
MODELLING BEHAVIOURAL DYNAMICS FOR

APPLICATION LAYER DISTRIBUTED DENIAL OF

SERVICE ATTACK DETECTION

Thesis

Submitted in partial fulfilment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

by

AMIT PRASEED

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

NATIONAL INSTITUTE OF TECHNOLOGY KARNATAKA

SURATHKAL, MANGALORE - 575 025

August, 2020

DECLARATION

by the Ph.D. Research Scholar

I hereby declare that the Research Thesis entitled Modelling Behavioural Dynam-

ics for Application Layer Distributed Denial of Service Attack Detection which is

being submitted to the National Institute of Technology Karnataka, Surathkal in

partial fulfilment of the requirements for the award of the Degree of Doctor of Philos-

ophy in Department of Computer Science and Engineering is a bonafide report of the

research work carried out by me. The material contained in this Research Thesis has

not been submitted to any University or Institution for the award of any degree.

Amit Praseed, 165003 CS16F01

Department of Computer Science and Engineering

Place: NITK, Surathkal.

Date: August 7, 2020

CERTIFICATE

This is to certify that the Research Thesis entitled Modelling Behavioural Dynam-

ics for Application Layer Distributed Denial of Service Attack Detection submitted

by Amit Praseed (Register Number: 165003 CS16F01) as the record of the research

work carried out by him, is accepted as the Research Thesis submission in partial ful-

filment of the requirements for the award of degree of Doctor of Philosophy.

Prof. P. Santhi Thilagam

Research Guide

(Signature with Date and Seal)

Chairman - DRPC

(Signature with Date and Seal)

ACKNOWLEDGEMENTS

It is my pleasure to thank the people who have supported and helped me throughout the

duration of my research work. First and foremost, I would like to express my sincere

gratitude to my research supervisor Dr. P. Santhi Thilagam, Professor, Department of

Computer Science and Engineering, for her constant support and encouragement. She

has been a constant guiding light throughout the duration of my research. I have learned

a lot from her, both from a technical standpoint and in the form of life lessons, which

will be of use throughout my life.

I would like to extend my gratitude to the members of my research progress assess-

ment committee, Dr. Alwyn R. Pais and Dr. Vinatha U., for their valuable suggestions

throughout the course of my research. I also extend my gratitude to the technical and

administrative staff of the Department of Computer Science and Engineering for all the

help and co-operation extended to me. They were always ready to lend a hand whenever

I faced any issues, and for that I am grateful.

I would like to thank NITK for providing the infrastructure and facilities for the

smooth conduct of my research. I also express my gratitude to the Ministry of Electron-

ics and Information Technology (MeitY), Government of India, for funding our research

work. The suggestions provided by the Project Review Steering Group (PRSG) have

been invaluable in strengthening my research. I would also like to thank Mr. Sivakumar

K. for the technical assistance extended to me as part of our project team. I would also

like to extend my gratitude to Dr. Deepa G., Dr. Bindu P.V., Mr. D.V.N. Sivakumar,

Mrs. Umapriya D., Mr. Srinivas, Nikhil and Pramod for their support and encourage-

ment throughout the course of my research.

I am deeply indebted to my parents for encouraging and supporting me throughout

the course of my research and indeed, throughout my life.

Finally, I would like to thank the Almighty for granting me the health, strength and

wisdom for carrying out my research work.

Amit Praseed

ABSTRACT

Distributed Denial of Service (DDoS) attacks are one of the oldest and most dangerous

attacks against network infrastructure and web applications alike. Traditionally, DDoS

attacks were executed using network layer protocols for generating a large volume of

requests, thereby exhausting the network bandwidth and leading to a degradation in

the quality of Internet services. These attacks, called Network layer DDoS attacks,

no longer pose a significant threat due to the availability of cheap bandwidth and the

development of sophisticated detection mechanisms against these attacks. With the

success of network layer DDoS attacks no longer guaranteed, attackers have slowly

started using application layer protocols to launch DDoS attacks. Application Layer

DDoS (AL-DDoS) attacks attempt to take down web applications by exhausting server

resources such as CPU, database, memory or socket connections by using the features

of application layer protocols. Majority of these attacks use the HTTP/1.1 protocol for

launching attacks, and in particular there has been a growing trend of using computa-

tionally expensive requests to launch DDoS attacks. These attacks are called Asym-

metric AL-DDoS attacks and are generally imperceptible owing to the use of legitimate

requests and a comparatively low attack volume. Due to these features, simple firewall

rules and request inspection techniques are ineffective against these attacks and hence,

an analysis of user behaviour is required for detecting these attacks. Most of the ex-

isting detection mechanisms focus on building a model of legitimate user behaviour as

under the HTTP/1.1 protocol, and then identifying attacks by observing the deviation

from the learned model. Existing detection approaches for asymmetric AL-DDoS at-

tacks use indirect representations of actual user behaviour and use complex modelling

techniques, which leads to a higher false positive rate (FPR) and longer detection time,

which makes them unsuitable for real time use. In addition, most of these models are

unable to adapt to changing user behaviour, which leads to the model becoming inef-

fective in the long run. A review of existing literature suggests that there is a need for a

lightweight, fast and adaptable detection mechanism for asymmetric AL-DDoS attacks

that has a very low false positive rate.

The recent standardization of HTTP/2 adds another layer of complexity over asym-

metric AL-DDoS detection. HTTP/2 was designed to improve the performance of web

servers, and has been greatly successful in reducing the average response time of web

servers due to the introduction of features like multiplexing and server push. This has

led to more and more web applications migrating to HTTP/2. However, while reduc-

ing page load time for clients, HTTP/2 puts additional load on web servers, leading to

concerns about these servers being more vulnerable to asymmetric AL-DDoS attacks.

In addition, there is no evidence found in existing literature regarding the possibility

of multiplexing and server push being misused to launch potentially lethal asymmetric

AL-DDoS attacks. This lack of understanding has led to existing mechanisms being

unable to handle the HTTP/2 protocol effectively.

In this work, an attempt is made to model the actual behavioural dynamics of legit-

imate users using an annotated Probabilistic Timed Automata (PTA) along with a sus-

picion scoring mechanism for differentiating between legitimate and malicious users.

This allows the detection mechanism to be extremely fast and have a low FPR. In addi-

tion, the model can adapt to changing user behaviour in an incremental manner, which

further reduces the FPR. Experiments on public datasets reveal that our proposed ap-

proach has a high detection rate and low FPR and adds negligible overhead to the web

server, which makes it ideal for real time use.

This work also explores the impact of asymmetric AL-DDoS attacks on HTTP/2

servers. Our experiments demonstrate that an HTTP/2 server is actually more resilient

to asymmetric AL-DDoS attacks as compared to an HTTP/1.1 server. However, de-

spite the improved resilience, HTTP/2 servers are vulnerable to a more sophisticated

class of attacks. We demonstrate that multiplexing and server push features in HTTP/2

can be misused to launch a sophisticated attack called Multiplexed Asymmetric Attack,

that can exhaust server resources much faster and with minimal number of attacking

clients. In order to detect these attacks, the PTA-based behavioural model is extended

to accommodate HTTP/2-specific features. Our experiments demonstrate that the in-

ii

clusion of these features allows the system to detect Multiplexed Asymmetric Attacks

effectively.

There is a considerable degree of similarity between attacking connections in a

DDoS attacks due to the use of common attack generation tools and botnets. In the

case of an AL-DDoS attack, this similarity manifests itself in the form of repeating se-

quences of HTTP requests across attacking connections. Knowledge of this similarity

allows for the early detection of AL-DDoS attacks, thereby reducing the average de-

tection time of the system and allowing it to operate in real time. A dynamic signature

based approach using HTTP request sequences is used in order to facilitate the early

detection of AL-DDoS attack as part of the proposed approach. Experimental results

indicate that the use of the early detection mechanism leads to a considerable decrease

in detection time, and leads to efficient real time use.

Keywords: application layer, ddos, http, http/2, multiplexing, asymmetric, attack,

detection

iii

CONTENTS

List of Figures x

List of Tables xi

List of Abbreviations xiii

1 Introduction 1

1.1 Distributed Denial of Service (DDoS) Attacks 2

1.2 Anatomy of a DDoS Attack . 5

1.3 Types of DDoS Attacks . 6

1.4 Features of Application Layer DDoS Attacks 7

1.5 Types of AL-DDoS Attacks . 9

1.6 HTTP/2 and Associated Challenges 9

1.7 The Complexity of AL-DDoS Detection 12

1.7.1 DDoS Detection as an Intrusion Detection Problem 12

1.7.2 Anomaly Detection Approaches for AL-DDoS Detection 12

1.8 The Quest for Early AL-DDoS Detection 13

1.9 Motivation . 14

1.10 Organization of the Thesis . 16

2 Literature Review 19

2.1 Taxonomy of Application Layer DDoS Attacks using the HTTP/1.1

Protocol . 20

2.1.1 AL-DDoS Attacks by Exploiting Application Vulnerabilities . . 21

2.1.2 Exploiting Protocol Features 23

2.1.3 Exploiting System Features 26

2.2 Defending against DDoS Attacks using the HTTP/1.1 protocol 28

2.2.1 Blocking DDoS Attacks using User Puzzles 28

v

2.2.2 Detecting Application Layer DDoS Attacks using the HTTP

Protocol . 29

2.2.3 Defending against HTTP Protocol Vulnerabilities 30

2.2.3.1 Preventing Slow DDoS Attacks 31

2.2.3.2 Detecting Slow DDoS Attacks 31

2.2.4 Defending against HTTP Flooding Attacks 33

2.2.4.1 Detection Mechanisms based on Request Dynamics . 33

2.2.4.2 Detection Mechanisms based on Request Semantics . 35

2.2.5 Defending Against Asymmetric HTTP Attacks 38

2.2.5.1 Detection Mechanisms based on Request Composition 38

2.2.5.2 Detection Mechanisms based on Request Sequence . 39

2.2.5.3 Detection Mechanisms by Observing Indirect Effects 40

2.3 HTTP/2 and associated Security Concerns 42

2.3.1 HTTP/2 Security . 44

2.3.1.1 Legacy Attacks on HTTP/2 44

2.3.1.2 Attacks Exploiting New Features 46

2.4 Research Directions and Challenges 47

2.5 Summary . 48

3 Problem Description 49

4 Asymmetric AL-DDoS Attacks on HTTP/1.1 Servers 53

4.1 Introduction . 53

4.2 Requirements of a Detection Mechanism 54

4.3 Workload Profiling . 55

4.3.1 An Approximation of Request Workload 55

4.3.2 System and User Workload Profiles 56

4.4 Attack Generation on HTTP/1.1 Servers 57

4.4.1 Methodology . 57

4.4.2 Experimental Study . 59

4.4.2.1 Experimental Setup 59

4.4.2.2 Results and Discussion 61

vi

4.5 Detecting Asymmetric AL-DDoS Attacks on HTTP/1.1 Servers 62

4.5.1 Learning Phase . 62

4.5.1.1 Features used to Model User Behaviour 62

4.5.1.2 Model Description 64

4.5.1.3 Suspicion Score Assignment for Detecting Anoma-

lous Clients . 68

4.5.1.4 Threshold Determination 69

4.5.1.5 Working of the Learning Phase 70

4.5.2 Detection Phase . 72

4.5.2.1 Incremental Update 74

4.5.3 Experimental Study . 76

4.5.3.1 Datasets Used . 76

4.5.3.2 Training and Testing Data 76

4.5.3.3 Experimental Setup 77

4.5.3.4 Results and Discussion 77

4.6 Summary . 83

5 Asymmetric AL-DDoS Attacks on HTTP/2 Servers 85

5.1 The Changing User Behavioural Dynamics under HTTP/2 86

5.1.1 Multiplexed Asymmetric Attack 88

5.1.2 Multiplexed Asymmetric Attack in the presence of Server Push 88

5.2 Attack Generation on HTTP/2 Servers 89

5.2.1 Web Application Scanning 89

5.2.2 Identifying High Workload States 89

5.2.3 Attack Vector Selection . 91

5.2.3.1 Simple Asymmetric Attack 91

5.2.3.2 Multiplexed Asymmetric Attack 93

5.2.4 Launching the Attack . 94

5.2.5 Experimental Study . 95

5.2.5.1 Server Configuration 95

5.2.5.2 Attack Tools . 95

vii

5.2.5.3 Results and Discussion 95

5.3 Detection of Asymmetric Attacks on HTTP/2 Servers 100

5.3.1 Learning Phase . 101

5.3.1.1 Features used to Model User Behaviour 101

5.3.1.2 Model Expansion 101

5.3.1.3 Suspicion Score Assignment for Detecting Malicious

Clients . 103

5.3.2 Detection Phase . 105

5.3.3 Experimental Study . 105

5.3.3.1 Results and Discussion 109

5.4 Summary . 112

6 Early Detection of AL-DDoS Attacks 115

6.1 Similarity in DDoS Traffic . 115

6.1.1 Request Patterns as Dynamic Signatures 117

6.2 Early DDoS Detection using Request Patterns as Signatures 118

6.2.1 Architecture . 119

6.2.2 Working . 121

6.3 Experimental Study . 122

6.3.1 Experimental Setup . 122

6.3.2 Effect of EDM on Detection Latency 126

6.4 Summary . 128

7 Conclusions and Future Scope 129

7.1 Future Scope . 130

Bibliography 132

Research Outcomes 148

viii

LIST OF FIGURES

1.1 Typical Botnet Structure . 5

2.1 Taxonomy of AL-DDoS Attacks using the HTTP/1.1 Protocol 22

2.2 Detection Mechanisms for Slow DDoS Attacks 31

2.3 Detection Mechanisms for HTTP Flooding Attacks 36

2.4 Detection Mechanisms for Asymmetric AL-DDoS Attacks 39

4.1 Workload Profile for Mutillidae . 56

4.2 Block Diagram for Attack Generation 58

4.3 Workload Profile for Opencart . 60

4.4 Comparison of HTTP Flooding and Asymmetric Attacks on HTTP/1.1

Server . 61

4.5 Block Diagram of the Proposed Approach 63

4.6 Diagrammatic Representation of the annotated PTA 65

4.7 Suspicion Score Distribution . 78

4.8 Execution Time . 80

4.9 Detection Latency . 81

4.10 Effect of Update Frequency . 82

4.11 Effect of Update Threshold . 83

5.1 The Changing dynamics of User Behaviour under HTTP/2 87

5.2 Workflow for Generating Asymmetric DDoS Attacks on HTTP/2 Servers 90

5.3 Relationship between CPU utilization and Number of Requests in an

HTTP/2 Server Under Stealthy Asymmetric DDoS attack 96

5.4 Relationship between CPU utilization and Number of Requests in an

HTTP/2 Server Under Asymmetric DDoS attack 96

ix

5.5 Relation between CPU Usage and Number of Connections during a

Stealthy Multiplexed Asymmetric Attack 97

5.6 Relation between CPU Usage and Number of Connections during a

Multiplexed Asymmetric Attack . 97

5.7 Comparison of HTTP/2 Asymmetric Attack with and without Multi-

plexing . 97

5.8 Impact of Server Push during a Multiplexed Asymmetric Attack on an

HTTP/2 Server . 99

5.9 Impact of Server Push on Network Bandwidth during a Multiplexed

Asymmetric Attack on an HTTP/2 Server 99

5.10 Diagrammatic Representation of the modified annotated PTA 104

5.11 Suspicion Score Distribution . 110

5.12 Detection Latency . 111

5.13 Detection Latency for Multiplexed AL-DDoS attacks using the HTTP/2

protocol . 112

6.1 Integration of EDM with an existing ADM 119

6.2 Architecture of the EDM . 120

6.3 SDSC Detection Latency . 127

6.4 CLARKNET Detection Latency . 127

x

LIST OF TABLES

1.1 Impact of DDoS Attacks . 4

1.2 Comparison of Network Layer and Application Layer DDoS Attacks . . 7

2.1 Summary of AL-DDoS Detection Mechanisms 41

2.2 Comparison of Existing Research Works on HTTP/2 Security 45

4.1 Popular HTTP DDoS Attack Generation Tools 57

4.2 Types of Attacks Generated for Testing 77

4.3 Performance Overview of Attack Detection Module 78

4.4 Attack-wise Performance of Attack Detection Module 79

5.1 Effect of Server Push on Egress Network Traffic during a Multiplexed

Asymmetric attack for Opencart . 99

5.2 Types of Non-Multiplexed Attacks Generated for Testing 107

5.3 Types of Multiplexed Attacks Generated for Testing 108

5.4 Performance Overview of Attack Detection Module 110

5.5 Attack-wise Performance of Attack Detection Module 111

6.1 Types of Attack Generated . 122

xi

LIST OF ABBREVIATIONS

Abbreviations Expansion
AL-DDoS Application Layer Distributed Denial of Service
C&C Command and Control
DoS Denial of Service
DDoS Distributed Denial of Service
DNS Domain Name Service
FPR False Positive Rate
FSM Finite State Machine
HTTP Hyper Text Transfer Protocol
HsMM Hidden semi Markov Model
ICA Independent Component Analysis
ICMP Internet Control Messaging Protocol
PCA Principal Component Analysis
PTA Probabilistic Timed Automata
SIP Session Initiation Protocol
SOAP Simple Object Access Protocol
SQL Structured Query Language
SVD Singular Value Decomposition
SVM Support Vector Machine
TCP Transmission Control Protocol
TLS Transport Layer Security
UDP User Datagram Protocol

xiii

CHAPTER 1

INTRODUCTION

Internet usage across the world has increased tremendously in the past few years. Ac-

cording to reports from the International Telecommunications Union (ITU), over 4 bil-

lion people around the world are using the Internet for their day to day activities (Union

2018). This number accounts for more than half of the world population. Businesses

and organizations have been quick to capitalize on this trend by extending their pres-

ence online, and by making their services available online. E-commerce companies

are the front-runners in this category. In 2019, around 14% of global retail sales were

performed over the Internet. This number is expected to grow quickly in the coming

years, and it is expected that by 2040, around 95% of purchases will be performed

online (Statista 2019). However, it is not just e-commerce companies that have cap-

italized on the Internet boom. Government agencies have also began to extend their

services online. The use of Information and Communication Technology (ICT) to sup-

port public services and government administration is popularly called E-Governance,

and represents a significant change in public administration. The use of web applica-

tions to power their services essentially means that organizations and businesses can

extend their services to customers 24x7, irrespective of time or space constraints.

However, this open architecture of a web application poses significant challenges

as well. Such an open architecture also allows unfettered access to the web application

for malicious users. Attacks against web applications have also grown in direct pro-

portion to the boom in Internet usage. Sonicwall (2019) estimates that attacks against

1

1. Introduction

web applications increased by 56% in 2018. The motivation behind these attacks can be

broadly classified into three categories - economically motivated, politically motivated,

and espionage (Gandhi et al. 2011). Majority of the attacks against web applica-

tions are economically motivated, where attackers seek direct or indirect financial gain.

Credit card fraud, ATM skimming attacks, information disclosure attacks and various

instances of ransomware (O’Gorman and McDonald 2012; Scaife et al. 2016) are ex-

amples of economically motivated attacks. Around 30% of cyber attacks are politically

motivated and are often signs of protest against political actions, laws, public docu-

ments, or outrage against acts related to physical violence (Gandhi et al. 2011). Espi-

onage using the cyber domain is often much more subtle, and encompasses attempts by

governments to learn sensitive information related to other countries.

From a technical standpoint, attacks against web applications violate one or more

of the fundamental principles of information security - Confidentiality, Integrity and

Availability (often called the CIA or AIC triad). Majority of the attacks are designed

to compromise either the confidentiality or integrity of the web application. Online

banking frauds compromise the integrity and sensitive information disclosure attacks

compromise the confidentiality of the web application. However, there are a large num-

ber of attacks that attempt to compromise the availability of a web application as well.

In other words, the primary aim of these attacks is simply to disrupt the services pro-

vided by the web application. This denies legitimate users the opportunity to avail the

services provided by the web application, and hence, these attacks are aptly named as

Denial of Service (DoS) Attacks.

1.1 DISTRIBUTED DENIAL OF SERVICE (DDOS) ATTACKS

DoS attacks can be executed in a variety of ways - by exploiting vulnerabilities in the

target systems, by exploiting vulnerabilities in the underlying communication protocol,

or by simply exhausting server resources. A single malicious client is usually unable

to cause a Denial of Service unless a vulnerability is exploited. However, these attacks

are isolated incidents, and cease to be a cause of concern as soon as the vulnerability is

patched. Attacks targetting server resources, on the other hand, cannot be prevented by

2

1.1. Distributed Denial of Service (DDoS) Attacks

any means. They can be executed on any system, no matter how secure, at any point of

time. A single malicious client, however, is unlikely to be able to exhaust the resources

of a server on its own. More often than not, denial of service attacks are executed using

hundreds or thousands of malicious clients joining forces to target a single server and

are called Distributed Denial of Service (DDoS) attacks.

In the 18 months from January 2015 to June 2016, Arbor networks tracked around

1,24,000 DDoS attacks every week (Networks 2016). Most of these attacks are ex-

ecuted with social or political motivations, such as expressing dissent or displeasure

against a particular organization, government or law. The attacks against Latvian gov-

ernment websites in 2007 and against Iranian government websites in 2009 are prime

examples of politically motivated DoS attacks (Nazario 2009). More recent instances

include the attacks against the Spanish government in support of Catalan independence

(Magazine 2017) and against the governments of USA (Incapsula 2015), Ireland (Sil-

icon 2017), India (Register 2012) and Brazil (Corero 2016) for a variety of reasons.

These attacks demonstrate a serious lack of security in a number of government web-

sites, which also hold a large amount of sensitive information.

Banks have also been prime targets of DDoS attacks in the past decade, notably in

USA (Networks 2012) and UK (Guardian 2016a). These attacks are particularly dis-

concerting at a time where the general public is becoming more inclined to purchasing

online. Bitcoin websites have also been targeted in the same light as banking websites

(Coindesk 2017; Forbes 2014), often calling into question the feasibility of a currency

with no physical existence.

DDoS attacks are often considered as targetted attacks, focusing on a single web

application. However, that is not always the case and DDoS attacks are capable of

disrupting a number of websites at once. This was demonstrated during an attack on the

Dyn DNS servers in 2016, which simultaneously took down a number of high profile

websites including Twitter and Reddit (Dyn 2016). On a more dangerous level, DDoS

attacks can even disrupt Internet services in an entire country as observed during an

attack on the Internet backbone in Liberia (Guardian 2016b).

3

1. Introduction

Table 1.1: Impact of DDoS Attacks

Target Type of Organi-
zation

Year Impact

Github (Register
2018)

Hosting Service
Provider

Mar
2018

Github servers were taken of-
fline

Brazilian Sports
Ministry Sites
(Corero 2016)

Government
websites

2016 Sites for the Rio Olympics and
associated sites went down

Spanish Consti-
tutional Court
Website (Maga-
zine 2017)

Government
website

2017 Several websites were taken
down or hacked

Bitcoin Gold
(Coindesk 2017)

Cryptocurrency
server

Oct
2017

Cryptocurrency deals went
down

HSBC (Guardian
2016a)

Banking website Jan
2016

Financial transactions were
blocked for a long time

Bank of Amer-
ica, Chase,
WellsFargo,
PNC (Networks
2012)

US based banks 2012 Financial transactions were
unavailable to the general pub-
lic

Dyn (Dyn 2016) DNS Provider Oct
2016

Websites like Twitter and Red-
dit went down

Valtia (Times
2016)

Heating Systems
Provider

Oct
2016

Temperature adjustment failed
in a town in Finland

Trafikverket
(SCMagazine
2017)

Sweden Trans-
port Administra-
tion

Oct
2017

Trains were delayed, reserva-
tions portals failed to function

Lonestar Cell
MTN (Guardian
2016b)

Internet Provider
in Liberia

Nov
2016

Internet was unavailable in
parts of the country

Recently, there have been a number of attacks on critical infrastructure such as heat-

ing systems in Finland (Times 2016) and transport systems in Sweden (SCMagazine

2017). A study by Corero (Guardian 2017) provides additional cause of concern, as

it reveals that more than half of the critical infrastructure organizations in the UK are

4

1.2. Anatomy of a DDoS Attack

blatantly ignoring the risk of DDoS attacks. Table 2.2 gives a summary of some of the

critical DDoS attacks in the last decade.

1.2 ANATOMY OF A DDOS ATTACK

Figure 1.1: Typical Botnet Structure

Most of the time, a DDoS attack is launched from a large number of compromised

systems located at physically distinct locations. These systems, called zombies or bots,

are often infected with malware and act on the attackers volition. This entire setup is

5

1. Introduction

called a botnet, and has become an indispensable part of modern-day DDoS attacks.

The attacker who wants to bring down a target server often never physically partici-

pates in the attack. The attacker communicates with the botnet through a Command

and Control (C&C) Server. The C&C server periodically communicates with the bots

to keep track of their status and also to transfer instructions and attack scripts. The

C&C servers used to reside on a physical system under the control of the attacker and

could remain alive for years. However, nowadays, C&C servers reside on legitimate

cloud servers and use automatic domain generation algorithms to evade detection. Con-

sequently, they have a very short shelf life. The C&C server communicates with the

bots which have been infected with rootkits or other malware and use them to launch

attacks against a target web server. Often the users of the infected systems have no idea

they are unknowingly participating in a DDoS attack.

Two points are worth mentioning in the context of a botnet-based DDoS attack.

1. The success of an attack is determined by a combination of two factors - the size

of the botnet and the potency of the attack.

2. Since all zombie clients in a botnet follow the same script, which is supplied

by the attacker through the C&C server, the traffic patterns of individual clients

involved in a DDoS attacks tend to be extremely similar as well. This similarity

could potentially be used to identify DDoS attacks.

1.3 TYPES OF DDOS ATTACKS

In the early days of the Internet, DDoS attacks were executed by using a large volume of

network layer packets (UDP or ICMP requests) to choke network layer devices such as

routers. These attacks work by exhausting the network bandwidth and choking network

layer devices such as routers. This leads to service degradation, and in extreme cases,

can lead to service outage. Network layer DDoS attacks pose a significant challenge

even today, but their impact has been significantly reduced due to two major factors.

Firstly, the proliferation of broadband services and fibre optic technology has led to

bandwidth becoming cheaper in general. This allows servers to have larger bandwidths

at cheaper rates. Since network layer DDoS attacks work by exhausting network band-

6

1.4. Features of Application Layer DDoS Attacks

Table 1.2: Comparison of Network Layer and Application Layer DDoS Attacks

Network Layer
DDoS Attack

Application Layer
DDoS Attack

Layer of Attack Layer 3 Layer 7

Attack Payload Network Layer Packets
(UDP, ICMP etc.)

Application Layer Requests
(HTTP, SOAP etc.)

Type of Request Malformed or
Legitimate

Legitimate

Attack Volume Large Low

Attack Target Network bandwidth and
Infrastructure

Server resources such as CPU,
database, memory, socket
connections etc.

width, they need to generate exceedingly large traffic volumes in order to be effective.

Secondly, significant research has been done on detecting network layer DDoS attacks

and this is evidenced by the large number of network layer firewalls with DDoS miti-

gation capabilities available in the market. There has also been a spurt in the number of

cloud platforms which offer DDoS mitigation as a service. A combination of these two

factors means that it is now becoming increasingly difficult for attackers to successfully

launch network layer DDoS attacks.

With the success of network layer DDoS attacks no longer guaranteed, attackers

started turning to alternate avenues. In the past decade, there has been a surge in the

number of DDoS attacks executed at the application layer (Incapsula 2016, 2017;

Kaspersky 2016). These attacks use application layer protocols such as HTTP for

launching attacks, and are consequently called Application Layer DDoS (AL-DDoS)

attacks. Instead of targetting the network bandwidth, AL-DDoS attacks attempt to ex-

haust server resources such as CPU or database cycles, memory or socket connections.

They are executed using legitimate application layer requests, which makes them ex-

tremely difficult to detect. The major differences between network layer and application

layer DDoS attacks are encapsulated in Table 1.2.

1.4 FEATURES OF APPLICATION LAYER DDOS ATTACKS

Application layer DDoS attacks have certain special features that make them unique

and also make their detection comparatively difficult.

7

1. Introduction

• Legitimate Requests: Application layer DDoS attacks are executed using legiti-

mate requests. This means that a detection mechanism cannot determine whether

an incoming request stream is malicious or not by simply inspecting the request.

• Low Attack Volume: Application layer DDoS attacks can be executed with

comparatively low attack volume. This is partly due o the fact that the target

of these attacks are server resources like CPU or database cycles, memory or

socket connections. Since a single HTTP request can make the server perform

more work than network layer packets of the same size, attacks at the application

layer can be executed with lower bandwidth. The average attack volume for net-

work layer DDoS attacks is around 14 GBps while the maximum attack volume

ever recorded for an application layer DDoS attacks is around 8 GBps. Typical

application layer DDoS attacks incur an attack volume of just a few MBps which

is unlikely to trigger any existing DDoS detection mechanisms.

• Targetted Strikes: While network layer DDoS attacks have a single target which

is the network bandwidth, application layer DDoS attacks can target any of the

resources at the server side such as CPU or database cycles, memory or socket

connections. A detection mechanism against one of these attacks is unlikely to

be of any help during the other attacks.

• Resemblance to Flash Crowds: Application layer DDoS attack traffic bears a

close resemblance to legitimate user traffic. In particular, they closely resemble

an Internet phenomenon called a Flash Crowd. A Flash Crowd refers to a sudden

spike in the requests coming to a web server due to a noteworthy event or a large

sale. These requests come from legitimate users and bring useful revenue to the

web application. Since both flash crowds and application layer DDoS attacks

are usually characterized by a sudden increase in the number of requests coming

from different geographic locations, they are often mistaken for one another. This

means that any detection mechanism has to be extremely cautious when blocking

a user because blocking out users during a flash crowd leads to an enormous loss

of revenue.

8

1.5. Types of AL-DDoS Attacks

1.5 TYPES OF AL-DDOS ATTACKS

There are a large number of protocols available at the application layer, using which

attackers can execute DDoS attacks. However, the overwhelming majority of AL-DDoS

attacks are executed using the HTTP protocol due to its ubiquitous nature. Attacks using

the HTTP protocol can be broadly classified into three categories:

• Slow DDoS Attacks: Slow attacks form a class of attacks that exploit a vulnera-

bility in the HTTP protocol that allows requests to be split into multiple pieces. A

server is required to hold a connection open till the entire request is received, or

a timeout occurs. Attackers can force servers to keep connections open by send-

ing a small chunk of data at specially timed intervals to avoid a timeout. When

executed on multiple connections, the server socket pool exhausts, and the server

cannot accept any more connections.

• HTTP Request Flooding: This attack goes back to the concept of flooding. The

attacker sends a large number of requests to the server, thereby tying up its re-

sources. HTTP flooding is one of the most prominent variations of DDoS attacks

executed at the application layer.

• Asymmetric Attacks: Most servers have a number of functions, not all of which

are computationally intensive. Normal users typically switch between computa-

tionally intensive tasks and non-intensive tasks. In order to execute an asymmet-

ric attack, the attacker sends a number of computationally intensive tasks for the

server to perform, thereby exhausting its resources. There is a variation of the

asymmetric attack wherein the attacker connects with the server through multiple

sessions, each running a computationally intensive task. This effectively ties up

the server from accepting new connections, and cannot close the existing connec-

tions with the task running. This attack is called the Repeated One Shot Attack.

1.6 HTTP/2 AND ASSOCIATED CHALLENGES

For decades, HTTP/1.1 has been the standard of web communication. In recent years,

however, a number of websites faced performance issues while using HTTP/1.1 due

9

1. Introduction

to the way in which the protocol was designed. HTTP/1.1 was designed in the initial

days of the Internet, and was tailor-made for static websites. Modern websites, on the

other hand, are dynamic with multiple inline resources embedded within every web-

page. These websites faced various performance issues, most notable of which was

Head-of-Line (HoL) blocking. The HTTP/1.1 protocol specifies that only a single re-

quest from a client will be processed by a server at any point of time. This feature

severely affects the performance of dynamic websites which require multiple inline re-

quests (such as images, styling sheets and script files) to be made before a page can be

rendered. A computationally intensive or long running request could potentially hold up

the entire connection and prevent the page from loading. This is called HoL blocking.

The standardization of HTTP/2 in 2015 marked an important change in the Internet.

