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ABSTRACT

In science and engineering many practical problems can be formulated using math-

ematical modelling and can be classified as nonlinear ill-posed problems. Here

we consider those ill-posed equations involving m-accretive operators in Banach

spaces. Using a general Hölder type source condition we were able to obtain an

optimal order error estimate. For nonlinear problems, obtaining a closed form

solution is possible only in rare cases, so most of the methods considered for ap-

proximating the solution of nonlinear problems are iterative. Four different types

of iterative schemes are being discussed in this thesis. Firstly, we consider a deriva-

tive and inverse free method and obtained second order convergence. Then, we

produced an extended Newton-type iterative scheme that converges cubically to

the solution which uses assumptions only on the first Fréchet derivative of the

operator. Afterwards, we studied Newton-Kantorovich regularization method and

obtained second order convergence with weak assumptions. Finally, we examined

Secant-type iteration and proved that the proposed iterative scheme has a con-

vergence order at least 2.20557 using assumptions only on first Fréchet derivative

of the operator. Through out the work, for choosing the regularization parameter

we have taken the adaptive parameter choice strategy given by Pereverzev and

Schock (2005).

Keywords: Banach space; Nonlinear ill-posed problem; Lavrentiev regu-

larization; m-accretive mappings; Adaptive parameter choice strategy; Ex-

tended Newton iterative scheme; Newton-Kantorovich regularization method;

Secant-type iterative scheme.
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Table of Contents

Acknowledgement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

1 INTRODUCTION 1

1.1 Ill-posed problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Nonlinear ill-posed problem . . . . . . . . . . . . . . . . . . 3

1.2 Regularization Method . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.1 Source Conditions . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2.2 Choice of regularization parameter . . . . . . . . . . . . . . 8

1.3 Iterative methods and Convergence analysis . . . . . . . . . . . . . 10

1.3.1 Order of Convergence . . . . . . . . . . . . . . . . . . . . . . 11

1.4 Motivation of Research . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.5 Research Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.6 Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 LAVRENTIEV’S REGULARIZATION METHOD FOR NON-

LINEAR ILL-POSED EQUATIONS IN BANACH SPACES 15

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
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Chapter 1

INTRODUCTION

The notion of an Inverse Problem (IP) have acquired a widespread acceptance in

modern applied mathematics, science and engineering, although it is improbable

that any rigorous formal definition of this concept exists. IP’s are the opposites

of direct problems. By nature, in a direct problem one finds an effect from a

cause, and in an IP one is given with the effect and wants to recover the cause.

The most usual situation giving rise to an IP is the need to interpret indirect

physical measurements of an unknown object of interest. Keller (1976), a well

known American mathematician introduced a general definition for IP with his

frequently quoted statement as “We call two problems inverses of one another if the

formulation of each involves all or part of the solution of the other.” Solving such

problems will lead us to a wide range of applications in image processing, radar,

communication theory, oceanography, geophysics, computer vision, astronomy,

remote sensing, machine learning, natural language processing and many other

fields. IP’s is a very active field of research in applied sciences. IP’s in science and

engineering can be formulated mathematically as an operator equation

F (u) = f, (1.0.1)

where F : E1 → E2 is a linear or nonlinear operator between suitable normed

spaces E1 and E2, f is the observation and u is sought for the solution. IP’s

most often do not fulfill Hadamard’s postulates of well-posedness (see Section

1.1 below) i.e., the equation (1.0.1) might lack a solution in the strict sense, if

exists the solution might not be unique and/or might not depend continuously on

the data. Therefore, mathematically analyzing these are a bit hard in general.

Problems that are not well-posed in the sense of Hadamard (Hadamard (1953))

are termed ill-posed. We will be looking forward only ill-posed IP’s.

1



Throughout the thesis we will be using the following notations.

• The domain of F is denoted by D(F ).

• The range of F is denoted by R(F ).

• The Fréchet derivative of F (see Definition 1.1.2) is denoted by F ′(.).

• B(u, ρ), B(u, ρ) stand, respectively for the open and closed balls in E1, with

center u ∈ E1 and of radius ρ > 0.

1.1 Ill-posed problem

According to Hadamard (1953), a French mathematician, the problem of solv-

ing the operator equation (1.0.1) is said to be well-posed if the following three

conditions are fulfilled:

(1.) Existence: For each f ∈ E2, there is a solution u ∈ E1 of (1.0.1) ;

(2.) Uniqueness: The solution u is unique ;

(3.) Stability: The dependence of u upon F is continuous .

For operator equations of the form (1.0.1) this criteria of Hadamard’s well-posedness

can be rewritten as follows:

(1.) F (E1) = E2;

(2.) F is one-to-one;

(3.) F−1 is continuous.

We can spot that first two criteria are of algebraic in nature, while the third one

depends mostly on the topologies chosen for E1 and E2. As the theory of linear

ill-posed problems are well furnished (Engl et al. (1996); Groetsch (1984); Nashed

and Rall (1976)), we are looking forward in studying nonlinear ill-posed problems.
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1.1.1 Nonlinear ill-posed problem

Let E = E1 = E2 be a Banach space, let the dual space E∗ of E is the set of all

linear continuous functionals on E and F be a nonlinear operator from D(F ) ⊆ E

into E. We denote 〈u, J〉 instead of J(u) for J ∈ E∗ and u ∈ E and we denote ‖.‖
for norm on both E and E∗. As for linear case the theory is not so well developed

in nonlinear case (George and Nair (1993); Engl et al. (1996); Tautenhahn (1996);

Nair (2009)). If F is not surjective, then the operator equation (1.0.1) is not

solvable. We use the concept of quasi-solution û.

DEFINITION 1.1.1 (Alber and Ryazantseva (2006)). An element û ∈ E is

called a quasi-solution of equation (1.0.1) if it minimizes the residual ‖ F (u)−f ‖

on the set E.

DEFINITION 1.1.2 (Alber and Ryazantseva (2006)). Let F be an operator

mapping a Banach space E into itself. If there exists a bounded linear operator

L : E → E such that for u0 ∈ E

lim
‖h‖→0

‖F (u0 + h)− F (u0)− L(h)‖
‖h‖

= 0,

then F is said to be Fréchet-differentiable at u0 and the bounded linear operator

F ′(u0) := L is called the first Fréchet-derivative of F at u0.

We need the following definitions in the sequel. We assume that E is Banach,

reflexive and strictly convex together with its dual space E∗.

DEFINITION 1.1.3 (Alber and Ryazantseva (2006)). Let E be a reflexive space,

E∗ its dual space and F : E → 2E
∗
(An operator A : E1 → 2E2, we mean that A

is multiple-valued, i.e., the mapping need not be necessarily having a one-to-one

correspondence). The set of pairs (u, f) ∈ E × E∗ such that f ∈ F (u) is called

the graph of an operator F and is denoted by grF . A set G ⊆ E × E∗ is called

monotone if the inequality

〈f − g, u− v〉 ≥ 0 (1.1.1)

3



holds for all pairs (u, f) and (v, g) from G.

DEFINITION 1.1.4 (Alber and Ryazantseva (2006)). An operator F : E → 2E
∗

is monotone if its graph is a monotone set, i.e., if for all u, v ∈ D(F ) and for all

f ∈ F (u) and g ∈ F (v),

〈f − g, u− v〉 ≥ 0.

DEFINITION 1.1.5 (Alber and Ryazantseva (2006)). An operator j : E → 2E
∗

is called normalized duality mapping in E if the following equalities are satisfied:

〈J, u〉 = ‖J‖‖u‖ = ‖u‖2, ∀J ∈ j(u), ∀u ∈ E.

DEFINITION 1.1.6 (Alber and Ryazantseva (2006)). An operator F : E → 2E

is called accretive if for all u1, u2 ∈ D(F ) with v1 ∈ F (u1) and v2 ∈ F (u2),

〈J(u1 − u2), v1 − v2〉 ≥ 0 (1.1.2)

where J is the single valued normalized duality mapping on E.

DEFINITION 1.1.7 (Alber and Ryazantseva (2006)). An operator F : E → 2E

is called accretive if for all u1, u2 ∈ D(F ) with v1 ∈ F (u1) and v2 ∈ F (u2),

‖u1 − u2‖ ≤ ‖u1 − u2 + λ(F (u1)− F (u2))‖, λ > 0. (1.1.3)

It can be verified easily that Definitions 1.1.6 and 1.1.7 are equivalent (Alber

and Ryazantseva (2006)).

DEFINITION 1.1.8 (Alber and Ryazantseva (2006)). An accretive operator

F : E → 2E is called m-accretive if

R(F + αI) = E (1.1.4)

for all α > 0, where I denote the identity operator on E.

4



DEFINITION 1.1.9 (Krasnosel’skii et al. (1976)). A closed linear operator

F : E → E is called of positive type if the operators (F + αI)−1 exist for all

α ≥ 0 and if

‖ (F + αI)−1 ‖≤ c

1 + α
,

where c > 0 is a constant.

Next we give two examples of nonlinear ill-posed problems.

EXAMPLE 1.1.10. Parameter identification problem [Hofmann et al. (2016)]

: Consider parameter identification problem in an elliptic PDE ; i.e.,to find the

source term u in the elliptic boundary value problem

−∆f + ξ(f) = u in Ω

f = 0 on ∂Ω

from measurement of f in Ω. Here ξ : R −→ R is a Lipschitz continuously differ-

entiable monotonically increasing function and Ω ⊆ R3 is a smooth domain. The

corresponding forward operator in this case is F : H2(Ω) −→ H2(Ω) defined by

F (u) = f

is monotone. This can be seen as follows:

〈F (u1)− F (u2), u1 − u2〉 =

∫
Ω

(f1 − f2)(u1 − u2)dx

=

∫
Ω

(f1 − f2)(−∆(f1 − f2) + ξ(f1)− ξ(f2))dx

=

∫
Ω

(| 5 (f1 − f2)|2 + (ξ(f1)− ξ(f2))(f1 − f2))dx

≥ ‖5 (f1 − f2)‖2
L2(Ω) ≥ 0.

EXAMPLE 1.1.11. Geological Prospecting:(cf. Vasin and George (2014)).

In the structural inverse gravimetry problem for a two-layer medium, the re-

quired solution is a function x3 = u(x1, x2), which describes the interface between
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media with different constant densities σ1, σ2. In a Cartesian coordinate system

with the vertical axis x3 directed downward, the equation with respect to the un-

known function x3 = u(x1, x2) has the form

Γ∆σ

∫ ∫
D

1

[(x1 − x′1)2 + (x2 − x′2)2 +H2]1/2
dx′1dx

′
2

−
∫ ∫

D

1

[(x1 − x′1)2 + (x2 − x′2)2 + u2(x′1, x
′
2)]1/2

dx′1dx
′
2 = ∆g(x1, x2);

(1.1.5)

here Γ is gravity constant, ∆σ = σ1 − σ2 is the jump in density at the interface

H, detailed by the function u(x1, x2) to be calculated. ∆g(x1, x2) is the unknown

gravitational field caused by some deviation in the interface H from horizontal

asymptotic plane x3 = S, i.e., for the sought for solution û(x1, x2) the following

equality holds

lim
|x1|,|x2|→∞

|û(x1, x2)−H| = 0,

g(x1, x2) is given on the domain D.

By considering (1.1.5) the first term does not depend on u(x1, x2) so equation

can be modified as

F (u) ≡ −
∫ ∫

D

1

[(x1 − x′1)2 + (x2 − x′2)2 + u2(x′1, x
′
2)]1/2

dx′1dx
′
2 = f(x1, x2),

where f(x1, x2) = ∆g(x1, x2) + F (H).

1.2 Regularization Method

Generally, regularization is the approximation of a given ill-posed problem by a

family of nearby well-posed problems. Procedures that head to stable approxi-

mations to an ill-posed problem are called regularization methods(Nair (2009)).

Since (1.0.1) is ill-posed in general, the strong convergence and stability of approx-

imate solutions can be attained only by exercising some regularization procedure.

Practically, the available data will be f δ instead of f in (1.0.1) with

‖ f − f δ ‖≤ δ. (1.2.1)

6



Throughout this thesis, we assume that f δ ∈ E2 satisfies (1.2.1).

DEFINITION 1.2.1. (Alber and Ryazantseva (2006)). An operator Rαf
δ :

E2 → E1 is called a regularization operator of equation (1.0.1) if it satisfies the

two requirements:

(1) Rαf
δ is defined for all α ≥ 0 and for all f δ ∈ E2 satisfying (1.2.1);

(2) There exist a function α = α(δ) such that Rα(δ)f
δ =: uδα → û as δ → 0,

where û is the solution of (1.0.1).

Operators Rαf
δ leads to a variety of regularization methods. An element uδα

is called the regularized solution and α is called the regularization parameter. So

a regularization method involves:

(1) construction of a regularization operator;

(2) choosing the regularization parameter α = α(δ) which ensure convergence

of uδα to some û as δ → 0.

The most generally used regularization methods for (1.0.1) with nonlinear F and

approximate data f δ are:

1. Tikhonov regularization method in which the solution uδα of the equation

F ′(u)∗(F (u)− f δ) + α(u− u0) = 0

is taken as the approximate solution of (1.0.1) (Tautenhahn and Jin (2003)).

2. If F is monotone operator and if domain and range are same for F , in this

case we can consider Lavrentiev regularization method, in which the solution

uδα of the equation

F (u) + α(u− u0) = f δ (1.2.2)

is taken as an approximate for û (Tautenhahn (2002)).

In our study we will be using Lavrentiev regularization method for obtaining stable

approximation for û.

7



1.2.1 Source Conditions

Suppose there exist a function ϕ : (0, p] → (0,∞) with p ≥‖ F ′(û) ‖ and v ∈ E1

such that

u0 − û = ϕ(F ′(û))v, (1.2.3)

where u0 is an initial guess, û is the solution of (1.0.1) and F ′(û) is the Fréchet

derivative of F at û and

‖ û−Rαf ‖≤ ϕ(α), (1.2.4)

then ϕ is called a source function and the condition (1.2.3) is called a source condi-

tion. To obtain error bounds on the distance ‖uδα − û‖ one needs some additional

smoothness assumptions of the form (1.2.4) (known as “a priori assumptions”)

on the unknown û, with respect to the operator F ′(û) or F ′(u0). In literature,

various source conditions are used. For example, Hölder-type source condition

(Tautenhahn (2002, 2004)), i.e., û − u0 ∈ R(F ′(x̂)∗F ′(û)ν), 0 < ν ≤ 1, general

source condition û − u0 ∈ R(φ((F ′(x̂)∗F ′(x̂))), with index functions φ (Argyros

et al. (2014); Mahale and Nair (2007); Argyros et al. (2013); Semenova (2010))

and the new variational source conditions (Hofmann et al. (2016)). In our study,

we will be using Hölder-type and the general source conditions with respect to the

operator F ′(u0).

1.2.2 Choice of regularization parameter

In general, a regularized solution uδα can be written as uδα = Rαf
δ where Rα is a

regularization function. A choice of α = αδ of the regularization parameter may

be made in either in a prior or a posterior way (Groetsch (1993)).

In practical applications, it is desirable that α is chosen independent of the

source function ϕ, but may depend on the data (δ, f δ) and therefore on the regu-

larized solutions. In a posteriori methods the parameter α is determined during the

course of computation of uδα. For linear type ill-posed problems there exists many

posteriori parameter choice strategies. For example, Groetsch and Guacaneme
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(1987) considered the discrepancy principle

‖F (uδα)− f δ‖ =
δ√
α
,

for choosing α. Many a posteriori strategies for linear type ill-posed problems are

available in the literature (Guacaneme (1990); George and Nair (1993); Engl et al.

(1996); Tautenhahn (2002)).

In our studies we have considered the adaptive parameter choice strategy, pro-

posed by Pereverzev and Schock (2005). Pereverzev and Schock (2005), considered

an adaptive selection of th parameter which does not involve even the regulariza-

tion method explicitly. Let us discuss this adaptive method in shortly and more

generally by approximating û with elements from a set {uδα : α > 0, δ > 0}.
Assume that there exist increasing functions ϕ(p) and φ(p) for p > 0 such that

lim
p→0

ϕ(p) = 0 = lim
p→0

φ(p),

and

‖û− uδα‖ ≤ ϕ(p) +
δ

φ(p)

for all α > 0, δ > 0. Note that the ϕ(α) + δ
φ(α)

attains its minimum for the choice

α := αδ such that ϕ(α) = δ
φ(α)

, that is for

αδ = (ϕφ)−1(δ)

and in that case

‖û− uδαδ‖ ≤ 2ϕ(αδ).

