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ABSTRACT

The primary objective of the present thesis is to explore on radial basis functions

based numerical schemes for certain types of fractional differential equations. Unlike

classical derivatives, non-local nature of the fractional derivatives makes extension of

the existing schemes to fractional models complex and computationally expensive. In

addition, compared to time fractional differential equations, attempts on RBF schemes

for space and space-time fractional differential equations are less in the literature. This

may be due to the difficulty in handling multidimensional space fractional derivatives

because of the vector integral representation.

Two approaches, namely, direct and integrated RBF collocation methods (DRBF

and IRBF) are extended to approximate fractional order derivatives. In particular, we

have proposed these schemes for nonlinear fractional models: fractional nonlinear

ODEs (both initial and boundary value problems) and fractional Darboux problem.

These nonlinear fractional DEs are appropriately approximated by a sequence of linear

fractional DEs that converges to the solutions of the problem. The proposed sequences

are generated via either generalised quasilinearisation or successive approximation

techniques. In all these cases, existence and uniqueness of the solution and convergence

of the proposed sequences are proved for continuous case. The numerical solutions

thus obtained are extensively studied and analysed in terms of accuracy, convergence,

time complexity as well as shape parameter dependency.

While being capable to provide highly accurate approximations with exponential

convergence rate, these characteristics of RBF based schemes are overwhelmed by

infamous instability due to ill-conditioning of the governing system. Hence another

important contribution to the thesis includes putting forth two algorithms based

on Tikhonov regularisation and RBF-QR method to approximate fractional order

derivatives. Using Chebyshev-Gauss quadrature, RBF-QR method is generalised to

include all types of radial functions, wherein the algorithm was earlier restricted to

Gaussian RBF. Then the proposed algorithms are validated using various fractional

i



models by computing solutions for significantly small shape parameters. Also they are

analysed to see the effect of increase in nodal points.

Keywords: Fractional nonlinear differential equations; Fractional Darboux

problem; Radial basis functions; Global numerical schemes; Successive

approximation; Generalised quasilinearisation; Stable computation; Tikhonov

regularisation; RBF-QR; Gauss-Chebyshev quadrature
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CHAPTER 1

INTRODUCTION

1.1 HISTORICAL REVIEW

The concept of “fractional derivative” was originated in the mind of de l’Hospital
(derivative of order 1

2) while responding to G.W. Leibniz’s (in 1695) letter introducing
the notation dn

dxn f (x) to denote the nth derivative of a function ‘ f ’, where n ∈N. Leibniz
thought of it as a “paradox” and was hopeful that some of the useful consequences
will be drawn from this in the future. These historical records suggest that the idea
of derivative of non-integer order stem at the time of the development of classical
derivatives and integrals. Subsequently, many renowned mathematicians have shown
interest in the idea, though in a subtle manner: Euler (1730), Lagrange (1772), Laplace
(1812), Lacroix (1819) and Fourier (1822) (Oldham and Spanier, 1974; Miller and
Ross, 1993).

Meanwhile, during 1823, it was N. H. Abel posed the solution of famous
Tautochrone problem (Miller and Ross, 1993) in terms of integral equations, which
was later identified in terms of Riemann-Liouville fractional integral. This work is
treated as one of the remarkable achievement of Abel and referred it as an “elegant”
work. It was Liouville (1832) who took up a detailed study on fractional derivatives.
Started by discussing d1/2

dx1/2 e2x and giving some examples from mechanics and geometry
in his memoir, he went on to propose the existence of complementary functions for
dq f
dxq = 0, q > 0. Basis of his work was the observations Dneax = aneax and its extensions
to non-integer q > 0. Hence his focus was on functions that can be expressed as

f (x) =
∞

∑
n=0

Cneanx, Re(an)> 0 and later for function of type x−a, a > 0. The difference

in the definition of fractional derivatives of Lacroix
(dqxm

dxq , m ≥ q
)

and Liouville(dqx−a

dxq , a > 0
)

with q ∈R+ leads to lot of discussions ending up mathematicians taking
sides between Liouville and Lacroix (1833-1846).

1



Second half of 19th century have seen a vast amount of discussions and work
on formalising the definitions of fractional operators starting with Riemann’s (1847)
definition for fractional integration,

d−q

dx−q f (x) =
1

Γ(q)

∫ x

a
(x− t)q−1 f (t)dt +χ(x), x≥ a, q ∈ R+. (1.1.1)

where χ(x) represents a complementary function according to Riemann. The works by:
C. J. Hargreave (1848) on the generalisation of Leibniz rule of nth derivative of product
of two functions to fractional order, H. R. Greer (1858) on finding the finite differences
of order 1

2 , H. Holmgren (1868) on some possible applications and possibility of
Dqy′′ = Dq+2y, q /∈ Z+. Many more important works have transpired before settling
with Riemann-Liouville definitions for fractional integrals and derivatives.

To add feather to the cap, many important contributions were made that accelerated
the importance of fractional calculus. Grünward and Letnikov (1868) have developed
an approach that define fractional integration and differentiation (a unified approach)
and later it was shown that their integral definition coincides with that of Riemann’s
under appropriate conditions. Other works that followed were on the solutions of some
fractional differential equations, connecting fractional integral with Laplace transforms
etc. (E. Post (1919), H. T. Davis (1927), D. V. Widder (1941)) (Oldham and Spanier,
1974).

Riemann-Liouville (R-L) definition for differentiation is considered commonly for
many theoretical analysis. However, R-L approach leads to initial conditions of the
form lim

t→a
aDq−1

t f (t) = b1 and so on. Though differential equations with such types of
initial conditions are solved mathematically, physical interpretations of them are still
not understood. In 1967, Caputo proposed a variation to R-L derivative, which resolved
this major concern and many more issues. Thereupon the journey from integer order
to fractional order calculus witnessed many more definitions by Sonin & Letnikov,
Liouville, Hadamard, Riesz, Riesz & Miller, Miller& Rose, Weyl, Chen & Machado
and so on. (Oldham and Spanier, 1974; Miller and Ross, 1993).

1.2 FRACTIONAL INTEGRALS AND DERIVATIVES

For the completeness of the thesis we define most commonly considered definitions
for fractional integration and differentiation. These definitions retain, in a generalised
sense, one of the most important theorem in classical calculus (Diethelm, 2010).
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Theorem 1.2.1. (Fundamental theorem of classical calculus) Let f : [a,b]→ R be a

continuous function and let F : [a,b]→ R be defined by

F(x) =
∫ x

a
f (t)dt (1.2.1)

Then, F is differentiable and F ′ = f .

Extending to Lebesgue space, fundamental theorem can be stated as,

Theorem 1.2.2. (Fundamental theorem in Lebesgue spaces). Let f ∈ L1[a,b]. Then Ia f

is differentiable almost everywhere in [a,b] and DIa f = f also holds almost everywhere

on [a,b], where D f (x) = f ′(x) and Ia f (x) =
∫ x

a f (t)dt for a≤ x≤ b.

1.2.1 Riemann-Liouville(R-L) operators

Definition 1.2.3. Let q ∈ R+ and f ∈ L1[a,b]. The operator Iq
a , defined on L1[a,b] by

Iq
a f (x) =

1
Γ(q)

∫ x

a
(x− t)q−1 f (t)dt

for a≤ x≤ b, is called the Riemann-Liouville fractional integral operator of order q.

For q = 0 we set I0
a = I, the identity operator.

Some of the important characterisations of R-L integral operator are as given below.

Theorem 1.2.4. Let f ∈ L1[a,b] and q > 0, then the integral Iq
a f (x) exists for almost

every x ∈ [a,b]. Moreover, the function Iq
a f itself is also an element of L1[a,b].

Theorem 1.2.5. (Commutative Property) Let q1,q2 ≥ 0 and f ∈ L1[a,b]. Then

Iq1
a Iq2

a f = Iq1+q2
a f = Iq2

a Iq1
a f

holds almost everywhere on [a,b]. If additionally f ∈ C[a,b] or q1 + q2 ≥ 1, then the

identity holds everywhere on [a,b].

Theorem 1.2.6. Let q > 0. Assume that ( fk)
∞
k=1 is a uniformly convergent sequence

of continuous functions on [a,b]. Then the fractional integral operator and the limit

process can be interchanged. i.e., (Iq
a lim

k→∞
fk)(x) = ( lim

k→∞
Iq
a fk)(x). In particular, the

sequence of functions (Iq
a fk)

∞
k=1 is uniformly convergent.

Definition 1.2.7. Let q ∈ R+ and m = dqe. The operator Dq
a defined by

Dq
a f = DmIm−q

a f
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is called the Riemann-Liouville fractional differential operator of order q. For q = 0,
we set D0

a = I, Identity operator.

The following theorem states that Dq
a is the left inverse of Iq

a .

Theorem 1.2.8. Let q≥ 0. Then for every f ∈ L1[a,b], Dq
a Iq

a f = f almost everywhere.

1.2.2 Grünwald-Letnikov(G-L) operators

Definition 1.2.9. Let q > 0, m = dqe and f ∈ Cm[a,b] (i.e. a set of functions with a

continuous mth derivative) and a < x≤ b. Then

D̃q
a f (x) = lim

n→∞

1
hq

n

n

∑
k=0

(−1)k

(
q

k

)
f (x− khn)

with hn =
(x−a)

n
and

(
q

k

)
=

Γ(q+1)
Γ(k+1)Γ(q− k+1)

is called the Grünwald-Letnikov

fractional derivative of order q of the function f.

Definition 1.2.10. Let q > 0, f ∈C[a,b] and a < x≤ b. Then

Ĩq
a f (x) =

1
Γ(q)

lim
n→∞

hq
n

n

∑
k=0

Γ(q+ k)
Γ(k+1)

f (x− khn)

with hn =
(x−a)

n
is called the Grünwald-Letnikov fractional integral of order q of the

function f.

Theorem 1.2.11. Let q > 0, m = dqe and f ∈Cm[a,b]. Then, for x ∈ (a,b],

D̃q
a f (x) = Dq

a f (x).

Due to this equivalence of R-L and G-L operators, G-L operator definition or its
variants are utilised to obtain numerical approximation whenever R-L operators are
used in the problem formulation (Podlubny, 1998; Diethelm, 2010).

1.2.3 Caputo operator

Definition 1.2.12. Let q≥ 0 and m = dqe. Then we define the operator cDq
a as

cDq
a f = Im−q

a Dm f

whenever Dm f ∈ L1[a,b], is called Caputo fractional differential operator.
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The relationship between R-L differential operator and Caputo operator is as below:
Let q≥ 0 and m = dqe. Assuming that f is such that both Dq

a f and cDq
a f exist. Then

cDq
a f (x) = Dq

a f (x)−
m−1

∑
k=0

Dk f (a)
Γ(k−q+1)

(x−a)k−q

and cDq
a f (x) = Dq

a f (x) holds if and only if Dk f (a) = 0 for k = 0,1,2, ...m−1.

Again, it can be seen that Caputo derivative is also the left inverse of R-L integral
operator and need not be the right inverse.

Theorem 1.2.13. If f is continuous and q≥ 0, Then cDq
a Iq

a f = f .

Theorem 1.2.14. Let Am[a,b] denotes the set of functions with an absolutely continuous

(m−1)th derivative on [a,b]. Assume that q≥ 0, m = dqe, f ∈ Am[a,b], then

Iq
a

cDq
a f (x) = f (x)−

m−1

∑
k=0

Dk f (a)
k!

(x−a)k (1.2.2)

If f (x) = c, where c is a constant then Dq
a(c) 6= 0, but cDq

a(c) = 0. Due to this
implication, Caputo operator is, in general, considered to model applications.

1.2.4 Mittag-Lefler function

Finally, we introduce the one parameter and two parameter Mittag-Leffler functions
which play a crucial role in the solution of the following non-homogeneous linear
fractional differential equation,

cDqx(t) = µx(t)+ f (t), x(t0) = x0 (1.2.3)

where µ is a real number and f ∈ C([t0,T ]×R,R). Using the Laplace Transform
technique, the solution for non-homogeneous initial value problem (1.2.3) is obtained
as follows

x(t) = x0Eq(µ(t− t0)q)+
∫ t

t0
(t− s)q−1Eq,q(µ(t− s)q) f (s)ds, t ∈ [t0,T ] (1.2.4)

where Eq(t) =
∞

∑
k=0

tk

Γ(qk+1)
and Eq,q(t) =

∞

∑
k=0

tk

Γ(qk+q)
are the Mittag-Leffler

functions of one parameter and two parameter respectively. If f (t) = 0 then the solution
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of the corresponding homogeneous initial value problem is given by

x(t) = x0Eq(µ(t− t0)q), t ∈ [t0,T ] (1.2.5)

Few of the important similarities and differences between R-L and Caputo operators
are given in the Table 1.1.

Property Riemann-Liouville Caputo
Definition Dq

a f (t) = DmIm−q
a f (t) cDq

a f (t) = Im−q
a Dm f (t)

Interpolation
lim
q→m

Dq
a f (t) = f (m)(t) lim

q→m
cDq

a f (t) = f (m)(t)

lim
q→m−1

Dq
a f (t) = f (m−1)(t) lim

q→m−1
cDq

a f (t) = f (m−1)(t)− f (m−1)(a)

Linearity Da
q(λ f (t)+βg(t)) = λDq

a f (t)+βDq
ag(t) cDq

a(λ f (t)+βg(t)) = λ
cDq

a f (t)+β
cDq

ag(t)

Commutativity DmDq
a f (t) = Dm+q

a f (t) 6= Dq
aDm f (t) cDq

aDm f (t) = cDa
m+q 6= Dm cDq

a

Laplace transform L{Dq
a f (t);s}= sqF(s)−

m−1

∑
k=0

sk[Dq−k−1
a ]t=0 L{cDq

a f (t);s}= sqF(s)−
m−1

∑
k=0

sq−k−1 f (k)(0)

f (t) = c =constant Dq
ac =

c
Γ(1−q)

(t−a)(−q) cDq
ac = 0

f (t) = t p Γ(p+1)
Γ(p−q+1)

t p−q m−1 < q < m, p >−1
{

Γ(p+1)
Γ(p−q+1)t

p−q m−1 < q < m, p > m−1, p ∈ R
0 m−1 < q < m, p≤ m−1, p ∈ N

f (t) = eµt t−qE1,1−q(µt)
∞

∑
k=0

µk+mtk+m−q

Γ(k+1+m−q)
= µ

mtm−qE1,m−q+1(µt)

f (t) = cos(µt) 1
2

t−q[E1,1−q(iµt)+E1,1−q(−iµt)]
1
2
(iµ)mtm−q[E1,m−q+1(iµt)+(−1)nE1,m−q+1(−iµt)]

f (t) = sin(µt) −1
2

it−q[E1,1−q(iµt)−E1,1−q(−iµt)] −1
2

i(iµ)mtm−q[E1,m−q+1(iµt)− (−1)nE1,m−q+1(−iµt)]

Table 1.1 Comparison of R-L and Caputo differential operators.

1.3 FRACTIONAL DIFFERENTIAL EQUATIONS

Mathematical models of real-world problems are often represented in the form of
various types of differential equations. In recent decades, scientists and mathematicians
realised the efficiency of fractional differential equations (FDEs) as an appropriate
model to describe any natural or complex phenomena of real-life problems, than using
their classical counterparts. Unlike classical derivative which requires information
about the function at a particular value and its neighbourhood, the fractional derivative
of a function needs information about the function from the starting to the existing
state. This non-local nature of the fractional derivatives makes it to be an excellent tool
in describing the memory and hereditary properties of various materials and processes
(Podlubny, 1998).
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1.3.1 Applications

Oliver Heaviside (1892), an electrical engineer, has introduced fractional differentiation
in the study of electrical transmission line theory (Oldham and Spanier, 1974). After
a break of more than fifty years, modelling or studying problems in terms of fractional
operators started gaining momentum. Nutting equations, which provides a deformation
relations between stress and strain of materials were put into practice by G. W. Blair
and Reiner (1951). Many other studies on materials also lead to fractional calculus
approach: Caputo and Mainardi (1971) on relating stress and strain fields in viscoelastic
materials, Bagley and Torvik (1983) in viscoelasticity and electro chemistry corrosion,
Jaishankar and McKinley (2012) and Faber et al. (2017) have proposed a fractional
constitutive frame work in rheology and so on. Oldham (1972), in his work on electro
analysis has considered an integral of order 1

2 . Sugimoto’s (1991) article discusses
hereditary effects on nonlinear acoustic waves by adding fractional derivative term
to Burgers equation. Many studies by Saichev and Zaslavsky (1997) focuses on
understanding fractal Brownian motion and Lévy process by generalizing space and
time diffusion equations. Experimental results obtained by Ciuchi et al. (2012) in the
study of liquid-crystalline cells indicate that the process is anomalous in nature, which
is described better by fractional diffusion. Other studies that motivate to understand
fractional differential models are: i) Anomalous transport and wave propagations by
West and Nonnenmacher (2001), ii) fractional telegraph equations model to describe
transient sound wave propagations through inhomogeneous materials by Fellah et al.
(2006) iii) Magin (2006) in bioengineering and so on.

1.3.2 Analytical, semi-analytical and numerical methods

After reinventing the idea of generalised derivatives in the beginning of 19th century,
significant efforts were made in obtaining the conditions on existence and uniqueness
of the solutions of various classes of fractional differential and integral equations. Some
of the results in terms of Riemann-Liouville definition can be found in articles by
Al-Bassam (1965); Delbosco and Rodino (1996); Zhang (2000). Podlubny (1998) in
his book also discussed conditions for the existence, uniqueness and well posedness
of the linear and general initial value problems in terms of the Miller-Ross sequential
fractional order derivatives where the cases of classical R-L, G-L and Caputo definitions
can be deduced as special cases. Refer the book by Diethelm (2010) and a survey by
Agarwal et al. (2010) for the results of many special cases of fractional initial and
boundary value problems involving Caputo definition. Refer the articles by Devi et al.
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(2010), Denton et al. (2011), Yakar (2012) and Roy et al. (2018) for results of some
fractional models via quasilinearisation.

Ever since introducing mathematical definitions for fractional order derivatives
and integrals, many attempts were made in obtaining solutions for fractional order
model problems. Though the aim always is to obtain closed-form solutions, which
generally gets restricted to linear problems with simple initial and boundary conditions.
Following are some of works that can be classified into analytical or semi-analytical
(expressed in terms of special functions or infinite series etc.) solutions. The book
by Podlubny (1998) provides details of the work done based on Laplace transforms,
fractional Green’s function, Mellin transforms etc. and gave important references
on operational calculus methods. His book focuses on Laplace transforms for linear
fractional ODEs and PDEs using standard and sequential fractional derivatives and uses
of other methods for single and multi-term initial value problems. Since then there
are many works in this direction to obtain solutions for various classes of fractional
model equations: Laplace transforms (Agrawal, 2002; Wang et al., 2017); Mellin
transforms (Mainardi et al., 2001; Butera and Di Paola, 2015); Adomian decomposition
(Shawagfeh, 1999; Jafari and Daftardar-Gejji, 2006); homotopy perturbation and
homotopy analysis (Song and Zhang, 2007; Odibat and Momani, 2008; Cang et al.,
2009; Ateş and Zegeling, 2017); variational iteration (He, 1998; Wu and Lee, 2010);
differential transform method (Ertürk and Momani, 2008) etc. Though these methods
yield accurate results they are applicable to a limited class of fractional differential
equations. Hence we resort to numerical (discretisation) methods, in order to solve
more class of problems using a single scheme with minor modifications.

Majority of the well-known numerical schemes for classical differential equations
are being extended to FDEs. The traditional mesh-based local approximation methods
like fractional linear multistep methods, finite difference (FD), finite element (FE),
finite volume (FV), etc. are successfully modified in order to solve FDEs. In 1986,
Lubich introduced fractional multistep method to solve fractional integral equations
which yields higher order of convergence. Later Diethelm and Freed (1999) introduced
fractional Adams-Bashforth-Moulton method to solve fractional IVPs with lesser
computational cost than that of Lubich’s scheme, however with slower convergence
rate. In their work, Galeone and Garrappa (2008) obtained explicit formulation and
stability properties of fractional Adams-Bashforth-Moulton method for fractional order
IVPs.

It was Meerschaert and Tadjeran (2004), who has introduced finite difference
method to space-fractional diffusion/dispersion equation, where formulation is based
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on implicit Euler for time derivative and modified Grünwald approximation to the
fractional diffusion term. Zhuang et al. (2008) introduced an implicit approach along
with techniques for enhancing the convergence to an anomalous subdiffusion problem.
Some important contributions are done by Sousa (2009), who also generalised central,
upwind and Lax-Wendroff schemes to fractional advection-diffusion equation. Refer
the article by Li et al. (2016) for finite difference discretisation on nonlinear fractional
models. Liu et al. (2015) generalised point interpolation method for space fractional
diffusion model. Some of the important works on generalising and analysing finite
element and finite volume formulations are done by Ervin et al. (2007); Deng (2008);
Li et al. (2011); Yang et al. (2011); Zhang et al. (2005); Liu et al. (2014a); Simmons
et al. (2017). Since it is apparent that fractional derivatives are non-local operators,
even simple material models or unified principles comes with a high computational
cost in terms of storage, time and overall complexity in numerical algorithms. Due
to this, these local schemes becomes less attractive as they loose the sparse nature
of the coefficient matrices. Hence global methods appear to have certain advantages
in numerical simulation of the fractional derivative models by virtue of their high
accuracy using smaller set of discretisation points.

There are many spectrally convergent global collocation methods based on various
polynomials and special functions: Polynomial splines (Blank, 1996), Chebyshev
polynomials (Khader, 2011) for space fractional diffusion equations, Legendre
polynomials (Zayernouri and Karniadakis, 2014) for FPDEs, Jacobi polynomials
for fractional Fokker-Plank equations (Yang et al., 2018), Galerkin Chebyshev’s
pseudospectral method for space-time fractional diffusion models (Hanert and Piret,
2014). Similar to above developments, a surge of work is directed towards wavelet
schemes on various fractional models. Interests are shown on obtaining solutions based
on different wavelets such as Haar, Chebyshev, Legendre, Bernoulli and so on (Zhu and
Fan, 2012; Saeed and ur Rehman, 2013; Mohammadi and Cattani, 2018). Galerkin
reproducing kernel particle meshfree (Lin et al., 2018) and discontinuous Galerkin
methods are another class where many important developments to solve fractional order
PDEs are taking place (Mustapha and McLean, 2013; Mao and Karniadakis, 2017).

Though most of these methods are accurate and have higher order of convergence,
but extension to higher dimensional problems becomes tedious and sometimes require
appropriate reformulation of the method. So, in our work, naturally meshfree radial
function based global schemes are proposed for some class of fractional differential
equations. Like conventional spectral methods global radial basis function (RBF)
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schemes promise higher order of convergence and accuracy. Additionally, extending
RBF schemes to higher dimensions are, in general, simple.

1.4 RADIAL BASIS FUNCTIONS

On failure of Fourier and polynomial series approximation to fit data on topographic
surfaces, Hardy (1971) constructed a method with basis {

√
(x̄− x̄ j)2 + c2}n

j=1, with
c > 0 and x̄ ∈ R2. Introduction of multiquadric (MQ) was followed by other two
important radial functions, namely inverse multiquadric by Hardy and thin plate splines
(TPS) by Duchon. Subsequently, other radial functions have also come into use for
multidimensional interpolation (see Table 1.2, r = ‖x̄‖2). In their work, Fornberg and
Wright (2004) modified c = 1/ε and we follow this notation throughout the thesis.

These efforts have received a further forward push with the numerical experiment
by Franke (1982) on various approximation methods, to assess their advantages
in terms of CPU time, storage, accuracy, qualitative representation and ease in
implementation. From those trials, he concluded that MQ and TPS have produced best
results in comparison with other methods considered. In the following, we provide
some of the important definitions and results on radial functions based approximations.

Definition 1.4.1. Let X ⊆ Rd, d ≥ 1 be a normed linear space. A function ψ : X → R
is said to be radial if there exists a univariate function φ : R+→ R such that ψ(x̄) =

φ(‖x̄‖) for all x̄ ∈ X. Here ‖.‖, represents some norm in X ⊆ Rd . Usually Euclidean

norm is considered.

Table 1.2 Examples for RBFs.

Name of the radial functions φ(r), r > 0
Infinitely Smooth

Gaussian (GA) e−ε2r2

Multiquadric (MQ)
√

1+ ε2r2

Inverse multiquadric (IMQ)
1√

1+ ε2r2

Inverse quadric (IQ)
1

1+ ε2r2

Sech sech(εr)
Piecewise Smooth

Polyharmonic splines (PS) rβ , 0 < β ∈ (2N−1)
rβ logr, β ∈ 2N
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Conventional radial functions family can be classified into two types: Infinitely
smooth and piecewise smooth functions (Refer Table 1.2 for examples).

Definition 1.4.2. Radial function interpolation: Given a set of n distinct data (x̄i, fi)
n
i=1,

x̄i ∈ Rd, d ≥ 1, the RBF interpolant s(x̄) of the unknown function f (x̄) is expressed as

a linear combination of translates of one particular radial function φ ,

s(x̄) =
n

∑
j=1

λ jφ(‖ x̄− x̄ j ‖) (1.4.1)

The interpolation condition,

s(x̄i) = fi, i = 1, . . .n (1.4.2)

leads to a n × n symmetric linear system Aλ̄ = f̄ , where Ai, j = φ(‖ x̄i − x̄ j ‖),
i, j = 1,2, · · ·n and f̄ = [ f1, f2, ..., fn]

T . λ̄ = [λ1,λ2, ...,λn]
T is an unknown vector, which

has to be determined using interpolation condition (1.4.2). The set {φ(‖x̄− x̄ j‖)}n
j=1 is

the basis, called radial basis functions (RBFs).

