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Code Poem

In Galois Fields, full of flowers

primitive elements dance for hours

climbing sequentially through the trees

and shouting occasional parities.

The syndromes like ghosts in the misty damp

feed the smoldering fires of the Berlekamp

and high flying exponents sometimes are downed

on the jagged peaks of the Gilbert bound.

S.B. Weinstein

A message of content and clarity

Has gotten to be quite a rarity.

To avoid the terror

Of serious error,

Use bits of appropriate parity.

Solomon W. Golomb
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ABSTRACT

Rank-metric codes, a class of subspace codes, are error control codes that can be used to

correct errors in applications that require two dimensional information transmission. In these

applications, errors are confined to certain rows or columns or both. This is due to the nature

of perturbations introduced by the channel. When errors are confined to a few columns (er-

ror bursts), error control codes possessing burst error correction capability can be employed.

However, in scenarios where errors disturb the information transmission (all the columns),

such that one or few rows are corrupted, burst error correcting codes by themselves fail to

detect and correct all the errors. It has been shown that if error pattern is such that it has

disturbed the information transmission uniformly (error matrix having rank less than certain

value), then rank metric codes are the best choice for ensuring information integrity. The de-

sign and synthesis of rank error correcting codes started with the discovery of maximum rank

distance (MRD) codes and maximum rank array codes (MRA) codes. These were mainly

designed to overcome rank errors or crisscross errors. The search for codes with good rank

distance properties continued and many low rate codes with good rank distance properties

were identified within the class of Cyclic and Abelian codes. These were used to construct

non-orthogonal Space Time Block codes (STBC). The application of the rank metric codes

as Space-Time Block codes for MIMO systems has the potential to improve the performance

of MIMO communication systems. In literature, Space- Time Block Code designs have been

extracted from (m, 1) MRD codes, MRA codes and Full rank cyclic codes over the Galois

fields Fqm with rate 1/n. While these full rank codes had good rank-distance properties, they

suffered from low spectral efficiencies and the lack of a suitable decoding algorithm. It was

then felt that if high rate full rank codes could be synthesized from the family of Cyclic or

Abelian codes, and an efficient decoding algorithm could be devised, it could lead to the de-

sign of highly efficient STBCs for wireless communication, codes for correcting crisscross

errors in both storage media and power line communication. This motivated us to search for

the existence of high rate full rank codes from within the families of Quasi-Cyclic, Cyclic

and Abelian codes (polynomial codes). We have demonstrated that full rank high rate codes

i



can be found within the class of polynomial codes by specifying the procedure that can be

used to construct (n, k) full rank codes over Fqm . Further, we have stated and proved theorems

that allow the determination of the exact rank of these codes. A decoding algorithm based on

the parity check matrix representation has been devised. It determines the unique solution if

rank of the error vector Rq(e) ≤ bm−1
2 c. The use of Galois Field Fourier Transform (GFFT)

description of polynomial allows the specification of a direct relationship between the choice

of k free transform components and rank of the corresponding codeword vector. Additionally,

the use of GFFT provides an additional degree of freedom in the choice of k− free transform

components for a specified rank requirement. This freedom can be employed to construct an

index key based communication scheme, which can provide an additional layer of physical

layer security.

We have demonstrated that the bit error rate (BER) performance of the proposed codes

as STBCs in wireless applications is superior to that of codes derived from MRD and MRA

constructions. Rank preserving maps such as the Gaussian Integer map or Eisenstein-Jacobi

integer map have been employed to synthesize STBC designs.

The BER performance of these codes has been determined in power line communica-

tion applications also. It is observed that the performance is identical to that of Low Rank

Parity Check codes (derived from Gabidulin codes). In addition, the proposed constructions

provide flexibility as a large number of full rank codes meeting various needs can be easily

synthesized.

Thus, the focus of the research work reported in this thesis is the discovery of high rate

full rank codes from the families of polynomial codes and assessment of their performance

in a variety of applications. The performance of these codes is broadly superior to the state of

the art in most cases and comparable in some instances. Hence, we believe that these codes

can be gainfully used in many applications to strengthen the process of information transfer,

storage and dissemination.

Keywords : Abelian, Crisscross Error, Galois Field Fourier Transform, Index Modula-

tion, Multiple-Input Multiple-Output, Orthogonal Frequency Division Multiplexing, Quasi-

Cyclic, Rank-Distance.
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Chapter 1

Introduction

When information is conveyed over a physical channel or stored in an optical, semi-

conductor or magnetic medium, there is always a finite probability of the stored data being

distorted/ destroyed/ corrupted due to errors. The use of error control codes to overcome

these errors has become ubiquitous in modern information based society. Algebraic coding

theory is a discipline of Information Theory that is concerned with the design and analysis of

codes that can be employed to detect and correct errors introduced by channels and/ or mem-

ory devices. The objective of this discipline (also known as channel coding) is to synthesize

constructive techniques which allow the corrupted data to be recovered without errors as far

as possible. The history of error correcting codes goes back to 1948 with the publication of

a classic paper entitled "A Mathematical theory of Communication" by C.E. Shannon Shan-

non (1948). In his paper, Shannon proved that whenever the transmission rate required of a

communication system is less than the capacity of the channel, it is possible to design an en-

coding/ decoding scheme, with the help of which, the probability of error in the reconstructed

sequence can be made as small as desired. The power of modern algebra, especially Galois

fields, has been harnessed to synthesize a large class of codes (known as block codes) which

are capable of correcting errors in a received vector. Several metrics have been proposed

for quantifying the error correction performance of error correcting codes. The Hamming

metric was the first such metric to be proposed. Typical examples of Hamming metric based

codes include Cyclic codes, Bose Chaudhury Hocquenghem (BCH) codes, Reed Solomon

(RS) and the capacity approaching Low Density Parity Check (LDPC) codes. With the use
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of suitable interleavers, these codes can be employed to correct large error bursts. However,

While studying the error patterns induced in certain applications involving storage/ transmis-

sion of information in the form of 2D matrices and also the while studying the construction

of error control codes as block codes for multiple-input multiple-output systems, several re-

searchers realized that the Hamming metric based codes are not well suited. They proposed

a new metric, called the Rank metric and devised code constructions based on rank metric

Roth (1991), Gabidulin (1985), Plass et al. (2008). Rank-metric codes are also known as sub-

space codes. The class of subspace codes have been studied by Khalegi et.al Khaleghi et al.

(2009). Following is the detailed discussion on few applications where rank-metric codes are

suitable.

1.1 Rank Codes in Multicarrier communication sys-

tems

In case of multi-carrier transmission schemes, the symbols are transmitted in a frame struc-

ture which can be represented in matrix form. In hot spot scenarios the channel generates

error patterns which are mainly limited to several sub-carriers due to time stationarity of the

channel. The erroneous frame obtained at the receiver can be described as shown in Fig-

ure 1.1 (Plass et al. (2008)). In Figure 1.1, N represents the number of subcarriers and n

Figure 1.1: Error Patterns in Multicarrier communication systems

represents the length of the frame. The errors in the received matrix are observed to be con-

fined to certain rows and or or columns. These matrix errors were termed as rank errors or
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criss-cross errors. Since rank codes are capable of correcting a specified number of rows

and columns (Gabidulin (1985); Plass et al. (2008); Roth (1991)), these codes are capable

of correcting a greater number of errors when compared with competing burst error correct-

ing codes. After Gabidulin (1985) proposed the first constructions of rank-metric codes ,

Roth (1991) proposed constructions of Maximum rank array codes. In these constructions

the value of n is chosen such that n ≤ m. The approach proposed by Roth (1991) is similar to

that of Gabidulin codes but differ in the decoding strategy. The decoding strategy proposed

by Gabidulin is based on Euclidean division algorithm while the decoding approach by Roth

is similar to Peterson-Gorenstein-Zierler (PGZ) algorithm.

1.2 Rank codes in MIMO communications

Rank codes can also be used as space-time block codes (STBC) or space-frequency block

codes (SFBC) in MIMO systems In general, the STBC/SFBC designed should satisfy the

following design criteria (Tarokh et al. (1998)).

• Rank Criterion: Maximization of the diversity advantage, i.e the rank distance between

two STBC/SFBC codewords should be as high as possible. Hence a rectangular code

characterized by rank distance equal to the number of rows yields best performance.

• Product Distance Criterion: Maximization of the coding gain offered by the code or

equivalently, the coding advantage over all pair of distinct codewords X,X′ ∈ X

should be made as large as possible.

The performance of MIMO based communication system can be further improved by the

use of an (n, k) error control code in concatenation with the Alamouti code (Liew and Hanzo

(2002)). However, this approach requires needs an additional error control encoder and de-

coder which further increases computational complexity. Hence, there is a need to improve

error performance in STBC or SFBC based MIMO communications without using an ex-

ternal error control code. This can be achieved by designing an STBC or SFBC code with

maximum distance (with internal (built in) error correcting structure). Several researchers
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have proposed schemes (Lusina et al. (2003); Martin and Taylor (2004); Plass et al. (2008);

Sripati et al. (2004a,b)) in which an error control code is embedded in the MIMO design.