In an “aposteriori”choice, one finds a parameter αδ without making use of the

unknown source function ϕ such that one obtains an error estimates of the form

‖û− uδαδ‖ ≤ cϕ(αδ),

for some c > 0 with αδ = (ϕφ)−1(δ). The procedure considered by Pereverzev and

Schock (2005) starts with a finite number of positive reals, α0, α1, · · · , αN , such

that

α0 < α1 < · · · < αN .
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Assume that there exists i ∈ {0, 1, 2, · · · , N} such that ϕ(αi) ≤ δ
φ(αi)

and for some

µ > 1,

φ(αi) ≤ µφ(αi−1) ∀i ∈ {0, 1, 2, · · · , N}

Let

l := max

{
i : ϕ(αi) ≤

δ

φ(αi)

}
< N,

and

k := max

{
i : ‖uδi − uδj‖ ≤ 4

δ

φ(αj)
, j = 0, 1, 2, · · · , i− 1

}
.

Then, (see George and Nair (2008)) l ≤ k and

‖û− uδαδ‖ ≤ 6µϕ(αδ), αδ = (ϕφ)−1(δ).

We will be using, the above parameter procedure extensively in our study.

1.3 Iterative methods and Convergence analysis

Obtaining closed form solution for regularization methods are desirable, but by

considering most of the practical problems it may not be possible. So, iterative

methods are used to obtain an approximation for regularized solution. In the last

few years many authors considered iterative regularization methods, for example,

Landweber method(Hanke et al. (1995)), Levenberg-Marquardth method(Hanke

(1997a)), Gauss-Newton(Bakushinskii (1992)), Conjugate gradient(Hanke (1997b))

and Newton like methods(Hofmann et al. (2016), Hanke (1997a)). Iterative meth-

ods have the following form in common:

(1) Begin with an initial value u0;

(2) Successive approximates ui, i = 1, 2..., to û are computed with the aid of an

iterative function G : E → E, defined by G(ui) = ui+1, i = 1, 2, . . . ;

(3) If û is a fixed point of G, i.e., G(û) = û, all fixed points of G are also zeros

of F, and if G is continuous in a neighbourhood of each of its fixed points,

then each limit point of the sequence ui, i = 1, 2, ..., is a fixed point of G.
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1.3.1 Order of Convergence

Iterative methods can be classified by the rate of convergence. A sequence {uk}
in E with limuk = u∗ is said to be converging at an order p to u∗, if there exist

real positive numbers γ and C such that, for all k ∈ N,

‖uk − u∗‖ ≤ Ce−γp
k

.

Further extensive discussion of convergence rate can be seen in, Ortega and Rhein-

boldt (2000); Kelley (1995).

1.4 Motivation of Research

As mentioned earlier, iterative methods are used for solving (1.0.1) (see Argyros

and George (2015); Ji’an et al. (2008); Liu (2005); Buong and Hung (2005)). In

fact, most of the existing methods for solving (1.0.1) in Banach space setting, the

error estimate is realized under the source condition (see Ji’an et al. (2008); Buong

and Phuong (2012); Liu (2005))

u0 − û = F ′(û)v. (1.4.1)

One can easily note that, the above source condition is depending on the unknown

solution û. To our knowledge, for ill posed operator equation (1.0.1) in the setting

of Banach space, no error estimate is known for ‖ uδα − û ‖ under the general

Hölder type condition

u0 − û = F ′(û)νv 0 < ν ≤ 1. (1.4.2)

This motivates us to bridge the above stated gap, by studying a source condition

which is depending only on the initial data. We were also interested in obtaining a

better order of convergence by modifying some already existed iterative methods.

1.5 Research Objectives

Our central aim in this thesis is to introduce new iterative methods with higher

order of convergence to approximate û. The overall objectives can be summarized
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as follows:

1. Introduce and study higher order iteration methods for approximating the

Lavrentiev solution uδα, in Banach space setting.

2. Obtain error estimates for the proposed methods using a generalised source

condition.

3. The parameter choice strategy for the above methods is another problem of

interest in our work.

1.6 Outline of the thesis

Throughout the thesis we considered adaptive parameter choice strategy consid-

ered by Pereverzev and Schock (2005) and we have used general Hölder type source

condition which is discussed in Chapter 2. At the end of every Chapter, a numer-

ical example is given to illustrate all results produced in the respective Chapters.

The rest of the thesis is organized as follows.

Chapter 2 deals with nonlinear ill-posed problems associating m−accretive

operators in Banach spaces. For the implementation of Lavrentiev regularization

method, a derivative and inverse free method is used . Results of this chapter were

published as a paper in Acta Mathematica Scientia ,Volume 38, Issue 1, January

2018, Pages 303-314.

In Chapter 3, we study an extended Newton-type iterative scheme that con-

verges cubically to the solution which uses assumptions only on the first Fréchet

derivative of the operator. The results of this Chapter were published in Journal

of Applied Mathematics and Computing.

Chapter 4 is mainly concentrating on Newton-Kantorovich regularization method

and were able to obtain a second order convergence for the solution. As in early

studies we did not use any scalar sequences in our methods. The results of this

Chapter were published in Rendiconti del Circolo Matematico di Palermo Series

2.
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In Chapter 5, we discuss secant-type iteration and were able to obtain a con-

vergence order of atleast 2.20557. We have also provided both local and semi-local

types of convergence analysis .

Chapter 6 gives the conclusion of the thesis and discusses some further possible

extensions, for future research.
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Chapter 2

LAVRENTIEV’S REGULARIZA-

TION METHOD FOR NONLIN-

EAR ILL-POSED EQUATIONS IN

BANACH SPACES

This Chapter deals with nonlinear ill-posed problems associating m−accretive

mappings in Banach spaces. We consider a derivative and inverse free method

for the implementing the Lavrentiev regularization method. Using general Hölder

type source condition we obtain an optimal order error estimate. Also for choosing

the regularization parameter we consider the adaptive parameter choice strategy

considered by Pereverzev and Schock (2005). A numerical example is given to

illustrate the theoretical results.

2.1 Introduction

In this study we consider the problem of approximately solving the nonlinear

ill-posed equation

F (u) = f. (2.1.1)

Here F : E → E is an m-accretive, Fréchet differentiable and single valued non-

linear mapping. Since F is m-accretive, by Definition 1.1.8

F (u) + α(u− u0) = f δ (2.1.2)
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has a unique solution uδα for α > 0. Here and below, we take u0 as the initial guess

of the exact solution û (which is assumed to be exist) of (2.1.1). As mentioned

in Section 1.4, in earlier studies the optimal order convergence rate for ‖uδα − û‖
is obtained under the Hölder type assumption (1.4.1). Under general Hölder type

assumption (1.4.2), no error estimate is known for ‖uδα − û‖. So, precisely, we

consider the Hölder type source condition

u0 − û = F ′(u0)νv 0 < ν ≤ 1 (2.1.3)

and attain the optimal order error estimate for ‖uδα − û‖ in the Banach space

setting. Note that (1.4.1) is depending on the unknown solution û but (2.1.3) is

depending on the known u0. This is one of the advantage of our approach. Using

our idea one can obtain the optimal order error estimate for ‖uδα − û‖ under the

assumption (1.4.2)(see Corollary 2.2.5).

The rest of the Chapter is organized as follows. In Section 2.2, we consider

Hölder type source condition for obtaining error estimate for ‖uδα− û‖. In Section

2.3 we consider an iterative method and its convergence analysis. A priori choice

of the Parameter and adaptive choice of the parameter are considered in Section

2.4. The implementation of the adaptive method and the algorithm are provided

in Section 2.5. Finally, the Chapter winds up with a numerical example in Section

2.6.

2.2 Error estimates using Hölder type source con-

dition

We briefly introduce some results from (Buong (2004); Ji’an et al. (2008)) to make

the study self-contained. Let uδα be the unique solution of (2.1.2) and uα is the

unique solution of

F (u) + α(u− u0) = f. (2.2.1)

Then

‖uδα − uα‖ ≤
δ

α
(2.2.2)
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and

‖uα − û‖ ≤ ‖û− u0‖. (2.2.3)

The following lemma from Ji’an et al. (2008), is used for proving our results in

this Chapter.

LEMMA 2.2.1. (cf.Ji’an et al. (2008)) Let F : E → E be accretive and Fréchet

differentiable on E. Then for any real number α > 0 and u ∈ E, F ′(u) + αI is

invertible,

‖(F ′(u) + αI)−1‖ ≤ 1

α
(2.2.4)

and

‖(F ′(u) + αI)−1F ′(u)‖ ≤ 2. (2.2.5)

Note that by (2.2.4) we have,

‖α(F ′(u) + αI)−1‖ ≤ 1.

So for 0 < ν ≤ 1, we have (see Krasnosel’skii et al. (1976)[page 287]),

F ′(u)νw =
sin πν

πν

∫ ∞
0

tν(F ′(u) + tI)−2F ′(u)wdt. (2.2.6)

One of the crucial result for proving error estimate is the succeeding lemma,

proof of this is analogous to the proof of Lemma 14.1 in (Krasnosel’skii et al.

(1976)), but to make this chapter self-contained we will be giving the proof.

LEMMA 2.2.2. Let F : E → E be a Fréchet differentiable and monotone oper-

ator. Then for u ∈ E and 0 < ν ≤ 1,

‖α(F ′ + αI)−1F ′(u)ν‖ ≤ C0α
ν ,

where C0 = max{4 sin(πν)
πν

(
ν

1−ν

)ν
, 2}.

Proof. Note that for ν = 1, we have by (2.2.5),

‖α(F ′(u) + αI)−1F ′(u)‖ ≤ 2α.
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Now let us consider the case 0 < ν < 1. Then by (2.2.6) we have

(F ′ + αI)−1F ′(u)νw =
sin πν

πν

∫ ∞
0

tν(F ′ + αI)−1(F ′(u) + tI)−2F ′(u)wdt

=
sin πν

πν
[

∫ ρ

0

tν(F ′ + αI)−1(F ′(u) + tI)−2F ′(u)wdt

+

∫ ∞
ρ

tν(F ′ + αI)−1(F ′(u) + tI)−2F ′(u)wdt]

=
sin πν

πν
[H1 +H2], (2.2.7)

whereH1 =
∫ ρ

0
tν(F ′+αI)−1(F ′(u)+tI)−2F ′(u)wdt andH2 =

∫∞
ρ
tν(F ′+αI)−1(F ′(u)+

tI)−2F ′(u)wdt. So, by (2.2.4) and (2.2.5) we have

‖H1‖ = ‖
∫ ρ

0

tνF ′(u)(F ′(u) + tI)−2(F ′ + αI)−1wdt‖

≤ 2

∫ ρ

0

tν−1

α
‖w‖dt

= 2
ρν

ν.α
‖w‖ (2.2.8)

and

‖H2‖ = ‖
∫ ∞
ρ

tνF ′(u)(F ′(u) + tI)−2(F ′ + αI)−1wdt‖

≤ 2

∫ ∞
ρ

tν−2‖w‖dt

= 2
ρν−1

1− ν
‖w‖. (2.2.9)

Thus by (2.2.7), (2.2.8) and (2.2.9), we have

‖(F ′ + αI)−1F ′(u)νw‖ ≤ 2
sin(πν)

πν

[
ρν

να
+

ρν−1

1− ν

]
‖w‖.

Now the result follows by taking minimum of the right side of the expression above

(i.e., ρ = να
1−ν ).

ASSUMPTION 2.2.3. (see Argyros and George (2015); Semenova (2010); Pereverzev

and Schock (2005)) There exists a constant k0 ≥ 0 such that for every u ∈ B(u0, r)

and v ∈ E there exists an element φ(u, u0, v) ∈ E such that [F ′(u) − F ′(u0)]v =

F ′(u0)φ(u, u0, v), ‖φ(u, u0, v)‖ ≤ k0‖v‖‖u− u0‖.
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THEOREM 2.2.4. Let Assumption 2.2.3 and (2.1.3) hold. If 3k0r < 1, then

‖uα − û‖ ≤
C0

1− 3k0r
αν

where v is as in (2.1.3), r = ‖û− u0‖ and C0 is as in Lemma 2.2.2.

Proof. Note that for ν = 1, the result follows from similar arguments given in

Lemma 2.2.2. Now let us consider the case 0 < ν < 1. We have

F (uα)− F (û) + α(uα − u0) = 0.

Thus by mean value theorem of integral calculus, we have

(F ′(u0) + αI)(uα − û) = α(u0 − û)

−
∫ 1

0

[F ′(û+ t(uα − û))− F ′(u0)](uα − û)dt.

Therefore by (2.1.3), Lemma 2.2.1, Lemma 2.2.2, Assumption 2.2.3 and (2.2.3),

we obtain

‖uα − û‖ ≤ ‖α(F ′(u0) + αI)−1F ′(u0)νv‖

+‖(F ′(u0) + αI)−1

∫ 1

0

[F ′(û+ t(uα − û))− F ′(u0)](uα − û)dt‖

≤ C0α
ν + 2

∫ 1

0

‖φ(û+ t(uα − û), u0, uα − û)dt‖

≤ C0α
ν + 2k0(‖û− u0‖+

1

2
‖uα − û‖)‖uα − û‖

≤ C0α
ν + 2k0(‖û− u0‖+

1

2
‖u0 − û‖)‖uα − û‖

≤ C0α
ν + 3k0‖û− u0‖‖uα − û‖

≤ C0α
ν + 3k0r‖uα − û‖.

Proof of the Theorem is completed.

2

COROLLARY 2.2.5. Let Assumption 2.2.3 and (1.4.2) hold. If k0r < 1, then

‖uα − û‖ ≤
C0

1− k0r
αν

where v is as in (1.4.2), r = ‖û− uα‖ and C0 is as in Lemma 2.2.2..
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Proof. Since

F (uα)− F (û) + α(uα − u0) = 0,

we have

(F ′(û) + αI)(uα − û) = α(u0 − û)

−
∫ 1

0

[F ′(û+ t(uα − û))− F ′(û)](uα − û)dt.

Therefore by (1.4.2), Lemma 2.2.1, Lemma 2.2.2, Assumption 2.2.3 and (2.2.3),

we obtain

‖uα − û‖ ≤ ‖α(F ′(û) + αI)−1F ′(û)νv‖

+‖(F ′(û) + αI)−1

∫ 1

0

[F ′(û+ t(uα − û))− F ′(û)](uα − û)dt‖

≤ C0α
ν + 2

∫ 1

0

‖ϕ(û+ t(uα − û), û, uα − û)dt‖

≤ C0α
ν + 2k0

1

2
‖uα − û‖‖uα − û‖

≤ C0α
ν + k0r‖uα − û‖.

The remains of the proof is alike to the proof of Theorem 2.2.4.

2

2.3 Iterative Method and Convergence analysis

In this Section, we assume that E is a real Banach algebra and F : E −→ E is

twice Fréchet differentiable accretive operator. Before moving to the method, it

is comfortable to open up a few notations. For α > 0, let

Rα(u) := F (u) + α(u− u0)− f δ (2.3.1)

and let

R′α(.)u := F ′(.)u+ αu. (2.3.2)

We study the iterative sequence defined by

uδn+1,α = uδn,α −
2[Rα(uδn,α)]2

Rα(uδn,α +Rα(uδn,α))−Rα(uδn,α −Rα(uδn,α))
, (2.3.3)
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where uδ0,α = u0 is our initial point. As in previous papers like (Buong (2003)-

Buong and Hung (2005); Vasin and George (2014)) etc., we select the parameter

α = αi from some finite set

DN = {αi : 0 < α0 < α1 < · · · < αN},

by the adaptive method considered by Perverzev and Schock (Pereverzev and

Schock (2005)). For the sake of comfort, we use the notation

en = uδn,α − uδα for each n = 0, 1, 2. · · · , (2.3.4)

where uδα is the solution of Rα(u) = 0.

Let

Cβ := min{ ‖F (u0)− f δ‖
(2 + β1/α0)(β1 + αN)

, 2}, δ < Cβ
2
α0 (2.3.5)

and

‖û− u0‖ ≤ r with r < min{ 1

3k0

,
1

2
(
Cβ
2
− δ

α0

)}. (2.3.6)

Further, we assume that

‖F ′(.)‖ ≤ β1 and ‖F ′′(.)‖ ≤ β2.

We start in proving few lemmas which will help us to to prove our main result

(Theorem 2.3.5).

LEMMA 2.3.1. Let en be as in (2.3.4). Then

‖e0‖ ≤ 2r +
δ

α0

.

