably, and inability to handle branching between two

slices. In order to alleviate these problems, dynamic elastic interpolation schemes

were proposed by Lin et al. (1988) and Chen et al. (1990). The key concept in these

methods is to identify force field acting on one contour and distort it to make it similar

to the other contour. This method has a wide adaptability, but the complicated

implementations and the computing effort involved prevent it from extensive practical

applications.

In object-based methods, object information extracted from the given scene is

used in guiding the interpolation process and thus, the amount of time required by

segmentation task is significantly reduced. The popular example for object-based

method is shape-based interpolation proposed by Raya and Udupa (1990). This

method interpolates distance between image pixels and object boundary instead of

gray values, and therefore maintains better geometric changes. However, the method

fails to interpolate slices when there is no overlapping area between two objects and

it is dependent on the city-block distance transform, which provides a bad approxi-

mation to the Euclidian distance. In order to overcome the non-overlapping problem,

a level set reformulation of the shape-based method was presented by Morigi and

Sgallari (2004). However, this method fails when the boundaries of the corresponding

structures in adjacent slices are not well defined. Several morphology-based inter-

polation methods were proposed to handle non-overlapping regions (Guo et al. 1995;

Albu et al. 2008; Liao et al. 2011). These methods interpolate non-overlapping regions

using dilation and/or erosion operations (Shih 2010), but cannot handle objects with

heavy perturbations and thin structures. Object-based methods have been further
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extended by registration-based interpolation techniques (Penny et al. 2004, Frakes et

al. 2008), where the registration is performed prior to interpolation to provide corre-

spondence between adjacent slices. However, these methods have high computational

cost and hence limited clinical applications.

2.4.2 Mesh Generation Methods

The mesh generation methods reconstruct the surface mesh of the medical object

using a set of cross-sectional images of the object, and operate either on the original

pixel data or on organ boundaries. The 3D mesh generation methods that simply

join contours together suffer from branching and correspondence problem (Meyers

et al. 1992). Some methods handle this problem by matching contour segments

(Shih and Tseng 2000) and other methods by constructing the areas of difference

(Oliva et al. 1996; Klein et al. 2000). These methods fail to provide reasonable

results for some particular patterns of contour pairs. 3D deformable models such as

level sets have also been used to perform the surface reconstruction in the medical

field. The main advantage of the level set method is its ability to handle changes of

surface topology implicitly. However, the main drawback of this method is its high

computation complexity due to several levels of deformations.

Another important class of algorithms for 3D model reconstruction is based on

Delaunay triangulation (You et al. 2008; Boissonnat et al. 2009). These algorithms

reconstruct object surface with a collection of geometric structures defined from the

Delaunay triangulation. But, these algorithms produce a flat silver tetrahedron when

the data points are irregularly spaced and also computationally expensive due to in-

volvement of complex operations. Marching Cubes (MC) (Lorensen and Cline 1987)

is a popular algorithm for generating 3D surface meshes due to its simplicity and

effectiveness. This algorithm generates surface mesh with a set of triangles based

on several cube-surface intersection configurations. However, the MC algorithm gen-

erates a large number of triangles and thus rendering the 3D model becomes com-

putationally expensive. Further, the algorithm reconstructs mesh with holes due to

ambiguous faces of the cubes. Hence, several methods have been proposed in the lit-

erature to improve the accuracy of the MC algorithm (Newman and Yi 2006; Dietrich

et al. 2009; Masala et al. 2013).
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2.4.3 Mesh Simplification Methods

The 3D mesh models generated using surface reconstruction algorithms often consist

of a large number of triangles. Rendering such complex meshes at an interactive

rate in real-time applications such as treatment planning or virtual surgery becomes

difficult. Thus, many researchers have focused on developing mesh simplification

algorithms to improve the rendering efficiency and save the storage space. Mesh

simplification methods can be divided into three categories: vertex clustering, vertex

decimation and edge collapse. Methods in all these three categories are based on

different error metrics for measuring the geometric deviation of the mesh during

simplification. Mesh simplification methods based on vertex clustering (Rossignac

and Borrel 1993; Low and Tan 1997) simplify the mesh by replacing a cluster of

vertices in a given grid cells with a single vertex. This helps in selective refinement

for view-dependent simplification, but can drastically alter the topology of the input

mesh and the quality of the output is low as the size of the grid cells does not provide a

geometric error bound. The vertex decimation methods (Schroeder et al. 1992; Franc

and Skala 2002; Insu et al. 2006) iteratively selects the vertex for removal, eliminates

all the adjacent faces and re-triangulates the resulting hole. These methods preserve

the mesh topology, but require a re-triangulation procedure to fill the hole on each

vertex removal.

The edge collapse operation has become popular in the graphics community in the

last several years. It collapses an edge by merging two vertices into a single vertex

based on the error metrics. The edge collapse was first used by Hoppe et al. (1993)

to create progressive meshes based on an energy function for measuring the quality of

simplified mesh. This scheme can create a high-quality approximation, but finding an

optimal solution of the energy function is computationally expensive. Further, many

edge collapse-based algorithms have been proposed and the most popular methods

among them are QSlim and Memoryless Simplification (MS) methods proposed by

Garland and Heckbert (1997), and Lindstrom and Turk (1998), respectively. The

QSlim method computes the geometric deviation of the edge collapse as the squared

distance of a vertex to incident planes and stores it as a 4x4 symmetric matrix with

a vertex. While this method is computationally efficient and gives high quality ap-

proximations, it is not memory efficient as with each vertex it stores a 4x4 symmetric

matrix. Further, it cannot preserve the sharp details of the mesh as its error metric

is based on the distance measure. The mesh simplification algorithms by Yoshizawa
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et al. (2005), Lee et al. (2005), and Li et al. (2012) incorporated additional heuristics

to QSlim for tackling its drawbacks. Although these algorithms preserve the salient

features of the model, the execution time increases drastically. The MS method se-

lects the position of the new vertex for edge collapse such that volume of the mesh

is not distorted. This method is memory efficient and fast as it does not maintain

a geometric history of the mesh; but, it fails to retain the sharp details of the mesh

during simplification. In another method called FSIMP (Hussain 2008), normal field

of the local neighborhood of a vertex is used as a measure of geometric fidelity to

guide the vertex-based edge collapse operation. The simplified meshes generated by

this method are not of good quality because of the significant volume loss.

2.4.4 Model Rendering Methods

Rendering algorithms apply lighting models to shade over surfaces in a scene. The

commonly used rendering techniques for shading the polygonal surfaces are: flat

shading (Foley et al. 1996), Gouroud shading (Gouroud 1971), and Phong shading

(Phong 1975). In flat shading method, the intensity value for the polygon in the

mesh is calculated once and the whole polygon is shaded with the same intensity

value. This method is fast and simple, but produces intensity discontinuities because

the light intensity is computed based on the normal of each polygon surface. Gouraud

shading model renders a polygon surface by first computing the intensity value at the

vertices of the polygon and then interpolates vertex intensity values across the surface

to shade the polygon. With this, the intensity values of each polygon are matched

with the values of the adjacent polygons and thus the intensity discontinuities are

eliminated. However, the linear interpolation of intensity values produces a Mach

band effect, which is the appearance of dark and bright intensity streaks on the

surface. Phong shading model eliminates the Mach band effect by interpolating the

normal vectors between the vertices instead of intensity values. The intensity value

is then calculated at each pixel using the interpolated normal vector and realistic

highlights are displayed on the surface. Thus, the Phong shading model is considered

as the accurate method for rendering the polygon surface.
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2.5 Outcome of Literature Review

After extensive review of tumor detection, classification, CBIR and 3D reconstruction

methods, the following open issues and challenges are identified for developing an

automatic, effective and efficient CAD system for analysis of brain and liver tumors.

The tumor segmentation accuracy determines the eventual success or failure of

computerized medical image analysis tasks like diagnosis, volume analysis and sur-

gical planning. Most of the brain/liver tumor segmentation methods in the existing

literature are manual or semi-automatic. These methods are time consuming and

do not automate the entire diagnosis process of the CAD system, since they require

the manual intervention in the tumor segmentation. But, the hospitals are in need

of fully automatic diagnosis system with better accuracy compared to the analysis

of the disease by the physician. Though some automatic segmentation techniques

exist, they do not provide the accuracy required in the medical domain. Further,

most of the automatic methods do not focus on the tumor and edema separation,

which is most required to properly delineate the region of a tumor on the medical

image. Hence, there is a need to develop a fully automatic, accurate and efficient

segmentation method for detection of brain and liver tumors on medical images.

In an effort to deliver more effective treatment, clinicians are continuously seek-

ing for greater accuracy in pathological characterization of the tumor tissues from

imaging investigations. Hence, to build an effective CAD system for correctly classi-

fying brain and liver tumors, it is necessary to present all the available information

of the tumor region to the CAD system. The existing methods employ few features

for characterizing the pathology of the tumor and no method uses all the features

in a comprehensive manner. However, the use of all the heterogeneous information,

leads to high-dimensional feature vector and in turn degrade the diagnostic accuracy

of CAD systems significantly. Therefore, the reliable feature selection technique is

needed for providing compact and discriminating tumor descriptors. Another obser-

vation is that the majorities of the existing techniques investigate the performance

of different classifiers independently and discuss their merits and demerits under cer-

tain contexts. However, a decision support system based on the fusion of multiple

classifiers would be more effective compared to individual classifier alone (Ponti 2011).

Although several studies are already being conducted with respect to content-

based medical image retrieval, many challenging problems still exist. The main fac-
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tors that judge the success of a CBIR system are the visual features used for retrieval,

the size of the database and the retrieval speed. Achieving these objectives becomes

difficult in large medical image databases. The performance of the CBIR system can

be improved by using the appropriate feature set. A single feature descriptor like

texture alone may not retrieve the most relevant images, and hence the challenge

is to find the combination of several features that adequately represent the tumor

on medical image. The existing CBIR systems rely on multiple features, classifi-

cation and clustering techniques to eliminate the semantic gap. However, multiple

feature set may not alone give good retrieval results, but instead leads to problems

of high dimensionality. Classification finds good similarity within the class, but fails

to match subclass items. Though clustering helps in performing unsupervised clas-

sification, it requires specification of number of clusters and their centroids. Hence,

there is a need for CBIR framework that learns well the similarity between images

and inherent structure of the data. Further, the CBIR system must be made robust

to misalignments of images that occur during MRI/CT image acquisition to retrieve

most similar images from the database. Existing indexing structures give good effi-

ciency in low-dimensional feature vectors and perform worse than exhaustive search in

case of high-dimensional feature vectors. Hence, the indexing structures with reduced

feature vectors are needed for the efficient CBIR system.

The existing 3D reconstruction methods do not provide the high quality surfaces

and efficient 3D visualization of brain/liver tumors on medical images. Shape-based

interpolation is suitable for medical applications, but it cannot handle shifts in the

tumor cross sections, and the use of city-block distance transform fails to provide

a good approximation to the Euclidian distance transform. Thus, shape-based in-

terpolation should be enhanced with respect to accuracy and efficiency. The most

popular marching cubes algorithm can yield high quality surfaces, but generates a

large amount of triangles due to processing of small sized cubes. Thus, the number

of triangles in the 3D surface mesh of the tumor must be reduced to accelerate the

rendering phase and save storage space. The existing mesh simplification algorithms

cannot preserve important shape features of the mesh such as highly curved regions,

and thus there is a need to develop a mesh simplification algorithm that preserves

the quality of the simplified mesh.
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2.6 Problem Statement

In order to solve the open issues and challenges discussed in the previous section,

there is a need to develop an accurate and efficient CAD system for assisting the

radiologist in the diagnosis of brain and liver tumors on medical images. Accordingly,

the research problem is stated as follows:

”To develop an effective and efficient computer-aided diagnosis system for de-

tection, classification, content-based image retrieval and 3D reconstruction of brain

and liver tumors using MRI and CT images, and thereby assisting the radiologist in

making an accurate diagnostic decision”.

2.7 Research Objectives

The objectives of this research work are as follows:

• To develop automatic, effective and efficient segmentation techniques for de-

tecting the region of the brain and liver tumors on medical images.

• To develop an effective and efficient tumor classification scheme for identifying

the type of brain/liver tumor as benign or malignant.

• To develop an effective and efficient content-based image retrieval (CBIR) method

for assisting the radiologist in the diagnosis of brain and liver tumors based on

relevant cases.

• To develop an effective and efficient 3D reconstruction scheme for building a

3D model of the brain/liver tumor and compute its volume for assisting the

radiologist in determining the stage of cancer.

In order to accomplish the four objectives of the research work, the framework of

the proposed CAD system comprising of tumor detection, classification, CBIR and

3D visualization methods is illustrated in Figure 2.1. Input to the proposed CAD

system is the MRI image of brain tumor or the CT abdominal image of liver tumor.

The input image is processed to determine the location, type, similar tumor images

in the medical database and to build the 3D model of the tumor.

The brief description of research contributions in the development of a CAD sys-

tem for analysis of brain and liver tumors is given as follows:
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Figure 2.1: Framework of the Proposed CAD System

? Tumor Detection

Automatic, effective and efficient segmentation techniques are proposed for the

detection of brain and liver tumor on MRI and CT image, respectively. The

brain tumor segmentation technique consists of the steps for identifying ab-

normal slices in a set of slices of the brain, extracting the tumor region using

proposed Modified Fuzzy C-Means (MFCM) clustering algorithm and separa-

tion of the tumor and edema. The liver tumor segmentation technique consists

of the steps for identifying abnormal slices in a set of slices of the liver, liver

segmentation and extracting the tumor region using the proposed automatic

region growing algorithm.

? Tumor Classification

An effective and efficient scheme is proposed for classifying the brain/liver tumor

as benign or malignant. The significant features of the brain/liver tumor such

as shape, texture and boundary features are extracted to represent the tumor

characteristics. The most discriminating features of the tumor are selected us-

ing the proposed two-level feature selection technique consisting of information
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gain (IG)-based feature ranking and ICA-based feature selection. The accuracy

of the tumor classification is improved using the proposed ensemble classifier

consisting of three heterogeneous classifiers, namely SVM, artificial neural net-

work (ANN) and k-NN.

? Content-Based Image Retrieval

Two CBIR methods are proposed based on a hierarchical framework to re-

trieve similar tumor images from the database for assisting the radiologist in

brain/liver tumor diagnosis: 1) CBIR using image rotation correction 2) CBIR

using rotation invariant features. The indexing technique named as Cluster

with IG-ICA and KD-tree (CIKD) is proposed for fast retrieval of images from

the medical database. The features in the database are clustered by the pro-

posed modified k-means clustering algorithm, in which the initialization of the

number of clusters and cluster centers is performed automatically.

? 3D Reconstruction of Tumor

3D model of the brain/liver tumor is reconstructed effectively and efficiently

from a set of 2D slices containing the tumor. The missing slices of the tumor

are identified by the proposed enhanced shape-based interpolation technique,

which handles the drastic shift of the tumor regions in the consecutive slices and

incorporates chamfer distance transform for approximating Euclidian distance

transform. Then, the surface mesh is generated from the set of slices using the

marching cubes algorithm (Lorensen and Cline 1987). This algorithm generates

a large number of triangles, and thus the reconstructed mesh of the tumor

model is simplified without degrading the model quality using the proposed

mesh simplification algorithm. Further, the volume of the tumor is computed

in order to assist the radiologist in determining the stage of cancer.

2.8 Tumor Datasets

All MRI/CT images required for the experiments of this research work are collected

from different hospitals. The verification of the experimental results related to each

module of the proposed CAD system is performed with the help of the experienced

radiologists. In order to maintain the privacy of the patients, the identifying infor-
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mation including patients’ names and initials are kept confidential throughout the

research work. The proposed CAD system is implemented using MATLAB, and all

the experiments are performed on a personal computer with 3GHz Pentium processor

and 3GB of memory running under Windows XP operating system. The details of

the brain and liver tumor datasets are given below:

Brain Tumor Dataset

The brain tumor dataset consists of T1-weighted post-contrast and T2-weighted brain

MRI images of 820 patients (female: 382, male: 438) with verified and untreated

tumors. The patients’ ages are in the range of 15 to 74 years (mean age 48 years).

The images are acquired from 1.5-T MRI clinical scanner at the Shirdi Sai Cancer

Hospital, Manipal, India and M.S. Ramaiah Memorial Hospital, Bangalore, India.

The scan of each patient produced a set of 22 slices having a thickness of 5 mm. All

images in the dataset are gray scale images with size 640×480 and each pixel size

corresponds to 0.31 mm×0.31 mm. Among 820 patients, 420 patients are diagnosed

with benign tumor and 400 patients with malignant tumor based on histopathological

analysis of biopsy samples. T1-weighted post-contrast and T2-weighted MRI images

are used in the experiments as they provide important diagnostic information and

appreciable contrast between brain regions.

Liver Tumor Dataset

The liver tumor dataset consists of non-enhanced abdominal CT images of 764 pa-

tients (female: 350, male: 414) with verified and untreated tumors. The patients’

ages are in the range of 27 to 68 years (mean age 43 years). The images are acquired

from CT scanner at the Kidwai Institute of Oncology, Bangalore, India and Bapuji

Cancer Hospital, Davangere, India. The scan of each patient produced a set of 32

slices having a thickness of 3 mm. All images in the dataset are gray scale images with

size 512×512 and each pixel size corresponds to 0.44 mm×0.44 mm. Among 764 pa-

tients, 380 patients are diagnosed with benign tumor and 384 patients with malignant

tumor based on histopathological analysis of biopsy samples. Non-contrast-enhanced

CT images are used in the experiments, since the contrast agent injection during CT

imaging can induce the renal toxicity and allergic reactions in the patient.
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2.9 Summary

The literature reviews of various techniques on computer-aided tumor detection, clas-

sification, CBIR and 3D reconstruction are summarized in the following tables.

Table 2.1: Literature Review of Tumor Detection Methods

Method Author Description Drawback

Threshold-based Park et al.(2005) Threshold selected

based on analysis of

histogram.

Fails on poorly

contrasted

lesions.

Moltz et al.

(2008)

Pixel intensity thresh-

olding.

Threshold se-

lected in the

confidence inter-

val.

Seo et al. (2005) Threshold selection

based on minimum

total probability

error.

Produces false

positives for

small tumors.

Choudary et al.

(2008)

Thresholding com-

bined with region

growing and level set

methods.

Semi-automatic.

Region-Based Venkatachalam

et al.(2004)

Region growing with

manual selection of

seed point and thresh-

old.

Semi-automatic.

Fan et al. (2005) Region growing with

manual selection of

seed point.

Computationally

intensive.

Continued on next page
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Table 2.1 – Continued from previous page

Method Author Description Drawback

Poonguzhali

and Ravindran

(2006)

Region growing with

seed point selection

based on texture and

threshold selection

based on iterative

thresholding.

Inaccurate

results in over-

lapping tissue

intensities.

Dongxiang and

Tiankun (2009)

Used region split and

merge method for tu-

mor extraction.

Computationally

intensive.

Ng et al. (2006) Used watershed algo-

rithm to extract tu-

mor region.

Over-segmented

image.

Liu et al.(2009) Combined watershed

and region merging

methods.

Threshold used

in region merg-

ing is not adap-

tive.

Hamarneh and

Li (2009)

Used prior shape and

appearance knowl-

edge in watershed

algorithm.

Fails in low-

contrast images

Cluster-Based Juang and Wu

(2010)

Tumor segmentation

based on k-means

clustering

Cannot capture

uncertainty in

medical image.

Murugavalli and

Rajamani (2006)

Used parallel FCM al-

gorithm for tumor de-

tection.

Hardware imple-

mentation is not

effective.

Cai et al. (2007) FCM clustering with

robustness to noise.

Computationally

expensive.

Continued on next page
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Table 2.1 – Continued from previous page

Method Author Description Drawback

Al-Zoubi et al.

(2007)

Fast FCM clustering

with number of data

points reduced based

on threshold.

Threshold value

manually se-

lected.

Hemanth et

al.(2009)

Effective FCM clus-

tering based on quan-

tization and aggrega-

tion of data.

Computationally

expensive.

De Vargas et al.

(2011)

Reduced number of

iterations in FCM

clustering by deriving

crisp membership

matrix from fuzzy

matrix.

Required addi-

tional time for

computing crisp

membership

matrix.

Deformation-Based Lu et al.(2005) Tumor segmenta-

tion based on active

contour model with

manually placed ini-

tial contour around

tumor.

Semi-automatic.

Krishnamurthy

et al. (2004)

Used active contour

with initial contour

derived using edge de-

tection technique.

Fails in presence

of noise.

Bhat and Kunte

(2010)

Combined watershed

and active contour

methods to get the

initial contour for

tumor segmentation.

Over-segmented

image.

Continued on next page
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Table 2.1 – Continued from previous page

Method Author Description Drawback

Prastawa et al.

(2004), Xie et al.

(2005)

Used level set method

to segment tumor.

Requires tuning

of the level set

parameters with

the help of user.

Model-Based Moon et

al.(2002)

Tumor detection

based on distribution

of normal tissue,

tumor and edema.

Fails in case of

large deforma-

tions.

Corso et al.

(2008)

Baysian integration

model to detect

tumor.

Suffers from

inter-subject

image inconsis-

tency.

Menze et al.

(2010)

Identified tumors

based on image

registration.

Computationally

expensive.

Lee et al.

(2003), Zhou

et al. (2008),

Verma et al.

(2008), Bauer

et al. (2011),

Ghanavati et al.

(2012)

Used classification

techniques such as

neural network, SVM,

and fuzzy rules to

detect tumor.

Accuracy of

the segmenta-

tion depends

on accuracy

of manually

selected data on

tissue types.

Wels et al.

(2008)

Used discrimina-

tive model based on

Markov random field

to detect tumor.

Fails to detect

all types of tu-

mors.

43



Table 2.2: Literature Review of Tumor Classification Methods

Method Author Description Drawback

Feature

extraction

and classi-

fication

Fazel Zarandi et

al. (2011)

Identified tumor type

based on features such

as mass effect and age,

and fuzzy classifier.

Inaccurate as vi-

tal features of

the tumor such

as texture and

shape are not

considered.

Martin-

Landrove et

al. (2007)

Used border irregular-

ity of the tumor and

ANN classifier.

Fails in case of

blurry edges.

Huang et al.

(2006)

Tumor classification

based on texture

features and SVM

classifier.

Inaccurate due

to depedency on

single type of

feature.

Mougiakakou et

al. (2007)

Used tumor texture

features and ensem-

ble classifier with mul-

tilayered neural net-

work.

Computationally

intensive.

Kumar et al.

(2011)

Used wavelet-based

texture features and

ANN classifier for

identifying tumor

type.

Computationally

intensive.

Georgiadis etal.

(2008)

Classified tumors

based on texture fea-

tures and probablistic

neural network.

Inaccurate due

to dependency

on single type of

feature.

Continued on next page
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Table 2.2 – Continued from previous page

Method Author Description Drawback

Zacharaki et al.

(2011)

Classifier tumors

based on shape and

texture features, and

SVM classifier.

Inaccurate due

to dependency

on single type of

classifier.

Feature se-

lection

Pudil et al.

(1994)

Used sequential for-

ward and backward

search methods for se-

lecting vital features.

Computationally

expensive.

Fukunaga (1990) Principal Component

analysis method for

reducing the number

of features.

Reduced feature

set is not statis-

tically indepen-

dent.

Hyvarinen et al.

(1990)

Used ICA for feature

selection

The number

of vital fea-

tures manually

selected.

Raymer et al.

(2000)

Feature selection

based on genetic

algorithm.

Computationally

expensive.

Table 2.3: Literature Review of CBIR Methods

Method Author Description Drawback

Visual

features

extraction

Traina et al.

(2004)

Used shape and tex-

ture features in CBIR

Based on global

features.

Fauzi et al.

(2008)

Extracted global and

local features from

manually segmented

tumor.

Semi-automatic.

Continued on next page
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Table 2.3 – Continued from previous page

Method Author Description Drawback

Teague et al.

(1980), Liao and

Panlak (1997),

Shen et al.

(2000)

Used region-based

shape descriptors in

CBIR

Computationally

expensive.

Freeman (1961),

Abhasi et al.

(1999), Zhang

and Lu (2002)

Used contour-based

shape descriptors in

CBIR

Less accurate in

case of blurry

edges.

Yu et al.(2010),

Manjunath et al.

(2001)

Object representation

with Gabor filters.

Extracted

features are

rotation variant.

Lowe (2004) Used SIFT features in

CBIR.

Computationally

expensive as

large number

of features are

generated.

Bay et al. (2008) Image description

with SURF features

for retrieving similar

image from database

Less effective in

describing the

image.

Ojala et al.

(2002)

LBP features for rep-

resenting image tex-

ture in CBIR

Fails in the pres-

ence of flat area

and provides in-

complete texture

description.

Zhu and Wang

(2012)

Object representation

with local multiple

patterns.

Computationally

expensive due

to image analy-

sis at multiple

levels.

Continued on next page
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Table 2.3 – Continued from previous page

Method Author Description Drawback

Napel et al.

(2010)

Used texture and

boundary features ex-

tracted from manually

segmented tumor for

CBIR.

Semi-automatic.

Elimination

of seman-

tic gap

Suganya and Ra-

jaram (2012)

Filled semantic gap

using relevance feed-

back.

Computationally

expensive due

to many loops

of feedback from

the user.

Emmanuel et al.

(2007)

Eliminated semantic

gap by using multiple

features of the image.

Suffers from

curse of di-

mensionality

problem.

Dube et al.

(2006)

Filled semantic gap

based on image classi-

fication.

Could not match

images of sub-

classes.

Rahman et al.

(2007)

Filled semantic gap

based on image clas-

sification and cluster-

ing.

Less accurate

since same fea-

tures are used

for classification

and clustering.

Feature

database

indexing

Lu (2002), Wu et

al. (2004)

Reduced retrieval

time based on KD-

tree, R-tree, R*-tree,

and quad-tree.

All these trees

give worse per-

formance in

case of large-

dimensional

feature vectors.
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Table 2.4: Literature Review of 3D Reconstruction Methods

Method Author Description Drawback

Inter-slice

interpola-

tion

Lehmann et

al. (1999),

Goshtasby et

al. (1992),

Meijering et al.

(2000)

Scene-based interpo-

lation for estimating

missing slices.

Generates large

amount of data

for tumor seg-

mentation.

Lin et al.

(1988), Chen et

al. (1990)

Used dynamic elastic

interpolation for slice

interpolation.

Computationally

expensive.

Raya and Udupa

(1990)

Performed inter-

slice interpolation

using shape-based

interpolation.

Provides bad

approximation

to Euclidian

distance.

Morigi and Sgal-

lari (2004)

Estimated missing

slices with shape-

based interpolation

and level sets.

Fails when ob-

ject boundaries

are not well de-

fined.

Guo et al.

(1995), Albu et

al. (2008), Liao

et al. (2011)

Inter-slice interpola-

tion by morphology-

based interpolation.

Cannot handle

objects with

heavy perturba-

tions.

Penny et al.

(2004), Frakes

et al. (2008)

Estimated missing

slices by registration-

based interpolation.

Computationally

expensive.

Mesh gen-

eration

Meyers et al.

(1992)

Generated surface

mesh by joining con-

tours of adjacent

slices.

Suffers from

branching and

correspondence

problem.

Continued on next page
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Table 2.4 – Continued from previous page

Method Author Description Drawback

Shih and Tseng

(2000), Klein et

al. (2000)

Generated surface

mesh by matching

contour segments and

constructing area of

difference of adjacent

slices.

Could not han-

dle all patterns

of contour pairs.

Boissonnat et al.

(2009)

Surface mesh gener-

ated based on Delau-

nay triangulation.

Produced flat

silver trian-

gles and com-

putationally

expensive.

Lorensen and

Cline (1987)

Generated surface

mesh by marching

cubes algorithm.

Generates large

number of tri-

angles and holes

in the surface

mesh.

Dietrich et al.

(2009), Masala

et al. (2013)

Modified marching

cubes algorithm

to eliminate hole

problem.

Computationally

expensive and

generates silver

triangles in the

mesh.

Mesh sim-

plification

Rossignac and

Borrel (1993),

Low and Tan

(1997)

Simplified mesh based

on vertex clustering.

Drastically al-

ters the topology

of the mesh.

Franc and Skala

(2002), Insu et

al. (2006)

Mesh simplification by

vertex decimation.

Requires re-

triangulation

procedure to fill

the hole on each

vertex removal.

Continued on next page
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Table 2.4 – Continued from previous page

Method Author Description Drawback

Hoppe et al.

(1993)

Mesh simplification by

collapsing edges based

on energy function.

Computationally

expensive.

Garland and

Heckbert (1997)

Reduced number of

triangles in the recon-

structed mesh based

on quadric error met-

rics.

Memory ineffi-

cient and cannot

preserve sharp

details of the

mesh.

Lindstrom and

Turk (1998)

Memoryless mesh sim-

plification by not re-

taining the history of

the mesh.

Cannot preserve

sharp details of

the mesh.

Lee et al.(2005),

Li et al. (2012)

Mesh simplification

based on Qslim

method with addi-

tional heuristics.

Computationally

expensive.

Hussain (2008) Simplified mesh by

collapsing an edge

based on normal field

of the neighborhood

of a vertex.

Results in sig-

nificant volume

loss.

Model ren-

dering

Foley et al.

(1996)

Whole Model is

shaded with same

intensity value (Flat

shading).

Produces inten-

sity discontinu-

ities.

Gouroud (1971) Model rendering by

interpolating ver-

tex intensity across

the polygon surface

(Gouroud shading).

Suffers from

Mach band

effect.

Continued on next page
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Table 2.4 – Continued from previous page

Method Author Description Drawback

Phong (1975) Model rendering by

interpolating normal

vectors between the

vertices (Phong shad-

ing).

Computationally

expensive since

it computes

intensity value

based on inter-

polated normal

vector.

This chapter provided a review of the CAD methods proposed by various re-

searchers for detection, classification, CBIR and 3D reconstruction of brain and liver

tumors. The research problem statement and objectives were framed based on the

outcome of the literature review. Also, the chapter provided the description of the

brain and liver tumor datasets used in the experiments of the present research work.
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Chapter 3

Tumor Detection on Medical

Images

The proposed CAD system consists of tumor detection, classification, CBIR and 3D

reconstruction methods for effective and efficient analysis of brain and liver tumors.

The tumor detection method is meant for extracting the tumor region from the given

medical image. The tumor detection is necessary for diagnosis, 3D reconstruction,

volumetric analysis and treatment planning. Hence, in this chapter, we discuss the

proposed automatic, effective and efficient segmentation techniques for detection of

brain and liver tumor on MRI and CT images, respectively. Precisely, an attempt

has been made to fulfill the first objective of the research work and to overcome the

drawbacks of the existing segmentation methods as discussed in Section 2.5. The

research contributions towards the detection of brain and liver tumors are as follows:

• An automatic, effective and efficient brain tumor segmentation technique based

on Modified Fuzzy C-Means (MFCM) clustering algorithm.

• An automatic, effective and efficient liver tumor segmentation technique based

on the automatic region growing algorithm.

The proposed techniques follow a systematic approach to tumor detection by first

identifying the abnormal slice from a given set of slices, and then segmenting the

tumor on the abnormal slice. The proposed segmentation techniques for detection of

brain and liver tumor are explained in Section 3.1 and 3.2, respectively.
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3.1 Brain Tumor Segmentation Using Modified FCM

Clustering

The FCM clustering algorithm (Bezdek 1981) can handle the complex distribution of

tissue intensities in MRI images, but, it consumes a lot of time to partition the image

into desired number of clusters. It is also sensitive to initial cluster centers and thus

leads to local minima results (Alia et al. 2009). Though some existing methods (Al-

Zoubi et al. 2007; Hemanth et al. 2009) accelerate the FCM algorithm, the efficiency

improvement is not much effective. In order to overcome these drawbacks, we propose

MFCM clustering algorithm for brain tumor segmentation on the MRI image.

3.1.1 Proposed Methodology

The framework of the proposed brain tumor segmentation technique is shown in

Figure 3.1. It consists of two phases, namely, preprocessing and segmentation.
 