Some of these approaches are enumerated below:

1. STBCs with rank r < NT , obtained from Bose-Chaudhury-Hocquenghem (BCH) and

Reed-Solomon (RS) codes, were used in (Martin and Taylor (2004)) for NT ×4 MIMO

communications (where, NT represents the number of transmit antennas). Here, per-

formance improvement is obtained by maximizing the minimum squared Euclidean

distance between any two codewords. Hamming metric (not a rank metric) has been

considered to design STBCs resulting in STBCs with rank r < NT . Due to this, at least

four receive antennas have to be employed to satisfy the condition rNR ≥ 4. This lim-

its the usage of codes to MIMO systems employing NR ≥ 4 receive antennas. Hence,

there is a need for synthesizing full rank STBCs for MIMO systems with NR < 4

antennas as well as arbitrary NT and NR.

2. Gabidulin codes over Fqm (along with rank preserving Gaussian integer map) have

been used by Lusina et al. (2003) as STBCs for MIMO systems. The codewords of a

Gabidulin code are viewed as m×n matrices over the base field Fq. These constructions

ensure that n ≤ m. Further, these constructions are extended to a class of cyclic codes,

also called q− cyclic codes. Because of the maximum rank distance property and the

code structure which ensures that n ≤ m, Gabidulin codes can be used as STBCs (full

rank) if n = m and d = m , implying k = 1. Thus, (n, 1) Gabidulin codes alone with

n = m are used as STBCs. This results in the synthesis of a STBC with qm possible

codewords.

3. Sripati et al. (2004b) designed (n, 1) full rank codes by employing discrete Fourier

transform (DFT) description were used to synthesize STBCs for MIMO systems. It

was shown that the proposed STBCs outperformed STBCs obtained from Orthogonal

designs in the case of propagation over quasi-static Rayleigh fading environment. The

construction involves DFT description of cyclic codes over Fqm proposed by Sripati

and Rajan (2003). Unlike Gabidulin codes, the length n of the code was chosen to be a
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divisor of qm−1, hence codewords of length n ≥ m were possible. Similar to Gabidulin

codes, the codewords of these codes could be viewed as m × n matrices over the base

field Fq, with n ≥ m. The separation (in terms of rank distance) between any two

codewords was found to be at least d, with d ≤ m. Full rank (d = m) code constructions

were proposed. But the limitation was that full rank could be obtained only when

k = 1. Full rank constructions for higher values of k were not proposed. This lacuna is

addressed in this work and higher rate full rank (d = m) designs derived from cyclic,

quasi-cyclic and Abelian codes are proposed. This is followed by a discussion of their

applications in the domains of wireless communication, power line communication

and storage systems.

1.3 Rank codes in storage system

Matrix codes (2D code) can also be used in applications like Linear Tape Open (LTO) and

Flash drives.

1.3.1 Tape Drives

Tape drives are being considered as potential solutions to address the issue of storage of

backup data in case of cloud systems. Table 1.1 shows the comparison of various tape drives

that are being used today. In case of tape drives information is generally stored in 2D format.

Table 1.1: Various technologies and data transfer rates of tape drives

Drive technology Data Transfer Rate (MB/s) Capacity (TB)

LTO-6 160 2.5

TS1150 360 10

T10000D 252 8

It is observed that when read/write head is corrupted the information read from/written onto

particular track of the tape drive is corrupted. Rank-metric codes are useful in recovering

data from these scenarios (Roth (1991)).
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1.3.2 Flash Drives

Cai et al. (2012) has designed and implemented a framework for fast and accurate charac-

terization of MLC flash memory throughout its lifetime. In (Cai et al. (2012)) error patterns

of TLC flash memory has been analyzed, over its lifetime (3,000 P/E cycles). The observed

errors are classified into four different types from the controller’s point of view (Cai et al.

(2012)).

• Erase error- happens when an erase operation fails to reset the cells to the erased state.

This is mainly due to manufacturing process variations or defects caused by trapped

electrons in the tunnel oxide after stress due to repeated Program/Erase (P/E) cycles.

• Program Interference error- happens when the data stored in a page changes (uninten-

tionally) while a neighboring page is being programmed due to parasitic capacitance-

coupling.

• Retention error- happens when the data stored in a cell changes over time. The main

reason is that the charge programmed in the floating gate may dissipate gradually

through the leakage current.

• Read error-happens when the data stored in a cell changes as a neighbouring cell on

the same string is read over and over.

Figure 1.2 is a plot of the Bit error rate as a function of the number of P/E cycles, in MLC

NAND flash memories. It is observed that at the beginning of the flash’s lifetime the error

rate is relatively low and the raw bit error rate is below 10−6, within the specified lifetime. As

number of P/E cycles increase the retention errors are found to be most dominant. Table 1.2

shows the percentage of errors given current symbol stage. Table 1.3 shows the percentage

of errors of various bits.

Table 1.3 shows that the probability of single bit being in error is more as compared to two

or three bits of the cell, in case of TLC flash drive. As seen from table 1.2 the least significant

bits of symbols have more probability of error as compared to most significant bits. This

is due to progressive writing mechanism incorporated in flash drives, to avoid high Raw Bit

6



Figure 1.2: BER vs. Program/Erase Cycles in case of MLC NAND Flash memory

Error Rate (RBER). From the above table 1.2, it is important to note that the symbols can be

arranged in the form of an array such that all the errors are associated with a specific column

and row, as shown in Figure 1.3,

0 0 1 1 1 0 1 0 1 0

1 0 0 1 0 0 1 1 0 1

0 1 1 0 0 1 0 0 1 1

Figure 1.3: Crisscross error pattern in TLC flash drive

The BCH codes used in present day Single Level Cell (SLC) Flash memories cannot be

employed directly to correct these types of errors (Cai et al. (2012)). Reed-Solomon (RS)

codes can be employed if the errors are confined to columns. Product codes employing RS

codes can correct certain matrix errors when errors are confined to few rows or columns.

However, if the error matrix is such that all the rows and columns are in error but the rank

of the error is less than the rank error correcting capability, then RS codes and product codes

may not be able to correct these errors. In such scenario, rank codes can be used to decrease

the BER of the MLC/TLC flash memory.Hence suitably designed rank-error correcting codes

can be used to detect and correct these errors.
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Table 1.2: Prominent error patterns observed in TLC Nand flash drive

Programmed state Error state Percentage of errors

000 010 0.2467

000 001 0.2444

111 101 0.0820

111 110 0.0807

000 100 0.0669

011 001 0.0556

100 110 0.0550

011 010 0.0547

100 101 0.0540

111 011 0.0217

Table 1.3: Flash cell error patterns

Number of bits in Flash cell that err Percentage of errors

1 0.9617

2 0.0314

3 0.0069

1.4 Motivation

In recent years, a number of researchers have been engaged in the design of low complexity

advanced data detection techniques for rank metric codes. For decoding Gabidulin codes,

decoding approaches such as Welch-Berlekamp like algorithm (Loidreau (2006) ) and List

decoding of Gabidulin subcodes over finite fields have been proposed by Ding (2015); Gu-

ruswami and Xing (2013); Wachter-Zeh (2014). In case of Roth codes, a low complex

decoder for constructions over larger fields has been proposed in (Roth (2018)). As seen

from Sections 1.1,1.2, the other well known application of rank-metric codes in MIMO com-

munication. In (Lusina et al. (2003)) (n = m, 1) Gabidulin codes (Gabidulin (1985)) were

synthesized and employed as STBCs for MIMO communications. To construct STBCs the

Gabidulin constructions were restricted to (n = m, k = 1) codes, since an increase in the

value of k results in rank-deficient codes (rank distance d < m) (Lusina et al. (2003)-Asif
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et al. (2017)). In (Sripati et al. (2004b)-Sripati et al. (2004a)) (n, 1) codes over GF(qm) with

rank=m and length n ≥ m have been used as STBCs for MIMO communication over block

fading channels Sripati et al. (2004a). The STBC codes presented in (Lusina et al. (2003);

Martin and Taylor (2004); Sripati and Rajan (2003); Sripati et al. (2004b)) are obtained from

full rank (n, 1) codes.

Full rank codes (full row rank) with rectangular structure (number of columns greater

than number of rows) can improve the BER performance of MIMO and Multicarrier com-

munications. Further, for the case of rank error correction, it will be interesting to find the

existence of codes analogous to the Gabidulin codes and Roth codes. Additionally, full rank

codes with k > 1 can result in more number of possible codewords and hence increase in code

efficiency. The problem of synthesizing full rank codes for k ≥ 2 has not been addressed in

prior literature (Lusina et al. (2003); Martin and Taylor (2004); Sripati and Rajan (2003);

Sripati et al. (2004b)). In this thesis, we have attempted to synthesize STBC codes for higher

values of (k > 1) and showed that these codes provide better performance without compro-

mising the code rate. Additionally, we have obtained rank metric properties from various

class of codes like quasi-cyclic and abelian codes. Realizing the importance and need for

well designed, large rank distance codes, low complexity codes for error correction in this

class of applications, we have designed, codes with good rank distance properties for wire-

less/ power line and storage systems. We have devised a low complexity decoding algorithms

for these codes and have assessed their performance over various channel models.