Proof. Note that, by (2.2.2) and (2.2.3) we have

‖uδα − û‖ ≤
δ

α
+ ‖u0 − û‖. (2.3.7)

The result now follows from the following triangle inequality and (2.3.7)

‖uδα − u0‖ ≤ ‖uδα − û‖+ ‖û− u0‖.

2
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Let us first define the operators M(u),M1(u) and M2(u);

M(u) =

∫ 1

0

R′′α(uδα + t(u− uδα))(1− t)dt for each u ∈ D(F ), (2.3.8)

M1(u) =

∫ 1

0

R′′α(uδα + t(u+Rα(u)− uδα))(1− t)dt, for each u ∈ D(F ) (2.3.9)

and

M2(u) =

∫ 1

0

R′′α(uδα + t(u−Rα(u)− uδα))(1− t)dt, for each u ∈ D(F ). (2.3.10)

Let

Γ1 :=
[M1(uδn,α)−M2(uδn,α)][(en)2 + (Rα(uδn,α))2]

2R′α(uδα)Rα(uδn,α)
, (2.3.11)

and

Γ2 :=
[M1(uδn,α) +M2(uδn,α)]enRα(uδn,α)

R′α(uδα)Rα(uδn,α)
. (2.3.12)

LEMMA 2.3.2. Let R′α be as in (2.3.2), Γ1 and Γ2 be as above. Then

Rα(uδn,α +Rα(uδn,α))−Rα(uδn,α −Rα(uδn,α)) = 2R′α(uδα)Rα(uδn,α)[1 + Γ1 + Γ2].

Proof. Applying the Taylor expansion to the operator Rα(u) around the solution

uδα of Rα(u) = 0, we get

Rα(uδn,α) = R′α(uδα)(uδn,α − uδα) +M(uδn,α)(uδn,α − uδα)2. (2.3.13)

Similarly the Taylor expansion of Rα(uδn,α+Rα(uδα)) and Rα(uδn,α−Rα(uδα)) around

the solution uδα of Rα(u) = 0, we get

Rα(uδn,α +Rα(uδn,α)) = R′α(uδα)(uδn,α − uδα +Rα(uδn,α))

+M1(uδn,α)(uδn,α − uδα +Rα(uδn,α))2

= R′α(uδα)[(uδn,α − uδα) +Rα(uδn,α)] +M1(uδn,α)[(uδn,α − uδα)2

+(Rα(uδn,α))2 + 2(uδn,α − uδα)Rα(uδn,α)]

= R′α(uδα)[en +Rα(uδn,α)] +M1(uδn,α)[(en)2 (2.3.14)

+(Rα(uδn,α))2 + 2enRα(uδn,α)]
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and

Rα(uδn,α −Rα(uδn,α)) = R′α(uδα)(uδn,α − uδα −Rα(uδn,α))

+M2(uδn,α)(uδn,α − uδα −Rα(uδn,α))2

= R′α(uδα)[(uδn,α − uδα)−Rα(uδn,α)] +M2(uδn,α)[(uδn,α − uδα)2

+(Rα(uδn,α))2 − 2(uδn,α − uδα)Rα(uδn,α)]

= R′α(uδα)[en −Rα(uδn,α)] +M2(uδn,α)[(en)2 (2.3.15)

+(Rα(uδn,α))2 − 2enRα(uδn,α)].

From (2.3.14) and (2.3.15) we have

Rα(uδn,α +Rα(uδn,α))−Rα(uδn,α −Rα(uδn,α))

= 2R′α(uδα)Rα(uδn,α)

+[M1(uδn,α)−M2(uδn,α)]((en)2 + (Rα(uδn,α))2)

+2[M1(uδn,α) +M2(uδn,α)]enRα(uδn,α)

= 2R′α(uδα)Rα(uδn,α)[1 + Γ1 + Γ2]. (2.3.16)

2

LEMMA 2.3.3. Let Rα, R
′
α, Γ1 and Γ2 be as in (2.3.1), (2.3.2), (2.3.11) and

(2.3.12) respectively. Then

(a)

‖Rα(uδn,α)‖ ≤ (β1 + α)‖en‖+
β2 + α

2
‖en‖2

(b)

‖(Rα(uδn,α))2(Γ1 + Γ2)‖ = O(‖en‖3).

Proof. Note that (a) follows from (2.3.13) and for all u ∈ E the inequalities

‖R′α(u)‖ ≤ β1 + α and ‖M(u)‖ ≤ β2 + α

2
. (2.3.17)

For proving (b), we observe that

‖Rα(uδn,α)‖ = ‖R′α(uδα)−1R′α(uδα)(Rα(uδn,α))‖

≤ 1

α
‖R′α(uδα)Rα(uδn,α)‖ (2.3.18)
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and hence

‖(Rα(uδn,α))2(Γ1 + Γ2)‖ ≤ ‖ 1

α
Rα(uδn,α)([M1(uδn,α)−M2(uδn,α)][(en)2 + (Rα(uδn,α))2]

+[M1(uδn,α) +M2(uδn,α)]enRα(uδn,α))‖

= O(‖en‖3).

The last step follows from (a), (2.3.17) and the inequality ‖Mi(u)‖ ≤ β2+α
2
, for

i = 1, 2.

2

LEMMA 2.3.4. Let Rα and R′α be as in (2.3.1)and (2.3.2) respectively. Suppose

‖uδn,α − u0‖ < ‖F (u0)−fδ‖
β1+α

for each n = 1, 2, · · · . Then

1

‖R′α(uδα)Rα(uδn,α)‖
≤ 1

α(‖F (u0)− f δ‖ − (β1 + α)‖uδn,α − u0‖)
for each n = 1, 2, · · · .

Proof. Observe that

Rα(uδn,α) = F (uδn,α)− f δ + α(uδn,α − u0)

= F (u0)− f δ + F (uδn,α)− F (u0) + α(uδn,α − u0)

= F (u0)− f δ + [

∫ 1

0

F ′(u0 + t(uδn,α − u0))dt+ αI](uδn,α − u0).

So

‖Rα(uδn,α)‖ ≥ ‖F (u0)− f δ‖ − ‖[
∫ 1

0

F ′(u0 + t(uδn,α − u0))dt+ αI](uδn,α − u0)‖

≥ ‖F (u0)− f δ‖ − (β1 + α)‖uδn,α − u0‖ (2.3.19)

for each n = 1, 2, · · · . The result now follows from (2.3.18) and (2.3.19).

2

THEOREM 2.3.5. Let Rα be as in (2.3.1) and uδα be the solution of Rα(u) = 0.

Moreover the first and second Fréchet derivative of F exists for all u ∈ D(F ).

Then the sequence defined in (2.3.3) converges quadratically to uδα. Furthermore

‖uδn+1,α − uδα‖ =
2(β1 + α)2

α(‖F (u0)− f δ‖ − (β1 + α)2‖e0‖)
‖en‖2 +O(‖en‖3).
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Proof. Let Θ = Γ1 + Γ2. Then by (2.3.3), (2.3.16) and (2.3.18), we have

en+1 = en −
(Rα(uδn,α))2

R′α(uδα)Rα(uδn,α)(1 + Θ)

= en −
(Rα(uδn,α))2

R′α(uδα)Rα(uδn,α)
[I −Θ + Θ2 − · · · ]

= en −
(Rα(uδn,α))2

R′α(uδα)Rα(uδn,α)
(I −Θ)

−
(Rα(uδn,α))2

R′α(uδα)Rα(uδn,α)
× higher order terms in Θ

=
1

R′α(uδα)Rα(uδn,α)
[R′α(uδα)Rα(uδn,α)en −Rα(uδn,α)2(I −Θ)

−(Rα(uδn,α))2 × higher order terms in Θ]. (2.3.20)

Therefore, we have

‖en+1‖ ≤ ‖ 1

R′α(uδα)Rα(uδn,α)
‖[‖R′α(uδα)‖‖Rα(uδn,α)‖‖en‖

+‖(Rα(uδn,α))2‖+ ‖(Rα(uδn,α))2‖‖Θ‖

+higher order terms in ‖Θ‖].

If ‖uδn,α − u0‖ < ‖F (u0)−fδ‖
β1+α

, then using Lemma 2.3.1-2.3.4, one can prove that

‖en+1‖ ≤
2(β1 + α)2

α(‖F (u0)− f δ‖ − (β1 + α)‖uδn,α − u0‖)
‖en‖2 +O(‖en‖3).

(2.3.21)

Now it remains to show that ‖uδn,α−u0‖ < ‖F (u0)−fδ‖
β1+α

. This can be shown as follows;

since 2(β1/α+1)(β1+α)
‖F (u0)−fδ‖ ‖e0‖ ≤ 2(β1/α0+1)(β1+αN )

‖F (u0)−fδ‖ ‖e0‖ ≤ 1 by (2.3.5) and (2.3.6),

‖uδ1,α − u0‖ ≤ ‖uδ1,α − uδα‖+ ‖uδα − u0‖

≤ 2(β1/α + 1)(β1 + α)

‖F (u0)− f δ‖
‖e0‖2 +O(‖e0‖3) + ‖uδα − u0‖

≤ 2‖e0‖ ≤ Cβ <
‖F (u0)− f δ‖

β1 + α
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(by ignoring higher order terms in ‖e0‖). Again by (2.3.21) and (2.3.6) we have,

‖uδ2,α − u0‖ ≤ ‖uδ2,α − uδα‖+ ‖uδα − u0‖

≤ 2(β1 + α)2

α(‖F (u0)− f δ‖ − (β1 + α)‖uδ1,α − u0‖)
‖e1‖2

+O(‖e1‖3) + ‖uδα − u0‖

≤ 2‖uδα − u0‖ = 2‖e0‖ ≤ Cβ <
‖F (u0)− f δ‖

β1 + α
.

(by ignoring higher order terms in ‖e0‖ and observing that (by (2.3.6)),

2(β1 + α)2

α(‖F (u0)− f δ‖ − (β1 + α)‖uδ1,α − u0‖)
‖e0‖ < 1

) which shows ‖uδn,α − u0‖ < ‖F (u0)−fδ‖
β1+α

for n = 2. By simply replacing uδ2,α by

uδk+1,α in the preceding estimates we arrive at ‖uδk+1,α− u0‖ < ‖F (u0)−fδ‖
β1+α

. Thus by

induction ‖uδn,α − u0‖ < ‖F (u0)−fδ‖
β1+α

for n > 0. From the above relation it follows

that

‖uδn+1,α − uδα‖ ≤
2(β1 + α)2

α(‖F (u0)− f δ‖ − (β1 + α)2‖e0‖)
‖en‖2

+O(‖en‖3). (2.3.22)

The proof of the Theorem is completed. 2

REMARK 2.3.6. Note that, by repeated application of (2.3.22) we have the

following estimate

‖en+1‖ ≤
(

2(β1 + α)2

α(‖F (u0)− f δ‖ − 2(β1 + α)‖e0‖)

)2n+1−1

‖e0‖2n+1

+O(‖en‖2n+3).

Since ‖e0‖ < 1, we neglect the terms with order ‖e0‖2n+1+3 and will get

‖en+1‖ ≤ Cαe
−γ2n+1

, (2.3.23)

where Cα :=
(

2(β1+αN )2

α0(‖F (u0)−fδ‖−2(β1+α)‖e0‖)

)2n+1−1

, γ = − log(‖e0‖). Note that

Cαe
−γ2n+1

= [Cαe
−γ2n ]e−γ2n ,
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and for large n, Cαe
−γ2n ≤ C for all C > 0. So for a bigger n, from (2.3.23),

(2.2.2) and Theorem 2.2.4, we have

‖uδn+1,α − û‖ ≤ Ce−γ2n +
δ

α
+

C0

1− 3k0r
αν .

Let

nδ := min{n : e−γ2n ≤ δ

α
& Cαe

−γ2n ≤ C} (2.3.24)

for some constant C. In light of above discussed Remark, we state the succeeding

Theorem.

THEOREM 2.3.7. Let uδnδ+1,α be as in (2.3.3) and let the assumptions in The-

orem 2.2.4 and Theorem 2.3.5 be satisfied, where nδ be as in (2.3.24). Then we

have the following;

‖uδnδ+1,α − û‖ ≤ C̄(αν +
δ

α
) (2.3.25)

where C̄ = max{C + 1, C0

1−3k0r
}.

2.4 A Priori Choice of the Parameter

Observe that the error αν + δ
α

in (2.3.25) is of optimal order if αδ := α(δ) satisfies,

α1+ν
δ = δ. That is αδ = δ

1
1+ν . Hence by (2.3.25) we come to the following Theorem.

THEOREM 2.4.1. Let the assumptions in Theorem 2.3.7 holds. For δ > 0, let

α := αδ = δ
1

1+ν . Let nδ be as in (2.3.24). Then

‖uδnδ,α − û‖ = O(δ
ν

1+ν ).

2.4.1 Adaptive Scheme and Stopping Rule

We use the adaptive selection of the parameter strategy considered by Pereverzev

and Schock (Pereverzev and Schock (2005)), adjusted appropriately for the sit-

uation for choosing the parameter α. For easiness, take uδi := uδni,αi . Let i ∈
{0, 1, 2, · · · , N} and αi = µiα0 where µ > 1 and α0 > δ.
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Let

l := max

{
i : ανi ≤

δ

αi

}
< N and (2.4.1)

k := max

{
i : ‖uδi − uδj‖ ≤ 4C̄

δ

αj
, j = 0, 1, 2, · · · , i− 1

}
(2.4.2)

where C̄ is as in Theorem 2.3.7. Now we state the succeeding Theorem.

THEOREM 2.4.2. Assume that there exists i ∈ {0, 1, · · · , N} such that ανi ≤ δ
αi
.

Let assumptions of Theorem 2.3.7 be fulfilled, and let k and l be as in (2.4.2) and

(2.4.1) respectively. Then

l ≤ k;

and

‖û− uδk‖ ≤ 6C̄µδ
ν

1+ν .

Proof. For proving k ≥ l, it is sufficient to prove that, for all i ∈ {1, 2, . . . N},
ανi ≤ δ

αi
=⇒ ‖uδi − uδj‖ ≤ 4C̄ δ

αj
, ∀j = 0, 1, 2, . . . i− 1. For j < i, we have

‖ uδi − uδj ‖ ≤ ‖ uδi − û ‖ + ‖ û− uδj ‖

≤ C̄(αvi +
δ

αi
) + C̄(αvj +

δ

αj
)

≤ 2C̄
δ

αi
+ 2C̄

δ

αj

≤ 4C̄
δ

αj
.

Thus we have proved the relation k ≥ l. Notice that

‖ û− uδk ‖≤‖ û− uδl ‖ + ‖ uδk − uδl ‖

where

‖ û− uδl ‖≤ C̄(αvl +
δ

αl
) ≤ 2C̄

δ

αl
.

Now since l ≤ k, we have

‖ uδk − uδl ‖ ≤ 4C̄
δ

αl
.
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Hence

‖ û− uδk ‖≤ 6C̄
δ

αl

Now,since αδ = δ
1

1+ν ≤ αl+1 ≤ µαl, it follows that

δ

αl
≤ µδ

αδ
= µδ

ν
1+ν .

This completes the proof.

2.5 Adaptive choice rule implementation

Conclusively the balancing algorithm linked with the parameter choice detailed in

Theorem 2.4.2 contains the sequential steps:

• Select α0 > 0 so that δ < α0 and µ > 1.

• Set αi := µiα0, i = 0, 1, 2 · · · , N.

2.5.1 Algorithm

a. Choose i = 0.

b. Set ni := min
{
n : e−γ2n ≤ δ

αi
& Cαe

−γ2n ≤ C
}
.

c. Solve ui := uδni,αi by using the iteration (2.3.3).

d. If ‖ui − uj‖ > 4C̄ δ
αj
, j < i, then take k = i− 1 and return uk.

e. Else set i = i+ 1 and go to b.

2.6 Numerical Example

EXAMPLE 2.6.1. Let F : D(F ) ⊆ C[0, 1] −→ C[0, 1] defined by

F (u) :=

∫ 1

0

k(t, s)u3(s)ds, (2.6.1)
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where

k(t, s) =

 (1− t)s, 0 ≤ s ≤ t ≤ 1

(1− s)t, 0 ≤ t ≤ s ≤ 1
.

Using Definition 1.1.7 and 1.1.8, one can easily verify that F is m-accretive.

F ′(u)w = 3

∫ 1

0

k(t, s)u2(s)w(s)ds. (2.6.2)

In our computation, we take f(t) = 6sin(πt)+sin3(πt)
9π2 and f δ = f + δ. Then the exact

solution is û(t) = sin(πt). We use u0(t) = sin(πt) + 3[tπ2−t2π2+sin2(πt)]
4π2 , as our

initial guess, so that the function u0 − û satisfies the source condition

u0 − û = F ′(u0)

(
û2

4u2
0

)
.

