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Abstract

This thesis is devoted for obtaining a stable approximalgtiso for non-
linear ill-posed Hammerstein type operator equatians(x) = f. Here K :
X — Y is a bounded linear operataf, : X — X is a non-linear operator,
X andY are Hilbert spaces. It is assumed throughout that the daitiata
is 0 with || f — f°|| < 6. Many problems from computational sciences and
other disciplines can be brought in a form similar to equafioF'(z) = y us-
ing mathematical modelllné (Enet al a] d_9_9j)) Scherzer, Engl and Andgrésen
d_9_9_$), Sghgrsz(_ng)). The solutions of these equatiansarely be found
in closed form. That is why most solution methods for thesgaéiqns are it-
erative. The study about convergence matter of iterativegatures is usually
based on two types: semi-local and local convergence asalitse semi-local
convergence matter is, based on the information aroundital point, to give
conditions ensuring the convergence of the iterative mloee while the local
one is, based on the information around a solution, to finchesés of the radii
of convergence balls.

We aim at approximately solving the non-linear ill-posedritaerstein type
operator equation& F'(x) = f using a combination of Tikhonov regulariza-
tion with Newton-type Method in Hilbert spaces and in Hitb8cales. Also
we consider a combination of Tikhonov regularization witynamical System
Method in Hilbert spaces. Precisely in the methods discugsehis thesis
we considered two cases of the operator: in the first case it is assumed
that /7(.)~! exist (F’(.) denotes the Fchet derivative off’) and in the sec-
ond case it is assumed that(.)~' does not exist buf’ is a monotone op-
erator. The choice of regularization parameter plays arortapt role in the
convergence of regularization method. We use the adapthense suggested
by[BQLesLQ[ZﬂLand_S_Qh_d)ik_(ZbOS) for the selection of regal#on parameter.
The error bounds obtained are of optimal order with resgeatgeneral source
condition. Algorithms to implement the method is suggested the computa-
tional results provided endorse the reliability and effestess of our methods.

Keywords: lll-posed operator equations, Hammerstein OperatorsulReg
ization methods, Tikhonov regularization, Monotone Opma Newton-type
method, Hilbert Scales, Dynamical System Method.

Mathematics Subject Classification47J06, 47H30, 65J20, 47H07, 49M15,
70G60
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Chapter 1

INTRODUCTION

1.1 GENERAL INTRODUCTION

Inverse problems are the problems that consist of findingwnawn property of an object,
or amedium from the observation of a response of this objatisalium to a probing signal.
The theory of inverse problems yields a theoretical basisgimote sensing and that makes
the inverse problems more important. The necessity in gtgdie inverse problems stems
from one of the main problems in applied mathematics, ggingiable computing results
with due allowance for errors that inevitably occur in sejtco-efficients and parameters

of a mathematical model used to perform computations.

A common belief of many mathematicians (see Alber and R (2006), Section

3) in the past was that well-posedness is a necessary camthti the problems to be math-
ematically or physically meaningful. This raised doubtswhbw~hether or not there is any
need for methods for solving ill-posed problems (i.e., peots that are not well-posed).
The tremendous development of science and technology ¢dshdecades led, more often
than not, to practical problems which are ill-posed by timaiture. Solving such problems
became a necessity and thus, inventing methods for thabpeitpecame a field of research

in the intersection of theoretical mathematics with apptieience.
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1.2 NOTATIONS AND BASIC RESULTS

Let X and Y denote Hilbert spaces over real or complex field Bdd X, Y) denote the
space of all bounded linear operators frofmo Y. If Y = X then we denotd3L(X,Y)
by BL(X). We use the notation D(K) to denote the domain of Kkife BL(X,Y’), then
its adjoint, denoted byx™* is a bounded linear operator fromto X defined by(Kzx,y) =
(x, K*y) Vo € X andy € Y.

Let R(K) :={Kz:2 € X}andN(K) := {z € X : Kz = 0} be the range and null
space ofK respectively. Further for a subspagef X, its closure is denoted by and its
orthogonal complement denoted By is defined as* = {u € X; (z,u) = 0,Vz € S}.

Throughout this thesis, 5, v,, ¥, p, €, Th, To, €0, T, T are generic constants

which may take different values at different occasions

PROPOSITION 1.2.1 (Naif (2008), Proposition 11.4) Iff € BL(X,Y) thenR(K)* =

N(K*), N(K)* = R(K*), R(K*)* = N(K)and N (K*)* = R(K)

We call K a positive self-adjoint operator K = K* and(Kz,x) > 0,Vz € X. The
spectrum and spectral radius of an operdtoe BL(X ) are denoted by (K) andr,(K)

respectively i.e.,

o(K)={X€ C: K — X does not have a bounded inverse}

where! is the identity operator o and
ro(K) = sup{|\| : A € o(K)}.

It is well known thatr,(K) < ||K| ando(K) is a compact subset of the scalar field.
If K is a non-zero self-adjoint operator (i.&,= K*), thens(K) is a non-empty subset
of real numbers and, (K) = || K. If K is positive self-adjoint operator, ther{K) is a
subset of set of non-negative reals anflit BL(X) is compact, them(K) is a countable

set with zero as the only possible limit point.

2



Let ' be an operator mapping a Hilbert spakento a Hilbert spacé’. If there exists

a bounded linear operatér: X — Y such that

i (@0 + 1) = Fao) — L(A)]|
Inll—0 1Al

=0,

thenF is said to be a Fichet-differentiable at, and the bounded linear operafei(z,) :=
L is called the first Richet-derivative oft” at z.

Let /' : D(F) C X — X be an operator wher& is a real Hilbert space. Thef is
said to be monotone {fF (z) — F(y),z —y) > 0,Vx,y € D(F).

1.3 ILL-POSEDNESS OF EQUATIONS

The class of ill-posed problems was first identified by thenEremathematician Jacques
Hadamard (1865-1963) in 1902. It is a common opinion thgbaked problems often

belong to the field of "very evolved ” mathematics, somethiegy difficult to understand

and rarely met (Petrov and Sizikav (2005)). But this notieertainly wrong as ill-posed

problems are encountered very frequently and an adequegéhaa to be taken regarding
their properties and difficulties. A historical review dfjdosed problems can be found in
Petrov (2001).

1.3.1 Classical definition of well-posedness

The problem of solving
F(z) =y, (1.3.1)

whereF’ : D(F) C X — Y is well-posed problem in the sense of Hadamard |(see Bonilla
2002), page 12) if:

(a) A solution of (1.3.1) exists (i.e.,operator domdir’) = Y).

(b) The solution is unique (solutiom is uniquely determined by the elementi.e., the

inverse operatof' ! exists)

(c) The solution depends continuously on the given ddta{(is a continuous operator).

3



If any of the above conditions is violated, thén (113.1) iBechan ill-posed equation.
Equation[(1.3.1) is linear ill-posed equation if the operdt is linear and ifF’ is non-linear
it is called non-linear ill-posed equation.

Given below are some examples of ill-posed problems. Thetfirs are examples of

linear ill-posed problem and the next two are that of noedinill-posed problems.

1.4 EXAMPLES OF ILL-POSED PROBLEMS
EXAMPLE 1.4.1 Differentiation (Engl et all (2000))

Differentiation could be viewed as an inverse problem ofisglthe operator equation

Kx =y

whereK : C[0,1] — C*[0,1] is defined as

(Kz)(t) ::/0 x(s)ds,t € [0,1].

This problem is unstable as can be seen from the followingraent. Suppose we have a
sequence of perturbed data given by

sin nt

N

.t €0,1]

forn € N. Then for eaclm € N, we have

y (t) = y'(t) + V/ncosnt, t € [0,1].

Now
1 sin 2n
ly =yullo =1/ 5~ — =5 = 0asn— oo,
but
n  sin2n
1y = ypll2 = §+ 1 — 00 asn — o0.

Thus the solution does not depend continuously on the dlaitkata and hence the problem
is ill-posed.

EXAMPLE 1.4.2 Simplified tomography (see Groetschl(1984))
Consider a two dimensional object contained within a cileadius R. The object is
illuminated with a radiation of density,. As the radiation beams pass through the object

4



it absorbs some radiation. Assume that the radiation abomnpco-efficientf (x, y) of the
object varies from point to point of the object. The absanptto-efficient satisfies the law

I

— =—fI
dy /

where! is the intensity of the radiation. By taking the above equafs the definition of
the absorption co-efficient, we have

y(z)
hzhwmj/ f(z,y)dy)

—y(z)

wherey = VR? — 22, Letp(z) = In(L2), i.e.,

y(z)
M@Z/ f(z,y)dy.
—y(x)
Suppose thaf is circularly symmetric, i.e.f (z,y) = f(r) withr = /22 + y2, then
0= [ 2 (142)
r) = r)dr. 4.
b e Vr2—a?
The inverse problem is to find the absorption co-efficiesatisfying the equatiof (1.4.2).

EXAMPLE 1.4.3 Non-Linear singular integral equation (se€ Biong (1998))
Consider the non-linear singular integral equation in tloer

/t(t — s)x(s)ds + F(z(t)) = fo(t),0 < A < 1, (1.4.3)

where f, € L?[0, 1] and the non-linear function F(t) satisfies the following ditions:
O |F(t>| <a;+ a2|t|,a1,a2 >0
o F(tl) < F(tz) St < 1o,

o F'is differentiable.
Thus, F is a monotone operator frolX = L?[0,1] into Y = L?[0,1]. In addition,
assume thaf’ is a compact operator. Then the equatién (1.4.3) is an idgmbproblem,
because the operatdt defined by

Kz(t) = /0 (t —s)a(s)ds,

is also compact.



EXAMPLE 1.4.4 The backwards heat equation problem [(Ramm/[(205))
Consider the backwards heat equation problem:

Up = Ugy, t > 0,2 € [0, 7];

uw(0,t) = u(m, t) = 0,u(x,T) = v(x).

Giveno(z), one wants to find(x, 0) := w(z).
By separatlon of variables one findér, t) = 2% u, () sin(na), u, (t) = e Dy, v, =
2 ["v(z)sin(nx)dz. Thereforeaw(x) = £22,e™ My, sin(nz), provided this series con-
verges, |nL2[ 7], that is, provided that
2% My, |2 < oo, (1.4.4)

This cannot happen unlesg decays sufficiently fast. Therefore the backwards heat
equation problem is ill-posed: it is not solvable for a givei) unless([(1.4]4) holds, and
small perturbations of the datain L?[0, 7]-norm may lead to arbitrary large perturbations
of the functionw(z), but also may lead to a functiomfor which the solution:(x, t) does
not exist fort < 7.

In practical problems the operatérand the datg of (1.3.1) are not precisely known.
Without the knowledge of the continuous dependence of tipeoxpmate solution on the
intrinsic errors involved, a direct numerical resolutidn(®.3.1) is not possible. Attempts
to avoid this difficulty led investigators to the new theondaconceptually new methods,

viz-a-viz the regularization methods, for obtaining séedxlution of ill-posed problems.

1.5 REGULARIZATION METHODS

1.5.1 Generalized Inverse

If y ¢ R(F), then [I.311) has no solution and hence the equdiion [13iltpiosed. In such
a case we may broaden the notion of a solution in a meaningfises For' € BL(X,Y')

andy € Y, an element: € X is said to be a least square solution[of (1.3.1) if
1F'(u) = yl| = inf{[| F(z) —y[| : 2 € X}

Note that if ' is not one-one then the least square solutipif exists, is not unique

sinceu + v is also a least square solution for everg N (F). Fory € R(F) + R(F)*, the

6



unique least-square solution of minimal norm[of (11.3.1)a8exl the generalized solution
or pseudo solution of (1.3.1). Fdr € BL(X,Y), the mapF' which associates each
y € D(F") := R(F)+R(F)*,tothe generalized solution ¢f(1.3.1) is called the gerezdl
inverse ofF. We also see that ij € R(F'), andF' is injective, then the generalized solution
of (1.3.1) is the solution of (1.3.1). I is bijective, then it follows that't = F~1.
THEOREM 1.5.1 (Naif (2009), Theorem 4.4 ) Lét € BL(X,Y). ThenF' : D(F') —

X is a closed densely defined linear operator akitlis bounded if and only if2(F) is
closed.

If F'is nonlinear monotone and continuous, then consider thd set{z : F'(z) = y}.

Note thatN is closed and convex i is monotone and continuous (see, e.g., Ramm (2007))
and hence has a unigue element of minimal norm, denotédshgh thatF'(z) = y. So if F
is nonlinear, monotone and continuous, then instead of e least-square solution of

minimal norm we consider the unique element of minimal nofrl@as the minimal norm

solution of [1.3.11).

REMARK 1.5.2 Theoreni 1.5]1 shows that the problem of finding the genethfinlution
of (.3.1) is also ill-posed, i.eE" is discontinuous if2(F') is not closed. This observation
is important since a wide class of operators of practical artpnce, especially compact
operators of infinite rank falls into this category (Groet4d 993)). Further in application
the datay may not be available exactly.

Lety® € Y be the available noisy data with

ly =4l < 6. (1.5.5)

If Ftis discontinuous then fay’ close toy, the generalized solutiofy°, even when it
is defined need not be close fdy. To manage this situation the so called "regularization
procedures” have to be employed and obtain approximationgfy.

1.5.2 Regularization principle

The process of obtaining a stable approximate solution itl-apnsed operator equation is

called a regularization method. In the regularization pthoe (see Engdt al (2000),page

56) the ill-posed equation is replaced by a family of welbed equations based on a regu-

larization parametet > 0.



A family of operators{R, : 0 < o < g} is called a regularization method for the
problem [1.3.11) withy in range ofF, if there exists a parameter choice rale= (6, y°)
such thatim supso{|| Ras 5" — 2|l - 4° € Y, [ly — ¢°|| < 0} = 0.

A regularization procedure can be classified as continuegglarization and iterative
regularization based on the kind of parameters involvederprocedure. Tikhonov regular-
ization and Lavrentiev regularization are few of the combtins regularization procedures,
while Landweber iteration is one of the iterative regulatian method.

We give a brief note on Tikhonov regularization and Lavrentegularization for linear

ill-posed problems.

1.5.3 Tikhonov regularization

Tikhonov regularization (Groetsch (1984), Tikho Lgv(l}aé;%khgngv and Arsenin (1977))

named after Andrey Tikhonov, is the most well-known regaktron method for ill-posed

problems. In this method the solutiaf] of the minimization problenmin,cx {||F(x) —
v°||? + allz — 0]|?} is used to approximaté wherea > 0 is called the regularization

parameter. Observe thaj is the unique solution of the well-posed equation
(F*F +al)x’ = F*y°
whereF* is the adjoint of the operatar.

1.5.4 Lavrentiev regularization

If X =Y andF is a positive self-adjoint operator ok, then one may consider a sim-

pler regularization method (George (2006b)) to solve déqudfl.3.1), where the family of

vectorsw?’, o > 0, satisfying
(F + al)w’ =° (1.5.6)
is considered, to obtain approximations farNote that for positive self-adjoint operator

F, the ordinary Tikhonov regularization applied fo (113.13uks in a more complicated
equation(F2 4 o)z’ = Fy° than [1.5.6). Moreover, itis knowm(ﬁ_e_o} je (2006Db)) that th

8



approximation obtained by regularization procedlre @).bas better convergence proper-
ties than the approximation obtained by Tikhonov reguédian. The above regularization

procedure which gives the family of vectarg in (I.5.8) is called Lavrentiev regularization

or Simplified regularization of (1.3.1)(s (1987)).

1.5.5 lIterative regularization method

Iterative regularization methods are used for approxitpeaelving F(x) = y when F’

IS a non-linear operator. RecaJII (Mahale and Nair (2009)a} #n iterative method with

iterations defined by

§ _ 5 0 6., 0
Ty = (I)(ZL’O,LUI, Ty )7

wherez} = z, € D(F) is a known initial approximation of, for a known function
® together with a stopping rule which determines a stoppimgxrk; € N is called an

iterative regularization method if

|z}, — 2| =0 as 6 — 0.

The Levenberg-Marquardt method_(ﬂa‘n Ke (2010), HochbruackHonig 2010)Dn
2010), nn (2010), Bocknsdrah (2011)) and iteratively regu-
larized Guass-Newton Method (IRGNA)(Bakushinskii (19%Raschkeet all (1997)) are

some of the well-known iterative regularization methods.

1.5.6 Dynamical System Method

Ramm (;0_&5), considered a method called Dynamical SystethddgDSM) for solving

nonlinear equatiort’(u) = 0. The DSM consists of finding a nonlinear locally Lipschitz

operatord®(u, t), such that the Cauchy problem:
u'(t) = P(u,t), u(0) = ug (1.5.7)
has the following three properties:

Ju(t) ¥ > 0, (1.5.8)
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such thaBu(co) andF(u(co)) = 0. i.e.,

(@) (1.5.7) is globally uniquely solvable;

(b) its unique solution has a limit at infinity;

(c) and this limit solves”(u) = 0.

1.5.7 Regularized Projection method

Even though, a stable solution of linear ill-posed problgm@.() can be obtained via regu-

larization methods, for numerical calculations, one hagdk for an implementable method

i.e., a method for which one can realize a solution in a finibeethsional space. A natural

practical approach in this direction is the least-squaggeption method, i,e., to find the

minimum-norm solution of'z = y in a finite dimensional subspace &t That is, given a

sequencé; C V, C V3 C - - - of finite-dimensional subspace &f such that/,,nV,, = X

let z,, be the least-square solution of minimal norm in the spacese

Enal and

Neubauer

1985)). Obviouslyr, = Fiy whereF, := FP, andP, is the orthogonal projector onto

V,,. Itis known (Englet al! (2000)) thatr,, is a stable approximation aff, but without ad-

ditional assumptions it cannot be guaranteed thatonverges ta:' (Se

Seidmze

an_(1980)).

1.6 CHOICE OF REGULARIZATION PARAMETER

When we consider the rate of convergence of a regularizatethod( R, «) one can think

of the rate of convergence of

|Roy — Z|| = 0, as a — 0,
or of the rate of convergence of

Ry’ — 2| = 0, as 6 — 0.

Since

[Ray’ = 2|l < [[Ray® — Rayll + || Ray — 2],

10
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the rate of convergence depends on the choice of the rezatian parameter. So the most
important procedure in regularization method is the selaadf regularization parameter.
A choicea = a5 of the regularization parameter may be made in either aroai pria pos-
teriori way. An extensive discussion of "aposteriori” ct®ihas been done in regularization
theory (Gfrerer(1987), Mathe and Pereverzev (2002)).

Suppose there exist a functigron [0, co) such that
o — & = p(F'(2))v, (1.6.11)

wherex is an initial guessy is the solution of[(1.311)F" (%) is the Frechet derivative of
F atz and||z — R,y|| < ¢(«), theny is called a source function and (1.6.11) the source
condition.

A parameter choice strategy = «; is said to be of optimal order (yields an optimal

convergence rate) for@c Y if 1, () = ¢(1,(6)) asd — 0 where
1y (0) := sup{|| Ray’ — 2| : [ly — 4’|l < 3}

¥y (8) := sup{inf{[|Rgy’ — & : 5> 0} : [ly —¢°|| < 4}

Pereverzev and Schock (2005), considered an adaptiveiealetthe parameter which

does not involve even the regularization method in an exphianner. Let us briefly discuss
this adaptive method in a general context of approximatinglament: € X by elements
fromaset{z® : a > 0,5 > 0}.

Supposer € X is to be approximated by using elemen{sfor o > 0,5 > 0. Assume
that there exist increasing functiop$t) and(¢) for ¢ > 0 such that

limp(t) = 0 = limy(t),

t—o t—o

and

. 0
12 = 2|l < o (t) + o0

forall « > 0,6 > 0. Here, the functionp may be associated with the unknown elemgnt

whereas the function may be related to the method involved in obtainiigNote that the

11



quantityy(a) + 5oy attains its minimum for the choiae := a; such thatp(as) = 52,

that is for
as = (¢)~1(0)

and in that case

17 — 5,1 < 2¢(as)-
The above choice of the parameter is a priori in the sensettlapends on the unknown
functionsy andq.

In an "aposteriori” choice, one finds a parametgwithout making use of the unknown

source functiorp such that one obtains an error estimate of the form

12 — 5, 1| < clas).

for somec > 0 with a5 = (1)) ~! (). The procedure considered by Pereverzev and Schock

2005) starts with a finite number of positive real numbeagso, s, . . . «an, such that

) < a1 < og < ... <Opn.

The following theorem is essentially a reformulation of adrem proved in

Pereverzev and Schock (2005).

THEOREM 1.6.1 (George and Nairl(2008), Theorem 4.3) Assume that therésexis
{0,1,2,--- N} such thatp(«;) < ﬁ and for some; > 1,

U(ag) < pp(ay—q), Vie{0,1,2,--- N}

Let
)
l:=max{i: ola;) < < N,
{is (o) < =)
kv=max{i: |25, — a0 || < 4L, Vji=0,1,---,i—1.}.
’ ¥(ay)

Then! < k and
|z — x‘;kH < 6up(as), as = () 1(9)
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1.7 HILBERT SCALES

In order to improve the error estimates available in Tikhoregularization of linear ill-

posed problem, Natterer (1984) carried out error analysithé frame work of Hilbert

scales, subsequently many authors extended, modified aretaliged Natterer's work

to obtain error bounds for linear and non-linear ill-posedltems (see Neubauer (2000),
Jin and Tautenhahn (2011b), Tautenhahn (1996ktlal (2010)).

Let L : D(L) C X — X, be a linear, unbounded, self-adjoint, densely defined and
strictly positive operator oiX. Let X, be the completion ob := (2, D(L*) with respect

to the norm||z||; induced by the inner product

<u7 'U> = <Ltu7 Ltu>7 u,v € D>

then (X, ),cr is called the Hilbert scale induced Hy (see Engkt all (2000), page 211).

In chapter 7, we consider the problem of solving an ill-poskednmerstein type operator

equation in the setting of Hilbert scales.

1.8 HAMMERSTEIN OPERATORS

Let a functionk(¢, s, u) be defined fort € [a,b],s € [¢,d] and—oo < u < oo. Then the

non-linear integral operator
d
A(t) = / k(t, 5, 2(s))ds (1.8.12)

is called Uryson integral operator and the function k(},scalled its kernel. If the kernel
k has the special formk(¢,s,u) = k(t,s)f(s,u), then [1.8.1R) are called Hammerstein
Operators (cf._Krasnoselslgt al. (1976), Page 375).

Note that each Hammerstein Operator admits a represemtaititne formA = KF

whereK is a linear integral operator defined by

Kx(t):/ k(t,s)z(s)ds

13



andF' is a non-linear superposition operator (cf. Krasn il (1976))

Fu(s) = f(s,z(s)).

Hence the study of a Hammerstein operator can be reduceel $tutty of the linear operator

K and the non-linear operatéi An equation of the form

(KF)a(t) = y(t) (1.8.13)

1Y)

is called a Hammerstein type operator equaJi_OL(gt rgesPGeorge and N i\r_(;QO8),

George and Kunhanandan (2009)).

1.8.1 Examples of Hammerstein type operator equations
EXAMPLE 1.8.1 (see Engl et 4l (2000), Page 260) Consider the integral 6qoa

t
/ (t — s)z3(s)ds = y(t).
0
The above equation can be written in the fornof (1J8.13) revhe
K : L?[0,1] — L?[0,1]

is defined by z(t) = [;(t — s)x(s)ds and F : D(F) = H'[0,1] — L?[0, 1] is defined by
F(x(s)) = 23(s).

EXAMPLE 1.8.2 Non-Linear Hammerstein integral equation (see Engl t2000))
ConsiderF (z) = y whereF' : D = L?[0, 1] — L?[0, 1] defined by

F(z)(t) = / K(s, tyu(s, 2(s))ds = y(t),

is injective with a non-degenerate keritgl, .) € L?([0,1] x [0,1]) andu : [0,1] x R = R
satisfies
lu(t,s)| < a(t) +bls|t € [0,1],s € R

for somea € L?[0,1] andb > 0, it can be seen thaf’ is compact and continuous on

L?[0, 1)(see Joshi and Bdse (2008)).
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1.9 OUTLINE OF THE THESIS

The subject matter of the thesis is regularization of naamill-posed Hammerstein type
operator equation& F'(z) = f. It is assumed that the available dataffssuch that| f —
f°|| < 6. We try to solve approximatel F'(z) = f, by splitting the equation into linear
equation

Kz=f (1.9.14)

and non-linear equation

F(z) = z. (1.9.15)

By doing this we try to simplify the procedure by specifyingegularization strategy
(Tikhonov regularization) for linear equatidn (1.9.14§am iterative method for non-linear

part (1.9.15). The thesis is arranged in eight chapters.

In Chapter 2, for solving{ F'(z) = f, we consider a method which is a combination
of Tikhonov regularization for solving (1.9.14) and Two Btdewton Method for solving
(1.9.15). The Tikhonov regularized solution bf (1.9.14yigen by

20 = (K*K 4 ol ) 'K*(f° — KF(20)) + F(0). (1.9.16)

We solve [1.9.15), for two cases of operatonn the first case wher&”(x,) is boundedly

invertible, the iterative method is defined as
Yo = To o — F'(xo) H(F () ) — 22),

xiz-‘rl,a = yfz,a - F/(Jf(])_l(F(nya) - Zi)v

wherexz{ , = o, is the initial guess for the solutiahof K F'(z) = f. And in the second
case wherd"(x,) in non-invertible butF' is a monotone operator, we define the iterative
method as

- - ~ _ - o ~
ny,a = xi,a - R(xg,a) 1[F(x2,a) - Zi + Z(xi,a - xg,a)]

~§ ~

~ _ - o ~
Tntla = yi,a - R(xg,a) I[F(yi,a) - Zi + Z(yi,a - xé,a)]



where:ig,a := xg IS the initial guess andk(zy) := F'(xg) + 21, with ¢ < . We make

use of the adaptive scheme suggested by Pereverzev an w) for choosing the

regularization parameter, depending on the noisy dafa and the errod. We obtain order
optimal error bounds under general source condition anil tivé proposed method we get

linear convergence.

Chapter 3 deals with the finite dimensional realization @& thethod considered in
Chapter 2. The algorithm for the proposed method is predeotwed by two numer-

ical examples which confirm the efficiency of our approach.

Chapter 4 is the modified form of Newton’s method dealt in Gaap and 3. The Two

Step Newton method for the case whétéu)~! exists, for allu € D(F) is as follows:

Una = Uno = F' (15 o) 7 (F(17,0) = 20),

n,o

uiz-‘rl,a = Ufz,a - F,(uiz,a)_l(F('Ufz,a) - Zi)

whereu] , := z, € X is the initial guess for the solutiahof K F'(z) = f. The modified

iterative method wheré”(u)~! does not exist but' is monotone is defined as

0o = o — RO, F () = 2+ (@), — a0)],

n,o

- - - _ - o,
ufz—l—l,a = Ug,a - R(ug,o) I[F(U6 ) - Zi + Z(Ui,a - l’o)]

n,o

wherei , 1= 2o andR(x) := F'(u) + 21, ¢ < . We also discuss the finite dimensional
realization of the above defined method. In this ChapterFthehet derivative off’ at all
pointsu,, n > 0 is taken into account unlike the method in Chapter 2 and 3yevtiee

Fréchet derivative off" is considered only at initial guess. This approach leadsuticc

convergence compared to linear and quadratic convergdsteéned by George and Nair

2008) and George and Kunhanandan (2009) respectively. tAésderived error estimates

using general source condition and adaptive choice me k (2005)

are of optimal order. We give the algorithm required to innpdmst the method and also the

numerical examples to test the reliability of our approach.

