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ABSTRACT 

Forecasting of groundwater levels is very much useful for efficient planning in 

integrated management of groundwater and surface water resources in a basin. 

Accurate and reliable groundwater level forecasting models can help ensuring the 

sustainable use of a watershed’s aquifer for both urban and rural water supply. The 

present work investigates the potential of two Neural networks, such as Radial Basis 

Function Neural Networks (RBFNN) and Generalized Regression Neural Networks 

(GRNN) in comparison to regular ANN models like Feed Forward Back Propagation 

(FFBP) and Non-Linear Regression Model (NARX) for modeling in Ground water 

level (GWL) forecasting in a coastal aquifer at western Ghats of India. Total 24 wells 

(both shallow and deep) located within the study area (microwatershed of Pavanje 

river basin) were selected covering around 40sqkm.  Here, two different dataset such 

as weekly Time series GWL and Meteorological variables those recorded during the 

study period (2004-2011) were used in the analysis. Various performance indices such 

as Root Mean Squared Error (RMSE), Coefficient of Correlation (CC) and 

Coefficient of Efficiency (CE) were used as evaluation criteria to assess the 

performance of the developed models. 

At the first stage, the potential and applicability of RBF for forecasting 

groundwater level are investigated. Weekly time series groundwater level data upto 

four lagged data has been used as various input scenario where predicted output are 

one and two week leadtime GWL. The analysis has been carried out separately for 

three representative open wells. For all the three well stations, higher accuracy and 

consistent forecasting performance for RBF network model was obtained compared to 

FFBP network model.  

After confirming the suitability of RBF in GWL forecasting and with better 

accuracy over FFBP, the work has been extended further to consolidate the 

applicability of RBF in multistep leadtime forecasting upto six week ahead. In this 

study, six representative wells are covered for development of RBF models for six 

different input combinations using lagged time series data. Outputs are the predicted 

GWL upto six week. RBF models are developed for every well station and results are 

compared with Non linear regression model (NARX). It has been observed that for all 
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the six well station, the higher and consistent forecasting performance by RBF 

network model in multi step week lead which consolidates the forecasting capability 

of RBF. The NARX model result shows poor performance.  

In the third stage, to examine the potential and applicability of  GRNN in 

GWL forecasting, various  GRNN models has been developed by considering the 

advantage of S-summation and D-summation layers for different input combinations 

using time series data. Weekly time series groundwater level data upto four lagged 

data has been used as inputs where predicted outputs are one week leadtime GWL. 

The analysis has been carried out separately for three representative open wells. 

GRNN models were developed for every well and best model results were compared 

with best RBF and FFBP with LM training algorithm models. The RBF and GRNN 

models are almost performed similarly in GWL forecasting with higher accuracy in 

all the representative well station. The poor performance of FFBP-LM model is also 

satisfactory but found inferior than both GRNN and RBF.   

After confirming the potential and applicability of GRNN and RBF in time 

series GWL forecasting with similar capability, the robustness, adaptability and 

flexibility characteristics of these two techniques are further investigated for 

suitability with cause and effect relationship. Here various meteorological parameters 

are used as causable variable and the GWL is used as output effect .Only GRNN 

models are developed in the present study as RBF was found with similar predicting 

performance in previous studies. Five various input combinations are used to obtain 

best results as one step leadtime output for three representative wells. In this case also, 

GRNN model is predicting groundwater level with higher accuracy and with 

satisfactory results. The GRNN model performance is compared to general ANN 

(FFBP) model and found outperforming FFBP performance.  

The result of the study indicates the potential and suitability of RBFNN and 

GRNN modeling in GWL forecasting for multistep leadtime data. The performance of 

RBFNN and GRNN were found almost equally good. Although accuracy of 

forecasted GWL generally decreases with the increase of leadtime, the GWL forecast 

were obtained within acceptable accuracy for both the models. 

Keywords: Coastal regions, Dakshina Kannada, Groundwater level, ANN, 

RBF, GRNN, NARX, FFBP. 
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CHAPTER - 1 

INTRODUCTION 

1.1. Introduction 

Groundwater level is an indicator of groundwater availability, groundwater flow, 

and the physical characteristics of an aquifer or groundwater system. Groundwater 

level forecasting plays a vital role in designing, planning, development, operation and 

management of groundwater resource in a sustainable manner. For many years, 

hydrologists have attempted to understand the dynamics/complete behavior of 

groundwater level (GWL) fluctuations. In coastal regions, owing to non-uniform 

temporal and spatial distributions of groundwater and the presence of high 

fluctuations and steep channels all over the catchment, the groundwater system 

appears to be complex.  

The groundwater level mainly depends on the rate and duration of rainfall, 

geological formation, the antecedent soil moisture conditions, and type of soil. 

Records of water level fluctuation in wells are worth the cost and trouble of collecting 

only if they are used as a basis for hydrologic interpretations. Although water level 

records have been vital to the reaching of conclusions regarding the occurrence and 

development of groundwater in specific areas, many such records still await 

interpretation. Similarly, a wealth of climatologic and other hydrologic data is in need 

of analysis (Korkmaz, 1988).  

Prediction of region specific water table fluctuation is one of the basic necessities 

for formulations of appropriate design and taking scientific measures to ensure 

sustainable groundwater management. Dependable forecasts of groundwater level are 

essential for many aspects such as water resources projects, irrigation, industrial and 

domestic purposes. Thus accurate and reliable forecasting GWL are always a 
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benchmark problem for hydrologists and water resources engineers (Lin and Chen 

2005).  

To date, a wide variety of models have been developed and successfully applied in 

water resources engineering both in surface water and groundwater hydrology, in 

particular groundwater level forecasting. These models can be categorized into 

empirical time series model and physical descriptive model. Physical models and 

statistical regression models have been developed in the past to simulate water table 

variations in different areas. However, all of these models need extensive 

inputs/information/observations to perform for the effective modeling. The physically 

based model requires an explicit relationship between the input and output 

parameters. But, the presence of errors or uncertainties in the observations will result 

in errors or deviations in the model output (Shirmohammadi et al., 2006). The 

physical  based  model  requires enormous  data  which  is  costly  and  time 

consuming  and  hence  difficult to adopt  in developing countries like India (Nayak et 

al. 2006).  On the other hand, the major disadvantage of empirical approach is that 

they are not adequate for forecasting when the dynamic behavior of hydrologic 

system changes with time (Bierkens, 1998). Also, the relationship between, rainfall, 

stream flow, evapotranspiration and the groundwater level are likely to be non-linear 

as very few nonlinear empirical models have been reported for shallow water table 

modeling (Bierkens, 1998; Knotters and Bierkens, 2000; Scanlon et al, 2002).  

Accurate groundwater level forecasting is required in long-term and short-term for 

better water management strategy. However, classical regression methods are unable 

to model this nonlinear complex system. A major concern in forecasting the 

groundwater table in existing traditional methods are the difficulty in assessing the 

uncertainty associated with any given estimate and inaccuracies arises from several 

sources, spatial and temporal variability in process and parameter values, 

measurement errors and the validity of assumption upon which different methods are 

based.  

Use of ANN technique has been increased for the past few decades in 

groundwater hydrology for the purpose of forecasting, modelling, estimation of 
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aquifer parameter, aquifer contamination and many more problems. A lot of 

successful applications have shown that ANN Provides powerful determine tool for 

time series modelling (Zahang et al., 1998; Nag and Mitra, 2002). Comparisons were 

made between traditional methods and ANN on time series forecasting (Hamid and 

Zahid, 2004). The supports for ANN in time series analysis are the capability of non-

linear modelling in real world complex phenomena. Also, ANN is non parametric 

methods and prior knowledge is not mandatory. All these features make ANN 

attractive for time series modelling and forecasting. 

In general, ANN is provided as either substitutive or complementary option to 

traditional computational schemes of statistical regression, time series, and pattern 

matching and numerical methods. Some of the merits of this approach are that it does 

not require the complex nature of the underlying process under considering to be 

explicitly described in mathematical form. Several researchers were utilized various 

types of neural networks to forecast groundwater level fluctuations to improve the 

performance of models and their reliability.  

1.2. Problem background 

In the coastal region of Karnataka (India), more than 20% of geographical area 

falls under Laterite formations with low groundwater development status. Average 

groundwater development of the state has been assessed to 20%, which is far below 

the national average groundwater development. The state as a whole has a huge 

balance of groundwater resources with a wide scope of its development. But due to 

presence of Laterite formations and many associated problems with complex 

hydrological system, it has not been exploited to the desirable levels. 

In the last few years, with reference to total monitoring wells, majority of wells 

showed depletion in water table depth during pre-monsoon or dry season. This leads 

to the associated problem of lowering deep well depth and drying of open dug wells 

in these areas, which also indicated the decreasing trend of groundwater table over a 

period of time. The possible reason may be increase of draft due to population growth, 

low groundwater recharge etc. As the water demand increases day by day, it may be 
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difficult to check the draft of groundwater resources in the near future which may a 

major threat to the stakeholder (GEC, 1997). Fortunately, there is scope to enhance 

the recharge rate to the aquifer by suitable means due to the heavy rainfall occurred in 

the study area during monsoon. Hence, it is necessary to quantify the current rate of 

recharge, monitor the change in water table depth before any interference towards 

groundwater development. Keeping in this view, this study was carried out in a 

microwatershed of Pavanji watershed, Karnataka, India.  

Efficient planning of a reliable water supply project, especially during dry season 

requires accurate acceptable predictions of water table depth fluctuations. The 

prediction of groundwater level in a well, based on continuous monitoring of selected 

of nearby wells is of immense importance in the management of groundwater 

resources (Coulibaly et al 2001). In this real world situation with uncertainty and 

errors attached with limited observed records, physical or conceptual model may not 

be feasible or perform poorly. Therefore, the data driven modeling such as Artificial 

Neural Network (ANN) may be an alternate viable option as it will model the data 

rather than the physical process.  

Most of the works in ANN are related to FeedForward error Back Propagation 

(FFBP) algorithm. However, the major difficulties in FFBP are slow convergence, 

often trapped in local minimum and suffer in extrapolation (Chen et al., 2010). An 

alternate network algorithm, Radial Basis Function (RBF) can be used to reduce the 

limitations of FFBP, a fast method for designing nonlinear feed forward networks. 

Powell (1987) introduced RBF in solving the real multivariate interpolation problem. 

Radial Basis Function (RBF) is a powerful technique for interpolation in 

multidimensional space. RBF networks have been used for engineering applications 

due to their advantages over traditional multilayer perceptrons, such as faster 

convergence, smaller extrapolation errors, and higher reliability (Moradkhani et al., 

2004).  

RBF Neural Networks was increasingly used for prediction purposes as an 

efficient alternative to traditional methods (Lin and Chen 2005; Krishna et al 2008). 

RBF networks have the advantage of not suffering from local minima in the same way 



 

 
Introduction  

Groundwater level Forecasting using Radial Basis Function and Generalized Regression Neural 

Networks, Ph.D Thesis, 2012, NITK, Surathkal, India                                                                          5 

as Multi-Layer Perceptrons. This  is because  the only parameters that are adjusted  in  

the  learning process are  the linear  mapping  from  hidden  layer  to  output  layer. 

The architecture and training algorithms for radial basis function networks (RBF) are 

very simple and clear. Generally RBF neurons are not identical and require global 

computations to determine their parameters. 

Also, Generalized Regression Neural Network (GRNN) is a class of neural 

networks widely used for the continuous function mapping. An important advantage 

of the GRNN is that training is very fast and adding new data is almost free. GRNN 

belongs to the well known nonparametric kernel regression models (Hardle 1989, Fan 

and Gijbels 1997). The GRNN model has a solid mathematical background to support 

confidence estimates. The GRNN architecture subsumes the RBF method. The major 

difference between GRNN and RBF neural networks is the methodology adopted for 

determination of weights. Instead of training weights, the GRNN assigns the target 

value directly to the weights, from the training set associated with input training 

vector and a component of its corresponding output vector (Kisi, 2006). 

GRNN looks much like the common feedforward Backpropagation (FFBP) 

training but operation is fundamentally different. GRNN is based on non-linear 

regression theory for function approximation. The GRNN can be viewed as the 

normalized RBF network where there is a unit centre at every training case. The 

network architecture is of highly parallel structure and follows single pass learning. 

The algorithm provides smooth transitions from one observed value to another even 

with sparse data in multidimensional measurement space. The algorithm adopted in 

the GRNN can be also used for any regression problem where an assumption of 

linearity is not justified. GRNN can be termed as universal approximator for smooth 

functions and is capable of solving any smooth function approximation problem 

(Disorntetiwat, 2001). 

Usually, FFBP performance is observed as very sensitive to randomly assigned 

initial weights which may lead to long computational time for convergence. On the 

other hand, this problem was not appears in GRNN simulations (Cigizoglu, 2005). 

Also, the GRNN is not linked up to iterative training procedure as required by FFBP 
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(Specht, 1991). The problem of trapped in local minima was not appears in GRNN as 

was critical in FFBP. Due to the reasons mentioned above, GRNN was preferred 

instead of FFBP. 

It is observed that sufficient lengths of water table depth measurements are usually 

unavailable in developing countries (Coulibaly et al, 2001). Such countries typically 

have very few observable wells and lack long time period time series data due to 

budget limitations and policy (Affandi et al 2007). This is the driving element in 

developing model that is capable of forecasting GWL using limited data. 

The current study aims to examine potential and applicability of RBF and GRNN 

models in this situation for predicting GWL using time series data. Also, we 

investigate the effect of meteorological parameters which includes temperature, 

relative humidity, rainfall, evaporation, land use/cover on groundwater level 

fluctuations. Further, we explore the applicability of this network for groundwater 

level forecasting in multistep lead-time upto six week ahead. Finally, we investigated 

the suitability of network for the site specific groundwater level prediction with 

acceptable and improved accuracy. 

1.3. Scope of the Present Study 

The scope of the present study is to evaluate the application of various Artificial 

Neural Networks algorithms such as RBF and GRNN for groundwater level 

forecasting at site specific catchment (microwatershed) using historical groundwater 

level data and meteorological data.  

The present research work focused on the suitability of RBF and GRNN 

techniques in groundwater hydrology and insufficient data situation for groundwater 

level forecasting. It is expected that this research work will be helpful for proper 

planning, operation, development and management of groundwater resources in a 

sustainable manner. 
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1.4. Research Objectives 

In the present research, an attempt has been made to examine the applicability and 

capability of different ANN networks for groundwater level forecasting. Therefore, 

based on literature review, considering groundwater related problems in coastal 

region (Dakshina Kannada) and the availability and limitations of database/data sets, 

the research objectives are framed. In this context, the specific objectives for the 

present study are identified as follows. 

1.4.1. Main Objective 

The main objective of this research is to investigate the utility of Artificial Neural 

Networks (ANNs) algorithms like RBF and GRNN for short term forecasting of 

groundwater level fluctuations forecasting. Short term is defined as weekly time steps 

up to a time horizon of one week ahead. This research work explores the capabilities 

of RBF and GRNN compares the  performance of this tool to conventional 

approaches used to forecast groundwater level at one, two, three, four, five and six 

weeks in advance. 