Infinitely smooth functions yield accurate results with exponential convergence
rate. The shape parameter ε , as name suggests, effects the shape of those functions.
While ε → 0 provides flatter functions, ε → ∞ makes it sharper. However, the
‘uncertainty principle’ suggested by Schaback (1995) and from other numerical
experiments, it is understood that accuracy (‘ε’ close to 0) and stability (large ‘ε’ -
better condition number) are inversely proportional. Piecewise smooth radial functions
possess algebraic rate of convergence and their accuracy and stability depends on space
dimension and smoothness of the function (on ‘β ’ in Table 1.2).

Consequently the existence of an RBF interpolant for an arbitrary given data,
depends only on the invertibility of the interpolation matrix A defined in Definition
1.4.2. This is ensured by following theorems.

Definition 1.4.3. A real valued continuous function φ : R+→ R is positive definite, if

and only if it is even and the quadratic form
n

∑
j=1

n

∑
k=1

c jckφ(‖ x̄ j− x̄k ‖)≥ 0 for any n

pairwise distinct points x̄1, x̄2, ...x̄n ∈Rd and c = [c1,c2,c3, ...cn]
T ∈Rn. The function φ

is strictly positive definite if the above quadratic form is zero only for c = 0.

Definition 1.4.4. A function φ :R+→R which is in C[0,∞)∩C∞(0,∞) and that satisfies

(−1)lφ (l)(r)≥ 0, r > 0, l = 0,1,2, ... is called completely monotone on [0,∞).
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Gaussian and inverse multiquadrics are examples for complete monotone functions.
In 1938, Schoenberg presented a characterisation theorem for the existence of the
unique solution,

Theorem 1.4.5. If the function φ : R+→R is completely monotone, but not constant if

and only if φ(‖ . ‖2) is strictly positive definite and radial on Rd , for any d ∈ N.

Thus, if φ is completely monotone, then the corresponding RBF interpolation is
uniquely solvable. This ensures that GA and IMQ produces invertible coefficient matrix
A. But, these results fails to generalise the invertibility of the matrix for other popular
RBFs like MQs and TPS. Micchelli (1986) generalised these results, by considering the
notion of conditionally positive definite functions.

Definition 1.4.6. A real-valued continuous even function φ is called conditionally

positive definite of order M on Rd if
n

∑
j=1

n

∑
k=1

c jckφ(‖ x̄− x̄ j ‖) ≥ 0 for any n pairwise

distinct points x̄1, x̄2, ..., x̄n ∈Rd and c = [c1,c2, ...,cn]
T ∈Rn satisfying

n

∑
j=1

c j p(x̄ j) = 0

for any real-valued polynomial p of degree at most (M− 1). The function φ is called

strictly conditionally positive definite of order M if the quadratic form is zero only for

c = 0.

Thus according to Micchelli, the generalised form of RBF interpolation problem
takes the following form,

Definition 1.4.7. Given a set of n distinct data (x̄i, fi)
n
i=1, x̄i ∈ Rd, d ≥ 1, the RBF

interpolant in (1.4.1) has been modified to ,

s(x̄) =
n

∑
j=1

λ jφ(‖ x̄− x̄ j ‖)+
l

∑
j=1

γ j p j(x̄), x̄ ∈ Rd. (1.4.3)

where p j(x̄)
l
j=1 is a basis for Πd

(M−1) (space of all d-variate polynomials with degree

≤ (M−1)) and l =
(M−1+d

M−1

)
, is the dimension of Πd

(M−1). Here, M is called the order

of the radial basis function, which represents the minimum degree of the polynomial to

be appended to the interpolant to ensure the non-singularity of the interpolation matrix.

However, to take care of the extra degrees of freedom in (1.4.3), l extra conditions are

necessary along with the interpolation condition (1.4.2) i.e.,

n

∑
j=1

λ j pk(x̄ j) = 0, pk ∈Π
d
M−1, k = 1,2, . . . , l (1.4.4)
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This leads to an (n+ l)× (n+ l) system i.e.,(
A P

PT 0

)(
λ̄

γ̄

)
=

(
f̄

0̄

)
(1.4.5)

where Ai j = φ(‖x̄i− x̄ j‖), i, j = 1,2, ...,n, Pi j = p j(x̄i), i = 1,2, ...,n, j = 1,2, ..., l,
0 is the l × l zero matrix, f̄ = [ f1, f2, ..., fn]

T , 0̄ is a zero vector of length l. λ̄ =

[λ1,λ2, ...,λn]
T and γ̄ = [γ1,γ2, ...,γn]

T are unknown vectors to be determined.

In his work, Micchelli (1986) has also shown that it is not necessary to append
polynomial to MQ for unique solvability, conjectured by Franke. Influenced by
Micchelli, Buhmann (2003) proved the following,

Theorem 1.4.8. Let g ∈ C∞[0,∞) be such that g′ is completely monotonic but not

constant, suppose further that g(0)≥ 0, then A is non-singular for φ(r) = g(r2).

1.5 RBF FOR DIFFERENTIAL EQUATIONS

Despite some of the shortcoming like exponential increasing in condition number as
ε→ 0 or number of data increases, radial functions based approximations have received
wide acceptance in practical applications. This is due to the efforts in stabilising the
system by means of preconditioned or by changing the representation of the basis
(Beatson et al. (1999); Ling and Kansa (2005), variable shape parameters (Kansa,
1990)). Since part of our work focuses on ‘stable computation’ of RBF solutions, a
brief literature survey is provided in Chapter 4.

Considering the advantages of radial functions over traditional approximation
methods, Kansa (1990) have proposed a collocation method, also known in the literature
as symmetric/direct collocation method. In his work, the proposed scheme was applied
to two dimensional BVP like Laplace equation as well as IBVPs like heat and wave
equations. The method became highly successful due to the ease in implementation
to any dimension, even though a detailed theoretical convergence analysis is missing in
the literature. Following this, many other formulations are proposed, namely, integrated
RBF (Mai-Duy and Tran-Cong, 2001), RBF-DQ (Wu and Shu, 2002), symmetric
collocation, moving least square (Fasshauer, 2007) and finite difference type RBF
schemes (RBF-FD) (Wright and Fornberg, 2006; Chandhini and Sanyasiraju, 2007).
Refer books by Chen et al. (2014) and Fornberg and Flyer (2015) for application of
these methods to many practical problems.
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1.5.1 RBF for fractional differential equations

It was Chen et al. (2010b), who made the first attempt to use the Kansa’s method in
determining the solution of the time fractional diffusion equations. Thereafter RBF
based collocations schemes were applied to some of the important time fractional
partial differential equations such as anomalous sub-diffusion, fractional diffusion
and advection-diffusion problems (Brunner et al., 2010; Chen et al., 2010a; Liu et al.,
2011; Uddin and Haq, 2011; Shirzadi et al., 2012; Yan and Yang, 2015). Also,
other equations for which RBF based methods have been considered are fractional
variants of Schrödinger equation (Mohebbi et al., 2013) and telegraph equation
(Hosseini et al., 2014), fractal mobile/immobile transport model (Liu et al., 2014b),
Sine-Gordon and Klein-Gordon equations (Dehghan et al., 2015), nonlinear time
fractional integro-differential equations (Aslefallah and Shivanian, 2015) and so on.
All these time fractional differential equations were solved by discretising the time
fractional derivative mentioned in the equation using finite difference method and then
Kansa’s method is applied to approximate the integer order spatial derivatives. Some
other RBF formulations in terms of moving least squares and Galerkin approaches
for time fractional problems (Yang et al., 2015; Dehghan et al., 2016) are reported in
literature. These results again suggests RBF approximations are considered only for
integer order space derivatives involved.

Compared to time fractional differential equations, space fractional differential
equations were considered less in literature may be because multi-dimensional space
fractional derivatives are difficult to handle due to vector integral representation.
Piret and Hanert (2013) have extended RBF algorithm to space fractional diffusion
problems with RBF-QR to overcome ill-conditioning of the discretised system.
Also, Kansa’s asymmetric collocation method was found successful in solving the
space-fractional advection-dispersion equations (Pang et al., 2015), two-dimensional
fractional evolution equations (Ghehsareh et al., 2015), spatiotemporal fractional
diffusion equation (Sun et al., 2017). A recent work by Zhu et al. (2018) shows
application of RBF-DQ method on space fractional diffusion equation. Further, there
are a few attempts to solve fractional ordinary differential equations using Kansa’s
approach: Fakhr Kazemi and Ghoreishi (2013); Antunes and Ferreira (2015).

As discussed in earlier, only a few works have focused on developing schemes
to approximate fractional order derivatives using radial functions. Apart from this,
many natural phenomena are nonlinear in nature, which leads to nonlinear governing
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equations. While dealing with the schemes for nonlinear equations, it is not only
to be concerned about the accurate solution but also about the convergence of the
algorithm. So, in our work, we made an attempt to develop radial basis functions
based schemes for a class of fractional nonlinear differential equations both in one and
two dimensions. Prior to RBF formulation, each fractional model is linearised to a
sequence of linear fractional DEs either via generalised quasilinearisation or successive
approximation. Then, the existence and uniqueness of the solutions of the chosen
problems and convergence of the iterative techniques are also proved.

Inspite of high accuracy and order of convergence, radial functions based schemes
suffer instability due to ill-conditioning of the discretised system. i.e., RBFs are
sensitive to both shape parameter and closeness of the nodal points in the domain.
This disadvantage is observed even while approximating fractional order derivatives.
Hence, in the thesis, we also propose two stabilisation methods based on Tikhonov
regularisation as well as RBF-QR algorithms.

1.6 ORGANISATION OF THE THESIS

The thesis comprises of five chapters.

To make the thesis self-supportive, Chapter 1 gives a brief introduction on fractional
order calculus, their applications and radial basis functions. Some preliminary results
required and a detailed literature survey are also presented in this chapter.

In Chapter 2, the proposed radial basis functions based methods, differentiated
(Kansa’s) and integrated schemes, for nonlinear fractional order differential equations
are derived in detail. Before discretisation, the nonlinear problem is linearised
using generalised quasilinearisation. An interesting proof via generalised monotone
quasilinearisation for the existence and uniqueness for fractional order initial value
problem is given. This convergence analysis also proves quadratic convergence of the
generalised quasilinearisation method. Variety of examples are provided to show the
quadratic convergence of the proposed quasilinearisation. Through these examples, we
also compare between the two RBF schemes as well as with the results available in
some of the recent literature.

Chapter 3 details formulation of Kansa’s differentiated RBF scheme to fractional
Darboux problem, a fractional nonlinear partial differential equation. Unlike in
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Chapter 2, linearisation is obtained through successive approximation. In addition,
existence and uniqueness of the solution of fractional Darboux problem is proved via
successive approximation. Many example problems are compared for accuracy, rate of
convergence, optimal shape parameters and CPU time, wherever possible.

The focus of Chapter 4 is on stabilisation algorithms for fractional models, due
to the inherent ill-conditioning issues pertains to RBF schemes. To overcome this,
two algorithms, based on Tikhonov regularisation and RBF-QR methods are proposed
to approximate fractional derivatives and fractional differential equation models.
RBF-QR by Fornberg et al. (2011), which was restricted to Gaussian, is generalised to
consider all infinitely smooth radial functions.

Finally, Chapter 5 summarises the work highlighting the observed advantages,
issues and problems. Also the chapter suggests possible improvements on some of
these issues to tackle in the future.
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CHAPTER 2

DIRECT AND INTEGRATED RADIAL
FUNCTIONS BASED
QUASILINEARISATION SCHEMES FOR
NONLINEAR FRACTIONAL
DIFFERENTIAL EQUATIONS

2.1 INTRODUCTION

Many mathematical models of physical phenomena can be expressed as nonlinear
ordinary differential equations (ODEs). Some of the well-known nonlinear ODEs are
Riccati equation, Van der Pol oscillators problem, Lane-Emden equation and Painlevé
equation. As discussed in the earlier chapter, fractional counterparts of many classical
differential equations can be effective and accurate models to describe any physical
phenomena. Though there are a few attempts of Kansa’s radial functions method to
fractional PDEs, efforts on solving fractional ODEs using Kansa’s or even other RBF
schemes are rare in the literature. Hence, in the work presented in this chapter, we
extend two radial basis functions based schemes namely differentiated and integrated
(DRBF and IRBF) methods, to nonlinear fractional initial and boundary value problems
with governing equation,

cDq
ax(t) = h(t,x) (2.1.1)

Appropriate initial or boundary conditions are considered. Here, h is continuous and
(m−1)< q≤ m, m ∈ N.

Another important contribution in the present chapter is that it also proves the
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existence and uniqueness of the solution of fractional order initial value problem via
generalised monotone quasilinearisation method. Though a few results are available
in the literature regarding generalised monotone quasilinearisation Devi et al. (2010);
Denton et al. (2011), the convergence analysis is based on the comparison theorem
for fractional order initial value problem. In contrast to the literature, the proposed
proof is based on the fixed point theorem in Banach space (Lakshmikantham et al.,
2009; Vijesh and Kumar, 2015) and also make use of some interesting properties of
generalised Mittag-Leffler function (Miller and Samko, 2001; Schneider, 1996).

The remaining part of the chapter is organised as follows: Section 2.2 provides
a detailed proof on the existence and uniqueness of the solution of fractional initial
value problems and convergence of the quasilinearisation. In section 2.3, the RBF
discretisations (DRBF and IRBF) for the fractional ODE (2.1.1) with initial condition is
detailed when 0< q≤ 1. The proposed schemes are validated using variety of fractional
problems in Section 2.4. Then the chapter is summarised in Section 2.5, citing various
advantages and possible improvements.

2.2 CONVERGENCE ANALYSIS

Many interesting existence and uniqueness theorem for fractional order initial
value problem discussed in the literature are proved using various fixed point
theorems. In some cases, though they produce an iterative scheme to approximate
the unique solution, the order of the convergence of the scheme is linear. Recently,
Lakshmikantham et al. (2009) have proposed a fixed point theorem in Banach space
and show its application to prove the existence and uniqueness theorem for classical
initial value problem and semilinear parabolic initial boundary value problem via
monotone quasilinearisation method. In contrast to the classical fixed point theorem,
the iterative scheme, in their work, converges to the unique solution quadratically. An
interesting extension of this fixed point theorem is studied by Vijesh and Kumar (2015),
which is a key tool for the proposed proof on existence, uniqueness and convergence
of fractional order DE given in (2.1.1) with 0 < q≤ 1 and x(0) = x0. Before providing
the proof, we state the main results by Vijesh and Kumar (2015) in the following.

Theorem 2.2.1. (Vijesh and Kumar, 2015) Let E be an ordered Banach space with a

normal order cone E+. Assume that T̂ : E→ E satisfies the following hypotheses

1. There exists v0,w0 ∈ E such that v0 ≤ T̂ v0, T̂ w0 ≤ w0 and v0 ≤ w0; F,G :
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[v0,w0]→ E are compact where, T̂ = F +G;

2. The Frechet derivative F ′u and G′u exist for every u ∈ [v0,w0]; u→ F ′uv and

u→ G′uv are increasing and decreasing, respectively, on [v0,w0] for all v ∈ E+;
3.

Fu0−Fu1 ≤ F ′u0(u0−u1) whenever v0 ≤ u0 ≤ u1 ≤ w0. (2.2.1)

Gu0−Gu1 ≤ G′u1(u0−u1) whenever v0 ≤ u0 ≤ u1 ≤ w0. (2.2.2)

4. (I−F ′v−G′w)
−1 exists and it is a bounded positive operator for all v,w ∈ [v0,w0].

Then for k ∈ N, relations

vk+1 = T̂ vk +(F ′vk +G′wk)(vk+1− vk) (2.2.3)

wk+1 = T̂ wk +(F ′vk +G′wk)(wk+1−wk) (2.2.4)

define an increasing sequence {vk} and a decreasing sequence {wk} which

converges to the solutions of the operator equation T̂ x = x. These fixed points

are equal if T̂ u1− T̂ u0 < u1−u0 for all v0 ≤ u0 < u1 ≤ w0.

Proposition 2.2.2. (Vijesh and Kumar, 2015) Let T̂ satisfy all the hypotheses of

Theorem 2.2.1 and

1. ‖F ′u−F ′v‖ ≤ L1‖u−v‖ and ‖G′u−G′v‖ ≤ L2‖u−v‖ for all u,v ∈ [v0,w0] for some

L1 and L2 > 0.

2. M = sup{‖(I−F ′u−G′v)
−1‖ : u,v ∈ [v0,w0]}< ∞.

Then the sequences {vk} and {wk} converge quadratically to the same fixed point of T̂ .

To proceed further, we consider following definitions and assumptions: Let
v0,w0 ∈C[0,T ] said to be a ordered lower and upper solution of (2.1.1), if v0 ≤ w0 and
cDqv0 ≤ h(t,v0),v0(0)≤ x0 and cDqw0 ≥ h(t,w0),w0(0)≥ x0.

Assume that h has the decomposition as f + g. For the function f , f2 denotes the
partial derivative of f with respect to the second variable. Assume,

(I1) Let v0,w0 ∈ C[0,T ] be an ordered lower and upper solution for (2.1.1). Define
m1 = inft∈[0,T ]{v0,w0} and m2 = supt∈[0,T ]{v0,w0}

(I2) For some δ > 0, the functions f ,g, f2,g2 are in C([0,T ]× [m1−δ ,m2 +δ ])
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(a) Let µ ≥ 0 be such that for all t ∈ [0,T ] and s1,s2 ∈ [m1−δ ,m2 +δ ]

f2(t,s1)+g2(t,s2)+µ ≥ 0 (2.2.5)

(b) For each t ∈ [0,T ], f2 : [0,T ]× [m1,m2] → R are increasing in second
variable;

(c) For each t ∈ [0,T ], g2 : [0,T ]× [m1,m2] → R are decreasing in second
variable;

(d) For each t ∈ [0,T ], | f2(t,x)− f2(t,y)| ≤ L1|x−y|, L1≥ 0 and x,y∈ [m1,m2];

(e) For each t ∈ [0,T ], |g2(t,x)−g2(t,y)| ≤ L2|x−y|, L2≥ 0 and x,y∈ [m1,m2].

Using the lower solution v0 and the upper solution w0 as initial guess one can construct
two sequences {vk} and {wk} using the generalised quasilinearisation iterative scheme
as follows

cDqvk+1 = h(t,vk)+ f2(t,vk)(vk+1− vk)+g2(t,wk)(vk+1− vk); (2.2.6)

vk+1(0) = x0

cDqwk+1 = h(t,wk)+ f2(t,vk)(wk+1−wk)+g2(t,wk)(wk+1−wk); (2.2.7)

wk+1(0) = x0

The following theorem, ensures the well defined property, monotone property of
(2.2.6) and (2.2.7) as well as their quadratic convergence to the unique solution of
(2.1.1).

Theorem 2.2.3. Let the hypotheses I1 and I2 be satisfied then the initial value problem

(2.1.1) has a unique solution in the sector [v0,w0]. Moreover the sequences {vk} and

{wk} converges uniformly, monotonically and quadratically to the unique solution of

(2.1.1).

Proof The initial value problem (2.1.1) can be rewritten as

cDqx(t)+µx(t) = h(t,x(t))+µx(t), x(0) = x0 (2.2.8)

The above initial value problem (2.2.8) is equivalent to the integral equation

x(t) = x0Eq(−µtq)+
∫ t

0
(t− s)q−1Eq,q(−µ(t− s)q)(h(s,x(s))+µx(s))ds (2.2.9)
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Define an operator T̂ : C[0,T ]→C[0,T ] by

T̂ x(t) = x0Eq(−µtq)+
∫ t

0
(t− s)q−1Eq,q(−µ(t− s)q)(h(s,x(s))+µx(s))ds (2.2.10)

It is easy to verify that the operator is well defined and the solution of the initial
value problem (2.1.1) is nothing but the solution of the operator equation T̂ x = x. Note
that the operator T̂ can be decomposed as F +G where F and G are given by

Fx(t) = x0Eq(−µtq)+
∫ t

0
(t− s)q−1Eq,q(−µ(t− s)q)( f (s,x(s))+µx(s))ds

Gx(t) =
∫ t

0
(t− s)q−1Eq,q(−µ(t− s)q)g(s,x(s))ds

According to the Lemma 2.1 given by Vijesh and Kumar (2015), the Frechet
derivative of F and G exists for all u ∈ [v0,w0] and the Frechet derivative is given by

F ′u(h) =
∫ t

0
(t− s)q−1Eq,q(−µ(t− s)q)( f2(s,u(s))+µ)h(s)ds

G′u(h) =
∫ t

0
(t− s)q−1Eq,q(−µ(t− s)q)g2(s,u(s))h(s)ds

For any u,v ∈ [v0,w0] define T (u,v) by

T (u,v)h(t) =
∫ t

0
(t− s)q−1Eq,q(−µ(t− s)q) [ f2(s,u(s))+g2(s,v(s)) +µ]h(s)ds.

Using the results by Schneider (1996), It is easy to see that Eq,q(−t), t ≥ 0 is a
completely monotone function. Moreover the completely monotone function cannot
vanish for any positive value (see Miller and Samko, 2001). Thus Eq,q(−t)> 0, t ≥ 0.
Consequently Eq,q(−µtq)≥ 0 for any positive µ and t ≥ 0. Combining with this choice
of µ it can be conclude that for any u and v in [v0,w0], the operator T (u,v) is positive
bounded operator. Define a norm on C[0,T ] by ‖h‖ρ = supt∈[0,T ]

∣∣∣ h(t)
Eq(ρtq)

∣∣∣. Clearly ‖·‖ρ

is equivalent to ‖ · ‖∞. For any u,v ∈ [v0,w0] and h ∈C[0,T ] with ‖h‖ρ = 1,

|T (u,v)h(t)| =

∣∣∣∣∫ t

0
(t− s)q−1Eq,q(−µ(t− s)q) [ f2(s,u(s))+g2(s,v(s)) +µ]h(s)ds

∣∣∣∣
≤ MΓ(q)

Γ(q)

∫ t

0
(t− s)q−1|h(s)|ds, M ≥ 0, a constant

≤ MΓ(q)
Γ(q)

∫ t

0
(t− s)q−1Eq(ρsq)

∣∣∣∣ h(s)
Eq(ρsq)

∣∣∣∣ds

≤
MΓ(q)‖h‖ρ

ρ
Eq(ρtq)
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∣∣∣∣T (u,v)h(t)
Eq(ρtq)

∣∣∣∣ ≤ MΓ(q)
ρ

Thus ‖T (u,v)‖ ≤ MΓ(q)
ρ

. Now choose ρ > MΓ(q). Hence ‖T (u,v)‖ ≤ ρ < 1

where ρ = MΓ(q)
ρ

. Note that for any h ∈C[0,T ] with ‖h‖ρ = 1 and u,v ∈ [v0,w0]

(G′u−G′v)h =
∫ t

0
(t− s)q−1Eq,q(−µ(t− s)q)[g2(s,u(s))−g2(s,v(s))]h(s)ds

|(G′u−G′v)h| ≤ L2

∫ t

0
(t− s)q−1[Eq(ρsq)]2

∣∣∣∣u(s)− v(s)
Eq(ρsq)

∣∣∣∣ ∣∣∣∣ h(s)
Eq(ρsq)

∣∣∣∣ds

≤ L2Eq(ρT q)
∫ t

0
(t− s)q−1Eq(ρsq)

∣∣∣∣u(s)− v(s)
Eq(ρsq)

∣∣∣∣ ∣∣∣∣ h(s)
Eq(ρsq)

∣∣∣∣ds

≤ L2Eq(ρT q)‖u(s)− v(s)‖
∫ t

0
(t− s)q−1Eq(ρsq)ds∣∣∣∣(G′u−G′v)h

Eq(ρtq)

∣∣∣∣ ≤ L2Γ(q)Eq(ρT q)

ρ
‖u− v‖

Thus ‖G′u −G′v‖ ≤
L2Γ(q)Eq(ρT q)

ρ
‖u− v‖. Consequently u → G′u is Lipschitz

continuous. Similarly it can be seen that u→ F ′u is Lipschitz continuous. For any
h ∈C[0,T ] with ‖h‖ρ = 1 and u0,u1 ∈ [v0,w0] with u0 ≤ u1

Gu0−Gu1 =
∫ t

0
(t− s)q−1Eq,q(−µ(t− s)q)[g(s,u0(s))−g(s,u1(s))]ds

=
∫ t

0
(t− s)q−1Eq,q(−µ(t− s)q)

∫ 1

0
g2(s,u0 +θ(u1−u0))

(u0−u1)dθds

≤
∫ t

0
(t− s)q−1Eq,q(−µ(t− s)q)g2(s,u1(s))(u0−u1)ds

Gu0−Gu1 ≤ G′u1(u0−u1)

Similarly one can show Fu0 − Fu1 ≤ F ′u0(u0 − u1) whenever v0 ≤ u0 ≤ u1 ≤
w0. Thus all the hypotheses of Theorem 2.2.1 and Proposition 2.2.2 are satisfied.
Consequently the operator equation T̂ x = x has a unique solution in [v0,w0] and hence
the fractional differential equation (2.1.1) with initial condition x(0)= x0, 0< q≤ 1 has
a unique solution in [v0,w0]. In this case, it is also easy to verify that (2.2.3) and (2.2.4)
becomes (2.2.6) and (2.2.7), respectively. Thus the generalised quasilinearisation
iterative scheme converges monotonically and quadratically to the unique solution of
the initial value problem (2.1.1).

Remark 2.2.4. Generalisation of the above theorem to corresponding initial value
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problems with q > 1 is straightforward.

2.3 DIFFERENTIAL AND INTEGRATED RBF SCHEMES

In the following, we derive both Kansa’s method (DRBF) and integrated scheme (IRBF)
for the linearised fractional problems (2.2.6) and (2.2.7). Let vk and wk represent kth

iterates of lower and upper solutions, respectively.

