
ADAPTIVE RESOURCE MANAGEMENT IN
SLA AWARE ELASTIC CLOUDS

Thesis

Submitted in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

by

ANITHAKUMARI S

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

NATIONAL INSTITUTE OF TECHNOLOGY KARNATAKA

SURATHKAL, MANGALORE - 575025

APRIL, 2019

To my family

DECLARATION
By the Ph.D. Research Scholar

I hereby declare that the Research Thesis entitled ADAPTIVE RESOURCE

MANAGEMENT IN SLA AWARE ELASTIC CLOUDS which is being submitted to

the National Institute of Technology Karnataka, Surathkal in partial fulfillment of the

requirements for the award of the Degree of Doctor of Philosophy in Computer Science

and Engineering is a bonafide report of the research work carried out by me. The material

contained in this Research Thesis has not been submitted to any University or Institution

for the award of any degree.

ANITHAKUMARI S

Reg. No. 121174 CS12F01

Department of Computer Science and Engineering

Place: NITK, Surathkal.

Date: April 19, 2019

CERTIFICATE

This is to certify that the Research Thesis entitled ADAPTIVE RESOURCE

MANAGEMENT IN SLA AWARE ELASTIC CLOUDS submitted by

ANITHAKUMARI S., (Reg. No. 121174 CS12F01) as the record of the research work

carried out by her, is accepted as the Research Thesis submission in partial fulfillment of

the requirements for the award of degree of Doctor of Philosophy.

(K. Chandrasekaran)

Research Supervisor

Chairman - DRPC

(Signature with Date and Seal)

ACKNOWLEDGEMENT
I would like to take this opportunity to thank those people who have made this thesis

possible.

My sincere gratitude to my Research Guide Prof. K. Chandrasekaran for accepting me

into the Ph.D. program and for keeping constant faith in me. He is always supportive and

remarkably perceptive in advising in the right direction and correcting the vital details.

Without his continuous encouragement, I would still be in my Ph.D. dreams. He is a

great mentor and I learned so much from him through his long academic journey. I could

not have finished my thesis in time without his untiring help in making every sentence

concise and correct. I am truly blessed to have come to National Institute of Technology

Karnataka, where Prof. K. Chandrasekaran welcomed me with open arms and my life

started on a whole new course.

I extend my sincere thanks to Prof. Santhi Thilagam, Department of CSE for her feed-

back and comments as my Research Progress Assessment Committee (RPAC) member.

Special thanks are due to my second RPAC member Prof. K. Vidya Shetty, Department of

Chemical Engineering for her constant advise in improvising my work.

I extend my thanks to the Head of the Department, Department of Computer Science

and Engineering, for encouraging research related activities in the department and culti-

vating an open and free research environment. I would like to extend my sincere thanks

to the entire faculty and staff of Computer Science department for their untiring support in

successful completion of my research work.

My debt to my family is immeasurable. They have offered me their unconditional

support in all of my endeavors. Special thanks to my employer LBS Centre for Science

and Technology, my colleagues and my friends in NITK for their direct and indirect help

and support.

Place: NITK, Surathkal

Date: April 19, 2019 (Anithakumari S)

ABSTRACT

In recent years, there has been an increasing interest in solving the over-provisioning

and under-provisioning of elastic cloud resources because of the Service Level Agreement

(SLA) violation problem. The recent studies have reported that federated cloud services

may serve as a better elastic cloud model over a single provider model. A major problem

with the federated cloud is the interoperability between multiple cloud service providers.

Therefore in this thesis, a proactive SLA aware adaptive resource management approach is

proposed for elastic cloud services. Aim of this thesis is to develop a suitable SLA moni-

toring framework to predict the SLA violations and adaptively allocate the cloud resources

to improve the elasticity. It achieves the mutual benefits for cloud consumers and service

providers by means of calculating and reducing penalty cost. Our framework has been

implemented and validated on a private cloud using OpenNebula 4.0. The results have

shown that the proposed proactive approach has significantly reduced the SLA violations

compared to a reactive approach. As an additional contribution, the presented work solves

the interoperability issues of the federated cloud using an innovative SLA matching algo-

rithm. The simulation results of this work show that the said approach performs better than

its counterparts.

Keywords: Cloud Computing, Service Level Agreement (SLA), SLA negotiation, SLA

monitoring, SLA violation, Flexible resource allocation, Interoperability, Inter-Cloud Gate-

way (ICG).

i

Contents

Abstract . i

List of Figures . vii

List of Tables . ix

List of Acronyms . x

1 INTRODUCTION 1

1.1 Gaps Identified in Existing Literature . 3

1.2 Problem Statement and Objectives . 3

1.3 Research Methodology . 4

1.4 Thesis Contributions . 6

1.5 Thesis Structure . 7

2 LITERATURE REVIEW 9

2.1 Background Information . 9

2.2 Survey of SLA Management Approaches 13

2.3 Survey of Resource Allocation Approaches 20

2.4 Survey of Federated Cloud Approaches 23

2.5 Gap Analysis . 26

2.6 Summary . 26

3 SLA MANAGEMENT FRAMEWORK 29

3.1 Introduction . 29

3.1.1 Overview of SLA Management 30

3.1.2 Role of SLOs in SLA . 30

3.2 SLA Negotiation Framework . 32

3.2.1 Architecture of SLA Negotiation Framework 35

3.2.2 SLA Negotiation Rules . 36

iii

3.2.3 SLA Negotiation Decision Model 37

3.2.4 Experimental Results . 43

3.3 SLA Monitoring Framework . 49

3.3.1 Overview . 49

3.3.2 SLA Monitoring Engine . 50

3.3.3 Detection and Avoidance of SLA Violation 51

3.4 Dynamic SLAs . 52

3.4.1 Negotiation and Renegotiation 53

3.4.2 Results and Analysis . 54

3.5 Summary . 55

4 ADAPTIVE RESOURCE ALLOCATION 57

4.1 Introduction to Cloud Providers’ Data Center 57

4.2 Modeling of Private Cloud . 58

4.3 SLA Aware Resource Allocation . 64

4.3.1 Global Resource Management 64

4.3.2 SLA Driven Resource Allocation 70

4.4 Experimental Results . 72

4.5 Summary . 74

5 SLA MATCHING AND CLUSTERING 75

5.1 Matching of SLA Templates . 75

5.2 Clustering of CSPs Based on Mapped SLAs 80

5.3 Experimental Results . 81

5.4 Summary . 90

6 SLA BASED CLOUD FEDERATION 91

6.1 Interdependency and Interoperability . 93

6.2 SLA Based Dynamic Elasticity . 97

6.3 Flexible Resource Allocation . 99

6.4 Experimental Results . 104

6.5 Summary . 106

iv

7 CONCLUSION & FUTURE WORK 107

7.1 Thesis Summary . 107

7.2 Conclusion . 108

7.3 Future Work . 109

Bibliography . 110

List of Publications . 130

v

List of Figures

1.1 Schematic diagram of the research methodology 5

3.1 Domain model of SLA . 31

3.2 Architecture of SLA negotiation . 35

3.3 Sample of SLA negotiation rule . 37

3.4 Message interactions during SLA negotiation 39

3.5 Process of SLA negotiation . 43

3.6 Testing architecture for SLA negotiation 44

3.7 Response time for Find Garage . 45

3.8 Response time for Find Design . 46

3.9 Response time for Find Negotiation . 46

3.10 Response time comparison for all scenarios 47

3.11 Rate of serviced requests . 47

3.13 Rate of serviced requests . 47

3.12 Percentage of negotiated SLAs . 48

3.14 SLA management system . 50

3.15 SLA monitoring engine . 51

3.16 Detection and avoidance of SLA violation 54

4.1 Over all architecture of a data centre . 58

4.2 Response time utility value . 65

4.3 Throughput utility value . 67

4.4 Local manager structure . 68

4.5 Global manager structure . 69

4.6 SLA violation and prediction . 74

4.7 Adaptive resource allocation . 74

vii

5.1 General layout of an SLA template . 76

5.2 CBR approach for automatic SLA matching 79

5.3 Utility values for N SLA mappings (N=10) 83

5.4 Cost values for N SLA mappings (N=10) 84

5.5 Overall net utility of proposed methodology with existing works 84

5.6 Overall cost of proposed methodology with existing works 85

5.7 Clusters according to Availability . 87

5.8 Clusters according to Scale Up Capacity 88

5.9 Clusters according to Scale Down Capacity 88

5.10 Clusters according to Response Time . 89

5.11 Clusters according to VM Size . 89

5.12 Clusters according to VM Speed . 90

6.1 Inter-cloud coordination: schematic diagram 1 94

6.2 Inter-cloud coordination: schematic diagram 2 95

6.3 Schematic diagram of the proposed methodology 99

6.4 Flexible resource allocation through ICG and ADS algorithm 100

6.5 Flowchart of adaptive dimensional search 103

6.6 Performance comparison of proposed method (AWRT) 105

6.7 Performance comparison of proposed method (Slowdown) 106

viii

List of Tables

2.1 Summary of significant research works on SLA management 19

2.2 Summary of significant research works on adaptive resource allocation . . 22

2.3 Summary of important research work on federated cloud 25

3.1 Sample SLO . 32

4.1 SLA parameters . 71

4.2 Mapping of resource metrics to SLA parameters 71

5.1 Utility and cost values for SLA mappings (N=10) 83

5.2 Comparison of SLA mapping . 84

5.3 SLO range values . 86

6.1 AWRT and Slowdown Values . 104

ix

x

Acronyms and Abbreviations

ADS Adaptive Dimensional Search

API Application Program Interface

AWRT Average Weighted Response Time

CBR Case-Based Reasoning

CIM Common Information Model

DDM Dynamic Demand Model

DEFF Dynamic Evaluation Framework for Fairness

DeSVi Detecting SLA Violation Infrastructure

DNM Dynamic Node Model

GUI Graphical User Interface

HMC Heterogeneous Mobile Cloud Computing

IaaS Infrastructure as a Service

JESS Java Expert System Shell

JVM Java Virtual Machine

KPI Key Performance Indicators

KVM Kernel-based Virtual Machine

LoM2HiS Low level Metrics to High level SLAs

NS Negotiation Service

PaaS Platform as a Service

QoS Quality of Service

QU4DS Quality Assurance for Distributed Systems

SaaS Software as a Service

xi

SDR Search Dimensionality Ratio

SLA Service Level Agreements

SLO Service Level Objective

SOA Service Oriented Architecture

SVR Support Vector Regression

TFIDF Term Frequency Inverse Document Frequency

TNV Total Negotiation Value

VM Virtual Machine

WSAG4J Web Service Agreement Framework for Java

WSLA Web Service Level Agreement

WSRF Web Services Resources Framework

XML eXtensible Markup Language

xii

Chapter 1

INTRODUCTION

Cloud computing provides convenient and on-demand network access to a shared pool

of configurable computing resources. The benefits of cloud computing are cost effec-

tiveness, scalability and ease of management. Cloud computing provides the computing

utilities to the consumers in a pay-as-you-go manner. On the other hand, Service Level

Agreement (SLA) and adaptive resource allocation plays major role to provide cloud ser-

vices that are beneficial to both service provider and consumer.

Resource Allocation in cloud computing plays a major role in providing cloud services

to consumers. The cloud resource allocation becomes more complex when the demand

from the consumers changes dynamically. To meet the dynamically changing require-

ments, there is a need to have a method which will allocate the resources proactively.

However, most of the existing approaches are reactive in nature and they allocate the re-

sources only when an SLA violation has occurred.

One of the essential characteristics of cloud computing is elasticity (Coutinho et al.,

2015). Rapid elasticity is where computing resources are provisioned elastically to scale

rapidly based on the user’s requirement. Cloud computing becomes more powerful if we

can add dynamic elasticity as a feature. Dynamic elasticity (Galante and Bona, 2012)

in the context of the cloud is considered as the ability of the cloud to be elastic while

the services are online. In the literature, elasticity and scalability are treated with same

meaning which creates confusion in design and development. In Herbst et al. (2013), the

authors presented a new advanced definition of elasticity by considering its core aspects in

a clear and unambiguous manner and thus differentiated elasticity from scalability.

1

Scalability is a prerequisite for elasticity, but it does not consider temporal aspects of

how fast, how often, and at what granularity the scaling actions should be performed. It

is the ability of the system to sustain increasing workloads by making use of additional

resources, and therefore, in contrast to elasticity, it is not directly related to how well the

provisioned resources match the actual resource demands at any point in time.

An SLA is the set of agreements settled among the cloud service consumers and

providers. Typically an SLA includes a collection of Service Level Objectives (SLOs)

which define Quality of Service (QoS) properties for the agreed upon service. The use of

newly improved mechanisms for negotiating and monitoring service level agreements is

highly essential because of the dynamic change in service requirements. Online monitor-

ing of SLAs (Buyya et al., 2011) is advantageous to both the involved parties because it

detects the possibility of violations in SLA and initiates some actions to correct or com-

pensate. Therefore, SLA monitoring and negotiation is considered to be important.

Guaranteed SLA of dynamic clouds mainly focuses on elasticity which aims to meet

QoS requirements such as availability and performance while minimizing cloud cost. In

Bouchenak (2010), the author described the necessities of an SLA aware elastic cloud.

These requirements are:

• Monitoring and observation of the cloud in an online manner: This is to capture

variations periodically in cloud usage and workload to determine violations in SLA

and to generate cloud reconfiguration when necessary. QoS measures can be used at

various levels to offer low-level metrics for Infrastructure as a Service (IaaS) clouds

or higher level metrics for Software as a Service (SaaS) clouds.

Defining a scalable, accurate and non-intrusive distributed algorithm for monitoring

cloud services is the crucial issue in this context.

• Modeling the cloud: Fluctuating and non-linear workloads affect the vibrant perfor-

mance of cloud computing and this influence the QoS of the service. A cloud is also

classified by its actual configuration (i.e., the number of cloud services, the loca-

tion of machines hosting cloud services and service parameters of individual clouds)

which influences both cloud QoS and cost. Cloud modeling aims to concentrate the

effect of cloud workload and configuration on QoS and the cost of the cloud.

2

The main task to accomplish this is the definition of a model that is precise, capa-

ble of accommodating the variation of cloud workload and is easy to use with real-world

applications.

• Automated cloud control: Automated control of the cloud targets to build a dynamic

elastic cloud that meets QoS requirements as mentioned in the SLA while minimiz-

ing cloud cost. The use of a cloud model permits to target the variations of cloud

configuration and workload and the corresponding effect on QoS and cost.

In this research work, we aim at satisfying the above mentioned requirements of SLA

aware elastic cloud. To satisfy these requirements, suitable SLA management framework

(Chapter 3) and Modeling of cloud infrastructure with adaptive control (Chapter 4) are

proposed and presented with the suitable experiments.

1.1 Gaps Identified in Existing Literature

The identified research gaps are:

• The lack of dynamic adaptation strategies at run-time to provide elastic services.

• The lack of online SLA monitoring framework for considering dynamically chang-

ing SLA parameters.

• The lack of suitable solutions to avoid resource over provisioning to escape from

SLA violations.

• The lack of appropriate strategies to consider the adaptive resource allocation across

multiple cloud providers where interoperability is a major issue.

To efficiently tackle these research gaps, SLA-based solutions are proposed and design,

implementation and verification of the solutions are presented in this thesis.

1.2 Problem Statement and Objectives

Cloud providers should ensure the QoS requirements using a minimal amount of compu-

tational resources. SLA management helps customers to validate and supervise the quality

of services through scheduled contracts and agreements.

3

To address the above limitations, the proposed problem solution is to Design and de-

velop an adaptable resource management model for cloud computing environment that is

SLA aware.

The aim of this research work is to develop a framework for monitoring and analyzing

SLA parameters to determine SLA violations and to develop an adaptive resource alloca-

tion system for reducing SLA violations.

Research Objectives

1. To build a flexible, reliable and dynamic SLA management system for monitoring

and detecting SLA violations in cloud computing by incorporating some reactive

actions to prevent SLA violation by adding autonomic adaptation of SLA parameters

and Service Level Objectives.

2. To develop and implement an autonomic resource allocation system for reallocating

resources dynamically during execution of services according to variation in work-

loads and detected SLA violations.

3. To design and develop a framework for performing autonomic SLA matching and

clustering according to applications using case based reasoning.

4. To develop and implement inter-dependency and interoperability by providing dy-

namic elasticity in the context of multiple competitive/cooperative cloud providers

in an autonomic manner.

1.3 Research Methodology

A quantitative research methodology has been followed to analyze the results obtained

during this research work. In the initial stage, a critical review is conducted on the related

research works. As shown in Figure 1.1, the research methodology consists of five phases

which are described as follows:

Phase 1: This consists of critical review of all the approaches coming under the

purview of the project with a gap analysis at the end. A critical review has been done

according to specific areas of research and after analysing each of the individual papers

the critical review is written. This phase is required, to know about the existing research

4

works present in this area and further carry out an accurate gap analysis which facilitates

proceeding in the correct direction.

Phase 2: This involves design and development of a model for predicting SLA viola-

tion in cloud. The proposed method has been quantitatively analysed by creating a simu-

lation environment using Cloudsim and by additionally using Web Service Agreement for

Java (WSAG4J) for verifying the proposed method.

Figure 1.1 Schematic diagram of the research methodology

Phase 3: This involves design and development of an adaptive resource allocation

mechanism in a realtime cloud environment, OpenNebula. The results have been quan-

titatively analysed and the obtained results are compared with existing algorithm for its

efficiency in terms of resource allocation. This model is based on the SLA monitoring

mechanism developed in the phase 2, over which the designed framework works. The

current and previous phases both collectively are designed for a single cloud provider and

after this the research proceeds towards a federated cloud model.

5

Phase 4: This involves design and development of an clustering mechanism with SLOs

as parameters. The work is carried out based on the results obtained in simulation environ-

ment of Cloudsim and the clustering results obtained are quantitatively analysed based on

the SLO parameters. This phase is aimed specifically at federated cloud environment. The

output of this phase consist of clustered service providers, according to their SLOs.

Phase 5: A federated cloud environment is simulated based on the SLA aware clusters

developed in the previous phase. This again uses cloudsim and involves quantitative analy-

sis which includes response time as its important parameter. This phase primarily involves

studying the efficiency of the proposed SLA based mechanism in a federated environment

and comparing it with other algorithms performing the same task.

The phases proposed here ensure that the main goal and objectives of the work are

achieved without any issue. All the objectives are covered and their inter-dependencies are

well established which ensure a proper flow for achieving the desired result.

1.4 Thesis Contributions

This thesis provides a SLA management framework to avoid SLA violation before it oc-

curs. The proposed SLA management approach is used for adaptive resource allocation

and to solve the interoperability issues. The key contributions are as follows:

• SLA Management Framework: A SLA negotiation and monitoring mechanism

that is suitable for predicting the violation before it occurs.

• Adaptive Resource Allocation:A SLA based adaptive resource allocation mecha-

nism designed and further tested on the OpenNebula cloud.

• SLA Matching: A SLA matching based solution towards solving the problem of

interoperability issues. The investigation of grouping similar service providers with

the help of matching SLA documents.

• SLA based Interoperability: A design and implementation of proposed SLA match-

ing mechanism for interoperable federated cloud. The federated cloud is formed

using CloudSim and the proposed approach is verified for its effectiveness on this

simulated cloud infrastructure.

6

1.5 Thesis Structure

The rest of the thesis is organized as follows:

• Chapter 2 presents an overview of recent work in the areas of SLA management,

adaptive resource allocation and interoperable federated cloud.

• Chapter 3 presents the proposed SLA management framework for continuously mon-

itoring SLA parameters for detecting SLA violation and avoidance. The design, im-

plementation, experimental environment and results that corresponds to objective 1

are presented in this chapter.

• Chapter 4 describes the proposed adaptive resource allocation in cloud computing.

This chapter gives an idea about the generic structure of cloud provider’s data center

used for the proposed approach. Further, the experimental environment and results

that corresponds to Objective 2 are presented in this chapter.

• Chapter 5 explains the techniques used for SLA matching and clustering of multiple

cloud providers. The conceptual idea and experimental results specific to Objective

3 are presented in this chapter.

• Chapter 6 introduces the implementation of Inter-Cloud infrastructure with an SLA

based clustering approach. The interdependency and interoperability of cloud re-

sources is enhanced using a flexible resource allocation algorithm materialized with

an adaptive dimensional search. The CloudSim based simulation and results that

corresponds to Objective 4 are also presented in this chapter.

• Chapter 7 presents the thesis summary and conclusions of the research work. This

chapter also highlights some of possible future research works.

7

8

Chapter 2

LITERATURE REVIEW

This chapter presents an overview of cloud computing along with the importance of

SLA and SLA based elastic cloud services. The chapter subsequently presents the review

of existing literature on SLA management approaches, resource allocation approaches and

federated cloud approaches. The research gaps that were identified as the result of litera-

ture review are finally presented.

2.1 Background Information

This section outlines the overview of cloud computing, role of SLA in cloud computing,

and importance of considering SLA based elastic cloud services.

Overview of Cloud Computing

According to Mell and Grance (2011) (NIST definition), "cloud computing is a model for

enabling ubiquitous, convenient, on-demand network access to a shared pool of config-

urable computing resources (e.g., networks, servers, storage, applications and services)

that can be rapidly provisioned and released with minimal management effort or service

provider interaction". Cloud services are established based on five essential characteris-

tics: on-demand self-service, broad network access, resource pooling, rapid elasticity or

expansion, and measured service (Mell and Grance, 2011). The first characteristic is the

on demand self-service, which enables consumers the provisioning of computing power,

storage, networks, and software flexible and straightforward. Second is broad network

access in which cloud service consumers can access available computing resources over

9

the network. The third is resource pooling in which computing resources are served as a

shared pool and the customers can access resources from this shared pool. Fourth is rapid

elasticity where computing resources are provisioned elastically to scale rapidly based on

the user requirements and the last one is measured service where computing resources’

usage is monitored, measured and reported to provide transparency for both cloud service

providers and consumers.

Cloud computing model is gaining much attention from both industry and academia in

the area of large-scale distributed computing because users can rent virtual machines and

storage space instead of buying and owning hardware. In a pure perspective, cloud com-

puting seems similar to computing paradigms like grid computing, and cluster computing,

but the fundamental differences of cloud computing are its technical characteristics such as

on-demand resource pooling, rapid elasticity, self-service, almost infinite scalability, end-

to-end virtualization support, and robust support of resource usage metering and billing.

Cloud computing offers following services to consumers (Mell and Grance, 2011):

• Infrastructure-as-a-Service (IaaS) cloud facilitates access to hardware resources (servers

and storage devices)

• Platform-as-a-Service (PaaS) cloud facilitates the access to software resources (op-

erating system and software developing environment)

• Software-as-a-Service (SaaS) cloud is a substitute for classical software applications

running locally on personal computers.

Role of Service Level Agreements (SLAs)

An SLA is an agreement regarding the promises and assurances of the quality and quan-

tity of the services offered and is established between a service consumer and a service

provider (Wu and Buyya, 2012). SLA elaborates general considerations and expectations

of delivered service and contain components like involved participants, activation-time,

scope, SLOs, approaches to assess the SLOs, penalty and exclusions (Dan et al., 2004).

SLOs represent the goals of the service provider and assure the promise of the service

provider to preserve a predefined level of the service for a predefined time period. Some

sample SLOs are the availability of the service, system response time, resolution time for

10

a service outage, etc. Cloud service providers utilize the concept of Key Performance In-

dicators (KPIs) to specify the quality of the provided services. These KPIs keeps varying

according to cloud providers. The work of Burkon (2013) consolidated quality indica-

tors for an SaaS model and these indicators are Response time, Availability, Throughput,

Timeliness, Reliability, Scalability, Security, Uptime History, Granularity, Elasticity, Inter-

operability, Usability, and Testability.

An SLA serve as the foundation for the expected level of service by mentioning the

QoS parameters of the service. In a general perspective, SLAs are used to ensure customers

a certain level of quality for the services, and if this level is not achieved, the provider has

to give penalties for the violation of the contract (Wu and Buyya, 2012). Generally the

SLA contract :

• Specifies the required parameters and possible values for each service elements,

• Confirms the ownership of the data stored on the service provider’s system and spec-

ifies the rights associated,

• Presents the infrastructure details and security standards to be maintained by the

service provider, along with the rights of the consumer and

• Mention the rights and cost to continue or break the usage of the service.

In its basic form, SLA is the set of agreements settled among the cloud service con-

sumers and providers. Typically an SLA includes a collection of SLOs which define QoS

properties for the agreed upon service. The usage of newly improved mechanisms for

negotiating and monitoring service level agreements are highly essential because of the

dynamic change in service requirements. Online monitoring of SLAs (Buyya et al., 2011)

is advantageous to both the involved parties because it detects the possibility of violations

in SLA and initiates some actions to correct or compensate. Therefore, SLA monitoring

and negotiation is considered as one of the important objective of this research work.

Elastic Cloud Services

One of the important enabling technology of our research work is elastic cloud services.

The other important technical aspects are SLA management, resource allocation and fed-

11

erated cloud environment. According to Shawky and Ali (2012), elasticity of a cloud

computing system is the ability to increase and decrease overtime in response to users’

demands. This definition of elasticity represents the basic features of cloud computing and

the constraints associated to elasticity. Here they tried to measure the elasticity of a cloud

service using representative measures. The elasticity issues of business applications to be

deployed and operated on public cloud infrastructure is the major challenge while consid-

ering profits in cloud computing. According to Suleiman et al. (2012), different aspects

to be considered are modelling and measuring of economics and elasticity, application

workload patterns and its impact on achieving elasticity and economics, economics-driven

elasticity decisions and policies, and SLA-driven monitoring and elasticity of cloud-based

business applications. The elasticity decision policies really help cloud consumers and

users to analyze and evaluate elasticity capabilities of various cloud infrastructures and its

suitability for meeting their business application requirements.

In Martin et al. (2011), the authors introduced a service management framework to

support elastic services. Elastic services are offered in the cloud infrastructure, by em-

ploying management of virtual infrastructure to dynamically orchestrate the deployment

of virtual machines, management of storage requirements, and organize resources accord-

ing to the changing needs of the organization. Elastic services generate extra management

challenges such as, (i) the involved components, resources and services must be capable

of automatically adjusting to the variations in the underlying set of managed resources

and (ii) adding or removing resources, such as a virtual machine, to a service can involve

significant delays. It is also harder for the service management system to guarantee pre-

dictable performance and to support problem determination since the underlying resource

configuration changes.

SLA Aware Elastic Clouds

The elastic clouds guarantees to meet the QoS requirements such as availability and per-

formance while minimizing cloud cost. In order to satisfy the QoS requirements, it is es-

sential to satisfy a minimum service level to customers. The usage of computing resources

in clouds is efficient only if it satisfies the dynamically changing needs of the customer in

a cost effective way and in line with the conditions specified in SLAs. The authors of Wu

12

et al. (2011) describe resource allocation algorithms for cloud providers by considering in-

frastructure cost and additional cost due to SLA violations. These algorithms are designed

in such a way that the cloud providers can manage the dynamic change of customers and

can map the customer requests to infrastructure level parameters. This algorithm tries to

reduce SLA violations and increase QoS parameters. Adding SLA awareness to the elastic

cloud services is advantageous to both cloud service consumers and service providers as it

helps in reducing the number of SLA violations.