Motivated by the requirement of (n, k) full rank codes with k ≥ 2 for MIMO communica-

tions, power line communications and storage devices, we have demonstrated the existence

of (n = km, k) full rank codes over Fqm , with k ≥ 2. To construct (n, k) full rank codes

we have followed the Transform domain (GFFT) approach presented by Rajan and Siddiqi

(1992); Sripati and Rajan (2003). The Galois field Fourier transform (GFFT) description of

cyclic and Abelian codes has been employed in the synthesis of these codes. This has been

done for the following reasons.
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• The GFFT description enables us to determine a direct relationship between the size

of a q−cyclotomic coset and the rank of the code constructed by employing certain

elements of this coset as indices of free transform domain components.

• The GFFT description points to the fact that there is a certain freedom in choosing in-

dices of free transform domain components from a q− cyclotomic coset. The freedom

provided by the choice of free transform components can be employed to design a an

additional layer of security at the level of the physical layer.

We started our work by proving that (n, k) full rank cyclic codes exist for k ≥ 2. We have

evaluated their performance in MIMO systems and powerline communication systems. Later

we have generalized the results to a more general class of cyclic codes called quasi cyclic

codes. These results are then extended to a more general class of codes called Abelian codes.

Below we present some mathematical preliminaries used throughout our work. Preliminaries

that are required to understand only specific constructions are presented in corresponding

chapters.

1.5 Mathematical preliminaries

This section describes the fundamental mathematical concepts that are employed in develop-

ment of the theory of error control codes. Let S be a non-empty set. A map ∗ : S × S → S ,

(a, b)→ a ∗ b is called a binary operation on S . So ∗ takes 2 inputs a, b from S and produces

a single output a ∗ b ∈ S . In this situation we may say that ’S is closed under ∗’. We say

• ∗ is commutative if, for all a, b ∈ S ,

a ∗ b = b ∗ a

• ∗ is associative if, for all a, b, c ∈ S ,

a ∗ (b ∗ c) = (a ∗ b) ∗ c

(note that binary operation (bop) ensures that each side of this equation makes sense). If ∗ is

associative we can unambiguously write a ∗ b ∗ c to denote either of the iterated products.
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1. Group

Let S be a non-empty set and let ∗ be a binary operation on S : ∗:S × S → S ,

(a, b)→ a ∗ b. Then (S ; ∗) is a group G if the following axioms are satisfied:

(G1) Associativity: a ∗ (b ∗ c) = (a ∗ b) ∗ c for all a, b, c ∈ G

(G2) Identity element: there exists e ∈ G such that a ∗ e = e ∗ a = a for all a ∈ G.

(G3) Inverses: for any a ∈ G there exists a−1 ∈ G such that a ∗ a−1 = a−1 ∗ a = e.

If in addition the following holds

(G4) Commutativity: a ∗ b = b ∗ a for all a, b ∈ G. then (G; ∗) is called an Abelian

group, or simply a commutative group. For a finite group G, the order of the group is

defined to be the number of elements in it. The order is denoted by |G|. Otherwise we

say that G has infinite order. If (G; ∗) is a group then the identity e is unique and the

inverse of any a in G is uniquely determined by a.

2. Character of a group

A character is (most commonly) a special kind of function from a group to a field

A character on a group G is a group homomorphism from G to the multiplicative group

of contained within the field Fq. If G is any group, then the set Ch(G) of these mor-

phisms forms an abelian group under point-wise multiplication. This group is referred

to as the character group of G.Multiplicative characters are linearly independent, i.e. if

χ1, . . . , χn are different characters on a group G then from a1χ1 + a2χ2 + . . . + anχn = 0

it follows that a1 = a2 = · · · = an = 0.

3. Ring

A structure (R,+, ·) is a ring if R is a non-empty set and + and · are binary operations:

+ : R × R→ R, (a, b)→ a + b · : R × R→ R, (a, b)→ a · b such that Addition: (R,+)

is an abelian group, that is,

(A1) Associativity: for all a, b, c ∈ R we have a + (b + c) = (a + b) + c

(A2) Zero element: there exists 0 ∈ R such that for all a ∈ R we have a + 0 = 0 + a = a

(A3) Inverses: for any a ∈ R there exists −a ∈ R such that a + (−a) = (−a) + a = 0

(A4) Commutativity: for all a, b ∈ R we have a + b = b + a

11



Multiplication: (M1) Associativity: for all a, b, c ∈ R we have a · (b · c) = (a · b) · c

Addition and multiplication together

(D) ∀a, b, c ∈ R, a · (b + c) = a · b + a · c and (a + b) · c = a · b + b · c

We sometimes say ′R′ is a ring, taken it as given that the ring operations are denoted

+ and ·. As in ordinary arithmetic we shall frequently suppress · and write ab instead

of a · b.

Assume (R; +, ·) is a ring. We say R is a commutative ring if its multiplication · is

commutative, that is,

(M4) Commutativity: a · b = b · a for all a, b ∈ R. We say R is a ring with 1 (or ring

with identity) if there exists an identity for multiplication, that is,

(M2) identity element: there exists 1 ∈ R such that for all a ∈ R we have a·1 = 1·a = a.

There are many examples of rings. In this work we use polynomial rings. Polynomials,

with real coefficients, form a commutative ring with identity under the usual addition

and multiplication; we denote this by R[x].

Ideals

An ideal is a subset I of elements in a ring R that forms an additive group and has the

property that, whenever x belongs to R and y belongs to I, then xy and yx belong to I.

4. Galois Field

A structure (R,+, ·), where + and · are binary operations on R is a field if (A1) −

(A4), (M1)− (M4), and (D) hold, and 0 , 1. This can be expressed in a more modular

way as follows (R,+, ·) is a field if (A) (R,+) is an abelian group; (M) (R {0}, ·) is an

abelian group; (D) the distributive laws hold. There are two family of fields: finite

fields (Galois field) and infinite fields (Q,R,C,). Finite fields find application in cod-

ing theory and applied algebra. In this work we have employed Galois fields and finite

complex fields (Eisenstein-Jacobi integer field and Gaussian integer field).

5. Linear codes -
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A q−ary block code of size M is a set of M q−ary sequences of fixed length n over a

finite set of symbols called the alphabet. The elements of a code are called the code-

words. Under the component-wise vector addition and scalar multiplication, the set of

n− tuples over Fq forms a linear space denoted by Fn
q. A linear code C is a subspace of

Fn
q. When the dimension of C is k (k ≤ n), it is called linear [n, k] code and is denoted

by C[n, k].

It can be noted that if C is designed over a Galois field Fqm then the elements of code-

word vectors in C belong to Fqm . From the theory of Galois field we know that the

elements in Fqm can be represented as m−tuple elements over Fq . Thus the n−length

codeword vectors can be expressed as m × n codeword matrices.

Rank metric Linear codes An (n, k, d) linear code C over the Galois field Fqm can

be thought of as a k−dimensional linear space of m × n matrices over Fq with d be-

ing the minimum weight of any non-zero matrix in C . This can be denoted as an

(m × n, k, d) array code over the field Fq.

General properties of codes

A distance d(x, y) between a n−length vectors x, y is a function satisfying conditions

d(x, y) ≥ 0,∀x, y; (Non-negative). d(x, y) = 0 ⇐= x = y; (zero value) d(x, y =

d(y, x);(Symmetry). d(x, y) ≤ d(x, z) + d(z, y),∀x, y, z (Triangle inequality). A norm

function N(x) is associated with the distance function. Similar to distance function,

the norm function should satisfy the following axioms: N(x) ≥ 0,∀x;(Non-negative).

N(x) = 0 ⇐= 0 ⇐= x = 0;(Zero value). N(x + y) ≤ N(x) + N(y),∀x, y (Triangle

inequality). The norm function allows to construct the distance function as follows:

d(x, y) := N(x − y). The distance between n−length vectors x, y ∈ X n is defined as

follows.

d(x, y) =

n∑
i=1

d(xi, yi)
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Similarly, for the coordinate-wise norm, we have

Nn(x) =

n∑
i=1

N(xi)

Norm functions are used to quantify the distance between two codewords in coordi-

nate wise or non-coordinate wise manner. The hamming distance (Hamming norm)

is defined coordinate-wise however the rank distance (Rank norm) cannot be defined

coordinate wise.

Singleton Bound

In coding theory, the Singleton bound is an upper bound on the size of an arbitrary

block code C with block length n, size M and minimum distance d. The minimum

distance of a set C of codewords of length n is defined as

d = min
{x,y∈C:x,y}

d(x, y)

where d(x, y) is the Hamming distance between x and y. The expression Aq(n, d) rep-

resents the maximum number of possible codewords in a q−ary block code of length

n and minimum distance d. Then the Singleton bound states that Aq(n, d) ≤ qn−d+1.