1.4.2. Specific Objectives 

 Development of RBF and GRNN model for groundwater level forecasting 

using time series data  

 To assess the performance of model for higher lead-time forecasting and 

multiple input scenario 

 To assess the suitability of GRNN model using meteorological variables 

groundwater level forecasting  

 Selection of best network for site specific groundwater level prediction in 

coastal region. 
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1.5. Conceptual basis for the study 

The conceptual basis for the study is shown in Figure.1.6.From the Figure 1.1 it is 

to understand how the forecasting groundwater level has been carried out in a 

systematic manner using time series data and cause effect and variables and then by 

adopting the various neural networks to select the best model for the site specific 

problem. 

 

Figure 1.1 Conceptual basis of the present study 

1.6. Organization of the Thesis 

This thesis comprises of five chapters as follows. 

Chapter 1 Introduction Presents the relevant information pertaining to 

groundwater water related problems, and further deals with the problem identification, 

research objectives, assumptions and limitations of research, overview of the 

conceptual basis for the research, 
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Chapter 2 Literature Review Discusses the groundwater level fluctuations, 

conventional methods of forecasting and thereby explains the effects of 

meteorological parameters on groundwater level, ANN application in groundwater 

related problems so far. 

Chapter 3 Materials and Methodology Describes the study area and its 

significance, different datasets used and explains the methodology adopted in order to 

achieve the research objectives. This includes the essential background information, a 

description of the structure and terminology of various ANN models such as RBF, 

GRNN, NARX and FFBP. 

Chapter 4 Results and Discussion Describes the method of evaluation and goes 

on to present the analysis of the results obtained from the developed models and 

network performance for different input configuration. 

Chapter 5 Summary and Conclusions presents summary of research work 

carried out, contribution and conclusions. Further, the limitations of the research work 

and scope for future work are included towards the end. 
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CHAPTER – 2 

LITERATURE REVIEW 

2.1 Introduction 

The present chapter focuses on a review of research carried out in the past involving 

the time series analysis, effect of meteorological parameters and suitability of Artificial 

Neural Networks algorithms for groundwater level fluctuations in catchment groundwater 

modeling.  

It is presently attempted to make the literature review on the applications of ANN in 

groundwater engineering particularly in the following four categories. 

1. Assessment of groundwater level in coastal regions 

2. ANN applications for groundwater level forecast 

3. Cause and effect relationship on groundwater level fluctuations 

4. Suitability of neural network modeling in multistep lead time forecasting using few 

data and insufficient information 

2.2 Causes of groundwater level changes  

Groundwater level is a dynamic flow system, it travels into and thorough aquifers 

from areas of higher elevation to lower level. Groundwater level changes occur due to 

several reasons, both natural and anthropogenic activities. In general, groundwater level 

changes are broadly classified into two categories. They are short-term and long-term 

groundwater level changes. Short-term changes can observe only when the water level 
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measurements are collected at several times in a day/week. Long term changes can be 

observed only after several years. A groundwater level fluctuation occurs due to changes 

in the volume of water stored in the aquifer, changes in atmospheric pressure and changes 

caused by aquifer deformation. Aquifer storage is due to addition/extraction of water 

from a particular well by natural or man induced activities. Aquifer storage is mainly 

depends on the porosity of the soil. Groundwater levels in major aquifers are declined 

due to pumping for water supply and usage of tree plantation. Aquifer deformation are 

generally occurs due to earth tide or earthquakes. The tidal effect on the groundwater is 

known as earth tides which are directly related to gravitational effects of the sun and 

moon. This type of issues is common in coastal area. When the precipitation is high, there 

will be significant changes in water level during wet period, because evaporation and 

plan usage rates are low. Usually unconfined aquifers are quite sensitive and respond 

quickly to changes in rainfall than that of confined aquifer. 

2.3 ANN Applications in groundwater hydrology  

In recent decades, considerable interest has been raised for various ANN algorithms 

over their practical applications, because the neural networks can automatically develop a 

forecasting model through a simple process of the historic data. Such a training process 

enables the neural system to capture the complex and non-linear relationships that are not 

easily analyzed by conventional methods (Lin and Chen 2004). ANN were first 

developed in 1940s/around more than 60 years ago. Since then, it has been widely used 

on pattern/speech recognition and image/signal processing in the field of science and 

technology (Widrow and Lehr, 1992). The application of ANN in hydrology started in 

the early 1990s (ASCE, 2000a; 2000b). In the late 1990, ANN modeling began to be used 

in the simulation of water table fluctuations at different locations (Yang et al, 1997; Yang 

et al, 2000; Coulibaly et al. 2001; and Affandi et al., 2007). These/the above studies 

indicate that ANN modeling is a convenient tool for predicting water table fluctuation, 

especially in areas where the aquifer system and its detailed information is not available 

or where the available records are relatively short. ANN can solve a variety of 
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groundwater related problems where conventional methods have limitations. However, 

use of ANN technology is on the increase interest in groundwater hydrology for the 

purpose of forecasting, modeling, measuring contamination and its remedies and 

estimation of aquifer parameters and many more. Hence, ANN is considered as a 

promising tool in groundwater resources when sufficient data are available and even with 

limited data records too. 

2.4 Motivation to Artificial Neural Networks (ANN) 

Artificial neural networks are powerful tools that can learn to solve problems in a 

way similar to the human brain. An artificial neuron is a computational model inspired in 

the natural neurons. The natural neurons receive signals through synapses located on the 

dendrites or membrane of the neuron. When the signals received are strong enough 

(surpass a certain threshold), the neuron is activated and emits a signal though the axon. 

This signal might be sent to another synapse, and might activate other neurons. The 

complexity of real neurons is highly abstracted when modeling with artificial neurons. 

These basically consist of inputs (like synapses), which are multiplied by weights 

(strength of the respective signals), and then computed by a mathematical function which 

determines the activation of the neuron. Another function (which may be the identity) 

computes the output of the artificial neuron (sometimes in dependence of a certain 

threshold). ANNs combine artificial neurons in order to process information. The 

schematic biological neuron and artificial neuron are shown in Figure 2.1 and Figure 2.2. 

Figure 2.2 shows the structure of the simple ANN. It is a combination of many single 

neurons. 
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Figure 2.1 Schematic diagram of a biological neuron 

 

 

 

 

 

 

Figure 2.2 Schematic diagram of a simple artificial neuron 

Where X1, X2 …Xn are the inputs, W1, W2, ….Wn are the weights, Fact is the activation 

function. 

In general, the higher a weight of an artificial neuron is, the stronger the input 

which is multiplied by it will be. The weights can also be negative, then the signal is 
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inhibited by the negative weight. Computation of the neuron varies based on the weights. 

Outputs of artificial neuron for specific inputs can be obtained by adjusting the weights. 

When the neuron are less then it is easy to adjust the weights, but when size of neurons 

increases from hundreds to thousands, then it quite complicated to find all the necessary 

weights by hand. However, in order to obtain the desired output from the network, 

researchers are explored several algorithms which will adjust the weights of ANN. This 

process of adjusting the weights is known as learning or training. ANNs gather 

knowledge by detecting the patterns and relationships in data and learn (or: are trained) 

through experience. 

The number of types of ANNs and their uses is increasing day by day. Different 

ANN are having different topology, the learning algorithms, etc. ANN such as 

backpropagation algorithm (Rumelhart and McClelland, 1986) is widely used for 

learning the appropriate weights as it is one of the most common models used in ANNs, 

and many others are based on it. Since the function of ANNs is to process the 

information, they are used mainly in fields related with it. There are a wide variety of 

ANNs that are used to model real neural networks, such as behavior and control of 

machines. Also, there are ANNs applications which are used in both Science (Medicine) 

and Technology (Engineering) purposes, such as pattern recognition, forecasting, data 

compression, signal processing and many more in multi disciplinary fields. 

2.5. Classification of Artificial Neural Networks (ANN) 

Artificial Neural Networks are sub branch of artificial intelligence. Broadly ANN are 

classified into two categories. They are feed-forward neural networks and recurrent/feed-

back neural networks. Various types neural networks and their classification are shown in 

Figure 2.3 and are discussed in briefly. The back propogation (BP) is most commonly 

and widely used for several groundwater related problems such as prediction, 

groundwater pollution, water quality analysis, aquifer parameter estimations etc. 



 

 

Literature Review 
 

 

Groundwater level forecasting using Radial Basis Function and Generalized Regression Neural Networks, Ph.D Thesis, 2012, NITK, Surathkal, India                                                                 

15 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3 Types of Artificial Neural Networks and their classification 
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2.6 Selected ANN Applications for Groundwater Level Forecasting 

A perceived strength of ANN is the capability for representing complex, 

nonlinear relationships as well as being able to model interaction effects. This 

capability is expected to be beneficial for forecasting since the relationship between 

the input variables and the resulting output (groundwater level) is typically quite 

complex. To explore the ability and capability of Artificial Neural Networks as an 

advance tool to use in the groundwater hydrology, in this direction a detailed literature 

survey has been carried out. The specific issues addressed in this research include the 

applicability of various algorithms of ANNs for forecasting groundwater levels for 

better accuracy, multistep lead times, limited data and their influencing variables; 

seasonal analysis of groundwater level, effect of meteorological parameters; the 

approaches that are best used for identifying the appropriate structure of the ANN for 

groundwater level in catchment groundwater modeling.  

Coulibaly et al. (2001) assessed the performance of three types of functionality 

different ANN models for prediction of GWL fluctuations using hydro-

meteorological data such as past groundwater level, rainfall, river stage and 

temperature. The ANN model performance was found satisfactory. 

Sudheer et al. (2002) described the selection procedure of cross correlation, auto 

correlation and partial auto correlation for identifying an appropriate input 

vector/parameter which has a significant influence on the predicted output. Their 

proposed algorithm is simple and easy to use and also, helps to find the relationship 

between the input and output time series/variables. However, the best input variable 

can improve the performance of the model and variable that does not have any 

significant effect on the performance of the model can be trimmed off, through that 

computational time, number of models can be reduced and avoid the long trial and 

error procedure. 

Kerh et al. (2003) carried out settlement estimation due to the effect of groundwater 

drawdown using FFBP along main red line sections of Kaoh siyung mass rapid 

transit, Taiwan. They used onsite boring test data such as void ratio, groundwater 
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drawdown depth, unit weight of soil as input parameters. The applicability and 

capability of BPNN model demonstrated in their study. 

Coppala et al. (2003) investigated the potential of ANN to complex groundwater 

management problems. Various ANN model developed with hydrologic and climatic 

data for geo-hydrologic environment problems. They found that ANN substantially 

outperformed a well calibrated numerical problem model. They demonstrated that 

ANN techniques can solve many varieties of problems and overcome limitations of 

traditional physically based flow models. 

Anctil et al. (2004) examined the effect of data length using multiple-layer 

perceptions (MLP) and conceptual model. 1, 3, 5, 9, and 15year time sub-series 

created from a 24year training set, shifting by a 1-year sliding window to forecast 1-

day ahead stream flow predictions. Based on their results, it is revealed that the MLP 

stream flow mapping was efficient as long as wet weather data were available during 

training. Increases in the length of data the results may consistent due to longer series 

of data which contains valuable information and gives clear information of 

hydrological behavior of a particular variable. However, it is plausible that a large 

number of internal parameters may allow better use of longer calibration series, but 

this was not verified in their study. 

Lallahem at al. (2005) evaluated the feasibility of Artificial Neural Network for 

estimating groundwater level in unconfined aquifer of Northern France. They 

concentrated on the most influential parameters which has impact on groundwater 

level in fissured chalky media. In addition to this they also focused on the effect of 

temporal and spatial information with the help of variety of piezometer readings using 

current and past data sets. Moreover, they focused to simulate the groundwater level 

in a selected piezometer.  

Daliakopoulos et al. (2005) examined the performance of different neural networks in 

groundwater level forecasting at Messara valley in Greece. Where over-exploitation 

of groundwater is takes for long period. They have compared seven different type of 

architecture training algorithms performance and found that standard feedforward 
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neural network trained with LM algorithm provides better results upto eighteen 

months forecasting. 

Almedeij and Alsruwaih (2006) investigated the periodic pattern of groundwater level 

fluctuation in residential areas of Kuwait. Monthly water level data for six monitoring 

wells are used in the study to examine relationship with monthly temperature and 

evaporation. A time series model that regards the influence of detected periodicity is 

developed for water level data for providing forecast of groundwater level change. 

Nayak et al. (2006) investigated the potential of Artificial Neural Network for 

forecasting groundwater level in an unconfined coastal aquifer at central Godavari 

delta region in India. Monthly averages of rainfall, canal releases and groundwater 

level are used as input for three observation wells to on spatial scale predict 

groundwater level. Cross correlation analysis was employed to find the significant 

relationship among the three wells and their influencing parameters. They studied the 

influencing factors for groundwater level at three different wells namely Munganda, 

Cheyyeru and Kattunga located in different places.  

Affandi and Watanabe (2007a) had investigated groundwater level fluctuation under 

two different scenarios and compared with three different techniques, such as 

Adaptive Neuro-Fuzzy Inference System (ANFIS), Levenberg-Marquardt (LM) and 

Radial Basis Function (RBF). They found insignificance difference in performance 

among these three algorithms in groundwater level fluctuation forecasting.  

Panda et al. (2007) investigates the response of groundwater levels to extreme 

weather events to understand the forcing mechanisms of droughts in consumption 

with anthropogenic pressure. They have analyzed pre and post monsoon groundwater 

level records of 1002 monitoring stations during the period 1994-2003. They found 

that the decline of groundwater level is due to deficient rainfall during dry years, high 

temperature and anthropogenic pressure with low rate of recharge in wet years. 

Joorabchai et al. (2007) adopted artificial neural networks to simulate groundwater 

level fluctuations at east coast of Australia using back propogation algorithm. The 

data used in the study are water table, tide elevation, beach slope and hydraulic 
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conductivity. They found that ANN model is very useful for prediction of 

groundwater level where variation in tide elevation appears the major influencial 

parameters in coastal aquifers. 

Affandi et al. (2007b) examines and compares the capability of ANN with different 

BP algorithms for estimating groundwater level fluctuations, where Matlab was used 

to develop programme 5 daily measurements of groundwater level fluctuations data in 

an observation well. The input to the model uses six time lag groundwater level 

fluctuation data with 10 hidden neurons gave optimum result. It was found that LM 

algorithm delivered better results than RBF using relatively few data sample and they 

concluded the usefulness of this study in developing countries where lack of long-

period time series data with few observation wells exists. 

Jyothiprakash and Sahara (2008) used sophisticated ANN model to capture the pattern 

and predicting groundwater level time series. They have used groundwater level data 

at sriramsajar project reservoir, Andhra Pradesh, India using back-propogation 

algorithm with hyperbolic tangent activation function. The output predicted 

groundwater levels are found within accepted accuracy. 

Yang et al. (2009) used BP ANN for prediction of groundwater level in the arid and 

semi arid areas of western Jalin province of China using monthly average 

groundwater level data from 1986-2011. They have suggested that BPNN model is 

reliable for modelling groundwater level for forecasting purpose in their study area. 

Diemssie et al. (2009) developed a frame work to handle systematic error in 

physically based groundwater flow model that uses error correcting data driven 

models in a complimentary fashion in terms of bias prediction; uncertainty range the 

complimentary work has shown substantial work over the MODFLOW pattern. This 

integrated flow model significantly reduces the prediction errors and local bais. 

Benerjee et al. (2009) used feed-forward neural network model to forecast 

groundwater level for various scenarios of stress on aquifer in hard rock aquifer 

system of Kurmaphally watershed in Andhra Pradesh, India. The application of ANN 
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has successfully demonstrated for different scenario allowing modelling of complex 

dependencies. 

Ma et al. (2009) combined back propagation neural network with differential 

evolution developed predicting model of groundwater level in Zhang jiakoe area of 

china. The model performed better than GA-BP. 

Sreekanth et al. (2009) have developed ANN models to prediction of groundwater 

level using Feed Forward Neural Network–Levenberg Marquartd algorithm to 

improve the accuracy and reliability of groundwater level forecasting model using 

weather parameters. 

Ghose et al. (2010) studied the effect of meteorological parameters such as 

precipitation, temperature and relative humidity on groundwater level. They 

compared the performance of RBF and FFBP for forecasting groundwater level. They 

concluded that ANN techniques are becoming popular because there is less need for 

internal aquifer system modeling. As where the detailed aquifer system information is 

not available to run a descriptive model, and even with limited data also the ANN 

technique will gives better results.  

Chen et al. (2010) proposed a SOM-RBFN model (combined theory of self-

organizing map and radial basis function network) to forecast groundwater level at 

southern Taiwan, in order to overcome the position of radial basis centers. They 

observed that too much information/data is unable to improve the generalization 

ability of the multisite model due to more noises to the networks and undermines the 

performance of the network. Though SOM-RBFN multisite model can forecast more 

precisely than the single site model, but still there is question how to choose and how 

much data is required to get the accurate and reliability result. However, their research 

is confined to prediction of groundwater level in vertical plane only. 

Weesakul et al. (2010) used simple Genetic Algorithm (GA) and ANN as alternative 

tool for monitoring and forecasting groundwater level fluctuations using 12 years data 

on monthly basis  at Bangkok area and its vicinity. In total, 43 monitoring wells are 

identified and grouped into three categories based on the correlation (low <0.9, 
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medium, 0.9 to 0.92 and high >0.95). GA is used to divide the area into sub-regions 

within the watershed. Based on their results they observed that ANN has a better 

performance for all cases with accuracy of 9% to 26% relative error. However, they 

also noticed that excessive pumping rate of groundwater in Bangkok results in land 

subsidence problem and saltwater intrusion problem arises in shallow aquifers which 

are adjacent to the coast. 

Sethi et al. (2010) have investigated influencing and controlling factors on the 

groundwater table in a specific geomorphorlogic Munijhara microwatershed in 

Nayagarh block of Orissa, India. Monthly rainfall, groundwater level and potential 

evapotranspiration (PET) data for a period of 2005-2008 are used as inputs to develop 

ANN models. Forecasting groundwater level has been carried out for different 

geological formations. Their results showed that the prediction accuracy in flood plain 

and upland plain areas were comparatively better than that of granite zone. They also 

observed that the FFBP performance is equally good even with limited data.  

Mohanty et al. (2010) used the three different ANN algorithms such as gradient 

descent with momentum and  adaptive learning rate back propogation (GDX) 

algorithm, Levenberg Marquartz (LM) algorithm and Bayesian regularization (BR) 

algorithm to predict the groundwater level at Bayalish Mouza near Kathajodi RIvwe 

basin of Orissa, India where BR performance was better. 

Ghadampour and Rakshandehroo (2010) used FFBP to forecast groundwater depth. 

The data sets of an observation well in Union County New Jersey, was used in the 

study as  80 days of the domain. It was found that more accurate measure of daily data 

was the reason for better forecast.  

Trichkas et al. (2010) used ANN to predict hydraulic head at a well location using 

advert aquifer in Texas, which is a unique groundwater system and one of most 

profile artesian in aquifer in the well. Hydrologic parameters like rainfall and 

temperature and as well as pumping rate nearby wells were used as input. The results 

show that there is a need for exact knowledge for pumping in karstic aquifer with 

suggesting ANN was preferable. 
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Mayilvaganan and Naidu (2011) compared two computational intelligent techniques 

such as ANN and Fuzzy Logic (FL) in groundwater level prediction of kulingapuram 

watershed of Tamilnadu, India. The ANN model was developed using sigmodial 

activation function and back propogation algorithm, where inputs are monthly rainfall 

and groundwater level. They found that ANN performed significantly better than FL 

with Gaussian membership function. 

Aflatooni and Mardaneh (2011) studied the effect of temperature and rainfall on 

groundwater level fluctuations using time series data and cross-correlation analysis at 

Maharloo basin located in south west of Iran. Moreover, they observed when the air 

temperature increases the water table declines with a delay time and after departure of 

the rain, the water table increases with a delayed time interval.  

Sreekanth et al. (2011) made a comparison between FFBP trained with Levenberg-

Marquartz algorithm and adaptive neuro fuzzy inference systems (ANFIS) for 

forecasting groundwater level in a Maheshwaram watershed, Andhra Pradesh, India 

and found that ANN models slightly more accurate on an average than that of ANFIS. 

Schilling and Zhang (2012) have studied the temporal scaling of groundwater level 

fluctuations near a stream using spectral analysis to identify the potential of surface 

water and groundwater interaction in riparian zone of Walnut Creek in Jasper County, 

Iowa. Hourly groundwater level data for a period of July 2005 to March 2008, stream 

discharge at 15 minute interval for a period of 1996-2005 and daily precipitation data 

of the same period were used. In general, spectral analysis is used to study the 

temporal variations of hydrologic process. However, in their study area the 

groundwater levels respond quickly to precipitation recharge. They assessed the 

hydrologic and geomorphic factors that have scaling variations. Moreover, this type 

of studies is useful where long-term monitoring or intensive sampling may not be 

practical or possible. 

Here, it was observed that most of the researchers made an attempt/tried to  

improve accuracy of their developed models by adopting different networks. 

However, it was noticed that very few researches have used GRNN and RBF 
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networks in groundwater hydrology. Hence, in this study, RBF and GRNN networks 

are used to forecast groundwater level using time series data for different input 

scenario and multiple lead time forecast. In addition to this, an attempt has been made 

on the effect of meteorological parameters on groundwater level forecasting model. 

2.7 Outcome of Literature Review 

Based on the literature review on ANN applications in groundwater hydrology it 

is observed that some of the grey area appears as mentioned below   

 Few research works were carried out on groundwater level forecasting other 

than FFBP. So, there is wide scope to explore the different ANN networks for 

groundwater level forecasting  

 Multiple lead time forecasting is not tried so far which affects long-term 

planning. 

 There is no data integrated approach for Groundwater level forecasting 

(combination with time series and causable and variable)  

 Poorly understood or partly understood of groundwater system and their 

complex hydro-geological process need to study in detail manner. 

 A major concern for several researchers experienced in different application of 

ANN is, the lack of quality and quantity of the required data, detailed 

information of the system or problem and data size of effective domain in time 

series. 

To address above limitations, an attempt has been made to improve the 

forecasting accuracy of groundwater level using various Artificial Neural Network 

algorithms for various input scenarios. 
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2.8 Closure of the study 

Considering the above aspects, an attempt was made to develop an ANN based 

model for forecasting groundwater level fluctuations in a specific geologic situation 

and test its potential in predicting groundwater table depth with limited time series 

groundwater level data at temporal scale. Also, stress is given for Forecasting 

accuracy as it is one of the important factors involved in selected a forecasting 

method. Hence, research directed at improving upon the effective time series models 

using ANN are.  

 The applicability of two neural networks such as GRNN and RBF are 

investigated and predicting performances are evaluated in GWL forecasting 

 Selection of best model both in time series and cause and effect variables in 

GWL forecasting 

 Assessment of model accuracy for multi-step lead time GWL forecasting 
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CHAPTER - 3  

MATERIALS AND METHODOLOGY 

3.1 Introduction 

The present work aims to forecast the groundwater level at temporal scale using 

various Neural Networks in a microwatershed of coastal aquifer in Dakshina Kannada, 

southwest coast of India using weekly time series data. Also, an investigation has been 

carried out on the influence of meteorological parameters on groundwater level 

fluctuations. In this chapter the proposed methodology is to investigate the potential, 

capability and applicability of various Neural Networks such as Feedforward 

Backpropogarion (FFBP), Non-Linear Auto Regressive with Exogenous inputs neural 

network (NARX), Radial Basis Function (RBF), Generalized Regression Neural Network 

(GRNN) for groundwater level forecasting are discussed in detailed manner. A 

comparative study was made among different ANN networks. Performance evaluation of 

various developed models was examined based on performance indices and the selection 

of best ANN model. Finally a suitable ANN technique is suggested for site specific 

problem in the current study area.  

Time series analysis is useful to understand the complete behavior of groundwater 

level in a particular catchment. Since it yields the long-term trends of water table 

fluctuations, and thus it can aid one in arriving at effective and meaningful policy 

decisions and also to take scientific measures for the development of groundwater 

resources.  
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3.2. Study Area 

The study area selected for the present research is the micro-watershed that comes 

under the sub basin of Pavanje river catchment at west coastal aquifer of India. It is 

situated approximately 3km from the Arabian Sea which extends over an area of 

approximately 40 sqkm as shown in the Figure 3.1. The study area is located between 

13°00′00″ to 13°02′30″ North Latitude and 74°47′00″  to 74°50′00″ East Longitude. It 

receives 80% of total annual rainfall during the southwest monsoons and remaining 20% 

rainfall during non monsoon period where annual average is 4200mm. In the study area, 

Lateritic soil covers most parts of the region and is fairly common in the area occupied by 

the Deccan traps and some Archaean Gneisses. 

Laterite gravelly soil mainly consists of coarse grained soil and hence is porous and 

highly permeable. The geological formation of the study area consists of 3 layers. The 

laterite deposits vary in thickness from 3 m to 15 m. usually first layer or top layer of 

soils is ferruginous in character and is hard and dark brown in color. The thickness of this 

layer is ranges from 0.5 m to 1.5 m. Second layer is of aluminum in characteristic  

consists of fines in the form of silt and clay and finally thick layer of fine silt and clay 

bed is  present below this layer which is underlined by impervious Granitic Gneiss. 

Hence, the study area may be classified as rich lateritic soil zone (Udayakumar G 2008). 

The hydraulic conductivity is in the range of 10
-4

 to 10
-5

 cm/sec. The specific yield is in 

the range of 0.08% to 4.94% (Hareshendra 1991). The average recharge coefficient is 7% 

with infiltration rate 0.9 cm/hr to 27.5 cm/hr (GEC 1997). 

Precipitation is the principal source for groundwater recharge in coastal region. In 

spite of receiving heavy rainfall during monsoon season in the microwatershed, but still 

the study area experiences acute shortage of drinking water during summer season 

(March to May). The water shortage problem is due to the non-availability of surface 

water retaining structures as it is not feasible considering the soil behavior. The soil is 

highly pervious and porous in nature. The infiltration rate is high and shallow wells 
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shows very quick response to rainfall event and the water table rise immediately and 

subsequently drastically water level goes down within short period of time. In spite of dry 

up of shallow wells during the summer, shallow wells are more preferable than that of 

deep wells because deep wells are prone to salt water intrusion. 

Altogether 24 open wells, (shallow wells which are less than 9.0m depth from ground 

surface and deep wells which are more than 9.0m from ground surface) were selected for 

the entire micro-watershed to make comprehensive analysis of groundwater level 

fluctuation. In the current study, shallow and deep wells were analyzed separately. 

Groundwater level varies from well to well both spatially and temporally. The main 

intension of selecting these different shallow and deep wells is to understand the behavior 

of groundwater level due to nearby streams, and various type of landuse/cover. The 

locations of 24 open wells in the study area are shown in Figure 3.1.  

 

Figure 3.1 Index map of Study area and location of 24 observation wells 
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3.2.1. Temperature 

Temperature is one of major factor which has direct influence on groundwater level 

in the open wells of any catchment. The average max and min temperature during the 

study period are shown Figure 3.2. From the Figure.3.2 it appears that April and May are 

the hottest months. The December and January are the cooler months. Average maximum 

temperature is 32
o
C and average minimum temperature is 22

o
C. 

 

Figure.3.2 Weekly variations in the temperature (2004-2011) 

3.2.2. Rainfall 

The south-west monsoon is the principal rainy season during which the state receives 

80% if its rainfall. Rainfall in the winter season (January to February) is less than one 

percent of the annual total, in the hot weather season (March to May) about 7% and in the 

post-monsoon season about 12%. Figure 3.3 shows weekly hydrograph and hyetograph 

variations during study period. It is observed that due to the presence of lateritic 

formations in the study area, most of the wells show a similar variations/pattern 

irrespective of the depth of wells. In general, the well hydrograph clearly indicates that 
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the high groundwater level corresponds to period of high rainfall and low groundwater 

level corresponds to period of low rainfall. 

South-west monsoon normally sets in over the extreme southern parts of the state by 

about 1
st
 of June and covers the entire state by about 10

th
 of June. The rainy months July 

and August account individually to about 30% and 18% of annual rainfall. 

 

Figure 3.3 Weekly hydrograph and hyetograph (2004-2011) 

3.2.3. Evaporation 

Evaporation is having direct impact on the groundwater levels which further lower 

the groundwater level. Weekly evaporation variations during the study period are shown 

in Figure 3.4. 
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Figure 3.4 Weekly evaporation (2004-2011) 

3.2.4. Relative humidity  

The relative humidity or aridity of a region is another factor that influences the 

abundance of groundwater. Normally in humid region, water in the top soil layer is 

slowly evaporates into the atmosphere where as in the case of deserts it quickly into the 

atmosphere. Figure 3.5 shows the relative humidity pattern of the study area. 

 

Figure 3.5 Weekly relative humidity (2004-2011) 
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Also, the study area has representatives of all types of variations in topography-high 

mountains, plateaus, residual hills and coastal plains. It consists mainly of plateau which 

has higher elevation of 600 to 900 metres above mean sea level. The entire landscape is 

undulating, broken up by mountains and deep ravines. 

The study area is dominated by various types of mixed forests and varies land cover 

such as Temperate Broadleaved, Subtropical Evergreen, Moist Deciduous, Dry 

Deciduous, Degraded Forest, Irrigated Agriculture, Rainfed Agriculture, Intensive 

Agriculture, Water Body, Fallow/Arable, Cloud/Shadow, Plantation Orchard, Alpine 

Meadow and Grassland as various Land use classes with a rapid increase in built area. 

3.3 Data Collection and Field Observations 

In order to improve the performance of any model, the model requires sufficient 

amount of input data. In this type/such of situation, it is often difficult to obtain reliable 

forecasts of future groundwater level events due, in part, to the lack of accurate data for 

the required model inputs. The remote location and complex hydraulic relationships of 

many of the sites contribute to a poor quality of groundwater level monitoring. The 

advance tool such as ANN has been found to be effective and more efficient in situations 

where noisy data attached with shorter length of observed data.  

Two different types of datasets are considered in the current research. They are 

historical time series groundwater level data and meteorological parameters. The 

obtained two different types of dataset and their basic characteristic pertaining to the 

present study and its relevant information are discussed. The details of data used and their 

purposes in the current work are presented in Table.3.1. 
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Table.3.1 Details of available data and their purpose (Data Division) 

Sl. 

No 
Data Type 

Years 

(s) 
Data Source Purpose/Usage of data 

01 

Weekly 

groundwater level 

(m) 

2004-

2011 

*AMD 

and 

Field visit 

Development of RBF , GRNN , 

FFBP, NARX models for  

Short-term GWL forecasting 

  

02 

Precipitation(mm) 

Evaporation (mm) 

Relative humidity 

(%) 

Temperature (
o
C) 

2004-

2011 

*IMD 

Dept of 

AMD, NITK 

 

 

**IMD, 

Panambur 

station 

Development of GRNN and 

FFBP model to investigate the 

Effect of meteorological 

parameters on GWL forecasting 

 

*AMD= Applied Mechanics and Hydraulics department, udayakumar 2008; **= IMD= India 

Meteorological Department, Panambur 

In the present study, weekly groundwater level data were obtained by monitoring 

the 24 open wells at different locations. Monitoring of groundwater level was carried out 

for a period of eight years (2004-2011). As shown in Figure 3.6, the wells are non-

uniformly distributed at space as study interest is on GWL trend due to land use/cover. 

The nearest well (padre) is approximately 1 km and the farthest well is approximately 8 

km (katipalla) away from seashore. (Appendix-1) Plate. 1 shows well location and 

number for shallow and deep wells. The primary analysis has been carried out using 

weekly groundwater level time series data. The selection of monitoring of open wells was 

based on their geological formations and various type of land use/cover. The details of 

wells are presented in Table. 3.2. These open wells were located in different places like 

Padre, Mukka, Munchuru, Mulky, Udaynagar, Krishnapura, Katipalla, Ganeshpura, 

Eddya, Kanna, Chelairu, Thadambailu, Madhya and NITK. These wells are private wells 

and used for domestic purposes only. 
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Figure 3.6 illustrates twenty four open wells and their location within 

microwatershed. Table.3.1 presents the well inventory details of all open wells in the 

study area. The second set of data i.e. meteorological parameters such as rainfall, 

temperature, evaporation, relative humidity, wind speed, and wind direction on daily 

basis are obtained from nearby Indian Meteorological Station (IMD) Panambur station, 

Karnataka, for the period of 2004 to 2011. The secondary work has been carried out to 

see the Influence of meteorological variables on groundwater level in the study area. The 

measured groundwater level with respect to ground surface is converted into mean sea 

level (MSL) using Differential Geographical positioning system (DGPS) survey in the 

study area. The Latitude and Longitude of the well points are indentified and details of 

location of wells are presented in Table.3.2 
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Figure 3.6 Location of monitoring open wells in the study area  
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Table 3.2 Well information (Well inventory data showing the details of open wells in the study area) 

Sl. 

No 

Well 

number 

Location 

of the 

well 

Diameter 

of well 

(m) 

Total 

depth 

of well 

(m) 

Elevation 

(m) 

Well 

Bottom 

Elevation in 

m (MSL) 

Latitude 

 
Longitude 

Location/Land 

use/Land cover 

changes 

1 DW1 NITK 5.00 9.20 8.08 -1.113 13
o
00'24" 74

o
47'44" 

Built up area  

(low lying area) 

2 SW2 Padre 1.80 9.35 10.04 0.697 13
o
01'06" 74

o
47'59" 

Thick vegetation (semi 

forest low lying area) 

3 DW3 Padre 2.12 9.40 6.16 -3.240 13
o
01'15" 74

o
47'56" 

Paddy fields  

(low lying area) 

4 SW4 Padre 2.40 7.54 8.13 0.068 13
o
01'10" 74

o
47'56" 

Paddy fields  

(low lying area) 

5 DW5 Padre 2.40 15.50 11.18 -2.220 13
o
01'13" 74

o
47'53" 

Paddy fields  

(low lying area) 

6 SW6 Mukka 2.00 4.30 4.43 0.105 13
o
01'24" 74

o
47'36" 

Thick vegetation, 

 Close to stream  

(low lying area) 

7 DW7 Mukka 2.60 11.60 13.40 1.808 13
o
01'26" 74

o
47'28" 

Thick vegetation  

(low lying area),  

Close to stream 

8 SW8 Mukka 2.00 4.95 4.83 -0.117 13
o
01'43" 74

o
47'35" 

Close to stream  

(low lying area) 
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9 DW11 Chelairu 2.40 14.80 27.42 12.625 13
o
01'27" 74

o
48'22" 

Close to bore wells 

Built up area (up land) 

10 DW9 Chelairu 2.40 9.73 13.61 3.880 13
o
01'56" 74

o
47'51" 

Close to bore wells 

Built up area (up land) 

 

11 DW10 Chelairu 2.40 9.35 8.95 -0.399 13
o
01'54" 74

o
48'14" 

Close to bore wells 

Built up area (up land) 

12 SW13 Krishnapur 2.75 8.71 24.76 16.050 13
o
00'05" 74

o
49'21" 

 

Built up area (mid land) 

13 SW12 Krishnapur 2.75 9.51 26.09 16.587 12
o
59'52" 74

o
49'30" 

 

Built up area (mid land) 

14 DW14 Katipalla 3.10 9.80 28.39 18.592 12
o
59'51" 74

o
49'51" 

Thick vegetation, 

Close to stream 

(low lying area) 

15 SW15 Katipalla 2.20 7.90 22.49 14.595 12
o
59'36" 74

o
49'40" 

Thick vegetation 

Close to stream 

(low lying area) 

16 DW16 Katipalla 1.34 12.94 30.73 17.795 12
o
59'19" 74

o
49'26" 

Thick vegetation 

Close to stream 

(low lying area) 
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17 DW17 Katipalla 2.66 9.60 27.09 17.493 12
o
59'29" 74

o
49'34" 

Thick vegetation 

Close to stream 

(low lying area) 

18 SW18 Katipalla 2.65 8.50 38.02 29.529 12
o
59'39" 74

o
49'55" 

Thick vegetation 

Close to stream 

(low lying area) 

19 SW19 Kana 2.33 9.00 25.02 16.022 12
o
59'06" 74

o
49'26" 

Built up area  

(mid land), Well with 

R.C.C rings 

20 DW21 Edya 2.40 15.18 24.99 9.810 12
o
59'06" 74

o
48'31" 

Built up area  

(mid land), Deep wells 

with RCC rings 

21 DW20 Katla 2.68 15.7 24.84 9.142 12
o
59'05" 74

o
48'31" 

Sparse vegetation 

Nearby to stream 

22 SW22 Munchuru 2.40 7.48 9.30 0.748 13
o
00'27" 74

o
47'57" 

Build up area (up land) 

 

23 DW23 NITK 5.78 11.02 11.20 0.186 13
o
00'56" 74

o
47'36" 

Thick forest 

Low lying area 

 

24 SW24 Munchuru 2.40 5.80 6.50 0.70 13
o
00'26" 74

o
47'47" 

Build up area (up land) 
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3.4 Measurement of groundwater level 

Water table depth is the vertical distance from ground surface to the water table. 

Monitoring of open wells were carried out with the help of water level meter named 

dipper-T (graded tape) which gives both light and sound signals when it touches the 

initial level of water in the open well, with an accuracy of ± 2mm. The ground water 

level was recorded when the water level is in almost in stable condition such that water 

table fluctuation errors and recording time can be minimised. Water Level Meters are 

portable hand operated meters, sturdy, easy to use and read accurately to 1/100 ft. or each 

millimetre as shown Figure 3.7. 

 

Figure 3.7 Groundwater level measuring instrument-Dipper-T 

 

3.5 Types of open wells 

The open wells are categorized into two types for the purpose of analysis based on 

their topographical location and overall depth of open wells. The first type of wells 
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located in the topographic low area is considered as shallow wells. The depths of these 

wells are in the range of 4m to 9m from the ground surface. The slope of the terrain is 

mild. These wells show a quick response to the sudden variation in the rainfall compared 

to those wells in the topographic high region. Altogether 10 wells have been identified as 

shallow wells 

The second type of wells located in topographic high areas with steep slopes is 

generally deep wells. Majority of these wells dry up later part of summer months. The 

depths of these wells are in the range of 9m to 17m. These wells respond relatively slow 

with the variation in rainfall. 14 wells are identified as deep wells. 

3.6 Classification and selection of representative monitoring wells 

Classification of monitoring was selected based on the type of land use/cover as 

shown in Appendix - 1 (Plate 2 to 5). Lateritic block rings well and well with RCC rings 

are shown in Appendix - 1 (Plate 2). Wells with Lateritic block rings and well with RCC 

rings were studied in the study area. It is observed that the water level is retains longer 

time in wells which is constructed with lateritic blocks than that of wells with RCC rings. 

Wells located in the different fields are shown in Appendix - 1 (Plate 3). It is clear that 

effect of watering to the crop has direct influence on the water table. Few wells are 

located in built up area as shown in Appendix - 1 (Plate 4). It is observed in these type of 

well water is declines gradually after monsoon season. Shallow wells and deep wells are 

shown in Appendix - 1 (Plate 5). It is observed the water table in the shallow wells rose 

as the rainfall continues for the longer time and vice versa. However, these shallows well 

dried up during summer season. In the case of deep well atleast few meters of water table 

is available when compared to shallow wells. Moreover, deep are more prone to 

saltwater intrusion in coastal areas. Classification of monitoring wells based on different 

type of land use/cover and the details of well no are presented in Table.3.3.  
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Table 3.3 Classification of monitoring wells based on different type of land use/cover 

Station name/ 

representative 

well 

Well no Land use/cover type 

Padre 
SW2, DW3, SW4, 

DW5 

Within paddy fields, (semi 

forest, low lying area) 

Mukka SW6,DW7,SW8 
Sparse vegetative cover,  

Close to stream 

Chelairu DW9, DW10, DW11, 
Built up area 

Close to bore wells 

Katipalla 
DW14, SW15 DW16, 

DW17, SW18 

Sparse vegetative cover Close 

to stream 

Krishnapura SW12, SW13 Built up area, mid land 

Kana SW19 
Built up area  

Well with R.C.C rings 

Edya DW21 

Deep wells with RCC rings, 

Sparse vegetation 

Nearby to stream 

Katla DW20 

Deep wells, Build up area, 

Sparse vegetation, Nearby to 

stream 

 Munchuru DW22, SW24 
Build up area, away from 

stream 

NITK DW1, DW23 
Thick forest and low lying 

area 
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3.7 Data Division/Pattern/Compilation 

For the present work, weekly time series groundwater level data were used for 

a span of almost eight years (March 2004 up to Dec 2011). Groundwater level data 

were obtained by monitoring the open wells at different locations as mentioned in 

earlier section. The initial 70% of total available data were used for training 

(calibration) of the models as a first part and the remaining 30% of total data were 

used for testing (validation) of the models as a second part. The training data set has 

been selected in such a way that it includes both wet and dry periods along with 

transition period (from wet to dry and dry to wet). The water year starts from first 

week of June to next year May. The MATLAB 9.2 version is used for the analysis. 

3.8 Overview of Research Methodology Adopted 

The overview of research methodology adopted in the study are shown in Figure 3.8. 

 

Figure 3.8 Flow chart of research methodology 
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3.8.1 Feed-forward back propagation-Levenberg-Marquardt (FFBP-LM) 

Here, the Feedforward Backpropagation (FFBP) neural network was trained 

using Levenberg-Marquardt (LM) technique because it is more powerful and faster 

than the conventional gradient descent technique (Hagan and Menhaj; 1994; Kisi, 

2007). The LM algorithm was designed to approach second order training speed 

without having to compute the Hessian matrix (More, 1977). The Levenberg-

Marquardt method is a standard technique used to solve nonlinear least squares 

problems. Nonlinear least squares problems arise when the function is not linear in 

the parameters. Nonlinear least squares methods involve an iterative improvement to 

parameter values in order to reduce the sum of the squares of the errors between the 

function and the measured data points. It has become a standard technique for 

nonlinear least-squares problems and can be thought of as a combination of two 

minimization methods steepest gradient descent and the Gauss-Newton method. The 

Levenberg-Marquardt curve-fitting method is actually a combination of two 

minimization methods: the gradient descent method and the Gauss-Newton method. 

The performance function will always be reduced at each iteration of the algorithm. 

The application of LM to neural network training is described in Hagan and Menhaj 

(1994). Schematic diagram of feedforward neural network are shown in Figure 3.9.  

 

Figure 3.9 schematic diagram of feedforward neural network 
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The Feedforward back propogation algorithm (FFBP) has widely used in 

hydrology because of its simplicity, robustness and the advent of error back 

propagating. Basically this algorithm consists of two phases. In the forward pass the 

input signals propagate from the network input to the output. In the backward or 

reverse pass, the calculated error signals propagate backward through the network, 

where these are used to adjust the weights. Because of this reason several researchers 

have tried with back propogation for forecasting purposes. FFBP can be found in 

detail manner (Haykin 1999). 

3.8.2 Radial Basis Function (RBF) 

A radial basis function (RBF) is a special type of neural network that utilizes 

the radial basis function as its activation function. RBF networks becoming very 

popular and used for function approximation, curve fitting, time series prediction, 

control and classification problems (Park and Sanderg. 1991). The basic architecture 

of a three layered RBF neural network is shown in Figure 3.10. A RBFNN is 

composed of three layers similar to Feedforward BackPropagation (FFBP) namely 

input layer, hidden layer or radial basis layer and output layer or linear layer (Affandi, 

2007). Here, Input to hidden layer of an RBF is nonlinear, whereas the hidden to 

output layer is linear. Each layer is consists of large number of simple and highly 

interconnected artificial neurons. The argument of the activation function of each 

hidden unit in a RBFNN computes the Euclidean distance between the input vector 

and the center of hidden unit in the network (Chen, 2010; Ghose et al., 2010). The 

architecture and training algorithms for radial basis function networks (RBF) are 

simple and clear. 
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Figure 3.10 Basic architecture of RBFNN 

The input data Z is a P-dimensional vector, Z=(z1 , z2 , ... ,zP)
T
. In the 

structure of RBFN, the input layer serves only as input distributor to the hidden layer. 

The dimensionality of hidden units is the same as that of the input data. The response 

from the j
th

 hidden unit for the i
th

 input data zi has the following form: 

 

Where ‖ ‖ denotes the Euclidean norm cj is the center of the j
th

 unit in the 

hidden layer,  () is the activation function, and m is the number of hidden units. In 

the structure of RBFN, the activation function of hidden units is symmetric in the 

input space, and the output of each hidden unit depends only on the Euclidean 

distance between the input vector and the center of the hidden unit. There are various 

types of functions can be used such as Gaussian, multiquadratic, inverse 

multiquadratic and Cauchy. Among these functions Gaussian, G, is the most popular 

and widely used in RBF networks. (ASCE Task Committee 2000; Govindaraju and 
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Rao 2000; Lin and Chen 2005) In the present research work, a Gaussian basis 

function was used for the hidden units given as Zj for j=1, 2, 3,…..J, 

Where  

Where σj is width of the network and can be calculated by Eq (3)  

 

Where dmax is the maximum distance between the centers of hidden units 

The activity of the r
th

 unit in the output layer can be obtained from Eq (4) 

 

where r = 1,2,3,0…………NR,   is the response of the qth hidden unit 

resulting from all input data, wqr is the connection weight between the q
th

 hidden unit 

and the r
th

 output unit, wo is the bias term, and NR is the number of output units. In the 

present study, least square method is used to estimate the weight after fixing the 

centers and width of hidden units as discussed by Lin and Chen (2005); Chen et al., 

(2010). For RBFNN, the critical parameter for optimal performance is the setting of 

radial basis spread. Usually, the larger spread value is resulting smoother function 

approximation. For too large spread, many neurons will be required to fit a fast 

changing function. Also, for small spread, the network will not be generalized. In this 

study, a set of trial and error of spread valued has been worked out to obtain optimal 

result for best network. 
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3.8.3 Generalized Regression Neural Network (GRNN) 

General regression neural networks are fast, simple and clear models. They are 

based on a well elaborated mathematical background - multivariate kernel regression 

methods, which have long successful statistical history. The resultant GRNN model is 

simpler, more accurate and faster compared to the work in FFBP (Caputo et.al, 2009). 

GRNN is a one-pass learning algorithm with a highly parallel structure. Even with 

sparse data in a multidimensional measurement space, the GRNN algorithm provides 

smooth transitions from one observed value to another (Specht, 1991).  

The principal advantages of GRNN are fast learning and convergence to the 

optimal regression surface as the number of samples becomes very large. GRNN is 

particularly advantageous with sparse data in a real time environment, because the 

regression surface is instantly defined everywhere, even with just one sample 

(Specht.D, 1991). Since GRNN always estimates using a nonlinearly weighted 

average of the given samples, the estimates are always within the observed range of 

the dependent variable. GRNN can be treated as a normalised radial basis function 

network in which there is a hidden unit centered at every training case. By definition, 

the regression of a dependent variable Y on an independent X estimates the most 

probable value of Y with a minimised root mean squared error. GRNN is a method 

for estimating the joint probability density function of X and Y, given only training 

set. Because the probability density function is derived from the data with no pre 

conceptions about its form, the system is perfectly general (Wang et al, 2009). The 

success of the GRNN depends on the selection of the appropriate smoothing factors 

(Wasserman, 1993). 

In the literature, the fundamentals of the GRNN can be obtained from Specht, 

(1991); Schioler and Hartmann (1992); Tsoukalas and Uhrig, (1997). A diagrammatic 

of the GRNN is depicted in Figure.3.11.  
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Figure 3.11 General Structure of a General regression neural network 

A general regression neural network (GRNN) does not require an iterative 

training procedure. It can approximate any arbitrary function between input and 

output vectors, drawing the function estimate directly from the training data. 

Furthermore, it is consistent; that is, as the training set size becomes large, the 

estimation error approaches zero, with only mild restrictions on the function. The 

GRNN is used for estimation of continuous variables, as in standard regression 

techniques. General regression neural network (GRNN)  is a memory-based network  

that provides estimates of continuous  variables  and  converges  to  the  underlying  

(linear  or  nonlinear)  regression  surface  (Specht,1991). 

The GRNN architecture was selected in this study is due to the fast learning 

and convergence to the optimal regression surface. In general, GRNN is a method for 

estimation f(x, y) using only a training set. In GRNN, the probability density function 

is derived from the training data with no pre conceptions about its form makes the 

system perfectly general. Even there is no problem if the functions are composed of 

multiple disjoint non-Gaussian regions in any number of dimensions, as well as those 

of simpler distributions (Wasserman, 1993). 

The generalization of the GRNN is controlled by the use of smoothing factor, 

σ. Higher the smoothing factors close to 1 will straighten the path of the prediction 

line.  
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On the other hand, low smoothing factor such as approaching 0 creates dot to 

dot map. High smoothing factor increases the network’s ability to generalize as well 

as may degrade the error of prediction. In the similar way, low smoothing factor 

usually degrades the network’s ability to generalize but make predictions at all (Kisi, 

2006). Hence, a range of smoothing factors and procedure for finalizing smoothing 

factors are checked in this study for optimal smoothing factor for various input 

scenarios. 

The GRNN is consists of four layers namely Input layer, pattern layer, 

summation layer, and output layer as shown in the Figure 3.11. All the four layers are 

connected each other only in forward direction. The input layer I is fully connected to 

the pattern layer. In the pattern layer, each unit symbolizes a training pattern and it 

output measures the distance of the input from the stored pattern. This pattern layer is 

connected to the summation layer and also the pattern layer is linked to the two 

neurons in the summation layer namely S-summation neuron S(x) and D-summation 

neuron D(x). The summation neuron calculates the sum of the weighted output in the 

pattern layer. D-summation neuron calculates the un-weighted output in the pattern 

layer and is represented by yi; the target output value reciprocal to the i
th

 input pattern. 

The linkage weight for D-summation considered as one. Finally the summation layer 

is connected to the output layer. The output layer divides the output of each S-

summation neuron by the output of each D-summation neuron, supplying the 

predicted value to an unknown input vector ŷ  
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3.8.4 Data Standardization/Preprocessing 

In the present work, the data are normalized between 0.1 and 0.9 to ensure that 

each input is represented in the network training as wells as different kinds of input 

quantities are normalized in the same scale. Normalization of data with certain 

uniform range is necessary because to prevent larger numbers from overriding 

smaller ones, and to prevent premature saturation of hidden nodes, which impedes the 

learning process (Jiang et al., 2008). This is suitable when the actual input data take 

large values. There is no single standard procedure for normalization method for 

inputs and outputs. Before modeling it is suggested that the data can be normalized 

slightly offset values such as 0.1 and 0.9 (Basheer and Hajmeer, 2000; Ghose et al., 

2010). After modeling, the final forecast results were then back transformed by 

reversing calculation using equation (7). The normalization of data is as follows  

 

Where X is the actual value, Xmax is the maximum value, Xmin is the minimum value 

of X and Y is the normalized value corresponding to X 

3.8.5 Nonlinear Autoregressive with Exogenous Variable (NARX) 

One of the most convenient model forms for prediction purposes is the 

nonlinear autoregressive model with exogenous variables (NARX) (Leontaritis and 

Billings, 1985a, b). NARX is a general formulation where the current output value is 

made dependent on the past values of the input and output signals through a suitable 

nonlinear static function. NARX models (Leontaritis and Billings, 1985a) are the 

non-linear generalization of the well-known ARX models, which constitute a 

standard tool in linear black-box model identification.  

A NARX models is formulated as a discrete time input/output recursive Eq 8 such as,  

Y(t) =f(y(t-1),…..y(t-ny),  u(t-1),…..u (t-nu)) ………………..………………..Eq (8)  
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Where  u(t),  y(t)  is  the model  input  and output,  ny,  nu  are  the  respective 

maximum lags,  generally  assumed  Gaussian  and white. 

3.8.6 Model Evaluation Criteria  

Root Mean Squared Error (RMSE) indicates the discrepancy between the 

observed and calculated values. It is used by researchers in order to evaluate the 

effectiveness of each network in its ability to make precise predictions. The lower the 

RMSE, the more accurate is the prediction. The best fit between observed and 

calculated values, which is unlikely to occur, would have and RMSE as 0. On the 

other hand, Coefficient of Efficiency (C.E) is used to check the model performance 

above average or below the observed data. Higher CE value (approaching one) 

reveals better predicting ability. In this study, following performance indices are 

used. The correlation coefficient (Cc) is a commonly used statistic and provides 

information on the strength of linear relationship between the observed and the 

computed values. General procedure for the development of a model using RBF and 

GRNN are shown in Figure 3.12 and Figure 3.13. 

1. Coefficient of Efficiency,     

        
       

    ………………………………………….… …..Eq (9) 

2. Root Mean Square Error,    

 

N

YX

RMSE

N

1i

2






 ………………………………………..….…..… Eq (10) 

3. Correlation Coefficient 

     
             

                           
 ………………..………..Eq (11) 
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Where, X=observed values, Y=predicted values, N = total number of values and x = 

X-Xmean.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.12 Flow chart for the development of RBF model 
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Figure 3.13 Flow chart for the development of GRNN model
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CHAPTER – 4  

RESULTS AND DISCUSSIONS 

4.1. Introduction  

In the present chapter the results are discussed based on the various models 

developed for groundwater level forecasting at southwest coast of Dakshina Kannada, 

India. Weekly time series groundwater level data for a period of eight years (2004-2011) 

has been used for groundwater level forecasting. Groundwater level forecasting has been 

carried out using different Artificial Neural Networks (ANN) such as RBF, GRNN are 

adopted in the study and their performance are compared with FFBP, NARX. 

This chapter consists of four different themes and are discussed under different 

sections such as 

1. Development of RBF model for GWL forecasting using time series  

2. Performance evaluation of RBF model for more forecasting horizon using time series  

3. Development of GRNN models for GWL forecasting using time series  

4. Applicability of GRNN model in Cause and effect relationship   

 

4.2. Development of RBF model for GWL forecasting using time series  

4.2.1. Introduction 

In this first work, the potential and applicability of Radial Basis Function (RBF) 

was investigated for forecasting groundwater level. The main objective of the present 

study is to forecast the weekly groundwater level forecasting for different lead times and 

also evaluate the performances of RBF and FFBP. Various models were developed for 

two time-step lead time forecasting. Weekly time series groundwater level data has been 

used as input and the analysis has been carried out separately for three open wells located 
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at different land use and land cover. The effectiveness of the developed models and its 

capability to make more accurate predictions was assessed based on Root mean square 

error (RMSE) and correlation coefficient (Cc). 

4.2.2. Selection of representative open wells 

The selections of monitoring of three representative open wells were based on their 

geological formations and various land use and land cover. The details of three wells are 

presented in Table 4.1. The model input and output structure of the groundwater level 

forecasting are presented in Table.4.2 

Table.4.1 Description of observation wells 

Well No Location Diameter (m) Depth (m) Remarks 

SW4 Padre 2.40 7.54 
Within paddy fields 

Low lying area 

SW6 Mukka 2.00 4.33 
Close to stream  

sparse vegetation 

SW24 Munchuru 2.40 5.80 

Built up area  

away from first order stream 

in Munchuru. 

 

 

4.2.3. Selection of Inputs for model development 

The determination of significant input variables is one of major steps in the process 

of model development. Normally, all the potential input variables may not be uniformly 

influential since some may be correlated, noisy or have no significant relationship with 

output variable being modeled Maier and Dandy, 2000. Usually, some priori knowledge 

is used to specify the initial set of inputs (e.g. Thirumalaiah and Deo, 2000). However, it 

depends on expert’s knowledge and hence it is very subjective and case dependent. 

Again, cross-correlation is often used as analytical techniques when the input-output 
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mapping not fully understood (e.g. Sajikumar and Thandaveswara, 1999, Sudheer et al. 

2002). Here also, a major difficulty associated in using cross correlation is that it is 

capable of detecting only linear dependences between two variables. In case of non-linear 

dependence between input and output, cross-correlation may not be effective and 

possibility exists in omission of influencing inputs. (Maier and Dandy, 1997) preferred a 

combination of a priori knowledge and analytical approaches for determining appropriate 

inputs and lags of inputs. Various input scenarios has been tried to obtain the optimal 

results for forecasting groundwater level using water level with various lag period are 

presented in Table 4.2.  

For RBF models, proper spread values and optimal number of hidden nodes were 

determined by trial and error method as there are no specific guidelines available to 

assign this value. Here, number of trials has been carried out to optimize the best network 

within a range of 1 to 5. The optimal spread constant was found as 4 which was used for 

various input scenarios along with other internal parameters in the RBF network 

structure. The FFBP  models has been developed using same input scenarios by altering 

the hidden neurons keeping learning rate and momentum coefficient are kept constant.. 

 

Table.4.2 Model Input and Output structure of the groundwater level forecasting 

Sl. No Input structure Output Output Output 

Model (s) GWL time series data SW4 SW6 SW24 

Model 1 w(t-1) w(t), Wt+1 w(t), Wt+1, w(t), Wt+1 

Model 2 w(t-1) and w(t-2), w(t), , Wt+1 w(t), , Wt+1 w(t), , Wt+1 

Model 3 w(t-1, w(t-2 and wt-3), w(t), , Wt+1 w(t), , Wt+1 w(t), , Wt+1 

Model 4 w(t-1), w(t-2), w(t-3) and w(t-4) w(t), , Wt+1 w(t), , Wt+1 w(t), , Wt+1 

Wt-1, Wt-2, Wt-3 and Wt-4 represent one, two, three and four previous weekly groundwater level and Wt, Wt,+1 are one and two time 

step lead time    
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4.2.4. Results and Discussions 

All the training and testing results are presented in the Table.4.3. From the Table 4.3, 

it appears clearly that RBF forecasting performance was better than FFBP considering 

RMSE and Cc. As the leadtime increases, the FFBP performances decreases drastically 

compared to RBF. The correlation coefficient for RBF are very much satisfactory both in 

training and in testing. The RBF network seems to learned the groundwater level 

fluctuations behavior very effectively than FFBP and forecasting accuracy has been 

improved significantly due to the use of Gaussian function with optimized spread 

parameters. FFBP performance also with acceptable accuracy for 2
nd

  week ahead, it is 

better than RBF for SW$ and SW24 in testing considering Cc. 

Table.4.3 Model Performance during training and testing for FFBP and RBF 

Well 

No 

Lead time 

(weeks) 

Training Testing 

RMSE (m) Cc RMSE (m) Cc 

RBF FFBP RBF FFBP RBF FFBP RBF FFBP 

SW4 

1 week ahead 0.66 1.56 0.93 0.62 0.79 1.31 0.92 0.83 

2 week ahead 1.06 5.06 0.82 0.54 1.14 4.26 0.84 0.87 

SW6 

1 week ahead 0.18 0.38 0.97 0.92 0.19 0.34 0.94 0.87 

2 week ahead 0.30 1.46 0.93 0.83 0.27 1.60 0.88 0.86 

SW24 

1 week ahead 0.27 1.04 0.95 0.87 0.30 1.01 0.85 0.82 

2 week ahead 0.41 1.06 0.90 0.70 0.39 0.82 0.70 0.84 
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Figure. 4.1 shows the RBF model performance graphically and scatter plots 

between observed and predicted value one week lead time for SW4. The RBF model 

captures the pattern during the dry season but significant shifting during wet season. The 

scatter plots are more or less linearly placed representing unbiasness and systematic error 

in the RBF model as shown in Figure.4.2. The RBF model performed similarly for SW6 

also as model partially capture the trend during wet season as shown in Figure.4.3. The 

scatter plot for SW6 station looks to be within accepted accuracy of the RBF model 

performance as shown in Figure.4.4. Figure.4.5 shows the RBF model performance for 

SW24. Here, the RBF model very closely follows the observed groundwater level with 

insignificant shifting during wet season. The scatter plot for SW24 shown in Figure.4.6 

where, points are very densely placed.  As the week progresses, the RBF model output 

closely followed the observed pattern of GWL both during low level and high level.  