16



In Chapter 5, we study the Modified form of the method congiden Chapter 4. The
aim is to improve the convergence rates obtained in the quevChapters. Infact we
obatined semi-local quartic convergence. Also the prajactkcheme of the method and

numerical examples are presented.

In Chapter 6, the problem of approximately solving the noedr Hammerstein oper-
ator equationk F'(x) = f is dealt in the setting of Hilbert Scales. The proposed ntho
in this chapter is also a combination of Tikhonov regular@aand Newton Method. Two
cases of operatar are discussed. For the case whétér,)~! exists and is bounded, the

iterative scheme is given as

s = o = ' (20) T F (27, 0.0) = Za.d];

Yn,a,s n,a,s n,a,s
Tpttos = Ynas = F(@0) (W 00) = 20,
wherez) , , := o, is the initial approximation for the solutiohof K F(x) = f and
2 = F(zo) + (L K*K + al) 'L K*(f° — KF(x))

is the Tikhonov regularized solution of linear equatign = f. Here and below, is a linear
unbounded self-adjoint, densely defined and strictly pasdperator inX. The second case
whenF’(z,)~! does not exist buk’ is monotone, we define the iterative scheme as

Thos = Frw = (F'(20) + SLV) P o) = 26+ Z L7 (@ 00 = 20)],

B = P = (F(00) + ZLP) (@) o) = 2 =L (00— 20)]
wherei; , ; := xp, and0 < ¢ < . Adaptive scheme of Perverzev and Schock is used for

selection of regularization parameteand error estimates derived are of optimal order.

In Chapter 7, we report on a method which comprises of Tikkaregularization and

Dynamical System Method (DSM)(Ramm (2007), Ramm (2005) pfigproximately solv-

ing K F'(x) = f. We apply the DSM for two cases of operatofas in previous Chapters).
Here we study both the iterative and continuous scheme of BSd/present the error anal-
ysis using the adaptive choice considered by Perverzev ehdc8. The error estimates

obtained are found to be of optimal order.
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In Chapter 8, we end the thesis with some concluding remar#tsabso give the scope

for future work.

18



Chapter 2

TWO STEP NEWTON-TIKHONOV
METHOD

In this Chapter we present a combination of modified Newtothouand Tikhonov regular-
ization for obtaining a stable approximate solution for lireear ill-posed Hammerstein type
operator equation& F(z) = f. Itis assumed that the available datgdswith || f — f°|| < 4,

K : Z — Y is a bounded linear operator aitd: X — Z is a non-linear operator where
X,Y, Z are Hilbert spaces. Precisely two cased'oére considered, in the first case it is
assumed that”(zy) =t exist (F'(xy) is the FEchet derivative off’ at an initial guessy)
and in the second case it is assumed fifét,) ! doesnot exist buk’ is a monotone oper-
ator. The error bounds derived under a general source eomaite of optimal order. And
the regularization parameter is chosen according to thptadascheme of Perverzev and
Schock (2005).

2.1 INTRODUCTION

The study of inverse (ill-posed) problems is an active afeasearch both theoretically and
numerically as these problems arise from important physicd engineering applications

(see Engll(1993), Neubauer (1988), Ramm (20 tte@91(2. It can be quite chal-

lenging to solve such problems because of their ill-posedraa Many of these problems

can be characterized abstractly as
Alz) = f
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where f denotes the datad an abstract (ill-posed) operator amdhe unknown solution.
However, in practice, because of modelling, experimemadl @omputational errorsf is

only available as an approximatigi. Consequently, it is necessary to solve

instead of

and, for given classes of operatotsexamine how the errors’ — = depend ory?® — f.

Tikhonov’s regularization (e.g., Engt al! (2000)) method has been used extensively

to stabilize the approximate solution of nonlinear ill-pdgproblems. In recent years, in-

creased emphasis has been placed on iterative regulanpaticedures (Kaltenbachetral
2008)/ George and Nair (1997)) for the approximate satudibsuch problems.

This Chapter is devoted for the study of non-linear ill-pblmmerstein type operator
equations by the use of iterative regularization proceslubanethod is proposed for which
local-linear convergence is established theoreticalty\alidated numerically. Recall that
Georgel(2006a), George (2006b), George and Nair ZD_O_&IMMM 09),

an equation of the form
(KF)x = f (2.1.1)

is called a non-linear ill-posed Hammerstein type operatpration. Here? : D(F) C
X — Z, is anonlinear operatofl : 7 — Y is a bounded linear operator aixd 7, Y are
Hilbert spaces with corresponding inner product) and norm||.|| respectively. A typical

example of a Hammerstein type operator is the nonlineagiat®perator

(Az)(t) ::/0 k(s,t)f(s,z(s))ds

wherek(s, t) € L*([0,1] x [0,1]), = € L*0,1] andt € [0, 1].
The above integral operatot admits a representation of the fordh = K F where

K : L?[0,1] — L?*0,1] is a linear integral operator with kerne(t, s) defined as
1
Kzx(t) = / k(t,s)z(s)ds
0
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andF' : D(F) C L?*[0,1] — L?[0,1] is a nonlinear superposition operator

(cf. IKrasnoselskiet al| (1976)) defined as

Fx(s) = f(s,x(s)). (2.1.2)

George and his collaborators (George (2006a), George (30@®orge and Nair (2008),

George and Kunhanandan (2009)), studied ill-posed Hanteletgpe equation extensively

under some assumptions on theidfret derivative ofF. Precisely, in_George (2006a),

George and Nait (2008), itis assumed th&tr,) ! exists and in George and Kunhanandan

2009) it is assumed thdt'(x) ! exists for allz € B, (z,) (Here B,(x,) stands for ball of

radiusr aroundz).

Throughout this thesis it is assumed that the availableidgtawith
If=f1<s (2.1.3)
and hence one has to consider the equation
(KF)z = f° (2.1.4)
instead of[(2.1]1). Observe that the solutioaf (Z.1.4) can be obtained by solving
Kz= f° (2.1.5)
for z and then solving the non-linear problem

F(z) =z (2.1.6)

For solving [2.1.6), George and Kunhanandan (2009) coresidine sequence defined
iteratively by

Tpita = Tna = F'(@00) T (Flan ) = 20)
wherez{ , := o,

2 = (K*K + ol ) 'K*(f° — KF(20)) + F(x) (2.1.7)
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and obtained local quadratic convergence.
Recall that a sequende;,,) in X with limz, = z* is said to be convergent of order

p > 1, if there exist positive reals, b, such that for alh € N

'

|z, — 2*|| < ae™™". (2.1.8)

If the sequencér,,) has the property thdite,, — 2*|| < a¢", 0 < ¢ < 1, then(z,,) is said to

be linearly convergent. For an extensive discussion of e@ence rate see Kelley (1995).

George and Nair (2008), studied the modified Lavrentievleg@ation

20 = (K + ol) 7Y (f° — KF(z))

for obtaining an approximate solution ¢f (211.5) whiris a positive self-adjoint operator

and considered the modified Newton'’s iterations,

for solving [2.1.6). In fact in George and Nair (2008) an nd Kunhanandan (2009),

a solutionz of (2.1.1) is called amy-minimum norm solution if it satisfies

1F(2) = F(zo)|| := min{[|F(z) — F(xo)|| : KF(x) = f,z € D(F)}. (2.1.9)

We also assume throughout that the soluticgatisfies[(2.119). In all these papers (George
2006a), George (2006h), George and Nair (20 r nbanandan (2009)), it is

assumed that the ill-posedness[of (2.1.1) is due to the osedhess of the range of linear

operatork.

Recently,Arg;LLo_S_and_tlilpL (2010) studied the convergeanalysis of Directional

Two Step Newton Method in a Hilbert space for approximatizgex* of a differentiable

function £ defined on a convex subsktof a Hilbert spaceX, with values inR. Motivated
by this method we construct an iterative regularizationhmétwhich is a combination of
Two Step Newton method and Tikhonov regularization for agjpnating the solutior of

(2.1.1) where we consider two cases of operator
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The IFD Class(Invertible Féchet Derivative ¥’ (z,) ! exist and is a bounded operator,
i.e., (2.1.6) is regular. Heré"(x,) denote the Fichet derivative ofF" at an initial guess

xo. Consequently, in this situation, the ill-posedness[of.@.1s essentially due to the

nonclosedness of the range of the linear operatgse (2005), page 26).

EXAMPLE 2.1.1 Let the functionf in (Z.1.2) be differentiable with respect to the second
variable. Then, it follows that the operatérin ([2.1.2) is Féchet differentiable with

[F' (x)u](t) = Do f (¢, 2(t))u(?), t€10,1],

whered, f (t, s) represents the partial derivative gfwith respect to the second variable. If,
in addition, the existence of a constant> 0 is assumed such that, for alle B, (z() and
forall ¢ € [0,1], O2f(t, z(t)) > k1, thenF'(u)~! exist and is a bounded operator for all
u € B(x).

The MFD Class (Monotone Féchet Derivative)F' is a monotone operatoL ;;m;nova
2010), Tautenhahn (1998))(i.8E (x) — F(y),x —y) >0, Vx,y € D(F))andF’(zy)™*

does not exists. Consequently, in this situation, thedbeminess of (Z.1.1) is due to the

ill-posedness of" as well as the nonclosedness of the range of the linear apédtat

EXAMPLE 2.1.2 (Nair and Ravishankar (2008), Example 6.1) [Fet L2[0, 1] — L2[0, 1]
be defined by

F(x)(t) = K(x)(t) + f(t), x, f € L*0,1], t€[0,1]

whereK : L?[0,1] — L?[0,1] is a compact linear operator such that rangefdenoted
by R(K) is not closed andK &, h) > 0 for h € L?[0,1]. Then,F(z) = y is ill-posed ask’
is a compact operator with non-closed range. Thédhet derivative” (x) of F'is given by

F'(x)h = Kh, Vo, h € L*[0,1].

Now, since(Kh,h) > 0 for all h € L?0,1], F is monotone. FurtheF”’(u)~! does not
exists for any, € L?[0, 1]. Consequently, the operatdf F, with K and F’ as defined above
is an example of the MFD Class.

One of the advantages of (approximately) solving (2.1.5) @11.6) to obtain an ap-
proximate solution for{(2.114) is that, one can use any m@aggdtion method for linear ill-
posed equations, for solving (2.1..5) and any method forisgl@.1.6). In fact in this chap-

ter we consider Tikhonov regularization for approximatbwving (2.1.5) and we consider
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a modified two step Newton method for solvihg (211.6). Not the regularization param-

etera is chosen according to the adaptive method considered wv@&eev and Schock

2005) for the linear ill-posed operator equatidns (2. 4/%) the same parameteris used

for solving the non-linear operator equatién (2.1.6), sodhoice of the regularization pa-
rameter is not depending on the non-linear operatahis is another advantage over treat-
ing (2.1.4) as a single non-linear operator equation.

This chapter is organized as follows. Preparatory resuéggaven in Section 2.2 and
Section 2.3 comprises of the Two Step Newton-Tikhonov MefficcNTM) for case | (IFD

Class) and case lI(MFD Class) with the error analysis.

2.2 PREPARATORY RESULTS

In this section we consider Tikhonov regularized solutigrdefined in [2.1]7) and obtain
an a priori and an a posteriori error estimate|féi(z) — z°||. The following assumption is

required to obtain the error estimate .

ASSUMPTION 2.2.1 There exists a continuous, strictly monotonically increg$unction
¢ :(0,a] — (0,00) witha > || K?| satisfying;

¢ ,\liﬂo@p()‘) =0
[ ]
sup ap(N)
<
and

e there exist® € X, ||v|| < 1 such that

F(z) — F(xg) = p(K*"K)v.

THEOREM 2.2.2 (cf./George and Kunhanandan (2009), section 3)4’ebe as in[Z.117)

and Assumption 2.2.1 holds. Then

IF(@) — 2| < coliol) + %» (2.2.1)
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Proof. Let 2 be as in[(2.1]7). We observe that

1F(@) = zall < IIF(@) = zall + llza — 22

all

S|wua—%n+§% (22.2)
and
F(&)— 20 = F(i)— F(x) — (K* + ol 'K*K[F(&) — F(x0)]
= [I—(K'K +ol) 'K*K](F(2) — F(x0))
= ofK*K + al) 7 (F(2) — F(x)).
So by Assumption 2.2.1
IF(@) = 2ol < [J(K*K +al) (K K)o
< o 2P ), (2.23)

= 0< A< KAt a
Therefore by[(2.2]2) an@(2.2.3), we have

IF(@) - ]| < pla) + %

2.2.1 A priori choice of the parameter

Note that the estimate(«a) + % in (Z.2.1) is of optimal order for the choice := a;
which satisfiesp(as) = ﬁ Let(N) == A/ 1(N),0 < A < ||K||?. Then we have
0 = asp(as) = P(p(as)) and

as =~ (Y7H(9)). (2.2.4)

So the relation[(Z.211) leads fid"(z) — 2 || < 2¢71(9).

2.2.2 An adaptive choice of the parameter

The error estimate in the above Theorem has optimal ordér nggpect to). Unfortu-
nately, an a priori parameter choide (212.4) cannot be usquiactice since the smooth-
ness properties of the unknown solutigrreflected in the functiorp are generally un-

known. There exist many parameter choice strategies initérature, for example see
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Bakushinsky and Smirnova (2005), Geor nd/Nair (1993)sRE984) r nd Nair
1998), Groetsch and Guacan =1Lle_ﬂ9E7) é:iglr eme (19@&ﬁm§n_hﬂ i iiiz).

Pereverzev and Schock (2005) considered an adaptiveisaletthe parameter which

does not involve even the regularization method in an exphianner. In this method the
regularization parameter; are selected from some finite sBt, = {a; = aou®,i =

0,1,2,....M%}, u > 1 and the corresponding regularized solution, séyare studied
on-line. air (2008

eorge and Kunhananda®doj2@onsidered the adap-

tive method of Pereverzev an 005) for selectiagdbularization parameter for

approximately solving Hammerstein-type operator equatiolhe selection of numerical

valuek for the parametet according to the adaptive choice is performed using the rule
k:=max{i: a; € D}, } (2.2.5)

whereD}; = {a; € Dy - ||2), — 20 1| < r,j =0,1,2,.....i — 1}. Let

[ :=max{i: p(a;) < a-} < N. (2.2.6)

We will be using the following theorem fro r nd K (2009) for our error

analysis.

THEOREM 2.2.3 (cf. |George and Kunhanandah (2009), Theorem 4.3)ILie¢ as in

(2.2.8),k be as in[2.255) and’, be as in[Z1]7) withx = ;.. Thenl < k and

4
IF@) = 2]l < 2+ -2 0)

Proof. Observe that, to prove< k, it is enough to prove that, far=1,2,--- , N

5 s 45
SD(OKZ)— ai_za-HS ,Vj:O,1,2,"',Z
\/ O J v
Forj <,
lzo, =z, < llza, = F@)II + |1 F(2) — 2o, |
) )
< - . -
20 20
< +
\/ & VA
46
TV



This proves the relatioh< k. Now since, /a; ., = 1""\/ay, by using triangle inequality
successively, we obtain

k

49
IF(2) =z, < [IF(2) — 20,1 +
j:zlJ; V-1
k—I—1
49
< ||F(@) -2 |+
49
< IF@) -2 |+ (- ==
< 1P A+ o
Therefore by Assumptidn 2.3.1 aiid (2]2.6) we have
) 1 46
F(z —zg < ¢ o) + +
1F (%) — 2g, olo(n) \/07] (u—l)\/az

4p ~1
< (2+ﬁ)m/} (9).

The last step follows from the inequalitya; < /a1 < py/og and\/%_é = ~1(§). This

completes the proof.

2.3 CONVERGENCE ANALYSIS

2.3.1 TSNTM for IFD Class

)

n,og

In this subsection, for an initial guess € X, we consider the sequengg , andx

defined iteratively by

Yo = T — F'(0) M (F (2, 0,) — 22,) (2.3.1)
and
oy = Yooy — F'(20) H(F(Wh0,) — 20,), (2.3.2)

wherez , = o, for obtaining an approximation for’, the solution ofF'(z) = zJ . We

will be using the following parameters;

M = |[F'(xo)l;
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B 1= |[F' (o) "Il
1

1 . _
ko < me{l,BL

Y
5 .
0 1B’

and

6 0

en,ak = ||y2,ak - ‘/Enqak”a \v//n/ 2 0

For convenience, we use the notatign v,, ande,, for °

0
n,a? yn7ak

Further we define

q:=kor, r € (ry,r)

where
1= /1= 4koy,
e g
and
1 1+ +/1—4k
ro = min{—, 0%}.
ko 2ko

(2.3.3)

ande) , respectively.

(2.3.4)

Note that- is well defined becausg, < ﬁ) Further we use the relatia < ~, for proving

our results, which can be seen as follows;

o = llyo — zol = IIF'(xo)  (Flzo) — 23,)

1F" (o) M| (F (o) — 20,

BIIF(20) = 2oy, + Zay — 20l

BUIF (zo) — F(&)|| + || 20, — 22, I

B[Mp + %l
do

BlMp+ \/—a—o]

ININ A

VAN

IN
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We need the following Assumption for the convergence oétiee method and to obtain

the error estimate.

ASSUMPTION 2.3.1 (cf. |Semenova (2010), Assumption 3 (A3)) There exist aamuinst
ko > 0, r > 0 such that for every,u € B(xy,r)U B(z,r) C D(F)andv € X there
exists an elemertt(z, u,v) € X such that

[F'(z) — F'(u)]o = F'(u)®(2,u,v), [[@(z,u, )| < kollv][llz — .
THEOREM 2.3.2 Lete,, g < 1 be as in[(Z3RB),[(Z.34) respectively afid, }, {v,} be
as in (Z3.2),[(Z3]1) respectively withe (0, dy]. Then by Assumptidn 2.3.1 and Theorem
2.23z,,y, € B,(x,) and the following estimates hold for all> 0.
(a) ||xn+1 - ynH S qnyn - xn”a
() NYns1 = Tnrall < Ellyn — all;

(©) en < ¢*™,, vn > 0.
Proof. Supposer,,,y, € B.(zo). Then

Tn+1 —Yn = Yn — Tp — F/(xo)_l(F(yn) - F(xn))
= P (o) P )0 =) = (Plan) = Fla)
:Fuwﬂéwuw<M%+WMﬂmm%—%m

and hence by Assumption 2.8.1, we have
[0t = yull < korllyn — zall < qllyn — zall-

This proves (a). To prove (b) we observe that

En+1 = Hyn—i-l - xn—i-lH = Hxn—i-l —Yn — F,(xo)_l(F(xn-i-l) - F(yn))H
1
= 1) [ 1P (0) = (o + e = 00)
0

dt(Tns1 = Yu) |

IN

kOTHyn - xn-i—l”

VAN

¢l — yall.
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The last but one step follows from Assumption 2.3.1 and teedtep follows from (a). This
completes the proof of (b), and (c) follows from (b). Now wellshow thatzx,,,y, €

B,.(z0) by induction. Fom = 1, by (a), we have

)
2
< ]{307’60. (235)

IN

|21 — yol| lyo — ol|?

So by triangular inequality and(2.3.5)

A

< lzr = yoll + [lyo — ol
(1+q)ey (2.3.6)

€o < Vp
l—q  1—g¢

|21 — 0|

IN

IA

IA
=3

i.e.,z; € B.(xy). Observe that by (b), we have

lyr — a1 < e (2.3.7)

Therefore by[(2.316)[(2.3.7) and triangle inequality,

IA

lyr — ol lyr = 21l + [l21 = ol

IN

(1+q+q°)eo
< o

=g~ 1—g¢q
r?

€o

IN

IN
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i.e.,y1 € B,(xg). Supposer,,, y,, € B,(xy), for somem > 0. Then

[ 241 = o]

i.e.,Z,1 € Br(xo) and

[Ym+1 — ol

VAN VAN VAN VANS VAN VAN

IN

/AN VAN VAN VAN VAN

IN

[emir = Zmll + [2m = 2|l - - 4 [ln = o]

(g+Vem+(g+ e+ -+ (g+ 1eg

(4 1)(em + €m—1 + -+ €o)

(q+1>( g e e
(q2m+1)

1

(Q+) —g @

€o < Vo

l1—q  1—g¢

T,

Y1 — T || + (|1 — 2ol|
em+ (q+Dem + (g + Vemy + -+ (g + 1eg
(@ +q+1)em + g+ Dem + -+ (g+ 1eg

(@ -+ @+ g+ e
€0 Vp
< 1P
1—q  1—gq

r,

i..,Yms1 € B.(zo). Thus by induction:,,, y,, € B,(x), for all n > 0. This completes the

proof of the Theorem.

The main result of this section is the following Theorem.

THEOREM 2.3.3 Let{z,} and{y,} be asinl(2.32) and(2.3.1) respectively and assump-
tions of Theorern 2.3.2 hold Thén,) is a Cauchy sequence i, (z,) and converges to
. €B, B, (x0). Further F(z°,

where(C| = &

) =25 and

| — @o, Il < Crg™
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Proof. Using the relation (b) and (c) of Theorém 2]3.2, we obtain
i=m—1

[0 tm — zall < 1Znsicr = Znsil
0
—1

.
Il

]
3

i

IN

(1 + Q)en—i-i

I
()

1
(1 + q)q2(n+i)€0

i
3
i

“l

=0
= (1490 + 1+ )" PVeg + ... + (14 q)g

IN

1+ )1+ ¢+ P+ +¢")eg
1— (g2)™+!
1—g¢q

IN

2n[ ]%

Clqzn.

IN

Thus(z,,) is a Cauchy sequence i8,(z,) and hence it converges, sayit) € B, (x).

Observe that

1F(@a) = zo, I = IF"(@0) (2 — ya)|
< [[F (@o)llllen — yall

< Me, < Mq%vp. (2.3.8)

Now by lettingn — oo in (Z.3.8) we obtain¥’(z?, ) = =7, . This completes the proof.
Hereafter we assume thiat — x| < p < .

THEOREM 2.3.4 Suppose thakyr < 1 and the hypothesis of Assumptlon 2.3.1 holds.
Then 5

1-— ]{507’
Proof. Note thatk,r < 1 and by Assumptioh 2.3.1, we have

| < 1F(2) = za, I

| — =f, |

|12 — a0, | < & —ag, + F'(wo) 7 [F(xa,) — F(@) + F(2) = z,]]
< 1F (o) HF (o) (& — o, ) + Flag,) — F(2)]]
H|F (o) H(F () = 20,
< kollzo — & — t(ag, — D)[F — 2, | + BIF(@) — 2, |
< korl|@ — g, || + BIF(@) - zo, Il
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This completes the proof. The following Theorem is a conseqge of Theorermn 2.3.3 and
Theoreni 2.314.

THEOREM 2.3.5 Letz, be as in[Z31R2). Suppose the hypotheses of Theorem 2.3.3 and
Theoreni 2314 hold. Then

B

A_n <C 2n
i =l < Crg® + T

. b
1 F(2) — 2, |l
where( is as in Theorerf 2.3.3.

Observe that from section 2.2< k andas < a4 < pag, we have

5§5§u5
Voar T Vo T Jas

This leads to the following theorem,

= pp(as) = pp(d).

THEOREM 2.3.6 Let z,, be as in [2.3.2), assumptions in Theorem 2.2.3 and Theorem
233 hold. Let

J
ng := min{n : ¢*" < —1}.
Qg

Then
& =z, || = O(7(9)).

2.3.2 TSNTM for MFD Class

In this subsection we assume thtis a real Hilbert space. Then the iterative method for

MFD class is defined as:

~ ~ ~ _ ~ g, ~
yg,ak = xfz,ak - R('Ig,ak) 1[F<xfz,ak) - Z(ik _'_ T(xi,ak - xO)] (2'3'9)
and
~ ~ ~ _ ~ Qg . ~
xiz-{—l,ak = yfz,ak - R('Ig,ak) 1[F(y761704k> - Zi’k _'_ ?k(yfhock - 'IO)] (2'3'10)

wherez} , := x is the initial guess an&(x,) := F’(x) + <1, with ¢ < oy, < 1. First

we prove that:, ,, converges to the zerd;vak of

F(z) + %(z — ) = 2 (2.3.11)

and then we prove thaf , is an approximation fof.
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Let

Vn > 0. (2.3.12)

nak N ||ynak nakH

For the sake of simplicity, we use the notation 7, andé, for 29 , . 75, andél
respectively.
Hereafter we assume thiat — z|| < p < 7 where
1 do
< —(1-—=
P <7 Fo)
with 6y < \/ag andr € (77, 75) where
o 1= /T ko7,
L 2ko
and
1 1+ \/ — 4k
7o = min{— wp
ko'
Let
9o
Y, = Mp+ ——.
Vo P /o
and

THEOREM 2.3.7 Leté, andq, < 1 be defined as in equation (2.3112) ahd (2.8.13) re-
spectivelyz,, andy, be as in[(2.3.10) and (Z.3.9) respectively witk (0, §o] and suppose
Assumption 2.3]1 holds. Then we have the following:

(a) Hjn - ??n—1|| < %Hgn—l - "Z'n—ln;
(b) Hgn - jn” < Q%Hgn—l - i’n—lH;
(C) en < Q%n'?m Vn > 0.
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Proof. Suppose:,,, 7, € Bx(z), then

Fn—Gn-1 = Uno1 — Tn1 — R(x0) " (F(Gro1) — F(Fn-1)
2 Gt = 70-1))
= R(x0) '[R(20) (frn-1 — Tn-1)

~(F(fur) = F(#11)) = (et = Fnr)]

— Rz / (F"(20) — (F(fns) — F(#n)]

X (gn—l — Zi'n_l)dt.

Now since||R(xzo) *F'(xo)|| < 1, the proof of (a) follows as in Theorem 2.B.2. Again
observe that
~ ~ ~ -1 ~ E) Qg .
€n < 80 = Pno1 = Rl20) ™ (F(@n) = 20, + —(Fn = 20))|
_ Qg , .
+ R(wo) ™ (F(Gn-1) — 25, + f(yn—l — o))
0790

< |[R(w0) M R(20) (T — Gn1) — (F(Z0) = F(gn-1)) — — (@ = a1l

< |[R(xo)" / F(20) — (F(@n) — F(Ga)dt(n — Gl

So the remaining part of the proof is analogous to the prodhaforeni 2.3]2.

THEOREM 2.3.8 Lety, andz, be asin[(2.319) and(2.3.110) respectively and assumptions
of Theoreni 2.317 holds. Thén,) is a Cauchy sequence i (z,) and converges to’ , €

c,ap,
Bi(xo). Further F(x? , ) 4+ (22, — o) = 2, and

c G,

125 — 220, Il < Crat”

whereC, = e

Proof. Analogous to the proof of Theorem 2.8.3, one can prove that is a Cauchy
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sequence imB;(zy) and hence it converges, sayitd, € B;(z,) and

|F(#) = 28, + @ =) = [ R(E0)(E )]

|R () — gl
(1" o)l + =)z
(1 @o)ll + = )aieo

/ o nx
(IF' @)l + g5 (23.14)

IN

A

IN

IN

Now by lettingn — oo in (2.3.13) we obtainF' (), ) 4+ (2%, — 20) = 2, . This

c G,
completes the proof.

The following assumptions are needed in addition to theezaslssumptions for our

convergence analysis.

ASSUMPTION 2.3.9 There exists a continuous, strictly monotonically incrag$unction
@1 : (0,b] — (0,00) withd > || F” ()] satisfying;

,\li—r?o(pl()‘) =0,

[ ]
sup opi(\)
A>0 AN+«

< () VA € (0,0
and

e there exists € X with ||v|| < 1 (cf.Mahale and Nairl(2009)) such that

Ty — T = (pl(F,(l’()))U.