In Bouchenak (2010), the authors have described the requirements of an SLA aware

elastic cloud. These requirements are: Monitoring and observation of the cloud in an

on-line manner, modeling the cloud, and automated cloud control. The first requirement

is to monitor the SLA violations periodically and generate necessary re-configurations to

avoid further SLA violations where designing a scalable algorithm to monitor the cloud

services is crucial issue to meet this requirement. The second requirement is to model the

cloud environment that can manage fluctuating and non-linear workloads with minimum

SLA violations. As the type of workload affects the cloud system in terms of meeting

QoS requirements, it is important to model the cloud precisely which may be easily paired

with real-world cloud systems. The third requirement is to monitor SLAs and to perform

necessary re-configurations as automated tasks. Here, the objective of the automated con-

trolling mechanism is to reduce the cloud cost while meeting the maximum number of

QoS requirements mentioned in SLA. This research work considers the above mentioned

requirements for an SLA aware elastic cloud and these requirements have been addressed

by a suitable SLA management framework and by an adaptive resource allocation mecha-

nism.

The remaining part of this chapter presents the summary of SLA management ap-

proaches, adaptive resource allocation approaches and cloud federation issues.

2.2 Survey of SLA Management Approaches

A key challenge for service providers is the management of SLAs with their customers to

satisfy their business intentions. Majority of the current systems fail to consider business

intentions and hence fail to deliver a complete SLA management solution. This section

briefly summarizes the research works in the area of SLA management in cloud and service

13

computing.

In Freitas et al. (2011), a generic framework Quality Assurance for Distributed Services

(Qu4DS) is presented to support service providers in honoring SLAs while minimizing the

costs of infrastructure utilization. This framework incorporates a collection of techniques

for QoS management. In addition, it supports the whole SLA life-cycle from creating SLA

template to terminating the cloud service. The framework is built on an interface that is

compatible with the latest grid and cloud Application Program Interface (API) to manage

the infrastructure usage. The changing service loads and random failures are addressed in

the framework by including provision for self-adaptation using multiple interacting control

loops. The primary objective of Qu4DS is to offer SLA self-management for reducing the

cost of service. Cost includes, payments required for of infrastructure resources and the

payment of fines due to SLA violations. Based on the cloud architecture layers, Qu4DS

seats in the PaaS layer by using resources from an IaaS provider to deliver support to the

SaaS layer. The authors failed to address the following key points in this work

• Over provisioning of the requested resources: Cloud providers try to provide an

excess number of requested resources to escape from SLA Violations

• Dynamic adaptation strategies for varying workload and infrastructure conditions

are not considered.

• Not addressed the autonomic selection/initiation of adaptation strategies

Under SLA management, there are several work concentrated more on SLA negotiation.

The important research works on SLA negotiation and the design of machine-readable

SLAs for SOA-based computing and cloud computing are summarized below. In Dan

et al. (2004), a framework is proposed that is suitable for SOA environment based on

SLAs and automatic management. This framework is capable of providing segregated

service levels to customers. This framework includes WSLA for the design and negotiation

of SLAs, a system based on SLOs for dynamic resource allocation, a method to manage

workload which orders requirements dependable with SLAs, and a monitoring system to

monitor compliance with the SLA. Chieng et al. (2005) implemented an architecture for

service provisioning in an SLA-driven manner which permits flexible and reliable SLA

14

negotiation of services. The importance is on bandwidth reservation which contributes

more to affect QoS. Here, the negotiation is done with high-level service parameters like

price, starting time, session length, and guaranteed bandwidth. Di Modica et al. (2009a)

presented a protocol based approach for the specification of SLAs which gives provision to

renegotiate and alter its terms during the provisioning of the service. Here the renegotiation

approach is implemented to reduce the SLA violations which will result in a compromise

on the quality of the provided service. This WS-Agreement protocol does not allow the

run-time renegotiation but it enables to introduce some renegotiation sessions of between

the involved parties.

Silaghi et al. (2012) developed a framework for framing automatic SLA negotiation

policies by considering time constraints for the use of computational grids. The frame-

work was built using agent systems and is based on learning the opponent’s strategies. The

authors proposed the Bayesian learning agent to contract with the build-up period of a bar-

gaining session and proved that opponent learning strategies result in better satisfaction of

contracting parties and optimal resource allocation. Resinas et al. (2012) proposed archi-

tecture for constructing automated systems to negotiate service agreements using protocol

based bargaining approach to work with global environments. This architecture is ready

to address many requirements like multi-term negotiation, heterogeneity of the contracting

parties, managing incomplete information about the contracting parties, and concurrent

negotiations with multiple parties.

Hasselmeyer et al. (2006) presented an approach using agent brokers for SLA negoti-

ation in which the third party agents deal with negotiation on behalf of the participating

parties. Theilmann et al. (2010) implemented a reference architecture for multi-level SLA

management in the context of the SLA@SOI project. This architecture aims at a standard

solution for SLA management that can i) deal with the entire SLA and service life-cycle;

ii) support several layers of control in a service-oriented structure, and iii) applicable to

various use cases and business domains.

In Dastjerdi and Buyya (2012), the authors have discussed some challenges regard-

ing negotiation of SLAs in cloud computing environments and have described a time-

dependent model of negotiation to deal such challenges. Here, the authors have discussed

15

the challenging issues of SLA negotiation in cloud computing as Offers reliability and Bal-

ancing resource utilization. Offers reliability means a mechanism to find out the reliability

of offers/counter offers regarding promised QoS values and SLA violations.

Balancing resource utilization implies the use of resources in a balanced and efficient

manner. The authors have introduced a sequence of steps for the negotiation of SLA in

cloud computing. A service requester identifies the needed requirements such as hardware

specifications like CPU, storage, and memory. Also, the requester provides preferences on

the QoS and functional requirements as input for the discovery of suitable cloud services.

Then the negotiation is started by the Negotiation Service (NS) with discovered service

providers on QoS criteria, like availability and price, as per the preferences of requesters.

Client’s budget and the deadline for getting cloud resources are used by the client

NS to decide on acceptance or rejection of an offer. Client NS uses a time-controlled

tactic which reads client’s preferences as input and generates offers automatically. Once

the Cloud NS receives the offer, it uses functional QoS requirements and cloud resources

utilization supplied by the monitoring system to create counter offers. This negotiation

strategy failed to consider the benefits of both the involved parties.

In Sahai et al. (2002), the authors have introduced some base components for standard

SLA specification which identifies SLA in a definite and accurate manner. In Keller and

Ludwig (2002) the authors described a WSLA framework suitable for defining and mon-

itoring SLAs in inter-domain fields. This framework provides a flexible and extensible

language based on the eXtensible Markup Language (XML) schema and a runtime archi-

tecture for defining and monitoring SLAs in dynamic e-business. This frame work enables

service providers and customers to define a variety of SLAs unambiguously but the dy-

namic nature in resource instrumentation is not taken care. An approach for SLA driven

management ideal for distributed systems is introduced in Debusmann and Keller (2003)

using Common Information Model (CIM). The implementation of a common information

model capable of operating among multiple service providers is not that much successful

in this work.

In Barbosa et al. (2006), the authors tried to evaluate multiple architectures which

perform SLA auditing by considering the qualitative and quantitative aspects. In He et al.

16

(2009), an SLA management framework is presented using agent-based systems, in which

a service customer (an initiator agent) and a service provider (a responder agent) are there

for initiating the process of SLA negotiation. The service provider markets its capabilities

in service level, and the service consumer gets the marketed information for initializing

the process of SLA negotiation. The responder publicizes the competences of the service,

and the initiator receives these announcements before initializing the negotiation process.

Intermittent phases of SLA life cycle such as formation, enforcement, and recovery is

achieved through the intelligent communications among the agent modules. The initiator

agent also claims for compensation at the time of an SLA violation and think of renegotia-

tion or selection of new service provider. The claim of compensation for an SLA violation

is also focused in the work of Rana et al. (2008), where the authors proposed a mechanism

of compensation like the regulations related to cases of conflict and the influence of the

penalty clauses on the choice of SLOs.

In addition to previously discussed SLA negotiation approaches, there are several re-

search articles in literature specifically discussing on proactive and dynamic adaptation

methods of service-based operations. The important proactive and adaptive SLA manage-

ment approaches are summarized here. In Mahbub and Spanoudakis (2011), the authors

have presented a framework for integrating service discovery with a proactive approach

of SLA negotiation, named as PROSDIN. The identification of services in PROSDIN is

purely based on several properties of services such as, behavioral, structural and QoS fea-

tures. PROSDIN also negotiates an SLA based on QoS values with the services identified

alternatively during the discovery process by a rule-based approach using the Jess rule

engine Shell (2016).

The works explained in Wieder et al. (2008) describe runtime SLA re-negotiation for

managing SLA violations. In Di Modica et al. (2009b), SLOs are modified and rene-

gotiated at run-time, and online services are adjusted to dynamically agreed SLOs. In

Di Modica et al. (2007) the authors have suggested a re-negotiation of SLA to deal with

SLA violations where SLOs are reviewed and renegotiated during runtime and the already

positioned services are dynamically modified to go with the re-negotiated SLOs. An-

other approach presented in Sakellariou and Yarmolenko (2005) permits the modification

17

and change of SLOs along with the existing negotiated SLA. A renegotiation protocol is

presented in Hasselmeyer et. al. (2008) which lets the customer or provider to start a

renegotiation when a change occurs in the business needs of negotiated parties.

In Redl et al. (2012) the authors introduced a mechanism for assessing the cost of SLA

matching and provider selection with the SLA mapping technique and discuss the methods

for reducing the cost in Grid and Cloud marketplaces. They presented an approach for

automatic discovery of semantically similar SLA elements and creation of SLA mappings

that map the differences in their syntax specification. Machine learning and automatic

reasoning methods are used to analyze the data. Automatic matching of SLA elements and

generation of mappings facilitates automatic recommendations of trading partners with

reduced cost of joining the market. The drawbacks identified in this research paper are:

• Provision to use multiple similarity metrics for SLA matching is not taken into con-

sideration

• Application domain specific customer requirements are not considered for evaluating

the properties of SLA elements.

Boniface et al. (2009) described the dynamic provisioning of services with the help

of SLAs. Here they have discussed the provisioning of services according to negotiated

SLAs and the monitoring of SLAs for reducing violations by assuming Grid environment

as the computing environment. Koller and Schubert (2007) explained the management

of QoS values in an autonomic way with the help of a proxy-like approach based on a

WS-Agreement implementation. For advanced SLA management, BREIN applies SLA

management to Grids, whereas our research work focusses SLA management in clouds.

Dobson and Sanchez-Macian (2006) present a unified QoS ontology applicable to QoS-

based web services selection, QoS monitoring, and QoS adjustment. However, they do not

consider application provisioning and deployment strategies. Research works like QoS-

MONaaS (Cicotti et al., 2013), and SLAMonADA (Muller et al., 2012) presented mon-

itoring systems to detect the SLA violations, but no primary focus is given towards the

reactive actions. These proposed platforms measured the QoS value at run-time to release

a report about SLA validation. Kertesz et al. (2011) and Varalakshmi et al. (2011) pro-

18

posed a system to detect SLA violations by monitoring SLA for computing the penalty

cost service provider.

Table 2.1 Summary of significant research works on SLA management

Publication Framework Principle Contribution Approach Domain
Keller and
Ludwig
(2002)

SLA Compli-
ance monitor

Dynamic alloca-
tion/deallocation ofresources

SLA negotia-
ton and moni-
toring

Language
based

Web service

Debusmann
and Keller
(2003)

CIM based
monitoring
framework

Common infor-
mation model and
interfaces

SLA monitor-
ing

XML-based
prototype

Web service

Chieng et al.
(2005)

SLA driven
service pro-
visionoing
architecture

SLA negotiation for
provisioning network
bandwidth

SLA negotia-
ton

Agent based Network
bandwidth

Sakellariou
and
Yarmolenko
(2005)

NA Guarentee terms are
defined with func-
tions rther than fixed
values

SLA renego-
tiaton

XML-based
language

Web service

Koller and
Schubert
(2007)

SLA mange-
ment frame-
work

Plug and play based
SLA mangement

SLA manage-
ment

Proxy based Web service

Di Modica et
al. (2009a)

NA A run-time support to
meet QoS levels

SLA renego-
tiaton

XML-based
language

Web service

Di Modica et
al. (2009b),

SLA man-
agement
framework

Dynamic renegotia-
tion of agreeements

SLA renego-
tiaton

XML-based
language

Web service

Maurer et al.
(2011)

FOSII frame-
work with
MAPE-K

CBR approach based
on rule base

SLA renego-
tiaton

Case based
reasoning ap-
proach based
on rule base

Cloud service

Mahbub and
Spanoudakis
(2011),

PROSDIN Dynamic service
discovery to provide
runtime support

SLA negotia-
ton

Rule based Web service

Freitas et al.
(2011)

Q U 4DS Multiple config-
urable control loops
and automatic ser-
vice configurations

SLA manage-
ment

Framework
and interfaces

Cloud service

Emeakaroha
et al. (2012)

DeSVi archi-
tecture

Knowledge
databases to manage
and prevent SLA
violations

SLA monitor-
ing

VM based Cloud Service

Silaghi et al.
(2012)

AgentFSEGA A time-constrained
SLA negotiation

SLA negotia-
ton

Opponent
modeling-
agent based

Grid Comput-
ing

Research contributions explained in Emeakaroha et al. (2012) described an architec-

ture Detecting SLA Violation infrastructure (DeSVi) for monitoring and detecting SLA

violations in Cloud computing. The major components in this architecture are the auto-

matic VM deployer, which is responsible for the allocation of resources , the application

deployer which executes the user applications. This DeSVi architecture is good in man-

aging SLAs related to a single Cloud data center but it is not addressed the monitoring

of SLAs in cloud environment with multiple data centers. LoM2HiS (Emeakaroha et al.,

2010) gives details about SLA violation detection in cloud computing and correspond-

ing reactive actions. These frameworks do monitoring, analysis, planning, and execution

19

(MAPE loop) Maurer et al. (2011) to detect and react against violations. In Maurer et al.

(2011), the authors proposed the concept of autonomic management of Cloud infrastruc-

tures by including a Knowledge Management (KM) phase. In KM phase the observed

monitoring information is fed to the KM system and its reactive action prevents further

SLA violations. The efficient management of SLAs together with resource management is

again needs further explorations.

The summary of significant works related to SLA negotiation, SLA monitoring, and

detection of SLA violation is given in Table 2.1. From this Table summary, it is evident

that most of the approaches are addressed towards the monitoring of SLA parameters.

However, the reasons for violation of SLA is not analyzed and not attempted to reduce

the real causes of violation. In this research work, we aim to analyze the reasons for SLA

violation and inturn our major objective is to reduce the SLA violation.

2.3 Survey of Resource Allocation Approaches

Recent research works that are more closely related to our proposed approach in terms of

adaptive resource allocation are summarized in this section. The resource allocation mech-

anisms discussed in Stillwell et al. (2009), and Li et al. (2010) focused on job scheduling /

task scheduling techniques for allocation of resources. They considered the execution time

of the tasks and allocation is done according to the priority value. the authors discussed

the allocation of cluster resources among competing jobs by using scheduling algorithms

based on linear programming approach. Here they have considered the static workload

and so adaptive resource allocation according dynamic workload is not a concern in this

work. Berenbrink et al. (2007) proposed a mechanism using game-theoretic approaches to

determine perfectly suiting task allocations. Here they described an agent based approach

in which individual task is linked with a "selfish agent", and each single agent is supposed

to select a resource. The cost of the resource is counted as the number of agents involved

in selection. The functioning of this system is based on the principle that- ‘migrate to less

loaded resources from overloaded resources till the distribution becomes balanced’.

In Jung and Sim (2011) the resource allocation is organized by considering criteria like

geographical distance and workload of the datacenter. In this work they are getting an

20

improved response time because the job requests are allocating to the VMs in the nearest

data center. The adaptive resource allocation according dynamic workload is not con-

sidered here. In Bonvin et al. (2011) the authors proposed an autonomic and cost-efficient

scheme of resource allocation. This scheme adaptively satisfy SLAs for resource availabil-

ity and guarantees performance against the variations in load and software/hardware fail-

ures. Here, the authors used a middleware consisting of Scattered Autonomic Resources

referred to as Scarce which does flexible distribution to prevent stranded and underutilized

computational resources and make dynamic adaptations to varying environments, such as

load variations, infrastructure failures, or unsteady servers (or virtual machines).

Huang et al. (2013) proposed an adaptive resource management system in a cloud

computing environment. The authors have employed Support Vector Regression (SVR)

to determine the number of resource utilization by prediction concerning the SLA of each

process. Based on this, the resources were redistributed according to the current status of

all of the VMs installed in the physical machine. To find the reallocation of resources they

used a Genetic algorithm for optimal allocation of resources. At the end, they reached

an agreement between physical machines resource utilization which was monitored by the

physical machine monitor as well as SLA between virtual machine operators and cloud

service providers. But in this prediction based approach the time needed for calculation

and the genetic algorithm processing is more and it affects the performance of the resource

management in cloud environment.

Addis et al. (2013) proposed a scalable distributed hierarchical framework based on

a mixed-integer non-linear optimization of resource management acting at multiple time-

scales in a very large cloud platform. The run time management framework of their pro-

posed method assumed that the PaaS provider supported multiple transactional services

execution with a set of heterogeneous servers. They mainly focused on the CPU and RAM

as representative resources among many other physical resources for the resource allo-

cation problem. The main objective of their resource allocation problem is to maximize

the profit such that the difference between revenues from SLA contracts and costs associ-

ated with servers switching and VM migrations. The real time work load and large time

scales are the scope for further expansion since they implemented the resource allocation

21

by considering fine-grained time scales.

Shen and Liu (2014) proposed a resource sharing platform for the Collaborative Cloud

Computing (CCC) called harmony which integrates the resource management and reputa-

tion management in a balanced manner. Their work incorporates three innovations: inte-

grated multi-faceted resource/reputation management; multi-QoS-oriented resource selec-

tion; and price-assisted resource/reputation control. Lu et al. (2015) proposed a fairness

evaluation framework for the resource allocation scheme in cloud computing. In this pa-

per they proposed a Dynamic Evaluation Framework for Fairness (DEFF) to evaluate the

fairness on allocating the resources using a resource allocation algorithm.

Table 2.2 Summary of significant research works on adaptive resource allocation

Publication Resources orga-
nized as

Principle Static/ Dynamic al-
location

Allocation
policy

Wood et. al.
(2009)

Pool of resources VM provisioning,
VM migration, VM
resizing

Dynamic resource al-
location

Time-series
prediction tech-
niques

Stillwell et al.
(2009)

Clusters of resources Allocating cluster re-
sources among com-
peting jobs

Static allocation Linear program-
ming based
scheduling

Li et al.
(2010)

Resources arranged
in the form of a DAG

Resource allocation
with preemptable
task scheduling

Dynamic resource al-
location

Preemptable task
scheduling

Jung and Sim
(2011)

Pool of resources Adaptive resource
allocation based on
geographical dis-
tance and workload
variations

Dynamic resource al-
location

Allocation of job
requests to near-
est data center,
better response
time.

Bonvin et al.
(2011)

Agent Based proto-
type SCARCE

Dynamic resource al-
location to adapt to
varying loads ,fail-
ures and SLA re-
quirements

Dynamic resource al-
location

-

Huang et al.
(2013)

Pool of resources Optimum resource
allocation as per
SLA

Algorithm based re-
source management

Support vector
regression (SVR)
and genetic
algorithm to
prediction and
estimation

Addis et al.
(2013)

Multi tier clouds Resource allocation
policy for multi tier
virtualized cloud sys-
tems

Static allocation Time scaled re-
source prediction

Shen and Liu
(2014)

Neural network
model for resources

Integrated re-
source/reputation
management
platform-Harmony

Static allocation Neural network
model for re-
source selection

They proposed two sub models to describe the resource demand with dynamic charac-

teristics. These models are Dynamic Demand Model (DDM) and Dynamic Node Model

(DNM). They employed two typical resource allocation algorithms such as utility based al-

gorithm and fairness algorithm in order to show the effectiveness of their proposed fairness

22

evaluation framework.

The Table 2.2 summarizes the research works that are more close to our proposed

work in terms of adaptive resource allocation. From the summary of existing works, we

found that no major focus is given to controlling resource management in cloud comput-

ing majorly based on SLA. The SLA violations effects can be minimized by adjusting the

measure of resource provisioning and this should be in a balanced manner since the over-

provisioning of resources will again create adverse effect to cloud based business economy.

Therefore, in our research work we majorly aim at allocating the resources towards reduc-

ing the SLA violations.

2.4 Survey of Federated Cloud Approaches

This section presents the summary of potential research works that motivate us to solve

the interoperability issues of cloud computing. The survey presented in this section helped

us to identify and address popular challenges in implementing federated cloud. According

to Buyya et al. (2010c), the vision of interoperability can be materialized by maintaining

a federated cloud environment which supports dynamic expansion and contraction of re-

sources for managing sudden variations in resource demands. Here, the authors suggested

that for the development of an inter-cloud environment following essential elements are

required:

• Architecture framework for maintaining utility oriented clouds and their federation

• A cloud coordinator for exporting Cloud services

• A cloud broker for mediation

• A cloud exchange as a market maker and

• A software platform for controlling the entire federation.

Toosi et al. (2014) investigated and presented the significance of motivating cloud in-

teroperability. They have identified the list of challenges and complications for material-

izing Inter-cloud environments. In Paraiso et al. (2012), the authors presented a federated

multi-cloud PaaS infrastructure containing two parts, an open service model and a generic

23

kernel infrastructure. The open service model is used both for the PaaS infrastructure and

the SaaS applications hosted on top of it. But the interoperability between the services

provided by multiple environments is not much successful in this architecture. Also they

haven’t experimented about the cloud properties like intercloud elasticity. In Gomes et al.

(2012), the authors describe the application of mechanisms based on the General Equi-

librium Theory for coordinating the sharing of resources among clouds in the Federated

Cloud. A Federated Cloud helps individual clouds to adapt with variations in demands.

clouds enable users to cope with unexpected demand loads. That is, individual clouds can

obtain resources from other clouds during overload and can offer resources to others during

less load. Here an exchange market is proposed for the trade of cloud resources between

clouds by considering a less number of clouds and a minimum sample of of resources.

A full-fledged federated cloud is the scope for their future work. Goiri et al. (2012) de-

vised a model for characterizing situations in a federated cloud such as: when to go for

resource outsourcing to other providers, when to go for admitting resource requests from

other providers, what/how to contribute to the federation etc.

The capability of VM to move from one host to another when it is operational is termed

as VM Mobility (Dowell et al., 2011) and is very much required in an Inter-cloud environ-

ment. Furthermore, it should not disturb the independence of the individual clouds cor-

responding to privacy, security and autonomy. The significance and need for inter-cloud

VM mobility under physical and administrative constraints are discussed in Nagin et al.

(2011). Here the authors presented the design and implementation of a technology for

enabling live mobility of virtual machines between clouds, while enforcing the cloud in-

sularity requirements of autonomy, privacy, and security. But this design is based on the

concept of a common storage space and common network.

In Reich et al. (2007) the authors proposed an SLA-oriented management architecture

for providing integration of interoperability among loosely coupled web services. In their

work they have described the extension of the autonomic management of Web services

associated with the Web Services Resource Framework (WSRF) connected by a structured

P2P network. They have provided isolated service level domains in the SLAs, and im-

plemented a regionalized migration algorithm for reallocating services between users to

24

ensure the decided QoS.

In Amin et al. (2012), the authors present a Publish-Subscribe based middleware for In-

tercloud Message Exchange and is implemented through Data Distribution Service (DDS).

Here an OWL based cloud resource description ontology is utilized by cloud environments

for resource cataloging and possible matchmaking prior to workload migration between

heterogeneous clouds. The real time VM migration is not a motive of this work and so

interoperability through VM mobility is not addressed here.

The CONTRAIL Project developed a negotiation model for cloud federation frame-

work where the SLAs Coppola et al. (2012) deal with the organization and deployment

of applications on multiple clouds. Each application could then go with several cloud

providers, and the user negotiates with the apt cloud provider. Here in this work, the au-

thors failed to adjust the resource provisioning mechanisms.

Table 2.3 Summary of important research work on federated cloud

Publication Principle/ policy Infrastructure Model /
Framework

Parameters
Buyya et al.
(2010c).

VM migration and
scheduling

Cloud coordinator,
cloud broker and
cloud exchange

Intercloud ar-
chitecture

Availability
and price

Nagin et al.
(2011),

VM mobility by VM
state and memory
transfer

Intercloud proxies,
shared storage and
virtual network
migration

Framework
prototype

Autonomy,
privacy, and
security

Paraiso et al.
(2012)

Configurable kernel
for Multi-PaaS In-
frastructure

Cloud node provi-
sioning together with
PaaS and SaaS de-
ployment

FRASCATI
platform

Portability,
interoper-
ability and
heterogeneity

Gomes et al.
(2012)

Cloud exchange
market controlled by
trading strategies

Federated datacenter
with a cloud coordi-
nator

Framework
prototype

Budget con-
straints and
demand
constraints

Goiri et
al.(2012)

Insourcing and out-
sourcing of resources

Federated datacenter
with scheduler, re-
source manager and
resource fabrics

Framework
prototype

-

The summary of important research works on federated cloud is presented in Table

2.3. As shown in the Table 2.3, the existing research majorly uses availability, price,

autonomy, privacy, security, budget constraints and demand constraints as a way to solve

interoperability issues. To the best of our knowledge, there are no research work addressing

the interoperability issues with SLA based approach. Therefore, in our research work we

aim at proposing a holistic solution using SLA templates for solving interoperability issues

of federated cloud environment.

25

2.5 Gap Analysis

The literature survey on the related research works in existing literature shows the

importance of combing SLA management and resource management in the field of cloud

computing. From the literature survey, we have identified the following major aspects that

are to be addressed.

• RG1: Dynamic adaptation strategies for varying workload and infrastructure condi-

tions were not considered.

• RG2: Predefined SLA parameters only are considered for the calculation of thresh-

old limit which creates difficulties with dynamically changing applications. There-

fore, there is need for considering the dynamically changing SLA parameters also

for efficient allocation of resources.

• RG3: Cloud providers try to provide excess number of requested resources in order

to escape from SLA Violations and this leads to wastage of resources due to over

provisioning. This is not an efficient method to control SLA violation.

• RG4: The dynamic allocation of resources to cloud applications in the context of

multiple cloud providers is not taken into consideration.

• RG5: Dynamic change in resource requirement and the reduced number of traders

in cloud market lead to market instability crashes. This market instability affects

the deployment of cloud services and generates costly consumption of hardware

infrastructure.

With the preliminary understanding of elastic cloud and it’s challenges, this research work

aims at providing a suitable SLA management framework, adaptive resource allocation ap-

proach and SLA based cloud federation. From the above list of research gaps, we attempt

to address the first four research gaps (RG1, RG2, RG3, and RG4) in this thesis work.