We choose α0 = µδ and µ = 1.01. We use the Gauss-Legendre quadrature

formula: ∫ 1

0

f(t)dt ≈
n∑
j=1

wjf(tj),

where the abscissa tj and the weight wj for n = 25 are given Table 2.1, to discretize

equation (2.6.1).

The discretized form of (2.3.3) is as follows:

uδk+1,α(ti) = uδk,α(ti)−
2[Rα(uδk,α)(ti)]

2

Rα(uδk,α +Rα(uδk,α)(ti))−Rα(uδk,α −Rα(uδk,α)(ti))
(2.6.3)

where Rα(u(ti)) = F (u(ti)) + α(u(ti) − u0(t0)) − (f(ti) + δ) and F (u(ti)) =∑25
j=1 aiju(tj)

3 with aij =

 wjtj(1− ti), if j ≤ i

wjti(1− tj), if i < j.

The relative error ||uk−û||||û|| and the residual error ||F (uk)−fδ||
||fδ|| are given in Table

2.2.
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Table 2.1: Abscissa and weights of Gauss-Legendre quadrature formula

i ti wi

1 0.0022215151047509 0.0056968992505131

2 0.0116680392702412 0.0131774933075160

3 0.0285127143855128 0.0204695783506531

4 0.0525040010608623 0.0274523479879176

5 0.0832786856195830 0.0340191669061784

6 0.1203703684813212 0.0400703501675005

7 0.1632168157632658 0.0455141309914818

8 0.2111685348793885 0.0502679745335253

9 0.2634986342771425 0.0542598122371318

10 0.3194138470953061 0.0574291295728558

11 0.3780665581395058 0.0597278817678923

12 0.4385676536946448 0.0611212214951550

13 0.5000000000000000 0.0615880268633577

14 0.5614323463053552 0.0611212214951550

15 0.6219334418604942 0.0597278817678923

16 0.6805861529046939 0.0574291295728558

17 0.7365013657228575 0.0542598122371318

18 0.7888314651206115 0.0502679745335253

19 0.8367831842367342 0.0455141309914818

20 0.8796296315186788 0.0400703501675005

21 0.9167213143804170 0.0340191669061784

22 0.9474959989391377 0.0274523479879176

23 0.9714872856144872 0.0204695783506531

24 0.9883319607297588 0.0131774933075160

25 0.9977784848952490 0.0056968992505131

Table 2.2: The relative error and residual error
δ α ||uk−û||

||û||
||F (uk)−fδ||
||fδ||

0.01 0.010406040100000 0.163037448543162 0.994143636281628

0.001 0.001051010050100 0.025530357947278 0.993949284345280

0.005 0.005203020050000 0.043443121882413 0.993312588078136
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Chapter 3

EXTENDED NEWTON-TYPE IT-

ERATION FOR NONLINEAR ILL-

POSED EQUATIONS IN BANACH

SPACE

We produce an extended Newton-type iterative scheme that converges cubically to

the solution uδα of the equation (2.1.2) using assumptions only on the first Fréchet

derivative of the operator F . As illustrated in Chapter 2 we use general Hölder

type source condition and obtain an error estimate. For choosing the regularization

parameter accordingly we use the adaptive parameter choice strategy considered

by Pereverzev and Schock (2005). A numerical example is given to illustrate the

theoretical results.

3.1 Introduction

One of our primary research objective of our study (as mentioned in Section 1.5) is

to obtain a higher order convergence for approximating uδα the solution of (2.1.2),

in a Banach space setting. We consider at the iterative method considered by

Xiao and Yin (2016) for approximating solution x∗ of the equation G(x) = 0,

where G : Rn → Rn, is properly modified to approximate uδα. Xiao and Yin (2017)
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considered the method defined iteratively for k = 0, 1, 2, . . . by

vk = uk − aG′(uk)−1G(uk)

wk = uk −
1

2

{
(
1

a
G′(vk) + (1− 1

a
)G′(uk))

−1 +G′(uk)
−1

}
G(uk),

uk+1 = wk −
{

1

a
G′(vk) + (1− 1

a
)G′(uk)

}−1

(wk).

Xiao and Yin (2017) proved that the method defined above is well defined and

converges cubically to û.

We modified the above method of Xiao and Yin (2017) to solve the ill-posed

equation (2.1.1). Precisely, we consider the iteration defined for each k = 0, 1, 2, . . .

by

vk = uk − aR′α(uk)
−1Rα(uk), (3.1.1)

wk = uk −
1

2

{
(
1

a
R′α(vk) + (1− 1

a
)R′α(uk))

−1 +R′α(uk)
−1

}
Rα(uk), (3.1.2)

uk+1 = wk −
{

1

a
R′α(vk) + (1− 1

a
)R′α(uk)

}−1

Rα(wk), (3.1.3)

where,

Rα(u) := F (u) + α(u− u0)− f δ, (3.1.4)

R′α(.)h := F ′(.)h+ αh, (3.1.5)

where α > 0 is the regularization parameter and the scalar parameter a will be

defined later.

In this study we use assumptions only on the first Fréchet derivative of F to

obtain the error estimate for ‖uk − û‖ under the general source condition (2.1.3)

for 0 < ν ≤ 1.

The rest of the Chapter is organized as follows. The convergence analysis of the

iterative scheme is given in Section 3.2. Error estimate using Hölder-type source

condition is given in Section 3.3. Parameter choice strategy is given in Section

3.4. The Chapter ends with a numerical example given in Section 3.5.
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3.2 Iterative Method with Convergence analysis

To present the convergence analysis, it is helpful in introducing some notations.

Let,

ek = uk − uδα, (3.2.1)

êk = vk − uδα, (3.2.2)

ēk = wk − uδα. (3.2.3)

Let r ≥ ‖û−u0‖ and r0 ≤ 2r+ 1. Next, we define some scalar parameters: For

0 < k0 <
√

17−3
4

, let

R̂ =
1

1− k0r0

, Ck0,a = |1− a|+ ak0 + ak0(1 + k0)R̂,

C =
k0[Ck0,a + |1− a|]

a
, R̄ =

1

1− Cr0

,

C̃ = k0 + (1 + k0)(
R̄C

2
+
R̂k0

2
) and Λ = C̃CR̄(1 + k0C̃) + k0C̃

2.

The preceding constants depend on k0, r0 and a. We shall replace them with con-

stants depending on k0 and a which constitute part of the initial data. Choose

r0 ∈ (0, 1
2k0

). Then, R̂ ≤ R̂1 := 2. Define

Ck0,a
1 = |1− a|+ ak0 + 2ak0(1 + k0),

C1 =
k0[Ck0,a

1 + |1− a|]
a

and

R̃1 =
1

1− C1r0

.

Then, we have

Ck0,a ≤ Ck0,a
1 and C ≤ C1. Choose r0 ∈ (0,min{ 1

2k0
, 1

2C1
}). Then, we have

R̄ ≤ R̃1 ≤ R̂1 = 2.

Moreover, define C̃1 = k0 + (1 + k0)(C1 + k0) and Λ1 = 2C̃1C1(1 + k0C̃1) + k0C̃
2
1 .

Then, we have

C̃ ≤ C̃1
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and

Λ ≤ Λ1.

Hereafter, we assume that

δ ∈
(

min{α, α
k0

,
α

C1

,
α

C̃1

,
α

Λ1

}, α0

)
, (3.2.4)

for some α0 > min
{
α, α

k0
, α
C1
, α
C̃1
, α

Λ1

}
. Moreover, we assume that

0 < a <
2

2k2
0 + 3k0 + 1

. (3.2.5)

Furthermore, we assume that

r < r1 :=
1

2
min

{
1− δ

α
,

1

k0

− δ

α
,

1

C1

− δ

α
,

1

C̃1

− δ

α
,

1

Λ1

− δ

α

}
, (3.2.6)

where δ is as in (3.2.4). Notice that r1 depends only on the initial data α, a, k0.

REMARK 3.2.1. Note that by (3.2.5) and (3.2.6) we have

r0 < r̄0 := min

{
1,

1

k0

,
1

C1

,
1

C̃1

,
1

Λ1

}
and Ck0,a

1 < 1. (3.2.7)

We shall assume that

0 < r0 < min{2r1 + 1, r̄0,
1

2k0

,
1

2C1

}. (3.2.8)

Notice that r0 depends on α, a and k0. Next, we see that the Lipschitz-type constant

k0 depends on D(F ) which is part of the initial data.

The following assumption is used to prove the results in this Chapter.

ASSUMPTION 3.2.2. (c.f Argyros and George (2015); Shubha et al. (2015);

Vasin and George (2014); Semenova (2010); George and Nair (2008)) There exist

two constants 0 ≤ l0 and l1 <
√

17−3
4

such that for every u1, u2 ∈ D(F ) and

v ∈ E there exists an element φ(u2, u1, v) ∈ E such that [F ′(u2) − F ′(u1)]v =

F ′(u1)φ(u2, u1, v), ‖φ(u2, u1, v)‖ ≤ l0‖v‖‖u2 − u1‖, ‖ ddvφ(u2 + tv, u2, v)‖ ≤ l1‖v‖

for t ∈ [0, 1] and B(uδα, r0) ⊆ D(F ).
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Let k0 = max{l0, 2l1}. Notice that k0 = k0(D(F )),i.e., k0 depends on the initial

data. Then, knowing the rest of the initial data a and α we can compute all the

preceding introduced parameters.

Let,

Rα(uk) = F (uk) + α(uk − u0)− f δ (3.2.9)

and Γ = F ′(uδα) +αI. Then since Rα(uδα) = F (uδα) +α(uδα− u0)− f δ = 0, we have

by Assumption 3.2.2,

Rα(uk) = F (uk)− F (uδα) + α(uk − uδα)

=

∫ 1

0

F ′(uδα + tek)ekdt+ αek

= [F ′(uδα) + αI]ek +

∫ 1

0

[F ′(uδα + tek)− F ′(uδα)]ekdt

= Γ{ek + Γ−1

∫ 1

0

[F ′(uδα + tek)− F ′(uδα)]ekdt}

= Γ{ek +

∫ 1

0

Γ−1F ′(uδα)φ(uδα + tek, u
δ
α, ek)dt}.

(3.2.10)

Differentiating (3.2.10) with respect to ek we obtain,

R′α(uk)(h) = Γ

{
I +

d

dek
{
∫ 1

0

Γ−1F ′(uδα)φ(uδα + tek, u
δ
α, ek)dt}

}
(h). (3.2.11)

Let Mk(ek) =
∫ 1

0
Γ−1F ′(uδα)φ(uδα + tek, u

δ
α, ek)dt and M̄k = d

dek
Mk(ek), then

R′α(uk)(h) = Γ{I + M̄k}(h). (3.2.12)

Suppose that uk ∈ B(uδα, r0). Then, we have

‖M̄k‖ = ‖
∫ 1

0

d

dek
{Γ−1F ′(uδα)φ(uδα + tek, u

δ
α, ek)dt}‖

≤
∫ 1

0

‖Γ−1F ′(uδα)‖‖ d
dek

φ(uδα + tek, u
δ
α, ek)‖dt

≤ 2l1‖ek‖ ≤ k0‖ek‖

≤ k0r0 < 1.
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The last inequality follows from (3.2.7) and Assumption 3.2.2. Therefore (I+M̄k)

is invertible and its inverse is given by

(I + M̄k)
−1 = I − M̄k + M̄2

k · · · . (3.2.13)

So by (3.2.12), we have

R′α(uk)
−1 = (I − M̄k + M̄2

k · · · )Γ−1. (3.2.14)

Now by replacing ek by êk and uk by vk in (3.2.11) we get

R′α(vk)(h) = Γ

{
I +

d

dêk
{
∫ 1

0

Γ−1F ′(uδα)φ(uδα + têk, u
δ
α, êk)dt}

}
(h). (3.2.15)

We obtain again by (3.1.1),

êk = ek − aR′α(uk)
−1Rα(uk)

= ek − a
{
{I − M̄k +M2

k · · · }Γ−1Γ{ek +

∫ 1

0

Γ−1F ′(uδα)φ(uδα + tek, u
δ
α, ek)dt}

}
= (1− a)ek − a

∫ 1

0

Γ−1F ′(uδα)φ(uδα + tek, u
δ
α, ek)dt+ aM̄k(I − M̄k + M̄2

k · · · )ek

+aM̄k(I − M̄k + M̄2
k · · · )

∫ 1

0

Γ−1F ′(uδα)φ(uδα + tek, u
δ
α, ek)dt.

Therefore, we have

‖êk‖ = ‖(1− a)ek − a
∫ 1

0

Γ−1F ′(uδα)φ(uδα + tek, u
δ
α, ek)dt

+aM̄k(I − M̄k + M̄2
k · · · )ek

+aM̄k(I − M̄k + M̄2
k · · · )

∫ 1

0

Γ−1F ′(uδα)φ(uδα + tek, u
δ
α, ek)dt‖

≤ |1− a|‖ek‖+ ak0‖ek‖2 + a‖ek‖
‖M̄k‖

1− ‖M̄k‖
+ ako‖ek‖2 ‖M̄k‖

1− ‖M̄k‖
≤ |1− a|‖ek‖+ ak0‖ek‖2 + a‖ek‖2k0R̂ + ako‖ek‖3k0R̂

≤ ‖ek‖
{
|1− a|+ ak0 + ak0(1 + k0)R̂

}
= ‖ek‖Ck0,a

1 . (3.2.16)

In the last, but one step we use the fact that ‖ek‖ ≤ r0 < 1. Therefore by (3.2.16)

and (3.2.7) we get vk ∈ B(uδα, r0).
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Let Nk(êk) =
∫ 1

0
Γ−1F ′(uδα)φ(uδα + t(êk), u

δ
α, êk)dt and N̄k = d

dêk
Nk(êk). Then,

R′α(vk)(h) = Γ{I + N̄k}(h). (3.2.17)

We also have,

‖N̄k‖ = ‖
∫ 1

0

d

dêk
{Γ−1F ′(uδα)φ(uδα + têk, u

δ
α, êk)dt}‖

≤
∫ 1

0

‖Γ−1F ′(uδα)‖‖ d
dêk
{φ(uδα + têk, u

δ
α, êk)‖dt}

≤ 2l1‖êk‖ ≤ k0‖êk‖.

Let Hk = 1
a
R′α(vk) + (1− 1

a
)R′α(uk).

Then,

Hk = Γ

{
1

a
{I + N̄k}+ (1− 1

a
){I + M̄k}

}
(3.2.18)

= Γ

{
I +

1

a
N̄k + (1− 1

a
)M̄k

}
= Γ {I + Pk}

where Pk = 1
a
N̄k + (1− 1

a
)M̄k. Now,

‖Pk‖ = ‖1

a
N̄k + (1− 1

a
)M̄k‖ (3.2.19)

≤ ‖êk‖k0

a
+
|a− 1|
a
‖ek‖k0

≤ ‖ek‖

{
k0C

k0,a
1 + |a− 1|k0

a

}

< r0
k0[Ck0,a

1 + |1− a|]
a

= r0C1 < 1.

The last inequality follows from (3.2.7). This implies Hk is invertible and its

inverse is given by:

H−1
k = {I − Pk + P 2

k · · · }Γ−1. (3.2.20)
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From (3.1.2) we have

ēk = ek −
1

2

{
H−1
k +Rα(uk)

−1
}
Rα(uk)

= ek −
1

2

{
{(I − Pk + P 2

k · · · ) + (I − M̄k + M̄2
k · · · )}Γ−1Γ

×{ek +

∫ 1

0

Γ−1F ′(uδα)φ(uδα + tek, u
δ
α, ek)dt}

}
= −

∫ 1

0

Γ−1F ′(uδα)φ(uδα + tek, u
δ
α, ek)dt+

1

2
Pk(I − Pk + P 2

k · · · )ek

+
1

2
M̄k(I − M̄k + M̄2

k · · · )ek

+
1

2
Pk(I − Pk + P 2

k · · · )
∫ 1

0

Γ−1F ′(uδα)φ(uδα + tek, u
δ
α, ek)dt

+
1

2
M̄k(I − M̄k + M̄2

k · · · )
∫ 1

0

Γ−1F ′(uδα)φ(uδα + tek, u
δ
α, ek)dt.