If C is a linear code with block length n, dimension k and minimum distance d over

the finite field with qelements, then the maximum number of codewords is qk and the

Singleton bound implies: qk ≤ qn−d+1,so that k ≤ n − d + 1, which is usually written

as d ≤ n − k + 1. Codes that attain maximum distance i.e that is codes with satisfy sin-

gleton like bound with equality (called as Maximum Distance Separable) are preferred

in communication theory. Since rank of a codeword matrix is less than the hamming

distance of the corresponding codeword vector, the rank distance of a code C is upper

bounded by its hamming distance d. Thus the codes satisfying maximum rank distance

are called Maximum Rank Distance codes (MRD codes).

6. Cyclic codes as ideals in polynomial rings. The concept of an ideal contained within
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a ring plays a fundamental role in the study of cyclic codes. We know that if V is a

vector space under vector addition, it has no natural multiplicative structure. A useful

way of introducing a multiplication is to identify the vectors (a0, a1, · · · , an−1) in V

with the polynomials

a0 + a1x + a2x2 + · · · + an−1xn−1 ∈ Fq[x]/(xn − 1)

where Fq is a Galois field, and then use the multiplication in this ring as the multi-

plication of the corresponding vectors. Doing this clearly transforms vector space V

into a ring isomorphic to the polynomial ring modulo (xn − 1). Since it is so easy to

go back and forth between these two representations (i.e., vectors and polynomials)

we will often blur the distinction between the two and just deal with the polynomials.

Notice that the choice of xn − 1 as f (x) means that multiplying by x corresponds to a

cyclic shift of a vector. Since C is a subspace and cyclic, if all the codeword vectors

are cyclic shifts of other codeword vectors, the polynomial ring associated with C is

an ideal. Thus cyclic codes are ideals in polynomial rings. This mathematical structure

is employed in this work.

1.6 Contribution of the Thesis

The main contribution is as follows:

• Rank distance characterization of (n, k) QC codes over Fqm .

In this, we have analyzed the rank distance properties of (n, k) QC codes designed

by considering free transform component indices from different q− cyclotomic coset

integers. We have proved that (n, k) full row rank codes can be obtained by choosing

free transform component indices such that they do not belong to same q− cyclotomic

coset.

• Rank distance characterization of (n, k) Abelian codes over Fqτ .

In this, we have analyzed the rank distance properties of (n, k) Abelian codes designed
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by considering free transform component indices from different q− cyclotomic coset

integers. Abelian groups that were considered are obtained from direct product of

cyclic groups. We have proved that (n, k) full row rank Abelian codes can be obtained

by choosing free transform component indices such that they do not belong to same

q− cyclotomic coset modulo n.

• Design of STBC/SFBCs from (n, k) cyclic codes. The full rank codes derived in this

work satisfy the Rank criterion and Determinant criterion. Thus we have used the

full rank codes are Space-Time/Frequency Block Codes using two well known rank-

preserving maps: Gaussian Integer map and Eisenstein-Jacobi Integer map.

• Performance evaluation of (m, 1) rank-metric codes derived from cyclic codes. Per-

formance of the proposed rank-metric codes has been evaluated in multicarrier PLC

(mPLC) system. It was found that the rank error performance of MRD codes obtained

in this work, is same as the rank error performance of Gabidulin codes.

1.7 Organization of the thesis

This thesis is organized into six chapters as follows:

Chapter 2 presents the construction (synthesis) of (n, k) `− Quasi Cyclic (QC) codes with

desired rank distance properties. A systematic procedure for synthesizing l− QC codes with

good rank distance properties has been proposed.

Chapter 3 presents the construction (synthesis) of (n, k) Abelian codes with the desired rank

distance properties. The theorems proposed in this chapter are proved using the definition

of abelian code as direct product of cyclic codes. A systematic procedure for synthesizing

Abelian codes with good rank distance properties has been proposed.

Chapter 4 discusses the application of the proposed codes as space-time block codes or space-

time/frequency block codes (STBC/SFBC) for MIMO systems. This chapter discusses the

details of MIMO system employing OFDM and IM strategies.An upper bound on the BER

performance has been derived by invoking the Union bound.
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Chapter 5 discusses the application of rank-metric cyclic codes for applications involving

crisscross errors: namely power line communication and multi level storage/tape drives.

Chapter 6 concludes the work and gives details of the future scope.
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Chapter 2

Rank-metric Quasi-Cyclic codes

2.1 Introduction

In this chapter, we will consider the rank distance properties of n−length `−quasi-cyclic

codes over the Galois field Fqm with m ≤ n, n|qm − 1 and `|n. We have determined the exact

rank of these codes by using the transform domain description of (n, k) Quasi-Cyclic (QC)

codes given by Dey and Rajan (2003), Specifically, we have determined the exact rank of

two classes of (n, k) QC codes namely arbitrary QC codes and minimal QC codes. We have

shown that full rank QC codes can be obtained for any k ≥ 1 only in case of arbitrary QC

codes and have discussed the relation between rank distance of (n, k ≥ 1) QC codes and

the free transform domain component indices. Further, we have shown that the arbitrary

QC codes can be punctured to (e j, k) codes without altering their rank with e j = km. We

have applied the analysis to the case of minimal QC codes and have determined the exact

rank of (n, k) QC codes. In addition to this we have provided a simple technique to enable

construction of parity check matrix. A decoding strategy making use of the parity check

matrix has beeen derived.

In Section 2.2 we give the definitions and corresponding examples of concepts required to

understand the design of QC codes. In section 2.3 we present the theorems on the rank-

distance properties of QC codes. Section 2.4 provides a brief description of the technique

that can be used to puncture QC codes without bringing about an alteration in the rank. In

section 2.5 we give generator matrix representation of the proposed codes and their punctured
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equivalents. Construction of parity check matrix is given in section 2.7. Using the check

matrix, a general and low complex decoding strategy is given in section 2.7.1. In section 2.8

we discuss the rank distance properties of cyclic (1-QC) codes and provide details of MRD

codes (analogous to Gabidulin codes).

2.2 Preliminaries

• Residue class: Consider the set I = {0, 1, · · · , n − 1}. For any j ∈ [0, n − 1] and for

any ` such that `|n, the residue class modulo n
` of j, denoted by ( j)n,` is given as (Dey

and Rajan (2003)),

( j)n,` =

{
i ∈ [0, n − 1] : j ≡ i mod

n
`

}
(2.1)

Example 2.2.1 let us consider the set I = {0, 1, 2, · · · , 14} with n = 15. Since 24 − 1 =

15, let us consider the field F24 . Following are the residue classes modulo 5 and modulo

3 of the set I.

Table 2.1: Residue Classes modulo n
`

for n = 15 and ` = 3, 5.

Residue class modulo 5 Residue class modulo 3

(0)15,3 = {0, 5, 10} (0)15,5 = {0, 3, 6, 9, 12}

(1)15,3 = {1, 6, 11} (1)15,5 = {1, 4, 7, 10, 13}

(2)15,3 = {1, 6, 11} (2)15,5 = {2, 5, 8, 11, 14}

(3)15,3 = {3, 8, 13}

(4)15,3 = {4, 9, 14}

• Cyclotomic Cosets: Consider the set I = {0, 1, · · · , n − 1}. For any positive integer

j ∈ [0, n − 1], the q− cyclotomic coset of j modulo n is given as (Moon (2005)),

[
j
]
n =

{
j, jq, · · · , jql, · · · , jqs, · · · , jql+s, · · · , jqr j−1

}
(2.2)

The cardinality of the set [ j]n is denoted as r j.
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Example 2.2.2: Let us consider the set I = {0, 1, 2, · · · , 14}. Let n = 15. Since

24 − 1 = 15, let us consider the field F24 . Following are the 2−cyclotomic cosets mod-

ulo 15 of the set I.

Table 2.2: 21−cyclotomic cosets of j modulo 15.

[0]15 = {0} [5]15 = {5, 10}

[1]15 = {1, 2, 4, 8} [7]15 = {7, 14, 13, 11}

[3]15 = {3, 6, 12, 9}

• Separation of q− cyclotomic coset coefficients: Let[
j
]
n =

{
j, jq, · · · , jql, · · · , jqs, · · · , jql+s, · · · , jqr j−1

}
be the q− cyclotomic coset of in-

teger j. We define the Separation between two elements jql and jql+s as the difference

in powers of q associated with the elements i.e. separation between jql and jql+s is

given as l + s − l = s.

Example 2.2.3 Consider the coset [3]15 = {3, 6, 12, 9}, the separation between ele-

ments 6 = 3.2 and 9 = 3.23 is 3 − 1 = 2. Similarly the separation between 3 and 6 is

1, and the separation between 3 and 9 is 3.

• Reciprocal Polynomial: If f (x) is a minimal polynomial (irreducible) given by f (x) =

atxt + at−1xt−1 + · · · + a1x + a0, then the reciprocal polynomial f (x)∗ of f (x) is given

by

f (x)∗ = xt ∗ f (x−1) = a0xt + a1xt−1 + a2xt−2 + · · · + at−1x1 + at;

where t is some positive integer.

[Note that the degree of f (x)∗ is same as the degree of f (x) and the coefficients are

positioned in reverse order. Also, if f (x) is irreducible then f (x)∗ is also irreducible

Roman (2005).]