2.6 Summary

Here we have done an extensive study of the works related to cloud computing, service

computing and grid computing related to the problem of SLA negotiation and resource

26

management. The negotiation and monitoring of SLAs can contribute more to the busi-

ness outcome of the service providers since for each violation of the negotiated agreement,

the provider has to pay penalty to the consumer. This motivated us to start with SLA mon-

itoring and has proposed an adaptable resource management framework by incorporating

SLA monitoring as a preprocessing unit. The next chapter of the thesis gives a description

of our proposed SLA management system by covering the negotiation and monitoring of

SLAs. The SLA monitoring is for detecting SLA violation and avoiding violations to the

possible extent.

27

28

Chapter 3

SLA MANAGEMENT FRAMEWORK

An Efficient Resource allocation mechanism should be able to handle dynamically vary-

ing requirements effectively. The main aim of this objective is to design and implement

an SLA negotiation and monitoring framework which can be used for Efficient Resource

Allocation. This chapter specifically demonstrates objective one. The SLA negotiation and

monitoring framework has been developed here to predict and avoid SLA violation. This

framework is developed using Web Service Agreement for Java (WSAG4J) Framework. Ad-

ditionally a Dynamic SLA scheme for proactive prediction of SLA violation is developed

and implemented. The developed frameworks perform better than the other contemporary

approaches.

3.1 Introduction

Service Level Agreement (SLA) identifies an association between the service provider and

consumer with mutually accepted terms and conditions for a particular service. SLA al-

lows both the involved parties to establish consent on their roles, rights, and obligations.

Consequently, a third party agent could develop these mutually accepted SLAs in the name

of the cloud service provider or service consumer. The consumers specify their require-

ments, and the third party agent starts the negotiation with the available service providers.

After receiving the service request, the service provider provides the time slot for accessing

the requested services if sufficient resources are available. In addition to the time slot, QoS

parameters are also mentioned in the SLAs. The whole process of connecting cloud service

provider with the cloud service consumer using SLAs is referred to as SLA Management.

29

3.1.1 Overview of SLA Management

SLA management in cloud computing has two different perspectives: Service provider’s

perspective and Service consumer’s perspective. According to service providers, it is a

problem of satisfying QoS parameters that are feasible, competitive and yield maximum

profit. According to service consumers, it is a problem of deciding QoS parameters that

satisfy resource requirements, business demands, and available budget. The role of service

providers is to assign, release and modify available resources and associated services. On

the other hand, service consumers role is to request, access or terminate services. The

significant role of SLA Management is to monitor the performance of the cloud service

provider. The performance will be calculated in the form of quality of service requirements

that are mentioned in SLA documents. Similarly, there will be a set of QoS parameters that

are mentioned in SLA documents with respect to cloud service consumers. These QoS

parameters play a major role in price calculation and billing.

The job of the SLA management system is to ensure the agreement terms mentioned

in the SLA are met. The SLA management lifecycle has following phases: The first step

is the SLA establishment phase where the cloud customer and cloud provider negotiate

significant SLA values for offering a specified service by considering needed measures or

values. That is a customer could get the necessary measures such as response time provided

by the service provider, consider them as SLA parameters and get the approval from the

service provider. Alternatively, the negotiation of SLA has to be done as per the defined

SLA template, using a negotiation system. Once the negotiation of SLA is initialized,

the SLA deployment agent has to take care of checking its validity and distribute it into

appropriate components and involved parties.

3.1.2 Role of SLOs in SLA

Usually, SLAs are viewed as a collection of multiple SLOs. The quality parameter of an

SLA is measured as an SLO, and the SLA violation means non-attainment of pre-fixed

SLOs. The service provider has to pay the penalty this SLO non-attainment.

In general, the SLO values will be monitored by SLA monitoring engine. As shown in

Figure 3.1 there are two phases called as negotiation and execution. During the negotiation

30

Cloud Service

Provider

Cloud Service

Consumer

Per Instance

Per Aggregation

Anticipated

Metric
Penalty

Measured

Metric

Cloud Service

Provider
SLO

During Negotiation

During Execution

OR

Figure 3.1 Domain model of SLA

phase, the cloud consumer and the cloud service provider will negotiate with each other.

Specifically, anticipated metrics namely time to order, time to deliver, Delay in the end to

end transaction, Quality of item, Failed service request rate, Availability of service rate and

the penalty for each of attribute (in case of SLA violation) will be mutually negotiated by

the cloud consumer and cloud provider. At the end of this negotiation phase SLOs, antic-

ipated metric, penalties would have been decided. In the execution phase, the negotiated

SLOs will be measured. The SLO metrics for a real-time shopping service are illustrated

in Table 3.1. Time to order, time to deliver, delay in the end to end transaction are con-

sidered to be instance level SLOs which are measured over an interval of time. Quality of

good, failed service request rate, availability of service rates are considered to be aggre-

gated level SLOs and are measured over instances. During execution, the service provider

will be penalized if there is an SLO violation. For example, as shown in Table 3.1, if time

to order takes more than 36 hours, the service consumer will be given 3 % discount by the

service provider as the penalty. Similarly, for each SLO violation, the service provider will

be penalized and the service consumer will receive the benefit as per the negotiated SLOs

compensation plan.

The monitoring engine of our SLA management framework monitors the SLO values

which is measured in a per-interval/ per-instance manner. Figure 3.1 illustrates the dia-

grammatic representation of measuring SLO metric in a per-interval/per-instance manner

31

Table 3.1 Sample SLO

Type of
SLO

SLO Anticipated
metric

Penalty Interval

Time to order ≤ 36Hrs 3% discount Not applicable

Instance
level

Time to delivery ≤ 4 days 5% discount Not Applicable

Delay in end to end
transaction

≤7days 10% discount Not Applicable

Quality of good High 80% discount Not Applicable

Failed service request
rate

≤1% 20% dis-
count on next
purchase

Bi-weekly

Aggregated Availability of service
rate

≥ 99% 20% dis-
count on next
purchase

Monthly

during SLA negotiation and after negotiation. The penalty values will also be taken care

of while measuring SLO metrics. Example of a set of SLO metrics is shown in Table 3.1

by assuming a real-time shopping service.

3.2 SLA Negotiation Framework

Negotiation means a process of resolving conflicts among multiple parties involved in a

business scenario which is intended to reach a common agreement mutually favorable to

each other. Different forms of negotiations are possible according to the multiplicity of the

involving parties (Badidi, 2016). The multiple possibilities are:

1. One-to-one negotiation: It is the kind of negotiation in which a single customer

bargains with a single provider for the attainment of an agreement for the delivery

of an item or service.

2. One-to-many negotiation: It is the kind of negotiation in which a customer bargains

with several providers where the providers compete or collaborate to provide the

item or service.

32

3. Many-to-one: It is the kind of negotiation in which several customers bargain with

a single provider and the customers compete or collaborate to reach an agreement

with the provider or cooperate to share the item or service offered by the provider.

4. Many-to-many: This form of negotiation involves multiple consumers and multiple

providers and where several customers bargain with a multiple provider indepen-

dently and the customers compete or collaborate to reach an agreement with the

provider or cooperate to share the item or service offered by the different providers.

The one-to-one negotiation is the simplest negotiation in which the two negotiating

parties bargain on a single issue (Lee and Ferguson, 2010) but in reality both the sides

need to negotiate on multiple criteria. As an example, if a customer wants to buy a car,

he needs to negotiate with the car dealer on criteria like - the price, the color, working

conditions, the warranty, etc. The standard way to manage negotiation is: Characterize the

choices of each party using a utility function as a first step and mark the conclusions based

on the values of corresponding utility functions (Lai et al., 2006).

The process of negotiation includes the following major components:

Objects of Negotiation: These are the set of items or properties the negotiating parties try

to negotiate for reaching a joint agreement. Quality of service attributes like availability,

reliability, response time, price, etc. can be taken as objects for a service negotiation.

Negotiation protocol: This defines the significance of the involving parties which states

the roles and rules for governing the dealings between the parties. Negotiation protocol

identifies the negotiation states and the changing actions in each state, i.e., the set of valid

actions possible to each participating parties in individual negotiation states. Two classes

of negotiation protocols are there: bilateral negotiations and auctions. Mutual negotiations

comprise of two parties such as a provider, a consumer and a negotiating protocol for sub-

mitting proposals and offers.

Decision model: These are the set of tools and models used to compute negotiation deci-

sions.

Cloud computing environment with multiple service providers employs a third party

agent called a cloud broker to resolve the complexity of SLA negotiation. The role of the

cloud broker is to act as an intermediary to service providers and consumers and to settle

33

with the best SLA. It accomplishes the following tasks on user behalf:

• search for all possible cloud services according to the requirements of the user;

• verify the truthfulness of service providers;

• confirm the party to negotiate by compiling previous experiences, user requirements

and other needed measures;

• select the best possible price among available providers; and

• negotiation among different SLAs/providers.

Enough communication interfaces are provided in the proposed architecture to imple-

ment interaction between the service consumer and the broker, between the broker and

the service provider and between the service provider and the service consumer. Specific

policies are there to govern the SLA negotiation, and the negotiator determines the price

of the service, the penalty for violation, etc. as per the negotiation policies.

The consumers’ requirements are varying dynamically, and this points to think about

dynamic re-negotiation of SLA. The re-negotiation permits to have multiple negotiations

in cases of lost, delayed or re-ordered messages. The re-negotiation starts with a re-

negotiating state, the agreement contract goes into a re-negotiating state which is viewed

as part of the present agreement, and after the finishing of re-negotiation, the present state

is viewed as a superseded state. Issues considered in dynamic SLA re-negotiation are:

• Delete an existing SLA and negotiate a new one;

• Remove or add an SLA objective; and

• Redefine the parameters of SLA.

The proposed SLA negotiation involves an iterative process between the involved par-

ties and proceeds through three major phases as follows:

• Initiate the negotiation (prepareAgreement)

• Negotiate the values (negotiate)

34

• Create new SLA (commit)

The bilateral negotiation of SLA uses an offer and counter-offer style for proceeding with

the negotiation. During the prepareAgreement phase, the negotiation unit initiates the

process of negotiation by giving one requirement as the input offer and collects multiple

counter offers. During the negotiate phase, the negotiation initiator and the negotiation

responder will have interactions to fix the values of the SLO parameters and will come up

with the negotiated SLOs. During the commit phase, the negotiated SLO values are stored

as a document and this document will be shared among the involved parties.

3.2.1 Architecture of SLA Negotiation Framework

SLA Template
Cloud Service

Application

SLA Template SLA Template

Agreement

Monitoring

Negotiation /

Renegotiation

Cloud Service User / Third Party Broker

Cloud Service Requisition

Cloud Service Negotiation Unit

Cloud Service

Application
S
e
rv

ic
e
 L

is
te

n
in

g

SLA

Document

Offered SLA Negotiations Suggested

on SLA

SLA Offers
Ready

Figure 3.2 Architecture of SLA negotiation

The SLA negotiation architecture (Figure 3.2) contains the following main units such

as: (i) cloud service requisition unit, (ii) service listening unit, (iii) cloud service negotia-

tion unit and (iv) agreed SLA document. Cloud service requisition unit is to identify the

35

apt cloud service and service provider for the cloud consumer’s application. The detection

and selection of the service is done after considering several criteria such as: QoS of the

expected cloud service, nature and behaviour of the service, provisioning interface and the

integrity and reliability of the cloud service provider. Service listening unit checks exter-

nal service registry periodically for the changes and updates of the service. Cloud service

negotiation unit is responsible for the negotiation of SLA which goes through possible ne-

gotiation specifications and finalizes the suitable interface for interacting with the service.

The interface gives the option for initiating the cloud service provider or cloud service

broker, initiating the process of negotiation and informing the cloud service provider that

an SLA has generated as a result of the negotiation. The last unit, agreed SLA document

contains all details about the agreed upon SLA. Different SLOs and their permissible val-

ues, the penalty for violation of SLO values, etc. are examples. Almost all of the research

works in this area have used XML language for identifying the service agreement between

the service consumer and service provider. In this XML based SLA negotiation message,

negotiation rules and negotiation decisions are focused more.

3.2.2 SLA Negotiation Rules

The process of SLA negotiation is done according to the rules defined for negotiation using

XML schema. These rules are framed in the form of conditional statements such as:

if (condition) then perform action else perform action

The ‘condition’ deals with QoS values and the ‘perform action’ decides whether to change

the QoS value or not. A negotiation rule is given in Figure 3.3 as an example. The negoti-

ation unit acts according to the action part specified in the negotiation rule. Different rule

actions can be: (i) accept actions, (ii) reject actions and (iii) set actions. Accept actions

are for accepting multiple SLO values (QoS attributes) in an SLA. Reject actions are for

rejecting the values of QoS attributes and set actions are for proposing new set of values

for QoS attributes. The negotiation rule is used by the cloud broker which mentions that

the service consumer has made an offer (or counter-offer) of the requested service. The ne-

gotiation rules expressed in regular XML schema have converted to the particular format

of the negotiation engine provided with the broker. We have designed a negotiation en-

gine using rule-based concept with JESS (Java Expert System Shell (Friedman-Hill et al.,

36

Figure 3.3 Sample of SLA negotiation rule

1997)) for the current negotiation framework. The general form of a JESS rule is:

(de f rulerule−name(logical−operator(cond−1...cond−n))→ action)

where,

cond− i defines the logical conditions over the known facts.

The negotiation rules are get translated into JESS rules inside the broker.

3.2.3 SLA Negotiation Decision Model

Negotiation decisions are taken by using time-based decision functions where the deci-

sions are finalized by considering many factors. Some factors which influence the decision

making are cloud customers’ requirements, cloud providers’ preferences, environmental

conditions, etc. The beauty of the time-based functions are, it can accommodate all ranges

of all possible criteria for making negotiations. In a negotiation environment, multiple at-

tribute values are there to negotiate, and for each argument, there are multiple possibilities

to consider. The best possibility is selected depending on the exactness of the argument

value. So an entire SLA negotiation policy can be represented in mathematical form as

follows.

Let ‘i’ be the attribute considering for negotiation at a particular point and ‘xi’ be its

attribute value, in the current multi-attribute negotiation model. The possible value of ‘i’

varies from 1 to n and the possible value of ‘xi’ can be in between ‘max_xi’ and ‘min_xi’.

Let ‘wi’ be the assumed weight of attribute ‘i’ which represents the importance of attribute

37

‘i’ in entire SLA negotiation.

∑1≤i≤n wi = 1,

since we assume normalized weights for all attributes.

Then the Total Negotiation Value (TNV) is,

T NV = ∑
1≤i≤n

wiNV (xi) (3.1)

NV (xi) =


max_xi−xi

max_xi−min_xi
, i f xi ≤ max_xi

xi−min_xi
max_xi−min_xi

, otherwise
(3.2)

The negotiation decisions are finalized after analyzing the offer and counter-offer val-

ues. Here service customer (C) provides an offer to the service provider P and P provides

counter offer back to C. The time measure is assumed as the difference in the time the

offer is initiated (unit ‘t’) and its corresponding counter-offer at tC. Let Ot
C be the offer

value from cloud consumer to the provider and OtC

P→C be the counter offer from the cloud

provider. Then the negotiation decision is formally fixed after evaluating the TNV.

The negotiation decision is formally represented as:

D(t↔tc) =


accept, if NV (Ot

C→P)≥ NV (OtC

P→C),

reject, if tC > tmax,

OtC

p→C otherwise

(3.3)

where,

tmax is the maximum time for negotiation.

In this negotiation environment, the counter offers and hence the negotiation decisions may

vary as per the variations in time, resource availability and behavioral changes.

SLA negotiation Process

The sequence diagram given in Figure 3.4 shows the steps involved in the process of SLA

negotiation. A set of message interactions are necessary, to negotiate SLA, among the

service consumer and service provider. The detailed picture of all message transactions

occurred at the time of SLA negotiation is shown in Figure 3.4 and explained as follows:

38

Figure 3.4 Message interactions during SLA negotiation

1. The Service Provider A starts the registration using the 1.register() message to the

Registry. This message consists the details of services that can be provided by the

Service Provider A. The Registry collects the details from various cloud providers

and stores the details.

2. The Service Consumer sends a 2. query() message to Cloud Broker. This message

consists of the specification /requirements of requested cloud services.

3. The Cloud Broker analyzes the cloud Service Consumer’s requirements and forms a

new query 3.query() that contains the request details to be sent to Registry. Further,

the Registry checks for the available services from the list of registered Cloud Ser-

vice Providers. After identifying the available Cloud Service Providers, the Registry

sends the response message to Cloud Broker.

4. The Cloud Broker, requests the SLA templates of available Cloud Service Providers

through the message 4.getSLATemplate(). The received SLA templates will be

analyzed and sent to Service Consumers as a response to resource requests.

39

5. After receiving the SLA template, the Service Consumer will communicate with

selected Cloud Service Provider with 5.sendBid() message. This message consists

of an offer for initiating the SLA negotiation.

6. The Cloud Service Provider analyze the incoming request and send the 6.query() to

check whether the requested amount of services available or not.

7. If the requested services are available, the Cloud Service Provider responds to the

Service Consumer with the message 7. sendOffer(). This message consists of the

counter offer and this will be analyzed at the Service Consumer side.

8. Finally, the Service Consumer decides whether it can accept or reject the negotiation

and the decision can be communicated through 8. accept/reject message.

The negotiation unit begins the first phase of negotiation by collecting all available SLA

templates from all service providers. The negotiation initiator selects the apt template from

the collected set as an initial point, which describes the background for all subsequent

iterations. It is required that all successive offers should follow this initial template, which

helps the agreement provider to evaluate the constraints of the original template, at the

time of negotiation. In the second phase, the initiator generates a new SLA template as

per the selected format. The agreement initiator is free to modify the contents of the

created template by adding service descriptions, service properties, and the guarantee terms

according to the original template. This new template is forwarded to agreement responder

through a message, and the responder checks the credibility of the input document. The

agreement provider, then checks whether the defined service can be provided or not. If

it is possible, the agreement provider sends back the template of the agreement to the

client, which indicates that this particular offer based on this template will be admitted. In

the other case, the provider initiates some mechanism to generate counter offers. In the

third phase, the negotiation initiator checks whether the received counter offer meets the

requirements and stops the negotiation process, if it is not satisfying, and starts all steps

from first phase.

To establish an SLA negotiation, the system has to go through a sequence of steps. The

proposed Algorithm (1) for SLA negotiation contains the following steps.

40

Algorithm 1 SLA Negotiation
1. SLA negotiation at the user requirement level.
2. SLA negotiation at the service provider level.
3. SLA negotiation at the job execution level.
4. Confirmation of negotiated SLA.

In the first step the user requirements concerning service descriptions, particularly meta

data of the service, is communicated to the cloud broker in the system.

The meta data include:

• Information about the computing service

• Estimated time for completing the service

• Estimated service cost, etc.

The broker then checks for a cloud service provider, who can provide the service as

per the user requirements. This checking is done in step 2 and on completion of step 2 the

service broker comes up with a particular service provider, who is capable of providing the

needed cloud service. In the third step, the actual SLA negotiation has been executed. As

part of the execution, both the involved parties institute a consent on the QoS parameters of

the provided service and the agreement terms are finalized. This finalized SLA document

is then communicated to the involved parties as a confirmation.

The complete process of SLA negotiation is depicted in Algorithm 2.

The process of SLA negotiation proceeds through the following activities. As per the

activity diagram shown in Figure 3.5, the negotiation process begins with the Selection of

service. The initial selection is done from a comparative study among the service details,

collected from all sources such as the previous users of the cloud service, grading/rating

of the providers, etc. and the requirements of the service collected from the cloud service

user. From this preliminary comparison, a particular service is selected, and then the steps

for negotiation are initiated. Service selection process also depends on the service registry

which contains the details of all existing services together with the description of a new

modified service. The negotiation framework selects the most suitable cloud service that

does not have a negotiated user or consumer and proceeds with the negotiation steps. The

QoS traits of the selected service and corresponding SLO values are negotiated in this

41

Algorithm 2 SLA Negotiation Process
Input: Set of cloud service requests.
Output: Mutually agreed SLA document.

Consider a particular service request,
Initialize the minimum count of service providers available to satisfy the service request.

limit←count of resources in the cloud
count← 0
for each cloud resource← 1 to limit do

take communication message from requester
switch (communication)
case: ‘sendsignal’

communicate message ‘empty-template’
set flag←1
break

case: ‘receivesignal’
communicate message ‘filled-template’
break

case: ‘sendsignal && flag==1’
communicate message ‘tentative-SLA’
break

case: ‘acceptsignal’
count++
if (count==limit)

communicate message ‘commit’
else continue
break

case: ‘rejectsignal’
break

default:
communicate error message

end;

42

Receive Cloud Service

Details from All Sources

Execute Query

Update the Service

Requirement

Extract the Cloud Service

Requirements in the form

of a Query

Final Service Selected

and Initial SLA Negotiated
Initiate SLA Negotiation

Negotiate SLA Cloud Service

Broker

R
e
v
is

e
d
 D

e
s
c
ri

p
ti

o
n
 o

f

C
lo

u
d
 S

e
rv

ic
e

Check the

Status

Negotiation of SLASelection of Service
P
re

-a
g
re

e
d
 S

L
O N
e
w

 S
L
O

Initiate Process

Service In�uenced

Done Negotiation and Waiting

for Improvement

Failed

In Progress

Figure 3.5 Process of SLA negotiation

phase to generate the most suitable SLA for both the parties. If the negotiation with the

selected service is not going smoothly, then a second service is selected and it proceeds

with the same negotiation steps.

3.2.4 Experimental Results

Here in this section, we have evaluated the performance of our SLA negotiation proto-

type based on the existing implementation of WSAG4J (Waldrich, 2016; Wäldrich, 2011).

The experimental evaluation for the monitoring of SLA to detect SLA violation and the

associated analysis is included in the next chapter together with the SLA driven resource

allocation. To evaluate the prototype, the WSAG4J (version 2.0) framework was used to-

gether with a real-life use case scenario of automated SLA delivery in the field of cloud

computing. A clear use case for service negotiation is already used by several researchers

in the field of automated SLA processing (Waldrich, 2016) (Comuzzi and Spanoudakis,

2010). Web services meant for handling SLAs are defined as neutral mediators and must be

reachable to both the parties, guaranteeing established agreements. So the automated SLA

negotiation should ensure availability, scalability and performance requirements. To eval-

uate the use case of automated SLA delivery, three negotiation scenarios such as Garage,

Designs, and Proposals were considered to replicate the cloud computing environment.

43

Figure 3.6 Testing architecture for SLA negotiation

That is every Service Negotiation has to deliver at least one Garage (Garage of Agree-

ments) having multiple Designs (Agreement Designs) which gives a description of the

services provided and act like a model for coming Proposals (Agreement proposals). Here

the framework deals with one garage containing three designs.

Find Garage: This is the first scenario in which the initiator of the agreement requests

for garage given by the provider. In this first step, the initiator has to search for services of

an unfamiliar provider.

Find Designs: This is the next scenario in which the service discovery will be proceeded.

In this service discovery step, the initiator collects information about available agreement

designs for the garage.

Find Negotiation: This is the third scenario in which the negotiation process between the

initiator and the responder will occur. The responder is responsible for the service provider

side, and the initiator takes care of the service consumer side.

The architecture for testing SLA negotiation (shown in Figure 3.6) is taken from Wäldrich

(2011) which was set up using multiple physical host machines (servers) networked using

Ethernet links. Each physical host machine is equipped with multiple Kernel-based Virtual

Machine (KVM) containing Ubuntu 13.04, Java and JDK 1.8. The load tests have been

conducted on these two physical server machines by providing four virtual machines, and

44

the tests have coordinated with the help of Grinder 3.11 (Grinder, 2016), a load testing

framework based on Java.

Host 1 runs VM1 which processes the WSA4J web apps using Apache Tomcat, and

Host 2 contains VM2, VM3, and VM4 which is dedicated for processing load test compo-

nents (called grinder agents) of the Grinder framework. A grinder-console running mon-

itors all these agents on a third host machine. The grinder-console is responsible for all

coordination activities such as code distribution, synchronization of the tests and measure-

ment of test results.

The load tests have been conducted for each test scenario several times, where each

test scenario is executed with a varying number of clients operating simultaneously for

evaluating scalability. The tests initiated using a single client, and the count increased one

by one till 4 and the Java Virtual Machine (JVM) and Apache Tomcat have restarted in

between to get more accurate results. The test results have been measured for 100 test

runs.

The response times of all the three test scenarios considered are shown in Figures 3.7,

3.8 and 3.9. The scale value of each response time is fixed according to the measurements,

and these values have been taken after assessing the test run measures. From the results, it

is visible that for the second scenario the response time is less and the percentage failure

of negotiation is least.

Figure 3.7 Response time for Find Garage

Figure 3.10 gives the response time comparison for all the scenarios and shows that the

45

Figure 3.8 Response time for Find Design

Figure 3.9 Response time for Find Negotiation

response time is much higher for the third scenario. This shows that the negotiation process

is more complex in the third scenario and consumes more time to complete. It must be

emphasized that web services providing WS-Agreement and WS-Agreement Negotiation

act as neutral notaries which must by definition always be reachable to both agreement

parties, enabling 24/7 verification of SLAs.

From Figure 3.13 and Figure 3.11, it is clear that out of 15 and 25 arbitrarily generated

requests, 22% and 34% of the requests are serviced by the proposed method of SLA nego-

tiation and the rate of sanctioning the resources is more when compared with the resource

allocation without negotiation.

46

Figure 3.10 Response time comparison for all scenarios

Figure 3.11 Rate of serviced requests

Figure 3.13 Rate of serviced requests

47

Figure 3.12 Percentage of negotiated SLAs

In our experimental studies, we have considered a list of computing resources which are

stored in a database within the system. Some examples of computing resources are RAM,

number of CPU cores, memory, network bandwidth, processor availability, etc. Here we

are assuming a service requesting environment where every service has its executable code.

These services have a set of limitation on QoS measures. For each service 10 resources

are randomly selected from the database by assuming these resources as available for the

selected request. These are given as input to the negotiation. The random process model

that we have chosen generates 50 requests and chooses the resources randomly. The SLA

negotiation results for the described experiment are plotted, which are shown in Figure

3.11, Figure 3.12 and Figure 3.13. Figure 3.11 and Figure 3.13 show the rate of sanctioning

of the service requests with and without the newly devised SLA negotiation.

These results prove the efficiency of our proposed method, and it is confirmed that

the throughput of the scheduler gets improved with the usage of our approach. This per-

formance improvement shows that with the use of our proposed negotiation method the

available resources/services in the cloud environment can be allocated to the needy ser-

vice consumers efficiently. This efficient allocation enhances the utilization of resources

and improves the efficiency and rating of the provided cloud service, which in turn in-

creases the business volume of the cloud provider. As a whole, our newly proposed SLA

negotiation method will improve the business revenue of the cloud provider and customer

satisfaction of the cloud service user.

48

3.3 SLA Monitoring Framework

Monitoring an SLA means periodic testing of the SLO values to determine whether the

involved parties are following the agreed terms or not. SLA monitoring is done in three

different forms such as online monitoring, proactive monitoring, and reactive monitor-

ing. Approach refers to the continuous periodic monitoring of SLO values. In proactive

monitoring approach corrective actions are done before the detection of SLA violations.