Thus

‖ēk‖ ≤
∫ 1

0

‖Γ−1F ′(uδα)‖‖φ(uδα + tek, u
δ
α, ek)‖dt+

1

2
‖ek‖

‖Pk‖
1− ‖Pk‖

+
1

2
‖ek‖

‖M̄k‖
1− ‖M̄k‖

+
1

2

‖Pk‖
1− ‖Pk‖

∫ 1

0

‖Γ−1F ′(uδα)‖‖φ(uδα + tek, u
δ
α, ek)‖dt

+
1

2

‖M̄k‖
1− ‖M̄k‖

∫ 1

0

‖Γ−1F ′(uδα)‖‖φ(uδα + tek, u
δ
α, ek)‖dt

≤ ‖ek‖2

{
k0 +

1

2
C1R̃1 +

1

2
k0R̂1 + k0

1

2
C1R̃1 +

1

2
k2

0R̂1

}
= C̃1‖ek‖2.

(3.2.21)

Therefore, by (3.2.21) and (3.2.7) we get wk ∈ B(uδα, r0).

Next, using the preceding notation we will prove our central result of this section.

THEOREM 3.2.3. Let Rα be as in (3.1.4) and suppose that uk, vk and wk ∈

B(uδα, r0). Further let the first derivative of F exists in B(uδα, r0). Then uk+1 ∈

B(uδα, r0) and the iteration defined in (3.1.1)– (3.1.3) converges cubically to uδα.
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Moreover

‖uδk+1,α − uδα‖ = O(e−γ3k),

where γ = −ln(‖e0‖).

Proof. Since, u0 ∈ B(uδα, r0), by (3.2.16), (3.2.21) and Remark 3.2.1, we have

v0, w0 ∈ B(uδα, r0). Suppose uk ∈ B(uδα, r0). Then by (3.2.16), (3.2.21) and Remark

3.2.1, we have vk, wk ∈ B(uδα, r0). Then from (3.1.1)-(3.1.3), we have

ek+1 = ēk − {Hk}−1Rα(wk)

= ēk − {I − Pk + P 2
k · · · }Γ−1Γ{ēk +

∫ 1

0

Γ−1F ′(uδα)φ(uδα + t|ēk|, uδα, ēk)dt}

= −
∫ 1

0

Γ−1F ′(uδα)φ(uδα + t|ēk|, uδα, ēk)dt+ Pk(I − Pk + P 2
k · · · )ēk

+Pk(I − Pk + P 2
k · · · )

∫ 1

0

Γ−1F ′(uδα)φ(uδα + t|ēk|, uδα, ēk)dt.

Thus,

‖ek+1‖ ≤ k0‖ēk‖2 + ‖ēk‖
‖Pk‖

1− ‖Pk‖
+ k0‖ēk‖2 ‖Pk‖

1− ‖Pk‖
≤ k0C̃

2
1‖ek‖4 + ‖ek‖3C̃1C1R̄ + k0‖ek‖5C̃2

1C1R̃1

≤ ‖ek‖3
{
C1C̃1R̃1(1 + k0C̃1) + k0C̃

2
1

}
= Λ1‖ek‖3.

(3.2.22)

Therefore by (3.2.22) and (3.2.7) we get uk+1 ∈ B(uδα, r0).

Repeated application of (3.2.22) above leads to

‖ek+1‖ ≤ Λ
3k−1

2
1 ‖e0‖3k = Λ

3k−1
2

1 e−γ3k , (3.2.23)

where γ = −log‖e0‖.

2
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3.3 Error estimates using Hölder type source con-

dition

From Lemma 2.2.2, analogous to the proof of Theorem 2.2.4, one can prove the

following theorem.

THEOREM 3.3.1. Let Assumption 3.2.2 and (2.1.3) hold. If 3k0r < 1, then

‖uα − û‖ ≤ Ĉαν , for 0 < ν ≤ 1

where Ĉ = C0

1−3k0r
≤ Ĉ1 := 2C0

Combining Theorem 3.2.3 and Theorem 3.3.1, we have the following:

THEOREM 3.3.2. Let uk be as in (3.1.3) and let the assumptions in Theorem

3.2.3 and Theorem 3.3.1 be satisfied. Let

kδ := min{k : e−γ3k ≤ δ

α
}. (3.3.1)

Then we have the following;

‖uk − û‖ ≤ C̄1(αν +
δ

α
), (3.3.2)

where C̄1 = max{Λ
3k−1

2
1 + 1, Ĉ1}.

As already seen in Chapter 2, the error αν + δ
α

in (3.3.2) is of optimal order

if αδ := α(δ) satisfies, α1+ν
δ = δ. That is αδ = δ

1
1+ν . Hence by (3.3.2) we have the

following Theorem.

THEOREM 3.3.3. Let the assumptions in Theorem 3.3.2 holds. For δ > 0, let

α := αδ = δ
1

1+ν . Let kδ be as in (3.3.1). Then

‖uk − û‖ = O(δ
ν

1+ν ).

In order to obtain the above order, without knowing ν, we use the adaptive

selection of the parameter strategy considered by Pereverzev and Schock (2005),
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modified appropriately for the scenario in choosing the parameter α. For conve-

nience, take ui := uki . Let i ∈ {0, 1, 2, · · · , N} and αi = µiα0 where µ > 1 and

α0 > δ.

Let

l := max

{
i : ανi ≤

δ

αi

}
< N and (3.3.3)

k := max

{
i : ‖ui − uj‖ ≤ 4C̄1

δ

αj
, j = 0, 1, 2, · · · , i− 1

}
(3.3.4)

where C̄1 is as in Theorem 3.3.2.

THEOREM 3.3.4. (cf. George and Nair (2008)) Assume that there exists i ∈

{0, 1, · · · , N} such that ανi ≤ δ
αi
. Let assumptions of Theorem 3.3.2 be fulfilled,

and let l and k be as in (3.3.3) and (3.3.4) respectively. Then l ≤ k; and

‖û− uk‖ ≤ 6C̄1µδ
ν

1+ν .

Proof. For proving k ≥ l, it is sufficient to prove that, for all i ∈ {1, 2, . . . N},
ανi ≤ δ

αi
=⇒ ‖ui − uj‖ ≤ 4C̄ δ

αj
, ∀j = 0, 1, 2, . . . i− 1. For j < i, we have

‖ ui − uj ‖ ≤ ‖ ui − û ‖ + ‖ û− uj ‖

≤ C̄1(αvi +
δ

αi
) + C̄1(αvj +

δ

αj
)

≤ 2C̄1
δ

αi
+ 2C̄1

δ

αj

≤ 4C̄1
δ

αj
.

Thus we have proved the relation k ≥ l. Notice that

‖ û− uk ‖≤‖ û− ul ‖ + ‖ uk − ul ‖,

where

‖ û− uδl ‖≤ C̄1(αvl +
δ

αl
) ≤ 2C̄1

δ

αl
.

Now since l ≤ k, we have

‖ uk − ul ‖ ≤ 4C̄1
δ

αl
.
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Hence,

‖ û− uk ‖≤ 6C̄1
δ

αl
.

It follows as in Theorem 2.4.2 that

δ

αl
≤ µδ

αδ
= µδ

ν
1+ν .

2

3.4 Adaptive choice rule implementation

Finally the balancing algorithm associated with the choice of the parameter spec-

ified in Theorem 3.3.4 involves the following steps:

• Select α0 > 0 such that δ < α0 and µ > 1.

• Set αi := µiα0, i = 0, 1, 2, · · · , N.

3.4.1 Algorithm

a. Choose i = 0.

b. Set ki := min
{
k : e−γ3k ≤ δ

αi

}
.

c. Solve ui := uki by using the iteration (3.1.1).

d. If ‖ui − uj‖ > 4C̄1
δ
αj
, j < i, then take k = i− 1 and return uk.

e. Else set i = i+ 1 and go to b.

3.5 Numerical Example

We apply the algorithm by choosing a sequence of finite dimensional subspace

(VN) of L2(0, 1) with dim VN = N + 1. Precisely, we choose VN as the linear span

of {v1, v2, v3, ..., vN+1}, where vi, i = 1, 2, ..., N + 1 are linear splines in a uniform

grid of N + 1 points in [0, 1].
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EXAMPLE 3.5.1. (see Semenova (2010), section 4.3) Let F : D(F ) ⊆ L2(0, 1) −→

L2(0, 1) defined by

F (u) :=

∫ 1

0

k(t, s)u3(s)ds,

where

k(t, s) =

 (1− s)t, 0 ≤ t ≤ s ≤ 1

(1− t)s, 0 ≤ s ≤ t ≤ 1
.

Then for all u(t), v(t) : u(t) > v(t) :

〈F (u)− F (v), u− v〉 =

∫ 1

0

[∫ 1

0

k(t, s)(u3 − v3)(s)ds

]

×(u− v)(t)dt ≥ 0.

So the operator F is monotone. The Fréchet derivative of F is given by

F ′(u)w = 3

∫ 1

0

k(t, s)u2(s)w(s)ds. (3.5.1)

Note that for u, v > 0,

[F ′(v)− F ′(u)]w = 3

∫ 1

0

k(t, s)u2(s)
[v2(s)− u2(s)]w(s)ds

u2(s)

:= F ′(u)Φ(v, u, w)

where Φ(v, u, w) = [v2−u2]w
u2

. Note that

Φ(v, u, w) =
[v2 − u2]w

u2
=

[u+ v][v − u]w

u2

and

‖ d
dw

Φ(u+ tw, u, w)‖ =

∥∥∥∥ d

dw

[2tuw + t2w2]w

u2

∥∥∥∥
=

∥∥∥∥4tuw + 3t2w2

u2

∥∥∥∥
≤

∥∥∥∥4tu+ 3t2w

u2

∥∥∥∥ ‖w‖.
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Figure 3.1: Curves of the approximate(red) and exact(blue) solutions with N=1024
and δ = 0.1

So Assumption 3.2.2 satisfies with k0 ≥ max{2
∥∥∥4tu+3t2w

u2

∥∥∥ ,∥∥u+v
u2

∥∥}. In our com-

putation, we take f(t) = 6sin(πt)+sin3(πt)
9π2 and f δ = f + δ. Then, the exact solution

is û(t) = sin(πt). We use u0(t) = sin(πt) + 3[tπ2−t2π2+sin2(πt)]
4π2 as our initial guess,

so that the function u0 − û satisfies the source condition

u0 − û = F ′(û0)

(
û2

4u2
0

)
.

Thus we look forward to obtain the rate of convergence O(δ
1
2 ).

We choose a = 1.5, α0 = µδ and µ = 1.01. The results of the calculation

are given in Table (3.1)- Table (3.4). The plots of the exact solution and the

approximate solution obtained are given in figures, Figure 3.1 to Figure 3.4.
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Figure 3.2: Curves of the approximate(red) and exact(blue) solutions with N=1024
and δ = 0.01
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Figure 3.3: Curves of the approximate(red) and exact(blue) solutions with N=1024
and δ = 0.004
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Figure 3.4: Curves of the approximate(red) and exact(blue) solutions with N=1024
and δ = 0.002

Table 3.1: Iterations and corresponding error estimates for δ = .1

N k αk
||uk−û||
||û||

||uk−û||
δ
1
2

8 30 0.1363454479 0.0503927259 0.1125936299

16 30 0.1136185917300361 0.1061109950797 0.113661932322

32 30 0.113614603466 0.1063664784762 0.1142351835898

64 30 0.11361360640 0.1064305298623 0.114378926380

128 30 0.11361335714 0.1064465606055 0.114414903744

256 30 0.113613294817 0.1064505677544 0.114423896988

512 30 0.113613279238 0.1064515697139 0.114426145690

1024 30 0.113613275343 0.1064518202046 0.114426707868
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Table 3.2: Iterations and corresponding error estimates for δ = .01

N k αk
||uk−û||
||û||

||uk−û||
δ
1
2

8 30 0.01382598145 0.05039707647 0.3536092805

16 30 0.013666450897 0.06110993160 0.43127096521

32 30 0.013626568258 0.063664794104 0.44995842369

64 30 0.0136165976 0.064305284639 0.45465153223

128 30 0.01361410493 0.064465606142 0.45582676204

256 30 0.01361348177 0.064505677538 0.45612054021

512 30 0.013613325975 0.064515697139 0.45619399928

1024 30 0.013613287027 0.064518202046 0.45621236423

Table 3.3: Iterations and corresponding error estimates for δ = .004

N k αk
||uk−û||
||û||

||uk−û||
δ
1
2

8 30 0.00565801702480 0.050397933465 0.552773098978

16 30 0.0054984864697 0.061109929996 0.67991794194

32 30 0.0054586038309 0.063664794728 0.71092674246

64 30 0.0054486331712 0.064305283708 0.71873562117

128 30 0.0054461405062 0.06446560615 0.72069240541

256 30 0.005445517340 0.064505677538 0.72118164423

512 30 0.0054453615485 0.064515697139 0.72130398266

1024 30 0.0054453226006 0.064518202046 0.72133456791
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Table 3.4: Iterations and corresponding error estimates for δ = .002

N k αk
||uk−û||
||û||

||uk−û||
δ
1
2

8 30 0.0029353622159 0.0503989450005 0.76746201827

16 30 0.0027758316607 0.06110992901 0.95693295815

32 30 0.0027359490219 0.063664794936 1.0041801675

64 30 0.0027259783622 0.064305283398 1.0161357947

128 30 0.0027234856972 0.064465606149 1.0191352350

256 30 0.0027228625311 0.064505677538 1.0198854104

512 30 0.0027227067395 0.06451569714 1.0200730108

1024 30 0.0027226677916 0.064518202047 1.0201199129
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Chapter 4

NEWTON-KANTOROVICH REG-

ULARIZATION METHOD FOR

NONLINEAR ILL-POSED EQUA-

TIONS IN BANACH SPACES

We consider Newton-Kantorovich regularization method for implementing of the

Lavrentiev regularization method. Optimal order error estimate is given. No

scalar sequence (like {αn} in Buong and Hung (2005)) is used in our study. A

second order convergence is obtained through our method. Numerical example

confirming the theoretical result is also given at the end of the Chapter.

4.1 Introduction

In this Chapter, we assume our space E is a real, reflexive and strictly convex

Banach Space with a uniformly Gâteaux differentiable norm (Buong and Phuong

(2013)).

Buong and Hung (2005), considered the modified Newton-Kantorovich itera-

tive regularization method, defined iteratively for n = 0, 1, 2, . . . by

F (un) + (F ′(un) + αnI)(un+1 − un) = f, u0 ∈ E,

with {αn}, αn > 0 is a sequence such that

lim
n−→∞

αn = 0, 1 ≤ αn−1

αn
≤ ρ, n = 1, 2, 3, . . . ,
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for some constant ρ. The convergence analysis in Buong and Hung (2005), is

based on assumptions on the second Gâteaux derivative of F. Buong and Hung

(2005), obtained the error estimate ‖un − û‖ = O(
√
αn) under the assumption

−û ∈ R(F ′(û)). In this study, we consider the Newton-Kantorovich iterative reg-

ularization method defined iteratively for k = 0, 1, 2, . . . by

uk+1 = uk − (F ′(uk) + αI)−1[F (uk) + α(uk − u0)− f δ], u0 ∈ E. (4.1.1)

First, we prove that the sequence {uk} defined in (4.1.1) is quadratically convergent

to uδα, the unique solution of (2.1.2) (see Theorem 4.2.2).

4.1.1 Advantages

Our approach in this chapter has the following advantages (A):

(A1) We use assumptions only on the first Fréchet derivative of F.

(A2) No scalar sequence (like {αn} in Buong and Hung (2005)) is used in our

study.

(A3) We obtained the error estimate for ‖uk − û‖ under the general source con-

dition (2.1.3) for all 0 < ν ≤ 1 .

The rest of the Chapter is organized as follows. The convergence analysis of

method (4.1.1) is given in Section 4.2. Error estimate using Hölder-type source

condition is given in Section 4.3. Parameter choice strategy is given in Section

4.4. Implementation of the method is given in Section 4.5. The Chapter ends with

some numerical examples given in Section 4.6.

4.2 Convergence analysis

For us to prove our results, it is helpful in introducing some notations and func-

tions. Let u0 ∈ E and uk be as in (4.1.1). Let

σk =‖ uk+1 − uk ‖,
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η := k0r
2
0 + 2r0 + 1,

where

0 < k0 <

√
5− 1

2
and r0 ∈ (0,

√
2(1 +

√
5− 2k0)− 2

2k0

).

Define

h(t) := k2
0t

2 + k0t, ∀t ∈ [0,

√
5− 1

2k0

).

The following properties of h can be verified easily,

(P1) h(t) < 1, for all t ∈ [0,
√

5−1
2k0

).

(P2) For s ∈ (0, 1), h(st) ≤ sh(t).