Example 2.2.4 Consider the Galois field F24 , the conjugacy classes of this field and

their corresponding minimal polynomials and reciprocal polynomials are shown in the

Table 2.3.
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Table 2.3: Minimal and Reciprocal polynomials over F24

Conjugacy Class Minimal Polynomial Reciprocal Polynomial
{1} y + 1 y + 1

{α, α2, α4, α8} y4 + y + 1 y4 + y3 + 1
{α3, α6, α12, α9} y4 + y3 + y2 + y + 1 y4 + y3 + y2 + y + 1
{α5, α10} y2 + y + 1 y2 + y + 1

{α7, α14, α13, α11} y4 + y3 + 1 y4 + y + 1

• Galois field Fourier transform (GFFT): In coding theory, Galois field Fourier trans-

form (GFFT) is defined as the Discrete Fourier Transform (DFT) over Galois field Fqm

with a primitive element α. Following (Blahut (1983)), for the case n|qm − 1 the GFFT

of a vector u = {ui, 0 ≤ i ≤ n − 1} , ui ∈ Fqm is defined as,

U j =
∑n−1

i=0 uiβ
−i j ; 0 ≤ j ≤ n − 1 (2.3)

Here, β = α
qm−1

n is the nth root of unity in Fqm . If n = qm − 1 then β = α. The inverse

GFFT (IGFFT) of U =
{
U j, 0 ≤ j ≤ n − 1

}
is given by,

ui = (n mod q)−1 ∑n−1
j=0 U jβ

−i j ; 0 ≤ i ≤ n − 1 (2.4)

Following usual terminology, u = (u0, u1, · · · , un−1) is called the time domain vector

and U = (U0,U1, · · · ,Un−1) is called the transform domain vector of u.

Example 2.2.5: Let us consider the Galois field F24 obtained using primitive polyno-

mial X4 + X + 1. The elements of the Galois field are

F24 = {0, 1, α, α2, α3, α+ 1, α2 + α, α3 + α2, α3 + α+ 1, α2 + 1, α3 + α, α2 + α+ 1, α3 +

α2 + α, α3 + α2 + α + 1, α3 + α2 + 1, α3 + 1}.

Let us assume the transform domain vector U is U = {0, α2 + α, 0, α3 + α2 + 1, 0, 0, 0,

α2, 0, 0, 0, 0, 0, 0, 1}. Using 2.4 the time domain vector u is given by, u = {α3 + α2 +

α, α3 +α2 +α+1, 0, 1, 1, α2, 0, 0, α2 +1, α3 +α, α3 +α2, α3 +α2 +α, α3 +α, α3 +α2 +1, 0}

• Rank: Let u = (u0, u1, u2, · · · un−1) be a n−length vector with ui ∈ Fqm , 0 ≤ i ≤ n − 1.

From the Galois theory we know that each ui ∈ Fqm can be expressed as m− tuple
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vector over the base field Fq. Following this, the vector u can be written as m × n

matrix that is obtained by expanding each element of u as an m−tuple over Fq. Such a

matrix is shown in (2.5).

u = (u0, u1, u2, · · · un−1) =



u0,0 u0,1 u0,2 · · · u0,n−1

u1,0 u1,1 u1,2 · · · u1,n−1

...
...

... · · ·
...

um−1,0 um−1,1 um−1,2 · · · um−1,n−1


(2.5)

The rank of vector u ( denoted as Rq(u)) is now defined as the rank of the above matrix

over Fq.If Rq(u) = m (full row rank), then we call the above matrix and equivalently

vector u as full rank. For example, for the vector u = {α3 + α2 + α, α3 + α2 + α +

1, 0, 1, 1, α2, 0, 0, α2 +1, α3 +α, α3 +α2, α3 +α2 +α, α3 +α, α3 +α2 +1, 0} with element

in F24 , the corresponding matrix over F2 is given by

u =



0 1 0 1 1 0 0 0 1 0 0 0 0 1 0

1 1 0 0 0 0 0 0 0 1 0 1 1 0 0

1 1 0 0 0 1 0 0 1 0 1 1 0 1 0

1 1 0 0 0 0 0 0 0 1 1 1 1 1 0


(2.6)

The rank of this matrix is considered as the rank of the vector u.

2.3 Rank distance properties of QC codes

Dey and Rajan (2003) have given a GFFT domain description of Quasi-Cyclic (QC) codes.

It was shown that for any `|n, `−QC codes are obtained by restricting the free transform

components to β` invariant subspaces over the field Fqm . The class of arbitrary QC codes

can be obtained using the IDFT equation and by choosing the free transform components

C j1 ,C j2 , · · · ,C jk with indices j1, j2, · · · jk from only one residue class modulo n/` or from

different residue classes related with conjugacy constraints. Furthermore, it was shown that

for any j ∈ [0, n
m−1 ], C jn,m assume values from β

rm j− invariant subspace.
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For the class of minimal QC codes, it was shown that for any j1, j2, · · · , jk ∈ [0, n − 1],

A j1 , A j2 , · · · , A jn−1 should take values from minimal β`− invariant subspace and that A j1 , · · · ,

A jn−1 are related using linear invertible maps. Alternately this implies that the indices j1, · · · , jk

should belong to the same cyclotomic coset modulo n
` .

The IDFT equation with k− non-zero free transform components {C j1 ,C j2 , · · ·C jk }, (and

rest of the components are constrained to zero) is be given by,

ci = (C j1β
−i j1 + · · · + C jkβ

−i jk ), i ∈ [0, n − 1] (2.7)

Let β− j1 , · · · , β− jk be roots of polynomial y(x) specified as,

y(x) = be j x
e j + be j−1xe j−1 + be j−2xe j−2 + · · · + b1x + b0 (2.8)

Here bI ∈ Fq for all 0 ≤ I ≤ e j − 1. Since for 1 ≤ W ≤ k, β− jW are roots of y(x), from

(2.8) we have

β−e j jW = − 1
be j

∑e j−1
i=0 biβ

−i jW 1 ≤ W ≤ k (2.9)

For i = e j + v with 0 ≤ v ≤ n − e j − 1, from (2.7) we have

ce j+v = (n mod q)−1(C j1β
−(e j+v) j1 + · · · + C jkβ

−(e j+v) jk ) (2.10)

Substituting for β−e j j1 , · · · , β−e j jW in (2.10) we get

ce j+v =
C j1β

−v j1 ∑e j−1
i=0 b

′

iβ
−i j1 + · · · + C jkβ

−v jk
∑e j−1

i=0 b
′

iβ
−i jk

(n mod q)
(2.11)

Here b
′

i = bi/be j . The above (2.11) can be simplified to

ce j+v =

∑e j

i=0 b
′

i(C j1β
−(v+i) j1 + · · · + C jkβ

−v jkβ−i jk )

(n mod q)
(2.12)

From (2.7), the term in the brackets on the RHS of (2.12) is equal to ci. Thus, (2.12) can be

written as

ce j+v −
1

(n mod q)

e j−1∑
i=0

b
′

ici+v =
1

(n mod q)

e j∑
i=0

b
′

ici+v = 0 (2.13)
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Here b
′

e j
= (n mod q). From (2.13) we can infer that the codeword elements starting from

index e j can be expressed as linear combination of previous e j elements. Thus, the rank of

any codeword vector can be decided by the number of linearly independent elements in the

set {c0, c1, · · · , ce j−1}.

Lemma 2.3.1: Let Fqg ⊆ Fqm . If X = {xo, x1, · · · , xg−1} forms the trivial basis of Fqg

then there exists δ1,, δ2 , · · · , δm/g ∈ Fqm and not in Fqg such that

{δ1xo, δ1x1, · · · , δ1xg−1, · · · , δm/gxo, δm/gx1, · · · , δm/gxg−1} forms the set of m linearly inde-

pendent elements in Fqm .

Lemma 2.3.2: If β1 is root of a minimal polynomial y1 of degree r1 and β2 is a root of mini-

mal polynomial y2 of degree r2, then the degree e j of the minimal polynomial for which both

β1 and β2 are roots is e j = r1 ; if y1 = y2 or e j = r1 + r2 ; if y1 , y2.

2.3.1 Arbitrary (non-minimal) QC codes

We have employed the DFT description of `−QC codes described by Dey and Rajan (2003),

to analyze the rank distance properties of (n, k) QC codes. The main result of this corre-

spondence is that the rank of arbitrary QC code does not depend on the residue classes from

which the indices are chosen and depends on the q−cyclotomic-coset modulo n to which the

indices belong. This implies that irrespective of the residue classes or irrespective of the q−

cyclotomic cosets modulo n
m from which the indices are drawn, the rank distance properties

depend on size of the cyclotomic coset to which these indices belong to. The rank distance

properties of `−QC codes are described in the following Theorems.

Theorem 2.3.1: Let C be an arbitrary `− QC code over Fqm obtained using free transform

components {C j1 ,C j2 , · · · ,C jk } with indices j1 , j2 , j3 , · · · , jk−1 and other transform

components constrained to zero.