ASSUMPTION 2.3.10 For eachr € B;(z) there exists a bounded linear operate(z, )
(seel Ramm et al. (2d03)) such that

F'(z) = F'(20)G(z, z0)

Let ky < 1220 with 7 < ;L and for the sake of simplicity assume thata) < ¢(«)

for o > 0.

THEOREM 2.3.11 Supposer? , is the solution of[{2.3.11) and Assumption 2.8.1,2.3.9
and2.3.10 hold. Then



Proof. Note thate(F (22, ) — 25, ) + ow(2d,, — x0) =0, S0

(F'(wo) + aul) (w0, —3) = (F'(x0) + awl) (20,4, — 1)

G,k

= ag(rg— 1) — c(F(%) — Zik) + F'(xo)(xiak — )

Thus

220, =2l < llan(F (xo) + awl) ™ (wo — &) + | (F'(x0) + cnl) ™!
c(F(&) = zo )| + [I(F" (o) + ) ' [F' (o) (20,0, — &)

—c(F(0,0,) = F(@))]]

c,ap,

< lew(F (o) + o)™ (w0 — )| + | F(2) — 20, | + T (2.3.15)

wherel := |[(F'(xq) + o)~ fO [F'(x0) — cF'(& + (2, — @)](22,, — &)dt]|. So by
Assumptiori 2.3.710, we obtain

I < H(F’(fﬂo)+ak1)_1/0[F( 0) = F'(& + (x4, — )]
x( )dt|| + (1 — ) [[(F'(x0) + )™ F' (o)

cak
G E+t(ad,, —&),x0) (2, —)dt|

< k0r||:c — 3|+ (1= ko2, — 2| (2.3.16)

c,ap, ¢,

and hence by (2.3.15) ard (2.3.16) we have
s < law(E (o) + o) o — )| + |F(2) — =5, |
- 1-— (1 — C)kQ ]{507:
_ erlow) + (24 ) (9)
B 1— (1 — C)k’g k’o’l“ ‘
That completes the proof of the theorem.
The following Theorem is a consequence of Thedrem P.3.8 &edEni 2.3.11.

THEOREM 2.3.12 Let 7, be as in[[Z.3.70), assumptions in Theofem 2.3.8 and Theorem
2311 hold. Then

(2.3.17)

12 — &l < Crgi™ + O(™(6))
where(, is as in Theorefl 2.3.8.
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THEOREM 2.3.13 Let 7, be as in[[2.32), assumptions in Theofem 2.2.3, Thebrerd 2.3.
and Theorerh 2.3.11 hold. Let

J
ng = min{n : @" < —}.

1 = \/@

Then
& = Zn, || = O(~(6)).
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Chapter 3

DISCRETIZED TWO STEP
NEWTON-TIKHONOV METHOD

An iteratively regularized projection scheme for the ilsed Hammerstein type operator
equationk F'(x) = f has been considered. The proposed method is the finite diomaihs
realization of the method considered in Chapter 2. Pregiget method is a combination of
discretized Tikhonov regularization and modified Newtansthod. The analysis in finite
dimensional setting is carried out for both IFD and MFD Clagslaptive choice of the
parameter suggested by Perverzev and Schock(2005) is wedpio this chapter also for
selecting the regularization parameterAn algorithm and numerical examples are given

to test the reliability of the method.

3.1 INTRODUCTION

For an implementable method for solvirig (2]1.1) needs nigalecalculations in finite

dimensional spaces. One of the approaches in this regatitdagh discretization (see

Englet all (2000), Page 63). Here the regularization is achieved byige fdimensional

approximation alone. Regularization of ill-posed probdelny projection methods can be

found in literature, for e.g in_Groetsch and Neubauer ( tenbacheet al! (2008),
Krisch (1996)| Perverzev and Probdorf (2000).

This Chapter is concerned with the finite dimensional raitim of a method considered

in Chapter 2 for (nonlinear) Hammerstein-type equatiof.([.
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The organization of this Chapter is as follows: Preparatesylts are given in Section
3.2. Section 3.3 comprises the proposed iterative methotFd Class and MFD Class
in finite dimensional setting. Section 3.4 deals with theodtgm for implementing the

proposed method. Numerical examples are given in Sectton 3.

3.2 PRELIMINARIES

LetV; C Vo, C V3 C ... be a sequence of finite-dimensional subspaceX afith

Unen'V, = X andP,, (h = %) is the orthogonal projector of ontoV;,. Let
en = [|K(I = B)l],

T = ||F'(x)(I — Py)||, V€ D(F).

Let {b, : h > 0} is such tha lﬁg””%}z*"“” =0, }ffow =0and,™ b, = 0. We
assume that, — 0 andr, — 0 ash — 0. The above assumption is satisfiedif, — I
pointwise and ifK and F’(z) are compact operators. Further we assumedhat ¢,
Th < To, b, < by.

The discretized Tikhonov regularization method for sodMaguationk » = f? consists

of solving the equation
(P K Py + aPy)(2M° — PyF(x0)) = PoK*[f° — KF(x0)] (3.2.1)

for 21
Throughout the Chapter we assume thgiossess a uniformly boundedEhet deriva-

tive forallxz € D(F)i.e.,||F'(x)| < M, for someM > 0.

THEOREM 3.2.1 Suppose Assumption 22.1 holds. et be as in [3:2211) and,, <

dten
N Then

0+ ey

Va

IF(2) — 2z5°[l < Clep(a) + ( ), (3.2.2)

whereC' = ! max{Mp, 1} + 1.

2

40



Proof. Letz, = (K*K + ol ) "' K*(f — KF(xg)) + F(x0). Then

2 = zall = (K"K +al) "' K*(f — KF(x)) — (K"K P,

+al) ' P K (f — KF(20)) + F(x0) — PuF(z0)]

< |(P.K*KP,+aP,) 'P,K*(KP, — K)(K*K
+al) UK K[F(&) — F(wo)][| + 1(1 = Pu) F (o)

< F@) = Feo)l =+ b

< H/ x0+t($—$0))(x—xo)dtH7 + by,

< F + by, (3.2.3)

and
lza =25l = I(PE*KPy+al) ' BK*(f = £l
B
N (3.2.4)

Now the result follows from[(3.213),(3.2.4), (2.2.3) ane following triangle inequality;
|F(@) = 21 < I1F() = 2zall + 1z — 2] + |12k — 22°]1

3.2.1 A priori choice of the parameter

Note that the estimatg(«) + ‘”% in (BIZ) is of optlmal order for the choice:= «/(4, h)

which satisfiesp(a(d, h)) = \;% Let)(A) :== A/~ 1(A),0 < A < a. Then we have

0 +en = /a(d,h)p(a(d, b)) = (p(as, h))) and

a(d,h) = o (70 +en)).
So the relation(3.212) leads {d"(7) — 2°|| < 2Cy% =13 + &5).
3.2.2 An adaptive choice of the parameter

Let

DN:{OQZO<Oé()<Oé1<Oé2<"'<OéN}
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be the set of possible values of the parameter

Let

0+ ey

[ :=max{i: p(a;) < } <N, (3.2.5)

i

k =max{i:a; € Dy} (3.2.6)

whereD} = {o; € Dy ||25, — 25, || < %Wi)j =0,1,2,....,i — 1},

THEOREM 3.2.2 (cf. |George and Kunhanandah (2009), Theorem 2.5)ILie¢ as in

(3.2.3),k be as in[[3.26) and”* be as in[3.Z11) withv = .. Thenl < k and

) 4 )
|F(&) — 200 < C2+ M—_“l)w (5 + en),

whereC' is as in Theorern 3.2.1.

3.3 CONVERGENCE ANALYSIS
3.3.1 DTSNTM for IFD Class

Let
IF" (o) || := 1. (3.3.1)

The discretized iterative scheme 6f (2]3.1) alnd (2.3.2)afgproximately solving[(2.116)

with =% in place ofz is defined as:

ywo =t — PhF/@g,’ik)_1Ph(F($Zﬁik) — 20, (3.3.2)
h,o _ . ho P F/ h,d —IP F h,0 . ho 3.3.3
xn-{—l,ak - yn,ak h (xO,ak> h( (yn,ak> Zak) ( b )
wherez(? = P,z andz" is as defined if(3.2.1).

Note: Observe that ib, < % then F’(P,z0)~! exists and is bounded. This can be seen as

follows:
|F'(Pyo) || = ”81H1p 1[I + F'(20) " (F'(Pyo) — F'(0))] " F' (o) 0|
v||<1
/ —1

i<t 1= I1F"(zo) ~H(F"(Pao) — F'(x0))v]|
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Using Assumption 2,311, we get

1F" (o) = (F' (Pao) — F'(wo) v < kobo- (3.3.5)

And hence by[(3.311)[(3.3.4) arfd (313.5) we ha\e)( Pyzo) || < =

Thus without loss of generality we assume that
|F'(Puo) ™| < 8, (3.3.6)

for somes > 0.
LEMMA 3.3.1 Leth, < k—lo and [3.3.6) hold. Then

| PoF' (Pyag) " Py F'(Pyxo)|| < 1+ B7o.
Proof. One can see that

| PuF (g0 ) Py F (Pozo)|| = sup || PuF(Phao) ™ PuF' (Pyao)v||

flvll<1

sup || PoF'(Pyao) Py F' (Phao)

loll<1

X(Py, + I — Py)v|

IN

< HSIHJp |[PLF'(Pyxo) ™ PoF' (Prao) Pulvl| +
v||<1
HSIHJp | Py F' (Pyag) " PoF' (Pyxo) (1 — Py)v||
v||<1
< 1+ B8m <1+ 7.
Let
et = llyne, —ano.ll,  Yn>0. (3.3.7)
For our further analysis, we assume that,
1
ko < —————
° 481+ Bro)
and
1
0o +e0 < Vv Qo

whereC), = 3 max{Mp,1}.
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Let ||z — xo|| < p with

1 1 50 + &o
— [ - (M+1+C
< M Akt 5 By - M LF Cun) =]
g0 + 9 1
= BIM M+1+C < 3.3.8
Vo = B[Mp + (M + 1+ Cup)( ¢070)]—4k:o(1+670) (3.3.8)
and let
qp = (1 + Bro)kor, 7 € (r1,72) (3.3.9)
where
. V1= 4ko(1+ B70)7,
! 2ko(1 + Bo)
and
: 1 14+ /1 — 4ko(1 + B70)7,
ro = min{ ,
ko(l + ﬁTo) 2]{50(1 + 57’0)

Note that by[(3.318); is well defined and, < 1.

LEMMA 3.3.2 Letz)’ ande0 ° be as defined in{3.2.1) and (3:B.7) respectively. Suppose
(3:3.8) holds and,, < 5*“ thene“ <7,

Proof. Observe that

h,o h,o

= ||PoF (Pyzo) ' Pr(F(Pro) — 22°) ||
< ||PoF'(Pyzo) Pl | F (Paao) — 20|

A

BIF (Pawo) = Za, + Za, — Zap |

IN

B|F(Puzo) — 2l || + ||zak — 20 (3.3.10)
and

| F(Pyzo) — 2"

akH

IN

IF (Pazo) = F(xo)ll + |1 F(20) = za, |l + ll2a, — 2a, |

1
|| / F'(wo + t(Pazio — 0))(Paio — o) |
0
H(K*K + og]) " K*K(F(2) — F(x0))|| + || 20, — 22 ||

IN

IN

Mby + [|F(2) = F(2o)ll + |20, — 2a, |

ag

Mby, + Mp + || za, — 22 |- (3.3.11)

IN
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Therefore by[(3.3.10)[(3.3.111), (3.2.3) ahd (3.2.4) wechav

oo < BIM + 1)y + ( 2W> |
< 5[(M+1)€:‘/;:5+M +g{;i+\/i_]
< BlMp+ (M +1+ Cary) (220,

Jao

< Y-

THEOREM 3.3.3 Lete? | ¢, be as in[3.317)[(3.319) respectively. UYet? }, {279,
be as in [3.3R),[(3.313) respectively withe (0, ], and e, € (0, ). Then under the
assumptions of Theordm 3.2 and Lerhma3.3.1, the folldvaltgfor all n > 0.

(a) ||$nak xn lakH < (1+qp)||yn Lo — Ty lakH

(b) ||ynak nakH —QpHyn 1,0 zn lakH
(c) eh? o qﬁ"% and

(d) " € B.(Pyxg), Yn > 0.

nak’ ynak

Proof. Supposer’? € B,(Pyzy), then

n,o’ ynak

h,d h,d . h,d h,o / -1
ooy ~ Yn—1l,00 = Yn1 QL T,_q Qg PhF (PhIO) Ph

X(F(Ynly0) = F(202) 0)

= Pl (Pazo) " [PaF! (Pao) (U1 0 = Tn2 1)
_Ph(F(nyl,ak) - F(xzflak))]

= P,F'(Pyxo) P, /OI[F’(Pth) - F’(xﬁfl,ak

h.o h.o h.o h.o
+t(yn Loy — Tp_q ak))](yn—l,ak - )dt

n—1,ag

and hence by Assumptign 2.8.1 and Lenima 3.3.1, we have

1
h,0 h,0 h,0
||z}rt ik - yn 1 akH < (1 + ﬁTO)H / (I)(Phxml’nll,ak + t(ynll,ak - ‘(L’nll,ak%
yn la, xn 1 ak)dtH
< (1 + ﬁTO)kOTHyn’—l,ak - xn 1,0 || (3312)
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Now we obtain (a) from(3.3.12) and the triangle inequality;

h,o h,o

H'rn,ak = Ly 1ak|| < H'rnak _yn 1akH + Hyn 1,a _'rn 10ck||

To prove (b) we observe that

||$h5 h,6 PhF/(PhSL’Q) IPh(F( h,6 )

nak_yn 1,y nak

Py )
= ||P.F'(Pyxo)~ [PuF' (Pyo) (2 ")

nak_yn 1,0

—Pu(F(ad,) = Fyn )]
< (1+B7—0>k0TH$nak _yn lakH (3313)

nak || nak nakH

Hence from[(3.3.12)[(3.3.113) and (a) we have

ehd < (14 Bro)kor) |l o, — Vbt o

2h6
S qpnlak

This completes the proof of (b). Sineéi < 7,, (c) follows from (b). Now by induction,

as in Chapter 2 one can prove that’ € B,(Pyxo), Vn > 0. This completes the

k’ynak

proof of the Theorem.

THEOREM 3.3.4 Let y“ and /0 be as in[3.312) and(3.3.3) respectively. If Theo-
rem[3:3.3 holds, thetw”?, ) is a Cauchy sequence ii,(P,z,) and converges te!° €

B, (Pyx). Further P, F (x “) =zl and

I, — zarll < Cagy

n,o

where(C, =

—4p

Proof. Analogous to the proof of Theordm 2.8.3 in Chapter 2 one cawshatz/-% is a

Cauchy sequence iR, (P,x) converging tar” € B, (P,z,) and

e, — zarl < Cog

n,og
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Further observe that,

1P (F () = za)ll = [P (Pazo) (e, — tnia)|
< IF (Poo) [l

n,a _ynakH

< Mel? < Mgy, (3.3.14)

Now by lettingn — oo in (3.3.12) we obtairP, F'(z%) = 2. This completes the proof.
Next we assume that

[ =zl < p <

THEOREM 3.3.5 Suppose the hypothesis of Assumgiion .2.1and 2.3.1 Hodd. T

e CEE
Proof. One can see that
& —ap?ll = (|2 — 2k’ + PuF'(Paxo) ™ Pa[F(z}) — F(&) + F(2) — 22|
< ||PF" (Poo) " [PLF" (Pyo) (& — al?) + Pu(F(2)?)
—F@)]|l + | PaF'(Pao) "' Po(F(2) — 22°)]
< ||P,F'(Pyxo) "' P, /OI[F’(Pth) — F'(& +t(al — 2))]

x(& = ag?)dt]| + (| PLF' (Pyo) ™ Pa(F (&) — 20|

< (1+ BroYkor||E — 2| + BI|F(z) — 219

The last step follows from Assumptién 2.8.1, Lemima 3.3.1 tedrelation|| P,xo — & —
t(z® — 2)|| < r. This completes the proof.
The following theorem is a consequence of Thedrem B.3.4 &iedEni 3.315.

THEOREM 3.3.6 Letz!’ be as in[[3.31), assumptions in Theofem 3.3.4 and Theorem
[3.3:5 hold. Then 5

(1 - C.Ip)

A

1 — Cagy” 1F(&) = 20|

nakH —

whereC, is as in Theorerf1 3.3.4.
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Now sincel < k andas < a1 < pag we have

5—|—8h<5+8h< 5—|—€h

Var © e S NUm

= pp(a(d, h)) = ™1 (6 + en).
This leads to the following theorem,

THEOREM 3.3.7 Letz/"? be as in[[3.31), assumptions in Theofem 3.3.6 hold. Let

0+ ep

= mi cgPn < .
ng = min{n : ¢," < \/@}
Then
12 = 2320, | = O(W (6 +en)).

3.3.2 DTSNTM for MFD Class

In this subsection we consider the discretized forni of @.8nd [2.3.10) as;

Tnion, = Ty, — REG0,) T PP (T0,) — 20 + — Se(ghe @l ] (3.3.15)
and
By o, = T, — R PP @S, — 200 + 2 h, — 200,)), (3:3.16)

whereR (i, o%) .= P, F'(&} ak)Ph + %Py, Tgly, = Phro ande < ay.

O ozk
First we consider the iterative scheme defined by (313.16J28.16) for approximating
the zeraz!? of

Qg

PMF@y+;%x—x@):}%£f (3.3.17)

h,(; - . . PN
and then show that;, is an approximation to the solutianof (2.1.1).
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Note that with the above notation

IR(EG2, ) P (@0 )l = H(PhF’(ank)Ph+ Ph) P F (a0
= ||(PhF'(iank)Ph+ Ph) 'P (250,

[P+ 1 — Bl

IN

(P F (a5, )P+ = Ph) LB (300 ) Bl
+H(PhF/(x0ak)Ph+ Ph) LR F(30))

(I = Pl
1PwF (Z5:0,) (1 = P3|

(€5

C

14+7 <1+ 7. (3.3.18)

IN

1+

IN

Let
eme =i — gl |, Yn >0 (3.3.19)

noek nak n,a

and letd, + ¢ < ( Voo and||z — xo|| < p, with

2M+3)

1 3 50+50
<—(1-(G+M
p< = GHI=

M 2 )

and

3 €0+50

= Mp+ (5 + M)

).

Further let
1

4]{50(1 + 7'0) ’

_ 1140+ )k,
2(1 —|—7'0)]{70

Yo <

and

1 14+ /1 —4(1+ 1) lmp}

"2 :mm{a o)k 2(1 + 70)ko

Forr € (7, 72), let
gy = (1 + 70)koT, (3.3.20)

theng, < 1.
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LEMMA 3.3.8 Letz? andéy? be as defined if(3.2.1) and(3.3.19) respectively. Then

~h,6
60 Ne7R < ryp

Proof. Observe that

~h,8

- P B + =) Pu(F (Po) — 24|

IN

1F (Pazo) = za, + Za, — Zay |

IN

1F'(Pazo) = 2q, Il + llza, — zar Il (3.3.21)

Therefore by[(3:3:21)(3:3111), (3.2.3) ahd (3.2.4) weehav

0
~h,5
<
Ep+0 1 €o+50
< (M+1 + Mp+ —max{Mp, 1
(M 4+ )72 4 Mt mas{ M 1) 2
50—|—50 50“‘50
< (M+1 + Mp +
( ) 7 Pt e
< Y

THEOREM 3.3.9 Let¢"® and g, be as in equation(3.3.19) and (3.3/20) respectively,
gro and #° be as defined i (3.3.115) and (3.3.16) respectively with (0, J,] and

en € (0,g0]. Then under the assumptions of Theofem 8.2.2, Lemma 3.3.83a0d8),
g ghd e Bi(P,xo) and the following estimates hold for all> 0.

nak’ynak

~ ~h,§ ~h,0
(a‘) || Zik_yn 1ak|| —qPHyn 1ak_$n 1o¢k||.

~ ~h,8 ~h,0
(b) H Zik_'xn 1ak|| <(1+qp)||yn 1ak_xn 1o¢kH;

~ ~ ~h,0 ~h,0
(C) ||yno¢k - Ziska < qp2Hyn 1,a —T,_ 1ak||

(d) eno”c < G, Yn >0,
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Proof. Suppose™? | g € B:(P,x). Then

- 5 ~h.,6 5h,0 7 s
0 e = ?JZ Lo —ih R(%ak) IPh(F(yZ Lay)

nak_yn 1,ap n—1,0x
~h,8 ~h,§ ~h,6
_F(xn—l,ak> + c (yn Lapy — ¥n-1 oz;))
~h,0 \— h,d ~h,6 ~h,d
= R(xO,ak) 1[R(Zl§'0 ak)(yn lap, Ty,_q ak)

~Pu(F () 0) = F @ 0,)) = 2 @000, = 801 0,)

n—1,ap n—1,ag n—1,ap

— R@E )P, / F/(E0 )~ P,

h.6 ~h,s h,5 ~h,6
+t(yn Lo — xn—l,ak))]Ph(yn la, zn—l,ak)dt

and hence by Assumptién 2.8.1, Lemma 3.3.8 &nd (3.3.18) we ha

. RS =hid RS 0,
|| Zik — Yn_ 1akH < 1+T0 H/ Oaw n— 1ak+t(yn 1ak_xn—l,ak>>7

~h,0 ~h5
(yn Loy, — Tn— lak)dtH

i ~h, h
< (1 +TO)k0T||yn—1,ak — T, 10%”'

This proves (a). Now (b) follows from (a) and the triangledoality;

~h5
||xnak xn lakH < ||xnak_yn lak||+||yn Loy — Tn— lakH

Again (c) follows from (a), Assumptidn 2.3.1 arid (3.3.18}dhe following expression

nak - ||R(x0ak) 1Ph/ [F/(xOQ ) (F,( nak_l—t(‘%zz(;k ??Z 61 ak))]dt( nak_gz(sl ozk)H
0

and (d) follows from (c). The remaining part of the proof isalngous to the proof of
Theoreni2.3]2.

THEOREM 3.3.10 Let 3¢ and 9 be as in [3.3.15) and(3.3116) respectively and
assumptions of Theorelm:lS 9 hold Tmeﬁr‘; ) is a Cauchy sequence iB;(P,x,) and

converges say te™° € Bi(Pyxo). FurtherPh[ (xhd ) + 2 (ah? — )] = 20 and

c ozk c,ap,
[ftoe

| < Coq, > whereC, =

n,op xcak —dp
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Proof. Analogous to the proof of Theorelm 2.8.3 of Chapter 2 one cawshat(z"?, ) is

a Cauchy sequence i:(P,xy) and hence it converges, sayai’gjk € Bi(Pyx). Observe

that from [3.3.1b)

|Pu(E(,) = 2%) + =2(@hs, = Pl = 1RGS2, @0, — 225,
< |RG@,) 728, - |
< (IPF <x0ak>PhH+ e,
< (M+ )~2”&p. (3.3.22)

Now by lettingn — oo in (3.3.22) we obtairP, F(z/) ) + % (x!) — Pyxy) = z!°. This

G,

completes the proof.

REMARK 3.3.11 Note that) < ¢, < 1 and hence the sequen@éﬁ ) converges linearly
to "¢

c,ap "

Next we use Assumptions 2.8.9 and 2.3.10 as in Chapter 2 te mnar further results in

this section.

THEOREM 3.3.12 Suppose?] is the solution ofi(3.3.17) and in additionsif < 1, then

2 5+6h
o — : 3.2
||xc,ak cakH — 1 _ 7_0( \/O{_k ) (3 3 3)

Proof. Supposer, andz!-? are the solutions of (Z.3.111) arld (3.3.17) respectivelnth
by (2.3.11) we have,

PyF(x),,) + (Phxc 0 — Pyo) = P2, (3.3.24)
So from [33:17) and(3.3:24),

Let M; = fo F'(ad,, 4+ t(ald —af, ))dt. Then by [3.3.25) we have

P[Mf( cak cak)]_l_ P( cak_xi,ak) - Ph(ZZf—Zik)
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and hence

2kl — 2l N < (e =20 ||+ | Mp(Py = D2l — 22, |
< et =20 |+ mollatd —al, |l
Thus
A L PV S
C,0 C,0 —_ 1 _ 7_0 Qe (657
1
< 1_770[||ZZ;6 —z2h 1+ 112h, = 2o
| zay — 20, |I]- (3.3.26)

Now the result follows from[(3.213). (3.2.4), (3.3126) ahe telation

5
2/

The following theorem is a consequence of Theofem 3.3[13.12) and Theorem

B.3.12. We assume that< ;- andk, < LEr with ¢ < 1.

20, — 2o, Il <

THEOREM 3.3.13 Let i/’ be as in[[3.3.16), assumptions in Theofem 313.10, Theorem
[3.3.12 and[(2.3.17) hold within place ofr. Then

@1(%)+(2+%)u¢‘1(5+8h)+ 2 S+4e
1—(1—C)k52—/{50f 1—7’0 \/OTk

~

|2 — e, |l < Cag™ +

where(, is as in Theorern 3.3.10.

THEOREM 3.3.14 Let i/’ be as in[[3.3.16) and assumptions in Theofem 313.13 hold.
Further lety; (o) < (o) and

. . o+e
ng == min{n : ¢>" < h

_\/a_k}-

Then



3.4 ALGORITHM
Note that fori, j € {0,1,2,--- , N}

20— 2h0 = (aj — ) (PuK*K Py 4 o 1) N (P KK Py + o) ' PLK*(f° — K F ().

o ;i

Therefore the adaptive algorithm associated with the eéofahe parameter specified in
Theorem$3.2]12,3.3.7 ahd 3.3.14 involve the following step
Part I:

o ag=(M+1+Mp3d+ep)*pu>1
o a; = i*oy;

e solve forw;:

(PyK*K Py + a;1)w; = P,K*(f° — KF(x0)); (3.4.1)
e solve forj < i, zf‘j s (PR P+ ayl)zi = (o — oi)wy;

PR AC(8+en) .
o if [|23]] > Wh’ then takek =7 — 1;

e otherwise, repeat with+ 1 in place ofi.
Part II:

e choosen; = min{n : qf," < ‘”ﬁ}, for IFD Class and for MFD Class choosg =
min{n : ¢,*" < 6+—\/ai:};

Part Ill:

e solvez’? using the iteration[(3.3.3) for IFD Class an}’, using the iteration

(3.3.16) for MFD Class.
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3.4.1 Implementation of the method

We apply the algorithm by choosing a sequence of finite dimoeas subspacéV;,) of X
with dimV,, = n + 1 and letP, = P% denote the orthogonal projection h with range
R(P,) = V,. We assume thatP,x — z|| — 0 as h — 0 for all z € X. Precisely we
chooséV,, as the space of linear splings,, vo, - - - , v,,+1} in @ uniform grid ofn. + 1 points
in [0, 1] as a basis o,.