2.3.1 DRBF scheme

In this method, the solution is represented as linear combination of radial basis functions
as follows. i.e., the solutions can be expressed as,

vk+1(t) =
n

∑
j=1

(λv)
k+1
j φ(‖t− t j‖)+

l

∑
j=1

(γv)
k+1
j p j(t) (2.3.1)

wk+1(t) =
n

∑
j=1

(λw)
k+1
j φ(‖t− t j‖)+

l

∑
j=1

(γw)
k+1
j p j(t) (2.3.2)

where t j, j = 1,2, ...,n, are collocation points distributed in the given interval.
Assuming sufficient smoothness of φ , (2.3.1) is substituted in both governing equation
(2.2.6) and corresponding initial condition at each node ti. These equations along with
l extra conditions given in (1.4.4) leads to an (n+ l)× (n+ l) linear system,(

Ak Bk

P 0

)(
λ̄ k+1

v

γ̄k+1
v

)
=

(
F̄k

0̄

)
(2.3.3)

where Ak, Bk and P are matrices of sizes n×n, n× l and l×n, respectively. 0 is a zero
matrix of order l. The components of these submatrices are

Ps j = ps(t j)

Ak
i j =

{
cDq

aφ(‖ti− t j‖)− ( f2(ti,vk
i )+g2(ti,wk

i ))φ(‖ti− t j‖) if ti ∈ (a,b].

φ(‖ti− t j‖) if ti = a

Bk
is =

{
cDq

a ps(ti)− ( f2(ti,vk
i )+g2(ti,wk

i ))ps(ti) if ti ∈ (a,b].

ps(ti) if ti = a

where i, j = 1,2, . . .n, s = 1,2, ..., l and λ̄ k+1
v = [(λv)

k+1
1 ,(λv)

k+1
2 , ...,(λv)

k+1
n ]T ,
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γ̄k+1
v = [(γv)

k+1
1 ,(γv)

k+1
2 , ...,(γv)

k+1
l ]T are the column vectors containing unknowns. On

the RHS of the matrix equation, 0̄ is a zero vector of length l and F̄k = [Fk
1 ,F

k
2 , ...,F

k
n ]

T

is a vector with the entries,

Fk
i =

{
h(ti,vk

i )− vk
i ( f2(ti,vk

i )+g2(ti,wk
i )) if ti ∈ (a,b).

x0 if ti = a

A similar derivation is obtained for (2.2.7) using (2.3.2), which gives the upper solution
wk+1.

2.3.2 IRBF scheme

In this method, the formulation of the problem starts with the decomposition of the
highest order derivative under consideration as a linear combination of RBFs. The
obtained derivative expression is then integrated to yield expressions for lower order
derivatives and finally for the original function itself.

To derive the scheme, both cDq
avk+1(t) and cDq

awk+1(t), respectively in (2.2.6) and
(2.2.7) are represented as,

cDq
avk+1(t) =

n

∑
j=1

(λv)
k+1
j φ(‖t− t j‖) (2.3.4)

cDq
awk+1(t) =

n

∑
j=1

(λw)
k+1
j φ(‖t− t j‖) (2.3.5)

where t j, j = 1,2, ...,n, are collocation points distributed in the given interval. Applying
the fractional integral operator Iq

a on both the sides of (2.3.4) leads to

vk+1(t) =
n

∑
j=1

(λv)
k+1
j Iq

a φ(‖t− t j‖)+(γv)
k+1
1 (2.3.6)

Equation (2.3.6) is analogous to (2.3.1), however linear combination of fractional
integral of RBFs. Extra constant term is due to integration, while in (2.3.1) a polynomial
term is appended. The integration leads to a higher order polynomial according to the
order of the equation q. We can use Theorem 1.2.14 for initial value problems, however
incorporation of initial conditions at t = 0 leads to singular system. Discretizing the
fractional DE in (2.2.6) and (2.2.7) and the corresponding initial conditions using

24



(2.3.4)-(2.3.6) and taking care of extra degrees of freedom using the normal equation

n

∑
j=1

(λv)
k+1
j = 0 (2.3.7)

leads to a linear system of order (n+1)× (n+1),(
Ak Bk

P 0

)(
λ̄ k+1

v

γ̄k+1
v

)
=

(
F̄k

0

)
(2.3.8)

where A, B and P are matrices of sizes n× n, n× 1 and 1× n, respectively. The
components of these submatrices are: Ps j = (t j−a)s−1

Ak
i j =

{
φ(‖ti− t j‖)− ( f2(ti,vk

i )+g2(ti,wk
i ))I

q
a φ(‖ti− t j‖) if ti ∈ (a,b].

Iq
a φ(‖ti− t j‖) if ti = a

Bk
is =

{
−( f2(ti,vk

i )+g2(ti,wk
i )) if ti ∈ (a,b].

1 if ti = a.

where i, j = 1,2, . . .n and s = 1. The vector F̄k in the RHS of the matrix equation
(2.3.8) has entries same as that in the case of DRBF equation. A similar system is
obtained for sequence of upper solutions {wk}.

The obtained systems (in both the schemes) are to be solved at each iteration so that
both {vk} and {wk} converge to the solution of (2.1.1) with x(0) = x0, 0 < q≤ 1.

2.3.3 Gauss-Jacobi quadrature rule

The linear systems (2.3.3) and (2.3.8) have components involving fractional derivatives
or integrals of radial functions. Gauss-Jacobi quadrature rule is employed to calculate
those integrals, where integral takes a general form

∫ t
a(t − τ)β F(τ)dτ . Substitution

τ =

(
(t+a)

2 − (t−a)
2 ξ

)
reduces the integral in the form

∫ 1
−1(1+ ξ )β F(ξ )dξ , which is

suitable form to use Gauss-Jacobi method for which the integral must be of the form∫ 1
−1W (ξ )F(ξ )dξ , where W (ξ ) = (1− ξ )s1(1+ ξ )s2 with s1,s2 > −1. In the present

case s1 = 0 and s2 = β . Then the integral is approximated as,

∫ 1

−1
(1−ξ )s1(1+ξ )s2F(ξ )dξ ≈

N

∑
p=1

WpF(ξp) (2.3.9)

25



where N is the number of quadrature points chosen for the evaluation. The quadrature
points {ξp}N

1 are the roots of the Jacobi polynomial P(s1,s2)
N of degree N and {Wp}N

1

are the corresponding weights computed using the algorithm by Hale and Townsend
(2013):

Wp =
Γ(N + s1 +1)Γ(N + s2 +1)

Γ(N + s1 + s2 +1)N!
2s1+s2+1

(1−ξ 2
p)[(P

(s1,s2)
N )′(ξp)]2

, p = 1,2, ...,N. (2.3.10)

2.4 NUMERICAL ILLUSTRATIONS

This section provides illustration of the schemes discussed through various fractional
ODE models. The results are obtained using MATLAB2014a. Multiquadric radial
function is chosen for all the computations for which the optimal shape parameter
for each case has been obtained by trial and error. Both uniform and nonuniform
nodal distributions are considered. Unless specified, Chebyshev-Gauss-Lobotto nodes,(

1−cos(iπ/n)
2

)
, i = 0,1, . . . ,n are chosen to distribute points nonuniformly. Accuracy of

the schemes are compared by calculating both root mean square as well as maximum
error using the formulae,

RMS error =

√
1
n

n

∑
j=1

[x(t j)− xapp(t j)]2; L∞error = max
1≤ j≤n

|x(t j)− xapp(t j)|

Also, numerical rate of convergence of the schemes are obtained by making nodal
distribution coarser to finer to see how fast the solution converges to analytical solution
(As ∆t→ 0).

Example 2.4.1. Consider cDqx+x+x2 = [Eq(−tq)]2, 0 < t < 1, 0 < q≤ 1, x(0) = 1

Analytical solution is x(t) = Eq(−tq), where Eq represent one parameter Mittag-Leffler

function defined by Eq(z) =
∞

∑
k=0

zk

Γ(qk+1)
. According to the decomposition of h(t,x) =

f (t,x)+ g(t,x) discussed in Section 2.2, f ≡ 0, g(t,x) = [Eq(−tq)]2− x− x2. Initial
approximation for the lower and upper solutions v0 and w0, respectively are 0 and
Eq(−tq). Hence, it is not necessary to use iteation (2.2.6) and iteration for upper
solution (2.2.7) leads to

cDqwk+1 = (−wk− (wk)2)+ [Eq(−tq)]2− (1+2wk)(wk+1−wk); wk+1(0) = x(0) = 1

IRBF solutions along with exact solutions are plotted in Figure 2.1 for various

26



values of q. It can be seen that the solutions are visually indistinguishable from each
other. For a detailed study we have compared the accuracy, rate of convergence etc.
between the two proposed RBF schemes. Table 2.1 gives both RMS and L∞ errors
obtained using both uniform and nonuniform nodes (n = 11) with corresponding
optimal shape parameter ε . Clearly, IRBF solution shows better accuracy, especially as
q decreases.

Table 2.2 and 2.3 present numerical rate of convergence obtained by varying n from
21 to 81 set of nodes, for q ranging from 0.1 to 1. The results are given for ε = 8. For
q = 1,0.75, IRBF methods shows good rate of convergence. Gauss-Jacobi integration
requires only 8 quadrature points in IRBF scheme, whereas DRBF shows similar
accuracy only when q = 1. For q < 1, rate of convergence is very low and also requires
more number of quadrature points to obtain converged solutions. i.e., For the DRBF
scheme, number of quadrature points are increased to 20, 30 and 40, respectively for
q = 0.5,0.25 and 0.1 to have a positive rate of convergence. This increases the required
computational time. Further, Table 2.3 also reveals the effect of quadrature points on
convergence and accuracy for both the schemes. Integrated RBF scheme is saturated
with 8 points, however improvements (nonconvergence to convergence) are seen in
DRBF performance with respect to the increase in quadrature points. One reason for
such a scenario is the effect of ill-conditioning of the collocation matrix, which is
handled better in integrated RBF schemes.

Figure 2.2 illustrate the convergence of the generalised quasilinearisation to the
exact solution by plotting error with respect to iteration. As proved in Section 2.2,
it can be seen that convergence is monotone.

Example 2.4.2. The problem cDqx(t) = g1(t)− x2(t), 0 < t < 1 with IC(s) x(0) =
0 (x′(0) = 0 if 1 < q≤ 2) has analytic solution x(t) = t5 + 3

2t4−2t(2+q), where

g1(t) =
Γ(6)

Γ(6−q)t
(5−q) + 36

Γ(5−q)t
(4−q)− Γ(3+ q)t2 + (t5 + 3

2t4− 2t(2+q))2. Using finite

difference schemes, Li et al. (2016) has solved the example.

For this example also, f ≡ 0, hence g(t,x) = g1(t)− x2. i.e., To obtain the
converged solution, it is not required to compute {vk}. Initial approximation required
for evaluating {vk} and {wk} are v0 = 0 and w0 = 3, according to Theorem 2.2.3.

This problem is solved for both the cases 0 < q ≤ 1 and 1 < q ≤ 2. Both the
schemes are compared (See Tables 2.4 and 2.6) and further they are compared with
the finite difference schemes proposed by Li et al. (2016) in Table 2.5. Figure 2.3
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shows a qualitative comparison of IRBF solutions with exact solutions. Unlike in
Example 2.4.1, performance of both the schemes are equally good. When the accuracy
is compared to that of the methods by Li et al. (2016) at t = 1, RBF collocation schemes
provides better accuracy using far lesser set of nodes. Influence of quadrature points on
convergence/accuracy is also validated in Table 2.7 for both q = 0.1 and 1.1. Like in
earlier examples, as q decreases 2≥ q > 1 (or) 1≥ q > 0, it is noticed that the number
of quadrature points required for effective implementation of DRBF also increases.
However, IRBF is not constrained with such a condition, hence computationally robust.
Like in earlier example, Figure 2.4 shows that the sequence {wk} obtained using (2.2.6)
are monotone.

Example 2.4.3. Consider the IVP cDqx = t6 + Γ(3.5)
Γ(3.5−q)t

(2.5−q)− tx2, 0 < t < 1, 0 <

q < 1, x(0) = 0, solved using a neural network approach by Qu and Liu (2015). The

exact solution is given by x(t) = t(5/2).

This example also has g(t,x) = h(t,x) and f ≡ 0, which makes computation of
lower solution {vk} not ncecessary. However, initial approximations are v0 = 0 and
w0 = t5/2 +1 to use the iterative formulae (2.2.6) and (2.2.7). Using them the solutions
are obtained and monotonicity is shown through Figure 2.6.

Analytical solution for this example does not depend on q. As observed through
Figure 2.5 and Tables 2.8-2.11, both the schemes provide good accuracy and rate of
convergence. Comparing to the solutions obtained by Qu and Liu (2015), it is found
that RBF solutions are much superior in terms of accuracy.

Example 2.4.4. Consider the fractional order logistic differential equation

cDqx(t) = Kqx(t)(1− x(t)), t > 0, 0 < q≤ 1; x(0) = x0

that is discussed by West (2015), Area et al. (2016) and Hamarsheh et al. (2017). Exact

solution (for q = 1) is x(t) =
x0

x0 +(1− x0)e−Kt , where K is a constant.

Remark: For any 0 < q < 1, a series solution was proposed by B. J. West (2015):

x(t) =
∞

∑
j=0

(
x0−1

x0

) j

Eq(− jKqtq). But in 2016, Iván Area et al. (2016) have shown that

this function does not represent the solution of above fractional logistic model.

For the choice 0≤ x0 ≤ 1, v0 = 0, w0 = 1, f (t,x) = Kqx(t) and g(t,x) =−Kqx2(t),
one can easily verify that cDqv0 ≤ h(t,v0) and cDqw0 ≥ h(t,w0), for t ∈ [0,∞). Thus v0

and w0 are ordered lower and upper solutions, respectively. Clearly from the definition
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m1 = 0 and m2 = 1. Also note that f2(t,x) = Kq, g2(t,x) = −2Kqx are increasing
and decreasing in the second variable, respectively, for each (t,y) ∈ [0,T ]× [m1,m2].
Moreover both f2 and g2 satisfy the Lipschitz condition with respect to the second
variable in [0,T ]× [m1,m2]. Hence by proposed theorem, the fractional order logistic
equation has an unique solution in the sector [v0,w0]. To compare with the results by
Hamarsheh et al. (2017), we have chosen 0 < t ≤ 3 and x0 = 0.85. For the chosen f and
g, the solution is obtained by iterating using following monotone iterative procedure
with either DRBF or IRBF discretisation.

cDqwk+1 = Kqwk−Kq(wk)2 +(Kq−2Kqwk)(wk+1−wk); wk+1(0) = x0

The DRBF and IRBF solutions computed are plotted in Figure 2.7 for various values
of q. These methods are further compared with a semi-analytical approach optimal
homotopy asymptotic method (OHAM) by Hamarsheh et al. (2017) and fractional
Adams-Bashforth-Moulton (FABM) method by Diethelm (2010). FABM solution is
obtained using the step size ∆t = 0.003, whereas step sizes for proposed RBF schemes
are ∆t = 0.3 and 0.03. Between two RBF schemes, IRBF shows better performances,
both in terms of accuracy and convergence.

Example 2.4.5. Consider the example cDqx(t)+ ex(t) = 0, t > 0, 0 < q≤ 1;
x(0) = 0 given by Jang (2014). Obtaining analytical solution for q = 1 is

straightforward, while not explicit for fractional case. A semi analytical approach

called generalised differential transform method (GDTM) is proposed by Jang (2014).

If v0 =−Eq(tq), w0 ≡ 1, h(t,x)≡ g(t,x) =−ex and f (t,x)≡ 0, it is straightforward
to verify that the required conditions are satisfied, for any t > 0. This implies proposed
theorem is applicable and hence, solutions are obtained using DRBF and IRBF methods
combined with following monotone iterative scheme,

cDqwk+1(t) = −ewk
− ewk

(wk+1−wk); wk+1(0) = 0.

Computed IRBF and DRBF solutions are plotted in Figures 2.8. A comparison
of the present schemes with (GDTM) (Jang, 2014) and FABM (Diethelm, 2010; Jang,
2014) are detailed in Table 2.13 for q = 0.9. Solutions obtained using IRBF method
matches excellently with that of GDTM and FABM solutions. Though GDTM and
FABM are comparable for initial values of t, RBF and FABM solutions start getting
closer as t increases. While both the RBF schemes are simple and efficient, IRBF
yields better results with ∆t = T/10 and 8 quadrature points whereas DRBF demands
smaller ∆t and more quadrature points for better accuracy and convergence.
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Example 2.4.6. Consider the example cDqx(t)+ sin(x(t)) = 0, t > 0, 0 < q≤ 1;
x(0) = 3π/4 given by Jang (2014). Similar to Example 2.4.5, obtaining analytical

solution for q = 1 is straightforward, while not explicit for fractional case. Jang (2014)

has solved the problem using GDTM.

For the choices v0 ≡ 0, w0 ≡ π , h ≡ f = −sinx and g ≡ 0 one can easily check
whether all assumptions in the main Theorem 2.2.3, are satisfied and hence above
problem has a unique solution in the sector [v0,w0]. Further, following iteration ensures
convergence to the solution.

cDqvk+1 = −sin(vk)− cos(vk)(vk+1− vk); vk+1(0) = 3π/4

Comparisons between two RBF formulations and these schemes with GDTM and
FABM are presented in the Figure 2.9 and Table 2.14), respectively. They show a
similar behaviour as in earlier example.

Remark: Though our results are primarily for fractional initial value problems, as
a numerical illustration, we include the following boundary value problem using
the proposed RBF schemes based on the quasilinearisation (2.2.6) and (2.2.7). The
representation of the IRBF solution (2.3.4) and (2.3.5) can be suitably modified to
incorporate the boundary conditions.

Example 2.4.7. Consider the boundary value problem, which is solved using Haar

wavelet scheme by Saeed and ur Rehman (2013).
cDqx+a(t)x′2 +b(t)xx′ = g1(t),1 < q≤ 2; x(0) = x(1) = 0. Exact solution is given by

x(t) = tq− t70−q and g1 is defined as

g1(t) = Γ(q+1)− Γ(71−q)
Γ(71−2q)

t70−2q +a(t)(qtq−1− (70−q)t69−q)2

+b(t)(qtq−1− (70−q)t69−q)(tq− t70−q)

Extending Theorem 2.2.3 to the problem and we obtained solutions for a(t) = et and

b(t) = t using the iterative scheme (2.2.6) and (2.2.7).

From the Figure 2.10, it can be seen that the solution x has high gradients
near x = 0.95. Apart from uniform nodes of various sizes, as done by Saeed
and ur Rehman (2013), we have divided the interval [0,1] into two parts, say [0,
0.94] and [0.94, 1]. Then distributed the nodes uniformly as: [0,0.94] is descritised
with stepsize ∆t1 =

(0.94−0)
3m
2

and [0.94,1] with the stepsize ∆t2 =
(1−0.94)

m
2

, where n = 2m.
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Apart from Figure 2.10, the methods are compared in Tables 2.15 and 2.16. To
capture the high gradient solution accurately, finer nodal distributions are chosen.
Nonuniform distribution did not yield any better accuracy, unlike in the Haar wavelet
solution discussed by Saeed and ur Rehman (2013). Despite using uniform nodes,
the RBF solutions with lesser nodes are as accurate as the corresponding non-uniform
solution by Saeed and ur Rehman (2013). Comparing each other, it is observed that
integrated RBF collocation is marginally better than its differential RBF counterpart
(See Table 2.15). While observing the convergence order in Table 2.16, it is found that
IRBF behaves better for q close to 1 and DRBF when q = 2. This may be due to high
ill-conditioning effect inherent in radial basis function based schemes, since number of
nodes are very high (this makes nodal spacing very small) when compared to earlier
examples.

2.5 CONCLUSIONS

Present work focuses on two aspects: 1) Proves existence and uniqueness of the solution
of fractional order IVP via generalised monotone quasilinearisation, which proposes
the sequences (2.2.6), (2.2.7) and 2) Based on this iterative procedures two RBF based
schemes, namely, integrated as well as differentiated RBF collocation schemes to solve
nonlinear fractional ordinary differential equations are proposed. Variety of examples
are provided to illustrate the results thus proved and also to make a detailed comparison
between intergrated RBF scheme with Kansa’s differential RBF method. Further, merits
and demerits of the schemes are analysed using various examples and obtained solutions
are also compared with available results in some of the recent literature. In terms of
accuracy and convergence, RBF schemes are found to be superior. However, these
advantages are crippled due to the instability caused by ill-condtioning as the nodes
becomes finer. Hence, the decrease in error using non-uniform nodal distribution is
marginal when compared to same number of uniform nodes in most of the examples
chosen. For collocation schemes, this issue needs further attention.
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Table 2.1 RMS and L∞ error of Example 2.4.1 (n = 11).

q
IRBF DRBF

ε RMS error L∞ error ε RMS error L∞ error
Uniform Nodes

1 0.4 7.63E-07 1.49E-06 0.49 1.35E-07 2.88E-07
0.75 0.6 1.67E-04 4.42E-04 0.68 3.21E-03 8.49E-03
0.5 0.65 4.59E-04 1.32E-03 0.68 5.47E-03 1.59E-02
0.25 0.65 3.92E-04 1.13E-03 0.75 4.88E-03 1.46E-02

Nonuniform Nodes
1 0.59 3.24E-08 6.81E-08 0.49 7.83E-09 1.52E-08

0.75 0.55 6.15E-05 1.94E-04 0.75 2.06E-03 6.45E-03
0.5 0.65 3.55E-04 1.16E-03 0.75 5.90E-03 1.83E-02
0.25 0.66 5.10E-04 1.68E-03 0.85 7.84E-03 2.22E-02

Table 2.2 Rate of convergence of Example 2.4.1.

∆t
IRBF DRBF

RMS error ROC L∞ error ROC RMS error ROC L∞ error ROC
q=1

1/20 2.21E-03 4.95E-03 1.42E-03 3.48E-03
1/40 1.68E-04 3.7129 3.71E-04 3.7366 1.11E-04 3.6827 2.69E-04 3.6925
1/60 1.83E-05 5.4742 3.59E-05 5.7618 1.10E-05 5.6950 2.63E-05 5.7345
1/80 1.94E-06 7.7954 3.88E-06 7.7304 1.22E-06 7.6569 2.89E-06 7.6859

q=0.75
1/20 2.62E-03 8.87E-03 3.42E-03 1.16E-02
1/40 2.39E-04 3.4560 9.60E-04 3.2074 1.40E-03 1.2869 5.60E-03 1.0450
1/60 3.58E-05 4.6778 1.60E-04 4.4201 8.23E-04 1.3159 3.62E-03 1.0766
1/80 1.07E-05 4.1843 4.68E-05 4.2679 5.74E-04 1.2512 2.68E-03 1.0457

q=0.5
1/20 3.02E-03 1.22E-02 5.80E-03 2.34E-02
1/40 3.97E-04 2.9254 2.11E-03 2.5329 2.77E-03 1.0662 1.47E-02 0.6771
1/60 1.08E-04 3.2051 6.72E-04 2.8272 1.77E-03 1.1022 1.10E-02 0.7177
1/80 5.37E-05 2.4391 3.50E-04 2.2700 1.29E-03 1.0973 8.93E-03 0.7116

q=0.25
1/20 2.33E-03 9.92E-03 5.26E-03 2.24E-02
1/40 4.11E-04 2.5071 2.35E-03 2.0794 2.93E-03 0.8454 1.69E-02 0.4034
1/60 1.63E-04 2.2859 1.10E-03 1.8736 2.04E-03 0.8839 1.41E-02 0.4412
1/80 1.00E-04 1.6791 7.58E-04 1.2913 1.58E-03 0.8928 1.24E-02 0.4454
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Table 2.3 Rate of convergence for q = 0.1 of Example 2.4.1 by IRBF and DRBF.

∆t RMS error ROC L∞ error ROC RMS error ROC L∞ error ROC
IRBF

with 8 quadrature points with 30 quadrature points
1/10 3.80E-03 1.20E-02 3.80E-03 1.20E-02
1/20 1.06E-03 1.8413 4.52E-03 1.4043 1.06E-03 1.8430 4.52E-03 1.4043
1/40 1.65E-04 2.6815 9.50E-04 2.2504 1.65E-04 2.6784 9.50E-04 2.2503
1/60 6.16E-05 2.4353 4.18E-04 2.0268 6.16E-05 2.4331 4.18E-04 2.0268
1/80 3.93E-05 1.5559 3.01E-04 1.1391 3.92E-05 1.5715 3.01E-04 1.1391

DRBF
with 40 quadrature points with 50 quadrature points

1/10 4.04E-03 1.27E-02 4.04E-03 1.27E-02
1/20 2.57E-03 0.6530 1.10E-02 0.2100 2.57E-03 0.6530 1.10E-02 0.2100
1/40 1.52E-03 0.7548 8.87E-03 0.3045 1.52E-03 0.7548 8.87E-03 0.3045
1/60 1.11E-03 0.7871 7.74E-03 0.3347 1.10E-03 0.7878 7.74E-03 0.3347
1/80 8.79E-04 0.7942 7.02E-03 0.3383 8.79E-04 0.7952 7.02E-03 0.3386

Table 2.4 RMS and L∞ error of Example 2.4.2 (n = 11).

q
IRBF DRBF

ε RMS error L∞ error ε RMS error L∞ error
Uniform Nodes

2 0.48 2.52E-06 5.75E-06 0.42 5.01E-05 8.46E-05
1.75 0.46 3.66E-05 5.78E-05 0.42 1.21E-04 1.80E-04
1.5 0.47 5.59E-05 7.89E-05 0.45 8.14E-05 1.12E-04
1.25 0.42 1.96E-05 6.43E-05 0.46 2.56E-05 3.89E-05

1 0.71 3.24E-04 3.65E-04 0.46 6.34E-06 1.02E-05
0.75 0.76 4.50E-04 6.60E-04 0.52 2.98E-05 4.21E-05
0.5 0.76 3.94E-04 7.56E-04 0.6 2.75E-05 5.33E-05
0.25 0.85 4.60E-04 1.03E-03 0.72 1.02E-05 2.27E-05

Nonuniform Nodes
2 0.52 5.78E-07 1.10E-06 0.42 1.07E-06 2.38E-06

1.75 0.52 5.72E-06 9.04E-06 0.45 3.60E-06 5.52E-06
1.5 0.47 3.46E-06 5.69E-06 0.47 9.33E-07 1.73E-06
1.25 0.48 1.84E-06 2.87E-06 0.48 1.97E-06 3.29E-06

1 0.64 4.27E-06 7.26E-06 0.46 1.12E-06 1.99E-06
0.75 0.64 6.87E-06 1.48E-05 0.72 4.19E-06 7.67E-06
0.5 0.66 1.22E-05 2.95E-05 0.72 4.55E-06 1.09E-05
0.25 0.68 1.63E-05 4.03E-05 0.68 4.15E-06 6.76E-06
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Table 2.5 Comparison of absolute error of Example 2.4.2 at t = 1.

q
IRBF DRBF Rectangle Sch. Trapezoidal Sch.