1. If j1, j2, · · · jk ∈ [ j]n then there exists C with Rq(C ) = r j1 − (k − 1)g. Here g|S where
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S is the separation between elements of [ j]n.

2. If j1 ∈ [ j1]n, j2 ∈ [ j2]n, · · · jk ∈ [ jk]n, then Rq(C ) = min(r j1 , r j2 , · · · , r jk ) .

Proof : Case 1: Without loss of generality let us consider the transform component indices

j1, j2 = j1qs1 , · · · , jk = j1qsk−1 , that are chosen from the cyclotomic coset [ j1]n of size j1 .

The reciprocal polynomial y j1(x) associated with β[ j1]n will have representation as given in

(2.8) with degree e j = r j1 (Roman (2005)). Also, from (2.7) we have

ci = (C j1β
−i j1 + · · · + C j1qsk−1β−i j1qsk−1 ) (2.14)

Since the first e j = r j1 codeword elements determine the rank of the codeword, for v = 0 in

2.13 we have r j1∑
i=0

b
′

i(C j1β
−i j1 + · · · + C j1qsk−1β−i j1qsk−1 ) = 0 (2.15)

We are interested in determining codeword c that has ru < e j number of linearly independent

elements. To this extent let us consider a subfield Fqg such that g = gcd(r j1 , S 1, · · · , S k−1,m).

Here S u represents the separation between j1 and j1+u for 0 ≤ u ≤ k − 1. From the definition

of QC codes we see that C is QC if the free transform component assumes values from β`−

invariant subspaces. From the definition of β`− invariant subspace we know that there exists

a subspace with at least one element in the field Fqg with g|m. Since C j1 takes values from any

β` j1− invariant subspace, let us consider c obtained from C j1
−1 = x ∈ Fqg , then from (2.15)

we have ru∑
i=0

b
′

iβ
−i j1 + · · · + xC j1qsk−1

 ru∑
i=0

b
′

iβ
−i j1

qsk−1

= 0 (2.16)

Since x ∈ Fqg , the element x can be expressed as
∑g−1

i=0 dixi, with di ∈ Fq. (2.16) can now be

written as
ru∑

i=0

viβ
−i j1 + · · · +

g−1∑
i=0

dixi

C j1qsk−1

 ru∑
i=0

viβ
−i j1

qsk−1

= 0 (2.17)

Let us define δw = C j1qsw

(∑ra
i=0 viβ

−i j1
)qsw

for w ∈ [1, k − 1]. (2.17) can now be written as
ru∑

i=0

viβ
−i j1 + (δ1 + · · · + δk−1)

g−1∑
i=0

dixi = 0 (2.18)

Following the definition of the QC code C j1 ,C j2 , · · · ,C jk take values independently from any

βl jZ− invariant subspace for 1 ≤ Z ≤ k, there exist a codeword c for C j1 ,C j2 , · · · ,C jk such
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that δ1 , δ2 , · · · , δk then the set {δ1x0, · · · , δ1xg−1, · · · , δkx0, · · · , δkxg−1, } can form the

set of kg linearly independent elements in the field Fqm From the theory of Galois fields we

know that if β− j1 ∈ Fqr j1 then {β− j1 , β−2 j1 , · · · β−r j1 j1} forms the set of linearly independent ele-

ments in Fqr j1 and also in Fqm since r j1 |m. However according to (2.15) the summation should

contain r j1 terms, thus ru = r j1 −kg = r j1 − (k−1)g. Since r j1 |m we have r j1 − (k−1)g < m lin-

early independent columns. Thus Rq(C ) = r j1−(k−1)g. If r j1 = m then Rq(C ) = m−(k−1)g.

Case 2: Since j1 ∈ [ j1]n , j2 ∈ [ j2]n , · · · ,, jk ∈ [ jk]n the polynomial y j(x) that has

representation as given in (2.8) has degree e j = r j1 + r j2 + · · · + r jk . From (2.7) we have

ci = (C j1β
−i j1 + · · · + C jkβ

−i jk ), i ∈ [0, n − 1] (2.19)

Since the first e j codeword elements determine the rank of the codeword, for v = 0 in (2.13)

we have e j∑
i=0

b
′

i(C j1β
−i j1 + · · · + C j1qsk−1β−i j1qsk−1 ) = 0 (2.20)

Similar to analysis given in case 1, we are interested in determining the existence of a

codeword c that has ru < e j number of linearly independent elements. In this case since

j1, j2, · · · , jk are all chosen from different q−cyclotomic cosets modulo n, we consider g

such that g|r j1 , g|r j2 , · · · , g|r jk . Let us consider c obtained from C j1
−1 = x ∈ Fqg , then from

(2.20) we have.
ru∑

i=0

b
′

iβ
−i j1 + · · · + xC jk

ru∑
i=0

b
′

iβ
−i jk = 0 (2.21)

Similar to the analysis given in case 1, let us define ∆W = C jW
∑ru

i=0 b
′

iβ
−i jW for 2 ≤ W ≤ k.

From the theory of cyclotomic cosets we know that the number of q−cyclotomic cosets mod-

ulo n are upper bounded by bn/mc. Since free transform component indices are chosen from

k different q− cyclotomic cosets modulo n, this implies that k ≤ n/m. Following the analysis

given in case 1, we see that C j1 ,C j2 , · · · ,C jk can take values independently from any βl j1− in-

variant subspace, such that δ1 , · · · , δk then the set
{
δ1x0, · · · , δ1xg−1, · · · , δkx0, · · · , δkxg−1

}
forms the set of kg linearly independent elements in the field Fqm . This set of linearly inde-
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pendent elements can by extended to form the non-trivial basis of Fqm by choosing the re-

maining m − kg linearly independent elements in Fqm . Since β− j1 ∈ Fqr j1 ⊆ Fqm , the elements

{β− j1 , · · · , β−(m−g) j1 , δ1x0, · · · , δ1xg−1, · · · , δkx0, · · · , δkxg−1} can form the set of m linearly

independent elements. According to (2.15) the summation should contain e j terms, thus

ru = e j − (k − 1)g = e j − (m − 1)g. This implies that the codeword elements starting from

location e j can be expressed as linear combination of previous e j elements. If e j < m then the

rank of this codeword is e j. This is indeed the minimum rank because for any other values of

C j1 ,C j2 , · · · ,C jk the rank will be greater than e j. Also, if e j ≥ m then rank of c is m. Since

C j1 ,C j2 , · · · ,C jk take values independently, there exists codewords with only one non-zero

free transform domain component, in which case the rank of the corresponding codeword is

given by r jW for 1 ≤ W ≤ k. Thus in general Rq(C ) = min(r j1 , r j2 , · · · , r jk ,m) At this point it

can be noted that the above theorems are true for the case of cyclic codes which are 1− QC

codes.

Example 2.3.1: Let us consider the design of 3− QC code C over F24 obtained using free

transform components C1,C4. The component indices {1, 4} ∈ (1)15,3 & ∈ [1]15, and the

separation between 1,4 is S = 2. If C is obtained from some β3 invariant subspace with ele-

ments from field F2g for some g = gcd(S , r1,m) = 2, we have Rq(C ) = min(r1, r1−(k−1)g) =

min(4, 4 − (2 − 1).2) = 2.

For C1 = 1 and C4 ∈ {1, β3, β6, β9β12} we have rank 2 codewords listed below. By exhaustive

computation it has been confirmed that no non-zero codeword exists having rank less than 2.

Thus Rq(C ) = 2.

Example 2.3.2 Consider (15, 2) 5−QC odes over F24 obtained for free transform compo-

nents C1,C6 taking values independently from β5− invariant subspace-{0, 1, β5, β10}. Table

2.5 fives the list of all possible 15 non-zero codewords each having rank 4.

Example 2.3.3: Let us consider the design of 3− QC code C over F24 obtained using free

transform components C1,C7. The component indices {1, 7} ∈ [1]15/3 & {1} ∈ [1]15, {7} ∈

[7]15. Here r1 = r7 = 4. If C is obtained from some β3 invariant subspace we have

Rq(C ) = min(r1, r7,m) = 4. Table 2.6 gives the list of all 36 codewords obtained by con-
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Table 2.4: A few selected codewords of rank 2 in C corresponding to Example 2.3.1
010110010001111

011110101100100

011110101100100

000000000000000




100100011110101

001111010110010

000000000000000

101011001000111




110101100100011

000000000000000

110101100100011

110010001111010


111010110010001

111010110010001

011001000111101

111010110010001




000000000000000

101100100011110

111101011001000

111101011001000


-

sidering the β3− invariant subspace {0, 1, β3, β6, β9β12}. It can be seen that All non-zero

codewords have rank 4.

2.3.2 Minimal QC codes

Dey and Rajan (2003) have shown that (n, 1) `− minimal QC code C can be obtained by

restricting the free transform component C j to minimal β` j invariant subspace. For the case

of k > 1 minimal QC codes are obtained by choosing the k transform components such that

their indices belong to only one cyclotomic-coset modulo n
m . Further, it was shown that the

free transform components with indices belonging to same q-cyclotomic coset modulo n
m but

different q−cyclotomic coset modulo n are related Dey and Rajan (2003).

