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ABSTRACT 

Bridges play an essential role in the society since they enable quick access across a river or 

any water body. Bridges facilitate transportation of goods and people and hence play a 

leading role in the development of a province. The safety of the bridge is the important factor 

with respect to scour failure which is the leading failure factor in river bridges. Scour is the 

removal of sediment near or around the structure which is located in the flowing water. There 

are different factors which affects scour mainly on the scour depth are flow depth, discharge, 

velocity, sediment size, porosity, pier shape and size etc. There are two types of scour 

conditions on which scour is classified and studied namely, clear water and live bed scour. 

The scour is the complex phenomenon and there is no common or general simple method to 

predict the scour depth around the bridge pier. There are several researchers who studied the 

scour mechanism using laboratory experiments. In the present days the artificial intelligence 

is the focal point for several researchers.  Soft computing techniques, such as, Artificial 

Neural Network (ANN), Support Vector Machine (SVM), Adaptive Neuro-Fuzzy Inference 

System (ANFIS) and Particle Swarm Optimization (PSO) have been efficiently used for 

modeling scour related problems. 

 The study used the data for developing the soft computing models, is obtained from a 

physical model study on scour depth around bridge pier, carried out by Goswami Pankaj in 

2013 in a 2-D wave flume. The input parameters, namely, sediment size (d50), velocity (U), 

time (t) and sediment quantity (ppm) are used to predict the scour depth of different pier 

shapes such as circular, rectangular, round nosed and sharp nosed pier for both clear water 

and live bed scour condition. The complete original data is divided into training and testing. 

In the study, the soft computing techniques such as ANN, SVM, ANFIS, PSO-SVM and 

PSO-ANN are developed. The ANN model with feed-forward backpropagation network is 

developed with different hidden neurons. The RBF, Linear and Polynomial kernel functions 

are used in the SVM model. the ANFIS model is also developed with Trapezoidal, Gbell and 

Triangular membership function. The evolutionary optimization technique, particle swarm 

optimization is used to tune the SVM and ANN parameters to improve the efficiency of 

models prediction. 
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The performance of individual and hybrid soft computing models are compared using 

statistical parameters such as, Correlation Coefficient (CC), Normalized Root Mean Square 

Error (NRMSE), Nash–Sutcliffe coefficient (NSE) and Normalized Mean Bias (NMB). 

Scatter plots are used to evaluate the accuracies of the models and box plots were used to 

analyze the spread or distribution of the data points estimated by the models. The validation 

of the developed models is done using the experimental values. The validation results shows 

that the proposed models are well correlated and in good agreement with experimental 

results. The hybrid models displayed a better performance compared to individual models. It 

is found that the hybrid PSO-SVM  model is the best and efficient model in estimating the 

scour depth effectively around bridge pier for both live bed and clear water scour condition 

when compared to all the other models developed. 

Keywords: Bridge pier, Scour depth, Pier shapes, ANN, SVM, ANFIS, PSO, Clear water 

scour, Live bed scour 
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CHAPTER 1 

INTRODUCTION 

1.1 General  

Bridges play an essential role in the society since they enable quick access across a river or 

any water body. Bridges facilitate transportation of goods and people and hence play a 

leading role in the development of a province. The bridge piers and highway embankments 

leading to the bridge are the main obstructs for the flow of flood waters, increasing velocity 

and development of vortices leads to the formation of scour near the bridge foundations. The 

failure of bridges is a severe problem because of the high investment costs, safety problems 

in the event of a failure and adverse effects on the economy of the region. Scour related to 

bridge hydraulics, its relation to flood hydrology and hydraulic processes received much 

attention in the past decade. 

“Men who overlook water under the bridge will find bridge underwater” to the 

provisions in the existing codes of practice for determination of design scour depth require 

immediate review (Kothyari 2007). This situation highlights the important effect of flowing 

water on the stability of the bridge and in particular, its impact on a bridge pier. The 

mechanism of flow around a pier structure is so complicated to the point that it is hard to set 

up a general observational model to give exact estimates for scouring. The Bridge scour is 

the removal of sediments such as sand and rocks from around bridge abutments or piers. 

During the flow of water through an opening of a bridge with acceptable velocity, in general, 

the bed elevation will be changed. The significance of this change in elevation is more 

important near the abutments and piers. Figure 1.1 shows some examples of formation of 

scouring around the bridge pier and abutments. 
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Figure 1.1 Formation of scour around the bridge pier and abutments  

 1.2 Types of Scour at Bridges 

Scour is a phenomenon of sediment removal from around a hydraulic structure due to the 

interaction between flow and the hydraulic structure such as bridge piers placed in flowing 

water. The different types of scour are clearly shown in Figure 1.2. The total scour at a bridge 

crossing is comprised of three components namely; general scour, contraction scour and local 

scour. 
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Figure 1.2 Types of scour that can occur at a bridge (Richardson et al. 1993) 

 

1.2.1 General scour 

General scour is the overall lowering of the river bed irrespective of the bridge location due 

to natural and human-induced causes. General scour is further divided as long term or short 

term scour. As the name itself suggests, long-term general scour takes sufficiently long time 

in the order of several years to lower the river bed. It may be the natural trend of the river or 

some modification made to the stream or watershed. The long-term general scour may not be 

significant during the design life of a bridge if the rate of scour development is relatively 

low. Similarly, short-term local scour results in a very quick time compared to the previous 

one, probably in a single or couple of closely spaced flood events. 

1.2.2 Contraction scour 

Contraction scour occurs when the flow area of the stream is reduced, either by a natural 

contraction of the stream channel or by a bridge. From continuity, when area decreases, flow 

velocity increases and consequently bed shear increases. This increases the erosive force and 

more bed material is removed. But later on, contraction scour comes to rest because the flow 

area goes on increasing due to increase in depth and also due to a simultaneous decrease in 

the bed shear stress. 
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1.2.3 Local scour 

Local scour can be defined as the degradation of river banks and/or bed that is localized to a 

specific area due to a sudden change in the parameters associated with the river. Local scour 

involves the removal of bed material around a structure located in moving water. It is the 

result of flow field changes due to the presence of a structure. Scour at the surrounding of the 

bridge pier, abutment spur dikes and river training works are some examples of local scour. 

1.3   Mechanism of Local Scour 

The flowing pattern of a normal flow comes to sudden change when it encounters a pier on 

its path. Large-scale eddy structures or the system of vortices develop at the base of the pier. 

This vortex system as a basic mechanism of local scouring around bridge pier has been long 

recognized by Melville 1975. The eddy structure is normally composed of two components: 

 The horseshoe vortex 

 The wake vortex system 

 
Figure 1.3 Mechanism of local scour 
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A flow running at a particular velocity, when approaches to the pier come to complete 

rest which results in, an increase of pressure at the water surface near the pier. The velocity 

of the flow gradually decreases from top to bottom and consequently, the pressure also 

decreases from top to bottom. This creates a downward pressure gradient that forces the flow 

to move downward like a jet of water. This vertical jet when strikes the bed, it makes a hole 

in the immediate vicinity of a pier base. The downflow impinging on the bed is the main 

scouring agent. The strength of the downflow reaches a maximum just below the bed level. 

The downflow rolls up as it continuous to create a hole and through the interaction with 

incoming flow converts into a complex vortex system of horseshoe shape and hence is called 

a horseshoe vortex. The horseshoe vortex then extends downstream along pier sides. The 

horseshoe vortex is very effective in transporting the dislodged particles away past the pier. 

the strength of the horseshoe vortex reduces as the scour depth increases, thereby reducing 

the transport rate from the base region and ultimately ceases in clear water scour. For live 

bed scour, equilibrium is established between bed material inflow and outflow and the 

scouring process ceases. The separation of flow at the pier sides produces so-called wake 

vortex. These vortices are not stable and shed alternatively from one side of the pier and the 

other. Wake vortices rotate about a vertical axis (Figure 1.3), and wake vortices also erode 

sediment from pier base. The wake vortex system somewhat acts like a vacuum cleaner that 

sucks the material and carries away. The intensity of wake vortices drastically reduces with 

distance downstream, such that sediment deposition is immediately downstream of the pier. 

The horseshoe and wake both the vortices work at the same time to scour around the pier. 

1.4 Factors Affecting Local Scour 

Local scour around bridge pier depends upon several factors, most of which are interrelated. 

As justified by the several researchers, amongst Richardson et al. 1993, Ansari et al. 2002 

and Raudkivi and Ettema 1983, the factors affecting the local scour at the pier are; 1) 

approach flow velocity 2) flow depth 3) pier width 4) pier length if skewed to main stream 5) 

size and gradation of the bed material 6) angle of attack of approach flow 7) pier shape 8) ice 

and debris jam. 

 Melville 1975 has arranged the factors affecting the depth of scouring in probable 

order of importance as below. 
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 Size and Shape of the obstruction 

 Velocity of flow 

 Sediment Size  

 Types of scour condition 

1.4.1 Size and Shape of the obstruction 

The pier size primarily affects the time required for local scour to reach equilibrium scour 

depth. The scour depth depends on the horseshoe vortex one which is proportional to the pier 

Reynolds number, which is a function of pier diameter. So obviously, larger the pier, larger 

the scour volume and longer the time required to erode the sediment at given bed shear 

stress. 

The effect of the pier shape is investigated by several researchers and concluded that the 

experimental results, minimum scour on six pier shapes, achieved at a pier of lenticular 

shape. Front nose of the pier plays an important role in the scouring phenomena, whereas the 

rear nose has no effect. According to Richardson et al. 1993, the nose of the pier or abutment 

has 20% influences on scouring. The length of the pier has a negligible effect unless the flow 

is skewed. The study conducted from Breusres et al. 1977 concluded that a rectangular pier 

gives 20 to 40% more scour than the circular pier. A square nose pier possesses 20% more 

scour than sharp nose pier and 10% more than cylindrical or round nose pier. Figure 1.4 

shows the different types of pier shapes used in the present study. 

 
Figure 1.4 Different pier shapes considered in the study 
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1.4.2 Velocity of flow 

The velocity of flow varies with depth and shear stress. In case of flow over a sediment bed, 

the flow velocity depends on the shear stress offered by the sediment particles to the water 

flow. The resistance offered by the sediment material to the water flow reduces the flow 

velocity as the flow depth decreases. The velocity distribution may sometimes differ from the 

typical velocity distribution due to various factors such as flow turbulence, properties of bed 

material, and flow obstructions. The scour is typically most profound close to the peak of 

flood, but barely visible and also as the flood retreats the scour opening which may be filled 

up to some degree. The rate of scouring depends upon the bed material and the hydraulic 

parameters of the flow. 

1.4.3 Sediment size 

Based on recent literature, it is observed that a sediment size of d50≤0.7mm leads to the 

formation of ripples whereas sediment of size d50≥0.7mm does not cause ripple (Laursen and 

Toch 1956). In the early days of investigation, the investigators failed to give a clear picture 

of scour depth due to sediment size. Laursen and Toch 1956 said the secondary effect of 

velocity and sediment can’t be determined at the laboratory range and are rather more 

important at large scale. 

1.4.4 Types of scour condition 

The clear water scour occurs when there is no movement of bed material in the flow 

upstream of the crossing. This condition of scour is just because of the obstructions (piers, 

abutments) in the flow. The rate of sediment supply to the scour hole is equal to zero for 

clear water scour condition and the depth of scour hole continues to grow until the 

equilibrium scour depth is reached. Once the transport of bed material reaches the crossing 

from upstream scours of the live-bed occurs. The scour opening of the live-bed is 

continuously supplied with the sediment transported from upstream reach. The supply of 

sediment rate to the scour hole is equal to the sediment transported rate out of the scour hole 

due to which equilibrium of scour depth is achieved. Figure.1.5 shows the two types of scour 

and equilibrium scour depth, in which depth of the scour is presented as a function of time. 
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Figure 1.5 Equilibrium scour depth for clear water and live bed scour condition (Richardson 

et al. 1993) 

Time is one among the primary factor that can effect the scour depth and the time 

development trend of scour depth is presented in Figure 1.5. It can be noted that the local 

scour rate and equilibrium scour depth under clear water and live bed conditions are 

different. Additionally, from the figure, it can be observed that the scour rate decreases and 

scour depth increases with time. 

1.5 Need for Present Work 

In earlier decades, most of the researchers carried out experimental, theoretical and numerical 

studies on scour phenomenon. Experimental studies on scour depth investigation involve 

several common assumptions made in hydrodynamics which may not be accurate. In 

physical modeling, there are large numbers of factors which are influencing the scour depth 

to be considered. Thus, complexity is also an inherent feature of these problems. Because of 

these characteristics, conventional mathematical modeling for predicting the scour depth 

around the bridge pier tends to become very difficult and often the prediction is quite 

unreliable. Further, a simple mathematical model is not available to predict the scour depth 
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because of these complexities. Hence, there is no common method to predict scour depth 

around the bridge pier. 

In recent years, application of soft computing techniques in modeling hydraulic 

processes such as prediction of scour depth and other scour related problems has received as 

much attention from the researchers. The soft computing models are developed using 

experimental data and provide an explanation of an externally driven process without a need 

for complex physical models. In the study, the soft computing models such as an Artificial 

Neural Network (ANN), Support Vector Machine (SVM), Adaptive Neuro-Fuzzy Inference 

System (ANFIS) and Particle Swarm Optimization technique (PSO) used as an evolutionary 

optimization technique to predict scour depth. The prediction performance of soft computing 

models is analyzed by using different statistical indices.  The predicted results from these 

models are compared and validated with the experimentally collected results for the model 

efficiency. 

1.6 Organization of Thesis 

This thesis contains six chapters and the brief outline of the thesis is as follows. 

In chapter 1, the background of scour, types and mechanism of the scour and factors 

affecting local scour are presented. Also, the chapter presents the need for the study. 

Chapter 2 focused on the review of past literature on experimental studies, soft computing 

and other applications in the prediction of scour depth around the pier. This chapter also 

presents the literature gap, problem formulation, and objective of the present study. 

Chapter 3 gives the details of experimental data collection and analysis. The methodology 

used in the study, development and performance analysis of the models is explained in detail. 

Chapter 4 provides the results obtained from the soft computing models, developed and the 

comparisons of soft computing model results with experimental values are discussed. 

Finally, the conclusions from the study, limitations of the present study and 

recommendations, and scope of future work are presented in chapter 5, followed by 

references to the present study. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 General  

Considering the importance of estimating accurate scour depth, several researchers have 

mainly focused on the development of accurate and reliable methods. In this chapter, the 

various techniques used by the researchers to estimate the scour depth under conditions are 

discussed. In the first section, the applications of experimental based methods and numerical 

studies are presented. In the other sections the reviews of soft computing techniques used to 

predict the scour depth around pier and scour formation around other hydraulics structures 

are presented. 