 

 

 

 

 

 

 

 

 

 

 

 

   

Preprocessing 

T1-Weighted Post-Contrast 
and T2-Weighted MRI Images 

Image Denoising 

Contrast Enhancement 

Rotation Correction 

Preprocessed 
T1-Weighted Post-Contrast and 

T2-Weighted MRI Images 

Registration 

Preprocessed T2-Weighted 
MRI Image 

Brain Tumor Segmentation 

Histogram Analysis  

Segmented Tumor on 
 T2-Weighted MRI Image 

 
(Mark Corresponding Tumor Pixels on 

T1-Weighted Post-Contrast MRI Image) 
 

Brain Tumor Segmentation 
Based on MFCM Clustering  

Figure 3.1: Framework of the proposed Brain Tumor Segmentation Technique

The preprocessing phase improves quality of the input T1-weighted post-contrast

and T2-weighted MRI images by image denoising, contrast enhancement, rotation
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correction and registration techniques. Next, in the segmentation phase histogram of

the brain region on the T2-weighted MRI image is analyzed to determine whether the

given image is normal (without tumor) or abnormal (with tumor). If the given image

is abnormal, then the tumor is segmented on the T2-weighted MRI image using the

proposed MFCM clustering algorithm and the corresponding pixels on T1-weighted

post-contrast MRI image are considered as the tumor region. In case of T1-weighted

post-contrast MRI image, the contrast agent not only enhances the tumor but also the

blood vessels in the brain and this creates ambiguity in segmenting the brain tumor,

whereas in T2-weighted MRI image the brain tumor shows higher intensity when

compared to other regions in the brain. Thus, the proposed segmentation algorithm

is applied on T2-weighted MRI image of the brain.

3.1.2 Preprocessing

Prior to segmentation, the preprocessing step is applied on both T1-weighted post-

contrast and T2-weighted images to improve the quality of images. The noise can

mask and blur the important features in the MRI image and thus further processing

of medical image becomes difficult. Hence, the noise is eliminated by applying 3×3

median filter (Burger and Burge 2008). However, the edges in the resulting image

are smoothed. Hence, to improve the perceptibility of the tumor and other structures

in the brain, unsharp masking is used after the median filtering. A 3×3 unsharp

filter is constructed using the negative of the 2D Laplacian filter (Bourne 2010).

The sizes of filters are chosen empirically. Next, the image contrast is enhanced

by applying histogram equalization. If the given T1- and T2-weighted images are

rotated, then these images are restored to their standard position using the proposed

rotation correction technique, which is discussed below. Finally, for each patient,

T1-weighted post-contrast and T2-weighted images are co-registered using FMRIB’s1

Linear Image Registration Tool (FLIRT) (Jenkinson and Smith 2001).

The patient’s movement during MRI image acquisition may lead to misalignment

(rotation/translation) of the image. The translation will not cause problems in image

analysis because the tumor can be segmented and analyzed irrespective of the location

of brain region in the medical image. But, image rotation limits the application of

automated tools for MRI image analysis, since rotation changes the shape and texture

1The Oxford Center for Functional MRI of the Brain
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properties of the tumor. Thus, in the present work, a method has been proposed for

rotation correction of misaligned MRI image of the brain. First, the orientation of

the brain must be identified to know the angle by which to rotate the misaligned

brain to its standard position. This is accomplished by measuring the orientation of

the major axis of the brain in the MRI image with the reference x-axis (Figure 3.2).

   

Major axis 

(b) 

θ

(a)  
    

Figure 3.2: Orientation Angle Estimation of the Brain MRI Image (a) Rotated MRI
Image (b) Orientation Angle

Then, based on the orientation angle (θ), the rotation correction angle (θ′ = 90−θ)
is computed. Next, the misaligned image can be restored to its standard position using

the following rotation transformation equations.

x′ = xcos(θ′)− ysin(θ′) (3.1)

y′ = xsin(θ′) + ycos(θ′) (3.2)

Where, a point (x, y) in the original image is directly mapped onto the point (x′, y′) in

the resultant image. But, this kind of forward mapping creates holes in the output im-

age, since the target position (x′, y′) does not coincide with the discrete grid points.

Thus, to retain the quality of the resultant image, inverse mapping is performed.

For each discrete pixel position in the output image, the corresponding continuous

position (x, y) is computed in the input image. This mapping hits the non-integer

locations in the input image, where there is no pixel present. Hence, the pixel value

at this non-integer location is computed using interpolation method. In the present

work, bicubic interpolation method (Keys 1981) is used as it is more accurate com-
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pared to the nearest neighbor and bilinear interpolation techniques (Amrutha et al.

2010). Bicubic interpolation determines a new pixel value by considering nearest 4×4

neighborhood of known pixels and by giving all the 4×4 pixels a weight using their

distance to the new pixel. The interpolated pixel value is mapped back to the point

(x′, y′) in the output image.

3.1.3 Brain Tumor Segmentation

After preprocessing the MRI images, the brain tumor on the T2-weighted MRI image

is segmented using various steps as shown in Figure 3.3.
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Figure 3.3: Flowchart of the Brain Tumor Segmentation Technique
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The skull stripping removes the skull region from the MRI image and wavelet

transform decomposes the image into various frequency bands. Then, the histogram

analysis of the brain region in wavelet transformed image is carried out to determine

whether the given MRI image is normal or abnormal. If the image is abnormal, then

MFCM clustering is applied in order to segment the tumor region on the MRI image.

The various steps in the brain tumor segmentation technique are detailed below.

Skull Stripping

Skull removal of the brain from the MRI image is an important step in the segmenta-

tion of brain tumor, since skull may cause misclassifications of pixels due to intensity

similarities with brain structures (Roalsn et al. 2011). Thus, the skull region is elim-

inated on each slice by first converting the original T2-weighted MRI image (Figure

3.4(a)) to a binary image based on the threshold value calculated automatically using

Otsu’s method (Otsu et al. 1979). The resultant binary image consists of connected

components as shown in Figure 3.4(b). Then, a search is made for the largest con-

nected component corresponding to the brain, and accordingly the skull region is

eliminated by retaining only the pixels in the largest connected component as shown

in Figure 3.4(c).

                                               

(a) (b) (c)  

Figure 3.4: Brain Skull Stripping (a) Original MRI Image (b) Binary Image (c) Skull
Stripped MRI Image

Wavelet Decomposition

In this step, the Discrete Wavelet Transform (DWT) is applied to the skull stripped

MRI image to reveal the characteristics of tissues. DWT makes use of high-pass
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(h(n)) and low-pass (g(n)) filters to decompose the given image into four sub-bands:

Low-Low (LL), Low-High (LH), High-Low (HL), and High-High (HH) representing

approximate, vertical, horizontal, and diagonal details (Acharyya et al. 2003), respec-

tively as shown in Figure 3.5. In the present work, Haar wavelet is used to decompose

the image at three levels due to its simplicity and efficiency. In the next step, MFCM

clustering is applied to the approximate image to segment tumor, since the approx-

imate image contains more details of the image when compared to other sub-bands

of the image.

 

Figure 3.5: Image Decomposition Using Discrete Wavelet Transform

Tumor Identification

MRI of the brain gives a set of slices containing normal and abnormal slices; hence,

identification of the abnormal slices is needed before segmentation. The normal slice

consists of three regions White Matter (WM), Gray Matter (GM) and Cerebrospinal

Fluid (CSF), whereas the abnormal slice consists of four regions (WM, GM, CSF and

abnormal region). Thus, to determine whether the given T2-weighted MRI image of

the brain is normal or abnormal, the histogram of the brain region is computed using

Equation (3.3), and the number of clusters present in the brain region is determined

based on the histogram analysis (Castro et al. 2007).

h(g) =

∑M−1
x=0

∑N−1
y=0 δ(I(x, y)− g)

M ×N
(3.3)
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Where, the function h(g) gives the number of pixels having a gray level equal to g

in the image of size M × N . The gray level g lies in the range [0, L − 1] and L is

the maximum gray level in the image. Function δ(0) = 1 and δ(g 6=0) = 0. If the

histogram consists of four peaks, then the given T2-weighted MRI image is considered

as the abnormal slice and in the next step, clustering algorithm is applied in order to

segment the abnormal region on the T2-weighted MRI image. Otherwise, the given

T2-weighted MRI image is considered as the normal slice and further processing is

not carried out.

Modified FCM Clustering

After identifying that the given T2-weighted MRI image contains the abnormal region,

the T2-weighted MRI image is partitioned into four clusters (c = 4): WM, GM, CSF

and abnormal region (tumor) using the MFCM clustering algorithm. In conventional

FCM clustering algorithm (Bezdek 1981), the time required to segment the image is

dependent on the image size. Hence, MFCM performs clustering on the basis of gray

level histogram instead of pixels in the image as the number of gray levels is less than

the number of pixels in the image.

The clustering algorithm converges to a local minimum if the centers are randomly

initialized and the minimal amount of improvement (e) is not small enough to allow

improvements in the center positions. Hence, we initialized the cluster centers with

the gray levels corresponding to four peaks in the histogram and used e = 10−7 as

the minimal amount of improvement. The weights in the membership matrix are

initialized based on the distance of the gray levels to initial centers. The proposed

MFCM clustering algorithm also contains an effective objective function to partition

the given data into desired number of clusters such that intra-cluster distance is

minimized and inter-cluster distance is maximized.

The complete steps of MFCM clustering are given in Algorithm 3.1. The MFCM

clustering algorithm begins with the initialization of its parameters, such as degree

of fuzziness (m) and tolerance value (e). Next, the four cluster centers (vi) are

initialized using gray levels corresponding to four peaks in the histogram of the brain

region. Then, membership weight (uig) is assigned to each gray level based on its

distance from cluster centers and the weights are stored in membership matrix (u).

Finally, the objective function (J) is computed based on the inter-cluster distance and

intra-cluster distance. If the difference between the objective function of the current
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iteration and that of the previous iteration is less than the tolerance value, then the

algorithm stops. Otherwise, the process is repeated with the new cluster centers and

membership matrix.

Algorithm 3.1 MFCM

Input: MRI image and No. of clusters (c).
Output: Clusters in the MRI image.
1: Compute histogram of an image I of size M ×N using Equation (3.3).
2: Initialize parameters required for fuzzy clustering.

Degree of fuzziness: m = 2; Tolerance value: e = 10−7;
Iteration: l = 1;
Initialize the c cluster centers (vi, i = 1, .., c) using gray levels corresponding to c
peaks identified by histogram analysis.

3: Initialize the membership matrix u.

uig =
1∑c

k=1

(
||g−vi||
||g−vk||

) 2
m−1

(3.4)

4: Compute the objective function J.

J (l) =
c∑

i=1

L−1∑
g=0

um
igh(g)||g − vi||2 −

1

c(c− 1)

c∑
i=1

c∑
k=1

||vi − vk||2. (3.5)

5: Check for convergence: If |J (l) − J (l−1)| < e then STOP;
Else l = l + 1.

6: Compute new cluster centers.

vi =

∑L−1
g=0 h(g)um

igg∑L−1
g=0 h(g)um

ig

. (3.6)

7: Compute new membership matrix using Equation (3.4) and go to step (4).

The four clusters obtained by the application of MFCM clustering on the T2-

weighted MRI image are shown in Figure 3.6. The tumor shows higher intensity

compared to WM, GM and CSF. Hence, the highest cluster center value indicates

the presence of abnormal region in the corresponding cluster.
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(a) (b) (c) (d) 
   

Figure 3.6: Clusters of Brain in T2-weighted MRI Image: (a) White Matter (b) Gray
Matter (c) Cerebrospinal Fluid (d) Abnormal Region

Tumor and Edema Separation

Once the abnormal region is identified on the T2-weighted MRI image, a test is car-

ried out to identify the presence of edema. This is because the tumor may not be

surrounded by edema in all cases. Edema is the swelling of the brain tissue surround-

ing the tumor mass and the separation of the tumor from edema is necessary for

diagnosis and treatment planning. The presence of edema is identified by determin-

ing the number of clusters in the abnormal region based on the histogram analysis of

abnormal region (Castro et al. 2007). If it contains two peaks, then it means that the

tumor is associated with edema on T2-weighted MRI image. Hence, the abnormal

region is partitioned into two clusters (tumor and edema) using MFCM clustering.

Edema when present, exhibits higher intensity than tumor on T2-weighted MRI im-

age. Hence, the tumor is segmented by retaining only the pixels in the cluster whose

center value is lower than the other cluster center value.

3.1.4 Experimental Results and Discussion

In order to evaluate the performance of the proposed brain tumor segmentation

method, the following experiments are carried out on T1-weighted post-contrast and

T2-weighted brain MRI images of 550 patients (female: 246, male: 304). Among

550 patients, 280 patients were diagnosed with benign tumor and 270 patients with

malignant tumor based on histopathological analysis of biopsy samples. The detailed

description of the brain tumor dataset is already given in Section 2.8.
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Rotation Correction Results

In order to test the effectiveness of the rotation correction technique, some of the

images in the dataset are rotated by 10o, 15o, 20o, and 25o in the clockwise and

anti-clockwise directions. In the preprocessing stage, the misaligned images are cor-

rected using inverse mapping and bicubic interpolation. Table 3.1 shows the difference

between the original MRI images (images in a standard position) and the rotation

corrected MRI images based on three interpolation methods: bicubic (Keys 1981), bi-

linear, and nearest neighbor (Gonzalez and Woods 2009). The difference between the

original image and the rotation corrected image is measured by computing relative

error, which is given by,

RelativeError(RE) =
|Nr −No|

No

× 100 (3.7)

where, No represents the number of pixels in the brain region of the original image

and Nr represents the number of corresponding pixels occupied by brain region on

the rotation corrected image.

Table 3.1: Performance Comparison of Interpolation Methods

Rotation Angle Average Relative Error(%)

Nearest Neighbor Bilinear Bicubic

−100 1.36 0.98 0.00

−150 2.73 0.76 0.00

−200 2.98 1.13 0.00

−250 4.15 1.20 0.01

100 1.28 0.71 0.00

150 3.01 1.02 0.00

200 4.00 2.08 0.01

250 4.55 2.11 0.02

The nearest neighbor interpolation takes the intensity of the closest pixel as the

intensity of new pixel and it shows least effectiveness in rotation correction with RE

higher than 2% for most of the rotation angles. The bilinear interpolation considers
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the 4 neighbors to estimate the intensity of a pixel and it shows the moderate effec-

tiveness, whereas with the bicubic interpolation original image and rotation corrected

image are considered similar (RE = 0.00%) for most of the rotation angles. Hence,

the bicubic interpolation is used in the proposed rotation correction technique.

Segmentation Results

After preprocessing, the brain tumor is segmented on the MRI image using the pro-

posed segmentation technique based on MFCM clustering. The proposed segmenta-

tion technique is able to perfectly distinguish between normal and abnormal slices of

the brain in all the cases. After identifying the abnormal slice, the tumor region is

extracted. Figure 3.7 shows the segmentation results of some of the brain tumor cases

in the dataset. Figure 3.7(a) shows the original T2-weighted MRI images. Images in

                         

 

 

 

               

                            

                         

(a) (b) (c) 
                    

(d) 

Figure 3.7: Results of Brain Tumor Segmentation on the MRI Image (a) T2-Weighted
Brain MRI Image (b) Brain Tumor (c) Edema (d) Boundary of Brain Tumor on the
MRI Image
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the first and third row do not contain edema, whereas the images in a second and

fourth row contain tumor along with edema. Figure 3.7(b) and Figure 3.7(c) shows

the separation of the tumor and edema, respectively. The boundary of the segmented

tumor is marked on the original image using 4-connected neighbors as shown in Figure

3.7(d).

The evaluation of the brain tumor segmentation results is performed through a

quantitative comparison with the results of a manual segmentation (gold standard).

The manual segmentation of brain tumor is carried out by two experienced (R1 and

R2) and two inexperienced (R3 and R4) radiologists. The purpose of comparison

of the segmentation results with inexperienced radiologists is to show that the accu-

racy of segmentation depends on radiologist’s experience. Let M be the manually

segmented tumor and A be the automatically segmented tumor by the proposed seg-

mentation technique. A set of three VALMET measures (Gerig et al. 2001) is used

to evaluate the segmentation results and the description of these measures is given as

follows:

Volume Overlap:

It measures the extent of overlap between two segmented regions and it is computed

using Equation (3.8).

Volume Overlap(V O) =
A ∩M
A ∪M

× 100 (3.8)

Hausdorff Distance:

The Hausdorff distance Ham, between two sets of points A and M can be obtained

in two steps. First, for each point in A, the minimum distance to all points in M

is obtained, and then maximum of this set of minimum distances is computed. The

minimum distance for the ith surface voxel in A to the set of surface voxels in M is

dam
i and Ham is the maximum value of the surface distance of all na surface voxels

in A (Equation (3.9)). The Hausdorff distance, HD, is the maximum of the directed

form for A→M and M → A (Equation (3.10)).

Ham = max(dam
i ), i = 1....na (3.9)

HD = max(Ham, Hma) (3.10)
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Symmetric Mean Absolute Surface Distance:

The symmetric mean absolute surface distance estimates the error between the surface

of A and M using distances between their surface voxels. The surface distance of the

ith surface voxel on A (dam
i ) is the distance to the closest voxel on M . The symmetric

mean absolute surface distance, SMD, is the mean of the absolute values of the surface

distance from A and M as given in Equation (3.11).

SMDam =
1

na + nm

( na∑
i=1

|dam
i |+

nm∑
j=1

|dma
j |
)

(3.11)

The segmentation was performed on all 550 cases but for simplicity only 10 cases

are shown in the following tables. The inter-rater variability is demonstrated by

comparing radiologists’ segmentation results as shown in Table 3.2.

Table 3.2: Comparison of Brain Tumor Segmentation Results of Expert Radiologists

Cases R1 vs.R2

VO(%) HD(mm) SMD(mm)

1 100 0 0

2 100 0 0

3 99.86 0.53 0.16

4 100 0 0

5 100 0 0

6 100 0 0

7 99.73 0.77 0.21

8 100 0 0

9 100 0 0

10 100 0 0

Mean 99.81 0.004 0.001

The mean values of VALMET measures shown are computed by taking average

over all 550 cases. Cases 1-5 contain tumor, whereas cases 6-10 contain tumor along

with edema. The segmentation results of experienced radiologists R1 and R2 are

almost similar due to their expertise in the segmentation of tumor. The radiologists
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R1 and R2 have several years of experience in interpreting brain MRI images and

hence results are similar (V O = 100%, HD = 0 mm,SMD = 0 mm) in most of

the cases. However, R1 and R2 have showed small differences (e.g., Case 3, V O =

99.86%, HD = 0.53 mm,SMD = 0.16 mm) in segmenting the tumor, when the

boundary of tumor was not clear on the MRI image.

Further, the results of R1 are compared with the inexperienced radiologists R3 and

R4 as shown in Table 3.3. The segmentation results of R3 showed overall mean values

of V O = 75.68%, HD = 13.82mm,SMD = 1.69mm, and the segmentation results of

R4 showed overall mean values of V O = 70.63%, HD = 16.77 mm,SMD = 1.63 mm.

It is observed that manual segmentation results depend on the experience of the

radiologist.

Table 3.3: Comparison of Brain Tumor Segmentation Results of Experienced (R1)
and Inexperienced Radiologists

Cases R1 vs. R3 R1 vs. R4

VO(%) HD(mm) SMD(mm) VO(%) HD(mm) SMD(mm)

1 82.31 15.12 1.62 79.71 11.36 1.44

2 80.64 16.38 1.64 83.25 14.78 1.73

3 70.21 9.35 1.87 70.69 8.49 1.98

4 78.83 17.85 1.78 76.07 15.41 1.66

5 85.16 8.50 1.58 84.27 8.07 1.54

6 79.96 12.31 1.50 70.81 15.67 1.80

7 65.79 13.11 1.83 59.34 13.05 1.58

8 69.66 10.73 1.87 72.58 9.40 1.76

9 68.20 12.80 1.75 68.06 11.89 1.73

10 57.96 18.93 1.67 53.93 19.26 1.69

Mean 75.68 13.82 1.69 70.63 16.77 1.63

Table 3.4 shows the comparison of the segmentation results of R2 with inexperi-

enced radiologist R3 and R4. The segmentation results of R3 showed overall mean

values of V O = 73.81%, HD = 14.51 mm,SMD = 1.68 mm, and the segmentation

results of R4 showed overall mean values of V O = 71.43%, HD = 14.83 mm,SMD =
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1.60 mm. This shows that segmentation results of inexperienced radiologists did

not match well with the expert radiologist’s results. Also, the level of agreement be-

tween experienced and inexperienced radiologists for cases which contain tumor along

with edema is lower than cases that contain only tumor. This is mainly due to the

ambiguity in determining the edema boundary on MRI images.

Table 3.4: Comparison of Brain Tumor Segmentation Results of Experienced (R2)
and Inexperienced Radiologists

Cases R2 vs. R3 R2 vs. R4

VO(%) HD(mm) SMD(mm) VO(%) HD(mm) SMD(mm)

1 82.31 15.12 1.62 79.71 11.36 1.44

2 80.64 16.38 1.64 83.25 14.78 1.73

3 71.52 9.20 1.83 72.01 8.52 1.91

4 78.83 17.85 1.78 76.07 15.41 1.66

5 85.16 8.50 1.58 84.27 8.07 1.54

6 79.96 12.31 1.50 70.81 15.67 1.80

7 63.80 14.23 1.88 61.76 12.92 1.51

8 69.66 10.73 1.87 72.58 9.40 1.76

9 68.20 12.80 1.75 68.06 11.89 1.73

10 57.96 18.93 1.67 53.93 19.26 1.69

Mean 73.81 14.51 1.68 71.43 14.83 1.60

The quantitative results obtained by comparing the proposed automatic segmen-

tation (AS) with the manual segmentation performed by expert radiologists R1 and

R2 are provided in Table 3.5. The mean values of VALMET measures shown in Table

3.5 are computed by taking average over all 550 cases. The results of automatic seg-

mentation provide a good match with the expert radiologists’ results. For the overlap

measure, all values are greater than 95% and the distance based evaluations also show

good performance in all the cases. The proposed segmentation method showed overall

mean values of V O = 98.24%, HD = 1.37 mm,SMD = 0.38 mm, when evaluated

with the R1’s segmentation results and V O = 98.38%, HD = 1.32 mm,SMD =

0.34 mm, when evaluated with the R2’s segmentation results.
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Table 3.5: Comparison of Automatic and Manual Segmentations of Brain Tumor

Cases AS vs. R1 AS vs. R2

VO(%) HD(mm) SMD(mm) VO(%) HD(mm) SMD(mm)

1 97.57 1.68 0.42 97.57 1.68 0.42

2 99.05 1.13 0.27 99.05 1.13 0.27

3 98.56 1.26 0.36 98.75 1.22 0.31

4 96.82 2.13 0.50 96.82 2.13 0.50

5 99.43 1.08 0.25 99.43 1.08 0.25

6 95.03 2.96 0.64 95.03 2.96 0.64

7 96.15 2.28 0.57 96.31 2.23 0.55

8 97.18 1.78 0.45 97.18 1.78 0.45

9 96.45 2.21 0.52 96.45 2.21 0.52

10 95.26 2.21 0.50 95.26 2.21 0.50

Mean 98.24 1.37 0.38 98.38 1.32 0.34

In order to evaluate the performance of the proposed MFCM clustering in tu-

mor segmentation, its efficiency and cluster validity are measured in terms of run

time and Davies-Bouldin (DB) index (Davies and Bouldin 1979). The details of the

performance evaluations are given as follows:

Time Complexity

The MFCM clustering algorithm partitions the given image into different clusters

based on the gray levels in the image histogram. Let G be the number of gray levels

in the image histogram, C be the number of clusters required, and I be the number

of iterations required by the MFCM algorithm to converge. The basic operation of

the MFCM clustering algorithm is calculating the membership weights and cluster

centers. These operations take constant amount of time and hence, the time complex-

ity of the MFCM algorithm is based on the number of times these basic operations

are executed for I iterations, C clusters and G gray levels. Accordingly, the time
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complexity of the MFCM clustering algorithm is given by,

T =
I∑

i=1

C∑
j=1

G∑
k=1

1 (3.12)

The Equation (3.12) is solved by applying the summation rules as follows:

T =
I∑

i=1

C∑
j=1

G− 1 + 1

=
I∑

i=1

(C − 1 + 1)(G)

= ICG

(3.13)

Hence, the time complexity of the MFCM algorithm is O(ICG) and the algorithm

takes about 1.12 sec to cluster the given MRI image.

Cluster Validity

The clusters resulting from MFCM algorithm are validated based on the Davies-

Bouldin index, which is defined as the ratio of the sum of within-cluster scatter

(intra-cluster) to between-cluster separation (inter-cluster) and is computed by,

DB =
1

C

C∑
i=1

max
i 6=l

{
dw(vi) + dw(vl)

db(vi, vl)

}
(3.14)

where, C is the number of clusters, dw(vi) is the average distance of all elements in

the cluster i to their cluster center vi, dw(vl) is the average distance of all elements

in the cluster l to their cluster center vl, and db(vi, vl) is the distance between cluster

centers vi and vl. The clustering algorithm that minimizes the DB index value is

considered as the best algorithm. The validation of the clustering results of MFCM

algorithm showed an average DB value of 0.62.

Comparison with the Existing Methods

Table 3.6 shows the performance comparison of the MFCM clustering algorithm with

the following existing FCM algorithms.
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• Conventional FCM proposed by Bezdek (1981).

• Fast FCM (FFCM) proposed by Al-Zoubi et al. (2007).

• Effective FCM (EFCM) proposed by Hemanth et al. (2009).

Table 3.6: Performance Comparison of Fuzzy Clustering Algorithms

FCM Methods Time Complexity Time (sec) DB Index

FCM O(ICN) 47.15 0.94

FFCM O(ICK) +O(TN) 24.98 1.13

EFCM O(ICM) +O(FN) 5.34 0.97

MFCM O(ICG) 1.12 0.62

Where, N: Number of pixels in the image, K: Number of pixels selected based on

threshold, T: Number of iterations required to select the threshold, M: Number of

pixels selected based on features, and F: Number of features selected.

The conventional FCM algorithm takes more time (47.15 sec), since it is dependent

on the number of pixels in the image. The FFCM and EFCM clustering algorithms

improve the efficiency of the conventional FCM algorithm by reducing the amount

of input data. However, the efficiency improvement provided by FFCM (24.98 sec)

and EFCM (5.34 sec) is not better than the proposed MFCM algorithm (1.12 sec).

This is because the FFCM and EFCM reduce the input data based on the manually

selected threshold and the features extracted from the image, respectively. Whereas

the MFCM algorithm clusters the image based on the number of gray levels in the

image histogram and hence consumes less time for clustering.

Further, the FFCM algorithm reduces the dataset by eliminating all those points

with membership weight less than the threshold and hence shows poor clustering

results (DB = 1.13). The EFCM algorithm aggregate data points in the homogeneous

areas of the image and hence its clustering results (DB = 0.97) do not deviate from

the FCM results (DB = 0.94). However, in FCM, FFCM and EFCM algorithms the

cluster centers are initialized manually and hence it affects the effectiveness of the

clustering results. Whereas, the MFCM clustering algorithm automatically initializes

the cluster centers and also focuses on maximizing the inter-cluster distance and

minimizing the intra-cluster distance, and hence it gives better clustering results

(DB = 0.62) when compared to other methods.
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3.2 Liver Tumor Segmentation Using Automatic

Region Growing

The region growing algorithm (Adams and Bischof 1994) is well suited for segmen-

tation of abdominal CT image as it provides thin and well connected borders of

the region. But, the region growing algorithm is semi-automatic, since it requires

the manual selection of seed point and threshold (Venkatachalam et al. 2004; Qi et

al. 2008) and thus, it needs a lot of time to arrive at accurate results. Though some

existing methods (Poonguzhali and Ravindran 2006; Wu et al. 2009) automate the

region growing algorithm, they are not computationally efficient. In order to over-

come these drawbacks, in the present research work, an automatic region growing

algorithm is proposed for segmentation of the liver tumor on abdominal CT image.

3.2.1 Proposed Methodology

The framework of the proposed liver tumor segmentation technique is shown in Figure

3.8. It consists of three phases, namely preprocessing, liver segmentation, and liver

tumor segmentation. 

Preprocessing 

Non-enhanced Abdominal 
CT Image 

Image Denoising 

Contrast Enhancement 

Rotation Correction 

Liver Segmentation

Preprocessed Non-enhanced 
Abdominal CT Image 

Threshold Selection 

Morphological Processing 

Extract Largest Region 

Hole Filling

Segmented Liver 

Preprocessed Non-enhanced 
Abdominal CT Image 

Liver Tumor 

Segmented Liver 

Histogram Analysis 

MFCM Clustering 

Select Seed Point and 
Threshold 

Region Growing 

Segmented Liver Tumor 

Figure 3.8: Framework of the Proposed Liver Tumor Segmentation Technique
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The preprocessing phase improves quality of the input non-contrast-enhanced ab-

dominal CT image by image denoising, contrast enhancement, and rotation correction

techniques. Next, in the liver segmentation phase, liver region is extracted from the

abdominal CT image based on adaptive thresholding and morphological processing.

Finally, in the liver tumor segmentation phase, the histogram of the liver segmented

CT image is analyzed to determine whether the liver is normal (without tumor) or ab-

normal (with tumor). If the liver is abnormal, then the liver tumor is segmented using

the proposed automatic region growing algorithm, which selects the seed point and

threshold value based on the Modified Fuzzy C-Means (MFCM) clustering algorithm.

3.2.2 Preprocessing

Similar to brain MRI image, the abdominal CT image of the liver is also preprocessed

to improve the quality of the image. The noise is eliminated from the abdominal CT

image using 3×3 median filter (Burger and Burge 2008) and 3×3 Laplacian filter with

unsharp masking (Bourne 2010). Next, the image contrast is enhanced by applying

histogram equalization. The patient’s movement during CT image acquisition may

lead to misalignment of the image. Hence, in order to correct the rotation of the CT

image, the orientation of the CT image is determined by measuring the orientation of

its minor axis with the reference x-axis. Then, based on the orientation angle (θ), the

rotation correction angle (θ′ = 90− θ) is computed. The misaligned image is restored

to its standard position using inverse mapping and bicubic interpolation (Arpitha et

al. 2010) as discussed in Section 3.1.2.

3.2.3 Liver and Tumor Segmentation

After preprocessing step, the liver is segmented on the abdominal CT image by ex-

tracting the pixel intensities in the liver region and thereby, eliminating organs adja-

cent to the liver. Then, the liver tumor is segmented on the extracted liver region.

The various steps for liver and tumor segmentation on the abdominal CT image are

detailed below.

Liver Segmentation

The various steps of liver segmentation such as thresholding, morphological process-

ing, largest region extraction and hole filling are explained as follows:
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Thresholding: Liver occupies the largest region in the abdominal CT image as

shown in Figure 3.9(a). Thus, the highest peak of the image histogram excluding

background and bone values represents the mean intensity of the liver region as shown

in Figure 3.9(b).

 

 

 

 

 
(b) (a) 

Figure 3.9: Computation of Intensity Range of the Liver (a) Abdominal CT Image
(b) Histogram of the Abdominal CT Image

Then, based on the identified peak, an intensity threshold is selected adaptively

by including certain margin within the intensity range of the liver region as shown in

Figure 3.9(b). The intensity threshold is defined by,

Intensity Threshold(T ) = [tmin, tmax] (3.15)

where, tmin and tmax are the two valleys of the liver region and they represent the

minimum and maximum intensity of the liver region. After selecting the intensity

threshold, the abdominal CT image (Figure 3.10(a)) is thresholded to extract the
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pixels in the liver region as given below.

I(x, y) =

1 if tmin ≤ I(x, y) ≤ tmax

0 otherwise
(3.16)

Where, I(x, y) is the intensity value of the pixel at location (x, y). The thresholded

image consists of liver, and other organs having intensity similar to that of liver. The

extracted regions contain small gaps and narrow bridges as shown in Figure 3.10(b).

 

                                            

(a) (b) (c) 

                                            

(d) (e) (f) 

                              

 

Figure 3.10: Liver Segmentation (a) Abdominal CT Image (b) Thresholding (c) Mor-
phological Processing (d) Largest Region Extracted (e) Hole Filling (f) Segmented
Liver

Morphological Processing: In order to preserve the structure of the extracted

regions, the small gaps and narrow bridges are eliminated by applying morphological

opening and closing operators (Gonzalez and Woods 2009) defined by Equation (3.17)

and Equation (3.18), respectively. The effect of morphological processing is shown in

Figure 3.10(c).

I ◦ S = (I 	 S)⊕ S (3.17)
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I • S = (I ⊕ S)	 S (3.18)

Where, I is the threshold image and S is the structuring element. The symbols 	 and

⊕ are morphological dilation and erosion operators, respectively. The morphological

opening operator smooths the contours, breaks narrow isthmuses, and eliminates thin

protrusions in the image, whereas the morphological closing operator fuses narrow

breaks and long thin gulfs, eliminates small holes, and fills gaps in the contours.

Largest Region Extraction: After morphological processing, the organs on the

CT image which have the intensity similar to the liver’s intensity are eliminated by

retaining only the largest connected component as shown in Figure 3.10(d).