HTTP/2 was designed to improve the efficiency of the HTTP protocol by reducing the

page load time for clients. Some of the significant changes made in the new version of

the protocol include the use of a new binary framing system, the introduction of header

compression, multiplexing and server push. The introduction of multiplexing allows

users to bundle multiple HTTP requests into a single TCP connection, thus reducing

network bandwidth considerably. Server Push on the other hand, allows the server

to send inline resources to the client without an explicit request. A combination of

multiplexing and header compression has led to a drastic reduction in request sizes in

HTTP/2, leading to lower bandwidth utilization. These modifications have helped in

reducing page loading latency for most clients, particularly in the case of dynamic web

applications. de Saxc et al. (2015) observed that the use of multiplexing alone improves

the page load time up to 40% in some cases. This improvement in the Quality of Service

for clients has led to the fast adoption of HTTP/2 by web servers and browsers. Most of

the modern browsers provide support for HTTP/2. Currently HTTP/2 is used by 42.9%

of all the websites (Statistics 2020).

10

1.6. HTTP/2 and Associated Challenges

While HTTP/2 has been effective in improving the user experience, it has also faced

criticism on the following counts:

• Bursty Traffic : HTTP/2 request traffic is fundamentally bursty. For the same

request rate, the steady flow of requests in HTTP/1.1 has now been replaced by

short bursts of a large number of requests. This necessitates web servers to be

over-provisioned to handle much more requests concurrently than was previously

required (McCombs 2019) and makes an HTTP/2 server vulnerable to DoS (or

DDoS) attacks (Adi et al. 2015).

• Enhanced Request Generation Capabilities for Clients : Multiplexing and Header

Compression in HTTP/2 have led to a reduction in the size of individual requests,

which allows users to send more requests with the same bandwidth and packet

generation capability. This in turn allows attackers to launch DDoS attacks more

effectively (Beckett and Sezer 2017a).

• Misuse of Newly Introduced Features : HTTP/2 has introduced a number of fea-

tures intended to improve user experience and reduce response times. However,

most of these features can be misused in order to launch attacks against the web

server in the absence of proper validation. For example, HTTP/2 allows users to

specify a priority order for requests in order to improve the Quality of Service

(QoS). This feature was introduced with a genuine intention of improving user

experience, but Imperva identified that this feature can be misused in order to

generate a DoS attack at the server (Imperva 2016).

The introduction and rapid adoption of HTTP/2 thus adds a layer of complexity

to the detection of asymmetric AL-DDoS attacks. On one hand, there is a need for

research to corroborate the observation that HTTP/2 servers are more vulnerable to

AL-DDoS attacks. On the other hand, there is further need for research into the newly

introduced features in HTTP/2, and whether they can be misused to launch lethal AL-

DDoS attacks.

11

1. Introduction

1.7 THE COMPLEXITY OF AL-DDOS DETECTION

1.7.1 DDoS Detection as an Intrusion Detection Problem

AL-DDoS detection is fundamentally an intrusion detection problem and can be car-

ried out using two major approaches - signature based and anomaly based (David and

Thomas 2015). Signature based detection approaches look for signatures or attributes

of known attacks within a request. Signature based approaches are extremely fast, sim-

ple to use and produce few false positives. For network layer DDoS attacks which

operate using malformed network layer packets, signature based DDoS detection can

be used effectively. However, in the case of network layer floods and AL-DDoS at-

tacks, it is not a viable option due to the absence of a well-defined signature in the

attack requests. In such cases, signature based detection approaches are ineffective.

Anomaly detection approaches, on the other hand, build a model of legitimate user

behaviour, and then look for deviations from this model to identify attacks. This ap-

proach proves to be extremely effective and flexible, but does suffer from certain draw-

backs. Anomaly based DDoS detection techniques tend to be slower and more prone to

false positives.

In recent years, a new, hybrid approach that combines the positive features of both

signature based detection and anomaly based detection have come up. These detection

approaches are called dynamic signature based approaches. They work by first em-

ploying an anomaly detection mechanism for identifying attacks, and then building a

signature to represent the attack. Future incidences of this attack can now be effectively

identified using the attack signatures instead of the anomaly detection, which makes the

detection process faster.

1.7.2 Anomaly Detection Approaches for AL-DDoS Detection

Existing approaches for AL-DDoS detection follow an anomaly detection approach

wherein a model of legitimate user behaviour is constructed, and any deviation from this

learned model is deemed to be malicious and treated as an attack. However, legitimate

user behaviour is not accurately defined, which has led to researchers adopting their own

definitions and features to describe it. A large number of research works use features

12

1.8. The Quest for Early AL-DDoS Detection

such as request rate and request inter-arrival time etc. as indicators of user behaviour.

In reality, though, a user does not consciously set his request rate or decide upon his

request inter-arrival time. These features are indirect representations of user behaviour

and hence cannot effectively detect AL-DDoS attacks. This is clearly indicated by the

fact that research works that use indirect representations of user behaviour are capable

of detecting HTTP floods, but are unable to detect asymmetric attacks. Research works

that are capable of detecting asymmetric attacks model the request sequence of users in

some way, notably using a Hidden semi Markov Model (HsMM).

Existing detection approaches for asymmetric attacks use complex modelling tech-

niques and indirect representations of user behaviour which leads to a higher false pos-

itive rate (FPR) and longer detection time. Apart from that, they are unable to incor-

porate gradual changes in user behaviour and require periodic retraining. This adds to

the overhead of the system and leads to additional downtime. A lack of adaptability, on

the other hand, leads to a higher false positive rate due to the model becoming obsolete

over time. There is a need for a lightweight and fast detection approach for asymmetric

AL-DDoS attacks which has the ability to incrementally learn at run time.

1.8 THE QUEST FOR EARLY AL-DDOS DETECTION

Early detection of DDoS attacks has been a key research issue since the beginning.

However, the concept is often vaguely defined without proper explanation. What con-

stitutes as early detection depends heavily on the network architecture and infrastruc-

ture. Often, early detection simply means the ability to detect a DDoS attack before it

causes significant damage to the web server or the network infrastructure.

A large amount of work has been done concerning early detection of network layer

DDoS attacks. Some of these approaches use more sophisticated features which leads

to early detection (Behal et al. 2018), while a few others enable early detection by

setting suitable threshold values for attack detection (Xiang et al. 2011). However,

majority of the early DDoS detection approaches use a collaborative approach (Chen

et al. 2007; Kaushal and Sahni 2016; Yu and Zhou 2008; Yu et al. 2008; Yu Chen and

Kai Hwang 2006). A collaborative approach works by pooling the knowledge acquired

13

1. Introduction

by multiple network layer devices and end-users. By the time a network layer DDoS

attack reaches an end-user, it has assumed massive proportions, and becomes extremely

difficult to mitigate. A better strategy is to identify comparatively smaller surges in

network traffic at intermediate devices, and combine that knowledge to decide whether

a DDoS attack could be impending. A collaborative approach allows for the excess

traffic to be curtailed at the intermediate routers so that the DDoS attack does not reach

its full potential.

However, such an approach is unsuitable for the detection of AL-DDoS attacks due

to three reasons. First, the traffic volume associated with an AL-DDoS attack is compa-

rable to legitimate user traffic, and hence cannot be used as a measure of attack. Second,

intermediate devices like routers cannot inspect application layer requests, and hence

AL-DDoS detection cannot be performed at routers. Third, AL-DDoS attacks are tailor-

made for a web application. This means that a collaborative approach is unlikely to be

of much help in mitigating an AL-DDoS attack. In the absence of a collaborative ap-

proach, certain global features could be used to enable the early detection of AL-DDoS

attacks at web servers. As discussed previously in Section 1.2, DDoS attacks executed

by botnets have a considerable amount of similarity between individual attacking con-

nections. This holds true even in the case of AL-DDoS attacks. If this similarity can be

identified and forged into an attack signature, a dynamic signature based approach could

be used to block attacking connections at a much earlier stage than usual. However, the

signature used to represent an attack must be carefully formed to avoid unnecessary

false positives, which would affect the system performance in a negative way.

1.9 MOTIVATION

DDoS attacks are one of the most dangerous attacks against web applications today.

The effortless availability of DDoS attack generation tools, the ability to hire botnets

at cheap rates (Kandula et al. 2005) and the rise of DDoS-for-hire services (Karami

et al. 2016; Santanna et al. 2016) has led to a steep increase in the number of DDoS

attacks in recent years. In addition, DDoS attacks have become more sophisticated in

recent years. The use of computationally expensive application layer requests to launch

14

1.9. Motivation

asymmetric AL-DDoS attacks has made most of the existing detection mechanisms

obsolete. There is an urgent need for efficient detection mechanisms for asymmetric

AL-DDoS attacks.

A fair amount of research has been done on asymmetric AL-DDoS detection in the

past decade. Anomaly detection techniques are commonly used for this purpose, by

modelling legitimate user behaviour. However, most of the existing detection mecha-

nisms use indirect representations of user behaviour and complex modelling techniques

which leads to a higher false positive rate and longer detection time. An abnormally

long detection time is unacceptable for asymmetric AL-DDoS attacks, which are ca-

pable of causing damage to web servers with relatively few requests. In addition, the

use of complex modelling techniques make the model difficult to update, which further

increases the false positive rate.

The introduction of HTTP/2 has added another layer of complexity of asymmetric

AL-DDoS detection. HTTP/2 has been successful in reducing the page load time for

clients through the introduction of features like binary framing, header compression,

multiplexing and server push. However, there are concerns that the additional server

load that arises due to these features could make an HTTP/2 server more vulnerable to

DDoS attacks, especially asymmetric attacks. However, no study has been conducted so

far to investigate the behaviour of an HTTP/2 server under an asymmetric attack. Apart

from that, there have been no studies about whether the newly introduced features in

HTTP/2 can be misused to launch potentially lethal AL-DDoS attacks.

It is of utmost importance that AL-DDoS attacks be detected early as possible due

to their ability to compromise the availability of a server with comparatively fewer re-

quests. While there are a large number of research works that deal with early DDoS

detection at the network layer, similar research at the application layer is comparatively

rare. This is due to the fact that a collaborative detection approach is unlikely to be

successful due to the obscure and highly targetted nature of AL-DDoS attacks. How-

ever, DDoS attacks display a considerable amount of similarity with each other due

to the use of common attack generation tools and botnets. This similarity can be ex-

ploited to enable the early detection of AL-DDoS attacks using a dynamic signature

15

1. Introduction

based approach.

This work is primarily concerned with the efficient and fast detection of asymmet-

ric AL-DDoS attacks. Our motivation for carrying out this study is threefold. First,

given the potency of asymmetric AL-DDoS attacks, there is an urgent need for a fast,

lightweight and adaptable detection mechanism which has a low false positive rate.

Second, there is a need to extend the envelope of asymmetric attacks to cover attacks

executed using the HTTP/2 protocol as well, related to which no study has been con-

ducted till now. There is also a need to extend the detection mechanisms for asymmetric

attacks to be able to handle the unique challenges presented by the HTTP/2 protocol.

Thirdly, there is a need for mechanisms that enable the early detection of AL-DDoS

attacks in general and asymmetric attacks in particular.

1.10 ORGANIZATION OF THE THESIS

The rest of the thesis is organized as follows. Chapter 2 provides a taxonomy of AL-

DDoS attacks executed using the HTTP protocol along with a detailed survey of ex-

isting research work that deals with the detection of HTTP based AL-DDoS attacks.

An introduction into the HTTP/2 protocol along with the associated security challenges

are also provided. In addition, the chapter provides a list of research challenges that

exist in the domain. Chapter 3 describes the research problem that is the focus of this

thesis. Chapter 4 describes how asymmetric AL-DDoS attacks are executed using the

HTTP/1.1 protocol, and describes our proposed approach for detecting these attacks

efficiently. The chapter also gives the experimental analysis of our approach in terms

of efficiency and running time. Chapter 5 discusses how asymmetric attacks affect the

servers running the HTTP/2 protocol. The chapter also discusses how the new fea-

tures in HTTP/2 exacerbate the problem of asymmetric attacks, and how our proposed

approach can be extended to detect these attacks. An experimental evaluation of our

approach is also presented. Chapter 6 discusses how the similarity between AL-DDoS

traffic can be used to enable the early detection of attacks. The chapter describes our

proposed approach for designing an Early Detection Module (EDM) for AL-DDoS at-

tacks. Experimental results regarding the detection time with and without the EDM is

16

1.10. Organization of the Thesis

also presented. Finally, chapter 7 presents a summary of the research work presented in

this thesis and suggests some future research directions.

17

CHAPTER 2

LITERATURE REVIEW

Majority of the literature related to DDoS attacks is concerned with attacks at the net-

work layer. This is due to the fact that network layer DDoS still continue to be a popular

avenue of attack, despite the numerous defenses available. However, given adequate

resources, majority of the network layer DDoS attacks are relatively easy to defend

against. Application Layer DDoS attacks, on the other hand, pose a more significant

challenge. These attacks started gaining public attention only in the past decade. In

fact, the first mention of application layer DDoS attacks only appeared in literature in

2009 (Ranjan et al. 2009). Since then, there have been a large number of research

works which attempt to understand and propose defense mechanisms against these at-

tacks. The sophisticated nature of these attacks, coupled with the variety of attacks that

can be executed at the application layer, often makes detection difficult.

The application layer has comparatively more protocols that the network or transport

layers, which increases the attack surface considerably. Out of the fifty odd protocols

at the application layer, four of the most popular protocols are HTTP, SOAP, DNS and

SIP. Of these, HTTP is the most ubiquitous, and facilitates communication between end

users and web servers. Needless to say, the entire notion of the Internet is unfathomable

without the HTTP protocol. The SOAP protocol performs a similar task, except that it

facilitates communication between web servers. DNS is an equally important protocol,

which helps in the resolution of domain names to IP addresses. SIP is a relative new-

comer in the list of application layer protocols and facilitates the exchange of voice,

19

2. Literature Review

video and messaging applications over the Internet. Even though DDoS attacks have

been reported using all of these protocols, a closer inspection reveals that majority of

the AL-DDoS attacks are carried out using the HTTP protocol (Kaspersky 2016). For

this reason, our primary focus in this work relates to DDoS attacks using the HTTP

protocol.

HTTP/1.1 has been the undisputed standard of web communication since its incep-

tion in 1997. Consequently, most of the research work related to the HTTP protocol

consider the HTTP/1.1 version of the protocol. In 2015, a more efficient and fast ver-

sion of the HTTP protocol, named HTTP/2 was standardized, and has slowly started

replacing its predecessor. Currently, around 42.9% of web servers support HTTP/2.

Research into DDoS attacks using the HTTP/2 protocol is still in its infancy. However,

it must be noted that most of the DDoS attacks that can be executed using the HTTP/1.1

protocol can also be executed using the HTTP/2 protocol. In addition, some of the

newer features in HTTP/2 can be used to launch DDoS attacks specific to the HTTP/2

protocol as well.

The rest of this chapter is organized as follows. Section 2.1 presents a taxonomy

of AL-DDoS attacks using the HTTP protocol. Section 2.2 presents a detailed survey

of the different approaches that are commonly used for detecting AL-DDoS attacks.

Section 2.3 presents an introduction to the HTTP/2 protocol and discusses the security

challenges that arise due to its introduction. Section 2.4 presents a list of research

challenges that has to be addressed in order to develop effective detection mechanisms

for AL-DDoS detection.

2.1 TAXONOMY OF APPLICATION LAYER DDOS ATTACKS USING THE
HTTP/1.1 PROTOCOL

Attacks at the application layer are many, varied and ever-changing. The existence of a

multitude of application layer protocols, combined with the myriad number of ways in

which these protocols can be used lead to a large variety of DDoS attacks at the applica-

tion layer. In this section, we present a taxonomy of AL-DDoS attacks executed using

the HTTP protocol. For building this taxonomy, the nature of exploitation was chosen

20

2.1. Taxonomy of Application Layer DDoS Attacks using the HTTP/1.1 Protocol

as the major criterion for dividing AL-DDoS attacks into different classes. Based on the

nature of exploitation, attacks at the application layer can be grouped into three classes -

attacks which exploit application vulnerabilities, attacks which exploit protocol features

and attacks which exploit system features.

2.1.1 AL-DDoS Attacks by Exploiting Application Vulnerabilities

Acunetix (2019) reports that around 87% of web applications have medium level secu-

rity vulnerabilities and over 40% suffer from severe security vulnerabilities. These vul-

nerabilities can arise due to a number of reasons, such as the use of vulnerable software

components, the use/reuse of vulnerable algorithms without patching or due to pro-

grammer negligence. Web applications are rarely designed and built from scratch. Web

developers always use existing software components or algorithms without any modi-

fications. The use of components or algorithms with security vulnerabilities makes the

entire web application insecure. As an example, earlier versions of the Apache server

suffered from a vulnerability due to which an HTTP message with a large overlapping

range header caused a memory exhaustion and crashed the server Apache (2011). This

attack is no longer feasible, because newer versions of the server have patched this vul-

nerability. HashDoS (CCC 2011) was an attack that exploited the use of vulnerable

hashing algorithms in web application servers that use hashing to organize POST input

parameters. In both the best and average cases, a good hashing algorithm works inO(1)

complexity, but deteriorates to O(n) when collisions occur. Attackers can successfully

cause collisions in a large number of scripting languages by supplying crafted inputs

with a large number of POST parameters. This can cause the CPU to spend a large

amount of time working to resolve collisions and cause a denial of service situation

(Crosby and Wallach 2003).

Even when all the code for a module are written by web application developers from

scratch, there are chances of vulnerabilities creeping in due to programmer negligence.

This usually manifests in the form of missing or imperfect security checks, and can lead

to a variety of attacks, including injection attacks (Boyd and Keromytis 2004; Deepa

et al. 2017) and access control violations (Deepa et al. 2018).

21

2. Literature Review

Fi
gu

re
2.

1:
Ta

xo
no

m
y

of
A

L
-D

D
oS

A
tta

ck
s

us
in

g
th

e
H

T
T

P/
1.

1
Pr

ot
oc

ol

22

2.1. Taxonomy of Application Layer DDoS Attacks using the HTTP/1.1 Protocol

2.1.2 Exploiting Protocol Features

Protocols are designed to facilitate efficient communication between different parties

regardless of differences in bandwidth or computing power. Attackers often misuse

protocol features in order to launch attacks against web applications. HTTP was de-

signed to facilitate communication between a human user (using a web browser) and

a web server. It is a connection oriented protocol based on TCP, which means a TCP

connection should be established before communication can proceed. This connection

is maintained till the end of communication. Different features of HTTP have often

been abused by attackers to launch attacks.

Message Fragmentation: HTTP allows its users to fragment an HTTP message across

multiple packets in an attempt to be accessible even for users who possess limited band-

width. An attacker who fragments his HTTP messages into extremely small packets can

keep the connection open for an arbitrarily long time. Since web applications have a pre-

defined limit on socket connections they can maintain simultaneously, an attacker who

manages to keep multiple connections open for an infinitely long time can effectively

force the server to decline legitimate connections. These class of attacks are called Slow

DDoS attacks, and can be executed using both HTTP requests and responses.

The attacks that make use of an HTTP request are called Slow Write attacks. They

are usually carried out by fragmenting an HTTP requests into small fragments and

sending them slowly to the web server. One of the most famous Slow DDoS tools is

called Slowloris, and was used in several politically motivated DDoS attacks after the

2009 elections in Iran.

In order to maintain the connection indefinitely, an attacker has to create the illusion

that the HTTP request hasn’t been completed. In reality, this is relatively simple to

replicate. HTTP uses a carriage return line feed (CRLF) to denote next line and it uses

two CRLF characters to denote a blank line. A blank line is used to denote the end of

headers, and consequently, the end of an HTTP GET request as shown below:

23

2. Literature Review

GET / i n d e x . php HTTP / 1 . 1 [CRLF]

Pragma : no−cache [CRLF]

Cache−C o n t r o l : no−cache [CRLF]

Host : t e s t p h p . vulnweb . com [CRLF]

C o n n e c t i o n : Keep−a l i v e [CRLF]

Accept−Encoding : gz ip , d e f l a t e [CRLF]

User−Agent : M o z i l l a / 5 . 0

(Windows NT 6 . 1 ; WOW64)

AppleWebKit / 5 3 7 . 36 (KHTML, l i k e Gecko)

Chrome / 2 8 . 0 . 1 5 0 0 . 6 3 S a f a r i / 5 3 7 . 3 6 [CRLF]

Accept : * / * [CRLF] [CRLF]

An attacker could simply omit sending this blank line and continue sending frag-

ments of headers in order to keep the connection open. The attacker needs to send

fragments of the request periodically in order to avoid a connection timeout. This value

is usually server dependent, and could be of the order of a few minutes. Once the at-

tacker deduces the timeout value and sends request fragments at regular intervals to

avoid the timeout, the connection can, theoretically, be maintained indefinitely. If exe-

cuted over multiple connections the server runs out of socket connections for legitimate

users.

A GET request is not a particularly enticing option for executing a slow write attack

due to its size limitation. The absence of a request body creates an upper bound on

the size of a GET request, and hence, puts an upper limit on the amount of time the

connection can be maintained by an attacker. A POST request, on the other hand, has

technically no size limitations. The HTTP header specifies a field called Content −

Lengthwhich tells the server how long the message is going to be. The attacker sets the

POST request to have an arbitrarily large value of Content−Length and then proceeds

to send data in small fragments. The server is forced to maintain the connection until

either the connection times out or the entire message is received. After a while the

server is unable to accept any new incoming connections.

24

2.1. Taxonomy of Application Layer DDoS Attacks using the HTTP/1.1 Protocol

Slow DDoS attacks can also be launched on the HTTP response and are called Slow

Read Attacks. The attacker sends a GET or POST request to the server and waits for

a response by advertising a small network window. The web server assumes the user

is on a low bandwidth connection and proceeds to send the HTTP response in small

fragments. This ties up the connection until the entire data is received. If the attacker

can establish multiple connections of this nature, it exhausts the socket connections on

the server. Such an attack is much more effective because an HTTP response is often

many orders of magnitude larger than a request, and can hence maintain a connection

for a much longer duration.

Connection Refresh: The effect of maintaining a connection for an undefined amount

of time can be achieved by using an HTTP header field called PRAGMA (Dantas et al.

2014). The HTTP PRAGMA header field tells the HTTP server and any intermediate

caches that the user wants a fresh copy of the requested resource. This ensures that the

request is not satisfied by any of the caches but by the web server itself, ensuring that

the server has to expend processing power. Additionally, whenever an HTTP PRAGMA

is issued the timeout for the connection is reset. Use of the PRAGMA field can keep

connections open for an indeterminate amount of time, ensuring that socket resources

get tied up. It is worth mentioning that the PRAGMA field has no visible purpose in

HTTP/1.1, but is still allowed to maintain compatibility.

Multiple Verbs: HTTP request methods initiate action at the server side, and for this

reason they are sometimes called HTTP verbs. Traditionally, a single request consists

of a single action or verb. In such a scenario, it is rudimentary that the more workload

the attackers want to dump on the server, the more number of requests they have to

send. But HTTP has a somewhat lesser known feature which allows the users to pack

multiple verbs into a single HTTP request. This means that attackers can compress

multiple verbs into a single request and send to the server. The server is forced to

perform all the tasks that are requested, which is much more than a normal request.

The advantage this presents to the attackers is that the attack volume can be cut down

to a large extent, thus helping them evade detection (DDoS-Guard 2014; Zargar et al.

2013).

25

2. Literature Review

2.1.3 Exploiting System Features

The startling aspect of DDoS attacks is that they can be executed against any web server,

and do not need to exploit any vulnerability in the server. While the presence of vul-

nerabilities certainly makes it easier to launch DDoS attacks (as explained in Section

2.1.1), it is not a necessary condition. DDoS attacks can work by simply sending a large

enough number of requests to exhaust the resources at the server, after which the server

becomes unable to handle legitimate requests. These resources could be CPU, database,

memory or socket connections. Attacks exploiting system features are extremely com-

mon, and form the bulk of documented DDoS attacks. Based on the attack payload

used to launch the attacks, they can be classified into symmetric and asymmetric DDoS

attacks.

Symmetric DDoS Attacks: A DDoS attack is said to be symmetric if the attacker

expends as much effort in generating the attack requests as the server expends in han-

dling them. Like network layer DDoS attacks, symmetric DDoS attacks also work by

sending a large number of attack requests to the target web server, so that it is unable to

process legitimate client requests. Attacks at the application layer do not need to throt-

tle the server bandwidth to cause a denial of service situation. A single HTTP request

makes the server perform more work than a packet at the network layer. So the server

resources become the new bottleneck in this situation and get exhausted much before

the bandwidth of the server gets throttled.

HTTP flooding (Cloudflare 2014) is the most common application layer DDoS

attack which utilizes the HTTP protocol. This is largely due to the ease with which

this attack can be executed. The simplest way of executing this attack is to repeatedly

send requests to any one URL on the target web application. More often than not, it is

the home page or login page that is attacked. However, a repeated stream of requests

to the same URL can be easily identified and blacklisted by the server administrator.

So the next line of attack is to continuously send requests to random URLs in the web

application. This works in the same way as the earlier attack, but cannot be detected that

easily. Tools like Low Orbit Ion Cannon(LOIC) or other stress testing tools can easily

26

2.1. Taxonomy of Application Layer DDoS Attacks using the HTTP/1.1 Protocol

be used to launch an HTTP flood. The fact that these tools can be easily downloaded

off the internet makes it much more dangerous.

Asymmetric DDoS Attacks: All the symmetric attacks against the victims also con-

sume a significant amount of resources for the attacker. The objective of the attacker is

always to maximize the damage to the victim while minimizing the resources that have

to be employed for the attack. Asymmetric attacks use specially crafted requests which

consume more resources at the server side in order to launch attacks. This will bring

down the server faster, using fewer requests and at the same time reduces traffic volume

which in turn evades detection.

As an example, consider a web server that connects to a database server. The web

server gives the users the option to search for jobs based on some search queries. To

make the search better, the server employs pattern matching so that the database returns

all jobs which have the words the user wants in any scenario. The internal query would

look similar to the following:

SELECT TOP 10 JobPK , J o b D e s c r i p t i o n

FROM JOBS as j

WHERE J o b D e s c r i p t i o n LIKE ’%ASP%’

ORDER BY JobPK

This query will typically return the result in under a second. Note that the search term

the user enters is ”ASP”. However, if the user enters a more complex search term, the

query gets complicated. Consider a slight variation of this query as given below

SELECT TOP 10 JobPK , J o b D e s c r i p t i o n

FROM JOBS as j

WHERE J o b D e s c r i p t i o n LIKE

’% [ˆ | ? $ %”*[(Z*m1 =]−%RT$) | [{ 3 4 } \ ?] | |%TY−3(* . >? !] %’

ORDER BY JobPK

This query performs a complex comparison using regular expressions on the tuples and

27

2. Literature Review

is likely to tie up the database for some time, possibly minutes.

We refer to the class of requests that do not put excessive load on the server as low

workload requests, and the requests which do have to perform significant computation

as high workload requests (In reality though, there is no such distinction, and classifying

requests based on the workload is purely situational). Assuming that a high workload

request performs twice the computation that a low workload request does, it would take

just half the amount of requests to exhaust a server. The attackers greatly benefit from

sending high workload requests to the web server because it can bring the server down

with fewer resources. This attack is termed as an asymmetric workload attack.

2.2 DEFENDING AGAINST DDOS ATTACKS USING THE HTTP/1.1 PRO-
TOCOL

The increased sophistication that goes into executing an application layer DDoS attack

makes it comparatively difficult to defend against these attacks. In general, there are

two approaches to defend against these attacks - blocking automated requests using user

puzzles, or to employ a detection mechanism to identify and block malicious users.

2.2.1 Blocking DDoS Attacks using User Puzzles

The primary cause of a denial of service attack is the ability of attackers to generate

automated requests through the use of botnets or other tools. The most basic line of

defense against any DDoS attack is to restrict automated requests from entering the

system. This is usually achieved through the use of user puzzles. A user puzzle is

any challenge that can be completed quite easily by a human user, but is considerably

difficult to complete for an automated system. Simple examples of user puzzles are

CAPTCHAs (Completely Automated Public Turing test to tell Computers and Humans

Apart) and AYAHs (Are You A Human). Although these puzzles can be broken by

bots through the use of suitable image processing algorithms (Mori and Malik 2003;

Sivakorn et al. 2016; Yan and El Ahmad 2007) , this simple line of defense against

DDoS attacks still works very well. This is because a majority of the DDoS attacks are

simple attacks executed using available tools and do not possess the computing power

required to crack these challenges.

28

2.2. Defending against DDoS Attacks using the HTTP/1.1 protocol

Associated with this defensive tactic is the question of which users should be served

with the challenge-response mechanism. The easiest solution is to deploy the challenge-

response mechanism for all the users who want to access your system. This is, however,

a relatively inefficient solution. User puzzles significantly reduce the user experience

when visiting a website. Users do not want to be burdened by having to solve a puzzle

every time they visit a website. The next step would be to deliver the puzzles to only

a fraction of the users. SENTRY (Zhang et al. 2016) uses a moderator module which

supplies a challenge to a fraction of the requests it encounters. There are provisions

within the defense mechanism to sample requests based on the associated workload.

Additionally, the complexity of the challenge is also proportional to the workload of

the request. However, the users who will be supplied with the puzzle are completely

random. Another line of thought is that it is better to serve a challenge only to users

who appear to be suspicious. This raises the additional question of how to determine

suspicious users. Sivabalan and Radcliffe (2013) proposed a way of detecting suspi-

cious users based on the pages viewed and their viewing times. As long as the server

load remained within limits, no user is served with a puzzle in their solution. When

the server load crosses a threshold, they served suspicious users with AYAHs. This

presents a calibration mechanism for their signature generation because if a user with

a suspicious signature successfully solves the AYAH, the user is vindicated along with

the other users who have a similar signature. On the other hand, repeated failures to

solve the AYAH results in blocking of the users.

While puzzle based mechanisms like CAPTCHAs and AYAHs do work in prevent-

ing denial of service attacks, they also reduce the user experience. Hence, most of the

research focus is on other approaches to solve the problem.

2.2.2 Detecting Application Layer DDoS Attacks using the HTTP Protocol

Detecting application layer DDoS attacks presents a significant challenge because of

their low traffic volume and the use of legitimate requests. Rather, the complex inter-

relationships among a number of requests need to be modeled and studied to success-

fully identify an attack at the application layer. In general, attack detection can proceed

29

2. Literature Review

in three different ways:

1. Request Tracking : Request tracking refers to schemes which monitor how many

requests (or responses) have been received (or sent out) and possibly identifying

correlations between them. Such mechanisms have been employed considerably

in the detection of slow DDoS attacks, and attacks that rely on an underlying UDP

connection.

2. Analyzing Request Stream Dynamics : Request dynamics provide a statistical

analysis of a data stream, rather than finding meaning in the stream of requests.

This encompasses the use of features like number and type of requests, request

rate, source IP distribution etc. These mechanisms find extensive use in detecting

HTTP flooding attacks.

3. Analyzing Request Stream Semantics : These detection mechanisms try to recog-

nize and model features which represent how a user accesses the web application.

A normal user does not consciously know about or manipulate his request rate or

his session rate. These users are only concerned about the different resources

or web pages that they need to access and the order in which they need to ac-

cess them. This approach, therefore, analyzes the different pages the users have

requested and the sequence in which users request web pages. In other words,

these detection mechanisms attempt to find an underlying meaning behind the in-

coming request stream. Detection mechanisms that focus on semantics are used

extensively in detecting HTTP flooding attacks, as well as HTTP asymmetric at-

tacks.

2.2.3 Defending against HTTP Protocol Vulnerabilities

Slow DDoS attacks are the major class of attacks that exploit the HTTP protocol. Cam-

biaso et al. (2012) created a detailed taxonomy of slow DDoS attacks. Their classi-

fication however, clubs asymmetric attacks and attacks like HashDoS attacks into the

category of slow DDoS. The rationale behind that classification was that the request

rate in these attacks are much less than that in normal flooding.

30

2.2. Defending against DDoS Attacks using the HTTP/1.1 protocol

Detection of Slow DDoS Attacks

Through Request Tracking

Dantas et al. (2014)
Tripathi et al. (2016)

By Observing Request Stream Dynamics

Oshima et al. (2010)
Giralte et al. (2013)
Shtern et al. (2014)

Mongelli et al. (2015)
Katkar et al. (2015)

Idhammad et al. (2018)
Dhanapal and Nithyanandam (2019)

Figure 2.2: Detection Mechanisms for Slow DDoS Attacks

2.2.3.1 Preventing Slow DDoS Attacks

There are comparatively fewer research works done on detecting and defending against

slow DDoS attacks. However, these attacks can be mitigated by following some pre-

ventive mechanisms such as lowering the timeout value of the server, installing suit-

able Apache security modules, setting up proper IPTables or IDS rules (Moustis and

Kotzanikolaou 2013). Park et al. (2014) conducted simulations that validate the ef-

fectiveness of slow DDoS attacks. They observed that the timeout feature in the web

application is effective in reducing the magnitude of the attack but cannot stop the attack

from happening.