Theorem 2.3.2: Let C be an (n, 1) minimal `− QC code over Fqm obtained using C j with

j ∈ [ j]n of size r j, then Rq(C ) = r j.

Proof : C j takes value from β` j invariant subspace. Since j ∈ [ j]n of size r j , the polynomial

y(x) associated with β− j has representation as given in (2.8) with e j = r j. If r j < m, then for

k = 1 following the analysis given in Theorem 2.3.1, we have Rq(C ) = r j. If r j > m then

Rq(C ) = m.

Example 2.3.4: Consider 5− quasi-cyclic code of length n = 15 over F24 . The transform

component with indices from cyclotomic cosets {1, 2, 4, 8}, {5, 10}, {7, 11, 13, 14} are related

such that C5 = α11C2
1, C7 = α3A1. Also C2 = C2

1,C4 = C4
1,C8,C8

1,C10 = C2
5,C14 = C2

7,C13 =
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Table 2.5: List of codewords of rank 4 in C corresponding to Example 2.3.2
010001011000000

000010001011000

000010011010011

011010001001001




100101001010010

010100101001010

000110001100011

011110111101111




011000110001100

100011000110001

101111011110111

010010100101001


111101111011110

110111101111011

101001010010100

001100011000110




111101011001000

000111101011001

001111010110010

011110101100100




011000010011010

010011000010011

001001011010001

000000010001011


100101101000100

100100101101000

100000001000101

001100001001101




000000100010110

110000000100010

100110000100110

010010110100010




010001111010110

110010001111010

100100011110101

001000111101011


110100110000100

100110100110000

100010010010110

010110000000100




001001001011010

010001001001011

001011000000010

011010011000010




101100000001000

000101100000001

001101001100001

000100100101101


101100100011110

110101100100011

101011001000111

010110010001111




001001101001100

100001001101001

101101000100100

001000101100000




110100010010010

010110100010010

000100010110000

000100110100110


C4

7,C11 = C8
7. Thus there is only one degree of freedom in terms of C j1 . Also C1 takes value

from any α5 invariant subspace. Let us consider the subspace {0, α, α6, α11}. The codeword

matrices obtained for different values of C1 are shown in Table 2.7.

Theorem 2.3.3: Let C be an (n, k) minimal `− QC code over Fqm obtained using k free

transform components with indices { j1, j2, · · · , jk} ∈ [ j1] n
m

, then Rq(C ) = 1.

Proof : Following the definition of minimal QC code, the elements of [ j1] n
m

belonging to

same cyclotomic coset modulo n are related with conjugacy constraints and the elements be-

longing to different q− cyclotomic cosets are related appropriately. Since all the elements

30



Table 2.6: List of codewords in C corresponding to Example 2.3.3
000000000000000
000000000000000
000000000000000
000000000000000




110001001101011
001101011110001
010011010111100
000100110101111




000000111001110
001100010100011
000110100001011
011010100000101


110001001101011
001101011110001
010011010111100
000100110101111




001101011110001
011110001001101
010111100010011
110101111000100




011110001001101
001001101011110
100010011010111
111000100110101


001001101011110
101011110001001
011010111100010
100110101111000




101011110001001
110001001101011
111100010011010
101111000100110




111101011001000
000111101011001
001111010110010
011110101100100


001100010100011
001010110101000
011100000001110
011010011001011




110000000111001
011001100010100
011000110100001
101011010100000




100011010000101
001110000000111
101101001100101
100110001010001


110100110010110
101100011010000
010101101010000
111000000011100




010110101000001
110110100110010
110011000101000
110001101000010




000111101011001
001000111101011
010001111010110
100011110101100


110110100110010
000101100011010
000010101101010
100111000000011




001010110101000
010110110100110
000110011000101
010110001101000




011001100010100
000001010110101
110011100000001
011011010011001


001110000000111
100011001100010
001011000110100
000101011010100




101100011010000
111001110000000
101101101001100
001100110001010




001000111101011
011001000111101
110010001111010
100100011110101


111001110000000
010100011001100
100001011000110
100000101011010




000101100011010
000111001110000
100101101101001
010001100110001




010110110100110
010000101100011
010000010101101
011100111000000


000001010110101
110010110110100
101000110011000
000010110001101




100011001100010
101000001010110
001110011100000
001011011010011




011001000111101
101011001000111
010110010001111
101100100011110


101000001010110
100110010110110
000101000110011
101000010110001




010100011001100
110101000001010
000001110011100
011001011011010




000111001110000
100010100011001
110100001011000
010100000101011


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
010000101100011
000000111001110
001100101101101
001010001100110




110010110110100
011010000101100
101010000010101
000011100111000




101011001000111
111101011001000
111010110010001
110101100100011


011010000101100
110000000111001
101001100101101
110001010001100




100110010110110
100011010000101
101101010000010
000000011100111




110101000001010
110100110010110
011000101000110
001101000010110


100010100011001
010110101000001
100000001110011
010011001011011


Table 2.7: List of codewords of minimal 5−QC code C corresponding to Example
2.3.4 

000000000000000
000000000000000
000000000000000
000000000000000




011110011101000
000000000000000
000000000000000
000000000000000




010000111100111
000000000000000
000000000000000
000000000000000


001110100000111
000000000000000
000000000000000
000000000000000


with indices belonging the same q− cyclotomic coset modulo n are non-zero, from case 1 of

Theorem 2.3.1 we see that Rq(C ) = 1.

Example 2.3.5: Consider (15, 1), minimal 5− quasi-cyclic code over F24 . Let the free trans-

form component be C5 that take values from α5 invariant subspace {0, α, α6, α11}. The 3

non-zero codewords of rank 4 obtained for different values of C5 are shown in Table 2.8.

Example 2.3.6: Consider length 24, 6−QC code over F52 . The codewords are obtained with

only one non-zero free transform component C1 taking values from α6− invariant subspace

{0, 1, α6, α12, α18}. The non-zero codewords listed in Table 2.9 are observed to have rank 2.

Theorem 2.3.4: Let C be a QC code of length n|qm − 1 over Fqm such that the transform

domain component C jqs ∈ C[ j] is free and all other transform components are constrained to

zero. Let |[ j]| = e j. Consider any non zero codeword c ∈ C
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Table 2.8: List of codewords of code C corresponding to Example 2.3.5
000000000000000
000000000000000
000000000000000
000000000000000




011110101100100
100011110101100
000111101011001
001111010110010




001000111101011
011001000111101
110010001111010
100100011110101


010110010001111
111010110010001
110101100100011
101011001000111


Table 2.9: List of 4 non-zero codewords of rank 2 corresponding to Example 2.3.6 121140313320434410242230

024223012114031332043441

  242230121140313320434410
043441024223012114031332

 434410242230121140313320
031332043441024223012114

  313320434410242230121140
012114031332043441024223


c = {c0, c1, · · · ce j−1, · · · , cke j , · · · , c(k+1)e j−1 · · · cn−1}.

There are two cases:

(i). e j|n: If e j|n, then n
e j

sets {{c0, c1, · · · , ce j−1}, {ce j , · · · , c2e j−1} · · · , {cn−e j , · · · , cn−1}} are

linearly independent sets over Fq. If these sets are viewed as m × e j matrices over Fq, then

each matrix has Fq rank equal to e j.

(ii). e j does not divide n: If e j does not divide n, then b n
e j
c sets

{{c0, c1, · · · , ce j−1}, {ce j , · · · , c2e j−1} · · · , {cn−b
e j
n c−e j

, · · · , cn−b
e j
n c−1}} are linearly independent sets

over Fq and have rank e j if these sets are viewed as m × e j matrices over Fq. The last set

{cn−b
e j
n c
, · · · , cn−1}} consisting of n − b e j

n c terms is also linearly independent and has Fq rank

equal to n − b e j
n c when viewed as m × n − b e j

n c matrix over Fq.

2.4 Puncturing of QC codes

In section 2.3 we have seen that for any codeword c the codeword elements from index e j are

a linear combination of first e j elements. Hence the (1 × n) codeword vectors of an `−QC

code C can be punctured to (1 × e j) codeword vectors without altering their rank and struc-
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tural relation .

Theorem 2.3.5: If Cp is rank−m (m, 1) punctured code obtained from (n, 1) arbitrary QC

code C , then Cp is maximum distance separable (MDS) with d = m.

Proof : The transform domain description of (n, 1) QC codes can be given by

ci = C jkβ
−i jk , i ∈ [0, n − 1] (2.22)

From Theorem 2.3.2, for (n, 1) QC code C of rank m, the value of e j is m resulting in punc-

tured code Cp with m × m codeword matrices. Since rank is m, any two codewords in Cp

will differ in m elements. In other words, the hamming distance d of Cp is equal to m. Also

according to singleton bound d ≤ n − k + 1 = m − 1 + 1 = m. Thus Cp is MDS.