Here, the SLA negotiation is done immediately after service discovery, which ensures the

smooth and continuous availability of the cloud service, according to the contracted terms

of the pre-agreed SLA. Reactive monitoring refers to a different approach where one of

the involved parties starts complaining to the monitor that some violation of the agreement

is taking place. This reactive monitoring is advantageous because it gives an immediate

response to SLA violations and also there is no overhead of continuous monitoring.

The problem of SLA violation is crucial in cloud computing because the cloud providers

have to pay the penalty to their customers upon each violation and so it is necessary to

have a provision for monitoring and detecting SLA violations. In this section we have pre-

sented our proposed SLA management system which monitors the SLA and detects SLA

violation. In our management architecture, we have attached a monitoring module and

have presented a proactive runtime approach for detecting SLA violation based on event

monitoring. Runtime detection and prediction are appreciative because it yields high ef-

fect in adaptive resource allocation in autonomic resource management(Anithakumari and

Chandrasekaran, 2015). The detection of SLA violation has been implemented through

monitoring and analysis of runtime data is performed. The provision to perform monitor-

ing, analysis and verification have been included in the prototype implementation of our

architecture.

3.3.1 Overview

The overall architecture of our SLA management system is given in Figure 3.14. The

measurement subsystem measures the SLA parameters and SLOs are extracted from this

parameters. The measurement sub-system components can be part of the service provider

or the service user, but the party providing measurement should be trusted by a other

49

Cloud Service

Provider

System for
Measuring

SLA Parameters

SLA Values

Cloud Service

Provider

Cloud Service

Consumer

System for
Measuring

SLA Parameters

SLA Values

Cloud Service

Provider

Monitoring
snd SLA

Management

Negotiating

SLA

Provider Side Consumer Side

Figure 3.14 SLA management system

party. The measurement could also be partially or fully implemented by the third-party

component running on a separate machine. The values of the SLA parameters are given

as input for the evaluation procedure, which can run on either the service user or service

provider or both on the service user and service provider. The evaluation procedure checks

the values against the guaranteed conditions of the SLA. If any value violates a condition

in the SLA, predefined actions are invoked.

3.3.2 SLA Monitoring Engine

The detailed view of monitoring engine is shown in Figure 3.15 (Anithakumari and Chan-

drasekaran, 2015). The monitoring engine mainly contains two different phases: the run-

time monitoring of SLA parameters and the analysis and verification of SLOs. The runtime

monitoring is co-ordinated by the monitoring manager who continuously monitors the ap-

plication performance. The service management unit extracted the parameters correspond-

50

Service

Provisioning

Monitoring

Manager

Analysis

Engine

SLA Metrics

Parsing

QoS Terms /
Monitoring

Metrics

SLA

Analysis

Performance

Monitoring

SLA

Modeling

and service

Management

SLA

Violation

Database

SLA

Negotiation

SLA Monitoring

Engine

Adaptation
to
Allocation

Request
for
Service

Write
Monitoring
Data

Figure 3.15 SLA monitoring engine

ing to QoS terms specified in the SLA and made it available to the next unit, the analysis

engine. Some metrics require further refinement, and so they are forwarded to decoder

unit, then to the parsing unit and then to the analysis engine. The analysis engine verifies

the values through a matching between the needed value, i.e., the threshold limit, and the

measured values. If the measured value exceeds the threshold limit, then it is identified as

a violation, and the corresponding data values are passed to the violation database for next

level processing. The data values contained in the violation database are decoded properly

for making adaptive decisions at the time of adaptive resource management(Anithakumari

and Chandrasekaran, 2015). This stored database is also useful for recalculating the value

of SLA violation threshold at next iterations.

3.3.3 Detection and Avoidance of SLA Violation

The algorithm used for detecting SLA violations is given in Algorithm 3.

In Algorithm 3, input is the measured SLA values obtained from the monitoring tools

and output is a flag value showing the status of SLA violation. The trigger signal used

51

Algorithm 3 Detection of SLA Violation
1. Let response time and job execution time be two SLO values.
Let flag value be a boolean value for controlling the trigger signal in adaptive resource
allocation.
2.

a. Initialize SLA violation limit and SLA threat limit.
b. Reset the flag value to zero.

3.
a. Monitor SLA parameters using the monitoring tool.
b. Measure SLO values like response time, job execution time and number of resources.

4. Compare the measured SLO values with SLA threat limit.
5. If the SLO value ≥ threat limit then

a. Detect it as a possibility of SLA violation.
b. Set the value of flag to 1.
c. Give trigger signal to dynamic resource allocation.

in Algorithm 5 for controlling adaptive resource allocation is operated by this flag value.

The flag value represents the possibility of SLA violation. If the flag is set, the violation

possibility is detected, and if the flag value is not changed, there is no possibility of a

violation. The measured SLO values like ‘response time’ and ‘job execution time’ are

compared with threat threshold limits of violation and if the SLO values are going beyond

the threshold limits, it is identified as a possibility of a violation.

3.4 Dynamic SLAs

Dynamic SLA is an alternate form of SLA where the agreements are not static, don’t

have predefined bonds and can be modified before signing, negotiated on its content, and

renegotiated if the customer and the provider want to modify it. (Comuzzi et al., 2009).

The involved parties can concentrate on the customization of SLA template and agreement

terms and can do negotiation and renegotiation with the use of dynamic SLAs. Negoti-

ation and renegotiation is the stage where both provider and consumer try to settle with

an agreement through structured message exchange. In this stage, both the parties try to

apply their knowledge, expectations and economic axioms to maximize some utility func-

tions (Comuzzi et al., 2009).

Agreement Terms Agreement terms gives a formal definition of the QoS properties of the

agreed service. A small sample of the available QoS is considered in our context and major

52

terms include: Availability, Accessibility and Response time.

Availability: The service S is monitoring for a time t and during t, S is unavailable for a

small break duration b then availability(A) of service S is measured as

A = (t−d)
t

Accessibility: The accessibility of a service operation can be measured after monitoring

the number of all invocations to that operation and the number of dropped invocations. Let

O be the operation of the service S monitoring for a time t, Ia be the number of all invoca-

tions to O during time t and Id be the number of dropped invocations (means invocations

that were not serviced) then accessibility for the service operation O represented as Ac is

Ac = Ia−Id
Ia

Response Time: The Response Time of an operation can be measured by monitoring re-

quest message and response message or service message. Let O be the monitored operation

of the service S monitoring for a time t and RM, SM be the request message and service

message of operation O. To measure the response time we are assuming the request mes-

sage RM to be fully received at the providers end at time unit tI and the provider placing

the service message SM fully on the path at time unit tO. Then the response time tR for the

specified operation O is the difference between these two time units and the response time

TR of the entire service is the average of all individual operation’s response time.

tR = tO− tI

and TR = ΣtR
n

where n is number of operations in service S

3.4.1 Negotiation and Renegotiation

The SLA life cycle begins with the negotiation phase, where the service consumer and

provider do message exchanges to agree on a well-defined set of guarantees. These guar-

antees denote the obligations between involved parties. The notion of dynamic SLA is

possible through the multi-round negotiation process. The process will start with existing

knowledge source, collected as part of the earlier consumption of the same service. The

working conditions in the service-based systems change dynamically such as, the resources

available at the time of negotiation may become unavailable or simultaneous usage of hard-

ware or virtual resources generates dependencies among multiple SLAs of the provider. So

53

it becomes necessary to regulate, re-provision or renegotiate SLAs in due course.

3.4.2 Results and Analysis

Results are derived from a private cloud environment setup using opennebula where the

monitoring is implemented by an open source monitoring tool Ganglia (Massie et al.,

2004). The private cloud setup comprise of multiple host machines which are controlled by

a front-end controller where each host is capable of generating multiple VM images. The

SLA parameter considered here for detection of SLA violations is response time. The ex-

periments are conducted on a private cloud set up using opennebula 4.6. The proposed

system is being studied for appropriate implementation by deploying in Esper engine,

Gmond module from Ganglia open source project. The processing and manipulation of

SLA judgments documents. The management of SLA document is done using Domain

Specific Language as the parameter extraction is done using XML parser. To implement

the parameter mapping, Java Methods are used and the generated outputs will be forwarded

to initiate the detection and violation. In the experimental set up we have created three vir-

Figure 3.16 Detection and avoidance of SLA violation

tual machines in two different physical machines and uploaded web applications on it. We

have measured the quantity of predictive, reactive and combined modes of SLA violations

over a fixed time span of 2 hours. Predictive mode means detection of the SLA violation,

reactive mode means avoidance of SLA violation and combined mode means the combina-

tion of both SLA detection and SLA avoidance. The obtained results are shown in Figure

3.16. which clearly shows that proposed approach is better.

54

3.5 Summary

From the review of the existing literature and the investigation of previous research works,

we have realized the true significance for a clear and formal policy for handling SLAs in

the context of cloud computing. In this work, we have proposed a reliable and flexible

architecture for SLA management. In our negotiation environment, the negotiation is ini-

tiated by the third-party support and is implemented as a host support service. The general

environment implements this with a third party agent, and some cloud providers itself have

the provision to do this.

The key observation we have made in this situation is that there is a scarcity of standard-

ized protocols and templates for cloud providers or services. This is very much essential

when we think of monitoring and analyzing the cloud service provisioning. In our SLA

management architecture, we have invoked a middleware interface to cater to the need of

the lack of standard set of metrics which influence the monitoring of SLAs across cloud

providers. Some efforts to standardize the services of the cloud have started already, and

still, it is in the infant stage. We also emphasize the importance of similar attempts in

the context of SLA monitoring and management. In the next chapter, we have explored

the possibility of implementing dynamic resource allocation which is the primary focus

of cloud computing. In our thesis work, it is attempted to approach resource management

differently by utilizing the effects of SLA monitoring.

55

56

Chapter 4

ADAPTIVE RESOURCE ALLOCATION

The work in this chapter corresponds to the work for Objective two. The aim of this

objective is to design and implement an Adaptive Resource Management framework in a

real-time cloud. This objective works over the framework developed in objective one. The

adaptive resource management framework manages the resource in a dynamic manner and

is realized using Open Nebula Private Cloud. The results show this approach to be better

than other approaches.

4.1 Introduction to Cloud Providers’ Data Center

Cloud computing environment is generally viewed as a multi-layer arrangement contain-
ing different layers such as cloud provider layer, cloud user layer and end user layer (as
shown in Figure 4.1). Cloud provider layer describes the infrastructure arrangement and
server organization at the cloud providers’ data center. The end-user layer includes the
end users, and the cloud user layer describes the interface between cloud provider layer
and end user layer. For dynamically addressing the resource allocation problem we make
use of the infrastructure organization at the cloud provider layer. The cloud provider layer
contains cloud providers who provide multiple computing resources as services through a
shared data center. These computing resources can provide performance isolation and ef-
ficient resource sharing through virtualization technology, as per the basic feature of cloud
computing. Virtualization technology helps to improve the efficiency of allocating physi-
cal resources to processes since it allocates resources to applications without considering
other applications’ workloads. So the individual application gets the resource capacity in
a maximum possible manner. Virtualization also helps to provide the maximum elasticity
to computing resources by implementing flexibility of virtually growing or shrinking the
quantum of resources. Here we have proposed criteria to find out the quantum of resource
capacity each VM is getting from the corresponding physical machine. This decision al-
gorithm is explained in Section 4.2. An intermediate virtualization layer does the creation
of multiple virtual images from the available physical resources and the maintenance of

57

these virtual images. This layer generates multiple virtual machines, on top of the physical
infrastructure layer, which is isolated from one another and is capable of serving individual
applications. So these applications are also isolated like running on a dedicated machine,
and it uses a fraction of the entire resource capacity.

Figure 4.1 Over all architecture of a data centre

In order to proceed with the mathematical calculations, we assume a standard structure
for a cloud provider’s data center such as: The data centre contains a total of P physical
servers and the maximum possible VMs that can be created by all servers is taken as V. The
set of applications processed by ith server is taken as Si, and the number of VMs created
on ith server is taken as ni. That is ∑

P
i=1 ni = V. The system model for dynamic resource

allocation and VM management within a single server machine is discussed in section 4.2
and the model for global resource management, by considering all the servers in the data
centre, is explored in section 4.3.1.

4.2 Modeling of Private Cloud

This section discusses the dynamic VM management in a single server machine by con-
sidering the server machines in a cloud provider’s data center where each VM is viewed
as a single computing machine and makes use of an admission control policy for allotting
or dropping incoming requests. As per the admission control policy, the VMs may lose

58

some of the incoming requests, because of the limitations in capacity and excess count in
incoming requests. This control policy helps to address the remaining requests without
affecting the assured QoS guarantees.

We have assumed a system model for adaptive VM management in a single server
machine as explained below. The primary component in this model is the allocation man-

agement module which is to take care of all incoming workload requests and to service
these requests by considering system characteristics, application’s properties, VM avail-
ability and SLA contracts for maximizing the revenue of the service provider. The allo-

cation management module has configured with quantitative measures of the application
and SLA metrics. These measures have updated according to application change or SLA
change.

The requested workload module is for monitoring and reading the workload require-
ment of each application. It contains the provision to keep track of all processing ap-
plications and accordingly predicts the workload required for the current scenario. This
input is forwarded to the allocation management. The allocation management decides
on the allocation decision and in consultation with the middleware control, initiate the
virtual resource mappings and generate VMs in the virtualization layer. The admission
control policies are also taken care before the allocation of the VM images. The allocation

management decision is based on an optimized performance model which considers SLA
parameters and workload conditions of the processing applications.

The adaptive resource allocation has been implemented by making many resource allo-
cation decisions. The interval between two adjacent decision values is viewed as decision

interval and this can be taken as a constant value or variable according to the character-
istics of the system. By choosing a smaller value for decision interval, we can make a
more accurate resource allocation in a single server system. The primary component in the
system model is allocation management module because this is the module responsible for
making resource allocation decision. The resource allocation decision is determined based
on an optimization model by considering performance and efficiency values.

Resource Allocation Decision

In our analytical system model, the resource allocation is controlled by SLA parameters
and some system parameters. The estimated measures calculated from SLA parameters
and applications’ workload also play a role in this decision making. The service level
efficiency in cloud computing is very much dependent on SLA parameters, and so the
SLA performance which is related to the VM’s ability to service applications by satisfy-
ing the application’s response time specified in the agreement. The SLA parameters that

59

we are mainly focussing are throughput(T T H), response time threshold (RT H), probability
values(P()). The system parameters are the total numbers of VMs(V) created by the virtu-
alization layer, the utilization value(u) of each VM and the service time average(S) of the
application on a physical server. Among these values, the utilization value we are seeing
as the maximum possible value provided by the service provider and the throughput value
is the maximum throughput limit or throughput threshold(T T H).

The allocation management component gets an estimate ai (arrival rate of requests)
from the requested workload component for each application during the next controller
interval. If there occur some deviations in arrival rate from the estimated value, then a
load optimizer unit is initiated, and the deviations have optimized with the optimizer unit.
Here ai is the rate of arrival requests over the considered controller interval. From these
arrived requests some may be rejected because of resource limitations, and so the actual
arrival rate becomes lesser than ai. Among the processed set of requests, some may violate
the agreed response time values, and so they are not taken for the calculation of actual
throughput, Ti.

In case of fixed controller intervals the events which are considerably smaller than the
controller interval could mislead the allocation manager such as bulk quantum of requests
(with less duration). These requests coming from some applications can stop the allocation
of resources to some other class of applications because of deficiency in resource availabil-
ity and this will lead to substantial penalties for the provider. For minimizing this undesired
effect, the requested workload component provides the estimated probability (Pi) of a class
of requests having higher arrival rate for the next controller interval. The parameter Pi is to
represent the certainty level to assure maximum profit to the provider for V Mi, and it can
be bypassed, to consider workload changes, by assigning a value 1.

To proceed with the analytical model, we assume that the application coming from a
user is a unique entity and is submitted to particular VM. This application coming from
customer i is submitted to V Mi which is serviced in a mean service time Si and the utiliza-
tion value (upper limit) of V Mi is ui. In this model each VM is eligible for a guaranteed
fraction of available physical server and so we estimate the average service time by taking
fi, the fraction of service time given to V Mi, as Si/ fi. Correspondingly, resource alloca-
tion decision is the decision making of allocation fraction fi (i=1,2...V) given to each V Mi.
So fi is viewed as the important decision variable in our resource allocation problem and
analytical system model.

60

Model for Optimization

The optimization model estimates the resource allocation decision for maximizing cloud
provider’s profit by utilizing predicted workload in each controller interval. The model is
expressed as an objective function which calculates the overall sum on all expected appli-
cations. The model is,

maximize(∑
i=1

V ciTi−diXiP(Xi)) (4.1)

where,
V - total number of VMs allocated,
ci - cost of resource the consumer has to pay for a unit of throughput
di - penalty cost the provider has to pay for a unit of throughput on SLA violation
Ti - throughput limit as per SLA
Xi - throughput penalty due to SLA violation which can be calculated as,

Xi =

Ti−T F
i , if there is SLA violation

0, otherwise
(4.2)

where,
Ti

F is the upper limit of throughput at the time of SLA violation and is always lesser than
Ti, ie.,Ti

F < Ti.
P(Xi)- Probability of throughput penalty on SLA violation
The model for optimization is designed by considering the following approximations and
constraints:

• Predicted arrival rate of requests, ai, includes both serviced requests and rejected
requests. As per admission control policies (Perros and Elsayed, 1996), some of the
resource requests get rejected and the remaining only get serviced.
ie, ai = aadm

i + adisc
i where, aadm

i is the share of admitted requests and adisc
i is the

share of discarded requests.

• Probability of getting more response time is within the limit of an assumed proba-
bility value αi

i.e., P(Ri
F > Ri)≤ αi where, Ri

F is the response time on the occurrence of an SLA
violation and is always greater than response time as per the negotiated SLA. αi is
the assumed limit of probability of being Ri

F > Ri.

• The VM utilization λi is the ratio of arrival rates admitted, aadm
i and asat

i (a small
part of arrival rate for which ith VM is saturated). VM utilization can be represented

61

as a function of rate of acceptance of arrived requests and the fraction of resource
capacity VM gets.
ie., λi = g(aadm

i , fi) and λi = aadm
i /asat

i ≤ ui. This constraint assures a guaranteed
stability condition by limiting λi to uix100%.

• The resource allocation capacity can be formally represented as ∑
V
i=1 fi = 1. That is

the total sum of the assigned allocation percentage is limited by 100.

The rate of accepted arrival requests is related by expected arrival rate, satisfied re-
sponse time and the maximum permitted utilization rate. The set of all considered domain
variables in this model is restricted with normal boundary conditions such as: (i) 0 ≤ fi ≤
1 (ii) λi ≥ 0 (iii) Xi > 0 (iv) aadm

i ≥ 0 (v) adisc
i ≥ 0 and (vi) asat

i ≥ 0. The evaluation of the
above described optimization model is done with the help of queuing techniques.

Performance Prediction for the model

Determining estimated probability distribution of response time is the most critical task in
performance prediction because the actual probability distribution can only be calculated
for some particular types of queuing models and these model do not always fit for consid-
ered system constraints. So we assume the following set of approximations for the purpose
of analysis.

1. Resource requests from applications are in Poisson rate of arrival and the service
time of applications are exponentially distributed.

2. Two types of queues for modeling the system such as M/M/1 queue (works with
FCFS scheduling) and M/G/1 queue (works with round robin scheduling and process
sharing).

The saturating throughput Ti of V Mi is

Ti =
λi fi

E[Si]
≤ fi

E[Si]
= asat

i . (4.3)

where,
E[Si]- expected service time
fi - fraction of service time given to V Mi

λi - ratio of arrival rates
asat

i - part of arrival rate for which ith VM is saturated

This saturating throughput is determined by applying Utilization Law (Menasce et al.,
2004) in the system model. The concept of saturating throughput gives some restrictions

62

to the rate of acceptance of resource requests such as,
aadm

i = ui fi
E[Si]

and is mentioned as a constraint in our optimization model.
The tail probability distribution of the response time is calculated using Markov’s In-

equality Papoulis and Pillai (2002) as the first approximation. Expected response time of
the applications is determined as E[Ri] =

E[Si]/ fi
(1−λi)

using the principles discussed in Klein-
rock (1975). So for assuring the stability condition, the tail distribution response time is
approximated as:

P(Ri
F > Ri)≤

E[Ri]

Ri
=

1
Ri

E[Si]

fi−aadm
i E[Si]

≤ αi (4.4)

where,
RF

i - response time with SLA violation
Ri - response time without SLA violation
αi - upper limit probability for getting more response time
fi - fraction of service time given to vmi

E[Si]- expected service time
E[Ri]- expected response time
aadm

i - share of admitted request

This tail distribution equation is acceptable to both types of queues (M/M/1 and M/G/1(PS))
and it gives a loose bound on the values. Certain improvements on values by using some
tighter bounds is possible with another approximation, Chebyshev’s Inequality Papoulis
and Pillai (2002) where the result is influenced by both variance and average of response
time. Here variance of response time depends on type of queue. In M/M/1 Kleinrock
(1975),

Var[Ri] = [
E[Si]/ fi

(1−λi)
]2 (4.5)

and in M/G/1(PS)Yashkov (1987)

Var[Ri]≤
λi(E[Si

2]/ fi
2)

(1−λi)3 (4.6)

For this equation it requires both first and second moment of the service times and here we
assume like, this can be measured through a pre-production execution. With this average
and variance of the response time, Chebyshev’s Inequality limits the probability as:

P(Ri
F ≥ Ri)≤

Var[Ri]

(RF
i −E[Ri])2 ≤ αi (4.7)

63

Now we get more precise bound than the previous case and require additional information
like the queue type and second moment of the service time.

The next approximation is by considering the percentile case for calculation in M/M/1
queue. The tail distribution response time requirement can be calculated as per Kleinrock
(1975) as:

P(Ri
F > Ri) = e−Ri(fi/E[Si])(1−λi) ≤ αi (4.8)

The values generated by this equation is accurate only when there is no rejection of appli-
cation requests. But here we are preferring a general admission control policy and so this
generates some approximations. The accuracy of each of these approximations (Markov,
Chebyshev, Percentile) is studied in the experimental analysis.

4.3 SLA Aware Resource Allocation

This section presents the core concept behind the proposed adaptive resource management
/ allocation system based on SLA.

4.3.1 Global Resource Management

In this section we address the resource allocation problem with an eye towards maximizing
the global utilization. The concept of global utilization is the overall utilization of all
physical servers in the data centre environment. Our global utilization approach has built
on utility function by using a vector based approach. For defining the global utilization
value, we assume a general structure for the cloud provider’s data centre as explained in
section 4.1.

Here each server allots its resources for processing two types of application workloads
such as: (i) addressing the incoming resource requests from different applications and (ii)
executing received applications. So the workload in each server is measured as a con-
solidation of incoming requests and executing jobs or applications and the performance
metrics are measured as response time R (by considering incoming requests) and through-
put T (by considering executing applications). The workload intensity (I) on a server k is
defined as,

Ik =

(ak,1,ak,2...ak,Sk)and

(jk,1, jk,2... jk,Sk)
(4.9)

where,
ak - the average arrival rate of application S on the server k

64

jk - number of applications run concurrently on the server k.
In a similar way, response time and throughput represented in vector form as,

Rk = (Rk,1,Rk,2...Rk,Sk) and
Tk = (Tk,1,Tk,2...Tk,Sk . These performance values for a single server can be measured in
terms of workload on that server and the number of VMs generated on that server.
i.e., Rk = f (Ik,nk) and Tk = g(Ik,nk).
Now we can define the utility function Fk for the performance of a single server k on the
basis of response time and throughput. The function is

Fk =

 f (Rk)

g(Tk)
(4.10)

which can be re-written as

Fk =

 f (f (Ik,nk))

g(g(Ik,nk))
(4.11)

With this utility function Fk we can compute the global utilization of the cloud provider’s
data centre, by combining the effects of individual utility functions and is represented as
G = h(F1,F2, ...FP) where, P is the total count of servers in the environment. The notations
f,g and h are used to represent functions. The following discussions give a clear idea about
these functions and their computation.

Figure 4.2 Response time utility value

Let us start with defining the different utility functions involved in this analytic model.
The nature of response time utility function can be fixed as, the function should represent a
decreasing utility with the increase in response time. Similarly the function for throughput
utility should represent an increase in value with the increasing throughput. The response

65

time for application S on server k is set as αk,S as per the SLA and so the utility should be
sharper, near to this value. The utility function is represented as,

f (Rk,S) =
Lk,Se−Rk,S+αk,S

1+ e−Rk,S+αk,S
(4.12)

where,
Lk,S - the scaling factor.
Rk,S - response time for application S on server k.
This function has a variation point at αk,S and decreases quickly after a particular response
time value. Here we have shown a response time utility function (Figure 4.2) where the
value Lk,S=150 and αk,S is 4. The overall response time utility on a server k is calculated
as the weighted sum of all the values.
i.e.,

f (Rk) =
S

∑
j=1

f (Rk,S)wk,S (4.13)

where,
wk, j - The weight of jth application in server k, such that, 0 < wk, j < 1 and ∑

S
j=1 wk, j = 1.

S - Total number of applications.
Correspondingly we define the utility function by considering the throughput and the func-
tion is,

g(Tk,S) = Lk,S(
1

1+ e−Tk,S+βk,S
− 1

1+ eβk,S
) (4.14)

where,
Lk,S - the scaling factor
Tk,S - Throughput for application S on server k

βk.S - Preset value of throughput

Similar to the response time case, here the utility function decreases to zero after a
fixed minimum throughput. In the Figure 4.3 αk,S = 150 and Lk,S=3. As per this function
the utility value is zero for zero throughput. The overall throughput utility on a server is
now calculated similar to the response time utility.
i.e.,

g(Tk) =
S

∑
j=1

g(Tk, j)wk, j (4.15)

where,

66

Figure 4.3 Throughput utility value

0 < wk, j < 1 and ∑
S
j=1 wk, j=1.

In this adaptive resource allocation our focus is to dynamically allocate and reallocate VMs
generated on different servers in the cloud provider’s data centre in a more efficient way
such that the global utilization of data centre is maximum.

In the next subsection we explain about the proposed mechanism of resource allocation
for getting the optimized global utilization of servers.

Allocation Management: Global Model

We have already discussed about the resource allocation/management of a single server in
section 3. Here we have to globalize the same mechanism for all the available servers in the
environment and so we generalize the scenario as follows. The local manager (allocation
management local to a single server) is responsible for collecting all measurements local
to a server, computing local utility functions and then imparting these data to the global
manager. The global manager is for coordinating all the local managers and is responsible
for VM deployment and allocations.
Local manager: The detailed view of a local manager associated with a single server
is shown in Figure 4.4. The workload predictor is to collect data about coming requests
and predict workload intensity. The predictor take necessary data from workload predic-
tions unit which is responsible for estimating the timely resource requirements in a sin-
gle server. The workload predictions unit completes its job with the help of another unit
named as resource request handler. The resource request handler is to monitor the cur-
rent status of running applications and resource requirements in the local server. Now the

67

Model
Solver

Cloud User

Applications

Resource
Request
Handler

Resource
Monitor

Prediction
Model

Model
Solver

Utility
Evaluator

Running
Jobs

Usage
History

Predictor

Usage
Statistics

Incoming
Requests

Figure 4.4 Local manager structure

resource monitor unit forwards the information about the estimated workload to the predic-
tor unit. The predictor model, by using standard prediction techniques such as regression,
predicts/forecasts about the expected workload.