(Li et al., 2016) (Li et al., 2016)
n ε Error n ε Error n Error n Error

0.25
11 0.53 1.35E-05 11 0.57 1.24E-06 160 3.95E-02 160 2.14E-04
21 0.92 1.27E-07 21 0.91 1.31E-06 320 1.85E-02 320 5.66E-05

0.75
11 0.53 7.90E-06 11 0.48 7.33E-06 160 3.15E-02 160 2.90E-04
21 0.68 7.15E-07 21 0.79 3.24E-06 320 1.56E-02 320 7.30E-05

1.25
11 0.42 8.67E-06 11 0.46 5.88E-06 160 2.53E-02 160 2.25E-04
21 0.79 4.17E-07 21 0.91 3.95E-07 320 1.28E-02 320 5.65E-05

1.75
11 0.46 4.95E-05 11 0.39 1.69E-04 160 1.85E-02 160 1.44E-04
21 1.3 6.70E-06 21 0.82 1.15E-05 320 9.35E-03 320 3.62E-05

Table 2.6 Rate of convergence of Example 2.4.2.

∆t
IRBF DRBF

RMS error ROC L∞ error ROC RMS error ROC L∞ error ROC
q=2

1/20 2.32E-04 9.46E-04 4.08E-02 6.71E-02
1/40 6.17E-06 5.2328 1.91E-05 5.6337 5.36E-03 2.9280 9.00E-03 2.8980
1/60 4.25E-07 6.5974 1.10E-06 7.0314 7.80E-04 4.7518 1.32E-03 4.7348
1/80 5.67E-08 7.0026 1.11E-07 7.9866 1.14E-04 6.6871 1.93E-04 6.6751

q=1.5
1/20 8.47E-04 3.38E-03 4.68E-03 7.28E-03
1/40 1.86E-05 5.5072 6.49E-05 5.7011 3.74E-04 3.6446 6.55E-04 3.4729
1/60 2.80E-06 4.6765 1.34E-05 3.8934 3.72E-05 5.6942 5.01E-05 6.3425
1/80 2.42E-07 8.5134 7.35E-07 10.0873 4.02E-06 7.7394 6.12E-06 7.3092

q=1.25
1/20 2.58E-03 1.17E-02 3.03E-03 1.19E-02
1/40 1.29E-04 4.3197 8.22E-04 3.8362 1.80E-04 4.0753 9.75E-04 3.6045
1/60 1.10E-05 6.0764 8.36E-05 5.6383 1.51E-05 6.1109 9.89E-05 5.6453
1/80 5.50E-07 10.4125 4.14E-06 10.4467 1.49E-06 8.0436 1.09E-05 7.6557

q=1
1/20 3.05E-02 4.03E-02 2.60E-02 3.10E-02
1/40 2.25E-03 3.7608 2.83E-03 3.8339 1.92E-03 3.7640 2.11E-03 3.8770
1/60 1.72E-04 6.3413 2.54E-04 5.9464 1.89E-04 5.7115 2.06E-04 5.7415
1/80 1.58E-05 8.2975 2.66E-05 7.8398 2.07E-05 7.6906 2.24E-05 7.7028

q=0.5
1/20 1.75E-02 4.61E-02 9.13E-04 3.38E-03
1/40 1.45E-03 3.5914 4.95E-03 3.2191 3.32E-05 4.7799 1.94E-04 4.1235
1/60 1.38E-04 5.8104 6.02E-04 5.1980 1.14E-06 8.3121 6.68E-06 8.3099
1/80 1.50E-05 7.7083 7.68E-05 7.1596 1.55E-07 6.9385 1.32E-06 5.6333

q=0.25
1/20 1.01E-02 3.43E-02 4.27E-04 1.68E-03
1/40 9.44E-04 3.4171 4.39E-03 2.9678 1.48E-05 4.8486 8.90E-05 4.2371
1/60 1.00E-04 5.5311 5.91E-04 4.9465 9.31E-07 6.8241 7.10E-06 6.2365
1/80 1.18E-05 7.4232 8.10E-05 6.9041 7.16E-08 8.9198 5.64E-07 8.8061
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Table 2.7 Rate of convergence of Example 2.4.2 by IRBF and DRBF for q = 1.1 and
0.1.

∆t RMS error ROC L∞ error ROC RMS error ROC L∞ error ROC
IRBF for q = 1.1

with 14 quadrature points with 30 quadrature points
1/10 3.16E-02 1.04E-01 3.16E-02 1.04E-01
1/20 4.35E-03 2.8600 1.98E-02 2.3947 4.56E-03 2.7953 2.08E-02 2.3270
1/40 2.23E-04 4.2850 1.43E-03 3.7967 2.39E-04 4.2511 1.53E-03 3.7672
1/60 2.13E-05 5.7973 1.65E-04 5.3231 1.88E-05 6.2683 1.46E-04 5.7845
1/80 1.31E-06 9.6935 1.15E-05 9.2474 1.77E-06 8.2135 1.60E-05 7.7032

IRBF for q = 0.1
with 6 quadrature points with 30 quadrature points

1/10 1.67E-02 4.27E-02 1.69E-02 4.25E-02
1/20 4.70E-03 1.8305 1.61E-02 1.4063 4.46E-03 1.9269 1.61E-02 1.4001
1/40 4.24E-04 3.4697 2.32E-03 2.7966 4.54E-04 3.2960 2.32E-03 2.7963
1/60 4.97E-05 5.2872 3.32E-04 4.7891 5.33E-05 5.2792 3.33E-04 4.7893
1/80 6.16E-06 7.2596 4.72E-05 6.7804 6.57E-06 7.2791 4.72E-05 6.7917

DRBF for q = 1.1
with 30 quadrature points with 40 quadrature points

1/10 2.21E-02 7.10E-02 2.21E-02 7.10E-02
1/20 3.57E-03 2.6293 1.59E-02 2.1589 3.57E-03 2.6293 1.59E-02 2.1589
1/40 2.01E-04 4.1479 1.26E-03 3.6534 2.09E-04 4.0923 1.31E-03 3.5989
1/60 1.65E-05 6.1776 1.26E-04 5.6847 1.73E-05 6.1453 1.33E-04 5.6492
1/80 2.34E-06 6.7754 2.08E-05 6.2698 1.62E-06 8.2440 1.43E-05 7.7494

DRBF for q = 0.1
with 30 quadrature points with 40 quadrature points

1/10 1.48E-03 3.72E-03 1.48E-03 3.72E-03
1/20 1.55E-04 3.2553 5.96E-04 2.6419 1.55E-04 3.2553 5.96E-04 2.6419
1/40 4.22E-06 5.1989 2.54E-05 4.5524 5.35E-06 4.8566 3.21E-05 4.2147
1/60 6.93E-07 4.4555 3.22E-06 5.0938 3.69E-07 6.5950 2.80E-06 6.0159
1/80 3.42E-07 2.4549 1.87E-06 1.8890 1.94E-08 10.2388 1.49E-07 10.1968

Table 2.8 RMS and L∞ error of Example 2.4.3 (n = 11).

q
IRBF Sol. DRBF Sol.

ε RMS error L∞ error ε RMS error L∞ error
Uniform Nodes

1 0.6 1.54E-04 1.78E-04 0.48 1.31E-04 1.51E-04
0.75 0.63 6.69E-05 1.14E-04 0.61 4.69E-05 8.11E-05
0.5 0.65 1.39E-05 3.18E-05 0.6 1.39E-05 3.27E-05
0.25 0.69 3.16E-06 9.04E-06 0.6 3.61E-06 1.03E-05

Nonuniform Nodes
1 0.51 1.32E-05 2.26E-05 0.49 1.29E-05 2.22E-05

0.75 0.51 5.48E-06 1.47E-05 0.68 4.85E-06 1.28E-05
0.5 0.53 2.11E-07 5.66E-07 0.66 2.85E-06 5.90E-06
0.25 0.7 1.22E-06 3.92E-06 0.6 1.37E-06 2.38E-06
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Table 2.9 Comparison of solutions of Example 2.4.3 using IRBF, DRBF and Neural
Networks (Qu and Liu, 2015) with exact solutions.

t Exact

IRBF IRBF IRBF
DRBF DRBF DRBF

NW (Qu and Liu, 2015) NW (Qu and Liu, 2015) NW (Qu and Liu, 2015)
q = 1 q = 0.7 q = 0.5

0.1 0.003162
0.002993 0.003104 0.003148
0.003014 0.003091 0.003134
0.0022 0.0055 0.0066

0.2 0.017889
0.017722 0.017845 0.017880
0.017747 0.017834 0.017868
0.0133 0.0234 0.0266

0.5 0.176777
0.176613 0.176746 0.176772
0.176629 0.176741 0.176770
0.1773 0.1783 0.1772

0.6 0.278855
0.278696 0.278827 0.278850
0.278720 0.278816 0.278848
0.2797 0.2733 0.2711

0.9 0.768433
0.768306 0.768418 0.768432
0.768320 0.768410 0.768421

0.767 0.7832 0.7847

1 1.000000
0.999895 0.999988 0.999998
0.999905 0.999987 1.000007
1.0064 1.0105 1.0056
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Table 2.10 Rate of convergence of Example 2.4.3.

∆t
IRBF DRBF

RMS error ROC L∞ error ROC RMS error ROC L∞ error ROC
q=1

1/20 9.72E-03 1.14E-02 7.31E-03 9.11E-03
1/40 7.16E-04 3.7628 9.36E-04 3.6082 5.61E-04 3.7025 6.53E-04 3.8023
1/60 5.94E-05 6.1400 8.87E-05 5.8130 5.73E-05 5.6296 6.48E-05 5.6972
1/80 6.18E-06 7.8689 1.02E-05 7.5030 7.10E-06 7.2551 7.91E-06 7.3091

q=0.75
1/20 9.09E-03 1.87E-02 8.81E-04 1.67E-03
1/40 6.94E-04 3.7124 1.61E-03 3.5411 4.81E-05 4.1937 1.14E-04 3.8683
1/60 6.22E-05 5.9465 1.72E-04 5.5170 4.80E-06 5.6839 1.04E-05 5.8965
1/80 6.29E-06 7.9694 2.00E-05 7.4694 6.30E-07 7.0619 1.45E-06 6.8672

q=0.5
1/20 8.33E-03 2.55E-02 2.66E-04 6.71E-04
1/40 6.74E-04 3.6282 2.57E-03 3.3098 1.16E-05 4.5176 4.15E-05 4.0165
1/60 6.59E-05 5.7344 2.99E-04 5.3088 8.57E-07 6.4315 3.92E-06 5.8177
1/80 7.10E-06 7.7417 3.68E-05 7.2781 1.10E-07 7.1357 5.48E-07 6.8389

q=0.25
1/20 6.36E-03 2.44E-02 8.93E-05 2.78E-04
1/40 5.69E-04 3.4835 2.89E-03 3.0781 3.39E-06 4.7193 1.47E-05 4.2474
1/60 6.06E-05 5.5223 3.68E-04 5.0839 2.32E-07 6.6153 1.17E-06 6.2249
1/80 6.97E-06 7.5168 4.82E-05 7.0623 2.40E-08 7.8850 1.61E-07 6.9103

Table 2.11 Rate of convergence for q = 0.1 of Example 2.4.3 by IRBF and DRBF.

∆t RMS error ROC L∞ error ROC RMS error ROC L∞ error ROC
IRBF

with 8 quadrature points with 30 quadrature points
1/10 1.28E-02 3.94E-02 1.28E-02 3.94E-02
1/20 3.37E-03 1.9188 1.39E-02 1.4970 3.37E-03 1.9197 1.39E-02 1.4980
1/40 3.26E-04 3.3726 1.82E-03 2.9393 3.26E-04 3.3722 1.82E-03 2.9378
1/60 3.65E-05 5.3969 2.45E-04 4.9486 3.66E-05 5.3902 2.45E-04 4.9485
1/80 4.35E-06 7.3947 3.32E-05 6.9375 4.35E-06 7.4012 3.31E-05 6.9544

DRBF
with 30 quadrature points with 40 quadrature points

1/10 2.38E-04 5.33E-04 2.38E-04 5.33E-04
1/20 2.76E-05 3.1067 8.48E-05 2.6512 2.76E-05 3.1067 8.48E-05 2.6512
1/40 9.04E-07 4.9317 4.17E-06 4.3450 1.00E-06 4.7811 4.46E-06 4.2485
1/60 6.41E-08 6.5288 3.50E-07 6.1121 6.91E-08 6.6006 3.79E-07 6.0816
1/80 1.25E-08 5.6875 6.18E-08 6.0314 6.33E-09 8.3079 4.74E-08 7.2310
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Table 2.12 Comparison of numerical results of Example 2.4.4 for various q (K=0.5).
.

t
IRBF DRBF OHAM FABM

(Hamarsheh et al.) (Diethelm, 2010)
∆t = 3/10 ∆t = 3/100 ∆t = 3/10 ∆t = 3/100 (2017) ∆t = 3/1000

q = 0.95
0.30 0.8701496556 0.8701607496 0.8698139719 0.8700861931 0.8695174678 0.87016114741
2.40 0.9484783173 0.9484816402 0.9483566631 0.9484589100 0.9465598493 0.94848145599
2.70 0.9546218276 0.9546299562 0.9545176912 0.9546260834 0.9527358459 0.95462642429
3.00 0.9599748015 0.9599790186 0.9598850429 0.9599602222 0.9581461009 0.95997935080

q = 0.499
0.30 0.8935988613 0.8941906750 0.8898782160 0.8939290047 0.8835393627 0.89419679205
2.40 0.9363750943 0.9364460766 0.9359190358 0.9365393519 0.9214213883 0.93644696415
2.70 0.9388860644 0.9389519304 0.9384762587 0.9390915930 0.9238740100 0.93895245078
3.00 0.9411188793 0.9411644995 0.9407859851 0.9411096275 0.9263917529 0.94117011121

q = 0.155
0.30 0.9136791640 0.9138517467 0.9111921475 0.9137007203 0.8932334396 0.9138566224
2.40 0.9264872996 0.9265023991 0.9262895044 0.9264853427 0.9039197368 0.9265037573
2.70 0.9272092854 0.9272211649 0.9270072508 0.9272199315 0.9045401707 0.9272245219
3.00 0.9278574319 0.9278694469 0.9277664045 0.9278735326 0.9054430750 0.9278689008

Table 2.13 Comparison of the numerical soultion of Example 2.4.5 at q = 0.9
(T = 0.1).

t IRBF DRBF DRBF DRBF FABM GDTM
(Jang, 2014) (Jang, 2014)

(∆t = T/10) (∆t = T/10) (∆t = T/20) (∆t = T/30) (∆t = T/100)
0.01 -0.016327 -0.015784 -0.016074 -0.016163 -0.016331 -0.016331
0.02 -0.030238 -0.029755 -0.030004 -0.030113 -0.030241 -0.030238
0.05 -0.067560 -0.067145 -0.067363 -0.067386 -0.067564 -0.067531
0.1 -0.122265 -0.121895 -0.122083 -0.122096 -0.122267 -0.122072

Table 2.14 Comparison of the numerical soultion of Example 2.4.6 at q = 0.9 (T = 1).

t IRBF IRBF DRBF DRBF DRBF FABM GDTM
Jang (2014) Jang (2014)

(∆t = T/10) (∆t = T/20) (∆t = T/10) (∆t = T/20) (∆t = T/30) (∆t = T/1000)
0.1 2.25883 2.25889 2.26248 2.26049 2.26007 2.25891 2.25891
0.2 2.16704 2.16710 2.17063 2.16870 2.16829 2.16712 2.16712
0.5 1.88159 1.88165 1.88539 1.88334 1.88291 1.88168 1.88168
1 1.39668 1.39674 1.40027 1.39833 1.39793 1.39676 1.39620
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Table 2.15 L∞ error of Example 2.4.7.

q
IRBF DRBF Haar-wavelet

(Saeed and ur Rehman, 2013)
n ε L∞ error n ε L∞ error n L∞ error

Uniform Nodes

2
201 26.4 1.31E-04 201 17.1 7.46E-05
401 54 2.28E-05 401 33.3 8.33E-06 512 1.02E-02
501 70 9.17E-06 501 39.4 4.42E-06 1024 2.40E-03

1.9
201 26.3 3.68E-05 201 16 7.19E-05
401 54 1.26E-05 401 30.7 1.35E-05 512 6.43E-02
501 70.3 8.39E-06 501 38.8 1.36E-05 1024 2.28E-02

1.8
201 32.9 6.93E-05 201 29 7.21E-04
401 54 1.06E-05 401 48.1 1.71E-04 512 8.29E-02
501 70.9 1.24E-05 501 40 6.10E-05 1024 2.28E-02

Nonuniform Nodes

2
201 116 4.47E-05 201 80 2.78E-04
401 243 2.55E-05 401 148 6.00E-05 512 8.08E-05
501 300 2.64E-05 501 170 3.61E-05 1024 2.04E-05

1.9
201 200 1.80E-04 201 79 6.72E-03
401 431 3.51E-05 401 135 3.14E-03 512 2.74E-04
501 560 2.77E-05 501 170 2.62E-03 1024 1.11E-04

1.8
201 205 7.79E-04 201 110 6.37E-03
401 587 7.86E-05 401 151 2.34E-03 512 5.44E-04
501 679 2.27E-04 501 178 2.12E-03 1024 2.54E-04

Table 2.16 Rate of convergence of Example 2.4.7.

∆t
IRBF DRBF

RMS error ROC L∞ error ROC RMS error ROC L∞ error ROC
q=2

1/200 1.94E-04 1.07E-03 3.47E-03 4.82E-03
1/400 1.72E-04 0.1726 2.86E-04 1.8997 2.90E-04 3.5812 3.94E-04 3.6119
1/600 4.28E-05 3.4286 6.09E-05 3.8165 2.07E-05 6.5088 2.79E-05 6.5286
1/800 1.84E-05 2.9386 3.37E-05 2.0613 1.46E-06 9.2273 1.98E-06 9.2069

q=1.9
1/200 1.81E-03 3.66E-03 7.57E-04 9.84E-04
1/400 1.37E-04 3.7280 4.05E-04 3.1754 2.67E-04 1.5000 3.14E-04 1.6491
1/600 2.94E-05 3.7898 5.91E-05 4.7422 2.92E-05 5.4627 3.40E-05 5.4825
1/800 5.36E-06 5.9105 1.37E-05 5.0871 9.12E-06 4.0449 1.07E-05 4.0110

q=1.8
1/200 9.32E-03 1.64E-02 1.24E-03 3.63E-03
1/400 5.42E-05 7.4259 7.42E-04 4.4675 3.35E-04 1.8896 3.85E-04 3.2394
1/600 1.52E-05 3.1423 7.18E-05 5.7599 6.68E-05 3.9757 7.65E-05 3.9824
1/800 1.60E-06 7.8150 1.65E-05 5.1145 3.48E-05 2.2712 4.00E-05 2.2520
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CHAPTER 3

A RADIAL BASIS FUNCTION METHOD
FOR FRACTIONAL DARBOUX PROBLEMS

3.1 INTRODUCTION

Darboux problems, where the governing equation is of hyperbolic (in nature), in general
arises in wave phenomena, has in the following form:

Dxyu(x,y) =
∂ 2u

∂x∂y
= f (x,y,u(x,y)), (x,y) ∈ J (3.1.1)

u(x,0) = g(x); x ∈ [0,a]

u(0,y) = h(y); y ∈ [0,b]

where a,b > 0 , J := [0,a]× [0,b] and g and h are continuously differentiable functions.

Sometimes the Darboux problem is also referred as the Goursat problem. Certain
classical problems of mathematical physics and rigid body dynamics are expressed in
terms of Darboux problems. They can also be considered as a limiting case of tricomi
problem. Efforts to solve (3.1.1) numerically is dated back to 1960’s. These attempts
are made by J. T. Day (1966), M. K. Jain and Sharma (1968) and A. R. Gourlay (1970).
They are based on Trapezoidal or other quadrature formulae and Runge-Kutta type
methods. Later a nonlinear trapezoidal formula based on geometric means (Evans and
Sanugi, 1988) and harmonic means (Wazwaz, 1993) are also considered in solving
Goursat problems. In a work by Człapiński (1999), a general class of difference
schemes for this problem have been attempted. In 2011, Gou and Sun have solved
the problem in a triangular domain with mixed Dirichlet and impedance boundary
conditions, based on Runge-Kutta and trapezoidal methods.
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The literature on numerical schemes for fractional partial differential equations
majorly covers models that are fractional counterparts of parabolic differential
equations. Further, these models do not involve mixed fractional partial derivatives.
Hence, the work reported in this chapter is an attempt to extend Kansa’s asymmetric
RBF collocation method to fractional Darboux problem in the following form,

cDq̄u(x,y) =
∂ q1+q2u
∂xq1∂yq2

= f (x,y,u(x,y)), (x,y) ∈ J, (3.1.2)

u(x,0) = g(x) x ∈ [0,a];

u(0,y) = h(y); y ∈ [0,b],

where a,b > 0, J := (0,a] × (0,b], q̄ = (q1,q2) ∈ (0,1] × (0,1] and g and h are
continuously differentiable functions with g(0) = h(0). The function f : J×R→ R is
a continuous function and satisfies Lipschitz condition with respect to the third variable
u with Lipschitz constant L.

Researchers, namely, S. Abbas, M. Benchohra and A. Vityuk have worked
extensively on the existence and uniqueness of various classes of fractional Darboux
problem; Refer the book by Abbas et al. (2012) and the references therein for the
detailed proof. The problems considered were fractional equations or inclusions with
and without delay terms in various forms. Results are also established for equations
that involves impulsive effect. Vityuk and Mykhailenko (2011) have obtained the
sufficient conditions of the existence and uniqueness of the solution of implicit
fractional Darboux problem and also provided some numerical solutions.

Even for integer order Darboux model, there are only a few efforts to obtain
numerical solutions as briefed in earlier paragraph. In addition, there are no efforts
based on RBF schemes. Hence our main contribution is extending the direct RBF
collocation schemes to both integer and fractional order Darboux problem (3.1.2).
Further, to linearise the Darboux model, successive approximation is considered.

The remaining part of the chapter is organised as follows: Section 3.2 provides some
of the basic definitions on mixed fractional derivatives and Section 3.3 proves a theorem
that ensures the existence and uniqueness of the solution of Darboux problem (3.1.2)
and the convergence of successive approximation to the solution of (3.1.2). Derivation
of Kansa’s collocation (Kansa, 1990) for fractional Darboux equations are detailed in
Section 3.4. For some of the radial functions, strategies such as optimisation of shape
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parameter and variable shape parameters are employed. The scheme then tested on
variety of example problems and these results are analysed in Section 3.5. Finally, the
chapter is concluded by summarising both advantages and disadvantages with some
suggestions for possible future improvements.

3.2 PARTIAL FRACTIONAL INTEGRALS AND DERIVATIVES

Since we are considering fractional order Darboux problem as in Eqn. (3.1.2), which
requires the definition of mixed (partial) fractional derivative, the extension of the
definition for fractional integrals and derivatives to partial fractional integrals and
derivatives are considered in the following (Kilbas et al., 1993).

Definition 3.2.1. The Riemann−Liouville fractional integral of order q ∈ (0,∞) of a

function u ∈ L1(J) with respect to x is defined by

Iq
0,xu(x,y) =

1
Γ(q)

∫ x

0
(x− s)q−1u(s,y)ds,

for x ∈ [0,a]and y ∈ [0,b]. Analogously, Iq
0,yu(x,y) can also be defined.

Definition 3.2.2. The Caputo fractional derivative of order q ∈ (0,1] of a function u,

where ∂u
∂x ∈ L1(J), with respect to x is defined by

cDq
0,xu(x,y) = I1−q

0,x
∂

∂x
u(x,y),

for x ∈ [0,a] and y ∈ [0,b]. Analogously, cDq
0,yu(x,y) can also be defined.

Definition 3.2.3. Let q̄= (q1,q2)∈ (0,∞)×(0,∞), θ = (0,0) and u∈ L1(J). The mixed

Riemann-Liouville integral of order q̄ of u is defined by

Iq̄
θ

u(x,y) = Iq1
0 Iq2

0 u(x,y) =
1

Γ(q1)Γ(q2)

∫ x

0

∫ y

0
(x− s)q1−1(y− t)q2−1u(s, t)dtds

for (x,y) ∈ J. In particular,

Iθ
θ u(x,y) = u(x,y); Iσ

θ
u(x,y) =

∫ x

0

∫ y

0
u(s, t)dtds; (3.2.1)

for (x,y) ∈ J, where σ = (1,1).

Definition 3.2.4. Let q̄∈ (0,1]×(0,1]. The mixed fractional Caputo derivative of order

q̄ of u is defined by the expression cDq̄
θ

u(x,y) = I1−q̄
θ

Dxyu(x,y), where 1− q̄ = (1−
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q1,1−q2) and Dxyu= ∂ 2u
∂x∂y ∈ L1(J). In particular, cDσ

θ
u(x,y)=Dxyu(x,y) for (x,y)∈ J,

where σ = (1,1).

3.3 SUCCESSIVE APPROXIMATION

The following theorem establishes the existence of the solution of (3.1.2) and the
convergence of successive approximation to the solution.

Theorem 1. The fractional Darboux problem (3.1.2) has a unique solution. Moreover,

the following successive approximation scheme

cDq̄
0uk+1(x,y) = f (x,y,uk(x,y)) (3.3.1)

uk+1(x,0) = g(x) ; uk+1(0,y) = h(y); g(0) = h(0) (3.3.2)

converges uniformly to the unique solution of (3.1.2), for any continuous function as

initial guess.