 

Figure.4.1. Time series plot for SW4 during testing for one week time step ahead 
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Figure.4.2. Scatter plot for SW4 during testing for one week time step ahead 

 

Figure.4.3 Time series plot for SW6 during testing for one week time step ahead 
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Figure.4.4 Time series plot for SW6 during testing for one week time step ahead 

 

Figure.4.5. Time series plot for SW24 during testing for one week time step ahead 
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Figure.4.6. Scatter plot for SW24 during testing for one week time step ahead 

4.2.5. Summary  

In the present work, the potential and applicability of RBF in groundwater level 

forecasting has been investigated and found satisfactory performance. To assess the 

forecasting accuracy of RBF model results were compared with general FFBP model. All 

the three well stations are different statistical characteristics which are well understood by 

RBF model as revealed by the analysis. It has been observed that for all the three open 

wells, the higher and consistent performance for RBF network for one week lead time 

and decaying performance for FFBP network model. The obtained results show that the 

RBFNN performed better compared to FFBP models considering two performance 

indices such as Root mean squared error (RMSE) and Correlation coefficient (Cc). The 

model results clearly reveals that RBF network have the potential in forecasting ground 

water level efficiently for multistep lead time can be used as an effective tool for weekly 

groundwater level forecasting. 
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4.3. Performance evaluation of RBF model for more forecasting horizon using time 

series 

After confirming the suitability of RBF in GWL forecasting and with better accuracy 

over FFBP, the work has been extended further to consolidate the applicability of RBF in 

multistep leadtime forecasting upto six week ahead. In this study, in addition to the 

earlier work the additional three representative wells are selected for the analysis. The 

time series GWL data are used for development of RBF models for six different input 

combinations using lagged time series data. Outputs are the predicted GWL upto six 

week. The optimized spread parameter (obtained in first study) 4 is used for development 

of RBF model by varying hidden neurons in a similar manner to earlier study. The details 

of six representative open wells are presented in Table 4.4. All these six wells are private 

wells and used for drinking and domestic purposes only. To compare the predicting 

performance of RBF models in multistep lead time, another regression model such as 

NARX also developed in the study. 

Table.4.4 Description of observation wells under current study 

Well No Location 

Well 

Diameter 

(m) 

Total 

Depth 

(m) 

Remarks 

DW5 Padre 2.40 15.50 Within Paddy Fields,  

SW4  Padre 2.40 7.54 Within Paddy Fields,  

SW6 Mukka 2.00 4.33 Close to stream 

SW8 Mukka 2.00 4.95 Close to stream 

SW22 Munchuru 2.40 7.48 Built up area and away from stream 

SW24 Munchuru 2.40 5.80 Built up area and away from stream 

 

The available data is divided into two sets, for training calibration and testing or 

validation. The training data set has been selected in such a way that it includes both wet 

and dry periods along with transition period (from wet to dry and dry to wet) so as to 
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provide satisfactory learning to the network. The water year starts from first week of June 

to next year May with almost negligible rainy period from November to next May month. 

Therefore, testing data are kept in time series from June onwards to evaluate the model 

performance in critical time periods (both wet and dry). The statistical parameters such as 

minimum value and maximum value, mean and standard deviation for both training and 

testing data sets are computed and presented in Table 4.5. For DW5, groundwater level 

fluctuation is very high and standard deviation also reveals the sparsely location of data 

points. Also, it is appears that for SW4, water level fluctuation and standard deviation are 

moderate compared to DW5. One of the reason is that both the DW5 and SW4 are 

located in paddy fields and there may be water logging conditions during wet period. For 

the remaining wells groundwater level fluctuations are minimal with lower standard 

deviation value as data points are closed spaced. 

Table.4.5 Statistical analysis of observed data (gwl) for all the six open wells 

Well 

No 

Training Testing 

Min (m) Max (m) Mean (m) St.dv Min (m) Max (m) Mean (m) St.dv 

DW5 4.93 12.25 9.99 1.87 5.07 12.48 8.83 2.17 

SW4  1.70 6.52 4.48 1.24 1.90 6.65 3.70 1.29 

SW6 0.30 3.33 1.50 0.88 0.30 3.25 1.22 0.65 

SW8 0.90 3.65 2.05 0.84 0.91 3.56 1.83 0.68 

SW22 2.64 5.50 3.98 0.82 2.77 5.45 3.72 0.58 

SW24 0.73 4.45 2.19 0.96 0.84 4.15 1.85 0.63 

 

4.3.1. Selection of Inputs for Multiple input scenario 

For development of both RBF and NARX models, various input scenarios has been 

tried to obtain the optimal results for forecasting groundwater level using water level with 
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various lag period are presented in Table 4.6. The optimal input scenarios were found for 

4 input combinations for all the wells.  

Table.4.6 Description of Model Inputs and outputs 

Model Inputs Outputs 

Wt-1, Wt, Wt+1, Wt+2, Wt+3,Wt+4, Wt+5, 

Wt-1, Wt-2 Wt, Wt+1, Wt+2, Wt+3,Wt+4, Wt+5, 

Wt-1, Wt-2, Wt-3 Wt, Wt+1, Wt+2, Wt+3,Wt+4, Wt+5, 

Wt-1, Wt-2, Wt-3, Wt-4 Wt, Wt+1, Wt+2, Wt+3,Wt+4, Wt+5, 

Wt-1, Wt-2, Wt-3, Wt-4, Wt-5, Wt, Wt+1, Wt+2, Wt+3,Wt+4, Wt+5, 

Wt-1, Wt-2, Wt-3, Wt-4, Wt-5, Wt-6 Wt, Wt+1, Wt+2, Wt+3,Wt+4, Wt+5, 

Note: Wt-1, Wt-2, Wt-3, Wt-4, Wt-5, Wt-6 are the lag time groundwater level, 

 Wt, Wt+1, Wt+2, Wt+3,Wt+4, Wt+5, are forecasted groundwater level from one week to six week ahead 

 

4.3.2. Results and discussion 

The best results which are obtained for 4input combinations are presented in Table 

4.7 and Table 4.8, Table 4.9, Table 4.10, Table 4.11 and Table 4.12 for all the six wells. 

In general, for all the wells, RBF model performance is better than NARX model 

considering the performances indices RMSE and Cc. Also, RBF was better during 

various lead time forecasting than NARX. These results indicate that potential of RBFNN 

in forecasting groundwater level from one week lead time to six week lead time. 

However, for water management in the aquifer, one week lead time forecasting may be 

sufficient, but for efficient planning of conjunctive use, higher lead time forecasting of 

groundwater table are required. The performances of RBF and NARX models has been 

analyzed and discussed based on lead time and location of well in the following section. 

DW5 and SW 4 

The consistent performance of RBF model was reflected both in training and as well 

as in testing. For the DW5, the RMSE of RBF is very small such as 0.02m considering 
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one week leadtime as appears in the Table 4.7 which can be accepted as very much 

satisfactory. Similarly, correlation coefficient remains consistent in training and as well 

as in testing which is very close to1for RBF model as presented in Table 4.7.On the other 

hand, the RMSE of NARX are very high such as 0.098m and 1.22m during training and 

testing respectively for one week lead time (Table 4.7). Even upto sixth week leadtime 

also, RBF is consistent in terms of Correlation coefficient both in training and testing 

which is 0.99. The NARX model performance was inconsistent for various leadtime with 

a variation of correlation coefficient from 0.84 to 0.79 in testing. It is also noticeable that 

the performance of NARX model is fluctuating from training to testing considering both 

correlation coefficient and RMSE indices as presented in Table 4.7. Figure. 4.7 shows the 

performance of RBF and NARX for one to six week lead time. Also, scatter plots 

between observed between predicting groundwater levels are shown in Figure. 4.7 

For  SW4, which  is  also  located  in  the similar land use and land cover, the trend of 

RBF model results are appeared  in a similar fashion  as  presented  in  Table 4.8. Here  

also, RMSE  is  very  small  for  one week  lead  time such as 0.07m for RBF model and 

also Cc is very  much  close to 1. The NARX model performance was poor and 

constantly declining for both training and testing. Figure.4.8 shows the model 

performance of RBF and NARX during testing for one to six week lead time. Also, 

scatter plots between RBF and observed values for SW4 during testing are shown in 

Figure.4.8. RBF is in close agreement with observed value during rainy season (wet 

period) as well as non monsoon season (dry period). But NARX is deviating from the 

observed value during wet period (0 week to 20 week). Similar trend is observed upto six 

week lead time (Figure.4.8). From the scatter plot of Figure.4.8, it appears that RBF 

model is unbiased and only little systematic error is observed for all the lead time. 
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Table.4.7 Comparison of model performance for DW5 

Lead 

Time 

(week) 

Training  Testing 

RMSE (m) Cc RMSE (m) Cc 

RBF NARX RBF NARX RBF NARX RBF NARX 

1 0.02 0.98 0.99 0.86 0.02 1.22 0.99 0.84 

2 0.00 1.25 0.99 0.76 0.00 1.27 0.99 0.80 

3 0.02 1.10 0.99 0.82 0.02 1.13 0.99 0.84 

4 0.04 1.12 0.99 0.82 0.04 1.12 0.99 0.84 

5 0.02 1.26 0.99 0.78 0.01 1.15 0.99 0.85 

6 0.03 1.34 0.99 0.76 0.03 1.23 0.99 0.79 

 

Table.4.8 Comparison of model performance for SW4 

Lead 

Time 

(week) 

Training Testing 

RMSE (m) Cc RMSE (m) Cc 

RBF NARX RBF NARX RBF NARX RBF NARX 

1 0.00 0.46 0.99 0.92 0.08 0.58 0.99 0.89 

2 0.03 0.53 0.99 0.90 0.02 0.60 0.99 0.88 

3 0.10 0.68 0.99 0.85 0.09 0.69 0.99 0.86 

4 0.12 0.65 0.99 0.85 0.11 0.56 0.99 0.90 

5 0.08 0.74 0.99 0.82 0.06 0.55 0.99 0.91 

6 0.12 0.75 0.99 0.81 0.11 0.90 0.99 0.76 
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Figure.4.7. Fourth Input scenario for multiple lead time forecasting for DW5 
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Figure.4.8. Fourth Input scenario for multiple lead time forecasting for SW4 
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SW6 and SW8 

The model results for SW6 and SW8, located close to stream and surrounded by 

sparse vegetation are presented in Table 4.9. In case of SW6, for one week lead time, 

correlation coefficient for RBF model is 0.99 both in training and testing whereas 

correlation coefficient of NARX carrying lower value and shows poor testing 

performance compared to training performance. The RMSE for RBF model changes 

almost linearly for higher lead time during training. Figure.4.9 shows model performance 

of RBF with scatter plots during testing from one week to six week lead time. For SW8, 

the RMSE for RBF is also very low such as 0.025m whereas NARX is carrying higher 

RMSE such as 0.13m during testing for one week lead time. The correlation coefficients 

for RBF are remaining almost same for all the lead time confirms the strong linear 

relationship between the observed value and RBF model value. The model performance 

of SW8 with scatter plot is shown in Figure. 4.10 during testing upto four week lead 

time. From the Figure.4.10, it is observed that RBF is closely following the observed 

value during wet period and both NARX and RBF performing similarly during dry period 

(beyond 20week). The groundwater level fluctuation for SW8 is almost gradual and the 

scatter plots between the RBF and observed value shows the consistent and unbiased 

performance. Here, the data variation is very small as well as standard deviation which 

clearly represents closely spaced data set both in training and testing data set. RBF is 

performing well here because there is no scope for extrapolation. 
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Table.4.9 Comparison of model performance for SW6 

Lead 

Time 

(week) 

Training Testing 

RMSE (m)  Cc RMSE (m) Cc 

RBF NARX RBF NARX RBF NARX RBF NARX 

1 0.03 0.21 0.99 0.97 0.03 0.45 0.99 0.87 

2 0.05 0.24 0.99 0.96 0.05 0.64 0.99 0.88 

3 0.07 0.31 0.99 0.93 0.07 0.78 0.99 0.83 

4 0.09 0.34 0.99 0.91 0.08 0.94 0.99 0.83 

5 0.10 0.41 0.99 0.87 0.07 1.15 0.98 0.80 

6 0.10 0.35 0.99 0.90 0.07 1.18 0.98 0.83 

 

Table.4.10 Comparison of model performance for SW8 

Lead 

Time 

(week) 

Training Testing 

RMSE (m) Cc RMSE (m) Cc 

RBF NARX RBF NARX RBF NARX RBF NARX 

1 0.03 0.22 0.99 0.96 0.02 0.13 0.99 0.97 

2 0.05 0.25 0.99 0.94 0.03 0.14 0.99 0.97 

3 0.07 0.26 0.99 0.94 0.03 0.18 0.99 0.96 

4 0.10 0.28 0.99 0.93 0.06 0.22 0.95 0.95 

5 0.07 0.37 0.95 0.89 0.05 0.20 0.97 0.96 

6 0.09 0.62 0.93 0.64 0.06 0.30 0.96 0.92 
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Figure.4.9. Fourth Input scenario for multiple lead time forecasting for SW6 
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Figure.4.10. Fourth Input scenario for multiple lead time forecasting for SW8 
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SW22 and SW24 

The Model results for SW22 and SW24 are presented in Table 4.11 and Table 

4.12. For SW22, RMSE for RBF is very small such as 0.02m for one week leadtime upto 

0.06m for sixth week lead time with linear gradual variation during testing. The RMSE 

for NARX Model changes from 0.23m to 0.54m during testing.  

Table.4.11 Comparison of model performance for SW22 

Lead 

Time 

(week) 

Training Testing 

RMSE (m) Cc RMSE (m) Cc 

RBF NARX RBF NARX RBF NARX RBF NARX 

1 0.01 0.24 0.99 0.95 0.02 0.23 0.99 0.93 

2 0.02 0.32 0.99 0.91 0.03 0.24 0.99 0.92 

3 0.02 0.32 0.99 0.91 0.03 0.22 0.99 0.94 

4 0.04 0.33 0.98 0.90 0.03 0.32 0.98 0.89 

5 0.06 0.48 0.97 0.79 0.04 0.38 0.97 0.84 

6 0.08 0.56 0.94 0.71 0.06 0.54 0.97 0.68 

Table.4.12 Comparison of model performance for SW24 

Lead 

Time 

(week) 

Training Testing 

RMSE (m) Cc RMSE (m) Cc 

RBF NARX RBF NARX RBF NARX RBF NARX 

1 0.02 0.32 0.99 0.93 0.02 0.15 0.99 0.96 

2 0.03 0.47 0.99 0.85 0.02 0.26 0.99 0.90 

3 0.04 0.42 0.98 0.87 0.03 0.35 0.98 0.86 

4 0.06 0.45 0.98 0.85 0.04 0.24 0.97 0.94 

5 0.06 0.45 0.97 0.85 0.05 0.32 0.97 0.90 

6 0.08 0.51 0.95 0.80 0.06 0.31 0.97 0.91 
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The correlation coefficient for RBF model is consistent such as 0.99 whereas 

NARX model correlation changes from 0.93 to 0.68 during testing. Similar trend is also 

observed in SW24 for both the models. 

 

Figure. 4.11 shows the model performance graphically and scatter plots between 

observed and predicted value upto fourth week lead time for SW22. The scatter plots are 

linearly placed representing unbiasness and systematic error in the RBF model. The wet 

period as well as dry period weekly behavior of observed groundwater level almost 

accurately followed by RBF model with a little variation from lower leadtime to higher 

leadtime as shown in Figure.4.11. The NARX model performing well during lower lead 

time but deviating sharply during higher lead time. similar pattern observed in 

Figure.4.12 for SW24. Since, both the SW22 and SW24 are located in built up area and 

also away from stream shows the gradual fluctuations of water level which was captured 

fully by RBF model may be due to smaller variation of water level data as well as low 

standard deviation of the training and as well as testing data set. Also, there may not be 

significant influence from rain during wet as the recharge rate may be very slow and 

might be taking longer duration to join well. This phenomenon may be further explored. 
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Figure.4.11. Fourth Input scenario for multiple lead time forecasting for SW24 
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Figure.4.12. Fourth Input scenario for multiple lead time forecasting for SW22 
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4.3.3. Summary:  

In the second work, RBFNN model has been developed for various spread 

parameters and the optimum structure is selected for six representative wells. Further, the 

model performance has been evaluated for mutli lead time forecasting from one week to 

six week lead time. It has been observed that for all the six wells, the higher and 

consistent performance for RBF network upto six week lead time and decaying 

performance for NARX network model. The advantage and robustness of RBFNN model 

has been checked and results are found quite satisfactory over the NARX model.  

 

4.4. Development of GRNN models for GWL forecasting using time series  

4.4.1. Introduction  

The focus of the current research paper is to investigate the potential of another 

recurrent networks such as GRNN networks to (1) Forecast the groundwater level using 

different input combinations of weekly time series groundwater level data, (2) Compare 

the performance of GRNN models to RBF and Levenberg Marquartz algorithm and (3) 

To select the best model among the various developed models. 

4.4.2. Selection of representative open wells 

The details of three representative open wells used in the study are presented in 

Table.4.13.  

Table.4.13 Details of observation wells for the current study 

Well No Type of well Location Diameter (m) Depth (m) Remarks 

SW4 Shallow well Padre 2.40 7.54 Within Paddy Fields 

SW6 Shallow well Mukka 2.00 4.30 Close to stream 

SW22 Shallow well Munchuru 2.40 7.48 Built up area 
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4.4.3. Model development 

4.4.4. Input structure 

Input selection was based on the statistical properties such as cross correlation has 

been adopted for the time series groundwater level (Coulibaly et al., 2000; Sudheer et al., 

2002; Nayak et al., 2006). Considering the persistence in time series data, the correlation 

coefficients between the input data and output data are calculated and presented in Table 

4.14. In general, among all the three wells, one week lag time showing the higher 

correlation and four week lag time shows the lower correlation in all the three wells. The 

performance of the model usually depends on the input combinations. Based on the 

autocorrelation between input and output variables the different model input structures 

were studied and are presented in Table 4.15. 

Table. 4.14 Cross correlation of the whole data set for three representative wells 

Well No W(t) W(t-1) W(w-2t) W(t-3) W(t-4) 

SW4 W(t) 1.00 0.80 0.69 0.59 

SW6 W(t) 0.95 0.88 0.81 0.71 

SW22 W(t) 0.93 0.84 0.76 0.65 

 

Table. 4.15 Model Input and Output structure of the groundwater level forecasting 

Model   SW4 SW6 SW22 

Sl. No Input structure Output 

Model 1 w(t-1) w(t) w(t) w(t) 

Model 2 w(t-1) and w(t-2), w(t) w(t) w(t) 

Model 3 w(t-1, w(t-2 and wt-3), w(t) w(t) w(t) 

Model 4 w(t-1), w(t-2), w(t-3) and w(t-4) w(t) w(t) w(t) 

Wt-1, Wt-2, Wt-3 and Wt-4 represent one, two, three and four previous weekly groundwater level 
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Table.4.16 Statistical parameters for observed groundwater level data 

Parameters 

 

SW4 SW6 SW22 

Train

. data 

Test 

data 

Total 

data 

Train

. data 

Test 

data 

Total 

data 

Train

. data 

Test. 

data 

Total 

data 

Max (m) 6.42 6.65 6.65 3.65 3.56 3.65 5.50 5.45 5.50 

Min (m) 1.70 1.90 1.70 0.90 0.92 0.90 2.64 2.77 2.64 

St dv (m) 1.23 1.32 1.30 0.84 0.71 0.81 0.82 0.61 0.77 

Skewness -0.13 0.41 -0.02 0.17 0.68 0.32 0.43 1.35 0.66 

Mean (m) 4.46 3.68 4.23 2.05 1.84 1.98 3.97 3.71 3.89 

 

The statistical parameters such as minimum value and maximum value mean and 

standard deviation both for training and testing data sets are computed and presented in 

Table. 4.16 For SW4, groundwater level fluctuation is very high and standard deviation 

also reveals the sparsely location of data points. Also, it is appears that for SW6, water 

level fluctuation and standard deviation are moderate compared to SW4. The SW4 is 

located in paddy fields and there may be water logging conditions during wet period. For 

the SW22, groundwater level fluctuations are minimal with lower standard deviation 

value as data points are closed spaced. 

4.4.5. Results and Discussion 

In GRNN model development, for each input combination, the optimal smoothing 

factor for the model was determined according to the mean square error criteria. Various 

smoothing factor value for each combination were tried from 0.5 to 1.0 and the best 

smoothing factor was found as 1.0. In general, the smoothing values are increasing in 

parallel to the number of inputs but not necessarily for all the scenarios as observed here. 

Similarly for RBF models, proper spread values and optimal number of hidden 

nodes were determined by trial and error method as there are no specific guidelines 

available to assign this value. Here, number of trials has been carried out to optimize the 

best network within a range of 1 to 5. The optimal spread constant was found as 4 which 

was used for various input scenarios along with other internal parameters in the RBF 

network structure. The FFBP with Levenberg-Marquadart training algorithm were 
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adopted for best performance trying various numbers of hidden nodes for various input 

scenarios. The training and testing results of all the models developed for different input 

scenarios for all the SW4, SW6 and SW22 are presented in Table 4.17, Table 4.18 and 

Table 4.19 sequentially. The proposed GRNN and RBF model results were compared 

with FFBP trained with LM models. All the models were tested for one week lead time 

and best model results are presented. 

Table.4.17 Training and testing results for different inputs scenario (SW4) 

Comparison Input (s) 
Hidden 

Neuron 

Training Testing 

RMSE CE RMSE CE 

LM 

1 05 0.28 0.92 0.64 0.77 

2 20 0.38 0.90 0.67 0.75 

3 19 0.43 0.90 0.69 0.75 

4 17 0.46 0.88 0.76 0.64 

RBF 

1 03 0.18 0.94 0.20 0.92 

2 18 0.32 0.93 0.42 0.90 

3 20 0.34 0.92 0.44 0.85 

4 07 0.42 0.88 0.52 0.81 

GRNN 

1 17 0.14 0.98 0.18 0.91 

2 07 0.20 0.96 0.28 0.93 

3 09 0.24 0.93 0.35 0.88 

4 10 0.25 0.93 0.38 0.87 

 

SW4 

For the SW4 data analysis, it can be seen from Table 4.17, GRNN model 

performance in groundwater level forecasting was found to be similar or better than RBF 

for the entire input scenario in terms of coefficient of Efficiency (CE) and root mean 

square error (RMSE) criteria. The FFBP (LM) was placed at the bottom rank with 

inferior performance as compared to GRNN and RBF. 
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Here, CE is used instead as in earlier few cases Cc is giving contradictory results 

to RMSE. The C.E. was revealing higher forecasting performance as close agreement 

with observed level for GRNN model such as ranges from 0.94 to 0.91 during testing for 

different input scenarios as presented in Table 4.17 (SW4).The GRNN model 

performance was observed to be almost similar or slightly better compared to RBF 

performance considering C.E. and RMSE. The C.E ranges from 0.97 to 0.87 for GRNN 

which can also be treated as acceptable accuracy.  

  

Figure.4.13. RMSE vs. Input combinations for SW4 during training 

 

Figure.4.14. RMSE vs. Input combinations for SW4 in shown during testing 
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The variations of RMSE in different input scenario for all the models during 

training and testing for SW4 are shown in Figure.4.13 and Figure.4.14 respectively. 

Considering the various input combinations, it was observed that the performance of 

GRNN was either similar or better (Lower RMSE) than RBF networks both during 

training and testing. The LM was placed at bottom rank with higher RMSE.  

Also, to focus more on the predicting capability of the developed model, RBF and 

GRNN were evaluated during crucial stage of ground water level such as wet, dry and 

normal periods as LM was kept out of the discussion. Hence, Time series plot for both 

RBF and GRNN were presented in Figure.4.15 during testing to visualize the model 

behavior during different time periods. In testing, GRNN was closely followed the 

observed pattern during rainy season as well as non-rainy season than that of RBF model. 

Similarly, Figure.4.16 shows the closed scatter points for GRNN depicting higher 

predicting ability. RBF was sparsely placed with 45
0 

line as shown in Figure.4.17 

indicating inferior performance compared to GRNN. 

 

Figure.4.15. Time series plot of GRNN and RBF for SW4 in testing 
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Figure.4.16. Scatter plots of GRNN for testing at SW4  

  

Figure.4.17. Scatter plots of RBF for testing at SW4 

Based on above results for SW4, GRNN is well ahead of RBF and LM for groundwater 

level prediction accuracy both during frequent and non-frequent ground water 
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also significantly large. 
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SW6 and SW22  

Similarly for SW6 the different input scenarios and their results were presented in Table 

4.18. The statistical behavior of SW6and SW22 are almost similar but drastically 

different from SW4. It was observed that the model performances for SW6 were also 

shown similar trend of results like SW4 during training and testing. The network 

structure of GRNN showing higher C.E ranges from 0.93 to 0.98 during training stage 

(Table.4.18). Also, during testing phase, C.E of GRNN provided the best performance as 

ranges from 0.87 to 0.93. RBF was placed second to GRNN considering C.E. The 

performance of RBF can also be classified as under acceptable accuracy. Here, LM 

suffers in both training and testing with lower C.E such as 0.43 to 0.89. 

Table.4.18 Training and testing Results for different inputs scenario (SW6) 

Comparison Input (s) 
Hidden 

Neuron 

Training Testing 

RMSE CE RMSE CE 

LM 

1 28 0.21 0.81 0.37 0.65 

2 25 0.18 0.85 0.22 0.89 

3 21 0.43 0.73 0.43 0.54 

4 30 0.44 0.72 0.48 0.43 

RBF 

1 05 0.14 0.96 0.26 0.92 

2 11 0.22 0.87 0.56 0.82 

3 07 0.25 0.86 0.63 0.80 

4 11 0.27 0.82 0.69 0.74 

GRNN 

1 20 0.14 0.95 0.25 0.94 

2 10 0.11 0.98 0.16 0.98 

3 06 0.18 0.93 0.41 0.88 

4 13 0.19 0.93 0.45 0.87 
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Figure.4.18. RMSE vs. Input combinations for SW6 during training  

 

Figure.4.19. RMSE vs. Input combinations for SW6 during testing 
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Figure.4.20. Time series plot of GRNN and RBF for SW6 in testing 

The variations of RMSE in different input scenario for all the models were shown in 

Figure.4.18 in training and Figure.4.19 during testing for SW6. GRNN was attached with 

minimum RMSE for every input combinations compared to RBF and LM. Again, Time 

series plot shown in Figure.4.20 reinforced the superiority of GRNN over RBF models 

during testing. Figure4.21 shows the closely spaced scatters of computed and observed 

ground water level for GRNN. The RBF model results were sparsely placed as shown in 

scatter plot as depicted in Figure.4.22 during the testing phase.   

 

Figure.4.21. Scatter plots of GRNN for testing at SW6 
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Figure.4.22. Scatter plots of RBF for testing at SW6 

 

Finally, SW22 results are tabulated in Table. 4.19 for different input combinations. 

However, the GRNN model has improved performance than that of LM and RBF for all 

the three different wells. The performing trend of GRNN was found to be in similar 

fashion to earlier results. The deviation between GRNN and RBF was not too much 

significant in terms of performance indices such as C.E and RMSE. The variations of 

RMSE in different input scenario for all the models are shown in Figure.4.23 for training 

and Figure.4.24 during testing for SW22. Time series plot for both the GRNN and RBF 

were shown in Figure.4.25 to visualize the deviation with observed ground water level 

during testing for SW22. Here also, close agreement of GRNN with observed ground 

water level were clearly established the consistency and robust performance. Scatter plots 

were shown in Figure.4.26 for GRNN and Figure.4.27 for RBF which showed the clear 

higher performance by GRNN for SW22 during testing. 
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Table.4.19 Training and testing results for different inputs scenario (SW22) 

Comparison Input (s) 
Hidden 

Neuron 

Training Testing 

RMSE CE RMSE CE 

LM 

1 19 0.45 0.69 0.51 0.66 

2 10 0.30 0.86 0.39 0.82 

3 06 0.42 0.73 0.52 0.68 

4 06 0.50 0.65 0.55 0.62 

RBF 

1 20 0.41 0.74 0.48 0.71 

2 18 0.14 0.96 0.17 0.91 

3 11 0.19 0.94 0.28 0.89 

4 14 0.23 0.91 0.32 0.86 

GRNN 

1 20 0.44 0.76 0.52 0.68 

2 05 0.10 0.96 0.15 0.92 

3 17 0.31 0.85 0.41 0.78 

4 19 0.38 0.78 0.43 0.74 

 

 

Figure.4.23 RMSE vs. Input combinations for SW22 during training    
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Figure.4.24 RMSE vs. Input combinations for SW22 during testing 

 

Figure.4.25 Time series plot of GRNN and RBF for SW22 in testing 
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Figure.4.26. Scatter plots of GRNN for testing at SW22 

Analyzing the results tabulated above, the GRNN was found to be front runner for the 

current study of ground water level forecasting for one week leadtime. The RBF was 

placed second to GRNN with very insignificant deviations. 

 

Figure.4.27. Scatter plots of RBF for testing at SW22 
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performance was found to be highly satisfactory. The inferior performance of LM 

algorithm may be due to the nature of non-linearities associated with hidden nodes.  

4.4.6 Summary  

The non-linearities in LM is implemented by a fixed function such as sigmoid. On 

the other hand, The RBF bases its non-linearities on the data in the training set. Once all 

the basis functions in the hidden layer have been found, the network only needs to learn 

at the output layer in a linear summation fashion. Also, by varying smoothing parameters 

,GRNN model might be capturing fully the nonlinear trends of the ground water levels 

during training which extracts large scale structure that results higher accuracy than other 

models. The improved performance of model clearly shows that the GRNN can be used 

as an effective predictive tool for forecasting purposes. 

4.5. Applicability of GRNN model in Cause and effect relationship   

4.5.1. Introduction 

After confirming the potential and applicability of GRNN and RBF in time series 

GWL forecasting with similar capability, the robustness, adaptability and flexibility 

characteristics of these two techniques are further examined with cause and effect 

relationship. Here various meteorological parameters are used as causable variable and 

the GWL is used as output effect. Only GRNN models are developed in the present 

study. In the fourth work, the effect of meteorological parameters such as temperature, 

relative humidity, evaporation and rainfall on groundwater level fluctuation has been 

investigated for Dakshina Kannada coastal aquifer at southwest coast of India. Five 

various input combinations are used to obtain best results as one step leadtime output for 

three representative wells. 

4.5.2. Data used 

For the analysis of groundwater level three different representative open wells were 

selected based on different land use and land cover (LU/LC). Weekly time series 

meteorological parameters such as rainfall (P), evaporation (E) and temperature (Tmax) 

were as model inputs. Further to examine the influence of meteorological parameters on 

groundwater level, the meteorological data (rainfall, temperature evaporation, sunshine 
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hours and relative humidity) are procured from the Indian meteorological Department 

(IMD), Panambur. The gathered data from the field and IMD are prepared as a set of 

database. These data are divided into two parts as per the requirement of ANN (training 

and testing); the first data set consists of 70% of the total database as training 

(calibration) and second includes 30% of total data for the testing of the model. Details of 

open wells and site specifications are presented in Table.4.20 the statistical properties of 

the time series of IMD data for training and testing data set are presented in Table.4.21.  

Table.4.20 Description of selective open wells and their details 

Well No Well Type 
Location 

 
Diameter (m) Depth (m) Remarks 

SW4 Shallow well Padre 2.4 7.54 Paddy Fields 

SW6 Shallow well Mukka 2.0 4.33 Close to stream 

SW22 Shallow well Munchuru 2.4 7.48 Built up Area 

 

Table 4.21 Data statistics during training and testing 

Statistics 
Rainfall   

P (mm) 
Tmax (

0
C) Tmin (

0
C) 

Evaporation 

E (mm) 

Training 

Max 505.0 36.0 25.5 7.3 

Min 0.0 27.7 19.7 1.3 

Avg 71.4 31.9 22.9 4.7 

St. dv 102.0 2.0 1.3 1.5 

Skewness 1.9 -0.2 -0.2 -0.3 

Testing 

Max 422.0 34.1 25.8 11.4 

Min 0.0 27.3 20.3 1.6 

Avg 120.0 31.5 22.7 4.5 

St. dv 122.8 1.8 1.2 1.7 

Skewness 1.1 -0.4 -0.1 1.1 
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4.5.3. Model Development 

In the present study, auto correlation was used to reduce more number of input 

combinations and to minimize computation time. Performance of the model can be 

improved by selecting the proper input combination. The auto correlation between the 

different input and output variables are presented in Table.4.22. From the Table 4.22 it is 

observed that relative humidity is showing very poor correlation with groundwater level 

data. Though the relative humidity seems to be influencing factor but this parameter can 

be neglected while developing models for groundwater level fluctuations. Based on auto-

correlation different input combinations for GRNN models are developed and are 

presented in Table.4.23 where results are compared to FFBP. 

Table 4.22 Auto correlation for different input parameters 

Well No Rainfall Tmax Tmin Evapo gwl 

SW4 -0.65 0.82 0.21 0.80 gwl 

SW6 -0.46 0.82 0.19 0.78 gwl 

SW22 -0.49 0.77 0.38 0.72 gwl 

 

Table.4.23 Description of model input and output 

Sl. No. Input (s) Output (s) 

1 P+T gwl 

2 E gwl 

3 P+E gwl 

4 T+E gwl 

5 P+T+E gwl 

 

4.5.4 Effect of Rainfall on Groundwater Level Fluctuations 

The well hydrograph and hyetograph for three different wells are shown in 

Figure.4.28. The study area receives heavy rainfall during rainy season. From the 

Figure.4.28 it is clear that groundwater level is showing a very quick response to rainfall 
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events in the monsoon season due to characteristics of lateritic soil properties such as 

highly porous and pervious in nature and the geological formations. As we can see in 

three different wells groundwater level is rising almost nearer to the ground surface 

during monsoon period. There is gradual decline in groundwater level during non 

monsoon season, though groundwater level usage only meant for domestic purpose (not 

for industrial and commercial). This happens only there is an additional factors which 

influences the groundwater levels. 

 

Figureure.4.28. well hydrograph and hyetograph for three wells 

4.5.5 Results and Discussion 

The performances of developed models were evaluated using performance indices 

such as root mean square error (RMSE) and coefficient of efficiency (CE) shown in 

Table.4.24, Table.4.25. and Table.4.26. The obtained results showed closed relationship 

between rainfall event and groundwater level during monsoon. It was also, observed that 

the temperature and evaporation had significant effect on groundwater level fluctuations 

in non-monsoon season. The obtained GRNN results were compared with that of FFBP. 

A better agreement was observed between the actual and modeled groundwater levels for 

GRNN than that of FFBP.  
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Table.4.24 Comparative performance of various GRNN and FFBP models during training 

and testing at SW4 

SW4 Perform

ance 

Indices 

Training Testing 

Model 

no 

RMSE (m) CE RMSE (m) CE 

Inputs  GRNN FFBP GRNN FFBP GRNN FFBP GRNN FFBP 

1 T+E 0.24 0.28 0.96 0.94 0.41 0.46 0.95 0.94 

2 E 0.310 0.35 0.93 0.92 0.51 0.72 0.93 0.86 

3 P+T+E 0.36 0.41 0.91 0.89 0.59 0.68 0.91 0.88 

4 P+T 0.40 0.49 0.89 0.83 0.72 0.82 0.86 0.82 

5 P+E 0.45 0.52 0.86 0.82 0.74 0.82 0.86 0.82 

Where T= Temperature (Max), E=Evaporation, P=Rainfall 

 

Table.4.25 Comparative performance of various GRNN and FFBP models during training 

and testing at SW6 

SW6 Perform

ance 

Indices 

Training Testing 

Model 

no 

RMSE (m) CE RMSE (m) CE 

Inputs  GRNN FFBP GRNN FFBP GRNN FFBP GRNN FFBP 

1 T+E 0.12 0.16 0.98 0.96 0.30 0.41 0.97 0.95 

2 E 0.14 0.18 0.97 0.95 0.36 0.46 0.96 0.94 

3 P+T+E 0.20 0.23 0.94 0.92 0.50 0.52 0.93 0.93 

4 P+T 0.22 0.28 0.93 0.88 0.56 0.67 0.92 0.88 

5 P+E 0.24 0.35 0.91 0.82 0.59 0.84 0.91 0.82 

Where T= Temperature (Max), E=Evaporation, P=Rainfall 
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Table.4.26 Comparative performance of various GRNN and FFBP models during training 

and testing at SW22 

SW22 Perform

ance 

Indices 

Training Testing 

Model 

no 

RMSE (m) CE RMSE (m) CE 

Inputs  GRNN FFBP GRNN FFBP GRNN FFBP GRNN FFBP 

1 T+E 0.11 0.13 0.98 0.97 0.30 0.41 0.97 0.95 

2 E 0.16 0.16 0.96 0.96 0.41 0.48 0.95 0.94 

3 P+T+E 0.20 0.22 0.93 0.92 0.52 0.58 0.93 0.91 

4 P+T 0.23 0.25 0.92 0.90 0.58 0.63 0.91 0.89 

5 P+E 0.29 0.35 0.87 0.81 0.74 0.87 0.86 0.80 

Where T= Temperature (Max), E=Evaporation, P=Rainfall 

 

The model performance evaluations showed GRNN statistically superior to that of 

the FFBP regardless of the input configurations. Therefore, FFBP showed poor 

performance due to slower convergence, trapping with local minima and requires more 

computational time. 

4.5.6. Summary  

The obtained results showed closed relationship between rainfall event and 

groundwater level during monsoon. It was also, observed that the temperature and 

evaporation had significant effect on groundwater level fluctuations in non-monsoon 

season. The obtained GRNN results were compared with that of FFBP. A better 

agreement was observed between the actual and modeled groundwater levels for GRNN 

than that of FFBP. From the study, GRNN can be applied successfully for forecasting 

groundwater level due to its accuracy and reliable results. 
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CHAPTER – 5 

SUMMARY AND CONCLUSION 

The present study explores the potential and suitability of RBF and GRNN algorithms 

in both time series forecasting and cause and effect of southwest coastal aquifer (D.K.), 

Karnataka, India. This chapter summarizes the initiatives that have been taken in order to 

achieve the objectives of the study. Finally, some suggestion for future work has also 

been included at the end of the chapter. 

5.1 Summary of work 

The current study, the following tasks has been carried out at different stages- 

The weekly groundwater levels for total 24 number of open wells fairly distributed in 

the micro-watershed have been collected for a period of 8 years (2004-2011). Analysis 

were carried out for selective representative open wells based on land use/land cover to 

ascertain the variation in responses of recharge, discharge, natural drainage, atmospheric 

pressure, salt water intrusion, etc. Here, First 70% of observed data are used for model 

calibration and remaining 30% data are used for validation. A huge number of RBF and 

GRNN models are obtained on the basis of combining number of inputs, number of 

outputs, number of hidden neurons, spread parameters and smoothing parameters. 

In this study, Root Mean Squared Error (RMSE), Correlation Coefficient (CC) and 

Coefficient of Efficiency (CE) are used to evaluate the forecasting performance accuracy 

of developed models.  

1. Development of RBF model 

At the first stage, the potential and applicability of RBF for forecasting groundwater 

level are investigated. Weekly time series groundwater level data upto four lagged data 

has been used as input where predicted output are one and two week leadtime GWL. The 
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analysis has been carried out separately for three representative open wells. Number of 

neurons in the hidden layer used from 1 to 10, to optimize the results keeping learning 

rate and momentum coefficient constant in all the training. The numbers of iteration are 

kept fixed at 40000.All the data are normalized between 0.1 to 0.9, using TANSIG as 

activation function. Also, to optimize the best output, 5 different spread parameters are 

used in the range of 1to 5.Total 400(4x5x10x2) RBF models were developed for every 

well and best model results were compared with best FFBP models. It has been observed 

that for all the three open wells, the higher and consistent performance for RBF network 

for one week lead time and decaying performance for FFBP network model. The 

obtained results show that the RBFNN performed better compared to FFBP models. 

2. Performance evaluation of RBF model for more  forecasting horizon 

After confirming the suitability of RBF in GWL forecasting and with better accuracy 

over FFBP, the work has been extended further to consolidate the applicability of RBF in 

multistep leadtime forecasting upto six week ahead. 

In this study, six representative wells are covered for development of RBF models for 

six different input combinations using lagged time series data. Output are the predicted 

GWL upto six week. The optimized spread parameter (obtained in first study) 4 is used 

for development of RBF model by varying hidden neurons in a similar manner to earlier 

study. Total 360 (6x1x10x6) RBF models are developed for every well and results are 

compared with Non linear regression model (NARX). It has been observed that for all the 

six wells, the higher and consistent performance for RBF network upto fourth week lead 

time and decaying performance for NARX network model.  

3. Development of GRNN models 

In the third stage, to examine the potential and applicability of GRNN in GWL 

forecasting, GRNN models has been developed by considering the advantage of S-

summation and D-summation layers for different input combinations using time series 

data. Weekly time series groundwater level data upto four lagged data has been used as 

input where predicted outputs are one week leadtime GWL. The analysis has been carried 

out separately for three representative open wells. Number of neurons in the hidden layer 
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used from 1 to 20 to optimize the results keeping learning rate and momentum coefficient 

constant in all the training. The number of iteration is kept fixed at 40000.All the data are 

normalized in between 0.1 to 0.9 using TANSIG as activation function. Also, to optimize 

the best output, smoothing factor from 0.5 to 1 are used and the 1is selected as optimized 

value. Total 400(4x5x20x1) GRNN models were developed for every well and best 

model results were compared with best RBF and FFBP with LM training algorithm 

models. The RBF and GRNN models are almost performed similarly in ground water 

level forecasting in all the representative wells with the poor performance of FFBP-LM. 

The GRNN has little edge over RBF.  

4. Potential of GRNN model in Cause and effect relationship   

After confirming the potential and applicability of GRNN and RBF in time series GWL 

forecasting with similar capability, the robustness, adaptability and flexibility 

characteristics of these two techniques are further examined with cause and effect 

relationship. Here various meteorological parameters are used as causable variable and 

the GWL is used as output effect. Only GRNN models are developed in the present study 

as RBF was found with similar predicting performance in previous studies. Five various 

input combinations are used to obtain best results as one step leadtime output for three 

representative wells. Total 100(5x20x1) GRNN models are developed using constant 

smoothing parameter as 1. The model performance is compared with FFBP. Here, also 

GRNN model is predicting groundwater level with higher accuracy and with satisfactory 

results compared to FFBP. 

5.2 Conclusions 

 Highly accurate GWL forecasting models such as RBFNN and GRNN that are 

developed in this study can be an useful tool in sustainable groundwater extraction 

and optimized management in a watershed. 

 The study examines the effectiveness of RBF and GRNN model as alternative tools 

for forecasting purposes in multistep leadtime. This study provides a guide in design 

of ANN for forecasting time series and cause and effect, we used groundwater level 

time series and meteorological data to illustrate this process. 
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 In general, the model results clearly reveals that RBF network and GRNN have the 

potential in forecasting groundwater level efficiently for multistep lead time can be 

used as an effective tool for weekly groundwater level forecasting. However, there is 

a need to study in comprehensive manner to assess the long term tendency of 

groundwater level in the study area in order to take scientific measure for planning 

and designing purposes. 

 It can be concluded that RBF and GRNN are almost performed equally in ground 

water level forecasting in all the wells. The GRNN has little edge over RBF. As the 

statistical characteristics of the GWL vary from well to well, it is difficult to 

recommend single algorithm suitability for the best forecasting method considering 

performance accuracy. Although the forecasting accuracy in both RBF and GRNN 

are very high, further study will be required for computational time requirement, 

flexibility, limited data, limited input variables and simplicity to user for concrete 

conclusion. 

5.3 Contribution  

Following are the contributions from this study: 

 ANN modeling found suitable for site specific GWL forecasting 

 RBF and GRNN algorithm found suitable for time series forecasting of GWL 

compared to other model considered 

 The limitations of FFBP has been eliminated by using RBF and GRNN 

 Higher forecasting accuracy has been obtained through using RBF and GRNN 

 The spread constant in RBF and smoothing parameter in GRNN plays vital role 

for improvement of model performance 

5.4 Limitations 

 The RBFNN and GRNN model are predicting satisfactorily upto certain multiple 

leadtime. If the prediction period is too long, no model can perform with acceptable 

accuracy. 
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 Other factors which are not included but supposed to be influential such as vadose 

zone characteristics, seepage, infiltration, pressure, evapotranspiration, temperature, 

soil characteristics, and hydraulic conductivity in the network inputs could explain the 

poor relationship between the persistence and future water level. Also, Human factors 

to land use may be more influential on the water level fluctuations during dry season. 

5.5 Scope for future work 

 The use of these techniques may be adopted in GWL forecasting for other watersheds 

in different geographical and geomorphological regions with monthly, yearly 

forecasting. 

 Further, to optimize the internal parameters of the networks and to enhance the 

forecasting accuracy in real field situation of developing countries, integration of 

other techniques like Fuzzy Logic, Genetic programming, Wavelet transformation 

may be tried. 
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Plate: 1 Location of different wells and their identification number 
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Plate: 2 Wells with Lateritic block ring and well with RCC rings  

   

Plate: 3 Wells located in the fields  
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Plate: 4 Location of wells in built up area  

   
Plate: 5 Location of shallow wells and deep wells
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