Now the workload prediction unit forwards the information about the estimated work-
load to the predictor unit. The prediction model associated with the predictor unit now
starts iterations on workload forecasting which takes the observed workload parameters
and previous prediction effects. These predictions are processed in utility evaluator to-
gether with negotiated SLA values and the utility values are computed for a single server.

The detailed view of a local manager associated with a single server is shown in Figure
4.4. The workload predictor is to collect data about coming resource requests and to pre-
dict workload intensity. The predictor takes necessary data from resource monitor which
is responsible for monitoring the resource requirement in a single server. The workload
predictions unit completes its job with the help of another unit called the resource request
handler. The resource request handler is to monitor the current level of resource requests,
from user applications, within the current local system.

The prediction model in the predictor block will create some mathematical model for
forecasting the future workload and forward it to the model evaluator. The evaluator now
computes the workload intensity by using the measurements from currently running appli-
cations, coming resource requests and forecasted values. These workload intensities and
SLA values are processed in utility evaluator and the utility function is computed as per
Equation 4.11. For performance evaluation, the performance metrics such as throughput,
response time etc. are taken instead of workload predictions. That is the local manager
is responsible for reading the workload predictions and evaluating the performance condi-

68

Model
Solver

Resource Request
Data from
Dispatcher

Total Resource
Demand Estimation

SLA
Parameters

Pro t
Maximization

Model

Local Managers
(1...n)

Local Utility
Value

PM / VM Selection

Sending Resource
Request to

Local Managers

Resource
Allocation

Figure 4.5 Global manager structure

tions purely local to a single server. The processing of a local manager is given in Algo-
rithm 1. In a similar way the global manager takes care of the overall performance metrics
and overall utility of the datacentre.

Algorithm 4 -Workload Prediction in a Local Manager
Input : Workload parameters and SLA parameters,
Output: Utility function values

Let n be the number of coming applications
for i = 1 to n do
begin

Monitor and Read the service requests coming form applications
Store workload parameters in the knowledge base
Predict the arrival rate of service requests from applications

(i) Use monitored workload values together with stored values
(ii) Apply statistical forecasting (regression) technique on stored values to get a

prediction
Compute performance predictions with workload values and current VM configuration
Compute the utility function using performance predictions, SLA values and current

performance parameters throughput and response time
end

The structural description of global manager is depicted in Figure 4.5. In the global
manager there is control unit called global compiler which is to determine the control
interval of the global manager. That is, it takes care of the time interval in which the
universal manager algorithm should be initiated. In the case of fixed control interval, the
algorithm should be executed in fixed intervals and in other cases it should be possible to
act according to the changes/variations in utility function. The global manager algorithm

69

operates a combinatorial search on the configuration vector n = (n1,n2, ...nP) to determine
the number of VMs to be created on each server. These numbers are communicated to
each server machine k and in turn each server will communicate back the corresponding
utility function Uk.

4.3.2 SLA Driven Resource Allocation

Adaptive resource management in cloud computing is strongly associated with
SLAs. Monitoring and analysis of SLA parameters gives a clear picture of the timely
requirements of the service consumer and if the resource allocation system is capable of
accommodating the changes dynamically according to the changing expectations of the
user, then the resource management system becomes cent percent adaptive to the envi-
ronment. With the effective utilization of SLA for adaptive resource management, cloud
computing community is getting several benefits:

• Active involvement of service users in service management (user driven manage-
ment)

• Assurance of Quality of Service in service provisioning and utilization (Assured
QoS)

• Self configuring and self organizing of computing resources and requests (Auto-
nomic management of resources)

• Dynamic allocation of virtual machines to changing requests by using different par-
titions of same physical resources (Sharing of resources through virtualization)

For configuring the resources in an efficient and sensible manner, a service provider
has to consider several facts into account such as: SLAs, the Business Level Objectives of
the service provider, the current status of the system and the job complexity of the system.
In Hasselmeyer et al. (2007) the authors described the details about how far SLAs control
the resource configurations and cloud services. Usually the terms in SLAs can not be
utilized directly for configuring the affected resources. The Service Level Agreement may
contain a collection of abstract terms which mean different concepts to different providers.
As an example, for the term "performance" different parties give different measures and
so calculated and given in different ways according to the corresponding infrastructure.
So for going towards the infrastructure layer, a mapping of high level terms to low level is
necessary which creates another agreement called Operational Level Agreement (OLA). A
simple sample of SLA objectives (Table 4.1) and corresponding mapping rules (Table 4.2)
are shown below for getting a clear idea of these parameters. Such a mapping is essential

70

for a service provider because he has to be aware of what he wants to give to the service
requesters to satisfy like processing time, processing power etc. of an SLA.

Table 4.1 SLA parameters

SLA Parameter Possible value

Incoming bandwidth(bandwidthin) >10 Mb/s

Outgoing bandwidth(bandwidthout) >12 Mb/s

Storage(S) 1024 GB

Availability(A) >99.2%

Response Time(R) 0.01ms

Table 4.2 Mapping of resource metrics to SLA parameters

Resource Metrics SLA parameter Mapping Rules

Downtime,Uptime Availability(A) A=(1-(Downtime/Uptime))*100

Inbytes, outbytes, pack-
etsize, bandwidthin,
bandwidthout

Response Time(R) R=Rin+Rout

The authors of Hasselmeyer et al. (2007) used an approach which integrates infrastruc-
ture and business-specific knowledge to do autonomic translation of SLA parameters into
configuring information. Such an autonomic adaptation process may perform the infras-
tructure management during runtime. SLAs have very high effect on configuring systems,
particularly in case of dynamic on-demand service provisioning. This simplifies selection
and formation of SLAs, by using a protocol and SLA representations and makes the us-
age of database to accommodate configuration information. But, studies of real business
use cases revealed the fact that pre-defined configurations can only be used in a restricted
category of scenarios, because the service provider’s system configuration does not only
depend on the SLAs, but also on the job types and the current workload.

Business Level Objectives such as utilization of resources to a hundred percent or get

the maximum profit while spending as little money as possible, are not provided by avail-
able resource management systems. Additionally, a certain degree of knowledge of the

71

service provider’s infrastructure is also required for the better usage of resource manage-
ment. As a consolidation, a system that builds on a "base" configuration represented by
BLOs and the complexity analysis of a job seems like a promising approach towards SLA-
supported resource management.

The cloud service provider has to assure the availability of cloud service in line with
the corresponding SLO value mentioned in the SLA for avoiding potential penalties ow-
ing to SLA violations. This work (Anithakumari and Chandrasekaran, 2015) focusses
on the management of resource allocation by providing additional images to executing
jobs, which reduces the number of SLA violations in an opennebula cloud environment.
The algorithm we developed for implementing adaptive resource management in cloud
computing is depicted here as Algorithm 5. Algorithm 3, described in previous chapter,
discusses the monitoring and analysis of SLA values and Algorithm 5 concentrates on the
adaptive resource management. In this adaptive resource management SLA monitoring
and analysis are done as a first step, already explained in Section 3.3 and as per the results
of the analysis the next steps are done for resource allocation and management.

Algorithm 5 -Adaptive Resource Allocation
1. Read the availability of resources like CPU, RAM, Memory, VM image, Network etc.
2. Allocate normal resources to the job.
3. Check whether any trigger signal at adaptive resource allocation.
4. If yes

a. submit resource request to resource provisioning unit.
b. Release and allocate extra resources by providing VM images.
c. Update estimation of job execution time, response time and resource availability.
d. Convey back to SLA negotiator and resource provider about the resource

allocation/re-allocation.

Algorithm 5 takes the available resources like CPU, RAM, memory, VM images etc. as
the input and gives the same set of resources (after utilization) as the output. This algorithm
is operated with the control of a trigger signal. If the trigger is there then a re-allocation of
resources is required and there is no re-allocation in the absence of a trigger. For allocating
additional resources to jobs a request is given to the resource provisioning unit, which is in
charge of resource allocation and re-allocation. After allocation the resource availability
is re-estimated and conveyed back to SLA negotiator and Resource provider units. Time
complexity of both algorithms is O(n) where ‘n’ is the number of jobs executed .

4.4 Experimental Results

This section presents the results of SLA monitoring together with the results of SLA driven
resource management. The private cloud setup comprise of multiple host machines which

72

are controlled by a front-end controller where each host is capable of generating multiple
VM images. The SLA parameter considered here for detection of SLA violations is re-
sponse time. The experiments are conducted on a private cloud set up using opennebula
4.6. Computing services are hosted in virtual machines of multiple host machines and
are submitted, monitored and controlled by using the GUI package Sunstone. Runtime
monitoring and measurement have done by Gmond module provided by Ganglia monitor-
ing tool. The Ganglia tool is installed on the front end controller which serves as cloud
provider for the setup. The measured metrics are forwarded to event stream processing
where Esper engine is utilized for event processing. The metrics and events are passed
among different units using Java Messaging Service (JMS). SLA parameters and corre-
sponding SLO values are extracted from the document containing negotiated SLA using
an XML parser. Database management is established using MySQL database. We fixed
the threshold limit, for the SLA parameter (response time) as 2 sec, for SLA violation
and if the measured parameter values are going beyond this violation threshold limit, it is
detected as a violation. Similarly for prediction we made the threat threshold limit as 1.7
sec.

The preliminary results obtained for detection and prediction of SLA violation is shown
in Figure 4.6. The detection module counted the number of violations and predictions for
several days and all the three parameters are depicted in the graph. The obtained results and
the analysis on these results are as follows: If there is no SLA violation identified means
all hosts have enough computing resources to process their applications without compro-
mising the quality of service. But if there is any violation or possibility of violation it is
purely an indication of the compromise on quality of service. For our proposed module,
number of SLA violations obtained is between 20 to 25 and the number of predictions is
45 to 50 per month on an average. From this results, it is clear that our detection module
has succeeded in predicting majority of SLA violations.

The results obtained for our adaptive resource management system is shown in Figure
4.7. The job execution time of 4 different jobs, allocated to different VMs, with adaptive
resource allocation and without adaptive resource allocation are shown. Our adaptive re-
source allocation works well by taking less time for job completion in three cases and in
one case it is taking more time than the normal approach. That is if we generalize the
criteria, our algorithm is giving better performance for around 75 % of the total cases.

The overall results show that our SLA associated adaptive resource management sys-
tem works well in private cloud environment and generates more efficiency to resource
allocation and processing. So it can be applied to online resource allocation for any cloud
environment.

73

Figure 4.6 SLA violation and prediction

Figure 4.7 Adaptive resource allocation

4.5 Summary

We have introduced a resource allocation system that is aware of the varying resource
requirement in each application and adapt the system in a dynamic way. The proposed
system is ready to self-organize resource provisioning according to the changing demand.
We take into account resource management issue of the hosted applications and objec-
tives related to the provisioning of virtual machines to achieve separation of concerns on
the basis of a distributed approach. An efficient way to express and quantify application
satisfaction in resource management with regard to SLA is provided by using utility func-
tions and is seen as an unbiased trade-off between multiple objectives like SLA violation
and excess resource allocation which might conflict with each other. The next chapter of
the thesis introduces the structure of a cloud SLA and describes the clustering of multiple
cloud service providers by implementing an SLA matching algorithm.

74

Chapter 5

SLA MATCHING AND CLUSTERING

The first two objectives were collectively concerned about SLA operations on a single

cloud service provider. Practically, a federated cloud is more prevalent than the private

cloud and hence the objective 3 and 4 tries to design and implement the resource allocation

mechanism in a federated environment. The objective three mainly concentrates on match-

ing the available cloud service providers based on their SLA’s. Based on the matching

results these service providers are grouped together using a clustering algorithm. These

clustered service providers are considered to be a group of service providers who share

similar SLA’s thus showing the way to interoperability. The implementation is done using

CloudSim simulator and Python is used for clustering..
The matching of the SLA templates is performed with the use of a string similarity

distance called Soft Term Frequency Inverse Document Frequency (TFIDF). After that
clustering of different cloud service providers is done based on the mapped SLAs in the
second phase with the help of k-means clustering technique. Finally, to optimally allocate
the resources between different cloud computing providers in the same cluster we design
a flexible resource management system with the use of population-based meta-heuristic
approach like Adaptive Dimensional Search (ADS) in the last stage.

5.1 Matching of SLA Templates

Based on the SLA templates of different cloud providers such as public and private cloud
automatic SLA mapping is performed with the help of the string similarity metric called
TFIDF distance metric. From that mapped SLAs different clusters of cloud providers is
formed. In a single cluster when the shortage of resources occurs with the private cloud,
the resources of another public cloud present is allocated optimally through the ADS algo-
rithm.

Normally the cloud service providers will provide the IT services to the users present

75

in the cloud based on the contract duly signed between them called as Service level agree-
ments (SLAs) which includes the type of service provided by the service provider to the
user. While accessing the services from the intended service provider such as a private
cloud shortage of resources may occur, and this can be tackled with the help of an interop-
erable cloud computing environment. For that purpose, the SLAs of different clouds are
mapped to form the clusters of clouds, and from that, the resources can be accessed by the
one who met the resource shortage problem from the public cloud. The process of SLA
mapping is done here with the help of Case-based reasoning (CBR) approach and the steps
are explained below.

SLA templates of public and private cloud

In general any SLA template contains three parts, they are: i) SLO, ii) SLA metric and
iii) SLA parameters. The SLO defines the type of the service requested from the user and
the quantity can be measured by the specification from SLA metric. The SLA parameters
represents the name or unit used to denote the SLA metric. The SLA templates of private
cloud will be differ from that of public clouds in terms of either the SLA metric defined
for the measurement of SLOs or the SLO itself. The general layout of the SLA template is
given in the following Figure 5.1.

SLA Template

SLA Objective (SLO)

SLA Parameter

SLA Metric

Figure 5.1 General layout of an SLA template

Mathematical Representation of SLA elements: The elements of the SLA templates can
be represented mathematically from the representation given in Leymann et.al. (2008) as
follows.
DEFINITION A Service Level Agreement can be represented as a tuple SLA = (Φ,SLO),
where Φ - is the set of Service level parameters the SLA provides and SLO is a single
objective.

76

The set of service level parameters can be given as in Equation 5.1 below:

Φ = φ1,φ2, ..φp (5.1)

where p is the total number of service level parameters present in the available SLA tem-
plates.

The parameters of SLA are two types such as numerical value and the enumeration of
parameter values. The numerical SLA parameter defines for example the availability or
response time of the service and the enumeration gives the list of values the parameters
used. Thus the types of SLA parameter can be represented as in Equation 5.2.

P ∈ {Numerical,Enumeration} with m : Φ→ P (5.2)

where m : Φ→ P is the mapping which gives every parameter with the type.
DEFINITION Service Level Parameter (SLP) φ ∈ Φ represents a solitary QoS property
like availability. Every single parameter has a related description set Dφ which signifies
all values φ can yield.
For example the description set for response time Rt is DRt = [0,∞]. This represents that
the response time for the given service may range from zero to infinity.
DEFINITION Service level objective (SLO) is a logical formulation comprises of logical
operators and a set of guarantees. The operator set allowed is { bigvee,

∧
,e,→,↔,(,)}.

The SLA is satisfied, if and only if the SLO evaluates to true.
The formulation of a possible SLO is represented as in Equation 5.3.

SLO = (∇φ1

∧
∇φ2)→ ∇φ3 (5.3)

where ∇φ is the guarantee of a service level parameter and is represented as in Equation
5.4 below:

∇φ = (gφ ∈ Gφ) (5.4)

If the service level parameter is of numerical type then the term Gφ can be represented
as an interval given in Equation 5.5

Gφ = [a,b] (5.5)

After analyzing the templates of the public and private SLAs the mapping can be done
by the finding the similarity between the templates. This is done with the help of a string
similarity metric called as Soft TFIDF. The similarity metric is generally used to calculate

77

the distance between the strings in the templates by that the similarity between the tem-
plates can be found. The Soft TFIDF metric between strings SX and SY in template X and
Y is calculated using the below Equation 5.6 (Cohen et al., 2003).

So f tT FIDF = Σw∈CLOSE(Θ,SX ,SY)V (w,SX).V (w,SY .D(w,SY)) (5.6)

where,
w - the string/word in the template whose similarity has to be found.
The best similarity distance with word w and SY is,

D(w,SY) = max(bsim(w,Sy))c) |Sy ∈ SY (5.7)

where,
sim(w,Sy) - the secondary similarity distance metric.
The secondary similarity metric is calculated using the Jaro similarity distance. This dis-
tance for the strings SX and SY is given in the Equation 5.8.

Jaro(SX ,SY) =
1
3

(
|SX ′|
|sX |

+
|SY ′|
|sY |

+
|SX ′|−TrSX ′SY ‘

|sX |

)
(5.8)

where,
SX ′ - characters of SX which are common in SY

SY ′ - characters of SY which are common in SX

TrSx′SY ′
- Half of the number of transpositions for SX ′ and SY ′

The term V in Equation 5.6 is determined using Equation 5.9 given below:

V (w,T) = log(T Fw,T +1).log(IDFw) (5.9)

where,
T Fw,T - frequency of word w in string T
IDFw - inverse of fraction of strings in the template that has w
Then the mapping is performed by defining the translation function in which the SLA
metric in private template is translated into that of the public template. For example, if the
SLA metric of private template X is represented in Mega Bytes and for public template Y
is represented in Giga Bytes means then the translation function from template X to Y will
be of the form,
Y=X*1000
For the large number of public and private templates this type of translation function is
defined and the case will be used for the new mapping of private template and this is

78

discussed detail in the following section.

SLA matching by Case Based Reasoning Approach

In a cloud computing environment number of public and private clouds will be present
and so the matching of SLA templates has to be done in an automatic manner. To accom-
plish this CBR methodology is used. The CBR approach will work on the principle of
remembering the past identical situation and the reuse of that knowledge and information
whenever a new problem arrives.
CBR: The process involved in the CBR approach contains four phases. They are: Retrieve,
Reuse, Revise and Retain. In the retrieval phase the mechanism will retrieve the previous
mapping cases and that cases will be used again, that is, the same solution used before for
the templates of similar cases is reused in the reusing stage. Then the solution is revised
by means of the feedback from the user. And based on the feedback the knowledge about
the mapping is stored in the retain phase. The process of CBR approach in mapping the
SLA templates is given in the following Figure 5.2

Retrieve

Revise

ReuseRetain

Previous

Mapping

Cases

Learned

Mapping Case

New Private SLA

Figure 5.2 CBR approach for automatic SLA matching

As shown in the Figure 5.2 in the retrieve phase when a new private SLA template
arrives the most similar SLA is retrieved from the previous mapping cases by finding the
similarity metric between them through the Soft TFIDF metric. In which the template
which is having highest similarity will be selected. And in the reusing phase, the translation
function defined for that corresponding template is used again. Any feedbacks regarding
the translation function definition is given in the revise stage and based on the feedback
the experience is stored and used for learning process. Thus the SLAs are mapped in this
approach automatically for different incoming newly arrived private SLA templates. Based

79

on the mapped SLAs clusters are formed in the next section.

5.2 Clustering of CSPs Based on Mapped SLAs

After mapping the SLA templates, based on the knowledge available from the CBR ap-
proach clustering of the cloud service providers is performed with the use of K means al-
gorithm. Through this clustering method, finally the clusters of cloud providers is formed
that are having the most similar SLA templates.

K means Clustering algorithm

K means algorithm is the generally used clustering technique to form different clusters
with elements of similar nature and we used this algorithm here to form the clusters of
different service providers as this is the simplest algorithm to produce the clusters with
minimum overhead. The steps of the K means clustering algorithm is given in Algorithm
6.

Algorithm 6 K-means Clustering Algorithm
step 1: Select K number of initial centroids
step 2: Calculate the squared distance from each centroid to all other points
step 3: Assign the point to the centroid which is closest to them to form clusters
step 4: Update the centroids in each cluster if the centroids formed are similar to previous
ones

Step 1. Centroid Selection: Here, based on the SLA mapping K number of centroids
are initially considered and the centroids may refer to cloud service providers.

Step 2. Distance Measurement: In this stage the closeness of the centroid with that of
other cloud providers is measured using Equation 5.6.

Step 3. Cluster Formation: Assign other cloud providers to the centroids whose SLAs
are more similar with that of the centroid.

Step 4. Centroid Updation: After the cluster formation the centroids are again updated
and it is represented mathematically as in Equation 5.10.

Cnew =
1

Nc
(ΣXi∈CM(Xi)) (5.10)

80

where,
Nc - Total number of elements in cluster CM and
Xi− ith element in the dimension D.

Step 5. Termination: Terminate the clustering if Cnew = CM, otherwise repeat the pre-
vious step.

Thus at the end of this, different clusters of cloud providers will be formed with similar
SLA templates. Once the clusters are formed the flexible resource allocation between the
clouds can be made by means of optimum resource allocation.

5.3 Experimental Results

The proposed methodology is implemented using the language of Java in the CloudSim
tool of Netbeans IDE, Version 7.4, and using Intel i5 under a Personal Computer with
2.99 GHz CPU, 8G RAM and Windows 8 system. Here we are considering six private
clouds and eight public clouds and with three SLA templates for each public cloud and
two SLA templates for each private cloud for the mapping phase. The number of virtual
machines considered are 500 to provide the resources to the requested cloud provider. Ini-
tially we perform the mapping of SLA templates of public and private clouds. Each of the
new incoming SLA template is mapped automatically based on the available existing map-
pings. After that to enable the interoperability different clusters of cloud service providers
are formed based on the SLA mappings obtained with the help of K-means clustering
technique in which a single cluster contains number of cloud providers with similar SLA
templates.

The performance of the proposed methodology is validated with the help of a number
of evaluation metrics correspondingly to each of the processes involved. The effectiveness
SLA mapping is validated with the help of overall net utility and overall cost (Breskovic
et al., 2011b). Similarly the performance of the optimization algorithm we used here is
validated by varying the SDR parameter in the algorithm. The effectiveness in the pro-
cess of resource requests is analyzed with the help of Average Weighted Response Time
(AWRT) and Slowdown (Javadi et al., 2012).
Overall net utility:
The utility function defines the utility of the user in utilizing the public SLA templates in
mapping per single SLA parameter and the overall net utility can be calculated by sum-
ming the utility values for all the users for all SLA parameters. The utility function for a
single user i for the single SLA parameter is calculated using the Equation 5.11.

81

fi(U) =



0, if the parameter not exists in any SLA template

1, if both parameters exist but differs in the SLA template

2, if only one parameters differs in the SLA template

3, if both parameters are same in the SLA template

(5.11)

And the overall net utility is,

F(U) = Σ
n
i=1Σ

m
k=1 fi,k(U) (5.12)

where,
i=1,2,..,n is the number of users and k=1,2,..,m is the number of SLA parameters.
Overall cost:
The overall cost defines the cost incurred in mapping single SLA parameter of a single
user to that of the public SLA templates and is calculated by summing the cost value of all
users for every SLA parameters. The cost function for a single user and the overall cost is
given by the Equations 5.13 and 5.14.

fi(C) =



0, no new SLA mappings necessary

1, user create new SLA mapping for one or two parameters

2, user create new SLA mapping for the missing parameter

3, user modifies the SLA mapping

(5.13)

Overall cost function is,
F(C) = Σ

n
i=1Σ

m
k=1 fi,k(C) (5.14)

where,
i=1,2,..,n is the number of users and k=1,2,..,m is the number of SLA parameters.

The utility and cost values for the proposed SLA mapping technology with N (N=10)
number of SLA mappings is given by the following Table 5.1 and represented graphically
in the Figure 5.3 and Figure 5.4.

SLA mapping through Soft TFIDF metric with other SLA mapping techniques

Here the efficiency of SLA mapping by our proposed methodology with other existing
works namely maximum method, threshold method and significant-change method (Breskovic
et al., 2011b) in terms of the parameters such as overall net utility and overall cost. The

82

Table 5.1 Utility and cost values for SLA mappings (N=10)

User request Utility Value Cost Value

1 2074.02 2.5253

2 2404.02 4.5282

3 2854.02 6.4971

4 3840.10 1.5734

5 4052.94 4.8280

6 4500.91 4.1557

7 5161.02 3.1325

8 6039.91 1.1582

9 6750.10 2.0069

10 7627.94 4.2929

Figure 5.3 Utility values for N SLA mappings (N=10)

83

Figure 5.4 Cost values for N SLA mappings (N=10)

Figure 5.5 Overall net utility of proposed methodology with existing works

results of comparison are given in the Table 5.2 as well as in the Figures 5.5 and 5.6.
As seen from the Table 5.2, Figures 5.5 and 5.6 it is evident that the overall net utility

of our proposed methodology is maximum when compared with other existing works and
it ensures the better utilization of SLA mappings and also the overall cost is minimum.
This shows the betterment of our proposed methodology in mapping the SLA templates.

Table 5.2 Comparison of SLA mapping

Methodology Utility Value Cost Value

Proposed 45304.98 34.6982

Maximum 9999.5265 100.56

Threshold 9548.456 238.145

Significant change 3846.15 345.45

84

Figure 5.6 Overall cost of proposed methodology with existing works

Results for Clustering:
After mapping the SLAs we get a set of six values, i.e. properties, and the values for these
properties are assigned on the scale of 5, where 5 is the best and 1 is worst. Once these
values are obtained, clustering operation is done. The output of K-means clustering are
clusters of cloud service providers who can be grouped together. The clusters are formed
based on six values, i.e. six SLOs have been separately considered. Clustering for all the
service providers has been done based on single objective at a time. Thus for each value the
clustering mean distance will be different i.e. the average distance between clusters center
point and clusters is different. The mean distance among each of the cluster will determine
the best service attribute that can be used for selection of services. The six attributes that
have been given are as follows:

• Availability

• Scale up

• Scale down

• VM Size

• VM Speed

• Response Time

The Table 5.3 mentioned here is obtained after the SLA mapping operations.The re-
sultant is a value ranging from 1-5, where 1 is least preferred and 5 is the most preferred
according to the SLOs. Based on the SLA mapping results the SLOs have been given val-
ues and consecutively clusters have been formed. The cluster formation is done according

85

Table 5.3 SLO range values

Sl
No

VM
size

VM
speed

Scale
UP

Scale
Down

Avail-
ability

Response
time

1 5 4 4 3 4 3

2 3 5 3 3 3 5

3 4 3 4 5 5 5

4 2 5 5 5 5 5

5 1 4 3 3 5 4

6 5 3 4 4 5 5

7 4 2 5 2 4 3

8 3 2 5 1 4 4

9 2 2 4 5 4 5

10 3 3 3 4 2 3

11 4 5 5 3 2 4

12 5 5 5 2 2 2

13 4 2 5 4 4 2

14 4 4 4 5 4 5

86

to each and every attribute separately thereby having six cluster formation results. After
this the best clusters have been chosen. Here we have kept a standard K value as 3. The
value 3 is considering the size of the cloud (Number of VM’s). Anything beyond this 3
size might have very less number of VM’s in each cluster. The diagram depicted in the
Figure 5.7, Figure 5.8, Figure 5.9, Figure 5.10, Figure 5.11 and Figure 5.12 show the clus-
tering done for the service providers for each of SLO values viz. Availability, Scale up,
Scale Down, Response Time, VM Size and VM respectively. Here each cluster is shown
using different colour and the cluster head is shown using a black coloured star. The actual
results obtained are in 1 dimension but these Figures are represented as 2 dimension for
the ease of understanding. The Y axis of the graph represents the mapping values obtained
for SLOs mentioned and X axis is marked according to the serial number of the values
available as additionally this avoids overlapping of same values. Again, as mentioned the
values for all SLOs range from 1-5, where 5 denotes the most preferred service provider
and 1 denotes the least preferred service provider for that particular SLO.