Proof: It is easy to show that Eqn. (3.1.2) is equivalent to the integral equation

u(x,y) = η(x,y)+
1

Γ(q1)Γ(q2)

∫ x

0

∫ y

0
(x− s)q1−1(y− t)q2−1 f (s, t,u(s, t))dtds (3.3.3)

where η(x,y) = g(x)+ h(y)− g(0). Note that C([0,a]× [0,b]) is a Banach space with

the norm defined ‖u‖ρ = sup
(x,y)∈[0,a]×[0,b]

1
Eq1(ρxq1)

|u(x,y)|, ρ > 0. Define an operator

T̂ : C([0,a]× [0,b])→C([0,a]× [0,b]) by

T̂ u(x,y) = η(x,y)+
1

Γ(q1)

1
Γ(q2)

∫ x

0

∫ y

0
(x− s)q1−1(y− t)q2−1 f (s, t,u(s, t))dtds

(3.3.4)
Note that
|(T̂ u1− T̂ u2)(x,y)|

≤ L
Γ(q1)Γ(q2)

∫ x

0

∫ y

0
(x− s)q1−1(y− t)q2−1|u1(s, t)−u2(s, t))|dtds

=
L

Γ(q1)Γ(q2)

∫ x

0

∫ y

0
(x− s)q1−1(y− t)q2−1 Eq1(ρsq1)

Eq1(ρsq1)
|u1(s, t)−u2(s, t))|dtds

≤ L‖u1−u2‖
1

Γ(q1)Γ(q2)

∫ x

0

∫ y

0
(x− s)q1−1(y− t)q2−1Eq1(ρsq1)dtds

≤ Lbq2

Γ(q2 +1)
‖u1−u2‖

1
Γ(q1)

∫ x

0
(x− s)q1−1Eq1(ρsq1)ds
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=
Lbq2

Γ(q2 +1)
‖u1−u2‖

Eq1(ρxq1)

ρ

Thus
|(T̂ u1− T̂ u2)(x,y)|

Eq1(ρxq1)
≤ Lbq2

Γ(q2 +1)ρ
‖u1−u2‖ (3.3.5)

Hence
‖T̂ u1− T̂ u2‖ ≤

Lbq2

Γ(q2 +1)ρ
‖u1−u2‖ (3.3.6)

Thus T̂ is a contraction for sufficiently large ρ . Consequently the successive iteration
uk+1 = T̂ uk converge to the unique fixed point of T̂ . Consequently the iterative scheme
(3.3.1) converge to the unique solution.

Example: The Sine-Gordon equation cDq̄
0u(x,y) = sinu, (x,y) ∈ [0,a]× [0,b] where

q̄ = (q1,q2) ∈ (0,1]× (0,1], u(x,0) = g(x), u(0,y) = h(y), g(0) = h(0) has a unique
solution. Moreover the following iterative scheme converge to the unique solution.

cDq̄
0uk+1(x,y) = sin(uk) (3.3.7)

uk+1(x,0) = g(x); uk+1(0,y) = h(y); g(0) = h(0) (3.3.8)

Equivalently

uk+1(x,y) = η(x,y)+
1

Γ(q1)Γ(q2)

∫ x

0

∫ y

0
(x− s)q1−1(y− t)q2−1 sin(uk(s, t))dsdt

(3.3.9)
converge to the unique solution for any continuous function as initial guess.

In the following section, we describe an RBF scheme for fractional Darboux
equation.

3.4 A FRACTIONAL RBF APPROXIMATION

Consider the linearised Darboux problem (3.3.1)-(3.3.2). Assume that the function
uk+1(x̄) represents the solution of the linearised problem at (k+ 1)th iteration and can
be represented in terms of RBFs as

uk+1(x̄) =
n

∑
j=1

λ
k+1
j φ(‖x̄− x̄ j‖)+

l

∑
j=1

γ
k+1
j p j(x̄) (3.4.1)

where x̄ j =(x j,y j), j = 1,2, ...,n, are collocation points distributed in the given domain.
Assuming that φ is sufficiently smooth, the operator cDq̄

0 is acted on both the sides of
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the Eqn.(3.4.1), we obtain

cDq̄
0uk+1(x̄) =

n

∑
j=1

λ
k+1
j

cDq̄
0φ(‖x̄− x̄ j‖)+

l

∑
j=1

γ
k+1
j

cDq̄
0 p j(x̄) (3.4.2)

For each node x̄i = (xi,yi), i = 1,2, . . . ,n, the problem (3.3.1)-(3.3.2) is discretised
by substituting (3.4.1) and (3.4.2) for the governing equation and the initial conditions
appropriately. This leads to the following system of equations. i.e., For each i =

1,2, . . . ,n.

n

∑
j=1

λ
k+1
j

cDq̄
0φ(‖x̄i− x̄ j‖)+

l

∑
j=1

γ
k+1
j

cDq̄
0 p j(x̄i) = f (xi,yi,uk

i ), (3.4.3)

if xi,yi > 0
n

∑
j=1

λ
k+1
j φ(‖x̄i− x̄ j‖)+

l

∑
j=1

γ
k+1
j p j(x̄i) = g(xi), if yi = 0 (3.4.4)

n

∑
j=1

λ
k+1
j φ(‖x̄i− x̄ j‖)+

l

∑
j=1

γ
k+1
j p j(x̄i) = h(yi), if xi = 0 (3.4.5)

with l extra conditions,

n

∑
j=1

λ
k+1
j pi(x̄ j) = 0, i = 1,2, . . . , l (3.4.6)

Eqns. (3.4.3)-(3.4.6) together can be written in the matrix form,(
A B

P 0

)(
λ̄ k+1

γ̄k+1

)
=

(
f̄

0̄

)
(3.4.7)

where A, B and P are matrices of sizes n× n, n× l and l× n, respectively. 0 is a zero
matrix of order l. The components of these submatrices are

Ai j =

{
cDq̄

0φ(‖x̄i− x̄ j‖), if xi,yi > 0
φ(‖x̄i− x̄ j‖), if xi = 0 or yi = 0.

Bis =

{
cDq̄

0 ps(x̄i), if xi,yi > 0
ps(x̄i), if xi = 0 or yi = 0.

Ps j = ps(x̄ j), if x j,y j ≥ 0 and s = 1,2, ..., l.

Also, λ̄ k+1 = [λ k+1
1 ,λ k+1

2 , ...,λ k+1
n ]T , γ̄k+1 = [γk+1

1 ,γk+1
2 , ...,γk+1

l ]T , are the column
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vectors containing unknown coefficients. On the right hand side of the matrix equation
0̄ is a zero vector of length l and f̄ = [ f1, f2, ..., fn]

T is a vector with following entries.

fi =


f (xi,yi,uk

i ) if xi, yi > 0,
g(xi) if yi = 0
h(yi) if xi = 0

The solution u at each node is updated using Eqn. (3.4.1) after solving the system (3.4.7)
at each iteration. It is observed that only f̄ needs to be corrected for each iteration k,
whereas the coefficient matrix remains unaltered in any iteration. This significantly
reduces the computation.

3.4.1 Mixed Caputo derivative of radial basis functions

It is seen in the above description that the discretisation of the fractional Darboux
problem further requires the evaluation of the mixed (partial) fractional derivatives of
the radial basis functions. For each j = 1,2, . . . ,n, if φ = φ(‖x̄− x̄ j‖), then

cDq̄
0φ =

1
Γ(1−q1)Γ(1−q2)

∫ x

0

∫ y

0
(x− s)−q1(y− t)−q2

∂ 2φ(‖s̄− x̄ j‖)
∂ s∂ t

dtds (3.4.8)

where x̄ = (x,y), x̄ j = (x j,y j)and s̄ = (s, t).

An accurate evaluation of cDq̄
0φ is important in achieving the overall accuracy in the

solution. Obtaining analyitic fractional derivative is a tedious task and such efforts lead
to infinite series in terms of hypergeometric functions (Mohammadi and Schaback).
Effective evaluation of such series is again time consuming, hence Gauss-Jacobi rule
(Pang et al., 2015) is chosen for the computation of (3.4.8).

3.4.1.1 Gauss-Jacobi quadrature rule

As discussed in chapter 2, Gauss-Jacobi quadrature rule is considered for calculating
the numerical integral of the form

∫ 1
−1W (ξ )F(ξ )dξ , where W (ξ ) = (1−ξ )µ1(1+ξ )µ2

with µ1,µ2 >−1. It has been proved that Gauss-Jacobi rules are exact for polynomials
of degree less than or equal to 2N +1. Extending Gauss-Jacobi quadrature rule to two
dimensions over a rectangle [−1,1]× [−1,1] and using iterated integral, we can write

∫ 1

−1

∫ 1

−1
(1−ξ )µ1(1+ξ )µ2(1−ζ )µ3(1+ζ )µ4F(ξ ,ζ )dξ dζ
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=
∫ 1

−1
(1−ξ )µ1(1+ξ )µ2

(∫ 1

−1
(1−ζ )µ3(1+ζ )µ4F(ξ ,ζ )dζ

)
dξ

≈
N1

∑
p1=1

N2

∑
p2=1

Wp1Vp2F(ξp1,ζp2) (3.4.9)

Here, {ξp1} and {Wp2}, p1 = 1,2, . . .N1 are Gauss-Jacobi quadrature points and weights
corresponds to the variable ξ , while {ζp2} and {Vp2}, p2 = 1,2, . . . ,N2 corresponds to
ζ . Further, µi >−1, i = 1,2,3,4.

To implement the quadrature rule on (3.4.8), convert the integral from [0,x]× [0,y] to
the interval [−1,1]× [−1,1] using the change of variable s̄(ξ ,ζ ) = [ x

2(1−ξ ), y
2(1−ζ )].

The integral (3.4.8) then becomes,

cDq̄
0φ =

( x
2)

(−q1+1)( y
2)

(−q2+1)

Γ(1−q1)Γ(1−q2)

∫ 1

−1

∫ 1

−1
(1+ξ )−q1(1+ζ )−q2

∂ 2φ(‖s̄− x̄ j‖)
∂ s∂ t

∣∣∣∣
s̄(ξ ,ζ )

dξ dζ

(3.4.10)

Applying quadrature rule to (3.4.10)

cDq̄
0φ ≈

( x
2)

(−q1+1)( y
2)

(−q2+1)

Γ(1−q1)Γ(1−q2)

N1

∑
p=1

N2

∑
q=1

wp1vp2F(ξp1 ,ζp2)

where F(ξp1,ζp2) =
∂ 2φ(‖s̄− x̄ j‖)

∂ s∂ t

∣∣∣∣
s̄(ξp1 ,ζp2)

.

3.5 NUMERICAL ILLUSTRATIONS

This section provides various examples of fractional Darboux problem to illustrate
the proposed RBF scheme. For an exhaustive comparison among various RBFs we
have considered MQ, GA and PS. The shape parameter ε in MQ and GA has been
varied numerically to improve the solution. The exponent in PS have been varied to
study the effect of the parameter on accuracy and stability of the method. Nodes have
been distributed both uniformly and nonuniformly in the domain. Nonuniform nodal
distribution has been done using Chebyshev-Gauss-Lobotto point distribution in both

x and y directions
(

1−cos(iπ/n)
2 , i = 0,1, . . . ,n

)
. Chosen nodal distributions are shown

in Figure 3.1. Whenever exact solution is available, accuracy has been compared by
obtaining RMS and L∞ errors using the formula,
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RMS error =

√
1
n

n

∑
j=1

[u(x̄ j)−uapp(x̄ j)]2; L∞error = max
1≤ j≤n

|u(x̄ j)−uapp(x̄ j)|

where n is the total number of nodes in the given domain. Error tolerance for
successive approximation is fixed as 10−04, unless otherwise specified.

Example 3.5.1. Consider q̄th order nonlinear fractional Darboux problem:

cDq̄
0u = u−u2− xy+(xy)2 +

x1−q1y1−q2

Γ(2−q1)Γ(2−q2)
, (x,y) ∈ [0,1]× [0,1],

subject to the conditions, u(x,0) = u(0,y) = 0,0≤ x,y≤ 1. The exact solution is given

by u(x,y) = xy.

The results are discussed through the Figure 3.2 and Tables 3.1 to 3.5. Since the
analytic solution is known for all q̄, errors have been obtained for several fractional
values of q1 and q2 and found that RBF approximations (MQ, GA and PS) very
accurate with small set of nodes (11× 11). Further, the proposed scheme yields
convergent and accurate solutions even for small values of q̄, say (0.1,0.1). It can
also be seen that as q̄→ (0,0), number of iterations for successive iteration increases.
This must be expected in view of the fact that according to the definition of fractional

derivatives,
1

Γq1Γq2
→ 0 as q̄→ (0,0). Also nonuniform distribution, where nodes

near boundary are finer, gives a solution with more accuracy and suppresses the error
near the boundary (refer Figure 3.2 and Table 3.1).

Tables 3.2 to 3.5 present the order of convergence of the RBF collocation as
∆x,∆y → 0 for various fractional orders q̄. For MQ and GA, the rate have been
calculated for fixed ε , while β is kept constant for polyharmonic splines (PS). Both MQ
and GA give an exponential convergence rate, where as PS solutions do not improve as
nodal points get refined. However, it is observed from these tables that as q̄→ (0,0),
solutions become more inaccurate in some cases or method diverges. This is caused
by the severe ill-conditioning of the resulting linear systems as ∆x,∆y→ 0. Also it is
to be noted that ε chosen to evaluate the order of convergence are not optimal values,
due to ill-conditioning issue for smaller ε (optimal ε’s are close to zero) with larger
number of nodes n. CPU time is also presented in 3.5. Time increases as q̄-values
becomes fractional, which requires the calculation of fractional derivative terms in the
coefficient matrix. Further, number of iterations increases as q̄→ (0,0).
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Example 3.5.2.

cDq̄
0u = 0.1[u3 +u+ cosy e0.1x−g(x,y)3−g(x,y)], (x,y) ∈ [0,0.5]× [0,0.5],

subject to the initial conditions u(x,0) = 1+x4 and u(0,y) = 1+y+siny,0≤ x,y≤ 0.5.

Here g(x,y) = siny e0.1x + y+ x4 + 1. The exact solution, when q̄ = (1,1), is given by

u(x,y) = g(x,y),∀ (x,y) ∈ [0,0.5]× [0,0.5].

The results for this example are presented in Tables 3.6 to 3.8 and Figures 3.3 to 3.5.
Since analytic solution is known only for integer order problem (q1 = q2 = 1), this case
has been chosen to analyse the method in detail. Figure 3.3 gives surface plots for exact
and numerical solution as well as the corresponding error graphs. The solutions using
uniform and nonuniform nodes do not show any visible difference with respect to the
corresponding analytic solution plots. However, it can be observed through the error
plots that nonuniform solution is more accurate with error being subsided throughout
the domain. In Figures 3.4-3.5, the solutions are depicted at various cross-sections of
x and y. Each subplot shows how solutions are changing by varying q2 by keeping q1

constant. When q1 ≥ 0.5, the proposed scheme captures solutions for q2 as low as 0.1,
whereas when q1 < 0.5 (for eg: q1 = 0.3) the accurate solution is obtained only till
q2 = 0.2.

As in Example 3.5.1, in an effort to understand each radial basis function, an
exhaustive comparison among MQ, GA and PS have been done and presented in Tables
3.6-3.8. Table 3.6 compares solutions obtained using proposed schemes with that given
in (Cheung, 1977). Further, the errors are presented in Tables 3.7 for both uniform
and nonuniform distribution of nodes. For these calculations, the shape parameter
’ε’ has been chosen optimally (solution may further improve by reducing ε , however
system becomes highly ill-conditioned). It is observed that MQ is marginally better in
accuracy than GA, but PS is less accurate. However, it is surprised to observe that the
accuracy of PS has been greatly improved by appending a polynomial of degree 2. This
characteristic is not observed in the case of MQ and GA. Table 3.8 provides numerical
rate of convergence (obtained by keeping ε and β fixed) for each RBF. An exponential
rate of convergence is observed in case of MQ, as predicted in RBF interpolation.
Exponential rate is expected even in case of GA, however the solution is sensitive to
ε and number of points in the domain. PS is shown to have a fixed algebraic order of

convergence, which clearly is proportionate to
β

2
.
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Example 3.5.3. Consider the nonlinear fractional Darboux problem:

cDq̄
0u = e2u, (x,y) ∈ [0,1]× [0,1]

The exact solution for q̄ = (1,1) is u(x,y) =
x+ y

2
− log(ex + ey) Day (1966); Jain and

Sharma (1968). Initial conditions can be obtained using the exact solution.

From Table 3.9, where MQ, GA and PS solutions are compared point wise with
cubature method (Jain and Sharma, 1968), it can be observed that PS appended by
polynomials gives a superior solution using 21× 21 uniform set of nodes. For MQ
and GA solutions are improved by using nonuniform nodes, however optimal accuracy
is not achieved for larger set of nodes due to ill-conditioning. Results in Table 3.10
show that by appending a polynomial to PS, accuracy has been improved substantially
both in uniform and nonuniform cases. The order of convergence of each RBF is
presented in Table 3.11 and it is found that convergence behaviour is similar to that
of Example 2. Figure 3.6 describes the solutions and corresponding error graphs.
Nonuniform nodal distribution where nodes near boundary are finer gives a solution
with more accuracy and further the errors are suppressed uniformly throughout the
domain. Figures 3.7-3.8 describes solutions at various cross-sections for different
values of q̄. For 0.3 ≤ q1,q2 ≤ 1, solutions are smooth and shows a gradual change,
however for 0≤ q1,q2 < 0.3 obtaining accurate solution and convergence of successive
approximation is observed to be hard. This issue needs further attention.

Further, Table 3.12 describes the dependence of the scheme on the shape parameter
ε in the case of MQ and GA. Smaller values of ε could not be explored due to
ill-conditioning of the corresponding linear system. Since for many problems optimal
accuracy can be obtained as ε→ 0, solution for those values are not explored in the case
of larger set of nodes. Further, as observed in earlier tables, Gaussian basis function is
more sensitive to the shape parameter when compared to multiquadric.

3.5.1 Implementation of Rippa’s optimisation algorithm

The results presented in earlier subsections have considered optimal ε , which is
obtained by trial and error. Rippa (1999) has proposed a modification to “Leave-one-out
cross validation” (LOOCV) algorithm to obtain the optimum value for ε for RBF
interpolation. This was later extended to various RBF based schemes, namely RBF
pseudo spectral methods (Fasshauer and Zhang, 2007), asymmetric collocation (Roque
and Ferreira, 2010), and employed in finding the satisfactory source locations by Chen
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et al. (2016). The present scheme has been modified to implement LOOCV strategy
to obtain the optimal values of ε for all three examples and the results are presented in
Figures 3.9-3.11 and Table 3.13.

Figures 3.9-3.11 illustrates how the algorithm chooses optimal ε at each iteration
(for the linear problem) and how it converges to a value closer to εopt for all three
examples. It is found that in most cases it converges to a value closer to εopt , however
in a few cases the sequence {ε iter

opt } converge to a different εopt . Here, {ε iter
opt } represent

the optimum ε at each successive iteration. It is also observed that as q1 and q2

decrease, oscillation of the sequence {ε iter
opt } is severe. Accuracy (Table 3.13) can also be

compared with that in the Tables 3.1, 3.7 and 3.10. CPU time also increases drastically
as the number of iterations increases because LOOCV optimises ε for each successive
iteration. It is to be noted that we have considered the search interval which includes our
εopt , however, LOOCV algorithm provides locally optimal values even for other stable
intervals. As observed in earlier literature (Rippa, 1999; Roque and Ferreira, 2010), it
is important to choose appropriate interval, which can be challenging for large scale
problems.

3.5.2 Effect of variable shape parameters

As an alternative way of improving accuracy, stability and convergence (for nonlinear
problems), variable shape parameter strategy (Kansa, 1990; Sarra and Sturgill, 2009;
Golbabai et al., 2015) has also been employed. Various choices (formula) on variable
shape parameters are discussed in (Golbabai et al., 2015), such as i) increasing
and decreasing linear, ii) exponential, iii) random and iv) trigonometric parameters.
After experimenting numerically with these shape parameter distribution formulae in
the fractional Darboux problem, it is found that the trigonometric shape parameter
defined as ε( j) = εmin+(εmax−εmin)sin( j), j = 1, . . . ,n provides better solution (when
compared to others) with less number of nodal points.

Results obtained are discussed in Table 3.14. Comparing this with Tables 3.1, 3.7
and 3.10, for Examples 3.5.1, 3.5.2 and 3.5.3 respectively, it is seen that the accuracy
is improved at least one order, if variable shape parameters are chosen over constant
ones. In addition, as mentioned in earlier discussions GA is very sensitive to ε and
a minor change in the choice of interval leads to divergence. For large values of n,
say 60× 60, where the method diverged due to ill-conditioness, it is observed that
some of the variable shape parameter strategies yield converged solutions. For instance,
when (q1,q2) = (0.5,0.5), using linearly distributed ε( j) we have obtained converged
solutions with errors 2.39E−05 (MQ) and 9.69E−06 (GA) in the ε-intervals (7.5,8.5)
and (9,10), respectively.
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3.6 CONCLUSIONS

The present chapter has considered an RBF collocation method for fractional Darboux
problem. The proposed scheme linearises the nonlinear problem using successive
approximation and then approximate using the proposed radial functions based scheme.
The convergence of the successive approximation for Darboux equation has been
proved. Discretisation has been done using RBF collocation and Gauss-Jacobi
quadrature. Through the examples, we have made an attempt to study several
issues pertaining to RBF approximations to fractional Darboux problem: accuracy,
convergence and dependency of the method on shape parameters in radial functions.
From the comparison with exact solutions or solutions in the literature, we can conclude
numerical solution obtained using the proposed RBF scheme gives excellent accuracy
using less number of nodal points. However, the well known instability issue due to
ill-conditioning for all RBFs are observed in these schemes too. To circumvent this,
a brief study by employing variable shape parameters (for MQ and GA) has also been
made. This helps in improving the accuracy and stabilising the system, however, a
more detailed analysis is required to generalise the conclusions. This can be done
as a separate study. Further, LOOCV algorithm to evaluate the optimal ε has been
implemented and results are compared to the εopt obtained using trial and error. As
mentioned in earlier literature, the choice of stable interval is very important and
challenging issue in LOOCV as well as variable shape parameter distribution.
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Figure 3.1 Schematic of nodal distributions. (a) uniform, (b) nonuniform
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Figure 3.2 Surface plots of Example 3.5.1 with (a) uniform (b) nonuniform node
distributions. Row 1-3: Exact Solutions, RBF solutions, Error plots.
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Figure 3.3 Surface plots of Example 3.5.2 with (a) uniform (b) nonuniform node
distributions. Row 1-3: Exact Solutions, RBF solutions, Error plots.
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Figure 3.4 Solutions of Example 3.5.2 (a) x = 0.1, 0≤ y≤ 0.5 (b) y = 0.1, 0≤ x≤ 0.5
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Figure 3.5 Solutions of Example 3.5.2 (a) x = 0.1, 0≤ y≤ 0.5 (b) y = 0.1, 0≤ x≤ 0.5
(c) x = 0.3, 0≤ y≤ 0.5 (d) y = 0.3, 0≤ x≤ 0.5, for q1 = 0.3 and various values of q2.

61



(a) (b)

1

0.5

x
00

y

0.5

-0.65

-0.7

-0.75

-0.8

-0.85
1

E
x

a
c
t 

S
o

lu
ti

o
n

1

0.5

x
00

y

0.5

-0.65

-0.7

-0.75

-0.8

-0.85
1

E
x

a
c
t 

S
o

lu
ti

o
n

1

0.5

x
00

y

0.5

-0.65

-0.7

-0.75

-0.8

-0.85
1

u
(
x

,y
)

1

0.5

x
00

y

0.5

-0.65

-0.7

-0.75

-0.8

-0.85
1

u
(
x

,y
)

1

0.5

x
00

y

0.5

×10
-5

1.5

1

0.5

0
1

E
r
r
o

r

1

0.5

x
00

y

0.5

×10
-5

1.5

1

0.5

0
1

E
r
r
o

r

Figure 3.6 Surface plots of Example 3.5.3 with (a) uniform (b) nonuniform node
distributions. Row 1-3: Exact Solutions, RBF solutions, Error plots.
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Figure 3.7 Solutions of Example 3.5.3 (a) x = 0.1, 0≤ y≤ 1 (b) y = 0.1, 0≤ x≤ 1 (c)
x = 0.5, 0≤ y≤ 1 (d) y = 0.5, 0≤ x ≤ 1 (e) x = 0.9, 0≤ y≤ 1 (f) y = 0.9, 0≤ x ≤ 1,
for q1 = 1 and various values of q2.
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Figure 3.8 Solutions of Example 3.5.3 (a) x = 0.1, 0≤ y≤ 1 (b) y = 0.1, 0≤ x≤ 1 (c)
x = 0.5, 0≤ y≤ 1 (d) y = 0.5, 0≤ x ≤ 1 (e) x = 0.9, 0≤ y≤ 1 (f) y = 0.9, 0≤ x ≤ 1,
for q1 = 0.3 and various values of q2.
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Figure 3.11 Example 3.5.3: Convergence of ε using Rippa’s algorithm - iteration Vs
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Table 3.1 Comparison of errors for Example 3.5.1 using MQ, GA, PS (β = 8) and
PS+polynomial (β = 8) for various q1 and q2 (11×11).

q1 q2 RBF Nodes RBF Iter RMS L∞ CPU
parameter error error Time(s)

1 1

MQ
Nonuniform ε=0.85 5 5.81E-07 1.33E-06 0.0799

Uniform ε=0.84 5 1.76E-05 3.75E-05 0.0804

GA
Nonuniform ε=1.3 7 6.29E-07 1.74E-06 0.1034

Uniform ε=1.42 7 1.11E-05 2.71E-05 0.0997

PS
Nonuniform β=8 6 1.15E-04 4.54E-04 0.0939

Uniform β=8 6 2.30E-03 3.20E-03 0.0851

PS+poly.
Nonuniform β=8 6 1.52E-09 5.88E-09 0.1289

Uniform β=8 6 1.35E-08 2.74E-08 0.1094

1 0.5

MQ
Nonuniform ε=0.8439 7 4.0E-07 1.26E-06 0.5671

Uniform ε=0.91 7 1.84E-05 3.87E-05 0.5654

GA
Nonuniform ε=1.6 7 1.67E-06 6.02E-06 0.5913

Uniform ε=1.8 7 1.10E-04 2.07E-04 0.5707

PS
Nonuniform β=8 7 4.61E-05 1.92E-04 0.6613

Uniform β=8 7 1.88E-03 2.69E-03 0.5983

PS+poly.
Nonuniform β=8 7 4.09E-09 2.22E-08 0.6888

Uniform β=8 7 2.66E-08 6.16E-08 0.6994

0.9 0.1

MQ
Nonuniform ε=0.88 8 1.31E-06 4.03E-06 1.5044

Uniform ε=0.93 8 1.67E-05 3.42E-05 1.5141

GA
Nonuniform ε=1.9 8 1.44E-05 4.30E-05 1.3960

Uniform ε=1.7 8 4.44E-05 8.46E-05 1.4187

PS
Nonuniform β=8 8 6.40E-05 1.84E-04 1.9368

Uniform β=8 9 2.20E-03 3.34E-03 1.8948

PS+poly.
Nonuniform β=8 8 2.18E-07 9.92E-07 2.4228

Uniform β=8 8 2.98E-07 9.45E-07 2.5054

0.1 0.1

MQ
Nonuniform ε=0.96 27 2.63E-06 9.48E-06 1.6999

Uniform ε=0.98 26 5.10E-06 1.52E-05 1.6382

GA
Nonuniform ε=2.2 26 7.36E-05 2.62E-04 1.6178

Uniform ε=2.4 20 1.36E-04 4.77E-04 1.5129

PS
Nonuniform β=8 24 4.31E-04 1.49E-03 2.0816

Uniform β=8 72 6.64E-03 3.55E-02 2.4545

PS+poly.
Nonuniform β=8 26 1.05E-06 4.78E-06 4.2242

Uniform β=8 20 7.08E-06 3.22E-05 3.7953
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Table 3.2 Rate of convergence of Example 3.5.1 for q̄ = (1,1).