2.2.3.2 Detecting Slow DDoS Attacks

Slow DDoS attacks are usually detected by employing a request tracking mechanism to

keep track of the incomplete requests in the system at any point in time. Some works

have also used an analysis of request rate (request dynamics) to identify malicious at-

tackers.

Detection Mechanisms which employ Request Tracking Tripathi et al. (2016) pro-

posed that each connection be associated with a vector denoting the percentage of com-

plete or incomplete GET and POST requests. At any instant of time, if the percentages

go beyond a learned threshold, the connection is detected as suspicious. They proposed

31

2. Literature Review

the use of Hellinger distance to perform the distance calculation. Dantas et al. (2014)

proposed maintaining a record of the number of bytes received for each request in each

connection on the server. In this case, if the server runs out of connections, it can ran-

domly choose to either drop the incoming connection or to drop an existing connection

taking into consideration the number of received and sent bytes. Their approach defends

against slow GET, POST and PRAGMA attacks.

Detection Mechanisms which Analyze the Request Rate Shtern et al. (2014) pro-

posed a defense mechanism against slow DDoS attacks based on Software Defined

Infrastructure (SDI). SDI is a setup where the network infrastructure is virtualized and

the connections and routing tables can be modified on the fly using software controls.

This provides a great deal of flexibility. Their approach was to direct suspicious connec-

tions to a ”shark tank” where they would be analyzed further. However, their approach

works only if the infrastructure is software defined and cannot be used in other cases.

The work of Giralte et al. (2013) is one of the few works that seem to be able to detect

both HTTP attacks (symmetric and asymmetric) along with Slowloris attacks. Mon-

gelli et al. (2015) performed Fourier transform analysis on the incoming packet stream

to identify slow DDoS attacks. Katkar et al. (2015) was able to identify slow read and

post attacks using a Naive Bayes classifier. Oshima et al. (2010) and Idhammad et al.

(2018) proposed a method of using request entropy to identify slow DDoS attacks.

Dhanapal and Nithyanandam (2019) proposed a method for detecting slow DDoS at-

tacks in a cloud environment by monitoring different features of the requests including

the request rate and window size of incoming client requests.

Multiple verb HTTP attacks are not featured prominently in literature because the

attack is not well documented. However, it seems plausible that deep packet inspection

can evade these attacks.

Slow DDoS attacks are stealthy DDoS attacks that can take down a server with

minimal resources. However, defending against these attacks poses a familiar double

edged sword. Reducing timeout values and limiting the number of connections con-

tinue being the basic line of defense against slow DDoS attacks, but these measures can

32

2.2. Defending against DDoS Attacks using the HTTP/1.1 protocol

lead to legitimate users with low bandwidths being forced to relinquishing their con-

nections prematurely. Learning general user behavior continues to be the best defensive

option but even with this option, false positives continue to come up. A summary of the

detection mechanisms employed against slow DDoS attacks is featured in Figure 2.2.

2.2.4 Defending against HTTP Flooding Attacks

HTTP flooding attacks are one of the most common AL-DDoS attacks and are usually

executed by sending a large number of HTTP requests to a web server. Even though

the requests used to launch the attack are legitimate, there is considerable difference

between the way in which requests flow within a legitimate connection, and an attack

stream. This forms the cornerstone of detecting HTTP flooding attacks.

2.2.4.1 Detection Mechanisms based on Request Dynamics

Since a spike in request rate is one of the biggest tell-tale signs of a DDoS attack,

one line of research focuses on predicting the expected request rate at each instant

and scrutinizing the incoming request stream using this knowledge. However, request

rate alone is often not a good indicator of an attack, because sophisticated attacks can

maintain the illusion of a normal request rate while launching attacks. In such cases,

statistics like request entropy can be used.

Traffic Estimation: Wen et al. (2010) uses traffic estimation as the basis for detecting

attacks. Their system estimates the expected traffic from historical data using a Kalman

filter. If a significant deviation is witnessed from the expected traffic value, this indi-

cates either an attack or a flash crowd. The source IP distribution provides additional

evidence to determine if the flood is actually an attack or not. Ni et al. (2013) used

an Adaptive Auto Regressive (AAR) Model to model network traffic. The estimated

value is smoothed with a Kalman filter. They introduced a feature called HRPI (HTTP

Requests Per IP) as the classification variable. The classification is performed using a

Support Vector Machine (SVM).

Request Statistics: There are a large number of statistical features that have been

used in detecting HTTP floods apart from just the request rate. Some of these features

33

2. Literature Review

include the request timestamp, IP address, header fields, user agents, number of 200 OK

responses, number of error responses and so on. Most research works use a combination

of these features for detecting attacks. Yadav and Selvakumar (2015) used Principal

Component Analysis (PCA) and logistic regression on statistical features to identify

attacks. In another work, (Yadav and Subramanian 2016), the same authors applied

deep learning on these same statistical features. The authors employed a stacked auto-

encoder to extract latent features from the basic statistical features and used logistic

regression on these features. As similar work using logistic regression was undertaken

by Aljuhani et al. (2019) for detecting HTTP flooding attacks by monitoring request

arrival times. Johnson et al. (Johnson Singh et al. 2016; Singh and De 2017) used

a multilayer perceptron (MLP) with the weights trained by a genetic algorithm. In

the work of Johnson Singh et al. (2016) the training features were HTTP GET count,

entropy and variance, while in Singh and De (2017) the features used were number of

HTTP count, number of the IP addresses, constant mapping function and fixed frame

length. Chwalinski et. al. (Chwalinski et al. 2013a,b) used the number of requests

per resource for each user as the deciding feature and performed K-means clustering to

group users into different clusters. They applied likelihood analysis and Bayes factors

to determine if an incoming connection can be attributed to an existing cluster or not.

A connection that cannot be attributed to any cluster is deemed as malicious. Oo et al.

(2016) extracted features like number of packets, number of bytes, average packet size,

packet rate, byte rate, time-interval variance and packet-size variance from connections.

If all of these features fall within limits then the connection is most likely benign and

is accepted. If all of these values fall outside acceptable limits, the connection is most

probably malicious and is blocked. In other cases, where some of these features fall

within the specified range and others do not, they employed an HsMM (Hidden semi

Markov Model) to efficiently model and classify the connection. Lee et al. (2011)

used Principal Component Analysis (PCA) to reduce the feature dimension and then

performed clustering.

Entropy is a much used measure to determine whether a stream of requests is mali-

cious or not. A normal user sends requests which are varying in size, speed and intent.

34

2.2. Defending against DDoS Attacks using the HTTP/1.1 protocol

A stream of attack requests on the other hand will be more uniform and have similar

requests repeated at regular intervals. As a result, an attack stream will have lower en-

tropy than normal user requests. Devi and Yogesh (2012a) used this information along

with trust values of users to detect attacks. Zhou et al. (2014) also used model entropy

but their work was meant for identifying attack streams in backbone web traffic. Zhao

et al. (2018) used two measures - Entropy of URL per IP (EUPI) and Entropy of IP

per URL (EIPU) for identifying flooding attacks. During a random flooding attack or

a fixed URL flooding attack, EUPI would increase, thus indicating an attack. EIPU

helped in distinguishing attacks and flash crowds.

2.2.4.2 Detection Mechanisms based on Request Semantics

Request semantics can be further refined to consist of two classes. Mechanisms that

rely on the composition of requests in a request stream, without any consideration to

the sequence are much easier to use because of the reduction in data that needs to be

analyzed. Mechanisms that rely on request sequence on the other hand tend to be more

complex but on the whole tend to be more accurate because they can model normal

human behaviour much more accurately.

Request Composition: Devi and Yogesh (2012b) constructed an access matrix using

features like HTTP request rate, HTTP session rate, server documents that are accessed

and duration of user’s access. Singular Value Decomposition (SVD) is applied fol-

lowed by Independent Component Analysis (ICA) for dimensionality reduction. The

incoming connection is assigned a suspicion score based on how much deviation it

exhibits from the output of the ICA module. Instead of blocking the connection if it

does not match the learned model, this approach schedules the request accordingly. A

request which matches with the learned model will have a low suspicion score and con-

sequently will be scheduled for execution faster. A request with a high suspicion score

will be scheduled much later. Beitollahi and Deconinck (2014) follows a similar ap-

proach. The system constructs the CDF (Cumulative Distribution Function) for each

of the observed features in the normal user sessions. For an incoming connection, it

assigns a suspicion score for each feature based on how likely it is to have the observed

35

2. Literature Review

D
et

ec
tio

n
of

H
T

T
P

Fl
oo

ds

B
y

O
bs

er
vi

ng
R

eq
ue

st
D

yn
am

ic
s

O
bs

er
vi

ng
R

eq
ue

st
Tr

af
fic

W
en

et
al

.(
20

10
)

N
ie

ta
l.

(2
01

3)

O
bs

er
vi

ng
R

eq
ue

st
St

at
is

tic
s

L
ee

et
al

.(
20

11
)

D
ev

ia
nd

Y
og

es
h

(2
01

2a
)

C
hw

al
in

sk
ie

ta
l.

(2
01

3b
)

C
hw

al
in

sk
ie

ta
l.

(2
01

3a
)

Z
ho

u
et

al
.(

20
14

)
Y

ad
av

an
d

Se
lv

ak
um

ar
(2

01
5)

Y
ad

av
an

d
Su

br
am

an
ia

n
(2

01
6)

Jo
hn

so
n

Si
ng

h
et

al
.(

20
16

)
O

o
et

al
.(

20
16

)
Si

ng
h

an
d

D
e

(2
01

7)
Z

ha
o

et
al

.(
20

18
)

W
an

g
et

al
.(

20
18

)
B

ra
vo

an
d

M
au

ri
ci

o
(2

01
8)

Si
ng

h
et

al
.(

20
18

)
A

lju
ha

ni
et

al
.(

20
19

)
L

ie
ta

l.
(2

01
9)

B
y

O
bs

er
vi

ng
R

eq
ue

st
Se

m
an

tic
s

O
bs

er
vi

ng
R

eq
ue

st
C

om
po

si
tio

n

D
ev

ia
nd

Y
og

es
h

(2
01

2b
)

B
ei

to
lla

hi
an

d
D

ec
on

in
ck

(2
01

4)
B

ec
ke

tt
et

al
.(

20
17

b)

O
bs

er
vi

ng
R

eq
ue

st
Se

qu
en

ce

O
ik

on
om

ou
an

d
M

ir
ko

vi
c

(2
00

9)
Y

e
et

al
.(

20
12

)
N

di
bw

ile
et

al
.(

20
15

)

Fi
gu

re
2.

3:
D

et
ec

tio
n

M
ec

ha
ni

sm
s

fo
rH

T
T

P
Fl

oo
di

ng
A

tta
ck

s

36

2.2. Defending against DDoS Attacks using the HTTP/1.1 protocol

value according to the CDF. The final suspicion score is the sum of the individual sus-

picion scores for all the features. Beckett et al. (2017a) presented a novel approach to

detect DDoS attacks targetting database systems by observing features like the number

of databases opened or closed, total and average query time etc. They used a decision

tree classifier to identify malicious users based on these features.

Request Sequence: Ye et al. (2012) uses average transition probability and page pop-

ularity as features for clustering. They used Euclidean distance and Ward’s linkage to

match an incoming connection into a cluster. Ndibwile et al. (2015) proposed the use

of three servers - a bait server, a decoy server and a real server - for the detection of

attacks. They proposed that all traffic be directed to the bait server initially. From there,

proven benign traffic is directed to the real server while suspicious traffic is routed to the

decoy server. At the decoy server, traffic is authenticated using decision trees trained

using known attack generation tools. Oikonomou and Mirkovic (2009) used dynamics,

semantics and decoys to weed out attackers. Dynamics refers to features like number of

sessions, average pause between sessions, average number of requests per session, and

average request inter arrival rate per session. Decision trees were used for classifying

the incoming connections. Semantics is modeled by creating a probability graph of the

website. The probability of a path is defined as the average of the probabilities of all

the edges in the path. Finally, they used decoys which are invisible links or images

embedded in the web page. These links are invisible to normal users and hence do not

show up in the traces for normal users. However, the links are still parsed by bots and

can be used to identify them.

Figure 2.3 depicts a summary of the detection mechanisms that can be used for

HTTP flooding attacks.

HTTP flooding attacks are the most common application layer DDoS attacks. It

is often possible to identify a flooding attack by observing the characteristics of the

request stream. This is the reason most of the application layer firewalls can provide a

great level of defense against HTTP floods. However, systems are far from immune to

flooding attacks. Even at the application layer, attack volume is on the rise for flooding

37

2. Literature Review

attacks. Though still many orders of magnitude less than the network flooding volume,

the high volume HTTP floods can clog the firewalls, thus creating a new bottleneck.

2.2.5 Defending Against Asymmetric HTTP Attacks

Compared to HTTP flooding attacks, asymmetric attacks are much harder to detect.

This is because of the fact that HTTP floods are marked by a sharp change in many

features which can lead to its identification. Asymmetric attacks on the other hand

can be executed without raising too many red flags and hence evades detection to a

large extent. However, there are certain warning signs that can signal an asymmetric

attack in process. Every web application has a set of normal users who browse the web

application in a certain way. This means that regular users often follow certain paths

in the website more often than others. In other words, certain request sequences are

more likely than others. Apart from that, normal users take time to browse the web

application. Between every pair of requests issued, there is an associated time gap,

often called ”think time” because this is when the user processes the web response and

decides what to do next. These two features are often not followed in the case of a

request sequence submitted by a bot. This forms the basis of identifying an asymmetric

attack.

In other words, request dynamics are unlikely to be of any use in detecting asym-

metric attacks. All existing detection mechanisms use request semantics in some form.

A summary of the detection mechanisms for asymmetric AL-DDoS attacks is given in

Figure 2.4.

2.2.5.1 Detection Mechanisms based on Request Composition

Ranjan et al. (2009) was one of the earliest works to take into account the workload

profile of a user into account for detecting DDoS attacks. The idea was that normal users

are not likely to send high workload requests continuously to the server. Their request

profiles would contain interleaved low, medium and high workload requests, while the

request sequence of an attacker would have a stream of high and medium workload

requests. They analyzed session and request inter arrival distribution, along with client

workload profile to assign suspicion scores to users. Based on the deviation of each

38

2.2. Defending against DDoS Attacks using the HTTP/1.1 protocol

Detection of Asymmetric AL-DDoS Attacks

By Observing
Request Semantics

By Observing
Request Composition

Ranjan et al. (2009)

By Observing
Request Sequence

Xie and Yu (2009a)
Wang et al. (2011)
Giralte et al. (2013)

Xu et al. (2014)
Huang et al. (2014)

Emami-Taba et al. (2015)
Meng et al. (2017)

By Observing
Indirect Effects

Xie and Yu (2009b)
Meng et al. (2018)

Demoulin et al. (2019)

Figure 2.4: Detection Mechanisms for Asymmetric AL-DDoS Attacks

feature from the legitimate user profile, they assigned suspicion scores to individual

users. The connections were scheduled according to the suspicion scores.

2.2.5.2 Detection Mechanisms based on Request Sequence

Most of the existing works use attack-free user traces to learn how a user accesses the

website. Based on this learned model, they calculate the normality of the observed

request sequence, which denotes the probability that the incoming user sequence was

generated by a legitimate user. Xu et al. (2014) modeled the user behavior in a web

application as a probabilistic graph. For each incoming connection, they observed the

stream of requests and predict the future request sequence. The similarity between the

predicted and observed stream of future requests is used to identify malicious users. Gi-

ralte et al. (2013) presented a three stage detection mechanism which utilizes statistical

features, request sequence and request sequence similarity for detecting attacks.

The defense and offense involved in defending against DDoS attacks is strikingly

similar to a game between the attacker and the web administrator. Emami-Taba et al.

(2015) used Game Theory to develop a set of payoff tables to model the attack scenario

and used the min-max algorithm to identify attackers.

39

2. Literature Review

Xie and Yu (2009a) were the first to use an HsMM for the purpose of detecting

denial of service attacks at the application layer. Their work constructed the HsMM

from system traces and approximated the think time associated with a page as the num-

ber of inline requests the page makes. This can be seen as an approximation of page

loading time. They constructed a normal distribution of the likelihoods of the observed

sequences which is called Original Likelihood Distribution (OLD). The amount of de-

viation from the OLD is taken to be the abnormality of an observed request sequence

made by a user. A similar approach was also taken by Meng et al. (2017). Huang

et al. (2014) also modeled page popularity of a website using an HsMM. They clustered

the available data sets into clusters before using the features to construct an HsMM to

reduce the dimensions of the data.

2.2.5.3 Detection Mechanisms by Observing Indirect Effects

There is another approach to detect an application layer attack which relies not on ob-

serving the request stream directly, but rather observing the effect of the request stream.

Every website has a set of ”hot” pages, i. e. pages which are visited more often than

others. Generalizing this observation, every page in a website has a probability with

which a user accesses it, which denotes how popular the page is. An attack, which

does not follow normal user patterns, tends to disrupt this page popularity in haphazard

ways. This provides an indirect indication of attack.

Wang et al. (2011) assumes each user accessing the website has an a priori click

ratio which denoted the popularity of the web pages. The idea is that when a web ap-

plication is under attack, the click ratio deviates from the a priori one, and this is used

as the means of identification. This work uses large deviation theory to identify how

probable a deviation from the a priori click ratio is. They also modeled the click ratio by

means of an HsMM and employed Large Deviation theory to measure the probability

of deviation. Another work by Xie and Yu (2009b) constructed an HsMM modeling the

document popularity of a web site. However, they observed that algorithms for build-

ing and operating HsMM become considerably complex when using high dimensional

data. Hence to reduce the dimensionality of the input data they used traditional dimen-

sionality reduction algorithms of PCA and ICA (Independent Component Analysis).

40

2.2. Defending against DDoS Attacks using the HTTP/1.1 protocol

Table 2.1: Summary of AL-DDoS Detection Mechanisms

Attack Research Work Detection Mechanism

Asymmetric
AL-DDoS Attack

Meng et al. (2017)

Monitoring
Request Sequence

Emami-Taba et al. (2015)
Huang et al. (2014)
Xu et al. (2014)
Giralte et al. (2013)
Wang et al. (2011)
Xie and Yu (2009a)
Demoulin et al. (2019)

Observing
Indirect Effects

Meng et al. (2018)
Xie and Yu (2009b)

Ranjan et al. (2009)
Monitoring
Request Composition

HTTP Flooding
Attacks

Ndibwile et al. (2015)
Monitoring
Request Sequence

Ye et al. (2012)
Oikonomou and Mirkovic (2009)
Beckett et al. (2017b)

Monitoring
Request Composition

Beitollahi and Deconinck (2014)
Devi and Yogesh (2012b)
Li et al. (2019)

Monitoring
Request Statistics

Singh et al. (2018)
Bravo and Mauricio (2018)
Wang et al. (2018)
Zhao et al. (2018)
Singh and De (2017)
Oo et al. (2016)
Johnson Singh et al. (2016)
Yadav and Subramanian (2016)
Yadav and Selvakumar (2015)
Zhou et al. (2014)
Chwalinski et al. (2013a)
Chwalinski et al. (2013b)
Devi and Yogesh (2012a)
Lee et al. (2011)
Ni et al. (2013)

Monitoring
Request Rate

Wen et al. (2010)

Slow DDoS
Attacks

Dhanapal and Nithyanandam (2019)
Idhammad et al. (2018)
Katkar et al. (2015)
Mongelli et al. (2015)
Shtern et al. (2014)
Giralte et al. (2013)
Oshima et al. (2010)
Tripathi et al. (2016)

Request Tracking
Dantas et al. (2014)

41

2. Literature Review

Meng et al. (2018) and Demoulin et al. (2019) both observed the increase in resource

usage due to incoming requests as an indication of asymmetric attacks. However, their

work requires kernel modification in order to identify the spikes in workload, and is

hence more difficult to implement.

HsMM proves to be extremely efficient in detecting asymmetric as well as flooding

attacks, but they do have some drawbacks. The detection principle involves calculating

the probability of the observed sequence at each instant of time. This algorithm how-

ever, is complex and thus the overall system load will be more. In some cases, simple

statistical calculations prove more efficient than using an HsMM.

Asymmetric HTTP DDoS attacks are extremely severe because of their similarity to

normal human behaviour. Defenses relying on request rate and request statistics will fail

to detect these attacks, and by extension they make existing web application firewalls

obsolete. Identifying these attacks is a complex procedure which involves learning

normal user behaviour and weeding out connections that show unnatural behaviour.

However, most of the techniques used for detecting these attacks rely on an HsMM.

While being highly effective, an HsMM has a large computation cost associated with

it, which makes it a questionable choice for run time detection. It may also happen that

the defense system becomes a bottleneck that attackers can exploit.

A summary of the detection mechanisms that are commonly employed for detecting

the different classes of AL-DDoS attacks is summarized in Table 2.1. It can be seen

that asymmetric AL-DDoS attacks are the most potent form of AL-DDoS attacks and

require sophisticated modelling of user behavioural dynamics to enable their detection.

2.3 HTTP/2 AND ASSOCIATED SECURITY CONCERNS

HTTP was designed for simple, static web applications in the initial days of the internet

and today’s complex, dynamic web applications faced performance issues when using

HTTP/1.1. A major drawback of HTTP/1.1 was Head-of-Line (HoL) Blocking, which

means that an HTTP request can only be processed once the preceding request belong-

ing to the same connection has been processed. This can lead to undue waiting time in

the case of large web applications with multiple images embedded in a single web page.

42

2.3. HTTP/2 and associated Security Concerns

HTTP/2, on the other hand, was designed with performance in mind, and has several

features meant to reduce page loading times in web applications. A brief discussion

of the new features in the HTTP/2 protocol is presented in the following paragraphs

(Belshe et al. 2015).

• Binary Encoding : Unlike HTTP/1.1 which is a purely textual protocol, HTTP/2

is a completely binary protocol. Binary protocols are compact, less prone to

errors and more efficient to parse (Group 1999).

• Multiplexing on a Single TCP Connection : HTTP/2 allows multiple messages

to be sent through a single TCP connection and processed simultaneously at the

server. This allows content-heavy web pages to be loaded faster by sending mul-

tiple inline requests in a single connection.

• Streams and Frames : A bi-directional flow of bytes in HTTP/2 is called a stream,

and is identified by a stream ID. HTTP messages (requests or responses) flow

along these streams. Each message is further broken down into frames. There are

ten different types of frames defined by the HTTP/2 protocol, each of which has

a different purpose.

• Stream Prioritization : HTTP/2 allows users to specify a particular order or re-

quest processing by specifying priorities for streams. A user can also explicitly

specify dependencies between streams to ensure the correct order of processing.

• Header Compression : HTTP/2 specifies that headers must be compressed using

the HPACK compression format to reduce overhead. The format uses static Huff-

man codes to reduce individual transfer sizes and also requires that the client and

server both maintain a list of previously seen headers. This way, further com-

munication from the same client can simply reference the previous headers and

only explicitly specify the new information. Since majority of the header infor-

mation remains constant throughout a conversation between a server and client,

this reduces transfer overheads to a large extent.

43

2. Literature Review

• Server Push : The most interesting aspect of HTTP/2 is that it allows the server

to push resources to a client without an explicit request. This is done using the

PUSH PROMISE frame. This is especially useful when the client is requesting

for a large web page with multiple images or scripts embedded in it.

2.3.1 HTTP/2 Security

HTTP/2 still retains all the semantics of its predecessor, and hence most of the attacks

that could be launched using the HTTP/1.1 protocol can also be launched using the

HTTP/2 protocol. Research into HTTP/2 security has proceeded in two main directions.

On one hand, research has focused on identifying whether HTTP/2 remains vulnerable

to the attacks that affected HTTP/1.1 or not. The other line of research focuses on

examining the newly standardized features of HTTP/2 for vulnerabilities. A summary

of the research works addressing different facets of HTTP/2 security are given in Table

2.2.

2.3.1.1 Legacy Attacks on HTTP/2

DDoS attacks are one of the most popular attacks against web applications. It is rea-

sonable that once HTTP/2 was released, researchers immediately began to study how

the new version of the protocol behaved during a DDoS attack.

Slow DDoS Attacks: An investigation by Imperva (2016) and Tripathi and Hubballi

(2018) identified a slow DDoS vulnerability lingering from the previous version of the

protocol. A slow read DDoS attack could be executed on an HTTP/2 server by using

the WINDOW UPDATE frame with the actual window update value set to zero. A slow

read attack using HTTP/2 was possible on Jetty, Apache, IIS and Nginx servers. Tri-

pathi and Hubballi (2018) uncovered five different types of slow DDoS attacks that were

possible by manipulating certain settings in the control frames. They also proposed a

statistical mechanism to detect these attacks.

HTTP Flooding Attacks: Adi et al. (2015) observed that sending a stream of WIN-

DOW UPDATE frames with different stream IDs drives CPU utilization over 50%.

Beckett and Sezer (2017a) found out that an HTTP/2 server was more vulnerable to an

44

2.3. HTTP/2 and associated Security Concerns

Table 2.2: Comparison of Existing Research Works on HTTP/2 Security

Research
Work

Feature Exploited Attacks Discussed Limitations

Imperva
(2016),
Suresh et al.
(2018) and
Hu et al.
(2018)

HTTP/2 multi-
plexing, stream
dependency and
header compression

Reusing of streams
in HTTP/2 leads to
server crash; Pres-
ence of a cycle in
stream dependencies
leads to increased
CPU usage; Abnor-
mally large header
values can lead to
memory exhaustion
when decompressed

Attacks worked only
on specific servers;
These vulnerabilities
have been patched
since

Imperva
(2016)

HTTP connection
maintenance and
timeout

Slow Read DDoS at-
tack

Setting proper time-
out values for servers
can mitigate the ef-
fect to some extent

Tripathi and
Hubballi
(2018)

HTTP connection
maintenance and
timeout

Five different types of
Slow DDoS attacks
using complete or in-
complete headers

Setting proper time-
out values for servers
can mitigate the ef-
fect to some extent

Adi et al.
(2015)

HTTP/2 CPU usage HTTP/2 control
frame flooding

Requires a large
number of frames to
launch the attack

Beckett
and Sezer
(2017a)

Server Bandwidth HTTP/2 data frame
flooding

Did not examine if
the improvements in
the server allow it to
handle the load

Beckett
and Sezer
(2017b)

Server Bandwidth Amplification DDoS
attack on an HTTP/2
- HTTP/1.1 gateway

Did not present an
evaluation of the im-
pact of these attacks
on the servers

Patni et al.
(2017)

SSL encryption Man-in-the-Middle
attack on HTTP/2
traffic through a
combination of DNS
cache poisoning,
Phishing and TLS
certificate forging

Requires extensive
planning and prepa-
ration to execute the
attack

45

2. Literature Review

application layer flood primarily because the smaller request sizes in HTTP/2 means

that an attacker could now generate more number of requests with far less bandwidth,

and hence overpower an HTTP/2 server more effectively.

Amplification Attacks: Beckett and Sezer (2017b) further explored the issue of an

amplification attack when there is an HTTP/2 gateway proxy which connects to a

HTTP/1.1 back-end web server. The idea behind this attack is that in the HTTP/2 pro-

tocol, headers are compressed and hence bandwidth and packet size are reduced. How-

ever when these requests cross over a gateway that connects to an HTTP/1.1 server,

the headers must be decompressed and packets must be converted to HTTP/1.1 for-

mat. This would increase the bandwidth considerably and cause the links leading to the

server to be flooded.

Man-in-the-Middle Attacks: Patni et al. (2017) devised and demonstrated a Man-

in-the-Middle (MITM) attack against HTTP/2 through a combination of DNS cache

poisoning, Phishing and TLS certificate forging. They also suggest some methods to

mitigate such an attack.

2.3.1.2 Attacks Exploiting New Features

Research into the newly introduced features in HTTP/2 was carried out by Imperva

(2016), and later by Suresh et al. (2018) and Hu et al. (2018). Three major vulnerabili-

ties were identified in several implementations.

Stream Reuse Vulnerability: According to the HTTP/2 specifications, a stream is

meant to transport an HTTP request and its response. Once closed, the stream is not

supposed to be reused or reopened. The reopening and reuse of a stream leads to a

Blue Screen of Death (BSOD) on the IIS server. Such an error points to a process

encroaching on the memory allocated for another process, which in some cases could

lead to execution of arbitrary code.

Dependency Cycle Vulnerability: HTTP/2 allows users to specify inter-dependencies

between streams to designate the processing order. If this dependency chain becomes

arbitrarily long or contains a cycle, it can lead to high CPU usage and possibly a DoS

46

2.4. Research Directions and Challenges

attack. This vulnerability was found in Apache and nghttp2 servers.

HPACK Bomb: The HPACK Bomb vulnerability is concerned with header compres-

sion and stems from the fact that there is no restriction on the header size in HTTP/2

other than the fact that it should be less than the size of the dynamic header table at the

server side. An attacker can hence use one request to fill up the entire table by using a

header of the same size as the table. Subsequent requests can refer to the same header

multiple times which causes the server to allocate memory to decompress the head-

ers. This can quickly lead to memory exhaustion. This vulnerability was discovered in

nghttp2 servers. The timely identification of these vulnerabilities by Imperva allowed

all the major servers to fix these vulnerabilities before they could be exploited. A com-

mon feature in most of these attacks have been that they have been executed by using

the features in ways that they were not intended to be used. We propose that multiplex-

ing and server push can also be misused to launch sophisticated DDoS attacks against

an HTTP/2 server, and can bring down servers without the need for a large botnet.

2.4 RESEARCH DIRECTIONS AND CHALLENGES

Majority of the research in AL-DDoS detection has focused on HTTP flooding attacks

using the protocol, and there have been comparatively few research works on asym-

metric AL-DDoS attacks. Given the potency of asymmetric AL-DDoS and the speed

with which they can damage web servers, there is a need for further research to improve

upon the existing detection mechanisms.

• Most of the existing detection mechanisms for asymmetric AL-DDoS attacks use

complex modelling techniques and indirect representations of user behaviour,

which leads to larger false positive rates and longer detection times. The use

of more efficient models can help in reducing the detection time by a large extent.

In addition, the use of better features which directly correlate with observed user

behaviour could help in reducing the false positive rate considerably.

• The problem of concept drift, which is the gradual change in user behaviour over

a period of time, has not been addressed in most of the detection mechanisms. A

47

2. Literature Review

change in legitimate user behaviour causes the learned model to become obsolete

over time, leading to a higher false positive rate. There is a need for incremen-

tally learning detection mechanisms which can effectively sense concept drift and

update the model accordingly.

• Asymmetric AL-DDoS attacks can damage web servers much faster than normal

attacks, and hence there is a need to detect these attacks as early as possible. The

problem of early detection has been addressed in the context of netwrok layer

DDoS attacks, but hasn’t been explored in the context of AL-DDoS attacks.

• Research on AL-DDoS attacks is primarily focused on the HTTP/1.1 protocol.

There have been relatively few research works that examine the possibility of

asymmetric AL-DDoS attacks using the HTTP/2 protocol. With HTTP/2 set to

replace HTTP/1.1 in the coming years, there is a need for research into how the

HTTP/2 protocol responds to AL-DDoS attacks. In addition, there is a need to

study whether the newly introduced features in HTTP/2 can be misused to launch

AL-DDoS attacks.

2.5 SUMMARY

In this chapter, a comprehensive review of existing literature related to AL-DDoS at-

tacks was presented. AL-DDoS attacks can be executed in a variety of ways, and a

proper understanding of the ways in which they are executed proves to be useful in

detecting these attacks. A taxonomy of AL-DDoS attacks using the HTTP protocol

was presented in this chapter, along with a review of the existing techniques used for

detecting these attacks. The literature review reveals that asymmetric AL-DDoS at-

tacks are perched on top of the hierarchy of AL-DDoS attacks, and require sophisti-

cated modelling techniques and detection mechanisms for their efficient identification.

Existing mechanisms for the detection of asymmetric AL-DDoS attacks suffer from

certain drawbacks such as high computational complexity and longer detection times

and higher number of false positives. The introduction of HTTP/2 also adds further

complexity to the detection of these attacks, and there is a need for further research to

develop efficient detection mechanisms for these attacks.

48

CHAPTER 3

PROBLEM DESCRIPTION

The primary aim of this research work is concerned with the efficient detection of asym-

metric AL-DDoS attacks on web applications. In the past decade, there have been some

significant research works that address the problem of asymmetric AL-DDoS detection

(Ranjan et al. 2009; Xie and Yu 2009a,b; Xu et al. 2014). All of these research works

follow an anomaly detection approach by first modelling legitimate user behaviour, and

then observing for deviations from this learned model in order to identify attacks. Thus,

the problem of asymmetric AL-DDoS attack detection can be described in two phases

and can be formally stated as follows:

• Learning Phase: Given a set of application specific server logs and user access

logs I+ as input, a set of features F = {f1, f2...fk} representing legitimate user

behaviour must be extracted, and formulated into a model M .