Hole Filling: The intensities of liver and tumor are different and thus the pixels

of the tumor do not appear in the extracted liver region. Hence, the missed pixels

create hole in the liver. In order to extract the complete region of the liver, the hole

is filled by pixels with value 1 as shown in Figure 3.10(e). Finally, the resultant image

is complemented and multiplied by the original abdominal CT image to obtain the

segmented liver as shown in Figure 3.10(f).

Liver Tumor Segmentation

Before segmenting the liver tumor, a test is carried out to determine whether seg-

mented liver is normal or abnormal based on the histogram analysis (Castro et al.

2007). If the liver is normal, then the histogram of the liver segmented CT image

consists of two peaks corresponding to the liver and background, respectively. Other-

wise, the liver segmented CT image consists of three peaks corresponding to the liver,

tumor, and background, respectively. If the liver is normal, further processing of CT

image is not required. Otherwise, the liver tumor is segmented on the abnormal liver

using the proposed automatic region growing algorithm. The proposed algorithm

combines the MFCM clustering algorithm with the region growing algorithm to au-

tomatically determine the seed point and threshold value as shown in Figure 3.11.

Based on the seed point and a threshold value, certain modifications are made to the

membership criteria of the conventional region growing algorithm.

First, the MFCM clustering algorithm (as discussed in Section 3.1) is applied to

the abdominal CT image to partition the image into three clusters (c = 3), namely
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Figure 3.11: Automation of Region Growing Algorithm

tumor, liver and background. Next, the seed point and threshold value needed by the

region growing algorithm are determined based on the tumor cluster. The value of the

tumor cluster center is taken as the threshold (β) and the pixel in the tumor cluster

with the gray level lower than β is taken as the seed point. Before proceeding with

region growing, the gradient of the image is computed based on the sobel operator

(Gonzalez and Woods 2009) to locate edges in the image and it is given by,

Gx = (z7 + 2z8 + z9)− (z1 + 2z2 + z3) (3.19)

Gy = (z3 + 2z6 + z9)− (z1 + 2z4 + z7) (3.20)

where, |Gx +Gy| gives the gradient of the image I(x, y) at location (x, y). For a 3× 3

region around pixel (x, y), z1, z3, z7 and z9 are diagonal neighbors, z4 and z6 are the

horizontal neighbors, and z2 and z8 are the vertical neighbors.

After finding the gradient, the region growing begins with the initial seed point

and includes all neighborhood pixels satisfying the membership criteria of the region.

Once, the pixel is included in the region, it becomes the new seed point for growing

the region and this procedure is repeated until the boundary of the region is reached.

The membership criteria for including a pixel in the region are based on the following

intensity and gradient properties of the region: 1) The intensity values inside the

tumor region are lower than the intensity values on the liver. 2) Edges of the tumor

have gradient values higher than those in the middle of the tumor region.

Since, the initial seed pixel is chosen close to the center of the region, the gradient

is low for the first few sets of pixels encountered during region growing. As the region

growing approaches the edge, the gradient gets large. Since, edges found by the

gradient are thick, pixels on the edges are included based on mean (µ) and standard

deviation (σ) of the region. When a point of high gradient is reached, a check is

made to determine whether the pixel’s intensity is lower than the (µ − σ). If the
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pixel satisfies this condition, it is included in the region. Based on these concepts,

the membership criteria for including the pixel in the region are given as follows:

• If the pixel has low gradient (less than 95% of the equalized histogram) and its

gray value is less than or equal to the threshold, β.

• If the pixel has high gradient (more than or equal to 95% of the equalized

histogram) and the gray level of the pixel is not more than (µ− σ).

The complete steps of the automatic region growing algorithm are given in Algo-

rithm 3.2 (Automatic Region Growing).

Algorithm 3.2 Automatic Region Growing

Input: CT image, Tumor cluster, Tumor cluster center.
Output: CT image with segmented liver tumor
1: Take the value of tumor cluster as a threshold value, β.
2: Examine all the pixels in the tumor cluster and set the pixel with grey level value

lower than β as the initial seed location, p(x, y).
3: Calculate the gradient of the image using sobel operator.
4: Choose N ×N neighborhood for the seed pixel.
5: Calculate the mean (µ), and the standard deviation(σ) of the region.

µ =

∑n
i=1 ki

n
(3.21)

σ =

√∑n
i=1(ki − µ)2

n− 1
(3.22)

Where, n is the total number of pixels in the region and ki is the gray value of
the ith pixel.

6: Compare each neighbor pixel with the seed pixel. Add a pixel to the region if it
is satisfies either one of the two criteria:

• If the gradient of the pixel is less than 95% of the equalized histogram and
its gray value is less than or equal to the threshold, β.

• If the gradient of the pixel is more than or equal to 95% of the equalized
histogram and the gray level of the pixel is not more than (µ− σ).

7: Set the neighbor pixel, which is added to the region, as the new seed location.
8: Repeat Steps 4 to 7 until the region cannot be grown.
9: Change the grey level of the pixel that cannot be grown with the value of 255 to

mark the boundary of the tumor.
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3.2.4 Experimental Results and Discussion

The performance of the proposed liver tumor segmentation technique is evaluated

by carrying out the following experiments on non-contrast-enhanced abdominal CT

images of 487 patients (female: 235, male: 252). Among 487 patients, 247 patients

were diagnosed with benign tumor and 240 patients with malignant tumor based on

histopathological analysis of biopsy samples. The detailed description of the liver

tumor dataset is already given in Section 2.8.

Rotation Correction Results

In order to test the effectiveness of the rotation correction technique, some of the

images in the dataset are rotated by 10o, 15o, 20o, and 25o in the clockwise and

anti-clockwise directions. In the preprocessing stage, the misaligned images are cor-

rected using inverse mapping and bicubic interpolation. Table 3.7 shows the differ-

ence between the original CT images (images in a standard position) and the rotation

corrected CT images based on three interpolation methods: bicubic (Keys 1981), bi-

linear, and nearest neighbor (Gonzalez 2009). The difference between the original and

the rotation corrected liver image is measured based on the relative error (Equation

(3.7)). The nearest neighbor interpolation assigns the intensity of the closest pixel to

Table 3.7: Comparison of Interpolation Methods

Rotation Angle Average Relative Error (%)

Nearest Neighbor Bilinear Bicubic

−100 1.25 0.84 0.00

−150 2.48 0.78 0.00

−200 3.67 1.46 0.00

−250 4.32 1.23 0.00

100 1.21 0.62 0.00

150 2.33 0.73 0.00

200 3.10 1.28 0.02

250 4.28 2.05 0.02
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the new pixel and it shows least effectiveness in rotation correction with relative error

higher than 2% for most of the rotation angles. The bilinear interpolation uses the 4

neighbors to estimate the intensity of a pixel and it shows the moderate effectiveness,

whereas with the bicubic interpolation original image and rotation corrected image

are considered similar (Relativeerror = 0.00%) for most of the rotation angles, since

it considerers 16 neighbors to estimate the intensity of a pixel. Hence, the bicubic

interpolation is used in the proposed rotation correction technique.

Segmentation Results

After preprocessing, the liver tumor is segmented on the non-contrast-enhanced ab-

dominal CT image using the proposed segmentation technique based on automatic

region growing. The proposed segmentation technique was able to perfectly distin-

guish between normal and abnormal slices of the liver in all the cases. After identifying

the abnormal slice, the tumor region is extracted. Figure 3.12 shows the segmenta-

tion results of some of the liver tumor cases in the dataset. Figure 3.12(a) shows the

original abdominal CT image of the liver tumor.
 

 
(b) (c) (d) (e) (f)(a) 

Figure 3.12: Results of Liver Tumor Segmentation on the CT Image (a) Abdominal
CT Image (b) Morphological Processing (c) Largest Area Component (d) Hole filling
(e) Segmented Liver (f) Segmented Liver Tumor

79



Pixel Intensities in the liver region are extracted by thresholding and morpholog-

ical processing as shown in Figure 3.12(b). The other organs which are extracted

along with the liver are eliminated by retaining only the largest region as shown in

Figure 3.12(c). Next, the hole in the liver region is filled by the pixels with a value

1 in order to obtain the complete liver region as shown in Figure 3.12(d). Then, the

image is complemented and multiplied with the original image to obtain segmented

liver as shown in Figure 3.12(e). Next, the automatic region growing algorithm is

applied on the segmented liver to obtain the tumor region as shown in Figure 3.12(f).

The results obtained by the proposed method are evaluated by comparing with

manual segmentation results. The manual segmentation of liver tumor is carried out

by two experienced (R1 and R2) and two inexperienced (R3 and R4) radiologists. The

purpose of comparison of the segmentation results with inexperienced radiologists is

to show that the accuracy of segmentation depends on radiologist’s experience. In

order to quantify the segmentation results, a set of three VALMET measures (Gerig

et al. 2001) is used: Volume Overlap (VO), Hausdorff Distance (HD), and Symmetric

Mean Absolute Surface Distance (SMD). The segmentation was performed on all

487 cases but for simplicity only 10 cases are shown in the following tables. The

Table 3.8: Comparison of Liver Tumor Segmentation Results of Expert Radiologists

Cases R1 vs.R2

VO(%) HD(mm) SMD(mm)

1 99.89 0.48 0.15

2 100 0 0

3 100 0 0

4 100 0 0

5 100 0 0

6 99.65 0.82 0.24

7 100 0 0

8 99.81 0.58 0.20

9 100 0 0

10 100 0 0

Mean 99.76 0.006 0.002
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inter-rater variability is shown in Table 3.8. The mean values of VALMET measures

are computed by taking average over all 487 cases. The segmentation results of

experienced radiologists R1 and R2 are almost similar due to their expertise in the

segmentation of tumor. The radiologists R1 and R2 have several years of experience in

interpreting liver CT images and hence their results are similar (V O = 100%, HD =

0 mm,SMD = 0 mm) in most of the cases. However, R1 and R2 have showed

small differences (e.g., case 1, V O = 99.89%, HD = 0.48 mm,SMD = 0.15 mm) in

segmenting the tumor when the boundary of the tumor was not clear on the image.

Further, the results of R1 are compared with inexperienced radiologists R3 and

R4 as shown in Table 3.9. It can be observed that there is variation in the man-

ual segmentation results, since the segmentation depends on the experience of the

radiologist. The segmentation results of R3 showed overall mean values of V O =

70.83%, HD = 14.29 mm,SMD = 1.66 mm and the segmentation results of R4

showed overall mean values of V O = 68.92%, HD = 15.73 mm,SMD = 1.61 mm.

Table 3.9: Comparison of Liver Tumor Segmentation Results of Experienced (R1)
and Inexperienced Radiologists

Cases R1 vs. R3 R1 vs. R4

VO(%) HD(mm) SMD(mm) VO(%) HD(mm) SMD(mm)

1 76.52 11.45 1.74 74.18 10.19 1.71

2 76.38 9.40 1.51 78.26 9.21 1.47

3 81.94 11.82 1.40 82.47 10.38 1.35

4 70.51 8.43 1.86 67.51 9.10 1.80

5 68.73 8.02 1.58 65.44 7.83 1.49

6 54.17 17.24 1.63 58.65 13.46 1.60

7 80.64 10.02 1.42 73.49 9.82 1.40

8 60.02 14.03 1.89 61.73 13.20 1.93

9 58.46 13.17 1.46 55.28 15.58 1.74

10 71.45 10.39 1.45 70.89 11.64 1.52

Mean 70.83 14.29 1.66 68.92 15.73 1.61
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Table 3.10 shows the comparison of the liver tumor segmentation results of R2

with inexperienced radiologists R3 and R4. The segmentation results of R3 showed

overall mean values of V O = 73.45%, HD = 11.32 mm,SMD = 1.52 mm and the

segmentation results of R4 showed overall mean values of V O = 71.37%, HD =

13.02 mm,SMD = 1.57 mm. This shows that segmentation results of inexperienced

radiologists did not match well with the expert radiologist’s results.

Table 3.10: Comparison of Liver Tumor Segmentation Results of Experienced (R2)
and Inexperienced Radiologists

Cases R2 vs. R3 R2 vs. R4

VO(%) HD(mm) SMD(mm) VO(%) HD(mm) SMD(mm)

1 79.83 10.48 1.68 80.02 10.16 1.64

2 76.38 9.40 1.51 78.26 9.21 1.47

3 81.94 11.82 1.40 82.47 10.38 1.35

4 70.51 8.43 1.86 67.51 9.10 1.80

5 68.73 8.02 1.58 65.44 7.83 1.49

6 60.89 15.51 1.60 61.73 15.08 1.63

7 80.64 10.02 1.42 73.49 9.82 1.40

8 64.58 12.45 1.78 68.08 11.43 1.62

9 58.46 13.17 1.46 55.28 15.58 1.74

10 71.45 10.39 1.45 70.89 11.64 1.52

Mean 73.45 11.32 1.52 71.37 13.02 1.57

The quantitative results obtained by comparing the proposed automatic segmen-

tation (AS) with the manual segmentation performed by expert radiologists R1 and

R2 are provided in Table 3.11. The mean values of VALMET measures shown in

Table 3.11 are computed by taking average over all 487 cases. The results of au-

tomatic segmentation provide a good match with the expert radiologists’ results.

For the overlap measure, all values are greater than 94% and the distance based

evaluations also show good performance in all the cases. The proposed liver tu-

mor segmentation technique showed overall mean values of V O = 96.89%, HD =

1.52 mm,SMD = 0.60 mm, when evaluated with the R1’s segmentation results and
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V O = 96.95%, HD = 1.46 mm,SMD = 0.57 mm, when evaluated with the R2’s

segmentation results.

Table 3.11: Comparison of Automatic and Manual Segmentations of Liver Tumor

Cases AS vs. R1 AS vs. R2

VO(%) HD(mm) SMD(mm) VO(%) HD(mm) SMD(mm)

1 95.71 1.83 0.78 95.80 1.80 0.73

2 97.38 1.43 0.54 97.38 1.43 0.54

3 94.97 2.10 0.93 94.97 2.10 0.93

4 98.63 1.35 0.41 98.63 1.35 0.41

5 96.72 1.58 0.67 96.72 1.58 0.67

6 94.16 2.23 1.14 94.20 2.22 1.10

7 95.04 1.98 0.88 95.04 1.98 0.88

8 98.28 1.40 0.48 98.35 1.38 0.44

9 96.57 1.62 0.70 96.57 1.62 0.70

10 95.43 1.91 0.85 95.43 1.91 0.85

Mean 96.89 1.52 0.60 96.95 1.46 0.57

Time Complexity

The proposed automatic region growing algorithm for liver tumor segmentation com-

bines MFCM clustering and region growing algorithm. The time complexity of MFCM

clustering algorithm is O(ICG) as already discussed in Section 3.1.4. The region

growing algorithm begins with initial seed point and includes the neighboring pixels

satisfying the membership criteria into the region. The included pixels become new

seed pixels and the procedure is repeated. Thus, the basic operation of the region

growing algorithm is to check whether the pixel satisfies the membership criteria and

this operation takes a constant amount of time. If the neighborhood size is H ×W ,

then the membership criteria are tested for each of the pixels in H×W neighborhood.

This procedure is repeated for M pixels in the region, and hence the time complexity
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of the automatic region growing algorithm is given by,

T =
M∑
i=1

H∑
j=1

W∑
k=1

1 (3.23)

The Equation (3.23) is solved by applying the summation rules as follows.

T =
M∑
i=1

H∑
j=1

W − 1 + 1

=
M∑
i=1

(H − 1 + 1)(W )

= (M − 1 + 1)(HW )

= MHW

(3.24)

Hence, the time complexity of the automatic region growing algorithm is O(ICG) +

O(MHW ) and the algorithm takes about 2.73 sec to segment the liver tumor on

abdominal CT image.

Comparison with the Existing Methods

Table 3.12 shows the performance comparison of the proposed automatic region grow-

ing algorithm with the existing region growing algorithms for tumor segmentation.

Table 3.12: Performance Comparison of Region Growing Algorithms

Region Growing Methods Time Complexity Time (sec)

Venkatachalam’s Method O(TMHW ) 720

Poonguzhali’s Method O(MHW ) +O(FN) +O(IN) 14.03

Wu’s Method O(MHW ) +O(FN) +O(N2) 53.68

Proposed Method O(ICG) +O(MHW ) 2.73

• Venkatachalam’s Method: semi-automatic region growing proposed by Venkat-

achalam et al. (2004).
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• Poonguzhali’s Method: Automatic region growing proposed by Poonguzhali and

Ravindran (2006).

• Wu’s Method: Automatic region growing proposed by Wu et al. (2009).

Where, T: Number of iterations required to obtain correct segmentation results, F:

Number of features extracted, N: Number of pixels in the image, and I: Number of

iterations required to select the threshold.

The Venkatachalam’s method for liver tumor segmentation is based on the semi-

automatic region growing algorithm and requires the manual input of seed point and

threshold; thus, the method is computationally expensive (720 sec). The Wu’s and

Poonguzhali’s methods automate the region growing algorithm based on the texture

features, but do not show much improvement in the computational cost when com-

pared to our method. The Wu’s method selects the seed point based on texture

features and performs two scans over the image to select the threshold, and for every

threshold value the region growing is performed to check its effectiveness in segmen-

tation; hence this algorithm has poor performance (53.68 sec). The Poonguzhali’s

method also selects the seed point based on texture features, but the threshold is

selected based on iterative thresholding of the image and hence consumes more time

(14.03 sec). The process of texture feature extraction in both the methods is much

more complex than simple intensity features used in the proposed method. The pro-

posed automatic region growing method is efficient (2.73 sec) when compared to other

methods. This is because the proposed method selects the seed point and threshold

based on the MFCM clustering algorithm, which is computationally efficient and

performs clustering based on pixel intensities rather than texture features.

3.3 Summary

This chapter discussed the proposed automatic, effective and efficient brain and liver

tumor detection techniques based on MFCM clustering and automatic region grow-

ing algorithms, respectively. The experimental results demonstrated that the tumor

detection results obtained by the proposed techniques are close to the expert radiol-

ogists’ results. The inter-observer agreement for experienced radiologists is 99.81%

and 99.76% in the segmentation of brain and liver tumor, respectively; these values

define the upper limit of segmentation accuracy. On the average, the automatically
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segmented brain and liver tumors have more than 98% and 96% overlap with the

segmentation results of the expert radiologists, respectively. This indicates that the

results of the proposed segmentation technique are close to the upper limit. The

proposed tumor detection techniques are also more efficient when compared to the

existing methods. The proposed brain and liver tumor detection techniques take

about 1.12 and 2.73 sec to detect the tumor on MRI and CT images, respectively.

Hence, these techniques can assist the radiologist to accurately detect the tumor on

medical images in less amount of time.
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Chapter 4

Classification of Tumor on Medical

Images

The proposed CAD system consists of tumor detection, classification, CBIR and 3D

reconstruction methods for effective and efficient analysis of brain and liver tumors.

The tumor classification determines the type of tumor as benign or malignant based

on its features. The benign and malignant tumors differ by clinical behavior, prognosis

and therapy; hence accurate classification of brain/liver tumors into benign or malig-

nant category is necessary for optimal patient treatment. Therefore, in this chapter,

an effective and efficient classification scheme for characterization of brain/liver tumor

as benign or malignant is presented. Precisely, an attempt has been made to fulfill the

second objective of the research work and to overcome the limitations of the existing

tumor classification methods as discussed in Section 2.5. The research contributions

towards developing an effective and efficient brain/liver tumor classification scheme

are listed below:

• Tumor analysis by extracting significant features of the tumor such as shape,

texture, and boundary characteristics.

• Selecting the most discriminating features by a two-level feature selection tech-

nique consisting of Information Gain (IG)-based feature ranking and Indepen-

dent Component Analysis (ICA)-based feature selection methods.

• Improving the accuracy of tumor classification by developing an ensemble clas-

sifier consisting of heterogeneous classifiers, namely Support Vector Machine

(SVM), Artificial Neural Network (ANN) and k-Nearest Neighbor (k-NN).
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The details of the proposed tumor classification scheme incorporating the above

contributions in identifying the type of brain/liver tumor as benign or malignant are

given in the following sections.

4.1 Proposed Methodology

The proposed CAD system for characterization of brain/liver tumor contains various

phases of the pattern recognition such as segmentation, feature extraction, feature

selection and classification as shown in Figure 4.1.
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Figure 4.1: Framework of the Proposed CAD System for Characterization of Brain
and Liver Tumors

In the first step, the input medical image is preprocessed to enhance its qual-

ity, and then the image is segmented to detect the tumor region using the proposed

segmentation methods as discussed in Chapter 3. Next, the segmented tumor is rep-

resented by the feature vector consisting of various features of the tumor such as

texture, shape and boundary characteristics. Then, the most discriminating features

are derived from the high-dimensional feature vector using a two-level feature selec-

tion technique consisting IG-based feature ranking and ICA-based feature selection
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methods. Finally, the selected features are fed to the ensemble classifier, which com-

bines the output of SVM, ANN and k-NN classifiers to determine the class of the

given tumor as benign or malignant.

4.1.1 Preprocessing

Prior to segmentation, the quality of MRI/CT images is enhanced by image denois-

ing based on the median and Laplacian filters, image contrast enhancement using

histogram equalization, and rotation correction of misaligned image using the pro-

posed rotation correction technique. The T1-weighted and T2-weighted MRI images

of the brain are co-registered using the FLIRT registration tool (Jenkinson and Smith

2001) as discussed in Chapter 3.

4.1.2 Segmentation

After preprocessing, the input image is segmented in order to extract the tumor

region for further analysis. If the input image is the MRI image of the brain, then the

image is segmented using the proposed brain tumor segmentation technique based on

Modified Fuzzy C-Means (MFCM) clustering. If the input image is the abdominal

CT image of the liver, then the image is segmented using the proposed liver tumor

segmentation technique based on automatic region growing. The brain and liver

tumor segmentation techniques are already discussed in Chapter 3.

4.1.3 Feature Extraction

The feature extraction step is used to describe characteristics of the segmented tumor

by extracting its various features. In the present research, both 2D and 3D features

are extracted from the tumor in order to evaluate their effectiveness in differentiating

between benign and malignant tumors. Wavelets offer an inherent multi-resolution

analysis that can help in representing the discriminating features at various scales.

Hence, the tumor image is analyzed at three levels by decomposing the tumor im-

age into four sub-bands (approximate, vertical, horizontal, and diagonal) using Haar

wavelet. A set of 2D and 3D features such as shape, texture, and boundary character-

istics are extracted from approximation and detail coefficients in each level of wavelet

decomposition. Given a set of slices, the slice containing the largest cross-sectional
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area of the tumor is chosen as a representative slice of the tumor, since it contains

the maximum possible information of the tumor.

In case of brain tumor analysis, a representative slice is selected from both T1-

weighted post-contrast and T2-weighted MRI images of the brain, and in case of liver

tumor analysis, a representative slice is chosen from a set of non-contrast-enhanced

abdominal CT images of the liver. Instead of processing all slices, a set of 2D features

is extracted from a single representative slice in order to have a faster analysis of

the tumor. 3D features are extracted from the 3D model of the tumor, which is

developed by applying the marching cubes algorithm (Lorensen and Cline 1987) on

a set of slices containing the tumor. The following set of features is extracted from

the representative slice and 3D model of the tumor.

Shape Features

Benign tumors have more circular and regular shape when compared to malignant

tumors, and hence tumor shape is one of the important features for discriminating

between benign and malignant tumors. In the present work, tumor geometric param-

eters such as circularity, eccentricity, radial length and compactness are measured in

order to identify the shape of the tumor (Mingqiang et al. 2008; Kassimi and El

beqqali 2011) and the details are given below.

◦ Circularity: It is a gross shape descriptor measured using the area (A) and

perimeter (P ) of the tumor as given by,

Circularity =
4πA

P 2
(4.1)

◦ Radial Length: It is computed as the Euclidian distance (di) from the tumor

centre (xc, yc) to each of the boundary coordinates (xi, yi); the boundary is

followed clockwise by 1o increment as shown in Figure 4.2.

Radial Length =
1

N

360∑
i=1

di, (4.2)

Where,

di =
√

(xi − xc)2 + (yi − yc)2 (4.3)
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Figure 4.2: Computation of Radial Length

◦ Eccentricity: It is the ratio of the distance between the two foci (f1 and f2) to

the length of the major axis (M).

Eccentricity =
distance(f1, f2)

length(M)
. (4.4)

◦ Compactness: It determines the roundness of the tumor by measuring the

amount of tumor outside the circular region, and it is computed using the

perimeter (P ) and area (A) of the tumor.

Compactness =
P 2

A
(4.5)

Texture Features

Tissues have consistent and homogeneous texture along with the series of slices, and

therefore the texture information can be used for tumor characterization. In the

present research work, texture features are extracted using the first- and second-

order statistics of the tumor region.

First-Order Statistics (FOS): It represents the texture based on the intensity level

distribution in the image. In the experiment, five FOS-based texture features (average

gray level, standard deviation, entropy, skewness, and kurtosis) are calculated from

the histogram of the segmented tumor using the following equations (Akilandeswari

et al. 2012):

Average Gray Level: avg =
∑

g

gH(g) (4.6)
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Standard Deviation: std =

√∑
g

(g − avg)2H(g) (4.7)

Entropy : ent = −
∑

g

H(g) ln(H(g)) (4.8)

Skewness : skw =
1

std3

∑
g

(g − avg)3H(g) (4.9)

Kurtosis : kur =
1

std4

∑
g

(g − avg)4H(g)− 3 (4.10)

Where, g is the gray level value in the image and H(g) is the number of the pixels in

the image having gray level equal to g.

Second-Order Statistics (SOS): It represents the image texture based on the rela-

tive positions of the various intensity levels in the image. The texture characteris-

tics which correspond to SOS are derived from the gray level co-occurrence matrix

(GLCM) (Haralick et al. 1973). The elements of the GLCM represent the values

of the probability density function Pij, which counts the number of occurrences of

pixel pairs having intensity values (i, j) and separated by a distance d along the di-

rection θ. In case of the 2D image, four co-occurrence matrices are computed for

each sub-band of wavelet decomposition by considering the inter-pixel distance of

one, and four angular directions: 0o, 45o, 90o, and 135o. In case of the 3D image, thir-

teen co-occurrence matrices (Showalter et al. 2005) are computed for each sub-band

of wavelet decomposition by considering the inter-voxel distance of one, and thirteen

angular directions: (0o, 0o), (45o, 0o), (90o, 0o), (135o, 0o), (0o, 45o), (0o, 90o), (0o, 135o),

(90o, 45o), (90o, 135o), (45o, 45o), (45o, 135o), (135o, 45o), (135o, 135o). Seven texture fea-

tures corresponding to contrast, correlation, variance, entropy, homogeneity, cluster

tendency, and inverse difference moment are extracted from each GLCM to represent

the texture of the tumor using the following equations.

Contrast : cont =

Ng∑
n=0

n2

{
Ng∑
i=1

Ng∑
j=1

Pij|i− j| = n

}
(4.11)

Correlation : corr =

∑
i

∑
j(ijPij)− µ2

σ2
(4.12)
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V ariance : var =
∑

i

∑
j

(ijPij)− µ2 (4.13)

Entropy : ent =
∑

i

∑
j

Pij lnPij (4.14)

Homogeneity : hmg =
∑

i

∑
j

Pij

1 + |i− j|
(4.15)

Cluster Tendency : ctd =
∑

i

∑
j

(i+ j − 2µ)Pij (4.16)

Inverse Difference Moment : idm =
∑

i

∑
j

Pij

1 + (i− j)2
(4.17)

Where, Pij is the (i, j)th element of GLCM, µ and σ are the mean and standard

deviation of the GLCM, respectively, and Ng is the number of gray levels in the

image. The texture information on each sub-band is represented by the average of

each feature computed over different angles.

Wavelet Energy Features

The wavelet-based feature called wavelet energy reflects the energy distribution in

different directions at different resolutions of the image, and thus it can effectively

represent the tumor region characteristics. The wavelet energy is computed for each

sub-band of the wavelet decomposed image (Jafari-Khouzani et al. 2004) and it is

given by,

E =
1

M ×N

M∑
i=1

N∑
j=1

|Wij| (4.18)

where, Wij is the wavelet coefficient and M × N is the size of the sub-band.

Boundary Features

The brain and liver tumors have distinct boundary characteristics (Wu et al. 2012);

a typical benign tumor has a round and smooth boundary, whereas malignant tu-

mor has a speculated and rough boundary as shown in Figure 4.3. In the present

research, border irregularity of the tumor is described using fractal dimension (FD)

(Iftekharuddin et al. 2003; Wu et al. 2010) as it helps in describing the geomet-

ric complexity of the objects, which do not fit into the Euclidian space and exhibit
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Figure 4.3: Tumor Boundary Characteristics: (a) Benign Tumor (b) Malignant Tumor

self-similarity at multiple scales. The Hausdorff-Besicovitch definition of FD is given

below:

DH = lim
r→0

log(N(r))

log (1
r
)

(4.19)

where, N(r) is the number of self similar pieces and 1/r is the magnification factor.

The FD is estimated using the box counting method (Mandelbrot 1983), which parti-

tions the image into boxes of equal size (r), and then counts the number of boxes(N)

that contain at least one pixel of the region of interest (ROI); this process is repeated

with different box sizes. The FD of the tumor is obtained from the slope of the best

fitting straight line in the graph representing log(N(r)) versus log(1/r) as shown in

Figure 4.4.
 

 

Figure 4.4: Fractal Dimension Analysis of Tumor
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Table 4.1 shows the number of features extracted in each feature category from the

representative slice of brain/liver tumor. In case of brain tumor analysis, a feature

vector is formed by combining all features extracted from the representative slice

of T1-weighted post-contrast and T2-weighted MRI images of the tumor. In case

of liver tumor analysis, a feature vector is formed by extracting features from the

representative slice of the non-contrast-enhanced abdominal CT images of the liver.

Table 4.1: Features of the Brain/Liver Tumor

Feature Category No. of Features Extracted

Shape 48

Texture (FOS) 60

Texture (GLCM) 84

Wavelet Energy 12

Boundary 12

4.1.4 Two-Level Feature Selection

In order to improve the classification accuracy and efficiency, an optimal feature

subset is selected from the original feature vector by applying a two-level feature

selection technique consisting of feature ranking and feature selection methods. The

feature ranking method computes a rank of each feature based on its discriminating

power, and then top ranked features are retained to form a feature vector containing

the most relevant features. On the contrary, the feature selection method focuses

on selecting the non-redundant features of the feature set. Thus, the combination

of feature ranking and feature selection results in the least number of features by

eliminating both irrelevant and redundant features. This combination also improves

the classification accuracy when compared to applying the feature selection method

alone on the feature vector.

Feature Ranking Using Information Gain

In the first level of feature election, feature ranking is performed using the Information

Gain (IG) method that selects a subset of features on the basis of the information
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contribution related to the class variable. The information gain IG(X|Y ) of a given

attribute Y with respect to the class attribute X quantifies the change in information

entropy when the value of Y is revealed (Shang and Barnes 2010). The information

gain of an attribute is computed using the following equation.

IG(X|Y ) = H(X)−H(X|Y ) (4.20)

The information entropy H(X) measures the uncertainty about the value of X, and

it is computed by,

H(X) = −
∑

i

p(xi) log2 p(xi) (4.21)

where, p(xi) is the prior probability of the ith value of X. The conditional information

entropy H(X|Y ) measures the value of X when the value of Y is known.

H(X|Y ) = −
∑

j

p(yj)
∑

i

(p(xi|yj) log2 p(xi|yj)) (4.22)

The features that attain the highest IG value get the highest rank; thus, the

features are arranged in the descending order according to their rank. A subset of

M features is selected from the feature vector containing N features by choosing the

top M features in the rank list. Based on the experiments, M is set to a value

which results in the highest classification accuracy. However, redundant features may

still exist in the selected features. Hence in the next level, statistically independent

features are generated using ICA technique.

Feature Selection Using Independent Component Analysis

The Independent Component Analysis (ICA) transforms the original feature space

into a set of statistically independent components, and thereby helps in finding hidden

structure of the data. The basic ICA model can be expressed as follows (Hyvärinen

1999).

x = As (4.23)

Where, x = (x1, ..., xm) is the vector of observed features, which are assumed to be

a linear combination of n independent features s = (s1, .., sn) and A is the mixing

matrix of dimension m × n; Both A and s are unknown. The goal of ICA is to

estimate independent components (ICs) from their mixture. In the present work, we
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have adopted the FastICA algorithm proposed by Hyvärinen (1999) for estimating

independent features.

The initial step of FastICA algorithm is whitening, where the feature vector x

is linearly transformed to a vector z = Ux such that its components are mutually

uncorrelated and have unit variance. This linear transformation is accomplished by

Principal Component Analysis (PCA) based on the eigenvalue decomposition of the

covariance matrix E{xxT} as given below:

E{xxT} = EDET (4.24)

where, E is the orthogonal matrix of eigenvectors of E{xxT} and D is the diagonal

matrix of its eigenvalues, D = diag(d1, ..., dn). The linear transformation matrix U

is computed using the following equation.