RBF ∆x = ∆y RMS Rate of L∞ Rate of
parameter error convergence error convergence

MQ

ε=7

1/10 4.91E-02 - 9.31E-02 -
1/20 9.58E-03 2.3576 1.67E-02 2.4789
1/40 4.55E-04 4.3961 7.90E-04 4.4019
1/60 4.31E-05 5.8125 1.12E-04 4.8180

ε=8

1/10 5.34E-02 - 1.03E-01 -
1/20 1.23E-02 2.1182 2.17E-02 2.2469
1/40 8.17E-04 3.9122 1.41E-03 3.9439
1/60 6.33E-05 6.3082 1.13E-04 6.2248

ε=9

1/10 5.66E-02 - 1.11E-01 -
1/20 1.48E-02 1.9352 2.64E-02 2.0719
1/40 1.28E-03 3.5314 2.21E-03 3.5784
1/60 1.28E-04 5.6789 2.25E-04 5.6346

GA

ε=7

1/10 1.97E-01 - 4.31E-01 -
1/20 1.53E-02 3.6866 2.92E-02 3.8836
1/40 1.37E-04 6.8032 2.59E-04 6.8169
1/60 4.12E-06 8.6422 1.44E-05 7.1266

ε=8

1/10 2.31E-01 - 5.29E-01 -
1/20 3.35E-02 2.7857 6.52E-02 3.0203
1/40 1.80E-04 7.5400 5.39E-04 6.9184
1/60 2.26E-05 5.1176 4.50E-05 6.1240

ε=9

1/10 2.55E-01 - 6.08E-01 -
1/20 5.76E-02 2.1464 1.15E-01 2.4024
1/40 8.64E-05 9.3808 2.53E-04 8.8283
1/60 2.72E-05 2.8505 5.72E-05 3.6670

PS+polynomial

β=2

1/10 8.76E-07 - 1.98E-06 -
1/20 1.12E-07 2.9652 2.92E-07 2.7601
1/40 2.24E-08 2.3258 6.75E-08 2.1154
1/60 9.99E-09 1.9889 3.20E-08 1.8365

β=4

1/10 3.63E-08 - 1.04E-07 -
1/20 8.79E-08 -1.2759 2.20E-07 -1.0809
1/40 1.59E-08 2.4668 4.19E-08 2.3925
1/60 5.29E-09 2.7142 1.75E-08 2.1533

β=8

1/10 1.35E-08 - 2.74E-08 -
1/20 1.68E-09 3.0064 4.03E-09 2.7653
1/40 1.44E-09 0.2224 5.00E-09 -0.3111
1/60 1.47E-09 -0.0509 4.93E-09 0.0348
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Table 3.3 Rate of convergence of Example 3.5.1 for q̄ = (0.7,0.7).

RBF ∆x = ∆y RMS Rate of L∞ Rate of
parameter error convergence error convergence

MQ

ε=7

1/10 5.24E-03 1.26E-02
1/20 8.36E-04 2.6480 2.67E-03 2.2358
1/40 4.25E-05 4.2973 2.81E-04 3.2478
1/60 3.12E-06 6.4419 3.70E-05 4.9968

ε=8

1/10 5.57E-03 1.41E-02
1/20 1.06E-03 2.3895 3.47E-03 2.0283
1/40 7.50E-05 3.8247 5.13E-04 2.7565
1/60 7.38E-06 5.7201 8.94E-05 4.3111

ε=9

1/10 5.80E-03 1.55E-02
1/20 1.28E-03 2.1822 4.24E-03 1.8696
1/40 1.16E-04 3.4569 8.20E-04 2.3703
1/60 1.44E-05 5.1516 1.78E-04 3.7726

GA

ε=8

1/10 3.10E-02 1.07E-01
1/20 3.17E-03 3.2862 9.18E-03 3.5409
1/40 6.99E-06 8.8270 2.87E-05 8.3220
1/60 1.17E-06 4.4058 3.65E-06 5.0886

ε=9

1/10 3.30E-02 1.26E-01
1/20 4.53E-03 2.8664 1.38E-02 3.1834
1/40 1.88E-05 7.9151 8.92E-05 7.2752
1/60 5.59E-06 2.9878 4.42E-05 1.7331

ε=10

1/10 3.34E-02 1.35E-01
1/20 5.51E-03 2.6018 1.76E-02 2.9414
1/40 1.30E-04 5.4051 3.82E-04 5.5264
1/60 5.03E-06 8.0213 2.54E-05 6.6830

PS+polynomial

β=2

1/10 2.04E-08 5.23E-08
1/20 1.78E-08 0.1970 4.44E-08 0.2358
1/40 1.79E-08 -0.0076 4.35E-08 0.0274
1/60 diverging

β=4

1/10 6.51E-09 1.83E-08
1/20 1.84E-08 -1.4943 4.45E-08 -1.2774
1/40 1.91E-08 -0.0573 4.58E-08 -0.0420
1/60 diverging

β=8

1/10 5.35E-09 1.75E-08
1/20 1.89E-08 -1.8192 4.55E-08 -1.3783
1/40 1.92E-08 -0.0232 4.60E-08 -0.0139
1/60 1.92E-08 -0.0021 4.59E-08 0.0020
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Table 3.4 Rate of convergence of Example 3.5.1 for q̄ = (0.5,0.5).

RBF ∆x = ∆y RMS Rate of L∞ Rate of
parameter error convergence error convergence

MQ

ε=7

1/10 2.90E-03 8.60E-03
1/20 9.27E-04 1.6448 4.50E-03 0.9344
1/40 5.16E-05 4.1682 5.77E-04 2.9638
1/60 Diverging

ε=8

1/10 3.18E-03 9.41E-03
1/20 1.22E-03 1.3858 6.06E-03 0.6364
1/40 9.00E-05 3.7571 9.85E-04 2.6210
1/60 Not converging

ε=9

1/10 3.38E-03 1.02E-02
1/20 1.49E-03 1.1779 7.66E-03 0.4159
1/40 1.38E-04 3.4375 1.47E-03 2.3775
1/60 Not converging

GA

ε=8

1/10 2.06E-02 8.41E-02
1/20 2.69E-03 2.9375 1.75E-02 2.2656
1/40 Diverging
1/60 Diverging

ε=9

1/10 1.83E-02 7.77E-02
1/20 4.47E-03 2.0348 3.14E-02 1.3051
1/40 2.74E-05 7.3481 4.48E-04 6.1335
1/60 Diverging

ε=10

1/10 1.48E-02 6.51E-02
1/20 6.47E-03 1.1944 4.85E-02 0.4250
1/40 9.75E-05 6.0518 1.04E-03 5.5479
1/60 1.53E-05 4.5594 2.62E-04 3.3906

PS+polynomial

β=2

1/10 2.27E-07 4.98E-07
1/20 1.82E-07 0.3177 3.84E-07 0.3751
1/40 diverging
1/60 Diverging

β=4

1/10 1.82E-07 4.00E-07
1/20 1.82E-07 0.0002 3.83E-07 0.0622
1/40 1.81E-07 0.0048 3.79E-07 0.0150
1/60 Diverging

β=8

1/10 1.56E-07 3.47E-07
1/20 1.81E-07 -0.2145 3.81E-07 -0.1355
1/40 1.81E-07 0.0004 3.78E-07 0.0105
1/60 Diverging

70



Table 3.5 Rate of convergence of Example 3.5.1 for q̄ = (0.3,0.3).

RBF ∆x = ∆y RMS Rate of L∞ Rate of
parameter error convergence error convergence

MQ

ε=7

1/10 2.87E-03 1.40E-02
1/20 1.35E-03 1.0842 4.40E-03 1.6679
1/40 1.08E-04 3.6449 1.70E-03 1.3732
1/60 Diverging

ε=8

1/10 3.10E-03 1.65E-02
1/20 1.76E-03 0.8188 5.83E-03 1.4986
1/40 2.22E-04 2.9825 3.81E-03 0.6154
1/60 Diverging

ε=9

1/10 3.42E-03 1.96E-02
1/20 2.11E-03 0.6968 7.14E-03 1.4540
1/40 4.41E-04 2.2596 7.55E-03 -0.0791
1/60 Diverging

GA

ε=8

1/10 2.62E-02 1.20E-01
1/20 3.80E-03 2.7855 2.60E-02 2.2065
1/40 Diverging
1/60 Diverging

ε=9

1/10 2.25E-02 0.1196
1/20 6.80E-03 1.7263 0.0475 1.3322
1/40 Diverging
1/60 Diverging

ε=10

1/10 2.07E-02 1.20E-01
1/20 1.04E-02 0.9953 7.35E-02 0.7036
1/40 1.95E-04 5.7320 1.52E-03 5.5971
1/60 Diverging

PS+polynomial

β=2

1/10 1.51E-06 5.92E-06
1/20 Diverging
1/40 Diverging
1/60 Diverging

β=4

1/10 1.55E-05 8.83E-05
1/20 3.82E-06 2.0206 2.56E-05 1.7863
1/40 Diverging
1/60 Diverging

β=8

1/10 1.54E-06 3.01E-06
1/20 1.66E-06 -0.1083 3.08E-06 -0.0332
1/40 Diverging
1/60 Diverging
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Table 3.6 Comparison of errors for Example 3.5.2 using MQ, GA, PS (β=12),
PS+polynomial (β=12), CS1 (Cheung, 1977) and CS2 (Cheung, 1977) with uniform
collocation nodes (25×25) (q1 = q2 = 1).

x y MQ GA PS PS+poly CS1 CS2
(Cheung, 1977)

0 0 5.05E-09 3.30E-08 -3.77E-06 1.39E-11 3.51E-08 -1.16E-10
0.125 0 -1.80E-08 1.23E-07 -6.35E-06 -4.30E-10 1.63E-05 -1.63E-05
0.375 0 -3.76E-08 -1.27E-08 -2.64E-06 -1.42E-09 -1.63E-05 -1.63E-05
0.5 0 -4.60E-08 1.01E-07 -3.33E-06 -2.39E-09 -1.05E-07 8.73E-11
0 0.25 -1.36E-08 2.29E-07 5.33E-07 -1.42E-10 3.51E-08 -5.82E-11
0.375 0.25 -1.60E-06 -8.64E-07 9.53E-06 -7.40E-08 -1.63E-05 -1.63E-05
0.5 0.25 3.54E-07 -8.30E-07 7.27E-06 -8.78E-08 -1.11E-07 -2.59E-09
0 0.4583 -2.75E-08 -3.31E-07 -2.66E-06 -1.78E-09 3.17E-07 5.81E-08
0.3333 0.4583 -1.21E-06 -1.32E-06 9.09E-06 -5.96E-08 2.55E-07 6.60E-08
0.25 0.5 -8.43E-07 -1.17E-07 1.27E-05 5.33E-09 3.43E-08 -2.01E-09
0.375 0.5 -5.82E-07 -5.32E-07 1.02E-05 1.38E-09 -1.64E-05 -1.63E-05
0.5 0.5 1.29E-06 -5.97E-07 9.16E-06 -4.15E-09 -1.58E-07 -3.78E-09

Table 3.7 Comparison of errors for Example 3.5.2 (21×21) using MQ, GA, PS (β=12),
PS+polynomial (β=12) (q1 = q2 = 1) .

RBF Nodes RBF Iter RMS L∞ CPU
parameter error error Time(s)

MQ
Nonuniform ε=5.1 6 2.73E-07 1.07E-06 0.3658

Uniform ε=4.2 6 8.37E-07 2.67E-06 0.3636

GA
Nonuniform ε=5 6 4.05E-07 1.17E-06 0.3958

Uniform ε=3.4 6 5.39E-07 1.46E-06 0.3800

PS
Nonuniform β=12 10 1.73E-05 4.57E-05 1.0252

Uniform β=12 6 3.42E-06 9.23E-06 0.6487

PS+poly
Nonuniform β=12 6 1.77E-07 4.04E-07 0.6790

Uniform β=12 6 2.14E-07 3.04E-07 0.7248
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Table 3.8 Rate of convergence of Example 3.5.2.

RBF ∆x = ∆y RMS Rate of L∞ Rate of
parameter error convergence error convergence

MQ

ε=12

1/10 2.19E-03 - 5.35E-03 -
1/20 2.09E-04 3.3894 3.83E-04 3.8041
1/40 1.16E-05 4.1713 1.53E-05 4.6457
1/60 8.05E-07 6.5799 2.68E-06 4.2964

ε=13

1/10 2.80E-03 - 6.55E-03 -
1/20 2.39E-04 3.5503 4.61E-04 3.8287
1/40 1.75E-05 3.7716 2.36E-05 4.2879
1/60 1.18E-06 6.6508 1.70E-06 6.4879

ε=14

1/10 3.46E-03 - 7.79E-03 -
1/20 2.67E-04 3.6959 5.46E-04 3.8347
1/40 2.48E-05 3.4284 3.40E-05 4.0053
1/60 3.45E-06 4.8647 4.25E-06 5.1285

GA

ε=11

1/10 1.59E-02 - 3.88E-02 -
1/20 6.70E-05 7.8906 1.60E-04 7.9218
1/40 2.97E-05 1.1737 8.01E-05 0.9982
1/60 1.25E-05 2.1344 2.98E-05 2.4386

ε=12

1/10 2.39E-02 - 5.88E-02 -
1/20 2.36E-04 6.6621 4.93E-04 6.8981
1/40 1.81E-05 3.7047 6.29E-05 2.9705
1/60 2.09E-05 -0.3547 6.19E-05 0.0395

ε=13

1/10 3.42E-02 - 8.38E-02 -
1/20 4.86E-04 6.1369 1.05E-03 6.3185
1/40 9.89E-05 2.2969 3.45E-04 1.6057
1/60 2.10E-05 3.8218 7.03E-05 3.9233

PS+polynomial

β=2

1/10 2.69E-04 9.86E-04
1/20 1.08E-04 1.3167 3.64E-04 1.4372
1/40 4.64E-05 1.2154 1.29E-04 1.4922
1/60 2.80E-05 1.2499 6.99E-05 1.5177

β=4

1/10 8.74E-05 - 2.36E-04 -
1/20 2.35E-05 1.8950 5.47E-05 2.1092
1/40 5.38E-06 2.1270 1.12E-05 2.2880
1/60 2.15E-06 2.2621 4.26E-06 2.3840

β=8

1/10 2.87E-05 - 4.72E-05 -
1/20 1.26E-06 4.5096 1.92E-06 4.6196
1/40 5.67E-08 4.4739 8.11E-08 4.5653
1/60 8.64E-09 4.6400 1.87E-08 3.6185
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Table 3.9 Comparison of solutions of Example 3.5.3 using MQ, GA, PS (β=12) and
PS+polynomial (β=12) with uniform collocation points (21×21) and Cubature method
(Jain and Sharma, 1968) with exact solutions (q1 = q2 = 1).

x y Exact MQ GA PS PS+poly Cubature
Solution Method

0.1 0.1 -0.693147181 -0.693153933 -0.6931458817 -0.693144727 -0.693147187 -0.693147270
0.1 0.3 -0.698138869 -0.698147191 -0.6981378975 -0.698139315 -0.698138876 -0.698139080
0.1 0.5 -0.713015252 -0.713024502 -0.7130156081 -0.713016549 -0.713015259 -0.713015310
0.2 0.1 -0.694396660 -0.694404385 -0.6943978272 -0.694396194 -0.694396667 -0.694396730
0.2 0.3 -0.694396660 -0.694406065 -0.6943955400 -0.694399321 -0.694396667 -0.694397230
0.2 0.5 -0.704355244 -0.704365650 -0.7043554561 -0.704358797 -0.704355252 -0.704355920
0.3 0.1 -0.698138869 -0.698147141 -0.6981373212 -0.698139341 -0.698138876 -0.698139080
0.3 0.3 -0.693147181 -0.693157212 -0.6931433514 -0.693150842 -0.693147188 -0.693148270
0.3 0.5 -0.698138869 -0.698149999 -0.6981363771 -0.698143466 -0.698138877 -0.698140480
0.4 0.1 -0.704355244 -0.704364021 -0.7043552334 -0.704356052 -0.704355251 -0.704355420
0.4 0.3 -0.694396660 -0.694407277 -0.6943943100 -0.694400702 -0.694396668 -0.694398130
0.4 0.5 -0.694396660 -0.694408473 -0.6943956401 -0.694401686 -0.694396668 -0.694399030

Table 3.10 Comparison of errors in the solutions of Example 3.5.3 (21×21) using MQ,
GA, PS (β=12), PS+polynomial (β=12) (q1 = q2 = 1).

RBF Nodes RBF Iter RMS L∞ CPU
parameter error error Time(s)

MQ
Nonuniform ε=2.3 7 1.67E-07 4.93E-07 0.4612

Uniform ε=2.1 7 1.29E-05 2.34E-05 0.4850

GA
Nonuniform ε=2.1 7 1.77E-07 5.92E-07 0.4171

Uniform ε=2.4 7 2.89E-07 5.95E-07 0.4106

PS
Nonuniform β=12 16 3.91E-05 1.44E-04 1.5081

Uniform β=12 7 4.02E-06 7.92E-06 0.6886

PS+poly
Nonuniform β=12 8 7.97E-10 2.26E-09 0.8637

Uniform β=12 8 7.93E-09 1.30E-08 0.8712
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Table 3.11 Rate of convergence of Example 3.5.3.

RBF ∆x = ∆y RMS Rate of L∞ Rate of
parameter error convergence error convergence

MQ

ε=8

1/10 1.03E-02 - 2.18E-02 -
1/20 2.63E-03 1.9695 4.99E-03 2.1272
1/40 1.86E-04 3.8217 3.40E-04 3.8754
1/60 1.47E-05 6.2592 2.74E-05 6.2111

ε=9

1/10 1.06E-02 - 2.32E-02 -
1/20 3.11E-03 1.7691 6.02E-03 1.9463
1/40 2.90E-04 3.4228 5.30E-04 3.5057
1/60 2.96E-05 5.6284 5.46E-05 5.6055

ε=10

1/10 1.08E-02 - 2.43E-02 -
1/20 3.52E-03 1.6174 6.96E-03 1.8038
1/40 4.10E-04 3.1019 7.52E-04 3.2103
1/60 5.14E-05 5.1213 9.45E-05 5.1155

GA

ε=7

1/10 3.81E-02 - 7.91E-02 -
1/20 3.43E-03 3.4735 6.92E-03 3.5148
1/40 3.46E-04 3.3094 6.91E-04 3.3240
1/60 4.34E-06 10.7989 1.34E-05 9.7244

ε=8

1/10 4.06E-02 - 8.90E-02 -
1/20 7.40E-03 2.4559 1.48E-02 2.5882
1/40 1.83E-04 5.3376 3.18E-04 5.5404
1/60 5.11E-06 8.8251 1.28E-05 7.9233

ε=9

1/10 4.15E-02 - 9.29E-02 -
1/20 1.25E-02 1.7312 2.53E-02 1.8765
1/40 2.84E-04 5.4599 5.88E-04 5.4272
1/60 7.76E-05 3.1998 1.51E-04 3.3528

PS+polynomial

β=2

1/10 6.53E-04 1.10E-03
1/20 2.30E-04 1.5067 3.80E-04 1.5332
1/40 8.05E-05 1.5125 1.36E-04 1.4824
1/60 4.34E-05 1.5218 7.41E-05 1.4987

β=4

1/10 2.01E-04 - 3.26E-04 -
1/20 3.85E-05 2.3843 6.33E-05 2.3646
1/40 7.08E-06 2.4430 1.18E-05 2.4234
1/60 2.60E-06 2.4707 4.37E-06 2.4499

β=8

1/10 3.40E-06 - 5.03E-06 -
1/20 1.39E-07 4.6124 1.88E-07 4.7418
1/40 6.47E-09 4.4252 3.77E-08 2.3181
1/60 3.92E-09 1.2358 4.45E-08 -0.4090
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Table 3.12 Comparison of range for ’ε’ using MQ, GA with initial approximation u≡ 0

Examples q1 q2 MQ GA

Example 3.5.1

1 1

n=5×5 ≥ 0.16 (0.23, 5.8)
n=9×9 ≥ 0.64 (1, 12.2)

n=17 × 17 ≥ 1.7 (3.5, 24.8)
n=33 × 33 ≥ 3.5 (7.4, 50)
n=65 × 65 ≥ 6.8 ≥ 3.8

0.9 1

n=5×5 ≥ 0.16 (0.23, 6)
n=9×9 ≥ 0.64 (1.19, 12.2)

n=17 × 17 ≥ 1.5 (1.6, 27.9)
n=33 × 33 ≥ 3.3 (3.4, 60)
n=65 × 65 ≥ 6.6 No convergence

0.5 1

n=5×5 ≥ 0.17 (0.25, 6.2)
n=9×9 ≥ 0.64 (1.2, 13.1)

n=17 × 17 ≥ 1.7 (4.1, 31)
n=33 × 33 ≥ 3.5 (6.1, 49)
n=65 × 65 No convergence

0.2 1

n=5×5 (0.19 91) (0.25, 5.5)
n=9×9 (0.68, 105) (2.7, 11.7)

n=17 × 17 (1.8, 100) (3, 24)
n=33 × 33 (3.6, 22) (7.8, 30)
n=65 × 65 No convergence

Example 3.5.2 1 1

n=5×5 ≥ 0.3 (0.45, 15.3)
n=9×9 ≥ 1.25 (1.69, 31.5)

n=17 × 17 ≥ 3 (3.4, 63)
n=33 × 33 ≥ 6.1 (4, 128)
n=65 × 65 ≥ 11 No convergence

Example 3.5.3 1 1

n=5×5 ≥ 0.15 (0.25, 5.7)
n=9×9 ≥ 0.68 (1.5, 11.7)

n=17 × 17 ≥ 1.7 (3.5, 23.9)
n=33 × 33 ≥ 3.5 (4.2,48)
n=65 × 65 ≥ 7.3 ≥ 4.4
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Table 3.13 Comparison of errors using MQ, GA for various q1 and q2 with LOOCV
algorithm.

q1 q2 RBF Nodes RBF (ε) Iter RMS L∞ CPU
parameter error error Time(s)

Example 3.5.1 (11×11)

1 1
MQ

Nonuniform 0.8768 7 5.22E-07 1.23E-06 1.6991
Uniform 0.9676 8 7.95E-05 1.41E-04 2.1372

GA
Nonuniform 1.6090 6 1.34E-06 3.35E-06 1.3322

Uniform 1.3906 7 2.12E-05 3.92E-05 1.3470

0.9 0.1
MQ

Nonuniform 0.8563 8 1.14E-06 3.57E-06 32.3969
Uniform 0.9960 8 2.91E-05 5.74E-05 31.8009

GA
Nonuniform 1.6102 17 2.73E-06 8.39E-06 62.8451

Uniform 2.1147 8 2.60E-04 4.92E-04 30.2693

0.1 0.1
MQ

Nonuniform 1.4188 26 5.07E-05 1.97E-04 107.3408
Uniform 1.4133 22 5.61E-05 1.74E-04 97.3608

GA
Nonuniform 2.0023 39 2.97E-05 1.08E-04 152.9792

Uniform 2.2708 22 8.88E-05 3.12E-04 84.0719
Example 3.5.2 (21×21)

1 1
MQ

Nonuniform 4.7276 6 2.43E-07 8.08E-07 23.3952
Uniform 4.3148 6 2.07E-06 2.98E-06 22.6957

GA
Nonuniform 4.8513 8 9.83E-07 3.08E-06 32.5213

Uniform 4.2994 8 5.56E-07 1.73E-06 31.3391
Example 3.5.3 (21×21)

1 1
MQ

Nonuniform 2.8132 7 6.97E-07 2.17E-06 23.9788
Uniform 2.0600 12 9.16E-06 1.76E-05 47.2570

GA
Nonuniform 4.3197 7 2.00E-07 5.75E-07 26.2423

Uniform 2.8144 19 1.50E-06 3.01E-06 68.3558
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Table 3.14 Comparison of errors using MQ, GA for various q1 and q2 with trigonometric
variable shape parameter.

q1 q2 RBF Nodes interval Iter RMS L∞ CPU
ε error error Time(s)

Example 3.5.1 (11×11)

1 1
MQ

Nonuniform (1.2, 2.2) 6 1.49E-09 3.88E-09 0.1324
Uniform (1.2, 2.2) 6 5.88E-08 1.25E-07 0.0869

GA
Nonuniform (1.4, 2.4) 6 1.55E-09 5.29E-09 0.0804

Uniform (1.6, 2.6) 6 8.75E-08 2.15E-07 0.0854

0.9 0.1
MQ

Nonuniform (1.4, 2.4) 9 1.17E-07 2.91E-07 1.5331
Uniform (1.3, 2.3) 10 1.09E-06 2.82E-06 1.5952

GA
Nonuniform (1.7, 2.7) 8 1.19E-06 4.14E-06 1.4096

Uniform (1.7, 2.7) 10 1.38E-06 2.25E-06 1.4458

0.1 0.1
MQ

Nonuniform (1.3, 2.3) 52 8.01E-07 3.22E-06 2.4104
Uniform (1.4, 2.4) 27 6.33E-07 3.16E-06 1.4681

GA
Nonuniform Diverging

Uniform (2.7, 3.7) 67 6.18E-04 2.30E-03 1.6899
Example 3.5.2 (21×21)

1 1
MQ

Nonuniform (3.5, 4.5) 6 2.47E-08 1.26E-07 0.7470
Uniform (4.3, 5.3) 6 3.84E-06 8.18E-06 0.7674

GA
Nonuniform (3.5, 4.5) 6 2.97E-09 1.30E-08 0.7194

Uniform (3.5, 4.5) 6 4.73E-09 1.55E-08 0.7065
Example 3.5.3 (21×21)

1 1
MQ

Nonuniform (2.5 3.5) 7 1.14E-08 4.57E-08 0.9089
Uniform (2.5, 3.5) 7 7.45E-07 1.78E-06 0.9123

GA
Nonuniform (2.5, 3.5) 7 1.03E-08 4.64E-08 0.7743

Uniform (2, 3) 23 1.01E-07 1.65E-07 2.6565
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CHAPTER 4

ON STABILISATION OF RADIAL BASIS
FUNCTIONS BASED SCHEMES FOR
FRACTIONAL DERIVATIVES

4.1 INTRODUCTION

From the time radial basis functions were constructed and identified to be a powerful
tool to approximate functions from scattered data in higher dimensions, RBF
practitioners had to fight with the curse of instability due to high ill-conditioning of
the corresponding linear system. This system become unstable whenever the shape
parameter ε → 0 (flatter radial functions) and/or data or nodal points become closer.
However for many application problems, accurate solutions are obtained for smaller
ε values. Also to capture high gradient solutions as well to improve the solutions
near boundaries, it is important to cluster more nodal points in those subregions of the
problem domain.