(P3) s < t =⇒ h(s) < h(t).

The following assumption is used extensively to prove our results.

ASSUMPTION 4.2.1. (see Argyros and George (2015); Shubha et al. (2015);

Vasin and George (2014); Semenova (2010); George and Nair (2008)) There exists

a constant k0 ≥ 0 such that for every u, u1 ∈ B(u0, r0) and v ∈ E there exists an el-

ement φ(u, u1, v) ∈ E such that [F ′(u)−F ′(u1)]v = F ′(u1)φ(u, u1, v), ‖φ(u, u1, v)‖ ≤

k0‖v‖‖u− u1‖.

Next, we shall prove that the sequence {uk} is well defined and remains in

B(u0,
η

1−h(η)
) and converges to uδα as n→∞.

THEOREM 4.2.2. Let α ∈ (δ, δ0], for some δ0 > 0, Assumption 4.2.1 holds and

let 0 < k0 <
√

5−1
2

and r0 ∈ (0,

√
2(1+

√
5−2k0)−2

2k0
). Then, the sequence {uk} defined

by (4.1.1) is well defined and remains in B(u0,
η

1−h(η)
),

0 < σ0 <

√
5− 1

2k0

,

σk ≤ h(σk−1)σk−1

and

σk ≤ h(η)2k−1η.
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Moreover, uk converges to uδα as k →∞ and

‖uk − uδα‖ ≤ βe−γ2k , (4.2.1)

where β = η
h(η)(1−h(η))

and γ = − log(h(η)).

Proof. Note that u0 ∈ B(u0,
η

1−h(η)
). We have in turn that

u0 − u1 = (F ′(u0) + αI)−1[F (u0)− f δ]

= (F ′(u0) + αI)−1[F (u0)− F (û)− F ′(u0)(u0 − û)

+F ′(u0)(u0 − û) + F (û)− f δ]

= (F ′(u0) + αI)−1[

∫ 1

0

(F ′(û+ t(u0 − û))− F ′(u0))(u0 − û)dt

+F ′(u0)(u0 − û) + f − f δ]

= (F ′(u0) + αI)−1

∫ 1

0

(F ′(û+ t(u0 − û))− F ′(u0))(u0 − û)dt

+(F ′(u0) + αI)−1F ′(u0)(u0 − û) + (F ′(u0) + αI)−1(f − f δ)

= (F ′(u0) + αI)−1F ′(u0)

∫ 1

0

φ(û+ t(u0 − û), u0, (u0 − û))dt

+(F ′(u0) + αI)−1F ′(u0)(u0 − û) + (F ′(u0) + αI)−1(f − f δ).

Thus from (2.2.4), (2.2.5) and Assumption 4.2.1, we have

σ0 = ‖u1 − u0‖

= ‖(F ′(u0) + αI)−1F ′(u0)

∫ 1

0

φ(û+ t(u0 − û), u0, (u0 − û))dt

+(F ′(u0) + αI)−1F ′(u0)(u0 − û) + (F ′(u0) + αI)−1(f − f δ)‖

≤ k0 ‖ u0 − û ‖2 +2 ‖ u0 − û ‖ +
δ

α
≤ k0r

2
0 + 2r0 + 1

<

√
5− 1

2k0

.
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That is h(σ0) is well defined. Suppose σk−1 <
√

5−1
2k0

. Then, we get in turn that

uk+1 − uk

= −(F ′(uk) + αI)−1[F (uk) + α(uk − u0)− f δ]

= −(F ′(uk) + αI)−1[F (uk)− F (uk−1)− F ′(uk−1)(uk − uk−1)]

= −(F ′(uk) + αI)−1

∫ 1

0

(F ′(uk−1 + t(uk − uk−1))− F ′(uk−1))(uk − uk−1)dt

= −(F ′(uk) + αI)−1F ′(uk−1)

∫ 1

0

φ(uk−1 + t(uk − uk−1), uk−1, uk − uk−1)dt

= −(F ′(uk) + αI)−1F ′(uk)

∫ 1

0

φ(uk−1 + t(uk − uk−1), uk−1, uk − uk−1)dt

−(F ′(uk) + αI)−1(F ′(uk−1)− F ′(uk))

×
∫ 1

0

φ(uk−1 + t(uk − uk−1), uk−1, uk − uk−1)dt

= −(F ′(uk) + αI)−1F ′(uk)

∫ 1

0

φ(uk−1 + t(uk − uk−1), uk−1, uk − uk−1)dt

−(F ′(uk) + αI)−1F ′(uk)

×
∫ 1

0

φ(uk−1, uk, φ(uk−1 + t(uk − uk−1), uk−1, uk − uk−1))dt,

so by (2.2.4), (2.2.5) and Assumption 4.2.1, we have

σk ≤ k0 ‖ uk − uk−1 ‖2 +k2
0 ‖ uk − uk−1 ‖3

≤ h(σk−1)σk−1 ≤ σk−1 (4.2.2)

<

√
5− 1

2k0

,

which shows h(σk) is well defined. Therefore, by (4.2.2) and (P2), we have

σk ≤ h(σk−1)σk−1

≤ h(h(σk−2)σk−2)h(σk−2)σk−2

≤ h(σk−2)2h(σk−2)σk−2

...

≤ h(σ0)2k−1σ0

≤ h(η)2k−1η.

Next, we shall prove that {uk} is a Cauchy sequence in B(u0,
η

1−h(η)
). Observe,
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that

‖ uk+m − uk ‖ ≤ ‖ uk+m − uk+m−1 ‖ + ‖ uk+m−1 − uk+m−2 ‖ +...+ ‖ uk+1 − uk ‖

≤ σk+m−1 + σk+m−2 + ...+ σk

≤ h(η)2k+m−1−1η + h(η)2k+m−2−1η + ...+ h(η)2k−1η

≤ h(η)2k−1η[1 + h(η) + h(η)2 + . . .+ h(η)2m−1−1]

≤ h(η)2k−1 1− h(η)2m−1

1− h(η)
η, (4.2.3)

i.e., {uk} is a Cauchy sequence. Further, note that

‖ uk − u0 ‖ ≤ ‖ uk − uk−1 ‖ + ‖ uk−1 − uk−2 ‖ +...+ ‖ u1 − u0 ‖

≤ σk−1 + σk−2 + ...+ σ0

≤ h(η)2k−1−1η + h(η)2k−2−1η + ...+ η

≤ 1− h(η)2k−1

1− h(η)
η

≤ 1

1− h(η)
η,

so uk ∈ B(u0,
η

1−h(η)
), for all k = 0, 1, 2, . . . and hence {uk} converges. By letting

k →∞ in (4.1.1), we conclude that uk converges to uδα. The estimate (4.2.1) now

follows from (4.2.3). This completes the proof.

2

4.3 Error estimates using Hölder type source con-

dition

Combining Theorem 4.2.2 and Theorem 2.2.4, we have the following:

THEOREM 4.3.1. Let uk be as in (4.1.1) and let the assumptions in Theorem

2.2.4 and Theorem 4.2.2 be satisfied. Let

kδ := min{k : e−γ2k ≤ δ

α
}. (4.3.1)
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Then we have the following;

‖ukδ − û‖ ≤ C̄(αν +
δ

α
), (4.3.2)

where C̄ = max{β + 1, C0}.

4.4 Choice of the Parameter

As seen in previous Chapters, the error is of optimal order if αδ := α(δ) satisfies

αδ = δ
1

1+ν . Hence by (4.3.2) we have the following Theorem.

THEOREM 4.4.1. Let the assumptions in Theorem 4.3.1 hold. For δ > 0, let

α := αδ = δ
1

1+ν . Let nδ be as in (4.3.1). Then

‖unδ − û‖ = O(δ
ν

1+ν ).

4.4.1 Adaptive Scheme and Stopping Rule

Let ui := uki ,

l := max

{
i : ανi ≤

δ

αi

}
< N and (4.4.1)

k := max

{
i : ‖ui − uj‖ ≤ 4C̄

δ

αj
, j = 0, 1, 2, · · · , i− 1

}
(4.4.2)

where C̄ is as in Theorem 4.3.1. Now we have the succeeding Theorem.

THEOREM 4.4.2. (cf. George and Nair (2008)) Assume that there exists i ∈

{0, 1, · · · , N} such that ανi ≤ δ
αi
. Let assumptions of Theorem 4.3.1 be fulfilled,

and let l and k be as in (4.4.1) and (4.4.2) respectively. Then l ≤ k; and

‖û− uk‖ ≤ 6C̄µδ
ν

1+ν .

Proof. For proving k ≥ l, it is sufficient to prove that, for all i ∈ {1, 2, . . . N},
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ανi ≤ δ
αi

=⇒ ‖ui − uj‖ ≤ 4C̄ δ
αj
, ∀j = 0, 1, 2, . . . i− 1. For j < i, we have

‖ ui − uj ‖ ≤ ‖ ui − û ‖ + ‖ û− uj ‖

≤ C̄(αvi +
δ

αi
) + C̄(αvj +

δ

αj
)

≤ 2C̄
δ

αi
+ 2C̄

δ

αj

≤ 4C̄
δ

αj
.

Thus we have proved the relation k ≥ l. Notice that

‖ û− uk ‖≤‖ û− ul ‖ + ‖ uk − ul ‖,

where

‖ û− uδl ‖≤ C̄(αvl +
δ

αl
) ≤ 2C̄

δ

αl
.

Now since l ≤ k, we have

‖ uk − ul ‖ ≤ 4C̄
δ

αl
.

Hence,

‖ û− uk ‖≤ 6C̄
δ

αl
.

It follows as in Theorem 2.4.2 that

δ

αl
≤ µδ

αδ
= µδ

ν
1+ν .

This completes the proof.

4.5 Adaptive choice rule implementation

Finally the balancing algorithm associated with the choice of the parameter spec-

ified in Theorem 4.4.2 involves the following steps:

• Select α0 > 0 such that δ < α0 and µ > 1.

• Set αi := µiα0, i = 0, 1, 2, · · · , N.
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Table 4.1: Iterations and corresponding error estimates

n k nk δ α ‖uk − û‖ ‖uk−û‖
δ1/2

8 2 2 0.0100494106 0.0103539178 0.0356594712 0.3557169858

16 2 2 0.0100123526 0.0103157369 0.043211246 0.4318458202

32 2 2 0.0100030882 0.0103061917 0.0450178076 0.4501085811

64 2 2 0.010000772 0.0103038054 0.0454707028 0.4546894766

128 2 2 0.010000193 0.0103032089 0.0455840673 0.4558362735

256 2 2 0.0100000483 0.0103030597 0.045612402 0.4561229197

512 30 2 0.0100000121 0.0136132905 0.0456194869 0.4561945942

1024 30 2 0.010000003 0.0136132782 0.0456212582 0.456212513

4.5.1 Algorithm

a. Set i = 0.

b. Choose ki := min
{
k : e−γ2k ≤ δ

αi

}
.

c. Solve ui := uki by using the iteration (4.1.1).

d. If ‖ui − uj‖ > 4C̄ δ
αj
, j < i, then take k = i− 1 and return uk.

e. Else set i = i+ 1 and go to b.

4.6 Numerical Example

EXAMPLE 4.6.1. Returning back to Example (3.5.1), we choose α0 = µδ and

µ = 1.01. The results of the calculations are given in Table 4.1. The plots of the

approximate solution and the exact solution obtained are given in below figures,

Figure 4.1 to Figure 4.4.

59



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Exact soluion

Approx solution

Figure 4.1: Curves of the approximate(red) and exact(blue) solutions with N=1024
and δ = 0.1
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Figure 4.2: Curves of the approximate(red) and exact(blue) solutions with N=1024
and δ = 0.01
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Figure 4.3: Curves of the approximate(red) and exact(blue) solutions with N=1024
and δ = 0.004
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Figure 4.4: Curves of the approximate(red) and exact(blue) solutions with N=1024
and δ = 0.002
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Table 4.2: Table showing the number of iterations, alpha and the error for p = 2.4
δ = 0.0050, µ = 1.05 δ = 0.0013, µ = 1.05

Function k nk α(k)
‖x̂−xδn,αk,s‖p
‖xδn,αk,s‖p

k nk α(k)
‖x̂−xδn,αk,s‖p
‖xδn,αk,s‖p

(x ∈ [0, 1])
x̂ = min{x, 1− x} 2 85 0.0527 0.2565603753 2 94 0.0204 0.0979871028
x̂ = max{x, x− 0.5} 2 85 0.0527 0.2565459158 2 94 0.0204 0.09799614810

x̂ = x2 if 2 94 0.0818 0.40659965753 2 99 0.0261 0.13108347524
0.2 < x < 0.7,

else x̂ = x

EXAMPLE 4.6.2. (see Hofmann et al. (2016)) Consider the parameter identi-

fication problem in an elliptic PDE; i.e., to find the source term q in the elliptic

boundary value problem

−∆u+ ξ(u) = q in Ω (4.6.1)

u = 0 on ∂Ω

from measurement of u in Ω. Here ξ : R −→ R is a Lipschitz continuously differ-

entiable monotonically increasing function and Ω ⊆ R is a smooth domain. The

corresponding forward operator in this case is F : D(F ) ⊂ Lp(Ω) −→ Lp(Ω), p ≥

2(see Kaltenbacher et al. (2009)) defined by

F (q) = u (4.6.2)

is monotone. Table 4.2 gives the number of iterations, alpha and the relative error.

The curves for the exact and approximate solutions are given in Figure 4.5.
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Figure 4.5: Curves of the exact and approximate solutions
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Chapter 5

SECANT-TYPE ITERATION FOR

NONLINEAR ILL-POSED EQUA-

TIONS IN BANACH SPACE

We study Secant-type iteration for nonlinear ill-posed equations in Banach spaces.

We prove that the proposed iterative scheme has a convergence order at least

2.20557 using assumptions only on first Fréchet derivative of the operator. Both

local and semi-local convergence is discussed and a numerical example supporting

our theory is given at the end of this Chapter.

5.1 Introduction

Obtaining a closed form solution uδα of (2.1.2) is difficult in general. So, most of

the solution methods considered for solving (2.1.2) are iterative. The study of

convergence of iterative methods is usually centered into two categories : namely

semi-local and local convergence analysis. The semi-local convergence is based

on the information around an initial point u0, to obtain conditions ensuring the

convergence of the iteration scheme, while the local convergence is based on the

information around the solution uδα to find the estimates of the computed radii of

the convergence balls. In the local convergence analysis we impose conditions on uδα

and in semi-local convergence analysis we impose condition on u0. In this Chapter

we propose a new improved two step Secant-type method (Argyros (2008)) which

approximates uδα. The proposed method is defined for each k = 0, 1, · · · , by
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uk+1 = uk − (Aukvk + αI)−1Rα(uk) (5.1.1)

vk+1 = uk+1 − (Aukvk + αI)−1Rα(uk+1)

where

Rα(u) := F (u) + α(u− u0)− f δ

and Auv is a divided difference of order one for F or a consistent approximation

for F ′ (Argyros (2008)). Possible choices for Auv involving F ′ are:

Auv =

∫ 1

0

F ′(v + t(u− v))dt, ∀u, v ∈ D(F )

with u 6= v and

Auv = F ′(u), if u = v.

or

Auv =
1

2
(F ′(u) + F ′(v)), ∀u, v ∈ D(F ).

Many other choices not involving F ′ are also possible (Argyros (2008)). As an

example, let X = Ri and F = (F1, F2, · · · , Fi) are component functions of F. Let

u = (u1, u2, · · · , ui) and v = (v1, v2, · · · , vi), where uj, vj ∈ R, j = 1, 2, · · · i. Then,

we define Auv by

Auv =

(
F1(u1)− F1(v1)

u1 − v1

,
F2(u2)− F2(v2)

u2 − v2

, · · · , Fi(ui)− Fi(vi)
ui − vi

)
. (5.1.2)

We shall prove in Section 5.3 that method (5.1.1) is of order at least 2.20557.

REMARK 5.1.1. Advantages of our approach over other previous studies are:

(a) A wider choice for the operator Auv in (5.1.1) defined previously.

(b) We provide semi-local and local convergence analysis of the method (5.1.1).

(c) We use assumptions only on the first Fréchet derivative of F to obtain the

error estimate for ‖uk − û‖ under a general source condition (see (A2)).
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The rest of the Chapter is organized as follows. In Section 5.2, we provides

basic assumptions and preliminaries. Section 5.3 deals with semi-local convergence

analysis of the proposed method while its local convergence analysis is given in

Section 5.4. In Section 5.5 we consider adaptive choice of the parameter. In

Section 5.6 the implementation of the adaptive method and the algorithm are

given, a numerical example illustrating the method is given in Section 5.7.