U = ED−1/2ET (4.25)

After the linear transformation, the feature vector z is represented as:

z = Ux = UAs = Bs (4.26)

where, the matrix B = UA is orthogonal. In the next step, independent components

are estimated from the feature vector z by finding matrix W such that:

s = Wz (4.27)

If W = B−1, then the recovered features are exactly the original features s. W

is estimated from the data such that the statistical independence of the estimated

features is maximized using kurtosis as the non-Gaussian criterion. Thereby, feature

vectors representing the tumor characteristics are projected onto independent com-

ponents. Finally, the most important ICs are selected using the FS ICA algorithm

proposed by Prasad et al. (2008). Since, the absolute value of kurtosis indicates a

degree of independence, the FS ICA algorithm orders the ICs according to the ab-

solute value of kurtosis and retains those components that have the largest absolute

value of kurtosis.
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4.1.5 Ensemble Classifier

Although the SVM has been proposed by Vapnik (2005) to provide a good general-

ization performance, the classification result of the practically implemented SVM has

been often far from the theoretically expected level because their implementations

are based on approximated algorithms (Kim et al. 2003). Thus, to overcome the

limited generalization performance of a single classifier, we use the ensemble classifier

which combines the decision of multiple classifiers to predict the class of the given

brain/liver tumor as benign or malignant as shown in Figure 4.5.

SVM Classifier 

ANN Classifier 

k-NN Classifier 

SVM Decision 

ANN Decision 

k-NN Decision 

Ensemble

Final Decision Classifier 
Fusion Rule

 

Figure 4.5: Framework of Ensemble Classifier

The fusion of decision from multiple classifiers avoids a biased decision, and hence

an ensemble classifier not only improves the classification accuracy but also reduces

the chance of over training. It has been shown that the strength of an ensemble

is related to the diversity between the base classifiers (Bian and Wang 2007). Ho-

mogeneous ensembles built with classifiers that are generated by a single learning

algorithm are highly correlated. Hence in this research, the heterogeneous ensemble

is built by integrating following three different supervised classifiers: SVM, ANN and

k-NN, which are trained with reduced feature vector to distinguish between benign

and malignant tumors. In order to provide the ensemble decision on the tumor type,

the class decision provided by SVM, ANN and k-NN are integrated using the majority

voting rule (Kittler et al. 1998), and the input tumor is assigned to the class that

receives the highest number of votes from the classifiers. The majority voting rule is

defined as follows:
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Assign sample s to the class j if

R∑
i=1

4ji =
M

max
k=1

R∑
i=1

4ki (4.28)

4ji =

1 if Ci gives the class j

0 otherwise
(4.29)

Where, Ci is the ith classifier, M and R represent the number of classes and classifiers,

respectively. The details of the SVM, ANN and k-NN classifiers used in the ensemble

classifier are given below.

Support Vector Machine: SVM is a supervised learning machine for binary clas-

sification problems. Given a training data set {xi, yi}Ni=1, where xi ∈ Rd is a feature

vector and d the dimension of the input feature vector and yi ∈ {−1,+1} is a class

label, SVM seeks to define an optimal separating hyper plane which generates a max-

imum margin between two categories of data. By finding the maximum margin, SVM

minimizes the misclassification probability of new cases (Vapnik 2005). SVM uses a

kernel function to map the data from its original dimension to the higher dimension

so that data vectors are linearly separable in the mapped dimension. In the present

work, Radial Basis Function (RBF) is chosen as a kernel function and the parameter

values of the SVM such as regularization parameter C and kernel width s are selected

by trial and error procedure.

Artificial Neural Network: ANN consists of a set of interconnected neurons to

map the input features to the output. A three layer feed forward neural network

(Haykin 2009) is implemented with n input, h hidden and 1 output neuron indicating

the characteristic of the brain/liver tumor as benign or malignant; values of n and h

are determined empirically. The learning of the ANN is supervised and the weights

are adjusted by the back propagation procedure with the adaptive learning rate and

momentum to obtain a desired input-output relationship. The log-sigmoid and tan-

sigmoid activation functions are used for the hidden and output layers, respectively.

k-Nearest Neighbor: The principle of k-NN classifier is based on the intuitive

concept that data instances of the same class should be closer in the feature space.
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Thus, given an input feature vector X of unknown class, it determines the k closest

training vectors according to the similarity measure, such as Euclidian distance; then

vector X is assigned to the class to which the majority of k nearest neighbors belong

(Song et al. 2007). Based on the experiments, we set k to a value that results in the

least number of tumor misclassifications.

4.2 Experimental Results and Discussion

In order to test the performance and also to tune the parameters of the classifiers

for tissue characterization of brain/liver tumor, the Leave-One-Out (LOO) method

(Kothavi 1995) is used. Given a dataset of n samples, the LOO-based validation is

performed with n iterations, such that in each iteration the classifier is trained with

n − 1 samples and tested on the remaining one sample. The average accuracy of n

iterations is used to estimate the accuracy of the classifier. Since, the LOO-based val-

idation uses the entire dataset both in the training and testing phases of the classifier,

it provides an unbiased estimation of the performance. The following performance

measures: sensitivity, specificity, accuracy, and Receiver Operating Characteristic

(ROC) curve are used to quantify the performance of classifiers in discriminating

between benign and malignant tumors. The ROC curve demonstrates the sensitiv-

ity and specificity of the classifier’s performance for the continuum of the decision

threshold (Xie et al. 2009). The sensitivity, specificity and accuracy measures are

defined as follows:

Sensitivity =
TP

TP + FN
× 100. (4.30)

Specificity =
TN

TN + FP
× 100. (4.31)

Accuracy =
TP + TN

TP + TN + FP + FN
× 100. (4.32)

Where, TP (True Positive): Number of malignant tumors classified as malignant; FP

(False Positive): Number of benign tumors classified as malignant; TN (True Nega-

tive): Number of benign tumors classified as benign; FN (False Negative): Number

of malignant tumors classified as benign. In the following experiments, we analyze

the performance of the various feature section techniques, and assess the diagnostic

capability of single and ensemble classifiers. Further, the classification performance
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of the radiologists and time taken by the different phases of the proposed brain/liver

tumor classification scheme is demonstrated. The classification results of brain and

liver tumors are given in Section 4.2.1 and Section 4.2.2, respectively.

4.2.1 Brain Tumor Classification Results

The brain tumor classification experiments are carried out on T1-weighted post-

contrast and T2-weighted brain MRI images of 550 patients (female: 246, male:

304). Among 550 patients, 280 patients were diagnosed with benign tumor and 270

patients with malignant tumor based on histopathological analysis of biopsy samples;

the detailed description of the dataset is already given in Section 2.8.

The feature selection is performed on the features extracted from all 550 cases

and the reduced feature set is used to train the individual classifiers of an ensemble

classifier. The LOO-based validation is used to train and test the classifiers. The

LOO-based validation is performed on a set of 550 2D representative MRI images.

Each classifier is trained using 549 MRI images in the set, and then tested on the

remaining single MRI image using the initialized value of the parameter. This is

repeated 550 times such that each image in the set is used once as the test data.

The average accuracy of these 550 iterations is used to estimate the generalization

accuracy of the classifier for the parameter value used, and the parameter value

that results in the highest estimated accuracy is chosen as the optimal value. This

procedure provides unbiased estimation of the classifier performance and also avoids

overtraining of the classifier, because the classifier is trained with features of 549 cases

and the remaining one case used for testing is unknown to the classifier.

Feature Selection and Classification

The ground truth for the classification of tumors on 550 representative MRI images

is obtained based on the histopathological analysis of biopsy samples. In order to

determine the features leading to optimal classification performance, four types of

experiments are performed, based on the use of complete 432-dimensional feature

vector consisting of 2D features, and the reduced feature vectors produced by fea-

ture selection techniques, namely ICA, Principal Component Analysis (PCA), and

Genetic Algorithm (GA). Further, these feature selection techniques are combined

with IG-based feature ranking (IG-ICA, IG-PCA, and IG-GA). For each classifier,
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the classification accuracies obtained by LOO validation based on the selected fea-

tures are shown in Figure 4.6. The reduced feature vectors are estimated based on

                                 Feature Selection              Feature Ranking and Feature Selection 
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Figure 4.6: Brain Tumor Classification Performance of Individual Classifiers versus
Feature Subset Dimensionality: (a) (b) SVM Classifier (c) (d) ANN classifier (e) (f)
k-NN Classifier

the requirement to find small subsets with cardinality 6, 10, 14, 18, 22, 26, and 30.

The feature vector produced by the feature selection technique is used for training

the individual classifiers. Further details about experiments on input feature vector

are presented as follows.
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Complete Feature Vector: In the first experiment, each classifier is trained with

the complete 432-dimensional feature vector containing extracted features from both

T1-weighted post-contrast and T2-weighted MRI images. Classification accuracy of

81.37% is achieved by SVM with its parameters set as: C = 30 and σ = 0.86. ANN

achieved classification accuracy of 75.04% with 28 hidden neurons. Classification

accuracy of 70.46% is achieved by k-NN with the number of neighbors k = 32.

Reduced Feature Vector Using ICA: In the second experiment, feature selec-

tion is carried out for SVM, ANN and k-NN classifiers using ICA and IG-ICA tech-

niques. In SVM classification, highest classification accuracy of 94.11% and 96.42%

is achieved with 18 and 14 features obtained by ICA and IG-ICA techniques, respec-

tively. ANN classifier resulted in the highest classification accuracy of 90.61% with

18 features obtained through ICA and 94.18% with 10 features obtained through IG-

ICA technique. In k-NN, the highest classification accuracy of 83.69% and 89.09% is

obtained using 26 and 18 features selected by ICA and IG-ICA techniques, respec-

tively. The parameters resulting in optimal classification accuracies consist of C = 6

and σ = 0.01 for SVM classifier, 8 hidden neurons for ANN classifier and the number

of neighbors k = 13 for k-NN classifier.

Reduced Feature Vector Using PCA: Experiments similar to ICA method

are also performed with PCA and IG-PCA techniques. PCA transforms the high-

dimensional input feature space into a lower dimensional feature space using eigen-

vectors corresponding to the largest eigenvalues of the covariance matrix (Fukunaga

1990). SVM attained the highest classification accuracy of 90.65% and 92.72% with

22 and 14 features obtained through PCA and IG-PCA techniques, respectively. In

ANN classifier, 26 and 18 features led to the highest classification accuracy of 88.98%

and 93.01% with PCA and IG-PCA techniques, respectively. In k-NN classifier, the

highest classification accuracy of 77.39% is obtained with 30 features selected through

PCA and 82.98% with 22 features selected through IG-PCA technique. The param-

eters resulting in optimal classification accuracies consist of C = 17 and σ = 0.58 for

SVM classifier, 15 hidden neurons for ANN classifier and k = 20 for k-NN classifier.

Reduced Feature Vector Using GA: In the fourth experiment, GA and IG-GA

feature selection methods are used in order to reduce the dimensionality of the original
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feature vector. GA searches for optimal set of features by assessing the search results

based on an evaluation function, which measures fitness of the selected features for the

classification (Raymer et al. 2000). The GA parameters used in the present work are

given in Table 4.2; these parameters are determined empirically. SVM attained the

highest classification accuracy of 85.06% and 89.02% with 22 and 18 features obtained

through GA and IG-GA techniques, respectively. The ANN classifier achieved an

optimal classification accuracy of 84.51% and 89.18% with 30 and 26 features obtained

through GA and IG-GA techniques, respectively. The k-NN classifier resulted in

best classification accuracy of 79.31% with 26 features obtained by GA method and

84.39% with 22 features obtained by IG-GA technique. The parameters resulting in

optimal classification accuracies consist of C = 12 and σ = 0.50 for SVM classifier,

21 hidden neurons for ANN classifier and k = 15 for k-NN classifier. It is observed

Table 4.2: Genetic Algorithm Parameters

Parameter Value

Population Size 50

Selection Technique Roulette Wheel

Cross Over Type Two Point Cross Over

Cross Over Rate 0.9

Mutation Operator Bit Inversion

Mutation Rate 0.001

No. of Generations 500

from the above experiments that SVM, ANN and k-NN classifiers performed more

effectively with the reduced feature vector when compared to the complete feature

vector. Classifiers attained better accuracy with the combination of feature selection

and feature ranking when compared to using the feature selection alone for selecting

a subset of features. This is because feature ranking helps in eliminating irrelevant

features and then the feature selection technique removes redundant features from

relevant features resulting in the feature vector consisting of a small number of highly

distinguishable features. Among IG-ICA, IG-PCA and IG-GA techniques, the IG-

ICA technique resulted in the highest classification accuracy with all the classifiers.
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This is because of the ability of ICA to capture the essential structure of the data by

giving statistically independent features, whereas PCA and GA give a global compact

representation of the data.

In order to evaluate the effectiveness of 3D features, similar experiments are car-

ried out on 550 3D tumor models and here also the highest classification accuracies

are obtained with the IG-ICA technique. Table 4.3 and Table 4.4 shows the clas-

sification performance achieved with 2D and 3D features selected through IG-ICA

technique, respectively. The classification performance is shown in terms of sensitiv-

ity, specificity, accuracy and area under ROC curve (Az). Both 2D and 3D features

obtained almost similar classification accuracies in classifying brain tumor as benign

or malignant. Thus, 2D features are considered in the further experiments. It can

be observed from Table 4.3 and Table 4.4 that accuracies of SVM, ANN and k-NN

are different. This is because each learning model captures different properties of the

data, and thus their error regions differ. SVM, ANN and k-NN attained the highest

classification accuracy of 96.42%, 94.18% and 89.09% with 14, 10 and 18 features,

respectively. Comparison of the classifier performance shows that SVM classifier

achieves the highest classification performance. This is due to the ability of SVM in

finding a separating hyper plane based on the structural risk minimization principle

to maximize the margin between two classes, whereas other classifiers are based on

the minimization of empirical risks.

Table 4.3: Brain Tumor Classification Performance with 2D Features

Classifier Performance No. of Features

6 10 14 18 22 26 30

SVM Sensitivity (%) 94.44 95.55 97.03 96.66 95.92 95.18 94.81

Specificity (%) 86.42 91.78 95.71 95.71 95.35 90.35 90.35

Accuracy (%) 90.36 93.63 96.42 96.16 95.63 92.82 92.51

Az 0.901 0.930 0.961 0.953 0.947 0.926 0.917

ANN Sensitivity (%) 94.81 96.29 95.92 95.18 93.70 92.59 92.22

Specificity (%) 87.50 92.14 90.71 88.57 87.14 83.92 82.85

Accuracy (%) 91.18 94.18 93.27 91.96 90.39 88.28 87.50

Az 0.905 0.940 0.929 0.916 0.898 0.881 0.872

Continued on next page
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Table 4.3 – Continued from previous page

Classifier Performance No. of Features

6 10 14 18 22 26 30

k-NN Sensitivity (%) 92.59 93.33 94.44 95.18 95.55 94.18 92.92

Specificity (%) 77.14 78.57 80.0 83.21 81.07 79.04 76.42

Accuracy (%) 84.69 85.93 87.09 89.09 88.18 87.27 84.54

Az 0.842 0.855 0.868 0.890 0.879 0.871 0.842

Table 4.4: Brain Tumor Classification Performance with 3D Features

Classifier Performance No. of Features

6 10 14 18 22 26 30

SVM Sensitivity (%) 94.81 95.55 97.03 96.66 96.66 95.55 94.81

Specificity (%) 90.35 91.78 95.71 96.07 94.28 90.35 90.35

Accuracy (%) 90.90 93.63 96.42 96.25 95.61 92.95 92.51

Az 0.903 0.930 0.961 0.962 0.949 0.918 0.917

ANN Sensitivity (%) 94.81 96.29 95.92 95.18 93.70 92.59 92.96

Specificity (%) 88.92 92.14 90.71 88.92 87.14 83.92 83.21

Accuracy (%) 91.96 94.18 93.27 92.05 90.39 88.28 88.13

Az 0.918 0.940 0.929 0.921 0.898 0.881 0.879

k-NN Sensitivity (%) 92.96 93.33 94.44 95.18 95.55 94.18 93.33

Specificity (%) 78.57 78.57 80.0 83.21 81.42 82.59 76.78

Accuracy (%) 85.77 85.93 87.09 89.09 88.20 87.23 84.60

Az 0.854 0.855 0.868 0.890 0.881 0.871 0.844

Ensemble Classifier Performance

The ensemble classifier for the proposed CAD system consists of SVM, ANN and

k-NN classifiers to predict the class of the given tumor. In order to improve the

classification accuracy of the CAD system, individual decisions of all three classifiers

(SVM, ANN and k-NN) are combined using majority voting rule (Kittler et al. 1998).
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This combination in ensemble classifier performed better than the best performed

single classifier (e.g. SVM with an accuracy of 96.42%). The confusion matrix of

the ensemble classifier is illustrated in Table 4.5. All 270 malignant brain tumors are

correctly classified, whereas 5 benign brain tumors are misclassified in a set of 280

benign brain tumors.

Table 4.5: Confusion Matrix of Ensemble Classification of Brain Tumors

Predicted Class

Actual Class Benign Malignant

Benign 275 5

Malignant 0 270

The performance measures computed from the confusion matrix of ensemble clas-

sifier are shown in Table 4.6. The ensemble classifier can predict well the malignant

Table 4.6: Performance of Ensemble Classifier in Brain Tumor Classification

Performance Metrics Classifier Performance

Sensitivity 100%

Specificity 98.21%

Accuracy 99.09%

Az 0.991

category of brain tumor (Sensitivity: 100%). This is important from the diagnostic

viewpoint as the false classification of malignant brain tumor has very serious conse-

quences for patients. However, 5 benign tumors are incorrectly classified resulting in

98.21% specificity. This is due to the difficulty in capturing the boundary and shape

features of these tumors. Overall, the classification accuracy is improved by 3% based

on the multiple classifier fusion, when compared to the best performance of the single

classifier (e.g., SVM with an accuracy of 96.42%). This proves the validity of using

an ensemble classifier in the characterization of the brain tumor.
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Further, the performance of the ensemble classifier is evaluated with features ex-

tracted from manually and automatically segmented tumors. Figure 4.7 shows the

ROC curves of the ensemble classifier with manual and automatic brain tumor seg-

mentations. The manual segmentation of brain tumor is performed by two experi-

enced (R1 and R2) and two inexperienced (R3 and R4) radiologists. The automatic

brain tumor segmentation is performed by the proposed segmentation technique based

on MFCM clustering. The performance of the ensemble classifier is evaluated by area

under ROC curve (Az). In order to investigate the classification performance for the

manual segmentation, features are extracted from brain tumors that are delineated by

radiologists R1, R2, R3 and R4. The ensemble classification of brain tumors resulted

in Az value of 0.991 with automatic segmentation, and 0.995, 0.995, 0.786, 0.731 with

manual segmentation by radiologists R1, R2, R3, and R4, respectively. This indi-

cates that the difference between the brain tumor classification obtained based on

automatic and experienced radiologists’ segmentations is negligible. The classifica-

tion of tumors segmented by inexperienced radiologists shows the poor performance

due to the imperfect delineation of tumor boundary.

 

Figure 4.7: ROC Curves of Ensemble Classifier With Manual and Automatic Seg-
mentation of Brain Tumors
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Classification Performance of Radiologists

In another experiment, all four radiologists have been asked to visually analyze the

brain tumor on 550 representative MRI slices and give their decision on the type of

tumor. Table 4.7 shows the classification performance of the radiologists evaluated

with respect to the ground truth. Here, the ground truth for the tumor classifications

is defined based on the histopathological analysis of biopsy samples of 550 tumors.

The experienced radiologists R1 and R2 obtained classification accuracy of 79.09%

and 78.54%, respectively. The inexperienced radiologists R3 and R4 attained classi-

fication accuracy of 62.72% and 66.90%, respectively. There is not much difference

in classification results of expert radiologists, whereas the classification difference ex-

isted between experienced and inexperienced radiologists. However, the classification

performance of all the radiologists is poor when compared to that of the proposed

CAD system.

Table 4.7: Brain Tumor Classification Performance of Radiologists

Performance Metrics Classification Performance(%)

R1 R2 R3 R4

Sensitivity 75.02 74.28 57.14 63.57

Specificity 83.13 82.96 68.51 70.37

Accuracy 79.09 78.54 62.72 66.90

Az 0.772 0.769 0.618 0.694

Computation Time

The mean computation time required for processing the representative slice of the

brain tumor in each phase of the CAD system is shown in Figure 4.8. The feature

extraction stage is more time consuming as multi-resolution analysis of features is

carried out to achieve better discrimination ability. The brain tumor characterization

with reduced feature set takes about 4 to 5 sec, whereas the brain tumor characteri-

zation with the complete feature vector takes about 18 sec. Thus, the integration of

the ensemble classifier with the two-level feature selection consisting of IG and ICA

techniques has resulted in the reduction of computation time by 72.22%.
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Figure 4.8: Time Taken by Different Phases of CAD of Brain Tumor

4.2.2 Liver Tumor Classification Results

The liver tumor classification experiments are carried out on a dataset consisting

of non-contrast-enhanced abdominal CT images of 487 patients (female: 235, male:

252). Among 487 patients, 247 patients were diagnosed with benign tumor and 240

patients with malignant tumor based on histopathological analysis of biopsy samples.

The detailed description of the datasets is already given in Section 2.8. The feature

selection is performed on the features extracted from all 487 cases and the reduced

feature set is used to train the individual classifiers of an ensemble classifier. The

LOO-based validation is used to train and test the classifiers.The LOO-based vali-

dation is performed on a set of 487 2D representative CT images. Each classifier is

trained using 486 CT images in the set and then tested on the remaining single CT

image using the initialized value of the parameter. This is repeated 487 times such

that each image in the set is used once as the test data. The average accuracy of

these 487 iterations is used to estimate the generalization accuracy of the classifier

for the parameter value used, and the parameter value which resulted in the highest

estimated accuracy is chosen as the optimal value. This procedure provides unbiased

estimation of the classifier performance and also avoids overtraining of the classifier,
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because the classifier is trained with features of 486 cases and the remaining one case

used for testing is unknown to the classifier.

Feature Selection and Classification

In order to determine the features leading to optimal classification performance, four

types of experiments are performed, based on the complete 216-dimensional feature

Feature Selection Feature Ranking and Feature Selection 
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Figure 4.9: Liver Tumor Classification Performance of Individual Classifiers versus
Feature Subset Dimensionality: (a)(b) SVM Classifier (c)(d) ANN classifier (e)(f)
k-NN Classifier.
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vector consisting of 2D features, and the reduced feature vectors produced by the ap-

plication of feature selection techniques (ICA, PCA and GA). Further, these feature

selection techniques are combined with IG-based feature ranking (IG-ICA, IG-PCA,

and IG-GA). For each classifier, the classification accuracies obtained by LOO vali-

dation are shown in Figure 4.9. Further details about experiments on input feature

vector are presented as follows:

Complete Feature Vector: In the first experiment, each classifier is trained with

the complete 216-dimensional feature vector containing features extracted from non-

contrast-enhanced abdominal CT images. Classification accuracy of 78.02% is achieved

by SVM classifier with its parameters set as: C = 21 and σ = 0.75. ANN achieved

classification accuracy of 75.97% with 22 hidden neurons. Classification accuracy of

74.94% is achieved by k-NN with the number of neighbors k = 25.

Reduced Feature Vector Using ICA: In the second experiment, feature se-

lection is carried out for SVM, ANN and k-NN classifiers using ICA and IG-ICA

techniques. In SVM classification, the highest classification accuracy of 91.37% and

95.68% is achieved with 22 and 18 features obtained by ICA and IG-ICA techniques,

respectively. ANN classifier resulted in the best classification accuracy of 90.34% with

22 features obtained through ICA and 93.42% with 14 features obtained through IG-

ICA techniques. In k-NN, the highest classification accuracy of 82.13% and 88.70%

is obtained using 26 and 22 features selected through ICA and IG-ICA techniques,

respectively. The parameters resulting in optimal classification accuracies consist of

C = 8 and σ = 0.07 for SVM classifier, 10 hidden neurons for ANN classifier and the

number of neighbors k = 10 for k-NN classifier.

Reduced Feature Vector Using PCA: Experiments similar to ICA method

are also performed with PCA and IG-PCA techniques. PCA transforms the high-

dimensional input feature space into a lower dimensional feature space using eigen-

vectors corresponding to the largest eigenvalues of the covariance matrix (Fukunaga

1990). SVM attained the highest classification accuracy of 89.52% and 93.01% with

18 and 14 features obtained through PCA and IG-PCA techniques, respectively. For

ANN, 22 and 18 features led to the highest classification accuracy of 87.06% and

92.40% with PCA and IG-PCA techniques, respectively. k-NN obtained the highest
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classification accuracy of 81.10% with 26 features selected through PCA and 85.21%

with 22 features selected through IG-PCA technique. The parameters resulting in

optimal classification accuracies consist of C = 18 and σ = 0.55 for SVM classifier,

16 hidden neurons for ANN classifier and k = 12 for k-NN classifier.

Reduced Feature Vector Using GA: In the fourth experiment, GA and IG-GA

feature selection methods are used in order to reduce the dimensionality of the original

feature vector. GA searches for optimal set of features by assessing the search results

based on an evaluation function, which measures fitness of the selected features for

the classification (Raymer et al. 2000). The GA parameters used for the feature

selection are given in Table 4.8; these parameters are determined empirically. SVM

classifier attained the highest classification accuracy of 86.24% and 88.29% with 22

and 18 features selected by GA and IG-GA techniques, respectively. ANN classifier

achieved an optimal classification accuracy of 83.16% and 86.44% with 30 and 22

features obtained through GA and IG-GA techniques, respectively. k-NN classifier

resulted in the highest classification accuracy of 79.67% with 30 features obtained

by GA and 86.03% with 26 features obtained by IG-GA technique. The parameters

resulting in optimal classification accuracies consist of C = 16 and σ = 0.48 for SVM

classifier, 13 hidden neurons for ANN classifier and k = 20 for k-NN classifier.

Table 4.8: Parameters of Genetic Algorithm

Parameter Value

Population Size 30

Selection Technique Roulette Wheel

Cross Over Type Two Point Cross Over

Cross Over Rate 0.8

Mutation Operator Bit Inversion

Mutation Rate 0.001

No. of Generations 450

It is observed that SVM, ANN and k-NN classifiers performed more effectively

with the reduced feature vector when compared to the complete feature vector. Clas-
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sifiers attained better accuracy with the combination of feature selection and feature

ranking when compared to using the feature selection alone for selecting a subset of

features. This is because feature ranking helps in eliminating irrelevant features and

then the feature selection technique removes redundant features from relevant features

resulting in the feature vector consisting of a small number of highly distinguishable

features. Among IG-ICA, IG-PCA and IG-GA technique, the IG-ICA technique re-

sulted in the highest liver tumor classification accuracy with all the classifiers.

Table 4.9 and Table 4.10 shows the classification performance achieved with 2D

and 3D features selected through IG-ICA technique, respectively. Both 2D and 3D

features obtained almost similar classification accuracies in classifying liver tumor as

benign or malignant. Thus, 2D features are considered in the further experiments.

SVM, ANN and k-NN attained the highest classification accuracy of 95.68%, 93.42%

and 88.70% with 18, 14 and 22 features, respectively. Comparison of the classifier

accuracies shows that SVM classifier achieves the highest liver tumor classification

accuracy.

Table 4.9: Liver Tumor Classification Performance with 2D Features

Classifier Performance No. of Features

6 10 14 18 22 26 30

SVM Sensitivity (%) 92.08 93.33 94.16 95.00 94.58 92.50 92.08

Specificity (%) 90.28 92.30 95.14 96.35 95.95 91.49 91.09

Accuracy (%) 91.17 92.81 94.66 95.68 95.27 91.99 91.58

Az 0.910 0.922 0.943 0.954 0.951 0.916 0.915

ANN Sensitivity (%) 91.25 90.00 90.83 88.33 87.50 87.08 85.83

Specificity (%) 89.47 94.73 95.95 97.57 94.73 93.11 91.90

Accuracy (%) 90.34 92.40 93.42 93.01 91.17 90.14 88.91

Az 0.901 0.924 0.933 0.930 0.908 0.907 0.882

k-NN Sensitivity (%) 87.50 87.91 88.75 89.58 90.41 90.00 87.08

Specificity (%) 79.75 81.37 82.99 85.42 87.04 83.80 80.97

Accuracy (%) 83.57 84.59 85.83 87.47 88.70 86.85 83.98

Az 0.831 0.843 0.857 0.870 0.886 0.862 0.833
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Table 4.10: Liver Tumor Classification Performance with 3D Features

Classifier Performance No. of Features

6 10 14 18 22 26 30

SVM Sensitivity (%) 92.08 93.33 95.00 95.00 94.58 92.50 92.08

Specificity (%) 90.28 92.30 94.73 96.35 95.95 91.49 91.09

Accuracy (%) 91.17 92.81 94.86 95.68 95.27 91.99 91.58

Az 0.910 0.922 0.945 0.954 0.951 0.916 0.915

ANN Sensitivity (%) 91.66 90.00 90.83 88.33 87.50 87.08 85.83

Specificity (%) 89.47 94.73 95.95 97.57 94.73 93.11 91.90

Accuracy (%) 90.55 92.40 93.42 93.01 91.17 90.14 88.91

Az 0.903 0.924 0.933 0.930 0.908 0.907 0.882

k-NN Sensitivity (%) 87.50 87.91 87.50 89.58 90.41 90.00 87.08

Specificity (%) 79.75 81.37 83.40 85.42 87.04 83.80 80.97

Accuracy (%) 83.57 84.59 85.53 87.47 88.70 86.85 83.98

Az 0.831 0.843 0.855 0.870 0.886 0.862 0.833

Ensemble Classifier Performance

In order to improve the classification accuracy of the CAD system, individual decisions

of all three classifiers (SVM, ANN and k-NN) in the ensemble classifier are combined

using majority voting rule (Kittler et al. 1998). The confusion matrix of the ensemble

classifier is illustrated in Table 4.11. All 240 malignant liver tumors are correctly

classified, whereas 7 benign brain tumors are misclassified in a set of 247 benign

liver tumors. The performance measures computed from the confusion matrix of

Table 4.11: Confusion Matrix of Ensemble Classification of Liver Tumors

Predicted Class

Actual Class Benign Malignant

Benign 240 7

Malignant 0 240
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ensemble classifier are shown in Table 4.12. The combination of classifiers in an

ensemble classifier resulted in the classification accuracy of 98.56%. The sensitivity

of 100% is obtained with ensemble classifier, this means that the ensemble classifier

can predict well the malignant category of the liver tumor. However, 7 benign tumors

are incorrectly classified resulting in specificity of 97.16%. This is due to the difficulty

in capturing boundary and shape features of these tumors. Overall, the classification

accuracy is improved by 3% based on the multiple classifier fusion, when compared to

the best performance of the single classifier (e.g. SVM with an accuracy of 95.68%).

This proves the validity of using ensemble classifier in tissue characterization of brain

tumor.

Table 4.12: Performance of Ensemble Classifier in Liver Tumor Classification

Performance Metrics Classifier Performance

Sensitivity 100%

Specificity 97.16%

Accuracy 98.56%

Az 0.989

Figure 4.10 shows the ROC curves of the ensemble classifier with manual segmen-

tation and proposed automatic segmentation techniques. The manual segmentation

of liver tumor is performed by two experienced (R1 and R2) and two inexperienced

(R3 and R4) radiologists. The automatic liver tumor segmentation is performed by

the proposed segmentation technique based on automatic region growing. To in-

vestigate the classification performance for the manual segmentation, features are

extracted from liver tumors that are delineated by radiologists R1, R2, R3 and R4.

The ensemble classification of liver tumors resulted in Az value of 0.989 with au-

tomatic segmentation and 0.990, 0.990, 0.753, 0.745 with manual segmentation by

radiologists R1, R2, R3 and R4, respectively. It can be observed that the liver tumor

classification based on automatic and experienced radiologists’ segmentations are al-

most similar. The classification of tumors segmented by inexperienced radiologists

shows the poor performance due to the imperfect delineation of tumor boundary.
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Figure 4.10: ROC Curves of Ensemble Classifier With Manual and Automatic Seg-
mentation of Liver Tumors

Classification Performance of Radiologists

In another experiment, all four radiologists have been asked to visually analyze the

liver tumor on 487 representative CT slices and give their decision on the type of

tumor. Table 4.13 shows the classification performance of the radiologists evaluated

with respect to the ground truth, which is defined based on histopathological analysis

of biopsy samples of 487 tumors. The experienced radiologists R1 and R2 obtained

classification accuracy of 72.68% and 70.43%, respectively. The inexperienced radiol-

ogists R3 and R3 attained classification accuracy of 63.65% and 61.19%, respectively.

There is not much difference in classification results of expert radiologists due to their

experience in interpreting liver CT images, whereas classification difference existed

between experienced and inexperienced radiologists. However, the classification per-

formance of all the radiologists is poor when compared to that of the proposed CAD

system. This is because the visual analysis of the CT images cannot capture the

fine details of the tumor, whereas the proposed automatic CAD system analyzes the

information in the CT image using effective image processing techniques and hence

results in accurate tumor classification results.
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Table 4.13: Liver Tumor Classification Performance of Radiologists

Performance Metrics Classification Performance (%)

R1 R2 R3 R4

Sensitivity 71.66 68.75 60.41 58.33

Specificity 73.68 72.06 66.80 64.77

Accuracy 72.68 70.43 63.65 61.19

Az 0.702 0.694 0.665 0.628

Computation Time

The mean computation time required for processing the representative slice of the

liver tumor in each phase of the CAD system is shown in Figure 4.11.
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Figure 4.11: Time Taken by Different Phases of CAD of Liver Tumor

The feature extraction stage is more time consuming as multi-resolution analysis

of features is carried out to achieve better discrimination ability. The liver tumor

characterization with reduced feature set takes about 4 to 5 sec, whereas the tumor
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characterization with complete feature vector takes about 12 sec. Thus, the integra-

tion of the ensemble classifier with the two-level feature selection has resulted in the

reduction of computation time by 52.33%.

4.3 Summary

This chapter presented the proposed tumor classification scheme for determining the

type of brain/liver tumor as benign or malignant. The proposed scheme represented

the tumor characteristics with a set of significant features, selected discriminating

features with two-level feature selection and classified the given tumor using ensem-

ble classifier. The experimental results demonstrated that both 2D and 3D features

are equally effective in characterizing the brain/liver tumor as benign or malignant.

The two-level feature selection technique which combines feature ranking and selec-

tion methods proved to be more effective when compared to using feature selection

alone. The ensemble classifier helped to improve the tumor classification accuracy by

avoiding a biased decision. The ensemble classifier obtained 99.09% accuracy, 98.21%

specificity and 100% sensitivity for classification of brain tumors, and it obtained

98.56% accuracy, 97.16% specificity and 100% sensitivity for classification of liver tu-

mors. Further, the inclusion of feature selection made the classification scheme more

efficient when compared to using high-dimensional feature vector.
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Chapter 5

Content-Based Image Retrieval for

Diagnosis of Tumor

The proposed CAD system consists of tumor detection, classification, content-based

image retrieval (CBIR) and 3D reconstruction methods for effective and efficient

analysis of brain and liver tumors. The CBIR retrieves similar pathology bearing

tumor images from the database in response to query image by comparing the visual

contents of the images. CBIR is an important component of CAD system, since it

assists the radiologist to make an accurate tumor diagnostic decision based on the

retrieved images. Hence, in this chapter, effective and efficient CBIR methods are

proposed for assisting the radiologist in the brain/liver tumor diagnosis. Precisely,

an attempt has been made to fulfill the third objective of the research work and to

overcome the limitations of the existing CBIR methods discussed in Section 2.5. The

research contributions towards the development of CBIR methods are as follows:

• Elimination of the semantic gap by developing a hierarchical CBIR framework

that effectively identifies the similarity between images.

• Developing CBIR methods robust to misalignments of images based on image

rotation correction/rotation invariant features.

• Developing an efficient indexing structure called as Cluster with IG-ICA and

KD-tree (CIKD) for fast retrieval of images from the database.

• Developing modified k-means clustering with automatic identification of the

number of clusters and initial cluster centers for partitioning the features in the

database.
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5.1 Proposed Framework

Figure 5.1 shows the framework of the proposed CBIR methods for the diagnosis of

brain/liver tumor as benign or malignant. It consists of two phases: database building

(off-line) and query processing (on-line) phases.
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Figure 5.1: Framework of the Proposed CBIR Methods

In the off-line phase, the MRI images of brain tumors / CT images of liver tumors

stored in the image database are preprocessed to improve the quality of images. Next,

the tumor is segmented on MRI/CT images using proposed segmentation methods as

discussed in Chapter 3. Tumors belonging to the same class (benign/malignant) differ

by severity, density, and other such factors. Hence, not all pairs of images within one

class have equivalent perceptual similarity; that is tumor subclasses exist. Therefore,

the segmented tumor is represented using the class and subclass feature vectors. The

most discriminating class features are selected based on IG-ICA feature selection

technique. The selected features are fed to the ensemble classifier consisting of SVM,

ANN and K-NN classifiers to obtain the class label as benign or malignant. Finally,

the class label along with the subclass features is stored in the feature database.

Similarly in the online phase, a query image of the brain/liver tumor is prepro-

cessed and segmented. Next, the segmented tumor is represented using class and

subclass features. Then, based on the class label, the subclass features of the query

image are compared with the subclass features in the database using the Euclidian
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and Chi-square distances. The database is indexed using the proposed CIKD indexing

technique and the most similar pathology bearing brain/liver images are retrieved.

The following two CBIR methods are proposed based on the framework shown in

Figure 5.1 for brain/liver tumor diagnosis. These two methods differ in the technique

used to handle the misalignment of images for accurate retrieval of images, and are

discussed in Section 5.2 and Section 5.3, respectively.

• CBIR based on image rotation correction.

• CBIR based on rotation invariant features.

5.2 CBIR Based on Image Rotation Correction

MRI/CT images may be misaligned due to movement of the patient during scanning.

The rotation changes the features of the image, and hence finding similarity between

images becomes difficult. Thus, in this proposed CBIR method, the misaligned image

is restored to its standard position using the proposed rotation correction technique

in the preprocessing step as discussed in Chapter 3. Then, the class and subclass

features of the segmented tumor are extracted and most similar images are retrieved

from the database using similarity matching. The various steps of the proposed CBIR

method are detailed below.

5.2.1 Preprocessing

Prior to segmentation, the quality of MRI/CT images is enhanced by image denois-

ing based on the median and Laplacian filters, image contrast enhancement using

histogram equalization, and rotation correction of misaligned image using the pro-

posed rotation correction technique. The T1-weighted and T2-weighted MRI images

of the brain are co-registered using the FLIRT registration tool (Jenkinson and Smith

2001) as discussed in Chapter 3.

5.2.2 Segmentation

After preprocessing, the input image is segmented in order to extract the tumor

region for further analysis. If the input image is the MRI image of the brain, then the

image is segmented using the proposed brain tumor segmentation technique based on
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Modified Fuzzy C-Means (MFCM) clustering. If the input image is the abdominal

CT image of the liver, then the image is segmented using the proposed liver tumor

segmentation method based on automatic region growing. The brain and liver tumor

segmentation methods are already discussed in Chapter 3.

5.2.3 Feature Extraction

The feature extraction step is used to describe characteristics of the segmented tu-

mor by extracting its various features. In the proposed CBIR method, the segmented

tumor is represented using the class and subclass features extracted from the rep-

resentative slice of the tumor. Given a set of slices, the slice containing the largest

cross-sectional area of the tumor is chosen as a representative slice of the tumor, since

it contains the maximum possible information of the tumor. In case of brain tumor

analysis, a representative slice is selected from both T1-weighted post-contrast and

T2-weighted MRI images of the brain, and in case of liver tumor analysis, a repre-

sentative slice is chosen from a set of non-contrast-enhanced abdominal CT images

of the liver. The details of the tumor class and subclass features are given below.

Tumor Class Representation: The features that represent the class of the tu-

mor as benign or malignant are extracted from the wavelet decomposed 2D image

using global shape, image histogram, GLCM, wavelet energy and fractal dimension.

Then, the most discriminating class features are selected based on the IG-ICA feature

selection technique as discussed in Chapter 4.

Tumor Subclass Representation: In order to represent the subclass of the tu-

mor, the following local shape and texture features are extracted from the represen-

tative slice of the tumor.

Shape Feature Extraction

The local shape of the tumor is represented using Wavelet-based Fourier Descriptors

(WFD) (Kunttu et al. 2006) as they help in analyzing the local shape features of

the tumor. Let the boundary coordinates of the tumor be B(n) = {(x(n), y(n)), n =

0, 1, ..., L− 1} as shown in Figure 5.2.
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Figure 5.2: Boundary Points of the Tumor

In order to extract WFD, the shape signature S(n) of the boundary points is

computed using the centroid distance function as given in Equation (5.1).

S(n) = [(x(n)− xc)2 + (y(n)− yc)2]
1
2 (5.1)

Where,

xc =
1

L

L−1∑
n=0

x(n), yc =
1

L

L−1∑
n=0

y(n) (5.2)

Where, x(n) and y(n) represent the x and y coordinates of the nth boundary point,

respectively. xc and yc represent the x and y coordinates of the of the shape centroid,

respectively.

Then, the shape signature is normalized by sampling K boundary points based

on equal arc length.

n = n+
P

K
(5.3)

U(t) = S(n), t = 0, 1, ..., K − 1 (5.4)

Where, P is the boundary perimeter and U(t) is the normalized shape signature.

Next, the wavelet transform is applied to U(t) as given in Equation (5.5). In the

present work, Mexican hat wavelet is used as it is gives effective representation of the

shape details (Yadav et al. 2007).

Ca(b) =
1√
|a|

∫
R

U(t)ϕ(
t− b
a

)dt (5.5)
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Where, Ca(b) are wavelet coefficients at the scale a and position b. After the wavelet

transform, WFD are obtained by applying Fourier transform to wavelet coefficients

and it is given by,

an =
1

N

N−1∑
b=0

Ca(b)exp(−j2πb/N) (5.6)

The Fourier coefficients an are called Fourier Descriptors (FDs) of the shape and the

first coefficient (FD0) of FDs is ignored in order to make the shape representation

invariant to the boundary starting point. Further, the area of the tumor A is com-

puted based on the number of pixels in the tumor region. Finally, the shape of the

tumor is represented by the shape feature vector SFV consisting of the tumor area

and FDs as given below:

SFV = [A,FD1, FD2.....FDN−1]. (5.7)

Texture Feature Extraction

Local texture of the tumor is extracted using Gabor filter and Edge Histogram De-

scriptor (EHD), which are provided by the MPEG-7 standard (Manjunath et al.

2001). These features provide perceptual representation of the image texture and

thus help in retrieving most similar images from the database. The Gabor filter

extracts the homogeneous texture of the image and EHD represents the local distri-

bution of edges in the image.

Gabor Filter: Texture analysis of the brain/liver tumor is performed by applying

a bank of Gabor filters on the tumor image. The 2-D Gabor function g(x, y) is given

by,

g(x, y) =
1

2πσxσy
exp

[
−1

2

(
x2

σ2
x

+
y2

σ2
y

)
+ 2πjWx

]
(5.8)

where, W is the modulation frequency and σ2
x and σ2

y represent the variance in x and y

directions, respectively. A set of self-similar Gabor functions, gmn(xy) are obtained by

dilation and rotation of mother Gabor filter using the following generating function:

gmn(x, y) = a−2mg(x′, y′), a ≥ 1 (5.9)

x′ = a−m(xcos(θ) + ysin(θ)), y′ = a−m(−xsin(θ) + ycos(θ)) (5.10)
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where θ = nπ
N

, m = 0, 1...M − 1, n = 0, 1, ..N − 1 and a is the scale factor. The

parameters M and N specify the total number of scales and orientations, respectively.

Based on the experiments, four scales (M = 4) and six orientations (N = 6) are chosen

to describe the tumor texture. Texture features of an image I(x, y) are obtained by

convolution of I(x, y) with the Gabor filter gmn(x,y):

Gmn(x, y) = I(x1, y1)gmn(x− x1, y − y1) (5.11)

The mean (µmn) and the standard deviation (σmn) of the filtered images are used to

construct a feature vector and these are given by,

µmn =
1

P

∑
x

∑
y

|Gmn(x, y)| (5.12)

σmn =

√
1

P

∑
x

∑
y

(|Gmn(x, y)| − µmn)2 (5.13)

where, P is the total number of image pixels. The Gabor feature vector GFV for M

scales and N orientations is given by,

GFV = [µ00, σ00, µ01, σ01......µ(M−1), σ(N−1)] (5.14)

Edge Histogram Descriptor: EHD represents the local distribution of edges on five

different orientations: vertical, horizontal, 450 anti-diagonal, 1350 diagonal and non-

directed. The EHD is computed by dividing an image into 4 × 4 non-overlapping

blocks as shown in Figure 5.3.

                                     

 

   

Sub-block 
Image Blocks 

Image 

Figure 5.3: Image Partitioning for EHD Computation
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This partitioning yields 16 equal sized sub-images. Each sub-image is divided into

a number of 3 × 3 image blocks and each image block is divided into 4 sub-blocks

for abstracting the edge histogram. The edge histogram information is obtained by

applying five types of edge detectors defined by MPEG-7 on each sub-block as shown

in Figure 5.4. This computation results in an edge histogram with 16× 5 = 80 bins.

 
(e) (d) (b) (c) (a) 

Figure 5.4: Edge Detection Operators: (a) Vertical (b) Horizontal (c) 45oAnti-
diagonal (d) 135oDiagonal (e) Non-directional

The EHD feature vector EFV consists of bins of the edge occurrence histogram

as given below:

EFV = [B1, B2.....B80] (5.15)

Finally, the brain and liver tumor is represented by 268 and 134 subclass features,

respectively.

5.2.4 Classification

The classification stage determines the type of the brain/liver tumor as benign or

malignant based on selected features. Class features of the tumor selected using IG-

ICA technique are fed to the ensemble classifier consisting of SVM, ANN and k-NN

classifiers for identifying the type of tumor as benign or malignant. The individual

decisions of these classifiers are combined using the majority voting rule (Kittler et

al. 1998) as discussed in Chapter 4.

5.2.5 Similarity Matching

Similarity matching identifies the similarity between the query image and images

in the database based on the distance measure. In the present research work, the

following similarity measures are used to measure the similarity between subclass

features of the query image and database images belonging the same tumor class.
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• The shape similarity DS(x, y) between two images x and y is given by the

Euclidian distance:

DS(x, y) =

√√√√(Ax − Ay)2 + (
N−1∑
i=1

(FD
(x)
i − FD

(y)
i )2) (5.16)

where, A and FD represent the area and Fourier descriptors of the tumor,

respectively.

• The texture similarity DTG(x, y) between two images x and y, with their tex-

ture feature vectors obtained by Gabor filter is measured using the Euclidian

distance dmn(x, y):

DTG(x, y) =
∑
m

∑
n

dmn(x, y) (5.17)

dmn(x, y) =
√

(µmn(x)− µmn(y))2 + (σmn(x)− σmn(y))2 (5.18)

where, µmn and σmn are mean and standard deviation of the Gabor filtered

image at scale m and orientation n.

• The texture similarity DTE(x, y) between two images x and y, with their

texture feature vectors obtained by EHD is given by the Chi-square distance

χ2(x, y):

DTE(x, y) = χ2(x, y) =
K∑
k=1

[Bx(k)−By(k)]2

[Bx(k) +By(k)]
(5.19)

where, Bx(k) and By(k) are kth EHD histogram bins of the images x and y,

respectively.

All the similarity measures are normalized and fused to form a single similarity mea-

sure as given below:

D(x, y) = DS(x, y) +DTG(x, y) +DTE(x, y) (5.20)

In order to retrieve M most relevant images from the database, the calculated dis-

tances are sorted in the ascending order. Further, the top M distances are selected

and the corresponding images are retrieved.
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5.2.6 Feature Database Indexing Technique

Instead of exhaustively matching the features of the query image with all features in

the database, the preferred approach is to use indexing for faster retrieval of images

from the database. Accordingly, in the present research work, an indexing method

called CIKD is proposed for efficient processing of Nearest Neighbor (NN) queries

as shown in Figure 5.5. In order to reduce the search space, the CIKD technique

partitions the subclass features into different clusters using the proposed modified

k-means clustering. Further, the dimensionality of the feature vectors in each cluster

is reduced using IG-ICA feature selection technique as features are correlated at

the local, rather than at the global level. Then within each cluster, the features are

indexed using a KD-tree as KD-tree provides a nearest neighbor search with O(log2N)

efficiency on low-dimensional feature vectors (Javier et al. 2012).
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Figure 5.5: Feature Database Index Structure

Given a query image q, its class label is used to assign q to the group of benign

or malignant tumor features. Then, the similarity of q to clusters in the database is

measured by computing the distance using similarity measure D(q, CT ) between the

query subclass features and each cluster center CT . The query image is considered

as most similar to the cluster with the closest center, and then the query is projected

onto the subspace in the nearest cluster. Finally, the M -nearest neighbor search is
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performed on the KD-tree to obtain a subset of M images nearest to the query image

q. The subset contains all the tumor images satisfying (for all i ∈M),

‖ q − i ‖<‖ q − n ‖, for all n ∈ (DB −M) (5.21)

where ‖ . ‖ is a distance measure and DB represents a set of images in the database.

The KD-tree is a binary search tree which is built from the given feature set by re-

cursively partitioning the tree into two halves at each level. This partitioning is based

on the median of the dimension having the largest variance. For example, Figure 5.6

shows the KD-tree built for the given set of features: {(7, 2)(5, 4)(9, 6)(2, 3)(4, 7)(8, 1)}.
In order to search M -nearest neighbors, the query image is first compared with the

root node of the tree. If the partitioning dimension of the query image is less than

that of the root node, then the left sub-tree is searched for M -nearest neighbors.

Otherwise, the right sub-tree is searched. Thus, KD-tree reduces the search time by

almost eliminating half of the tree during the searching process.
 

  (2, 3)   (7, 2)

  (5, 4)

  (4, 7)   (8, 1)   (9, 6)

Figure 5.6: KD-tree Construction

5.2.7 Modified K-Means Clustering

The proposed CIKD indexing structure makes use of the proposed modified k-means

clustering to partition the subclass features into different clusters. The main drawback

of the k-means clustering (MacQueen 1967) is, it requires the user to input the number
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of clusters and initial cluster centers. Hence, the results of k-means clustering are

sensitive to the given clusters and their centers (Bishnu and Bhattacherjee 2012). In

order to overcome these drawbacks, we propose the modified k-means clustering with

automatic determination of the number of clusters and initial cluster centers in the

given dataset.

Determining Number of Clusters

The optimal number of clusters is determined in the given dataset based on the fusion

of several validity indices V = [V1, V2, ...Vr] value instead of single validity index. This

is because there is no universally best cluster validity index, since the validity index

outperforms other validity indices in a particular situation or depending on the shape

of clusters (Arbelaitz et al. 2013).

In order to determine the number of clusters, the k-means clustering algorithm

(MacQueen 1967) is run on the set of n features with the number of clusters (c) varied

between Cmin = 2 and Cmax =
√
n (Bezdek and Pal 1998). At the end of each run,

clusters of the dataset are evaluated using Dunn, Davies-Bouldin and Jagota indices,

which are defined as follows.

• Dunn Index : The Dunn Index DI is defined as the ratio of the minimal inter-

cluster distance to maximal intra-cluster distance (Dunn 1974) and it is com-

puted by,

DI = min
1≤i≤c

 min
1≤j≤c,j 6=i

 d(i, j)

max
1≤k≤c

d′(k)


 (5.22)

where, d(i, j) represents the distance between centers of clusters i and j, and

d′(k) measures the distance between the pair of elements in cluster k. The

clustering algorithm that produces clusters with the highest Dunn index is con-

sidered as the best algorithm.

• Davies-Bouldin Index : The Davies-Bouldin index DBI is defined as the ratio

of the sum of within-cluster (intra-cluster) scatter to between-cluster (inter-

cluster) separation (Davies and Bouldin 1979), and it is computed by,

DBI =
1

c

c∑
i=1

max
i 6=j

{
µi + µj
d(Ki, Kj)

}
(5.23)
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where, c is the number of clusters, Ki and Kj represent the center of the cluster

i and j, respectively. ui is the average distance of all elements in the cluster i

to center Ki, uj is the average distance of all elements in the cluster j to center

Kj, and d(Ki, Kj) is the distance between centers Ki and Kj. The clustering

algorithm that produces a collection of clusters with the smallest Davies-Bouldin

index is considered as the best algorithm.

• Jagota Index : The Jagota index JI measures the compactness of clusters

(Jagota 1991) and it is computed by,

JI =
c∑
i=1

1

|Ci|
∑
x∈Ci

d(x,Ki) (5.24)

where, |Ci| is the number of data items in the cluster i, c is the number of

clusters and Ki is the center of ith cluster. The clustering algorithm with the

smallest Jagota index is considered as the best algorithm.

After calculating the values of validity indices, min-max normalization (Han et al.

2011) is performed to scale these values to the range [0, 1] as given below:

v
′

i =
vi −minA

maxA −minA
(new maxA − new minA) + new minA (5.25)

where, minA and maxA are the minimum and maximum values of an attribute A.

min-max normalization maps the value, vi, of an attribute A to v
′
i in the range

[new minA, new maxA].

The maximum value of Dunn index, and minimum values of Davies-Bouldin and

Jagota indices indicates the best clustering solution. Thus to have consistency, we

have used (1 − DI) to make a minimum value of the Dunn index as an indicator

of the best clustering. Then, the values of cluster validity indices of each run are

combined by computing the median. Finally, the number of clusters corresponding

to the minimum fused index value is considered as the optimal number of clusters.

The complete steps of the proposed algorithm for determining the number of clus-

ters are given in Algorithm 5.1. Since, the Algorithm 5.1 runs the k-means clustering

algorithm Cmax =
√
n times, its time complexity is O(

√
ntcn). Where, t is the num-

ber of iterations required by the k-means algorithm to converge, c is the number of

clusters, and n is the number of subclass feature sets.
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Algorithm 5.1 Estimate Clusters

Input: Set of n Tumor subclass features.
Output: Number of clusters c in the feature set.
1: Choose the range of clusters with Cmin and Cmax.
2: for c = Cmin to Cmax do
3: Initialize c cluster centers.
4: Apply K-means algorithm to update the membership matrix and the cluster

centers (c).
5: Test for convergence. If not converged go to step 4.
6: Compute value of validity indexes V (c) = [V1, V2...Vr].
7: end for
8: Normalize values of validity indexes in V.
9: Combine the normalized values using median-based decision fusion to obtain sin-

gle index, I(c).
10: Choose number of clusters that give optimum value of index, I(c).

Cluster Center Initialization

Clustering is considered as optimal if it minimizes the intra-cluster distance and maxi-

mizes the inter-cluster distance. Thus, in the present research work, the initial centers

are selected based on the maximum distance. For a given dataset S = 0, 1..., n− 1,

a distance D(i, j) is computed between every pair of elements i and j in the given

dataset S. For given c clusters, the first two cluster centers chosen are the data items

that have maximum distance D(i, j). Next, these data items are removed from the

dataset S, and then the distance is calculated between the remaining data item and

the selected cluster centers. The data item that is farthest from its nearest cluster is

chosen as the next cluster center and it is removed from the dataset S. This process

is repeated until c cluster centers are chosen. The complete steps of the proposed

algorithm for automatically initializing the cluster centers is given in Algorithm 5.2.

The Algorithm 5.2 has a time complexity of O(n2) + O(nc). Where, n2 is the num-

ber of distance computations made between all n feature sets. nc is the number of

distance computation made between n feature sets and c cluster centers.

Like the k-means clustering algorithm, the modified k-means clustering algorithm

also partitions the given dataset based on the distance from the cluster center. But,

it begins with automatic determination of the number of clusters and initial cluster

centers instead of random initialization as given in Algorithm 5.3.
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Algorithm 5.2 ClusterCenter Init

Input: Number of clusters c, Set of n tumor subclass features.
Output: Cluster centers {C1, C2, ...Ck}.
1: Let S = 0,1,...n-1 represent the data set.
2: For each (i, j) ∈ S2, compute distance D(i, j)
3: (i∗, j∗) = arg max

(i,j)∈S2

D(i, j)

C1 = i∗

C2 = j∗

S = S − {i∗} − {j∗}
4: repeat
5: For each h ∈ S, compute dist(h, {C1, C2, ...Ck}).
6: Choose the data item that is farthest from the nearest cluster as the next cluster

center.
7: C(k + 1) = farthest item.
8: S = S − {farthest item}.
9: until k 6= Number of clusters

Algorithm 5.3 Modified k-Means Clustering

Input: Set of n tumor subclass features.
Output: Set of c clusters of the subclass features.
1: Determine number of clusters in the given feature set using Algorithm 5.1.
2: Let c be the number of clusters determined by Algorithm 5.1.
3: Select c initial cluster centers K = [K1, K2, ..., Kc] using Algorithm 5.2.
4: Calculate distance between each data point and cluster centers.
5: Assign each data point to its closest cluster center.
6: Recalculate the new cluster centers.

Ki =
1

ni

ni∑
i=1

xi (5.26)

Where, xi and ni are the data point and number of data points in the ith cluster,
respectively.

7: Recalculate the distance between each data point and new cluster centers.
8: If no data point is reassigned to the clusters, then STOP. Otherwise, repeat from

step 5.
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5.2.8 Experimental Results and Discussion

In order to test the performance of the proposed CBIR method, several experiments

are carried out on brain and liver tumor datasets. The ground truth for the CBIR ex-

periments is defined based on histopathological analysis of biopsy samples of tumors.

The performance of the proposed CBIR method is measured in terms of effectiveness

and efficiency. The effectiveness of the CBIR method for retrieving the most similar

images from the database is quantified using standard performance metrics, namely

Precision and Recall. These metrics are computed as given below.

Precision(P ) =
No. of relevant images retrieved

No. of images retrieved
× 100 (5.27)

Recall(R) =
No. of relevant images retrieved

No. of relevant images in the database
× 100 (5.28)

In order to calculate P and R, all the images in the database are considered as

query images and for each query image the number of retrieved images M is varied.

Then, the values of P and R are averaged at each value of M over all queries to obtain

the effectiveness of the CBIR method. The retrieval efficiency is measured in terms

of the amount of time required to retrieve most similar images from the database

using the proposed indexing technique. The CBIR results of brain and liver tumors

are given in the following sections.

CBIR Results of Brain Tumor

The brain tumor retrieval experiments are carried out on a database consisting of

T1-weighted post-contrast and T2-weighted brain tumor MRI images of 820 patients

(female: 382, male: 438). Among 820 patients, 420 patients were diagnosed with

benign tumor and 400 patients with malignant tumor based on histopathological

analysis of biopsy samples. The details of the dataset are already given in Section 2.8.

The retrieval effectiveness and efficiency of the proposed CBIR method in retrieving

most similar brain tumor images from the database are detailed below.

Retrieval Effectiveness

In order to test the robustness of the proposed CBIR method, some of the images in

the dataset are rotated by 10o, 15o, 20o and 25o in clockwise and anti-clockwise direc-
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tions. Given a query image, the CBIR system extracts the class and subclass features

of the tumor and obtains the class label using class features with ensemble classifier.

The subclass features of the query image are compared with subclass features of the

tumor images in the database with the same class label using the similarity measure

D(x, y), which is defined in Section 5.2.5. The retrieved images are ordered based

on their similarity to the query image. Figure 5.7 shows the top 11 most similar

brain tumor images retrieved along with the patient’s identification number PID in

response to the query image. Based on the PID, the radiologist can refer the diagnosis

reports of the patient for more detailed analysis of the tumor characteristics, such as

severity, prescribed treatment, etc. The retrieved images and their diagnostic reports

help the radiologist to make a diagnostic decision about the given query MRI image

of the brain tumor.

   

Figure 5.7: Brain Tumor Retrieval Results

In the classification stage, the ensemble classifier consisting of SVM, ANN and

k-NN classifiers is used to classify the brain tumor as benign or malignant based on

the class features selected by IG-ICA. Table 5.1 shows the confusion matrix of the
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tumor classifications obtained by the ensemble classifier. All the malignant tumors are

correctly classified, whereas 5 benign tumors are misclassified as malignant tumors.

Further, the classification performance measures that are discussed in Section 4.2 are

Table 5.1: Ensemble Classification of Brain Tumor

Predicted Class

Actual Class Benign Malignant

Benign 415 5

Malignant 0 400

computed based on the confusion matrix of the ensemble classifier as shown in Table

5.2. The correct classification of malignant tumors resulted in 100% sensitivity and

incorrect classification of benign tumors resulted in 98.80% specificity. Hence, the

overall classification accuracy obtained by the ensemble classifier is 99.39%.

Table 5.2: Performance Measures of Ensemble Classification of Brain Tumor

Performance Metrics Classifier Performance

Sensitivity 100%

Specificity 98.80%

Accuracy 99.39%

Az 0.991

The shape description of the tumor based on Wavelet-based Fourier Descriptors

(WFD) gives a large set of Fourier coefficients. Further, the number of boundary

points of the tumor may not be equal due to the varying sizes of the tumor, and this

creates problem in similarity matching. In order to estimate the number of Fourier

coefficients necessary for shape matching, we carried out an experiment with 10 to

30 WFDs, which are selected based on equal arc length normalization. With 10 or

20 WFDs we could obtain the global description of the object, but finer details were

missing. Whereas an optimal tumor shape description is obtained with 30 WFDs,

and therefore 30 WFDs are used for the tumor retrieval.

The effectiveness of the WFD in representing tumor shape details is evaluated by

comparing it with other state-of-the-art shape descriptors based on a Precision-Recall
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graph (P-R graph) as shown in Figure 5.8. WFD and Curvature Scale Space (CSS)

(Mokhtarian et al. 1999) are contour-based shape descriptors, whereas a Zernike

moment descriptor (ZMD) and Grid Descriptors (GD) (Lu and Sajjanhar 1999) are

region-based shape descriptors. ZMD (Manjunath et al. 2001) is more effective (P:

90%, R: 95.12%) in retrieving similar shapes when compared to CSS (P: 81.02%, R:

93.10%) and GD (P: 72.98%, R: 93%). However, ZMD loses the important perceptual

meaning. The highest retrieval effectiveness is obtained with WFD (P: 98.16%, R:

97.35%) as it applies Fourier transform on the wavelet coefficients. Further, WFDs

are much easier to derive, match, normalize, and more compact compared to other

shape descriptors.

 

Figure 5.8: Performance Comparison of Shape Descriptors in CBIR of Brain Tumor

The MPEG-7 Gabor filter and EHD describe homogeneous and non-homogeneous

texture of the tumor. The performance of Gabor filter and EHD is compared with

other texture descriptors, such as Gray Level Co-occurrence Matrix (GLCM) (Har-

alick et al. 1973) and Tamura (Tamura et al. 1978). The performance comparison

of these texture features, and the combination of texture and shape features for rep-

resenting the tumor subclass is given in Table 5.3. It is observed that the retrieval

accuracy improves when shape descriptor WFD is combined with texture descriptors.
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The GLCM and Tamura texture features show poor performance when compared to

Gabor and EHD. Whereas the performance of Gabor and EHD is almost similar,

and these texture descriptors perform better when used together for representing the

subclass of the tumor. The proposed combination of shape and texture features ex-

tracted using WFD, Gabor filter and EHD achieves the highest Precision and Recall

of 98.16% and 97.35%, respectively.

Table 5.3: Performance Comparison of Feature Descriptors in CBIR of Brain Tumors

Feature Descriptors Precision (%) Recall (%)

Gabor Filter 92.52 88.41

EHD 90.11 93.53

GLCM 85.62 83.0

Tamura 82.18 79.31

Gabor Filter+WFD 95.0 94.86

EHD+WFD 94.72 95.20

GLCM+WFD 92.55 88.53

Tamura+WFD 90.60 88.15

Gabor Filter+EHD+WFD(Proposed) 98.16 97.35

The comparison of shape and texture similarity measures is shown in Figure 5.9.
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Figure 5.9: Performance Comparison of Similarity Measures in CBIR of Brain Tumors
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In addition to tumor features, the feature similarity measure also has a vital effect

on the retrieval results. Thus, we experimented with various similarity measures

to evaluate their performance in retrieving similar brain tumor shapes and textures

as shown in Figure 5.9. It is found that Euclidian and Chi-square distances give

good retrieval performance when used for comparing shape and texture features,

respectively. Thus, in the present work, Euclidian and Chi-square distances are used

as shape and texture similarity measures, respectively.

In order to provide fast retrieval results, the proposed CIKD indexing method

prunes the search space by clustering subclass features based on the modified k-

means clustering algorithm. The modified k-means clustering algorithm makes use of

the proposed Algorithm 5.1 and Algorithm 5.2 for determining the number of clusters

and initial cluster centers, respectively. The performance of these algorithms is tested

on brain tumor dataset as well as on three standard datasets (Iris, Wine, Glass) from

UCI1 machine learning repository. Table 5.4 shows the number of clusters determined

in the MRI benign brain tumor dataset by the proposed algorithm (Algorithm 5.1).

Table 5.4: Estimation of Number of Clusters in Benign Brain Tumor Dataset

No. of Clusters Cluster Validity Indices Index Fusion

Dunn Davies-Bouldin Jagota

2 0.85 0.83 0.69 0.83

3 0.80 0.59 0.72 0.72

4 0.68 0.27 0.53 0.53

5 0.38 0.24 0.19 0.24

6 0.16 0.20 0.21 0.20

7 0.06 0.09 0.17 0.09

8 0.08 0.14 0.20 0.14

9 0.15 0.21 0.23 0.19

10 0.18 0.27 0.25 0.25

In the experiments, the number of clusters is varied between Cmin = 2 and Cmax =
√
n , where n indicates the number of features to be clustered. For simplicity, only

1University of California, Irvine
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10 entries are shown in the Table 5.4. The clustering results obtained in each run of

the k-means algorithm are evaluated using Dunn, Davies-Bouldin and Jagota index

and the values of these indices are fused by computing the median. The minimum

fused index value indicates the optimal number of clusters. The algorithm identifies 7

clusters in the benign brain tumor dataset as shown in Table 5.4. Based on the similar

experiments, 5 clusters are identified in the malignant brain tumor dataset. Table 5.5

shows the number of clusters estimated by Algorithm 5.1 in the UCI dataset. It is

observed that the algorithm correctly identifies the number of clusters in the datasets.

Table 5.5: Estimation of Number of Clusters in UCI Datasets

Dataset Number of Number of Number of

Data Points Known Clusters Estimated Clusters

Iris 150 3 3

Wine 178 3 3

Glass 214 6 6

Further, the effectiveness of the proposed algorithm (Algorithm 5.2) for determin-

ing initial cluster centers is measured in terms of average Cluster Center Proximity

(CCP) (Khan and Ahmad 2004) as shown in Table 5.6. The value of CCP indicates

the difference between the actual and initial cluster centers.

Table 5.6: Comparison of Cluster Center Initializations

Dataset CCP

Random Initialization Proposed Initialization

Iris 0.76 0.24

Wine 0.27 0.05

Glass 0.48 0.19

Benign Brain Tumor 0.62 0.10

Malignant Brain Tumor 0.45 0.07
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The CCP is computed by,

CCP =
1

K ×m

K∑
s=1

m∑
j=1

|fsj − Csj
fsj

| (5.29)

where, fsj and Csj indicate jth attribute value of the actual cluster center and initial

cluster center, respectively. It is observed from Table 5.6 that proposed algorithm

estimates initial cluster centers nearer to actual cluster centers when compared to

random initialization in both UCI and brain tumor datasets.

Retrieval Efficiency

The CBIR method makes use of the proposed CIKD indexing technique for fast

retrieval of images. Let N and D be the number of feature vectors and their original

dimensions, respectively. Let C be the number of feature clusters, and N (h) and D′ be

the number of feature vectors in cluster h (h = 1, 2...C) and their reduced dimensions,

respectively.

The proposed CIKD indexing technique computes the distance between the given

query image and cluster centers of the subclass features based on the similarity mea-

sure. It takes constant amount of time to compare features of the query image with

cluster center. Thus, the time taken for computing the distance between the query

image and C cluster centers of dimension D is given as follows.

T =
C∑
i=1

D∑
j=1

1

=
C∑
i=1

(D − 1 + 1)

= D(C − 1 + 1)

= DC

(5.30)

Hence, the time complexity of computing the distance between the query image

and all cluster centers is O(DC). After computing the distances, the smallest distance

is determined among C distances in order to find the closest cluster center. The

comparison between two distances takes a constant amount of time, and accordingly

the time taken to make C distance comparisons is given in Equation 5.31.
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T =
C∑
i=1

1

= C − 1 + 1

= C

(5.31)

Thus, the time complexity of finding the smallest distance is O(C). The cluster center

having the smallest distance is considered as the closest to the query image.

The query image is assigned to corresponding cluster and executed on the KD-tree

with the reduced dimension in order to find the most similar images. If the KD-tree

consists of only one node, then one comparison is made with that node. If the KD-tree

consists of N nodes, then on the average, the search for the most similar images in

the KD-tree is only in the half of the tree. Therefore, in this case, the total number of

comparisons is T (N
2

) plus one comparison for identifying the partitioning dimension.

Thus, the recurrence relation for the search in KD-tree of N nodes can be expressed

as:

T (N) =

1 if N = 1

T (N
2

) + 1 otherwise
(5.32)

The above equation can be solved by considering N = 2k.

T (
N

2
) = T (2k−1) + 1

= T (2k−2) + 1 + 1

= T (2k−2) + 2

= T (2k−3) + 3

. . .

= T (2k−k) + k

= T (1) + k = k

= 1 + k = 1 + log2N ≈ log2N

(5.33)

The feature vectors in the KD-tree are with reduced dimension D′ and, hence the

time complexity of searching the KD-tree for most similar images is O(D′log2N).

The total time complexity of CIKD indexing is O(DC) +O(C) +O(D′log2N
(h)).
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Table 5.7 shows the comparison of time complexity of different indexing methods

for processing nearest neighbor queries. The exhaustive indexing is a brute force ap-

Table 5.7: Comparison of Database Indexing Techniques

Indexing Exhaustive Cluster-based CIKD

Method Indexing Indexing (Proposed)

Time O(DN) O(DC) +O(C)+ O(DC) +O(C)+

Complexity O(D′N (h)) O(D′log2N
(h))

proach and compares subclass features of the query image with subclass features of

all images in the database. Hence, it has a time complexity of O(DN) and consumes

more time to retrieve similar tumor images from the database.The cluster-based in-

dexing reduces the search time by comparing subclass features of the query image with

subclass features of all the images in the cluster closest to the query image. Hence,

it has a time complexity of O(DC) + O(C) + O(D′N(h)) and performs better than

exhaustive search. The proposed CIKD method takes O(DC)+O(C)+O(D′log2N
h)

and performs better than exhaustive and cluster-based methods, since it has a com-

bination of modified k-means clustering, IG-ICA and KD-tree. The use of clustering

and IG-ICA feature selection prunes the search space by limiting the query to lower

dimensional space of the closest cluster instead of searching the entire database. Also,

the KD-tree gives good search performance of log2N in lower dimensional space. Thus,

the proposed indexing method narrows down the search space and thus accelerate the

retrieval task. The CIKD method takes about 2-3 sec to retrieve most similar images

from the database in response to the query image.

CBIR Results of Liver Tumor

This section discusses the results of the CBIR experiments carried on the liver tumor

database consisting of abdominal CT images of 764 patients. Among 764 patients, 380

patients were diagnosed with benign tumor and 384 patients with malignant tumor

based on histopathological analysis of biopsy samples. The details of the dataset

are already given in Section 2.8. Experiments similar to brain tumor also performed

on a liver tumor database. The effectiveness and efficiency of the proposed CBIR
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method in retrieving most similar liver tumor images from the liver tumor database

are detailed below.

Retrieval Effectiveness

To test the robustness of the proposed CBIR method, some of the images in the

dataset are rotated by 10o, 15o, 20o and 25o in clockwise and anti-clockwise directions.

Given a query image, the CBIR system extracts the class and subclass features of

the tumor and obtains the class label using class features with ensemble classifier.

The subclass features of the query image are compared with subclass features of the

tumor images with the same class label in the database using the similarity measure

D(x, y), which is defined in Section 5.2.5. The retrieved images are ordered based on

their similarity to the query image. Figure 5.10 shows the top 11 most similar liver

tumor images which are retrieved along with the patient’s identification number PID

in response to the query image.

 

 

 

Figure 5.10: Liver Tumor Retrieval Results
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Based on the PID, the radiologist can refer the diagnostic reports of the patient

for more detailed analysis of the tumor with respect to severity, prescribed treatment,

etc. It can be seen that both the query image and the retrieved images are benign.

This shows that the CBIR method effectively retrieves most similar images from the

database in response to the query image. The retrieved images and their diagnosis

reports help the radiologist to make a diagnostic decision about the given query CT

image of the liver tumor.

In the classification stage, the ensemble classifier consisting of SVM, ANN and

k-NN classifiers is used to classify the liver tumor as benign or malignant based on

the class features. Table 5.8 shows the confusion matrix of the tumor classifications

obtained by the ensemble classifier. It is observed that all the malignant tumors

are correctly classified, whereas 7 benign tumors are misclassified as malignant tu-

mors. The classification performance of the ensemble classifier is measured in terms

Table 5.8: Ensemble Classification of Liver Tumors

Predicted Class

Actual Class Benign Malignant

Benign 373 7

Malignant 0 384

of sensitivity, specificity and accuracy as discussed in Section 4.2. The performance

measures computed based on the confusion matrix of ensemble classifier are shown in

Table 5.9. The correct classification of malignant tumors resulted in 100% sensitivity

and incorrect classification of benign tumors resulted in 98.15% specificity. Hence,

the overall classification accuracy obtained by the ensemble classifier is 99.08%.

Table 5.9: Performance Measures of Ensemble Classification of Liver Tumors

Performance Metrics Classifier Performance

Sensitivity 100%

Specificity 98.15%

Accuracy 99.08%

Az 0.989
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The shape description of the liver tumor based on Wavelet-based Fourier Descrip-

tors (WFD) gives a large set of Fourier coefficients. Further, the number of boundary

points of the tumor may not be equal due to the varying sizes of the tumor, and this

creates problem in similarity matching. Thus, based on the experiments, 30 WFDs

are considered optimal for the liver tumor retrieval. These 30 WFDs are selected

from the boundary points based on equal arc length normalization.

The effectiveness of the WFD in representing the shape of liver tumors is evaluated

by comparing it with other state-of-the-art shape descriptors based on a Precision-

Recall graph (P-R graph) as shown in Figure 5.11. WFD and Curvature Scale Space

(CSS) (Mokhtarian et al. 2005) are contour-based shape descriptors, whereas a

Zernike Moment Descriptor (ZMD) and Grid Descriptors (GD) (Lu and Sajjanhar

1999) are region-based shape descriptors. ZMD (Manjunath et al.2001) is more effec-

tive (P: 92.12%, R: 94%) in retrieving the similar shape when compared to CSS (P:

77.03%, R: 92.13%) and GD (P: 70%, R: 92.13%). However, ZMD loses the impor-

tant perceptual meaning. The highest retrieval effectiveness is obtained with WFD

(P: 97.83%, R: 97.02%) as it applies Fourier transform to the wavelet coefficients.

 

Figure 5.11: Performance Comparison of Shape Descriptors in CBIR of Liver Tumors
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The MPEG-7 Gabor filter and EHD describe homogeneous and non-homogeneous

texture of the tumor. The performance of Gabor filter and EHD is compared with

other texture descriptors, such as Gray Level Co-occurrence Matrix (GLCM) (Har-

alick et al. 1973) and Tamura (Tamura et al. 1978). The performance comparison

of these texture features, and the combination of texture and shape features for rep-

resenting the tumor subclass is given in Table 5.10. It is observed that the retrieval

accuracy improves when shape descriptor WFD is combined with texture descriptors.

The GLCM and Tamura texture features show poor performance when compared to

Gabor and EHD. Whereas the performance of Gabor and EHD is almost similar,

and these texture descriptors perform better when used together for representing the

subclass of the tumor. The proposed combination of shape and texture features ex-

tracted using WFD, Gabor filter and EHD achieves the highest Precision and Recall

of 98.83% and 97.02%, respectively.

Table 5.10: Performance Comparison of Feature Descriptors in CBIR of Liver Tumors

Feature Descriptors Precision (%) Recall (%)

Gabor Filter 94.17 88.41

EHD 90.26 89.33

GLCM 83.58 80.14

Tamura 82.02 80.09

Gabor Filter+WFD 94.91 93.67

EHD+WFD 92.43 90.22

GLCM+WFD 92.55 88.53

Tamura+WFD 86.52 88.15

Gabor Filter+EHD+WFD(Proposed) 97.83 97.02

In addition to tumor features, the feature similarity measure also has a vital effect

on the retrieval results. Thus, we experimented with various similarity measures

to evaluate their performance in retrieving similar liver tumor shapes and textures

as shown in Figure 5.12. It is found that Euclidian and Chi-square distances give

good retrieval performance when used for comparing liver tumor shape and texture

features, respectively, and thus these distances are used in the present work.
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Figure 5.12: Comparison of Similarity Measures in CBIR of Liver Tumors

In order to provide faster retrieval results, the proposed CIKD indexing method

prunes the search space by clustering subclass features based on the modified k-means

clustering algorithm. The modified k-means clustering algorithm makes use of the

proposed algorithms (Algorithm 5.1 and Algorithm 5.2) for determining the number

of clusters and initial cluster centers, respectively.

Table 5.11 shows the number of clusters determined in the CT benign liver tumor

dataset by the proposed algorithm (Algorithm 5.1). In the experiments, the number

of clusters is varied between Cmin = 2 and Cmax =
√
n, where n indicates the number

of features to be clustered. For simplicity, only 10 entries are shown in the Table 5.11.

The clustering results obtained in each run of the k-means algorithm are evaluated

using Dunn, Davies-Bouldin and Jagota index and the values of these indices are

fused by computing the median. The minimum fused index value indicates optimal

clustering. The algorithm identifies 4 clusters in the benign liver tumor dataset as

shown in Table 5.11. Based on the similar experiments, 5 clusters are identified in

the malignant liver tumor dataset.

Further, the effectiveness of the proposed algorithm (Algorithm 5.2) for determin-

ing initial cluster centers is measured in terms of average Cluster Center Proximity

(CCP), which gives the difference between the actual and initial cluster centers. The

CCP is computed using Equation (5.29). Table 5.12 shows the comparison between

the effectiveness of random and proposed cluster center initializations. It is observed

that the proposed algorithm (Algorithm 5.2) estimates initial cluster centers nearer
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to actual cluster centers when compared to random initialization in both benign and

malignant liver tumor datasets.

Table 5.11: Estimation of Number of Clusters in Benign Liver Tumor Dataset

No. of Clusters Cluster Validity Indices Index Fusion

Dunn Davies-Bouldin Jagota

2 0.36 0.21 0.23 0.23

3 0.10 0.15 0.14 0.14

4 0.06 0.03 0.11 0.06

5 0.13 0.11 0.20 0.13

6 0.18 0.23 0.26 0.23

7 0.23 0.37 0.33 0.33

8 0.30 0.45 0.35 0.35

9 0.35 0.49 0.41 0.41

10 0.46 0.55 0.43 0.46

Table 5.12: Comparison of Cluster Center Initializations in Liver Tumor Dataset

Dataset CCP

Random Initialization Proposed Initialization

Benign Liver Tumor 0.36 0.06

Malignant Liver Tumor 0.38 0.14

Retrieval Efficiency

Similar to the brain tumor retrieval, the proposed CIKD indexing technique is also

more efficient in retrieving liver tumor images from the database when compared to

the exhaustive search and cluster based indexing methods. The liver tumor retrieval

based on CIKD has a time complexity of O(DC) + O(C) + O(D′log2N
(h)) due to

the combination of modified k-means clustering, IG-ICA feature selection and KD-

tree. The N and D are the number of feature vectors and their original dimensions,
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respectively. C is the number of feature clusters, and N (h) and D′ are the number of

feature vectors in cluster h (h = 1, 2...C) and their reduced dimensions, respectively.

5.3 CBIR Based on Rotation Invariant Features

MRI/CT images may be misaligned due to movement of the patient during scanning.

The rotation changes the features of the image, and hence finding similarity between

images becomes difficult. Thus, in this proposed CBIR method, the tumor character-

istics in the misaligned image are represented using rotation invariant features. Then,

most similar images are retrieved from the database using similarity matching. The

various steps of the proposed CBIR method are detailed below.

5.3.1 Preprocessing

Prior to segmentation, the quality of MRI/CT images is enhanced by image denois-

ing based on the median and Laplacian filters, image contrast enhancement using

histogram equalization, and rotation correction of misaligned image using the pro-

posed rotation correction technique. The T1-weighted and T2-weighted MRI images

of the brain are co-registered using the FLIRT registration tool (Jenkinson and Smith

2001) as discussed in Chapter 3.

5.3.2 Segmentation

After preprocessing, the input image is segmented in order to extract the tumor

region for further analysis. If the input image is the MRI image of the brain, then the

image is segmented using the proposed brain tumor segmentation technique based on

Modified Fuzzy C-Means (MFCM) clustering. If the input image is the abdominal

CT image of the liver, then the image is segmented using the proposed liver tumor

segmentation method based on automatic region growing. The brain and liver tumor

segmentation methods are already discussed in Chapter 3.

5.3.3 Feature Extraction

In the proposed CBIR method, the segmented tumor is represented using the ex-

tracted class and subclass features from the tumor representative slice. In case of
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brain tumor analysis, a representative slice is selected from both T1-weighted post-

contrast and T2-weighted MRI images of the brain, and in case of liver tumor analysis,

a representative slice is chosen from a set of non-enhanced abdominal CT images of

the liver. The details of the tumor class and subclass features are given below.

Tumor Class Representation: The features that represent the class of the tumor

as benign or malignant are extracted from the wavelet decomposed 2D image using

global shape, image histogram, Gray Level Co-occurrence Matrix (GLCM), wavelet

energy and fractal dimension as discussed in Chapter 4. The features extracted using

global shape and image histogram are rotation invariant. But, other features such as

GLCM, wavelet energy and fractal dimension are sensitive to image rotations, and

thus these are made rotation invariant as follows.

• The GLCM obtained at four angles (0o, 450, 900 and 135o) is made rotation

invariant by constructing symmetric GLCM such that MT
0o = M180o ,MT

45o =

M225o ,MT
90o = M270o ,MT

135o = M315o and the features extracted from these ma-

trices are averaged over the four angles (Eleyan and Demirel 2011).

• In order to make the wavelet energy feature invariant to rotation, the HL (hori-

zontal) and LH (vertical) sub-bands in each level of decomposition are grouped

together by taking the average of the energy features extracted from HL and

LH sub-bands (Manthalkar et al. 2003).

• The fractal dimension which describes the irregularity of tumor boundary is

made rotation invariant by applying central projection transform on the tumor

boundary to generate a unique boundary, and then the fractal dimension of the

generated boundary is calculated (Tao et al. 2001).

The most discriminating class features are selected based on the IG-ICA feature

selection technique as discussed in Chapter 4.

Tumor Subclass Representation: In order to represent the subclass of the tu-

mor, the following local shape and texture features are extracted from the represen-

tative slice of the tumor.
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Shape Feature Extraction

The local shape of the tumor is described using rotation invariant wavelet-based

Fourier Descriptors (WFD) (Kunttu et al. 2006). The WFDs are extracted using the

procedure as discussed in Section 5.2.3. But, the extracted WFDs are made rotation

invariant. That is in the first step, shape signature of the boundary is obtained

based on the centroid distance of the boundary points. Next, the shape signature is

normalized based on the equal arc length. Then, the wavelet transform is applied

to the shape signature. Finally, the Fourier transform is applied on the wavelet

coefficients to get a set of Fourier coefficients describing the tumor shape. These

Fourier coefficients are known as FDs and they are denoted as FD1, FD2, ...FDN−1.

The extracted FDs of the tumor are made invariant to rotation by ignoring the phase

information. The area A of the tumor is calculated based on the number of pixels in

the tumor in order to retrieve the tumors of similar size. The complete shape feature

vector SFV , representing the shape of the tumor is given as:

SFV = [A,FD1, FD2.....FDN−1]. (5.34)

Texture Feature Extraction

The local texture of the tumor is extracted using the proposed rotation invariant

modified uniform LBP operator. The basic LBP operator proposed by Ojala et al.

(2002) is a gray scale and rotation invariant operator that characterizes the local

texture of the image. LBP provides computational simplicity and high texture dis-

criminating power, and hence it has proven useful in describing medical images such

as mammogram (Oliver et al. 2007), MRI volumes (Unay and Ekin 2008), and pap

smear images (Plissiti et al. 2011). Therefore, in the present work, LBP is considered

as the suitable operator for local texture analysis of MRI and CT images. The LBP

operator labels each pixel with a binary code by thresholding relative gray values of

its circularly symmetric neighbors. Formally, the gray scale and rotation invariant

LBP is defined as:

LBP ri
P,R = min {ROR(LBPP,R, i)|i = 0, 1, 2, ..., P − 1} (5.35)

where, P is the total number of neighbors located in a radius R, and ROR(LBPP,R, i)

performs a circular bitwise right shift on a P-bit binary pattern LBPP,R for i times.
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The binary code LBPP,R is computed based on the neighbors as given by,

LBPP,R =
P−1∑
p=0

s(gp − gc), s(x) =

1, x ≥ 0

0, x < 0
(5.36)

where, gc and gp are the gray value of the center and neighbor pixels, respectively.

LBP code computation is shown in Figure 5.13 with P = 8 and R = 1. After the LBP

code 10101101 is computed, the center pixel value is replaced with the corresponding

rotation invariant LBP code, 01011011.

     

     

     

     

     

     

 

210 50 160 

130 90 80 

50 200 

1 0 1 

10101101 1 -0 

0 1 1 100 

  Figure 5.13: LBP Code Computation

When the whole image is coded with the values of LBP ri
P,R, the texture distribution

in the image is represented using the histogram of LBP ri
P,R values. The LBP histogram

contains the number of occurrences of each LBP in the image. It was observed by

Ojala et al. (2002) that about 70% of the patterns in the image were uniform patterns

in which the number of 0/1 transitions was at most 2. (e.g., Pattern 00001111 is

uniform and pattern 10001110 is non-uniform). Thus, they proposed another rotation

invariant texture description operator known as uniform LBP which is given by,

LBP riu2
P,R =


∑P−1

p=0 s(gp − gc), U(LBPP,R) ≤ 2

P + 1, otherwise
(5.37)

U(LBPP,R) = |s(gp−1 − gc)− s(g0 − gc)|+
P−1∑
p=1

|s(gp − gc)− s(gp−1 − gc)| (5.38)

where, LBP riu2
P,R is the uniform LBP operator and U represents the number of 0/1

transitions in the binary pattern. According to Equation (5.37), if the binary pattern
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generated is uniform, then LBP riu2
P,R value is computed by adding bit values in the

binary pattern. Otherwise, miscellaneous label P + 1 is assigned. Thus, LBP riu2
P,R can

generate P +2 distinct binary patterns. For example, LBP8,1 can generate 10 distinct

binary patterns. After the LBP codification of the image, a histogram with P + 2

bins is built to represent the image texture. In the histogram, P + 1 bins contain

uniform patterns and all non-uniform patterns are put in one single bin.

The drawback of LBP riu2
P,R is its inability to analyze flat areas on the image, where

all gray values of neighbor pixels are nearly same and they fluctuate near the gray

value of the center pixel. The flat area problem is illustrated in Figure 5.14. Here,

all gray values of pixels are near 166 and they have homogeneous distribution. Thus,

the binary pattern is a random value of 0 and 1.
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  Figure 5.14: Flat Area Representation with LBP Code

In the present work, the above problem is solved by modifying LBP riu2
P,R as:

LBP riu2mod
P,R =


∑P−1

p=0 s(gp − gc + α), U(LBPP,R) ≤ 2

P + 1, otherwise
(5.39)

where, α is a small constant, which changes the difference in pixel values without

affecting the discriminating ability of LBP operator. This change makes the LBP

operator work effectively even in flat areas of the image.

Another drawback of LBP riu2
P,R is that it cannot describe the image texture com-

pletely as all non-uniform patterns are put in one bin. Thus in the present work, the

image texture is described effectively by assigning non-uniform patterns to the bins

of uniform patterns based on the similarity measure given below.

Dmin
ROR(LBPP,R) = min{DROR(LBPP,R, LBP

uniform
P,R ), allLBP uniform

P,R } (5.40)
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Where,

DROR(X, Y ) = min{φ(ROR(X, i), Y ), i = 0..P − 1} (5.41)

φ(X, Y ) =
P−1∑
i=0

|Xi − Yi| (5.42)

Here, LBP uniform
P,R and LBPP,R represent uniform and non-uniform patterns, respec-

tively. ROR(X, i) is a circular bitwise right shift of the P -bit number X for i times.

Xi and Yi correspond to the bit values of the P-bit numbers X and Y , respectively.

The role of the similarity measure in assigning non-uniform pattern to the bin of

uniform pattern is explained as follows:

Let X and Y be the non-uniform and uniform patterns. In order to assign a

non-uniform pattern to the closest bin of the uniform pattern, the distance DROR is

computed between X and each uniform pattern. The DROR performs circular bitwise

right shift of X, and then computes the distance between X and Y based on the

number of bit differences φ. This circular shift and distance computation is repeated

P − 1 times, and the minimum distance is considered as the distance between X and

Y . This whole procedure is repeated with non-uniform pattern X and each uniform

pattern Y . Finally, X is assigned to the closest bin of Y based on the minimum

distance DROR. For example, given a non-uniform pattern 00000011 and two uniform

patterns {00001011, 00101011}, a non-uniform pattern 00000011 is assigned to the

histogram bin of uniform pattern 00001011, since it is at a lesser distance compared

to the uniform pattern 00101011.

The subclass shape and texture features extracted from the tumor region are

combined into a feature vector to represent the subclass of the tumor. The brain

tumor is represented with feature vector consisting of 94 features extracted from

T1 and T2-weighted images. The liver tumor is represented with a feature vector

consisting of 47 features extracted from the abdominal CT image.

5.3.4 Similarity Matching

In the present research work, the following similarity measures are used to measure

the similarity between subclass features of the query image and subclass features of

images in the database belonging to a same class.
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• The shape similarity DS(x, y) between two images x and y is given by the

Euclidian distance:

DS(x, y) =

√√√√(Ax − Ay)2 + (
N−1∑
i=1

(FD
(x)
i − FD

(y)
i )2) (5.43)

where, A and FD represents the area and Fourier descriptors of the tumor,

respectively.

• The texture similarity DTE(x, y) between two images x and y, with their

texture feature vectors obtained by LBP is given by the Chi-square distance

χ2(x, y):

DTE(x, y) = χ2(x, y) =
K∑
k=1

[Bx(k)−By(k)]2

[Bx(k) +By(k)]
(5.44)

where, Bx(k) and By(k) are kth LBP histogram bins of the images x and y,

respectively.

All the similarity measures are normalized and fused to form a single similarity

measure as given below:

D(x, y) = DS(x, y) +DTG(x, y) (5.45)

In order to retrieve M most relevant images from the database, the calculated dis-

tances are sorted in the ascending order. Further, the top M distances are selected

and the corresponding images are retrieved.

5.3.5 Feature Database Indexing Technique

In order to provide fast retrieval of images, the subclass features in the database are

indexed using the proposed CIKD indexing technique as discussed in Section 5.2.6.

The CIKD indexing technique prunes the search space by partitioning the subclass

features in the database into different clusters using the proposed modified k-means

clustering algorithm. The dimensionality of each cluster is reduced separately using

IG-ICA feature selection technique. Then within each cluster, the features are indexed

using a KD-tree.
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5.3.6 Experimental Results and Discussion

In order to test the performance of the proposed CBIR method based on rotation

invariant features, experiments are carried out on a brain and liver tumor datasets.

The ground truth for the CBIR experiments is obtained based on histopathological

analysis of biopsy samples of tumors. The performance of the proposed CBIR method

is measured in terms of effectiveness and efficiency. The effectiveness of the CBIR

method for retrieving the most similar images from the database is quantified using

standard performance metrics, namely Precision and Recall as already discussed in

Section 5.2.8. In the present method, the tumor classification performances are the

same while the retrieval performances are different when compared to the CBIR

method based on rotation correction. This is because the class features are similar

and subclass features are different in both the methods. The retrieval efficiency is

measured in terms of amount of time required to retrieve most similar images from

the database using the proposed indexing technique. The CBIR results of brain and

liver tumors are given below.

CBIR Results of Brain Tumor

The brain tumor retrieval experiments are carried out on a database consisting of T1-

weighted post-contrast and T2-weighted brain MRI images of 820 patients (female:

382, male: 438). Among 820 patients, 420 patients were diagnosed with benign tumor

and 400 patients with malignant tumor based on histopathological analysis of biopsy

samples. The details of the dataset are already given in Section 2.8. The retrieval

effectiveness and efficiency of the proposed CBIR method in retrieving most similar

brain tumor images from the database are detailed below.

Retrieval Effectiveness

In order to test the robustness of the proposed CBIR method with respect to rotation,

some of the images in the database are rotated by 10o, 15o, 20o and 25o in both clock-

wise and anti-clockwise directions. Table 5.13 shows the similarity scores, which are

obtained by computing distance between original MRI image and its corresponding

rotated MRI image based on the similarity measure D(x, y).

The Average Similarity Score (ASC) is computed with respect to each angle.

Image rotation changes the texture and shape patterns of the tumor. But, due to the
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Table 5.13: Similarity Scores Between the Original and Rotated MRI Images

Rotation Angle Average Similarity Score (ASC)

−10o 0.00

−15o 0.00

−20o 0.00

−25o 0.01

10o 0.00

15o 0.00

20o 0.02

25o 0.02

use of rotation invariant features to represent the shape and texture of the tumor,

the original and rotated images are considered similar (ASC = 0.00) in most of the

rotation angles. However, small difference is shown with some of the rotation angles,

such as −25o, 200, and 250.

In the classification stage, the ensemble classifier consisting of SVM, ANN and k-

NN classifiers is used to classify the brain tumor as benign or malignant based on the

class features. Table 5.14 shows the confusion matrix of the brain tumor classifications

obtained by the ensemble classifier. All the malignant tumors are correctly classified,

whereas 5 benign tumors are misclassified as malignant tumors. The same 5 benign

tumors shown in Table 5.1 (Section 5.2) are misclassified due to the difficulty in

capturing boundary and shape features of these tumors.

Table 5.14: Classifications of Brain Tumors by Ensemble Classifier

Predicted Class

Actual Class Benign Malignant

Benign 415 5

Malignant 0 400

159



Further, the classification performance measures are shown in Table 5.15. The

correct classification of malignant tumors resulted in 100% sensitivity and incorrect

classification of benign tumors resulted in 98.80% specificity. Hence, the overall clas-

sification accuracy obtained by the ensemble classifier is 99.39%.

Table 5.15: Performance of Ensemble Classification of Brain Tumors

Performance metrics Classifier performance

Sensitivity 100%

Specificity 98.80%

Accuracy 99.39%

Az 0.991

The subclass features of the tumor are extracted using rotation invariant WFD and

proposed modified rotation invariant uniform LBP operator LBP riu2mod
P,R . The number

of boundary points of tumors in the database is not equal, and hence this creates

problem in similarity matching. Therefore, based on experiments, 30 boundary points

are selected using equal arc length normalization. This helps in representing the

tumor shape with equal number of WFDs. Further, LBP riu2mod
P,R operator is tested

with different values of (P,R). The computing speed of (8, 1),(16, 2),(24, 3) is 0.0824

sec, 1.53241 sec, 3.7563 sec, respectively and the corresponding retrieval accuracy is

94.04%, 97.62% and 91%, respectively. The larger the value of (P,R), the larger the

computation time of feature extraction. Therefore (P,R) = (16, 2) is chosen, since it

is acceptable to have more powerful texture descriptor with a slight increase of the

computational cost.

Table 5.16 shows the performance comparison of the modified rotation invariant

uniform LBP operator LBP riu2mod
P,R with the existing LBP operators, such as LBP ri

P,R

and LBP riu2
P,R (Ojala et al. 2002) for P = 16 and R = 2. The LBP ri

P,R generates a

large number of histogram bins and shows poor retrieval performance as it is sensitive

to noise. The LBP riu2
P,R improves the performance of LBP ri

P,R by considering uniform

patterns in the image. However, its retrieval performance is not much effective as

uniform patterns are given more importance than non-uniform patterns. It is observed

that the proposed operator LBP riu2mod
P,R performs better than the other LBP operators

due to the distribution of non-uniform patterns among the bins of uniform patterns.
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Table 5.16: Performance Comparison of LBP Operators in CBIR of Brain Tumors

LBP Operator Number of Precision Recall

Histogram Bins

LBP ri
P,R 243 91.35% 88.59%

LBP riu2
P,R 18 93.12% 94.31%

LBP riu2mod
P,R 17 97.62% 97.18%

Figure 5.15 shows the comparison of the proposed CBIR method with shape-based

(WFD) and texture-based (LBP) retrieval in terms of precision and recall graph. It

is seen that proposed method achieves the highest retrieval precision of 97.62% and

recall of 97.18% as a combination of more robust shape and texture features (WFD

+ LBP) is used. The shape or texture features alone do not represent the tumor

characteristics completely. Hence, CBIR based on such features gives low precision

and recall rates.

 

Figure 5.15: Comparison of Feature Descriptors in CBIR of Brain Tumors

In order to provide fast retrieval results, the proposed CIKD indexing method

prunes the search space by clustering subclass features of the brain tumor based on
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the modified k-means clustering algorithm. The modified k-means clustering algo-

rithm makes use of the proposed algorithms (Algorithm 5.1 and Algorithm 5.2) for

determining number of clusters and initial cluster centers, respectively. Based on the

minimum fused validity index value, the Algorithm 5.1 identifies 7 and 5 clusters in

the benign and malignant brain tumor dataset, respectively.

Further, the effectiveness of the proposed algorithm (Algorithm 5.2) for determin-

ing initial cluster centers is measured in terms of average Cluster Center Proximity

(CCP), which gives the difference between the actual and initial cluster centers. The

CCP is computed using Equation (5.29) as discussed in Section 5.2.8. Table 5.17

shows the comparison between the effectiveness of random and proposed cluster cen-

ter initializations. It is observed that the proposed algorithm estimates initial cluster

centers nearer to actual cluster centers when compared to random initialization in

both benign and malignant brain tumor datasets.

Table 5.17: Comparison of Cluster Center Initializations in Brain Tumor Dataset

Dataset CCP

Random Initialization Proposed Initialization

Benign Brain Tumor 0.76 0.11

Malignant Brain Tumor 0.48 0.13

Retrieval Efficiency

The proposed CIKD indexing technique provides fast retrieval of liver tumor images

based on modified k-means clustering, IG-ICA feature selection technique, and KD-

tree. The brain tumor retrieval based on CIKD has a time complexity of O(DC) +

O(C) +O(D′log2N
(h)) as discussed in section 5.2.8. The N and D are the number of

feature vectors and their original dimensions, respectively. C is the number of feature

clusters, and N (h) and D′ are the number of feature vectors in cluster h (h = 1, 2...C)

and their reduced dimensions, respectively.
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CBIR Results of Liver Tumor

This section discusses the results of the CBIR experiments carried on a database

consisting of abdominal CT images of 764 patients. Among 764 patients, 380 patients

were diagnosed with benign liver tumor and 384 patients with malignant liver tumor

based on histopathological analysis of biopsy samples. The details of the dataset are

already given in Section 2.8. Experiments similar to brain tumor are also performed

on a liver tumor dataset. The effectiveness and efficiency of the proposed CBIR

method in retrieving most similar liver tumor images from the liver tumor database

are detailed below.

Retrieval Effectiveness

In order to test the robustness of the proposed CBIR method with respect to rota-

tion, some of the images in the database are rotated by 10o, 15o, 20o and 25o in both

clockwise and anti-clockwise directions. Table 5.18 shows the similarity scores, which

are obtained by computing distance between original CT image and its corresponding

rotated CT image based on the similarity measure D(x, y). The average similarity

Table 5.18: Similarity Scores Between the Original and Rotated CT Images

Rotation Angle Average Similarity Score (ASC)

−10o 0.00

−15o 0.00

−20o 0.00

−25o 0.01

10o 0.00

15o 0.01

20o 0.00

25o 0.04

score is computed with respect to each angle. Image rotation changes the texture

and shape patterns of the tumor. But, due to the use of rotation invariant features

to represent the shape and texture of the tumor, the original and rotated images
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are considered similar (ASC = 0.00) in most of the rotation angles. However, small

difference is shown with some of the rotation angles, such as −25o, 150, and 250.

In the classification stage, the ensemble classifier consisting of SVM, ANN and

k-NN classifiers is used to classify the liver tumor as benign or malignant based

on the class features. Table 5.19 shows the confusion matrix of the liver tumor

classifications obtained by the ensemble classifier. All the malignant tumors are

correctly classified, whereas 7 benign tumors are misclassified as malignant tumors.

The same 7 benign tumors shown in Table 5.8 (Section 5.2) are misclassified due to

the difficulty in capturing boundary and shape features of these tumors. Further,

the classification performance measures that are discussed in Section 4.2 are shown in

Table 5.20. The correct classification of malignant tumors resulted in 100% sensitivity

and incorrect classification of benign tumors resulted in 98.15% specificity. Hence,

the overall classification accuracy obtained by the ensemble classifier is 99.08%.

Table 5.19: Classifications of Liver Tumors by Ensemble Classifier

Predicted Class

Actual Class Benign Malignant

Benign 373 7

Malignant 0 384

Table 5.20: Performance of Ensemble Classification of Liver Tumors

Performance metrics Classifier performance

Sensitivity 100%

Specificity 98.15%

Accuracy 99.08%

Az 0.989

The subclass features of the liver tumor are extracted using rotation invariant

WFD and proposed modified rotation invariant uniform LBP operator LBP riu2mod
P,R .

The number of boundary points of tumors in the database is not equal, and hence

this creates problem in similarity matching. Therefore, based on experiments, 30
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boundary points are selected using equal arc length normalization. This helps in

representing the tumor shape with equal number of WFDs. Further, based on the

experiments, the values of P and R are chosen as (P,R) = (16, 2).

Table 5.21 shows the performance comparison of the modified rotation invariant

uniform LBP operator LBP riu2mod
P,R with the existing LBP operators, such as LBP ri

P,R

and LBP riu2
P,R (Ojala et al. 2002) for P = 16 and R = 2. The LBP ri

P,R generates a

large number of histogram bins and shows poor retrieval performance as it is sensitive

to noise. The LBP riu2
P,R improves the performance of LBP ri

P,R by considering uniform

patterns in the image. However, its retrieval performance is not much effective as

uniform patterns are given more importance than non-uniform patterns. It is observed

that the proposed operator LBP riu2mod
P,R performs better than the other LBP operators

due to the distribution of non-uniform patterns among the bins of uniform patterns

for complete texture analysis.

Table 5.21: Performance Comparison of LBP Operators in CBIR of Liver Tumors

LBP Operator Number of Precision Recall

Histogram Bins

LBP ri
P,R 243 90.07% 88.36%

LBP riu2
P,R 18 92.41% 91.69%

LBP riu2mod
P,R 17 97.18% 95.67%

Figure 5.16 shows the comparison of the proposed CBIR method with shape- and

texture-based retrieval in terms of Precision and Recall graph. It is seen that proposed

method achieves the highest retrieval precision of 97.18% and recall of 95.67% as a

combination of more robust shape and texture features is used. The shape or texture

features alone do not represent the tumor characteristics completely. Hence, CBIR

based on such features gives low precision and recall rates.

In order to provide fast retrieval results, the proposed CIKD indexing method

prunes the search space by clustering subclass features based on the modified k-means

clustering algorithm. The modified k-means clustering algorithm makes use of the

proposed algorithms (Algorithm 5.1 and Algorithm 5.2) for determining the number

of clusters and initial cluster centers, respectively. The Algorithm 5.1 identifies 4 and

5 clusters in the benign and malignant liver tumor dataset.
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Figure 5.16: Comparison of Feature Descriptors in CBIR of Liver Tumors

Further, the effectiveness of the proposed algorithm (Algorithm 5.2) for determin-

ing initial cluster centers in a set of liver tumor subclass features is measured in terms

of average Cluster Center Proximity (CCP), which gives the difference between the

actual and initial cluster centers. The CCP is computed using Equation (5.29) as

discussed in Section 5.2.8. Table 5.22 shows the comparison between the effectiveness

of random and proposed cluster center initialization. It is observed that the proposed

algorithm estimates initial cluster centers nearer to actual cluster centers when com-

pared to random initialization in both benign and malignant liver tumor datasets.

Table 5.22: Comparison of Cluster Center Initializations in Liver Tumor Datasets

Dataset CCP

Random Initialization Proposed Initialization

Benign Liver Tumor 0.53 0.09

Malignant Liver Tumor 0.45 0.11
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Retrieval Efficiency

The proposed CIKD indexing technique provides fast retrieval of liver tumor images

based on modified k-means clustering, IG-ICA feature selection technique, and KD-

tree. The liver tumor retrieval based on CIKD has a time complexity of O(DC) +

O(C) +O(D′log2N
(h)) as discussed in section 5.2.8. The N and D are the number of

feature vectors and their original dimensions, respectively. C is the number of feature

clusters, and N (h) and D′ are the number of feature vectors in cluster h (h = 1, 2...C)

and their reduced dimensions, respectively.

5.4 Summary

This chapter discussed the two CBIR methods based on image rotation correction and

rotation invariant features, respectively for retrieval of most similar images from the

database in response to query image of brain/liver tumor. The experimental results

showed that the proposed CBIR methods are robust to misalignment of images due to

use of rotation correction technique and rotation invariant features, respectively. Also,

both the proposed CBIR methods achieve high precision and recall rates due to the

use of effective shape and texture descriptors of the tumor. The CBIR method based

on image rotation correction obtained P = 98.16%, R = 97.35% and P = 97.83%,

R = 97.02% in brain and liver tumors retrieval, respectively. Whereas the CBIR

method based on rotation invariant features obtained P = 97.62%, R = 97.18% and

P = 97.18%, R = 95.67% in the brain and liver tumors retrieval, respectively. Thus,

the CBIR method based on image rotation correction is more effective than CBIR

method based on rotation invariant features.

Also, the CBIR methods proved to be efficient by providing fast retrieval of images

from the database based on the proposed CIKD indexing technique. The modified k-

means clustering with automatic initialization of a number of clusters and their centers

provided superior results compared to random initialization. Hence, the combination

of effective feature descriptors and indexing technique makes the CBIR methods ef-

fective and efficient in retrieval of most similar brain and liver tumor images from the

database. Therefore, the proposed CBIR methods can assist the radiologist in the

accurate diagnosis of brain and liver tumors based on the relevant cases.
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Chapter 6

3D Reconstruction of Tumor

The proposed CAD system consists of tumor detection, classification, CBIR and 3D

reconstruction methods for effective and efficient analysis of brain and liver tumors.

The 3D reconstruction method builds the 3D model of the brain/liver tumor, and then

computes its volume for assisting the radiologist in determining the stage of cancer.

A set of 2D cross-sectional images of the brain/liver tumor generated by MRI/CT

imaging techniques cannot accurately represent the structure of the tumor. Whereas

3D visualization of the tumor enables the radiologist to understand the structure,

topology and the stage of the tumor; thus helps in planning the treatment. Hence, an

accurate 3D model of the tumor should be reconstructed from the set of 2D parallel

cross-sectional images of the tumor. Accordingly, in this chapter, an effective and

efficient 3D reconstruction scheme for building the 3D model of brain/liver tumor is

proposed. Precisely, an attempt has been made to fulfill the fourth objective of the

research work and overcome the limitations of the existing 3D reconstruction methods

discussed in Section 2.5. The research contributions towards the development of the

3D reconstruction scheme are as follows:

• Developing an enhanced shape-based interpolation algorithm for estimating the

missing slices in a given set of brain/liver tumor slices.

• Developing the mesh simplification algorithm for reducing the number of tri-

angles in the 3D surface mesh of the brain/liver tumor without degrading the

model quality.

The proposed 3D reconstruction scheme incorporating the above contributions in

building the 3D model of the brain/liver tumor is detailed as follows:
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6.1 Proposed Methodology

Figure 6.1 shows the various steps in the proposed 3D reconstruction scheme for

building the 3D model and computing the volume of brain/liver tumor.

Start

 

Input No. of MRI/CT Slices (N) 
i=1

Read Slice i 

Preprocessing 

Segmentation 
No

Tumor 
Detected ? 

Contour Detection 

i < N ? 
No

Yes 

No
Tumor 

Slices > 0 ? 

i = i + 1 

Inter-Slice Interpolation 

Mesh Generation & Simplification 

3D Tumor Model Rendering 

3D Tumor Volume Computation 

Yes

Yes 

End

Figure 6.1: Flowchart of the Proposed 3D Tumor Reconstruction Scheme

In the first step, the MRI/CT image of the brain/liver slice (cross section) is

preprocessed to improve the quality of the image. Next, the tumor is detected on each

abnormal slice using the proposed brain/liver tumor segmentation methods. Then,
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the normal slices are eliminated from the set and only abnormal slices are retained

for further processing. In order to provide the smooth surface, the gap between

the slices is filled by the proposed enhanced shape-based interpolation technique.

In the next step, the contours of tumors on abnormal slices are connected so as to

generate a 3D surface mesh of the tumor using the marching cubes (MC) algorithm.

The large number of triangles in the surface mesh is reduced by the proposed mesh

simplification algorithm. The realistic effects are added to the tumor by shading the

generated mesh using Phong lighting and shading model. Finally, the volume of the

tumor is computed from a set of abnormal slices. The various steps of the proposed

3D reconstruction scheme are detailed below.

6.1.1 Preprocessing

Prior to segmentation, the quality of MRI/CT images is enhanced by image denois-

ing based on the median and Laplacian filters, image contrast enhancement using

histogram equalization, and rotation correction of misaligned image using the pro-

posed rotation correction technique as discussed in Chapter 3.

6.1.2 Segmentation

After preprocessing, the input image is segmented in order to extract the tumor

region for further analysis. If the input image is the MRI image of the brain, then the

image is segmented using the proposed brain tumor segmentation technique based on

Modified Fuzzy C-Means (MFCM) clustering. If the input image is the abdominal

CT image of the liver, then the image is segmented using the proposed liver tumor

segmentation technique based on automatic region growing. The brain and liver

tumor segmentation techniques are already discussed in Chapter 3.

6.1.3 Enhanced Shape-Based Interpolation Algorithm

After segmentation, slices of the segmented tumor are stacked up to form the volume

data in the 3D space as shown in Figure 6.2. Generally, MRI and CT imaging devices

provide a limited number of slices of the organ being scanned, and hence the distance

between the slices is larger than the distance between the pixels in the slice. The

surface reconstructed with these slices is inaccurate and contains artifacts. Thus, in
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the present research work, an enhanced shape-based interpolation method is proposed

in order to estimate missing slices in a given set of MRI/CT slices of the brain/liver

tumor.

 

Figure 6.2: Stack of Tumor Slices

The original shape-based interpolation method proposed by Raya and Udupa

(1990) converts the segmented binary image into a gray scale image using a city-

block Distance Transform (DT), which assigns to every point in the binary image a

gray level equal to its shortest city-block distance from the boundary of the object.

Then, the intermediate slice is estimated by linearly interpolating the distances on

two consecutive slices. Finally, the interpolated image is converted to a binary image

by threhsolding at zero. This method accurately captures the geometry of the tumor

on the slices but it suffers from the following drawbacks:

• It computes DT based on the city-block distance, which provides a bad approx-

imation to the Euclidian distance.

• It produces inaccurate interpolation results whenever there is a drastic shift in

the tumor position on the consecutive slices.

In order to overcome the drawbacks of shape-based interpolation, an enhanced shape-

based interpolation method is proposed and its details are given below.

In 3D space, each voxel consists of 26 neighbors: 6 neighbors joined by a plane,

12 neighbors joined by a line and 8 neighbors joined by a point. Let d1, d2 and d3
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be the local distances to neighbors joined by a plane, line and point, respectively.

The exact distance between the two voxels, P1(x1, y1, z1) and P2(x2, y2, z2), can be

calculated using the Euclidian distance De(P1, P2) as given below.

De(P1, P2) =
√

(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2 (6.1)

The Euclidian distances to three kinds of neighbors of a voxel are: d1 = 1, d2 =
√

2

and d3 =
√

3. The Euclidian DT is a global operation, since for each non-boundary

voxel it calculates the Euclidian distance to all boundary voxels and assigns the

shortest distance to the non-boundary voxel. Therefore, Euclidian DT of the image

requires O(N2) operations, where N is the total number of voxels in the image.

Hence, to reduce the computational complexity, the original shape-based interpolation

method (Raya and Udupa 1990) makes use of city-block DT, which computes the DT

based on n-neighbors. That is, it approximates the global distance by propagating the

local distances between neighboring voxels. Hence, the number of operations required

to calculate DT are reduced to O(N). However, the city-block DT does not provide

a good approximation to the Euclidian distance (Borgefors 1986). This is because,

the city-block distance metric Dc(P1, P2) measures the distance between two points

P1(x1, y1, z1) and P2(x2, y2, z2) by the number of horizontal/vertical steps required to

traverse (P1, P2) as given in Equation (6.2). Since, city-block distance considers only

6 neighbors joined by a plane, the local distances to neighbors of a voxels are: d1 = 1,

d2 = d3 = ∞. However, the local distance to neighbors connected by a line and

point can be obtained by 2 and 3 horizontal/vertical steps, respectively, Hence, the

city-block distance overestimates the Euclidian distance.

Dc(P1, P2) = |x2 − x1|+ |y2 − y1|+ |z2 − z1| (6.2)

Hence in the present research work, another n-neighbor distance called chamfer

distance (Borgefors 1986) is used to provide a good approximation to Euclidian dis-

tance and accelerate the computation of DT. The chamfer distance metric considers

the local distances to three kinds of neighbors of a voxel as: d1 = 1, d2 =
√

2 and

d3 =
√

3. Therefore, it better approximates the Euclidian distance when compared

to city-block distance. The chamfer DT makes use of the masks shown in Figure 6.3.
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Figure 6.3: Masks for Computing Chamfer Distance Transform: (a) Forward mask
(b) Backward Mask

In order to compute chamfer DT two passes over the image are necessary: forward

and backward passes. In the forward pass the mask shown in Figure 6.3(a) is moved

over the slice image in the 3D space left to right, top to bottom, and front to back.

In the backward pass the mask shown in Figure 6.3(b) is moved over the slice image

in the 3D space right to left, bottom to top, and back to front. In each position, the

sum of the local distance in each mask voxel and the value of the voxel it covers is

computed, and the new value of the voxel covered by the zero voxel is the minimum

of these sums.

Another problem with shape-based interpolation is, it produces inaccurate results

whenever there is a drastic shift in the tumor position on consecutive slices. In

order to overcome this problem, the centers of the tumors on consecutive slices are

aligned before interpolation. This results in gradual changes in both shape and spatial

position of the tumor in interpolated slices.

The proposed enhanced shape-based interpolation algorithm based on the chamfer

DT and tumor center alignment is given in Algorithm 6.1. First, tumors on consec-

utive slices are translated to align the tumor center with that of the slice. Then,

shape-based interpolation is performed with chamfer DT to estimate the missing

slice. After estimating the new slice, the tumors in the slices used for interpolation

are translated back to their original positions and their centers are used to determine

the center of the tumor on the newly estimated slice. Finally, the tumor on the new

slice is translated to the new position defined by the computed center of the tumor.
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Algorithm 6.1 Slice Interpolation

Input: Two consecutive slices a and b of tumor.
Output: Estimated slice e between slices a and b.
1: Compute the center C of the consecutive slices a and b.
2: Compute the centers Cs and Ct of the tumor region Rs and Rt on slice a and b

respectively.
3: Translate Rs and Rt to align the centers Cs and Ct on the line passing through

the centers of the slices.
4: Perform shape-based interpolation.

• Compute a distance transform for slice a and b.

D(x, y, z) =


0, (x, y, z) ∈ BO
+d(x, y, z), (x, y, z) ∈ O
−d(x, y, z), (x, y, z) /∈ O

(6.3)

Where, D(x, y, z) represents chamfer DT of point (x, y, z) on slice z = a, b.
O and BO represent the region and boundary of the tumor, respectively.

• Interpolate distance values on slice a and b to estimate distance values on
slice e.

D(x, y, e) = D(x, y, a) +
e− a
b− a

(D(x, y, b)−D(x, y, a)) (6.4)

• Convert gray scale image into a binary image by thresholding at zero.

I(x, y, e) =

{
1, D(x, y, e) ≥ 0

0, D(x, y, e) < 0
(6.5)

5: Restore Rs and Rt to their original positions.
6: Compute new center for the tumor on the newly interpolated slice e.

Ce = Cs +
e− a
b− a

(Ct − Cs) (6.6)

7: Translate new tumor regionRz on slice e to a new location using the corresponding
center Ce.
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6.1.4 3D Surface Mesh Generation

The 3D surface mesh generation involves joining the tumor contours on the consecu-

tive slices using polygonal structures to reconstruct the 3D surface mesh of the tumor.

In present research work, 3D mesh of the tumor has been reconstructed using March-

ing Cubes (MC) algorithm proposed by Lorensen and Cline (1987) as it provides high

quality surfaces.

The MC algorithm operates on a logical cube created from eight voxels; four voxels

from each of the two adjacent slices as shown in Figure 6.4. It processes one cube

at a time and determines the intersection of the surface with the cube. During this

processing, the vertices of the cube are set to 1, if their value is greater than or equal

to the isovalue of the surface and otherwise they are set to 0. The vertex with value 1

is considered as inside the surface and the vertex with value 0 is considered as outside

the surface. The surface intersects those edges of the cube where one vertex is inside

the surface and the other one is outside the surface.

Figure 6.4: Marching Cube

Since, each of the eight vertices of a cube can be in two states, inside or outside

the surface, 28 = 256 cube-surface intersection patterns are possible. However, the

MC algorithm considers most of these patterns as topologically equivalent by com-

plementary and rotational symmetry. Hence, 256 cube-surface intersection patterns

are reduced to 15 patterns (Lorensen and Cline 1987) as shown in Figure 6.5. The

dark circle at the vertices of the cube denotes vertices inside the surface.

175



 

1 2 30 

4 5 6 7

10 118 9 

13 1412 

Figure 6.5: Cube-Surface Intersection Patterns

The problem with these 15 patterns is that there is a possibility of ambiguous

faces, and hence holes will appear on the reconstructed surface. An ambiguous face is

the one which has a cube-surface intersection point in each of its four edges as shown

in Figure 6.6. In this case, the topologically correct connection of intersection points

becomes ambiguous and in turn leads to the creation of holes in the reconstructed

surface (Dürst 1988).

 

(b) (a) 

Figure 6.6: Ambiguous Faces
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The hole appears on the reconstructed surface whenever a complement pattern is

connected to the regular pattern by an ambiguous face. For example, the hole can be

seen in Figure 6.7, where a cube with pattern 3 shares a face with the complement of

pattern 6, and the shared face is the place where the hole appears. It is observed that                                 

                                                               

                                           (a) 
3 

(b) 
6c 

                                       

Hole

(c) 
                                         

 

                         

Figure 6.7: Hole on the Shared Face: (a) Pattern 3 (b) Complement of Pattern 6 (c)
Hole in the Joined Patterns

only patterns 3, 6, 7, 10, 12 and 13 have ambiguous face, and hence modification is

required only for these patterns. In order to solve the hole problem in these patterns,

the additional six patterns (Figure 6.8) proposed by Montani et al. (1994) are added

to the list of basic 15 patterns; these additional patterns are complements of patterns

3, 6, 7, 10, 12 and 13. Thus, total 21 (15 + 6) patterns are considered to identify

cube-surface intersection for the 3D tumor reconstruction. 

 

7c 6c 3c 

12c 13c 10c 

Figure 6.8: Additional Patterns to Solve the Hole Problem
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The 21 cube-surface intersection patterns are incorporated into the lookup table

called as edge table and an eight bit index (vertex-index) for each pattern in the edge

table is created based on the state (0/1) of the vertex as shown in Figure 6.9. The

edge table is referred using the vertex-index to determine the edges intersected by

the surface. The midpoint of the intersected cube’s edge is considered as the location

of the intersection, since the segmented image is in binary. Another lookup table,

known as triangle table is referred using the same vertex-index to determine the set

of triangles generated by the intersected edges.

                                 

               v0 v1 v2 v3 v4 v5 v6 v7 Vertex-Index  = 

Figure 6.9: Computation of Vertex-Index

6.1.5 3D Surface Mesh Simplification

Mesh simplification reduces the number of triangles in the reconstructed mesh. The

MC algorithm results in a large number of triangles in the reconstructed mesh of

the tumor, due to processing of small sized cubes. Hence, the mesh simplification

algorithm is needed for reducing the number of triangles in the mesh, and thereby

accelerating the rendering phase of the tumor. Among the existing mesh simplification

algorithms, QSlim (Garland and Heckbert 1997) and Memoryless Simplification (MS)

(Lindstrom and Turk 1998) are identified as the best algorithms with respect to

producing high quality simplified mesh models. But, both of these algorithms cannot

preserve important shape features such as highly curved regions, since their error
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metric is based on distance to the plane and volume loss, respectively. In order to

overcome these drawbacks, in the present work, a mesh simplification algorithm is

proposed, which iteratively collapses edges based on the error metric consisting of

curvature, volume loss and shape of adjacent triangles of the edge. Curvature factor

helps in identifying flat and curved regions in the mesh, and thus mesh simplification

can be performed in the flat regions while preserving the details of highly curved

regions. The volume loss measure in the error metric helps in preserving the shape of

the original model, whereas the shape of adjacent triangles of the collapsed edge helps

in avoiding skinny triangles, which do not contribute much to the mesh geometry.

The proposed algorithm has a two-phase greedy approach to simplifying the mesh.

In the first phase, priorities are assigned to internal vertices based on their curvature.

In the second phase, the edges of the highest priority vertex are analyzed and the edge

that causes minimum geometric deviation is collapsed. Table 6.1 shows the notations

used in the proposed mesh simplification algorithm.

Table 6.1: Notations Used in the Mesh Simplification Algorithm

Symbol Description

vi Vertex of mesh M

eij Edge of mesh M connecting vertices (vi, vj). vi and vj

are the start and end vertices of eij

t Triangular face of M with a set of edges {eij, ejk, eki}
and vertices {vi, vj, vk}

Tvi
Set of triangles incident on vertex vi

Teij
Set of triangles incident on edge eij

Evi
Set of edges incident on vertex vi

Nvi
Set of vertices in the neighbor of vertex vi

During the edge collapse operation, the start point (vi) of an edge is moved to the

position of the end point (vj) and the adjacent triangles of the edge are eliminated

as shown in Figure 6.10. Removal of boundary vertices may distort the shape of the

mesh, and hence edge collapse operation is performed only on internal vertices.
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Figure 6.10: Edge Collapse Operation

The two phases of the proposed mesh simplification algorithm are detailed below.

Phase-I: Assignment of Vertex Priority

In this phase, internal vertices of the mesh are prioritized based on the curvature at

a vertex in order to collapse more edges in flat regions and retain details of highly

curved regions. The curvature at a vertex vi is defined by using the mean and Gaussian

curvatures (Dyn et al. 2001) as given below:

Curvature(vi) =
√

2H2 −K (6.7)

where, H and K represent mean and Gaussian curvatures at a vertex, respectively

and they are defined by the following equations:

K =
2π −

∑n
j=1 αj

1
3
A

(6.8)

H =
1
4

∑n
j=1 ‖ ej ‖ βj

1
3
A

(6.9)

where, n is the number of adjacent triangles around vertex vi and A is the sum of the

areas of the adjacent triangles around a vertex vi. α denotes the angle between two

successive edges around vertex vi. ‖ ej ‖ and β denote the length and dihedral angle

of an edge ej connected to vertex vi, respectively.

After calculating the curvature, internal vertices of the mesh are ordered based

on the curvature. Vertex with the highest curvature is given the least priority and
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a vertex with the least curvature is given the highest priority. After assigning the

priorities, vertices are maintained in a heap with highest priority vertex at the top.

Phase-II: Edge Collapse

The sharp features of the surface cannot be preserved by considering only the cur-

vature of the vertex because the edge collapse operation also changes the shape of

the adjacent triangles. Thus, the highest priority vertex is eliminated by collapsing

the edge (eij ∈ Evi
) that causes minimum geometric distortion in its local neighbor-

hood; this edge is referred to as optimal edge (ho). In order to find ho, the volume

loss measure proposed by Lindstrom and Turk (1998), and the changes in shape of

the adjacent triangles are considered. An edge collapse eij : (vi, vj) → vj causes

each triangle t ∈ Tvi
to sweep out a tetrahedron volume defined by the four vertices

(vi, v1, v2, vj) as illustrated in Figure 6.11.
 

 

 
vi 

vi vj 
v1 

v2 

Figure 6.11: Volume Loss Caused by Edge Collapse Operation

The volume V (t) of the tetrahedron represents the volume loss or the geometric

deviation of the mesh due to the movement of triangle t(v1, v2, vi) and it is given by,

V (t) =
1

6
|(v1 − vi) · ((v2 − vi)× (vj − vi))| (6.10)

The geometric deviation S(t) introduced by the change in the triangle shape (Wang

et al. 2009) is defined by,

S(t) =
4
√

3A

l21 + l22 + l23
(6.11)

181



where, l1, l2, l3 are the lengths of the edges and A is the area of the triangle t. S(t)

takes values in the range [0 1], where 1 indicates equilateral triangle and 0 indicates

the collinear triangle. Finally, the total cost of collapsing an edge is given by,

Collapse Cost(eij) =
∑
t∈Tvi

V (t)(1− S(t)) (6.12)

For each edge eij ∈ Evi
, Collapse Cost(eij) is computed and the edge that has min-

imum Collapse Cost(eij) is considered as an optimal edge ho. The proposed mesh

simplification algorithm is summarized in Algorithm 6.2.

Algorithm 6.2 Mesh Simplification

Input: Mesh with a set of T triangles, V vertices, and E edges; Percentage of sim-
plification P%.

Output: Simplified mesh with reduced sets T, V and E.
1: Compute curvature at each internal vertex vi using Equation (6.7).
2: Compute the curvature threshold Th.

Th =

∑n
i=1Curvature(vi)

n
(6.13)

3: Form a set of candidate vertices CV for mesh simplification.
For each vi ∈ V , if Curvature(vi) < Th, then put vi in the candidate set CV .

4: Insert all the candidate vertices into the heap with highest priority vertex at the
top.

5: Perform edge collapse by selecting an optimal edge of the vertex.

• Remove top vertex from the heap.

• For each edge eij ∈ Evi
, compute Collapse Cost(eij) using Equation (6.12).

• Select the optimal edge ho ∈ Evi
based on the minimum Collapse Cost.

Collapse Cost(ho) = min{Collapse Cost(eij)|eij ∈ Evi
} (6.14)

• Collapse ho : (vi, vj) → vj, by eliminating triangles incident on the edge
(vi, vj) and substituting vj for every occurrence of vi in the left over triangles
in Tvi

. Update sets T, V,E

6: For each vi ∈ Nvi
, compute its curvature, and if it is less than the threshold then

put it in candidate set CV and update heap.
7: Repeat steps 5 to 6 until P% reduction of faces (triangles) is achieved or the

candidate set is empty.
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6.1.6 3D Surface Rendering

In the final step of 3D reconstruction, realistic effects are added to the surface of the

3D model by applying the Phong lighting and shading model (Foley et al. 1996).

Lighting model finds the intensity at a point on the surface using the vertex normal,

and the shading model applies the lighting model at each point on the surface to

shade the entire surface. The Phong lighting model considers diffuse, specular and

ambient reflections for identifying the intensity (I) at each point on the surface as

given below:

I = kaIa + kdIl(N.L) + ksIl(V.R)ns (6.15)

where ka, kd and ks denote ambient, diffuse and specular reflection coefficients whose

values lie in the range [0 1] based on the reflective property of the surface. Ia and

Il represent intensity of ambient light and point light source, respectively. N is the

unit normal surface vector and L is the unit vector directed toward the point light

source. V and R are unit vectors in the viewing and specular reflection directions,

respectively, and the parameter ns indicates the type of surface.

In order to shade the mesh, a unit normal (N) is calculated at each vertex of the

mesh by taking the average of adjacent triangle normals as given below:

N =
(n1 + n2 + .....+ nk)

k
(6.16)

where, ni is a unit normal vector of an adjacent triangle of a vertex and it is computed

by,

ni =
(P1 − P3)× (P2 − P3)

‖ (P1 − P3)× (P2 − P3) ‖
(6.17)

where, (P1, P2, P3) are the vertices of a triangle. The unit normal computed at each

vertex of the mesh are used for identifying the intensity at each point on the surface.

In the present work, the Phong shading model is used as it gives more realistic

shadings compared to the Gouroud shading model. It shades the given surface by

linearly interpolating the vertex unit normal. The normals along the polygon edges

are obtained by interpolating vertex normals of the edge. Then the normals across

the polygon scan line are obtained by interpolating the starting and ending normal of

the scan line as shown in Figure 6.12. Once all normals are computed, Phong lighting

model is applied along each scan line to calculate intensities on the surface.
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Figure 6.12: Interpolation of Vertex Normals

6.1.7 3D Tumor Volume Computation

The volume of the tumor is the vital information that can be extracted from the

3D model of tumor for determining the stage/severity of the cancer and treatment

planning. In the present work, the tumor region is detected automatically on each

abnormal slice based on the proposed segmentation method, and then the tumor

volume is estimated by considering the slice thickness, inter-slice gap and area of the

tumor on each abnormal slice.

Tumor V olume = (Interslice Gap + Slice Thickness) ∗ (
n∑

i=1

Ai) (6.18)

Where, n indicates the total number of abnormal slices, and A is area of tumor on

each abnormal slice. The area of the tumor is computed by considering the pixels in

the tumor region as given below:

Ai = No. of pixels in the tumor region on slice i ∗ Pixel Dimension (6.19)

6.2 Experimental Results

The performance of the 3D reconstruction of brain/liver tumor is measured in terms of

effectiveness and efficiency. The effectiveness of the proposed enhanced shape-based

interpolation technique is verified by estimating a known slice. In this procedure,

three consecutive slices Si, Si+1, Si+2 are taken from the set of brain/liver slices;

slices Si and Si+2 are considered as input to the proposed interpolation algorithm for
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estimating slice S ′i+1. The estimated slice S ′i+1 is compared with the original slice Si+1

using the overlap-based error measure, which is defined as the ratio of the wrongly

estimated pixels with respect to the area of the reference slice (Si+1) as given below:

ε(Si+1, S
′
i+1) =

card(Si+14 S ′i+1)

card(Si+1)
(6.20)

where, 4 is the symmetric difference and card is the cardinal function. The ef-

fectiveness of the proposed mesh simplification algorithm is measured by evaluating

the quality of the simplified mesh of the tumor using Symmetric Hausdorff Distance

(SHD). It estimates the mesh simplification error by measuring the distance between

the original and simplified mesh. The SHD is defined using the following equation:

SHD(M1,M2) = max

(
max
v∈M1

dv(M2), max
v∈M2

dv(M1)

)
(6.21)

where, M1 and M2 are the original and simplified meshes of the tumor. dv(M2) is

the minimum distance from vertex v of mesh M1 to the closest vertex of mesh M2,

and dv(M1) is the minimum distance from vertex v of mesh M2 to the closest vertex

of mesh M1.

The efficiency of the proposed 3D reconstruction scheme is measured in terms of

the amount of time required for reconstructing the 3D model of the tumor from a set

of abnormal slices. The 3D reconstruction results of the brain and liver tumors are

given Section 6.2.1 and Section 6.2.2, respectively.

6.2.1 3D Brain Tumor Reconstruction Results

This section discusses the results of the experiments carried out on T2-weighted MRI

images of 550 patients (benign: 280, malignant: 270). The scan of each patient

produced a set of 22 slices having a thickness of 5 mm. The detailed description of

the dataset is already given in Section 2.8. The 3D reconstruction experiments are

carried out on T2-weighted MRI images because the T2-weighted MRI image provides

better contrast between tumor, edema and other regions of the brain when compared

to T1-weighted post-contrast MRI image. Thus, T2-weighted MRI image helps in

effective segmentation of the tumor for accurate 3D reconstruction of the tumor.
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Effectiveness of 3D Reconstruction Scheme

The MRI scan of the brain produces a set of slices containing normal (without tumor)

and abnormal slices (with tumor) as shown in Figure 6.13.
 

 

 

 
Figure 6.13: Set of Brain Slices obtained by MRI Scan

The abnormal slices are identified from the given set of brain MRI slices and the

tumor is segmented on each abnormal slice using the proposed segmentation method

based on MFCM clustering as shown in Figure 6.14.

 

Figure 6.14: Set of Brain Tumor Segmented Slices
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After the tumor segmentation, 2D tumor contours are arranged exactly in real

spatial positions; this forms the volume data of the tumor. The x and y coordinates

of a pixel in the 3D space are the row and the column numbers of the corresponding

pixel in the 2D image matrix, and the z coordinate of the pixel is determined by the

MRI slice number. Then x, y, and z coordinates are used to index the 3D matrix

containing multiple images of the tumor to plot the volume data in the 3D space as

shown in Figure 6.15. The stacking of the tumor contours in the 3D space is shown

in Figure 6.15(a) and Figure 6.15(b) shows the missing slices estimated by applying

the proposed enhanced shape-based interpolation technique on the sequential slices

shown in Figure 6.15(a).

                       

  (a) (b)     

Figure 6.15: Tumor Contours:(a) Before Interpolation (b) After Interpolation

Table 6.2 shows the performance comparison of three interpolation methods in

estimating missing slices: LG-linear gray level interpolation, SO-original shape-based

interpolation, SE-enhanced shape-based interpolation (proposed method) in terms of

overlap-based error(ε). Four sets of tumor slices {Si, Si+1, Si+2} are taken from each of

the 550 cases in the dataset. Slices Si and Si+2 are given as input to the interpolation

method to estimate slice S ′i+1. Next, the overlap-error is computed with Si+1 and

S ′i+1. It is observed that the LG interpolation method gives the worst performance

with ε < 12%, since it cannot capture the geometrical details of the tumor. The SO

method captures the geometrical details of the tumor, but it gives ineffective results

as it is dependent on city-block DT and it cannot handle drastic shifts of the tumor

regions. Hence, SO method shows moderate performance with ε < 9%. The proposed

SE method outperforms (ε < 5%) other interpolation methods, since it captures well

the geometry of the tumor based on chamfer DT and center alignment of tumors.
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The error (ε < 5%) may lead to small artifacts in the 3D surface of the tumor and

hence some features of the tumor may get distorted.

Table 6.2: Performance Comparison of Interpolation Methods

Dataset Slices Overlap-Based Error(ε%)

{Si, Si+1, Si+2} LG SO SE

6, 7, 8 6.91 5.22 4.03

MRI 9, 10, 11 8.07 6.24 3.91

11, 12, 13 11.17 8.79 3.33

14, 15, 16 5.38 2.93 2.77

After the Inter-slice interpolation, surface mesh of the brain tumor is reconstructed

using the MC algorithm. In order to reduce the number of triangles, the mesh is

simplified using the proposed mesh simplification algorithm. The effectiveness of

the proposed mesh simplification algorithm is demonstrated by presenting images of

simplified models and error graphs. Figure 6.16 shows the simplified meshes and

the corresponding rendered 3D models of the brain tumor along with the percentage

of faces simplified (P%) and the number of faces retained in the simplified model.

In order to analyze the effectiveness, the original model is simplified at different

levels (40%, 60%, 80%). It is observed that even at 60% reduction the simplified

model retains the sharp features of the original model, and the simplified model gets

distorted when the reduction is more than 70%.

The quality of the simplified models of the brain tumor generated by the proposed

mesh simplification algorithm is evaluated using symmetric Hausdorff distance (SHD)

between original and simplified models of the tumor. Figure 6.17 shows the compar-

ison of the proposed method with other state-of-the-art mesh simplification methods

such as QSlim (Garland and Heckbert 1997), MS (Lindstrom and Turk 1998), and

FSIMP (Hussain 2008). This comparison is based on average SHD computed with

respect to simplified tumor models of all 550 cases in the dataset.

It is observed that the proposed method is more effective (SHD < 0.6 mm)

when compared to other methods as it is based on selecting edge contractions with

minimum effect on curvature, volume and shape of adjacent triangles. The mesh

simplification error SHD < 0.6 mm may lead to small variations in the tumor volume
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and difficulty in estimating the stage of cancer. The FSIMP selects the vertex and

its edge for removal based on the curvature, but simplified models are not of good

quality (SHD < 0.8 mm) because of the significant volume loss. The QSlim and MS

                                                                 

        (a) Original Mesh (P=0%, Faces=6116)                                   (e) Original 3D Model (P=0%, Faces=6116) 

                                                                         

 

(b) Simplified Mesh (P=40%, Faces=3669)                              (f) Simplified 3D Model (P=40%, Faces=3669) 

                                                                                                            

     (c) Simplified Mesh (P=60%, Faces=2446)                               (g) Simplified 3D Model (P=60%, Faces=2446) 

                                                                            

      (d) Simplified Mesh (P=80%, Faces=1223)                               (h) Simplified 3D Model (P=80%, Faces=1223) 

Figure 6.16: Mesh Simplification of Brain Tumor

methods perform mesh simplification using the error metrics based on the distance of

a vertex to the plane and volume loss, respectively. These methods do not consider

the curvature of the mesh and hence cannot preserve the sharp details of the mesh
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in the simplified models. Therefore, QSlim and MS methods show poor performance

with SHD < 1 mm and SHD < 1.12 mm, respectively.
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Figure 6.17: Comparison of Mesh Simplification Methods with SHD

The mean volume of the tumor obtained by manual (radiologist) and proposed

automatic methods are 12359 mm3 and 12312 mm3, respectively. The reconstructed

3D model of the tumor can also be rotated so that the radiologist can analyze the

structure of the tumor thoroughly. The two views of the 3D brain tumor are shown in

Figure 6.18. The surface of the brain can also be reconstructed using the proposed 3D

                                

Figure 6.18: Two Views of the 3D Brain Tumor Obtained by Rotation

reconstruction approach, but by considering the brain region instead of the tumor.
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Using the proposed approach, various types of cuts can also be performed on the

brain by the radiologist to understand the tumor growth as shown in Figure 6.19. The

traverse cut shown in Figure 6.19(a) helps the radiologist to determine the location

of the tumor in the brain. The longitudinal cut shown in Figure 6.19(b) helps the

radiologist to understand the growth and complexity of the tumor.

                        

(a) (b)  

 

 

Figure 6.19: Cuts of the 3D Brain (a) Traverse Cut (b) Longitudinal Cut

Efficiency of the 3D Reconstruction Scheme

This section discusses the time complexity of the proposed 3D reconstruction scheme.

The 3D reconstruction of brain tumor consists of various phases such as segmentation,

inter-slice interpolation, mesh generation, mesh simplification and rendering. The

following list of notations is used for computing time complexity of the proposed 3D

reconstruction scheme.

• Let G be the number of gray levels in the image histogram, C be the number

of clusters in the brain region, I be the number of iterations required for the

clustering algorithm to converge.

• Let N be the total number of pixels in the image and D be the number of cubes

processed in the 3D reconstruction of the tumor mesh.

• Let V , E and R be the number of vertices, edges, triangles in the original mesh,

respectively. R′ be the reduced set of triangles in the simplified mesh.
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The segmentation phase detects the tumor on abnormal slice using the proposed

segmentation method based on MFCM clustering, and hence its time complexity is

O(ICG) as discussed in Chapter 3.

The proposed enhanced shape-based interpolation algorithm has a time complex-

ity of O(N) as it computes the chamfer Distance Transform (DT) by making two

passes over the image. The marching cubes (MC) algorithm processes D cubes to

generate the 3D surface mesh of the tumor and hence it has a time complexity of

O(D).

The time complexity of the proposed mesh simplification algorithm is dependent

on the heap data structure used to maintain a set of vertices for mesh simplification.

The heap is built with V vertices and hence the time complexity of building the heap

is O(V ). During the mesh simplification, V deletions are performed on the heap.

In order to delete a single vertex from the heap, the root vertex is exchanged with

(V − 1)th vertex, and the heap is recreated for (V − 1) vertices. The recreation of the

heap is dependent on the height of the tree and hence the time complexity to recreate

heap for (V − 1) vertices is 2log2(V − 1). The time complexity T (V ) for V deletions

is computed based on heaps of diminishing sizes from V to 2 as given below.

T (V ) ≤ 2log2(V − 1) + 2log2(V − 2) + .....+ 2log21

≤ 2
V−1∑
i=1

log2i

≤ 2
V−1∑
i=1

log2(V − 1)

≤ 2(V − 1)log2(V − 1)

≤ 2V log2V

(6.22)

Therefore, the time complexity for V deletions from the heap is O(V log2V ). The

overall time complexity of heap creation and deletion with V vertices is [O(V ) +

O(V log2V )] ≈ O(V log2V ).

During the mesh simplification, the edges of the vertices in the flat regions are

eliminated from the mesh and hence the number of triangles is reduced from R to R′

in the simplified mesh. The simplified mesh with a reduced set of triangles is input to

the rendering phase, which processes these triangles to shade the surface of the mesh.

Hence, the time complexity of the rendering phase is O(R′). The radiologist’s time in
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the analysis of 3D tumor is reduced by 60%, since the proposed mesh simplification

algorithm can remove 60% of the triangles from the mesh without any distortion. The

time complexity of different phases of the 3D reconstruction scheme is summarized

in Table 6.3.

Table 6.3: Time Complexity of Different Phases of 3D Reconstruction of Brain Tumor.

3D Reconstruction Phase Time Complexity

Segmentation O(ICG)

Interpolation O(N)

Mesh Generation O(D)

Mesh Simplification O(V log2V )

Rendering O(R′)

The MFCM clustering used in the segmentation phase is efficient as it clusters the

image based on the gray levels in the image histogram instead of pixels in the image.

Unlike the city-block distance in the original shape-based interpolation method (Raya

and Udupa 1990), the chamfer distance in the proposed enhanced shape-based inter-

polation provides a good approximation to the Euclidian distance, and also has a lesser

time complexity (O(N)) when compared to that of the Euclidian DT (O(N2)). Fur-

ther, the proposed mesh simplification algorithm is more efficient when compared the

state-of-the art mesh simplification algorithms such as QSlim (Garland and Heckbert

1997) and MS (Lindstrom and Turk 1998). This is because the proposed algorithm

iteratively selects the vertex with least curvature and collapses its optimal edge, and

hence it has a time complexity of O(V log2V ), whereas the QSlim and MS algorithms

perform mesh simplification by selecting the edge that causes minimum geometric

deviation, and hence their time complexity is O(Elog2E). The rendering phase of the

proposed 3D reconstruction scheme is also accelerated, since the mesh with a reduced

set of triangles R′ is given as input to the rendering phase.

6.2.2 3D Liver Tumor Reconstruction Results

This section discusses the results of the 3D reconstruction experiments carried out

on non-contrast-enhanced abdominal CT images of 487 patients (benign:247, malig-
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nant:240). The detailed description of the dataset is already given in Section 2.8.

Effectiveness of 3D Reconstruction Scheme

The CT scan of the liver produces a set of 32 slices containing normal (without

tumor) and abnormal slices (with tumor) as shown in Figure 6.20. The liver tumor

is segmented on each abnormal slice as shown in Figure 6.21.

 

Figure 6.20: Set of Liver Slices obtained by CT Scan

 

Figure 6.21: Set of Liver Tumor Segmented Slices
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After the tumor segmentation, a volume data is formed in the 3D space by ar-

ranging 2D tumor contours exactly in real spatial positions. Then, missing slices in

the volume data are estimated using the proposed enhanced shape-based interpola-

tion technique. The effectiveness of the proposed enhanced shape-based interpolation

is evaluated using overlap-based error measure, which is computed using Equation

(6.20). Table 6.4 shows the comparison of the effectiveness of three interpolation

methods: LG-linear gray level interpolation, SO-original shape based interpolation,

SE-enhanced shape-based interpolation (proposed method). Four sets of liver tumor

slices {Si, Si+1, Si+2} are taken from each of the 487 cases in the dataset. Slices Si

and Si+2 are given as input to the interpolation method to estimate slice S ′i+1. Next,

the overlap-error is computed with Si+1 and S ′i+1.

Table 6.4: Comparison of Interpolation Methods

Dataset Slices Overlap-Based Error(ε%)

{Si, Si+1, Si+2} LG SO SE

6,7,8 7.05 6.54 3.33

CT 8,9,10 6.67 3.12 1.07

10,11,12 11.17 8.79 4.19

11,12,13 13.35 9.48 4.36

It is observed that the LG interpolation method gives the worst performance with

ε < 14%, since it cannot capture the geometrical details of the tumor. The SO method

captures the geometrical details of the tumor, but it gives ineffective results as it is

dependent on city-block DT and it cannot handle drastic shifts of the tumor regions.

Hence, SO method shows moderate performance with ε < 10%. The proposed SE

method outperforms (ε < 5%) other interpolation methods, since it captures well the

geometry of the tumor based on chamfer DT and center alignment of tumors. The

error (ε < 5%) may lead to small artifacts in the 3D surface of the tumor and hence

some features of the tumor may get distorted.

The effectiveness of the proposed mesh simplification algorithm is demonstrated

by presenting images of simplified models and error graphs. Figure 6.22 shows the

simplified meshes and the corresponding rendered 3D models of liver tumors along

with the percentage of faces simplified (P%) and the number of faces retained in the
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simplified model. In order to analyze the effectiveness, the original model is simplified

at different levels (40%, 60%, 80%). It is observed that even at 60% reduction the

simplified model retains the sharp features of the original model, and the simplified

model gets distorted when the reduction is more than 70%.

                                                                                

       a. Original Mesh (P=0%, Faces=4794)                                     e. Original 3D Model (P=0%, Faces=4794) 

                                                                                 

b. Simplified Mesh (P=40%, Faces=2876)                               f. Simplified 3D Model (P=40%, Faces=2876) 

                                                                                 

         c. Simplified Mesh (P=60%, Faces=1917)                              g. Simplified 3D Model (P=60%, Faces=1917) 

                                                                                 

d. Simplified Mesh (P=80%, Faces=958)                                  h. Simplified 3D Model (P=80%, Faces=958) 

  Figure 6.22: Mesh Simplification of Liver Tumor

The quality of the simplified models of the liver tumor generated by the proposed

mesh simplification algorithm is evaluated using symmetric Hausdorff distance (SHD)
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between original and simplified models of the tumor. Figure 6.23 shows the compar-

ison of the proposed method with other state-of-the-art mesh simplification methods

such as QSlim (Garland and Heckbert 1997), MS (Lindstrom and Turk 1998), and

FSIMP (Hussain 2008). This comparison is based on average SHD computed with

respect to simplified tumor models of all 487 cases in the dataset.
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Figure 6.23: Comparison of Mesh Simplification Methods

It is observed that the proposed method is more effective (SHD < 0.7 mm)

when compared to other methods as it is based on selecting edge contractions with

minimum effect on curvature, volume and shape of adjacent triangles. The mesh

simplification error SHD < 0.7 mm may lead to small variations in the tumor volume

and difficulty in estimating the stage of cancer. The FSIMP selects the vertex and

its edge for removal based on the curvature, but simplified models are not of good

quality (SHD < 1 mm) because of the significant volume loss. The QSlim and MS

methods perform mesh simplification using the error metrics based on the distance of

a vertex to the plane and volume loss, respectively. These methods do not consider

the curvature of the mesh, and hence cannot preserve the sharp details of the mesh

in the simplified models. Therefore, QSlim and MS methods show poor performance

with SHD < 1.1 mm and SHD < 1.3 mm, respectively.

The mean volume of the tumor obtained by manual (radiologist) and proposed

automatic methods are 10657 mm3 and 10415 mm3, respectively. Thus, the volume

obtained by the proposed method is close to the radiologist’s result. The proposed
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method of volume computation is automatic, and hence efficient. Whereas in the

manual method radiologist marks the tumor on each abnormal slice to compute the

volume based on the slice gap and thickness, and hence manual method is tedious

and time consuming. The reconstructed 3D model of the liver tumor can also be

rotated so that the radiologist can analyze the structure of the tumor thoroughly,

and the two views of the 3D liver tumor are shown in Figure 6.24. The surface of

the liver can also be reconstructed using the proposed 3D reconstruction approach,

but by considering the liver region instead of the tumor region. The radiologist can

perform various types of cuts on the liver based on the proposed 3D reconstruction

scheme to understand the tumor growth as shown in Figure 6.25. The traverse cut

                         

 

 

 

Figure 6.24: Two Views of the 3D Liver Tumor Obtained by Rotation

                       
(b) (a)  

 

              

 

Figure 6.25: Cuts of the 3D Liver (a) Traverse Cut (b) Longitudinal Cut
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shown in Figure 6.25(a) helps the radiologist to determine the location of the tumor

in the liver. The longitudinal cut shown in Figure 6.25(b) helps the radiologist to

understand the growth and complexity of the tumor.

Efficiency of the 3D Reconstruction Scheme

This section discusses the time complexity of the proposed 3D reconstruction scheme.

The 3D reconstruction of liver tumor consists of various phases such as segmentation,

inter-slice interpolation, mesh generation, mesh simplification and rendering. The fol-

lowing list of notations is used in the computation of time complexity of the proposed

3D reconstruction scheme for liver tumor.

• Let G be the number of gray levels in the image, C be the number of clusters in

the liver region, I be the number of iterations required for clustering algorithm

to convergence. M be the total number of pixels in the tumor region. H and

W be the height and width of the neighborhood of each pixel, respectively.

• Let N be the total number of pixels in the image. D be the number of cubes

processed in the 3D reconstruction of the tumor mesh.

• Let V , E and R be the number of vertices, edges, triangles in the original mesh,

respectively. R′ be the reduced set of triangles in the simplified mesh.

The time complexity of different phases of the 3D reconstruction scheme is sum-

marized in Table 6.5.

Table 6.5: Time Complexity of Different Phases of 3D Reconstruction of Liver Tumor

3D Reconstruction Phase Time Complexity

Segmentation O(ICG) +O(MHW )

Interpolation O(N)

Mesh Generation O(D)

Mesh Simplification O(V log2V )

Rendering O(R′)

The segmentation phase detects the liver tumor on abnormal slice using the pro-

posed segmentation method based on the automatic region growing algorithm, and
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hence its time complexity is O(ICG)+O(MHW ) as discussed in Chapter 3. All other

phases have time complexity similar to that of the brain tumor reconstruction phases

and these time complexities are already discussed in Section 6.2.1. The proposed 3D

reconstruction scheme improves the efficiency of segmentation, interpolation, mesh

simplification and rendering phases, and thus helps in building the 3D model of the

tumor in less amount of time. Overall, the radiologist’s time in the analysis of 3D tu-

mor is reduced by 60%, since the proposed mesh simplification algorithm can remove

60% of the triangles from the mesh without any distortion.

6.3 Summary

This chapter discussed the proposed 3D reconstruction scheme for building the 3D

model of the tumor and for computing the tumor volume. The proposed enhanced

shape-based interpolation and mesh simplification algorithms improve the effective-

ness and efficiency of the 3D reconstruction scheme. The experimental results demon-

strated that the proposed enhanced shape-based interpolation method is effective in

estimating brain/liver tumor slices with the error (ε) less than 5%, and it is also

efficient as it is dependent on n-neighbor chamfer distance transform. The proposed

mesh simplification method is able to retain the curved regions in the simplified mesh

even at 60% reduction in the number of triangles of the mesh and it is also efficient

as it collapses the edges of vertices only in the flat regions of the mesh. Further, the

mesh simplification algorithm helped to accelerate the rendering phase by generating

a 3D model with less number of triangles. Thus, the proposed 3D reconstruction

scheme can assist the radiologist in building the accurate 3D model of the brain/liver

tumor in less amount of time.
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Chapter 7

Conclusion and Future Work

The accurate diagnosis of brain and liver tumors is crucial for effective treatment

of the patient. The needle biopsy provides confirmed diagnosis of the tumor, but

it is an invasive technique. Further, the diagnosis of the tumor by the radiologist

based on visual analysis is time consuming, subjective and inaccurate. Therefore, the

CAD system is essential to assist the radiologist in fast and accurate diagnosis of the

cancer. But, the existing CAD methods do not provide the automation, accuracy and

efficiency required in the medical domain. Hence, the research work in this thesis is

directed towards the development of an automatic, effective and efficient CAD system

for detection, classification, CBIR and 3D reconstruction of brain and liver tumors.

The first set of contributions of this thesis attempts to address the tumor detec-

tion problem by proposing automatic, effective and efficient segmentation techniques

for detection of brain and liver tumors on MRI and CT images, respectively. The

segmentation technique based on Modified Fuzzy C-means (MFCM) clustering algo-

rithm is proposed to detect the brain tumor on the MRI image. The proposed MFCM

clustering algorithm is effective as it automatically determines the initial cluster cen-

ters, performs clustering based on fuzzy membership matrix and contains an effective

objective function to provide compact and well separated clusters. The MFCM clus-

tering algorithm is also efficient as it performs clustering based on the gray level

histogram instead of pixels in the image. The segmentation technique based on the

automatic region growing algorithm is proposed to detect the liver tumor on the ab-

dominal CT image. The proposed automatic region growing algorithm automatically

determines the seed point and threshold by combining MFCM clustering algorithm

with the region growing algorithm. Thus, the proposed technique is effective and
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efficient. The experimental results show that the proposed segmentation techniques

achieve good agreement with the gold standard and these techniques are also more

efficient when compared to the existing tumor segmentation techniques. However,

there is a scope for further improvement of the proposed segmentation techniques as

given below:

• The computational efficiency of the MFCM clustering algorithm can be fur-

ther improved by developing a parallel MFCM clustering algorithm, since the

computation of cluster centers and member matrix is sequential and time con-

suming.

• The automatic region growing algorithm grows the region by analyzing all neigh-

borhood pixels of each seed pixel, and thus the region growing process is time

consuming. Hence, the proposed automatic region growing algorithm can be

further made computationally efficient by parallelizing the region growing steps.

• The proposed MFCM clustering and automatic region growing algorithms could

not effectively detect the boundary of the tumor region in case of blurred edges.

Hence, these algorithms can be combined with edge detection or deformable

model approaches to detect an exact boundary of the tumor region.

The second set of contributions of this thesis targets for effective and efficient

tumor classification scheme for identifying the type of brain/liver tumor as benign or

malignant. In the proposed scheme, the characteristics of the tumor are represented

by extracting significant features of the tumor such shape, texture and boundary

features. In order to provide the effective and efficient classification, the dimension-

ality of the feature vector is reduced using the proposed two-level feature selection

technique consisting of Information Gain (IG) based feature ranking and Indepen-

dent Component Analysis (ICA) based feature selection methods. The effectiveness

of the tumor classification is further improved by using the proposed ensemble classi-

fier consisting of three classifiers: Support Vector Machine (SVM), Artificial Neural

Network (ANN) and k-Nearest Neighbor (k-NN). The experimental results show that

the ensemble classifier achieves more accurate tumor classifications when compared to

single classifiers and radiologists. Further, the proposed scheme is efficient as it uses

reduced feature vector rather than a complete feature vector of the tumor. In future,

the proposed tumor classification scheme can be enriched to handle the following

issues:
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• Investigate and quantify the features extracted from other imaging modalities

(such as magnetic resonance spectroscopy and ultrasonogrphy) and fuse them

with the features employed in the present work to improve the classification

accuracy.

• More extensive training using larger datasets is expected to further improve the

generalization ability of the proposed classification scheme.

• The tumor classification performed by SVM, ANN and k-NN classifiers in the

ensemble is sequential and hence these classifications can be parallelized to

further improve the classification efficiency.

The third set of contributions of this thesis aim for Content-Based Image Retrieval

(CBIR) of brain and liver tumor images from the database to assist the radiologist in

the diagnosis of brain and liver tumors based on relevant cases. In this direction two

effective and efficient CBIR methods are proposed based on image rotation correction

and rotation invariant features. The semantic gap problem in CBIR is addressed by

using a hierarchical CBIR framework with separate set of features for representing

the class and subclass of the tumor. An efficient indexing structure called as CIKD

is proposed for fast retrieval of images from the database. The proposed modified

k-means clustering algorithm effectively clusters the tumor features in the database

by automatically identifying the number of clusters and initial cluster centers. The

experimental results demonstrate that the proposed CBIR methods are robust to

misalignment of images, and also accurate and efficient in retrieving similar pathol-

ogy bearing tumor images from the database. The proposed CBIR methods can be

augmented to incorporate the following challenges through future research:

• The accuracy of the CBIR can be further improved by combining visual and

text features such as the image descriptions provided by the physician in the

diagnostic reports.

• The proposed CBIR methods are meant for specific imaging modality such as

MRI of the brain and CT of the liver. Thus, the proposed methods can be

extended to work for database consisting of the brain and liver tumor images

obtained from different imaging modalities.

The fourth set of contributions of this thesis attempt to develop effective and ef-

ficient 3D reconstruction scheme for building the 3D model of the brain/liver tumor
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to assist the radiologist in understanding the complexity of the tumor and planning

the treatment. The 3D reconstruction scheme consists of the proposed enhanced

shape-based interpolation algorithm for estimating the missing slices of the tumor.

This algorithm overcomes the drawback of the original shape-based interpolation

algorithm by including chamfer distance transform and center alignment in the inter-

polation process. The 3D surface mesh of the tumor is generated using the marching

cubes algorithm. In order to accelerate the rendering phase for interactive medical

applications, the number of triangles in the reconstructed mesh is reduced using the

proposed mesh simplification algorithm. The experimental results demonstrate that

the proposed shape-based interpolation is more effective and efficient when compared

to the existing interpolation techniques. The proposed mesh simplification algorithm

preserves the sharp details of the mesh in the simplified models, and hence it is su-

perior when compared to the existing mesh simplification algorithms. The further

investigation should focus on the following issues:

• The marching cubes (MC) algorithm is computationally expensive due to the

sequential processing of small sized cubes for reconstructing the 3D mesh of

the tumor. Hence, the MC algorithm should be parallelized to improve the

efficiency.

• The mesh generated by the MC algorithm is piecewise linear approximation

to the original surface, and thus the reconstructed surface consists of staircase

artifacts. Hence, the quality of the reconstructed surface can be improved by

smoothing the generated mesh.

• The visual attributes like intensity, texture and viewing parameters can be

included in the proposed mesh simplification scheme to perform appearance

preserving and view-dependent simplification.

Finally, the future work is needed to evaluate how effective are the proposed

techniques (segmentation, classification, CBIR and 3D reconstruction) when used by

the radiologist in the analysis of brain and liver tumors. This evaluation helps to

determine the usefulness of the proposed CAD system in the clinical environment.

It also helps to determine the diagnosis accuracy when the entire diagnosis process

is automated and there is no involvement of the radiologist. Thus physicians can

determine whether their accuracy and efficiency is improved with the support of the

CAD system.
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To summarize, this thesis proposes automatic, effective and efficient solutions to

the problems related to computer-aided tumor detection, classification, CBIR and 3D

reconstruction for providing the assistance to the radiologist in the accurate and fast

diagnosis of brain and liver tumors.
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Appendix 1

Graphical User Interface

The graphical user interface (GUI) is a human-computer interface that allows the

users to communicate with the applications using windows, menus, image and symbols

rather than text commands. In this appendix, we present the easy-to-use and user-

friendly GUI designed to provide an interaction with the developed CAD system for

the diagnosis of brain and liver tumors. The radiologist can access various tumor

analysis tasks such as tumor detection, classification, Content-Based Image Retrieval

(CBIR) and 3D reconstruction through the GUI.

Figure 7.1 shows the main window of the GUI for CAD system. The radiologist

can select the type of task which he/she wants to perform on the liver/brain tumor.

 

Figure 7.1: Main Window of the GUI for CAD System
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Based on the selection, the corresponding window of the tumor analysis task

will be opened. The output obtained from the task provides second opinion to the

radiologist for making diagnostic decisions. The details of the GUI for the different

modules of the CAD system are given below.

Tumor Detection and Classification

When the radiologist selects the brain and classification task, the window shown in

Figure 7.2 will be opened. Here the radiologist can choose the image of the slice in

which he/she wants to detect the tumor or identify the type of detected tumor as

benign or malignant. If the slice chosen is normal, then the message is displayed

indicating that the slice is normal and does not contain tumor. Otherwise, the region

of the tumor on the abnormal slice is detected and marked on the image. The type

of the tumor is displayed as benign or malignant when the classify button is clicked

as shown in Figure 7.2. Similar operations can be performed by selecting the liver in

the main window of the GUI. 

 Figure 7.2: GUI for Tumor Segmentation and Classification
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Content Based Image Retrieval of Tumor

Figure 7.3 shows the GUI for the CBIR system along with the retrieved brain images.

It can be seen that the query image and retrieved images contain the benign tumor.

With the help of a GUI, the user can select a query image and the number of images

to be retrieved from the database. The retrieved images are ranked by degree of

similarity to the query image. The top 12 most similar images are retrieved and

displayed along with the patient data in response to the query image as shown in

Figure 7.3. Further, the retrieval results can be refined for detailed analysis based on

the age and gender of the patient. Then, the radiologist can study the characteristics

of the retrieved tumors and also refer diagnostic report to know the severity and

prescribed treatment of the corresponding cases. All these parameters assist the

radiologist in the diagnosis of the brain tumors. Similar operations can be performed

by selecting the liver in the main window of the GUI.
 

 

 

 
Figure 7.3: GUI for Content-Based Image Retrieval

3D Reconstruction of Tumor

The GUI for the 3D reconstruction of brain/liver tumor provides the facility for the

radiologist to view the 3D model of the tumor and rotate the 3D model to have
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multiple views of the tumor as shown in Figure 7.4. In order to determine the stage

of cancer, the radiologist can measure the volume of the 3D tumor on clicking the

volume button. The radiologist can also cut the brain/liver surface by selecting

traverse or longitudinal cut in the GUI. These cuts help the radiologist to understand

the complexity and growth of the tumor in the brain/liver. 

 

Figure 7.4: GUI for 3D Reconstruction of Tumor
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