• Detection Phase: Given a sequence of requests r1, r2...rn, a function D has to be

developed such that D(r1, r2...rn : M) gives an indication of the degree to which

the sequence of requests is anomalous.

An efficient detection mechanism also possesses the following constraints associated

with the selection of the parameters F,M and D. The set of features F must be capable

of representing the behavioural dynamics of legitimate users, and the choice of F will

affect the performance of the detection mechanism. The model M must be lightweight

and capable of incremental update to avoid periodic retraining. The detection mecha-

49

3. Problem Description

nism D operates alongside the web server it is designed to protect, and uses part of its

resources. Since the resources are constrained and are essential for proper execution

of the web server, the detection mechanism D must be computationally inexpensive,

preferably with a linear computational complexity.

The introduction of the HTTP/2 protocol does not alter the fundamental premise of

attack detection, but modifies the behavioural dynamics of users slightly. The introduc-

tion of multiplexing in HTTP/2 means that multiple requests can be sent simultaneously

through a single TCP connection. A request under the HTTP/2 protocol is no longer

a solitary entity, but a set of related entities which can be represented as a request set

(r1, r2...rm). The feature set F , model M and detection mechanism D must there-

fore be capable of representing this information, and using this information for attack

detection. In particular, the request set F must include features which represent the

relationship between the requests within a request set. In turn, the model M must also

be updated to include this association between requests in a request set and the detec-

tion mechanism D must use this information in the attack detection phase. Under the

HTTP/2 protocol, the detection phase can be formally stated as: Given a sequence of

requests (r11, r12...r1m), ...(rn1, rn2...rnm), a function D has to be developed such that

D((r11, r12...r1m), ...(rn1, rn2...rnm) : M) gives an indication of the degree to which

the sequence of requests is anomalous.

In addition, the decision length of the detection mechanism N is defined as the

smallest value of n for which a request sequence r1, r2...rn can be identified as mali-

cious by D. An efficient detection mechanism must have a sufficiently small value of

decision length to enable early detection of attacks.

To summarize, the primary goal of this research work is to propose an efficient

detection mechanism for asymmetric AL-DDoS attacks. The work can be subdivided

into the following objectives.

1. Constructing an incrementally updating model in order to capture the behavioural

dynamics of legitimate users along with an approach for identifying malicious

clients

50

2. Exploring the possibility of asymmetric AL-DDoS attacks against HTTP/2 servers,

and to enhance the model to accommodate HTTP/2 specific features in order to

detect these attacks

3. Designing an Early Detection Module (EDM) for AL-DDoS attacks using dy-

namic signatures based on HTTP request patterns

51

CHAPTER 4

ASYMMETRIC AL-DDOS ATTACKS ON HTTP/1.1
SERVERS

4.1 INTRODUCTION

Asymmetric AL-DDoS attacks on web servers running the HTTP/1.1 protocol were

first described in the works of Ranjan et al. (2009). They demonstrated that the use of

computationally intensive or high workload requests to launch DDoS attacks can take

down target servers using fewer requests than regular HTTP flooding attacks. Since

then, there have been a number of research works that aim at detecting asymmetric AL-

DDoS attacks on web applications. Majority of these research works used an anomaly

detection approach by building a model of legitimate user behaviour, and then observing

for deviations from the learned model in order to detect attacks. However, most of these

detection mechanisms use indirect representations of user behaviour and use complex

models to represent user behaviour. This leads to a higher false positive rate and longer

detection time. In addition, these mechanisms are often unable to adapt to changing user

behaviour and require periodic retraining, which leads to additional overhead. Thus,

there is a need for a fast and lightweight detection mechanism that has a low false

positive rate and is capable of incremental learning.

In this chapter, we describe our approach to build an efficient detection mechanism

for asymmetric AL-DDoS attacks. The rest of the chapter is organized as follows:

Section 4.2 describes the essential requirements of an asymmetric AL-DDoS detection

mechanism. Section 4.3 introduces the concept of request workload, which is funda-

53

4. Asymmetric AL-DDoS Attacks on HTTP/1.1 Servers

mental to asymmetric AL-DDoS attacks. Section 4.4 presents the methodology com-

monly used for generating asymmetric AL-DDoS attacks against HTTP/1.1 servers,

and Section 4.5 describes our proposed approach for the detection of these attacks.

4.2 REQUIREMENTS OF A DETECTION MECHANISM

The detection of asymmetric attacks presents a unique and difficult challenge. Any de-

tection mechanism must be able to detect attacks as soon as possible, i.e. they must

have a very low detection latency. In addition, asymmetric AL-DDoS detection mech-

anisms must possess certain unique characteristics that are not necessarily part of other

DDoS detection mechanisms. In particular, we present four desirable features for any

asymmetric AL-DDoS detection mechanism.

• Lightweight: Any detection mechanism is supposed to operate alongside a web

server, and hence has to be lightweight. Otherwise, the detection mechanism by

itself provides a bottleneck that attackers can exploit.

• Judgement: A good detection mechanism must be able to judge whether an in-

coming request stream is malicious or not with a very low false positive rate. This

is particularly important in the case of flash crowds, which are often mistaken for

AL-DDoS attacks and blocked.

• Adaptability: A good detection mechanism must be able to adapt to changing

user behaviour. This often involves periodic updates to the underlying model in

order to accommodate for changing user behaviour, thus avoiding the need for

retraining.

• Prioritized Detection: It is crucial that asymmetric AL-DDoS be detected faster

compared to flooding attacks, because they are capable of damaging servers with

much fewer requests. Thus, a good detection mechanism must be able to dis-

tinguish between asymmetric attacks and flooding attacks, and must be able to

detect the former much faster.

54

4.3. Workload Profiling

4.3 WORKLOAD PROFILING

The very idea of asymmetric AL-DDoS attacks revolves around the concept of request

workload. In simple terms, the workload associated with a request R is an indication

of the amount of resources required by a web server to execute the request. These re-

sources could be CPU or database cycles, memory or socket connections. From a more

technical standpoint, the workload associated with a request R can be denoted by a

n-tuple W = (v1, v2, ...vn) where vi denotes the resource usage of resource ri when

executing request R. W is also referred to as the workload dimension of request R.

Majority of the asymmetric AL-DDoS attacks target the CPU or database, and hence

the workload can be expressed in two dimensions. Requests in the web application are

grouped into different workload classes depending on their resource requirements. A

simplistic classification is to group resources into two classes - requests that require

more resource usage are called high workload requests, and others are called low work-

load requests. A more detailed classification could include k workload classes instead

of just two.

In the case of a single resource (say, CPU usage), the task of workload classification

is trivial. However, when the workload dimension is more than one, classifying requests

into k workload classes requires a more involved effort. Mishra et al. (2010) considered

the problem as a special case of task classification, and used k-means clustering to group

the requests into k workload classes.

4.3.1 An Approximation of Request Workload

Asymmetric AL-DDoS attacks are executed by using high workload requests. However,

an attacker has no access to the workload dimensions of a request since they have no

access to the server usage statistics. In such a case, response time for requests can be

taken as an approximation of request workload (Ranjan et al. 2009). Intuitively, a

request that has a higher workload will take more time to execute at the server and will

have a higher response time. However, the calculation of response time is a sensitive

task that can easily be corrupted by network delays and varying system loads. Thus it is

necessary to sample the response time values at varying time intervals, under different

55

4. Asymmetric AL-DDoS Attacks on HTTP/1.1 Servers

system loads before using it for request workload classification.

4.3.2 System and User Workload Profiles

In the context of request workload, we define two terms - system workload profile and

user workload profile.

• System Workload Profile: Let us consider a web application designed to handle

m different types of requests R = {r1, r2, ..., rm}. These requests introduce

different levels of computation which can be approximated to k different classes

of workload, W = {w1, w2, ..., wk}, w1 < w2 < ... < wk, k ≤ m into which

each on the m requests can be mapped to. The System Workload Profile for a

web application is essentially a function f : R → W so that f(r) = w gives the

workload class w that request r belongs to. A sample workload profile generated

for a test application Mutillidae is given in Figure 4.1. The X-axis represents

the different states, identified by a state ID. There were 141 distinct states in the

web application, including images and and CSS files. The y axis represents the

response times in milliseconds, which serves as an indicator of request workload.

Figure 4.1: Workload Profile for Mutillidae

• User Workload Profile: A user interacts with a web application by issuing a se-

quence of requests. The workload profile for a user issuing a sequence of n

56

4.4. Attack Generation on HTTP/1.1 Servers

requests (r1, r2...rn) is an n-tuple (w1, w2, ...wn) where wi = f(ri).

4.4 ATTACK GENERATION ON HTTP/1.1 SERVERS

There are a large number of tools available for generating DDoS attacks (Behal and

Kumar 2017). Most of these tools are capable of generating a variety of attacks at the

network layer, including UDP and ICMP floods. A few attack tools are even capable

of generating TCP or HTTP floods at the application layer, but there is a dearth of

tools which are capable of generating asymmetric attacks. This is probably due to the

additional reconnaissance effort required to launch these attacks, and partly explains

why these attacks are not as popular and prevalent as other attacks. Due to this reason,

attack scripts had to be generated manually to launch asymmetric AL-DDoS attacks. A

summary of the popular attack generation tools and the attacks that can be launched by

them are given in Table 4.1.

Table 4.1: Popular HTTP DDoS Attack Generation Tools

Attack Generation Tool Attacks Generated
Low Orbit Ion Cannon (LOIC) TCP, UDP or HTTP floods
HULK Random HTTP floods
DDoSim TCP or HTTP floods
R-U-D-Y (aRe yoU Dead Yet) Slow POST
Slowloris Slow GET
Tor’s Hammer Slow POST
Pyloris Slow DDoS attacks

4.4.1 Methodology

Generating asymmetric attacks against web applications proceeds in four stages - web

application scanning, identification of critical states, generating an attack plan and

launching the attack. A block diagram describing the attack generation process is given

in Figure 4.2.

• Web Application Scanning : The first stage in the attack generation process is

scanning or profiling a web application. This is done to create a system workload

profile of the web application, and to identify high workload states which can be

targetted under an asymmetric attack.

57

4. Asymmetric AL-DDoS Attacks on HTTP/1.1 Servers

Figure 4.2: Block Diagram for Attack Generation

• Identifying Critical States : From the generated system workload profile for the

web application, the requests with the highest resource usage are identified. These

requests constitute the Critical States, and are used to generate attacks against the

web application.

• Generating an Attack Plan : All DDoS attacks are executed using a predefined

script, which sends requests to the target server in a predefined, repeating fashion.

Once the system workload profile is generated for a web application, the attacker

has information about the web application that can be used to launch an attack. An

attacker first chooses the type of attack to be launched and chooses the appropriate

attack request from the workload profile of the web application. Three types of

attack are used in this work.

– Random Flood : A Random Flood attack disregards the workload related

information in the workload profile of the web application and only takes

into consideration the different URLs in the target web application. The

requests chosen for launching the attack are random samples from R i.e.

r′ ∈ {r|r ∈ R}.

– Asymmetric Attack : An asymmetric workload attack utilizes the request

workload profile of the web application and chooses the most computation-

ally expensive requests in the web application. In other words, the request

r′ ∈ {r|r ∈ R and f(r) = wk}.

– Stealthy Asymmetric Attack : A more stealthy variation of the asymmetric

58

4.4. Attack Generation on HTTP/1.1 Servers

workload attack would be to choose requests from the top l workload classes

instead of just the top one class. In this case, the request r′ ∈ {r|r ∈

R and f(r) ∈ {wk, wk−1, ..., wk−l+1}}. It can be noted that when l = k,

this variation of the attack disintegrates to a Random HTTP Flood.

• Launching the Attack : The final stage of generating a DDoS attack is launching

the attack itself. The attack must be launched with multiple TCP connections to

the target server so that these requests are executed in parallel at the server side.

4.4.2 Experimental Study
4.4.2.1 Experimental Setup

The target web application was hosted on 3.7 GHz Intel Xeon system with 16 cores

and 64 GB RAM running Ubuntu 16. Three open source web applications - Opencart,

Magento Prestashop - were used for testing. All three test applications are open source

e-commerce applications developed in PHP and MySQL. They are used in a number of

commercial establishments. All three web applications have around 400 unique URLs

and offer a suitable representation of real-world web applications.

Algorithm 1 Algorithm for generating the Request Workload Profile of a Web Appli-
cation

Input: Set of Seed URLs for the Web Application, SeedList
Output: Request Workload Profile of Web Application

1: URL List← φ
2: for all url ∈ SeedList do
3: V isit← url
4: end for
5: for all url ∈ V isit do
6: Workload Params← Request(url)
7: URL List← URL List ∪ [url,Workload Params]
8: V isit← V isit \ url
9: for all neighbour url accessible from url do

10: V isit← V isit ∪ neighbour url
11: end for
12: end for
13: WorkloadProfile← CLUSTER(URL List, k)

As described in Section 4.4.1, the first step in generating asymmetric attacks on

web applications is to generate a request workload profile of the web application. Algo-

59

4. Asymmetric AL-DDoS Attacks on HTTP/1.1 Servers

rithm 1 describes the steps involved in web application profiling. A set of Seed URLs,

denoted by SeedList, is provided as input for the profiler. Typically, this includes a

single URL pointing to the home page of the web application. Using the set of seed

URLs as input, a crawler generates a list of URLs in the web application, denoted by

V isit. For every URL in V isit, the profiler sends a request to the web application for

that URL. As the web application processes the request, the parameters correspond-

ing to Workload Params are measured and stored in URL List. The parameters

extracted depends on the situation. For example, a penetration tester with access to

server resources could measure the response time, CPU usage and memory usage of the

server while executing the request. Thus, Workload Params could constitute a triple

(ResponseT ime, CPU Usage,Memory) in such a case. An attacker would normally

be unable to access server resources, and would be forced to used response time as an

indicator of request workload (Ranjan et al. 2009). In such a case,Workload Params

would consist of a single value denoting the response time of the request. Once all the

URLs in V isit are processed, a clustering algorithm is run on URL List to group all

the URLs in the web application into k clusters. These clusters correspond to different

workload classes. In our experiments, we have used only response time as the indicator

of request workload, and have used k = 2. This divides all URLs in the web appli-

cation into two classes - low workload and high workload. This generates the request

workload profile of the web application.

Figure 4.3: Workload Profile for Opencart

Figure 4.3 shows the request workload profile generated for Opencart web appli-

cation. It can be observed that out of the 350 URLs in the web application, around

60

4.4. Attack Generation on HTTP/1.1 Servers

155 URLs incurred a sufficiently high response time exceeding 1200 ms. The other

URLs required a very low response time, most of which could be completed in under

10 ms. This gives us two workload classes - high workload and low workload. Us-

ing the methodology mentioned in Section 4.4.1, three types of attacks were generated

- Random HTTP flooding attack, stealthy asymmetric attack and asymmetric attack -

at varying request rates. The attack was generated using shell scripts which used the

cURL utility to generate and send requests in a specific sequence. The CPU usage of

the system when under all three attacks were monitored.

0 100 200 300 400 500
0

10

20

30

40

50

60

70

80

90

100

Requests per Second

C
PU

U
sa

ge
[%

]

Stealthy Asymmetric Attack
Asymmetric Attack

Random HTTP Flooding

Figure 4.4: Comparison of HTTP Flooding and Asymmetric Attacks on HTTP/1.1
Server

4.4.2.2 Results and Discussion

Figure 4.4 shows how the CPU usage of the target system varies under all three at-

tack plans. The Random HTTP flood only raises the CPU usage of the target system

to around 40% for a request rate of 400 requests per second, while both the Stealthy

Asymmetric attack and Asymmetric Attack are capable of pushing the CPU usage past

80% for the same request rate. This clearly demonstrates the advantage that attackers

possess by using asymmetric attacks in place of randomized floods, and also demon-

strates the need to detect these attacks quickly and efficiently.

61

4. Asymmetric AL-DDoS Attacks on HTTP/1.1 Servers

4.5 DETECTING ASYMMETRIC AL-DDOS ATTACKS ON HTTP/1.1 SERVERS

Our proposed approach for detecting asymmetric AL-DDoS attacks operates in two

phases - learning and detection. In the learning phase, the system uses available server

logs and access traces to learn and model the behavioural dynamics of legitimate users.

In our approach, we use an annotated Probabilistic Timed Automata (PTA) to model

user behaviour. During the detection phase, the system intercepts and processes ev-

ery incoming connection to identify if their behaviour deviates from the learned user

behaviour model. Significant and prolonged deviations from the learned model are

considered as malicious behaviour, and the connection is blocked. Periodically during

the detection phase, the system also uses legitimate run time traces to update the learned

model. This is done so that the need for periodic retraining does not arise. Figure 4.5

illustrates the working of the proposed system.

4.5.1 Learning Phase

The learning phase builds a model which describes the behavioural dynamics of users.

The features used to describe user behaviour, and the actual model used play a crucial

role in the efficiency of detection.

4.5.1.1 Features used to Model User Behaviour

Majority of the existing research works on AL-DDoS detection use indirect representa-

tions of user behaviour such as request rate, request inter-arrival duration, session inter-

arrival duration, request and response size etc. to model user behaviour and operate on

the assumption that an AL-DDoS attack is defined by a sharp increase in the number

of requests received by a web application in a short duration. This can be observed

by significant deviations in statistical attributes of the request stream which forms the

basis for the detection mechanism. However, Ranjan et al. (2009) demonstrated that

the use of high workload requests could allow malicious users to launch attacks without

any significant deviations in request rate, request inter-arrival duration or other statis-

tical features. Therefore, such detection mechanisms based on statistical attributes of

the request stream are unable to detect asymmetric attacks, and a more accurate set of

features which effectively describes legitimate user behaviour is required.

62

4.5. Detecting Asymmetric AL-DDoS Attacks on HTTP/1.1 Servers

Fi
gu

re
4.

5:
B

lo
ck

D
ia

gr
am

of
th

e
Pr

op
os

ed
A

pp
ro

ac
h

63

4. Asymmetric AL-DDoS Attacks on HTTP/1.1 Servers

In order to arrive at such a set of features, it is necessary to identify the defining

characteristics of legitimate user behaviour. In particular, we identify three defining

characteristics:

• Users access some pages and follow certain paths more often than others. Thus

there is a hidden purpose behind a legitimate user accessing a web application,

which is completely absent in the case of an attacker (Wang et al. 2011; Xie and

Yu 2009b).

• Users take time browsing the results of a request before issuing a subsequent

request. This once again points to the fact that users have some purpose behind

browsing the web application, and that is to obtain a service. In order to obtain

that service, a user has to issue a series of requests and every request is dependent

on the response to the previous request. Thus, it is imperative that users would

take time to browse the results of a request before issuing a subsequent request

(Hashemian et al. 2012; Van Hoorn et al. 2008).

• The request workload profile of legitimate users is uneven. Legitimate users

browse the web application by issuing a sequence of requests alternating between

high, medium and low workload states. On the other hand, an attacker intends to

damage a web application as soon as possible, and is likely to issue a sequence of

high and medium workload requests repeatedly (Xu et al. 2014).

4.5.1.2 Model Description

Finite State Machines (FSM) have been used to model web applications for a variety of

applications, ranging from workload generation, stress testing and identifying vulner-

abilities. A web application closely resembles an FSM in the sense that the different

URLs in a web application can easily be mapped to states in an FSM and user requests

(or hyperlinks) from one page to another can easily represent transitions. As a result,

FSMs have been used to model web applications for workload generation, stress testing

(Andrews et al. 2005; He et al. 2007; Thirumaran et al. 2011; Zuzak et al. 2011a,b)

and vulnerability detection (Deepa et al. 2018).

64

4.5. Detecting Asymmetric AL-DDoS Attacks on HTTP/1.1 Servers

Figure 4.6: Diagrammatic Representation of the annotated PTA

Probabilistic Timed Automata (PTA) are an extension of FSMs which are capable

of modelling probabilistic user behaviour. A PTA is a collection of states and transi-

tions, like an FSM, but with some additional features. Every transition in a PTA has an

associated weight which denotes the probability of that transition. Every state in a PTA

also has a time value associated with it, which represents the average time for which

the system remains in that state before making a transition. With the added features,

a PTA can be used to model user access patterns in a web application better than an

FSM. PTAs have also been used extensively in modelling and testing web applications

(Abbors et al. 2013; Gao et al. 2011; Ghezzi et al. 2014).

In this work we model the access patterns in a web application using an annotated

Probabilistic Timed Automaton. The URLs or web pages in the web application are

represented by states in our model, and the requests between pages are represented

by transitions. As expected with a PTA, every transition has a weight associated with

it, which represents the probability of users making that transition. Every transition

also has a ”think time” associated with it which represents the average amount of time

users spend it the previous state before making that transition. Apart from these two

65

4. Asymmetric AL-DDoS Attacks on HTTP/1.1 Servers

parameters, we also associate a workload measure with every state in the model which

represents the computation that the server requires for executing that particular request.

Daniele Beauquier introduced a general definition of a Probabilistic Timed Automa-

ton Beauquier (2003) with multiple clocks and multiple actions that can be performed

in a state. When modelling a web application, the complexity of the model can be re-

duced by considering only a single clock maintained by the web server. Also the actions

performed in a state are deterministic and atomic, meaning there is no need to hold on

the assumption of multiple actions per state. In our work, we use a simplified model of

a PTA with a few annotations.

The annotated Probabilistic Timed Automaton used in our work is a septuple A =

(S, Sinit, C,W,E, F, ρ,Φ) such that

• S is the set of states in our model, where each state represents a base URL in the

web application.

• Sinit denotes the initial state(s) of the automaton, which is usually the login page

of the web application. However, in architectures where there is no concept of

separate user logins, every state of the automaton can be considered to be an

initial state.

• C is the clock which keeps track of transition timings in our model.

• W : S → N is a priority function which assigns a priority to every state in the

model. The priority value is a representation of the computation performed by

the web application in that state.

• E ⊂ S × S represents the set of transitions in our model. Each edge is a tu-

ple (s, s′) such that s, s′ ∈ S represent the source and destination states of the

transition.

• F ⊆ S is the final state of the automaton. Intuitively, the logout page is the

final state of the automaton. However, there are an abundance of scenarios where

users simply abandon sessions instead of logging out. To address this situation

we consider every state of the automaton as a final state.

66

4.5. Detecting Asymmetric AL-DDoS Attacks on HTTP/1.1 Servers

• ρ : E → [0, 1] is the transition function which maps every transition (s, s′) in the

model to a probability, which represents the probability of a transition from state

s to s′ in the web application.

• Φ : E → guard(C) is a function mapping every transition (s, s′) in the model

to a timing constraint within guard(C). guard(C) specifies a set of probability

distributions, and Φ maps every transition from s to s′ to a probability distribution

of think times for that transition. A probability distribution is represented by its

mean and standard deviation as a tuple (µ, σ).

Other applications involving a PTA usually maintain a trap state as part of the model.

Any unauthorized transition, which deviates from the established behaviour, lands the

user in a trap state from which they can never perform another transaction. In the case

of a web application, however, transitions that deviate from the norm do happen quite

often. For example, a user who issues a search query in an e-commerce site usually

takes some time to browse the results before issuing a new search query. Hence, we

would be right to model such a behaviour using a PTA. However, in some cases, a user

may issue a search query, then immediately realizes he input the wrong keywords, or

maybe misspelled a word. In such a case, the user might not wait and browse the results

of the issued query. The user would issue a subsequent query as soon as possible, which

leads to two search queries very close to each other, which deviates from the model.

Landing the user in a trap state will increase the false positive rate of our approach

considerably, hence we follow an alternate approach, where we assign scores to a user

based on how deviant the user behaviour is, when compared to the learned model. The

user is blocked only if their scores cross a threshold value, which allows users some

relaxation when it comes to deviant browsing behaviour.

A diagrammatic representation of the annotated PTA used in our approach is given

in Figure 4.6. Every state in our model is associated with a unique state ID, which is

an integer value that is allocated based on a running counter. The use of a state ID

allows a more efficient representation of web applications by including dynamic web

applications which may use the same URL for multiple web pages. High workload

67

4. Asymmetric AL-DDoS Attacks on HTTP/1.1 Servers

states are denoted explicitly in the diagram using double circles. Transitions from one

state to another are represented by arrows from the source state to the destination state.

For every transition, a nested tuple [Ptrans, (µ, σ)] is given where Ptrans represents the

probability of the transition, and µ and σ represent the mean and standard deviation of

the think time distribution for that transition.

4.5.1.3 Suspicion Score Assignment for Detecting Anomalous Clients

When a user logs into the web application for the first time, they are assigned a Suspi-

cion Score value of zero indicating the highest level of trust. As time progresses, their

scores keep changing based on how they access the web application.

The three main features that are used in the suspicion score assignment are

• Transition Probability : The higher the probability of the transition that the user

is making, the lower the probability that the user is an attacker, and consequently,

the user is assigned a lower suspicion score.

• Think Time : Attackers typically try to send requests one after the other without

any pause in order to take down a system faster. Based on this fact, if there is

a limited time delay between incoming requests as compared to the think time

values in the learned model, the access pattern is highly suspicious.

• Workload of the State : Asymmetric DDoS attacks are executed primarily by

sending requests to high workload states in the web application. Since such at-

tacks can exhaust server resources much faster than other application layer DDoS

attacks, it is necessary to detect these attacks faster. In order to do this, we incor-

porate a measure of workload into the suspicion score assignment.

A legitimate transition is usually associated with a high transition probability (Ptrans)

and a legitimate think time value (Pthink) when compared to the think time value for

that transition. Since these two events are independent, the probability that an access is

legitimate is given by

P (LegitimateAccess) = Ptrans ∗ Pthink (4.1)

68

4.5. Detecting Asymmetric AL-DDoS Attacks on HTTP/1.1 Servers

Using Equation 4.1, the probability that a user access is anomalous can be given by

P (AnomalousAccess) = 1− P (LegitimateAccess) (4.2)

= 1− Ptrans ∗ Pthink (4.3)

The probability of the transition can be directly obtained from the PTA. The PTA main-

tains the mean value of the think time (µ) for transitions and their associated standard

deviations (σ). If the incoming transition occurs with a think time of t, then a probability

that this think time is legitimate can be derived from Chebyshev’s Theorem.

Pthink =

(
σ

µ− t

)2

(4.4)

To ensure that Asymmetric DDoS attacks can be detected faster, we introduce a

factor that represents the workload of the state that the user is attempting to access,

which is represented by W . Thus, the increment in suspicion score for every request

that the user makes is given by

SSincrement = W ∗ (1− Ptrans ∗ Pthink) (4.5)

4.5.1.4 Threshold Determination

The suspicion scores assigned to users indicate the degree of anomalous behaviour dis-

played by them over a period of time. Threshold determination essentially consists of

selecting a value of suspicion score θ such that users who have suspicion score values

less than θ can be considered to be legitimate users, and users with values greater than

or equal to θ can be considered to be malicious. However, during the learning phase of

anomaly detection, the system only has access to legitimate user traces, and hence it can

only identify a set of suspicion score values which are all below the threshold θ. Thus,

selecting the value of θ is essentially a one-class classification problem where an up-

per bound of legitimate suspicion score values must be decided based on the observed

values.

In most of the cases, the distribution of suspicion score values provides some indi-

cation of the underlying distribution and can aid in the selection of the threshold. In

the case of a Gaussian distribution of suspicion score values, a number of threshold

selection mechanisms are available. However, in the more general case, Extreme Value

69

4. Asymmetric AL-DDoS Attacks on HTTP/1.1 Servers

Analysis (EVA) can be employed to determine the threshold (Schneider et al. 2019).

EVA proposes that for many loss distributions, the distribution of maximum values of a

sample can be generalized to a common distribution called Extreme Value Distribution

(EVD). This is called the Fisher-Tippet Theorem and forms the basis of EVA. Since

threshold determination is essentially concerned only with the maximum values, EVA

can be safely employed to determine the threshold.

4.5.1.5 Working of the Learning Phase

During the learning phase, the system builds a model of legitimate user behaviour in

the form of an annotated PTA as described in Section 4.5.1.2. The parameters needed

to build such a model are extracted from two sources - server logs which describe the

workload associated with individual requests, and user access logs which describe user

behavioural dynamics. Algorithm 2 describes the process of learning in the form of

pseudo code.

Access patterns for multiple users are jumbled within the server access logs. In

order to extract user access patterns, they are separated according to individual client

accesses and individual session accesses. Client accesses can be identified by using

the client IP addresses. For identifying different sessions from the same user, a session

time-out value is used. For example, two requests from the same client are considered

to be from different sessions if their corresponding timestamps differ by more than the

session time-out value. In our case, we have set the time-out value to be 10 minutes as

is common in an Apache server. This per-session access logs (I+) are passed as input

to the Learning Phase for constructing the model. The learning phase starts with an

uninitialized PTA, and the Parameter Extraction module extracts the required param-

eters to build the PTA. When a previously unseen URL is encountered in the access

logs, a new state is created in set S to represent it. A state is always associated with

a workload value which denotes the amount of computation that the state generates

at the server side. This information is extracted from the server logs with the help of

the ExtractPriority() function. The priority of individual requests can also be pre-

computed and stored using the approach described by Mishra et al. (2010).

70

4.5. Detecting Asymmetric AL-DDoS Attacks on HTTP/1.1 Servers

Algorithm 2 Learning Phase
Input: I+, a training set of per-session request sequences
Output: Annotated Probabilistic Timed Automata (PTA)

1: Initialize pta = (S, sinit, C,W,E, F, ρ) = φ
2: while LEARNING do
3: I = ReadLine(I+)
4: curr state← ExtractState(I)
5: if curr state is initial state then
6: sinit ← curr state
7: end if
8: if curr state is final state then
9: F ← F ∪ curr state

10: end if
11: if curr state /∈ S then
12: S ← S ∪ curr state
13: w ← ExtractPriority(curr state)
14: W ← W ∪ (curr state, w)
15: end if
16: if (prev state, curr state) /∈ E then
17: think time← ExtractThinkT ime(curr state, prev state)
18: t← CreateTransition(prev state, curr state, think time)
19: E ← E ∪ t
20: else
21: t← ExtractTransition(prev state, curr state)
22: UpdateTransition(ρ, t)
23: end if
24: prev state← curr state
25: end while
26: θ ← GetThreshold(pta)

71

4. Asymmetric AL-DDoS Attacks on HTTP/1.1 Servers

A transition is defined as a jump from prev state to curr state. If such a transition

is previously unknown, a transition associated with the access is created and added toE.

In order to create a transition, a functionCreateTransition() is called which computes

two parameters. The first one is the transition probability which is maintained in ρ.

In any per-session access logs, if there is an entry for a request to a URL i followed

immediately by a request to URL j, there is a transition from state i to state j in the

model of the web application. The probability of the transition can be given by

tij =
nij∑
k∈S nik

(4.6)

where nik represents the number of times there is a transition from state i to state k in

the per-session access logs. The second parameter that needs to be extracted relates to

the think time for the users for a particular transition. Every time a transition from state

i to state j occurs in a the per-session logs, the associated think time can be extracted

by simply subtracting the associated timestamps. However, the number of instances of

a single transition, and consequently the think times, could be very large. To represent

think time for a transition in a compact way, we represent the think time using the mean

(µ) and standard deviation (σ) of the distribution. In case a transition describing the

access pattern already exists, the parameters are updated by the UpdateTransition()

function.

This process is repeated until the set I+ is exhausted. Once the learning is done, it is

necessary to extract a threshold value for the suspicion score values, which is done by

theGetThreshold() function. The multiple ways in which a threshold can be identified

are described in Section 4.5.1.4. Once the parameters and threshold are computed, they

are stored in the database for future use. This effectively concludes the learning phase.