To determine the efficiency of cluster we have calculated the average distance of the
centroids from the mean point. The more the average distance we are considering it be a
better cluster.

Cluster according to Availability:
Here the clustering is done according to single SLO of availability, shown in Figure 5.7.
The cluster heads are formed at the following points: 1, 5 1, 2.25 1, 4
Here the average distance is 1.00.

Figure 5.7 Clusters according to Availability

Clustering according to Scale up:
Here the clustering is done according to single SLO of scale up, shown in Figure 5.8.

87

The cluster heads are formed at the following points: 1, 5 1, 3 1, 4
Here the average distance is 0.667.

Figure 5.8 Clusters according to Scale Up Capacity

Clustering according to Scale Down:
Here the clustering is done according to single SLO of Scale Down, shown in Figure 5.9.
The cluster heads are formed at the following points: 1, 3.428 1, 5 1, 1.667.
Here the average distance is 1.132.

Figure 5.9 Clusters according to Scale Down Capacity

Clustering according to Response Time:
Here the clustering is done according to single SLO of Response Time (Figure 5.10).
The cluster heads are formed at the following points: 1, 5 1, 2.6 1, 4
Here the average distance is 0.844.

88

Figure 5.10 Clusters according to Response Time

Clustering according to VM Size:
Here the clustering is done according to single SLO of VM Size, shown in Figure 5.11.
The cluster heads are formed at the following points: 1, 1.667 1, 4.375 1, 3
Here the average distance is 0.907.

Figure 5.11 Clusters according to VM Size

Clustering according to VM Speed:
Here the clustering is done according to single SLO of VM Size, shown in Figure 5.12.
The cluster heads are formed at the following points: 1, 3.5 1, 5 1, 2
Here the average distance is 1.00.

89

Figure 5.12 Clusters according to VM Speed

5.4 Summary

Here we have proposed an interoperable cloud computing environment based on SLA map-
pings of public and private clouds through CBR approach to achieve a flexible resource
allocation mechanism. First we have mapped the public and private SLA templates with
the help of a string similarity metric called Soft TFIDF an effective metric used to find
the similarity between set of strings. And this knowledge is used in the automatic map-
ping of SLA templates by CBR approach. After creating the mapping the clouds that are
having similar SLA templates are grouped into same cluster with the use of K-means clus-
tering technique.The performance evaluation of the proposed methodology is individually
as well as comparatively shown in the results section with other existing works available
for the SLA mapping. The parameters used to show the effectiveness of our proposed
methodology are Overall net utility, overall cost in mapping the SLA templates. The next
chapter of the thesis introduces the basic concepts of inter-operable cloud computing and
the implementation of flexible resource allocation in an inter-cloud environment.

90

Chapter 6

SLA BASED CLOUD FEDERATION

The fourth objective is an extension of objective three. Here the grouped service providers

are shown to be interoperable by Designing and Implementing a framework which demon-

strates interoperability between them. Here Adaptive Dimensional Search (ADS) with

Inter-Cloud Gateway is used for showing interoperabilty, deployed over Java based CloudSim.

The results prove that this method is better than other approaches.

The proposed solution for interoperability for federated cloud contains three phases:
First, an automatic SLA matching is performed to form an interoperable cloud environment
by considering the SLA templates of different cloud service providers. The matching of the
SLA templates is performed with the use of a string similarity distance called Soft TFIDF.
After that clustering of different cloud service providers is done based on the mapped SLAs
in the second phase with the help of k-means clustering technique. Finally, to optimally
allocate the resources between different cloud computing providers in the same cluster
we design a flexible resource management system with the use of population based meta-
heuristic approach like ADS in the last stage. The first two phases such as: (i) matching of
SLA templates and (ii) clustering of cloud service providers are explained in the previous
chapter and the work regarding the the third phase named flexible resource allocation is
described here in this chapter.

This chapter is a logical extension of the work done in chapter 5. In chapter 5, SLA
mapping of all Cloud Service Providers has been done and based on the results the clusters
have been created. Here the work is done on the created cluster and a method is proposed
to make it interoperable. Here a method is proposed to share the resources in case of
urgent requirement i.e. the cloud clusters that have been considered are clustered based
on the similarity between them, thus these service providers are the most suitable group of
service providers who can share there resources.

This chapter describes the concept of proposed adaptive resource allocation in an in-
teroperable way. Before going to the details of adaptive resource allocation, the concept of

91

interoperability and interdependency is explained in initial sections. In cloud computing
model multiple service providers are there to provide services and similarly multiple ser-
vice users are there to use. Because of the presence of multiple cloud service providers the
users should have the flexibility to change between different providers. This is based on
their requirements, the inter-dependence (interoperability) between the parties and the ser-
vice conditions specified as part of the SLAs. A cloud computing system mainly includes
infrastructure, platform, application and data as components, where:

• Infrastructure is a set of resources used for communication, storage and computation.

• Platforms is the set of software programs which helps the applications to process.

• Application is various types of application programs for performing business prob-
lems.

• Data is an illustration of machine-process-able of information stored in computer.

Word interoperability conveys different meaning to different people in cloud scenario.
In some context it means that some applications are able to move from one environment
to the other, and these applications works exactly same in both the environments. An-
other might mean applications are running in various clouds and they can share informa-
tion, which might require a common set of interface cloud interoperability focuses on the
scenario where for variety of cloud computing platforms and providers, each customers
can use the same management tools, server images and other software. Every cloud en-
vironment has one or more operating systems and databases. Every cloud may contain
processes, hypervisors, security, a storage model, a cloud API, a networking model, li-
censing models and more. Rarely, do two providers implement their clouds in exactly the
same way, with all the same moving pieces. This introduces the significance and need for
interoperability.

The infrastructure, application and platform components can be as in traditional com-
puting enterprises, or they can be cloud resources that are (respectively) software ap-
plication platforms (PaaS), software application programs (SaaS), and virtual processors
and data stores (IaaS). Data components can be interoperable via application components
rather than directly. There are no data interoperability interfaces. The two important kinds
of cloud computing interoperability under consideration are platform interoperability be-
tween PaaS services and platforms and application interoperability between SaaS services
and applications. Programs concerned with the deployment, configuration, provisioning,
and operation of cloud resources are comes under application. Management interoper-
ability is defined as Interoperability between these programs and the cloud resource en-
vironments. It is very important and it also can define as the interoperability between

92

cloud services (SaaS, PaaS, or IaaS) and programs concerned with the implementation of
on-demand self-service.

Here we have established a mechanism for flexible resource allocation between the

cloud service providers based on SLA mapping and clustering techniques in the interop-

erable cloud computing environment through the use of ADS algorithm. The proposed

methodology and the steps are detailed in the following subsections which contains the

design and implementation of an adaptable resource management system with dynamic

elasticity and automatic SLA mapping.

The resource allocation process we have discussed here is occurring at the time when
one of the cloud provider in the cluster faces the problem of shortage of resources and this
can be tackled with the help of Inter Cloud Gateway (ICG) present at each of the cloud
which employs the optimum resource allocation mechanism by which the service provider
will provide the resources.

6.1 Interdependency and Interoperability

In the standard cloud computing model, where the client only utilizes a single cloud data
centre, it creates several challenges. The unavailability of cloud service can create many
problems. It leaves customers relying solely on it and forbids access to essential resources.

The term Inter-Cloud has been described as a cloud of clouds (Cases, 2010), and a
formal definition is provided in the following paragraph. Essentially, an Inter-Cloud allows
for the dynamic coordination and distribution of load among a set of cloud data centres (as
shown in Figure 6.1).

According to Cases (2010), Inter-Cloud computing has been formally defined as:
"A cloud model that, for the purpose of guaranteeing service quality, such as the per-
formance and availability of each service, allows on-demand reassignment of resources
and transfer of workload through a inter-networking of cloud systems of different cloud
providers based on coordination of each consumers requirements for service quality with
each providers SLA and use of standard interfaces."

This generic definition does neither specify who initiates the inter-cloud endeavour-
the cloud providers or the clients nor does it specify the willingness of cloud providers to
collaborate to form an inter-cloud. Cloud federation and multi-cloud are two more similar
terms we are going to familiarize within this context. A cloud federation is formed when a
set of cloud providers are interconnected and they permit to share their infrastructures and
resources among each other (Ferrer et al., 2012). The multi-cloud refers to the handling
of multiple, independent cloud services. They differ from federation in a way that, a
multi-cloud atmosphere does not mean simply sharing of provider’s infrastructures and

93

Figure 6.1 Inter-cloud coordination: schematic diagram 1

volunteer interconnection. Managing resource provisioning and scheduling are the direct
responsibilities of clients or their representatives (Ferrer et al., 2012). Cloud federations
and multi-clouds comes under the classification of Inter-Cloud.

The benefits for cloud providers which are provided by an Inter-Cloud environment
are:

• Geographical Location Diversity: Many data centers are established by the leading
cloud service providers world wide. However, it is unlikely that any provider will be
able to establish data centres in every country and administrative region (Buyya et al.,
2010c). Many applications have legislative requirements as to where data are stored.
Thus, a Data centre within a region or a country may not be enough, and application
developers will need fine-grained control (specific country or state) as to where re-
sources are positioned. Only by utilizing multiple clouds one can gain access to so
widely distributed resources and provide well-performing and legislation-compliant
services to clients.

• Noble Application Flexibility: During the past several years, there have been several
cases of cloud service outages, including ones of major vendors. The implications
from one of Amazon’s data centres failure were very serious for customers who re-
lied on that location only. In a post-mortem analysis, Amazon advised their clients
to design their applications to use multiple data centres for fault tolerance Ama-
zon (2015). Furthermore, in Berkeley’s report on cloud computing, Armbrust et al.
(2009) emphasize that potential unavailability of service is the number one inhibitor

94

Figure 6.2 Inter-cloud coordination: schematic diagram 2

to adopting cloud computing. Thus, they advise the use of multiple providers. Be-
sides fault tolerance, using resources from different providers acts as an insurance
against a provider being stopped because of regulatory or legal reasons as well.

• No vendor lock-in: By using multiple clouds and being able to freely transit work-
load among them, a cloud client can easily avoid vendor lock-in. In case a provider
changes a policy or pricing and it might impact its client negatively and could lead
their client to migrate elsewhere.

The cloud customers can diversify their infrastructure portfolio in terms of both vendors
and location and it is viewed as a big benefit of an inter-cloud environment. Consequently,
they can possibly craft their businesses more adjustable to vendors’ policy and availability
changes and easily expand in new governmental regions. Cloud service providers may also
have significant incentives from participating into an Inter-Cloud initiative. A paramount
idea of cloud computing is that a cloud service should deliver constant availability, elas-
ticity and scalability to meet the agreed customers’ requirements (Lewis, 2010). A cloud
provider should ensure enough resources at all times. Workload spikes can come unexpect-
edly, and thus, cloud providers need to over provision resources to meet them. Another
issue is the huge amount of data centre power consumption (Beloglazov et al., 2011).
Keeping an excess of resources in a ready to use state at all times for coping with unex-
pected load spikes leads to increased power consumption and cost of operation.

95

Thus, cloud providers’ benefits can be summarized as follows:

• On-demand Expansion: Being able to offload to other clouds, a provider can scale
in terms of resources like cloud-hosted applications do within a cloud. A cloud
should maintain in a ready to use state and should have enough resources to meet
its expected load and a buffer for typical load deviations. If the workload increases
beyond these limits, resources from other clouds can be leased (Buyya et al., 2010c).

• Enhanced SLAs to customers: Knowing that even in a worst-case scenario of data
centre outage or resource shortage the incoming workload can be moved to another
cloud, a cloud provider can provide better SLAs to customers.

However, achieving all these benefits for both cloud providers and clients should be done
without violating applications’ requirements. Appropriate application provisioning and
scheduling should honour the requirements in terms of performance, responsiveness and
legal considerations. Existing approaches to achieve this vary in terms of architecture,
mechanisms and flexibility. In this work, we explore cloud environments having Inter-
Cloud resource scheduling and application scheduling mechanisms. We focus on identify-
ing and analyzing the coarse-grained requirements in Inter-Cloud resource scheduling for
distributed applications.

Inter-Cloud computing defines that, it is an endeavor that interconnecting the infras-
tructures of multiple cloud providers. The voluntarily lending of the infrastructures of
the cloud providers with in an Inter-Cloud depends on the political and financial incen-
tives. Inter-Cloud Gateway is a broker unit which implements the interconnection between
multiple cloud providers. Generally, it is a service which acts for the provider to deploy
application components and provision resources. In our work, we agree to this general
idea and elucidate an Inter-Cloud Gateway as an automated entity with the following re-
sponsibilities:

• For a specific application, automatic resource provisioning and management across
multiple clouds. It means that , this includes allocation and reallocation of resources
(e.g. VMs and storage).

• Automatic distribution of application components in the provisioned resources.

• Load balancing and scheduling of the incoming requests to the allocated resources.

The two mechanisms through which the Inter-Cloud Gateway can be materialized are:
SLA based: The brokering requirements in SLA specified by the application developers
is in the form of objectives and constraints. Either the cloud provider or the Inter-Cloud

96

service works for the client determines on brokering approach honoring the specified SLA.
Trigger-Action: Application developers define a set of triggers and incorporate one or
more actions to each of them. A trigger becomes active when a predefined condition,
considering the externally visible application performance indicators becomes true. An
action is executed when a correspondent trigger becomes active.

Provisioning activities and scale up /down of resources usually includes trigger actions.
For example, if an allocated VM consumes more than 512 MB of memory or if the number
of active TCP/IP sessions becomes more than 50, a trigger becomes active. An associated
action may be the allocation of a new VM. The key feature of the SLA-based approaches is
that they are fully visible to the application developers. The service or the service provider
takes care of the provisioning activities. However, the providers do not have any idea or
direct control in SLA-based approach, and doesn’t know about how their own applications
are provisioned across clouds. Thus, a certain level of trust between the two parties is
needed here. Also, to explain the provisioning requirements of an application, one needs
mature SLA specification and services and formalism.

The Cloud Standards Customer Council report shows that it was highlighted that SLA
contracts put forward by the current cloud providers are immature (Council, 2012). Gen-
erally, clients are offered only inviolable standard SLA contracts, thus limiting their capa-
bility to define application-specific clauses. Most contracts like above only specify perfor-
mance related clauses and do not confess for provisioning restrictions, for example, which
area to be use for data storage. Thus, the acceptance of SLA-based approaches depends on
the mediators’ SLA offerings and advancements of providers.

The Trigger-Action approach is less transparent than the SLA-based one, because ap-
plication developers need to specify the exact scalability and provisioning rules. This gives
a finer grained control about how the application behaves. The directly managed brokering
mechanisms are mostly used when there is no mediator between the application and the set
of utilized clouds. Directly managed brokers are hosted separately and need to keep track
of the performance characteristics of the application themselves. It is the responsibility of
the application developers to develop such brokers in a way that meets the availability and
dependability requirements.

6.2 SLA Based Dynamic Elasticity

In our research, we have proposed a system to elastically extend cloud services by inte-
grating remote cloud resources on demand. Our system is using SLA based approaches to
extend application specific cloud resources. We have proposed an autonomic Inter-Cloud
Gateway capable of monitoring the demand of applications and responding by acquiring

97

or releasing cloud nodes.
The elastic cloud implementation relies on IaaS technologies such as EC2 (Services,

2015) and the Nimbus Workspace Service (Keahey et al., 2005) deployed on Science
Clouds (Clouds, 2015). The Nimbus Workspace Service is responsible for deploying nodes
on the Nimbus cloud, as requested by the cloud client. The Workspace Service initiates the
transfer of the VM image from the storage pool to the nodes. Once the VM image has been
deployed, the workspace service begins the boot process. As the nodes begin to boot they
enter the contextualization phase. We rely on the Nimbus Context Broker (Keahey and
Freeman, 2008) to provide contextualization of the nodes. The Nimbus Context Broker
provides a secure mechanism for dynamically contextualizing a set of virtual appliances.
We use the Context Broker to create a trusted environment between the newly deployed
cloud worker nodes and the cluster head node.

For dynamic elasticity in the cloud it uses the Nimbus cloud client to launch or ter-
minate nodes on Nimbus-based clouds. As this is an initial prototype, elastic cloud also
uses Torque command line programs to monitor the queue and available nodes and to dy-
namically add and remove nodes from Torque. Before we add a cloud resource, we first
create the VM image and save it in the different clouds we will be utilizing. We install
all of the necessary software and libraries as well as the Torque client software. Torque
is free open source software, so there is no need to acquire licenses for the cloud nodes.
For simplicity, the Torque client is pre-configured to join the cluster head node on boot.
The dynamic elasticity is controlled by iterative processing which periodically examine
the job queue, executing a policy, and performing cluster management functions, such as
terminating nodes that have been flagged for or shut down by the policy. Due to the time
required to launch a VM, we have created a thread pool to launch machines in parallel.
The threads (default is 5) work from a single "deploy node" queue to launch machines.
The short and consistent time required to terminate a machine allows the main elastic site
thread to terminate nodes serially, when needed.

We have also created a Python cluster object, which stores all of the relevant informa-
tion about the cluster, such as the number of running cloud nodes and the number of cloud
nodes that are available for work. The cluster object also contains methods for manipulat-
ing the cluster like launching or terminating VMs. Policies are implemented as individual
Python modules. Policies have access to the cluster and queue objects and can use this rep-
resentation of the system in order to determine if additional nodes are needed or if nodes
may be terminated. The policies themselves are responsible for directly manipulating the
cluster object by calling methods to either launch VMs or schedule them for termination.

The policy framework of clouds’ dynamic elasticity is meant to be extensible, allowing
administrators to customize or define their own policies to fit the needs of their users. The

98

primary reason we choose to implement policies as Python modules instead of creating
our own policy definition language was to minimize the learning curve for administrators
adopting our solution. We find that very detailed and customized, and these kinds of
languages are often too complicated and frustrating for users to learn for a single purpose,
diminishing the desire of users wishing to adopt our implementation of elastic site. Python
is a widely used language that is easy to learn and robust enough to define any policy, no
matter how simple or complicated.

6.3 Flexible Resource Allocation

The resource allocation process we have discussed here is occurring at the time when
one of the cloud provider in the cluster faces the problem of shortage of resources and
this can be tackled with the help of Inter Cloud Gateway (ICG) present at each of the
cloud which employs the optimum resource allocation mechanism by which the resource
provider will provide the resources. To optimally allocate the resources between different
cloud computing providers in the same cluster we design a flexible resource management
system with the use of population based meta-heuristic approach like ADS in the last stage.

The resource allocation is performed based on Hypervisor standardization. This can
lead to an enhanced adaptive resource management system in cloud computing with dif-
ferent cloud providers. The proposed methodology can be implemented using cloudsim
simulator and the performance can be compared and analyzed with the conventional meth-
ods for adaptive resource allocation and management. The proposed methodology can be
depicted in the form of a block diagram as shown in Figure 6.3.

Figure 6.3 Schematic diagram of the proposed methodology

As seen from the Figure 6.3 initially based on the SLA templates of different cloud
providers such as public and private cloud automatic SLA mapping is performed with the

99

help of the string similarity metric called TFIDF distance metric. From that mapped SLAs
different clusters of cloud providers is formed. In a single cluster when the shortage of
resources occurs with the private cloud the resources of another private cloud present is
allocated optimally through the ADS algorithm when the request for the resources arrived
at the Inter-Cloud Gateway present in each cloud. Through this an interoperable cloud
computing is constructed with dynamic elasticity in cloud resources allocation.

Resource Allocation Through Inter-Cloud Gateway

In this work the resource allocation between different cloud providers with in the same
cluster is done through the use of optimal resource allocation mechanism. This resource
allocation mechanism is used here to provide the fair amount of resources to the intended
cloud provider when it faces the problem of resource scarcity and it is accomplished by
means of the resource request sent by them. The optimal resource allocation mechanism
used here is equipped with the new Meta heuristic approach called ADS algorithm. Be-
fore discussing about this algorithm for resource provisioning first we analyze about the
operation of ICG in the clouds.

Resource allocation through Inter-Cloud Gateway (ICG)

Figure 6.4 Flexible resource allocation through ICG and ADS algorithm
In the above Figure 6.4 the way the resources are optimally allocated when the request

for resources arrived at the ICG is clearly mentioned. At first, while providing a service

100

to the intended user, shortage of resources for providing the service may occur. On that
particular moment the service provider 1 in the private cloud will send the request to the
public cloud present in that same cluster through the ICG and is forwarded to the service
provider 2 in the public cloud. The request for resources may be of the form in Equation
6.1.

Req = {RT ,Rn,Tu} (6.1)

where,
RT - Type of resources requested (e.g. Bandwidth, Memory)
Rn - Total number of resources requested
Tu - Resource Utilization time.

Based on the request as given in Equation 6.1 the service provider 2 will employ the
resource allocation mechanism to optimally allocate the resources in the form of virtual
machines (VMs) to the service provider 1 from the resource pool. Note that, the resources
will be allocated only when the requested resources are available otherwise, the service
provider 1 has to wait for a certain period of time until the resources used in another
location becomes free. To achieve the optimal allocation of resources to the requesting
provider the Adaptive Dimensional Search algorithm is used here and is explained in the
following section.

Adaptive Dimensional Search algorithm

ADS algorithm (Hasançebi and Azad, 2015) is a new Meta heuristic approach but it differs
from nature inspired Meta heuristic approaches in the sense that it does not employ any
metaphor for its implementation. The candidate solutions for the current population in this
algorithm can be generated from the best solutions obtained for previous population. In
Hasançebi and Azad (2015) the algorithm is used for the discrete truss optimization and
we modified this algorithm in our approach for the flexible resource allocation between the
clouds based on the resources requested from one cloud to another. To provide the optimal
resource allocation with the fairness utilization of resources and this can be achieved by
minimizing the Skewness and this is taken as the objective function of the resource alloca-
tion algorithm.
Skewness:
Skewness (Xiao et al., 2013) is the parameter which is used to enumerate the inequality in
the utilization of resources. Consider that the number of resources as m, and the utilization
of jth resource as u j then the Skewness of the nth service provider can be calculated as,

skewness(n) =

√
Σm

j=1

(u j

u
−1
)2

(6.2)

101

where,
u - Average resource utilization for nth service provider.

The steps involved in the ADS algorithm is explained as follows and the flow of the
algorithm is depicted in the Figure 6.5.
Steps in ADS algorithm
Step 1. Population initialization: Initialize ρ number of resources as the input for the
ADS algorithm.
Step 2. Fitness Calculation: The fitness for the algorithm we used here is the minimiza-
tion of Skewness and is calculated using the Equation 6.2.
Step 3. Search Dimensionality Ratio (SDR) calculation: SDR is the main parameter in
ADS algorithm and this is updated in each iteration to produce the optimum result. It is
defined as the ratio of number of allocated resources to the total number of resources and
it is given by Equation 6.3.

SDR =
NA

NT
(6.3)

where,
NA- Number of resources allocated to the specified service provider
NT - Total number of resources in the intended public cloud
At first iteration SDR can be calculated by Equation 6.3 and in the succeeding iterations
SDR is updated by means of the Equation 6.4.

SDRt =

SDR(t−1)

λ
if improvement in best solution

λ .SDR(t−1), if no improvement in best solution
(6.4)

where,
λ - the factor and usually taken to be less than one and t, t-1 represents the current and
previous iteration respectively.
Step 4. Generation of new population: Based on the SDR value from Equation 6.3
and 6.4 the new populations for the next iteration can be generated using the following
Equation 6.5.

Pnew
i =


Pc

i , if r j > SDR

Pc
i + round

[
N j(0,1)×

(√
(Pmax

i −Pmin
i)×(√

(Pmax
i −Pmin

i)−1
)
× t

max−t

)]
otherwise

(6.5)

where,

102

Initialize
Populations

Evaluate Skewness

SDR Updation

New Population
Generation

Store the
Best Solutions

Stagnation
Detected

Termination
Reached

Stop the Algorithm
and Output the
Best Solution

Adopt Anealing
Strategy

Yes

No

Yes

No

Figure 6.5 Flowchart of adaptive dimensional search

Pc
i - ith resource in the best minimization of Equation 6.2 obtained so far

Pnew
i - new population generation

r j - random number sampled between [0, 1]
N j(0,1) - number of resources allotted to that sample.
t - current iteration number
max-t - maximum number of iterations to be performed in the optimization
Step 5. Elitism: In this stage the best solutions obtained are stored in a separate place
and used in succeeding populations if the candidate solutions in that population does not
outperform it.
Step 6. Stagnation control: In order to avoid the algorithm to be optimized towards a lo-
cal optimum, several stagnation control strategies have to be adopted and in this algorithm

103

annealing strategy is used for the stagnation control.
Step 7. Stopping criteria: The algorithm is terminated if the maximum number of it-
erations are reached or the best solution is not obtained i.e. no improvement for certain
number of iterations. Otherwise, the algorithm will continue to perform the Step 2.

The input for the algorithm is the random number of resources and based on the Skew-
ness minimization optimal resources to be allocated for the service provider will be ob-
tained as the output. This ADS algorithm is used to successfully allocate the optimum
number of resources to the intended service provider with the consideration of Skewness
minimization. The proposed methodology is implemented using the CloudSim tool and
the experimental results are given in the next section.

6.4 Experimental Results

The proposed methodology is implemented using CloudSim. Here we are considering
six private clouds and eight public clouds and with three SLA templates for each public
cloud and two SLA templates for each private cloud for the mapping phase. The number
of virtual machines considered are 500 to provide the resources to the requested cloud
provider. Each of the new incoming SLA template is mapped automatically based on the
available existing mappings. After that to enable the interoperability different clusters of
cloud service providers are formed based on the SLA mappings with the help of K-means
clustering technique in which a single cluster contains number of cloud providers with
similar SLA templates.

Table 6.1 AWRT and Slowdown Values

Methods AWRT (sec) Slowdown (seconds)

Proposed methodology 488.91 383.8881

Conservative backfilling 1000 6500

Selective backfilling 750 4000

Easy backfilling 1500 5x105

Then in each cluster when one of the cloud provider is in the need for more resources
to process certain user request, the resources can be requested from other cloud provider
within the same cluster by sending request through the ICG for the resources to be utilized
for a particular amount of time. When the ICG at other cloud receives this request it will
analyze the situation i.e. the current availability of resources. If it is available, it will
allocate the optimum resources in the form of VMs with the help of resource allocation

104

mechanism equipped with ADS algorithm otherwise the requested cloud provider has to
wait until the resources are released which may be currently used in some other location.
The performance achieved by our proposed method is depicted here in this section.

In this section the performance of our proposed resource allocation scheme in an inter-
operable cloud computing based on SLA mapping is compared with other existing works
for SLA mapping (Breskovic et al., 2011b) and resource allocation (Javadi et al., 2012)
in cloud. From the extensive literature review it has realized that only these above cited
works tried the possibility of SLA mapping and so we used these results to compare the
efficiency of our proposed algorithm.

Performance comparison of the proposed resource allocation mechanism with exist-
ing works

The Average Weighted Response Time (AWRT) and slowdown are the important factors in
analyzing the performance of the resource allocation mechanism. Here we are evaluating
our proposed method in terms of these parameters with other existing works (Javadi et al.,
2012) and the results are given in the Table 6.1 and in the Figure 6.6 and Figure 6.7.

The AWRT and slowdown factor of the proposed methodology while responding to the
request for resources by the resource allocation mechanism is compared with other existing
techniques such as Conservative Backfilling, Selective Backfilling and Easy Backfilling
which are the techniques used for the provisioning of cloud resources in Javadi et al. (2012)
and the comparison is given in the form of graphs in Figures 6.6 and 6.7 respectively.

Figure 6.6 Performance comparison of proposed method (AWRT)

The Figure 6.6 represents that the AWRT of our proposed methodology yields mini-
mum result than the selective backfilling technique which was minimum previously. Sim-
ilarly, the slowdown incurred during our proposed resource allocation scheme is also min-
imum compared to the selective backfilling method and move towards zero. Thus from

105

Figure 6.7 Performance comparison of proposed method (Slowdown)

the Table 6.1, Figures 6.6 and 6.7 it is proved that both the AWRT and Slowdown factor
of our proposed methodology has achieved better results compared with existing works to
allocate the resources in cloud computing.

6.5 Summary

The methodology we are proposed is to provide optimal resource allocation between differ-
ent cloud service providers when one of them faces the problem of shortage of resources.
The performance evaluation of the proposed methodology is individually as well as com-
paratively shown in the results section with other existing works available for the SLA
mapping to provide the required services from other clouds and resource provisioning
techniques. The parameters used to show the effectiveness of our proposed methodology
are Overall net utility, overall cost in mapping the SLA templates, variation of the SDR pa-
rameter of the ADS algorithm in achieving the optimum results with in minimum iterations
and AWRT, slowdown to measure the effectiveness of the resource allocation mechanism.
And the experimental results shows that our proposed methodology achieves good results
in terms of these parameters, such as, the overall net utility get maximized compared to the
existing methods and overall cost, AWRT and slowdown factor get minimized. Another
important factor we are considering here is the Skewness which measures the unevenness
in the utilization of resources and with the help of the ADS algorithm it also get minimized
to certain amount. Thus our proposed methodology finally constructs a better interoper-
able cloud computing environment with the awareness of SLAs of different clouds with
flexible resource allocation.

106

Chapter 7

CONCLUSION & FUTURE WORK

The rapid increase of corporate businesses using cloud resources has increased the com-
plexity of SLA management in cloud computing. The primary objective of this research
work is to explore the significance of SLAs in cloud computing and the dominance of
autonomic resource management systems for addressing the dynamically changing cloud
resource requirements. In this dissertation we have presented an approach for SLA con-
trolled adaptive resource management in cloud computing. This chapter of the thesis con-
cludes our work by giving a summary of the preceding chapters and describing some of
the future work directions.

7.1 Thesis Summary

The Thesis began with an introduction to cloud computing with a brief introduction to SLA
in Cloud. It was followed by literature review where Research Gaps in SLA Management,
Resource Allocation in Cloud and Federated Cloud Approaches are explored. Based on
the investigation it is found that there is a need to have adaptive resource allocation in
cloud using SLA and it is further extended to federated cloud environment. There are four
objectives that have been considered here:

1. To build a flexible, reliable and dynamic SLA management system for monitoring
and detecting SLA violations in cloud computing and incorporate some reactive ac-
tions to prevent SLA violation by adding autonomic adaptation of SLA parameters
and SLOs.

2. To develop and implement an autonomic resource allocation system for reallocating
resources dynamically during execution of services according to variation in work-
loads and detected SLA violations.

3. To design and develop a framework for performing autonomic SLA matching and

107

clustering according to applications using case based reasoning.

4. To develop and implement inter-dependency and interoperability by providing dy-
namic elasticity in the context of multiple competitive/cooperative cloud providers
in an autonomic manner.

The First objective has been achieved in Chapter 3, where a SLA Negotiation and Mon-
itoring Framework has been successfully implemented and tested. Detection and avoid-
ance of SLA violation is also described briefly in this chapter. The concept of dynamic
SLAs together with renegotiation strategy is included in this chapter along with the ex-
perimental evaluation of all proposed frameworks and algorithms. Further in Chapter 4,
an adaptive resource allocation mechanism over the SLA monitoring framework has been
developed. This developed work is dynamic in nature and has been successfully imple-
mented in a real time cloud based on Open Nebula. The first two objectives concentrate
towards the a single service providers but the next two concentrate on a federated cloud
environment. Thus, Chapter 5 explores the objective 3, where SLAs for a federated cloud
are matched and clusters of like behaved cloud service providers are formed. This is im-
plemented using cloudsim. Further based on the clusters, an interoperable cloud has been
designed and implemented successfully which is part of final objective 4. Thus as pro-
posed, an interoperable federated cloud environment has been successfully implemented
using SLAs. Chapter 7 presents the summary and conclusions of the research work. This
chapter also introduces some future expansions possible to this work.

7.2 Conclusion

SLAs are important for any cloud service model, forming the basis of interaction and trust
between the user and service provider. In this research SLAs have been considered as the
basis of research and consequently used for resource management in cloud and further have
been extended to federated cloud. The first part of the work deals with development of a
SLA based cloud monitoring framework which has been designed and implemented. Re-
sults have been compared with other methods and our work proves to be better than them
and correctly captures SLA violations. The second part of the work deals with resource al-
location in cloud environment by designing an adaptive resource allocator. This cautiously
allocates the resources based on SLAs and results show it to be efficient as compared to
other similar non-SLA based methods. The next portion of the work is primarily aimed at
federated cloud. Here the SLA based resource allocation mechanism for federated cloud
has been designed and implemented. Our method allows SLAs to be infused into federated
cloud environment. The overall function of this federated model is completely SLA based,

108

supporting interoperability without any hidden intent, as SLAs have been agreed upon by
users and service providers as well.

7.3 Future Work

We envision a set of future extensions identified during the course of this research work.

• A future enhancement to this research work is possible in the field of service life
cycle management in SLA negotiation. The life cycle of SLA negotiation can be
expanded to address the re-negotiation of negotiated SLA after the detection of a
limited number of SLA violations. The life cycle representations has to be standard-
ized after accommodating this re-negotiation phase.

• Another functional enhancement related to this work is in the area of adaptive re-
source allocation in interoperable clouds by considering more SLA parameters to
address a general cloud application. In this presented work we have considered a
small subset of SLA parameters. This can be expanded by taking more number of
SLA parameters to use in a broad cloud computing environment.

• One more future expansion possible to this work which is in the field of SLA match-
ing and clustering. The SLA matching can be improved to accommodate any general
SLA template.

109

110

Bibliography

Abrahao, B., Almeida, V., Almeida, J., Zhang, A., Beyer, D., and Safai, F. (2006). Self-
adaptive sla-driven capacity management for internet services. In Network Operations

and Management Symposium, 2006. NOMS 2006. 10th IEEE/IFIP, 557–568. IEEE.

Abu Sharkh, M., Jammal, M., Shami, A., and Ouda, A. (2013). Resource allocation in
a network-based cloud computing environment: design challenges. Communications

Magazine, IEEE, 51(11), 46–52.

Addis, B., Ardagna, D., Panicucci, B., Squillante, M. S., and Zhang, L. (2013). A hierar-
chical approach for the resource management of very large cloud platforms. Dependable

and Secure Computing, IEEE Transactions on, 10(5), 253–272.

Alhamazani, K., Ranjan, R., Mitra, K., Rabhi, F., Jayaraman, P. P., Khan, S. U., Guabtni,
A., and Bhatnagar, V. (2015). An overview of the commercial cloud monitoring tools:
research dimensions, design issues, and state-of-the-art. Computing, 97(4), 357–377.

Ali, S., Jing, S.-Y., and Kun, S. (2013). Profit-aware dvfs enabled resource management
of iaas cloud. Int J Comput Sci Issues (IJCSI), 10.

Almeida, J., Almeida, V., Ardagna, D., Francalanci, C., and Trubian, M. (2006). Resource
management in the autonomic service-oriented architecture. In Autonomic Computing,

2006. ICAC’06. IEEE International Conference on, 84–92. IEEE.

Amazon (2015). Summary of the amazon ec2 and amazon rds service disruption.

Amin, M. B., Khan, W. A., Awan, A. A., and Lee, S. (2012). Intercloud message ex-
change middleware. In Proceedings of the 6th International Conference on Ubiquitous

Information Management and Communication, page 79. ACM.

111

Andrew, A. M. (1998). Modern heuristic search methods. Kybernetes, 27(5), 582–585.

Anithakumari, S. and Chandrasekaran, K. (2015). Monitoring and management of service
level agreements in cloud computing. In Cloud and Autonomic Computing (ICCAC),

2015 International Conference on, 204–207. IEEE.

Armbrust, M., Fox, A., Griffith, R., Joseph, A. D., Katz, R. H., Konwinski, A., Lee, G.,
Patterson, D. A., Rabkin, A., Stoica, I., et al. (2009). Above the clouds: A berkeley view
of cloud computing. Technical report, Technical Report UCB/EECS-2009-28, EECS
Department, University of California, Berkeley.

Badidi, E. (2016). A broker-based framework for integrated sla-aware saas provisioning.
arXiv preprint arXiv:1605.02432.

Barbosa, A. C., Sauvé, J., Cirne, W., and Carelli, M. (2006). Evaluating architectures for
independently auditing service level agreements. Future Generation Computer Systems,
22(7), 721–731.

Beam, C. and Segev, A. (1997). Automated negotiations: A survey of the state of the art.
Wirtschaftsinformatik, 39(3), 263–268.

Beloglazov, A., Abawajy, J., and Buyya, R. (2012). Energy-aware resource allocation
heuristics for efficient management of data centers for cloud computing. Future gener-

ation computer systems, 28(5), 755–768.

Beloglazov, A., Buyya, R., Lee, Y. C., Zomaya, A., et al. (2011). A taxonomy and survey
of energy-efficient data centers and cloud computing systems. Advances in computers,
82(2), 47–111.

Bennani, M. N., Menasce, D., et al. (2005). Resource allocation for autonomic data cen-
ters using analytic performance models. In Autonomic Computing, 2005. ICAC 2005.

Proceedings. Second International Conference on, 229–240. IEEE.

Berenbrink, P., Friedetzky, T., Goldberg, L. A., Goldberg, P. W., Hu, Z., and Martin, R.
(2007). Distributed selfish load balancing. SIAM Journal on Computing, 37(4), 1163–
1181.

Berman, F., Chien, A., Cooper, K., Dongarra, J., Foster, I., Gannon, D., Johnsson, L.,
Kennedy, K., Kesselman, C., Mellor-Crumme, J., et al. (2001). The grads project: Soft-
ware support for high-level grid application development. International Journal of High

Performance Computing Applications, 15(4), 327–344.

112

Bernhardt, T. and Vasseur, A. (2007). Esper: Event stream processing and correlation.
ONJava, in http://www. onjava. com/lpt/a/6955, O’Reilly.

Blair, G. and Grace, P. (2012). Emergent middleware: Tackling the interoperability prob-
lem. IEEE Internet Computing, (1), 78–82.

Boniface, M., Phillips, S. C., Sanchez-Macian, A., and Surridge, M. (2009). Dynamic ser-
vice provisioning using gria slas. In Service-Oriented Computing-ICSOC 2007 Work-

shops, 56–67. Springer.

Bonvin, N., Papaioannou, T. G., and Aberer, K. (2011). Autonomic sla-driven provisioning
for cloud applications. In Cluster, Cloud and Grid Computing (CCGrid), 2011 11th

IEEE/ACM International Symposium on, 434–443. IEEE.

Bouchenak, S. (2010). Automated control for sla-aware elastic clouds. In Proceedings of

the Fifth International Workshop on Feedback Control Implementation and Design in

Computing Systems and Networks, 27–28. ACM.

Brandic, I. (2009). Towards self-manageable cloud services. In Computer Software and

Applications Conference, 2009. COMPSAC’09. 33rd Annual IEEE International, 2,
128–133. IEEE.

Brandic, I., Music, D., and Dustdar, S. (2009). Service mediation and negotiation boot-
strapping as first achievements towards self-adaptable grid and cloud services. In Pro-

ceedings of the 6th international conference industry session on Grids meets autonomic

computing, 1–8. ACM.

Breskovic, I., Haas, C., Caton, S., and Brandic, I. (2011a). Towards self-awareness in cloud
markets: A monitoring methodology. In Dependable, Autonomic and Secure Computing

(DASC), 2011 IEEE Ninth International Conference on, 81–88. IEEE.

Breskovic, I., Maurer, M., Emeakaroha, V. C., Brandic, I., and Dustdar, S. (2011b). Cost-
efficient utilization of public sla templates in autonomic cloud markets. In Utility and

Cloud Computing (UCC), 2011 Fourth IEEE International Conference on, 229–236.
IEEE.

Burkon, L. (2013). Quality of service attributes for software as a service. Journal of

Systems Integration, 4(3), 38.

Butt, A. R., Zhang, R., and Hu, Y. C. (2006). A self-organizing flock of condors. Journal

of parallel and distributed computing, 66(1), 145–161.

113

Buyya, R., Beloglazov, A., and Abawajy, J. (2010a). Energy-efficient management of
data center resources for cloud computing: A vision, architectural elements, and open
challenges. arXiv preprint arXiv:1006.0308.

Buyya, R., Garg, S. K., and Calheiros, R. N. (2011). Sla-oriented resource provisioning
for cloud computing: Challenges, architecture, and solutions. In Cloud and Service

Computing (CSC), 2011 International Conference on, 1–10. IEEE.

Buyya, R., Pandey, S., and Vecchiola, C. (2010b). Market-oriented cloud computing and
the cloudbus toolkit. Large Scale Network-Centric Distributed Systems, 319–358.

Buyya, R., Ranjan, R., and Calheiros, R. N. (2010c). Intercloud: Utility-oriented fed-
eration of cloud computing environments for scaling of application services. In Inter-

national Conference on Algorithms and Architectures for Parallel Processing, 13–31.
Springer.

Buyya, R., Yeo, C. S., and Venugopal, S. (2008). Market-oriented cloud computing: Vi-
sion, hype, and reality for delivering it services as computing utilities. In High Per-

formance Computing and Communications, 2008. HPCC’08. 10th IEEE International

Conference on, 5–13. Ieee.

Buyya, R., Yeo, C. S., Venugopal, S., Broberg, J., and Brandic, I. (2009). Cloud computing
and emerging it platforms: Vision, hype, and reality for delivering computing as the 5th
utility. Future Generation computer systems, 25(6), 599–616.

Cases, U. (2010). Functional requirements for inter-cloud computing. In Global Inter-

Cloud Technology Forum, GICTF White Paper.

Chieng, D., Marshall, A., and Parr, G. (2005). Sla brokering and bandwidth reservation
negotiation schemes for qos-aware internet. IEEE Transactions on Network and Service

Management, 2(1), 39–49.

Choi, T., Kodirov, N., Lee, T.-H., Kim, D., and Lee, J. (2011). Autonomic management
framework for cloud-based virtual networks. In Network Operations and Management

Symposium (APNOMS), 2011 13th Asia-Pacific, 1–7. IEEE.

Cicotti, G., DâĂŹAntonio, S., Cristaldi, R., and Sergio, A. (2013). How to monitor qos in
cloud infrastructures: The qosmonaas approach. In Intelligent Distributed Computing

VI, 253–262. Springer.

Clouds, S. (2015). Summary of the amazon ec2 and amazon rds service disruption.

114

Cohen, W. W., Ravikumar, P. D., Fienberg, S. E., et al. (2003). A comparison of string
distance metrics for name-matching tasks. In IIWeb, 2003, 73–78.

Comuzzi, M., Kotsokalis, C., Spanoudakis, G., and Yahyapour, R. (2009). Establishing
and monitoring slas in complex service based systems. In Web Services, 2009. ICWS

2009. IEEE International Conference on, 783–790. IEEE.

Comuzzi, M. and Spanoudakis, G. (2010). Dynamic set-up of monitoring infrastructures
for service based systems. In Proceedings of the 2010 ACM Symposium on Applied

Computing, 2414–2421. ACM.

Coppola, M., Dazzi, P., Lazouski, A., Martinelli, F., Mori, P., Jensen, J., Johnson, I., and
Kershaw, P. (2012). The contrail approach to cloud federations. In Proceedings of the

International Symposium on Grids and Clouds (ISGC 2012), 2, page 1.

Costache, S. V., Parlavantzas, N., Morin, C., Kortas, S., et al. (2012). Themis: A spot-
market based automatic resource scaling framework. In HPDC 2012 Poster Session.

Council, C. (2012). Practical guide to cloud service level agreements version 1.0.

Coutinho, E. F., de Carvalho Sousa, F. R., Rego, P. A. L., Gomes, D. G., and de Souza, J. N.
(2015). Elasticity in cloud computing: a survey. annals of telecommunications-annales

des télécommunications, 70(7-8), 289–309.

Cuomo, A., Rak, M., Venticinque, S., and Villano, U. (2012). Enhancing an autonomic
cloud architecture with mobile agents. In Euro-Par 2011: Parallel Processing Work-

shops, 94–103. Springer.

Dai, Y., Xiang, Y., and Zhang, G. (2009). Self-healing and hybrid diagnosis in cloud
computing. In Cloud computing, 45–56. Springer.

Dan, A., Davis, D., Kearney, R., Keller, A., King, R., Kuebler, D., Ludwig, H., Polan, M.,
Spreitzer, M., and Youssef, A. (2004). Web services on demand: Wsla-driven automated
management. IBM systems journal, 43(1), 136–158.

Dastjerdi, A. V. and Buyya, R. (2012). An autonomous reliability-aware negotiation strat-
egy for cloud computing environments. In Cluster, Cloud and Grid Computing (CC-

Grid), 2012 12th IEEE/ACM International Symposium on, 284–291. IEEE.

Debusmann, M. and Keller, A. (2003). Sla-driven management of distributed systems
using the common information model. In Integrated Network Management VIII, 563–
576. Springer.

115

Di Modica, G., Tomarchio, O., and Vita, L. (2007). A framework for the management of
dynamic slas in composite service scenarios. In International Conference on Service-

Oriented Computing, 139–150. Springer.

Di Modica, G., Tomarchio, O., and Vita, L. (2009a). Dynamic slas management in service
oriented environments. Journal of Systems and Software, 82(5), 759–771.

Di Modica, G., Tomarchio, O., and Vita, L. (2009b). A framework for the management
of dynamic slas in composite service scenarios. In Service-Oriented Computing-ICSOC

2007 Workshops, 139–150. Springer.

Dikaiakos, M. D., Katsaros, D., Mehra, P., Pallis, G., and Vakali, A. (2009). Cloud comput-
ing: Distributed internet computing for it and scientific research. Internet Computing,

IEEE, 13(5), 10–13.

Dobson, G. and Sanchez-Macian, A. (2006). Towards unified qos/sla ontologies. In Ser-

vices Computing Workshops, 2006. SCW’06. IEEE, 169–174. IEEE.

Doorenbos, R. B. (1995). Production matching for large learning systems. PhD thesis,
University of Southern California.

Dowell, S., Barreto, A., Michael, J. B., and Shing, M.-T. (2011). Cloud to cloud interop-
erability. In System of Systems Engineering (SoSE), 2011 6th International Conference

on, 258–263. IEEE.

Dowlatshahi, M., MacLarty, G., and Fry, M. (2003). A scalable and efficient architecture
for service discovery. In Networks, 2003. ICON2003. The 11th IEEE International

Conference on, 51–56. IEEE.

El-Darieby, M. and Krishnamurthy, D. (2006). A scalable wide-area grid resource manage-
ment framework. In Networking and Services, 2006. ICNS’06. International conference

on, 76–76. IEEE.

Ellens, W., Zivkovic, M., Akkerboom, J., Litjens, R., and van den Berg, H. (2012). Perfor-
mance of cloud computing centers with multiple priority classes. In Cloud Computing

(CLOUD), 2012 IEEE 5th International Conference on, 245–252. IEEE.

Emeakaroha, V. C., Brandic, I., Maurer, M., and Dustdar, S. (2010). Low level metrics
to high level slas-lom2his framework: Bridging the gap between monitored metrics and
sla parameters in cloud environments. In HPCS, 48–54.

116

Emeakaroha, V. C., Netto, M. A., Calheiros, R. N., Brandic, I., Buyya, R., and De Rose,
C. A. (2012). Towards autonomic detection of sla violations in cloud infrastructures.
Future Generation Computer Systems, 28(7), 1017–1029.

Endo, P. T., Sadok, D., and Kelner, J. (2011). Autonomic cloud computing: giving intel-
ligence to simpleton nodes. In Cloud Computing Technology and Science (CloudCom),

2011 IEEE Third International Conference on, 502–505. IEEE.

Erdil, D. C. (2011). Dependable autonomic cloud computing with information proxies. In
Parallel and Distributed Processing Workshops and Phd Forum (IPDPSW), 2011 IEEE

International Symposium on, 1518–1524. IEEE.

Erdil, D. C. (2012). Autonomic cloud resource sharing for intercloud federations. Future

Generation Computer Systems.

Faratin, P., Sierra, C., and Jennings, N. R. (1998). Negotiation decision functions for
autonomous agents. Robotics and Autonomous Systems, 24(3), 159–182.

Fatima, S. S., Wooldridge, M., and Jennings, N. R. (2005). A comparative study of game
theoretic and evolutionary models of bargaining for software agents. Artificial Intelli-

gence Review, 23(2), 187–205.

Feller, E. and Morin, C. (2012). Autonomous and energy-aware management of large-scale
cloud infrastructures. In Parallel and Distributed Processing Symposium Workshops &

PhD Forum (IPDPSW), 2012 IEEE 26th International, 2542–2545. IEEE.

Feller, E., Rohr, C., Margery, D., and Morin, C. (2012). Energy management in iaas clouds:
A holistic approach. In Cloud Computing (CLOUD), 2012 IEEE 5th International Con-

ference on, 204–212. IEEE.

Ferrer, A. J., HernáNdez, F., Tordsson, J., Elmroth, E., Ali-Eldin, A., Zsigri, C., Sirvent,
R., Guitart, J., Badia, R. M., Djemame, K., et al. (2012). Optimis: A holistic approach
to cloud service provisioning. Future Generation Computer Systems, 28(1), 66–77.

Fox, A., Griffith, R., Joseph, A., Katz, R., Konwinski, A., Lee, G., Patterson, D., Rabkin,
A., and Stoica, I. (2009). Above the clouds: A berkeley view of cloud computing.
Dept. Electrical Eng. and Comput. Sciences, University of California, Berkeley, Rep.

UCB/EECS, 28.

Freitas, A. L., Parlavantzas, N., and Pazat, J. (2011). Cost reduction through sla-driven
self-management. In Web Services (ECOWS), 2011 Ninth IEEE European Conference

on, 117–124. IEEE.

117

Freitas, A. L., Parlavantzas, N., and Pazat, J.-L. (2010). A qos assurance framework for
distributed infrastructures. In Proceedings of the 3rd International Workshop on Moni-

toring, Adaptation and Beyond, 1–8. ACM.

Friedman, E. (2003). Jess in action: rule-based systems in java.

Friedman-Hill, E. et al. (2008). Jess, the rule engine for the java platform.

Friedman-Hill, E. J. et al. (1997). Jess, the java expert system shell. Distributed Computing

Systems, Sandia National Laboratories, USA.

Frutos, H. M. and Kotsiopoulos, I. (2009). Brein: Business objective driven reliable and
intelligent grids for real business. IBIS, 8, 39–41.

Galante, G. and Bona, L. C. E. d. (2012). A survey on cloud computing elasticity. In
Proceedings of the 2012 IEEE/ACM Fifth International Conference on Utility and Cloud

Computing, 263–270. IEEE Computer Society.

Goiri, Í., Guitart, J., and Torres, J. (2012). Economic model of a cloud provider operating
in a federated cloud. Information Systems Frontiers, 14(4), 827–843.

Gomes, E. R., Vo, Q. B., and Kowalczyk, R. (2012). Pure exchange markets for resource
sharing in federated clouds. Concurrency and Computation: Practice and Experience,
24(9), 977–991.

Goscinski, A. and Brock, M. (2010). Toward dynamic and attribute based publication,
discovery and selection for cloud computing. Future Generation Computer Systems,
26(7), 947–970.

Goudarzi, H. and Pedram, M. (2011). Multi-dimensional sla-based resource allocation
for multi-tier cloud computing systems. In Cloud Computing (CLOUD), 2011 IEEE

International Conference on, 324–331. IEEE.

Grinder (2016). The grinder, a java load testing framework.

Hallsteinsen, S., Geihs, K., Paspallis, N., Eliassen, F., Horn, G., Lorenzo, J., Mamelli, A.,
and Papadopoulos, G. A. (2012). A development framework and methodology for self-
adapting applications in ubiquitous computing environments. Journal of Systems and

Software.

Hao, W., Gao, T., Yen, I.-L., Chen, Y., and Paul, R. (2006). An infrastructure for web
services migration for real-time applications. In Service-Oriented System Engineering,

2006. SOSE’06. Second IEEE International Workshop, 41–48. IEEE.

118

Hasançebi, O. and Azad, S. K. (2015). Adaptive dimensional search: a new metaheuristic
algorithm for discrete truss sizing optimization. Computers & Structures, 154, 1–16.

Hasselmeyer, P., Koller, B., Parkin, M., and Wieder, P. (2008). An sla renegotiation proto-
col. In Proceeding of the Second Non Functional Properties and Service Level Agree-

ments in Service Oriented Computing Workshop.

Hasselmeyer, P., Koller, B., Schubert, L., and Wieder, P. (2006). Towards sla-supported
resource management. In High Performance Computing and Communications, 743–
752. Springer.

Hasselmeyer, P., Mersch, H., Koller, B., Quyen, H., Schubert, L., and Wieder, P. (2007).
Implementing an sla negotiation framework. In Proceedings of the eChallenges Confer-

ence (e-2007), 4, 154–161.

He, Q., Yan, J., Kowalczyk, R., Jin, H., and Yang, Y. (2009). Lifetime service level
agreement management with autonomous agents for services provision. Information

Sciences, 179(15), 2591–2605.

Herbst, N. R., Kounev, S., and Reussner, R. Elasticity in cloud computing: What it is, and
what it is not.

Herbst, N. R., Kounev, S., and Reussner, R. H. (2013). Elasticity in cloud computing:
What it is, and what it is not. In ICAC, 13, 23–27.

Hielscher, J., Kazhamiakin, R., Metzger, A., and Pistore, M. (2008). A framework for
proactive self-adaptation of service-based applications based on online testing. Towards

a Service-Based Internet, 122–133.

Hofmann, P. and Woods, D. (2010). Cloud computing: the limits of public clouds for
business applications. Internet Computing, IEEE, 14(6), 90–93.