5.2 Basic assumptions and Preliminaries

The results in this Chapter are based on the following assumptions(A):

(A0) Au1u2(u1 − u2) ∼= F (u1)− F (u2).

(A1) There exists L0 > 0, for x, y, u, v, z ∈ D = D(F ) there exists an element

φ(x, y, u, v, z) ∈ E such that

(Axy − Auv)(z) = Auvφ(x, y, u, v, z)

with

‖φ(x, y, u, v, z)‖ ≤ L0(‖x− u‖+ ‖y − v‖)‖z‖.

(A2) There exists v ∈ E such that u0 − û = F ′(u0)νv 0 < ν ≤ 1.

(A3) There exits a constant η > 0 such that for each u, v ∈ E and α > 0 the

operator (Auv + αI) is invertible,

‖(Auv + αI)−1Auv‖ ≤ η

and

‖(Auv + αI)−1‖ ≤ 1

α
.

Let r ≥ ‖u0 − û‖ and ρ = 2r + δ
α0
. Let B(u, λ) = {v ∈ E : ‖u − v‖ < λ} and

B̄(u, λ) = {v ∈ E : ‖u− v‖ ≤ λ}.

REMARK 5.2.1. From (2.2.2) and (2.2.3) it is clear that uδα ∈ B(u0, ρ) for all

α ≥ α0.
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5.3 Semi-local convergence

We present the semi-local convergence of method (5.1.1) in this section.

Let

0 < Θ < min

{
0.4253

3ηL0

,

√
1 + ηL0 − 1

ηL0

}
, (5.3.1)

α0 > δ
Θ
, ∆1 = 0.5747−0.5747(ηL0)2Θ2−2.1494ηL0Θ

3.1494ηL0+1.1494(ηL0)2Θ
, ∆2 =

√
η2+4ηL0(Θ− δ

α0
)−η

2ηL0
and r <

min{1−ηL0Θ2−2Θ
2(ηL0Θ+1)

,∆1,∆2}.
Using the above notation, we prove the following Lemma which is used to prove

the main result of this Section.

LEMMA 5.3.1. The scalar sequences {gk} and {hk} defined for each k = 0, 1, . . .

by

g0 = 0, g1 = Θ, h0 = 2r (5.3.2)

hk+1 = gk+1 + ηL0(gk+1 − gk + hk − gk)(gk+1 − gk) (5.3.3)

gk+2 = gk+1 +
ηL0(gk+1 − gk + hk − gk)(gk+1 − gk)

1− ηL0(gk+1 + hk+1 + hk)

is well defined, increasing, bounded from above by

g =
g1

0.4253
(5.3.4)

and converges to its unique least upper bound g∗ which satisfies

g1 ≤ g∗ ≤ g. (5.3.5)

Moreover, the following estimates hold

hk+1 − gk+1 ≤ 0.5747(gk+1 − gk) ≤ 0.5747k+1(g1 − g0), (5.3.6)

gk+2 − gk+1 ≤ 0.5747(gk+1 − gk) ≤ 0.5747k+1(g1 − g0) (5.3.7)

and

gk ≤ hk ∀k = 0, 1, . . . . (5.3.8)

68



Proof. We shall show (5.3.6)-(5.3.8) using mathematical induction. It follows

from the definition of sequences {gk} and {hk} that estimates (5.3.6) and (5.3.7)

are true, if

0 <
ηL0(gk+1 − gk + hk − gk)

1− ηL0(gk+1 + hk+1 + hk)
≤ 0.5747 (5.3.9)

and

0 < ηL0(gk+1 − gk + hk − gk) ≤ 0.5747. (5.3.10)

Since by the definition of g1, we have

ηL0(g1 + h1 + h0) < 1,

so (5.3.9) implies (5.3.10) and (5.3.6)-(5.3.8) hold for k = 0. Suppose that (5.3.8)–

(5.3.10) are true for all values 0, 1, . . . , k. We have by the definition of sequences

{gk} and {hk} that,

hk+1 ≤ gk+1 + 0.5747(gk+1 − gk) ≤ gk+1 + 0.5747k+1(g1 − g0) (5.3.11)

≤ g1 + (g1 − g0)0.5747 + · · ·+ (g1 − g0)0.5747k+1

≤ 1− 0.5747k+2

1− 0.5747
g1 (5.3.12)

≤ g1

1− 0.5747
= g.

Similarly,

gk+2 ≤ gk+1 + 0.5747(gk+1 − gk) ≤ gk+1 + 0.5747k+1(g1 − g0) (5.3.13)

≤ g1 + (g1 − g0)0.5747 + · · ·+ (g1 − g0)0.5747k+1

≤ 1− 0.5747k+2

1− 0.5747
g1 (5.3.14)

≤ g1

1− 0.5747
= g.

Observe that

ηL0(gk+1 + hk+1 + hk) ≤ 3ηL0hk+1

≤ 3ηL0
g1

1− 0.5747
< 1 (by (5.3.1)),

so (5.3.9) implies (5.3.10). Therefore, it is enough to prove (5.3.9). Evidently,

(5.3.9) is true, if

ηL0(gk+2 − gk+1 + hk+1 − gk+1)

1− ηL0(gk+2 + hk+2 + hk+1)
≤ 0.5747. (5.3.15)
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It follows from (5.3.11)-(5.3.14) and by induction hypothesis, (5.3.15) is true, if

2ηL00.5747(gk+1 − gk)
1− Λ

≤ 0.5747 (5.3.16)

where Λ = ηL0

(
1−0.5747k+2

1−0.5747
(g1 − g0) + 1−0.5747k+3

1−0.5747
(g1 − g0) + 1−0.5747k+2

1−0.5747
(g1 − g0)

)
or

2ηL00.5747k(g1 − g0) + ηL0

(
1− 0.5747k+3

1− 0.5747
+ 2

1− 0.5747k+2

1− 0.5747

)
(g1 − g0)− 1 ≤ 0.

(5.3.17)

Inequality (5.3.17) inspires us to introduce recurrent polynomials fk on (0, 1) by

fk(t) = 2ηL0t
k(g1 − g0) + ηL0

(
1− tk+3

1− t
+ 2

1− tk+2

1− t

)
(g1 − g0)− 1. (5.3.18)

Then, (5.3.17) is true, if

fk(0.5747) ≤ 0 for each k = 1, 2, . . . . (5.3.19)

Using above definition and with the help of some algebraic manipulations we get

a relationship between two consecutive polynomials fk as

fk+1(t) = fk(t) + ηL0t
k(g1 − g0)(t3 + 2t2 + 2t− 2). (5.3.20)

We define function f∞ on [0, 1) by

f∞(t) = lim
k→∞

fk(t). (5.3.21)

Substituting t = 0.5747 in above equation ( using (5.3.18)), we have,

f∞(0.5747) = 3ηL0
(g1 − g0)

1− 0.5747
− 1, (5.3.22)

and by (5.3.20), we have

f∞(0.5747) = fk+1(0.5747) = fk(0.5747) for each k. (5.3.23)

So, (5.3.19) is satisfied, if

f∞(0.5747) ≤ 0, (5.3.24)

which is true by (5.3.1). Hence, we showed (5.3.9) and (5.3.10) and hence (5.3.6)-

(5.3.8) are satisfied. Thus the sequences {gk} and {hk} are increasing, bounded

from above by g and as such it converges to its unique least upper bound g∗ which

satisfies (5.3.5).

70



THEOREM 5.3.2. Suppose there exists u0, v0 ∈ B̄(û, r) and ( A0)–( A3) hold.

Moreover hypothesis of Lemma 5.3.1 hold. Then, the sequences defined in (5.1.1)

for α > α0 is well defined and remains in B̄(u0, g
∗) and converges to uδα. Moreover,

the following estimates hold for each k = 0, 1, . . . ,

‖uk − uδα‖ ≤ g∗ − gk. (5.3.25)

Proof. We will first prove that uk, vk ∈ B̄(u0, g
∗) by using induction. Clearly

u0 ∈ B̄(u0, g
∗). Now since,

‖v0 − u0‖ ≤ ‖v0 − û‖+ ‖û− u0‖ ≤ 2r = h0 ≤ g∗, (5.3.26)

v0 ∈ B̄(u0, g
∗). From the definition of uk, we have,

u1 − u0

= −(Au0v0 + αI)−1Rα(u0)

= −(Au0v0 + αI)−1
(
F (u0)− F (û) + f − f δ

)
= −(Au0v0 + αI)−1

(
Au0û(u0 − û)− Au0v0(u0 − û) + Au0v0(u0 − û) + f − f δ

)
= −(Au0v0 + αI)−1(Au0û − Au0v0)(u0 − û)

−(Au0v0 + αI)−1Au0v0(u0 − û)− (Au0v0 + αI)−1(f − f δ),

so,

‖u1 − u0‖

≤ ‖(Au0v0 + αI)−1(Au0û − Au0v0)(u0 − û)‖

+‖(Au0v0 + αI)−1Au0v0(u0 − û)‖+ ‖(Au0v0 + αI)−1(f − f δ)‖

≤ ‖(Au0v0 + αI)−1Au0v0φ(u0, û, u0, v0, u0 − û)‖

+η‖u0 − û‖+
δ

α

≤ ηL0r
2 + ηr +

δ

α0

≤ g1 (by (5.3.1)) ≤ g∗, (5.3.27)

i.e., u1 ∈ B̄(u0, g
∗). Again by the definition of uk, vk we have

v1 − u1 = −(Au0v0 + αI)−1Rα(u1)

= −(Au0v0 + αI)−1 (F (u1)− F (u0) + α(u1 − u0)− (Au0v0 + αI)(u1 − u0))

= −(Au0v0 + αI)−1(Au1u0 − Au0v0)(u1 − u0),
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and hence,

‖v1 − u1‖ = ‖(Au0v0 + αI)−1(Au1u0 − Au0v0)(u1 − u0)‖

= ‖(Au0v0 + αI)−1Au0v0φ(u1, u0, u0, v0, u1 − u0)‖

≤ η‖φ(u1, u0, u0, v0, u1 − u0)‖

≤ ηL0(‖u1 − u0‖+ ‖u0 − v0‖)‖u1 − u0‖

≤ ηL0(h0 − g0 + g1 − g0)(g1 − g0) (5.3.28)

= h1 − g1.

Thus,

‖v1 − u0‖ ≤ ‖v1 − u1‖+ ‖u1 − u0‖ ≤ h1 − g1 + g1 − g0 = h1 ≤ g∗, (5.3.29)

and hence v1 ∈ B̄(u0, g
∗). We have for ‖x‖ ≤ 1,

‖(Au0v0 + αI)−1((Au1v1 + αI)− (Au0v0 + αI))x‖

≤ ‖(Au0v0 + αI)−1(Au1v1 − Au0v0)x‖

≤ ‖(Au0v0 + αI)−1Au0v0φ(u1, v1, u0, v0, x)‖

≤ ‖(Au0v0 + αI)−1Au0v0‖‖φ(u1, v1, u0, v0, x)‖

≤ ηL0(‖u1 − u0‖+ ‖v1 − v0‖)‖x‖

≤ ηL0(‖u1 − u0‖+ ‖v1 − u0‖+ ‖u0 − v0‖)

≤ ηL0(g1 − g0 + h1 − g1 + g1 − g0 + h0)

≤ ηL0(h1 + g1 + h0)

< 1 (by (5.3.1)).

Therefore, by Banach lemma on invertible operators (Argyros (2008)), we have

‖(Au1v1 + αI)−1(Au0v0 + αI)‖ ≤ 1

1− ηL0(h1 + g1 + h0)
. (5.3.30)
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Also, by using (5.3.28) and (5.3.30), we have,

‖u2 − u1‖ = ‖(Au1v1 + αI)−1Rα(u1)‖

= ‖(Au1v1 + αI)−1(Au0v0 + αI)(Au0v0 + αI)−1Rα(u1)‖

≤ ‖(Au1v1 + αI)−1(Au0v0 + αI)‖‖(Au0v0 + αI)−1Rα(u1)‖

≤ 1

1− ηL0(h1 + g1 + h0)
‖v1 − u1‖

≤ ηL0(h0 − g0 + g1 − g0)(g1 − g0)

1− ηL0(h1 + g1 + h0)
= g2 − g1 (5.3.31)

and hence,

‖u2 − u0‖ ≤ ‖u2 − u1‖+ ‖u1 − u0‖ ≤ g2 − g1 + g1 − g0 = g2 ≤ g∗, (5.3.32)

i.e., u2 ∈ B̄(u0, g
∗). The induction is completed by simply replacing u0, v0, u1,

v1, u2 by uk, vk, uk+1, vk+1, uk+2 in the preceding estimates. Thus by induction,

uk, vk ∈ B̄(u0, g
∗), for all k = 0, 1, . . . . The sequence {uk} is a complete sequence

in B̄(u0, g
∗) and converges. By letting k −→ ∞ in (5.3.25), we conclude that uk

converges to uδα. The estimate (5.3.25) now follows by using standard majorizing

techniques (Argyros (2008); Ortega and Rheinboldt (2000)).

2

5.4 Local convergence

In this Section we present a local convergence of method for (5.1.1). We assume

that α0 > 3ηL0δ. and

r <
1

2
(

1

3ηL0

− δ

α0

).

Observe that by the above choice, we have

3ρηL0 < 1. (5.4.1)

THEOREM 5.4.1. Let conditions (A0)–(A3) hold. Let B̄(uδα, ρ) ⊆ D where

ρ is as defined in Section 5.2. Suppose that there exists u0, v0 ∈ B̄(û, r). Then,

the sequences {uk} defined in (5.1.1) for α > α0 is well defined and remains in
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B̄(uδα, ρ) and converges to uδα with order of at least 2.20557. Moreover,

‖uk+1 − uδα‖ = O(e−γ(2.20557)k),

where γ = − ln(‖e0‖)
2.205573

.

Proof. For convenience we use the notation

ek = ‖uk − uδα‖ for each k = 0, 1, 2 · · ·

and

êk = ‖vk − uδα‖ for each k = 0, 1, 2 · · · .

By the definition of ρ, (2.2.4) and (2.2.5), it is quite clear that u0, v0 ∈ B̄(uδα, ρ).

Note that,

u1 − uδα = u0 − uδα − (Au0v0 + αI)−1(Rα(u0))

= −(Au0v0 + αI)−1(Au0uδα − Au0v0)(u0 − uδα)

= −(Au0v0 + αI)−1Au0v0φ(u0, u
δ
α, u0, v0, u0 − uδα),

so,

e1 ≤ ηL0‖φ(u0, u
δ
α, u0, v0, u0 − uδα)‖

≤ ηL0‖u0 − uδα‖‖v0 − uδα‖

≤ ηL0e0ê0 ≤ ρ2ηL0 < ρ.

The last step follows from (5.4.1). Also, we have,

v1 − uδα = u1 − uδα − (Au0v0 + αI)−1(Rα(u1))

= −(Au0v0 + αI)−1(Au1uδα − Au0v0)(u1 − uδα)

= −(Au0v0 + αI)−1Au0v0φ(u1, u
δ
α, u0, v0, u1 − uδα)

so,

ê1 ≤ ηL0‖φ(u1, u
δ
α, u0, v0, u1 − uδα)‖

≤ ηL0‖u0 − uδα‖(‖u1 − u0‖+ ‖v0 − uδα‖)

≤ ηL0‖u0 − uδα‖(‖u1 − uδα‖+ ‖uδα − u0‖+ ‖v0 − uδα‖)

≤ 3ρ2ηL0 < ρ.
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Here also, the last step follows from (5.4.1). Replacing u0, v0, u1, v1 by uk, vk, uk+1, vk+1

in the above steps, we arrive at

ek+1 ≤ ηL0ekêk < ρ (5.4.2)

and

êk+1 ≤ ηL0ek+1(êk + ek+1 + ek) < ρ. (5.4.3)

Therefore, from (5.4.2) and (5.4.3) and by induction we have uk, vk ∈ B(uδα, ρ),

for all k = 0, 1, . . . . Next, we derive some inequalities which will be useful to show

the order of convergence. We have by (5.4.2)

ek+1 ≤ ηL0ekêk

≤ ηL0ρek (5.4.4)

≤ ρ, (5.4.5)

by (5.4.3),

êk+1 ≤ ηL0ek+1(êk + ek + ek+1)

≤ ηL0ηL0ekρ(3ρ) (from (5.4.4))

≤ 3η2L2
0ρ

2ek (5.4.6)

and

ek+2 ≤ ηL0ek+1êk+1

≤ ηL0ρ3η2L2
0ρ

2ek (from (5.4.5))

≤ 3η3L3
0ρ

3ek. (5.4.7)

So by (5.4.4), (5.4.6) and (5.4.7), we have

êk+2 ≤ ηL0ek+2(êk+1 + ek+1 + ek+2)

≤ ηL0ek+2(ηL0ekρ+ 3η3L3
0ρ

3ek + 3η2L2
0ρ

2ek)

≤ ek+2ek(ηL0ρ+ 3η3L3
0ρ

3 + 3η2L2
0ρ

2), (5.4.8)

and hence by (5.4.8), we have

ek+3 ≤ ηL0ek+2êk+2

≤ ηL0e
2
k+2ek(3η

3L2
0ρ

2 + 3η4L4
0ρ

3 + η2L2
0ρ)

≤ Cρe
2
k+2ek, (5.4.9)
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where Cρ = ηL0(3η3L2
0ρ

2 + 3η4L4
0ρ

3 + η2L2
0ρ). Let Γk :=

√
Cρek. Then, by (5.4.9),

we have

Γk+3 ≤ Γ2
k+2Γk, (5.4.10)

for all k = 0, 1, 2, . . . . Next we shall prove by induction that the following inequal-

ity holds

Γk ≤ ΓFk0 (5.4.11)

for all k ≥ 0, where Fk is the generalized Fibonacci sequence defined recursively

by F0 = F1 = F2 = 1 and

Fk+3 = 2Fk+2 + Fk ∀k ≥ 0.