4.5.2 Detection Phase

During the detection phase, the system intercepts every request coming to the web ap-

plication. Whenever a new user enters the system, they are assigned a Suspicion Score

of zero. Henceforth, every access made by the user to the web application causes their

Suspicion Score to change cumulatively based on whether the access is perceived to be

legitimate or malicious according to the learned model. If the suspicion score associated

72

4.5. Detecting Asymmetric AL-DDoS Attacks on HTTP/1.1 Servers

Algorithm 3 Detection Phase
Input: Request R, PTA, Threshold θ
Output: Decision (blocked or allowed)

1: updatetraces← φ
2: while True do
3: Input new requestR
4: curr state← ExtractState(R)
5: w ← ExtractPriority(s)
6: think time← ExtractThinkT ime(prev state, curr state)
7: if (prev state, curr state) ∈ E then
8: t← ExtractTransition(prev state, curr state)
9: ptrans ← ρ(t)

10: pthink ← GetThinkT imeProbability(t, think time)
11: else
12: ptrans ← 0.0
13: pthink ← 0.0
14: end if
15: ss← (1− ptrans ∗ pthink).w
16: SS ← SS + ss
17: if SS ≥ θ then
18: The connection may be filtered
19: updatetraces← updatetraces−R
20: else
21: The connection can be forwarded to the server
22: end if
23: if SS ≤ θupdate then
24: updatetraces← updatetraces ∪R
25: end if
26: prev state← curr state
27: if Update Condition is met then
28: Update(pta, updatetraces)
29: end if
30: end while

73

4. Asymmetric AL-DDoS Attacks on HTTP/1.1 Servers

with a user crosses a predetermined threshold value θ, the user is considered malicious

and blocked. The incorporation of a suspicion score mechanism allows a slight devia-

tion from the learned model to occur. This is essential because although legitimate users

follow certain prescribed pathways while browsing the web application, they occasion-

ally make mistakes and deviate from the model. If this minor deviation is considered

malicious, it would lead to a huge increase in the false positive rate of the system. Only

repeated deviations need to be considered malicious and blocked. The calculation of

suspicion score involves three parameters that are easily identified from the PTA - tran-

sition probability, think time probability and state priority. The calculation of suspicion

score is performed as described in Section 4.5.1.3.

At suitable points during the detection phase, the system also uses traces from le-

gitimate users to update the user model built during the learning phase. This is done

in order to avoid the need to periodically retrain the model to account for concept drift.

The traces selected for the update are from users who have suspicion scores below a

threshold θupdate, θupdate << θ. This allows only legitimate traces to update the model,

thereby maintaining the integrity of the model. This is done as described in Section

4.5.2.1. Algorithm 3 presents a pseudo code for the detection phase.

4.5.2.1 Incremental Update

Concept Drift is a fundamental challenge in modelling user behaviour in web applica-

tions (Stevanovic and Vlajic 2014). User access patterns change over time in a web

application. The popularity of web pages keeps changing over time and this change

influences access patterns to a large extent. This gradual change in user access patterns

renders models obsolete after a point of time. When this happens, the model has to be

retrained with the new access patterns. Retraining a model takes a long time and re-

quires considerable amount of computation. Another major point to note is that not all

access patterns become obsolete, but still retraining requires abandoning all the infor-

mation learned and learning new information, even though quite a lot of the information

may be the same as earlier. We propose an incremental learning approach using testing

data, where the system uses user traces obtained using testing in order to periodically

74

4.5. Detecting Asymmetric AL-DDoS Attacks on HTTP/1.1 Servers

update the model of the web application. This can be done at regular intervals, or when

the load on the system is low.

In order to update the model, we fix a suspicion score threshold, Θupdate, such that

Θupdate < Θ, below which all users are assumed to be more or less legitimate. These

traces are used to build a model of the web application during runtime. Let us assume

that for a transition (s, s′, δ), we obtain a transition probability pij′ during runtime using

testing traces. Also, let pij be the transition probability of the same transition in the

current model. In that case, after the next update,

pij(new) = α ∗ pij(old) + (1− α) ∗ pij′ (4.7)

where α is an anchor value which denotes how much the system should hold on to the

initial values learned. This value can be adjusted by the web application developer or

system administrator, and can be used to create a stronger model of the web application.

For example, in case the model was developed with a sufficiently large set of user traces,

it is prudent to assume that user behaviour would have been captured relatively correctly

by the model. In such a case, a high anchor value can be used. On the other hand, if

relatively few user traces were available during model generation (perhaps because the

application is relatively new), the access patterns captured cannot possibly represent the

web application well. In this case, the system has to rely more on the traces obtained

during runtime, and a low anchor value can be set. From a different perspective, if

the web application developer or administrator is confident the user access patterns

are unlikely to change (perhaps in a static site), a relatively high anchor value can be

used. In case the web application is highly dynamic and user access behaviour changes

frequently, a low anchor value can be set.

In the absence of incremental update, the system has a comparatively larger false

positive rate, which is detrimental to performance. In order to reduce this FPR, it is

necessary to perform incremental update using real time traces at regular intervals. The

frequency of update is a critical factor that can impact the performance of the system

considerably. Two factors must be considered while determining the update frequency

- system load and performance of the detection mechanism. Updating the model fre-

quently using fewer traces allows the update to complete faster, putting less burden on

75

4. Asymmetric AL-DDoS Attacks on HTTP/1.1 Servers

the system. However, doing so could allow some malicious traces to enter the system

and possibly corrupt the system. Updating the model after a considerable amount of

time allows more traces to be accumulated, and discourages malicious traces from en-

tering the system. However, this makes the update time consuming and also leads to a

slight increase in FPR. This trade-off must be taken into consideration while selecting

an update frequency for the system.

4.5.3 Experimental Study
4.5.3.1 Datasets Used

In order to test the efficiency of the system we have used two popular datasets which

describe user access behaviour - SDSC-HTTP and CLARKNET-HTTP. SDSC-HTTP

contains a day’s worth of all HTTP requests to the SDSC WWW server located at the

San Diego Supercomputer Center in San Diego, California, and contains 28,338 lines

of access logs from 3555 clients. CLARKNET-HTTP is a much larger dataset, and

contains two week’s worth of all HTTP requests to the ClarkNet WWW server. It has

12,95,853 line of access logs from 77,431 clients and provides a suitable testing dataset.

Each line in these access logs describes a request made by a client to the web applica-

tion, and contain the same information - client address, date and time of access, request

URL, status code and request size. Both of these datasets have been used extensively

for evaluating AL-DDoS detection mechanisms (Chwalinski et al. 2013a,b).

4.5.3.2 Training and Testing Data

The datasets used were split into two sets - training and testing using an 80-20 split.

The training set is used as input to the Learning Phase and is used to build the model of

the web application. However, the testing set only contains legitimate traces, and there

is a need to generate AL-DDoS attack traces in order to test our detection mechanism.

A total of five different kinds of attacks were generated. The first attack generated is

a random flood, which randomly sends requests to a web server. The second attack

generated is the Single URL flood, which is the most common flooding attack. Instead

of randomly selecting from the available URLs, it sends repeated requests to a single

URL. This is one of the most common forms of DDoS attack in practice. Attacks A3

76

4.5. Detecting Asymmetric AL-DDoS Attacks on HTTP/1.1 Servers

and A4 replicate these same attacks (A1 and A2) but with asymmetric attacks. Attack

A3 is a random asymmetric attack and A4 is a single URL asymmetric attack. Attack

A5 is another popular attack variation wherein the attacker follows a predefined script.

This attack, which we call a Botnet based attack due to its use in botnets, creates an

attack script by randomly selecting a set of URLs. Once the script is generated, then

the attacking connections repeatedly send requests to all the URLs in the script in the

same order. Thus, the sequence of requests generated keeps repeating itself at regular

intervals. The details of the attacks generated are given in Table 4.2. The generated

attack traces were intermixed into the testing dataset and used for testing the proposed

approach.

4.5.3.3 Experimental Setup

A prototype of the proposed system was developed using the Go programming lan-

guage. The prototype of the system was tested on a Dell Optiplex machine with 16 GB

RAM running Ubuntu 16.04. The training set was used as input to the Learning Phase

to build a model of legitimate user behaviour in the form of an annotated PTA. During

the detection phase, the testing set was used to test the performance of the system.

Table 4.2: Types of Attacks Generated for Testing

Attack
Code Attack Type Request

Workload
No. of URLs

(Single/Multiple)
Request

Sequence
A1 Random Flood Any Multiple Random
A2 Single URL Flood Any Single Fixed
A3 Random Asymmetric High Multiple Random
A4 Single URL Asymmetric High Single Fixed
A5 Botnet based Attack Any Multiple Fixed

4.5.3.4 Results and Discussion

Validity of the Proposed Approach: The proposed identifies AL-DDoS attacks by

assigning suspicion scores to users accessing the web application. This assignment

is based on the behavioural dynamics of users, and the amount of deviation from the

learned model as described in Section 4.5.1.3. Figure 4.7 depicts a histogram of sus-

picion score values for both legitimate and attack connections. It can be observed that

77

4. Asymmetric AL-DDoS Attacks on HTTP/1.1 Servers

the suspicion scores for legitimate users tends to cluster at lower suspicion score values,

while the scores for attackers are more evenly spread out with generally higher suspi-

cion score values. This clearly shows that the proposed approach can be used effectively

for detecting asymmetric AL-DDoS attacks.

Figure 4.7: Suspicion Score Distribution

Table 4.3: Performance Overview of Attack Detection Module

Parameter SDSC-HTTP CLARKNET-HTTP
Detection Rate 99.8% 99.7%
False Positive Rate (FPR) 0 0.008%
False Negative Rate (FNR) 0.0015% 0.003%
Precision 100% 99.93%
F1 Measure 0.9989 0.9981

Performance of the Detection Mechanism: Table 4.3 gives the overall performance

of our approach on different datasets. It can be observed that the proposed approach

gives a very high value of precision and recall, with very low false positive value. Table

4.4 gives a more detailed view of the performance, and describes how well the tool

performed in detecting individual attacks. While most of the attacks could be detected

with an accuracy of 100%, there were a few cases where the detection mechanism was

78

4.5. Detecting Asymmetric AL-DDoS Attacks on HTTP/1.1 Servers

Table 4.4: Attack-wise Performance of Attack Detection Module

Attack Type Detection Rate (%)
SDSC CLARKNET

Random URL Flood 100 100
Single URL Flood 98 91
Random Asymmetric Attack 100 100
Single URL Asymmetric 98.17 100
Bot Attack 100 100

unable to detect the incidence of an attack. This is largely due to the incomplete set

of traces available for modelling legitimate user behaviour. The completeness of the

model and the efficiency of the detection mechanism rely to a large extent on the size

and quality of the input logs. Unlike existing detection mechanisms, our proposed

approach assigns suspicion scores to incoming connections based on only the attributes

of that particular connection, not on global statistics. This makes our approach robust

in differentiating between flash crowds and AL-DDoS attacks.

In order to avoid overfitting, the experiments were repeated multiple times using

repeated random sub-sampling cross validation. We observed that the detection mech-

anism displays a similar performance on all random sub-samples, which indicates that

the detection mechanism learns the behavioural dynamics of users efficiently, and that

the proposed model does not overfit.

Complexity: Algorithm 3 describes the detection algorithm used in the proposed ap-

proach. This algorithm is meant to operate at real time, and describes the real time

complexity of the proposed approach. It can be observed that to compute the suspi-

cion score for a sequence of N requests, our approach requires only a single pass over

the sequence and hence the complexity of the proposed approach is O(N). Existing

approaches which use an HsMM have a computational complexity of O(N2). The

use of a modification of the forward algorithm called the M-Algorithm can reduce this

complexity to O(MN),M < N , but still the algorithm is computationally expensive

for real time use. Thus, our proposed approach clearly outperforms existing detection

mechanisms for asymmetric AL-DDoS attacks.

This is further illustrated in Figure 4.8, which compares the execution time for an

79

4. Asymmetric AL-DDoS Attacks on HTTP/1.1 Servers

HsMM based approach and our proposed approach in a semi log plot. It can be clearly

observed that as the sequence length increases, our approach clearly performs better

than existing approaches, which further demonstrates that our system is much more

suitable for real time use. The actual difference in execution time is considerable -

for a sequence length of 50, an HsMM based approach takes around 60 ms while our

proposed approach takes under 2 ms for execution.

5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

25

Sequence Length

E
xe

cu
tio

n
Ti

m
e

(m
s)

in
L

og
Sc

al
e

HsMM based approach
Proposed Approach

Figure 4.8: Execution Time

Prioritized Detection: Figure 4.9 gives a representation of the time taken for de-

tecting the different classes of attacks as compared with the existing HsMM based ap-

proaches. Approaches based on HsMM have a fixed decision length which denotes the

number of requests that need to be inspected in order to make a decision. This deci-

sion length is constant for all classes of attacks. This essentially means that there is no

concept of prioritized detection, and that asymmetric attacks are detected with the same

latency as flooding attacks. Figure 4.9 clearly shows that our proposed approach per-

forms better than existing HsMM based approaches in detecting attacks faster. It can

also be seen that asymmetric attacks (attacks A3 and A4) are detected much quicker

than HTTP flooding attacks. This is particularly due to the inclusion of the request

80

4.5. Detecting Asymmetric AL-DDoS Attacks on HTTP/1.1 Servers

A1 A2 A3 A4 A5
0

10

20

30

40

50

D
et

ec
tio

n
L

at
en

cy
in

N
um

be
ro

fR
eq

ue
st

s
HsMM based approach
Proposed Approach

(a) SDSC

A1 A2 A3 A4 A5
0

20

40

60

80

100

D
et

ec
tio

n
L

at
en

cy
in

N
um

be
ro

fR
eq

ue
st

s

HsMM based approach
Proposed Approach

(b) CLARKNET

Figure 4.9: Detection Latency

workload parameter in the calculation of suspicion score. This reduced detection la-

tency is particularly important in the case of asymmetric attacks, because they can take

down a system with just a few requests.

Adaptability: The ability to learn new user behaviour and update the model at run

time is crucial for asymmetric AL-DDoS detection mechanisms. In our approach, the

effectiveness of the update is primarily governed by two factors - the frequency of up-

date and the value of the update threshold. In order to test the performance of our

incremental update capacity of our model, we separated our dataset into two parts -

training and testing. A model of user behaviour was constructed using the training data

set. Then, we selected states which were absent in the training data set and generated

attack logs using the same approach as described in Section 4.5.3.2. We then com-

bined the testing logs with the attack logs to create a new dataset, which we refer to

as the update − test dataset. We then set the update threshold to be half of the attack

threshold. We monitored the performance of our detection mechanism both with and

without update. We observed that even without any update our detection mechanism

has a very high detection rate. This is because any unknown state is treated to be an at-

81

4. Asymmetric AL-DDoS Attacks on HTTP/1.1 Servers

tack in the absence of threshold and the suspicion score is increased as such. However,

this means that any legitimate access with previously unknown states is also treated as

anomalous. This is indicated by a comparatively large false positive rate in the absense

of any incremental update.

We then tested the performance of our system with periodic updates. It was observed

that the update interval plays a crucial role in the performance of the system. If the

update interval is set to a small value (say, every 1000 requests), the false positive rate

drops considerably, but is also accompanied by a decrease in the detection rate. This is

due to the fact that certain attack traces will also be identified as legitimate in the short

interval, and be treated as legitimate values. As the update interval increases, the false

positive rate remains low, and the detection rate also continues to increase. The impact

of update frequency on detection rate and false positive rate is shown in Figures 4.10a

and 4.10b respectively.

102 103 104 105 106

97

97.5

98

98.5

99

Update Frequency (Number of Requests)

D
et

ec
tio

n
R

at
e(

%
)

(a) Detection Rate

100 1,000 10,000 100,0001,000,000

0.316

1

3.16

Update Frequency (Number of Requests)

FP
R

in
L

og
Sc

al
e

(b) False Positive Rate

Figure 4.10: Effect of Update Frequency

Figures 4.11a and 4.11b show the impact of the update threshold on the detection

rate and FPR respectively. Setting a high update threshold allows some malicious traces

to be included in the update which leads to a lower detection rate. However, it also

shows a lower FPR due to the impact of the legitimate traces used for updating the

model. As the threshold is lowered, fewer traces are used in the update (which indirectly

means fewer malicious traces are included), and hence the FPR increases. At the same

time, the detection rate also rises. This behaviour is similar to that of the impact of

82

4.6. Summary

0 10 20 30 40 50
90

91

92

93

94

95

96

97

98

99

100

Update Threshold as fraction of Attack Threshold

D
et

ec
tio

n
R

at
e(

%
)

(a) Detection Rate

0 10 20 30 40 50

6.31

10

Threshold Ratio

FP
R

(%
)i

n
L

og
Sc

al
e

(b) False Positive Rate

Figure 4.11: Effect of Update Threshold

update frequency on the detection rate and FPR.

4.6 SUMMARY

Asymmetric AL-DDoS attacks pose a very serious threat to web applications running

the HTTP/1.1 protocol, and the detection of these attacks is a daunting task. In this

chapter, we demonstrate the potency of asymmetric AL-DDoS attacks as compared to

random HTTP flooding attacks, and also illustrate the need for detecting these attacks

efficiently. We also present certain features that must be possessed by any detection

mechanism for these attacks. In this chapter, we describe out attempt to model the

actual behavioural dynamics of legitimate users using a simple annotated Probabilistic

Timed Automata (PTA) along with a suspicion scoring mechanism for differentiating

between legitimate and malicious users. This allows the detection mechanism to be

extremely fast and have a low FPR. In addition, the model can incrementally learn from

run-time traces, which makes it adaptable and reduces the FPR further. Experiments on

public datasets reveal that our proposed approach has a high detection rate and low FPR

and adds negligible overhead to the web server, which makes it ideal for real time use.

83

CHAPTER 5

ASYMMETRIC AL-DDOS ATTACKS ON HTTP/2
SERVERS

The introduction of HTTP/2 has completely redefined the landscape of Internet com-

munication. With the help of features such as binary framing, header compression,

multiplexing and server push, HTTP/2 has considerably improved the performance of

web servers and reduced the response time for clients. However, while doing so, it

puts additional load on web servers, which has led to concerns in its own right. There

is a lack of a quantitative analysis regarding the possibility of asymmetric AL-DDoS

attacks on HTTP/2 servers. In particular, there are two important questions that need to

be addressed, which forms the focus of this chapter.

• Performance comparison of HTTP/1.1 and HTTP/2 Servers under AL-DDoS

Attacks : HTTP/2 servers have been criticized as being more vulnerable to AL-

DDoS attacks due to the additional load incurred while processing the requests.

However, HTTP/2 also possesses a number of performance enhancing features

such as header compression and binary framing. There is a need for a quantita-

tive analysis of how an HTTP/2 server performs under AL-DDoS attacks when

compared to a server running HTTP/1.1.

• Exploring the possible misuse of features to launch AL-DDoS attacks : HTTP/2

introduces a number of new features such as multiplexing and server push. There

has been no study related to these features from a security standpoint. More

85

5. Asymmetric AL-DDoS Attacks on HTTP/2 Servers

specifically, there is a need to study whether these features can be misused to

launch AL-DDoS attacks against HTTP/2 servers, and how to defend against

these attacks.

The rest of this chapter is organized as follows: Section 5.1 discusses how the in-

troduction of HTTP/2 changes the behavioural dynamics of users, and the associated

implications on security. Section 5.2 discusses the process of generating asymmetric

AL-DDoS attacks against HTTP/2 servers - both with and without multiplexing. We

discuss a particularly potent attack against HTTP/2 servers, called a Multiplexed Asym-

metric attack and demonstrate that it can exhaust server resources with just a handful

of attacking clients. Section 5.3 discusses how our proposed model can be expanded to

incorporate new features and how these features can aid in the detection of Multiplexed

Asymmetric attacks.

5.1 THE CHANGING USER BEHAVIOURAL DYNAMICS UNDER HTTP/2

HTTP/2 still retains most of the semantics of HTTP/1.1, and the major changes are

related to the underlying implementation. This means that the high level behavioural

dynamics of users remains the same irrespective of the version of the HTTP protocol.

However, the use of multiplexing and server push as part of the HTTP/2 specifications

is capable of creating subtle changes in the behavioural dynamics of users.

A request to a web application is typically satisfied by sending one base request

for retrieving the textual content and multiple inline requests for retrieving the content

required to render the page correctly, such as image, CSS and JavaScript files. Base

requests are typically computationally expensive as they initiate some processing at the

server while inline requests are usually static and can be processed easily (Ranjan et al.

2009). Since web pages almost always need these inline resources to render properly, a

request for a base page is usually followed by requests to its inline resources. HTTP/2

multiplexing and server push essentially seek to remove the overhead for requesting

and receiving these resources by bundling all of them together and serving them over

different streams. Server push goes one step further and allows web applications to

send resources without an explicit request from a client. These two features in HTTP/2

86

5.1. The Changing User Behavioural Dynamics under HTTP/2

introduce some subtle, yet poignant changes in the behavioural dynamics of users. For

example, a client requesting a number of resources at the exact same time would be

considered as an attempt at flooding under the HTTP/1.1 protocol, but is perfectly valid

under the HTTP/2 protocol. Figure 5.1 illustrates how HTTP/2 changes the behavioural

dynamics of users.

Figure 5.1: The Changing User Behavioural Dynamics under HTTP/2

However, multiplexing has raised some security considerations. Multiplexing es-

sentially removes the need to procure large botnets to launch attacks by allowing multi-

ple, simultaneous requests through a single TCP connection. Also, despite the intended

use of multiplexing, there is no limitation on what requests can be multiplexed together.

Attackers can take advantage of this and bundle multiple base requests into a single

TCP connection and force the server to process them simultaneously. A DoS situation

could occur if instead of random base requests, computationally expensive asymmetric

requests are multiplexed to form an attack payload.

87

5. Asymmetric AL-DDoS Attacks on HTTP/2 Servers

5.1.1 Multiplexed Asymmetric Attack

We propose an attack called a Multiplexed Asymmetric attack, wherein an attacker

multiplexes as many asymmetric workload attack requests as allowed by the server into

a single TCP connection, and launches them at the same time. This attack is extremely

dangerous because each of the multiplexed requests is by itself an asymmetric workload

request which requires intensive computation. The combination of all these requests

could potentially bring down a server with just a few attacking systems. Apart from

that, the ingress bandwidth generated by such an attack will be extremely low due to

the impact of header compression. A stealthier version of the attack can be generated

by selecting randomly from among the top k high workload requests. This provides a

better camouflage for attackers than using a single URL as the target. In the absence

of a proper behavioural analysis of incoming connections a server will fail in detecting

such an attack because it utilizes legitimate requests and has been sent through features

allowed by the HTTP/2 protocol.

5.1.2 Multiplexed Asymmetric Attack in the presence of Server Push

The proper use of Server Push improves the client’s user experience by reducing the

page load time, and reducing the client’s workload, but simultaneously places the bur-

den on the web server. The web server now needs to serve multiple requests simulta-

neously or in quick succession. Server Push, thus increases the server utilization when

serving requests.

Another aspect of server push is that the server now sends multiple resources back

to the client simultaneously leading to an increased egress bandwidth utilization. A

particularly complex case may arise when a Multiplexed Asymmetric attack is launched

on a server that supports Server Push. In such an attack, the server is forced to serve

n requests simultaneously per attacker (where n is the degree of multiplexing) which

leads to a huge increase in server utilization. On the other hand, the server now has to

send the response for n requests, each of which has multiple associated inline resources

(say c). Thus the egress bandwidth is amplified by a factor of n ∗ c when compared to

a server running HTTP/1.1. This can lead to a flooding attack which affects the server

88

5.2. Attack Generation on HTTP/2 Servers

egress bandwidth and the nearby routers, causing a DDoS attack at the network layer as

well.

5.2 ATTACK GENERATION ON HTTP/2 SERVERS

As in the case of generating asymmetric attacks on HTTP/1.1 servers (which was de-

scribed in Section 4.4), asymmetric attack generation on HTTP/2 servers also requires

a reconnaissance phase which gathers information about the web server. However, the

major difference comes while selecting the plan of attack. The HTTP/2 protocol allows

for multiple requests to be encapsulated into a single TCP connection. This presents a

different avenue of attack against an HTTP/2 server. The entire process of generating

an asymmetric workload attack can be summarized in four steps, which is illustrated in

Figure 5.2 and Algorithm 4.

5.2.1 Web Application Scanning

The first step in generating an asymmetric workload attack is to identify the structure of

the web application. More specifically, an attacker needs to know the different URLs in

the web application to identify the most suitable one to target. To identify the structure

of a web application, a web crawler can be employed to crawl through the target web

application and identify the different URLs.

5.2.2 Identifying High Workload States

The next step is to identify the resource requirements for each request. Average Re-

sponse time for a request can be used as an approximation of its workload (Ranjan

et al. 2009). The mapping from all the request URLs in a web application to their

response times (which represents their workload) constitutes the request workload Pro-

file for that web application. Let us consider a web application designed to handle m

different types of base requests R = {r1, r2, ..., rm} and n different inline requests,

S = {s1, s2, ..., sn}, such that N = m + n. These requests introduce different lev-

els of computation which can be approximated to k different classes of workload,

W = {w1, w2, ..., wk}, w1 < w2 < ... < wk, k ≤ m + n into which each on the

m+ n requests can be mapped to.

89

5. Asymmetric AL-DDoS Attacks on HTTP/2 Servers

Fi
gu

re
5.

2:
W

or
kfl

ow
fo

rG
en

er
at

in
g

A
sy

m
m

et
ri

c
D

D
oS

A
tta

ck
s

on
H

T
T

P/
2

Se
rv

er
s

90

5.2. Attack Generation on HTTP/2 Servers

The request workload profile for a web application is essentially a function f :

R ∪ S → W so that f(r) = w gives the workload class w that request r belongs to.

Associated with every base request ri there are xi inline requests.

5.2.3 Attack Vector Selection

Once the request workload profile is generated for a web application, the attacker has

information about the web application that can be used to launch an attack. An attacker

first chooses the type of attack to be launched and chooses the appropriate attack request

from the workload profile of the web application. Two types of attack are used in this

work.

• Asymmetric Attack : An asymmetric workload attack utilizes the request work-

load profile of the web application and chooses the most computationally expen-

sive requests in the web application. In other words, the request r′ ∈ {r|r ∈

R and f(r) = wk}.

• Stealthy Asymmetric Attack : A more stealthy variation of the asymmetric work-

load attack would be to choose requests from the top l workload classes instead

of just the top one class. In this case, the request r′ ∈ {r|r ∈ R and f(r) ∈

{wk, wk−1, ..., wk−l+1}}. It can be noted that when l = k, this variation of the

attack disintegrates to a Random HTTP Flood.

Once the request type is decided, the request has to be delivered to the target web

application. Depending on how the request is delivered, we have two attack vectors.

5.2.3.1 Simple Asymmetric Attack

A simple asymmetric attack vector establishes ε TCP connections to the target web ap-

plication, potentially using compromised systems, and sends the attack requests through

these connections.

The workload incurred by an HTTP/1.1 web server (or an HTTP/2 server without

multiplexing) due a single connection at any instant t is

Wt = f(rt) (5.1)

91

5. Asymmetric AL-DDoS Attacks on HTTP/2 Servers

Algorithm 4 Algorithm for Generating Attacks on HTTP/2 Servers
Input: Domain name Domain of target web application
Output: Asymmetric attack against the target web application is generated

1: WorkloadProfile← Profile(Domain)
2: AttackURL← ExtractAttackURLs(WorkloadProfile)
3: if MULTIPLEXING ENABLED then
4: if STEALTH MODE ENABLED then
5: while TRUE do
6: while LENGTH(RequestSet) < DegreeOfMultiplexing do
7: request← SelectRandomRequest(AttackURL)
8: RequestSet.Add(request)
9: end while

10: Launch(RequestSet)
11: end while
12: else
13: while TRUE do
14: request← SelectTopRequest(AttackURL)
15: while LENGTH(RequestSet) < DegreeOfMultiplexing do
16: RequestSet.Add(request)
17: end while
18: Launch(RequestSet)
19: end while
20: end if
21: else
22: if STEALTH MODE ENABLED then
23: while TRUE do
24: request← SelectRandomRequest(AttackURL)
25: Launch(request)
26: end while
27: else
28: request← SelectTopRequest(AttackURL)
29: while TRUE do
30: Launch(request)
31: end while
32: end if
33: end if

92

5.2. Attack Generation on HTTP/2 Servers

where rt is the request being processed at time t. If we assume that an attacker has

ε attacking clients at its disposal, the total workload that is submitted to the server at

every instant is:

Wt = α ∗ ε ∗ f(rt) (5.2)

where 0 < α ≤ 1 is the Synchronization Efficiency. If all attacking clients can be

perfectly synchronized to launch requests at exactly the same time, α = 1 and

Wt = ε ∗ f(rt) (5.3)

However, due to issues in synchronization and network delays, all attacking clients will

not be able to launch attacks at the exact same time, which leads to a slight drop in at-

tacking efficiency. For any given value of α, the attacker always tries to reduce the num-

ber of attacking clients, ε, so that fewer resources are needed to launch the attack. This

can be accomplished by maximizing f(rt) by sending the most computationally expen-

sive requests in the web applications. This corresponds to using asymmetric workload

requests to launch the attack, in which case the workload becomes

Wt = α ∗ ε ∗ wk (5.4)

5.2.3.2 Multiplexed Asymmetric Attack

Multiplexing in HTTP/2 allows attackers to send multiple requests in the same TCP

connection, which means that these requests will arrive and be executed by the server at

approximately the same time. We examine the impact of such an attack in two situations

- with server push off and server push on.

Case I: Multiplexed Asymmetric Attack with Server Push Off: In such an attack,

every attacking client establishes a single TCP connection and sends ω asymmetric

workload requests simultaneously to the server. Thus, the workload that can be deliv-

ered to a server using one attacking client becomes

Wt = ω ∗ wk; 2 ≤ ω ≤ Ω (5.5)

where ω is the degree of multiplexing employed by the attacker and Ω is the maxi-

mum degree of multiplexing configured at the server. If the attacker can make use of ε

attacking clients, the total workload delivered at the server will be

Wt = α ∗ ε ∗ ω ∗ wk (5.6)

93

5. Asymmetric AL-DDoS Attacks on HTTP/2 Servers

Case II: Multiplexed Asymmetric Attack with Server Push On: When Server

Push is also enabled, the server not only processes the request that it receives, but has

to send the associated inline requests as well. Let us assume that every web page has x

inline requests embedded in it on an average. In such a scenario, the workload delivered

to the server by a single attacking client is

Wt = wk +
x∑

j=1

f(sj) (5.7)

Assuming that inline requests do not exhibit the wide variation in computational

complexity that base requests commonly do, the workload associated with a single

HTTP/2 request can be reduced to:

Wt = wk +Wpush (5.8a)

Wpush = x ∗mus (5.8b)

µs =

∑n
j=1 f(sj)

n
(5.8c)

When multiplexing is enabled along with server push, using ε attacking clients, the total

workload delivered to the server becomes

Wt = α ∗ ε ∗ ω ∗ (wk +Wpush) (5.9)

For exhausting the server resources, using a Multiplexed Asymmetric attack seems

to be the best option, as it amplifies the attacking power by a factor of ω, which is

the degree of multiplexing. It is evident that the attacker benefits the most by choosing

asymmetric attack workload requests, and using the full strength of multiplexing offered

by the server. In such a case the workload delivered to the web application becomes

Wmax = α ∗ ε ∗ Ω ∗ wk (5.10)

In case Server Push is also enabled, the workload rises further to become

Wmax = α ∗ ε ∗ Ω ∗ (wk + µ ∗ x) (5.11)

5.2.4 Launching the Attack

The fourth and final step associated with an asymmetric attack is the actual launching

of the attack itself. This can be done by any of the HTTP request generation tools that

support HTTP/2 such as nghttp2.

94

5.2. Attack Generation on HTTP/2 Servers

5.2.5 Experimental Study
5.2.5.1 Server Configuration

In our test setup, the victim is an Apache 2.4 web server on a system with an Intel Xeon

3.70 Ghz CPU, with 64 GB RAM running Ubuntu 18.04. We tested our proposed at-

tack model on three e-commerce web applications - Opencart, Magento and Prestashop.

Since our goal is to compare the performance of HTTP/1.1 and HTTP/2, our web server

was configured to support both versions of the protocol. Also, since none of the existing

implementations of HTTP/2 support unencrypted versions of the protocol, we compared

the performance of HTTP/2 against HTTP/1.1 with SSL (HTTPS). Apache was config-

ured to use the Worker MPM model and was configured to accept a maximum of 5000

simultaneous requests.

5.2.5.2 Attack Tools

A Linux shell script was written to crawl the web application and identify the different

URLs or requests. The script then sends requests to each of these URLs and logs the

average response time. Details regarding the response times for different URLs were

sorted and the target URLs for asymmetric workload and stealthy asymmetric workload

attacks were obtained. These URLs were passed on to the attack scripts for generating

and sending requests to the target web server. Of the available request generation tools,

nghttp2 provides the most comprehensive coverage of HTTP/2 features, so we have

used it in our attack scripts.

5.2.5.3 Results and Discussion

Performance Comparison of HTTP 1.1 and HTTP/2 under a Simple Asymmetric

DDoS Attack: Figures 5.3 and 5.4 show how the performance of an HTTP/2 web

server compares to that of a web server running HTTP 1.1. Figures 5.3a - 5.3c show the

performance of these two protocols during a stealthy asymmetric workload and Figures

5.4a - 5.4c show the performance under an asymmetric workload as the number of

attack request rate increases.

The results of this experiment show that HTTP/2 performs considerably better than

HTTP/1.1 with SSL when under an asymmetric workload attack. HTTP/2 displays a

95

5. Asymmetric AL-DDoS Attacks on HTTP/2 Servers

0 50 100 150 200 250 300 350 400 450 500
0

10

20

30

40

50

60

70

80

90

100

Requests per Second

C
PU

U
sa

ge
[%

]

HTTP/2
HTTP 1.1

HTTP 1.1 (with SSL)

(a) Opencart

0 50 100 150 200 250 300 350 400 450 500
0

10

20

30

40

50

60

70

80

90

100

Requests per Second
C

PU
U

sa
ge

[%
]

HTTP/2
HTTP 1.1

HTTP 1.1 (with SSL)

(b) Magento

0 100 200 300 400 500 600 700
0

10

20

30

40

50

60

70

80

90

100

Requests per Second

C
PU

U
sa

ge
[%

]

HTTP/2
HTTP 1.1

HTTP 1.1 (with SSL)

(c) Prestashop

Figure 5.3: Relationship between CPU utilization and Number of Requests in an
HTTP/2 Server Under Stealthy Asymmetric DDoS attack

0 50100150200250300350400450500550600650
0

10

20

30

40

50

60

70

80

90

100

Requests per Second

C
PU

U
sa

ge
[%

]

HTTP/2
HTTP 1.1

HTTP 1.1 (with SSL)

(a) Opencart

0 50 100 150 200 250 300 350 400 450 500
0

10

20

30

40

50

60

70

80

90

100

Requests per Second

C
PU

U
sa

ge
[%

]

HTTP/2
HTTP 1.1

HTTP 1.1 (with SSL)

(b) Magento

0 100 200 300 400 500 600 700
0

10

20

30

40

50

60

70

80

90

100

Requests per Second

C
PU

U
sa

ge
[%

]

HTTP/2
HTTP 1.1

HTTP 1.1 (with SSL)

(c) Prestashop

Figure 5.4: Relationship between CPU utilization and Number of Requests in an
HTTP/2 Server Under Asymmetric DDoS attack

performance comparable to HTTP/1.1 without SSL, and even slightly outperforms it.

This improved performance can be attributed to the numerous performance overheads

in HTTP/2 like binary framing and header compression. This result clearly shows that

despite the criticism against HTTP/2 it actually outperforms its predecessor under the

same load.

Analyzing the Performance of an HTTP/2 Server under a Multiplexed Asymmetric

Attack: Even when a simple asymmetric attack proves effective in bringing down an

HTTP/2 server, the ability to multiplex multiple high workload requests into a single

TCP connection could prove to be an even bigger challenge for HTTP/2 servers. In this

section, we analyze the impact of the said Multiplexed Asymmetric Attack on HTTP/2

servers. Similar to asymmetric workload attacks, a stealthier version of the attack can

be employed by randomly selecting from the top k high workload requests.

Figures 5.5 and 5.6 shows how the CPU usage of the target server changes for

different degrees of multiplexing and number of attacking clients. The results of this

96

5.2. Attack Generation on HTTP/2 Servers

0 1 2 3 4 5 6 7
0

10

20

30

40

50

60

70

80

90

100

Number of Connections

C
PU

U
sa

ge
[%

]

ω=20
ω=40
ω=60
ω=80
ω=100

(a) Opencart

0 1 2 3 4 5 6 7
0

10

20

30

40

50

60

70

80

90

100

Number of Connections
C

PU
U

sa
ge

[%
]

ω=20
ω=40
ω=60
ω=80
ω=100

(b) Magento

0 1 2 3 4 5 6 7
0

10

20

30

40

50

60

70

80

90

100

Number of Connections

C
PU

U
sa

ge
[%

]

ω=20
ω=40
ω=60
ω=80
ω=100

(c) Prestashop

Figure 5.5: Relation between CPU Usage and Number of Connections during a Stealthy
Multiplexed Asymmetric Attack

0 1 2 3 4 5 6 7
0

10

20

30

40

50

60

70

80

90

100

Number of Connections

C
PU

U
sa

ge
[%

]

ω=20
ω=40
ω=60
ω=80
ω=100

(a) Opencart

0 1 2 3 4 5 6 7
0

10

20

30

40

50

60

70

80

90

100

Number of Connections

C
PU

U
sa

ge
[%

]

ω=20
ω=40
ω=60
ω=80
ω=100

(b) Magento

0 1 2 3 4 5 6 7
0

10

20

30

40

50

60

70

80

90

100

Number of Connections

C
PU

U
sa

ge
[%

]

ω=20
ω=40
ω=60
ω=80
ω=100

(c) Prestashop

Figure 5.6: Relation between CPU Usage and Number of Connections during a Multi-
plexed Asymmetric Attack

0 1 2 3 4 5 6 7 8
0

10

20

30

40

50

60

70

80

90

100

Number of Connections

C
PU

U
sa

ge
[%

]

ω=1
ω=100

(a) Opencart

0 1 2 3 4 5 6 7
0

10

20

30

40

50

60

70

80

90

100

Number of Connections

C
PU

U
sa

ge
[%

]

ω=1
ω=100

(b) Magento

0 1 2 3 4 5 6 7 8
0

10

20

30

40

50

60

70

80

90

100

Number of Connections

C
PU

U
sa

ge
[%

]

ω=1
ω=100

(c) Prestashop

Figure 5.7: Comparison of HTTP/2 Asymmetric Attack with and without Multiplexing

97

5. Asymmetric AL-DDoS Attacks on HTTP/2 Servers

experiment demonstrate that the ability to multiplex requests into a single TCP con-

nection poses a serious security threat, allowing attackers to deliver more asymmetric

attack payloads effortlessly. In this case, our target system Magento could be taken

down by using just four attacking clients when the degree of multiplexing is 100, with

the CPU usage reaching 80%. It can be observed that the multiplicative effect of the

attack vectors is not linear. This is due to the effect of the Synchronization Efficiency

factor(α), and the difficulty in synchronizing such a large number of attack requests. If

proper synchronization can be ensured, the multiplicative effect will increase linearly

and the attack will be even more devastating.

Figure 5.7 presents a comparison between HTTP/2 Asymmetric DDoS attack ex-

ecuted using nghttp2 tool with and without multiplexing. Here the degree of multi-

plexing is set as 100. The multiplicative effect of multiplexing is clearly visible when

the number of attacking clients is less. As the number of clients increases, the multi-

plicative effect decreases due to the effect of the Syncronization Efficiency factor (α).

With proper synchronization, the multiplicative effect will become close to ω. How-

ever, it can be observed that Multiplexed Asymmetric attacks can cause elevated CPU

utilization with fewer resources when compared to simple asymmetric attacks.

Analyzing the Impact of Server Push on an HTTP/2 Server Under a Multiplexed

Asymmetric DDoS Attack: Figure 5.8 depicts the variation in CPU usage of the

target server during a Multiplexed Asymmetric Attack (ω=100) when Server Push is

turned on and off. The results show that Server Push is able to increase the server

CPU utilization, but the increase is not much. According to equations 5.8a, 5.8b and

5.8c, the spike in CPU usage per request due to server push alone is Wpush = xi ∗ µs

and µs =
∑n

j=1 f(sj)

n
. Here µs is the average workload for a inline request. Since the

majority of inline requests are simple GET requests and do not perform much server

computation, this result is understandable.

Figure 5.9 depicts how the egress network bandwidth varies with the number of

attacking clients during a Multiplexed Asymmetric attack (ω=100). Due to the large

difference in the values corresponding to network bandwidth in both cases, we have

98

5.2. Attack Generation on HTTP/2 Servers

0 1 2 3 4 5 6 7
0

10

20

30

40

50

60

70

80

90

100

Number of Connections

C
PU

U
sa

ge
[%

]

Server Push ON
Server Push OFF

(a) Opencart

0 1 2 3 4 5 6 7
0

10

20

30

40

50

60

70

80

90

100

Number of Connections

C
PU

U
sa

ge
[%

]

Server Push ON
Server Push OFF

(b) Magento

0 1 2 3 4 5 6 7
0

10

20

30

40

50

60

70

80

90

100

Number of Connections

C
PU

U
sa

ge
[%

]

Server Push ON
Server Push OFF

(c) Prestashop

Figure 5.8: Impact of Server Push during a Multiplexed Asymmetric Attack on an
HTTP/2 Server

0 1 2 3 4 5 6 7 8 9 10
−3
−2.5
−2
−1.5
−1
−0.5

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5
5.5

6
6.5

7

Number of ConnectionsB
as

e
2

L
og

ar
ith

m
of

N
et

w
or

k
U

sa
ge

in
M

B
ps

Server Push ON
Server Push OFF

(a) Opencart

0 1 2 3 4 5
−7
−6.5
−6
−5.5
−5
−4.5
−4
−3.5
−3
−2.5
−2
−1.5
−1
−0.5

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

Number of ConnectionsB
as

e
2

L
og

ar
ith

m
of

N
et

w
or

k
U

sa
ge

in
M

B
ps

Server Push ON
Server Push OFF

(b) Magento

0 1 2 3 4 5 6 7 8 9 10
−6
−5.5
−5
−4.5
−4
−3.5
−3
−2.5
−2
−1.5
−1
−0.5

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

Number of ConnectionsB
as

e
2

L
og

ar
ith

m
of

N
et

w
or

k
U

sa
ge

in
M

B
ps

Server Push ON
Server Push OFF

(c) Prestashop

Figure 5.9: Impact of Server Push on Network Bandwidth during a Multiplexed Asym-
metric Attack on an HTTP/2 Server

Table 5.1: Effect of Server Push on Egress Network Traffic during a Multiplexed Asym-
metric attack for Opencart

Attacking
Clients

Egress Bandwidth (MBps)
Push ON Push OFF

1 0.64 34
2 0.82 56
3 1.2 72
4 1.6 85
5 1.7 100
6 2 110
7 2.2 119

chosen to represent the results using a semi logarithmic graph, with network bandwidth

represented in a logarithmic scale with base 2. The actual values of network bandwidth

for Opencart are given in Table 5.1.

Both Figure 5.9 and Table 5.1 clearly show that there is a huge increase in network

bandwidth when Server Push is enabled on the server. This spike in the egress traffic

99

5. Asymmetric AL-DDoS Attacks on HTTP/2 Servers

volume could choke routers and other network devices adjacent to the server. Most

network layer DDoS defenses attempt to detect an increase in ingress traffic and usually

do not perform any check on the traffic flowing out of the server. Even in the cases

where egress filtering is enabled, it is unlikely to block the attack, because the traffic is

flowing to a client with a legitimate IP address.

Despite the small percentage of servers that currently support Server Push, there is

a growing effort to understanding the best way to implement and use server push. The

number of servers using server push has also been growing steadily. Attacks such as

these that exploit multiplexing and server push could become commonplace in the near

future, and there is a need to develop pro-active defense mechanisms against them.

5.3 DETECTION OF ASYMMETRIC ATTACKS ON HTTP/2 SERVERS

HTTP/2 follows the same semantics as its predecessor HTTP/1.1 and the major dif-

ference exists only in the low level details and implementation. As a result, existing

detection mechanisms for asymmetric AL-DDoS attacks for the HTTP/1.1 protocol can

easily be adapted to support the HTTP/2 protocol. The only hurdle lies in the fact that

HTTP/2 introduces two new features - multiplexing and server push - which essentially

allow users to send multiple requests in a single TCP connection, which can be pro-

cessed simultaneously at the server side. This is diametrically opposite to HTTP/1.1

specifications, and due to this, there will be a considerable difference between the ac-

cess patterns of users using the two protocols. For example, a large number of requests

arriving simultaneously at a server is usually indicative of a DDoS attack in HTTP/1.1

but such a generalization cannot be made in the case of HTTP/2 since it explicitly allows

users to send multiple requests simultaneously.

In order to model the behavioural dynamics of users under the HTTP/2 protocol,

there is a need to modify the approach proposed in Section 4.5 to incorporate features

specific to the HTTP protocol.

100

5.3. Detection of Asymmetric Attacks on HTTP/2 Servers

5.3.1 Learning Phase

During the learning phase, the system builds a model of legitimate user behaviour, us-

ing which attack detection is carried out in the detection phase. The learning phase

for the detection of asymmetric AL-DDoS attacks using the HTTP/2 protocol is essen-

tially similar to that of the HTTP/1.1 protocol described in Section 4.5. The input to

the learning phase is a set of access logs, which are parsed and examined to extract

the features required to model user behaviour. Once the features are extracted and the

model is constructed, then the suspicion score threshold is identified. The fundamental

difference lies in the inclusion of HTTP/2 specific features to further expand the model.

This, in turn, slightly modifies the process of assigning suspicion scores. The modifi-

cations made to the model and the suspicion scoring mechanism are described in this

section.

5.3.1.1 Features used to Model User Behaviour

The major modification in the behavioral dynamics of users under the HTTP/2 proto-

col stems from the ability to send multiple requests simultaneously in a single TCP

connection. In particular, the following observations can be made regarding the use of

multiplexing.

• When users issue a base request, the browser automatically sends the associated

inline requests as well. In the HTTP/2 protocol, all these requests can be multi-

plexed and issued simultaneously. Thus, in a legitimate scenario, a multiplexed

set of requests invariably consists of a base requests and/or its associated inline

requests.

• Most (but not necessarily all) of the inline requests are sent by users, but this

behaviour is notably absent in the case of AL-DDoS attacks. Attack clients may

specifically target base requests alone, or may send inline requests haphazardly.

5.3.1.2 Model Expansion

In order to incorporate these features, the annotated PTA described in Section 4.5 is

modified and is now represented as A = (B, I, sinit, C,W,E, F, ρ,Φ, α). It can be

101

5. Asymmetric AL-DDoS Attacks on HTTP/2 Servers

Algorithm 5 Learning Phase for HTTP/2 Attack Detection
Input: I+, a training set of per-session request sequences
Output: Annotated Probabilistic Timed Automata (PTA)

1: Initialize pta = (S, sinit, C,W,E, F, ρ, α) = φ
2: while LEARNING do
3: I = ReadLine(I+)
4: curr state← ExtractState(I)
5: if curr state is not a base state then
6: if curr state /∈ α[prev state] then
7: a← CreateAssociation(prev state, curr state)
8: α← α ∪ a
9: else

10: UpdateAssociation(prev state, curr state)
11: end if
12: else
13: if curr state is initial state then
14: sinit ← curr state
15: end if
16: if curr state is final state then
17: F ← F ∪ curr state
18: end if
19: if curr state /∈ S then
20: S ← S ∪ curr state
21: w ← ExtractPriority(curr state)
22: W ← W ∪ (curr state, w)
23: end if
24: if (prev state, curr state) /∈ E then
25: think time← ExtractThinkT ime(curr state, prev state)
26: t← CreateTransition(prev state, curr state, think time)
27: E ← E ∪ t
28: else
29: t← ExtractTransition(prev state, curr state)
30: UpdateTransition(ρ, t)
31: end if
32: prev state← curr state
33: end if
34: end while
35: θ ← GetThreshold(pta)

102

5.3. Detection of Asymmetric Attacks on HTTP/2 Servers

noted that the set of states S in the earlier model has now been segregated into two sets

- B and I . B is the set of base states in our model, where each state represents a base

URL in the web application. I is the set of inline states in our model, where each state

represents an inline URL in the web application.

The other modification made to the model is the inclusion of a new association

function α. The association function is defined as α : B → (I → [0, 1]), and maps

every base state B in the model to a fuzzy set described by the function I → [0, 1].

Every base state is associated with multiple inline requests which are fired automatically

when the base request is made. Due to caching and other network discrepancies, not

all of these inline requests are made every time and some requests are more likely to be

made than others. This is represented by the fuzzy set I → [0, 1]. α essentially maps a

base state to a fuzzy set describing its inline requests.

Ab = {(y, µy)|y is an inline request associated with base request b} (5.12)

where µy is the degree of inclusion of y in Ab. This degree of inclusion is essentially

the conditional probability of observing the request y given that a request to b has been

observed.

µy =
P (y ∧ b)
P (b)

(5.13)

where P (y∧b) represents the probability of y and b occurring together. A diagrammatic

representation of the annotated PTA after modification is given in Figure 5.10.

5.3.1.3 Suspicion Score Assignment for Detecting Malicious Clients

The suspicion score assignment mechanism described in Section 4.5.1.3 can more or

less be used for the HTTP/2 protocol as well. However, in the case of an inline request,

such an approach is inadequate. This is because inline requests do not follow a fixed

sequence as they are requested by the browser and not the user. However, we can still

identify certain features which can be used to identify malicious behaviour for inline

requests.

• Association Probability: Association probability of an inline request with respect

to a base request denotes the probability with which the inline request is sent

following the base request. Attack scripts tend to be ignorant of which inline

103

5. Asymmetric AL-DDoS Attacks on HTTP/2 Servers

Figure 5.10: Diagrammatic Representation of the modified annotated PTA

resources are associated with a base page, and hence end up requesting random

inline resources. This behaviour can be penalized by including a parameter re-

lated to association probability in the calculation of suspicion score. This value

is essentially the conditional probability of observing an inline request i given a

base request b (P (i|b)).

• Set Completion: Set completion denotes how many of the inline requests associ-

ated with the base request have actually been requested. This feature is important

because legitimate users typically request a fair amount of inline resources asso-

ciated with a base page, but attack scripts typically ignore these requests.

• State Workload: Similar to a base request, we incorporate a measure of state

workload in computing the suspicion score for an inline request as well. How-

ever, it must be noted that most of the inline requests have a relatively low com-

putational requirements, so this term will likely be set to 1 in all cases.

The association set for a base request is maintained as a fuzzy set, where the set con-

sists of all the inline requests associated with the state and the probability that they are

104

5.3. Detection of Asymmetric Attacks on HTTP/2 Servers

requested. This constitutes the learned model of the fuzzy set, A. For a particular in-

stance, let B represent the actual set of inline resources that were requested. Obviously,

B will be a crisp set, defined as follows:

bi =

1, if the ith inline resource is requested

0, otherwise

Then, the probability of set completion can be defined as the conditional probability of

observing the crisp set B given that the underlying distribution corresponds to state A.

Psetcompletion = P (B|A) (5.14)

=

∑n
i=1min(ai, bi)∑n

i=1 ai
(5.15)

We define the change in suspicion score as:

SSincrement = (
∑

(1− P (i|b)).w)(1− Psetcompletion) (5.16)

Algorithm 5 describes the learning phase for HTTP/2 attack detection in pseu-

docode.

5.3.2 Detection Phase

The attack detection phase for the HTTP/2 protocol works essentially the same as that

for HTTP/1.1. The system acts as a reverse proxy to intercept incoming requests. The

incoming connections are assigned a Suspicion Score value as described in Section

5.3.1.3. If the suspicion score for a connection exceeds the threshold, then the con-

nection is blocked. A pseudocode describing the detection phase is given in Algorithm

6.

5.3.3 Experimental Study

Datasets Used: There are no publicly available datasets for the HTTP/2 protocol. So,

in order to evaluate our detection mechanism, we converted openly available SDSC-

HTTP and CLARKNET-HTTP datasets to resemble HTTP/2 traces. A comparison of

HTTP/1.1 and HTTP/2 traces reveal that there is not much difference between the two.

The major difference arises in the case of the timing between a base request and its

associated inline requests. In the case of HTTP/1.1, there is a small time delay between

the base requests and subsequent inline requests, which is absent in HTTP/2.

105

5. Asymmetric AL-DDoS Attacks on HTTP/2 Servers

Algorithm 6 HTTP/2 Attack Detection Phase
Input: Request R, PTA, Threshold θ
Output: Decision (blocked or allowed)

1: updatetraces← φ
2: while True do
3: Input new requestR
4: curr state← ExtractState(R)
5: w ← ExtractPriority(curr state)
6: if curr state is not a base state then
7: a← ExtractAssociation(prev state, curr state)
8: ssincrement ← ssincrement + ((1− α(a)) ∗ w)
9: setcompletion← setcompletion+ α(a)

10: else
11: assoc sum← 0.0
12: for all assoc in α(prev state) do
13: assoc sum← assoc sum+ α(assoc)
14: end for
15: SS ← SS + ssincrement ∗ (1− setcompletion

assoc sum
)

16: ssincrement ← 0.0
17: setcompletion← 0.0
18: think time← ExtractThinkT ime(prev state, curr state)
19: if (prev state, curr state) ∈ E then
20: t← ExtractTransition(prev state, curr state)
21: ptrans ← ρ(t)
22: pthink ← GetThinkT imeProbability(t, think time)
23: else
24: ptrans ← 0.0
25: pthink ← 0.0
26: end if
27: ss← (1− ptrans ∗ pthink) ∗ w
28: SS ← SS + ss
29: end if
30: if SS ≥ θ then
31: The connection may be filtered
32: updatetraces← updatetraces−R
33: else
34: The connection can be forwarded to the server
35: end if
36: if SS ≤ θupdate then
37: updatetraces← updatetraces ∪R
38: end if
39: prev state← curr state
40: if Update Condition is met then
41: Update(pta, updatetraces)
42: end if
43: end while

106

5.3. Detection of Asymmetric Attacks on HTTP/2 Servers

Training and Testing Data: After converting the available logs to HTTP/2, we di-

vided the logs into training and testing data based on an 80-20 split. Logs corresponding

to attacks were generated using Python scripts. While generating attacks, we consider

two different classes of attacks - multiplexed and non-multiplexed. Non-multiplexed

attacks are those where the degree of multiplexing is assumed to be one. These attacks

resemble the attacks generated using the HTTP/1.1 protocol. Multiplexed attacks uti-

lize the feature of multiplexing in HTTP/2 and send multiple requests simultaneously

along single TCP connection. While generating the attack logs for multiplexed attacks,

two important parameters were considered:

• Type of Request: Based on the type of requests used to launch the attack, we

generated traces corresponding to two attacks. The first attack is a Random Mul-

tiplexed attack, where we randomly selected requests to use in the attack. The

second attack uses only high workload requests, and is the Multiplexed Asym-

metric attack.

• Degree of Multiplexing: As the degree of multiplexing increases, the potency

of the attack also increases. We have generated attack logs with three different

degrees of multiplexing - 10,50 and 100.

Table 5.2: Types of Non-Multiplexed Attacks Generated for Testing

Attack
Code Attack Type Request

Type
Request

Workload
No. of
URLs

Request
Sequence

A1 Random Flood Base Any Multiple Random
A2 Single URL Flood Base Any Single Fixed
A3 Random Asymmetric Base High Multiple Random
A4 Single URL Asymmetric Base High Single Fixed
A5 Botnet based Attack Base Any Multiple Fixed
A6 Inline Flood Inline Low Single Fixed
A7 Random Inline Flood Inline Low Multiple Random
A8 Inline Bot Inline Low Multiple Fixed
A9 Combined Random Flood Base + Inline Any Multiple Random
A10 Combined Bot Attack Base + Inline Any Multiple Fixed

A summary of non-multiplexed attacks generated for testing are given in Table 5.2

and the details of multiplexed attacks generated are given in Table 5.3.

107

5. Asymmetric AL-DDoS Attacks on HTTP/2 Servers

Table 5.3: Types of Multiplexed Attacks Generated for Testing

Attack
Code Attack Strategy Request

Type
Request

Workload
No. of
URLs

Degree of
Multiplexing

M1 Baseline Attack Base + Inline Any Multiple 10
M2 Baseline Attack Base + Inline Any Multiple 20
M3 Baseline Attack Base + Inline Any Multiple 30
M4 Baseline Attack Base + Inline Any Multiple 50

M5
Random
Multiplexed Attack Base Any Single 10

M6
Random
Multiplexed Attack Base Any Single 50

M7
Random
Multiplexed Attack Base Any Single 100

M8
Multiplexed
Asymmetric Attack Base High Single 10

M9
Multiplexed
Asymmetric Attack Base High Single 50

M10
Multiplexed
Asymmetric Attack Base High Single 100

There are 10 non-multiplexed attacks generated. The first attack generated is a

random flood, which randomly sends requests to a web server. The second attack gen-

erated is the Single URL flood, which is the most common flooding attack. Instead

of randomly selecting from the available URLs, it sends repeated requests to a single

URL. This is one of the most common forms of DDoS attack in practice. Attacks A3

and A4 replicate these same attacks (A1 and A2) but with asymmetric attacks. Attack

A3 is a random asymmetric attack and A4 is a single URL asymmetric attack. Attack

A5 is another popular attack variation wherein the attacker follows a predefined script.

This attack, which we call a Botnet based attack due to its use in botnets, creates an

attack script by randomly selecting a set of URLs. Once the script is generated, then

the attacking connections repeatedly send requests to all the URLs in the script in the

same order. Thus, the sequence of requests generated keeps repeating itself at regular

intervals. Attack A6 is a single URL flood using inline requests, and A7 is a random

flood using inline requests. Attack A8 recreates a botnet-based attack using only inline

requests. Attack A9 is a random flood attack using both base and inline requests, and

attack A10 is a botnet-based attack using both base and inline requests.

108

5.3. Detection of Asymmetric Attacks on HTTP/2 Servers

The multiplexed attacks generated can be broadly grouped into three classes - base-

line attack, random multiplexed attack and multiplexed asymmetric attack. The pre-

dominant feature used in the detection of multiplexed attacks in HTTP/2 is the validity

of the bundled set of requests. In other words, HTTP/2 allows certain set of requests to

be bundled together (such as a base request and its associated inline requests). A base-

line attack uses valid bundles of HTTP/2 requests to launch a flooding attack. Attacks

M1-M4 are baseline attacks under different degrees of multiplexing. Attacks M5-M7

are Random Multiplexed attacks, wherein random base requests are multiplexed into a

single connection and launched as an attack. Attacks M8-M10 are multiplexed asym-

metric attacks, which simultaneously launch multiple high workload requests in a single

TCP connection.

These attack logs are combined with legitimate HTTP/2 logs to constitute the testing

dataset. A prototype of the system is implemented in the Go programming language.

The training dataset is used as input in the Learning phase of the system. During the

detection phase, the testing logs are utilized to test the efficiency of the detection mech-

anism.

5.3.3.1 Results and Discussion

A detailed description and analysis of our proposed approach for detecting asymmetric

attacks using the HTTP/2 protocol is given in the following paragraphs. As HTTP/2 is

a relatively new field of research, there are no other research works which address the

issue of asymmetric AL-DDoS attacks on HTTP/2 servers, and hence, we are unable to

present a comparison as in the case of HTTP/1.1.

Validity of the Proposed Approach: The proposed approach for detecting attacks

on the HTTP/2 protocol works by assigning suspicion scores for incoming connections.

The approach is fundamentally similar to that for the HTTP/1.1 protocol, with the as-

sumption being that malicious connections will have a comparatively higher value of

suspicion score than legitimate requests. Figure 5.11 confirms this assumption in the

case of HTTP/2 connections. Compared to the HTTP/1.1 protocol, there is a much

greater separation between legitimate and malicious connection, with the malicious

109

5. Asymmetric AL-DDoS Attacks on HTTP/2 Servers

connections incurring a suspicion score more than 400.

Figure 5.11: Suspicion Score Distribution

Performance of the Detection Mechanism: In the case of non-multiplexed attacks,

the system essentially behaves similar to the detection mechanism for HTTP/1.1 with

one significant advantage. The inclusion of inline requests into the model allows the

system to detect a wider variety of AL-DDoS attacks rather than just asymmetric at-

tacks. A number of flooding attacks, including those generated by using only inline

requests, can now be effectively detected by the system. Table 5.4 gives the overall

performance of the system and Table 5.5 gives a more detailed description of how the

system performs for different classes of attacks.

Table 5.4: Performance Overview of Attack Detection Module

Parameter SDSC-HTTP CLARKNET-HTTP
Detection Rate 99.5% 99.7%
False Positive Rate (FPR) 0.001% 0.002%
False Negative Rate (FNR) 0.002% 0.003%
Precision 100% 99.93%
F1 Measure 0.9989 0.9981

110

5.3. Detection of Asymmetric Attacks on HTTP/2 Servers

Table 5.5: Attack-wise Performance of Attack Detection Module

Attack Type Detection Rate (%)
SDSC CLARKNET

Random URL Flood 100 100
Single URL Flood 98 91
Random Asymmetric Attack 100 100
Single URL Asymmetric 98.17 100
Bot Attack 100 100
Inline Flood 100 100
Random Inline Flood 100 100
Inline Bot 100 100
Combined Random Flood 100 100
Combined Bot Attack 100 100

Prioritized Detection: Figure 5.12 depicts the average detection latency for different

classes of non-multiplexed attacks. This is similar to that with the HTTP/1.1 protocol,

with the asymmetric attacks (A3 and A4) being identified considerably faster compared

to the other attacks.

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10
0

20

40

60

80

100

120

D
et

ec
tio

n
L

at
en

cy
in

N
um

be
ro

fR
eq

ue
st

s

Figure 5.12: Detection Latency

This concept of prioritized detection is even more important in the case of multi-

plexed attacks. Since HTTP/2 allows multiple requests to be executed simultaneously

at the server, it is essential that invalid bundles of requests be blocked from execut-

ing simultaneously. Figure 5.13 depicts the average detection latency for multiplexed

111

5. Asymmetric AL-DDoS Attacks on HTTP/2 Servers

attacks. It can be observed that attacks M1-M4 are executed using valid bundles of re-

quests (a base request and its associated inline requests) and hence take longer to detect

because they are legal under the HTTP/2 protocol. Attacks M5-M7 are Random Multi-

plexed attacks, wherein random base requests are multiplexed into a single connection

and launched as an attack. These attacks are detected extremely quickly because they

represent a departure from the intended use of multiplexing. Attacks M8-M10 are mul-

tiplexed asymmetric attacks, which are detected even faster than random multiplexed

attacks. It can also be noted that as the degree of multiplexing increases, the associated

detection latency decreases, which is extremely prudent.

0 10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

6

7

Degree of Multiplexing

D
et

ec
tio

n
L

at
en

cy
(N

o.
of

R
eq

ue
st

s)

Baseline Attack
Random Multiplexed Asymmetric Attack

Multiplexed Asymmetric Attack

Figure 5.13: Detection Latency for Multiplexed AL-DDoS attacks using the HTTP/2
protocol

5.4 SUMMARY

The introduction of HTTP/2 has led to a dramatic decrease in page load times and

has considerably improved user experience. However, it has also faced criticism due

to the fact that it adds additional load at the server side, making them vulnerable to

DDoS attacks. In this chapter, we compared the performance of HTTP/1.1 and HTTP/2

servers under an asymmetric AL-DDoS attack of the same load. Contrary to the crit-

icism, an HTTP/2 server actually outperforms an HTTP/1.1 server due to the numer-

ous performance enhancing features built into it. However, despite the increased re-

silience, the newly introduced features of multiplexing and server push can be misused

112

5.4. Summary

to launch sophisticated AL-DDoS attacks against HTTP/2 servers. We proposed an at-

tack called Multiplexed Asymmetric attack which misuses the multiplexing feature, and

also demonstrated that this attack can exhaust server resources with very few attacking

clients. In order to detect these attacks, our proposed model of user behaviour was ex-

tended to include HTTP/2 specific features. Experiments on public datasets reveal that

the modifications made to our model and detection approach can detect Multiplexed

Asymmetric attacks efficiently. In addition, the modifications also allow for the detec-

tion of other HTTP/2 based AL-DDoS attacks.

113

CHAPTER 6

EARLY DETECTION OF AL-DDOS ATTACKS

A consistent theme in all existing research works on DDoS attacks is the effort to de-

tect attacks as early as possible. Early detection of DDoS attacks prevents damage to

the web server, prevents service degradation and maintains the availability of the web

application. The use of more sophisticated features, global statistics and collaborative

knowledge can aid in the early DDoS of network layer DDoS attacks to a considerable

extent. However, these approaches cannot be replicated as such to detect AL-DDoS

attacks due to the fundamental differences between the two classes of attacks. Nev-

ertheless, even AL-DDoS attacks display a considerable amount of similarity, and the

same can be exploited in order to enable early detection of these attacks. In this chapter,

we endeavour to develop an Early Detection Module (EDM) for AL-DDoS attacks by

exploiting the similarity in AL-DDoS traffic. In particular, our approach for early de-

tection is not dependent on the anomaly detection technique used to detect AL-DDoS

attacks, but is a stand-alone module that can be deployed alongside any AL-DDoS de-

tection module.

6.1 SIMILARITY IN DDOS TRAFFIC

DDoS attacks are generated by bots using a common script supplied by the attacker

through the C&C server. This means that all the attacking clients in a DDoS attack will

follow the same script, and hence generate similar attack traffic (Yu et al. 2011). This

behaviour lends a considerable amount of similarity between attack traffic generated by

115

6. Early Detection of AL-DDoS Attacks

malicious clients. In particular, we observe two kinds of similarity:

• Temporal Similarity, which indicates a common pattern repeating periodically

within a single connection, and

• Spatial Similarity, which denotes the fact that the same pattern repeats across

multiple (possibly all) malicious connections

The presence of temporal similarity has been used in DDoS detection considerably.

Entropy of the traffic stream is a good indicator of temporal similarity, and can serve as

a good indicator of attack for network layer DDoS attacks and some variations of HTTP

floods. Spatial similarity on the other hand, can aid in detecting DDoS attacks early by

using dynamic signature based detection mechanisms (Katkar and Bhirud 2012; Laskar

and Mishra 2016; Networks 2019). Dynamic signature based approaches for DDoS

attacks usually have both anomaly detection units and signature detection units. The

signature database starts out empty, and any incoming attack has to be solely detected

by the anomaly detection unit. Once the anomaly detection unit detects an attack, the

system extracts a signature to represent that attack and populates the signature database.

Subsequent instances of the same attack can be detected using a signature based ap-

proach, which significantly speeds up the detection process, and allows attacks to be

detected much earlier. For example, a UDP flood attack targetting a web server con-

sists of a large number of UDP packets coming to a web server. A DDoS detection

mechanism could initially identify the attack by observing the deterioration in server

performance, and start rate limiting on the incoming traffic. Then, the behavioural

DDoS detection mechanism generates an attack signature to help throttle the attack. If

the behavioural detection mechanism identifies that all incoming UDP packets have the

same combination of flags and packet size, this information is encapsulated into the

form of a dynamic signature. Further instances of the attack can be blocked efficiently

by filtering for this signature.

The choice of the signature (which is the repeating pattern) is crucial and depends

on the type of attack. The signature could consist of a particular IP header field value or

the request inter-arrival duration in the case of network layer DDoS attacks. Since AL-

116

6.1. Similarity in DDoS Traffic

DDoS attacks are executed using legitimate HTTP requests, the attack signature must

be crafted using features at the application layer. However, the use of HTTP header

fields as attack signatures results in a significant false positive rate. Additionally, most

of the existing AL-DDoS generation tools are capable of randomizing HTTP header

fields, which makes it infeasible to use them as signatures. Despite randomizing header

fields, a significant proportion of AL-DDoS attacks still use a fixed sequence of URLs

to launch attacks, which raises the possibility of using request sequences as dynamic

signatures int the case of AL-DDoS attacks.

AL-DDoS attacks are generated by scripts which specify a list of URLs to be at-

tacked in the target web application. All the zombies in the botnet then proceed to re-

quest these URLs repeatedly for a pre-determined duration. This means that AL-DDoS

attacks consist of a set of URLs that keep repeating periodically (Bukac and Matyas

2015), which can be used as an attack signature. Some botnets such as Blackenergy

only send repeated requests to a single URL (Nazario 2007), while more sophisticated

botnets such as DirtJumper and Yoddos support multiple target URLs (Liao et al. 2015;

Welzel et al. 2014). In both cases, the use of the repeating request pattern as an attack

signature allows the system to detect malicious clients early.

6.1.1 Request Patterns as Dynamic Signatures

Consider a request sequence abcdabcdabcdabcd... that is received by a web application.

The request sequence is intercepted by our AL-DDoS detection mechanism, and the

sequence is cumulatively assigned a suspicion score. Suppose that the suspicion score

corresponding to the request sequence exceeded the threshold value θ after 10 iterations

of abcd, i.e. after 40 requests. Our AL-DDoS detection mechanism identifies this

connection as malicious and blocks it. The temporal similarity of AL-DDoS attacks

dictates that there is a high probability that other attacking connections will also send

a request sequence in the same manner, i.e. a sequence consisting of abcd repeated

multiple times. Since our detection mechanism assigns suspicion score values based

only on the sequence of requests encountered, any subsequent connection would also

be blocked after 10 iterations of abcd or after 40 requests.

117

6. Early Detection of AL-DDoS Attacks

However, if we combine the knowledge that a sequence abcdabcdabcdabcd... has

previously been marked as malicious, we could potentially detect subsequent attacks

faster. For this, we use the repeating pattern in the malicious request sequence as a

dynamic signature. In this case, abcdwould serve as the signature. The rationale behind

early detection is that whenever an attack signature is detected in incoming connections,

the suspicion score is increased more than normal. This is accomplished by generating

a multiplier value in addition to a suspicion score value. The value of the multiplier

is 1 in normal cases, but when an attack signature is encountered, it is set to a value

m,m > 1. This allows for a faster increase in suspicion score values for connections

containing attack signatures. This allows connections containing attack signatures to

be blocked faster than usual, leading to the early detection of subsequent attacks. It

is worth noting that the use of an EDM only affects the detection latency. All other

performance parameters such as detection rate, precision, FPR and FNR of the ADM

remain the same.

In our architecture, an Early Detection Module (EDM) is responsible for extracting

attack signatures from malicious request sequences, maintaining a dictionary of attack

signatures efficiently and generating multiplier values. Our AL-DDoS detection mod-

ule operates as usual, assigning suspicion scores to incoming connections. The only

difference is that the generated suspicion score is multiplied by the multiplier value

generated by the EDM, and the fact that newly identified malicious request sequences

are forwarded to the EDM. Another interesting fact is that the EDM is not dependent

on our AL-DDoS detection algorithm, so it can be used with any AL-DDoS detection

mechanism. Thus, we refer to the AL-DDoS detection mechanism in a generalized

sense and represent it as an Anomaly Detection Module (ADM). A high level overview

of how an our Anomaly Detection Module (ADM) integrates with the Early Detection

Module (EDM) is shown in Figure 6.1.

6.2 EARLY DDOS DETECTION USING REQUEST PATTERNS AS SIGNA-
TURES

In this section, we present the detailed working of our Early DDoS detection module

(EDM). The EDM is an add-on module that can be used along with any Anomaly based

118

6.2. Early DDoS Detection using Request Patterns as Signatures

Figure 6.1: Integration of EDM with an existing ADM

Application Layer DDoS detection module (ADM) and enables early detection of at-

tacks by using request patterns as dynamic signatures.

6.2.1 Architecture

The architecture of the EDM is depicted in Figure 6.2. A detailed description of the

individual modules are presented below.

• String Minimization Module: As soon as a particular sequence of requests is iden-

tified as malicious, the EDM reduces it to its smallest repeating unit, which we

call the request pattern. This is done using a modification of the Knuth-Morris-

Pratt (KMP) algorithm. The request pattern is eventually stored in the Malicious

Pattern Dictionary and the Bloom Filter Array.

• Malicious Pattern Dictionary (MPD): The Malicious Pattern Dictionary (MPD)

stores the identified malicious request patterns. In order to ensure that the size of

the MPD remains within bounds, only a hashed version of the request pattern is

stored. The hash function used needs to have high collision resistance to avoid

two patterns mapping to the same location, which could lead to false positives. In

our implementation, we have chosen the FNV1-a hash function due to its collision

resistance.

• Bloom Filter Array (BFA): Searching the MPD for every request pattern is com-

putationally expensive with a complexity of O(log n) per access where n is the

119

6. Early Detection of AL-DDoS Attacks

Figure 6.2: Architecture of the EDM

120

6.2. Early DDoS Detection using Request Patterns as Signatures

number of malicious request patterns in the MPD. This accumulates over time

and creates a significant overhead. In order to avoid this overhead, the request

patterns are also stored in a Bloom Filter Array (BFA). The use of a BFA allows

to test for the non-inclusion of patterns in constant time. This is especially use-

ful since majority of the request sequences are likely to be benign. The EDM

maintains a separate bloom filter for different lengths of the malicious request

patterns. Thus the maximum number of bloom filters used will be Lmax − Lmin

where Lmax and Lmin are the maximum and minimum lengths of the malicious

request patterns encountered by the system. However, a BFA cannot confirm the

existence of a pattern as malicious since it is prone to false positives. A second

level of deterministic verification is required by checking in the MPD. Since ev-

ery access is checked with the BFA, the hash function used in the Bloom Filters

should be computationally inexpensive. In our implementation, we have used

Murmur3 hash function for implementing the BFA.

6.2.2 Working

The EDM consists of two workflows that operate in parallel. The first workflow is

concerned with adding malicious patterns to the MPD. This workflow is initiated by

the ADM whenever it detects a previously unknown attack. The ADM forwards the

malicious request sequence detected to the EDM. The string minimization module ex-

tracts the repeating pattern from the request sequence and stores it in the BFA and the

malicious pattern dictionary. This ends the first workflow.

The second workflow operates continuously by inspecting the stream of requests

for malicious patterns. A windowing mechanism is employed to extract patterns from

the incoming request stream, and the extracted substring is checked for being mali-

cious. The first stage of checking is performed using the BFA. If the BFA confirms that

the substring is not malicious, then the examination is abandoned and the substring is

deemed to be benign. However, if the BFA sends a positive response, the substring is

checked for inclusion in the MPD using a search algorithm. If the substring is present

in the MPD, then the substring is malicious. In this case, the EDM sends a value to

121

6. Early Detection of AL-DDoS Attacks

the ADM indicating that the request stream contains a malicious signature. The ADM

can now choose to block the connection immediately, although this approach could lead

to false positives. A better approach would be for the ADM to continue with anomaly

detection while maintaining an anomaly score based on the value sent. The value of the

anomaly score can be manipulated based on the input from the EDM to block malicious

connections faster. This allows the EDM to function independently of the mechanism

used in the ADM, making it independent of the firewall. Algorithm 7 describes the

proposed detection mechanism with early detection incorporated. Algorithms 8 and 9

describe the functions AddMaliciousPatter and EarlyDetection used in Algorithm

7 respectively.

Table 6.1: Types of Attack Generated

Attack
Code Attack Type Request

Type
Request

Workload
No. of URLs

(Single/Multiple)
A1 Random Flood Base Any Multiple
A2 Single URL flood Base Any Single
A3 Random Asymmetric Base High Multiple
A4 Single URL Asymmetric Base High Single
A5 Botnet based Attack Base Any Multiple
A6 Inline Flood Inline Low Single
A7 Random Inline Flood Inline Low Multiple
A8 Inline Botnet Inline Low Multiple
A9 Combined Random Flood Base + Inline Any Multiple
A10 Combined Bot Attack Base + Inline Any Multiple

6.3 EXPERIMENTAL STUDY

A prototype of the proposed system was developed using the Go programming language

and deployed on a Dell Optiplex machine with 16 GB RAM running Ubunut 16.04. In

order to test the efficiency of the system we used the EDM in combination with our

asymmetric AL-DDoS detection mechanism.

6.3.1 Experimental Setup

There are no attack generation tools which can generate asymmetric attacks on web

applications. Due to this reason, we generated our own attack traces based on the traces

available online. While generating attack vectors, we tried to include different varieties

122

6.3. Experimental Study

Algorithm 7 Detection Algorithm with Early Detection
Input: Request R, PTA, Threshold θ
Output: Decision (blocked or allowed)

1: updatetraces← φ
2: BFA← φ
3: while True do
4: Input new request R
5: RequestHistory ← RequestHistory +R
6: curr state← ExtractState(R)
7: w ← ExtractPriority(s)
8: think time← ExtractThinkT ime(prev state, curr state)
9: if (prev state, curr state) ∈ E then

10: t← ExtractTransition(prev state, curr state)
11: ptrans ← ρ(t)
12: pthink = GetThinkT imeProbability(t, think time)
13: else
14: ptrans = 0.0
15: pthink = 0.0
16: end if
17: multiplier ← EarlyDetection(RequestHistory)
18: ss← multiplier ∗ ((1− ptrans ∗ pthink) ∗ w)
19: SS = SS + ss
20: if SS ≥ θ then
21: The connection may be filtered
22: AddMaliciousPattern(RequestHistory)
23: updatetraces← updatetraces−R
24: else
25: The connection can be forwarded to the server
26: end if
27: if SS ≤ θupdate then
28: updatetraces← updatetraces ∪R
29: end if
30: prev state← curr state
31: if Update Condition is met then
32: Update(pta, updatetraces)
33: end if
34: end while

123

6. Early Detection of AL-DDoS Attacks

Algorithm 8 Function for Storing Detected Malicious Patterns
1: function AddMaliciousPattern(RequestHistory)
2: signature← Reduce KMP (RequestHistory)
3: size← GetSize(signature)
4: if BFA == φ then
5: BFA.MaxSize← size
6: BFA.MinSize← size
7: else if BFA.MinSize > size then
8: BFA.MinSize← size
9: else if BFA.MaxSize < size then

10: BFA.MaxSize← size
11: end if
12: BFA[size]← BFA[size] ∪ signature
13: end function

Algorithm 9 Function for Checking the presence of Attack Signatures
Input: Request R, PTA, Threshold θ
Output: Decision (blocked or allowed)

1: function EarlyDetection(RequestHistory)
2: for BFA.MinSize ≤ size ≤ BFA.MaxSize do
3: for i ∈ [1, GetSize(RequestHistory)− size] do
4: pattern← RequestHistory[i..i+ size]
5: if pattern ∈ BFA[size] then return Multiplier[pattern]
6: end if
7: end for
8: end for

return 1
9: end function

124

6.3. Experimental Study

of attacks. A number of DDoS attacks target a single URL such as login pages. Such

attacks are relatively easy to execute, but can be detected easily. The other strategy

used by attackers is to use multiple URLs is a predefined sequence to evade detection.

This attack requires knowledge about the structure of the web application, and hence

requires more effort. However, the attacker is rewarded in the sense that such attacks are

usually more difficult to detect. In addition to these two attack patterns, we introduce

some more variations of attacks. Instead of treating all requests as the same, we made

the following groupings:

• Base and Inline Requests: A web page is completely rendered only by the base

HTML web page along with its constituent inline requests such as requests for

image or CSS files. DDoS attacks can be carried out using either of the two types

of requests, but attacks using base requests tend to be more effective (Ranjan et al.

2009).

• Request Workload: Every web request generates some amount of processing at

the server side, or utilizes some server resources. Requests such as search queries

require a larger amount of processing because they involve complicated joins and

database searches. We call such queries high workload requests. High workload

requests are used exclusively to launch asymmetric attacks.

In order to test the effectiveness of the proposed detection mechanism, a total of five

different kinds of attacks were generated. The first attack (A1) generated is a random

flood, which randomly sends base requests to a web server. The second attack (A2) gen-

erated is the Single URL flood, which is the most common flooding attack. Instead of

randomly selecting from the available URLs, it sends repeated requests to a single base

URL. This is one of the most common forms of DDoS attack in practice. Attacks A3

and A4 replicate these same attacks (A1 and A2) but with asymmetric attacks. Attack

A3 is a random asymmetric attack and A4 is a single URL asymmetric attack. Attack

A5 is another popular attack variation wherein the attacker follows a predefined script.

This attack, which we call a Botnet based attack due to its use in botnets, creates an

attack script by randomly selecting a set of URLs. Once the script is generated, then

125

6. Early Detection of AL-DDoS Attacks

the attacking connections repeatedly send requests to all the URLs in the script in the

same order. Thus, the sequence of requests generated keeps repeating itself at regular

intervals. The attacks discussed so far (A1-A5) specifically target base requests. At-

tacks A6-A9, on the other hand are specifically oriented at inline requests. Attack A6 is

a single URL inline flood, while A7 generates a random inline flood. Attack A8 repli-

cates a botnet based attack using only inline requests. Attack A9 uses both base and

inline requests to launch a random flood attack, while attack A10 presents a sophisti-

cated botnet based attack, which uses both base and inline requests. The details of the

attacks generated are given in Table 6.1.

6.3.2 Effect of EDM on Detection Latency

Figures 6.3 and 6.4 illustrate how the average detection latency changes in the presence

of the EDM. It can be clearly observed that in almost all cases, the use of an EDM causes

a significant decrease in the average detection latency. The decrease in detection latency

is directly related to the multiplier value generated by the EDM. In our experiments, we

tested two schemes for generating the multiplier values.

• Static Multiplier EDM : Using the static multiplier scheme, the multiplier value

generated by the EDM is a constant. In our experiments we have set the value

to 5. In such a scheme, the value of the multiplier only represents whether a

malicious pattern was identified in the incoming connection or not.

• Dynamic Multiplier EDM : A dynamic multiplier value tries to incorporate more

global information, rather than just the presence or absence of a malicious pat-

tern. In a dynamic multiplier scheme, every malicious pattern generates a distinct

multiplier value based on the number of times it has been observed so far. This

allows for the detection latency of attacks to be reduced considerably.

Figures 6.3 and 6.4 show that the decrease in detection latency is considerably more

when a dynamic multiplier EDM is used. It is worth noting that the introduction of the

EDM does not affect the detection rate and false positive rate of the detection mecha-

nism in any way. It only enables the detection mechanism to detect AL-DDoS attacks

126

6.3. Experimental Study

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10
0

10

20

30

40

50

60

D
et

ec
tio

n
L

at
en

cy
in

N
um

be
ro

fR
eq

ue
st

s
ADM Only
Static Multiplier EDM
Dynamic Multiplier EDM

Figure 6.3: SDSC Detection Latency

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10
0

20

40

60

80

100

120

D
et

ec
tio

n
L

at
en

cy
in

N
um

be
ro

fR
eq

ue
st

s

ADM Only
Static Multiplier EDM
Dynamic Multiplier EDM

Figure 6.4: CLARKNET Detection Latency

127

6. Early Detection of AL-DDoS Attacks

early. It has to be noted that in the case of some attacks (A1,A3,A7,A8 and A9), the in-

troduction of the EDM is unable to reduces the detection latency. This is due to the fact

that these attacks are randomized attacks, and hence, there are no identifiable repeating

patterns in these attack streams.

6.4 SUMMARY

The early detection of DDoS attacks has been a prominent research topic for years.

Although there are a number of approaches proposed for the early detection of network

layer DDoS attacks, these approaches cannot be extended easily to AL-DDoS attacks.

In this chapter, we explain how the presence of repeating request patterns in AL-DDoS

attacks can be used to detect these attacks faster. We provide a dynamic signature

based approach using request patterns as signatures to enable the early detection of AL-

DDoS attacks. Experiments on public datasets demonstrate that the use of an EDM

can significantly reduce the detection latency for AL-DDoS attacks. In addition, the

proposed approach is firewall agnostic, which means that it can be used in combination

with any existing AL-DDoS detection approach or firewall to enable early detection.

128

CHAPTER 7

CONCLUSIONS AND FUTURE SCOPE

Detection of asymmetric AL-DDoS attacks against web applications is a daunting task.

The use of legitimate requests, low attack volume, and similarity to legitimate user

traffic make it extremely difficult to detect these attacks. A survey of existing litera-

ture related to asymmetric AL-DDoS attacks reveal that most of the existing detection

mechanisms use indirect representations of user behaviour and complex modelling tech-

niques, which leads to a larger false positive rate and longer detection times. They are

also unable to adapt to changing user behaviour which further increases the false posi-

tive rate. These features indicate that existing detection mechanisms are not suited for

real time use. In this work, a lightweight and incrementally updating model based on

a Probabilistic Timed Automata (PTA) is used to model user behaviour, along with a

fast detection mechanism for identifying anomalous clients. Experiments conducted on

publicly available datasets confirm that the proposed approach is able to detect asym-

metric AL-DDoS attacks faster compared to existing approaches, and is also compara-

tively lightweight, making it suitable for real time use.

The introduction of the HTTP/2 protocol adds additional complexity to the problem

of asymmetric AL-DDoS detection. Since HTTP/2 retains most of the semantics of the

HTTP/1.1 protocol, the proposed approach can easily be extended to cover attacks gen-

erated using the HTTP/2 protocol as well. However, our investigation into the newly

introduced features of the HTTP/2 protocol reveal that attackers can launch potentially

lethal AL-DDoS attacks against HTTP/2 servers by misusing the features. We pro-

129

7. Conclusions and Future Scope

pose an attack called Multiplexed Asymmetric Attack, which misuses the multiplexing

feature in HTTP/2 to generate extremely dangerous AL-DDoS attacks, which can take

down servers with relatively few attacking clients. In order to detect these attacks, our

proposed approach was expanded to include HTTP/2 specific features. Experiments on

public datasets reveal that our proposed approach can detect these attacks efficiently

before they can cause any significant damage to the web server.

In addition to the detection of asymmetric AL-DDoS attacks, we develop an application-

agnostic Early Detection Module (EDM) for AL-DDoS attacks using a dynamic signa-

ture based approach using HTTP request sequences. Experiments on public datasets

reveal that the use of an EDM along with our proposed detection mechanism helps

in reducing the detection latency of attacks considerably, thereby aiding in the early

detection of these attacks.

7.1 FUTURE SCOPE

Research related to asymmetric AL-DDoS attacks is still in its infancy, and there are a

lot of interesting research directions for further exploration:

• In our work, we have considered all search queries as high workload requests.

Instead, a more sophisticated gradation of workload based on the search query

could further increase the effectiveness of the detection mechanism.

• All anomaly detection techniques, including the proposed approach, rely on legit-

imate server logs in order to build a model of user behaviour. In some cases, such

as when a web application has been newly launched, there is a lack of sufficient

traces to build a model of user behaviour. An important research question is how

a reliable model can be built in such a scenario.

• The security analysis of HTTP/2 protocol, especially the Server Push feature, is

still lacking. In order to avoid exacerbating the egress flooding during an AL-

DDoS attack, there is a need for more intelligent server push strategies.

To summarize, this dissertation explores the problem of efficient detection of asym-

metric AL-DDoS attacks. We develop a lightweight and adaptable model for legit-

130

7.1. Future Scope

imate user behaviour based on a Probabilistic Timed Automata (PTA), along with a

fast detection mechanism for identifying malicious clients. We also demonstrate that

our approach can be extended to detect potentially lethal AL-DDoS attacks that can be

launched by misusing the new features in HTTP/2. In addition, our proposed approach

also uses a dynamic signature based approach using HTTP request sequences to enable

the early detection of AL-DDoS attacks.

131

BIBLIOGRAPHY

Abbors, F., Ahmad, T., Truscan, D. and Porres, I. (2013). “Model-based performance

testing of web services using probabilistic timed automata..” In WEBIST, 99–104.

Acunetix (2019). “Web application vulnerability report 2019.” https://cdn2.

hubspot.net/hubfs/4595665/Acunetix_web_application_

vulnerability_report_2019.pdf (1 February, 2020).

Adi, E., Baig, Z., Lam, C. P. and Hingston, P. (2015). “Low-rate denial-of-service

attacks against http/2 services.” In IT Convergence and Security (ICITCS), 2015 5th

International Conference on, IEEE, 1–5.

Aljuhani, A., Alharbi, T. and Taylor, B. (2019). “Mitigation of application layer ddos

flood attack against web servers.” Journal of Information Security and Cybercrimes

Research (JISCR), 2(1).

Andrews, A. A., Offutt, J. and Alexander, R. T. (2005). “Testing web applications by

modeling with fsms.” Software & Systems Modeling, 4(3), 326–345.

Apache (2011). “Apache httpd security advisory.” https://httpd.apache.

org/security/CVE-2011-3192.txt (1 February, 2020).

Beauquier, D. (2003). “On probabilistic timed automata.” Theoretical Computer Sci-

ence, 292(1), 65–84.

Beckett, D. and Sezer, S. (2017a). “Http/2 cannon: Experimental analysis on http/1 and

http/2 request flood ddos attacks.” In Emerging Security Technologies (EST), 2017

Seventh International Conference on, IEEE, 108–113.

133

https://cdn2.hubspot.net/hubfs/4595665/Acunetix_web_application_vulnerability_report_2019.pdf
https://cdn2.hubspot.net/hubfs/4595665/Acunetix_web_application_vulnerability_report_2019.pdf
https://cdn2.hubspot.net/hubfs/4595665/Acunetix_web_application_vulnerability_report_2019.pdf
https://httpd.apache.org/security/CVE-2011-3192.txt
https://httpd.apache.org/security/CVE-2011-3192.txt

BIBLIOGRAPHY

Beckett, D. and Sezer, S. (2017b). “Http/2 tsunami: Investigating http/2 proxy am-

plification ddos attacks.” In Emerging Security Technologies (EST), 2017 Seventh

International Conference on, IEEE, 128–133.

Beckett, D., Sezer, S. and McCanny, J. (2017a). “New sensing technique for detecting

application layer ddos attacks targeting back-end database resources.” In 2017 IEEE

International Conference on Communications (ICC), 1–7.

Beckett, D., Sezer, S. and McCanny, J. (2017b). “New sensing technique for detecting

application layer ddos attacks targeting back-end database resources.” In 2017 IEEE

International Conference on Communications (ICC), 1–7.

Behal, S. and Kumar, K. (2017). “Characterization and comparison of ddos attack tools

and traffic generators: A review..” IJ Network Security, 19(3), 383–393.

Behal, S., Kumar, K. and Sachdeva, M. (2018). “D-face: An anomaly based distributed

approach for early detection of ddos attacks and flash events.” Journal of Network

and Computer Applications, 111, 49–63.

Beitollahi, H. and Deconinck, G. (2014). “Connectionscore: a statistical technique to

resist application-layer ddos attacks.” Journal of Ambient Intelligence and Human-

ized Computing, 5(3), 425–442.

Belshe, M., Peon, R. and Thomson, M. (2015). “Hypertext transfer protocol version 2

(http/2).” Technical report.

Boyd, S. and Keromytis, A. (2004). “Sqlrand: Preventing sql injection attacks.” In

Applied Cryptography and Network Security, Springer, 292–302.

Bravo, S. and Mauricio, D. (2018). “Ddos attack detection mechanism in the applica-

tion layer using user features.” In 2018 International Conference on Information and

Computer Technologies (ICICT), 97–100.

Bukac, V. and Matyas, V. (2015). “Analyzing traffic features of common standalone dos

attack tools.” In International Conference on Security, Privacy, and Applied Cryptog-

raphy Engineering, Springer, 21–40.

134

BIBLIOGRAPHY

Cambiaso, E., Papaleo, G. and Aiello, M. (2012). “Taxonomy of slow dos attacks to

web applications.” Recent Trends in Computer Networks and Distributed Systems

Security, 195–204.

CCC (2011). “Effective denial of service attacks against web applica-

tion platforms.” https://events.ccc.de/congress/2011/Fahrplan/

events/4680.en.html (1 February, 2020).

Chen, Y., Hwang, K. and Ku., W. (2007). “Collaborative detection of ddos attacks over

multiple network domains.” IEEE Transactions on Parallel and Distributed Systems,

18(12), 1649–1662.

Chwalinski, P., Belavkin, R. and Cheng, X. (2013a). “Detection of application layer

ddos attack with clustering and likelihood analysis.” In Globecom Workshops (GC

Wkshps), 2013 IEEE, IEEE, 217–222.

Chwalinski, P., Belavkin, R. and Cheng, X. (2013b). “Detection of application layer

ddos attacks with clustering and bayes factors.” In Systems, Man, and Cybernetics

(SMC), 2013 IEEE International Conference on, IEEE, 156–161.

Cloudflare (2014). “Http flood attack.” https://www.cloudflare.com/

learning/ddos/http-flood-ddos-attack/ (1 February, 2020).

Coindesk (2017). “Bitcoin gold website down following ddos attack.” https:

//www.coindesk.com/bitcoin-gold-website-following-

massive-ddos-attack/ (1 February, 2020).

Corero (2016). “Ddos attacks plague olympic & brazilian government websites.”

https://www.corero.com/blog/749-ddos-attacks-plague-

olympic--brazilian-government-websites.html (1 February,

2020).

Crosby, S. A. and Wallach, D. S. (2003). “Denial of service via algorithmic complexity

attacks..” In USENIX Security Symposium, 29–44.

135

https://events.ccc.de/congress/2011/Fahrplan/events/4680.en.html
https://events.ccc.de/congress/2011/Fahrplan/events/4680.en.html
https://www.cloudflare.com/learning/ddos/http-flood-ddos-attack/
https://www.cloudflare.com/learning/ddos/http-flood-ddos-attack/
https://www.coindesk.com/bitcoin-gold-website-following-massive-ddos-attack/
https://www.coindesk.com/bitcoin-gold-website-following-massive-ddos-attack/
https://www.coindesk.com/bitcoin-gold-website-following-massive-ddos-attack/
https://www.corero.com/blog/749-ddos-attacks-plague-olympic--brazilian-government-websites.html
https://www.corero.com/blog/749-ddos-attacks-plague-olympic--brazilian-government-websites.html

BIBLIOGRAPHY

Dantas, Y. G., Nigam, V. and Fonseca, I. E. (2014). “A selective defense for applica-

tion layer ddos attacks.” In Intelligence and Security Informatics Conference (JISIC),

2014 IEEE Joint, IEEE, 75–82.

David, J. and Thomas, C. (2015). “Ddos attack detection using fast entropy approach

on flow-based network traffic.” Procedia Computer Science, 50, 30–36.

DDoS-Guard (2014). “Single request http flood (multiple verb single request).”

https://ddos-guard.net/en/terminology/single-request-

http-flood-multiple-verb-single-request (1 February, 2020).

de Saxc, H., Oprescu, I. and Chen, Y. (2015). “Is http/2 really faster than http/1.1?.”

In 2015 IEEE Conference on Computer Communications Workshops (INFOCOM

WKSHPS), 293–299.

Deepa, G., Thilagam, P. S., Khan, F. A., Praseed, A., Pais, A. R. and Palsetia, N. (2017).

“Black-box detection of xquery injection and parameter tampering vulnerabilities in

web applications.” International Journal of Information Security, 1–16.

Deepa, G., Thilagam, P. S., Praseed, A. and Pais, A. R. (2018). “Detlogic: A black-box

approach for detecting logic vulnerabilities in web applications.” Journal of Network

and Computer Applications, 109, 89–109.

Demoulin, H. M., Pedisich, I., Vasilakis, N., Liu, V., Loo, B. T. and Phan, L. T. X.

(2019). “Detecting asymmetric application-layer denial-of-service attacks in-flight

with finelame.” In 2019 {USENIX} Annual Technical Conference ({USENIX}{ATC}

19), 693–708.

Devi, S. R. and Yogesh, P. (2012a). “Detection of application layer ddos attacks using

information theory based metrics.” CS & IT-CSCP, 10, 213–223.

Devi, S. R. and Yogesh, P. (2012b). “An effective approach to counter application layer

ddos attacks.” In Computing Communication & Networking Technologies (ICCCNT),

2012 Third International Conference on, IEEE, 1–4.

136

https://ddos-guard.net/en/terminology/single-request-http-flood-multiple-verb-single-request
https://ddos-guard.net/en/terminology/single-request-http-flood-multiple-verb-single-request

BIBLIOGRAPHY

Dhanapal, A. and Nithyanandam, P. (2019). “The slow http distributed denial of service

attack detection in cloud.” Scalable Computing: Practice and Experience, 20(2),

285–298.

Dyn (2016). “Dyn analysis summary of friday october 21 attack.” https:

//dyn.com/blog/dyn-analysis-summary-of-friday-october-

21-attack/ (1 February, 2020).

Emami-Taba, M., Amoui, M. and Tahvildari, L. (2015). “Strategy-aware mitigation us-

ing markov games for dynamic application-layer attacks.” In High Assurance Systems

Engineering (HASE), 2015 IEEE 16th International Symposium on, IEEE, 134–141.

Forbes (2014). “Bitcoin hit by massive ddos attack as tensions rise.”

https://www.forbes.com/sites/leoking/2014/02/12/bitcoin-

hit-by-massive-ddos-attack-as-tensions-rise/ (1 February,

2020).

Gandhi, R., Sharma, A., Mahoney, W., Sousan, W., Zhu, Q. and Laplante, P. (2011).

“Dimensions of cyber-attacks: Cultural, social, economic, and political.” IEEE Tech-

nology and Society Magazine, 30(1), 28–38.

Gao, H., Miao, H., Chen, S. and Mei, J. (2011). “Quantitative verification of navigation

model for reliable web applications.” In 2011 First ACIS/JNU International Confer-

ence on Computers, Networks, Systems and Industrial Engineering, IEEE, 204–209.

Ghezzi, C., Pezzè, M., Sama, M. and Tamburrelli, G. (2014). “Mining behavior mod-

els from user-intensive web applications.” In Proceedings of the 36th International

Conference on Software Engineering, ACM, 277–287.

Giralte, L. C., Conde, C., De Diego, I. M. and Cabello, E. (2013). “Detecting denial of

service by modelling web-server behaviour.” Computers & Electrical Engineering,

39(7), 2252–2262.