Sincew; € V,,; w; = 2““ \;v; for some scalarg, Ao, - -+, A\, 11. It can be seen that

w; is a solution of [[3.4]1) if and only ik = (A, Ao, - -+, \p1)T is the unique solution of

(Mn —|— Ozan))\ =a

where
Mn = ((KUi,KUj>),i,j = 1,2, cee ,n—l— 1,

B, = ((vi,v;)), 4,7 =1,2,--- ;n+1

and
a= ((P,K*(f° — KF(x0)),v:)",i=1,2,--- ,n+ 1.
Observe that!;’ is in V,, and hence:s’ = S0 v, for some scalargd, m =

1,2,--- ,n+ 1. One can see that fgr< ¢, zij’ is a solution of

(PLK*K Py, + ajI) hd = (0o — a)w;
if and only if 17 = (4, i3, - -+, pu7,,)" is the unique solution of
where

b= ({(ay — ag)wi, vi))".
40(5+€h
—va
Case I: IFD Class. Sincey’,, , =/ € V,, letyh? = Srthery andahd =

Nk,

Computezh.’5 till ||Zh-’5|| > and fixk =i — 1. Letn, = min{n : ¢*" 6+€h }

S s, whereg! andn? are some scalars. Then from (3]3.2) we have

Py F' (Pyxo)(y™e, — a0 )= P[zh0 — P(ah? ). (3.4.2)

ynk Qg N, g N,
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Observe thaty/’, — z° ) is a solution of[[3.412) if and only ifs» — ™) = (&7 —

nr &y —my, -, &0 —n,)T is the unique solution of
Qn(W) = Bn[x - Fhl]
whereQ,, = (F'(Pyxo)vi,vj), 4,j=1,2,--- ,n+1,
Fyy = [F(al? ) (0), F(al? ) (), -+ Flah? ) ()]

wheretq, to, - - -, t,,.1 are the grid points.

Further from [(3.3.8) it follows that
PyF'(Pyo) (xhy b0 ) = Pl — F(yh? ). (3.4.3)

nk—l—l,ak ynk (652 ak ynk Qg

Thus (), nk+1 o — Y. ) is a solution of [3.413) if and only ify» ™t — &) = (it —

oyttt —gn - it — €0, )T is the unique solution of
Qur T =€) = By~ )

whereFy,, = [F(yﬁf%)(tl) F(yfi;fak)(tz) F(yﬁfak)(tml)]T-

Case Il: MFD Class. Sincey!’, andz!’ —areinV,; gk’ = Sty and
ghd = 3" gre;, wheregl andy) are some scalars fdr < i < n + 1. Then from
(3.3.15) we have

Xk (~h,s ~h,6 h,s ~h,5 hd  ~hs
(PhF/(xO ak) + ?)(yn;woek _‘(En}c,ak) = Ph[zoz;C _F(‘(En;c,ak) + - (xO Qg _xnk oek)]' (344)

One can see thag!’, — " ) is a solution of [3.4}4) if and only if¢” — ") =

(& —m, &8 —n5, -+ &y — miya) T is the unique solution of
(033 _—
(Qu+ZEB)E =) = Bk = Fia + “2(Xo — 7]
whereQ,, = <F’(m0 a,)vuvﬁ ,j=1,2,--- ,n+1,
Foa = [F(@300,)(0), F (@00 ) (t2), - F(E0 ) (tagn)]

andX() = [l’o(tl), l’o(tg), s ,l’o(tn+1)]T Wheretl, to, -+ ,tpyr Are the grld pOintS.
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Further from[(3.3.16) it follows that

oy _ .
(P F'(z Oak)‘l'?)(lef-i-l o _yn,fak) = Pz Zf F(yﬁﬁakH?(azg’ ik —yzk‘sak)] (3.4.5)

Thus (&, ., — 9%, ) is a solution of (3.4]5) if and only ify*FT —¢&m) = (™ —

gromptt —gn - it — €0 )T is the unique solution of
(Qn+ B n) (L= €7) = B[ — Fpo+ 2% (Xo — &)

whereFyy = [F(00, ) (1), F (500, ) (t2), -+ F(i00, ) (tas)]

3.5 NUMERICAL EXAMPLES

In this section we consider two examples for illustrating ttigorithm mentioned in the

above section.

EXAMPLE 3.5.1 (cf. ISemenova (2010), section 4.3 ) In this example for IFBsE€we
consider the operatoK F' : L?(0,1) — L*(0,1) with K : L*(0,1) — L*(0, 1) defined
by

K(z)(t) = /O k(t, s)a(s)ds

where
A -ts,0<s<t<1
k(t’s)_{ (1-s)t0<t<s<l

andF : D(F) C L*(0,1) — L*(0,1) defined by
F(u) =
Then the Fechet derivative of' is given by
F'(u)w = 3(u)*w.

In our computation, we takg(t) = 2L — % . ff; and f° = f + 6. Then the
exact solution

&(t) = 0.5+ 7.
We use

3
=05+t ——(t—18
zo(t) = 0.5+ 56( )

as our initial guess.
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[l

n] & E

8 4 0.1820 0.5484 1.7273
16 4 0.1065 0.5376 1.6984
32 4 0.1061 0.5301 1.6759
64 4 0.1061 0.5257 1.6624
128 4 0.1061 0.5234 1.6551
256 4 0.1060 0.5222 1.6513
512 4 0.1060 0.5216 1.6493
1024 4 0.1060 0.5213 1.6484

Table 3.1: Iterations and corresponding Error Estimates of Examel3.

We chooseyy, = (1.3)%(6 + ¢,)%, p = 1.3, 6 + &, = 0.1 the Lipschitz constant,
equals approximately 0.2134 aslin Semehova (2010)ard 1, 7 = &, so thatg, =
(1+ p7o)kor = 0.2133. The results of the computation are presented in Table 3.& pldts
of the exact solution and the approximate solution obtaisagiven in Figure§ 3]1 and 3.2.

The last column of the TableB.1 shows that the effrdy — | is of order (& + &;,)/2.

EXAMPLE 3.5.2 Inthis example for MFD class we consider the operatar : 22(0,1) —
L*(0,1) whereK : L?(0,1) — L*(0,1) defined by

K(x)(t):/o k(t,s)z(s)ds

andF : D(F) C H'(0,1) — L?(0,1) defined by

F(u) ::/O k(t,s)u’(s)ds,

where ( )
1-#)s,0<s<t<1
k“”)_{(l—ﬁaogtgsgl

Then for allz(t), y(t) : z(t) > y(t) : (see section 4.3 in Semenova (2010))

(F(z) — Fy),z—y) = / [ / k(t,$)(@® — ) (s)ds| (z — y)(t)dt > 0.

Thus the operatof’ is monotone. The Echet derivative of’ is given by
1
F'(u)w = 3/ E(t,s)(u(s))*w(s)ds.
0
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14 14

+ exact soln + exact soln
approx.soln approx.soln

121 = 121
ir / 1 1r
08F 1 08

061 - — 1 0.6 -
0.4 jii# b 0.4 jﬁi‘r
0.2r 1 0.2f
o - - - - - - - - o - - - -
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0 0.2 0.4 0.6 0.8 1
n=8 n=16

15

0.5 e et

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

n=32 n=64

Figure 3.1: Curve of the exact and approximate solutions of Exaripl€]3.5.

Soforanyu € B,(2),%(s) > k3 > 0,Vs € (0,1), we have
F'(uw)w = F'(2)G(u, 2)w,

whereG(u, z) = (%)2.

T

In our computation, we takg(t) = 15 (s — & + 2Ly and f° = f + 4. Then the exact
solution
a(t) =1t
We use

3
)=t + —(t -1
zo(t) = 1* 4 2 (1 = %)
as our initial guess, so that the functieg — z satisfies the source condition
o — JAJ = (pl(F/(JA}))l
whereyp;(\) = X. Thus we expect to have an accuracy of order at lé@st ;,)'/2.

59



15

15

. ! . !
+ exact soln + exact soln
approx.soln approx.soln

0.5 fresermmrmmmmemmmerses 1 05
0 0
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
n=128 n=256
15 T T 15 T T
approx.soln approx.soln
1 1
//
,/////r
/////
05 ] 05}
0 0
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
n=512 n=1024

Figure 3.2: Curve of the exact and approximate solutions of Exarpl€l3.5.

We chooseyy = (1.3)(d + ¢5), d + £, = 0.0667 =: ¢ the Lipschitz constarit, equals
approximately 0.21 as in (Semenova (2010)) and 1, so thatg, = (1 + 7)koi* = 0.21.
The results of the computation are presented in TRble 3.2 pltts of the exact solution
and the approximate solution obtained are given in Figlr&sahd 3.4.
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n Bl lap—al | B
4 0.0494 0.1881 0.7200

16 4 0.0477 0.1432 0.5531
32 4 0.0473 0.1036 0.4010
64 4 0.0472 0.0726 0.2812
128 4 0.0471 0.0491 0.1900
256 4 0.0471 0.0306 0.1187
512 4 0.0471 0.0140 0.0543
1024 4 0.0471 0.0133 0.0515

Table 3.2: Iterations and corresponding Error Estimates of Exampel3.

0.7

0.6

05

031

0.2

+  exact soln

approx.soln

0.1 0.2 0.3 0.4 0.5

+  exact soln

approx.soln

0.4 0.6 0.8

Figure 3.3: Curve of the exact and approximate solutions of Examplé)3.5.
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1 . T T T 1 . T T T
exact soln exact soln
0.9 0.9
approx.soln approx.soln
0.8 0.8
0.7 0.7
0.6 0.6
0.5 0.5
0.4 0.4
0.3 0.3
0.2 0.2
0.1 -~ 0.1 s
" ey
0 e - L L L 0 B XAl L L L
0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8
1 : - - . 1 . . . .
exact soln exact soln
0.9 0.9
approx.soln approx.soln
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0
0
1 . T T T 1 . T T T
exact soln exact soln
0.9 0.9
approx. soln approx.soln
0.8 0.8
0.7 0.7
0.6 0.6
0.5 0.5
0.4 0.4
0.3 ) 0.3
,//
0.2 , 0.2
01 - 01
e
P
o . . . 0 . . .
0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8

Figure 3.4: Curve of the exact and approximate solutions of Exarmplé3.5.
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Chapter 4

TSNTM WITH CUBIC
CONVERGENCE

A locally cubic convergence yielding Two Step Newton-Tiklew method and its finite

dimensional realization is proposed. Two implementatiares discussed and applied to
nonlinear ill-posed Hammerstein type operator equati@ds]). For both cases, local cubic
convergence is established and order optimal error bourgdslatained by choosing the
regularization parameter according to the the balancimgiple of Pereverzev and Schock

(2005). Also numerical examples are given to confirm theiefiicy of the method.

4.1 INTRODUCTION

In this chapter, we consider a cubic convergence yielding Btep Newton-Tikhonov
Method for approximately solving (2.1.1). As in Chapter Z wonsider this method for
two cases of operatdr.

The IFD Class F'(u)~! exists and is a bounded operator for alle B,(z); i.e.,
[1F"(w) 7| < B, Yu € By(x).

MFD Class F is a monotone operator ard(u)~* does not exists.

This chapter is organized as follows. In Section 4.2 we prieEESNTM method yielding
cubic convergence and in Section 4.3 we give the finite dimeasrealization of method
considered in Section 4.2. Section 4.4 deals with the algorfor implementing the pro-

posed method and in Section 4.5 we provide a numerical exatoprove the efficiency of
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the proposed method.

4.2 CONVERGENCE ANALYSIS OF TSNTM
4.2.1 Analysis of IFD Class

For an initial guess, € X the TSNTM for IFD Class is defined as;

Vo = Uy — (0 ) (F (W 0) = 25,), (4.2.1)
Wi tap = Vo = F/(U), o) T F (0 0) = 20); (4.2.2)

whereu) , = x. Let

o =, —ul | Vn >0 (4.2.3)

n,o n,o n,a,

and for0 < ky < 1,letg: (0,1) — (0, 1) be the function defined by
]{32
g(t) = §°(4 + 3kot)t?, VYt € (0,1). (4.2.4)

For convenience we will use the notatiep, v, anda,, for v}, , v5 , ando) , respec-

tively.

Further we assume thate (0, ;] whered, < @. Let ||z — zo|| < p,

1

1 do
p < M(E _ \/—oTO> (4.2.5)
and
— BIM 9
Yo = 5[ p+ \/—04_0].

THEOREM 4.2.1 Leto, andg(o,) be as in equatioi(4.2.3) and (4.2.4) respectively,
andv,, be asin[(4.2.11) and (4.2.2) respectively witk (0, dy]. Then under the assumptions
of Theoreni 2.2]13 and Assumption 2.3.1, the following hold:

@) [t — vna]l < 2= vy — ||
©) [Jun — wp1] < (14 221 |v,-1 — o[
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©) [|vn — unl| < g(on-1)||vn-1 — Un—1|;
(d) glon) < g(v,)"", Vn > 0;

(€) 0, < g(7,) " 712, ¥n > 0.

Proof. Observe that

Up — VUn1 = Vpo1 — Up_1 — F'(tp_1) " (F(vn_1) — F(tn_1))
= F/(un—1>_1[Fll(un—l)(vn—l — Up-1) = (F(va-1) = F(up-1))]
= F'(un_l)_l /(; [F,(Un_l) — F/(Un_l + t(Un_l — un—l))](vn—l — un_l)dt

and hence by Assumptién 2.8.1, we have

1
Hun - Un—l” S H /; (I)(un—lu Up—1 + t(vn—l - un—l)u Up—1 — un—1>dtH

ko
=3

an—l - un—le-
This proves (a). Now (b) follows from (a) and the triangledoality;

tn — tn 1| < [t — vl + {01 — .
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To prove (c) we observe that

€n = ||Un - un”

<

IN

IN

IN

IN

IN

<

[n = vn1 — F'(un) ™ (F(un) = 23|

| F (un—1) " (F(vn-1) — 20|

[t — Vn—1 = F' () " (F (tn) = F(vn1))]|

HIF (1) ™" = F'(un) T (F(0n-1) — 2l

[ F" () " F" () (wn, = 0n1) = (F(un) = F(v,-1))]|
+H[F/(un—1)_11 — F'(un) " )(F(vn-1) — 20l

[F" (un) ™" /0 [F'(un) = F'(vn-1 + t(un — vp1)]dt(un — vy1)]
+||F'(un)_l(f7'(un) — F'(tp-1)) F' (ttp—1) " (F(vn-1) — 22) |
[F" (un) ™ /0 [F'(un) = F'(vp—1 + H(ty, — vn1)]dt(un — vy
+H1*—1’/(Un)_1(F/(un) — F' (1)) (0n-1 — )|

|| /0 (1, V1 + (it — Vo1t — 01 )|

+||(I>(una Up—1,Un—1 — un) ||
ko
2

[, = v |* + Kolltn — wn[[wn — vaa]-

Therefore by (a) and (b) we have

On

k2 3k3
> (?0 + ?Onvn—l — Up_1|])[[vn-1 — un—1||3

< g(op-1)0n_1- (4.2.6)

This completes the proof of (c).

Since foru € (0,1), g(ut) < p2g(t), forall t € (0,1), by (4.2.6) we have,

and

00 < (00 2)0n 1

g(on) < g(o0)™

< G (0n—-2)9*(0n—3)0n—2- - g(00)00
< g(ao)3n*1+3”*2+~~+100
< 9(00)(3n_1)/200> (4.2.7)
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provideds,, < 1,Vn > 0. From [4.2.7) itis clear that;,, < 1if 0y < 1, but

1F" (o) ™ (F (o) — 22,
1F () ~HI| F' (o) — 2

0o = ||Uo - CCOH

IN

Al
BIIF (20) = 2ay + 2ay — 7o, |
BlIF (x0) = F@)]| + llza, — 2o, Il
o

Bl [ G+ tlan = 2o — )] +

INIA

IN

A
=
<
D
+

As g is monotonically increasing ang, < ~,, we havey(oy) < g(v,). This completes the

proof of the Theorem.

THEOREM 4.2.2 Letr = (m + %01_&#)% with g(v,) < 1 and let the hypothesis

of Theoreni 4.2]1 holds. Then, v,, € B,(x), for all n > 0.
Proof. Note that by (b) of Theoremn 4.2.1 we have

lur — ol < [1+ < 00log (4.2.9)

i.e.,u; € B.(x). Again note that by[(4.2]9) and (c) of Theorem 412.1 we have

o1 — 2ol < o — w]] + [Jur — 20|

k
S (1 + g(O'Q) + ?00'0)0'0

ko

5 Yp)Vp

(1+9(v) +

IN A

r,
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i.e.,v; € B.(x). Further by[(4.2)9) and (b) of Theorédm 4]2.1 we have

|ug — ol < Jlug — ug|| + [Jur — o]

k. k
S (1 + 500'1)0'1 + (1 + ?00'0)0'0

k k
(1+ §g<ao)ao>g<ao)ao +(1+ 5%@0—0

(14 gl00) + Loy(1 + g(0)))or (42.10)

< (1+g() + @%(1 +9%)") 7
<

IN

IN

2
r

and by [4.2.10) and (c) of Theorédm 4J2.1 we have

IA

[|vg — o] vy — ua|| + [Jug — o

9(o)on + (1 -+ glow) + (1 + glon)))en

(00) "0 -+ (1-+ g(00) + “Loro(1 + gleu)) e

(14 9(00) + 9(00)* + Lo0(1 + (o) oy

(14 9(00) + 9(00)” + “Lo0(1 + (o) oy
ko

2

/AN VAR VAN VAN

IN

(1+90v) + 9(0)* + 571+ 9(v))

<

i.e.,uy, vy € B,.(x0). Continuing this way one can prove that v, € B,.(zy),Vn > 0. This
completes the proof.

The main result of this section is the following Theorem.
THEOREM 4.2.3 Letw, andu, be as in[(4.2.]11) and (4.2.2) respectively, assumptions of

Theorent4.2]2 hold and l16t< ¢(v,) < 1. Then(w,) is a Cauchy sequence 8, (z,) and
converges ta, € B, (). Further F/(z?, ) = 2 and

lun = 2, || < Cae™™"

k n
Wherng = (m + 02% WQ(’%)?’ )7p and7 = - lOg g(VP)
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Proof. Using the relation (b) and (e) of Theorém 4]2.1, we obtain

Hun—l-m - un” <

IN

IN

IN

IN

IN

<

i=m—1
| tntip1 — Until|
i=m—1
S+ ko‘;"“)ow
=0
i=m—1
k g n-+1 n41
(14 =2g(00)* )g(on)* oo
=0
koo n n
(1+ %9(0‘0)3 )g9(00)* a9
k n+1 n+1
1+ =900 g(00)* o0 +
k n-r1m n-r+1m
1+ =900 ) g(o0) oo
(14 g(00)° + 9(00)* + -+ + g(e0)”™) +
k (o) 2 m n n
=5 (L4 (9(00)*)° + (9(00)*)” + -+ (9(00)*)*")g(00)* g (00)”" 0
(14 9(0)* + 9(1)" + -+ 9(3,)*") +
k 2 m n n
SR (90" + () -+ 900 (1) 19 () s
039(%)3n
036_73n.

Thus(u,) is a Cauchy sequence i, (z,) and hence it converges, sayi € B, (o).

Observe that

1F(un) = 20,1 = [1F" (un) (= 03)|
< E )l (un — o)
< Mo, < Mg(7,)* 7, (4.2.11)

Now by lettingn — oo in (2.Z.11) we obtairF(z%, ) = 2, . This completes the proof.

REMARK 4.2.4 Note that0 < ¢(v,) < 1 and hencey > 0. So by [Z.118), sequenc¢e,,)
converges cubically tmgk.

Hereafter we assume that



REMARK 4.2.5 Note that the above assumption is satisfied if

. 1_9(7/))2 —1 L .
ko Smln{l, " [1_9(’7p) _'_\/(1—9(’}/;)))2 + 1—9(7p)2]}.

The following theorem is a consequence of Thedrem #.2.3 &iedenm 2.34.

THEOREM 4.2.6 Let u, be as in [4.Z.2), assumptions in Theorem 4.2.3 and Theorem
[2.3:2 hold. Then g

1—]{30’/“

|12 — unll < C3e™" + 1F(2) =z, |

whereC; and~ are as in Theorein 4.2.3.

Now sincel < k andas < a1 < pag we have
o ) )
< gyl

Var T /a Vas
This leads to the following theorem,
THEOREM 4.2.7 Let u, be as in [4.2.2), assumptions in Theorem 2.2.3 and Theorem
426 hold. Let

. _,\/3” 5
ng = min{n : e <

TV

= pp(as) = ™' (9).

}.
Then

|17 — wn, || = O(7H(9)).
4.2.2 Analysis of MFD Class

Let X be areal Hilbert space and let Assumpfion2.3.1 holdsiiittplace ofr, p <7 < ;-
and letec < ay,.

First we consider a TSNTM for approximating the ze:fjgch of

Fu) + —(u—x0) = 2°

[e25

(4.2.12)
and then we show that) , is an approximation to the solutianof (Z.1.1). For an initial

guessry € X and forR(z) := F'(u) + %1, the TSNTM for MFD Class is defined as:

=, —R@ )7F@, )2 +7(a57 — 20)] (4.2.13)

n,op n,op n,op



and

_ _ 5 i~ ST
@ = 80 — R, )TF(, ) — 2 + ?’“(vg,ak — )] (4.2.14)
whered ., := z,. Note that with the above notation
| R(w) ' F'(uw)|| < 1.
Let
50 = 100 = 000l ¥R >0, (4.2.15)
Here also for convenience we use the notatiqn o, andg, for @, . @), andd)
respectively.
Let
1 5
< - 4.2.16
p= m_o> ( )
with ¢, < /ag and
do
Y, = Mp + —. 4.2.17
Yo P oo ( )

THEOREM 4.2.8 Letg, andg be as in equatiori(4.2.15) and (4.P.4) respectivglyand
0, be as in[[4.2.14) and (4.2.113) respectively with (0, d,]. Then the following hold:

@) [ — T || < 222Gy — Gl

(0) [y — ]| < (14 22280y — Gy ||
2

©) [8n — nll < g(Fn-1)||Tn-1 — Tin-1l;

d) g(.) <9(5,)%",  Yn>0;

€) G, < g(3,)¢" V25, vn>0.

Proof. Observe that

Uy — et = Upoy — Up1 — R(Tin_1) " (F(p_1) — F(tip_1)
+ 2 (Fn1 — -1)
= R(an—l)_l[R(an—ﬁ(ﬁn—l - an—l)

Qp

—(F(0p-1) = F(tn-1)) — ?(Un—l — 1)

- R(an_l)—lfo [F'(ltn—1) = F'(Gin—1 4 t(Op—1 — Gn1))]

X (ﬁn—l — ﬁn_l)dt.

71



Now since|| R(t,,_1) ' F'(a,-1)|| < 1, the proof of (a) and (b) follows as in Theorém 412.1.

To prove (c) we observe that

~ ~ . ~ N— - (773
Gn < 1 = Tamy = R() 7 (F (@) = 25, + (T = 20))]

R (1) (F(B01) = 28, + = (B0t = 20))|

< i = Bt = R(@) ™ (F (@) = F(On1) 4 = (0 = 301))|
R l1) ™" = R() ™ (Bm) = 28, + = (s = 20)|
< R() " [R(0) (@, — Bat) = (F(i) = F(50-1))
== (it = o)
R0 = R(@) N (F(@01) = 2, + = (01— 0))]|
< |IR(in) / (s -+t — B2 )]t — )|
R () ™ (F (@) FﬁwﬂW@wJWHMAPw&

g, .
+7k(vn—1 — x9))]|-

The remaining part of the proof is analogous to the proof afdren{4.2]1.

THEOREM 4.2.9 Let7 = (1 + % 1_;{;,3)2)% with g(7,) < 1 and the assumptions of

Theoreni 4.2]8 hold. Then,, ©,, € B;(x), for all n. > 0.

Proof. Analogous to the proof of Theordm 4.P.2.

THEOREM 4.2.10 Let, anda, be as in[(4.2.13) and (4.2.114) respectively and assump-
tions of Theorerh'4.2.9 hold. Thén,) is a Cauchy sequence iB:(z,) and converges to
2l . € Bi(xo). Further /(2 , )+ (2, —x0) = 2], and

c,ap,

[ — 20 0, [l < Cye™™

whereCy = (5

k ~ ~ ~
W + O’Yp Wg(')/p) )7/? and7 = - logg(%)

Proof. Analogous to the proof of Theorein_ 4.2.3 one can prove tha} is a Cauchy
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sequence iB;(zo) and hence it converges, sayith, € B;(z,). Observe that

1F(@n) — 2a, + %(ﬂn — o)l = [[R(@n)(an —0n)|

[ Bt ) [[[| . — ]

IN

IN

(1F' ()| + =)
(IF" ()| 4+ =2)g(30)
9(%

5
/ & n ..
< (||F(un)||+7’“) )5, (4.2.18)

IA

0

Now by lettingn — oo in @.2.18) we obtainF(« , ) + (20, — x9) = 2 . This
completes the proof.

Assume that, < =57 with ko7 < 1, ¢ < 1 andyp; (o) < ¢(a) for a > 0.

The following Theorem is a consequence of Thedrem 41.2.10raedreni 2.3.71.
THEOREM 4.2.11 Letu, be as in[(4.2.14), assumptions in Theofem 4]2.10 and Theorem

2311 hold. Then
|7 = @l < Cse™™" + 07 (8))

whereC; and# are as in Theorem 4.2.110.

THEOREM 4.2.12 Let 4, be as in[[4.2.14), assumptions in Theofem 2.2.3 and Theorem
4211 hold. Let

}.

- )
. — n
ng = min{n : e " <

Then
1 = i, || = O(7(5)).

4.3 DISCRETIZED TWO STEP NEWTON-TIKHONOV
METHOD (DTSNTM)

In this Section we consider the finite dimensional real@atf the iterative method consider
in Section 4.2. As in Section 4.2, we considered two casds oin the first case”’(.)~!
exists in a neighbourhood of the initial guessand in the second cagéis monotone and

F(.)~! does not exist.
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4.3.1 Convergence Analysis of IFD Class

For an initial guess, € X the Discretized Newton Tikhonov Method is defined as;

Uyt =t — PoF (ul? )T P (F (ul? ) — 20, (4.3.19)
Uyt = Uiy, — PuF (i, )T Pa(F (0,) — 200), (4.3.20)

whereuy? = P,x.
Note: Observe that if, < % and ifu € B,(P,zy) wherer < % — by, thenF’(u)~! exists
and is bounded. This can be seen as follows:

1E" ()M = sup ([ + F"(a0) " (F"(u) = F'(20))] " F' () ]|

ol <1

. | wo) |
s 1= T ao) (P () — F'(a))el

(4.3.21)
Now by Assumptioft Z.3]1 and the triangle inequality;
[u = x| < [lu — Phol| + | Pazo — @ol|,

we have
[F"(20) ™ (F" (w) — F" (o) )ol| < ko(r + bo).
And hence by[(3.3]11) and(4.3]21) we have

A

F/ —1 < =
O e

Thus without loss of generality we can assume that
IF'(u) M| < B, Yu € B,(Pyao) (4.3.22)
and for somes > 0.

LEMMA 4.3.1 Letu € B,(Pyxo), by < 5= andr < = —bo. Then|| P, F'(u) ™' P F' (u)|| <
]_ —|— 57’0.
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Proof. Proof is analogous to the proof of Lemma 3]3.1.

Let
ol = ot —ul? |, Vn > 0 (4.3.23)
and letg,, : (0,1) — (0, 1) be defined by
k(% 242
gn(t) = - (44 3ko(1 + Sro)t) (1 + 7o)t vt € (0,1), (4.3.24)

2
wherek, < min{1, 1+Bm, /4+3(1+BT }. Hereafter we assume that+ ¢y < m,/ao.

Let ||z — xo|| < p where

1.1 do + €o
and let
Eo+50
=06Mp+(M+1+C e |

REMARK 4.3.2 Note thaty, < 1 and hencey,(v,) < 1.

THEOREM 4.3.3 Leto), andgh( op? ) be as in equatior (4.3.23) and (4.3.24) respec-
tively, v° andu/? be as in [(4.3.19) and (4.3.P0) respectively witk (0, 5], o = ay,
andey, € (0, &0 If upl, okl € B,(Pyxo), then by Assumptidn 2.3.1, Lemma4.3.1 and

Theoreni 3.2]2, the following hold:

e
(a) ||unak UTL 10%” < (1“—&70)&”1)” Log — Un— lakH

() lul, — || < (L4 (1+ Bro) 20y 8,y
(© 0, —ulS, | < gulo™ a1l 0y — 0 ol

(d) gn(a0?,) < gn(7,)*", Vn > 0;

3"_1)/2%, Vn > 0.

(e) Un Qg — gh(’y )(

75



Proof. Observe that

h,8 h,é h,é
uZ:ik “Unta, T Un-tla, " Un—tla, — PhF,( Up, lak) 1Ph
h,o h.o
X(F(Un—l ak) - F(un—l ak))

= PF( Uy 10%) [PhF,( Up,— 1()zk)(vhis _uzfl,ak)

n—1,a

—Py(F(op210,) = Fup? )]

n—1,a n—1,ap
1
h,o h,o
= PhF/( Up— 10%) lph/o [F/(un—l,ock) - F/(un—l,ock
) h,6 h,é h,s
_'_t(vn—l,ak - un—l,ak))](vn—l,ak - un—l,ak)dt

and hence by Assumptign 2.B.1 and Lenima 4.3.1 we have

h5 h,o
Hunak Un 1akH < 1+BT0 ||/ Uy, 10%7 n— 1o¢k+t( n—1,ay

—Up— Un Ne7R n SO
up, lak)’ Lo, — 1 )dt||

h,d
< (1 + /BTO) ||Un Loy un—l,ak||2'

This proves (a). Now (b) follows from (a) and the triangledoality;

||un<)c;c - un 1akH < Hun,,ak Un 1akH + an 1,0, un 1ak||

To prove (c) we observe that

h,0
UZ:ik = ||un<)c;c ~Un—t,a, — (PhF( nak)) 1P (F( Zik)
—20%) 4 PuF' (un?) o) " Pa(F(0p21 o) — 200)
= ||unak _UZi Qg - h F( nak) lph(F(uZ’,izk)
_F( Up— 1ak)) _'_Ph[F/( Up,— lak)_l - Fl(“ﬁ’,ik)_l]
XPy(F(u)2,,) = 200
< A+ A, (4.3.25)
where
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and
Ay = || P [F/(ul?) )7 = F/(ul

nak n—1,a g
Note that
Al < ||P F,( nak) 1P [F,( nak)(uz’,ik _szl,ak)
5
—(F@uld,) = Fp )
< NBF W) [ P, - PO,
0

+t(u27(5xk - Un 1ak)]dt( nak - Un 10%)”

5
1_'_57—0 ||/ naw Up— lak+t( nak_U:LL—l,ak>7

un aE Un 1 ak)dtH

IN

h,o
S (1 + 57— )_Hun o Un—l,akHz'

The last but one step follows from Assumption 2.3.1 and Lef@dl. Similarly

Ny < |IPF (u?y 0) ™ = F et )T B (F (02 0,) = 200l

n—1,ap o

< ||P F( nak) IPh(F/(un’,ak) - F/(uzfl,ak))Ph

XF () 0,) 7 P(F (021 0,) = 200

S ||P F/( nak) 1P (F,( nak) F/( U — lock))
XPh( n lak nak)H
,0 ,0
S (1+BT>H(D( naw :LL lak7U:LL lak_u’ill’i{k>’|

h,0
< (1 + BTO)HUn an un—l,akHHun ap Un 1ak||

Hence from[(4.3.25)[(4.3.26), (4.3]127), (a) and (b) we have
k’2 3]{33(1 —|— ﬁ’TQ)

h,6
XHUn Lo, un—l,oakH3

h,8 h,
< gh(an—l,ak)gn—l,ak :

This completes the proof of (c).
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Note that fory € (0,1), gn(ut) < p2gn(t), for all t € (0,1), so by [4.3.2B) we have,

gn(ond,) < gn(oys,)”" and
ol < gn(opn ) I a0 (4.3.29)

n,Qu 0,a

providedo!-$ < 1,Yn > 0. Further from[[4.3.29) observe thaf:} < 1if o¢ < 1, but

)
R B 41 1+ - M
€0+50

< BIMp+ (M + 1+ Ca,)( )]-

Vo
: - : 6 h,o -
As g, is monotonic increasing antﬁak < 7,, we haveg,(ay’,, ) < gn(7,). This com-

pletes the proof of the Theorem.

THEOREM 4.3.4 Letr = (11— + W)y with g,(7,) < 1 and let the

hypothesis of Theorelm 4.8.3 holds. Théf , v € B,(P,x), forall n > 0.

n,o

Proof. The proof is analogous to the proof of Theolem 4.2.2.

The next theorem is the main result of this section.

THEOREM 4.3.5 Letv/? andu/’ be asin[(4.3.19) and]EBIIZO) respectively, assump-
tions of Theorern 4.3.4 hold and [et< gn(7,) < 1. Then(ul? ) is a Cauchy sequence in

B, (Pyx,) and converges to € B, (P,x). Further P, F(x ak) =z and

s, — 2] < Cae™"

n,op
whereCy = (=~ ( oo T (1+ 57'0)]60%) W%(%)Sn)% andy; = —log gn(7,).
Proof. Analogous to the proof of Theordm 2.B.3 in Chapter 1, one bawshat(u?, ) is

a Cauchy sequence . (P,x,) and hence it converges, sayat@kfs € B,(Pyx). Observe
that

|Pu(F(uid,) — 22| = [|PuF (ufs, ) (uld, —ord )|
< N M, — ok |
< Mol < Mgn(7,)* 7, (4.3.30)

Now by lettingn — oo in (@.3.30) we obtairP, F(z/:°) = 2. This completes the proof.
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REMARK 4.3.6 Note that0 < g,(v,) < 1 and hencey > 0. So sequencéu!-, ) con-
verges cubically ta:0.

Hereafter we assume that< r < —

(1+B70)ko
REMARK 4.3.7 The above assumption is satisfied i r and
1—gn(y,)? -1 1 2
ko < + + .
T =) TP T T B

The following Theorem is a consequence of Thedrem ¥.3.5 &iedEni 3.315.

THEOREM 4.3.8 Letu% be as in[(4.3.20), assumptions in Theofem 4.3.5 and Theorem
[3.3.5 hold. Then

B
(1= (1 + Bro)kor)

whereC, and~; are as in Theorefi 4.3.5.

|z — u? | < Che 3" 4

n,og

1F(&) = 2ol

Now sincel < k andas < ;41 < pag we have

S+¢e,  d+ey 0+ ey 1
< < = pp(a(s, b)) = §+ep).
T S T —“\/075 pp(a(d, h)) = pp=( n)

This leads to the following theorem,

THEOREM 4.3.9 Letu/"? be as in[(4.3.20) and assumptions in Theofem #.3.8 hold. Let

n _0+c¢
3§‘|’h

Var )

ng = min{n : e "

Then
& —up®s, | = O™ (0 +en)).

ng,Q

4.3.2 Convergence Analysis of MFD Class

Let X be a real Hilbert space. We need the Assumptions]Z.3.T] arRI.3.1D for the
convergence of DTSNTM and to obtain the error estimate.

First we consider a DTSNTM for approximating the zef;ggk of

Pa(F(u) + %(u — ap)) = Pyl (4.3.31)
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and then we show that is an approximation to the solutiohof K F'(z) = f where

c < a. For aninitial guess, € X and forR(u) := P,F'(u)P, + £ P, the DTSNTM is

defined as:
Onleg, = ey, — R(5, ) PulF(ine,) = 200 + = S —apd ], (4.3.32)
~ ~ o ~
Ul = O, — RO RAF(O1,) — 20 + (o0, —dga,)),  (4.3.33)

wherei? := P,,. Note that with the above notation, as in Equation (313.18}tudipter

3, we have
[R(ard ) P F (@l )| < 14 7o. (4.3.34)
Let
Onia, = 0ne, — ol Vn 0. (4.3.35)
and letk, be such that .

50(4 + 3ko(1 +70)) (1 +70)? < 1.

REMARK 4.3.10 Note that the above assumption is satisfied if we choose

8

ko < min{1l
0 m1n{,1+T0 4+ 3(1+ 1)

1

Let gy : (0,1) — (0,1) be the function defined by

gn(t) = %3(4 + 3ko(1 4 70)t) (1 + 19)t2 vt € (0,1). (4.3.36)
Let [|2 — zol| < p, with
p 7l G+ )
= Mp+ (5 M)(g%st)).

THEOREM 4.3.11 Let )’ and g, be as in equatior (4.3.85) and (4.3.36) respectively,
and leta? ando) be as in [([4.3.33) and(4.3.82) respectively, with (0, o], & = ay,
andey, € (0 £0)- Then the following hold:
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~h,6 kOL ay, || ~h,8 ~h,s
(a) Hunak_ Z 1akH <(1+T0) - k” Z lap Z 1akH

h,(S
In—1,a ~h,d ~h,0 .
(b) ||un Ok un 1ak|| < (1 + (1 + 7-0) 21 - )| n—1l,ap n—l,akH’
~h5
(C) anak - nakH <gh( Op— 1ak>an Lap — Un— 1ak||
(d) gh( nak) < gh(,?p)ZS"’ Vn > 0;
©) ord, < gn(3,)¢" 123, Vn > 0.
Proof. Observe that
- ~h.§ ~hs b5 b5 ~h§
uﬁ’,ik — Upl Lay — Un—la, = Un—1a, — R(un—l,ak) 1Ph(F( Up— 1ak)
Ak .ps ~h,8
_F( Up_q ak) + ?(Un—l,ak - un—l,ak))
b5 _ b5 ~h.6 b5
= R(un—l ak) I[R(un—l,ak)(vn—l,ak - un—l,ak>
~h,5 ~h,8 Ok h§ ~h,8
_Ph(F( Up— 1ak) - F(“n—l,a;)) - ?(Un—l ap un—l,ak)]

= R@Z’fl ak) [(PhF/( Uy 1ak)Ph _I— Ph)( n 1oc;c azfl,ock)
~Pu(F(E,,) - Flay? »—%@“ i1 0,)

Up—1 S, n—1,ap n—1,ag n—1,ap

=mmJ%Awnm>mM%

~h,0 ~h,d ~h6
+t(vn—1,ak un lak))]Ph( n— lak Up— lak)dt

Now by Assumption 2.3]1 and(3.3]118) we have

~h5 h5 ~h,6 ~h,0
Hunak Up— 1akH < 1+T0 H/ Uy 1ak7 n— 1ak+t( n—1,ay _un—l,ak)7
~h,o ~h5
Un—l,ak Uy lak>dtH

~h, ~h5
< (1+T0> H Un—1,0p = Up— 1ak||2

This proves (a). Now (b) follows from (a) and the triangledoality;

~h(5 ~h(5
||unak_un lakH < ||unak Un lakH_l_” n—lay, — Un— lakH
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To prove (c) we observe that

o, = lakh, =, = R T PR (@,) - 2L
+ R, —gn,) + R )T P(F (0 f;ia;)
e+ (@, — 250,
= laih, = o, — RS <<’;ik>—F<ﬁZf1,ak>
R @ = 000, )) + [RGE ,)7 — R(@,) ™
873

h,o ~h, ~h5
XPh<F( Up,— 1ak) ZZ:_'_ ( Up—1,a, — Oak))H

The remaining part of the proof is analogous to the proof adrenT4.313.

THEOREM 4.3.12 Let7 = (#@p) + (1+ 7))k ’E 2 )7, With g,(3,) < 1 and the
assumptions of Theordm 4.3.11 hold. Thgn v“ e B:(Pyx), forall n > 0.

k7N,

Proof. Proof is analogous to the proof of Theorem 4.2.2. The mamltre$this section is
the following Theorem.

THEOREM 4.3.13 Leto/? anda-? be as in[4.3.32) and (4.3B3) respectively, and let
assumptions of Theorelm_AL.ﬂ 11 amj_duB 12 hold. Thgr, ) is a Cauchy sequence in

B;(Pyzo) and converges ta"S € B:(Pyzo). Further B[F(zh? ) + (2l — 2)] =
P, zl* and

s, — bl || < Cae™"

n,op C Cl{k
whereC, = (= — (~ w t (1+ To)kmp Wﬁh(%) )’~7p andy, = — log gn(7,)-
Proof. Analogous to the proof of Theorefn 4.2.3 one can show thaf, ) is a Cauchy
sequence iB:(P,z) and hence it converges, sayitp) € B;(P,x,). Observe that from

(4.3.32)

|Pa(P(ikh,) = 2) + “E(h, = Puno)ll = [ RGs5,)@s, — a0, )
< IR, -]
< (IBF/ @) Pl + =5)ais,
< (PP @5, ) Pl + =)
xgh(aé‘:i ) ane,
< (M+-— )gh(%)?’"% (4.3.37)
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Now by lettingn — oo in (4.3.3T) we obtainP, F(z) ) + 2&(zh0 — Pyag) = Pz’
This completes the proof.
Hereafter we assume thatk % andk, < £ with ¢ < 1.

The following theorem is a consequence of Theorems 2.B. 311 3tand[(3.3.23).

THEOREM 4.3.14 Leta!? be as in[4.3.33), assumptions in Theofem 4]3.13, Theorem
2.3.11 and[(3.3.23) hold. Then

pr(an) + (2 + 25) ™ (6 +en) L2 Sten
1-(1-0)]{32—]{?0% 1—7'0 \/Oé_k

whereC,, and~, are as in Theoref 4.3.113.

| —ape, Il < Cae™™*" +

THEOREM 4.3.15 Let a9 be as in[[4.3.33) and assumptions in Theofem 413.14 hold.
Further lety; () < ¢(ay) and

§5+€h

Jar

. _an
ng = min{n : e~ 73

1.

Then
& —al’, || = O (6 +en)).

4.4 ALGORITHM

Note that fori, j € {0,1,2,---, N}

Lhd _ b

a; a;j

(Oéj — Oél)(PhK*KPh -+ Oéj])_l(PhK*KPh + Oéif)_lth*(f6 — KF(JIO))

Hence, the adaptive algorithm associated with the choitieeoparameter specified in The-
orems 3.2, 4.319 and 5.3110 involve the following steps.
Part I

o o = 136 +¢epn)?
® O = :U’Zia(b > 1

e solve forw;:

(PyK*K Py + a;1)w; = P,K*(f° — KF(x0)); (4.4.1)

83



e solve fOI’j < i, Z:; . (PhK*KPh -+ Oéj])Z” = (Oé] — az)w“

; h 4C(0+¢p) _ .
o if |2 > T‘h’ then takek =7 — 1;

e otherwise, repeat with+ 1 in place ofi.
Part II:

P 3 . —vy13™ 5+€ . . . _~3n
e choosen;, = min{n : e < F:} for IFD Class anth, = min{n : e %" <

o+e .
Part IIl:

e solveu!® using the iteratior((4.3.20) ang’ , using the iteratior{{4.3.33).

In the next sections we consider two examples to illustfa¢eatbove algorithm. The

computational results provided endorse the reliabilitg affectiveness of our method.

4.5 IMPLEMENTATION OF THE METHODS

We apply the algorithm by choosing a sequence of finite dimoeas subspacéV;,) of X
with dimV,, = n 4+ 1 and letP, = P% denote the orthogonal projection dhwith range
R(P,) = V,. We assume thatP,x — z|| — 0 as h — 0 for all z € X. Precisely we
choosé/,, as the space of linear splings,, vs, - - - , v,,41} in @ uniform grid ofn + 1 points
in [0, 1] as a basis of,.

Sincew; € V,,, w; is of the formZ?jll Av; for some scalard, Ao, - -+, A\, It can
be seen that; is a solution of [4.411) if and only ik = (\;, Aa, - -, \,y1)7 is the unique
solution of

where

M, = (Kv;, Kvj),i,j =1,2,--- ,;n+1
B, = (v,v;),i,j =1,2,--- ;n+1
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and
a=((PK*(f° — KF(x)),v))T,i=1,2,--- ,n+1.

Observe that}?’ isinV, and hences’ = >4} /v, for somey/ k= 1,2, -+ n+1.

One can see that fgr< i, 2" is a solution of
(P K Py + a1 2 hd = (0o — a)w;
if and only if i = (i, pg, -+, ?1)" is the unique solution of

whereb = (o; — o) B, \. Computez,;” till ||z and fixk = i — 1. Now we

6” 4C(6+e€p,)
Vaj
choosen;, = min{n : e 3" < 5+€h}

Case LIFD Class. Sincev? w0 €V, letohd = Sreny andul?, =

N, ) N, Nk, Nk,

Zf*ll ntv;, where¢" andn? are some scalars. Then from (4.3.19) we have

h,6 h,é _ h,é h,6
PyF (ul? o Yokl —ul? ) = Pyplal? — F(ul? )] (4.5.1)
Observe thatv!:’, — ul? ) is a solution of [(4.3:19) if and only ifc” — ") = (& —
n &y —ny, -+, &0 —niyy)tis the unique solution of

Qn(E™ —n") = Bn[v - Fhl]
whereQ,, = (F'(u” Uy’ ak)v,-,vj>, i,j=1,2,--- ,n+1,
Fo = [F(up? o ) (), Fug? o (), Fuge )t

wherety, to, - - - , t,,,1 are the grid points.
Further from[(4.3.20) it follows that

76 s o s ,
Thus (u)’,, ., — v%, ) is a solution of [ZEJ2) if and only ify**T —&m) = (! —
er ot — g ..o it — ¢n )T is the unique solution of

Qu(n"™1 =€) = Bu[A" — Fio
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whereFis = [F(0}i20, ) (1), F(0li0, )(82), -+ Pk, ) (b))
Case Il: MFD Class. Let&™ = (&7, &5, -+, &00), 0™ = (05, niyy), 000, =
St ery andal? = ST e, Then from [4.3:32) we have

n,op
o n+l n+1 n+1
k n n ~
(P F'(4 nak)+7)2(§i —nfvn =Y A — Y PF (i o,
i=1 i=1 i=1
a n+1
k
+ 25> (wolt) =)
=1
wheret, ty, - -+, t,.1 are the grid points.

Observe thafo/, — /-, ) is a solution of [4.3.32) if and only ifs" —7") = (& —

0, &y —ny, -+, &, — )T is the unique solution of
(093 _—
(@n + —Ba)(€" — ") = Ba X~ Foy + = (Xo — ")},
whereQ,, = (F'(u nak)vi,vj>, ,j=1,2,--- . n+1,
Fyy = [F(ty0,) (), Fty,)(t2), - Fiye, ) (tas)]"

andX() = [l’o(tl), l’o(tg), < ,l’o(tn+1)]T.
Further from[(4.3.33) it follows that

(072 - - Qg ~
(P (15, + ) (@ L, — Tbg) = Paleh? = F(813,) + 7(U§j§k — O, )] (4.5.3)
Thus(u” n+1 o~V ) is asolution of2513) if and only ify" 1 — &%) = (pp ™ =&,y —
&y mitt —¢n )T is the unique solution of
o I
(Qu+ 2 B )1+ =€) = Bu[X = Fyz + f(Xo - &),

whereFy = [F(i5:3,) (1), F(i8, ) (t2), -+, F(#d, ) (b))

4.6 NUMERICAL EXAMPLES

EXAMPLE 4.6.1 We consider the operatdf F' : L?(0,1) — L*(0,1)whereF : D(F) C
L*(0,1) — L*(0, 1) defined by



andK : L*(0,1) — L*(0,1) defined by

where

(1—-s)t,0<t<s<1
The Fiechet derivative of " is given by

k:(t,s):{ (1-1t)s,0<s<t<1

F'(u)w = 3(u*)w.
Observe that

[F'(v) — F'(w)]w = 3(v*—u*)w
= 3u2(% — 1w

= F'(u)®(u,v,w),

where®(u, v, w) = (& — 1w = YFWC=w,, Thusd satisfies the Assumptién 213.1 (cf.

U

isch (1993), Example 2.7).

We takef () = $5mms(m) ang #8 — f 4 §. Then the exact solution

972

z(t) = sinnt.

We use
xo(t) = sinwt + 1/10
as our initial guess, so that the functiéf(x,) — F(z) satisfies the source condition

3sin®(nt) + 3.3 sin(nt) + 0.91
30(1/2 + sin7t)?

F(zo) = F(&) = o (F'(2))( )

wherep()) = . Thus we expect to have an accuracy of order at |€xst ).

We choosey = (1.5))0 + &5)2, u = 1.5, 5 = 0.0667, 8 = 0.925, p = 0.1, v, = 0.8212
andgy(v,) = 0.54 approximately. In this example, for all the number of iteration;, = 2.
The results of the computation are presented in Thble 4.2 pltits of the exact and the
approximate solution obtained are given in Figured 4.1 4

EXAMPLE 4.6.2 (cf. [Semenova (2010), section 4.3) To illustrate the methodFD
class, we consider the spacé = Y = L?[0,1] and the Fredholm integral operator
K : L?(0,1) — L?(0,1). Then for allz(t), y(t) : z(t) > y(t) :

(F(z) — Fly),o—y) = / [ / Bt s)(2 — o*)(s)ds| (z — y)(t)dt > 0.
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no | k| e | ekl Gt
32 4 01714 0.0246 0.0953
64 4 10.1710 0.0248 0.0960
128 4 10.1709 0.0249 0.0964
256 4 10.1709 0.0250 0.0966
512 4 10.1709 0.0250 0.0967
1024 | 4 |0.1709 0.0250 0.0968

Table 4.1: Iterations and corresponding Error Estimates of Exam@el4.

14

1.4

! . ! .
+  exact soln +  exact soln
approx.soln approx.soln

12r

12r

0.8

0.6

0.4r

02r ,

n=32 n=64

Figure 4.1: Curve of the exact and approximate solutions of Exarmplel4.6.

Thus the operatof’ is monotone. The Echet derivative of’ is given by

1
Flu)w = 3 / k(t, ) (u(s))2w(s)ds.
0
So for anyu € B, (), z0%(s) > ks > 0,Vs € (0,1), we have
F'(u)w = F'(x9)G(u, zo)w,
whereG (u, xo) = (3+)*.
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14

1.2r

! .
+ exact soln
approx.soln

14

1.2r

! .
+ exact soln
approx.soln

0.8
0.6
04r
02}
. /
0
n=128 n=256
1.4 T T 1.4 T T
approx.soln approx.soln
1.2f 1 1.2f 1
1+ s N 1+
:\
08 N\ 0.8
0.6 0.6
04r 041
// \\\
02f 02t / \ |
/ \|
0 : : : : 0 : : : :
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
n=512 n=1024

Figure 4.2: Curve of the exact and approximate solutions of Exarpl€l4.6.

Further observe that

[F'(v) =

F'(u)]w(s) =

where® (u, v, w) = [Z—z — 1jw.
In our computation, we take

and f = f + §. Then the exact solution is

1) = oo

3/0 k(t, s)(v*(s) — u?(s))w(s)ds
F'(u)®(u,v,w),

+6t cos 3wt — 3 cos 3wt — 27t cos mt)
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(27 sin 7t — sin 37t) + T (27t cos mt — 3t* cos 3t
s




Z(t) = sint.

We use

3
xo(t) = sinnwt + ﬁ(l +tn? — t*1? — cos®(nt))
7T

as our initial guess, so that the functieg — 2 satisfies the source condition

o — T = F/({i‘)l = gpl(F,(fL‘Q))G(IL‘Q,i')

wherey; (\) = A. Thus we expect to have an accuracy of order at €56 + 1,)2).

We choosey = (1.5)6%, pn = 1.5, 6 = 0.0667 = ¢, e, = 52, p = 0.19, 7, = 0.8173
andgy(7,) = 0.54 approximately. For alk, the number of iteration;, = 3 in this example.
The results of the computation are presented in Thble 4.2 plots of the exact and the
approximate solution obtained are given in Figured 4.3 4

n| k a, il — &|| ((';‘jﬁ;f;)f%

8 4 ]0.1790] 0.0363 0.1388
16 4 |o01729] 0.0432 0.1669
32 4 |o0.1714] 0.0450 0.1742
64 4 |0.1710| 0.0455 0.1761
128 | 4 |0.1709| 0.0456 0.1765
256 | 4 |0.1709| 0.0456 0.1767
512 | 4 |0.1709] 0.0456 0.1767
1024| 4 [o0.1709] 0.0456 0.1767

Table 4.2: Iterations and corresponding Error Estimates of Exam@el4.
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Figure 4.3: Curve of the exact and approximate solutions of Exarplé}4.6.
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Figure 4.4: Curve of the exact and approximate solutions of Exarmplél4.6.
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Chapter 5

MODIFIED TSNTM WITH QUARTIC
CONVERGENCE

The main aim of this chapter is to improve the rate of convecgeof the methods consid-
ered in Chapter 2, 3 and 4 for obtaining an approximate swidar Ill-posed Hammerstein
Operator equation (2.1.1). As in earlier Chapters we candido regularity classes of the
operatorF’ i.e., IFD Class and MFD Class. Regularization parametdrasen according to
the adaptive scheme suggested by Perverzev and Schock(20@=error bounds obtained
are of optimal order with respect to the general source ¢immdi and we have obtained a

quartic convergance rate.

5.1 INTRODUCTION

The preliminaries and adaptive scheme for choosing thelaggation parametex for
Tikhonov regularization of (2.11.5) follows as in Chapter®2and 4. The proposed Mod-
ified Two Step Newton Tikhonov Method (MTSNTM) for both IFD &MFD class are
given in Section 5.2. The finite dimensional approximatibthe proposed method is given
in Section 5.3 along with a numerical example in Section 6.ttt the efficiency of the

approach.
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5.2 MODIFIED TWO STEP NEWTON-TYPE ITERATIVE
METHOD

5.2.1 MTSNTM for IFD Class

For an initial guess, € X the MTSNTM is defined as;

P = Sno = F (800 ) (F (D 0) — 20,), (5.2.1)
Sitan = T — F/ (70 ) (1) 0) = 20,)- (5.2.2)

Throughout this sectios) , = . Let

Oy =100 =2 ol ¥n >0 (5.2.3)

n,og n,og

and for0 < ky <1, letg, : (0,1) — (0, 1) be the function defined by

27k3
gq(t) = 2 043, vt € (0,1). (5.2.4)

For convenience will use the notatiep, r, ando, for s , , % . andg) . respectively.

n,oE? ' n,op

Assume thas € (0, 6] whered, < ¥5°. Let ||& — o < p,

1.1 do
p < M(E - —oTO>
and
— BIM 9
Yo =B P+\/—a—0]~

THEOREM 5.2.1 Letp, andg,(0,) be as in equatior (5.2.3)and (5.2.4) respectively,
andr, be as in[(5.2.2) and(5.2.1) respectively witk (0, dy]. Then under the assumptions
of Theoreni 2.2]3, the following hold:

@) [Isn = rnall < 2= r, 1 — spal;

(0) llsn = snall < (1+ 22L2=2)|Irsy — sl
©) [Irn = sull < gglon-D)llrn-1 = snll;

(d) gqlon) < gq(7p)"", Vn > 0;
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@) 0n < gg(p) "Iy, Yn>0.

Proof. Observe that

Snt1 =T = o= sp = F'(ra) T (F(ra) = 20,) + F'(s0) 7 (F(sa) = 2a,))
= 1o = sy — F(rn) (F(ra) = F(s)) = (F/(rn) ™
—F(32) ") (F(s0) = 70,,))
= F'(r,)™! /OI[F'(rn) — F'(sp 4 t(ry — s5))|(rn — sp)dt

—F'(r,) " (F'(rn) = F'(5)) (1 — 50)
and hence by Assumption 2.8.1, we have

1
|s$nt1 — ]l < || / D(rp, Sp+ t(rn — Sp), T — Sp)dt||
0
+||(I)(Tn>5narn - SN)H

< —lrn— Sn||2'

This proves (a). The proof of (b) and (c) are analogous to theff corresponding results

in Theorem 4.2]1.
Further, since fop € (0,1), g,(ut) < p?g,(t), forall t € (0,1), by (c) we have,

9qlon) < gq(00)™"

and

A

on < 954 (0n-2)0n1 < 95 (0n-2)94" (0n-3)0n—2" " gq(00)00

(g0)4n71+4n72+m+1

IN

Y9q 0o

4m—1)/2

IN

9q(00)" 00 (5.2.5)

providedop,, < 1,Vn > 0.

From [5.25) itis clear thap, < 1if gy < 1, but by [£28),00 < 7, < 1.
As g, is monotonic increasing ang < -,, we haveg,(o,) < g,(7,). This completes

the proof of the Theorem.
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THEOREM 5.2.2 Letr = (;—1— + 322 )y with g,(7,) < 1 and let the hypoth-

. 1—g4(7p) 2 1-gq(7p)?
esis of Theorem 5.2.1 holds. Thepr, € B, (), foralln > 0.
Proof. Proof is analogous to the proof of Theorem 4.2.2 in Chapter 4.
Next we have the main theorem of this section.
THEOREM 5.2.3 Letr, and s, be as in[(5.211) and (5.2.2) respectively, assumptions of

Theoreni 5.2]2 hold and I6t< g,(v,) < 1. Then(s,,) is a Cauchy sequence 18, (z,) and
converges ta?, € B,(zo). Further F(z?, ) = 2} _and

Isn — 20, [l < Coe™""

3k n
Wherqu == (1—gq1(’yp)4 + g'Yp 1_(9(1%%))2)49(1(70)4 )7/7 and72 == lOg gq(f}//’)

Proof. Proofis analogous to the proof of Theorem 4.2.3 in Chapter 4.

REMARK 5.2.4 Note that0 < g¢,(7,) < 1 andvy > 0. Hence the sequence,,) converges
quartically tox?, .

Next we assume that< r < % and note that this assumption is satisfied if

) Lmga()? ! .
ko < min {1, 3, [1 ) . \/(1 — 94(7,))? - gq(%)Q]} .

The next Theorem is a consequence of Thedrem]|5.2.3 and ThE0E

THEOREM 5.2.5 Lets, be asin[(5.22), assumptions in Theofem5.2.3 and Thda@#h 2.
hold. Then

&= sull < Coe™" + 1

whereC, and~ are as in Theoremi 5.2.3.

THEOREM 5.2.6 Lets, be asin[(5.212), assumptions in Theofem 2.2.3 and TheoZm 5.
hold. Let
. )
= mi e < —
ng :=min{n : e < ak}
Then

|12 = sn, | = O(W71(3)).
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5.2.2 MTSNTM for MFD Class

Let X be a real Hilbert space. For an initial guagse X and forR(z) := F'(x) + 2£1,
the MTSNTM in this case is defined as:

. . 5 N rpy = Qg -
P = Sy = B0 ) () = 2, + (3, — o)) (5.2.6)
and
~ ~ ~ — ~ g, .
8 oy =700 — R NVTHE(G ) — 25 + 7@2,% — x0)]. (5.2.7)
wheres ., := z,. Note that with the above notation
|R(z)""F'(z)|| < 1.
Let
0oy =00 — 80, Wn>0. (5.2.8)

Here also for convenience we use the notatign, and g, for &), , 7 . andg

n,aR’ ' n,op

respectively. Let Assumptidn 2.3.1 holds within place ofr, p < 7 < kio and letc < ay,.
Let p and?, be as defined il (4.2.16) arld (4.2.17) respectively. Thenawve the following

Theorem.

THEOREM 5.2.7 Let g, andg, be as in equatior (5.2.8)and (5.2.4) respectivélyand
7, be as in[5.217) and(5.2.6) respectively witk (0, dy). Then the following hold:

@) |15 — P ]| < 20217,y — 5,

(0) (150 = Snall < (14 2L=2) |7y — 5l
©) 170 = Sull < 94(On-1)||Tn—1 — Sn-all;

(d) 94(0n) < 9,(3,)"",  Vn=0;

©) 8n < g4(3,) 4" V%, Wn>0.
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Proof. Observe that
n=Fat = Fat = Bt = ROt (F () = 2, + 20y — 20)
+R(Bn1) N(F(5a) — 2, + %(gn_l — )
= Fuct = St — B(Fuoy) (F(Fa1) — F(3p1) + %(fn_l —50)
H(B(50-1) " = R(Fat) ) (F(Gmt) = 2 + (501 — 0))
= R(mt) " [RFue) (s = 0mt) = (F(Fact) = F(301)) = = (s
—5n-1)] = R(F 1) F (1) = F' (50 0)] (Pt — 801)
= R [ G0~ F ot 4G = 500)
X (Fp1 — 8n_1)dt — R(Fp_1) " [F'(Fno1) — F'(30_1)](Fa1 — 3n1).
Now since||R(5,_1) ' F'(5,-1)|| < 1, the proof of (a) and (b) follows as in Theorém5]2.1.
To prove (c) we observe that

6 < N80 = Fact = R(5:) T (F(E) = F(Fat) + = (50— 7o)

HR(@n) " (R(F) = R(Fa-1)) (50 — Taa) |
1R(3) T [R(50) (30 — Tu1) = (F(30) = F(Pn-1))

_?(sn — )]

HIR(@n) ™ (F (@) = F'(Fa1)) G — P |-

IA

The remaining part of the proof is analogous to the proof afdren{5.2J1.
We state the following Theorems whose proofs are analogotietproof of Theorems

A29[42.10, 4211 and 4.2112 respectively.

THEOREM 5.2.8 Letr = (1_92(%) +%%)% with g,(7,) < 1 and the assumptions

of Theoreni 5.217 hold. They, 7,, € Bx(x), for all n > 0.

THEOREM 5.2.9 Let7, ands, be as in[(5.2.6) and (5.2.7) respectively and assumptions
of Theorend 5.2]8 hold. The€Rs,) is a Cauchy sequence i (x0) and converges to? , €

Bi(x0). Further F (a0, ) + 2 (22 —:);0)— =) and

G,

130 — 20, | < Coe™™"

3 ) 3 N ~
whereC, = (1 + 0% — 5793 ), andis = —log g,(7,).

98



THEOREM 5.2.10 Let 3, be as in[5.217), assumptions in Theorem %.2.9 and Theorem
2311 hold. Then
12 = 8ull < Coe™™ + O(71(9))

whereC, and#, are as in Theorefn 5.2.9.

THEOREM 5.2.11 Let 5, be as in[[5.2]7), assumptions in Theorlem 2.2.3 and Theorem

5.2.10 hold. Let 5

ng == min{n : e " < —1.

V&
Then
12— 30, ]l = O(¥71(5)).

5.3 PROJECTION SCHEME OF MTSNTM

In this section we consider the convergence analysis of MM the finite dimensional
setting. The method is analyzed for both the cases of opefate., IFD and MFD Class.
The finite dimensional realization of the method and the @ased algorithm are proposed.
Local-quartic convergence is established for the methadismalidated numerically. The
proofs of the results are analogous to the correspondingtseis section DTSNTM of

Chapter 3.

5.3.1 Discretization of MTSNTM for IFD Class

For an initial guess, € X the method is defined as;

h,o , , - , ,
Sn-l—l,()ék = Tz,ik - PhF,(TZ,glk) IPh(F(TZ,ik) - ZZ;?)’ (5310)

wheres;? = Py.
Note that ifby < % and ifz € B,(P,x) wherer < k—lo — by, thenF’(x)~! exists and is
bounded i.e.,

|F'(z)"'|| < B, Yz € B,(Pyxo), 5> 0. (5.3.11)
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Let

QZik : ||rnak nakH Vn >0 (5.3.12)
and letg, : (0,1) — (0, 1) be defined by
27k8 3,3
gp(t) = 3 (14 pro)°t vt € (0,1), (5.3.13)
where
) 2
]{?0 < mln{l, m}

Hereafter we assume thét+ =9 < 577757 /0- Let[|& — zo|| < p where

1.1 350+€0
M[B_(M+§) Jac

p < ]

and let

3 €0+50
= BMp+ (M + (L

)]

One can see that, < 1 and hence,(v,) < 1.

In the next theorem we obtain an estimated¢}, in terms ofg, (v,) under the assump-
tionthats”? andr/- areinB,(P,x,). Laterin Theoreri’5.312 we prove th&t’
B,.(Prx), by induction.

Ny Tnak E

THEOREM 5.3.1 Let"? andg, (o’ ) be as in equatior(5.3.12) and (5.3.17) respec-
tively, 70 ands“ be as in[[5.319) and(5.3.110) respectively with (0, &, a = a; and

en € (0, 50] If st € B,.(P,xp), then by Assumptidn 2.3.1 and Lemma4.3.1, the
following hold:

naw na

Ogn @
(a) ||Snak rn lakH < (1+ﬁ70)¥” n lak Sp— lakH

Ogn «a
(b) ||8nak = Sp— lakH < (1_'_(1_'_57—0)#)”7% Loy, — Sn— lakH

h,0
(C) ||Tnak - nakH <g(Qn—1,ak)Hrn Lo, — Sn— lakH

(d) gp(gn’,ak) S gp(fyp)4n7 vn 2 07

©) o, < gp(7,) @ V2, W=
THEOREM 5.3.2 Letr = (7=t + W o)y with g,(7,) < 1 and let the
hypothesis of Theorem 5.B.1 holds. Thgf /% € B.(P,x), forall n > 0.
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THEOREM 5.3.3 Letr/? ands! be as in[[5.39) and(5.3110) respectively, assump-
tions of Theorerh 5.3.2 hold and let< g,(y,) < 1. Then(s/?, ) is a Cauchy sequence in

B, (P,x,) and converges to/’ € B, (P,xo). Further P, F (z “) = z!"* and

A e

n,op

whereC), = (157 a0 (v 7+ (1+ 57—0)%3% - (gp( )2 )49:0(%) )7 andyz = —log g,(7,)-

Note thatp < r andky < %02 \/(1 —

300t B0 17y = gmp |. Hereafter we

6
2t Tam

1
assume that < r < G-

THEOREM 5.3.4 Lets? be as in[5.3.10), assumptions in Theofem 5.3.3 and Theorem
[3:3.5 hold. Then

B
(1 —(1+ Bro)kor)

whereC), and~; are as in Theore 5.3.3.

| < Cpe™™ + 1F(&) — 20|

|| - nak’

THEOREM 5.3.5 Lets"? be as in[5.3.10), assumptions in Theofem 5.3.4 hold. Let

ng = minin : e MW" < — 21

k { < \/oz_k}
Then

12— sp2 o |l = O™ (6 +en)).

5.3.2 Discretization of MTSNTM for MFD Class

For an initial guessy, € X and for R(z) := P,I"(z)P, + “* P, the discretization of
MTSNTM is defined as:

Piee = S — RSL0) T PAF(300,) = 200 + Lk (gha — gh ) (5.3.14)
and
Ty = T — R VIR [F(S ) — 2P0+ C’“ (70 —ah? Y] (5.3.15)
wheres; = Pp.
Let
ol =P, =500 Yn>0 (5.3.16)
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and letk, be such thaky < min{1, z77—}. Letg, : (0,1) — (0, 1) be the function defined

by
. 27k 33

gp(t): 3 (1+79)°t°, vVt € (0,1). (5.3.17)
Let ||z — xo|| < p, with

1 3 50+€0

—(1—(=4+M
p< 3= G+

and

3 €0+50
=M -+ M .
b= Moot (5 + M)

THEOREM 5.3.6 Let g% and g, be as in equation(5.3.16)anf (5.3.17) respectively,
sro and7l0 be as in IIBZSZIJS) and (5.3.114) respectively witte (0, ), « = oy and
en € (0,&0]. Then by Assumptidon 2.8.1 and (4.3.34) the following hold:

8k081 1 o (1 <hid gho
(a) Hsnak T 1akH < (1+T0) 2 - kH T lap Sp— 1akH
- ~h,8 3koo,, ~h,8 gho
(b) H Zgﬂk_sn 1akH<(1+<1+TO) nlak)”n Log — Sn— lakH

~h,6 ~h6
(C) ||Tnak nakH <gP(Qn—1,ak>Hrn Lo, Sp— 1akH

(d) gp(@ﬁ’,gk) < gp(:Yp)Lw’ Vn > 0;

(€) o, < gp(3,)*" V25, ¥n>0.

Yy

THEOREM 5.3.7 Let7 = (17 + (1 + 70) %2 = )7, with g,(7,) < 1 and the

assumptions of Theordm 5.8.6 hold. TEEf , 7% € B:(Pyo), forall n > 0.

Y nak

The main result of this section is the following Theorem.

THEOREM 5.3.8 Let#» ands! be as in[[5.3.14) and (5.3115) respectively and as-
sumptions of Theore 5.8.7 hold. Theﬁfﬁ is a Cauchy sequence iBz(P,z,) and

converges ta") € Bi(Pyxo). Further P [F(zld ) 4 <& (ah? — 20)] = P,z and

c,a G,

1506, = wem, |l < Cpe™™

nak cak

- k. ~ /~ ny ~ ~ ~ [~
whereC,, = (=7 + (1 + 70) 252 ==t=—py700(75)"" )7, @nd s = —log G, (7,).
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THEOREM 5.3.9 Let3!9 be as in[(5.3.15), assumptions in Theofem 5.8.8,(2.3.1d) an
(3:3.23) hold. Then

prlar) + 2+ 2w O +en) 2 G4e,

o < C _734'”
17 = 5 L (s i Py

)

whereC, and“; are as in Theore 5.3.8.

THEOREM 5.3.10 Let 5%, be as in [5.3.15) and assumptions in Theofem 5.3.9 hold.
Further lety; () < ¢(ay) and

0+ ey

‘= 1mi ce T < .
ng :=min{n : e < \/Oé_k}

Then
12 = 5o, | = OW™1(8 +en)).

5.4 ALGORITHM

Note that fori, j € {0,1,2,--- , N},

20— (aj — ;) (PLK K Py 4 o 1) " (P K K Py + ;1) P K (f° — KF(20)).

az a;

Therefore the balancing principle algorithm associateth whe choice of the parameter

involves the following steps.

Step 1: () Choosao such thaty, + g < 5(221\@(:3) > {1,200 for IFD Class and

and/,L > 1 for MFD Class;

(50+€0< 2M+3

Step 2: a; = p*ay;
Step 3: solve forw;:

(P,K*KPy 4+ o;1)w; = P, K*(f° — KF(x)); (5.4.18)
Step 4: solvefoy <,z . (BEK*KP, + ;)2 = (a; — ap)wy;

Step 5: if||2/’|| > % then takek = i — 1;

Step 6: otherwise, repeat witht+ 1 in place ofi.
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Step 7: choose;, = min{n : e %" < %} for IFD Class andh, = min{n : e %" <

O+e
\/a_:} for MFD Class.

Step 8: solve  using the iteratio(5.3.10) af.’, using the iteratior(5.3.15) .

Ok

5.5 NUMERICAL EXAMPLES

In this section we give an example for IFD Class and MFD Classllustrating the algo-
rithm considered in the above section. We apply the algoriby choosing a sequence of
finite dimensional subspac#;,) of X with dimV,, = n + 1. Precisely we choosE, as the
space of linear splines in a uniform gridoft 1 points in[0, 1]. The implementation of the

method is analogous to that given in Chapter 4.

EXAMPLE 5.5.1 To illustrate the method for IFD Class, we consider the opard F' :
L?*(0,1) — L?(0,1) whereF : D(F) C L*(0,1) — L*(0,1) defined by

wherek(t, s) = { El

The Fiechet derivative of’ is given byF’(u)w = 3(u?)w. So

'U2

[F'(v) — F'(u)]w = 3(v* — u*)w = 3u*(— — Dw = F'(u)®(u, v, w),

u?
whered(u, v, w) = (% — 1)w = “FUC=wy, ThusF satisfies the Assumptibn213.1.
We take
f(t)

and f° = f + 4. Then the exact solution

= ol P4 4 637" — 220sin(mt) + 16 sin(nt) cos®(nt) + 54 cos®(nt) — 63°t]

Z(t) = 1/2 4 sint.
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We use
xo(t) =sinnt 4+ 3/5

as our initial guess, then
F(xo) — F(#) = 23 — 2%
Even though we are unable to write
F(zg) — F(2) = p(K"K)w

for some functiorp, we use the functiom(A\) = X and obtain the results as given in the
last column of the Table 1. Thus we expect to have an accufamyer at leastO(42).

We choosey = (1.5)(0 + &5)?, = 1.3, (§ + &5) = 0.1, g,(~,) = 0.54 approximately.
In this example, for alh, the number of iteratiom, = 1. The results of the computation
are presented in Table 5.1. The plots of the exact and theoappate solution obtained for
n=8 to 1024 are given in Figurds 5.1 ahd b.2.

n| ok o | Isp-al | EET

8 4 0.1094 0.2010 0.6307
16 4 0.1069 0.1361 0.4296
32 4 0.1063 0.0959 0.3031
64 4 0.1061 0.0701 0.2218
128 4 0.1061 0.0536 0.1696
256 4 0.1060 0.0434 0.1371
512 4 0.1060 0.0373 0.1178
1024 4 0.1060 0.0338 0.1069

Table 5.1: Iterations and corresponding Error Estimates of Exaf@el5.

105



16 . . . . . . . . 16 .
T~ P .

14F ' : E 14F
12F g . E 12f

1 1
0.8F E 08}
0.6 E 06
0.4F E 0.4F
0.2 + exact soln 1 0.2 + exact soln

approx.soln approx.soln
o . . . . . o . .
0 01 02 03 04 05 06 07 08 09 0 0.2 0.4 0.6 0.8 1
16 . . . . 16 .
— T

14 14 ’
12F 12f

1t m
0.8F 08}
06/ 4 06f/f
0.4F E 0.4F
02l - exact soln ] 02 - exact soln

approx.soln approx.soln
o . T T . 0 . r r .
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

Figure 5.1: Curve of the exact and approximate solutions of Exarpl€l5.5.

EXAMPLE 5.5.2 To illustrate the method for Case 2, we consider the operator
KF:L*0,1) — L*(0,1)
whereK : L?(0,1) — L*(0, 1) defined by
1
K(@)(t) = / k(t, $)2(s)ds
0
andF : D(F) C L?(0,1) — L?(0,1) defined by
1
F(u) ::/ k(t,s)u’(s)ds,
0

(1—-1)s,0<s<t<1

wherek(t, s) = { (1—9)t0<t<s<1
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Figure 5.2: Curve of the exact and approximate solutions of Exarpl€l5.5.

Then for allz(¢), y(¢) : z(t) > y(¢) :

) - —a = [ ([ K6 )

X (z —y)(t)dt > 0.

Thus the operatof’ is monotone. The Echet derivative of’ is given by

Flluyw = 3 /O k(t, 5) (u(s))2w(s)ds.

So for anyu € B,.(z), 2¢%(s) > k3 > 0,Vs € (0,1), we have

F'(u)w = F'(x0)G(u, zo)w,
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whereG (u, xy) = (&)

zo

Further observe that

[F'(v) — F'(u)]w(s) = 3/0 k(t,s)(v(s) — u?(s))w(s)ds
= F'(u)®(u,v,w),

2

where®(u, v, w) = [ — 1]w.

Thus® satisfies the Assumptibn 28.1 (cf. Scherzer, Engl and Kui§i993), Example

2.7).

In our computation, we take

flt) = (1817T2)(1 — t)(14t — 7 + cos®(t) + 6cos(mt))t? — (187T2)t(14t —
+-cos®(t) 4 6cos(mt)) (1 — t2) + (i)t(l —t)(14t — 7

972
+cos’(mt) + 6cos(mt))

and f° = f + 4. Then the exact solution is

z(t) = cosmt.

We use

—1
zo(t) = cos(mt) + B[H(l — t + 2mt?cos(mt)sin(wt) + 7t

+tcos®(mt) — 2mtcos(mt) sin(mwt) — 7°t* — cos®(wt))
+$t(—2005(7rt)sin(7rt)7r — 21t + 2ntcos(mt)sin(nt)
+72t2 + cos*(nt) + 12 — cos®(nt))]
as our initial guess, so that the functiep — = satisfies the source condition
wo — & = p1(F'(20))1
wherey; (\) = A. Thus we expect to have an accuracy of order at l€xst: ).

We choosey = (1.3)(0 +¢&5,)%, u=13,0+¢,=0.1=¢,p=0.19,7, = 0.8173 and
d,(7,) = 0.54 approximately. For all» the number of iteratiom;, = 1. The results of the
computation are presented in Tablel5.2. The plots of thetexatthe approximate solution
obtained are given in Figurds 5.3 ahd b.4.
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k| S+en| a 158 — 2| —

8 4 | 01016 | 0.1094| 0.3652 1.1458
16 4 | 01004 | 0.1069| 0.2664 0.8408
32 4 | 01001 | 0.1063|  0.1994 0.6303
64 4 0.1000 0.1061 0.1554 0.4914
128 | 4 | 0.1000 | 0.1061| 0.1278 0.4042
256 | 4 | 0.1000 | 0.1060|  0.1115 0.3526
512 | 4 | 0.1000 | 0.1060|  0.1024 0.3238
1024 | 4 | 0.1000 | 0.1060|  0.0975 0.3083

Table 5.2: Iterations and corresponding Error Estimates of Exafnfel5.
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Chapter 6

TWO STEP NEWTON-TIKHONOV
METHOD IN HILBERT SCALES

A Hilbert scale variant of modified Newton-Tikhonov meth@dcionsidered for approxi-
mately solving ill-posed Hammerstein type operator equisti We derive order optimal
error bounds by choosing the regularization parameterrdoupto an adaptive scheme of
Pereverzev and Schock(2005).

6.1 INTRODUCTION

In this Chapter we present an iterative method which consbifikhonov regularization
with the Modified Newton’s method in Hilbert scales, for apgmately solving the opera-
tor equation[(Z.111). In order to improve the rate of conearg of Tikhonov regularization

of linear ill-posed problems many authors have considdredHilbert scale variant of the

regularization methods for solving ill-posed operatoraons, for example see Natterer
1984)/ Egger and Neubauer (2005), Qi-nian (”OQ_Q)e_LEJJ 2010), Mathe and Tautenhahn
2007), Neubauert (2000), Jin and Tautenhahn (2011b) arahdifautenhahn (2011a).

For the regularization of (2.1.1) in the setting of Hilbechkes, we consider a Hilbert

scale{ X, };cr generated by a strictly positive operafor D(L) — X with D(L) dense in
X satisfying
[Lz| = [lzll, =€ D(L).

Recall Qi-nian [(2000), Tautenhahn (1998), that the sp¥ces the completion ofD :=
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N2, D(L*) with respect to the norrfjz||;, induced by the inner product

<$1, $2>t = <Lt/2$1, Lt/2$2>

lzlle = [IL22,,  teR.

Moreover, if 3 < v, then the embedding’, — X3 is continuous, and therefore the norm

||.]| 5 is also defined inX, and there is a constaat , such that
lzlls < canllelly, =€ X

As in chapter 2, we consider two cases of the oper&tor K F'(x) = f;
IFD Class: F’(zy)~* exists and is bounded. Thus the ill-posednesE of (2.1. Ksisrdially
due to the non-closedness of the range of the linear opekatiorthis case we consider the

sequencéz’ ) defined iteratively by

n,a,s

Y s =0 0o — F(m0) HF (20, ) — 2] (6.1.1)
and
fo—LOc,S - yz,a,s - F,(xo)_l[F(yz,a,s) - Zi,s] (612)

wherex) , , := o, is the initial approximation for the solutiohof (Z1.1). Here

20 = F(xo) + (L°K*K + ol ) 'L K*(f° — KF(x0)) (6.1.3)

a,s

andq is the regularization parameter to be chosen appropri&taty the finite setDy :=
{a; 10 < ap < oy < --- < ay} depending on the inexact dafd and the error level

satisfying|| f — f?|| < 6. We use the adaptive parameter selection procedure sedgdast

Pereverzev and Schock (2005) for the selection of regaléwiz parameter.

MFD Class: F’(zq) is non-invertible and’ is a monotone operator: In this case we

consider the sequenc&’ _ ) defined iteratively by

n,0,8

P = —<F/<x0)+%LS/2)—1[F(;z5 )—zg7s+%Ls/2<:E5 — 1)) (6.1.4)

yn,a,s n,0,8 n,0,8 n,a,s
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and

- -~ Q oo\ - O g9,
xi—l—l,a - yz,a,s - (F,(ZE()) + EL /2) 1[F( > ) - Zi,s + ZL /z(yg,a,s - .I'())] (615)

yn,a,s

wherez; , , := o, with 2y anda are as in IFD Class arfil< ¢ < a.

The Chapter is organized as follows: In Section 6.2, we dieepreliminaries and the
adaptive scheme for choosing the regularization parametarTikhonov regularization of
(Z2.1.3) in the setting of Hilbert scales. The proposed ne:tmal the error estimates for the
IFD Class and MFD Class is given in Section 6.3.

6.2 PRELIMINARIES

We assume that the ill-posed nature of the oper&ts related to the Hilbert scaleX; }icr

according to the relation

alle]-o < [[Kz] < eollzfl a2 € X, (6.2.6)

for some reals, ¢, andc,. Observe that from the relation
(Kz, f) = (x, K*f) = (2, L°K" f),

forallz € X andf € Y, we conclude thal.*K™* : Y — X is the adjoint of the operator
Kin X. Consequently.*K*K : X — X is self-adjoint. Further we note that

(AtA,+al)'L? = LA(L° KK + al)™!

whereA, = K175/
One of the crucial results for proving the results in this ftkais the following propo-
sition:
Let
f(t) =min{c, s}, g(t) =mazx{c,c}, teR |t <1,

wherec; andc, are as in[(6.2]6).
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PROPOSITION 6.2.1 (See Tautenhahn (1996), Proposition 2.1) For 0 and|v| <1,

FO2l—vsray < NAZA) 22| < g) 2] —s(sray, € H.
We make use of the relation
|(As + ozI)_lAé’H <aPl p>0, 0<p<l, (6.2.7)

which follows from the spectral properties of the positief-sdjoint operatord,, s > 0.
The following assumption on source condition is based onuacgofunctiony and

a property of the source functian. We will be using this assumption to obtain an error

estimate for| 2} , — F'(2)]|.

ASSUMPTION 6.2.2 There exists a continuous, strictly monotonically increg$unction
¢ :(0,]|ALAs]|] — (0, 00) such that the following conditions hold:

o " o(N) =0,

P 0o ) vae (0,147 A]

and

o there exists € X with ||[v|| < E, E > 0 such that
(A2 A7 L¥(F(&) — F(x0)) = p(A: A ).

REMARK 6.2.3 Note that if F(z) — F(zg) € X, i.e., ||F(z) — F(x)|: < E, for some
0 < t < 2s + a, then the above assumption is satisfied. This can be seen@sdol

(AZA)T5 [2(F(3) — Fzo)) = (ALA,)%5 (A%A,) @0 L2(F () — F(x,))
= (AT

t s—t)
wherep(\) = A\%&Fa andv = (A:As)@(sﬁa) L32(F(2) — F(xo)).
Further note that
s—t

ol < g IR EE) - Pl
< 9CDIEE) - Fao)ll
< E

whereE = g(=L)E.
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THEOREM 6.2.4 Suppose that Assumption 6]2.2 and Propositionb.2.1 hottlletz,, ; :=
20 .. Then

1.
122, — zasl| < ¥(s)a7etag, (6.2.8)

2.
[1F(2) — za,sll < @(s)p(), (6.2.9)

3.
1F(20) = 2a,sl| < ¢1(s)|F(2) — F(zo)], (6.2.10)

wherei(s) = +%5 &(5) = + B~ and ¥ (s) = L,

Proof. Note that

20 = 2asll = NLTK*K +al)'LTK*(f* = f)l|
= |[L7P (AL A + o) TP AL = DI

now by takingy = = andx = (A: A, + o) ' A;(f° — f) in Proposition6.2]1, we have

1
5 JR—
sl = Fe
= LA, +an) Az a) (1 - p)
)
b
=

We note that the relation (6.2.7) with= -2t% gives

2(s+a)

Iz

[(AZAL) T (A A, + o) LAN(F — f)

a,s

< I(AZA, + o) (AZA,) 50 |6 (6.2.11)

[(A*A, + o)A A,) 0T || < aZ6ra. (6.2.12)
Now (6.2.8) follows from[(6.2.71) an@[(6.2]12). Further viserve that

70 = F@)II = [(L7K*K +al) "' LT K"K — I)(F(2) — F(xo))]|

= |laL™* (A A+ o) 'L (F(2) = F ()|
1

= Tl

L2(F(2) — F(x))]. (6.2.13)

la(ALAL) T (AR A, +al) ™!
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So by Assumptioh 6.2/2 and (6.2113), we have

[Za,s = F(@)]| < = )cp(a)E-
Again,

205 = Flao)ll = [(L7K"K +al) ' LT K"K (F(&) — F(x))]

= [|L7P(ALA + o) T ATALP(F(8) — F(xo))|
1

()

(ALA)LP(F(2) — F(x0))||

[(AZAL) T (AR A, + al) ™

1 * —1 *
. f(ﬁ)||(48As+aI) (AT A
||(( | A )ToF D L2 (F(2) — F(xo))|
g s+a s/2 T
F(a a)IIL (F(2) — F(x0))| s
< ()| F (&) — F(o)]-

IN

This completes the proof of the Theorem.

6.2.1 Error Bounds and Parameter Choice in Hilbert Scales

Let Cs = max{¢(s), ¥ (s)}, then by [6.2.B),[(6.2]19) and triangle inequality, we have
|F@) =280 < Culpla) +ama5). (6.2.14)

The error estimate(«) + aT+0 4 in (6.2.14) attains minimum for the choice :=

(0, s, a) which satisfiesp (o) = ae+a 4. Clearlya(d, s, a) = ¢~ (v] 2(0)), where
Pea(N) = N H)]76 0, 0 < A < || A2 (6.2.15)

and in this case
I1F(2) — 2 .| < 2C;a(5),

which has at least optimal order with respectitos and a (cf. [Pereverzev and Schock
2005)).
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6.2.2 Adaptive Scheme and Stopping Rule

In this Chapter we use a modified version of the adaptive sefsemggested by

Pereverzev and Schock (2005) for choosing the parametesuit the Hilbert scale set up.
Leti € {0,1,2,---, N} ando; = o Wherep = n21+3/9) 5 > 1 andag = §20+/9),
Let
l:=max{i: o(a;) < af&%‘”cﬂ <N (6.2.16)

and

ki=max{i: |2, — 2, || <4C.« 2<S+“>5},j =0,1,2,---,i— 1}, (6.2.17)

g

Analogous to Theorem 4.3lin George and Kunhanandan (20@3)awe the following The-

orem.

THEOREM 6.2.5 Let!/ be as in[(6.2.16)k be as in[(6.2.17)), be as in[6.2.15) and
2, , be asin[6.1B) withy = a. Thenl < kand

|<ci@+ 4—”>n¢—1<a>

IF(@) - 1

aks

whereC, is as in [6.2.14).
Proof. To see that < £, itis enough to show that, far=1,2,--- | N,
—a/2(s+a)

o) < o 0= |20, — 2, | < 4Ca ) Vi=0,1,-,i.

Forj < i, by (6.2.17)

I2,s = 20l < 1280 = F@I+ 1F(@) = 25,
< Gilplan) + a7 8) + Culolay) + a0 5)
< 20,0 5 4 2000
< 4Csa; a/2(s+a) 5

This proves the relatioh< k.
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Thus by the relatiorfoy.,,)*/26+%) = ™ (ay)*?t%) and by using triangle inequality

successively, we obtain

||F("i') _Zgzk,sH < ||F ‘% - alsH + Z ||Zals_ (T 1s||
i=l+1

k
~ —a/2(s+a
< |F@) =2+ ) ACa s

i=l+1
k—I1—1
< |F@) -2+ Z 4C 0, POy
m= 0
< ||F@) -2+ —Caa Jo2ra) s (6.2.18)
’ n—

Therefore by[(6.2.18) and (6.2]16) we have

—a St+a 4 —a STa
Cs(p(ag) + o /st )5) + i/ Csqy [Hsta) 5

IF(2) — 25, .l
n—1

a,s

47} —a/2(s+a)
< Ci(2+—— )
4
< cs<2+n—_"1>nw;;<5>-

The last step follows from the inequality < ;.1 = nay.

6.3 THEITERATIVE METHOD AND CONVERGENCE
ANALYSIS

6.3.1 Regqularization of IFD Class

Consider the two step iterative method defined as (6.1.1f@4d) withq, in place ofa.
We assume thak’ possess a uniformly boundedéEhet derivative for al € D(F)) i.e.,
| F'(x0)|| < M, for someM > 0 and| F'(xo) 7| := 8, B> 0. Let

b | Vn >0 (6.3.1)

6n,ak,s T ||yn,ozk,s n,og,sl

and letdy < gz ao‘”“) and||Z — x| < p, with
1 1 Bl
< Y,
p wl(s)M[4koﬁ (s)ag ™ o)
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and
Yo = Bl (s)Mp + p(s)a?+a1 ).

Further let

1—\/1—4/{50’}//)

2k

1 1+4/1 R LT
2k, ‘

ro = min{k—,
0

ry =

and

Forr € (r1,72), let
qs = kor, (6.3.2)

theng, < 1.

LEMMA 6.3.1 Lete,, , beasin[63N1). Thee, , <,

Proof. Observe that

eg,ak,s = ||yg,ak,s - zg,ak,s|| = ||F/(ZE'0)_1(F(ZIZ'Q) - Zik,s)H

< BlIF(w0) = 2y

< BlIF(x0) = zapsl

HZaps — 20 Ll]- (6.3.3)

ay,s

Now using [6.2.B) and (6.2.110) ih (6.8.3), one can see that

Das < BI(SF (@) = Fo)l| + ¢ (s)az=+ 6]
< Blr(s)Mp + d(s)aT 5] = 7,

This completes the proof.

THEOREM 6.3.2 Let ¢! and ¢, be as in equation(6.3.1) and (6.B.2) respectively,

n,o,s

Yo o.s @ndzd be as defined if(6.1.1) and (6.1.2) respectively with- o), andd €
(0, do). Then by Assumptidn 2.8.1 and Lemima 6.3)1,, ., ¥)..,.. € B.(xo) and the fol-
lowing estimates hold for att > 0.

(a) Hxi,ak,s - yz—l,ak,sH < qSHny—l,ak,s - xfz—l,ak,sH;
(b) ||xfz,ak,s - xfz—l,ak,sH < (1 + qS)Hyg—l,ak,s - zi—l,ak,s||;
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(C) ||yz,ak,s - xi,ak,sn < qgnyz—l,ak,s - zi—l,ak,s||;

(d) ¢ < q?"%, Vn > 0.

n,&g,s —

Proof. Suppose’, , ., ¥2 ., . € B.(). Then
x(rsz-l-l,ak,s - yi,ak,s = yg,ak,s - xfl,ak,s + F/(xo)_l[F(xg,ak,s) - (F<y§z,ak,s>]

= F,(xo)_l[F,(xO)(ny,ak,s - xfz,ak,s) - (F(yfz,ak,s) - F(xfz,ak,s))]

and hence by Assumptién 2.B.1, we have

1
EET W L E (R CALENE
_'_t(yg,ak,s - Ifb,ak,s)7 yi,ak,s - xfz,ak,s>dt’|
< kOTHny,ak,s - xiz,ak,sH'

This proves (a). Now (b) follows from (a) and the triangledoality;

H'ri,ak,s - xi—l,ak,sH < ||fo,ak,s - yz—l,ak,sH + ||yi—1,ak,s - mi—l,ak,sH’

Again (c) follows from (a), Assumptidn 2.3.1 and the follmgiexpression,

1
s = ||F'(x0)_1/ [ (@0) = F' (2, 0y s+ (T 0= Un 1.0 )] (s = Y 1,00,0) 1]
0

and (d) follows from (c). Now we showthaf, , ..45 . . € B,(x) by induction.
Note that by (b) and Lemma6.3.1,

IN

(1+ qs)ea%s (6.3.4)
s

0,01,
1 —gs
Vo
1—gs

< 7,

||$?7ak7s o l’o”

IN

IN

i.e.,29, . € B.(x0). Again note that by({6.314) and (c), we have

Hyf,ak,s - LU()H < Hyf,ak,s - xiak,sH + Hxiak,s - LU()H
S (1 + s + qg)eg,ak,s
<
1- qs
< T
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i.e.,y! . s € Bi(xo). Further letus assume thaf, ., ., 42, ., . € B.(x0), for somem > 0.

Then, using (b)[(6.314) and Lemimnal3.1, we have

h,0
||xfn+1,ak,s - 'IOH < H'rfn+1,ak - xfn,ak,sH +eet H'rl,ak,s - 'IOH
< (QS + 1)(q§m + qg(m_l) +oe 1)63,0%78
1— (g™
< (g5 + 1)1_7861368,%3
< o
-1 qs
< T
i.e.,zd 1, s € B(x)and
||y§n+1,ak,s - 'IOH < Hyfn—i-l,ak,s - xfn—l—l,ak,sH + ||xfn+1,ak,s - 'IOH
S (qg(m+1) + -+ qg =+ qg + qs =+ 1)€g,ak,s
< _Jo
- 11— qs
< T,

i.€.,90 10,5 € Br(). Thus by inductiont?, , .42 .. . € B.(z9), ¥V n > 0. This com-

pletes the proof of the Theorem.

THEOREM 6.3.3 Letz) , ,andy], ,be asin[6111)and(6.1.2) respectively with-
o andé € [0, d], and assumptions of Theordm 613.2 hold. Theh, ) is a Cauchy
D () 1)

sequence i, (z,) and converges to), . € B, (zo). Further F(z%, ) = 2. , and

125, 0,0 = Toll < C5a2"

n,op,S QS

whereC; = 2.

Proof. The proof is analogous to the proof of Theorlem 2.3.3 in Chighte

Hereafter we assume thiat — z|| < p < .

THEOREM 6.3.4 Suppose that the hypothesis of Assumpiion[2.3.1 holds. Then

B @) - 3,

AL ,S

|2 — a0, .l <
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Proof. The proof is analogous to the proof of Theolem 2.3.4 in Chrate
The following Theorem is a consequence of Thedrem b.3.3 &ied/En 6.3 14.

THEOREM 6.3.5 Let2®  _ be asin[(6.111) withv = oy, and§ € (0, &), assumptions in

n,o,s

Theorent 6.3]3 and Theorém 6]3.4 hold. Then

B
— (s

[ = 2, 0ull < Coa + 5

n,Q,S

1F(2) = 7, ol

Qg ,S
whereC; is as in Theorerh 6.3.3.

THEOREM 6.3.6 Leta? be as in[(6.1.]1) withv = a4, andd € [0, 6], assumptions in

n,Q,S

Theoreni 6.2]5 and Theorém 6]3.5 hold. Let
ng = min{n : ¢>* < oz,;a/z(sﬂ)é}.

Then
& — 20, o8]l = 02 (6)).

6.3.2 Regularization of MFD Class

In this section, letX be a real Hilbert space. We consider the two step iterativihoae
defined as((6.114) and(6.1.5) with in place ofa for approximating the zero? = of the

C, S

equation,

(6.3.5)

ay,s

F(z)+ %Ls/z(x —x9) =20
c

and then we show thaf , . is an approximation to the solutianof (ZI1.3).

Let F'(zy) € L(X) be a bounded positive self-adjoint operator on X a&nd :=

L=%/"F'(z) L=*/*. Usually, for the analysis of regularization methods in lditoscales,
au;[ 2(105)&&& (2000))

an assumption of the form (c¢f._ Egger and Neub

|F' (|| ~ ]| =€ X (6.3.6)

is used. Here the numbér> 0 can be interpreted as the degree of ill-posednegs of (2.1.1)
In this Chapter instead di (6.3.6) we use the following agsiions on the ill-posedness;

[z < [[F'(z0)]| < dof|z|-p, x € D(F), (6.3.7)
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for some real$, d;, andd,.

Note that[(6.3]7) is simpler than that 6 (6)3.6). Now we definandg, by
fit) = min{d}, dy},  gi(t) = max{dy,dy}, t€R, |t <1

The following proposition is crucial for proving the furtheesults in this Chapter.

PROPOSITION 6.3.7 (see George and Nair (1997), Proposition 3.1) kar 0 and|v| <
L,

h/2)lle]l csen < NNB2ll < 1(v/2)]|2]l uginr, @ € H.

Let g (s) == 22m) 0y .= 236 gng et

fl(m) fl(2(3+b))
naks . Hyn Qs nak s|| Vn Z 0 (638)
1 2(6+a) _
Letd, < PR A el and||z — || < p, with
1 1 _—a
< [ —— — ()" )
M1 () dkgipa(s)1)a(s) ’ ’
and
Yo 1= a(s) 1 (8) Mp + 1b(s)ag ™" 0.
Further let
11— kG0,
1= —_—
2’!7D2($)/{50
and
7o = min{—
ko' 205 () ko

Forr € (71, 72), let
= a(5)koF, (6.3.9)

theng, < 1.

LEMMA 6.3.8 Leté], . be asin[(6.318) and let Propositign 6.8.7 holds. Thgp , <
Yo-
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Proof. Observe that

Cons = [T ans = Toapsll = II(F’(xo>+%LS/2>‘1(F(xo>—zi,ws)ll

< ||L_8/4(L_S/4F,({L’O)L_S/4 + %I)_lL_SM
CACHEEIN

< 1 HB2(s+b) (B 4 [)—IL—s/4
hiserm)
(F(x0) = 2, o)

< 1 s + 2y B I
f1(2(5+b)>
L™(F (w0) = 25,0

< jﬁiii (VI E (o) = 2,

< a(8)[1F (0) = zaysll + [2ay,s — 20, 511]- (6.3.10)
Now using [6.2.B) and (6.2.110) in (6.3]10), one can see that

B s < Do) (8)|F (&) — F(xo)|| + (s)ax+a 4]
< ha(8) [t (s)Mp +1b(s)ag" ™ &) = 7,
LEMMA 6.3.9 Let Propositiori6.3]7 hold. Then for dlle X,

« /
[(EF" (20) + fLS”)‘lF (@o) || < ¥a(s)]|R]]-
Proof. Observe that by Propositién 6.8.7,

(6% «
[(F" (o) + fLs/z)_lF/(Io)hH = [|LT LT (o) L+ ?kf)_lL_s/‘l
F/( )L—s/4Ls/4h||

1
S fl( )HBz(aer)(B ‘l‘_[) 1B Ls/4h||
2(s+b)
1 Qp o ss s
< = )II(Ber?I) B[ B L h|
2(s+D)
91 (50557)
S 2( :—b) ||Ls/4h’H—s/2
f1(2(s+b))
91(2 58 b )
< el lnl.
f1(2(5+b))



This completes the proof of the Lemma.

THEOREM 6 3.10 Leté? | . and(, be as in equation(6.3.8) and (6.B.9) respectively,
7 .s and z ,  be as defined if(6.1.4) and (6.1.5) respectively with- o), andd €

(0,00). Then by Assumptidn 2.3.1 and Lemma 6.3;8,, ., 5., € Bi(x), and the
following estimates hold for ath > 0.

(a) Hji,ak,s - gz—l,ak,sH < ds’|gg—l,ak,s - xz—l,ak,sH;

(b) || Toag,s — Tn—1,a4, s|| < (1+q5)||yn 1,a,,s _xfz—l,ak,s||;

(C) ||gg,ak,s - ji,ak,s|| < q~82||g2—1,ak,s - xfz—l,ak,sH;

d) & . <@,  Yn>0.

Proof. If @0 , ., 40, .. € Bi(w), then by Assumption 2.3.1,
- (07 TN -
xfz+1,ak, yg T B (F/(LU()) + ?L /2) I[F/(x0)<yi,ak s xfz ak,s)

_(F(gg,ak,s> - F(jg,ak,s>>]
1
= (F(xo) + 2 1o2) / F(20) — FI(&,
C 0 8
+t(gi,ak,s - jg,ak,s))](gi,ak,s - Ly, ak s)dt
1
= (F(xo) + L) (1) / (a0, 7,
C 0 R

+t(gi,ak,s - iﬁ ) yfz ap iﬁ )dt

n,o,Ss

and hence by Lemnia 6.3.9 and Assumpfion 2.3.1, we have

H'rn—i-lock, gz,ak, < ¢2 ||/ .CL’(], nak,
+t(yn QLS xn QL8 ) ynak, - nak, )dtH

< ¢2(3)k07:||?jn,ak,s - :Z'fz,ak,s||

This proves (a). Now (b) follows from (a) and the triangledoality;

||‘7~:§L,ak,s - ji—l,ak, || = ||xn QS gg—l,ak,sn + ||'gfz—1,ak,s - ji—l,ak,sn'
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Again (c) follows from (a), Assumptidn 2.3.1, Lemina 6]3.@ldhe following expres-

sion,

_ Ok oo\ _ _
eiz,ak,s = ||(F/(:L'0) + fL /2) 1[F’(£L’0)(l’i7ak,5 - ny—LOékyS)
_(F(:i'fz,ak,s) - F(gi—l,ak,s))]n
1
« _ ~
= PG + £ [0 = (P

+t(gfz—l,ak,s - ji,ak,s))](ji,ak,s - gfz—l,ak,s)dtn‘

Further (d) follows from (c). The remaining part of the pramfnalogous to the proof
of Theoreni 6.312.

Next we shall go to the main result of this section.

THEOREM 6.3.11 Let ), ,and i . _ be as in[6.1]4) and (6.1.5) respectively with
a = ay, § € [0,8] and assumptions of Theorém 6.3.10 hold. Thépa is a Cauchy

sequence iB;(xy) and converges, say tﬂjak . € B:(xy). Further F( cak B
o LS/2( Teap,s [L’()) = 0 and ||$n Q.S xc QL s” < C5q82n WhereCS
Proof. Analogous to the proof of Theordm 2.B.3 of Chapter 2, one eartlsat(i , ) is

a Cauchy sequence 8:(z) and hence it converges, sayitd, , € B:(z,). Observe that

from (6.1.4)

s A o
1 (&), ap6) = Zops + L”(WS—xo)H = (F (w0) + L)

ay,s

(gi,ak S nak S)H

< [1F(zo) + —LS/2!

Xs—X

<[1Fn.aps = Tl

[0 -
| F" (o) + fLS/2||X5—>X€6

n,Q,S

IN

(077N
< ||F'(20) + ?L /2||X5—>X

X G 2", (6.3.11)

)

Now by lettingn — oo in (6.3.11) we obtainF'(2? , ,) + L¥2(xl,  —x0) = 20, .

This completes the proof.
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In addition to the Assumptidn 6.2.2, we use the followingiasgtion to obtain the error
eI

ay,s

estimate forf|z —

ASSUMPTION 6.3.12 There exists a continuous, strictly monotonically inciregdunc-
tion ¢, : (0, || Bs||] — (0, c0) such that the following conditions hold:

° ,\linogol()‘) =0,
[ ]
sup ()
<
A co@) e O]B)
and

e there existsv € X with ||w|| < Es, such that

B L (g — 3) = 1 (By)w

e for eachz € B:(x) there exists a bounded linear operatGfz, x) (cflRamm et dl.
(56533)) such that

F'(z) = F'(20)G(x, x0)

REMARK 6.3.13 If zg — & € Xy, i.e.,||xo — Z||;, < E; for some positive constart; and
0 <t < s+b. Then as in Remafk6.2.3, we haBg""" L*/*(zy — &) = ¢1(B,)w where

s—2t1

p1(A) = A6 = BIC LA (§ — ) and [[w]] < g1 (55355 By = Eo.

Assume that, < ﬁ[w%(s) — ko] with ¢ < 1 and for the sake of simplicity assume that

v1(a) < p(a), fora > 0. Letys(s) = T o 3

THEOREM 6.3.14 Supposer?, , is the solution of[(6.3]5) and Assumption 2.3.1 and
6.3.12 hold. Then



Proof. Note thate(F (), ,) — 25, )+ axl*?(22,, . — x0) =0, SO

(F'(wo) + L) (2 o s — ) = (F'(0) + axL*?)(al ,, , — &)
_C(F(x(cs,ak,s> - Zgzk,s) - akLS/z(xg,ak,s - IO)
= L (39— 3) + F/(f’fO)(Iiak,s — 1)

—c[F(200,.0) = 2y ]

C, S QS

= akLs/z(:co —2) + F'(z)(2?

c, o, .TL’)

—c[F(2%, )= F(&)+F(&) -2 ]

C, S QS

= L (xg — 7) — c(F(&) — 25 )

AL ,S

+F/(x0)(zi,ak,s - ‘%) - C[F(Ii,ak,s) - F(i)]

Thus, since < ¢ < ay, we have

|20 s = < Nlew(F'(20) + a L/2) 7 L2 (20 — &) || + [|(F (o) + e L¥?)
c(F(#) = 20, M+ I(F' (o) + a L)~
[F' (20) (20,0, s — &) = c(F (20 4, ) = F(@))]]
< Ty 4 hy(s)||F(2) — 22 ||+ T (6.3.12)

AL ,S

where

Ty o= |lag(F' (v0) + o L¥?) L (g — 2)|,

Ly o= [[(F"(wo) + awL*?) 7 [F' (w0) (w0 0, o = 7) = e(F (a4, ) = F(@))]II
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Note that by Assumption 6.3.12

Iy < |l " (Bs + o D) 'L (w9 — 7) ||
1 s
< llow(Bs 4 ap D) BIV L (g — 7))
f1(2(s+b))
1
< s elan) B (6.3.13)
hisem)
and
1
[y = ||(F,($0) + akLS/2)_1/ [F,([L’()) - CF/(‘% + t(xi,ak,s - i'))](xi,ak,s - i)dt||
0

1
< I(F (wo) + @ L¥2) ! / [ (w0) = F'(& + 12,0, s = D)@, s — 2)dt]
0

1
+(L = )| (F" (o) + axL2) " F' () / G(& + t(2f 0y s — ), 20)
0

(zi,ak,s - :i')dtH
< a(s)korl|2ta, o — &l +va(s) (1 = )ksllag q,s — 2])- (6.3.14)

The last step follows from Lemnia 6.8.9, Assumptiéns 6]3.4@[23.1. Hence by
(6.3.12),[(6.3.13) and (6.3112) we have

s < e £ BOIRG) — )
1-[(1- C)klr koria(s)
V3(s)er (o) +1ha(s)Cs(2 + %)77(%_,;(5))

1— [(1 — C)k’g — k‘()’l:]wg(s)

= O(¢;,4(0))-
(6.3.15)

This completes the proof of the Theorem.
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The following Theorem is a consequence of Thedrem 6.3.1Tardrent 6.3.14.

THEOREM 6.3.15 Leti’ . be asin[(6.15) withv = a;, ands§ € [0, &), assumptions in

n,Q,S

Theoreni6.3.11 and Theorém 6.3.14 hold. Then
& — 2., |l < G562 + O(1h,a(6))

n,Q,S

whereCj is as in Theore1 6.3.11.

THEOREM 6.3.16 Leti) , , be asin[(6.15) withv = oy, andd € [0, 6], and assump-

tions in Theorerh 6.3.15 hold. Let
ng = min{n : > < ;" 5}

Then
& = 2, .l = O34 (6)).
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Chapter 7

DYNAMICAL SYSTEM METHOD IN
HILBERT SPACES

We present a new method for approximately solving an illggoslammerstein operator

equation in this Chapter. It is a combination of the Dynam&gstem Method consid-

ered by Ramm (2005) and Tikhonov regularization method. Wegnt a detailed analysis

for both IFD Class and MFD Class of the operatorBy choosing the regularization pa-
rameter according to an adaptive scheme considered byd?Peesvand Schock (2005) an
order optimal error estimate has been obtained. The natasippearing in this Chapter are

independent of the notations used in previous Chapters.

7.1 INTRODUCTION

In this Chapter we consider a Dynamical system method foraqmpately solving[(2.1]1).
We assume throughout that the solutioof (Z.1.1) satisfies

12 = xo|| = min{||lz — x| : KF(z) = f,z € D(F)}
and thatf® € Y are the available noisy data with
If =l <6
As in earlier chapters the solutianof (2.1.1) can be obtained by first solving

Kz=f (7.1.1)



for z and then solving the nonlinear equation

F(z) = z. (7.1.2)

(;OdS) (cf. section 2.4.6, page 59), Ramm consideneethod called Dynam-
ical System Method (DSM), which avoids, inverting of the @gier F'(.). In this chapter

InIRam

=7

we consider a method which is a combination of a modified fofD®M and the Tikhonov
regularization instead of Newton type method and Tikhoreyufarizationconsidered in

earlier Chapters. The DSM consists of finding (cf. Ramm ( d@ir and Ravishankar

2008)) a nonlinear locally Lipschitz operatdfu, t), such that the Cauchy problem:

u'(t) = ®(u,t), u(0) = g (7.1.3)
has the following three properties:
Ju(t)vt >0, Fu(oo), F(u(c0)) =0,

i.e., (Z.1.3) is globally uniquely solvable, its uniquewd@n has a limit at infinityu(co),
and this limit solves”(z) = 2 (2] is the Tikhonov regularized solution &> = f° as
given in [2Z1.7)). We assume th&tz) = =/ is well posed, sd(z) = z has a solution say
%, suchthat), € Bp(xo), whereBg(z,) denotes the ball of radiug with center atr.
The Chapter is organized as follows: In Section 7.2 we gieepteparatory results,
Section 7.3 discusses the Dynamical System Method for IRCMIFD Class with the error

analysis.

7.2 DYNAMICAL SYSTEM METHOD(DSM)

We assume thaf € C?

loc

i.e.,Vx € BR(Z'Q),
IFO@) < My,  j=1,2 (7.2.1)

The assumption on source condition which is based on a sbucBony and a property of
the source functiop is used as in Chapter 2 to obtain an error estimaté fefr:) — =7 ||.
As in Chapter 2, we use the adaptive choice scheme suggesteererzev and Schock

(2005) for the selection of regularization parameier
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7.2.1 DSM for IFD Class

Continuous schemes

Hereafter we assume thigk”(zo) || =: 3, 8 < 3 and

R< % (7.2.2)
In this section we consider the following Cauchy’s problem
2 (t) = —(F'(w) + e(t)]) " (F(z) — 20, ), x(0) = xg (7.2.3)
wherez, is an initial approximation fo&tgk and
e:[0,00) = [0, K] (7.2.4)
is monotonic increasing function wit{0) = 0 and
0<K < min{l — kOR, 1}, (7.2.5)

REMARK 7.2.1 Note that[Z.2R) implie® < ;- and [Z2Z) impliegi=(t) < 1.

In order to find a local solution for the Cauchy probldm (7)28e make use of the

following theorem.

THEOREM 7.2.2 (Nair and Ravishankar (2008), Theorem 2.1) Létbe a real Banach
spacel/ be an open subset of, andz, € U. Let® : U x R — X be of clas<_" that is

bounded on bounded sets. Then the following hold.

e There exists a maximal intervdlcontaining O such that the initial value problem
a'(t) = ®(x(t), 1), 2(0) = o,
has a unique solution(t) € U forall t € J.

e If J has the right end point, say, and =, := t“_)“}x(t) exists, thenz, is on the
boundary ofU.

Now the following Proposition establishes the existenad @mqueness of the solution of
the Cauchy probleni(7.2.3).
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PROPOSITION 7.2.3 Let £(¢) be as in[[7.2}4) and” maps bounded sets onto bounded
sets. Then there exists a maximal interydl [0, oo) such that[(7.213) has a unique solution
x(t) forall t € J.

Proof. Let

O = —(Flzo) + (D) Y (F(a) — 2% ),  a¢€Bgrlay), teR".

Then® : Br(zy) x Rt — X is of classC'. Becausé" is bounded on bounded sets and

sincefe(t) < 1, we have

I(F" (o) + @D < 1F' (o) I + () F'(w0) ™) |

B
S ] (7.2.6)

That is (F'(zo) + e(t)I) has a bounded inverse for everye R™. So ® is bounded on
bounded sets. Hence the conclusion follows by applying fidra.Z2.2.

Letx(t) — 2%, := w and||wl|| := ¢(t). Then by Taylor Theorem (cf._Argyros (2008),
Theorem 1.1.20)

whereT (x(t), 2%, ) = [ F"(\a(t) + (1 — A)ad )(x(t) — 2%, )2(1 — A)dA.

ageY

Observe that

and hence
g g, e ld_'g%
191 2 dt
1d
= 5&(“’»“’)
= <’LU,1U/>

w, =(F'(wo) + e(t)1) 7' [F' (g, )(a(t) — 27,) + T(x(t), 27, )])

w, —w) + (w, Aw) + (w, —(F'(wo) + e(t) 1)~ T(x(t), z7,)

~[lwll* + A Rwl* + (7 (z0) + () I) T T ((t), za, )l||wl]

Y Qg

—gi + [[Allg? + |(F" (o) + () 1) 71T (x(t), 2, |91 (7.2.7)

IN

IN
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whereA = I — (F'(xq) +e(t))"'F'(2?, ). Note that

Sup

S SlII(F’(xo)+€(1t)l)‘1[(F’($) F'(zo,)) +e®)I)]v]
I (o) + e()1) 7 (F"(w0) — F' ()

HI((F (o) + £(0)) " e(t) )]

I(F" (o) + (t) 1) ™" F"(wo) ®(xf, , %0, v) |

+||(F’($o)?€() ) e(t)ll

IA]

IN

IN

k’QR + 55(
< = 2.
S ") (7.2.8)
the last step follows from Assumptién 2.B.0, (712.6) anditieguality
I(I + e(t)F'(20) ™)™ < =L Again by [Z.26) and(Z21)
|(F' (o) + e(t) )" T((t), 23, < LIIT(x(lt) ol
Lo — 11— Be(¥) Bl
_ B Myt — )P
— 1—pe(t) 2
B Mzg%
T (7.2.9)
Therefore by[(7.2]7)[(7.2.8) and (7.R.9) we have
koR + pe(t) 15} M,
/ < o 2 2 2 3
9101 > gl_'_( 1_68@) >gl+1—55(t) 2
and hence
g < =791 + cogi (7.2.10)
wherey :=1— (’“Ol’f;f(i()t)) > 0 andey := =552 So by [Z.2.1D)
gi(t) < Ye (7.2.11)

whereT = —2O __ Note thatg,(0) = [lzg — 22, |l < R and hence conditior (7.2.2)

1— C091(0)
implies%l(o) <1

The above discussion leads to the following Theorem.
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THEOREM 7.2.4 If (Z.2) and the assumptions of Proposition 7.2.3 holéntfiz.Z.B)
has a unique global solution(t) andz(t) converges ta?, . Further

| (t) — 2, || < T
whereY is as in [Z.Z.11).
THEOREM 7.2.5 (cf./George and Nair (2008), Theorem 3.3) Suppbse (7.2.dAZ.2)

hold. If, in addition,||z — zy|| < R then

s
1—koR

Proof. Proofis as in Theorefn 2.3.4 of Chapter 2.

| < 17 (2) = za, |l

|2 — a2, |

Iterative Schemes

We present DSM for constructing convergent iterative sasefor the well-posed equations
F(z) — 25, = 0. In this section we assume that

8 < Mizu ~ koR). (7.2.12)

For solvingF'(z) — =5, = 0 we consider the following discretization scheme
Tni1 = Tn — hF'(20) " (F (2 (t)) — 23,).- (7.2.13)

We shall consider the DSM method for proving the convergerfi¢e,,) to the solutionz?,

of (Z.1.2). We begin our analysis with the following Cauchgtoblem:
wh o (t) = —F'(20) " (F(wpia(t)) — Zik), Woy1(tn) = T, tp <t <tny (7.2.14)

wherez, is as in[Z.2.1B). The following Proposition establishesekistence and unique-
ness of the solution of the Cauchy problém (7.2.14).

PROPOSITION 7.2.6 Let FF maps bounded sets onto bounded sets. Then there exists a
maximal interval/ C [0, co) such that[(7.2.14) has a unique solutioft) for all ¢ € J.

Proof. Let
o = —F/(,Io)_l(F(wn+1(t>> - Zik), Wp+1 € BR(Z’(]), t e R+.

Then® : Bp(zy) x RT — X is of classC'. BecauséF is bounded on bounded setsjs
also bounded on bounded sets. Hence the conclusion follpwpilying Theorerh 7.2.2.
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PROPOSITION 7.2.7 If (Z.Z.1) and the Assumptions of Proposition 7.2.6 holdntf.Z.14)
has a unique global solutiom,, ., (t) andw,;(t) converges tcrgk. Further

—Anh ~
it (7.2.15)

fonsa(t) = a8, < 5

<1|Ar

wherecy = 222 and¥ = 1 — ko R.

Proof. We shall prove[(7.2.15) by induction. Clearly for= 0 the result is true. Suppose
(Z.2.15) is true for some. Letw,,,(t)—2?, := w and||w|| := g;. Then by Taylor Theorem
(cflArgyros (2008), Theorem 1.1.20)

Flw(t) = 25, = Flwapn (1) = F(ad,) = F'(@d,) (woin (1) — a,) + T(wapa (). 23,)

(7.2.16)
whereT (w,41(t), 25,) = I F" (A1 (8)+(1=N)a?, ) (wns1(t) =22, )>(1—A)dA. Observe
that

(1) = g () = —F'(20) " [F(ad, ) (wna () — 22,) + T(wa(9).23,)]  (7.2.17)

and hence
dgi? d
9~19~1/ = %% = %%(wﬂ@ = (121,12/>
= (@, —F'(x0) '[F'(2), ) (wnr1(t) — 20,) + T(wnia(t), 23,)])
= (W, =) + (@, Ad) + (@, —=F'(20) ' T (w41 (t), 25,)) (7.2.18)

whereA = I — F'(xo) 7 F'(2?, ). Note that

(@, Ad) || = fwll| F'(z0) ™" (F"(wo) — F'(a3,)) ||
< koR|w|? (7.2.19)

the last step follows from Assumptién 2.8.1. Again by (A)&6d [7.2.1)

1F (20) " T (wngr (8), 20 )| < BIT (wpaa (8), 22,) |
M|l (t) — 2, |2

< =25

< BMQQg12.

(7.2.20)
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Therefore by[(7.2.18)[ (7.2.119) arid (7.2.20) we have

G’ < —gi° + koRgy* + Mo G (7.2.21)
ie.,
Gi' < =741 + GG, (7.2.22)
and hence
Gi(t) < Telt=tn) (7.2.23)
whereT = gjojf(t . Note thatY = gc%(g{;z()tn) < < "* condition [7.2Z.1P) implies? < 1
and hence
- T
gi(t) < T &°¢ Tl (7.2.24)

Analogous to the proof of the above proposition one can pfoye¢aking
g1 = || F(wn4a(t)) — 22, ||) the following Proposition.

PROPOSITION 7.2.8 Let w,1(t) be the solution of {7Z.2.14) and, be as in [2Z.1I7).
Then
1F (w1 () = 20, | < |1 F (o) — 25, [le” 7). (7.2.25)

PROPOSITION 7.2.9 Letw, () be the solution of(7.2.14) and,; be as in[(7.2.13).
Then
[ Zns1 — W1 (Lasr) || < B2B° My || F () — 20, [le™ ™"

Proof. Observe that
tn+1
|Esr — o (busr)]| = /’ 19 () — Bawnsr (£))]]dt
tn
tn+1
< B[ IP@) - Plunn(d
tn
tn+l
sgm/’nm—wmwﬁ
tn
tnt1
gﬁMm/ 1D (wn (1)) | dt
tn

tnt1
< me/ | F(wnsa (8)) — 22, [
tn

Now the result follows from{7.2.25).
Thus by triangle inequalityl (7.2.P4) arid (7.2.26) we hdeefollowing
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THEOREM 7.2.10 If (Z.Z.1) and the assumptions of Propositlon 7.2.6 hol@nth,,,
converges ta?, . Further

|1 —ag, || < Ce

whereC' = h?B2M; || F(xo) — 25, || + e

Now we give the error analysis of both the schemes discussmea

THEOREM 7.2.11 Suppose[(7.211)[(7.2.2) and the assumptions in Thebred i
Theoreni 7.2]5 hold. If, in additiofjz — x| < R then

B

T — <
i~ 2] < 7=

|F (&) = 25, || +re ™.
Proof. The proof follows using Theorem 7.2.4, Theorlem 1.2.5 andrtaragle inequality:

12 = 2()]] < ||z — 25, |l + lza, — =(®)]-

THEOREM 7.2.12 Suppos€e(7.2.1) and the assumptions in The@rem 7.2.10 awierh
[7.Z.5 hold. If, in addition||Z — x| < R then

s
1—HOR

12 = @npal < 1F(&) = 2, || + e,

Proof. The proof follows using Theordm7.2]110, Theoflem 7.2.5 aedriingle inequality:

1% = @piall < 12 = 2, Il + llzg, — 2l

THEOREM 7.2.13 Let ¥(\) := Ay/p~1(N\),0 < A < ||K|* and the assumptions of
Theoreni 7.2.11 is satisfied. Let

)
T :=min{t: e " < —},
{ \/a—k}
andz(T) be the solution of the Cauchy’s probleém(712.3). Then
& — 2(T)[| = O(¥~(9)).

THEOREM 7.2.14 Let(A\) := A\/¢1(A\),0 < A < ||K|* and the assumptions of
Theoreni 7.2.12 is satisfied. Let

9
VG

N :=min{n: e ™" <

}

andzy,; be asin[(Z.213). Then
1# = 2n4a ]| = O 7(9)).
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7.2.2 DSM for MFD Class

In this section we consideX to be a real Hilbert space. Here for approximately solving
(Z1.2) withz), in place ofz we consider the Laverentiev regularization method, i.e., w

consider the solution? , of the equation

F(z) + ?(x —x9) =2, ¢ < ag (7.2.26)

as an approximate solution @ (7.11.2) with) in place ofz.
Assumptioni 2.3]1 is used throughout the analysis.

2
Let60 < m«/ao and

do
R, := =t Mop. (7.2.27)

LEMMA 7.2.15 LetR,be asinl[(Z.2.27). Let), beasin[Z.1l7), andif’ , isthe solution
of (Z.2.26) witha := oy, andé € [0, 6], thenz? , € By, (20).

Proof. Observe thaf’(z? ,, ) + <=(x2,,, —x0) = 23, .

G,

Let M := [} F'(xo + t(a?, — x0))dt. Then

F(xiak)—F(xo)jL%(x‘g @) = 2 — F(xo)

C, g

«
(M + )l — ) = 20, = Flxo)

a

ag

(e =) = (M+=1)7(h, = Flao)),

Thus
|20, = @oll < 2o, — Flao)
< (K"K + o) K (f° = KF ()]
< NEK + D) K (f° = f+ f = KF ()|
< (KK +a )UK (F° = )]
H(K*K + oy 1) K*K(F (&) — F(x0))]|
)
S \/77 + Mp < Rp.

Hence the Lemma.
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Continuous Schemes

In this section we consider the following Cauchy’s problemdolving [7.2.256):

Ak

2 (t) = —(F'(x0) + %I)_I(F(x(t)) — Zik + . (xz(t) — x0)), x(0) =x¢ (7.2.28)

wherec < «4, andzx is an initial approximation. In this section we assume that

p<i 2 8o

— 7.2.29
3 0 + 2k Ja ( )

Note that[7.2.29) implies that, < -.
The local solution for the Cauchy problen (7.2.28) is givgnTtheoren(7.2]2. The

Proposition below establishes the existence and unigeesfabe solution of the Cauchy
problem [7.2.28).

PROPOSITION 7.2.16 Let F maps bounded sets onto bounded sets. Then there exists a
maximal intervalJ C [0, co) such that[(7.2.28) has a unique solutieft) for all ¢ € J.

Proof. Proof is analogous to the proof of Proposition 7.2.3.

THEOREM 7.2.17 Let¢ € (0, &), Assumptioh 2.311 and Lemima 7.2.15 be satisfied with
p as in [7.2.29). If[(7.2]1) and Proposition 7.2/ 16 hold, t{&2.28) has a unique global
solutionz(t) andx(t) converges ta:, . Further

|x(t) — $iak|| < cge” !

wherec; = —20 ¢ — 1 — kR, >0, ¢, = 22 andgy(0) = [|=(0) — 22, |-

1_c292(0)
c1

Proof. Letz(t) — 2%, = and||9] := go(1).

G,

Then by Taylor Theorem (cf.Argyros and Hilout (2010), Thexarl.1.20)

F(z(t)) — F(2°, ) = F/(xiak)(x(t) —a® )+ T(x(t),2°,,) (7.2.30)

C,&x C,X} Y C,X}
YOk YOk YO

whereT'(z(t), 23, ) = [y F"(Ax(t)+(1-N)al ) (x(t)—22, )2(1-\)dA. SinceF (22, )—

» Ve,ay
20 4 %(gd  —g0) =0, by (Z.2.30) we have
(652 C C,O

ZE(a(t) - vo) = (F'(al,,) + = D(a(t) - al,,) + Tlat). al,).

F(x(t) — 22 + y

Qg
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Observe that

9(t) = 2/(t) = ~(F'(ao) + D)7 [(F (@) + ~=D(a(t) = al,,,) + T(a(t)

and hence

1 d92 1

d
r _Lta /
%0 = 5 =g =07)

= (= (Fw) + D TP ) + D () - 0,,) + Ta(t), 0

? cak

(9, =0) + (9, 00) + (0, ~(F' (o) + 1) T(x(t), 2],,,))

IN

/ a —
—[1911* + ISMI9(* + [ (F" (o) + —kl) (e (t), 20,10
< —g3 +18llg3 + T (x(t), 22,4,) 92

where® = —(F'(xg) + 1) (F'(2?, ) — F'(xo)). Note that

Sup o _
1ol < y|v||<1”(F'($0)+ff) HF (20) — (200,10
sup , Qo 1 5
F K VR (2) D
S o < N0 @)+ 2D T (o) (g 20, V)|
< koR,|lvl,

the last step follows from Assumptién 2.8.1. Again by (9)2.1

|(F/ () + =2 D)7 T(a(t), 2l )l < | T((0), ia,)n
Mylle(t) -

2
Mzgg
5

I
cak

<

<

Therefore by[(7.2.31)[ (7.2.B2) arid (7.2.33) we have

M,
9295 < —g3 + koR,g5 + 795’

and hence
gy < —C190 + 0293

wherec; :=1— koR, > 0 andc, := 222. So by solving[(7.2.34) we get,
gg(t) S 036_01t.
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REMARK 7.2.18 Note that by Lemm& 7.Z115:(0) = ||zg — 22, || < R, and hence
condition [7.2.2D) implieé”jlﬂ < 1.

Assume that, < ="/ and for the sake of simplicity assume tha(a) < ¢(a) for

a > 0.

THEOREM 7.2.19 Suppose? , is the solution of[{7.2.26) with € (0, 6o}, and Assump-
tions[2.3.1[2.3]9 anld 2.3.110 hold withas in [7.2.2P). Then

p1(on) + [ F(E) — zq, |
1— (1 - C)]{ZQ - ]{ZoRp ‘

|3 —a, || <

c,0op
In particular by Theorerh 2.2.3,

pr(a) + 2+ 2 (0)

A 1
Tr— <
H H - 1-— (1 - C)]{ZQ - kORp

c,ap,

The following Theorem is a consequence of Theorem 71.2.1 Taedreni 7.2.19.

THEOREM 7.2.20 Suppose[{7.211), and assumptions in Thedrem 7.2.17 and€rheo
[7.Z.19 hold withp as in [Z.2.2B), then

o) + (24 ) (5)

1-— (1 - C)]{Zl - kORp

cit

A ¥ -
1& — ()] < +cze” ",

wherec; andc; are as in Theoren 7.2.117.

THEOREM 7.2.21 Let ¥(\) := A/ 1(N\),0 < A < ||K|* and the assumptions of
Theoreni 7.2.20 are satisfied. Let

0,
Vo
andz(T) be the solution of the Cauchy’s problem (7.2.28), with (0, 6]. Then

12 = 2(T)|l = O~ (3)).

T :=min{t:e " <

Iterative Schemes

In this section we assume thaif, < 2, §, < 25;‘042 J/ap and

L2=My 0
M 2k Jao
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Now we solveF'(z) = z with the following discretization scheme
o / A o\ 1 S (07> .
Tpy1 = Tp—h(F' (x0)+ ?I) [F(2n) — 20, +7($n—$0)], h = constant > 0, (7.2.36)

with ¢ < «y. Let us consider the following Cauchy’s problem:
/ / (6% _ (@
Wl (t) = =(F'(@0) + D)7 [P (wnan (b)) = 28, + Z(wpn () —x0)),  (7:237)
Wyt 1(tn) = T, t, <t < t,.1 Wherex, is as in [7.2.36).
The existence and uniqueness of the solution of the Cauattyigmn [7.2.3F7) can be
established as in Propositibn 7.2.16.

THEOREM 7.2.22 If § € (0, &, (Z23), Assumptidn 2.3.1 and Lemma7.P.15 hold with

as in [7.2.3b), therl (7.2.B7) has a unique global solutign, (¢) andw, 1 (t) converges to

§
7o ., - Further
e—c}nh

[wnir () = 20, || < em(t=tn) (7.2.38)

_ &
1

whereé, = 22 andé; = 1 — kR, > 0.

Proof. We shall prove[(7.2.38) by induction. Clearly for= 0 the result is true, suppose
(7.2.38) is true for some. Let w,.(t) — 2, := U and |9 := ga(t). Then by Taylor

Theorem (cfl_Argyros and HiIQIuL (2010), Theorem 1.1.20)

Fwnia(t) = 28, + S (wan(t) —20) = Flwn() = Fal,,)

e73
T (wni (1) = 224,

= F'(200,)(Wn1(t) — 20,0,)
+T (W (t), 20,0,)

«
+7"°‘(wn+1(t) a0, ) (7.2.39)

whereT (w41 (£), 2% ) = [il F" (M r () + (1= Nad ) (wap (£) — 28, )2(1 — \)d.

r o

Observe that

V(1) = wya(t) = —(F/(eo) + =20 [(F(ad,) + D) (wan () - al,)
T (Wi (), 2L, )]
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and hence

~ o~ ]_dgg . 1d

RIR= 9T T o4t . .
= (0~ (F (o) + D) @) + D+ T (1), 280,)
= (0, =0) + (9, —(F'(xo) + 71)_1T(wn+1(t), )

(D, —(F' (o) + %1)—1(?(:& ) — F'(2))9) (7.2.40)

C,

(0.9 = 3.7)

Note that

(5,—(F’(xo)+%f) F' (@0,) = F'(@0)]9) < [19]I(F (o) + '

)
(F'(wo) — F'( cak)) J|
111 (F () + = I)
z0,9)]

1

IN

F () ®(ag

Cock’

< kR, |9 (7.2.41)
the last step follows from Assumptién 2.8.1. Again by (79.8nd [7.Z.1)

(0, ~(F'(wo) + D) T(wnsa(t),8,,)) < 91 (F'(xo) + 1)
T(wn+1(t),3€gak)’|
< ONT (wnsr(8), 220,

? cak

My|lx(t) — 22, |I?
2
M2g2

< |9

(7.2.42)

< |19

Therefore by[(7.2.40)[ (7.2.41) ard (7.2.42) we have

- - M,
GoGo’ < —Go” + koR,Ga> + 729 s

G2 < —C1Ga + GaGa’,

and hence
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whereé; = 1_{%2(55&71) . Note that’; = 1_{%2(5{(1”) < @1’_1_';h condition [Z.2.3b) implieg: < 1
and hence E E E
e—qnh
Ga(t) < T ée_cl(t_t”)

This completes the proof of the Theorem.

THEOREM 7.2.23 Let w,1(t) be the solution of (7Z.2.87) andg, be as in [Z.1I7) with
d € (0,90) anda = oy If Lemmd_7.2.T5 holds withas in (7.2.3b), then

@) -
I (wnsa(t)) = 2, + 2w (6) = o)l < [P (o) = 23, ]em 2t (7.2.43)

Proof. The proof follows as in proof of Theorelm 7.2122 by taking

B (t) = IF(wars(8)) = 28, + = (wan () = o).

PROPOSITION 7.2.24 Letx,, ., be as in[(7.2.36) witlh € (0, d]. If (ZZ1) and Theorem
[7.Z.23 hold, then

€41 = Woi1 (tpar) || < R (My + 1) Rye” ™

Proof. Observe that

tn+l
[Zn41 = wnia (tnn) || = / [ (2n) — P(wnya(t))]|dt
tn

IA

[wamm+%w4wuw—ﬂww®
_,_%(xn — w1 (t))]||dt

tn+1
s<%+n/ on — whan ()t
tn
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IN

(M, + 1)h / @ (s (1)) 1t

IN

s+ 10 [ 1 ) + D) Pl = 2,

(073

+?(wn+1(t) — x9)]||dt. (7.2.44)

Now from (7.2.48),[(7.2.44) and Lemrha7.2.15 we have,

|Zne1 = wari(bas)|| < RA(My + 1)||F(20) — 25, e

< RA(M; +1)Re

Hence the Proposition.
Thus by triangle inequalityl (7.2.88) arid (7.2.44) we hanefollowing

THEOREM 7.2.25 If the assumptions of Propositidn 7.2.24 and Theofem 7.hdd,
thenz,, converges ta?? , . Further

241 — a0, Il < Cem

whereC' = h*(M, + 1)R, + —Le ",

1—%2
1

1-koR,

THEOREM 7.2.26 Let assumptions of Theordm 7.2.25 hold. Suppese —=
assumptions of Theordm 7.2.19 hold withas in (Z.2.3b), then

and

prar) + (24 2 (6)

C~1 —c~1nh‘
= (1— ks —koR, °°

12 = zppa]] <

Proof. The proof follows from Theoreiin 7.2.25, Theorem 7.2.19 (wits in (7.2.3b)) and

the triangle inequality:

1 0

12 = Znga || <18 = 20 | + 11720 = il
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THEOREM 7.2.27 Let ¥(\) := A\/p~1(A\),0 < A < ||[K||* and the assumptions of
Theoreni 7.2.26 be satisfied. Let

: . J
N :=min{n:e " < —

Vas
andzy., be as in[(7.2.36) with?, in place ofz] , with§ € [0,4]. Then

12 — 2yl = O(W7(9)).
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Chapter 8
CONCLUDING REMARKS

In this thesis, we have considered the problem of approxypablving non-linear ill-posed
Hammerstein type operator equation. The regularizationguiure involes the splitting of
given non-linear Hammerstein type equation into linear aod-linear ill-posed operator
equations, thus giving rise to the scope of using a comlminaif Tikhonov regularization
for solving linear ill-posed problem and Newton-type methor regularizing non-linear
ill-posed problem. Regularization parameteis chosen according to the adaptive method
considered by Pereverzev and Schock(2005) for the linlepoded operator equations and
the same parameteris used for solving the non-linear operator equation, sakiwéce of
the regularization parameter does not depend on the nearloperator.

The thesis comprises of seven chapters. A brief introdo@tral preliminaries are given
in Chapter 1.

In Chapter 2 we presented an iterative method for obtainingpgroximate solution for
a nonlinear ill-posed Hammerstein type operator equakidix) = f, hereF' : D(F') C
X — X is nonlinear operator’ : X — Y is a bounded linear operator. Throughout
this thesis we assumed that the available datf isvith ||f — f°|| < 4. The proposed
method combines the Tikhonov regularization and Guass demethod. As the iterations
involve the Féchet derivative only at the initial approximation of the eaolutionz of
KF(x) = f, the method becomes simpler. In each chapter of this thest®ngdered two
cases of" (IFD Class and MFD Class), in the IFD Class it is assumed tat,) ! exist

and in the MFD Class it is assumed th&tz,) ! does not exist buf’ is monotone. In both
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the cases, the derived error estimate using an a priori daddiag principle are of optimal

order with respect to the general source condition.

In Chapter 3, we considered a finite dimensional realizadiotine method considered
in Chapter 2. We have chosen the regularization parameterding to balancing principle
of Pereverzev and Schock (2005). The error estimate is afapbrder and the method
leads to local linear convergence. Numerical examplesigeovconfirm the efficiency of
the method.

Chapter 4 is a modified form of the method considered in Chabtend Chapter 3.
In Chapter 2, Frechet derivative of the non-linear oper&tawvas considered only at the
initial guess. But in this Chapter we have taken into comnsitilen, the Frechet derivative
at all pointsz,,, n > 0. This has improved the rate of convergence(cubic convesenc
Also, we have presented a finite dimensional realizatioh@hethod. We have chosen the
regularization parameter according to balancing primogplPereverzev and Schock (2005).
The derived error bounds are of optimal order. Numericairgdas are given, which proves

the efficiency of the proposed method.

And in Chapter 5 we further modified the method analyzed inpB#ra4 and obtained

semi-local quartic convergence.

In Chapter 6, we considered an iterative regularizatiorhoefor obtaining an approx-
imate solution of an ill-posed Hammerstein type operataradign K F'(x) = f in the
Hilbert scale setting. We considered the Hilbert s¢&lg);c r generated by. for the anal-
ysis wherel : D(L) — X is a linear, unbounded, self-adjoint, densely defined amctlgt
positive operator oiX. The derived error estimates under the general source comgldre

of optimal order.

In Chapter 7, we presented a method, which is a combinatiddyomical System
Method(DSM) and Tikhonov regularization method for appmoately solving ill-posed
Hammerstein type operator equatiéi¥'(x) = f. We analyzed DSM for IFD Class and

MFD Class of the operatoF. Infact we considered continuous and iterative schemes of

DSM studied extensively by Ramm (see Ramm (2007),Ramm {j2@88 his collaborators.
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In this Chapter also we obtained order optimal error bouydshioosing the regularization
parameter according to the adaptive method considered by Pereveree8ehock(2005).
In future works, we would like to analyze the case wheis non-invertible and non-

monotone operator. We have already obtained results indirestion and a paper (see

r nd Shobha (2014) (This work is not included in thesif)). Further work is under

progress.
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