2.5 Generator Matrix of rank-metric QC codes

From the transform domain description of cyclic codes, the codewords of QC codes are ob-

tained using (2.3) can be expressed in vector form as

{c0, c1, c2, · · · cn−1} =

∑j

C j,
∑

j

C jβ
−1 j,

∑
j

C jβ
−2 j, · · · ,

∑
j

C jβ
−(n−1) j

 , (2.23)

Here j ∈ { j1, j2, . . . , jk}. Expressing (2.23) in the matrix form we have,

{c0, c1, · · · cn−1} = (C j1 ,C j2 , · · ·C jk )



1 β− j1 β−2 j1 · · · β−(n−1) j1

1 β− j2 β−2 j2 · · · β−(n−1) j2

...
...

...
. . .

...

1 β− jk β−2 jk · · · β−(n−1) jk


(2.24)
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The generator matrix of the code C is given by

G =



1 β− j1 β−2 j1 · · · β−(n−1) j1

1 β− j2 β−2 j2 · · · β−(n−1) j2

...
...

...
. . .

...

1 β− jk β−2 jk · · · β−(n−1) jk


(2.25)

The codewords of C are now obtained by the multiplying the generator matrix with corre-

sponding transform vector, represented as c = C ×G.

With C = DFT (c) = {C0,C1, · · · ,Cm−1} with Ci ∈ Fqm . Since punctured code Cp is

obtained by deleting last n − e j columns from the codeword vectors, the generator matrix of

the punctured code Cp is given by,

Gp =



1 β− j1 β−2 j1 · · · β−(e j−1) j1

1 β− j2 β−2 j2 · · · β−(e j−1) j2

...
...

...
. . .

...

1 β− jk β−2 jk · · · β−(e j−1) jk


(2.26)

2.6 Maximum Rank distance (MRD) codes

Following Theorems 2.3.1 and 2.3.2 we see that for full rank codes with transform domain

indices chosen from different q-cyclotomic cosets of size m, the value of e j = km. Since rank

error correctability of code depends on its rank distance, full rank codes that are maximum

rank distance separable are desirable for communication over channels inducing crisscross

errors. According to Theorem 2.3.2, if k free transform components are chosen from same q−

cyclotomic coset mod n then the codeword matrices are of dimension e j × m. If e j = m, we

obtain an (m, k) MRD codes with m×m codeword matrices with rank at least dR. These codes

are analogous to the Gabidulin codes (as is evident from the generator matrix description).
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The generator matrix of a MRD code with m × m codewords is specified as

Gp =



1 β− j1 β−2 j1 · · · β−(m−1) j1

1 β− j2 β−2 j2 · · · β−(m−1) j2

...
...

...
. . .

...

1 β− jk β−2 jk · · · β−(m−1) jk


(2.27)

2.7 Construction of parity check matrix

From Theorem 2.3.2 we see that if C and hence Cp is obtained using only one free transform

component C jqs with jqs ∈ ( j)n,m& jqs ∈ [ j]n we have

c =
1

n mod q
C jqs

(
1, β− jqs

, · · · , β−(n−1) jqs)
(2.28)

From (2.28), we see that ∀ C jqs ∈ β` j−invariant subspace of Fqm , the term(
1, β− jqs

, β−2 jqs
, · · · , β−(n−1) jqs)

on the RHS remain same and the ratio between two successive

elements is β− jqs
. Thus, if c ∈ C is a codeword vector then

β− jqs
−1 0 · · · 0 0

0 β− jqs
−1 · · · 0 0

...
...

...
. . .

...

0 0 0 · · · β− jqs
−1





c0

c1

...

cn−1


=



0

0
...

0


(2.29)

The codewords of (e j, k) code Cp can be obtained by puncturing (n, k) code C . Thus the above

analysis holds good for codewords of Cp. Since IDFT is a linear transform C can be obtained

by linear combination of codewords of different (n, 1) codes C 1,C 2, · · · ,C k obtained using

different free-transform domain components. For example let C 1 be the (n, 1) code obtained

using only C j1 . The codeword vectors can be written as ci = C j1β
−i j1 . Similarly, let C 2 be

another (n, 1) code obtained using only C j2 , then ci = C j2β
−2 j. The code C obtained using

free transform components C j1 and C j2 with ci = C j1β
−1 j + C j2β

−i j2 (0 ≤ i ≤ n− 1) will have

codewords that are linear combinations of codewords of C 1 and C 2.

ci = C j1β
−i j1 + C j1β

−i j2 ∀ 0 ≤ i ≤ n − 1 (2.30)
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Let c
′

i = β− j1ci − ci+1, 0 ≤ i ≤ n − 2;. Substituting for ci and ci+1 we get,

c
′

i = β− j1
(
C j1β

−i j1 + C j2β
−i j2

)
−C j1β

−(i+1) j1 −C2β
−(i+1) j2

0 ≤ i ≤ n − 2;
(2.31)

Simplifying we get

c
′

i = C j2β
− j1−i j2 −C j2β

−(i+1) j2 , 0 ≤ i ≤ n − 2; (2.32)

c
′

i = C j2β
−i j2

(
β− j1 − β− j2

)
, 0 ≤ i ≤ n − 2; (2.33)

From equation 2.33 we infer that

β− j2c
′

i − c
′

i+1 = 0, 0 ≤ i ≤ n − 2; (2.34)

Substituting for c
′

i = β− j1ci − ci+1 and c
′

i+1 = β− j1ci+1 − ci+2 , we get

β− j2
(
β− j1ci − ci+1

)
−

(
β− j1ci + 1 − ci+2

)
= 0

0 ≤ i ≤ n − 2;
(2.35)

β− j2β− j1ci −
(
β− j2 + β− j1

)
ci+1 + ci+2 = 0

0 ≤ i ≤ n − 2;
(2.36)

Formulating in terms of matrix we get


β− j2 −1 0 · · · 0 0

0 β− j2 −1 · · · 0 0
...

...
...

. . .
...

...

0 0 0 0 · · · β− j2 −1





β− j1 −1 0 · · · 0 0 0
0 β− j1 −1 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · β− j1 −1 0
0 0 0 0 · · · 0 β− j1 −1





c0
c1
...

cn−2
cn−1


=



0
0
...

0
0


(2.37)

The product of n− 2× n− 1 and n− 1× n matrix is given by equation 2.38 The n− 2× n

matrix on the LHS can be considered as check matrix of code Cp. In the above matrix it can
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
β− j2− j1 −(β− j2 + β− j1) 1 0 · · · 0 0 0

0 β− j2− j1 −(β− j2 + β− j1) 1 · · · 0 0 0
...

...
...

...
. . .

...
...

...

0 0 0 0 · · · β− j2− j1 −(β− j2 + β− j1) 1





c0
c1
...

cn−2
cn−1


=



0
0
...

0
0


(2.38)

be observed that the consecutive non-zero entries in each row are convolution of
{
β−2,−1

}
and{

β−1,−1
}
. In general, if quasi-cyclic code is designed by using k free transform components

{ j1, j2, j3, · · · , jk}, then by mathematical induction, for k-free transform components 2.38 is

given by, 

h0 h1 h2 · · · hk 0 · · · 0 0

0 h0 h1 · · · hk−1 hk · · · 0 0
...

...
...

. . .
...

...
. . .

...
...

0 0 0 · · · 0 0 · · · hk−1 hk





c0

c1

c2

...

cn−1


=



0

0

0
...

0


(2.39)

Where {h0, h1, · · · , jk} are obtained from the convolution of
{
β− j1 ,−1

}
,
{
β− j2 ,−1

}
,
{
β− j3 ,−1

}
, · · · ,{

β− jk ,−1
}
. Thus any codeword {c0, c1, · · · , cn−1} ∈ C satisfies equation 2.39. From 2.39 the

n − k × n check matrix is now given by

h0 h1 h2 · · · hk 0 · · · 0 0

0 h0 h1 · · · hk−1 hk · · · 0 0
...

...
...

. . .
...

...
. . .

...
...

0 0 0 · · · 0 0 · · · hk−1 hk


(2.40)

As seen from 2.40 the check matrix is a band matrix with bandwidth k + 1. For the case of

punctured code Cp the structure of the check matrix remains same but the dimensions are

reduced to e j − k × e j.

2.7.1 Decoding in Rank metric

Let Rx = C + E be the received matrix with elements over Fq. Equivalently, let r = c + e

be the received vector with elements over Fqm . Decoding is realized by solving Hr = S ,

38



where S is e j × 1 syndrome vector. Since the check matrix is of dimension n − k × n,

there exists qkm solutions for the same syndrome. Solutions can be obtained using numerical

methods or computer program based interative simulations. The decoder selects the solution

with minimum rank as an estimate of the error vector. This estimated error vector is then

used to obtain an estimate of the transmitted vector. It can be noted that the decoder gives

correct solution only if it has the knowledge of the transform component indices used at the

transmitter. The solution of the decoding algorithm is unique if Rq(e) ≤ bm−1
2 c: Without loss

of generality let x1, x2 be two solutions of rank ≤ bm−1
2 c such that H · (x1) = H · (x2) =⇒

H · (x1 − x2) = H · dx = 0. Since H is orthogonal to C , this is true only if dx = 0 or dx ