
PSEUDORANDOM NUMBERS AND ELLIPTIC
CURVES OVER FINITE FIELDS

Thesis

Submitted in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

by

KARUNA KAMATH K

DEPARTMENT OF MATHEMATICAL AND COMPUTATIONAL

SCIENCES

NATIONAL INSTITUTE OF TECHNOLOGY KARNATAKA,

SURATHKAL, MANGALORE - 575 025

DECEMBER 2012

DECLARATION

by the Ph.D. Research Scholar

I hereby declare that the Research Thesis entitled PSEUDORANDOM NUM-

BERS AND ELLIPTIC CURVES OVER FINITE FIELDS which is being

submitted to the National Institute of Technology Karnataka, Surathkal in

partial fulfillment of the requirements for the award of the Degree of Doctor of Phi-

losophy in Mathematics is a bonafide report of the research work carried out by

me. The material contained in this Thesis has not been submitted to any University

or Institution for the award of any degree.

MA05P02 KARUNA KAMATH K

(Register Number, Name Signature of the Research Scholar)

Department of Mathematical and Computational Sciences

Place: NITK, Surathkal

Date:

CERTIFICATE

This is is to certify that the Research Thesis entitled, PSEUDORANDOM NUM-

BERS AND ELLIPTIC CURVES OVER FINITE FIELDS submitted by

Karuna Kamath K (Register Number: MA05P02) as the record of the re-

search work carried out by her, is accepted as the Research Thesis submission in

partial fulfillment of the requirements for the award of the degree of Doctor of

Philosophy.

Dr.Murulidhar N N Dr. B.R. Shankar

Chairman - DRPC Research Guide

Professor and Head Department of Mathematical

Department of Mathematical and Computational Sciences

and Computational Sciences

Acknowledgement

I am genuinely obliged to many persons who have greatly inspired and supported me

during my research work at National Institute of Technology Karnataka.

I am indebted to my research guide Dr. B.R Shankar, for showing his extraor-

dinary patience and perseverance in order to motivate me, and for providing his

immense knowledge and wisdom to my easy and ready access. In all humbleness and

reality of my position as a student to him I acknowledge his guidance as his commit-

ment made to me. His guidance helped me during my research work and writing the

thesis. His wisdom, knowledge and commitment inspired and motivated me.

I would like to thank Dr.Murulidhar N N,Professor and Head,MACS Department

for extending all the facilities during my research work.

Dr. S. M. Hegde, Professor, Department of MACS, National Institute of Tech-

nology Karnataka and Dr. Lakshman Nandagiri, Professor and Head, Department

of Applied Mechanics and Hydraulics, National Institute of Technology Karnataka

are reverently remembered for their significant and momentary comments as RPAC

members during my research work.

The co-operation and support showed by all of the MACS, NITK faculty shall

always be fondly remembered by me and for making me feel at-home during my stay

in there.

I am greatly thankful to The President, Nitte Education Trust, Mangalore and

The Principal, NMAM Institute of Technology, Nitte, for facilitating the research

study besides resourcing with the necessary and essential support.

I would like to thank Dr. K.M.Hegde, Director, Department of Computer Appli-

cations, NMAM Institute of Technology, Nitte, for his constant support and guidance.

My sincere thanks to Mr. Manjunath Pai, Associate Professor,Department of Elec-

tronics and Communication Engineering, NMAMIT, Nitte for his support and idea.

My very special thanks are extended to Mr. Raveeshwar for availing me his

wonderful technical support and my fellow-research-scholars, Dr. Vadiraja Bhatta

and Mrs. Sushma Palimar shall always be fondly recalled for their friendly and

supporting companionship, and my sincere thanks to all those who came in as help

at one time or the other in this research study of mine.

iv

Abstract

Random and pseudorandom numbers are extensively used in simulation and statisti-

cal modeling systems, in controlling computational processes, and in computer games.

Many mathematical optimization methods and game theory apply random and pseu-

dorandom elements. Pseudorandom binary sequences are also widely used in infor-

mation security algorithms. Pseudorandom number generation is the art and science

of deterministically generating a sequence of numbers that is hard to differentiate

from a true random sequence. This thesis studies some methods of random number

generation. In the first section we describe the most commonly used pseudorandom

number generators to provide the necessary background.

Elliptic curves are rich mathematical structures which have shown themselves to be

incredibly useful in a wide range of applications. Most of the products and standards

that use public-key cryptography for encryption and digital signatures use RSA. The

key length for secure RSA use has increased over recent years, and this has put a

heavier processing load on applications using RSA. Elliptic curve cryptography can

provide the same level and type of security as RSA but with much shorter keys. In the

third, fourth and fifth chapters new pseudorandom number generators are developed

using elliptic curves over finite fields and the existing generators. The emphasis will

be on the length of the sequences produced by such generators and the statistical

properties to ensure their usage in cryptographic application.

An interesting property of numbers is that almost all numbers become palindromes

quickly after repeated reversal and addition of its digits. But there are some numbers

which are an exception to this. These numbers are called Lychrel numbers. In the

next chapter two algorithms are presented to generate secret keys with palindrome

and Lychrel numbers. In the last chapter the deployment of secret keys for security

purpose in stream ciphers and stegnography are studied.

Contents

1 Introduction 1

1.1 Random Numbers . 1

1.2 Statistical Testing . 2

1.3 IP Core of Statistical Test Suite of FIPS 140-2 3

1.3.1 The Mono Bit Test . 3

1.3.2 The Poker Test . 3

1.3.3 The Long Runs Test . 4

1.3.4 The Runs Test . 4

1.4 NIST Statistical Test Suite . 4

1.5 Elliptic Curves . 7

1.6 Fibonacci Sequence . 8

1.6.1 Lagged Fibonacci Generators 8

1.7 Lychrel Numbers . 9

2 Elliptic Curves over Finite Fields 11

2.1 Elliptic Curves . 11

2.2 Group Law . 12

2.2.1 Point Addition . 12

2.2.2 Point Doubling . 13

2.2.3 Group law for y2 = x3 + ax+ b 13

2.2.4 Group Order . 14

2.2.5 Group Structure . 15

2.3 Elliptic Curve Cryptography . 16

2.4 Elliptic Curve Discrete Logarithm Problem 17

i

2.5 Elliptic Curve Digital Signature Algorithm (ECDSA) 18

2.5.1 Signature Generation . 18

2.5.2 Signature Verification . 19

2.6 Elliptic Curve Diffie Hellman Cryptosystem 20

2.6.1 Key Exchange . 21

2.7 Elliptic Curve Massey Omura Encryption 21

2.7.1 Encryption . 21

2.7.2 Decryption . 22

2.8 Elliptic Curve ElGamal Cryptosystem 22

2.8.1 Encryption . 22

2.8.2 Decryption . 22

2.9 Elliptic Curve Primality Testing . 23

2.10 Factoring Integers with Elliptic Curves 23

3 Pseudorandom Numbers 24

3.1 Pseudorandom Number Generators 24

3.2 Characteristics of PRNGs . 25

3.2.1 The PRNG must be reproducible 25

3.2.2 The PRNG must have a long period 25

3.2.3 The sequence must be uniform and independent 25

3.2.4 The PRNG must be efficient 25

3.2.5 The algorithm must be portable 26

3.3 Linear Congruential Generator . 26

3.4 Linear Feedback Shift Registers (LFSR) 28

3.5 Blum Blum Shub Pseudorandom Number Generator (BBS) 30

3.6 Mersenne Twister . 31

3.7 PRNG using Elliptic Curves . 31

3.7.1 PRNG using Elliptic Curves and Linear Feedback Shift Registers 31

3.7.2 Algorithm: . 32

3.7.3 Block Diagram: . 32

3.7.4 Flow chart . 33

3.8 Remarks . 35

ii

4 Fibonacci Sequence 36

4.1 Definition . 36

4.2 A New Class of Generators . 37

4.3 Fibonacci Sequence and Elliptic Curves 38

4.4 Lagged (2, 1) Generators . 38

4.4.1 Algorithm: . 38

4.5 Lagged (3,1) Generators . 40

4.5.1 Algorithm: . 40

4.6 Remarks . 42

5 Multiplicative Congruential Generator 43

5.1 Algorithm: . 45

5.2 Generator Sequence Properties . 48

5.3 Analysis . 49

5.3.1 Long Period . 49

5.3.2 Linear Complexity . 49

5.3.3 Properties of Linear Complexity 50

5.3.4 Massey-Berlekamp Algorithm 50

5.3.5 Statistical Properties . 51

5.4 Remarks . 52

6 Palindromes and Lychrel Numbers 53

6.1 Introduction . 53

6.2 Lychrel Numbers . 53

6.3 Secret Keys . 54

6.3.1 Algorithm to Generate Secret Keys 54

6.4 Pearson’s Chi-squared Test for Independence 55

6.5 Palindromes and Secret Keys . 60

6.5.1 Algorithm to Generate Secret Keys 60

6.6 Remarks . 62

7 One Time Pad 63

7.1 Introduction . 63

iii

7.2 Encryption and Decryption . 65

7.3 Steganography . 66

7.3.1 Least Significant Bit Technique 67

7.3.2 Block Diagram . 69

7.3.3 Remarks . 76

8 Conclusion 78

References 88

iv

Any one who considers arithmetical methods of producing random digits is, of

course, in a state of sin.

John von Neumann

Chapter 1

Introduction

Random and pseudorandom numbers are widely used in simulation and statistical

modeling systems, in controlling computational processes and in computer games.

Many mathematical optimization methods including game theory, apply random and

pseudorandom elements. Pseudorandom binary sequences are also widely used in

information security algorithms. Security systems today are built on increasingly

strong cryptographic algorithms. However, the security of these systems is dependent

on generating secret quantities for passwords and cryptographic keys. Generation of

unguessable “random” secret quantities for security use is a crucial but intricate task.

1.1 Random Numbers

One of the important elements of modern informational technology are random and

pseudorandom binary sequences and their generation. The term randomness is often

used in statistics to signify well-defined statistical properties like lack of bias or cor-

relation. Informally, a sequence of numbers is said to be truly random if there is no

correlation among the subsequent elements and it is not possible to predict the next

number in the sequence with absolute certainty. According to Knuth(Knuth 1997),

a sequence of random numbers is a set of independent numbers with a specified

distribution and a specified probability of falling in any given range of values. For

Schneier,(Schneier 1996) it is a sequence that has the same statistical properties as

random bits, is unpredictable and cannot be reliably reproduced. A concept that

1

is present in both of these definitions and that must be emphasized is the fact that

numbers in a random sequence must not be correlated. Knowledge of one or some

of the numbers of a random sequence must not help predicting the other ones. True

random numbers are rarely used in computation, because it is difficult to generate

the same sequence again. The lack of reproducibility would make validation of pro-

grams that use these numbers extremely difficult.The degree of randomness required

is determined by the type of application.

A pseudorandom sequence is obtained by using an algorithm or a set of equations.

This is not truly random as each element of the sequence is completely determined.

They only appear random to an observer who has no knowledge about the algorithm

used. They are computed from a mathematical formula or simply taken from a pre-

calculated list. They are referred to as “pseudorandom” because given a particular

function and a “seed” value, the same sequence of numbers can be generated by the

function.

1.2 Statistical Testing

A sequence of numbers generated cannot be trusted to judge by ourselves whether it

is random or not. Some unbiased mechanical tests must be applied. Every sequence

that is to be used extensively, should be tested carefully. Various statistical tests can

be applied to a sequence to attempt to compare and evaluate the sequence to a truly

random sequence. Randomness is a probabilistic property; that is, the properties

of a random sequence can be characterized and described in terms of probability.

The likely outcome of statistical tests, when applied to a truly random sequence, is

known a priori and can be described in probabilistic terms. There are number of

possible statistical tests, each assessing the presence or absence of a “pattern” which,

if detected, would indicate that the sequence is nonrandom. Because there are many

tests for judging whether a sequence is random or not, no specific finite set of tests is

deemed “complete”. In addition, the results of statistical testing must be interpreted

with some care and caution to avoid incorrect conclusions about a specific generator.

2

1.3 IP Core of Statistical Test Suite of FIPS 140-2

Federal Information Processing Standard (FIPS),(Hasegawa and Umeno 2002) pub-

lication for cryptographic modules specifies four statistical tests for randomness. In-

stead of making the user select appropriate significance levels for these tests, explicit

bounds are provided that the computed value of a statistic must satisfy. A single bit

stream of 20000 bits, output from a generator is subjected to each of the four tests.

1.3.1 The Mono Bit Test

The number of one’s is counted in a bit stream of 20,000 bits.

Statistic X: the number of one’s (zero’s) in the bit stream.

Acceptance Region:9,725 < X < 10,275.

1.3.2 The Poker Test

A stream of 20,000 bits is divided into 5,000 non overlapping consecutive 4-bit seg-

ments. The total number of patterns of 4-bit segments is 24 = 16. The number of

occurrences of each of the 16 possible patterns is counted. Let fi, (i = 0 to 15) be

the number of occurrences of each pattern.

Statistic X:

X = (16/5000)*(
∑15

i=0 f 2
i) -5000

Acceptance Region: 2.16 < X < 46.17.

Integer Version of Poker’s Test

This version of the test is implemented by Vancak,(Vancak 2009).

1. count an appearance fi of each group of four bits in the sequence of 20000 bits.

2. Compute
∑15

i=0 f 2
i

3. The sequence would not pass the test if 1563175 <
∑15

i=0 f
2
i < 1576929, or atleast

one combination of bits exceeds 428.

3

1.3.3 The Long Runs Test

The length of longest run is determined from 20,000 bit pattern.

Statistic X: The length of the longest run in bit stream of 20,000 bits (both of one

and zero).

Acceptance Region: X < 26

1.3.4 The Runs Test

A run is defined as a sequence of consecutive bits of either all ones or all zeros. In

this test, the number of runs in a bit stream of 20,000 bits is counted. The run length

of 1, 2, 3, 4, 5, and 6 or greater than 6 of either one or zero is counted.

Statistic X : The number of runs of each length appears in the bit stream.

Acceptance Region:

Length of Runs Acceptance Region

1 2,315 - 2,685

2 1,114 - 1,386

3 527 - 723

4 240 - 384

5 103 -209

6+ 103- 209

Table 1.1 Acceptance regions for runs test

1.4 NIST Statistical Test Suite

NIST (NIST 2001) test suite is used as a bench mark by National Institute of Stan-

dards and Technology, in the evaluation of possible candidate generators for the Ad-

vanced Encryption Standard(AES). The NIST Test Suite is a statistical package con-

sisting of 16 tests that were developed to test the randomness of binary sequences

4

produced by random or pseudorandom number generators.

The tests are

� The Frequency (Mono bit) Test

� Frequency Test within a Block

� The Runs Test

� Test for the Longest-Run-of-Ones in a Block

� The Binary Matrix Rank Test

� The Discrete Fourier Transform (Spectral) Test

� The Non-overlapping Template Matching Test

� The Overlapping Template Matching Test

� Maurer’s ”Universal Statistical” Test

� The Lempel-Ziv Compression Test

� The Linear Complexity Test

� The Serial Test

� The Approximate Entropy Test

� The Cumulative Sums Test

� The Random Excursions Test

� The Random Excursions Variant Test.