2.2 Studies on Scour  

Many researchers have carried out experimental and numerical studies on scour depth in the 

past and important out of them are discussed below: 

Sturm and Janjua (1994) investigated the scour around bridge abutment in flood plains of 

compound channel in clear water scour condition. The experiments were conducted in a 

flume with fixed bed main channel and moveable bed flood plain. The scour depth and 

velocity distributions were measured by varying discharge, flow depth, abutment length and 

channel geometry.   

Coleman et al. (2003) investigated the development of scour depth near vertical-wall bridge 

abutment with uniform sediments in clear water scour condition. The different flow-

sediment-abutment length combinations were considered and analyzed.  The results of 

similar earlier abutment-scour experimental studies were also incorporated in analyses of 

scour development. Variations in scour rates and depths with flow and sediment parameters 

are found to be different for short and long abutments. 

Debnath and Chaudhuri (2010) described the scour mechanism around the cylinders 

embedded in clay sand mixed beds. The effects of clay-content, water content, bed shear 

strength and pier Froude number on maximum equilibrium scour depth, equilibrium scour 

hole geometry, scouring process, and time variation of scour were investigated.  Further, 
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equations for estimation of non-dimensional maximum scour depth for cylinders embedded 

in clay–sand mixtures were proposed as functions of pier Froude number, clay content, water 

content, and bed shear strength.  

Oben and Ettema (2011) evaluated the interactions between pier-scour and abutment-scour 

by conducting series of flume experiments in a non-cohesive boundary. The scour depth, 

scour location, and bathymetry data were recorded for spill-through and wing-wall abutments 

during the study. The results from the study indicates that pier presence does not lead to 

substantial increase in abutment scour, although it may reduce abutment-scour depth when 

the pier is close to the spill-slope toe of a spill-through  type abutment.  In case of wing-wall 

abutment, the abutment scour increases with decreasing pier abutment distance. 

Lanca et al. (2013) conducted the 75 long-duration laboratory tests under steady, clear-water 

flow close to the threshold for initiation of sediment motion, to address the effect of time, 

pile spacing, skew-angle and number of pile group columns on the equilibrium scour depth. 

Pile groups consisted of matrical arrangements of one, two, or three columns of four rows, 

with spacings of 1, 2, 3, 4.5, and 6 pile diameters; the tested skew-angles were 0, 15, 30, 45, 

and 90°. 

Barbhuiya and Mazumder (2014) performed the experimental study with four different 

uniform cohesion less sediment diameters and five vertical-wall abutments with projected 

lengths perpendicular to the flow. These tests were conducted under varying flow velocity 

characteristics. It was observed that the scour depth increases with the increase of sediment 

sizes and abutment lengths. Further, the scour depth decreases with the increases of non-

uniformity under all flow conditions.  They proposed a design equation based on the obtained 

experimental data and existing live bed scour data. The measured values of scour depth are 

compared with the calculated values using proposed equation and also with three different 

live-bed local scour equations for the conditions of the tests. 

Qi and Gao (2014) conducted the experiments on local scour around large diameter monopile 

considering both waves and current. The time development scour depth was measured in 

series of experiments. The study concluded that, the equilibrium scour depth in combined 

waves and current is greater than the linear sum of those in waves and current separately. It 

was observed that the maximum flow velocity at the boundary layer for the following-current 
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case is larger than that for the opposing-current case, which further results in faster time 

development of scour depth and greater equilibrium scour depth for the following-current 

case. 

Mohamed et al. (2015) carried out the numerical and experimental investigations to study the 

effect of abutment providing with collar on local scour depth. The scour depth is simulated 

by using a 3D Navier Stokes equation based model. The study concluded that, the curvature 

shape of bridge abutment with collar could share to reduce the local scour depth by more 

95%.  Also, the results showed that, simulation models agree well with the experimental data.   

Ghani and Mohammadpour (2016) carried out the experiments to investigate the temporal 

variation of local scour around compound abutments under clear water scour condition.  The 

study showed that, a suitable level of foundation is able to decrease the scour depth and 

increase scour time during the flood events. The trend of temporal scour depth at compound 

pier and abutment is similar, and duration of scour development depends on the foundation 

level, velocity ratio and foundation dimension. The study concluded that, proper design of 

foundation level increases duration of scouring and provides enough time to treat bridge 

foundation after the flood events. 

Mohamed et al. (2016) investigated the effect of different contraction ratio and entrance 

angle of abutments on scour depth using experimental and theoretical studies. The Navier 

Stokes equation based 3D model was used in simulation and the computed results are 

compared with experimental results. The results show the ability of the numerical model to 

simulate local scouring at abutments for different contraction ratios and entrance angles of 

abutment with high accuracy. The obtained determination coefficient and mean relative 

absolute error, in average, are 0.95 and, 0.12, respectively. 

2.3 Studies on Soft Computing Techniques 

In recent years, the soft computing techniques are widely used to solve the scour mechanism 

around the pier and other hydraulic structures, and some of them are discussed below: 

2.3.1 Artificial Neural Network  

Bateni et al. (2007) applied the ANN and ANFIS approach to estimate the equilibrium and 

time development scour depth.  The BP (Back Propagation) based MLP (Multilayer 
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Perception) neural network and RBF (Radial Basis Function) based ANFIS model was used. 

Five different variables were used to predict the equilibrium scour depth and the results 

showed that ANFIS model have good prediction accuracy. The study concluded from the 

sensitivity analysis that, pier diameter has a greater influence on equilibrium scour depth than 

the other independent parameters.  

Soliman (2007) formulated the back propagation based neural network to predict the 

maximum scour depth at the downstream of hydraulic structures. The physical study data 

were used to train and test the model. The discharge, gate opening, bed material and length of 

apron were used as input variables. The results of ANN models were compared with 

experimental results and showed good correlation. 

Azamathulla et al. (2008) used the ANN to estimate the scour depth below ski-jump type 

spillways. The FFBP neural network architecture was used. The characteristics head and 

discharge intensity over the spillway were used to predict the scour depth at downstream of 

the bucket. The performance of the model was analyzed using MSE, CC, average error and 

average absolute deviation.  The ANN model was compared with RBF based ANFIS model 

and concluded that Neuro-Fuzzy model was most satisfactory model for the under considered 

problem. 

Firat and Gungor (2009) used Generalized Regression Neural Networks (GRNN) and Feed 

Forward Neural Networks (FFNN) approaches to predict the scour depth around circular 

bridge piers. The performance of the models in training and testing sets are compared with 

observations. Also, models were tested by Multiple Linear Regression (MLR) and empirical 

formula. The results of all approaches are compared in order to get more reliable comparison. 

The results indicated that GRNN can be applied successfully for prediction of scour depth 

around circular bridge piers. 

Kaya (2010) developed the ANN model to study the pattern of scour depth around bridge 

pier using FHWA data set. The data set composed of 380 measurements considered at 56 

bridges in 13 different states. The ANN models were developed for different input 

combinations by reducing number of variables from 14 to 9 and it showed that, there is 

negligible change in the coefficient of determination. The pier shapes, skew, flow depth and 
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velocity are selected by conducting sensitivity analysis and estimated the scour depth. The 

study suggested that, addition of some of variables actually decreases the quality of ANN 

prediction of scour pattern. 

Begum et al. (2012) applied the artificial neural network to the problem of scour around 

semicircular bridge abutments. Multilayer Perceptron (MLP) with single hidden layer and 

Radial Basis Function (RBF) network have been trained with the experimental data from 

literature and an appropriate model of each of the network is identified. The model 

performances were analyzed with the statistical measures like CC and RMSE. The ANN 

model result was compared with empirical equations. 

Kiziloz et al. (2015) presented the ANN model to predict the scour depth beneath the 

pipelines under different storm conditions. The regular and irregular waves were considered 

in the storm conditions. The FFBP neural network was developed for different inputs and 

neuron numbers using a trial and error approach. 

Raikar et al. (2016) applied the soft computing tools such as artificial neural network (ANN) 

and genetic algorithm (GA) in the prediction of scour depth within channel contractions. The 

experimental data of earlier investigators were used in developing the models and ANN and 

GA Toolboxes of MATLAB software were utilized. The multilayered perceptron (MLP) 

neural networks with feed-forward back-propagation training algorithms were designed to 

predict the scour depth. The mean squared error and correlation coefficient are used to check 

the performance of networks. It was found that both ANN and GA models can be 

satisfactorily used to predict the scour depth within channel contractions. 

2.3.2 Support Vector Machine  

Ghazanfari H et al. (2011) applied the SVM and ANN approaches to estimate the scour depth 

around pile groups under wave condition. The non-dimensional controlling parameters, 

including the Keulegan–Carpenter number, pile Reynolds number, Shield's parameter, 

sediment number, gap to diameter ratio and number of piles was used as the inputs. The 

performance of both the models were compared with existing empirical equations and 

concluded that, SVM model provides the good prediction of scour depth than other ANN and 

other empirical equations. 
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Pal et al. (2011) investigated the potential of support vector machines in the prediction of 

scour around bridge pier using field data. The dataset of 232 measurements were collected 

from BSDMS for the analysis. The SVM with RBF and polynomial kernel functions were 

modeled and the results were compared with empirical relations and artificial neural network. 

The SVM showed good performance with coefficient of determination of 0.891 compared to 

BP neural network with 0.880.  

Hong et al. (2012) used an alternative approach SVM to estimate the temporal variation of 

pier scour depth under clear water condition with non-uniform sediments. The dimensionless 

parameters such as, flow shallowness, sediment coarseness, dens metric Froude number, pier 

Froude number, Geometric standard deviation for sediment particle size distribution were 

used in the study. The results of SVR models were compared with other conventional 

regression models and experimental results. 

Goel (2008 and 2015) considered the SVM model to predict the scour depth around pier and 

downstream of spillways. The SVM with PBF and Polynomial kernel functions models were 

developed and evaluated using statistical parameters such as, CC and RMSE. The study 

concluded that, the SVM with RBF kernel function showed good performance in scour depth 

prediction.  

Najafzadeh et al. (2016) investigated the scour depth in contraction of rectangular channel 

using ANFIS and SVM approach. The flow velocity, critical threshold velocity of sediment 

movement, flow depth, particle diameter, un-contracted and contracted channel widths were 

used as input parameters. The training and testing of the models were carried out using 

experimental data and compared with existing equations. The results showed that, the ANFIS 

model can predict the scour depth compared to SVM and other equations. 

2.3.3 Adaptive Neuro Fuzzy Inference System  

Azamathulla and Ghani (2010) described the use of ANFIS in the prediction of scour depth 

near culvert outlets. The laboratory data sets from the past published literatures were used to 

train the model. The performance of the ANFIS model was found to be more effective with 

CC=0.94 compared to regression models and ANN model of CC=0.78.   



16 
 

Akib et al. (2014) predicted the scour depth at bridges using ANFIS as a modeling tool. The 

different sediment sizes, flow rates and time evolution used as input parameters for 

predicting the scouring on integral bridge piers. The integral bridges with single row and 

double row piers with pile groups were embedded in the two floodplains. The results of 

ANFIS models were compared with linear regression and that showed a reasonable good 

degree of accuracy.  

Bonakdari and Ebtehaj (2017) estimated the scour depth around bridge piers using ANFIS 

and ANN models. The model performances were compared with nonlinear regression 

methods. The study concluded that, both methods were out performed compared to other 

existing methods. Also, study showed that, using ratio of pier length to flow depth, ratio of 

pier width to flow depth, Froude number and standard deviation of bed grain size parameters 

leads to optimal performance in scour depth estimation. 

Choi et al. (2017) proposed the use of ANFIS method in the prediction of scour depth around 

bridge pier. The mean velocity, flow depth, sediment size, critical velocity and pier width 

were used as input parameters to predict the scour depth. The ANN model was also 

developed using field scale data set to compare ANFIS model performance. The results 

indicated that, the modeling with dimensional variables yields better predictions than when 

normalized variables are used.  Prediction results indicated that the errors are much larger 

compared to the case of a laboratory-scale dataset. The five selected empirical equations 

were also applied for the same data set and Sheppard and Melville’s formula was found to 

provide the best prediction. The study concluded that, ANFIS method predicts much better if 

the range of the training dataset is sufficiently wide to cover the range of the application 

dataset. 

Varaki et al. (2017) predicted the scour depth around the inclined bridge pier located on 

rectangular foundation using optimized ANFIS parameters with GA. 48 data sets of 

experimental results for various flow conditions were used. The model results were evaluated 

based on CC and RMSE values. The results were compared and indicated that, the 

optimization of ANFIS parameters improved the accuracy of prediction.  

2.3.4 Hybrid soft computing models 
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Najafzadeh and Barani (2011) introduced a new application of GMDH in the prediction of 

scour depth around pier. Two models of the GMDH network were developed using genetic 

programming and a back propagation algorithm. Genetic programming was performed in 

each neuron of the GMDH instead of performing the quadratic polynomial. In the second 

model of the GMDH, the quadratic polynomial was used in each neuron of the network as a 

transfer function, and a back propagation algorithm was used for training of the network. Six 

effective input parameters were considered to predict scour depth. The results showed that, 

the GMDH-GP performs better than the GMDH-BP in both training and testing phases.  

Chou and Pham (2014) investigated the potential use of genetic algorithm (GA)-based 

support vector regression (SVR) model to predict bridge scour depth near piers and 

abutments. An SVR model developed by using MATLAB® was optimized using a GA, 

maximizing generalization performance. Data collected from the literature were used to 

evaluate the bridge scour depth prediction accuracy of the hybrid model. To demonstrate the 

capability of the computational model, the GA–SVR modeling results were compared with 

those obtained using numeric predictive models and empirical methods. The results showed 

that, the GA–SVR model effectively outperformed existing methods and can be used by civil 

engineers to efficiently design safer and more cost-effective bridge substructures. 

Basser et al. (2015) proposed a new approach ANFIS-PSO to determine the optimum 

parameters of a protective spur dike. The angle of the protective spur dike relative to the 

flume wall, its length, and its distance from the main spur dikes, flow intensity, and the 

diameters of the sediment particles were used to find the optimum parameters. The results 

from the study indicated that, the accuracy of the proposed method has increased 

significantly compared to other approaches. The performance of the ANFIS-PSO method 

was confirmed using the available data. 

Harish et al. (2015) presented the SVM and hybrid of Particle Swarm Optimization (PSO) 

with SVM (PSO–SVM) is developed to predict damage level of non-reshaped berm 

breakwaters. Optimal kernel parameters of PSO–SVM are determined by PSO algorithm. 

Both the models were trained on the data set obtained from experiments. Results of both 

models were compared in terms of statistical indices, such as correlation coefficient, root 
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mean square error and scatter index. The PSO–SVM model with polynomial kernel function 

outperformed other SVM models.  