In the initial developments of radial basis functions based methods, Robert
Schaback (1995) proved the “uncertainty principle” stating that both the error and
condition number of the coefficient matrix cannot be small simultaneously for
interpolation problems. Also many numerical and theoretical studies (Carlson and
Foley, 1991; Rippa, 1999; Roque and Ferreira, 2010; Sanyasiraju and Satyanarayana,
2013) suggests that optimal ε falls in to the category of ‘very small’ value,
which prohibits RBF schemes obtaining accurate and stable solutions due to high
ill-conditioning. The efforts for stable computation of RBF solutions were seen initially
from Beatson et al. (1999) by rewriting the basis for the RBF interpolation. Following
this some pre-conditioning strategies were proposed by Ling and Kansa (2005) by
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constructing approximate cardinal basis functions, but with moderate success.

It is understood from the literature that a great deal of progress on ‘stable
computation’ of solutions using radial functions are made during last decade. In 2004,
Fornberg and Wright developed an algorithm based on contour integration in complex
ε−plane for stable evaluation of RBF interpolants. Even though this was restricted for
small number of data, this has clearly shown the possibility of obtaining radial function
approximations in a stable manner. Based on rewriting the RBF basis in terms of
spherical harmonics (on sphere) or Chebyshev expansions and then using appropriate
QR factorisation for any domain in 1-3 dimensons, Fornberg and his co-workers have
proposed RBF-QR algorithm. In this algorithm restrictions on the number of nodes
are loosened to do computations for moderately large set of nodes (Fornberg and
Piret, 2007; Fornberg et al., 2011). Some of the other important contributions towards
developing robust and stable RBF solution evaluation methods are from Fasshauer and
McCourt (2012), Cheung et al. (2015), Gonzalez-Rodriguez et al. (2015) and Wright
and Fornberg (2017). As an application of RBF-QR algorithms to fractional model
problems, we can refer the works of Piret and Hanert (2013) on fractional diffusion
model in one dimension and Antunes and Ferreira (2015) on fractional Sturm-Liouville
eigenvalue problems in one dimension. In their later work, Antunes and Ferreira
developed a new method augmenting RBF basis with fractional polynomials and then
obtained solutions incorporating RBF-QR method (Antunes and Ferreira, 2015).

Tikhonov regularisation method is one of the successful regularisation method
usually considered to solve ill-posed problems. An ill-conditioned linear system can be
treated as a discretised ill-posed problem. Unlike RBF interpolation which produces a
symmetric matrix that can be regularised by Lavrentiev regularisation (Sarra, 2014),
some of the RBF collocation methods for differential equations lead to an asymmetric
collocation matrix. In such situation, Tikhonov regularisation is more suitable in
getting stable solutions. There are only a few efforts in the literature that incorporates
Tikhonov regularisation (TR) along with RBF discretisation (Lin et al., 2012; Arghand
and Amirfakhrian, 2015; Zhang and Li, 2016) and they focus on classical PDE models.

In the current work, we have proposed two efficient stabilisation schemes based
on 1) Tikhonov regularisation and 2) RBF-QR to approximate fractional derivatives.
As mentioned, there are very limited work considering Tikhonov regularisation in
RBF discretisation. Thus algorithm 1, henceforth called RBF-TR is developed to
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regularise the linear system obtained by discretising fractional order differential
equations, where the optimal regularisation parameter is computed using generalised
cross validation (GCV) method. In order to simplify the computations, singular
value decomposition method is implemented. On the other hand RBF-QR focuses on
replacing extremely unstable radial basis functions basis with a more stable one such
that it generates the same space. The importance of the present work is that RBF-QR
method is made applicable to any choice of radial functions. The originally proposed
RBF-QR algorithm for non-spherical domains was limited to Gaussian RBF due to the
complexity involved in obtaining the coefficient matrix by changing the basis using
hypergeometric series expansion and truncating appropriately. Hence in the current
work, the hypergeometric series approximation is replaced with Chebyshev-Gauss
quadrature rule, which consequently makes RBF-QR method flexible enough to include
more class of radial functions.

In the following section, formulation of both the algorithms are discussed in detail.
Then these methods are illustrated using well known fractional model problems such as
fractional diffusion, Bagley-Torvik equation and system of fractional ODEs.

4.2 METHODOLOGY

4.2.1 A direct RBF collocation space fractional diffusion model

To demonstrate the implementation of RBF-QR and RBF-TR methods, we derive
direct collocation for fractional diffusion model as given below.

∂u(x, t)
∂ t

= d(x)
∂ qu(x, t)

∂xq + f (x, t), x ∈ [a,b]

IC : u(x,0) = u0(x) BC : u(a, t) = 0, u(b, t) = ub(t)
(4.2.1)

Expressing u(x, t) in terms of RBFs as;

u(x, t)≈
n

∑
j=1

λ j(t)φ(|x− x j|), (4.2.2)

x ∈ [a,b] and t > 0, where x j, j = 1,2, ...n, are collocation points in [a,b]. Discretised
form of (4.2.1) after substituting (4.2.2) at each of these collocation points, we get
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n

∑
j=1

φi j
dλ j(t)

dt
=

n

∑
j=1

d(xi)

(
∂ qφ

∂xq

)
i j

λ j(t)+ f (xi), i = 1,2, · · · ,n

n

∑
j=1

φ1 jλ j(t) = 0;
n

∑
j=1

φn jλ j(t) = ub

(4.2.3)

Considering Crank-Nicolson scheme to advance in time,

n

∑
j=1

(
φi j−

d(xi)∆t
2

(
∂ qφ

∂xq

)
i j

)
λ

s
j =

n

∑
j=1

(
φi j +

d(xi)∆t
2

(
∂ qφ

∂xq

)
i j

)
λ

s−1
j +

(
∆t
2
( f s

i + f s−1
i )

)
n

∑
j=1

φ1 jλ
s
j = 0,

n

∑
j=1

φn jλ
s
j = ub

where i = 1,2, · · · ,n and s = 2,3, · · · , which leads to a system,

Aλ̄
s = Bλ̄

s−1 +F (4.2.4)

where

Ai j =


φi j, if xi = a or xi = b

φi j−
d(xi)∆t

2

(
∂ qφ

∂xq

)
i j
, if xi ∈ (a,b)

Bi j =


0, if xi = a or xi = b

φi j +
d(xi)∆t

2

(
∂ qφ

∂xq

)
i j
, if xi ∈ (a,b)

and

Fi =


0 if xi = a
∆t
2
( f s

i + f s−1
i ), if xi ∈ (a,b)

ub if xi = b

However, we require λ̄ 1 which is evaluated, using initial condition, by solving the
system,

Aλ̄
1 = F (4.2.5)

where Ai j = φi j and Fi = u0(xi), i, j = 1,2, · · · ,n.

The fractional derivatives present in equations are evaluated by Gauss-Jacobi
quadrature rule as discussed in Chapter 2. The coefficient matrix A is dense and
becomes increasingly ill-conditioned as ε → 0 or nodal points becomes closer to each
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other which results in unreliable solution. So, in order to overcome this ill-conditioning
issues, the present chapter illustrates the extension of two stabilisation schemes
RBF-TR and RBF-QR.

4.2.2 RBF-QR method

RBF-QR method by Fornberg et al. (2011) relies on representing the ill-conditioned
RBF bases in terms of a well-conditioned one that spans exactly the same space. Then
the coefficient matrix thus obtained is factorised into the product Q×R, where Q is
a unitary matrix and R is an upper triangular matrix. In their work, RBF basis is
transformed in the following way.

φ(|x− x j|) =
∞

∑
k=0

ck(x j)T̃k(x) =
∞

∑
k=0

ck(x j)Tk(2x−1) (4.2.6)

where T̃ denotes the shifted Chebyshev polynomials to generalise the domain from
[−1,1] to [a,b] = [0,1] using the transformation x= a+b

2 + b−a
2 ξ = 1

2 +
1
2ξ and c1,c2, · · ·

are the coefficients to be evaluated using the orthogonality property of Chebyshev’s
polynomials,

∫ 1

−1

Tk(ξ )Ti(ξ )√
(1−ξ 2)

dξ =


0 k 6= i

π, k = i = 0
π

2
, k = i≥ 1

, (4.2.7)

Considering the transformation x = 1
2ξ + 1

2 , integrate (4.2.6) after multiplying by
Ti(ξ )√
(1−ξ 2)

to obtain ck’s for each x j, j = 1,2, · · ·n.

ci(x j) = b̂
∫ 1

−1

φ(|0.5ξ +0.5− x j|)Ti(ξ )√
(1−ξ 2)

dξ (4.2.8)

where b̂ =
1
π
, i = 0 and b̂ =

2
π
, i≥ 1.

In their formulation for general domains, Fornberg and collaborators have
considered only Gaussian radial function. The splitting of e−ε2(|x−x j|)2

as
e−ε2x2

e−ε2x2
j eε22xx j have made them to propose the following representation, which in

turn provides the coefficients in terms of hypergeometric series.

e−ε2(|x−x j|)2
=

∞

∑
k=0

ck(x j)e−ε2x2
Tk(x); ck(x j) = dkb̃ke−ε2x2

j xk
j0F1([ ],k+1,ε4x2

j)
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where dk =
2ε2k

k!
, b̃0 = 1/2 and b̃k = 1, k > 0. With appropriate modification

the formula is translated to general domain [a,b]. Based on this RBF-QR process,
many classical differential models are solved (Ilati and Dehghan (2015); Dehghan
and Najafi (2016), to name a few). Very few attempts (Piret and Hanert, 2013;
Antunes and Ferreira, 2015) are reported in the context of solving fractional model
problems. However, it is observed from RBF literature that other commonly considered
radial functions are multiquadrics and inverse multiquadrics. Thus its important to
generalise the algorithm to include more class of functions. Hence, in this work, we
propose to obtain the coefficients ck(x j)’s in (4.2.8) using Chebyshev-Gauss quadrature
rule. Throughout the chapter RBF-QR algorithm with Chebyshev-Gauss quadrature is
referred as RBF-QR-CH.

4.2.2.1 RBF-QR using Chebyshev-Gauss quadrature rule

Choosing F(ξ ) = φ(0.5ξ + 0.5 − x j)Ti(ξ ), Chebyshev-Gauss quadrature can be
considered to evaluate the integral

∫ 1
−1W (ξ )F(ξ )dξ , with weight function

W (ξ ) = 1√
1−ξ 2

. The approximation then becomes,

∫ 1

−1

F(ξ )√
1−ξ 2

dξ ≈
nc

∑
l=1

WlF(ξl) (4.2.9)

where nc is the number of Chebyshev quadrature points obtained from the zeros of

Chebyshev polynomials ξl = cos
(

2l−1
2nc

π

)
with Wl =

π

nc
being the corresponding

weights. Thus,

∫ 1

−1

F(ξ )√
1−ξ 2

dξ ≈ π

nc

nc

∑
l=1

F
(

cos
(

2l−1
2nc

π

))
(4.2.10)

which leads to

ci(x j) =


1
nc

nc

∑
l=1

φ(0.5ξl +0.5− x j)Ti(ξl), i = 0

2
nc

nc

∑
l=1

φ(0.5ξl +0.5− x j)Ti(ξl), i≥ 1
(4.2.11)

for i = 0,1 · · · · · · , j = 1,2, · · ·n. Truncating the series (4.2.6) for computations
considering sufficiently large p (p > n) terms, radial function basis is expressed as,
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
φ(|x− x1|)
φ(|x− x2|)

...
φ(|x− xn|)

=


c0(x1) c1(x1) · · · cp(x1)

c0(x2) c1(x2) · · · cp(x2)
... . . . ...

c0(xn) c1(xn) · · · cp(xn)


︸ ︷︷ ︸

C


T̃0(x)

T̃1(x)
...

T̃p(x)

 (4.2.12)

Thus at each node xi, i = 1,2, · · ·n, Eqn.(4.2.12) gives an expression as in the
following:

φ(|x1− x1|) φ(|x2− x1|) · · · φ(|xn− x1|)
φ(|x1− x2|) φ(|x2− x2|) · · · φ(|xn− x2|)

...
...

. . .
...

φ(|x1− xn|) φ(|x2− xn|) · · · φ(|xn− xn|)


︸ ︷︷ ︸

Φ

=C


T̃0(x1) T̃0(x2) · · · T̃0(xn)

T̃1(x1) T̃1(x2) · · · T̃1(xn)
...

...
. . .

...
T̃p(x1) T̃p(x2) · · · T̃p(xn)


︸ ︷︷ ︸

E

(4.2.13)

Then factorizing C into Q and R, where Q is an unitary matrix and R is an upper
triangular matrix, (4.2.13) becomes

Φn×n =
(

Qn×n Rn×(p+1)

)
︸ ︷︷ ︸

C

E(p+1)×n = Q [R1 R2] E = Q R1 [I R−1
1 R2] E (4.2.14)

where R1 contains first n columns of matrix R and R2 contains the remaining (p+1−
n) columns of R. To simplify further, pre-multiply (4.2.14) by R−1

1 QT . This finally
leads to a basis which is a linearly independent combinations of RBFs which keeps the
approximation space intact.

Ψ(x) = R−1
1 QT

Φ(x) = [I R−1
1 R2]E (4.2.15)

Hence the interpolation matrix is rewritten in terms of the following new basis,

[Ψ(x1),Ψ(x2), · · ·Ψ(xn)]
T = (R−1

1 QT
Φ)T = ET [I R−1

1 R2]
T (4.2.16)

4.2.2.2 Fractional RBF-QR-CH basis:

Since the fractional operators possess linearity property, when cDq
a acts on both sides

(4.2.6) term by term, yields,
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cDq
aφ(|x− x j|) =

∞

∑
k=0

ck(x j)
cDq

aT̃k(x) (4.2.17)

Thus at each node xi, i = 1,2 · · ·n, the fractional derivative of RBFs can be
approximated as follows:

cDq
aφ(|x1− x1|) cDq

aφ(|x2− x1|) · · · cDq
aφ(|xn− x1|)

cDq
aφ(|x1− x2|) cDq

aφ(|x2− x2|) · · · cDq
aφ(|xn− x2|)

...
...

. . .
...

cDq
aφ(|x1− xn|) cDq

aφ(|x2− xn|) · · · cDq
aφ(|xn− xn|)


︸ ︷︷ ︸

Φ̃

=C


cDq

aT̃0(x1)
cDq

aT̃0(x2) · · · cDq
aT̃0(xn)

cDq
aT̃1(x1)

cDq
aT̃1(x2) · · · cDq

aT̃1(xn)
...

...
. . .

...
cDq

aT̃p(x1)
cDq

aT̃p(x2) · · · cDq
aT̃p(xn)


︸ ︷︷ ︸

Ẽ
(4.2.18)

Considering QR factorisation of Φ̃ and further simplifications lead to the
representation
Φ̃ = Q R1 [I R−1

1 R2] Ẽ. Then the matrix corresponding to the one in (4.2.16) takes the
form

[cDq
aΨ(x1),

cDq
aΨ(x2), · · · cDq

aΨ(xn)]
T = (R−1

1 QT
Φ̃)T = ẼT [I R−1

1 R2]
T (4.2.19)

where cDq
aΨ(x j) = [cDq

aΨ(x j1),
cDq

aΨ(x j2), · · · , cDq
aΨ(x jn)]

T , j = 1,2, · · ·n. The
evaluation of cDq

aT̃i(x), i = 0,1, · · · p may be done analytically for small ‘p’, however
becomes tedious even for moderately large number. Hence Gauss-Jacobi quadrature
rule (refer Chapter 2) that can be generalised for any ‘p’ is considered in our
computations.

4.2.2.3 RBF-QR-CH algorithm of fractional diffusion problem

This section provides an algorithm for direct RBF collocation described in subsection
4.2.1, with

1. Input xi’s, φ , n, p > n.

2. Compute Cn×(p+1) (refer (4.2.11)).

3. Factorise C = QR, then write R = [R1 R2] as in (4.2.14).

4. For t=0,

(a) Compute A = ÊT [I R−1
1 R2]

T , where Êi j = T̃i−1(x j), i = 1,2, · · · ,(p+ 1),
j = 1,2, · · · ,n.

(b) Evaluate λ̄ 1 = A−1F , where Fi = u0(xi), i = 1,2, · · · ,n.

5. For t > 0,
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(a) Compute A = ÊT [I R−1
1 R2]

T , where

Êi j =

 T̃i−1(x j), if x j = a or b

T̃i−1(x j)−
d(x j)∆t

2
cDq

aT̃i−1(x j), if x j ∈ (a,b)

(b) Evaluate λ̄ s = A−1(Bλ̄ s−1 +F)with F as in (4.2.4).

6. ui(ts) =
n

∑
j=1

λ
s
j Ψi j, i = 1,2, · · · ,n.

4.2.3 Tikhonov Regularisation

In general, regularisation process replaces ill-posed problem with a nearby well-posed
model by considering certain additional informations. Literature survey suggests the
interests in the field in developing theory on important regularisation methods such
as Lavrentiev and Tikhonov regularisation methods and their applications to inverse
problems, image processing, statistics problems and many more (Neumaier, 1998).

While considering RBF interpolation problems, where resulting linear system is
symmetric, Lavrentiev regularisation is applicable. However, many RBF based schemes
produce asymmetric systems, wherein Tikhonov regularisation is suitable. In the
following, we briefly describe the technique and their extension to Kansa’s method
on one dimensional fractional diffusion model (4.2.1).

Let A ∈ Cm×n, F ∈ Cm. The minimum-norm least-squares solution of the system
Aλ̄ = F is λ̄ = A†F , where A† is the pseudoinverse or generalised inverse of the matrix
A (Ben-Israel and Greville, 2003). It is precisely the solution of two stage minimisation
problem:
• Stage 1: Solve Min ‖Aλ̄ −F‖.
• Stage 2: Obtain Min ‖λ̄‖ from all solutions of Stage 1.

Thus if A is a well-conditioned matrix, then the solution is expressed as
λ̄ = (A∗A)−1A∗F = A†F , provided A has full column rank. Here, A∗ is the
Hermitian matrix.

However, for an ill-conditioned matrix, the condition number of symmetric and
positive definite matrix A∗A, can be reduced by adding a small constant to every
diagonal element. Then the corresponding solution becomes λ̄ = (A∗A+ µ2I)−1A∗F ,
a formula proposed by Tikhonov (1963). Thus above two stage minimisation problem
becomes

Min fµ2(λ̄ ) (4.2.20)
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where fµ2(λ̄ ) = ‖Aλ̄ −F‖2+µ2‖λ̄‖2 depends on a nonzero real parameter µ2, known
as regularisation parameter. Following theorem proves the existence of the solution of
(4.2.20).

Theorem 4.2.1. (Ben-Israel and Greville, 2003) The function fµ2(λ̄ ) has a unique

minimiser λ̄µ2 given by, λ̄µ2 = (A∗A+ µ2I)−1A∗F whose norm ‖λ̄µ2‖ is a monotone

decreasing function of µ2.

It is clear that fµ2(λ̄µ2)→ A†F as µ → 0. Thus, in Tikhonov regularisation the
linear system Aλ̄ = F is replaced by a the regularised system

(A∗A+µ
2I)λ̄ = A∗F

The efficiency of the regularisation methods mainly depends on the effective
evaluation of the regularisation parameter µ . Well known methods like L-curve,
generalised cross validation (GCV) (Hansen and O’Leary, 1993) are some of the
important algorithms helpful in finding optimal value of µ .

4.2.3.1 RBF-TR for fractional diffusion problem

Thus according to Tikhonov regularisation, the system Aλ̄ s = Bλ̄ s−1 +F where A is
a real matrix obtained by RBF (refer Eqn.(4.2.4)), is replaced with regularised system
(AT A+µ2I)λ̄ s = AT (Bλ̄ s−1+F), with A, B and F defined as in Subsection 4.2.1. This
leads to the solution,

λ̄
s = (AT A+µ

2I)−1AT (Bλ̄
s−1 +F) (4.2.21)

For further simplification, let us consider the singular value decomposition (SVD)
of matrix A = USV T where U and V are unitary (here, orthogonal) matrices and S =

diag(σ1,σ2, ...,σn) where σi’s are singular values of the matrix A. Thus the SVD along
with the properties of orthogonal matrices, reduces Eqn. (4.2.21) to

λ̄
s =V

[
(S2 +µ

2I)−1S
][

UT (Bλ̄
s−1 +F)

]
(4.2.22)

where optimal µ2 has been evaluated using generalised cross validation (GCV) method
which mainly dealt by minimising the function

G(µ) =
‖Aλ̄ − (Bλ̄ s−1 +F)‖2

(trace(I−AAI))2 (4.2.23)
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where AI = (AT A+µ2I)−1AT .

4.3 NUMERICAL ILLUSTRATIONS

In this section, the efficiency of the presented methods is illustrated by considering
various types of linear fractional order differential equations for both uniform and
nonuniform nodal distributions. Nonuniform nodes are Chebyshev-Gauss-Lobotto

points defined by
[

1−cos(iπ/n)
2

]
, i = 0,1,2, ...n. Results by the proposed RBF-TR

(MQ-TR) and RBF-QR-CH (MQ, GA, IMQ, Sech) methods are compared with the
RBF-QR by Fornberg and collaborators, henceforth referred in the thesis as GA-QR.
Also these solutions are compared to MQ-direct and solutions obtained using other
existing methods. The shape parameters are chosen as ε = 2E − 08 for RBF-QR and
RBF-QR-CH and ε j = εmin +0.2∗ sin( j), εmin = 2E−06 ( j = 1,2, ...,n), for RBF-TR,
unless specified otherwise. For known exact solutions, accuracy is compared in terms
of L∞ errors.

Example 4.3.1. Consider the space fractional diffusion problem (Pang et al., 2015),

∂u(x, t)
∂ t

=
Γ(2.2)

6
x2.8 ∂ 1.8u(x, t)

∂x1.8 − x3(1+ x)e−t , 0 < x < 1, 0 < t < T. (4.3.1)

subject to the IC : u(x,0) = x3 and BCs : u(0, t) = 0 and u(1, t) = e−t , t > 0. The
analytical solution u(x, t) = x3e−t .

The results are illustrated through Figure 4.1 and 4.2 as well as Table 4.1 to 4.3.
Figure 4.1 provides visual appearance of MQ-QR-CH solution in comparison with
exact solution t = 20. L∞ errors for various ‘ε’ are plotted in Figure 4.2 for both
MQ-QR-CH (Row 1) and MQ-TR (Row 2). The results show that irrespective of the
nodal distributions, MQ-TR solution improve as n increases. However, for uniform
nodes MQ-QR-CH solution start diverging from exact solution for n ≥ 18. In the
case of nonuniform nodes, solution accuracy remains better with increase in number
of nodes for both the algorithms. This is similar to the behaviour reported by Piret
and Hanert (2013) for a fractional diffusion model using GA-QR. Using the proposed
RBF-QR-CH algorithm, other radial functions GA, IMQ, sech also have shown similar
characteristics.
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Table 4.1 presents L∞ error and convergence rate for all the proposed algorithms
and MQ-direct (Pang et al., 2015). From Table 4.2, we can see analogous features
by all radial functions using RBF-QR-CH algorithm, which is also observed in Figure
4.2. Table 4.3 provides a pointwise comparison of solutions of MQ-direct, MQ-TR,
GA-QR and RBF-QR-CH (using all infinitely smooth radial functions) at t = 1 and
t = 10. Inspite of using smaller ∆t, MQ-direct solution accuracy is considerably less in
comparison with stabilised RBF methods.

Example 4.3.2. Consider another space fractional diffusion problem (Sweilam et al.,

2015),

∂u(x, t)
∂ t

= Γ(1.2)x1.8 ∂ 1.8u(x, t)
∂x1.8 +3x2(2x−1)e−t , 0 < x < 1, t > 0 (4.3.2)

subject to the IC : u(x,0) = x2(1− x) and BCs : u(0, t) = u(1, t) = 0, t > 0. The
analytical solution u(x, t) = x2(1− x)e−t .

The results (Figure 4.3 and Table 4.4, 4.5) shows a similar pattern obtained for
Example 4.3.1. Table 4.5 compares proposed algorithms with MQ-direct and a method
based on second kind shifted Chebyshev polynomials (SKSCP) by Sweilam et al.
(2015). RBF-QR-CH (using MQ, IMQ, GA and Sech), RBF-TR solutions are as
accurate as GA-QR (Fornberg et al. (2011), Piret and Hanert (2013)) and provides
significantly higher accuracy when compared with MQ-direct and the solutions of
Sweilam et al. (2015).

Example 4.3.3. To validate the proposed methods, we choose Bagley-Torvik equation

(Rehman and Khan, 2012),

au′′(x)+bcD3/2u(x)+ cu(x) = g(x), x ∈ [0,1] (4.3.3)

with boundary conditions u(0) = 0, u(1) = 0 when a = 1, b = 8
17 and c = 13

51 ,
the exact solution u(x) = x5 − 29

10x4 + 76
25x3 − 339

250x2 + 27
125x. Here g(x) =

x−1/2

89250
√

π
(48P(x)+7

√
πxQ(x)) with P(x) = 16000x4−32480x3+21280x2−4746x and

Q(x) = 3250x5−9425x4 +264880x3−448107x2 +233262x−34578.

Figure 4.4 shows the manner in which both the stabilisation methods using MQ
radial function respond to increase in number of nodes. Even though MQ-QR-CH
solution accuracy is close to 10−15 for small n < 20, accuracy starts deteriorating
as n increases. This scenario is observed for uniform distribution. But solution
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obtained using Chebyshev-Gauss-Lobotto points retains the accuracy with increase in
n. From Tables 4.6 and 4.7, it is clear that RBF-QR-CH and RBF-QR (using Gaussian)
produce significantly improved solution when compared to MQ-direct, MQ-TR and
Haar wavelet method by Rehman and Khan (2012).

Example 4.3.4. Consider a system of fractional BVP as follows,

u′′(x)− v′(x)+c D0.4
0 v(x)+ v(x) = f1(x)

v′′(x)−u′(x)+c D0.6
0 u(x)+u(x) = f2(x)

(4.3.4)

along with the boundary conditions u(0) = u(1) = 0, v(0) = v(1) = 0, where
f1(x) = 11x2 + 3x− 1− 2x1.6

Γ(2.6) +
x0.6

Γ(1.6) and f2(x) = x4− 4x3− x− 1+ 24x3.4

Γ(4.4) −
x0.4

Γ(1.4) .
The exact solution for u and v are u(x) = x(x3−1), v(x) = x(1− x).

From Tables 4.8 and4.9, we can see that the accuracy using RBF-QR-CH (MQ, GA,
IMQ, Sech) and GA-QR are significantly higher when compared with that of MQ-TR
and sinc-collocation method (SCM) by Hatipoglu et al. (2017). However, as observed
in earlier examples both RBF-QR-CH and RBF-QR (GA-QR) are sensitive to increase
in nodal points n. Table 4.10 provides pointwise error comparison of all the schemes,
while Figure 4.5 depicts the exact and MQ-QR-CH solutions for both u and v.

4.4 CONCLUSIONS

In this chapter, we have extended Tikhonov regularisation and RBF-QR algorithms to
RBF collocation method formulated for fractional order differential equations. Other
main contribution is towards generalising RBF-QR algorithm for any infinitely smooth
radial functions, referred as RBF-QR-CH algorithm in the thesis. By solving fractional
diffusion model, Bagley-Torvik equation and a system of fractional ODEs, all the
proposed methods are tested for accuracy and effect on increase in number of nodes
and shape parameter. Comparisons among them as well as with other schemes in the
literature proves how efficient these algorithms are. While RBF-QR-CH algorithm
helps in stable computation of the solution for very small ε values, RBF-TR is suitable
for moderately small ε’s. Inspite of their efficiency in obtaining accurate solutions for
very small ε’s, both RBF-QR-CH and RBF-QR are sensitive to the nodal distributions.

91



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.1

0

0.1

0.2

0.3

0.4

x 

S
ol

ut
io

n 
u(

x,
t)

 

 

Exact t=1

MQ−QR−CH t=1

Exact t=2

MQ−QR−CH t=2

Exact t=5

MQ−QR−CH t=5

Exact t=10

MQ−QR−CH t=10

Exact t=20

MQ−QR−CH t=20

Figure 4.1 Solutions using MQ-QR-CH method for Example 4.3.1.
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Figure 4.2 Example 4.3.1: n Vs L∞ error for different ε (a) uniform and (b) nonuniform
nodes. Row 1: MQ-QR-CH; Row 2: MQ-TR (∆t = 0.0025).
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Figure 4.3 Example 4.3.2: n Vs L∞ error for different ε (a) uniform and (b) nonuniform
nodes. Row 1: MQ-QR-CH; Row 2: MQ-TR (∆t = 0.0025).
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Figure 4.4 Comparison of L∞ error for Example 4.3.3 .
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Table 4.1 L∞ error and rate of convergence for Example 4.3.1 (∆x = ∆t)

∆x MQ-TR MQ-QR-CH IMQ-QR-CH Sech-QR-CH

L∞error ROC L∞error ROC L∞error ROC L∞error ROC

1/ 10 1.1485E-04 1.1326E-04 1.1326E-04 1.1326E-04
1/ 15 5.0642E-05 2.02 5.0323E-05 2.00 5.0323E-05 2.00 5.0323E-05 2.00
1/ 20 2.8557E-05 1.99 2.8417E-05 1.99 2.8417E-05 1.99 2.8417E-05 1.99
1/ 25 1.8289E-05 2.00 1.8266E-05 1.98 1.8266E-05 1.98 1.8266E-05 1.98

GA-QR-CH GA-QR MQ-direct
(ε = n0.5/2)

(Pang et al., 2015)
1/ 10 1.1326E-04 1.1229E-04 5.29135E-4
1/ 15 5.0323E-05 2.00 5.0570E-05 1.97 1.38298E-4 3.83
1/ 20 2.8417E-05 1.99 2.8344E-05 2.01 6.20013E-5 2.25
1/ 25 1.8266E-05 1.98 1.8239E-05 1.98 3.42345E-5 1.82

Table 4.2 L∞ error for Example 4.3.1 (∆t = 0.0025)

n MQ-TR MQ-QR-CH IMQ-QR-CH Sech-QR-CH GA-QR-CH GA-QR

Uniform nodes

6 1.23E-04 6.7831E-08 6.7831E-08 6.78E-08 6.78E-08 6.64E-08
11 4.29E-08 7.0683E-08 7.0683E-08 7.07E-08 7.07E-08 7.01E-08
21 5.84E-08 1.2417E-03 1.2417E-03 1.24E-03 1.24E-03 4.91E+00
26 6.19E-08 3.7180E+09 3.7180E+09 3.62E+09 3.62E+09 4.49E+14
31 6.79E-08 9.2062E+26 9.2062E+26 9.21E+26 9.21E+26 8.09E+33

Nonuniform nodes

6 1.03E-04 6.7462E-08 6.7462E-08 6.75E-08 6.75E-08 7.08E-08
11 6.46E-08 7.0467E-08 7.0467E-08 7.05E-08 7.05E-08 7.05E-08
21 8.23E-08 7.0471E-08 7.0471E-08 7.05E-08 7.05E-08 7.05E-08
26 4.69E-08 7.0749E-08 7.0749E-08 7.07E-08 7.07E-08 7.07E-08
31 6.92E-08 7.1061E-08 7.1061E-08 7.11E-08 7.11E-08 7.11E-08
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Table 4.3 Absolute error for Example 4.3.1(∆x = 0.1, ∆t = 0.0025)

x MQ-direct
MQ-TR MQ-QR-CH IMQ-QR-CH Sech-QR-CH GA-QR-CH GA-QR

Pang et al. (2015)

T =1

0 2.84E-14 1.82E-11 4.73E-15 4.73E-15 4.73E-15 4.73E-15 4.95E-18
0.1 3.59E-08 3.95E-08 3.49E-10 3.49E-10 3.49E-10 3.49E-10 3.50E-10
0.5 8.33E-05 4.08E-08 4.80E-08 4.80E-08 4.80E-08 4.80E-08 4.81E-08
0.9 3.60E-04 4.29E-08 3.45E-08 3.45E-08 3.45E-08 3.45E-08 3.65E-08
1 1.73E-14 2.16E-11 4.27E-15 4.27E-15 4.27E-15 4.27E-15 5.55E-17

T =10

0 1.11E-16 1.71E-13 5.31E-16 5.31E-16 5.31E-16 5.31E-16 5.18E-22
0.1 2.71E-06 1.96E-08 1.73E-09 1.73E-09 1.73E-09 1.73E-09 1.73E-09
0.5 2.37E-05 3.00E-08 1.11E-08 1.11E-08 1.11E-08 1.11E-08 1.08E-08
0.9 4.84E-06 9.69E-09 3.33E-09 3.33E-09 3.33E-09 3.33E-09 2.50E-09
1 1.47E-16 4.67E-13 4.96E-16 4.96E-16 4.96E-16 4.96E-16 1.36E-20

Table 4.4 L∞ error for Example 4.3.2 (∆t = 0.0025)

n MQ-TR MQ-QR-CH IMQ-QR-CH Sech-QR-CH GA-QR-CH GA-QR

Uniform nodes

6 1.41E-04 1.29E-08 1.29E-08 1.26E-08 1.26E-08 1.32E-08
11 3.05E-08 1.43E-08 1.43E-08 1.43E-08 1.43E-08 1.44E-08
21 3.55E-08 1.67E-06 1.67E-06 1.67E-06 1.67E-06 4.49E+01
31 3.65E-08 7.16E+17 7.16E+17 7.16E+17 1.01E+18 8.04E+21

Nonuniform nodes

6 1.19E-04 1.28E-08 1.23E-08 1.23E-08 1.23E-08 1.36E-08
11 1.22E-08 1.40E-08 1.40E-08 1.40E-08 1.40E-08 1.41E-08
21 2.34E-08 1.46E-08 1.46E-08 1.46E-08 1.46E-08 1.46E-08
31 3.22E-08 1.45E-08 1.45E-08 1.45E-08 1.45E-08 1.45E-08
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Table 4.5 Absolute error for Example 4.3.2 (∆x = 0.1,∆t = 0.0025)

x MQ-direct MQ-TR MQ-QR-CH IMQ-QR-CH Sech-QR-CH GA-QR-CH GA-QR
SKSCP

(Sweilam et al.)

(2015)

T = 1

0 7.11E-15 3.64E-11 8.61E-16 8.72E-16 8.72E-16 8.72E-16 1.62E-18 0.00E+00
0.2 1.90E-04 2.49E-09 1.01E-08 1.01E-08 1.01E-08 1.01E-08 1.01E-08 8.51E-06
0.4 3.23E-04 1.46E-08 1.43E-08 1.43E-08 1.43E-08 1.43E-08 1.44E-08 9.18E-06
0.6 3.57E-04 2.37E-08 1.21E-08 1.21E-08 1.21E-08 1.21E-08 1.21E-08 5.60E-06
0.8 3.23E-04 2.58E-08 6.48E-09 6.48E-09 6.48E-09 6.48E-09 6.40E-09 1.34E-06
1 7.11E-15 5.46E-11 5.75E-16 5.71E-16 5.71E-16 5.71E-16 8.65E-20 0.00E+00

T = 10

0 8.67E-19 2.22E-15 4.15E-19 4.14E-19 4.14E-19 4.14E-19 1.87E-22 0.00E+00
0.2 4.35E-08 2.21E-12 1.55E-12 1.55E-12 1.55E-12 1.55E-12 1.51E-12 2.34E-08
0.4 3.82E-08 3.81E-12 1.03E-12 1.03E-12 1.03E-12 1.03E-12 9.78E-13 4.78E-09
0.6 3.33E-08 3.98E-12 4.84E-13 4.84E-13 4.84E-13 4.84E-13 4.52E-13 7.39E-09
0.8 3.11E-08 3.53E-12 7.82E-14 7.82E-14 7.82E-14 7.82E-14 1.01E-13 2.84E-08
1 8.67E-19 2.66E-15 2.74E-19 2.74E-19 2.74E-19 2.74E-19 2.40E-22 0.00E+00

Table 4.6 Comparison of L∞ error for Example 4.3.3

n MQ-TR MQ-QR-CH IMQ-QR-CH Sech-QR-CH GA-QR-CH GA-QR
Uniform nodes

6 4.32E-02 1.83E-16 1.80E-16 1.90E-16 1.86E-16 1.85E-16
11 1.03E-07 3.20E-16 3.41E-16 3.30E-16 3.44E-16 1.88E-16
21 1.49E-08 3.31E-14 3.87E-14 3.45E-14 3.41E-14 3.82E-14
31 3.56E-08 2.72E-11 2.86E-11 2.51E-11 3.34E-11 1.53E-12
41 2.33E-08 4.40E-09 4.90E-09 5.85E-09 4.04E-09 1.34E-09

Nonuniform nodes
6 9.94E-02 1.54E-16 1.59E-16 1.60E-16 1.59E-16 1.61E-16

11 4.30E-08 2.71E-16 2.68E-16 2.77E-16 2.59E-16 2.72E-16
21 6.52E-08 3.17E-16 3.44E-16 3.33E-16 3.68E-16 2.59E-16
31 4.34E-08 6.51E-16 6.45E-16 6.56E-16 6.43E-16 6.52E-16
41 2.21E-08 5.32E-16 5.67E-16 5.43E-16 5.87E-16 5.35E-16
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Table 4.7 Absolute error for Example 4.3.3 (n=11)

x
MQ-direct

MQ-TR MQ-QR-CH IMQ-QR-CH Sech-QR-CH GA-QR-CH GA-QR
HWM

(Rehman and Khan)

(ε = 0.1) (2012)

0.1 6.70E-10 5.15E-08 1.73E-17 2.26E-17 1.73E-17 1.39E-17 8.67E-18 3.90E-06
0.2 2.00E-10 8.50E-08 1.91E-17 1.56E-17 1.91E-17 1.56E-17 4.51E-17 4.17E-06
0.3 8.96E-09 8.84E-08 1.56E-17 1.08E-17 1.56E-17 8.67E-19 6.03E-17 3.94E-06
0.4 3.56E-08 9.13E-08 3.06E-17 2.44E-17 3.06E-17 9.27E-18 9.37E-17 3.37E-06
0.5 2.72E-08 7.53E-08 8.67E-18 1.65E-17 8.67E-18 3.19E-17 7.50E-17 2.61E-06
0.6 2.86E-08 1.03E-07 1.74E-17 9.23E-18 1.74E-17 4.57E-18 1.26E-16 1.79E-06
0.7 2.68E-09 8.78E-08 3.24E-16 3.33E-16 3.24E-16 3.40E-16 1.88E-16 1.04E-06
0.8 1.88E-09 8.98E-08 3.13E-16 3.22E-16 3.13E-16 3.21E-16 1.50E-16 4.92E-07
0.9 2.81E-09 7.92E-08 2.50E-16 2.60E-16 2.50E-16 2.47E-16 5.41E-17 2.61E-07

Table 4.8 L∞ error for Example 4.3.4

n MQ-TR MQ-QR-CH MQ-direct SCM
Hatipoglu et al. (2017)

L∞erroru L∞errorv L∞erroru L∞errorv ε L∞erroru L∞errorv L∞erroru L∞errorv

Uniform nodes

6 4.97E+00 3.22E+00 8.88E-16 4.16E-16 0.03 9.38E-02 9.82E-01 9.64E-03 3.15E-03
11 2.05E-04 1.09E-03 3.66E-15 1.50E-15 0.1 2.74E-01 2.57E-01 9.84E-04 4.18E-04
21 1.36E-06 8.36E-06 2.87E-13 1.42E-13 0.3 1.02E-02 1.03E-01 5.08E-05 8.19E-05
31 2.14E-07 1.70E-06 4.82E-11 2.43E-11 0.5 7.31E-03 4.35E-02 - -
41 5.81E-07 5.15E-06 1.52E-09 3.80E-09 0.5 7.03E-03 4.13E-03 - -

Nonuniform nodes

6 1.59E+00 6.88E-01 8.56E-16 1.11E-16 0.03 2.20E-02 4.59E-01 - -
11 1.61E-06 1.38E-05 1.67E-16 1.11E-16 0.1 1.10E-03 1.97E-02 - -
21 1.22E-07 1.14E-06 3.84E-16 8.33E-17 0.3 5.57E-03 4.24E-03 - -
31 4.27E-08 4.59E-07 8.41E-16 8.33E-17 0.5 4.42E-04 1.34E-03 - -
41 4.29E-08 4.43E-07 2.39E-15 2.22E-16 0.7 9.92E-05 1.72E-04 - -
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Table 4.9 L∞ error for Example 4.3.4.

n
IMQ-QR-CH Sech-QR-CH GA-QR-CH GA-QR

L∞erroru L∞errorv L∞erroru L∞errorv L∞erroru L∞errorv L∞erroru L∞errorv

Uniform nodes

6 6.66E-16 5.55E-16 7.22E-16 5.00E-16 6.38E-16 5.00E-16 1.11E-16 5.55E-17
11 2.84E-15 1.67E-15 2.65E-15 1.58E-15 2.89E-15 1.40E-15 8.33E-17 1.11E-16
21 2.58E-13 1.46E-13 2.62E-13 1.37E-13 2.85E-13 1.28E-13 1.97E-14 7.41E-15
31 5.71E-11 2.85E-11 4.10E-11 2.25E-11 5.92E-11 2.76E-11 8.35E-12 5.62E-12
41 9.05E-09 1.97E-09 9.45E-09 3.51E-09 3.59E-09 1.06E-09 5.65E-09 3.63E-09

Nonuniform nodes

6 8.33E-16 8.33E-17 2.22E-16 8.33E-17 7.23E-16 8.33E-17 5.55E-17 1.25E-16
11 1.41E-15 1.39E-16 5.00E-16 1.11E-16 1.46E-15 1.39E-16 6.90E-16 9.71E-17
21 1.37E-15 1.39E-16 6.11E-16 1.11E-16 1.24E-15 1.11E-16 1.37E-15 1.67E-16
31 2.29E-15 1.39E-16 5.69E-16 8.33E-17 7.93E-16 1.11E-16 1.73E-15 1.11E-16
41 2.55E-15 1.11E-16 1.66E-15 2.22E-16 8.88E-16 1.39E-16 2.14E-15 1.39E-16

Table 4.10 Absolute error for Example 4.3.4.

x
MQ-TR MQ-QR-CH IMQ-QR-CH Sech-QR-CH
(n=41) (n=11) (n=11) (n=11)

Erroru Errorv Erroru Errorv Erroru Errorv Erroru Errorv

0 3.26E-09 0 7.97E-17 6.39E-18 1.82E-16 1.22E-17 2.20E-16 3.87E-18
0.1 9.25E-08 1.58E-07 2.94E-15 1.42E-15 2.84E-15 1.50E-15 2.65E-15 1.42E-15
0.4 3.24E-07 6.20E-07 2.94E-15 9.44E-16 2.33E-15 1.14E-15 1.94E-15 1.03E-15
0.5 4.02E-07 7.76E-07 3.00E-15 9.44E-16 2.28E-15 1.11E-15 1.94E-15 1.05E-15
0.9 7.61E-07 1.44E-06 3.66E-15 1.50E-15 2.33E-15 1.67E-15 2.00E-15 1.58E-15
1 8.82E-07 1.62E-06 1.02E-15 3.01E-17 5.89E-16 1.43E-17 1.02E-15 2.21E-17

x

GA-QR-CH GA-QR SCM
Hatipoglu et al. (2017)

(n=11) (n=11) (n=41)
Erroru Errorv Erroru Errorv Erroru Errorv

0 7.55E-17 1.02E-17 7.69E-18 5.58E-19 0 0
0.1 2.87E-15 1.29E-15 1.39E-17 6.94E-17 7.02E-07 1.27E-05
0.4 2.55E-15 8.88E-16 0.00E+00 2.78E-17 3.71E-06 1.28E-05
0.5 2.61E-15 8.33E-16 0.00E+00 0.00E+00 3.62E-06 1.14E-05
0.9 2.83E-15 1.40E-15 0.00E+00 5.55E-17 1.24E-06 8.14E-06
1 1.20E-16 1.08E-17 5.20E-18 5.48E-18 0 0
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CHAPTER 5

CONCLUSIONS

In the present thesis, we have attempted to extend two radial basis functions based
global schemes to a class of fractional nonlinear ordinary differential equations.
Referred as direct RBF collocation and integrated RBF collocation (DRBF and IRBF),
they are formulated to solve both initial and boundary value problems. Later, direct
RBF collocation is extended to fractional Darboux problem, which involves mixed
fractional partial derivatives. The main numerical challenge in solving fractional order
models using radial functions are obtaining fractional derivatives, which involves
integral of radial functions. For polynomial basis, corresponding fractional derivatives
in closed form can be readily obtained. To avoid representing the fractional derivatives
of RBFs in terms of complex infinite series form, we have chosen to numerically
evaluate them using Gauss-Jacobi quadrature method. Desired accuracy is obtained by
choosing approximately 6 to 8 quadrature points in one direction.

Since the fractional models considered are of nonlinear in nature, any approximation
methods involves linearisation. The linearisation may be done to the continuous
nonlinear differential equation model or to the corresponding discretised difference
equation model. In this work, we have linearlised the given nonlinear fractional
differential equations, either via generalised monotone quasilinearisation or successive
approximation. Using these proposed iterative processes, the existence and uniqueness
of the solution for the problems as well as the convergence of the sequence of solutions
of the linear models to the corresponding solution of the nonlinear problems are
proved. The monotone nature of the convergence of generalised quasilinearisation is
observed in the numerical solutions obtained for the examples. Many model problems
are solved using the proposed DRBF and IRBF methods and then compared with
solutions obtained using other numerical/semi-analytical methods in the literature.
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Inspite of high accuracy and order of convergence, radial functions based schemes
often suffer instability due to ill-conditioning of the discretised system. i.e., RBFs
are sensitive to both shape parameter and closeness of the nodal points in the domain.
This disadvantage is observed even while approximating fractional order derivatives.
Hence an effort is made to extend Tikhonov regularisation and RBF-QR algorithms in
the stable computation of fractional derivatives and then to solve fractional differential
equations using RBF based schemes. Further, RBF-QR algorithm is generalised to
include more class of radial functions (RBF-QR-CH), wherein the algorithm was
earlier restricted to Gaussian RBF.

Some of the observations based on the above mentioned works are:

• Being global methods, RBF based collocation schemes (DRBF and IRBF)
produce very accurate results for considerably small nodal distributions.

• While both DRBF and IRBF yield very accurate solutions with small set of
nodes for problems with derivative order q close to corresponding order of the
classical problem (q = 1 or 2 for the examples considered), DRBF demands
increase in quadrature points for accurate solutions. However, IRBF scheme
is robust in terms of rate of convergence, required number of quadrature points
for the effective implementation of Gauss-Jacobi rule and the convergence of
quasilinearisation even for smaller q values.

• For all the examples considered, the conditions are verified to confirm that the
iterative techniques are convergent. The conditions given in the main theorem
can be easily verified. Monotone nature of the proposed quasilinearisation is
observed in all the examples chosen.

• Another interesting observation is that appending polynomial to polyharmonic
splines has significantly improved the accuracy of the solutions. This
characteristics is recently analysed in detail by Flyer et al. (2016).

• Implementation of variable shape parameters in DRBF scheme for fractional
Darboux model has helped in stabilising the scheme moderately.

• Leave-one-out cross validation (LOOCV) algorithm is effectively implemented
and verified that optimal shape parameter εopt values obtained using LOOCV
matches closely with that is estimated through trial and error approach.

• An extension of RBF-QR algorithm by Fornberg et al. (2011) to fractional model
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problems are proposed. Further, the algorithm is generalised/extended to include
more class of radial functions.

• An extension of Tikhonov regularisation to RBF collocation system obtained
by discretising fractional order differential equations is made. Singular value
decomposition and generalised cross validation are implemented to make the
regularisation computationally robust.

5.1 SCOPE FOR THE FUTUTE RESEARCH

The interest towards fractional order models in applications have increased in the last
two decades (See Chapter 1). This necessitate the need for the development of robust
numerical methods to solve practical problems. The work done in this thesis is a step
forward in this direction. During the present study and implementation of the proposed
radial functions based schemes to various fractional order differential equations, we
have observed a few issues that may be addressed to widen the applicability of RBF
based schemes. Some of them are,

• It may be noted that integrated RBF (IRBF) scheme is formulated only for
fractional ordinary differential equations. Effective formulation of the scheme
to higher dimensional problems is an interesting and challenging problem.

• Present work does not completely exploit the naturally gridfree nature of radial
functions. However, the optimal nodal distribution is problem dependent.
Hence, solving application problems that involves fractional derivatives that
demands flexible nodal distribution can be an important contribution to scientific
community.

• Possible extension of RBF-QR-CH algorithm to higher dimension is an
interesting work that needs further exploration. The works done on RBF-QR
by Fornberg and co-authors with respect to Gaussian radial function can give an
insight into these possibilities.
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