5

Table 1.2 describes the general characteristics of each of the statistical tests.

Statistical Test Defect Detected

Frequency Too many zeroes or ones

Cumulative Sums Too many zeroes or ones at the beginning of the

sequence

Longest Runs Of Ones Deviation of the distribution of long runs of ones

Runs Large (small) total number of runs indicates that

the oscillation in the bit stream is too fast (too

slow)

Rank Deviation of the rank distribution from a corre-

sponding random sequence, due to periodicity

Spectral Periodic features in the bit stream

Non-overlapping Template

Matchings

Too many occurrences of non-periodic templates

Overlapping Template Matchings Too many occurrences of m-bit runs of ones

Universal Statistical Compressibility (regularity)

Random Excursions Deviation from the distribution of the number of

visits of a random walk to a certain state

Random Excursion Variant Deviation from the distribution of the total num-

ber of visits (across many random walks) to a cer-

tain state

Approximate Entropy(Ap En) Non-uniform distribution of m-length words.

Small values of ApEn(m) imply strong regularity

Serial Non-uniform distribution of m-length words. Sim-

ilar to Approximate Entropy

Lempel-Ziv Complexity More compressed than a truly random sequence

Linear Complexity Deviation from the distribution of the linear com-

plexity for finite length (sub)strings

Table1.2 The general characteristics of each of the statistical tests in the NIST Suite.

6

A statistical test is formulated to test a specific null hypothesis, H0 and an alter-

native hypothesis Ha. For each test applied , a decision or conclusion is derived that

accepts or rejects the null hypothesis.During a test, a test statistic value is computed

on the data . The test statistic is used to calculate a P-value that summarizes the

strength of the evidence against the null hypothesis. If a P-value for a test is deter-

mined to be equal to 1, then the sequence appears to have perfect randomness. A

P-value of zero indicates that the sequence appears to be completely non-random. A

significance level α can be chosen for the tests. If P-value > α, then the null hypothe-

sis is accepted; i.e., the sequence appears to be random. If P-value < α, then the null

hypothesis is rejected; i.e., the sequence appears to be non-random. The parameter

α denotes the probability of the Type I error. Typically, α is chosen in the range

[0.001, 0.01].

1.5 Elliptic Curves

Elliptic curves are rich mathematical structures which have shown themselves to

be remarkably useful in a range of applications including integer factorization and

primality testing (Lenstra 1987, Menezes et al. 1997). One potential use of elliptic

curves is in the definition of public-key cryptosystems that are close analogs of existing

schemes (Hankerson et al. 2004). In this way, variants of existing schemes can be

devised that rely for their security on a different underlying hard problem.

Most of the products and standards that use public-key cryptography for encryption

and digital signatures use RSA. The key length for secure RSA use has increased over

recent years, and this has put a heavier processing load on applications using RSA.

This burden has ramifications, especially for electronic commerce sites that conduct

large numbers of secure transactions.

Elliptic Curve Cryptography (ECC), was discovered in 1985 by Miller and Koblitz as

an alternative mechanism for implementing public-key cryptography independently.

The principal attraction of ECC, compared to RSA, is that it appears to offer equal

security for a far smaller key size, thereby reducing processing overhead.

7

1.6 Fibonacci Sequence

The Fibonacci sequence,

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987..........

is defined by the recurrence relation

Fn = Fn−1 + Fn−2 with seed values F0 = 0 andF1 = 1.

1.6.1 Lagged Fibonacci Generators

Lagged Fibonacci generator in one among the pseudorandom number generators

discussed in Knuth’s well known exposition on pseudorandom number generation

(Knuth 1997). This class of random number generator is aimed at being an im-

provement on the ‘standard’ linear congruential generator. These are based on a

generalization of the Fibonacci sequence. The Fibonacci sequence may be described

by the recurrence relation:

Sn = Sn−1 + Sn−2

Here, the new term is the sum of the last two terms in the sequence.

This formula is generalized to give a family of pseudorandom number generators of

the form: Sn = Sn−j o Sn−k(mod m), where, j > k > 0. Instead of two initial

values, j initial values, S0, S1, S2 ... , Sj−1, are needed in order to compute the next

element in the sequence. In this expression j and k are called ‘lags’. m is usually

a power of 2, often 232 or 264. The operator o denotes a general binary operation.

These generators are very sensitive to initialization.

If the operation used is addition, then the generator is described as an Additive

Lagged Fibonacci Generator(ALFG), if multiplication is used, it is a Multiplicative

Lagged Fibonacci Generator(MLFG), and if the
⊕

operation is used, it is called a

Two-tap generalised feedback shift register(GFSR.)

Mascagni and Cuccaro (Mascagni et al. 1995a), proved that Lagged Fibonacci gener-

ators have a maximum period of (2k - 1)* 2M−1 if addition or subtraction is used, and

(2k-1)*k if
⊕

operations are used to combine the previous values. If, on the other

hand, multiplication is used, the maximum period is (2k - 1)* 2M−3, or 1/4 of period

8

of the additive case.

For the generator to achieve this maximum period, the polynomial,

y = xk + xj + 1 must be primitive over the integers modulo 2. Good candidates for

values of j and k can be found in several sources (Knuth 1997).

The popular pairs are: (7, 10), (5, 17), (24, 55), (65, 71),(128, 159),

(6, 31), (31, 63), (97, 127), (353, 521), (168, 521), (334, 607), (273, 607), (418,1279)

The initialization of LFGs is a very complex problem. The output of LFGs is very

sensitive to initial conditions, and statistical defects may appear initially but also

periodically in the output sequence unless extreme care is taken.

1.7 Lychrel Numbers

An interesting property of decimal numbers is that almost all numbers become palin-

dromes quickly after repeated digit reversal and addition. For example,

� 56 becomes palindrome after one iteration: 56+65 = 121.

� 57 becomes palindrome after two iterations: 57+75 = 132, 132+231 = 363.

� 59 becomes a palindrome after 3 iterations: 59+95 = 154, 154+451 = 605,

605+506 = 1111.

� 89 take an unusually large 24 iterations to reach the palindrome 8813200023188.

� 10,911 reaches the palindrome 4668731596684224866951378664 after 55 steps.

� 1,186,060,307,891,929,990 takes 261 iterations to reach a 119 digit palindrome.

This is the currently known world record for the “Most Delayed Palindrome Number”.

Some numbers cannot form palindromes after repeated digit reversal and addition.

Such numbers are called Lychrel numbers. A Lychrel number is a natural number

which cannot form a palindrome through the iterative process of repeatedly reversing

its decimal digits and adding the resulting numbers. This process is called the 196-

algorithm. No Lychrel numbers are known, though many numbers are suspected

9

Lychrels, the smallest being 196. Walker, (Walker 1990) has computed 196 to a

number of one million digits after 2,415, 836 iterations without reaching a palindrome.

It is conjectured that 196 and other numbers which have not yet yielded a palindrome

are Lychrel numbers, but no number has yet been proven to be Lychrel. Numbers

which have not been demonstrated to be non-Lychrel and informally called ”candidate

Lychrel” numbers. Jason Doucette, Ian Peters and Benjamin Despres have found

other Lychrel candidates in 2005. The first few candidate Lychrel numbers are: 196,

295, 394, 493, 592, 689, 691, 788, 790, 879, 887, 978, 986, 1495, 1497, 1585, 1587,

1675, 1677, 1765, 1767, 1855, 1857, 1945, 1947 and 1997. Because 196 is the lowest

candidate Lychrel number it has received the most attention.

10

Chapter 2

Elliptic Curves over Finite Fields

2.1 Elliptic Curves

A cubic equation of form y2 = x3 + ax2 + bx + c is called an Elliptic curve. Using

suitable transformation of the coordinates this can be expressed as y2 = x3 + ax+ b,

with 4a3 + 27b2 ̸= 0, called the standard form. Here a and b are fixed constants, x

and y vary over R or Q or a finite field Fp, where p is a fixed prime. Let E(K)

denote the set of all points in K x K that lie on the elliptic curve over the finite field

K. A special point, O, called the point at infinity is added to E(K). If the group

law is defined as below, E(K) turns out to be an abelian group, which in general is

a product of two cyclic groups (Koblitz 1994).

Fig 2.1 Graphs of curves y2 = x3 − x and y2 = x3 − x+ 1

11

2.2 Group Law

The group law is described (Blake et al. 2005, Silverman 2009, Crandall and Pomerance

2005) as follows:

Let E be an elliptic curve defined over the field K. There is a chord-and-tangent rule

for adding two points in E(K) to give a third point in E(K). Together with this

addition operation, the set of points E(K) forms an abelian group with ‘O’ serving

as its identity. This group is used in the construction of elliptic curve cryptographic

systems.The details are given below.

2.2.1 Point Addition

Point addition is the addition of two points J and K on an elliptic curve to obtain

another point L on the same elliptic curve. Let J = (x1, y1) and K = (x2, y2) be

two distinct points on an elliptic curve E. Then the sum L, of J and K, is defined as

follows. First draw a line through J and K; this line intersects the elliptic curve at a

third point. Then L is the reflection of this point about the x-axis.

Fig 2.2 Point addition on Elliptic curve

12

2.2.2 Point Doubling

Point doubling is the addition of a point J on the elliptic curve to itself to obtain

another point L on the same elliptic curve.

Fig 2.3 Point doubling

2.2.3 Group law for y2 = x3 + ax+ b

The group law is described (Blake et al. 2005, Silverman 2009, Crandall and Pomerance

2005) as follows: Let E: y2 = x3 + ax+ b be an elliptic curve and K be a field.

1. Identity: P +O = O + P = P for all P ∈ E(K).

2. Negatives: If P = (x, y) ∈ E(K), then (x, y)+(x, −y) = O. The point (x, −y)

is denoted by −P and is called the negative of P .

3. Addition of points: Let P = (x1, y1) ∈ E(K) and Q = (x2, y2) ∈ E(K), then

P +Q = (x3, y3), where x3 = [(y2 − y1)/(x2 − x1)]
2 − x1 − x2

and y3 = [(y2 − y1)/(x2 − x1)](x1 − x3)− y1.

13

4. Point doubling: Let P = (x1, y1) ∈ E(K), where P ̸= −P .

Then 2P = (x3, y3), where x3 = [(3x2
1 + a)/2y1]

2 − 2x1 and

y3 = [(3x2
1 + a)/2y1](x1 − x3)− y1.

2.2.4 Group Order

Let E be an elliptic curve defined over Fq. The number of points in E(Fq), denoted

by #E(Fq) is called the order of E over Fq (Hankerson et al. 2004, Blake et al. 2005)

Since E is quadratic in y, has at most two solutions for each x ∈ Fq, therefore

#E(Fq) ∈ [1, 2q + 1].The following theorem gives the bounds for order of an elliptic

curve.

Theorem 2.2.1. (Hasse) Let E be an elliptic curve defined over Fq. Then q + 1-

2
√
q ≤ #E(Fq) ≤ q + 1 + 2

√
q. The interval [q + 1− 2

√
q, q + 1 + 2

√
q] is called the

Hasse interval.An alternate formulation of Hasse’s theorem is the following:

if E is defined over Fq, then #E(Fq) = q + 1− t where |t| ≤ 2
√
q ;

t is called the trace of E over Fq. Since 2
√
q is small relative to q,we have # E(Fq)

≈ q.

The next result determines the possible values for #E(Fq).

Theorem 2.2.2. (Admissible orders of elliptic curves) Let q = pm where p is the

characteristic of Fq. There exists an elliptic curve E defined over Fq with #E(Fq) =

q + 1− t if and only if one of the following conditions holds:

1. t ̸= 0(modp) and t2 ≤ 4q.

2. m is odd and either

� t = 0; or

� t2 = 2q and p = 2; or

� t2 = 3q and p = 3

3. m is even and either

� t2 = 4q; or

14

� t2 = q and p ≡ 1 mod 3;

� t = 0 and p ≡ 1 mod 4;

A consequence of this theorem is that for any prime p and integer t satisfying

|t| ≤ 2
√
p, there exists an elliptic curve E over Fp with #E(Fp) = p+ 1− t.

This is illustrated in the following example.

Example 2.1 : (orders of elliptic curves over F37) Let p = 37. Table 1 lists,

for each integer n in the Hasse interval [37 + 1 − 2
√
37, 37 + 1 + 2

√
37], the coeffi-

cients (a, b) of an elliptic curve E :y2 = x3+ax+b defined overF37 with #E(F37) = n.

n (a, b) n (a, b) n (a, b) n (a, b) n (a, b)

26 (5, 0) 31 (2, 8) 36 (1, 0) 41 (1, 16) 46 (1, 11)

27 (0, 9) 32 (3, 6) 37 (0, 5) 42 (1, 9) 47 (3, 15)

28 (0, 6) 33 (1, 13) 38 (1, 5) 43 (2, 9) 48 (0, 1)

29 (1, 12) 34 (1, 18) 39 (0, 3) 44 (1, 7) 49 (0, 2)

30 (2, 2) 35 (1, 8) 40 (1, 2) 45 (2, 14) 50 (2, 0)

Table 2.1 the admissible orders #E(F37) = n. of elliptic curves

E: y2 = x3 + ax+ b defined over F37.

2.2.5 Group Structure

The following theorem describes the group structure of E(Fq). We use Zn to denote

a cyclic group of order n.

Theorem 2.2.3. Let E be an elliptic curve defined over Fq. Then E(Fq) is isomorphic

to Zn1

⊕
Zn2 where n1 and n2 are uniquely determined positive integers such that n2

divides both n1 and q-1. Note that #E(Fq) = n1n2. If n2 = 1, then E(Fq) is a cyclic

group. If n2>1, then E(Fq) is said to have rank 2. If n2 is a small integer (e.g., n =

2,3 or 4), we say that E(Fq) is almost cyclic. Since n2 divides both n1 and q-1, one

expects that E(Fq) is cyclic or almost cyclic for most elliptic curves E over Fq .

Example 2.2(group structure) The elliptic curve E:y2 = x3 + 4x + 20 defined over

F29 has #E(F29) = 37. E(F29)The following shows that the multiples of the point,P

= (1,5) generate all the points in F29.

15

Example 2.3 (group structure) Consider F 4
2 as represented by the reduction poly-

nomial f(z) = z4 + z + 1. The elliptic curve E:y2 + xy = x3 + z3x2 + (z3 + 1) defined

over F 4
2 has #E(F 4

2) = 22 .Since 22 does not have any repeated factors, F 4
2 is cyclic.

The point P = (z3, 1) = (1000, 0001) has order 11; its multiples are shown below.

2.3 Elliptic Curve Cryptography

The computational overhead of the RSA-based approach to public-key cryptography

increases with the size of the keys. As algorithms for integer factorization have be-

come more and more efficient, the RSA based methods have had to resort to longer

keys. Elliptic curve cryptography can provide the same level and type of security as

RSA (or Diffie-Hellman) but with much shorter keys. A comparison of the key sizes

for three different approaches to encryption for comparable levels of security against

brute-force attacks is given by (NIST 2001). What makes this table all the more

significant is that for comparable key lengths the computational burdens of RSA and

ECC are comparable.

16

Koblitz, (Koblitz 1994) and Miller, (Miller 1986) proposed the Elliptic Curve

Cryptosystem. Since that time, ECC has received considerable attention from math-

ematicians around the world, and no significant weaknesses in the algorithm have

been demonstrated. ECC not only permits the reduction of the key size and, but

also, ECC is able to do operations very fast. In addition, processing power can be

reduced in ECC . These entire features allow ECC to be a convenient environment

for smart cards(Woodbury et al. 2000). The point addition in elliptic curves is the

basic operation to make it used in cryptography. Because of the much smaller key

sizes involved, ECC algorithms can be implemented on smart cards without mathe-

matical coprocessors. Contact less smart cards work only with ECC because other

systems require too much induction energy. Since shorter key lengths translate into

faster handshaking protocols, ECC is also becoming increasingly important for wire-

less communications(Lauter 2004).

2.4 Elliptic Curve Discrete Logarithm Problem

This is an analog based on elliptic curves over finite fields of public key cryptosystems

which use the multiplicative group of a finite field(Koblitz 1994, Enge 1999).The

hardness of the discrete logarithm problem on elliptic curves has offered an advance

17

in cryptography, and there is computational evidence that suggests that it is even

more secure than classical techniques. Let E be an elliptic curve over a finite field

Fp. P,Q ∈ E. For k < p , let Q = kP. It is relatively easy to find Q given P and k,

but hard to determine k given Q and P. This is called discrete logarithm problem.

The following example illustrates the discrete logarithm problem.

Example 2.4 E: y2 = x3 + 9x+ 17, p = 23. Q = (4, 5) P = (16, 5)

P = (16, 5); 2P = (20, 20); 3P = (14, 14); 4P = (19, 20); 5P = (13, 10);

6P = (7, 3); 7P = (8, 7); 8P = (12, 17); 9P = (4, 5). The discrete logarithm of Q to

base P is 9. In real application k will be so large that it is very difficult to determine

k by trial and error.

2.5 Elliptic Curve Digital Signature Algorithm (ECDSA)

Signature algorithm is used for authenticating a device or a message sent by the de-

vice. For example consider two devices A and B. To authenticate a message sent by A,

the device A signs the message using its private key. The device A sends the message

and the signature to the device B. This signature can be verified only by using the

public key of device A. Since the device B knows A’s public key, it can verify whether

the message is indeed sent by A or not.

ECDSA is a variant of the Digital Signature Algorithm (DSA) that operates on

elliptic curve groups (Hankerson et al. 2004, Koblitz 1994, Johnson and Menezes 2001).

For sending a signed message from A toB, both have to agree upon Elliptic Curve

domain parameters. Sender A must have a key pair consisting of a private key dA (a

randomly selected integer less than n, where n is the order of the curve, an elliptic

curve domain parameter) and a public key QA = dA * G (G is the generator point, an

elliptic curve domain parameter). An overview of ECDSA process is defined below.

2.5.1 Signature Generation

For signing a message m by senderA, using A’s private key dA

1. Calculate e = HASH (m), where HASH is a cryptographic hash function, such

18

as SHA-1(Secure Hash Algorithm 1).

2. Select a random integer k from [1, n-1] such that gcd(k,n) =1.

3. Calculate r = x1 (mod n), where (x1, y1) = k * G. If r = 0, go to step 2

4. Calculate s = k−1 (e + dA r)(mod n). If s = 0, go to step 2.

5. The signature is the pair (r, s)

2.5.2 Signature Verification

For B to authenticateA’s signature, B must have A’s public key QA

1. Verify that r and s are integers in [1, n-1]. If not, the signature is invalid.

2. Calculate e = HASH (m), where HASH is the same function used in the signa-

ture generation.

3. Calculate w = s−1 (mod n).

4. Calculate u1 = ew (mod n) and u2 =rw (mod n).

5. Calculate (x1,y1) = u1G + u2 QA.

6. The signature is valid if x1 = r (mod n), invalid otherwise.

Example 2.5 Let p = 114973; the elliptic curve E :y2 = x3 − 3x + 69424 and a

base point G = (11570, 42257) with order n = 114467. dA = 86109 then QA= dAG =

(6345, 28549); and the message m = “worldof”.The hash value e = 1789679805, the

signature for the message m is (r, s) as following:

19

ECDSA SIGNATURE :

1. Select k = 84430 such that 1≤ k ≤ n− 1.

2. Compute kG = (11705, 10585), r = 31167 (mod 114973).

3. Compute s = k−1(e+ dA r) = 82722 (mod 114973).

ECDSA VERIFICATION:

1. Compute w = s−1 = 83035 (mod 114973).

2. Compute

u1 = ew = 71001 (mod 114973)

u2 = rw = 81909 (mod 114973)

3. Compute

u1G = (66931, 53304)

u2Q = (88970, 41780), u1G+u2Q = (31167, 31627) and

v = 31167 (mod 114973).

4. v = 31167 (mod 114973)

r = 31167 (mod 114973).

We obtain v = r, that is accept the signature.

2.6 Elliptic Curve Diffie Hellman Cryptosystem

ECDH is a key agreement protocol that allows two parties to establish a shared secret

key that can be used for private key algorithms (Schroeppel et al. 1995). Both parties

exchange some public information to each other. Using this public data and their own

private data, these parties calculate the shared secret. Any third party, who doesn’t

have access to the private details of each device, will not be able to calculate the

shared secret from the available public information. An overview of ECDH process is

defined below. For generating a shared secret between A and B using ECDH, both

have to agree up on Elliptic Curve domain parameters.

20

2.6.1 Key Exchange

E be an elliptic curve over a finite field Fq,where q is either a prime p or an integer

of the form 2m. P = (x, y) be a point on E with order n. The key exchange between

A and B can be accomplished as follows:

1. A selects an integer nA less than n. This is A’s private key. A generates a public

key PA = nAP, a point on E.

2. B sleets a private key nB and computes a public key PB = nBP.

3. A generates the secret key K = nA PB and B generates the secret key

K = nB PA.

Example 2.6 Let E: y2 = x3 − 4 over p = 211. P = (2, 2) be a point with order 240.

The private key of A be nA = 121.

PA = 121(2, 2) = (115, 48) is the public key.

Let nB = 203 be B ’s private key and PB = 203(2, 2) = (130, 203) be public key.

The shared secret key is 121(130, 203) = =203(115, 48) = (161, 69).

Since it is practically impossible to find the private key nA or nB from the public key

K, it is not possible to obtain the shared secret for a third party.

2.7 Elliptic Curve Massey Omura Encryption

Elliptic curve analog of the Massey-Omura system is described (Koblitz 1994) as

follows:

Key generation: This scheme only needs two entities to agree on an elliptic curve

E over a finite field Fq with N =#E(Fq). Entities need not to publish their public

keys.

2.7.1 Encryption

1. A represents the message m as a point M ∈ E(Fq).

2. A chooses a secret integer rA with gcd(rA,N) = 1 and computes M1 = rAM, and

Sends M1 to B.

21

3. B chooses a secret integer rB with gcd (rB,N) = 1, computes M2 = rB M1, and

sends M2 to A.

4. A computes r−1A ∈ ZN , M3 = r−1A M2, and sends M3 to B.

2.7.2 Decryption

1. B computes r−1
B M3 = r−1

B r−1
A rB rAM = M.

2. B recovers the messagem from the point M.

2.8 Elliptic Curve ElGamal Cryptosystem

Key generation: Entity B selects a random integer dB from the interval[1, n-1] as

his private key, and publishes QB = dBG as the public key, where G ∈ E, an elliptic

curve E over a finite field Fq.

2.8.1 Encryption

1. Represent the message m as a point M in E(Fq).

2. Select a random integer r from interval [1, n-1] and compute C1 = rG.

3. Compute C2 = rQB +M. (C1, C2) is the cipher text sent to B.

2.8.2 Decryption

1. M = C2- dB C1, because

C2 - dB C1 = rQB +M -dBrG = rdBG +M -dBrG.

2. Recover the message m from the point M.

22

2.9 Elliptic Curve Primality Testing

Goldwasser and Kilian, (Goldwasser and Kilian 1999) used elliptic curves for primality

testing. The Elliptic curve primality test is an elliptic curve version of the classical

Pocklington Lehmer primality test.

Theorem 2.9.1. Suppose N > 1 is an integer co-prime to six. Let E denote an

elliptic curve over Z / NZ. Assume that there exists an integer m which has a prime

divisor q with q > (N1/4 + 1)2. If a point P∈ E(Z / NZ) can be found such that

mP=O and [m/q] P ̸= O , then N is prime.

Example 2.9 Let N = 907. E: y2 = x3 + 10x− 2 ; q = 71,

q > (N1/4 + 1)2 = 42.1.

Let P = (819, 784), 71P = O, 71 is prime.

Therefore 907 is a prime.

2.10 Factoring Integers with Elliptic Curves

Lenstra,(Lenstra 1987) gave new drive to the study of Elliptic curve by developing an

efficient factoring algorithm using elliptic curves. It turned out to be very efficient for

factoring large numbers. The method is analogous to Pollard’s (p - l)-method, which

attempts to find a non-trivial divisor of a given integer n > l.

Let n > 1 be an integer. Let E denote an elliptic curve over Z / NZ. For some point

P ∈ E(Z / NZ), if kP = O, k some integer, with slope u/v then gcd(v, n) is a factor

of n.

Example 2.10 Consider the factorization of the number n = 2773. We choose an

elliptic curve say y2 = x3 + 4x+ 4 (mod 2773).

P = (1, 3). The point 2P is (1771, 705). Next we try to calculate 3P, but fail. The

slope is 702/ 1770, and gcd (1770, 2773) = 59. Therefore 59 is a factor of 2773.

In the next chapters we discuss the application of elliptic curves in develpoing pseu-

dorandom number generators.

23

Chapter 3

Pseudorandom Numbers

Random numbers are useful for a variety of purposes, such as generating data en-

cryption keys, simulating and modeling complex phenomena, for selecting random

samples from larger data sets and so on. They have also been used aesthetically,

for example in literature and music, and are of course ever popular for games and

gambling. Unfortunately, true random numbers are very difficult to generate, espe-

cially on computers that are typically designed to be deterministic. This brings us

to the concept of pseudorandom numbers, which are numbers generated from some

random internal values, and that are very hard for an observer to distinguish from

true random numbers.

3.1 Pseudorandom Number Generators

As the word ‘pseudo’ suggests, pseudorandom numbers are not random. Essentially,

pseudorandom number generators(PRNG) are algorithms that use mathematical for-

mulae or simply pre calculated tables to produce sequences of numbers that appear

random. A good deal of research has gone into pseudorandom number theory, and

modern algorithms for generating pseudorandom numbers are so good that the num-

bers look exactly like they were really random.

24

3.2 Characteristics of PRNGs

Because of the their practical application in information security systems, random and

pseudorandom sequence generators should fulfill the following requirements (Kao and

Wong 1998, Knuth 1997).

3.2.1 The PRNG must be reproducible

The PRNG must be deterministic, that is, given sequence of numbers can be repro-

duced at any time if the starting point in the sequence is known. If the results of

simulation studies or estimation procedures are to be verified the PRNG must be

reproducible. For cryptography this is less important. PRNGs are not suitable for

applications where it is important that the numbers are really unpredictable, such as

data encryption and gambling.

3.2.2 The PRNG must have a long period

The period of the PRNG is the number of times the algorithm can be run before the

sequence of bits repeats. The period should be long enough to ensure that the PRNG

does not cycle in practice. A period of 232 or less is too short, but a period above 260 is

sufficient. While periodicity is hardly ever a desirable characteristic, modern PRNGs

have a period that is so long that it can be ignored for most practical purposes.

3.2.3 The sequence must be uniform and independent

The generated sequence should be uniform and independent. There are many tests

available to ensure independence and uniformity of random numbers such as, TestU01,

DIEHARD, SPRNG, and NIST Tests. Most statistical tests compute a p-value which

should be uniform over [0, 1].

3.2.4 The PRNG must be efficient

Efficiency is a nice characteristic if the application needs many numbers, and deter-

minism is handy if there is need to replay the same sequence of numbers again at

25

a later stage. This can be measured by seeing how many numbers can be produced

in a fixed amount of time. Integer and bit shift operations will produce the fastest

PRNG’s.

Generators suitable for use in cryptographic applications may need to meet stronger

requirements than for other applications. In particular, their outputs must be unpre-

dictable in the absence of knowledge of the inputs. Each bit which is independently

generated must attain values of 0 or 1 with equal probability. The sequence being

generated must be unpredictable in both forward and reverse directions: this implies

that it is impossible to predict the value of the bits, both following and preceding a

sample capture, with a probability above 0.5.

The statistical tests may be useful as a first step in determining whether or not a

generator is suitable for a particular cryptographic application. However, no set of

statistical tests can absolutely certify a generator as appropriate for usage in a partic-

ular application, i.e., statistical testing cannot serve as a substitute for cryptanalysis.

3.2.5 The algorithm must be portable

In order a PRNG to be generally useful, it should be portable. This means that

it should be relatively easy to implement on a wide range of hardware, operating

systems, and programming environments.

In the following sections we will discuss some of the PRNGs in detail.

3.3 Linear Congruential Generator

One of the most popular, extensively used and the oldest pseudorandom number gener-

ator is Linear Congruential Generator (LCG)(Lehmer 1951). A list of parameters for

linear congruential generators of different sizes is given by L’Ecuyer,(L’Ecuyer 1999).

The theory behind them is simple to understand, and they are easily implemented as

well as fast. The generator is defined by a recurrence relation:

Xn+1 = (a Xn + c) (mod m), where Xn+1 is the sequence of pseudorandom values,

and

m, 0 < m , is the modulus

26

a, 0 < a < m , the multiplier

c, 0 ≤ c < m , the increment

X0, 0 ≤ X0 < m, the seed or initial value, are integer constants that specify the

generator.

Example 3.1 When m = 10 and X0 = a = c = 7, the sequence is

6,9,0,7,6,9,0,7,6,9, · · · .

If we take X0 = 0, a = c = 7, the sequence is

7, 6, 9,0,7,6, 9, 0, 7, 6, · · · .

This example shows that the sequence is not always random for all choices of m,a,c

and X0. The period of a general LCG is at most m, and for some choices of a much

less than m.

Knuth,(Knuth 1997) gives the period of LCG. If c is nonzero, the LCG will have a

full period for all seed values if and only if

� c and m are relatively prime,

� a -1 is divisible by all prime factors of m ,

� a -1 is a multiple of 4 if m is a multiple of 4.

While LCGs are capable of producing decent pseudorandom numbers, they are ex-

tremely sensitive to the choice of the coefficients c, m, and a. The most efficient LCGs

have an m equal to a power of 2, most often m = 232 or m = 264, because this allows

the modulus operation to be computed by merely truncating all but the rightmost 32

or 64 bits. The Lehmer random number generator sometimes also referred to as the

Park-Miller random number generator (Park and Miller 1998) is a variant of linear

congruential generator that operates in the multiplicative group of integers modulo

n.

A general formula of a random number generator of this type is:

Xn+1 = (aXn) mod m where the modulus m is a prime number or a power of

a prime number, the multiplier a is an element of high multiplicative order mod-

ulo m(e.g.,a primitive root modulo m),and the seed X0 is co-prime to m. A list

of parameters for multiplicative congruential generators of different sizes is given by

L’Ecuyer,(L’Ecuyer 1999).