Jannaty et al. (2015) implemented the Particle Swarm Optimization (PSO) technique to 

predict scour depths by obtaining appropriate parameters for the neural network model and 

fuzzy inference system. The test was conducted based on samples obtained from 188 pier 

scour depths presented by the United States Geological Survey (USGS). The empirical 

results showed that, due to its minimum Root Mean Square Error (RMSE), the presented 

model was preferable to the ANFIS model. Moreover, the proposed model produced better 

solutions than FDOT and HEC-18 equations. The momentum method was implemented to 

accelerate the teaching process for increasing the accuracy of short term predictions. 

Najafzadeh (2015) utilized Neuro-Fuzzy based GMDH as an adaptive learning network to 

predict the scour depth at downstream of grade control structures. The NF-GMDH was 

developed using PSO. The model training and testing were carried out using non-

dimensional variables. The testing results were compared with genetic programing and 

evolutionary polynomial regression models. The study concluded that, the NF-GMDH-PSO 

network produced lower error of the scour depth prediction than those obtained using the 

other models. 

Hasanipanah et al (2016) presented the new hybrid model of artificial neural network (ANN) 

optimized by particle swarm optimization (PSO) for prediction of maximum surface 

settlement (MSS). The PSO-ANN  model were constructed using, horizontal to vertical stress 

ratio, cohesion and Young’s modulus were set as input parameters and maximum surface 

settlement predicted as output. The model performances were analyzed using CC, RMSE and 

MSE. The results from the study showed that, the proposed PSO-ANN model was able to 

predict MSS better than ANN. 

2.4 Summary of Literatures 

From the literature review, the soft computing techniques can be successfully used for 

modeling the scour related problems. Several studies are carried out to estimate the scour 

depth. The soft computing models have performed better than other existing empirical 

equations. The hybrid models combining the advantages of different individual techniques 
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have performed better in the prediction. However, there is a need for further investigation on 

the behavior of these models under different types of scour condition. 

AI models are data driven models and limited datasets availability has been always a concern 

while using these models. There is a need to address this issue by testing different input 

combinations. 

 2.5 Problem Formulation 

 Accurate estimation of scour depth around the pier is very important for the safety 

and stability of the bridge structures. From the literature it is clear that, there is no 

common method to estimate the scour depth. 

 There are various factors which affect the scour depth and considering of different 

factors in a single study is essential to understand the scour pattern and scour 

mechanism. 

 Scour mechanism is different in both clear water condition and live bed condition. 

There is a necessity to understand the scour pattern in both conditions with different 

input parameters. 

 Number of studies has reported on soft computing models such as ANN, ANFIS, 

SVM etc., in the prediction of scour depth around the bridge pier and other scour 

related problems. 

 It is observed from the literature that, a few studies are carried out using hybrid soft 

computing models for the prediction of scour depth.  

 Recently, the particle swarm optimization (PSO) becomes an efficient tool to 

optimize the other soft computing model parameters to improve the prediction 

accuracy. 

 There is no literature available for the application of PSO-SVM and PSO-ANN in the 

prediction of scour depth around the bridge pier under different scour conditions. 

 In the view of above aspects, there is a need to take up a study on application of 

hybrid PSO based soft computing models for modeling to predict the scour depth 

around different shapes of bridge pier under both clear water and live bed scour 

condition. 
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  2.6 Research Objectives 

The objective of the present research is to check the applicability of soft computing 

techniques in the prediction of scour depth: 

 To develop Soft Computing models (ANN, SVM and ANFIS) to predict the scour 

depth around different pier shapes under clear water and live bed scour condition. 

 To develop hybrid soft computing models by combining Particle Swarm Optimization 

SVM and ANN individual models (PSO-SVM and PSO-ANN). 

 To analyze and recommend the most reliable soft computing model in predicting 

scour depth around bridge pier.  
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CHAPTER 3 

EXPERIMENTAL DATA AND METHODOLOGY 

3.1 General  

 A physical model study on scour depth around bridge pier was carried out by Goswami 

Pankaj in 2013 in two-dimensional wave flume. In the present work, experimental data 

obtained from the physical model study is used for developing soft computing models to 

predict the scour depth around bridge pier. Experimental data are collected and organized in 

a systematic data base. These data are divided into two sets, about 50% of the data for 

training and remaining data for testing models. 

  In this chapter details of the experiments are explained along with the methodology 

adopted for the present study. Also, details about Artificial Neural Network (ANN), Support 

Vector Machines (SVM), Adaptive Neuro-Fuzzy Inference System (ANFIS) and Particle 

Swarm Optimization (PSO) are described in detail. 

3.2 Experimental Data Analysis 

The depth of scour is generally influenced by flow, sediment, and geometry of the pier . The 

functional interdependency between the input and output parameters is expressed in the form 

of equation below, 

     [    (     )         (     )              (     )]             (3.1) 

The experimental data are collected from Goswami P (2013). The laboratory data sets 

are taken with a 1000 mm wide, 1300 mm depth and 19.25 m length of flume dimensions. 

The bed material used in the study is sand gravel of d50= 4.2 mm and uniformly graded sand 

of d50= 0.42 mm. The experiment was conducted for clear water scour condition with 

velocities of 0.215 m/Sec, 0.226 m/Sec, 0.278 m/Sec for sand gravel and 0.184 m/Sec, 0.278 

m/Sec, 0.351 m/Sec for uniformly graded sand. The data were collected for 0-6 hours with 1 

hour interval. Similarly, the experiment was conducted for live bed scour condition with 

sediment flow of 747.78 ppm and 1066.67 ppm. The velocities of flow considered in this 

case were 0.215 m/Sec and 0.226 m/Sec and the data were collected from 0-4 hours with 1-



22 
 

hour interval.  The pier of circular, rectangular, round nosed and sharp nosed shapes were 

used in the experiment in both scour conditions. 

The input parameters, namely, sediment size (d50), velocity (U), time (t) and sediment 

quantity (ppm) are used to predict the scour depth for different pier shapes such as circular, 

rectangular, round nosed and sharp nosed pier. The whole data set is divided randomly into 

training data (50%) and testing data (50%). The statistical parameters such as most extreme 

(maximum), least (minimum), mean, standard deviation and kurtosis of each factor for 

different pier shapes are listed in the Table 3.1 and 3.2. The negative value for kurtosis 

indicates that the distribution of data has lighter tails and flatter peaks. The training and 

testing data are applied to the models and the predicted scour values are compared to the 

measured values.  

Table 3.1 Statistical parameters in clear water scour condition 

Data set 
Statistical 

Parameters 

Variables 

Sediment 

size, d50 

(mm) 

Velocity 

(m/Sec) 

Time 

(hrs) 

Scour depth (mm) 

Circular Rectangular 
Round 

Nosed 

Sharp 

Nosed 

Training 

Max 4.2 0.351 6 118 122 113 120 

Min 0.42 0.184 0 55 55 53 53 

Mean 2.31 0.261 3 84.26 87.89 82.512 84.77 

SD 1.89 0.0515 2 14.17 14.99 13.06 13.8 

Kurtosis -2.049 -0.547 -1.253 -0.139 -0.222 0.064 0.472 

Testing 

Max 4.2 0.351 6 115 121 111 120 

Min 0.42 0.184 0 54 55 54 55 

Mean 2.31 0.261 3 84.512 88.345 83.32 84.14 

SD 1.89 0.0515 2 14.206 14.58 13.23 13.33 

Kurtosis -2.049 -0.547 -1.253 -0.155 -0.225 -0.143 0.633 

Table 3.2: Statistical parameters in live bed scour condition 

Data set 
Statistical 

Parameters 

Variables 

Sediment 

Quantity 

(ppm) 

Velocity 

(m/Sec) 

Time 

(hours) 

Scour depth (mm) 

Circular Rectangular 
Round 

nosed 

Sharp 

nosed 

Training 

Max 1066.67 0.251 4 98 108 98 99 

Min 747.78 0.226 0 71 71 70 68 

Mean 907.225 0.2385 2 83.575 89.213 83.513 84.49 

SD 159.45 0.0125 1.414 7.69 9.907 7.20 8.24 

Kurtosis -2.052 -2.052 -1.31 -1.134 -1.157 -1.019 -1.039 

Testing 

Max 1066.67 0.251 4 99 106 97 98 

Min 747.78 0.226 0 70 73 68 68 

Mean 907.225 0.2385 2 83.825 89.633 83.35 85.24 

SD 159.45 0.0125 1.414 7.938 10.024 7.394 8.95 

Kurtosis -2.052 -2.052 -1.31 -1.190 -1.276 -1.052 -1.40 
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3.3 Theoretical Overview of Soft Computing Techniques 

3.3.1 Artificial Neural Network (ANN) 

Artificial Neural network is a group of interconnected artificial neurons that can be 

used as a computational model for information processing. These are nonlinear 

statistical data modeling tools, used to develop a relationship between input and output. 

Mathematically, an ANN can be treated as universal approximations having ability to 

learn from examples without the need of explicit physics. 

Neural Networks are computational models naturally performing a parallel 

processing of information. Essentially, an ANN can be defined as a pool of simple 

processing units (neurons) which communicate among themselves by means of 

sending analogue signals. These signals travel through weighted connections between 

neurons. Each of these neurons accumulates the inputs it receives, producing an output 

according to an internal activation function. This output can serve as an input for other 

neurons, or can be a part of the network output. There is a set of important issues 

involved in the ANN design process. As a first step, the architecture of the network has 

to be decided.  

In the present research work, feed forward back-propagation neural network is 

used. The feed forward back-propagation architecture is developed in the early 1970s 

(Katukam R. 2014). Its greatest strength is in non-linear solutions to ill-defined 

problems. The typical back- propagation network has an input layer, an output layer, 

and at least one hidden layer. There is no theoretical limit on the number of hidden 

layers but typically, there is just one or two. Each layer is fully connected to the 

succeeding layer, as shown in Figure.  3.1. 

 

Figure 3.1 Feed forward back propagation neural network used in study 
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3.3.2 Support Vector Machines (SVM) 

A learning tool is derived from the past statistical learning algorithms, which is named as 

support vector machine (SVM) by Vapnik 1999. SVM acts as training algorithm and 

regression tool for linear and nonlinear classification respectively. In the high dimensional 

feature space, simpler and linear hyperplane classifiers that have a maximal margin between 

the classes are obtained. SVM is a machine learning approach which provides maximized 

predictive accuracy automatically either by avoiding/minimizing or overwriting of data. 

SVM depends on SRM (Structural Risk Minimization) principle and convex optimization 

algorithm wherein the empirical risk and the confidence interval of the learning machine are 

simultaneously minimized by maximizing the geometric margin.  

In case of non-linear data, the SVM has the ability to map the data points of input 

space to the feature space of D-dimension by using different kernels and is known as “Kernel 

trick” i.e., the dot product of the data points,  

Given as: (     ) = (     )(      ),                                 (3.2) 

It can also be written as:    ( )  ∑     
 
    (    )   )                         (3.3) 

Each data point of input space is mapped into a D-dimensional space via kernel 

function i.e., “Kernel trick”, (     ) = (    ̅)(     ̅) dot product in the feature space. The 

role of the kernel function simplifies the learning process by changing the representation of 

the data in the input space to a linear representation in a higher-dimensional space called a 

feature space. The kernel functions can convert nonlinear data points into linear ones. The 

SVM develops a different hyperplane margin between the points in the feature space and 

amplifies edge between two informational indexes of two input points (Figure 3.2). It makes 

an effort of constructing a fit curve with a kernel function and used on entire data points such 

that, data points should lie between two largest marginal hyperplane to minimize the error of 

regression (Cortes and Vapnik 1995). The predictive capacity and classification error is dealt 

with learning some basic concept. Firstly, the hyperplane is separated, and then the process 

involves the selection of proper kernel function and SVM between hard and soft margin. The 

SVM model architecture adopted in the present work is shown in Figure.3.3. 
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Figure 3.2 Maximum separation hyperplane 

 

Figure 3.3   SVM architecture adopted in the study 

3.3.3 Adaptive Neuro Fuzzy Inference System (ANFIS) 

The principle involved behind ANFIS technique says that an artificial intelligence (AI) tool 

which has a set of networks for adaptation presented by Jang and Sun 1995 and a benefit of 

the tool is exploited to support in forecasting and to predict desired outputs. This AI tool can 

be viewed as a structure with the system of neural network induced feed-forward network, in 

which every layer is a taken as Neuro-Fuzzy Structure (NFS) element. It imitates the fuzzy 
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rule of Sugeno and part by part of the rule is a direct fusion of given input and a constant. 

Finally, end prediction of the method is the weighted average of each rule's outcome.  

The concept of a hybrid technique is adopted here because FIS (Fuzzy Inference 

System) alone lacks learning capability from the examples. The ANN can overcome this. 

ANFIS uses the gradient descent method (GDM) and Least Square Method (LSM) and then 

combined with Feed Forward Back Propagation (FFBP) technique. In which, FIS is used to 

measure the input and output parameters, and NN is used to define and measure the error 

regarding the sum squared differences between actual and desired outputs. The ANN can 

learn the problem and complexity involved in the relationship between the inputs and output, 

ANN performs the non-linear and uncertainty modeling without any prior knowledge. Hence, 

FFBP with TS based FIS system used to estimate the depth of the scour. To skip the 

deficiency of a training algorithm all along the process. NN used in combination with FIS 

with the introduction of FFBP. The disadvantages of ANN are overcome by training the FIS 

structure and associated parameters. ANFIS is considered to be transparent technique (Catto 

et al. 2003). If the amount of the available data is confined, then FIS is regarded as an 

efficient tool compared to ANN alone (Mahabir et al. 2006). Therefore, it is believed that 

ANFIS is a very reliable and robust tool to estimate the scour depth around the bridge pier 

(Wang and Elhag 2008). 

The details about the first-order Takagi-Sugeno method of a fuzzy model with Multi-

Input and Single Output (MISO) system is presented in Figure 3.4. ANFIS uses linguistic 

rules for estimation and formulates if-THEN rules from its knowledge to ensure the proper 

prediction of scour depth.  

ANFIS is multilayer feed forward five-layer architecture as illustrated in Figure 3.4. 

The fixed nodes are represented by circular outline and the square outlines are adaptive nodes 

presided by parameter settings. Each node performs a particular function on incoming 

signals. Every node in the layer 1 (adaptive node) is associated with a node function 

governed by premise parameters. The output of every single node of layer 2 (fixed node) 

represents the firing strength of a rule which is nothing but the product of all incoming 

signals. Similarly, the output of every single node of layer 3 (fixed node) represents the 

normalized firing strength. Every node in the layer 4 is an adaptive node associated with a 

node function governed by consequent parameters. The final fixed node in layer 5 labeled as 
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(Σ) computes the overall output as the summation of all incoming signals (Abraham, 2005). 

The premise and consequent parameters of ANFIS are tuned in the learning process by 

means of a hybrid technique which involves the gradient descent back propagation method 

coupled with a least squares optimization algorithm to provide optimal outputs. Soon after 

the training converges, the values of the premise parameters of membership function are 

fixed in the search space and the overall output is expressed as a linear combination of the 

consequent parameters (Jang, 1992). Herein, grid-partitioning (GP) type of the ANFIS model 

(ANFIS-GP) is employed in the scour depth modeling scheme. The performance of ANFIS-

GP model is greatly affected by the type and number of membership functions, which are 

usually ascertained by trial and error procedure. 

The rules generated during inference system operation and is represented in the form of 

equation as, Ru : if(       
 ) ((       

 ) and (       
 )       

  (3.4) 

Then, f=  
      

      
      

          

 (3.5) 

Where, u = 1, 2, 3……27 the number of rules. 

 

Figure 3.4 ANFIS architecture used in the study 
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3.3.4 Particle Swarm Optimization (PSO) 

Particle swarm optimization (PSO) is a population-based stochastic optimization technique 

motivated by social behavior, such as bird flocking and fish schooling. PSO was first 

proposed by Kennedy and Eberhart 1995. In PSO, each particle makes use of its individual 

memory and knowledge gained by the swarm as a whole to find the best solution. All the 

particles have fitness values, which are evaluated by fitness function to be optimized and 

have velocities which direct the movement of the particles. The best position of each particle 

is chosen from its own and by neighboring particle experience in the process of movement of 

the particles. For every iteration, each particle is updated by following two „best‟ values 

called pbest and gbest (Kuntoji G et al. 2017).   

 The PSO algorithm is defined by the direction and movement of each particle through 

the search space, by updating its velocity and position: 

       
        

         (           
 )         (           

 )     

 (3.6) 

      
        

        
                                                                                          

(3.7) 

Where     
  is the current position of the particle i with subscript j representing iteration 

count,     
  is the search velocity of the     particle,   and    are the cognitive and social 

scaling parameters,      and       are the random numbers with interval [0,1] applied to 

the      particle,    is the particle inertia,        is the best position found by the     particle 

(personal best) and        is the global best position found among all the particles in the 

swarm. The particle inertia controls the balance of global and local search abilities, where a 

larger   facilitates a global search. Particle i flutter toward a new position using Eqs. (3.6) 

And (3.7), which allow all particles in the swarm to update their        and       .  

In order to develop the optimal PSO algorithm the cognitive component and a social 

component weighted by the constants, C1 and C2, respectively should be optimally balanced.  

When a C1 greater than C2 is used, each particle approaches its previous individual best 

position. When a C2 greater than C1 is used, each particle moves closer to the previous global 

best position (Zhao, 2016).  
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3.4 Development of Soft Computing Models 

3.4.1 Development of ANN Model 

Artificial Neural Network (ANN) is one technique in the broad area of computer intelligence. 

Since 1960 ANN models inspired by human brains made of a group of neurons as nodes. The 

typical neural network structure consists of the input layer, hidden layer, and an output layer. 

The hidden layers and neurons numbers are decided by trial and error technique 

(Hasanipanah et al. 2016). The neurons used to process the information received by the input 

layer neurons. The weights are the connectivity element between neurons in adjacent layers. 

By changing the weights of the training patterns at each process network learning is achieved 

(Ghasemi et al. 2017). In this study, the feed forward back propagation (FFBP) neural 

network is considered. The ANN models are developed by varying hidden neurons form 1 to 

5. The statistical results of ANN with four hidden neurons are discussed in the next chapter.  

3.4.2 Development of SVM model 

The SVM algorithm is adopted to predict the scour depth with respect to different pier shape 

using sediment size, velocity and time as input variables. The SVM models are developed 

using MATLAB software for linear, polynomial, and radial basis (RBF) kernel functions. 

The developments of SVM model with linear, RBF kernel functions are explained in detail. 

The efficiency and accuracy of the SVM model with different kernels functions depends on 

the model parameters, namely, SVM parameter (C), kernel width parameter-Gamma (γ), and 

the epsilon parameter (ε). The four K-fold Cross-Validation search is used to identify and 

finalize the optimal parameters. Optimal parameters (c, γ, and ε) are chosen for a number of 

trials with various combinations of C (ranges from 1 to 1000), γ (ranges 1 to 100) and ε 

(ranges 0.001-10). The obtained optimal SVM parameters are shown in Table 3.3. The 

predicted values from the models are compared with the experimental values. 
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Table 3.3:  Optimal SVM parameters 

Optimal 

SVM 

parameters 

Circular Pier Rectangular Pier Round Nosed Pier Sharp Nosed Pier 

Clear 

water 

scour 

Live 

bed 

scour 

Clear 

water 

scour 

Live 

bed 

scour 

Clear 

water 

scour 

Live 

bed 

scour 

Clear 

water 

scour 

Live 

bed 

scour 

C 388 100 800 500 60 500 221 500 

gamma (γ) 2 26 1 26.25 3 26.25 2 25 

Epsilon (ε) 0.1 7 0.1 10 0.1 10 0.1 10 

3.4.3 Development of ANFIS model 

In the study, the ANFIS model is developed and tested to predict the scour depth with respect 

to different pier shapes using various input parameters. The ANFIS model is trained and 

tested to predict the scour depth concerning different pier shapes using Sediment quantity in 

the flow, the velocity of flow and time as the input parameters. The ANFIS model is 

developed in MATLAB software with trapezoidal, triangular, Gbell and Gaussian 

membership functions. The development of ANFIS with trapezoidal and Gbell MF are 

explained in this section. The 3 membership functions with 27 fuzzy rules are adopted in the 

present discussion. The details of the ANFIS model used in the study are developed using the 

following parameters, as listed in the Table 3.4. The estimated simulations obtained from the 

ANFIS models are compared with experimental values for validation of the developed 

models.                        

                    Table 3.4:  Details of ANFIS model 

ANFIS Architecture  

Number of membership functions 3 

Algorithm selected Hybrid  

Number of Epoch runs given 400-500 

Generated Fuzzy inference system Grid Partition 

Membership function (MF) type Constant  

Number of fuzzy rules generated 27 

Type of membership function (MF) used Trapezoidal, Gbell 
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3.4.4 Development of Particle Swarm Optimization based Support Vector 

Machine (PSO-SVM)  

It is proved by the previous studies that if the selection of SVM and kernel parameters is 

done, then there is a chance of over fitting or under fitting. To avoid this over-fitting or 

under-fitting of the SVM model due to the improper selection of SVM and kernel 

parameters, PSO is used as optimizer to select suitable parameters of SVM. PSO is an 

optimization method, which not only has strong global search capability, but also is very easy 

to implement. So, it is very suitable for proper selection of SVM parameters. In order to 

develop the optimal PSO algorithm the cognitive component and a social component 

weighted by the constants, C1 and C2, respectively should be optimally balanced. The 

importance of algorithm parameters can be explained by the selection of the number of 

particles usually between 10 and 50, where, C1 implies the importance of personal best value 

and C2 implies the importance of neighbourhood best value. Usually, C1+ C2 = 4 (empirically 

chosen value). The linear, RBF and Polynomial kernel functions are used in the model. The 

optimal parameters for the PSO-SVM with linear and polynomial kernel function are 

tabulated in Table 3.5.  The steps involved in the development of PSO-SVM model is 

explained in section 3.5. The flowchart for the same is as shown in Figure 3.5.  

Table 3.5:  Optimal PSO-SVM parameters 

Optimal 

PSO-SVM 

parameters 

Circular Pier Rectangular Pier Round Nosed Pier Sharp Nosed Pier 

Clear 

water 

scour 

Live 

bed 

scour 

Clear 

water 

scour 

Live 

bed 

scour 

Clear 

water 

scour 

Live 

bed 

scour 

Clear 

water 

scour 

Live 

bed 

scour 

C1 0.8 1.4 0.8 1.4 0.8 1.4 0.8 1.4 

C2 3.2 2.6 3.2 2.6 3.2 2.6 3.2 2.6 

P 25 25 25 25 25 25 25 25 

C 680 225 500 450 110 750 48 600 

gamma (γ) 1 5 1 4.5 1 4.5 1 4.5 

Epsilon (ε) 0.5 2 0.5 2.5 0.5 2.5 0.5 2 

Degree (d) 3 3 3 3 3 3 3 3 
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3.4.5 Development of Particle swarm optimization based artificial neural 

network (PSO-ANN)  

The performance of ANN architecture is usually dependent on settings of hyper-parameters 

(number of layers, layer size, layer type), activation function for each layer, optimization 

algorithm, learning rate with momentum coefficient, regularization and initialization methods 

(Ludermir et al., 2006). Hyper-parameters can strongly interact with each other to affect the 

performance. On these grounds, neural network is known to have some intrinsic 

disadvantages such as slow convergence speed, less generalizing performance, over-fitting 

problems, issues of local minima and saddle points, which can trap the optimization 

algorithm at bad solutions (Lawrence et al., 1996; Lawrence and Giles, 2000). Hence, 

optimizing ANN using nature-inspired optimization algorithms can elevate the predictability 

performance of the model. 

In the learning process of ANN, the initial weights are randomly selected. This 

weakness of the ANN model requires a number of iterations to fit optimal weights and is 

strongly dependent on the initial weights. This study proposed to improve the learning speed 

of ANN by selecting initial weights by using the PSO algorithm. The points involved in the 

PSO-ANN algorithm are as shown in flowchart (Figure 3.5). The optimal PSO algorithm 

depends on the selection of optimal C1 and C2 components. In the PSO-ANN model the 

C1=1.5 and C2=2.5 are used for the development of optimal model. The population size of 25 

and 6 hidden neurons are considered in the model. The steps involved in the development of 

PSO–ANN model is explained in section 3.5. The flowchart for the methodology adopted in 

the PSO-ANN model is as shown in Figure 3.5. 

3.5 Methodology used in the Study 

The steps involved in the development of optimal PSO-SVM and PSO-ANN model for the 

prediction of scour depth around the bridge pier is as explained below. 

Step 1: data analysis and preprocessing  

 collection of experimental data  

 selection of input and output variables  

 experimental data, split into two sets (training and testing data)  
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Step 2: developing hybrid (PSO-ANN) model  

 In case of PSO-ANN model- the most important step in the learning ANN algorithm 

is a selection of network architecture (feed-forward back propagation neural 

network).  

 In case of PSO-SVM model- selection of kernel parameters such as, C, γ, ε and d 

Step 3:  random selection of the position and velocity of particles.  

Step 4: After every iteration, position and velocity of each particle keep updated with pbest 

and gbest values. 

Step 6: Particle or swarm position and velocity are updated using the equations (3.6) and 

(3.7).  

Step 7: The iterations will repeat until the target meets.  

Step 8: After satisfying the criteria (RMSE), the model will test the SVM/ANN using testing 

data. 

The flowchart for developing the PSO-SVM and PSO-ANN model is as shown in Figure 3.4.  
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Figure 3.5 Flowchart for PSO-SVM and PSO-ANN model 

In the present study, the scour depth around the bridge pier is predicted using soft 

computing techniques. The scour depth around circular, rectangular, round nosed and sharp 

nosed pier are predicted under clear water and live bed scour condition. The SVM, ANFIS, 

PSO-SVM and PSO-ANN techniques are considered. The model performances are analyzed 
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and the best model is selected using different statistical parameters such as CC, NRMSE, 

NSE and NMB. The overall methodology used in the study is shown in Figure 3.6. 

 

Figure 3.6 Flowchart for the overall methodology used in the study 
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3.5 Performance Analysis 

The performances of soft computing models are evaluated in terms of different statistical 

measures. 

1. NRMSE: 

The Normalized Root Mean Square Error (NRMSE) frequently used to measure the 

difference between experimentally measured values and model predicted values.  

      (
    

         
)              

 (3.8) 

Where,        √(
∑ (     )

  
   

 
)        

 (3.9) 

Where,   - Observed/Measured values,   - Predicted values,  - No. of total data set points. 

The lowest NRMSE of the model is best predicted model. 

2. NSE: 

The Nash–Sutcliffe coefficient (NSE) is used to access the predictive power of the 

model. NSE can be range from -1 to 1 and the efficiency of the model is closer or equal to 1, 

the model is more accurate. 

      (
∑ (     )

  
   

∑ (    ̅)
  

   

)         

 (3.10) 

3. NMB: 

In order to know the model prediction, the Normalized Mean Bias (NMB) is used. 

The positive value of NMB shows that, the model is over predicted and the negative values 

of NMB shows that, the model is under predicted. For the better prediction the NMB value of 

the model should be zero. 

    ∑ (
     

  
) 

    (
  ̅

  ̅̅ ̅
  )       

 (3.11) 

Where,  ̅- Mean of actual data and  ̅- Mean of predicted data. 
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4. CC: 

The correlations between the predicted and observed values are measured using 

Correlation Coefficient (CC). The CC varies from -1 to 1 and if the CC value closer to 1, the 

model is having good correlation with experimental results. 

    
∑ (    ̅)
 
    (    ̅)

√∑ (    ̅)
 
   

 
 ∑ (    ̅)

  
   

       

 (3.12) 

Scatter plots are also used to evaluate the accuracies of the models, while boxplots are 

used to learn the distribution of the data points estimated by the models with respect to 

experimental models. 

3.6 Summary  

A detailed experimental study on scour depth around the bridge pier was carried out by 

Goswami in 2013, is described in this chapter. The data analyses in terms of statistical 

parameters are discussed. The input parameters, namely, sediment size (d50), velocity (U), 

time (t) and sediment quantity (ppm) are used to predict the scour depth for different pier 

shapes such as circular, rectangular, round nosed and sharp nosed pier under both clear water 

and live bed scour conditions are presented. Also the overall research methodology used to 

develop soft computing tools such as SVM, ANFIS, ANN and PSO are explained. The basic 

concepts of individual and proposed PSO based hybrid models are discussed in detail.  
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CHAPTER 4 

RESULTS AND DISCUSSION 

4.1 General 

In this chapter, the performance of the proposed models for estimating the scour depth 

around different shapes of bridge piers under clear water and live bed scour conditions are 

discussed. The circular, rectangular, round nosed and sharp nosed shaped piers are 

considered in the models. The performances of the developed models are analyzed and 

validated using statistical measures such as CC, NRMSE, NSE and NMB. An attempt is 

made to identify efficient and reliable models for predicting scour depth using different input 

combinations. The results for clear water scour condition are discussed first, followed by the 

live bed scour condition. The result of best model is compared with available empirical 

equations. 