Holze, M. and Ritter, N. (2011). System models for goal-driven self-management in auto-
nomic databases. Data & Knowledge Engineering, 70(8), 685–701.

Huang, C.-J., Guan, C.-T., Chen, H.-M., Wang, Y.-W., Chang, S.-C., Li, C.-Y., and Weng,
C.-H. (2013). An adaptive resource management scheme in cloud computing. Engi-

neering Applications of Artificial Intelligence, 26(1), 382–389.

Hussain, O., Hussain, F., Hammadi, A., and Dillon, T. (2012). A framework for sla man-
agement in cloud computing for informed decision making.

119

Javadi, B., Thulasiraman, P., and Buyya, R. (2012). Cloud resource provisioning to extend
the capacity of local resources in the presence of failures. In High Performance Com-

puting and Communication & 2012 IEEE 9th International Conference on Embedded

Software and Systems (HPCC-ICESS), 2012 IEEE 14th International Conference on,
311–319. IEEE.

Jrad, F., Tao, J., and Streit, A. (2012). Sla based service brokering in intercloud environ-
ments. In CLOSER, 76–81.

Jung, G. and Sim, K. M. (2011). Agent-based adaptive resource allocation on the cloud
computing environment. In Parallel Processing Workshops (ICPPW), 2011 40th Inter-

national Conference on, 345–351. IEEE.

Kang, C., Park, K., and Kim, S. (2006). A differentiated service mechanism considering
sla for heterogeneous cluster web systems. In Software Technologies for Future Em-

bedded and Ubiquitous Systems, 2006 and the 2006 Second International Workshop on

Collaborative Computing, Integration, and Assurance. SEUS 2006/WCCIA 2006. The

Fourth IEEE Workshop on, 6–pp. IEEE.

Katsaros, G., Kousiouris, G., Gogouvitis, S. V., Kyriazis, D., Menychtas, A., and Var-
varigou, T. (2012). A self-adaptive hierarchical monitoring mechanism for clouds. Jour-

nal of Systems and Software, 85(5), 1029–1041.

Kaufman, L. M. (2009). Data security in the world of cloud computing. Security &

Privacy, IEEE, 7(4), 61–64.

Keahey, K., Foster, I., Freeman, T., and Zhang, X. (2005). Virtual workspaces: Achieving
quality of service and quality of life in the grid. Scientific programming, 13(4), 265–275.

Keahey, K. and Freeman, T. (2008). Contextualization: Providing one-click virtual clus-
ters. In eScience, 2008. eScience’08. IEEE Fourth International Conference on, 301–
308. IEEE.

Keller, A. and Ludwig, H. (2002). Defining and monitoring service-level agreements for
dynamic e-business. In Lisa, 2, 189–204.

Kephart, J. O. and Chess, D. M. (2003). The vision of autonomic computing. Computer,
36(1), 41–50.

Kertesz, A., Kecskemeti, G., and Brandic, I. (2011). Autonomic sla-aware service virtual-
ization for distributed systems. In Parallel, Distributed and Network-Based Processing

(PDP), 2011 19th Euromicro International Conference on, 503–510. IEEE.

120

Khader, D., Padget, J., and Warnier, M. (2010). Reactive monitoring of service level
agreements. In Grids and Service-Oriented Architectures for Service Level Agreements,
13–22. Springer.

Kim, H., El-Khamra, Y., Rodero, I., Jha, S., and Parashar, M. (2011). Autonomic manage-
ment of application workflows on hybrid computing infrastructure. Scientific Program-

ming, 19(2), 75–89.

Kim, H. and Parashar, M. (2011). Cometcloud: An autonomic cloud engine. Cloud Com-

puting: Principles and Paradigms, 275–297.

King, T. M. and Ganti, A. S. (2010). Migrating autonomic self-testing to the cloud. In
Software Testing, Verification, and Validation Workshops (ICSTW), 2010 Third Interna-

tional Conference on, 438–443. IEEE.

King, T. M., Ramirez, A. E., Cruz, R., and Clarke, P. J. (2007). An integrated self-testing
framework for autonomic computing systems. Journal of Computers, 2(9), 37–49.

Kleinrock, L. (1975). Queuing systems. Wiley.

Koller, B. and Schubert, L. (2007). Towards autonomous sla management using a proxy-
like approach. Multiagent and Grid Systems, 3(3), 313–325.

Lai, G., Li, C., and Sycara, K. (2006). Efficient multi-attribute negotiation with incomplete
information. Group Decision and Negotiation, 15(5), 511–528.

Lee, B.-Y. and Lee, G.-H. (2007). Service oriented architecture for sla management sys-
tem. In Advanced Communication Technology, The 9th International Conference on, 2,
1415–1418. IEEE.

Lee, C. C. and Ferguson, M. J. (2010). To reveal or not to reveal? strategic disclosure of
private information in negotiation. European Journal of Operational Research, 207(1),
380–390.

Leitner, P., Ferner, J., Hummer, W., and Dustdar, S. (2013). Data-driven and automated
prediction of service level agreement violations in service compositions. Distributed

and Parallel Databases, 31(3), 447–470.

Leitner, P., Michlmayr, A., Rosenberg, F., and Dustdar, S. (2010). Monitoring, prediction
and prevention of sla violations in composite services. In Web Services (ICWS), 2010

IEEE International Conference on, 369–376. IEEE.

121

Lewis, G. (2010). Basics about cloud computing. Software engineering institute carniege

mellon university, Pittsburgh.

Li, J., Qiu, M., Niu, J.-W., Chen, Y., and Ming, Z. (2010). Adaptive resource allocation
for preemptable jobs in cloud systems. In Intelligent Systems Design and Applications

(ISDA), 2010 10th International Conference on, 31–36. IEEE.

Li, Y., Sun, K., Qiu, J., and Chen, Y. (2005). Self-reconfiguration of service-based sys-
tems: A case study for service level agreements and resource optimization. In Web

Services, 2005. ICWS 2005. Proceedings. 2005 IEEE International Conference on, 266–
273. IEEE.

Liu, H., Bhat, V., Parashar, M., and Klasky, S. (2005). An autonomic service architecture
for self-managing grid applications. In Grid Computing, 2005. The 6th IEEE/ACM

International Workshop on, 8–pp. IEEE.

Lu, D., Ma, J., and Xi, N. (2015). A universal fairness evaluation framework for resource
allocation in cloud computing. Communications, China, 12(5), 113–122.

Ludwig, A. and Franczyk, B. (2008). Cosma–an approach for managing slas in composite
services. In Service-Oriented Computing–ICSOC 2008, 626–632. Springer.

Ludwig, H., Keller, A., Dan, A., King, R., and Franck, R. (2003). A service level agree-
ment language for dynamic electronic services. Electronic Commerce Research, 3(1-2),
43–59.

Ludwig, S. A., Kersten, G. E., and Huang, X. (2006). Towards a behavioural agent-
based assistant for e-negotiations. In In Proc. of Montreal Conf. on E-Technologies

(MCETECH), Montreal. Citeseer.

Mahbub, K. and Spanoudakis, G. (2011). Proactive sla negotiation for service based sys-
tems: Initial implementation and evaluation experience. In Services Computing (SCC),

2011 IEEE International Conference on, 16–23. IEEE.

Manzalini, A. and Moiso, C. (2011). Self-optimization of resource allocation in decen-
tralised server farms. In Intelligence in Next Generation Networks (ICIN), 2011 15th

International Conference on, 219–224. IEEE.

Marston, S., Li, Z., Bandyopadhyay, S., Zhang, J., and Ghalsasi, A. (2011). Cloud com-
putingâĂŤthe business perspective. Decision support systems, 51(1), 176–189.

122

Martin, P., Brown, A., Powley, W., and Vazquez-Poletti, J. L. (2011). Autonomic manage-
ment of elastic services in the cloud. In Computers and Communications (ISCC), 2011

IEEE Symposium on, 135–140. IEEE.

Massie, M. L., Chun, B. N., and Culler, D. E. (2004). The ganglia distributed monitoring
system: design, implementation, and experience. Parallel Computing, 30(7), 817–840.

Maurer, M., Brandic, I., Emeakaroha, V. C., and Dustdar, S. (2010). Towards knowl-
edge management in self-adaptable clouds. In Services (SERVICES-1), 2010 6th World

Congress on, 527–534. IEEE.

Maurer, M., Breskovic, I., Emeakaroha, V. C., and Brandic, I. (2011). Revealing the
mape loop for the autonomic management of cloud infrastructures. In Computers and

Communications (ISCC), 2011 IEEE Symposium on, 147–152. IEEE.

Mearns, H., Leaney, J., Parakhine, A., Debenham, J., and Verchere, D. (2011). An au-
tonomic open marketplace for inter-cloud service management. In Utility and Cloud

Computing (UCC), 2011 Fourth IEEE International Conference on, 186–193. IEEE.

Mell, P. M. and Grance, T. (2011). Sp 800-145. the nist definition of cloud computing.
Technical report, Gaithersburg, MD, United States.

Menasce, D. A., Almeida, V. A., Dowdy, L. W., and Dowdy, L. (2004). Performance by

design: computer capacity planning by example. Prentice Hall Professional.

Mikic-Rakic, M. and Medvidovic, N. (2004). Support for disconnected operation via ar-
chitectural self-reconfiguration. In Autonomic Computing, 2004. Proceedings. Interna-

tional Conference on, 114–121. IEEE.

Mobach, D. G., Overeinder, B. J., and Brazier, F. M. (2001). A ws-agreement based
resource negotiation framework for mobile agents. Scalable Computing: Practice and

Experience, 7(1).

Moreno-Vozmediano, R., Montero, R. S., and Llorente, I. M. (2009). Elastic management
of cluster-based services in the cloud. In Proceedings of the 1st workshop on Automated

control for datacenters and clouds, 19–24. ACM.

Morgan, G., Parkin, S., Molina-Jimenez, C., and Skene, J. (2005). Monitoring middleware
for service level agreements in heterogeneous environments. In Challenges of Expand-

ing Internet: E-Commerce, E-Business, and E-Government, 79–93. Springer.

123

Muller, C., Oriol, M., Rodríguez, M., Franch, X., Marco, J., Resinas, M., and Ruiz-Cortes,
A. (2012). Salmonada: A platform for monitoring and explaining violations of ws-
agreement-compliant documents. In Principles of Engineering Service Oriented Sys-

tems (PESOS), 2012 ICSE Workshop on, 43–49. IEEE.

Nagin, K., Hadas, D., Dubitzky, Z., Glikson, A., Loy, I., Rochwerger, B., and Schour,
L. (2011). Inter-cloud mobility of virtual machines. In Proceedings of the 4th Annual

International Conference on Systems and Storage, page 3. ACM.

Narayanan, V. and Jennings, N. R. (2006). Learning to negotiate optimally in non-
stationary environments. In Cooperative Information Agents X, 288–300. Springer.

Papazoglou, M. P., Traverso, P., Dustdar, S., and Leymann, F. (2007). Service-oriented
computing: State of the art and research challenges. Computer, 40(11), 38–45.

Papoulis, A. and Pillai, S. U. (2002). Probability, random variables, and stochastic pro-

cesses. Tata McGraw-Hill Education.

Papuzzo, G. and Spezzano, G. (2011). Autonomic management of workflows on hybrid
grid-cloud infrastructure. In Proceedings of the 7th International Conference on Net-

work and Services Management, 230–233. International Federation for Information Pro-
cessing.

Paraiso, F., Haderer, N., Merle, P., Rouvoy, R., and Seinturier, L. (2012). A federated
multi-cloud paas infrastructure. In Cloud Computing (CLOUD), 2012 IEEE 5th Inter-

national Conference on, 392–399. IEEE.

Paschke, A. and Bichler, M. (2008). Knowledge representation concepts for automated sla
management. Decision Support Systems, 46(1), 187–205.

Pengbo, S., Qian, Z., Yu, F. R., and Yanhua, Z. (2014). Qos-aware dynamic resource
management in heterogeneous mobile cloud computing networks. Communications,

China, 11(5), 144–159.

Perera, S. and Gannon, D. (2009). Enforcing user-defined management logic in large scale
systems. In Services-I, 2009 World Conference on, 243–250. IEEE.

Perros, H. G. and Elsayed, K. M. (1996). Call admission control schemes: a review. IEEE

Communications Magazine, 34(11), 82–91.

Petcu, D., Macariu, G., Panica, S., and Crăciun, C. (2013). Portable cloud application-
sâĂŤfrom theory to practice. Future Generation Computer Systems, 29(6), 1417–1430.

124

Quan, D. M. and Kao, O. (2005). Sla negotiation protocol for grid-based workflows. In
High Performance Computing and Communications, 505–510. Springer.

Rak, M., Cuomo, A., and Villano, U. (2011). Chase: an autonomic service engine for cloud
environments. In Enabling Technologies: Infrastructure for Collaborative Enterprises

(WETICE), 2011 20th IEEE International Workshops on, 116–121. IEEE.

Rana, O. F., Warnier, M., Quillinan, T. B., Brazier, F., and Cojocarasu, D. (2008). Manag-
ing violations in service level agreements. Grid Middleware and Services, 349–358.

Ranjan, R. (2014). The cloud interoperability challenge. Cloud Computing, IEEE, 1(2),
20–24.

Ranjan, R., Wang, L., Zomaya, A. Y., Georgakopoulos, D., Sun, X.-H., and Wang, G.
(2015). Recent advances in autonomic provisioning of big data applications on clouds.
IEEE Transactions on Cloud Computing, 3(2), 101–104.

Redl, C., Breskovic, I., Brandic, I., and Dustdar, S. (2012). Automatic sla matching and
provider selection in grid and cloud computing markets. In Proceedings of the 2012

ACM/IEEE 13th International Conference on Grid Computing, 85–94. IEEE Computer
Society.

Reich, C., Bubendorfer, K., Banholzer, M., and Buyya, R. (2007). A sla-oriented manage-
ment of containers for hosting stateful web services. In e-Science and Grid Computing,

IEEE International Conference on, 85–92. IEEE.

Resinas, M., Fernández, P., and Corchuelo, R. (2012). A bargaining-specific architecture
for supporting automated service agreement negotiation systems. Science of Computer

Programming, 77(1), 4–28.

Rochwerger, B., Breitgand, D., Levy, E., Galis, A., Nagin, K., Llorente, I. M., Montero,
R., Wolfsthal, Y., Elmroth, E., Caceres, J., et al. (2009). The reservoir model and archi-
tecture for open federated cloud computing. IBM Journal of Research and Development,
53(4), 4–1.

Sahai, A., Durante, A., and Machiraju, V. (2002). Towards automated sla management for
web services. Hewlett-Packard Research Report HPL-2001-310 (R. 1).

Sakellariou, R. and Yarmolenko, V. (2005). On the flexibility of ws-agreement for job
submission. In Proceedings of the 3rd international workshop on Middleware for grid

computing, 1–6. ACM.

125

Sánchez, A., Montes, J., Pérez, M. S., and Cortes, T. (2012). An autonomic framework
for enhancing the quality of data grid services. Future Generation Computer Systems,
28(7), 1005–1016.

Services, A. W. (2015). Summary of the amazon ec2 and amazon rds service disruption.

Shawky, D. M. and Ali, A. F. (2012). Defining a measure of cloud computing elasticity.
In Systems and Computer Science (ICSCS), 2012 1st International Conference on, 1–5.
IEEE.

Shell, J. (2016). Jess: Java expert system shell.

Shen, H. and Liu, G. (2014). An efficient and trustworthy resource sharing platform for
collaborative cloud computing. Parallel and Distributed Systems, IEEE Transactions

on, 25(4), 862–875.

Silaghi, G. C., Şerban, L. D., and Litan, C. M. (2012). A time-constrained sla negotia-
tion strategy in competitive computational grids. Future Generation Computer Systems,
28(8), 1303–1315.

Singh, S. and Chana, I. (2016a). Qos-aware autonomic resource management in cloud
computing: a systematic review. ACM Computing Surveys (CSUR), 48(3), 42.

Singh, S. and Chana, I. (2016b). A survey on resource scheduling in cloud computing:
Issues and challenges. Journal of grid computing, 14(2), 217–264.

Skene, J. and Emmerich, W. Engineering an sla checker using mda technologies.

Solomon, B., Ionescu, D., Litoiu, M., and Iszlai, G. (2010). Designing autonomic man-
agement systems for cloud computing. In Computational Cybernetics and Technical

Informatics (ICCC-CONTI), 2010 International Joint Conference on, 631–636. IEEE.

Sriram, I. and Khajeh-Hosseini, A. (2010). Research agenda in cloud technologies. arXiv

preprint arXiv:1001.3259.

Stillwell, M., Schanzenbach, D., Vivien, F., and Casanova, H. (2009). Resource alloca-
tion using virtual clusters. In Cluster Computing and the Grid, 2009. CCGRID’09. 9th

IEEE/ACM International Symposium on, 260–267. IEEE.

Streitberger, W. and Eymann, T. (2009). A simulation of an economic, self-organising re-
source allocation approach for application layer networks. Computer Networks, 53(10),
1760–1770.

126

Suleiman, B., Sakr, S., Jeffery, R., and Liu, A. (2012). On understanding the economics
and elasticity challenges of deploying business applications on public cloud infrastruc-
ture. Journal of Internet Services and Applications, 3(2), 173–193.

Technium, T. (2016). The technium: A cloudbook for the cloud.

Thain, D., Tannenbaum, T., and Livny, M. (2005). Distributed computing in practice: the
condor experience. Concurrency and computation: practice and experience, 17(2-4),
323–356.

Theilmann, W., Happe, J., Kotsokalis, C., Edmonds, A., Kearney, K., and Lambea, J.
(2010). A reference architecture for multi-level sla management. Journal of Internet

Engineering, 4(1).

Toosi, A. N., Calheiros, R. N., and Buyya, R. (2014). Interconnected cloud computing
environments: Challenges, taxonomy, and survey. ACM Computing Surveys (CSUR),
47(1), 7.

Unger, T., Leymann, F., Mauchart, S., and Scheibler, T. (2008). Aggregation of service
level agreements in the context of business processes. In Enterprise Distributed Object

Computing Conference, 2008. EDOC’08. 12th International IEEE, 43–52. IEEE.

Van, H. N., Tran, F. D., and Menaud, J.-M. (2009). Sla-aware virtual resource management
for cloud infrastructures. In Computer and Information Technology, 2009. CIT’09. Ninth

IEEE International Conference on, 1, 357–362. IEEE.

Varalakshmi, P., Priya, K., Pradeepa, J., and Perumal, V. (2011). Sla with dual party
beneficiality in distributed cloud. In Advances in Computing and Communications, 471–
479. Springer.

Verma, D. (1999). Supporting service level agreements on IP networks. Sams Publishing.

Villela, D., Pradhan, P., and Rubenstein, D. (2007). Provisioning servers in the application
tier for e-commerce systems. ACM Transactions on Internet Technology (TOIT), 7(1),
7.

Wailly, A., Lacoste, M., and Debar, H. (2011). Towards multi-layer autonomic isolation
of cloud computing and networking resources. In Network and Information Systems

Security (SAR-SSI), 2011 Conference on, 1–9. IEEE.

Wäldrich, O. (2011). Orchestration of resources in distributed, heterogeneous grid envi-
ronments using dynamic service level agreements.

127

Waldrich, O. (2016). Wsag4j: Web service agreement for java. version 2.0.

Weiss, A. (2007). Computing in the clouds. networker, 11(4).

Weyns, D., Schmerl, B., Grassi, V., Malek, S., Mirandola, R., Prehofer, C., Wuttke, J.,
Andersson, J., Giese, H., and Göschka, K. M. (2013). On patterns for decentralized
control in self-adaptive systems. In Software Engineering for Self-Adaptive Systems II,
76–107. Springer.

Wieder, P., Seidel, J., Wäldrich, O., Ziegler, W., and Yahyapour, R. (2008). Using sla
for resource management and scheduling-a survey. In Grid Middleware and Services,
335–347. Springer.

Wood, T., Shenoy, P., Venkataramani, A., and Yousif, M. (2009). Sandpiper: Black-box
and gray-box resource management for virtual machines. Computer Networks, 53(17),
2923–2938.

Wu, L. and Buyya, R. (2010). Service level agreement (sla) in utility computing sys-
tems. Performance and dependability in service computing: Concepts, techniques and

research directions, 1, 1–25.

Wu, L. and Buyya, R. (2012). Service level agreement (sla) in utility computing systems.
In Grid and Cloud Computing: Concepts, Methodologies, Tools and Applications, 286–
310. IGI Global.

Wu, L., Garg, S. K., and Buyya, R. (2011). Sla-based resource allocation for software
as a service provider (saas) in cloud computing environments. In Proceedings of the

2011 11th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing,
195–204. IEEE Computer Society.

Xiao, Z., Song, W., and Chen, Q. (2013). Dynamic resource allocation using virtual ma-
chines for cloud computing environment. Parallel and Distributed Systems, IEEE Trans-

actions on, 24(6), 1107–1117.

Xiong, K. and Suh, S. (2010). Resource provisioning in sla-based cluster computing. In
Job Scheduling Strategies for Parallel Processing, 1–15. Springer.

Yan, J., Kowalczyk, R., Lin, J., Chhetri, M. B., Goh, S. K., and Zhang, J. (2007). Au-
tonomous service level agreement negotiation for service composition provision. Future

Generation Computer Systems, 23(6), 748–759.

128

Yashkov, S. (1987). Processor-sharing queues: Some progress in analysis. Queueing

Systems, 2(1), 1–17.

Yazir, Y. O., Matthews, C., Farahbod, R., Neville, S., Guitouni, A., Ganti, S., and Coady,
Y. (2010). Dynamic resource allocation in computing clouds using distributed multiple
criteria decision analysis. In Cloud Computing (CLOUD), 2010 IEEE 3rd International

Conference on, 91–98. Ieee.

Zang, C., Fan, Y., and Liu, R. (2008). Architecture, implementation and application of
complex event processing in enterprise information systems based on rfid. Information

Systems Frontiers, 10(5), 543–553.

Zhang, L. and Ardagna, D. (2004). Sla based profit optimization in web systems. In
Proceedings of the 13th international World Wide Web conference on Alternate track

papers & posters, 462–463. ACM.

Zhang, Q., Cheng, L., and Boutaba, R. (2010). Cloud computing: state-of-the-art and
research challenges. Journal of internet services and applications, 1(1), 7–18.

Ziegler, W., Wäldrich, O., Wieder, P., Nakata, T., and Parkin, M. (2008). Considerations
for negotiation and monitoring of service level agreements. Technical report, Technical
Report TR-0167, CoreGRID.

Zulkernine, F. H. and Martin, P. (2011). An adaptive and intelligent sla negotiation system
for web services. Services Computing, IEEE Transactions on, 4(1), 31–43.

129

130

LIST OF PUBLICATIONS/ CONFERENCE
PAPERS

Journal Publications

[1] S. Anithakumari, K. Chandrasekaran (2014). "Autonomic Cloud Computing: Self

Management in Cloud Computing". ICIC Express Letters: An International Journal
of Research and Surveys vol. 8, pp. 2959-2964, Publisher: ICIC International, Tokai
University, Japan.

[2] S. Anithakumari, K. Chandrasekaran (2015). "Autonomic Cloud Computing: Au-

tonomic Properties Embedded in Cloud Computing". International Journal of Ad-
vanced Research in Computer Science and Software Engineering, Volume 5, Issue
4, 2015. 979-991.

131

Conference Proceedings

[1] Anithakumari, S., and K. Chandrasekaran. "Allocation of Cloud Resources in a
Dynamic Way Using an SLA-Driven Approach." In Proceedings of the 2nd Interna-
tional Conference on Data Engineering and Communication Technology (ICEDECT),
pp. 415-422. Springer, Singapore, 2019.

[2] Anithakumari, S., and K. Chandrasekaran. "Adaptive Resource Allocation in Inter-
operable Cloud Services." In Advances in Computer Communication and Computa-
tional Sciences (CSADC), pp. 229-240. Springer, Singapore, 2019.

[3] Anithakumari, S., and K. Chandrasekaran. "Negotiation and monitoring of service
level agreements in cloud computing services." In Proceedings of the International
Conference on Data Engineering and Communication Technology, pp. 651-659.
Springer, Singapore, 2017.

[4] Anithakumari, S., and K. Chandrasekaran. "Interoperability Based Resource Man-
agement in Cloud Computing by Adaptive Dimensional Search." In 2017 IEEE In-
ternational Conference on Cloud Computing in Emerging Markets (CCEM), pp. 77-
84. IEEE, 2017.

[5] Anithakumari S., K. Chandrasekaran (2015). "Monitoring and Management of Ser-

vice Level Agreements in Cloud Computing" IEEE International Conference on Cloud
and Autonomic Computing (ICCAC) 2015, USA pp. 204-207, doi: 10.1109/IC-
CAC.2015.28

[6] Anithakumari S., K. Chandrasekaran (2014). "Autonomic SLA Management in Cloud

Computing Services."Recent Trends in Computer Networks and Distributed Systems
Security. Springer Berlin Heidelberg, 2014. 151-159

132

BIO-DATA

Name : Anithakumari S

Email Id : lekshmi03@gmail.com

Date of Birth : 24-05-1974

Address : Lekshmi Vihar, TC 52/1118(3),

Anugraha Nagar, Poozhikkunnu

Estate P O, Pappanamcode,

Thiruvananthapuram.

Educational Qualifications:

Degree Year of Passing University

B.Tech. 1995 Mahatma Gandhi University, Kottayam.

M.Tech 2006 National Institute of Technology Calicut.

133

	Abstract
	List of Figures
	List of Tables
	List of Acronyms
	INTRODUCTION
	Gaps Identified in Existing Literature
	Problem Statement and Objectives
	Research Methodology
	Thesis Contributions
	Thesis Structure

	LITERATURE REVIEW
	Background Information
	Survey of SLA Management Approaches
	Survey of Resource Allocation Approaches
	Survey of Federated Cloud Approaches
	Gap Analysis
	Summary

	SLA MANAGEMENT FRAMEWORK
	Introduction
	Overview of SLA Management
	Role of SLOs in SLA

	SLA Negotiation Framework
	Architecture of SLA Negotiation Framework
	SLA Negotiation Rules
	SLA Negotiation Decision Model
	Experimental Results

	SLA Monitoring Framework
	Overview
	SLA Monitoring Engine
	Detection and Avoidance of SLA Violation

	Dynamic SLAs
	 Negotiation and Renegotiation
	Results and Analysis

	Summary

	ADAPTIVE RESOURCE ALLOCATION
	Introduction to Cloud Providers' Data Center
	Modeling of Private Cloud
	SLA Aware Resource Allocation
	Global Resource Management
	SLA Driven Resource Allocation

	Experimental Results
	Summary

	SLA MATCHING AND CLUSTERING
	Matching of SLA Templates
	Clustering of CSPs Based on Mapped SLAs
	Experimental Results
	Summary

	SLA BASED CLOUD FEDERATION
	Interdependency and Interoperability
	SLA Based Dynamic Elasticity
	Flexible Resource Allocation
	Experimental Results
	Summary

	CONCLUSION & FUTURE WORK
	Thesis Summary
	Conclusion
	Future Work
	Bibliography
	List of Publications