27

3.4 Linear Feedback Shift Registers (LFSR)

Random numbers are required in a wide variety of applications. As digital systems

become faster and denser, it is necessary, to implement random number generators

directly in hardware. Feedback shift registers (FSR) are most useful in designing and

generating pseudorandom or pseudonoise sequences. This is due to their simplicity of

defining rules and their capability of generating sequences with much longer period.

Approaches using FSR sequences solve the following two basic problems in most

applications: cryptographic secrecy and ease of reproducing the same sequence (Song

2003).

A linear feedback shift register (LFSR) is a shift register whose input bit is a linear

function of its previous state. A shift register is a device whose identifying function

is to shift its contents into adjacent positions within the register or, in the case of the

position on the end, out of the register. The position on the other end is left empty

unless some new content is shifted into the register. Feedback shift registers are the

building blocks for constructing key stream generators.

A feedback shift register is made up of two parts:

� A shift register

� Feedback Function

An n stage shift register stores a sequence of n bits. At each clock pulse all the

bits in the shift register are shifted one bit to the right. The new left most bit is

28

computed as a function of the other bits in the register. If the function is linear

then the shift register is called Linear Feedback Shift Register (LFSR). Otherwise

Non Linear Feedback Shift Register (NLFSR). The initial value of the LFSR is called

the seed, and because the operation of the register is deterministic, the sequence of

values produced by the register is completely determined by its current (or previous)

state. Likewise, because the register has a finite number of possible states, it must

eventually enter a repeating cycle. However, a LFSR with a well-chosen feedback

function can produce a sequence of bits which appears random and which has a very

long cycle. The outputs that influence the input are called taps .A maximal LFSR

produces an n-sequence (i.e. cycles through all possible 2n- 1 states within the shift

register except the state where all bits are zero), unless it contains all zeros, in which

case it will never change.

The tap sequence of an LFSR can be represented as a polynomial mod 2. This means

that the coefficients of the polynomial must be 1’s or 0’s. This is called the feedback

polynomial or characteristic polynomial. For example, if the taps are at the 16th,

14th, 13th and 11th bits , the resulting LFSR polynomial is x11 + x13 + x14 + x16 +1.

The ’one’ in the polynomial does not correspond to a tap. The powers of the terms

represent the tapped bits, counting from the left.

� LFSR is maximal only if the polynomial is primitive.

� The LFSR will only be maximal if the number of taps is even.

� The tap values in a maximal LFSR will be relatively prime.

� There can be more than one maximal tap sequence for a given LFSR length.

Fig 3.2 LFSR with taps at 16th, 14th, 13th and 11th bits

29

LFSR can be implemented in hardware and this makes them useful in applications

that require fast generation of a pseudorandom sequence.LFSRs have been used as

pseudorandom number generators in stream ciphers, especially in military Cryptogra-

phy, due to the ease of construction from simple electronic circuits, long periods and

very uniformly distributed outputs. But due to the linearity of output, cryptanalysis

is easier.

3.5 Blum Blum Shub Pseudorandom Number Gen-

erator (BBS)

Blum Blum Shub pseudorandom number generator was proposed in 1986 by Lenore

Blum, Manuel Blum and Michael Shub, (Blum et al. 1986). It is described by

xn+1 = x2
n mod M

where M = pq is the product of two large primes p and q. The two primes, p and q,

should both be congruent to 3 (mod 4) and gcd(ϕ(p− 1), ϕ(q − 1)) should be small

(this makes the cycle length large). The output is commonly the bit parity of xn+1 or

one or more of the least significant bits of xn+1.

Example 3.2 Let p = 47, q = 67 and x0 = 6, the seed. We can expect to get a large

cycle length for those small numbers, because

gcd(ϕ(p− 1), ϕ(q − 1))=2. The generator creates the sequence,

36,1296,1199,1657,2870,2265,504,2096,361,1212,1510,224,2941,2327,.........

The output is,

Least Significant bit: 0,0,1,1,0,1,0,0,1,0,0,0,1,1,........

Even parity bit : 0,1,1,1,1,0,0,1,1,0,1,1,1,0,........

The generator is not appropriate for use in simulations, because it is not very fast.

However, it has an unusually strong security proof, which relates the quality of the

generator to the computational difficulty of integer factorization. If integer factoriza-

tion is difficult then BBS with large M will have an output free from any nonrandom

patterns that can be discovered with any reasonable amount of calculation. This

makes it as secure as other encryption technologies tied to the factorization problem,

such as RSA encryption.

30

3.6 Mersenne Twister

The Mersenne twister is a PRNG developed by Matsumoto and Nishimura (Matsumoto

and Nishimura 1998). It provides for fast generation of very high-quality pseudoran-

dom numbers, having been designed specifically to rectify many of the flaws found in

older algorithms. Its name derives from the fact that period length is chosen to be a

Mersenne prime.

There are at least two common variants of the algorithm, differing only in the size of

the Mersenne primes used. The newer and more commonly used one is the Mersenne

Twister MT19937, with 32-bit word length. There is also a variant with 64-bit word

length, MT19937-64, which generates a different sequence. It has an incredibly long

period, 219937 − 1(more than 106001). And it has 623 dimensions of equidistribution,

meaning that all sequences up to 623 numbers long are equally probable. The gener-

ator is also fast. For a k-bit word length, the Mersenne Twister generates numbers

with an almost uniform distribution in the range [0,2k- 1].

3.7 PRNG using Elliptic Curves

Elliptic curve sequences with strong cryptographic properties have been studied in the

literature. Gong and Lam (Gong and Lam 2002) have introduced linear feedback shift

register sequences (LFSR) over the group of the elliptic curve points, and a construc-

tion of binary sequences obtained from these LFSR sequences. Kaliski,(Kaliski 1987)

presented a new pseudo-random bit generator based on elliptic curves. Chen and

Xiao,(Chen and Xiao n.d.) constructed some families of binary sequences using ellip-

tic curves. Beelen and Doumen,(Beelen and Doumen 2002) produced pseudorandom

sequences using both additive and multiplicative characters on elliptic curves.

3.7.1 PRNG using Elliptic Curves and Linear Feedback Shift

Registers

This is an elliptic curve based pseudorandom number generator. Lehmer’s LCG is

applied to points on elliptic curve E defined over a finite field Fp, where p is a prime,

31

to generate random sequence of points on E. This sequence of points is combined

with the random integer sequence generated using LFSR defined over GF(p) .The

detailed flow chart is given in fig 3.4.

3.7.2 Algorithm:

1. Choose a Galois field over GF(p) and an elliptic curve E of order OE.

2. Find all OE -1 points on elliptic curve and find orders of each of the points.

3. Select the point P with highest order say N.

4. Choose an integer a <OE.

5. Compute Pi+1 = [a] Pi + B, where seed is the initial point P0 ∈ E and B is a

random point on E.

6. If [a] Pi = - B, then Pi+1 = O, the point at infinity,then

7. Replace Pi+1 by Pm ∈ E. (Pm is any arbitrary point except P0)

8. Let Ki, sequence generated from LFSR.

9. Generate key sequence Ki Pi+1 = (xi,yi) .

The x coordinate or the y coordinate or even XOR of these two can be taken as

random number.

3.7.3 Block Diagram:

32

3.7.4 Flow chart

Fig 3.4 Detailed flowchart

33

Example 3.3 E: y2 = x3 + x+ 1 p=881

A sequence of 20000 bits generated is tested using FIPS test suite. The following

table shows the result.

Test sequence(xi) sequence(yi) sequence(xi

⊕
yi)

Mono bit 9947 9766 9872

Long run 0 0 0

Poker 0 1 0

Run Tests Run 0 Run 1 Run 0 Run 1 Run 0 Run 1

1 2654 2571 2427 2372 2598 2486

2 1288 1368 1348 1197 1358 1293

3 592 584 518 619 685 701

4 256 351 371 286 319 297

5 176 183 208 194 156 162

≥6 165 102 183 129 205 196

Table 3.1 FIPS test results for the sequence of bits generated on E(F881)

Example 3.4 E: y2 = x3 + x+ 1, p=4909

Test sequence(xi) sequence(yi) sequence(xi

⊕
yi)

Mono bit 9958 9750 9842

Long run 0 0 0

Poker 1 0 0

Run Tests Run 0 Run 1 Run 0 Run 1 Run 0 Run 1

1 2573 2639 2096 2371 2482 2679

2 1352 1298 1306 1336 1299 1262

3 571 597 693 718 721 674

4 379 283 317 315 298 321

5 198 179 201 176 201 182

≥6 188 193 198 165 194 169

Table 3.2 FIPS test results for the sequence of bits generated on E(F4909)

34

Example 3.5 E:y2 = x3 + 4x+ 20, p= 2383

Test sequence(xi) sequence(yi) sequence(xi

⊕
yi)

Mono bit 9843 9792 9957

Long run 0 0 0

Poker 2 0 1

Run Tests Run 0 Run 1 Run 0 Run 1 Run 0 Run 1

1 2456 2367 2592 2275 2638 2469

2 1297 1187 1316 1290 1327 1264

3 585 628 591 617 692 710

4 247 285 319 296 347 339

5 119 126 193 178 128 195

≥6 107 109 188 197 153 173

Table 3.2 FIPS test results for the sequence of bits generated on E(F4909)

3.8 Remarks

The generator produced sequences of long period.In all the examples, sequences

(xi),(yi) and sequence(xi

⊕
yi) have satisfied the bounds specified in the FIPS test

except for Poker’s test. In Poker’s test only one or two patterns were greater than

428.So we can use this generator as a source of random numbers.

35

Chapter 4

Fibonacci Sequence

4.1 Definition

The sequence 0,1,1,2,3,5,8,13,21,34,55,89,... is the well known Fibonacci Sequence. It

is defined by the recurrence relation

Fn = Fn−1 +Fn−2, with seed values F0 = 0 and F1 = 1.

A Lagged Fibonacci generator (LFG),(Mascagni et al. 1995b, Mascagni et al. 1995c)

is an example of a pseudorandom number generator. This class of random number

generators is aimed at being an improvement on the ‘standard’ linear congruential

generator. These are based on a generalisation of the Fibonacci sequence. LFG

produce very high quality random sequences and have remarkably long periods. LFGs

are particularly suitable for generating many streams of independent random numbers

in parallel.

A family of pseudo-random number generators of the form:

Sn = Sn−j + Sn−k(mod m), where j > k > 0. Instead of two initial values, j

initial values, S0,S1,S2 ... , Sj−1, are needed in order to compute the next element of

the sequence. Here, j and k are called “lags”.

36

4.2 A New Class of Generators

We will discuss a new class of random number generators (Marsaglia 1992).

Consider the classical Fibonacci sequence

0,1,1,2,3,5,8,13,21,34,55,89,... Reducing each term mod 10, we get the sequence

0,1,1,2,3,5,8,3,1,4,5,9,... This is an example of lagged Fibonacci sequence with

lags j = 2 and k = 1 and the binary operation is

u3v =(u + v) mod 10.

The sequence consists of all 1 x 2 vectors x = (x1, x2) with an iterating function f

defined by f (x1, x2) = (x2, (x1 +x2) mod 10).

Example 4.1 The following table gives the sequence produced by the generator of

period 60, with starting values (0,1).

(0,1) (1,1) (1,2) (2,3) (3,5) (5,8) (8,3) (3,1) (1,4) (4,5)

(5,9) (9,4) (4,3) (3,7) (7,0) (0,7) (7,7) (7,4) (4,1) (1,5)

(5,6) (6,1) (1,7) (7,8) (8,5) (5,3) (3,8) (8,1) (1,9) (9,0)

(0,9) (9,9) (9,8) (8,7) (7,5) (5,2) (2,7) (7,9) (9,6) (6,5)

(5,1) (1,6) (6,7) (7,3) (3,0) (0,3) (3,3) (3,6) (6,9) (9,5)

(5,4) (4,9) (9,3) (3,2) (2,5) (5,7) (7,2) (2,9) (9,1) (1,0)

Table 4.1 Sequence generated by f (x1, x2) = (x2, (x1 +x2) mod 10 with seed(0,1).

Example 4.2 The table gives the sequence produced by the generator with seed

(0,2), having period 20.

(0,2) (2,2) (2,4) (4,6) (6,0) (0,6) (6,6) (6,2) (2,8) (8,0)

(0,8) (8,8) (8,6) (6,4) (4,0) (0,4) (4,4) (4,8) (8,2) (2,0)

Table 4.2 Sequence generated by f (x1, x2) = (x2, (x1 +x2) mod 10 with seed(0,2).

37

Example 4.3 The table gives the sequence produced by the generator with seed

(2,3),having period 60.

(2,3) (3,5) (5,8) (8,3) (3,1) (1,4) (4,5) (5,9) (9,4) (4,3)

(3,7) (7,0) (0,7) (7,7) (7,4) (4,1) (1,5) (5,6) (6,1) (1,7)

(7,8) (8,5) (5,3) (3,8) (8,1) (1,9) (9,0) (0,9) (9,9) (9,8)

(8,7) (7,5) (5,2) (2,7) (7,9) (9,6) (6,5) (5,1) (1,6) (6,7)

(7,3) (3.0) (0,3) (3,3) (3,6) (6,9) (9,5) (5,4) (4,9) (9,3)

(3,2) (2,5) (5,7) (7,2) (2,9) (9,1) (1,0) (0,1) (1,1) (1,2)

Table 4.3 Sequence generated by f (x1, x2) = (x2, (x1 +x2) mod 10 with seed(2,3).

We observe from the above examples that the period of the sequence depends on the

seed value. In the next section we discuss how to make use of this concept to develop

new PRNGs.

4.3 Fibonacci Sequence and Elliptic Curves

Using the concept of lagged Fibonacci sequence, PRNG is developed using elliptic

curves overthe finite fields. The points on elliptic curve are used as seed values.

4.4 Lagged (2, 1) Generators

Let E : y2 = x3 + ax+ b be an elliptic curve over finite field Fp, where p is any fixed

prime.

Let P1, P2 ∈ E. Define f(P1, P2) = (P2, P1 �P2), where the operation ‘�’ is elliptic

point addition.

4.4.1 Algorithm:

1. Select an elliptic curve E over the Galois field GF(p).

2. Choose two points P1(x1,y1), P2(x2,y2) on E.

3. Apply f(P1, P2) = (P2, P1 �P2).

38

4. If x1 = x2, the resulting point is point at infinity. Go To step 2.

This algorithm generates a sequence of points on the elliptic curve with long period.

FIPS Test is applied to the generated sequences.

Example 4.6 E: y2 = x3 + x+ 1 , p = 881

Test sequence(xi) sequence(yi) sequence(xi

⊕
yi)

Mono bit 9865 9902 10167

Long run 0 0 0

Poker 1 0 2

Run Tests Run 0 Run 1 Run 0 Run 1 Run 0 Run 1

1 2432 2398 2613 2590 2614 2481

2 1188 1216 1317 1295 1194 1217

3 548 590 623 674 682 593

4 274 289 317 334 274 341

5 127 194 169 173 190 158

≥6 201 174 183 192 199 152

Table 4.6 FIPS test results for the sequence of bits generated on E(F881)

Example 4.7 E: y2 = x3 + x+ 1, p = 1979

Test sequence(xi) sequence(yi) sequence(xi

⊕
yi)

Mono bit 9735 9910 10027

Long run 0 0 0

Poker 0 0 1

Run Tests Run 0 Run 1 Run 0 Run 1 Run 0 Run 1

1 2363 2517 2269 2491 2416 2583

2 1253 1178 1204 1319 1295 1349

3 542 617 538 591 579 710

4 251 276 293 316 282 317

5 115 174 196 179 169 145

≥6 147 120 182 167 193 139

Table 4.7 FIPS test results for the sequence of bits generated on E(F1979)

39

Example 4.8 E: y2 = x3 + x+ 1, p = 3407

Test sequence(xi) sequence(yi) sequence(xi

⊕
yi)

Mono bit 9826 9919 9793

Long run 0 0 0

Poker 1 2 1

Run Tests Run 0 Run 1 Run 0 Run 1 Run 0 Run 1

1 2517 2539 2269 2319 2594 2489

2 1261 1193 1219 1326 1315 1279

3 585 562 627 693 596 614

4 247 319 275 382 294 329

5 116 183 174 127 150 147

≥6 173 104 169 195 168 126

Table 4.8 FIPS test results for the sequence of bits generated on E(F3407)

4.5 Lagged (3,1) Generators

Let E : y2 = x3 + ax+ b be an elliptic curve over finite field Fp, where p is any fixed

prime.

Let P1, P2,P3 ∈ E. Define f(P1, P2,P3) = (P2, P3, P1 �P3), where the operation � is

elliptic point addition.

4.5.1 Algorithm:

1. Select an elliptic curve E over the Galois field GF(p).

2. Choose three points P1(x1,y1), P2(x2,y2), P3(x3,y3) on E.

3. Apply f(P1, P2,P3) = (P2, P3, P1 �P3).

4. If x1 = x3, the resulting point is point at infinity. Go To step 2.

The algorithm produced a sequence of points on the elliptic curve with long period.The

sequence is tested using FIPS test suite for randomness.

40

Example 4.9 E: y2 = x3 + 4x+ 20, p = 2383

Test sequence(xi) sequence(yi) sequence(xi

⊕
yi)

Mono bit 9806 9939 9751

Long run 0 0 0

Poker 0 1 1

Run Tests Run 0 Run 1 Run 0 Run 1 Run 0 Run 1

1 2341 2437 2472 2556 2650 2488

2 1243 1257 1315 1329 1179 1326

3 543 557 618 677 590 681

4 256 304 368 297 250 264

5 118 142 129 116 204 170

≥6 192 144 172 159 168 154

Table 4.9 FIPS test results for the sequence of bits generated on E(F2383)

Example 4.10 E: y2 = x3 + 4x+ 20, p = 3407

Test sequence(xi) sequence(yi) sequence(xi

⊕
yi)

Mono bit 9765 9893 9781

Long run 0 0 0

Poker 0 0 1

Run Tests Run 0 Run 1 Run 0 Run 1 Run 0 Run 1

1 2374 2612 2445 2489 2517 2560

2 1319 1256 1229 1340 1264 1187

3 539 573 518 627 688 581

4 256 315 344 278 290 323

5 144 162 174 198 180 157

≥6 200 132 154 166 173 185

Table 4.10 FIPS test results for the sequence of bits generated on E(F3407)

41

Example 4.11 E: y2 = x3 + 4x+ 20, p = 4909

Test sequence(xi) sequence(yi) sequence(xi

⊕
yi)

Mono bit 10124 9828 9943

Long run 0 0 0

Poker 0 0 0

Run Tests Run 0 Run 1 Run 0 Run 1 Run 0 Run 1

1 2431 2582 2388 2475 2449 2516

2 1287 1249 1316 1304 1259 1193

3 693 547 588 635 586 729

4 354 319 302 260 251 283

5 165 124 118 180 153 149

≥6 133 151 187 155 174 190

Table 4.11 FIPS test results for the sequence of bits generated on E(F3407)

4.6 Remarks

In all the examples the sequences (xi), (yi) and the sequence(xi

⊕
yi) have satisfied

the bounds specified in the FIPS test except for the Poker’s test. In Poker’s test, very

few 4-bit patters were exceeded 428.

42

Chapter 5

Multiplicative Congruential

Generator

A Linear Congruential Generator (LCG) is defined by a recurrence relation:

Xn+1 = (a Xn + c) (mod m), where Xn+1 is the sequence of pseudorandom values,

and

m, 0 < m , is the modulus

a, 0 < a < m , the multiplier

c, 0 ≤ c < m , the increment

X0, 0 ≤ X0 < m, the seed or initial value, are integer constants that specify the

generator.

If c = 0, the generator is often called a Multiplicative Congruential Generator (MCG).

If m is prime, a is a primitive element modulo m, and x0 ̸=, 0 then the generated

sequence will have period length = m - 1, and the generator is called a full period

MCG.

As computations become faster, increasingly long sequences of random numbers are

desirable in applications. Period lengths of the random sequences is a vital issue. But

a large period length is not the onlycriterion. The quality of pseudorandom num-

bers is of central importance in any application requiring their use. It is therefore

important to choose a suitable pseudorandom number generator which will generate

sequences of large period lengths and also demonstrating good statistical and ran-

domness properties.

43

One alternative is the class of multiple recursive generators based on the higher order

recursion(L’Ecuyer et al. 1993):

Xn = a1 Xn−1 +...+ akXn−k

L’Ecuyer,(L’Ecuyer 1990) demonstrated that for a given prime modulus, such a gen-

erator may produce a sequence with period length of mk–1. It is possible to get

sequences with much better structural properties than simple MLCGs with the same

modulus and almost as fast and easy to implement.

Multiple recursive generators for modulus 2 was proposed by Tausworthe, (Tausworthe

1965) and later by Knuth, (Knuth 1997) for prime modulus.

Combining different streams of pseudorandom numbers into a new stream yields an

easy way to achieve long periods while keeping the computational costs of generating

the numbers low by choosing suitable parameters for each underlying generator(L’Ecuyer

1994).

Fishman,(Fishman 1990) presented the results of a search to find optimal maximal

period multipliers for multiplicative congruential random number generators with

moduli 232 and 248.

Before determining the conditions on the multiplier so that xi has a period length as

large as possible, we require the notion of a primitive root modulo m, which is defined

in terms of Euler’s ϕ -function.

Definition 5.1 Let m be a positive integer.

1. The function ϕ : Z+ −→ Z+ defined by

ϕ(m) = {t ∈ Z+ : 1 ≤ t ≤ m; (t,m) = 1 }, is called the Euler ϕ-function.

2. If a is an integer relatively prime to m, then the smallest positive integer n such

an ≡ 1(mod m) is called the order of a modulo m, denoted ordm(a). Further-

more, if ordm(a) = ϕ(m), then a is called a primitive root modulo m.

Theorem 5.1 For a pure multiplicative congruential sequence {xi}, determined by

(x0, a, m), the maximum possible period length is m, which is attained if:

1. x0 is relatively prime to m

2. a is a primitive root modulo m.

44

The multiplicative congruential generator can be generalized to get the extended

congruential generator, in which each new integer is a linear combination of previous

n-1 integers(Marsaglia 1992).

Xn = a1 X1 + a2 X2 + a3X3+ ...+an−1 Xn−1 (mod p),

where a1, a2, a3, a4, · · · an−1 are constants.

This concept is used to develop a pseudorandom number generator using elliptic

curves. The construction is explained as follows:

5.1 Algorithm:

1. Select an elliptic curve say, E: y2 = x3 + x+ 1 over a field Fp, where p is some

fixed prime.

2. Choose n-1 points say, P1, P2, · · · Pn−1 on E.

3. Select n-1 integers a1, a2, · · · an−1 such that ai < order of Pi

for all i, 1 ≤ i ≤ n-1.

4. Generate sequence of points

Pn = a1 P1 + a2P2 + a3P3+ · · · +an−1 Pn−1 (mod p) on E.

The extended multiplicative congruential generator seems to produce sequences with

fairly long period from simple multiplicative congruential generators with short peri-

ods.

For example, consider the elliptic curve E: y2 = x3 + x+ 1; p=101.

With seed (27, 4) and multiplier 2, the random sequence generated has the period 12

and with seed as (28, 8) and multiplier 3, the sequence has period 2. But the combi-

nation of these two seeds with respective multipliers, 2 * (27, 4) + 3*(28, 8) resulted

in a sequence with a relatively long period of 144. Similarly, 2*(93, 17) generated a

sequence with period 12, and 95*(95, 48) also generated a sequence with period 12,

but the combination, 2*(93, 17) +95*(95, 48) could generate a sequence with period

144.

45

Example 5.1 E : y2 = x3 + x+ 1, p =101, n=2

Sl.No
First Gen-

erator with

period l1

Second

Genera-

tor with

period l2

Period of

the combi-

nation

1
2*(82,30)

l1 = 12

3*(83,3)

l2 =4

144

2
85*(30,8)

l1 = 4

17*(32,28)

l2 = 4

210

3
2*(93,17)

l1 =12

95*(95,46)

l2 = 12

144

4
98*(99,30)

l1 = 6

59*(100,4)

l2 = 4

410

Table 5.1 Generators with respective periods(n=2)

Example 5.2 E : y2 = x3 + x+ 1, p =101, n=3

7*(10,1) has period 2, 11*(11,38) has the period 6 and 11*(12,23) has the period 6,

while 7*(10,1) +11*(11,38) + 11*(12,23) resulted in a sequence with period 124.

Sl.No
First Gen-

erator with

period l1

Second

Genera-

tor with

period l2

Third Gen-

erator with

period l3

Period of

the combi-

nation

1
15*(32,28)

l1 = 12

5*(35,17)

l2 =6

10*(36,43)

l3 =4

195

2
15*(83,3)

l1 = 4

5*(84,11)

l2 = 6

2*(85,38)

l3 = 12

176

3
7*(86,34)

l1 = 6

11*(87,24)

l2 = 2

65*(88,35)

l3 = 2

135

4
19*(25,20)

l1 = 4

23*(27,4)

l2 = 12

41*(28,8)

l3 = 6

195

Table 5.2 Generators with respective periods(n=3)

46

Example 5.3 E : y2 = x3 + x+ 1, p =101, n=4

Sl.No
First Gen-

erator with

period l1

Second

Genera-

tor with

period l2

Third Gen-

erator with

period l3

Fourth

Genera-

tor with

period l4

Period of

the combi-

nation

1
2*(23,24)

l1 = 12

2*(25,20)

l2 = 12

2*(27, 4)

l3 = 12

28*(28,8)

l4 = 6

150

2
2*(74,17)

l1 = 6

2*(76,39)

l2 = 6

2*(79,21)

l3=12

99*(82.30)

l4= 6

205

3
5*(8,4)

l1 = 6

8*(10,1)

l2 = 4

12*(11,38)

l3= 12

75*(12,23)

l4 = 3

296

4
5*(60,27)

l1 = 2

8*(61,46)

l2 = 4

12*(62,43)

l3 = 12

40*(64,65)

l4 = 12

190

Table 5.3 Generators with respective periods(n=4)

Example 5.4 E : y2 = x3 + x+ 1, p =101, n=5

Sl.No
First Gen-

erator with

period l1

Second

Genera-

tor with

period l2

Third Gen-

erator with

period l3

Fourth

Genera-

tor with

period l4

Fifth Gen-

erator with

period l5

Period of

the combi-

nation

1
2*(59,45)

l1 = 12

2* (60,27)

l2 = 4

2*(61,46)

l3 = 12

2*(62,43)

l4 = 12

27*(64,35)

l5 = 2

275

2
2*(92,24)

l1 = 6

2*(93,17)

l2 = 12

2*(95,48)

l3 = 12

2*(99,30)

l4 = 12

29*(100,10)

l5 = 2

290

3
12*(74,17)

l1 =6

17*(76,39)

l2 = 2

19*(79,21)

l3 = 2

26*(82,30)

l4= 2

87 *(83,3)

l5 = 3

320

4
12*(79,21)

l1 = 12

17*(82,30)

l2 = 4

19 * (83,3)

l3 =2

26*(84,11)

l4 = 2

29*(85,38)

l5 = 2

350

Table 5.4 Generators with respective periods(n=5)

47

Example 5.5 E : y2 = x3 + x+ 1, p =101, n=6

Sl.No
First

Genera-

tor with

period l1

Second

Genera-

tor with

period l2

Third

Genera-

tor with

period l3

Fourth

Genera-

tor with

period l4

Fifth

Genera-

tor with

period l5

Sixth

Genera-

tor with

period l6

Period of

the com-

bination

1
2*(84,11)

l1= 12

2*(85,38)

l2= 12

2*(86,34)

l3= 4

2*(87,24)

l4 = 4

2*(88,35)

l5= 12

14*(89,33)

l6= 12

260

2
8*(66,4)

l1= 4

12*(68,47)

l2= 12

62*(72,5)

l3 = 2

25*(74,17)

l4= 6

42*(76,39)

l5= 2

38*(79,21)

l6= 3

205

3
19*(15,19)

l1= 2

15*(21,30)

l2= 12

91*(23,24)

l3= 4

73*(25,20)

l4= 3

42*(27,4)

l5= 4

45*(28,8)

l6= 2

212

4
19*(25,20)

l1= 2

15*(27,4)

l2=12

62*(28,8)

l3= 2

73*(29,49)

l4 = 3

42*(30,8)

l5=4

5*(32,28)

l6= 6

360

Table 5.5 Generators with respective periods(n=6)

In the next section we discuss the randomness properties of the sequences.

5.2 Generator Sequence Properties

A good pseudorandom sequence generator worthy of consideration for encryption

purposes is characterized by the following properties (Blake et al. 2005).

� Long period: The generator should have long enough periods in order to avoid

the recurrence of the sequence after a short length of time.

� High linear complexity: Sequences with low linear complexity are easily pre-

dictable and vulnerable to attack based on their linear structure.

� Reproducibility: Being able to reproduce exactly the same sequence can be

necessary and very useful for practical applications.

� Statistical Properties: The generator must pass a battery of statistical tests to

validate its randomness attributes.

48

5.3 Analysis

The sequence produced by the generator was analyzed and tested for conformance

to the above characteristics. This analysis is important to check the merit of the

sequence produced and thus ascertain confidence in its use for key stream generation.

5.3.1 Long Period

The generated sequences have relatively long periods as desired. The results are

illustrated in tables 5.1 to 5.5.

5.3.2 Linear Complexity

One measure of the strength of a random sequence is its linear complexity, as studied

by various authors (Chan et al. 1982, Fredricksen 1982, Massey 1986, Massey 1969).

The linear complexity of a binary sequence is defined as the length of the shortest

linear feedback shift register (LFSR) that generates it. If a sequence has small lin-

ear complexity,then the synthesis of a linear equivalent of the sequence generator

becomes computationally feasible. The linear complexity of a finite sequence is deter-

mined using Massey-Berlekamp algorithm(Massey 1969).It is desirable that a random

sequence which can be used as key sequence in stream cipher systems should have a

large linear complexity. The linear complexity is an important concept in the anal-

ysis of stream ciphers. Any sequence produced over a finite field has a finite linear

complexity (Menezes et al. 1997).

Definition 5.1 The linear complexity of an infinite binary sequence s, denoted L(s),

is defined as follows:

� if s is the zero sequence s = 0,0, 0,..., then L(s) = 0

� if no LFSR generates s, then L(s) =∞

� otherwise, L(s) is the length of the shortest LFSR that generates s.

49

Definition 5.2 The linear complexity of a finite binary sequence sn, denoted

L(sn), is the length of the shortest LFSR that generates a sequence having sn as its

first n terms.

5.3.3 Properties of Linear Complexity

Let s and t be binary sequences.

� For any n ≥1, the linear complexity of the subsequence sn satisfies 0 ≤ L(sn)

≤ n.

� L(sn) = 0 if and only if sn is the zero sequence of length n.

� L(sn) = n if and only if sn = 0, 0, 0,...,0, 1.

� If s is periodic with period N, then L(s) ≤ N.

� L(s
⊕

t)≤ L(s)+L(t),where s
⊕

t denotes the bitwise XOR of s and t

The Berlekamp-Massey algorithm is an efficient algorithm for determining the linear

complexity of a finite binary sequence sn of length n.

5.3.4 Massey-Berlekamp Algorithm

Given a sequence Sn = s0,s1,s2,s3,...,sn−1, of length n,the algorithm generates the

linear complexity L(Sn) of Sn, 0 ≤ L(Sn) ≤ n.

1. Initialization: C(D) =1, L=0, m=-1, B(D)=1, N=0.

2. While (N < n) do the following:

Compute the next discrepancy d: d = (Sn +
∑L

i=1 Ci SN−i)mod 2.

If d = 1 then do the following:

T (D)= C(D), C(D) =C(D) + B(D).DN−m.

If L ≤ N/2 then L= N+1 -L, m = N, B(D) = T(D).

N = N+1.

3. Return L.

50

The table of Linear Complexity of binary sequences generated using the extended

multiplicative congruential generator for various values of primes and different values

of n using the elliptic curve y2 = x3 + x+ 1 is given below,table 5.6.

HHHHHHHHp

n
1 2 3 4 5 6

229 417 457 452 478 496 446

337 426 480 494 614 458 485

563 479 494 410 445 424 414

453 413 426 428 489 412 468

881 458 493 468 482 480 414

Table 5.6 Linear complexities of the generated sequences using extended MCG.

5.3.5 Statistical Properties

The NIST test suite was applied to pseudorandom sequences produced by the gener-

ator. This test suite is used as a bench mark by NIST in the evaluation of possible

candidate generators for the Advanced Encryption Standard (Murphy 2000). The

suite conducts a comprehensive battery of statistical tests, in which there are 16 core

test strategies. For the battery of tests the level of significance α is set to 0.01. An α

of 0.01 means that 1 sequence in 100 sequences is to be rejected. An evaluated p-value

> α signifies that the sequence is random with a confidence of 99% (NIST 2001). The

NIST suite also has a routine to aid the analysis of results. It generates a report file

containing the proportion of the p-values that passed each distinct test. In Figure

5.1 the proportion of the p-values that passed each test is plotted against the test ID

number.

51

Fig 5.1 NIST Test results for p = 101.

5.4 Remarks

The extended multiplicative congruential method is simple and easy to implement.

Experimental results show that the periods of such generators are much longer than

those that use the congruential method. Thus, in any Elliptic Curve Cryptosystem,

pseudorandom numbers can be easily generated without much overhead.

52

Chapter 6

Palindromes and Lychrel Numbers

6.1 Introduction

An interesting property of the positive integers in decimal representation is that most

of them become palindromes quickly after repeated digit reversal and addition. All 1

digit and 2 digit numbers eventually become palindromes after repeated reversal and

addition. About 80 % of all numbers under 10,000 resolve into a palindrome in 4 or

fewer steps. About 90% resolve in 7 steps or less.

6.2 Lychrel Numbers

A Lychrel number is a natural number which cannot form a palindrome through the

iterative process of repeatedly reversing its base 10 digits and adding the resulting

numbers. This process is called the 196-algorithm.

John Walker began the 196 Palindrome Quest in August 1987. He stopped after

2,415,836 iterations without reaching a palindrome in 1990. In 1995, Tim Irvin used

a supercomputer and reached the two million digit mark in only three months without

finding a palindrome. Jason Doucette then followed and reached 12.5 million digits

in 2000. Since June 2000, Wade VanLandingham has been carrying the task using

programs written by various enthusiasts. In 2006, VanLandingham had reached the

300 million digits. A palindrome is yet to be found. 196 is the smallest Lychrel

53

number.

6.3 Secret Keys

This interesting nature of the number 196 is used to generate keys with the aid of

points on elliptic curves over finite fields. The key generation algorithm is very simple

as the operation involved is simple reversal and addition of decimal numbers and is

achieved as follows: Take any point P(x,y) on an elliptic curve E over the finite field

Fp. This pair is the private key.Apply reverse and add digits procedure on 196, x

times to generate key k1 and y times to generate key k2 .

6.3.1 Algorithm to Generate Secret Keys

The keys are generated using the following algorithm.

1. The smallest Lychrel number 196 is the Public Key.

2. Generate a point (x, y) on an elliptic curve E. This pair is the private key.

Apply reverse and add procedure on 196, x times to generate key k1 and y

times to generate key k2 .

Let us generate few keys and analyse them.

Example 6.1 E: y2 = x3 + x + 1, p = 523. (519, 478) is a point on E. Apply the

above algorithm on ‘519’ to generate the key K1, Similarly, generate the key K2 using

the y coordinate, ‘478’.

K1:

60859260096454481997330032583646819345580465161711061552189879053658

33840026419038388340495086363456301511399417861499321520354446279059

40328848309136309493286525107809016507110617245408554392954737533003

368929444369116294805.

54

K2:

1537227695576797446014227321375756367587450087556332816599023925322

9121092781847129215971695532933963178822604282356070695130306491782

911120836393198957183226557909447858626585741226225195447976756077227241.

Let us test the randomness of the keys generated by determining the frequency of

occurrence of digits 0,1,2,3,4,5,6,7,8 and 9 in these keys and apply Pearson’s chi-

squared test for independence.

6.4 Pearson’s Chi-squared Test for Independence

The chi-square test of independence is used to determine whether there is a signifi-

cant difference between the expected frequencies and the observed frequencies (Hogg

et al. 2004).

A chi-square test is a statistical test commonly used for testing independence and

goodness of fit. Testing independence determines whether two or more observations

across two populations are dependent on each other (that is, whether one variable

helps to estimate the other). Testing for goodness of fit determines if an observed

frequency distribution matches a theoretical frequency distribution

Chi-Square Test for Independence: The test is applied when you have two cat-

egorical variables from a single population. It is used to determine whether there is

a significant association between the two variables. For example, in a clinical trial

of a new drug, the alternative hypothesis might be that the new drug has a different

effect, on average, compared to that of the current drug. This approach consists of

four steps:

� State the hypotheses

� Formulate a plan of analysis

� Analyze sample data

� Interpret the results

The Hypotheses: We use two hypotheses , null hypothesis H0 and alternative

Hypothesis Ha.

55

A null hypothesis H0 is a statement that proposes that no statistical significance

exists in a set of given observations. The null hypothesis attempts to show that

no variation exists between variables, or that a single variable is no different than

zero. It is presumed to be true until statistical evidence nullifies it for an alternative

hypothesis.

The alternative hypothesis, Ha, is the hypothesis used in hypothesis testing that is

contrary to the null hypothesis.

Suppose that we have to test the uniformity of digits in a sequence of N numbers.

Formulate the hypotheses as below:

H0 : Digits in the sequence are equally distributed .

Ha: Digits in the sequence are not equally distributed.

Plan of Analysis :

The plan of analysis describes how to use sample data to accept or reject the null

hypothesis. The plan should specify the following elements:

� Significance level: Often, researchers choose significance levels equal to 0.01,

0.05, or 0.10.

� Test method: Use the chi-square test for independence to determine whether

there is a significant relationship between two categorical variables.

Analysis of the Sample Data: Using sample data, find the degrees of freedom,

expected frequencies, test statistic, and the P-value associated with the test statistic.

� Degrees of freedom: The degrees of freedom (df) is equal to,

df = n-1 ,where n is the number of classes of the variable.

� Expected frequencies: The expected frequency counts are computed separately

for each class .

We assume,

H0: All frequencies are equal.

The value of the test-statistic is

56

where

χ2 = Pearson’s cumulative test statistic;

Oi = an observed frequency;

Ei = an expected (theoretical) frequency, asserted by the null hypothesis;

n = the number of cells in the table.

Interpretation of results: If the calculated value is ≤ critical value for certain level

of significance, there is no difference between the frequencies. Otherwise we reject

H0.

Example 6.2 E: y2 = x3 + x+ 1, p = 881

First we generate few points on E. Apply the algorithm to generate keys. Then,

find the frequencies of digits in the keys. Now apply Chisquare test for each keys

separetely. The follwing tables illustrates the results of the test.

57

Point(x,y)
Frequency of Digits Accepted/Rejected

0 1 2 3 4 5 6 7 8 9 Testvalue 0.1% 1% 5%

(367, 232) 14 14 16 16 19 20 21 12 16 15 4.54 A A A

13 9 8 13 8 11 13 15 5 7 9.37 A A A

(381, 738) 20 16 16 20 15 19 14 21 15 13 4.31 A A A

30 32 28 34 32 35 29 33 36 33 1.85 A A A

(430,483) 20 22 20 18 21 22 15 16 15 21 3.68 A A A

23 20 19 19 23 20 23 19 25 21 1.96 A A A

(519,103) 20 23 19 22 27 25 22 20 22 25 2.60 A A A

5 5 5 4 3 2 6 6 5 7 4.08 A A A

(763,501) 38 33 39 30 30 39 32 29 33 28 4.74 A A A

22 19 23 18 26 19 17 27 25 22 5.03 A A A

Table 6.1 Chi Square results for the keys generated using points on E(F881)

Example 6.3 E: y2 = x3 + x+ 1, p = 1979

Point(x,y)
Frequency of Digits Accepted/Rejected

0 1 2 3 4 5 6 7 8 9 Testvalue 0.1% 1% 5%

(124,766) 9 4 3 7 3 3 6 9 9 3 11.86 A A A

40 23 41 31 30 44 24 35 32 29 13.64 A A A

(234,1057) 8 10 8 14 12 13 7 14 8 9 6.42 A A A

40 39 43 44 48 45 44 39 47 45 2.08 A A A

(316,440) 15 14 15 14 13 15 15 16 13 12 0.96 A A A

19 21 14 20 18 17 22 23 21 22 3.46 A A A

(449,1903) 17 18 20 21 22 16 22 19 22 20 2.14 A A A

82 74 81 85 80 89 74 73 77 76 3.15 A A A

(874,1383) 42 38 35 33 34 33 35 39 36 40 2.37 A A A

62 62 51 66 55 50 55 56 62 52 4.81 A A A

Table 6.2 Chi Square results for the keys generated using points on E(F1979)

58

Example 6.4 E: y2 = x3 + x+ 1, p = 4909

Point(x,y)
Frequency of Digits Accepted/Rejected

0 1 2 3 4 5 6 7 8 9 value 0.1% 1% 5%

(899,683) 9 20 9 16 11 6 14 19 16 12 4.95 A A A

4 6 6 5 2 4 3 2 2 2 7.61 A A A

(464,1879) 22 16 22 20 30 22 17 13 20 21 9.16 A A A

63 77 76 51 72 70 90 90 97 95 25.56 R R A

(937,1960) 38 32 37 39 42 37 39 37 47 38 3.48 A A A

86 84 78 82 80 78 78 81 85 85 1.10 A A A

((948,1856) 6 10 9 8 13 4 9 16 14 10 9.36 A A A

9 16 16 17 10 17 9 7 9 19 4.11 A A A

(502,1274) 23 15 20 41 23 14 21 18 21 21 22.9 R A A

65 49 46 53 49 42 47 63 37 73 21.6 R A A

Table 6.3 Chi Square results for the keys generated using points on E(F4909)

59

6.5 Palindromes and Secret Keys

In the previous section we have generated secret keys by employing the non palin-

dromic nature of the decimal number 196. Now we make use of the palindromic

nature of decimal numbers to generate the key streams.The non-palindrome number

yields a palindrome on repeated reverse and add procedure. Let us see how this sim-

ple procedure is deployed to generate complex key streams using points on elliptic

curves. This property of integers can be used to generate secret keys. Points on the

elliptic curve are taken as seeds to generate secret keys of variable length.

Here, we consider any point P(x, y) on an elliptic curve E over finite feild Fp. Reverse

and add digits of x coordinate of the point repeatedly till a palindrome is obtained.

The intermediate numbers obtained are concatenated to get a sequence of decimal

digits.

6.5.1 Algorithm to Generate Secret Keys

1. Generate a point P(x,y) on an elliptic curve E. Take x-coordinate as the seed.

2. Key = “ ”

3. Test the number for palindrome. If yes, go to step 5. Otherwise reverse the

number and add to the original number to get the sum.

4. Concatenate this sum to the Key. Go to 3.

5. Concatenate this number to the key.

For example, suppose E : y2 = x3 + x+ 1; p = 523.

A point on E is (519, 478)

Key = “ ”

519 + 915 = 1434. Key = 1434: 1434 + 4341 = 5775,a palindrome. Therefore

14345775 is the required key to be used for encryption.

Key = “ ”. 478 + 874 = 1352. Key = 1352.

1352 + 2531 = 3883. Key = 13523883.

Again we apply chi-square test to check for independence.

60

Example 6.5 E: y2 = x3 + x + 1, p = 881 Again we generate points and find the

keys using different algorithm and test for independence.

Point(x,y)
Frequency of Digits Accepted/Rejected

0 1 2 3 4 5 6 7 8 9 Testvalue 0.1% 1% 5%

(290,390) 1 2 4 2 0 3 2 0 1 0 12.33 A A A

1 1 0 2 1 1 4 1 2 2 7.0 A A A

(297,79) 6 3 2 1 2 0 1 2 2 6 14.6 A A A

4 3 0 1 7 3 2 3 1 1 14.6 A A A

(395,380) 4 7 2 0 0 2 1 5 10 3 27.17 R R A

2 4 3 3 3 5 2 2 1 0 7.4 A A A

(671,286) 4 2 0 1 7 3 1 2 1 1 17.1 R A A

23 28 14 19 17 14 14 28 25 13 16.75 A A A

(692,182) 4 7 2 0 0 2 1 5 10 3 27.18 R A A

2 4 3 3 3 5 2 2 1 0 7.4 A A A

Table 6.4 Chi Square results for the keys generated using points on E(F881)

Example 6.6 E: y2 = x3 + x+ 1, p =1979

Point(x,y)
Frequency of Digits Accepted/Rejected

0 1 2 3 4 5 6 7 8 9 Testvalue 0.1% 1% 5%

(391,938) 5 10 6 5 1 5 3 2 2 1 17.5 R A A

4 2 0 0 1 1 0 4 6 1 20.47 R A A

(594,799) 6 3 2 1 2 0 1 2 2 6 14.6 A A A

3 5 0 2 6 1 4 4 2 4 9.97 A A A

(698,778) 4 3 5 0 2 3 1 0 0 1 15.2 A A A

1 3 1 3 3 2 3 3 0 0 7.84 A A A

(829,562) 9 9 4 3 1 9 2 10 10 4 19.16 R A A

2 4 3 2 2 5 1 2 1 0 8.9 A A A

(1962,671) 1 2 1 2 2 3 4 1 1 2 4.68 A A A

4 2 0 1 7 3 1 2 1 1 17.09 R A A

Table 6.5 Chi Square results for the keys generated using points on E(F1979)

61

Example 6.7 E: y2 = x3 + x+ 1, p =3407

Point(x,y)
Frequency of Digits Accepted/Rejected

0 1 2 3 4 5 6 7 8 9 Testvalue 0.1% 1% 5%

(281,847) 2 4 3 3 3 5 2 2 1 0 7.4 A A A

4 2 0 1 6 3 1 1 0 1 17.3 R A A

(375,1509) 3 10 9 5 14 4 9 16 21 11 28 R R A

4 4 2 3 0 3 4 1 0 0 12.8 A A A

(880,1484) 23 28 14 19 17 14 14 28 25 13 16.7 A A A

8 11 3 6 1 5 3 1 1 1 27 R R A

(463,1574) 2 4 3 2 2 5 1 2 1 0 8.9 A A A

8 9 3 6 2 5 3 2 1 1 18 R A A

(3088,1577) 4 9 5 4 3 3 0 1 2 3 16 A A A

9 8 4 3 1 8 2 8 0 4 16.5 A A A

Table 6.6 Chi Square results for the keys generated using points on E(F3407)

6.6 Remarks

Once again we see that that keys of variable length can be generated using this

algorithm. Chi-square test at 0.1%, 1%, 5% levels approves the independence of

digits in the keys except in few cases. Thus we generated keys of unpredictable

lengths using two simple algorithms. In the next section we see the application of

these keys.

62

Chapter 7

One Time Pad

7.1 Introduction

One time pad or OTP, also called Vernam-cipher or the perfect cipher, is a crypto

algorithm where the plaintext is combined with a random key. A one-time pad is

a very simple yet completely unbreakable symmetric cipher where the same key is

used for encryption and decryption of a message. It is the only known method to

perform mathematically unbreakable encryption (Shannon 1949). One-time pad was

developed by Gilbert Vernam in 1917. A pad is used only once and discarded, hence

the name one-time pad.

Encryption: ci=mi

⊕
ki, i = 1,2,3,4,5......

mi: plain-text bits.

ki : key -stream bits.

ci : cipher-text bits.

Decryption : mi = ci
⊕

ki , i = 1,2,3,4,5.....

One-time pad is secure if four important rules are followed. If these rules are applied

correctly, the one-time pad can be proven unbreakable.

� The key is as long as the plaintext.

� The key is truly random.

� There should only be two copies of the key: one for the sender and one for the

63

receiver.

� The keys are used only once, and both sender and receiver must destroy their

key after use.

Although one-time pad is a perfect cipher, it has two major disadvantages. The first

problem is the generation of a large quantity of random numbers or letters. The

second problem is the key distribution. Since each key can only be used once and has

to have the same length as the message, we will need a large number of different keys,

physically distributed to both sender and receiver. The costs of secure production,

distribution, custody and destruction of one-time pad keys can only be supported by

government departments such as military, intelligence services and embassies.

One-time pad encryption is only possible if both sender and receiver are in possession

of the same key. Therefore, the keys must be exchanged physically and securely be-

forehand, by both parties personally or through a trusted courier. This means that

the secure communications are expected and planned within a specific time frame.

Enough key material must be available for all required communications until a new

exchange of keys is possible. Depending upon the situation, a large volume of keys

could be required for a short time period, or little key material could be sufficient for

a very long time period, up to several years.

Modern computer algorithms such as symmetric block ciphers and asymmetric public

key algorithms replaced one-time pads because of practical considerations and solu-

tion to key distribution problems. However, although the current crypto algorithms

are secure, they could become useless because of new hardware developments, a break-

through in mathematics such as a faster factoring of numbers, new types of attacks or

new quantum computing solutions that speed up brute force attack. Modern crypto

algorithms provide practical security and privacy, essential to everyday life. However,

sometimes we need everlasting absolute security and privacy, and that’s only possible

with the one-time pad.

We use the keys generated in the previous chapter as one time pads.

64

7.2 Encryption and Decryption

Both the algorithms discussed in chapter 5 could generate keys of variable lengths. If

the size of the plaintext is greater than that of key, one can easily generate another

key and concatenate it with the previous key and get key length same as that of plain

text.

Although one-time pad is the only known perfect cipher, it has the major disadvantage

of the generation of a large quantity of random numbers. The algorithms described

in the previous chapters can generate large number of points easily. We can generate

two keys for every point. The key generation algorithms are very simple as well as

fast. The algorithms generate variable size keys depending upon the points and the

number of iterations used. The key K1, generated using the x-coordinate is first used

to encrypt the plaintext to get intermediate cipher. Then the key K2, generated

using y-coordinate of the point is used to encrypt the intermediate cipher to get the

ciphertext. By this we can achieve security of a higher level. If the plaintext size is

greater than the key size, another key is generated and concatenated to this key. On

the receiver end, first K2 is used to decrypt the ciphertext and then K1 to get the

original plaintext.

Fig 7.1 Encryption and Decryption

65

7.3 Steganography

Since the advent of the Internet, the security and integrity of information have been

the most important factors of information technology and communication. Cryptog-

raphy is a technique for securing the secrecy of communication and many different

methods have been developed to encrypt and decrypt data . But it is not enough to

keep the contents of a message secret, it may also be necessary to keep the existence

of the message secret. The technique used to implement this is called steganography.

Steganography is the art and science of writing hidden messages in such a way

that no one, apart from the sender and intended recipient, suspects the existence of

the message. The word steganography is of Greek origin and means ”concealed writ-

ing” from the Greek words ”steganos” meaning ”covered or protected”, and ”graphei”

meaning ”writing”. Cryptography protects the contents of a message, steganography

can be said to protect both messages and communicating parties.

Steganography differs from cryptography in the sense that where cryptography fo-

cuses on keeping the contents of a message secret, steganography focuses on keeping

the existence of a message secret (Wang and Wang 2004). Steganography and cryptog-

raphy are ways to protect information from unwanted parties but neither technology

alone is perfect and can be compromised. Once the presence of hidden information

is revealed or even suspected, the purpose of steganography is partly defeated (Wang

and Wang 2004) . The strength of steganography can thus be amplified by com-

bining it with cryptography. While cryptography provides privacy, steganography

is intended to provide secrecy. Steganography takes cryptography a step farther by

hiding an encrypted message so that no one suspects it exists.

Almost all digital file formats can be used for steganography, but the formats that

are more suitable are those with a high degree of redundancy. Redundancy can be de-

fined as the bits of an object that provide accuracy far greater than necessary for the

object’s use and display (Currie and Irvine 1996). Essentially, the information-hiding

process in a steganographic system starts by identifying a cover medium’s redundant

66

bits. The embedding process creates a stego medium by replacing these redundant

bits with data from the hidden message.

The most popular data formats used are .bmp, .doc, .gif, .jpeg, .mp3, .txt and

.wav.This is primarily due their popularity on the Internet and the ease of use of

the steganographic tools that use these data formats. These formats are also popular

because of the relative ease by which redundant or noisy data can be removed from

them and replaced with a hidden message.

Embedding secret messages in digital images are by far the most widely used of all

methods in the digital world of today. Almost any plaintext, cipher text, image and

any other media that can be encoded into a bit stream can be hidden in a digital

image.

The most well-known steganographic technique in the data hiding field is least-

significant-bits (LSBs) substitution. This method embeds the fixed-length secret bits

in the same fixed length LSBs of pixels(Wang et al. 2001, Wang and Wang 2004)

7.3.1 Least Significant Bit Technique

Least significant bit (LSB) insertion is a common, simple approach to embedding

information in a cover image . The least significant bit (in other words, the 8th bit)

of some or all of the bytes inside an image is changed to a bit of the secret message.

When using a 24-bit image, a bit of each of the red, green and blue colour components

can be used, since they are each represented by a byte. In other words, one can store

3 bits in each pixel. An 800 x 600 pixel image can thus store a total amount of

1,440,000 bits or 180,000 bytes of embedded data. For example a grid for 3 pixels of

a 24-bit image can be as follows:

When the number 200, whose binary representation is 11001000, is embedded into

67

the least significant bits of this part of the image, the resulting grid is as follows:

Although the number was embedded into the first 8 bytes of the grid, only the

3 underlined bits needed to be changed according to the embedded message. On

average, only half of the bits in an image will need to be modified to hide a secret

message using the maximum cover size(Johnson and Menezes 2001). Since there are

256 possible intensities of each primary colour, changing the LSB of a pixel results in

small changes in the intensity of the colours. These changes cannot be perceived by

the human eye - thus the message is successfully hidden. With a well-chosen image,

one can even hide the message in the least as well as second to least significant bit and

still not see the difference(Johnson and Menezes 2001) This approach is very easy to

detect. A slightly more secure system is for the sender and receiver to share a secret

key that specifies only certain pixels to be changed.

We can distinguish two kinds of keys: steganographic keys and cryptographic keys

(Krenn 2004). A steganographic key controls the embedding and extracting process.

For example, it can scatter the message to be embedded over a subset of all suitable

places in the carrier medium. Without the key, this subset is unknown, and each

sample used to detect embedding by a statistical attack is a mixture of used and

unused places which spoils the result. A cryptographic key, however, is used to

encrypt the message before it is embedded. For both applications the ”secret”, which

conceals the message, is detached from the actual algorithm in the form of a parameter-

the key. If the key is confidential, the steganographic algorithm can be public .

It is possible to decide whether the bits read are in fact an encoded message of a

potential steganogram only if one has the appropriate decryption key. Encryption is

also advisable in addition to steganographic utilities which do not implicitly encrypt.

68

7.3.2 Block Diagram

The following diagram describes the process of embedding the message in the cover

image and extracting.

The data to be transmitted is embedded in an image called, cover-image using the

Fig 7.2 Embedding and extracting message

key, called stego-key.The embedded image is called the stego-image.

The process can be described as an expression as follows:

cover − image + message + stego− key = stego− image.

The cover − image and stego− images are images in the same format. The data is

first encrypted using the key K1. This encrypted image is embedded into the cover-

image at the locations determined using the key K2.As the keys are random it is very

hard to retrieve the data for anybody other than the intended receiver. We take the

.bmp files as coverimage and message as .bmp or .jpg images.

69

Example 7.1 E: y2 = x3 + x+ 1, p = 1979. p = (124,766)

K1 = 87033848368531006729861196877870205903760002587384734167.

K2 = 71873727345555324576278085774579083486010002239 442659842

797521589916589102351295595920420806843438173002421263456418217857122

51583067307708561644608880026722062931404035922672997891534725490780267

0286 143306598117246543620342093807453475190240294955393053102085609

98522578734806515592230000959527098538857987276453255563381647717.

We use the key K1 to encrypt the message and K2 to embed the encrypted message

in the cover image. Next we analyse the stego image to trace the hidden message.

70

71

72

73

74

75

Next we tested the algorithm using the PSNR (Peak Signal-to-Noise Ratio). PSNR is

a standard measurement used in steganography technique in order to test the quality

of the stego images. The higher the value of PSNR, the more quality the stego image

will have.
``````````````````Cover image

Stego image
Message 1 Message 2 message 3

Coverimage1 56.38 58.46 62.45

Coverimage2 65.74 64.32 72.17

Coverimage3 68.43 74.88 77.42

Table 7.1 PSNR values.

7.3.3 Remarks

Here we have made use of the amalgamation of cryptography and steganography. The

cover image and stego images in figures 7.3a, 7.3c, 7.3e and 7.3g look identical. There

is no likelihood that human eye can suspect the hidden message inspite of having

both cover and stego images together. Therefore a higher level of security is achieved.

Even the enhanced LSB of cover image 7.4a and stego images, figures 7.4b, 7.4c and

76



7.4d look relatively similar, there by hiding the message properly. But, there is some

difference between the chi square outputs of figures 7.5a ,7.5b and,7.5d. At the same

time, the histograms of the cover image and stego images in figures 7.6a, 7.6b, 7.6c

and 7.6d look identical.

Again there are no noticeable differences between the cover image and stego images in

figures 7.7a, 7.7c, 7.7e and 7.7g. But the enhanced LSB 0f stego image3 , figure 7.9g

failed to hide the message. Even the chi square images are not successful in hiding

the message as seen in figures 7.9a, 7.9c, 7.9e and 7.9g.

In the last example also it is possible to detect the presence of message .This due

to the large size of message compared to the size of the cover image. There fore

by selecting messages of proper size, we can communicate securely in an absolutely

imperceptible manner.

It is observed that the stego images have a higher PSNR value. Hence we conclude

that the keys are helpful in hiding the messages efficiently.

77



Chapter 8

Conclusion

The study has given an account of and the reasons for the widespread utility of

pseudorandom numbers. The effort explained the central importance of PRNGs in

various fields that lead to the development of new generators. Due to the simple ad-

dition operation, the PRNGs developed are very efficient and can produce very long

sequence of points on the curve with ease. Moreover the sequences generated exhibit

randomness properties in accordance with NIST and FIPS statistical test suites. The

sequences showed fairly high linear complexity. The lagged Fibonacci generator is

more efficient compared to other two generators as it involves only addition of points

on the elliptic curve. Thus, in any Elliptic Curve Cryptosystem, pseudorandom num-

bers can be easily generated without much overhead.

The key generation schemes are very fast and able to generate keys of varied size.

The keys generated are fairly random and maybe used for password generation. The

keys are suitable for implementation as One Time Pads and also be used in steganog-

raphy.

Further research may be undertaken in implementing the algorithms on Elliptic

curves over other fields. Investigation of PRNGs on different conics over finite fields

may also be done.

78



APPENDIX A

Hasse-Weil Theorem

Let E be an elliptic curve defined over Fq. Then q+1−2
√
q ≤ #E(Fq) ≤ q+1+2

√
q.

The interval [q + 1− 2
√
q, q + 1 + 2

√
q] is called the Hasse interval.An alternate for-

mulation of Hasse’s theorem is the following:

if E is defined over Fq, then #E(Fq) = q + 1− t where |t| ≤ 2
√
q ;

t is called the trace of E over Fq. Since 2
√
q is small relative to q,we have # E(Fq) ≈ q.

Proof: Let E be an elliptic curve defined over Fq. For each of the q possible values

of x, there will be at most 2 y’s.

Therefore there will be 2q + 1 points on E. But only half of the elements in Fq have

square roots, we expect around half of that number of points.

Let χ be the Legendre symbol, the function

χ : Fq ⇒ {0, 1}, χ(0) = 0.

Thus the number of solutions to y2 = u is 1 + χ(u). Therefore the number of points

on y2 = x3 + ax+ b is

1 +
∑

xϵFq
(1 + χ(y2 = x3 + ax+ b)) = 1+ q +

∑
xϵFq

χ(y2 = x3 + ax+ b)

This sum is similar to ”random walk”, where we toss a coin q times and move one

step forward if head turns up and one step back ward if tail turns up. Dq be the net

distance travelled after q steps. Dq may be positive or negative. So we consider D2
q .

D2
1 =1, as after one step ,whether forward or backward movement, square is +1.

The expected distance after q steps for q> 1, can be obtained from Dq−1.

Thus, Dq = Dq−1+ 1 or Dq−1- 1) so that (D2
q = D2

q +Dq+1) or (D2
q = D2

q -Dq1)

Taking average, D2
q = D2

q−1 +1

Since D2
1 = 1, D2

q =q -1. Therefore D2
q = q -1 +1 =q;

Hence Dq= ±√
q.

Therefore
∑

xϵFq
(1 + χ(y2 = x3 + ax+ b)) =

√
q.More precisely the sum is bounded

by 2
√
q

Thus the number of points on E over Fq is q + 1− 2
√
q ≤ #E(Fq) ≤ q + 1 + 2

√
q.

79



APPENDIX B

Discrete Logarithm Problem

Let Fq be a finite field of q elements so that q = pn for some prime p and integer n.

It is well known that the multiplicative group of nonzero elements of Fq , denoted by

F ∗
q is a cyclic group of order q.

Thus if α is a generator of this multiplicative group, then every nonzero element β in

Fq is given by β = αx for some integer x; in fact for each β there is a unique integer

in the range 0 ≤ x ≤ q − 1 with this property. For a given x and α , the power αx

can be quickly computed by the square and multiply method.

For example, p =1999, α is a primitive root. 3789 can be found to be 1452 (mod

1999) easily.

The inverse problem, i.e., the problem of finding, for a given α and β , the x in the

range 0 ≤ x ≤ q − 1 satisfying β = αx , is the discrete logarithm problem.

Given 3, it is not that easy to find x in the rang 0 to 1997 satisfying the equation 3x

= 1452 (mod1999).

Elliptic Curve Discrete Logarithm Problem

The discrete logarithm problem is the basis for the security of many crypto systems

including the Elliptic Curve Cryptosystem. More specifically, the ECC relies upon

the difficulty of the Elliptic Curve Discrete Logarithm Problem (ECDLP).

Let E be an elliptic curve over a finite field Fq. Given any point P on E and an

integer k, one can easily find kP=Q(mod q) using repeated doubling and addition.

For example, 100P can be computed as 100P = 2(2(P + 2(2(2(P + 2P))))), per-

forming 6 doublings and 2 additions of points on the curve.

For two points P and Q on an elliptic curve E over a finite field Fq, finding an inte-

ger k such that kP=Q(mod q) is very hard .This is called elliptic curve discrete log

problem. k is the discrete logarithm of Q to the base.

y2 = x3 +9x+17 over F23, What is the discrete logarithm k of Q = (4,5) to the base

P = (16,5)?

80



One way to find k is to compute multiples of P until Q is found. The first few multi-

ples of P are:

P = (16,5) 2P = (20,20) 3P = (14,14) 4P = (19,20) 5P = (13,10) 6P = (7,3) 7P =

(8,7) 8P = (12,17) 9P = (4,5)

Since 9P = (4,5) = Q, the discrete logarithm of Q to the base P is k = 9.

In a real application, k would be large enough such that it would be infeasible to

determine k in this manner.

81



APPENDIX C

The knapsack problem.

Given a set (vi) of k positive integers and an integer V, find a k-bit integer

n = (ck−l ck−2 ck−3 · · · c1 c0) where the ci ∈ {O, 1} and

k−1∑
i=0

civi = V

if such an n exists.

Note that there may be no solution or many solutions, or there might be a unique

solution, depending on the k-tuple (vi) and the integer V.

A special case of the knapsack problem is the superincreusang knapsack problem.It

is known that the general knapsack problem is in a very difficult class of problems,

called ”NP-complet” problems. This is the case when the vi, arranged in increasing

order, have the property that each one is greater than the sum of all of the earlier vi.

For example, the 5-tuple (2,3,7,15,31) is a superincreasing sequence.

However, the superincreasing knapsack problem is much, much easier to solve. We

look down the vi, starting with the largest, until we get to the first one that is ≤ V.

We include the corresponding i in our subset I , replace V by V - vi, and then continue

down the list of vi until we find one that is less than or equal to this difference.

Continuing in this way, we eventually either obtain a subset of (vi) which sums to V,

or else we exhaust all of (vi) in which case there is no solution.

If V=24, C4=0, c3=1, sothat V=24-15=9 C2=1 and V=9-7=2, c1=0, c0=1. Thus,

n=(01101)2 =13.

The multiplicative congruential generator

Let E be an elliptic curve over a finite field Fq.

Let P1, P2 ,P3, · · · , Pn−1 be n-1 points on E and a1 , a2, a3, · · · ,an−1 be n-1 integers.

Pn = a1 P1 + a2P2 + a3P3+ · · · +an−1 Pn−1 (mod q).

82



On the right side we have n-1 scalar multiples of points on elliptic curve.Finding

each aiPi takes 0(ailog
3q)operations.Moreover ECDLP itself is difficult problem. So

knapsack version of the multiplicative congruential generator is still harder.

83



Bibliography

Beelen, P. and Doumen, J. (2002), Pseudorandom sequences from elliptic curves,

in ‘6th International Conference on Finite Fields with Applications to Coding

Theory, Cryptography and Related Areas, Oaxaca, Mexico’, Springer-Verlag,

Berlin.

Blake, I.F. Seroussi, G. et al. (2005), Advances in Elliptic Curve Cryptography, Cam-

bridge University Press, Cambridge,New York.

Blum, L. Blum, M. et al. (1986), ‘A simple unpredictable pseudo random number

generator’, SIAM J. Comput. 15(2), 364–383.

Chan, A.H. Games, R. et al. (1982), ‘On the complexity of debruijn sequences’, Jour-

nal of Combinatorial Theory 33(3), 233–46.

Chen, Z. and Xiao, G. (n.d.), ‘Good ’ pseudo-random binary sequences from elliptic

curves’.

Crandall, R. and Pomerance, C. (2005), Prime Numbers: A Computational Perspec-

tive, second edn, Springer-Verlag, New York.

Currie, D. L. and Irvine, C. E. (1996), Surmounting the effects of lossy compression

on steganography, 19th National Information Systems Security Conference.

Enge, A. (1999), Elliptic Curves and Their Applications to Cryptography: an Intro-

duction, Kluwer Academic Publishers, Dordrecht.

84



Fishman, G. S. (1990), ‘Multiplicative congruential random number generators with

modulus 2β: an exhaustive analysis for β = 32 and a partial analysis for β =

48’, Math. Comp 54(189), 331–344.

Fredricksen, H. (1982), ‘A survey of full length nonlinear shift register cycle algo-

rithms’, SIAM Review 24, 195–221.

Goldwasser, S. and Kilian, J. (1999), ‘Primality testing based on elliptic curves’,

Journal of the ACM 46(4), 450–472.

Gong, G. and Lam, C. C. Y. (2002), Linear recursive sequences over elliptic curves,

Proc. Intern. Conf. on Sequences and Their Applications, Springer-Verlag,

pp. 182–196.

Hankerson, D. Menezes, A. et al. (2004), Guide to Elliptic Curve Cryptography,

Springer-Verlag, New York,Inc.

Hasegawa, A. and Umeno, K. (2002), ‘Ip core of statistical test suite of fips 140-

2’, http://www.design-reuse.com/articles/7946/ip-core-of-statistical-test-suite-

of-fips-140-2.html.

Hogg, R V. Craig, A. T. et al. (2004), Introduction to Mathematical Statistics, seventh

edn, Pearson Education, United States.

Johnson, D. and Menezes, A. (2001), ‘The elliptic curve digital signature algorithm’,

Intern. J. of Information Security 1, 36–63.

Kaliski, B. S. J. (1987), Elliptic curves and cryptography : a pseudorandom bit

generator and other tools, PhD thesis, Massachusetts Institute of Technology,

Dept. of Electrical Engineering and Computer Science.

Kao, C. and Wong, J. (1998), ‘Random number generators with long period and

sound statistical properties’, Comp. Math. Appl. 36(3), 113–121.

Knuth, D. E. (1997), Art of Computer Programming, Volume 2: Seminumerical Al-

gorithms, third edn, Addison-Wesley, Reading.

85



Koblitz, N. (1994), A Course in Number Theory and Cryptography. Graduate Texts

in Mathematics, second edn, Springer-Verlag.

Krenn, R. (2004), ‘Steganography and steganalysis’,

http://www.krenn.nl/univ/cry/steg/article.pdf.

Lauter, K. (2004), ‘The advantages of elliptic curve cryptography for wireless security’,

IEEE Wireless Communications 11(1), 62–67.

L’Ecuyer, P. (1990), ‘Random numbers for simulation’, Communications of the ACM

33, 85–98.

L’Ecuyer, P. (1994), ‘Uniform random number generation’, Ann. Oper. Res 53, 77–

120.

L’Ecuyer, P. (1999), ‘Tables of linear congruential generators of different sizes and

good lattice structure’, Math. Comp. 68(225), 249–260.

L’Ecuyer, P. Blouin, F. et al. (1993), ‘A search for good multiple recursive random

generators’, ACM Trans. Model. Comput. Simul. 3, 87–98.

Lehmer, D. H. (1951), ‘Mathematical methods in large-scale computing units’, Annals

of the Computation Laboratory of Harvard University.

Lenstra, H. W. (1987), ‘Factoring integers with elliptic curves’, Annals of Mathematics

126, 649–673.

Marsaglia, G. (1992), The mathematics of random number generators, in S. A. Burr,

ed., ‘The Unreasonable Effectiveness of Number Theory’, American Mathemati-

cal Soc., pp. 73–90.

Mascagni, M. Cuccaro, S. et al. (1995a), ‘A fast, high quality and reproducible lagged

fibonacci pseudorandom number generator’, Journal of Computational Physics

119(2), 211–219.

Mascagni, M. Cuccaro, S. et al. (1995b), ‘A fast, high quality and reproducible lagged

fibonacci pseudorandom number generator’, Journal of Computational Physics

119(2), 211–219.

86



Mascagni, M. Robinson, M. et al. (1995c), ‘Parallel pseudorandom number generation

using additive lagged-fibonacci recursions’, Springer Lecture Notes in Statistics

106, 263–277.

Massey, J. (1969), ‘Shift-register synthesis and bch decoding’, IEEE Transaction on

Information. Theory 15, 122–27.

Massey, J. (1986), ‘Cryptography and system theory’, Proc. Allerton Conference on

Communication Control, Computing 1, 1–3.

Matsumoto, M. and Nishimura, T. (1998), ‘Mersenne twister: a 623-dimensionally

equidistributed uniform pseudo-random number generator’, ACM Trans. on

Modeling and Computer Simulation 8(1), 3–30.

Menezes, A. J. Oorschot, P. et al. (1997), Handbook of Applied Cryptography, CRC

Press.

Miller, V. S. (1986), ‘Use of elliptic curves in cryptography’, Lecture notes in computer

sciences; 218 on Advances in cryptology—CRYPTO 85 218, 417–426.

Murphy, S. (2000), ‘The power of nist’s statistical testing of aes candidates’,

http://csrc.nist.gov/archive/aes/round2/conf3/papers/09-smurphy.pdf.

NIST (2001), ‘NIST:A statistical test suite for random and pseu-

dorandom number generators for cryptographic applications’,

http://csrc.nist.gov/groups/ST/toolkit/rng/documents/SP800-22b.pdf.

Park, S. K. and Miller, K. (1998), ‘Random number generators: Good ones are hard

to find’, Comm.of the ACM 31(10), 1192–1201.

Schneier, B. (1996), Applied Cryptography: Protocols, Algorithms, and Source Code

in C, John Wiley and Sons, New York.

Schroeppel, R. Orman, H. et al. (1995), ‘Fast key exchange with elliptic curve systems’,

Advances in Cryptology,Crypto’ 95, Lecture Notes in Computer Science,Springer-

Verlag pp. 43–56.

87



Shannon, C. (1949), ‘Communication theory of secrecy systems’, Bell System Tech-

nical Journal 28(4), 656–715.

Silverman, J. (2009), The Arithmetic of Elliptic Curves, Springer-Verlag.

Song, H.-Y. (2003), Feedback shift register sequences, 2, Wiley Encyclopedia of

Telecommunications,John Wiley and Sons Publication.

Tausworthe, R. C. (1965), ‘Random numbers generated by linear recurrence modulo

two’, Math. Comp. 19, 201–209.

Vancak, O. (2009), Implementation of the statistical randomness tests for crypto-

graphic applications in fpga devices, Master’s thesis, Technical University of

Kosice, Park Komenskeho,Slovak.

Walker, J. (1990), ‘Three years of computing: Final report on the palindrome quest’,

http://www.fourmilab.ch/documents/threeyears/threeyears.html.

Wang, H. and Wang, S. (2004), ‘Cyber warfare: Steganography vs.steganalysis’, Com-

munications of the ACM 47(10), 193–196.

Wang, R.Z., L. C. F. et al. (2001), ‘Image hiding by optimal lsb substitution and

genetic algorithm’, Communications of the ACM 34(3), 671–683.

Westfeld, A. and Pfitzmann, A. (2000), ‘Attacks on steganographic systems’, Lecture

Notes in Computer Science 1768, 61–75.

Woodbury, A.F. Bailey, D. V. et al. (2000), Elliptic curve cryptography on smart cards

without coprocessors, in ‘In IFIP CARDIS 2000, Fourth Smart Card Research

and Advanced Application Conference’, Kluwer, pp. 71–92.

88



Bio-Data

Karuna Kamath K

Associate professor

Department of Computer Applications

NMAM Institute of Technology

Nitte-574 110,

email: karunapandit@gmail.com

Phone: +91 99640 71440

Educational Qualification:

M. Sc. (Mathematics), Mangalore University.

M. Tech. (Systems Analysis and Computer Applications),NITK,Surathkal.

List of publications:

International Journals

1. Karuna Kamath K and Shankar B R: Elliptic Curves and Multiplicative Con-

gruential Generators, International Journal of Computer Technology and Electronics

Engineering, Vol 2, No 4, pp 84-89, 2012. Journal ISSN: 2249-6343.

2. Karuna Kamath K and Shankar B R: One Time Pad via Lychrel number and

Elliptic Curve,International Journal of.Computation and Applied Mathematics,Vol 5,

No. 2, pp 157-161, 2010. Journal ISSN: 1819-4966. MR2610857(2011f:94118)

3. Karuna Kamath K and Shankar B R: Elliptic Curves and Fibonacci Sequences,International

Journal Of. Math. Comput,Vol,4,2009,20-25.

Journal ISSN:0974-5718. MR2596416(2011b:11110)



Conferences

1. Karuna Kamath K and Shankar B R: (2,1) Lagged Fibonacci Generators using

Elliptic Curves over finite fields, International Conference on Computer Engineering

and Technology, (ICCET-2009), sponsored by IACSIT and IEEE Computer Society,

Singapore, Vol II, pp 456-457.

2. Karuna Kamath K and Shankar B R: Pseudo Random Numbers using Elliptic

Curves and Linear Feedback Shift Registers, National Workshop on Cryptology-2008,

2008, University of Hyderabad, Hyderabad, pp 165-169.