4.2 Prediction of Scour Depth around Bridge Pier under Clear 

Water Scour Condition 

In this case, the scour depth around the bridge pier is carried out under clear water scour 

conditions. Three inputs namely, velocity, time and sediment size are used to predict scour 

depth as output. The statistical parameters in terms of maximum, minimum, standard 

deviation and kurtosis of the data used for the study are shown in Table 3.1. The whole data 

set is divided into 50% for training purpose and remaining 50% for testing the models after 

performing many trials. The soft computing techniques such as ANN, SVM, ANFIS, PSO-

SVM and PSO-ANN are discussed in the present study. The scour depth around circular, 

rectangular, round nosed and sharp nosed pier shapes is predicted separately and discussed. 

The predicted results are analyzed using statistical indices, explained in section 3.5 and 

validated using experimental results.  
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4.2.1 Performance of Support Vector Machine (SVM) model in the prediction 

of scour depth. 

The performance of the SVM techniques depends on the proper selection of kernel 

parameters. The development of SVM model is explained in section 3.4.1 and the optimal 

kernel parameters used in the study are tabulated in Table 3.3. The linear, RBF and 

Polynomial kernel functions are used in the SVM model. The results of SVM with linear and 

RBF kernel functions are presented and discussed in this section. The results in terms of 

statistical indices obtained from SVM model are tabulated in Table 4.1 for all four pier 

shapes in both training and testing phase. The predicted results of SVM model are compared 

by plotted with experimental results. 

Table 4.1: Results of SVM model for clear water scour condition 

Pier shape 
Statistical 

indices 

SVM Model 

Linear RBF 

Train Test Train Test 

Circular 

CC 0.819 0.815 0.906 0.903 

NRMSE 14.09 14.430 9.88 10.430 

NSE 0.607 0.604 0.807 0.800 

NMB 0.011 -0.004 -0.008 -0.022 

Rectangular 

CC 0.738 0.737 0.808 0.803 

NRMSE 15.560 15.246 14.00 13.744 

NSE 0.517 0.523 0.609 0.613 

NMB 0.018 0.013 0.016 0.011 

Round nosed 

CC 0.813 0.832 0.870 0.877 

NRMSE 14.670 15.430 12.46 13.10 

NSE 0.546 0.559 0.672 0.682 

NMB 0.003 -0.006 0.011 0.002 

Sharp nosed 

CC 0.77 0.760 0.836 0.843 

NRMSE 14.67 14.64 12.44 12.14 

NSE 0.49 0.49 0.635 0.650 

NMB 0.002 0.009 0.002 0.009 
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The SVM with linear and RBF kernel functions are modeled to predict the scour depth 

around circular pier shape. Figure 4.1 shows the scatter plots of SVM model in testing phase 

for circular pier. The model results are compared with measured values and plotted the 

testing phase results in Figure 4.2. The statistical results are tabulated in the Table 4.1 for 

both testing and training. SVM with RBF shows good correlation with higher CC=0.906 and 

0.903, NSE=0.807 and 0.800, lower NRMSE=9.88 and 10.430 for training and testing 

respectively. It is clear from the table that, SVM with RBF kernel function performed better 

than SVM with linear kernel function in both training and testing phase for circular pier case. 

The negative NMB value shows that, the model is performing under prediction, due to the 

linearity property of a linear kernel function, where it is not accounting for non-linear values 

of the data set, compared to RBF kernel function. 

 

Figure 4.1 Scatter plots of SVM models in testing phase for circular pier in clear water scour 

condition 
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Figure 4.2 Comparison of measured and SVM model results in testing phase for circular pier 

in clear water scour condition 

In the case of the scour depth around rectangular pier is predicted using SVM technique. 

Figure 4.3 and 4.4 shows the scatter and comparison plots of model for predicted and 

measured results in testing phase. The SVM results for both linear and RBF kernel functions 

are tabulated in Table 4.1 in both training and testing condition. The scatter and comparison 

plots shows that, the SVM with RBF kernel function showing good correlation with 

measured values compared to SVM with linear kernel function. Positive NMB values from 

the Table 4.1 clears that, SVM with both kernel functions are performing over prediction. 

Figure 4.3 Scatter plots of SVM models in testing phase for rectangular pier in clear water 

scour condition 
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Figure 4.4 Comparison of measured and SVM model results in testing phase for rectangular 

pier in clear water scour condition 

In case of round nosed shaped bridge pier the predicted scour depth results of SVM with both 

kernel function models are plotted against measured values in Figure 4.5. The statistical 

measures from the Table 4.1 shows that, SVM with RBF kernel function predicting better for 

round nosed pier. The comparison plots of measured and SVM model predicted results are 

plotted in Figure 4.6.  

 

Figure 4.5 Scatter plots of SVM models in testing phase for round nosed pier in clear water 

scour condition 
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Figure 4.6 Comparison of measured and SVM model results in testing phase for round nosed 

pier in clear water scour condition 

The scour depth around sharp nosed pier is predicted using SVM with linear and RBF kernel 

functions. The results obtained from the model are tabulated in Table 4.1. the scatter plots 

from Figure 4.7 shows that, the SVM with RBF kernel function shows good correlation with 

CC=0.843 compared to linear kernel function of CC=0.760. Figure 4.8 shows the comparison 

of measured and predicted values in testing phase. The positive NMB values from the Table 

4.1 indicate that, SVM with both the kernel functions are shows over prediction.  
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Figure 4.7 Scatter plots of SVM models in testing phase for sharp nosed pier in clear water 

scour condition 

 

Figure 4.8 Comparison of measured and SVM model results in testing phase for sharp nosed 

pier in clear water scour condition 
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The scour depth around different pier shapes in clear water scour condition is predicted using 

SVM with linear and RBF kernel functions. The scatter and comparison plots are plotted 

against measured values and predicted results in testing phase. The statistical results from the 

Table 4.1 indicates that, the SVM with RBF kernel function performs well compared to 

linear kernel function for all the four pier shapes. However for higher scour depths under-

estimation is noticed and over-estimation for lower scour depths using both linear and RBF 

functions Also, SVM with RBF kernel function shows good prediction for circular pier shape 

among the other three pier shapes. 

4.2.2 Performance of Adaptive Neuro Fuzzy Inference System (ANFIS) 

model in the prediction of scour depth. 

The ANFIS model with three inputs and one output is developed using different membership 

functions, fuzzy rules and epochs. The various membership functions considered are 

Triangular-shaped built-in membership function (TRIMF), Trapezoidal-shaped built-in 

membership function (TRAPMF), Generalized bell-shaped built-in membership function 

(GBELLMF), and Gaussian curve built-in membership function (GAUSSMF). The results of 

ANFIS with Trapezoidal and Gbell membership functions are presented and discussed in the 

below section. The theoretical overview of ANFIS technique is explained in section 3.3.3. 

The development of architecture of ANFIS model with trapezoidal and gbell membership 

function are listed in Table 3.4. The results obtained from the different ANFIS model are 

tabulated in Table 4.2 for both training and testing phase with respect to all four pier shapes.  

Table 4.2: Results of ANFIS model for clear water scour condition 

Pier shape 
Statistical 

indices 

ANFIS Model 

Trapezoidal Gbell 

Train Test Train Test 

Circular 

CC 0.924 0.913 0.963 0.955 

NRMSE 8.61 9.49 6.05 7.24 

NSE 0.85 0.834 0.928 0.912 

NMB 0.00 -0.003 0.00 -0.003 

Rectangular CC 0.890 0.869 0.931 0.912 
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NRMSE 10.30 11.00 8.147 9.156 

NSE 0.790 0.752 0.867 0.828 

NMB 0.00 -0.005 0.00 -0.005 

Round nosed 

CC 0.906 0.919 0.954 0.951 

NRMSE 9.223 9.277 6.522 7.327 

NSE 0.820 0.840 0.910 0.900 

NMB 0.00 -0.01 0.00 -0.01 

Sharp nosed 

CC 0.890 0.879 0.931 0.911 

NRMSE 9.478 9.856 7.533 8.589 

NSE 0.790 0.769 0.866 0.825 

NMB 0.00 0.007 0.00 0.007 

The ANFIS with trapezoidal and Gbell MF is developed for the prediction of scour depth 

around circular pier. The results obtained from the models are tabulated in Table 4.2 in terms 

of different statistical measures. The scatter plots are presented against measured and 

predicted values for both the membership function (MF) in during testing as shown in Figure 

4.9. The comparison plots measured and predicted results are shown in Figure 4.10. From the 

Table 4.2, it is clear that, ANFIS with Gbell MF performs better with good correlation by 

higher CC=0.963 and 0.955, NSE=0.928 and 0.912 and lower NRMSE=6.05 and 7.24 during 

training and testing respectively. The negative NMB from the Table 4.2 indicates that, the 

model is performed under prediction during testing phase for both the MFs.

Figure 4.9 Scatter plots of ANFIS models in testing phase for circular pier in clear water 

scour condition 
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Figure 4.10 Comparison of measured and ANFIS model results in testing phase for circular 

pier in clear water scour condition 

In case of the scour depth around rectangular pier for predicting ANFIS models are 

developed. The predicted scour depth is compared with measured values. The scatter and 

comparison plots are presented for measured and ANFIS model results as shown in Figure 

4.11 and 4.12 respectively. From the Table 4.2, ANFIS with gbell MF performs better with 

CC=0.912 compared to trapezoidal MF with CC=0.869.  
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Figure 4.11 Scatter plots of ANFIS models in testing phase for rectangular pier in clear water 

scour condition

 

Figure 4.12 Comparison of measured and ANFIS model results in testing phase for 

rectangular pier in clear water scour condition 

In this case, the ANFIS with trapezoidal and gbell MF are used to predict the scour depth 

around round nosed pier. The obtained results are tabulated in terms of statistical measures in 

Table 4.2. The scatter plots are presented against measured and predicted values of scour 

depth in Figure 4.13 and shows that, ANFIS  Gbell MF performs well with CC=0.915 

compared to ANFIS Trapezoidal MF with CC=0.919 during testing phase. Figure 4.14, 

shows the comparison plot for measured and predicted values. 
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Figure 4.13 Scatter plots of ANFIS models in testing phase for round nosed pier in clear 

water scour condition 

 

Figure 4.14 Comparison of measured and ANFIS model results in testing phase for round 

nosed pier in clear water scour condition 

The ANFIS model with trapezoidal and gbell MF are used to predict the scour depth around 

sharp nosed pier. The model predicted results are tabulated in Table 4.2. The positive NMB 

values from the Table 4.2 indicate that, both the models are performing over prediction. The 

scatter and comparison plots are draw against measured and predicted values obtained in 

testing phase as shown in Figure 4.15 and 4.16.  



51 
 

 

Figure 4.15 Scatter plots of ANFIS models in testing phase for sharp nosed pier in clear 

water scour condition 

 

Figure 4.16 Comparison of measured and ANFIS model results in testing phase for sharp 

nosed pier in clear water scour condition 

The scour depth around four different shapes of pier are predicted using ANFS with 

trapezoidal and gbell MF. The results obtained from the developed models are tabulated in 

Table 4.2 in the form of statistical indices. The scatter and comparison plots are presented 
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against measured and predicted results during testing condition. From the Table 4.2, it is 

clear that, ANFIS with gbell MF performing well with all the four pier shapes compared to 

trapezoidal MF. The ANFIS gbell MF shows better prediction with circular pier case among 

the other three pier shapes. 

4.2.3 Performance of a hybrid Particle Swarm Optimized Support Vector 

Machine (PSO-SVM) in the prediction of scour depth. 

The particle swarm technique is used to optimize the kernel parameters of SVM model. The 

theoretical concept of PSO is explained in section 3.3.4. The model development and 

flowchart for the PSO-SVM is shown in section 3.4.3. The optimal parameters obtained by 

optimization process by a hybrid model are tabulated in Table 3.5. Statistical measures 

computed using the predicted and measured scour depth of training and testing data for the 

hybrid PSO-SVM models are listed in Table.4.3. The PSO-SVM models with linear, 

polynomial and RBF kernel functions are used in the prediction. The results of PSO-SVM 

with linear and polynomial kernel functions are tabulated in Table 4.3. The predicted results 

are compared with experimental values. 

Table 4.3 Results of PSO-SVM model for clear water scour condition 

Pier shape 
Statistical 

indices 

PSO-SVM Model 

Linear Polynomial 

Train Test Train Test 

Circular 

CC 0.882 0.881 0.953 0.950 

NRMSE 10.64 11.10 6.84 7.47 

NSE 0.776 0.773 0.907 0.897 

NMB 0.006 -0.003 0.0003 -0.009 

Rectangular 

CC 0.819 0.810 0.919 0.915 

NRMSE 13.03 13.001 8.96 9.01 

NSE 0.661 0.653 0.840 0.834 

NMB 0.016 0.003 0.007 0.002 

Round nosed CC 0.863 0.878 0.945 0.950 
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NRMSE 11.24 11.25 7.14 7.31 

NSE 0.733 0.765 0.890 0.901 

NMB 0.015 -0.012 0.004 -0.01 

Sharp nosed 

CC 0.823 0.815 0.904 0.922 

NRMSE 11.79 12.09 9.04 8.08 

NSE 0.672 0.653 0.807 0.845 

NMB -0.008 0.0015 -0.014 0.007 

The PSO-SVM with linear and polynomial kernel functions is used to predict the scour depth 

around circular pier. The model predicted results are tabulated in table 4.3. The scatter and 

comparison plots are presented against measured and predicted values during testing phase. 

The statistical measures from the Table 4.3 implies that, PSO-SVM with polynomial kernel 

function performing well with higher CC=0.950, NSE=0.897 and lower NRMSE=7.47 in 

testing phase compared to linear kernel function with CC=0.881, NSE=0.773 and 

NRMSE=11.10. The NMB values from the Table 4.3 indicates that, PSO-SVM model is 

performing under prediction during testing and over prediction during training for both the 

kernel functions. The scatter and comparison plots are presented against measured and 

predicted values during testing phase as shown in Figure 4.17 and 4.18. 

 

Figure 4.17 Scatter plots of PSO-SVM models in testing phase for circular pier in clear water 

scour condition 
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Figure 4.18 Comparison of measured and PSO-SVM model results in testing phase for 

circular pier in clear water scour condition 

The rectangular shaped pier is considered to predict the scour depth around the pier. The 

PSO-SVM models are developed with linear and polynomial kernel functions and the results 

are tabulated in Table 4.3.  From the Figure 4.19, it is clear that, polynomial kernel function 

shows good correlation with CC=0.915 compared to linear kernel function with CC=0.810. 

The comparison plots of measured and predicted values are drawn in figure 4.20. The 

positive NMB values from the Table 4.3 indicates that, the models are performing over 

prediction in both training and testing phase with linear and polynomial kernel functions. 
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Figure 4.19 Scatter plots of PSO-SVM models in testing phase for rectangular pier in clear 

water scour condition 

 

Figure 4.20 Comparison of measured and PSO-SVM model results in testing phase for 

rectangular pier in clear water scour condition 
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The PSO-SVM with linear and polynomial kernel functions are used to predict the scour 

depth around round nosed pier. The model results are tabulated in Table 4.3 in terms of 

statistical measures. Table 4.3 shows that, the PSO-SVM with polynomial kernel function 

gives better results with higher NSE=0.890 for training and 0.901 for testing compared to 

linear kernel function of NSE=0.733 for training and 0.765 for testing. From Figure 4.21, it is 

clear that, PSO-SVM performs well with polynomial kernel function (CC=0.950) compared 

to linear kernel function (CC=0.878). The Figure 4.21 shows the comparison of measured 

and predicted scour depth for testing phase. 

 

Figure 4.21 Scatter plots of PSO-SVM models in testing phase for round nosed pier in clear 

water scour condition 
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Figure 4.22 Comparison of measured and PSO-SVM model results in testing phase for round 

nosed pier in clear water scour condition 

The scour depth around sharp nosed pier is predicted using PSO-SVM with linear and 

polynomial kernel functions. The predicted results are plotted against measured values as 

shown in Figure 4.23 as scatter plots. The Figure 4.24 shows the comparison between model 

result and experimental values and clears that, the PSO-SVM with polynomial kernel 

function giving good correlation with the measured values. The statistical results obtained 

from the models are tabulated in Table 4.3. The results shows that, the PSO-SVM with 

polynomial kernel function are in good agreement with measured values compared to linear 

kernel functions. The NMB values from the Table 4.3 indicate that, model is performing 

under prediction during training and over prediction during testing for both the kernel 

functions.   
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Figure 4.23 Scatter plots of PSO-SVM models in testing phase for sharp nosed pier in clear 

water scour condition 

 

Figure 4.24 Comparison of measured and PSO-SVM model results in testing phase for sharp 

nosed pier in clear water scour condition 
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The particle swarm based support vector machine is used to predict the scour depth around 

different shapes of bridge piers. The PSO-SVM with polynomial and linear kernel functions 

are used in the study. It is observed from the Table 4.3 that, the PSO-SVM with polynomial 

kernel functions performs well for all the four pier shapes compared to linear kernel 

functions. Meanwhile, the PSO-SVM model is shows better prediction for circular pier case 

among the other pier shapes. 

4.2.4 Performance of Artificial Neural Network (ANN) and Particle Swarm 

Optimized Neural Network (PSO-ANN) model for the prediction of scour 

depth. 

The ANN models are developed using different hidden neurons and the ANN with 2 hidden 

neuron model shows good agreement and the statistical performance of the same are listed in 

the Table 4.4. The ANN results are compared with PSO-ANN models. The PSO is combined 

with neural networks to overcome the drawbacks of an individual ANN model. The FFBP 

neural network is tuned with particle swarm optimization (PSO-ANN) to predict the scour 

depth around the pier. The methodology to develop the PSO-ANN model is explained in 

3.4.4. The optimal parameters of PSO-ANN model are shown in Table.3.6. The model results 

are compared with experimental values and same are discussed below. The results of PSO-

ANN model in terms of statistical measures are tabulated in Table 4.4 for both training and 

testing phase. The scatter and comparison plots are presented for testing results of the model 

developed. The PSO-ANN models are showing good correlation compared to ANN models 

in terms of statistical parameters and the PSO-ANN results are discussed in this section. 

Table 4.4 Results of ANN and PSO-ANN model for clear water scour condition 

Pier shape 
Statistical 

indices 

ANN Model PSO-ANN Model 

Train Test Train Test 

Circular 

CC 0.915 0.90 0.934 0.925 

NRMSE 12.26 12.93 8.05 8.855 

NSE 0.702 0.69 0.872 0.855 

NMB -0.034 -0.037 0.0009 -0.002 

Rectangular CC 0.848 0.830 0.890 0.868 
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NRMSE 13.04 13.23 10.23 11.023 

NSE 0.66 0.638 0.791 0.751 

NMB 0.01 0.005 -0.001 -0.006 

Round nosed 

CC 0.906 0.890 0.921 0.932 

NRMSE 11.76 11.96 8.48 8.51 

NSE 0.708 0.734 0.848 0.865 

NMB 0.012 0.002 0.00 -0.009 

Sharp nosed 

CC 0.865 0.860 0.916 0.890 

NRMSE 12.35 12.46 9.56 9.55 

NSE 0.650 0.643 0.785 0.783 

NMB 0.08 0.095 -0.0005 0.007 

The particle swarm optimization tuned neural network model is utilized for the prediction of 

scour depth around different shapes of bridge pier in clear water scour condition. The 

obtained model results are analyzed in terms of statistical measures and tabulated in Table 

4.4. The Table 4.4 shows that, the PSO-ANN performs well for circular and round nosed pier 

shapes with higher CC, NSE and lower NRMSE. The PSO-ANN model shows good 

performance for round nosed pier with higher CC=0.932, NSE=0.865 and lower 

NRMSE=8.51 compared to that of other pier shapes. The scatter plots and comparison plots 

are drawn to study the correlation between the measured and predicted values during testing 

as shown in Figure 4.25- for circular pier, Figure 4.27 for rectangular pier, Figure 4.29 for 

round nosed pier and Figure 4.31 for sharp nosed pier. The comparison plots, Figure 4.26, 

4.28, 4.30 and 4.32 are drawn to study the variation between measured and predicted results. 
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Figure 4.25 Scatter and line plots of ANN and PSO-ANN models in testing phase for circular 

pier in clear water scour condition 

 

Figure 4.26: Comparison of measured, ANN and PSO-ANN model results in testing phase 

for circular pier in clear water scour condition 
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Figure 4.27 Scatter and line plots of ANN and PSO-ANN models in testing phase for 

rectangular pier in clear water scour condition 

 

Figure 4.28: Comparison of measured, ANN and PSO-ANN model results in testing phase 

for rectangular pier in clear water scour condition 
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Figure 4.29 Scatter and line plots of ANN and PSO-ANN models in testing phase for round 

nosed pier in clear water scour condition 

 

Figure 4.30: Comparison of measured, ANN and PSO-ANN model results in testing phase 

for round nosed pier in clear water scour condition 
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Figure 4.31 Scatter and line plots of PSO-ANN models in testing phase for sharp nosed pier 

in clear water scour condition 

 

Figure 4.32: Comparison of measured, ANN and PSO-ANN model results in testing phase 

for sharp nosed pier in clear water scour condition 
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4.2.5 Comparative study 

To select the most accurate model among ANN, SVM, ANFIS, PSO-SVM and PSO-ANN 

developed for predicting the scour depth around different pier shapes in clear water scour 

condition. The results obtained from both train and test conditions for all the performance 

indicators by all the models are listed in Table 4.1, 4.2, 4.3 and 4.4. The performance of the 

models are evaluated using the different model performance indices such as, correlation 

coefficient (CC), normalized root-mean-square error (NRMSE), normalized mean bias 

(NMB) and Nash–Sutcliffe coefficient error (NSE). Figure 4.33 is the comparison plots 

drawn with measured values and predicted results among the best models during testing 

phase. From the Figure 4.33, it is clear that, the ANFIS with gbell MF and PSO-SVM with 

polynomial kernel function are showing good prediction in clear water scour condition 

compared to other models.  

The Box–Whisker plot are plotted to represent the spread of predicted values as shown in 

Figure 4.34. A skeletal type of box-and-whisker plot with standard error is considered to 

evaluate the performance of the models by checking distribution of data points. From the box 

plot it is clears that, the PSO-SVM model shows comparatively similar performance with the 

measured values. 
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Figure 4.33 Comparison plots in testing phase for clear water scour condition  
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Figure 4.34 Box plots in testing phase for clear water scour condition  

The statistical measures such as NRMSE, NSE and NMB are used to analyze the model 

performance. NRMSE values from the Figure 4.35 shows that, both ANFIS and PSO-SVM 

predicts well with lower NRMSE for all the four pier shapes. From the NSE value, the PSO-

SVM and ANFIS is giving good prediction in testing phase as shown in Figure 4.36. The 

NMB values from the Figure 4.37 shows that, most of the models are over predicting during 

training and under predicted during testing phases. The ANFIS model performed 

comparatively better in terms of NMB as compared with other models in both the training 

and testing phases. 
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Figure .4.35 NRMSE of all the models for clear water scour condition. 

 

Figure .4.36 NSE of all the models for clear water scour condition. 
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Figure 4.37 NMB of all the models for clear water scour condition. 

4.3 Prediction of Scour Depth around Bridge Pier for Live Bed 

Scour Condition 

Live bed scour is another type of scour condition; in this case there is a sediment supply from 

the upstream flow to the scour hole. The live bed scour condition is normally occurs during 

the flooding case. The scour depths around different shapes of bridge piers are predicted 

under live bed scour condition are discussed below. The sediment quantity (ppm), velocity 

and time are the input parameters used to predict the scour depth as output parameter. The 

statistical parameters such as max, min, standard deviation and kurtosis of the data set used 

in the study are tabulated in Table 3.2. The soft computing techniques such as ANN, SVM, 

ANFIS, PSO-SVM and PSO-ANN are used in the present study. The scour depth around 

circular, rectangular, round nosed and sharp nosed pier shapes are predicted separately in live 

bed scour condition and same are discussed in below sections. 
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4.3.1 Performance of Support Vector Machine (SVM) model in the prediction 

of scour depth. 

The SVM models are developed with linear, RBF and polynomial kernel functions to predict 

the scour depth in live bed scour condition. The results obtained for the SVM with linear and 

RBF kernel functions are presented in the Table 4.5 in terms of statistical measures. The 

predicted results are compared with measured values and discussed in detail for different pier 

shapes separately in this section. The scatter and comparison plots are presented against 

measured and predicted results in testing phase.  

Table 4.5 Results of SVM models for live bed scour condition 

Pier shape 
Statistical 

indices 

SVM Model 

Linear RBF 

Train Test Train Test 

Circular 

CC 0.796 0.789 0.875 0.866 

NRMSE 17.89 17.18 13.844 13.86 

NSE 0.610 0.606 0.764 0.743 

NMB 0.015 0.012 -0.001 -0.004 

Rectangular 

CC 0.854 0.843 0.928 0.903 

NRMSE 17.07 19.51 10.00 13.04 

NSE 0.59 0.588 0.86 0.816 

NMB 0.04 0.04 0.000 -0.0015 

Round nosed 

CC 0.810 0.793 0.904 0.853 

NRMSE 17.09 17.62 11.21 13.35 

NSE 0.560 0.522 0.810 0.726 

NMB -0.004 0.03 -0.004 -0.002 

Sharp nosed 

CC 0.810 0.839 0.880 0.899 

NRMSE 16.00 16.32 12.660 13.48 

NSE 0.638 0.701 0.77 0.796 

NMB 0.012 0.004 0.003 -0.006 
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The scour depth is predicted around circular pier using SVM with linear and RBF kernel 

functions. The results obtained from the models are tabulated in Table 4.5 and shows that, 

SVM with RBF kernel function model gives good performance with higher efficiency 

NSE=0.743 compared to the linear kernel function of NSE=0.606. A comparison using the 

scatter plots between measured and predicted values as shown in Figure 4.38 and 4.39 

respectively. The NMB values from the Table 4.5 shows that, SVM with linear kernel 

function shows over prediction and SVM with RBF kernel function shows under prediction. 

 

Figure 4.38 Scatter plots of SVM models in testing phase for circular pier in live bed scour 

condition 

 

Figure 4.39 Comparison of measured and SVM model results in testing phase for circular 

pier in live bed scour condition 
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In case of, the scour depth prediction around the rectangular pier is done by using SVM with 

linear and RBF kernel functions. The statistical results from the Table 4.5 shows that SVM 

with RBF kernel function performing better with NSE=0.816 compared to linear kernel 

function with NSE=0.588.  The scatter plot shows the correlation between measured and 

predicted results as shown in Figure 4.40. The Figure 4.41 gives the comparison with 

measured and predicted values.  

Figure 4.40 Scatter plots of SVM models in testing phase for rectangular pier in live bed 

scour condition 

 

Figure 4.41 Comparison of measured and SVM model results in testing phase for rectangular 

pier in live bed scour condition 
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The Figure 4.42 shows the scatter plots of measured and predicted SVM model results for 

round nosed pier case. It is clear from the figure that, SVM with RBF kernel function 

performs better than SVM with linear kernel function in terms of CC (CC for linear=0.793 

and CC for RBF = 0.853). The measured and predicted results are compared and plotted in 

Figure 4.43. The results of SVM model in terms of NSE, NRMSE and NMB for both the 

kernel functions are presented in Table 4.5. 

 

Figure 4.42 Scatter plots of SVM models in testing phase for round nosed pier in live bed 

scour condition 

 

Figure 4.43 Comparison of measured and SVM model results in testing phase for round 

nosed pier in live bed scour condition 



74 
 

The sharp nosed pier is considered in this case to predict the scour depth using SVM model. 

The results of SVM model is tabulated in Table 4.5 for both training and testing phase. From 

the Table 4.5 it is clear that, the SVM with RBF kernel function gives good prediction in 

terms of lower NRMSE=13.48 compared to linear kernel function of NRMSE=16.32 during 

testing. The scatter and comparison plots are presented against measured and predicted 

results in Figure 4.44 and 4.45 respectively. 

 

Figure 4.44 Scatter plots of SVM models in testing phase for sharp nosed pier in live bed 

scour condition 

 

Figure 4.45 Comparison of measured and SVM model results in testing phase for sharp 

nosed pier in live bed scour condition 
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The SVM with linear and RBF kernel functions are used to predict the scour depth around 

different pier shapes in live bed scour condition. The predicted results are compared with 

measured values. The statistical results of the models are tabulated in Table 4.5. From the 

Table 4.5 it is observed that, SVM with RBF kernel function performed better in all four 

shapes compared to linear kernel function. Further, it is clear that, the SVM with RBF kernel 

function is predicting better particularly for rectangular pier shape in live bed scour 

condition. 

4.3.2 Performance of Adaptive Neuro Fuzzy Inference System (ANFIS) 

model in the prediction of scour depth. 

The ANFIS with trapezoidal and gbell MF is used to predict the scour depth around different 

pier shapes in live bed scour condition. The architecture of ANFIS for the better prediction is 

explained in section 3.4.2. The results obtained from the model are tabulated in Table 4.6 for 

both training and testing phase. The Scatter and comparison plots are presented between 

measured and predicted results in testing phase. 

Table 4.6 Results of ANFIS models for live bed scour condition 

Pier shape 
Statistical 

indices 

ANFIS Model 

Trapezoidal Gbell 

Train Test Train Test 

Circular 

CC 0.945 0.908 0.950 0.910 

NRMSE 9.257 11.48 8.997 11.37 

NSE 0.890 0.824 0.900 0.827 

NMB 0.00 -0.003 0.00 -0.003 

Rectangular 

CC 0.971 0.952 0.975 0.950 

NRMSE 6.37 9.31 5.98 9.72 

NSE 0.943 0.906 0.950 0.898 

NMB 0.00 -0.002 0.00 -0.002 

Round nosed 

CC 0.948 0.925 0.950 0.923 

NRMSE 8.13 9.67 8.01 9.829 

NSE 0.90 0.856 0.903 0.851 
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NMB 0.00 0.002 0.00 0.002 

Sharp nosed 

CC 0.933 0.940 0.935 0.939 

NRMSE 9.583 10.723 9.397 10.82 

NSE 0.870 0.871 0.875 0.868 

NMB 0.00 -0.009 0.00 -0.009 

 

The ANFIS model with trapezoidal and gbell MF is used to predict the scour depth around 

circular pier. The results of the model are tabulated in Table 4.6 and shows that, ANFIS with 

gbell MF shows good correlation (CC=0.910 for testing and CC=0.950 for training) 

compared to trapezoidal MF (CC=0.908 for testing and CC =0.945 for training). The scatter 

and comparison plots in Figure 4.46 and 4.47 are drawn against measured and predicted 

results. The NMB value from the Table 4.6 shows that, the model is performing under 

prediction during testing and over prediction during training for both the MF. 

 

Figure 4.46 Scatter plots of ANFIS models in testing phase for circular pier in live bed scour 

condition 
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Figure 4.47 Comparison of measured and ANFIS model results in testing phase for circular 

pier in live bed scour condition 

The ANFIS model with trapezoidal and gbell MF is applied to predict the scour depth around 

rectangular pier and the results are tabulated in the Table 4.6. ANFIS with both MF are 

performing better with higher CC=0.952 for trapezoidal and CC=0.950 for gbell MF during 

testing as shown in Figure 4.48. The comparison plot says that, there is good correlation 

between ANFIS model and measured values (Figure 4.49). The NMB value from the Table 

4.6 shows that, the model is performing under prediction during testing and over prediction 

during training for both the trapezoidal and gbell MF. 
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Figure 4.48 Scatter plots of ANFIS models in testing phase for rectangular pier in live bed 

scour condition 

 

Figure 4.49 Comparison of measured and ANFIS model results in testing phase for 

rectangular pier in live bed scour condition 
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The ANFIS model is applied to the prediction of scour depth around round nosed pier. The 

model results are presented in Table 4.6 in terms of statistical measures and it shows that, 

ANFIS with both the MFs are performing well. The positive NMB values from the Table 4.6 

indicate that, the ANFIS model is performing over prediction for both MFs. Figure 4.50 and 

4.51 are the scatter and comparison plots presented against measured and predicted values in 

testing phase. 

 

Figure 4.50 Scatter plots of ANFIS models in testing phase for round nosed pier in live bed 

scour condition 

 

Figure 4.51 Comparison of measured and ANFIS model results in testing phase for round 

nosed pier in live bed scour condition 
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In this case, the scour depth is predicted around sharp nose pier using ANFIS model. The 

obtained results from the model are tabulated in Table 4.6. The ANFIS model is performing 

better with both the MF in terms of lower NRMSE =10.723 for trapezoidal and 10.82 for 

gbel in testing phase. From the Figure 4.52 it can be observed that, the ANFIS results are 

showing good correlation with measured values in terms of CC= 0.940 for trapezoidal and 

CC=0.939 for gbell. Figure 4.53 shows the comparison between measured and predicted 

values.  

 

Figure 4.52 Scatter plots of ANFIS models in testing phase for sharp nosed pier in live bed 

scour condition 

 

Figure 4.53 Comparison of measured and ANFIS model results in testing phase for sharp 

nosed pier in live bed scour condition 
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The ANFIS with trapezoidal and gbell MF are utilized for predicting scour depth around 

different pier shapes in live bed scour condition. The statistical results from the models are 

tabulated in Table 4.6 for both training and testing. The scatter and comparison plots are 

drawn for model testing results. From the Table 4.6 it is clears that, the ANFIS with both 

MFs performs better for all four pier shapes. Further, the ANFIS model shows good 

prediction for rectangular pier in live bed scour condition. 

4.3.3 Performance of Particle Swarm Optimized Support Vector Machine 

(PSO-SVM) model in the prediction of scour depth. 

The PSO is used as an evolutionary technique to optimize the kernel parameters of SVM 

(PSO-SVM) in the prediction of scour depth. The PSO based SVM technique is used to 

predict the scour depth around different shapes of bridge piers under live bed scour 

condition. The development of PSO-SVM model is explained in section 3.4.3. The optimal 

kernel parameters of PSO-SVM model are tabulated in Table 3.5. The PSO-SVM with linear 

and Polynomial kernel functions are used to predict the scour depth. The results of PSO-

SVM model with linear and polynomial kernel function are tabulated in Table 4.7 in terms of 

statistical indices. The predicted results are compared with measured values. The scatter and 

comparison plots are presented for measured versus predicted results during testing phase. 

Table 4.7 Results of PSO-SVM models for live bed scour condition 

Pier shape 
Statistical 

indices 

PSO-SVM Model 

Linear Polynomial 

Train Test Train Test 

Circular 

CC 0.856 0.837 0.923 0.920 

NRMSE 15.50 15.23 11.07 10.79 

NSE 0.704 0.690 0.849 0.845 

NMB 0.009 0.01 0.003 0.005 

Rectangular 

CC 0.893 0.879 0.963 0.932 

NRMSE 12.19 14.66 7.290 11.09 

NSE 0.794 0.767 0.926 0.867 
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NMB 0.0004 -0.0066 0.005 0.0007 

Round nosed 

CC 0.853 0.851 0.919 0.915 

NRMSE 13.712 13.48 10.356 10.33 

NSE 0.716 0.721 0.838 0.836 

NMB 0.00 -0.006 -0.001 0.0016 

Sharp nosed 

CC 0.851 0.879 0.920 0.938 

NRMSE 14.33 15.37 11.09 10.52 

NSE 0.709 0.734 0.826 0.876 

NMB 0.006 -0.018 0.01 -0.006 

 

The PSO-SVM with polynomial and liner kernel functions is applied to predict the scour 

depth around circular pier. The model results are tabulated in Table 4.7 and shows that, the 

PSO-SVM with polynomial kernel function gives good prediction with higher NSE (0.923 

for training and 0.920 for testing) compared to linear kernel function (0.856 for training and 

0.836 for testing). The Figure 4.54, shows the correlation between the measured and 

predicted values (CC for, linear=0.837 and polynomial=0.920). The comparison plots are 

drawn for measured and predicted results in Figure 4.55. The positive NMB values from the 

Table 4.7 shows that, the PSO-SVM model is performing over prediction in both training and 

testing. 
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Figure 4.54 Scatter plots of PSO-SVM models in testing phase for circular pier in live bed 

scour condition 

 

Figure 4.55 Comparison of measured and PSO-SVM model results in testing phase for 

circular pier in live bed scour condition 

In next phase, the PSO-SVM model is used to predict the scour depth around rectangular 

pier. The model results are presented in Table 4.7 and shows that the PSO-SVM with 

polynomial kernel function performs well with higher NSE (0.926=training and 

0.867=testing) compared to linear kernel function of NSE (0.794=training and 

0.767=testing). The scatter and comparison plots are presented with measured and predicted 

scour depth during testing phase as shown in Figure 4.56 and 4.57 respectively.  
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Figure 4.56 Scatter plots of PSO-SVM models in testing phase for rectangular pier in live 

bed scour condition 

 

Figure 4.57 Comparison of measured and PSO-SVM model results in testing phase for 

rectangular pier in live bed scour condition 
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The scour depth around round nosed pier is predicted using PSO-SVM model and the results 

are presented in Table 4.7. The results shows that, the PSO-SVM with polynomial kernel 

function is performing better in terms of lower NRMSE (10.356=training and 10.33=testing) 

compared to linear kernel function of NRMSE (13.712=training and 13.48=testing). The CC 

from the Figure 4.58 shows the correlation between the measured and predicted results in 

testing phase (CC=0.851 for linear and CC=0.915 for polynomial).  The comparison plot is 

shown, against measured and predicted to study the performance of the model are shown in 

Figure 4.59.  

 

Figure 4.58 Scatter plots of PSO-SVM models in testing phase for round nosed pier in live 

bed scour condition 

 

Figure 4.59 Comparison of measured and PSO-SVM model results in testing phase for round 

nosed pier in live bed scour condition 
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In this case, the PSO-SVM model is utilized for the prediction of scour depth around sharp 

nosed pier. The obtained result from the model are tabulated in Table 4.7 and shows that, the 

polynomial kernel function is performing better than linear kernel function. The NMB values 

from the Table 4.7 clearly shows that, the PSO-SVM model is performing under prediction 

during testing and over prediction during training in both the kernel functions. Figure 4.60 

and 4.61 are the scatter and comparison plots respectively, which are the plot between the 

measured and predicted results. 

 

Figure 4.60 Scatter plots of PSO-SVM models in testing phase for sharp nosed pier in live 

bed scour condition 

 

Figure 4.61 Comparison of measured and PSO-SVM model results in testing phase for sharp 

nosed pier in live bed scour condition 
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The PSO based SVM model is used for the prediction of scour depth around different pier 

shapes in live bed scour condition. The model results in terms of statistical indices are 

presented in Table 4.7.  It is clear from the table that, the PSO-SVM with polynomial kernel 

function shows good correlation in the prediction of scour depth around all four pier shapes. 

Further, the PSO-SVM with polynomial kernel function performs better particularly for 

rectangular pier under live bed scour condition compare to other pier shapes and kernel 

functions. 

4.3.4 Performance of Artificial Neural Network (ANN) and Particle Swarm 

Optimized Neural Network (PSO-ANN) model in the prediction of scour 

depth. 

The ANN models are developed using different hidden neurons and the statistical results of 

ANN with 2 neurons are tabulated in Table 4.8. The particle swarm optimization is used to 

overcome the disadvantages and drawbacks of neural network in the prediction of scour 

depth. The development of PSO-ANN is explained in detail in the section 3.4.4. The PSO 

based feed forward neural network (PSO-ANN) is used to predict the scour depth around 

different pier shapes in live bed scour condition. The model results are tabulated in Table 4.8 

for both training and testing phases. The PSO-ANN models are showing good correlation 

compared to ANN models in terms of statistical parameters and the PSO-ANN results are 

discussed in this section. 

Table 4.8 Results of ANN and PSO-ANN models for live bed scour condition 

Pier shape 
Statistical 

indices 

ANN Model PSO-ANN Model 

Train Test Train Test 

Circular 

CC 0.865 0.840 0.948 0.905 

NRMSE 15.02 16.65 9.11 11.69 

NSE 0.72 0.69 0.898 0.818 

NMB 0.004 0.02 0.0003 -0.003 

Rectangular 
CC 0.920 0.890 0.942 0.925 

NRMSE 9.93 12.48 7.32 10.81 
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NSE 0.86 0.83 0.925 0.873 

NMB -0.002 -0.003 0.00 -0.002 

Round nosed 

CC 0.903 0.880 0.935 0.910 

NRMSE 13.35 13.51 8.580 9.830 

NSE 0.730 0.718 0.890 0.851 

NMB 0.0102 0.015 0.00 0.002 

Sharp nosed 

CC 0.896 0.875 0.945 0.920 

NRMSE 12.1 13.25 9.422 10.610 

NSE 0.801 0.795 0.874 0.873 

NMB -0.005 -0.01 0.0001 -0.009 

The PSO-ANN model predicts the scour depth around different pier shapes (circular, 

rectangular, round nosed and sharp nosed). The model performances are analyzed in terms of 

statistical indices and tabulated in Table 4.8. The table shows that, PSO-ANN is performing 

well for all the four pier shapes. The PSO-ANN model showing better prediction particularly 

for rectangular pier with higher CC (0.962=training, 0.935=testing), NSE (0.925=training, 

0.873=testing) and with lower NRMSE (7.32=training, 10.81=testing) compared to other pier 

shapes. The scatter and comparison plots are constructed for measured and predicted results 

for all four pier shapes, Figure 4.62 and 4.63 for circular, 4.64 and 4.65 for rectangular, 4.66  

and 4.67 for round nosed and 4.68 and 4.69 for sharp nosed pier. 

Figure 4.62 Scatter and line plots of ANN and PSO-ANN models in testing phase for circular 

pier in live bed scour condition 
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Figure 4.63: Comparison of measured, ANN and PSO-ANN model results in testing phase 

for circular pier in clear water scour condition 

 

 

Figure 4.64 Scatter and line plots of ANN and PSO-ANN models in testing phase for 

rectangular pier in live bed scour condition 
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Figure 4.65: Comparison of measured, ANN and PSO-ANN model results in testing phase 

for rectangular pier in clear water scour condition 

Figure 4.66 Scatter and line plots of ANN and PSO-ANN models in testing phase for round 

nosed pier in live bed scour condition 
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Figure 4.67: Comparison of measured, ANN and PSO-ANN model results in testing phase 

for round nosed pier in clear water scour condition 

 

Figure 4.68 Scatter and line plots of ANN and PSO-ANN models in testing phase for sharp 

nosed pier in live bed scour condition 
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Figure 4.69: Comparison of measured, ANN and PSO-ANN model results in testing phase 

for sharp nosed pier in clear water scour condition 

 

4.3.5 Comparative study 

The SVM, ANFIS, PSO-SVM and PSO-ANN models are developed to fine out the most 

reliable model for the prediction of scour depth around the pier in live bed scour condition. 

The results obtained from the models are analyzed using different statistical measures and 

tabulated in Table 4.5, 4.6, 4.7 and 4.8.  The comparison plots are drawn between measured 

and predicted models as shown in Figure 4.70. It is clear from the Figure 4.70 that, the 

ANFIS and PSO-SVM models are showing good agreement with the measured results. The 

box plot from the Figure 4.71 shows that, the PSO-SVM model exhibited a similar type of 

spread as compared to measured values for all the cases considered in the study.  
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Figure 4.70 Comparison plots in testing phase for live bed scour condition  
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Figure 4.71 Box plots for all the models in testing phase for live bed scour condition  

The statistical indices NRMSE, NSE and NMB are considered for the analysis of model 

performance. Figure 4.72 shows the NRMSE of all the models in both training and testing 

phase. It is observed that, ANFIS model is performing better in terms of NRMSE for all the 

models when compared to the other three models. From the Figure 4.73, it is noticed that the 

ANFIS model has shown good performance for all the four cases in terms of NSE value and 

also, the PSO-SVM model performing better than SVM model. The NMB values from 

Figure 4.74 show clearly that, most of the models are performing over prediction during 

training and under prediction during testing. 
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Figure .4.72 NRMSE of all the models for live bed scour condition. 

 

Figure .4.73 NSE of all the models for live bed scour condition. 
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Figure .4.74 NMB of all the models for live bed scour condition. 

4.4 Comparison of the Model Results with Standard Empirical 

Equations 

The results of best performing PSO-SVM models are compared with standard empirical 

equations such as Indian Road Congress (IRC) method, Melville - Coleman method and 

Kothyari – Garde – Rangaraju method (Mazumder and Kumar, 2006). The results are 

tabulated in Table 4.9. It is observed that the PSO-SVM has better correlation coefficient 

(CC) compared to empirical methods. The silt factor, pier shape factor and pier alignment 

factor considered in the empirical formula are shown in Appendix I.  

Table 4.9: Comparison of PSO-SVM results with empirical equations. 

Source Empirical Formula 

Correlation coefficient (CC) 

Empirical 

method 
PSO - SVM 

IRC Method 

(Lacey/Inglis)          (
 

 
)

 
 
 0.866 

0.950 
Melville And 

Coleman Method 
               0.870 

Kothyari – Garde 

- Rangaraju 

Method 

   
   

     (
 

   
)
    

(
 

   
)
   

        0.820 
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CHAPTER 5 

SUMMARY AND CONCLUSIONS  

5.1 Summary 

This study attempts to develop the different soft computing models such as, ANN, SVM, 

ANFIS, PSO-SVM and PSO-ANN to predict the scour depth around the bridge pier. In the 

present study there have been four different shapes (Circular, rectangular, round nosed and 

sharp nosed) of piers and two scour conditions (clear water and live bed) are used. The 

sediment size (d50), velocity (u) and time (T) are used as input variables for clear water scour 

condition and sediment quantity (Sq), velocity (u) and time (T) are used as input parameters 

for live bed scour condition. The performances of the proposed models are analyzed using 

various statistical indices such as Correlation Coefficient (CC), Normalized Root Mean 

Square Error (NRMSE), Nash–Sutcliffe coefficient (NSE) and Normalized Mean Bias 

(NMB). The model results are compared with measured scour depth. Scatter and comparison 

plots are used to evaluate the accuracies of the models and box plots are drawn to learn the 

spread of the data points estimated by the models with respect to measured values. 

5.2 Conclusions 

Based on the results of the present investigations and discussion thereon, following 

conclusions are derived: 

 The ANN, SVM, ANFIS, PSO-SVM and PSO-ANN models give good results for the 

range of velocity (0.184 - 0.351) m/sec, sediment size (0.42 - 4.2) mm, Sediment 

quantity (474.77- 1066.67) ppm. 

 SVM with different kernel functions are performed, among them RBF kernel yields 

higher CC, NSE and lower NRMSE compared to other kernel functions. 

 ANFIS and PSO-SVM showed a better as compared to ANN, SVM and PSO-ANN. 

When the hybrid models are compared, ANFIS model gives higher CC, NSE and 

lower NRMSE. But considering computational time ANFIS has taken more time than 

PSO-SVM model. Hence, PSO-SVM is computationally efficient as compared to 

ANFIS. 
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 The ANFIS and PSO-SVM models perform better particularly, for circular pier in 

case of clear water scour condition and rectangular pier under live bed scour 

condition compared to other cases. 

 The PSO-SVM model gives higher CC when compared with that from various 

empirical equations while estimating scour depth. 

 The PSO-SVM model performs better than ANFIS, PSO-ANN, SVM and ANN. 

Hence, PSO-SVM can be recommended in place of ANFIS, PSO-ANN, SVM and 

ANN for the prediction of scour depth around the pier in clear water and live bed 

scour conditions. 

5.3 Limitations of the Study 

 Soft computing techniques are data driven and will give the best results when 

sufficient experimental data is available beforehand. 

 The models cannot be generalized unless similar field conditions are available. 

These are site specific models 

5.4 Scope for Future Work 

There is a scope for carrying out further research. The following suggestion may be   

considered for further study: 

 The study can be extended to other evolutionary optimization techniques such as Ant 

Colony Optimization (ACO) and any improvement in the efficiency of predictions 

can be checked. 

 The scour is a complex phenomenon and there are various factors affecting on the 

scour depth need to be considered in addition to the three input parameters which are 

used in the study.  
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APPENDIX I 

1. PROGRAM TO DEVELOP ANN MODEL 

% Code for predicting D using ANN  

% Loading train data 

xlsread('scour.xlsx') 

d_train=xlsread('scour.xlsx','A2:A85'); 

u_train=xlsread('scour.xlsx','B2:B85'); 

t_train=xlsread('scour.xlsx','C2:C85'); 

D_train=xlsread('scour.xlsx','D2:D85'); 

% Loading test data 

d_test=xlsread('scour.xlsx','A86:A169'); 

u_test=xlsread('scour.xlsx','B86:B169'); 

t_test=xlsread('scour.xlsx','C86:C169'); 

D_test=xlsread('scour.xlsx','D86:D169'); 

% Loading the ranges for train and test data 

% Train input vector 

TRAIN_INPUT = [d_train'; u_train'; t_train']; 

% Train output vector 

%TRAIN_OUTPUT = [D_train'];     

TRAIN_OUTPUT = [D_train']; 

% Test input vector 

TEST_INPUT = [d_test'; u_test'; t_test'; D_test']; 

% Test output vector 

%TEST_OUTPUT = [D_test'];     

TEST_OUTPUT = [D_test']; 

% Creating a feedforward network 

% Network parameters 

NET.trainparam.show = 5; 

NET.trainparam.epochs = 200; 

% due to undefined function error %NET.trainparam.min_grd = 1.0e-3; 

NET.trainparam.goal = 1.0e-3; 

%Training of network 

NET = train (NET, TRAIN_INPUT, TRAIN_OUTPUT); 

%Simulate the network with train data 

SIMULATED_TRAINED_OUTPUT = sim(NET, TRAIN_INPUT); 

%Simulate the network with test data 

SIMULATED_TEST_OUTPUT = sim(NET, TEST_INPUT); 

cTRAIN = ctrain (1,2) 

% Coefficient of correlation for testing 

ctest = corrcoef (SIMULATED_TEST_OUTPUT', TEST_OUTPUT) 

cTEST = ctest (1,2) 

clear all 

clc 
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2. PROGRAM TO DEVELOP SVM MODEL 

% TRAINING DATASET  

SPECTR = csvread('train.csv'); % read a csv file  

trainlabels = SPECTR(:, 1); % labels from the 1st column  

trainfeatures = SPECTR(:, 2:end);   

trainfeatures_sparse = sparse(trainfeatures); % features must be in a sparse matrix  

libsvmwrite('SPECTRlibsvm.train', trainlabels, trainfeatures_sparse);  

% TESTING DATASET  

SPECTE = csvread('test.csv'); % read a csv file  

testlabels = SPECTE(:, 1); % labels from the 1st column  

testfeatures_sparse = sparse(testfeatures); % features must be in a sparse matrix  

libsvmwrite('SPECTElibsvm.test', testlabels, testfeatures_sparse);  

% PARAMETER SELECTION USING 4-FOLD CROSS VALIDATION  

bestcv = 0;  

for c = 1:500,  

  for g = 1:10,  

    cmd = ['-v 4 -c ', num2str(c), ' -g ', num2str(g)];  

      bestcv = cv; bestc = c; bestg = g;  

    end  

    fprintf('%g %g %g (best c=%g, g=%g, rate=%g)\n', c, g, cv, bestc, bestg, bestcv);  

  end  

end  

options = ['-s 3 -t 2 -c ', num2str(bestc), ' -g ', num2str(bestg), '-p' 0.1, '-h' 0'];  

 [predicted_trainlabel, accuracy_train, decision_values] = svmpredict(trainlabels, 

trainfeatures, model);   

[predicted_testlabel, accuracy 

 

3.  PROGRAM TO DEVELOP PSO-SVM MODEL 

clc; 

clear all; 

%SVM Support Vector Machine 

filename = 'total.xlsx'; 

P = xlsread(filename,'A:D'); 

X1= P([1:80],[1:3]); 

Y1= P([1:80],[4]); 

X2= P([81:160],[1:3]);      

Y2= P([81:160],[4]); 

nvars = 2; 

x = particleswarm(@(x)svmexp(x,X1,Y1,X2,Y2),nvars,[0.0001,500],[0.0001,1000]); 

mdl = 

fitrsvm(X1,Y1,'KernelFunction','rbf','Standardize',true,'Epsilon',x(1),'BoxConstraint',x(2)); 

    yfit = predict(mdl,X2); 

    n=80; 

    %mape = (1/n)*sum(e); 
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    %rmse = sqrt((1/(n))*sum((e.^2))); 

    %mre  = (1/(n))*sum(abs(e./yfit)); 

    den = sqrt(sum((Y2-yf).^2).*sum((yfit-yf).^2)); 

    cc = num/den; 

    %SI = rmse./(mean(Y2)); 

function [mape] = svmexp(Epsi,X1,Y1,X2,Y2) 

    mdl = fitrsvm(X1,Y1,'KernelFunction','rbf','KernelScale','auto','Standardize',true); 

    yfit = predict(mdl,X2); 

    Epsi = mdl.Epsilon; 

     e = abs(yfit-Y2); 

    mape = (1/100)*sum(e./Y2) * 100; 

end 

 

4. PROGRAM TO DEVELOP PSO-ANN MODEL 

clc 

tic 

close all 

clear all 

rng default 

filename = 'datafile1.xlsx'; 

sheetname1 = 'Sheet1'; 

sheetname2 = 'Sheet2'; 

input = xlsread(filename,sheetname1,'A1:Z1000'); 

target = xlsread(filename,sheetname2,'A1:Z1000'); 

inputs=input'; 

targets=target'; 

n=6; 

net=feedforwardnet(n); 

net=configure(net,inputs,targets); 

for j=1:kk 

 LB(1,j)=-1.5; 

 UB(1,j)=1.5; 

end 

pop=25; 

for i=1:pop 

 for j=1:kk 

 xx(i,j)=LB(1,j)+rand*(UB(1,j)-LB(1,j)); 

 end 

end 

fun=@(x) myfunc(x,n,m,o,net,inputs,targets); 

 x0=xx; 

  

% pso initialization----------------------------------------------start 

 x=x0; % initial population 

 v=0.01*x0; % initial velocity 



109 
 

 for i=1:pop 

 f0(i,1)=fun(x0(i,:)); 

 end 

 pbest=x0; % initial pbest 

 gbest=x0(index0,:); % initial gbest 

 % pso initialization------------------------------------------------end 

 

 % pso algorithm---------------------------------------------------start 

 c1=0.8; c2=3.2; 

 ite=1; maxite=1000; tolerance=1; 

while ite<=maxite && tolerance>10^-8 

 

 w=0.1+rand*0.4; 

 % pso velocity updates 

v(i,j)=w*v(i,j)+c1*rand*(pbest(i,j)-x(i,j))... 

 +c2*rand*(gbest(1,j)-x(i,j)); 

 end 

 end 

 % pso position update 

 for i=1:pop 

 for j=1:kk 

 x(i,j)=x(i,j)+v(i,j); 

 end 

 end 

 % handling boundary violations 

 for i=1:pop 

 for j=1:kk 

x(i,j)=LB(j); 

 elseif x(i,j)>UB(j) 

 x(i,j)=UB(j); 

 end 

 end 

 end 

 % evaluating fitness 

 for i=1:pop 

end 

% updating pbest and fitness 

 for i=1:pop 

pbest(i,:)=x(i,:); 

 f0(i,1)=f(i,1); 

 end 

 end 

 [fmin,index]=min(f0); % finding out the best particle 

 ffmin(ite,run)=fmin; % storing best fitness 

 ffite(run)=ite; % storing iteration count 

 % updating gbest and best fitness 
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 if fmin<fmin0 

fmin0=fmin; 

 end  

  

 % calculating tolerance 

 if ite>100; 

 tolerance=abs(ffmin(ite-100,run)-fmin0); 

 end 

 % displaying iterative results 

 if ite==1 

 disp(sprintf('Iteration Best particle Objective fun')); 

 end 

 disp(sprintf('%8g %8g %8.4f',ite,index,fmin0)); 

 ite=ite+1; 

 end 

 % pso algorithm-----------------------------------------------------end 

  

 xo=gbest; 

 fval=fun(xo); 

ybest(run,1)=fun(xo); 

 disp(sprintf('****************************************')); 

 disp(sprintf(' RUN fval ObFuVa')); 

 disp(sprintf('%6g %6g %8.4f %8.4f',run,fval,ybest(run,1))); 

end 

toc 

 

% Final neural network model 

disp('Final nn model is net_f') 

net_f = feedforwardnet(n); 

net_f=configure(net_f,inputs,targets); 

[a b]=min(ybest); 

xo=xbest(b,:); 

k=0; 

for i=1:n 

 for j=1:m 

 k=k+1; 

end 

end 

for i=1:n 

 k=k+1; 

xb1(i,1)=xo(k+n); 

end 

k=k+n 

for i=1:o 

 k=k+1; 

 xb2(i,1)=xo(k); 
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end 

net_f.iw{1,1}=xi; 

net_f.b{1,1}=xb1; 

net_f.b{2,1}=xb2; 

 

%Calculation of MSE 

err=sum((net_f(inputs)-targets).^2)/length(net_f(inputs)) 

%Regression plot 

plotregression(targets,net_ (inputs)) 

disp('Trained ANN net_f is ready for the use'); 

 

5. IRC Method (Lacey’s method): (IRC 78-2014) 

         (
 

 
)

 
 
 

Where,    = effective scour depth 

 = flow depth 

 = silt factor and it is given by     √   

  = mean diameter of bed material in millimeter. 

The values of ‘ ’ for various grades of bed materials are shown in table.  

Types of bed material 

 
   (mm)   

Coarse silt 0.04 0.35 

Silt/fine sand 0.081 to 0.158 0.5 to 0.7 

Medium sand 0.223 to 0.505 0.85 to 1.25 

Coarse sand 0.725 1.5 

Fine bajri and sand 0.988 1.75 

Heavy sand 1.29 to 2.00 2.0 to 2.42 

 

6. Melville and Coleman Method: 

              

Where,      effective scour depth 

    Pier shape factor 

   Pier alignment factor 
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   Pier thickness 

The pier shape factor (  ) for various shapes are shown below. 

Pier Shape    

Circular  1.0 

Round Nosed 1.0 

Rectangular/Square Nosed 1.1 

Sharp Nosed 0.9 

 

The pier alignment factor      for various pier alignments is listed below. 

      30 45 60 90 120 135 150 

   0.90 0.95 0.98 1.0 1.05 1.07 1.08 

 

7. Kothyari – Garde – Rangaraju Method: 

 

   

   
     (

 

   
)
    

(
 

   
)
   

       

Where,    = effective scour depth 

     Sediment size 

   Pier thickness 

   Flow depth 

   Center to center spacing of the pier 
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