Group, N. W. (1999). “Hypertext transfer protocol – http/1.1.” https://www.w3.

org/Protocols/rfc2616/rfc2616.html (27 August, 2019).

137

https://dyn.com/blog/dyn-analysis-summary-of-friday-october-21-attack/
https://dyn.com/blog/dyn-analysis-summary-of-friday-october-21-attack/
https://dyn.com/blog/dyn-analysis-summary-of-friday-october-21-attack/
https://www.forbes.com/sites/leoking/2014/02/12/bitcoin-hit-by-massive-ddos-attack-as-tensions-rise/
https://www.forbes.com/sites/leoking/2014/02/12/bitcoin-hit-by-massive-ddos-attack-as-tensions-rise/
https://www.w3.org/Protocols/rfc2616/rfc2616.html
https://www.w3.org/Protocols/rfc2616/rfc2616.html

BIBLIOGRAPHY

Guardian (2016a). “Hsbc suffers online banking cyber attack.” https:

//www.theguardian.com/money/2016/jan/29/hsbc-online-

banking-cyber-attack (1 February, 2020a).

Guardian (2016b). “Massive cyber-attack grinds liberia’s internet to a halt.”

https://www.theguardian.com/technology/2016/nov/03/

cyberattack-internet-liberia-ddos-hack-botnet (1 February,

2020b).

Guardian (2017). “Critical infrastructure not ready for ddos attacks: Foi data report.”

https://www.scmagazineuk.com/critical-infrastructure-

not-ready-for-ddos-attacks-foi-data-report/article/

684838/ (1 February, 2020).

Hashemian, R., Krishnamurthy, D. and Arlitt, M. (2012). “Web workload generation

challenges–an empirical investigation.” Software: Practice and Experience, 42(5),

629–647.

He, F., Baresi, L., Ghezzi, C. and Spoletini, P. (2007). “Formal analysis of publish-

subscribe systems by probabilistic timed automata.” In Derrick, J. and Vain, J., ed-

itors, Formal Techniques for Networked and Distributed Systems – FORTE 2007,

Springer Berlin Heidelberg, Berlin, Heidelberg, 247–262.

Hu, X., Liu, C., Liu, S., You, W. and Zhao, Y. (2018). “Signalling security analy-

sis: Is http/2 secure in 5g core network?.” In 2018 10th International Conference on

Wireless Communications and Signal Processing (WCSP), IEEE, 1–6.

Huang, C., Wang, J., Wu, G. and Chen, J. (2014). “Mining web user behaviors to detect

application layer ddos attacks..” JSW, 9(4), 985–990.

Idhammad, M., Afdel, K. and Belouch, M. (2018). “Detection system of http ddos

attacks in a cloud environment based on information theoretic entropy and random

forest.” Security and Communication Networks, 2018.

138

https://www.theguardian.com/money/2016/jan/29/hsbc-online-banking-cyber-attack
https://www.theguardian.com/money/2016/jan/29/hsbc-online-banking-cyber-attack
https://www.theguardian.com/money/2016/jan/29/hsbc-online-banking-cyber-attack
https://www.theguardian.com/technology/2016/nov/03/cyberattack-internet-liberia-ddos-hack-botnet
https://www.theguardian.com/technology/2016/nov/03/cyberattack-internet-liberia-ddos-hack-botnet
https://www.scmagazineuk.com/critical-infrastructure-not-ready-for-ddos-attacks-foi-data-report/article/684838/
https://www.scmagazineuk.com/critical-infrastructure-not-ready-for-ddos-attacks-foi-data-report/article/684838/
https://www.scmagazineuk.com/critical-infrastructure-not-ready-for-ddos-attacks-foi-data-report/article/684838/

BIBLIOGRAPHY

Imperva (2016). “Http/2: In-depth analysis of the top four flaws of the next gen-

eration web protocol.” https://www.imperva.com/docs/Imperva_HII_

HTTP2.pdf (10 January, 2019).

Incapsula (2015). “Analysis of vikingdom ddos attacks on u.s. govern-

ment sites.” https://www.incapsula.com/blog/vikingdom-ddos-

attacks-us-government.html (1 February, 2020).

Incapsula (2016). “Ddos threat landscape report 2015-16.” https:

//lp.incapsula.com/rs/804-TEY-921/images/2015-16%20DDoS%

20Threat%20Landscape%20Report.pdf (1 February, 2020).

Incapsula (2017). “Global ddos threat landscape q1 2017.” https://

www.incapsula.com/ddos-report/ddos-report-q1-2017.html (1

February, 2020).

Johnson Singh, K., Thongam, K. and De, T. (2016). “Entropy-based application layer

ddos attack detection using artificial neural networks.” Entropy, 18(10), 350.

Kandula, S., Katabi, D., Jacob, M. and Berger, A. (2005). “Botz-4-sale: Surviving or-

ganized ddos attacks that mimic flash crowds.” In Proceedings of the 2nd conference

on Symposium on Networked Systems Design & Implementation-Volume 2, USENIX

Association, 287–300.

Karami, M., Park, Y. and McCoy, D. (2016). “Stress testing the booters: Understanding

and undermining the business of ddos services.” In Proceedings of the 25th Interna-

tional Conference on World Wide Web, International World Wide Web Conferences

Steering Committee, 1033–1043.

Kaspersky (2016). “Kaspersky ddos intelligence report for q1 2016.”

https://securelist.com/kaspersky-ddos-intelligence-

report-for-q1-2016/74550/ (1 February, 2020).

Katkar, V. and Bhirud, S. (2012). “Novel dos/ddos attack detection and signature gen-

eration.” International Journal of Computer Applications, 47(10), 18–24.

139

https://www.imperva.com/docs/Imperva_HII_HTTP2.pdf
https://www.imperva.com/docs/Imperva_HII_HTTP2.pdf
https://www.incapsula.com/blog/vikingdom-ddos-attacks-us-government.html
https://www.incapsula.com/blog/vikingdom-ddos-attacks-us-government.html
https://lp.incapsula.com/rs/804-TEY-921/images/2015-16%20DDoS%20Threat%20Landscape%20Report.pdf
https://lp.incapsula.com/rs/804-TEY-921/images/2015-16%20DDoS%20Threat%20Landscape%20Report.pdf
https://lp.incapsula.com/rs/804-TEY-921/images/2015-16%20DDoS%20Threat%20Landscape%20Report.pdf
https://www.incapsula.com/ddos-report/ddos-report-q1-2017.html
https://www.incapsula.com/ddos-report/ddos-report-q1-2017.html
https://securelist.com/kaspersky-ddos-intelligence-report-for-q1-2016/74550/
https://securelist.com/kaspersky-ddos-intelligence-report-for-q1-2016/74550/

BIBLIOGRAPHY

Katkar, V., Zinjade, A., Dalvi, S., Bafna, T. and Mahajan, R. (2015). “Detection of

dos/ddos attack against http servers using naive bayesian.” In 2015 International

Conference on Computing Communication Control and Automation, 280–285.

Kaushal, K. and Sahni, V. (2016). “Early detection of ddos attack in wsn.” International

Journal of Computer Applications, 134(13), 0975–8887.

Laskar, S. and Mishra, D. (2016). “Qualified vector match and merge algorithm

(qvmma) for ddos prevention and mitigation.” Procedia Computer Science, 79, 41–

52.

Lee, S., Kim, G. and Kim, S. (2011). “Sequence-order-independent network profiling

for detecting application layer ddos attacks.” EURASIP Journal on Wireless Commu-

nications and Networking, 2011(1), 50.

Li, B., Gao, M., Ma, L., Liang, Y. and Chen, G. (2019). “Web application-layer ddos

attack detection based on generalized jaccard similarity and information entropy.” In

International Conference on Artificial Intelligence and Security, Springer, 576–585.

Liao, Q., Li, H., Kang, S. and Liu, C. (2015). “Application layer ddos attack detection

using cluster with label based on sparse vector decomposition and rhythm matching.”

Security and Communication Networks, 8(17), 3111–3120.

Magazine, I. S. (2017). “Anonymous attacks spanish government sites.”

https://www.infosecurity-magazine.com/news/anonymous-

attacks-spanish/ (1 February, 2020).

McCombs, T. (2019). “Why turning on http/2 was a mistake.” https:

//www.lucidchart.com/techblog/2019/04/10/why-turning-

on-http2-was-a-mistake/ (1 February, 2020).

Meng, B., Andi, W., Jian, X. and Fucai, Z. (2017). “Ddos attack detection system based

on analysis of users’ behaviors for application layer.” In Computational Science and

Engineering (CSE) and Embedded and Ubiquitous Computing (EUC), 2017 IEEE

International Conference on, volume 1, IEEE, 596–599.

140

https://www.infosecurity-magazine.com/news/anonymous-attacks-spanish/
https://www.infosecurity-magazine.com/news/anonymous-attacks-spanish/
https://www.lucidchart.com/techblog/2019/04/10/why-turning-on-http2-was-a-mistake/
https://www.lucidchart.com/techblog/2019/04/10/why-turning-on-http2-was-a-mistake/
https://www.lucidchart.com/techblog/2019/04/10/why-turning-on-http2-was-a-mistake/

BIBLIOGRAPHY

Meng, W., Qian, C., Hao, S., Borgolte, K., Vigna, G., Kruegel, C. and Lee, W. (2018).

“Rampart: protecting web applications from cpu-exhaustion denial-of-service at-

tacks.” In 27th {USENIX} Security Symposium ({USENIX} Security 18), 393–410.

Mishra, A. K., Hellerstein, J. L., Cirne, W. and Das, C. R. (2010). “Towards char-

acterizing cloud backend workloads: insights from google compute clusters.” ACM

SIGMETRICS Performance Evaluation Review, 37(4), 34–41.

Mongelli, M., Aiello, M., Cambiaso, E. and Papaleo, G. (2015). “Detection of dos at-

tacks through fourier transform and mutual information.” In 2015 IEEE International

Conference on Communications (ICC), 7204–7209.

Mori, G. and Malik, J. (2003). “Recognizing objects in adversarial clutter: Breaking

a visual captcha.” In Computer Vision and Pattern Recognition, 2003. Proceedings.

2003 IEEE Computer Society Conference on, volume 1, IEEE, I–I.

Moustis, D. and Kotzanikolaou, P. (2013). “Evaluating security controls against http-

based ddos attacks.” In IISA 2013, 1–6.

Nazario, J. (2007). “Blackenergy ddos bot analysis.” Arbor Networks.

Nazario, J. (2009). “Politically motivated denial of service attacks.” The Virtual Battle-

field: Perspectives on Cyber Warfare, (s 165).

Ndibwile, J. D., Govardhan, A., Okada, K. and Kadobayashi, Y. (2015). “Web server

protection against application layer ddos attacks using machine learning and traffic

authentication.” In Computer Software and Applications Conference (COMPSAC),

2015 IEEE 39th Annual, volume 3, IEEE, 261–267.

Networks, A. (2012). “Leading us banks targeted in ddos attacks.” https:

//nakedsecurity.sophos.com/2012/09/27/banks-targeted-

ddos-attacks/ (1 February, 2020).

Networks, A. (2016). “2016 ddos attack statistics.” https://www.

arbornetworks.com/arbor-networks-releases-global-ddos-

attack-data-for-1h-2016 (1 February, 2020).

141

https://nakedsecurity.sophos.com/2012/09/27/banks-targeted-ddos-attacks/
https://nakedsecurity.sophos.com/2012/09/27/banks-targeted-ddos-attacks/
https://nakedsecurity.sophos.com/2012/09/27/banks-targeted-ddos-attacks/
https://www.arbornetworks.com/arbor-networks-releases-global-ddos-attack-data-for-1h-2016
https://www.arbornetworks.com/arbor-networks-releases-global-ddos-attack-data-for-1h-2016
https://www.arbornetworks.com/arbor-networks-releases-global-ddos-attack-data-for-1h-2016

BIBLIOGRAPHY

Networks, F. (2019). “Detecting dos attacks dynamically.” https://techdocs.

f5.com/kb/en-us/products/big-ip-afm/manuals/product/

big-ip-system-dos-protection-and-protocol-firewall-

implementations-14-0-0/07.html (10 November, 2019).

Ni, T., Gu, X., Wang, H. and Li, Y. (2013). “Real-time detection of application-layer

ddos attack using time series analysis.” Journal of Control Science and Engineering,

2013, 4.

O’Gorman, G. and McDonald, G. (2012). Ransomware: A growing menace, Symantec

Corporation.

Oikonomou, G. and Mirkovic, J. (2009). “Modeling human behavior for defense against

flash-crowd attacks.” In Communications, 2009. ICC’09. IEEE International Confer-

ence on, IEEE, 1–6.

Oo, K. K., Ye, K. Z., Tun, H., Lin, K. Z. and Portnov, E. (2016). “Enhancement

of preventing application layer based on ddos attacks by using hidden semi-markov

model.” In Genetic and Evolutionary Computing, Springer, 125–135.

Oshima, S., Nakashima, T. and Sueyoshi, T. (2010). “Early dos/ddos detection method

using short-term statistics.” In Complex, Intelligent and Software Intensive Systems

(CISIS), 2010 International Conference on, IEEE, 168–173.

Park, J., Iwai, K., Tanaka, H. and Kurokawa, T. (2014). “Analysis of slow read dos

attack.” In Information Theory and its Applications (ISITA), 2014 International Sym-

posium on, IEEE, 60–64.

Patni, P., Iyer, K., Sarode, R., Mali, A. and Nimkar, A. (2017). “Man-in-the-middle

attack in http/2.” In Intelligent Computing and Control (I2C2), 2017 International

Conference on, IEEE, 1–6.

Ranjan, S., Swaminathan, R., Uysal, M., Nucci, A. and Knightly, E. (2009). “Ddos-

shield: Ddos-resilient scheduling to counter application layer attacks.” IEEE/ACM

on Networking (TON), 17(1), 26–39.

142

https://techdocs.f5.com/kb/en-us/products/big-ip-afm/manuals/product/big-ip-system-dos-protection-and-protocol-firewall-implementations-14-0-0/07.html
https://techdocs.f5.com/kb/en-us/products/big-ip-afm/manuals/product/big-ip-system-dos-protection-and-protocol-firewall-implementations-14-0-0/07.html
https://techdocs.f5.com/kb/en-us/products/big-ip-afm/manuals/product/big-ip-system-dos-protection-and-protocol-firewall-implementations-14-0-0/07.html
https://techdocs.f5.com/kb/en-us/products/big-ip-afm/manuals/product/big-ip-system-dos-protection-and-protocol-firewall-implementations-14-0-0/07.html

BIBLIOGRAPHY

Register (2012). “Anonymous turns its ddos cannons on india.” https://www.

theregister.co.uk/2012/05/18/anonymous_ddos_india_sites/

(1 February, 2020).

Register (2018). “Gits club github code tub with record-breaking 1.35tbps

ddos drub.” https://www.theregister.co.uk/2018/03/01/github_

ddos_biggest_ever/ (1 February, 2020).

Santanna, J. J., Schmidt, R. d. O., Tuncer, D., de Vries, J., Granville, L. Z. and Pras, A.

(2016). “Booter blacklist: Unveiling ddos-for-hire websites.” In 2016 12th Interna-

tional Conference on Network and Service Management (CNSM), IEEE, 144–152.

Scaife, N., Carter, H., Traynor, P. and Butler, K. R. (2016). “Cryptolock (and drop

it): stopping ransomware attacks on user data.” In 2016 IEEE 36th International

Conference on Distributed Computing Systems (ICDCS), IEEE, 303–312.

Schneider, L. F., Krajina, A. and Krivobokova, T. (2019). “Threshold selection in uni-

variate extreme value analysis.” arXiv preprint arXiv:1903.02517.

SCMagazine (2017). “Ddos attacks delay trains, stymie transportation ser-

vices in sweden.” https://www.scmagazine.com/ddos-attacks-

delay-trains-stymie-transportation-services-in-sweden/

article/700227/ (1 February, 2020).

Shtern, M., Sandel, R., Litoiu, M., Bachalo, C. and Theodorou, V. (2014). “Towards

mitigation of low and slow application ddos attacks.” In Cloud Engineering (IC2E),

2014 IEEE International Conference on, IEEE, 604–609.

Silicon (2017). “Irish government websites taken down by ddos attacks.”

http://www.silicon.co.uk/e-regulation/irish-government-

websites-ddos-18442 (1 February, 2020).

Singh, K., Singh, P. and Kumar, K. (2018). “User behavior analytics-based classifica-

tion of application layer http-get flood attacks.” Journal of Network and Computer

Applications, 112, 97 – 114.

143

https://www.theregister.co.uk/2012/05/18/anonymous_ddos_india_sites/
https://www.theregister.co.uk/2012/05/18/anonymous_ddos_india_sites/
https://www.theregister.co.uk/2018/03/01/github_ddos_biggest_ever/
https://www.theregister.co.uk/2018/03/01/github_ddos_biggest_ever/
https://www.scmagazine.com/ddos-attacks-delay-trains-stymie-transportation-services-in-sweden/article/700227/
https://www.scmagazine.com/ddos-attacks-delay-trains-stymie-transportation-services-in-sweden/article/700227/
https://www.scmagazine.com/ddos-attacks-delay-trains-stymie-transportation-services-in-sweden/article/700227/
http://www.silicon.co.uk/e-regulation/irish-government-websites-ddos-18442
http://www.silicon.co.uk/e-regulation/irish-government-websites-ddos-18442

BIBLIOGRAPHY

Singh, K. J. and De, T. (2017). “Mlp-ga based algorithm to detect application layer

ddos attack.” Journal of Information Security and Applications, 36, 145–153.

Sivabalan, S. and Radcliffe, P. (2013). “A novel framework to detect and block ddos

attack at the application layer.” In TENCON Spring Conference, 2013 IEEE, IEEE,

578–582.

Sivakorn, S., Polakis, J. and Keromytis, A. D. (2016). “Im not a human: Breaking the

google recaptcha.” Black Hat,(i), 1–12.

Sonicwall (2019 (accessed August 13 2019)). “2019 sonicwall cyber threat re-

port.” https://d3ik27cqx8s5ub.cloudfront.net/media/uploads/

2019/03/2019-SonicWall-Cyber-Threat-Report.pdf (1 February,

2020).

Statista (2019). “eservices worldwide.” https://www.statista.com/

outlook/261/100/eservices/worldwide (27 August, 2019).

Statistics, H. (2020). “Usage of http/2 for websites.” https://w3techs.com/

technologies/details/ce-http2/all/all (1 February, 2020).

Stevanovic, D. and Vlajic, N. (2014). “Next generation application-layer ddos defences:

Applying the concepts of outlier detection in data streams with concept drift.” In 2014

13th International Conference on Machine Learning and Applications, 456–462.

Suresh, M., Amritha, P., Mohan, A. K. and Kumar, V. A. (2018). “An investigation on

http/2 security.” Journal of Cyber Security and Mobility, 7(1), 161–189.

Thirumaran, M., Dhavachelvan, P., Abarna, S. and Lakshmi, P. (2011). “Finite state

machine based evaluation model for web service reliability analysis.” International

Journal of Web & Semantic Technology, 2(4), 125.

Times, I. (2016). “Hackers leave finnish residents cold after ddos attack knocks

out heating systems.” http://www.ibtimes.co.uk/hackers-leave-

finnish-residents-cold-after-ddos-attack-knocks-out-

heating-systems-1590639 (1 February, 2020).

144

https://d3ik27cqx8s5ub.cloudfront.net/media/uploads/2019/03/2019-SonicWall-Cyber-Threat-Report.pdf
https://d3ik27cqx8s5ub.cloudfront.net/media/uploads/2019/03/2019-SonicWall-Cyber-Threat-Report.pdf
https://www.statista.com/outlook/261/100/eservices/worldwide
https://www.statista.com/outlook/261/100/eservices/worldwide
https://w3techs.com/technologies/details/ce-http2/all/all
https://w3techs.com/technologies/details/ce-http2/all/all
http://www.ibtimes.co.uk/hackers-leave-finnish-residents-cold-after-ddos-attack-knocks-out-heating-systems-1590639
http://www.ibtimes.co.uk/hackers-leave-finnish-residents-cold-after-ddos-attack-knocks-out-heating-systems-1590639
http://www.ibtimes.co.uk/hackers-leave-finnish-residents-cold-after-ddos-attack-knocks-out-heating-systems-1590639

BIBLIOGRAPHY

Tripathi, N. and Hubballi, N. (2018). “Slow rate denial of service attacks against http/2

and detection.” Computers & security, 72, 255–272.

Tripathi, N., Hubballi, N. and Singh, Y. (2016). “How secure are web servers? an

empirical study of slow http dos attacks and detection.” In 2016 11th International

Conference on Availability, Reliability and Security (ARES), 454–463.

Union, I. T. (2018). “Statistics.” https://www.itu.int/en/ITU-D/

Statistics/Pages/stat/default.aspx (1 February, 2020).

Van Hoorn, A., Rohr, M. and Hasselbring, W. (2008). “Generating probabilistic and

intensity-varying workload for web-based software systems.” In SPEC International

Performance Evaluation Workshop, Springer, 124–143.

Wang, C., Miu, T. T. N., Luo, X. and Wang, J. (2018). “Skyshield: A sketch-based

defense system against application layer ddos attacks.” IEEE Transactions on Infor-

mation Forensics and Security, 13(3), 559–573.

Wang, J., Yang, X. and Long, K. (2011). “Web ddos detection schemes based on mea-

suring user’s access behavior with large deviation.” In Global Telecommunications

Conference (GLOBECOM 2011), 2011 IEEE, IEEE, 1–5.

Welzel, A., Rossow, C. and Bos, H. (2014). “On measuring the impact of ddos botnets.”

In Proceedings of the Seventh European Workshop on System Security, ACM, 3.

Wen, S., Jia, W., Zhou, W., Zhou, W. and Xu, C. (2010). “Cald: Surviving various

application-layer ddos attacks that mimic flash crowd.” In network and system secu-

rity (nss), 2010 4th international conference on, IEEE, 247–254.

Xiang, Y., Li, K. and Zhou, W. (2011). “Low-rate ddos attacks detection and traceback

by using new information metrics.” IEEE Transactions on Information Forensics and

Security, 6(2), 426–437.

Xie, Y. and Yu, S.-Z. (2009a). “A large-scale hidden semi-markov model for anomaly

detection on user browsing behaviors.” IEEE/ACM Transactions on Networking

(TON), 17(1), 54–65.

145

https://www.itu.int/en/ITU-D/Statistics/Pages/stat/default.aspx
https://www.itu.int/en/ITU-D/Statistics/Pages/stat/default.aspx

BIBLIOGRAPHY

Xie, Y. and Yu, S.-Z. (2009b). “Monitoring the application-layer ddos attacks for pop-

ular websites.” IEEE/ACM Transactions on Networking (TON), 17(1), 15–25.

Xu, C., Zhao, G., Xie, G. and Yu, S. (2014). “Detection on application layer ddos using

random walk model.” In Communications (ICC), 2014 IEEE International Confer-

ence on, IEEE, 707–712.

Yadav, S. and Selvakumar, S. (2015). “Detection of application layer ddos attack by

modeling user behavior using logistic regression.” In Reliability, Infocom Technolo-

gies and Optimization (ICRITO)(Trends and Future Directions), 2015 4th Interna-

tional Conference on, IEEE, 1–6.

Yadav, S. and Subramanian, S. (2016). “Detection of application layer ddos attack

by feature learning using stacked autoencoder.” In Computational Techniques in In-

formation and Communication Technologies (ICCTICT), 2016 International Confer-

ence on, IEEE, 361–366.

Yan, J. and El Ahmad, A. S. (2007). “Breaking visual captchas with naive pattern

recognition algorithms.” In Computer Security Applications Conference, 2007. AC-

SAC 2007. Twenty-Third Annual, IEEE, 279–291.

Ye, C., Zheng, K. and She, C. (2012). “Application layer ddos detection using clus-

tering analysis.” In Computer Science and Network Technology (ICCSNT), 2012 2nd

International Conference on, IEEE, 1038–1041.

Yu, S. and Zhou, W. (2008). “Entropy-based collaborative detection of ddos attacks

on community networks.” In 2008 Sixth Annual IEEE International Conference on

Pervasive Computing and Communications (PerCom), 566–571.

Yu, S., Zhou, W. and Doss, R. (2008). “Information theory based detection against

network behavior mimicking ddos attacks.” IEEE Communications Letters, 12(4),

318–321.

Yu, S., Zhou, W., Jia, W., Guo, S., Xiang, Y. and Tang, F. (2011). “Discriminating ddos

attacks from flash crowds using flow correlation coefficient.” IEEE Transactions on

Parallel and Distributed Systems, 23(6), 1073–1080.

146

BIBLIOGRAPHY

Yu Chen and Kai Hwang (2006). “Collaborative change detection of ddos attacks on

community and isp networks.” In International Symposium on Collaborative Tech-

nologies and Systems (CTS’06), 401–410.

Zargar, S. T., Joshi, J. and Tipper, D. (2013). “A survey of defense mechanisms against

distributed denial of service (ddos) flooding attacks.” IEEE communications surveys

& tutorials, 15(4), 2046–2069.

Zhang, H., Taha, A., Trapero, R., Luna, J. and Suri, N. (2016). “Sentry: A novel ap-

proach for mitigating application layer ddos threats.” In Trustcom/BigDataSE/I SPA,

2016 IEEE, IEEE, 465–472.

Zhao, Y., Zhang, W., Feng, Y. and Yu, B. (2018). “A classification detection algorithm

based on joint entropy vector against application-layer ddos attack.” Security and

Communication Networks, 2018.

Zhou, W., Jia, W., Wen, S., Xiang, Y. and Zhou, W. (2014). “Detection and defense of

application-layer ddos attacks in backbone web traffic.” Future Generation Computer

Systems, 38, 36–46.

Zuzak, I., Budiselic, I. and Delac, G. (2011a). “A finite-state machine approach for

modeling and analyzing restful systems.” Journal of Web Engineering, 10(4), 353.

Zuzak, I., Budiselic, I. and Delac, G. (2011b). “Formal modeling of restful sys-

tems using finite-state machines.” In International Conference on Web Engineering,

Springer, 346–360.

147

RESEARCH OUTCOMES

PATENTS FILED

1. Title: System and Method for Detecting Asymmetric Application Layer DDoS

Attacks using User Access Pattern Model

Inventors: P. Santhi Thilagam, Amit Praseed

Applicant: National Institute of Technology Karnataka, Surathkal

Patent Application No.: 201941040132

Filing Date: 03/10/2019

PUBLICATIONS

1. Praseed, A. & Thilagam, P. S. (2018). DDoS attacks at the application layer:

Challenges and research perspectives for safeguarding Web applications. IEEE

Communications Surveys & Tutorials, 21(1), 661-685. (DOI: https://doi.

org/10.1109/COMST.2018.2870658, URL: https://ieeexplore.

ieee.org/document/8466561) (Impact Factor: 23.7)

2. Praseed, A. & Thilagam, P. S. (2019). Multiplexed Asymmetric Attacks: Next-

Generation DDoS on HTTP/2 Servers. IEEE Transactions on Information Foren-

sics and Security. (DOI: https://doi.org/10.1109/TIFS.2019.2950121,

URL: https://ieeexplore.ieee.org/document/8886426) (Impact

Factor: 6.013)

3. Praseed, A. & Thilagam, P. S. (2020). Modelling Behavioural Dynamics for

Asymmetric Application Layer DDoS Detection. IEEE Transactions on Informa-

tion Forensics and Security (Accepted for publication on 7 August 2020) (Impact

Factor: 6.013)

149

https://doi.org/10.1109/COMST.2018.2870658
https://doi.org/10.1109/COMST.2018.2870658
https://ieeexplore.ieee.org/document/8466561
https://ieeexplore.ieee.org/document/8466561
https://doi.org/10.1109/TIFS.2019.2950121
https://ieeexplore.ieee.org/document/8886426

BIBLIOGRAPHY

4. Praseed, A. & Thilagam, P. S. Fuzzy Request Set Modelling for Detecting Mul-

tiplexed Asymmetric DDoS Attacks on HTTP/2 Servers, IEEE Transactions on

Dependable and Secure Computing (Paper submitted on May 8, 2020 and status

is “Under Review”).

5. Praseed, A. & Thilagam, P. S. HTTP Request Pattern based Signatures for Early

Application Layer DDoS Detection: A Firewall Agnostic Approach, Elsevier

Computers and Security (Paper submitted on 4 July 2020 and status is “Under

Review”).

150

BIODATA

Name:

Date of Birth:

Gender:

Marital Status:

Father’s Name:

Mother’s Name:

Address:

E-mail:

Mobile:

Qualification:

Areas of Interest:

Amit Praseed

5

th
 January, 1993

Male

Single

Praseed KM

Sangeetha K

“Sangeeth”, Kadamberi Road,

Bakkalam, PO Kanul,

Kannur, Kerala

PIN-670562.

amitpraseed@gmail.com

8904611847

B.Tech in Computer Science and Engineering

(College of Engineering, Thiruvanathapuram)

M.Tech in Computer Science and Engineering-
Information Security

(National Institute of Technology Karnataka, Surathkal)

Web Security, Information Security

151

	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Distributed Denial of Service (DDoS) Attacks
	Anatomy of a DDoS Attack
	Types of DDoS Attacks
	Features of Application Layer DDoS Attacks
	Types of AL-DDoS Attacks
	HTTP/2 and Associated Challenges
	The Complexity of AL-DDoS Detection
	DDoS Detection as an Intrusion Detection Problem
	Anomaly Detection Approaches for AL-DDoS Detection

	The Quest for Early AL-DDoS Detection
	Motivation
	Organization of the Thesis

	Literature Review
	Taxonomy of Application Layer DDoS Attacks using the HTTP/1.1 Protocol
	AL-DDoS Attacks by Exploiting Application Vulnerabilities
	Exploiting Protocol Features
	Exploiting System Features

	Defending against DDoS Attacks using the HTTP/1.1 protocol
	Blocking DDoS Attacks using User Puzzles
	Detecting Application Layer DDoS Attacks using the HTTP Protocol
	Defending against HTTP Protocol Vulnerabilities
	Preventing Slow DDoS Attacks
	Detecting Slow DDoS Attacks

	Defending against HTTP Flooding Attacks
	Detection Mechanisms based on Request Dynamics
	Detection Mechanisms based on Request Semantics

	Defending Against Asymmetric HTTP Attacks
	Detection Mechanisms based on Request Composition
	Detection Mechanisms based on Request Sequence
	Detection Mechanisms by Observing Indirect Effects

	HTTP/2 and associated Security Concerns
	HTTP/2 Security
	Legacy Attacks on HTTP/2
	Attacks Exploiting New Features

	Research Directions and Challenges
	Summary

	Problem Description
	Asymmetric AL-DDoS Attacks on HTTP/1.1 Servers
	Introduction
	Requirements of a Detection Mechanism
	Workload Profiling
	An Approximation of Request Workload
	System and User Workload Profiles

	Attack Generation on HTTP/1.1 Servers
	Methodology
	Experimental Study
	Experimental Setup
	Results and Discussion

	Detecting Asymmetric AL-DDoS Attacks on HTTP/1.1 Servers
	Learning Phase
	Features used to Model User Behaviour
	Model Description
	Suspicion Score Assignment for Detecting Anomalous Clients
	Threshold Determination
	Working of the Learning Phase

	Detection Phase
	Incremental Update

	Experimental Study
	Datasets Used
	Training and Testing Data
	Experimental Setup
	Results and Discussion

	Summary

	Asymmetric AL-DDoS Attacks on HTTP/2 Servers
	The Changing User Behavioural Dynamics under HTTP/2
	Multiplexed Asymmetric Attack
	Multiplexed Asymmetric Attack in the presence of Server Push

	Attack Generation on HTTP/2 Servers
	 Web Application Scanning
	 Identifying High Workload States
	Attack Vector Selection
	Simple Asymmetric Attack
	Multiplexed Asymmetric Attack

	 Launching the Attack
	Experimental Study
	Server Configuration
	Attack Tools
	Results and Discussion

	Detection of Asymmetric Attacks on HTTP/2 Servers
	Learning Phase
	Features used to Model User Behaviour
	Model Expansion
	Suspicion Score Assignment for Detecting Malicious Clients

	Detection Phase
	Experimental Study
	Results and Discussion

	Summary

	Early Detection of AL-DDoS Attacks
	Similarity in DDoS Traffic
	Request Patterns as Dynamic Signatures

	Early DDoS Detection using Request Patterns as Signatures
	Architecture
	Working

	Experimental Study
	Experimental Setup
	Effect of EDM on Detection Latency

	Summary

	Conclusions and Future Scope
	Future Scope

	Bibliography
	Research Outcomes