It is obvious that (5.4.11) holds for k = 0, 1, 2. Assume that (5.4.11) holds for

k = 0, 1, · · · , n+ 2, for some integer n. By induction assumptions and (5.4.10) we

have,

Γn+3 ≤ Γ2
n+2Γn ≤ Γ

2Fn+2

0 ΓFn0 = Γ
Fn+3

0 (5.4.12)

which means that the inequality (5.4.11) hold for k = n + 3. Thus by induction,

the inequality (5.4.11) hold for all k ≥ 0.

Next, we shall show that Fk is bounded below for all k ≥ 0. First, we shall

prove that

Fk ≥ (2 + x)k−3 (5.4.13)

for some x > 0. Evidently for k = 0, 1, 2, (5.4.13) is true. Assume that (5.4.13) is

true for k = 0, 1, · · · , n. Now consider

Fn+1 = 2Fn + Fn−2

= 2(2 + x)n−3 + (2 + x)n−5

≥ (2 + x)n−5(2 + x)3

= (2 + x)n−2

provided

2(2 + x)2 + 1 ≥ (2 + x)3. (5.4.14)

Notice that (5.4.14) is true if s(x) = x3 +4x2 +4x−1 = (2+x)3−2(2+x)2−1 ≤ 0.

Clearly s(0.20557) ≤ 0. Hence the inequality (5.4.13) hold with x = 0.20557.
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Therefore from (5.4.11) and (5.4.13) we have

ek ≤ Ce−γ(2.20557)k , (5.4.15)

where C = C
(2.20557)k−3−1

2
ρ . This completes the proof of the Theorem.

2

Combining (2.2.2), Theorem 2.2.4 and Theorem 5.4.1, we have the following:

THEOREM 5.4.2. Let uk be as in (5.1.1) and let the assumptions in Theorem

2.2.4 and Theorem 5.4.1 be satisfied. Let

kδ := min{k : e−γ(2.20557)k ≤ δ

α
}. (5.4.16)

Then we have the following;

‖uk − û‖ ≤ C̄1(αν +
δ

α
), (5.4.17)

where C̄1 = max{C + 1, C0}.

2

5.5 Adaptive choice of the parameter

As detailed in previous Chapters, the error is of optimal order if αδ := α(δ) satisfies

αδ = δ
1

1+ν . Hence by (5.4.17) we have the following Theorem.

THEOREM 5.5.1. Let the assumptions in Theorem 5.4.2 holds. For δ > 0, let

α := αδ = δ
1

1+ν . Let kδ be as in (5.4.16). Then

‖uk − û‖ = O(δ
ν

1+ν ).

2

In order to obtain the above order, without knowing ν, we use the adaptive

selection of the parameter strategy considered by Pereverzev and Schock (2005)

(see also George and Nair (2008); Semenova (2010)), modified appropriately for
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the situation for choosing the parameter α. For convenience, take ui := uki . Let

i ∈ {0, 1, 2, · · · , N} and αi = µiα0 where µ > 1 and α0 > δ.

Let

ni = min{k : e−γ(2.20557)k ≤ δ

αi
} (5.5.1)

l := max

{
i : ανi ≤

δ

αi

}
< N and (5.5.2)

k := max

{
i : ‖ui − uj‖ ≤ 4C̄1

δ

αj
, j = 0, 1, 2, · · · , i− 1

}
(5.5.3)

where C̄1 is as in Theorem 5.4.2. Now we have the following Theorem.

THEOREM 5.5.2. (cf. George and Nair (2008)) Assume that there exists i ∈

{0, 1, · · · , N} such that ανi ≤ δ
αi
. Let assumptions of Theorem 5.4.2 be fulfilled,

and let l and k be as in (5.5.2) and (5.5.3) respectively. Then l ≤ k; and

‖û− uni‖ ≤ 6C̄1µδ
ν

1+ν .

The proof of the above theorem is analogous to the proof of Theorem 3.3.4.

5.6 Adaptive choice rule implementation

Finally the balancing algorithm associated with the choice of the parameter spec-

ified in Theorem 5.5.2 involves the following steps:

• Select α0 > 0 such that 3ηL0δ < α0 and µ > 1.

• Set αi := µiα0, i = 0, 1, 2, · · · , N.

5.6.1 Algorithm

a. Set i = 0.

b. Choose ki := min
{
k : e−γ(2.20557)k ≤ δ

αi

}
.

c. Solve ui := uki by using the iteration (5.1.1).

d. If ‖ui − uj‖ > 4C̄1
δ
αj
, j < i, then take k = i− 1 and return uk.

e. Else set i = i+ 1 and go to b.
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Table 5.1: The relative error and residual error
δ α ||uk−û||

||û||
||F (uk)−fδ||
||fδ||

0.01 0.010303010000000 0.102996274871587 0.989101691267989

0.001 0.001030301000000 0.118619906504308 0.987872641334813

0.005 0.005151505000000 0.089419446715342 0.988451475811924

5.7 Numerical Example

In this section we present the numerical Example 2.6 which was discussed in

Chapter 1. We have taken Auv = F (u)−F (v)
u−v , u 6= v.

EXAMPLE 5.7.1. We consider the equation (2.6.1) in Example 2.6, for the

implementation of method (5.1.1) with α0 = µδ and µ = 1.01. We use the Gauss-

Legendre quadrature formula:
∫ 1

0
f(t)dt ≈

∑n
j=1wjf(tj), with the same abscissa tj

and the weight wj for n = 25 given Table 2.1, to discretize equation (2.6.1). The

discretized form of (5.1.1) is as follows:

uk+1(ti) = uk(ti)−
uk(ti)− vk(ti)

F (uk(ti))− F (vk(ti)) + α(uk(ti)− vk(ti))
Rα(uk(ti))

vk+1(ti) = uk+1(ti)−
uk(ti)− vk(ti)

F (uk(ti))− F (vk(ti)) + α(uk(ti)− vk(ti))
Rα(uk+1(ti)),

where F (u(ti)) =
∑25

j=1 aiju(tj)
3, and Rα(u(ti)) = F (u(ti)) + α(u(ti) − u0(t0)) −

(f(ti) + δ) with aij =

 wjtj(1− ti), if j ≤ i

wjti(1− tj), if i < j.

We use,

u0(t) = sin(πt) +
3[tπ2 − t2π2 + sin2(πt)]

4π2
, v0(t) = u0(t) + 0.5

as our initial guess, so that the function u0− û satisfies the source condition. The

relative error ||uk−û||||û|| and the residual error ||F (uk)−fδ||
||fδ|| are given in Table 5.1.
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Chapter 6

CONCLUSIONS AND FUTURE

SCOPES

6.1 CONCLUDING REMARKS

We have mainly concentrated our work on solving nonlinear ill-posed problems

involving m-accretive operators in a Banach space setting. We have tried using

various iterative schemes. Throughout the work we considered a general Hölder

type source condition and for the adaptive parameter choice strategy we considered

Pereverzev and Schock (2005) for choosing the regularization parameter.

In Chapter 2, we considered a derivative and inverse free iterative method for

the implementation of regularization solution. We were able to obtain a second

order convergence and we have illustrated our results with a numerical example

at the end of the Chapter.

We studied an iterative scheme that converges cubically to our solution in

Chapter 3. The method is also a derivative and inverse free and we have given a

numerical example for validation of our results.

Newton-Kantorovich regularization method is investigated in Chapter 4. We

obtained a second order convergence without using any scalar sequences. To illus-

trate our results we have provided a numerical example at the end of the Chapter.

We analyzed Secant-type iteration in Chapter 5 and proved that the method

has a convergence order at least 2.20557 using assumptions only on first Fréchet

derivative of the operator. We have provided both local and semi-local convergence

for the method. Some numerical results were also included at the end of Chapter.
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6.2 FUTURE SCOPE OF THE RESEARCH

Various iteration techniques have been highlighted as a part of this thesis. There

are many other iterative techniques available for approximately solving nonlinear

equation

F (x) = 0,

in Euclidean as well as Banach space setting. Modifying these methods for ill-

posed problem is a challenging task. In future, we intend to study these existing

methods, modified suitably for solving ill-posed problem (2.1.1). Further we intend

to propose and study new methods for solving ill-posed equations.

Study of ill-posed problems in Banach scale is another area of interest. It is

also one of our future goal.

Investigating the parameter choice strategy can further be improved which is

one of the most crucial requirements in most of the real-time applications.
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Kaltenbacher, B., Schöpfer, F., and Schuster, T. (2009). Iterative methods for

nonlinear ill-posed problems in Banach spaces: convergence and applications to

parameter identification problems. Inverse Problems, 25(6):065003, 19.

Keller, J. B. (1976). Inverse problems. The American Mathematical Monthly,

83(2):107–118.

Kelley, C. T. (1995). Iterative methods for linear and nonlinear equations, vol-

ume 16 of Frontiers in Applied Mathematics. Society for Industrial and Applied

Mathematics (SIAM), Philadelphia, PA. With separately available software.

Krasnosel’skii, M. A., Zabreyko, P. P., Pustylnik, E. I., and Sobolevski, P. E.

(1976). “Integral operators in spaces of summable functions”. Noordhoff Inter-

national Publishing, Leiden. Translated from the Russian by T. Ando, Mono-

graphs and Textbooks on Mechanics of Solids and Fluids, Mechanics: Analysis.

Liu, Z. (2005). Browdertikhonov regularization of non-coercive evolution hemi-

variational inequalities. Inverse Problems, 21(1):13–20.

85



Mahale, P. and Nair, M. T. (2007). General source conditions for nonlinear ill-

posed equations. 28:111–126.

Nair, M. T. (2009). Linear operator equations. World Scientific Publishing Co.

Pte. Ltd., Hackensack, NJ. Approximation and regularization.

Nashed, M. Z. and Rall, L. B. (1976). Annotated bibliography on generalized

inverses and applications. pages 771–1041. Univ. Wisconsin Math. Res. Center

Publ., No. 32.

Ortega, J. M. and Rheinboldt, W. C. (2000). Iterative solution of nonlinear equa-

tions in several variables, volume 30 of Classics in Applied Mathematics. Society

for Industrial and Applied Mathematics (SIAM), Philadelphia, PA. Reprint of

the 1970 original.

Pereverzev, S. and Schock, E. (2005). “On the adaptive selection of the parameter

in regularization of ill-posed problems”. SIAM J. Numer. Anal., 43(5):2060–

2076.

Semenova, E. V. (2010). Lavrentiev regularization and balancing principle for

solving ill-posed problems with monotone operators. Comput. Methods Appl.

Math., 10(4):444–454.

Shubha, V. S., George, S., and Jidesh, P. (2015). A derivative free iterative

method for the implementation of lavrentiev regularization method for ill-posed

equations. Numerical Algorithms, 68(2):289–304.

Tautenhahn, U. (1996). “Error estimates for regularization methods in Hilbert

scales”. SIAM J. Numer. Anal., 33(6):2120–2130.

Tautenhahn, U. (2002). “On the method of Lavrentiev regularization for nonlinear

ill-posed problems”. Inverse Problems, 18(1):191–207.

Tautenhahn, U. (2004). “Lavrentiev regularization for nonlinear ill-posed prob-

lems”. Vietnam J. Math., 32:29–41.

86



Tautenhahn, U. and Jin, Q.-n. (2003). “Tikhonov regularization and a posteriori

rules for solving nonlinear ill posed problems”. Inverse Problems, 19(1):1–21.

Vasin, V. and George, S. (2014). An analysis of lavrentiev regularization method

and newton type process for nonlinear ill-posed problems. Applied Mathematics

and Computation, 230:406 – 413.

Xiao, X. and Yin, H. (2016). Increasing the order of convergence for iterative

methods to solve nonlinear systems. Calcolo, 53(3):285–300.

Xiao, X. and Yin, H. (2017). Achieving higher order of convergence for solv-

ing systems of nonlinear equations. Applied Mathematics and Computation,

311(C):251–261.

87



.

88



PUBLICATIONS

1. Santhosh George & C D Sreedeep . Lavrentiev’s regularization method for

nonlinear ill-posed equations in Banach spaces. Acta Mathematica Scientia

,Volume 38, Issue 1, January 2018, Pages 303-314.

2. C D Sreedeep, Santhosh George & Ioannis . K Argyros. Extended Newton-

type iteration for nonlinear ill-posed equations in Banach space. Journal of

Applied Mathematics and Computing, DOI= 10.1007/s12190-018-01221-2.

3. C D Sreedeep, Santhosh George & Ioannis . K Argyros. Newton-Kantorovich

regularization method for nonlinear ill-posed equations involvingm−accretive

operators in Banach spaces. Rendiconti del Circolo Matematico di Palermo

Series 2, DOI=10.1007/s12215-019-00413-4.

4. Santhosh George, C D Sreedeep & Ioannis . K Argyros. Secant-type itera-

tion for nonlinear ill-posed equations in Banach space (Communicated).

89



.

90



BIODATA

Name : Sreedeep C D

Email : cd.sreedeep@gmail.com

Date of Birth : 17 September 1991.

Permanent address : Chekur Mana,

Noorani,

Palakkad,

Kerala-678004.

Educational Qualifications :

Degree Year Institution / University

Integrated M.Sc. 2014 Amrita Vishwa Vidyapeetham,

Mathematics Kollam.

91


	Acknowledgement
	List of Figures
	List of Tables
	INTRODUCTION
	Ill-posed problem
	Nonlinear ill-posed problem

	Regularization Method
	Source Conditions
	Choice of regularization parameter

	Iterative methods and Convergence analysis
	Order of Convergence

	Motivation of Research
	Research Objectives
	Outline of the thesis

	 LAVRENTIEV'S REGULARIZATION METHOD FOR NONLINEAR ILL-POSED EQUATIONS IN BANACH SPACES 
	Introduction
	Error estimates using Hölder type source condition
	Iterative Method and Convergence analysis
	A Priori Choice of the Parameter
	Adaptive Scheme and Stopping Rule

	Adaptive choice rule implementation
	Algorithm

	Numerical Example

	EXTENDED NEWTON-TYPE ITERATION FOR NONLINEAR ILL-POSED EQUATIONS IN BANACH SPACE
	Introduction
	Iterative Method with Convergence analysis
	Error estimates using Hölder type source condition
	Adaptive choice rule implementation
	Algorithm

	Numerical Example

	NEWTON-KANTOROVICH REGULARIZATION METHOD FOR NONLINEAR ILL-POSED EQUATIONS IN BANACH SPACES
	Introduction
	Advantages

	Convergence analysis
	Error estimates using Hölder type source condition
	Choice of the Parameter
	Adaptive Scheme and Stopping Rule

	Adaptive choice rule implementation
	Algorithm

	Numerical Example

	SECANT-TYPE ITERATION FOR NONLINEAR ILL-POSED EQUATIONS IN BANACH SPACE
	Introduction
	Basic assumptions and Preliminaries
	Semi-local convergence
	Local convergence
	Adaptive choice of the parameter
	Adaptive choice rule implementation
	Algorithm

	Numerical Example

	CONCLUSIONS AND FUTURE SCOPES
	CONCLUDING REMARKS
	FUTURE SCOPE OF THE RESEARCH

	References

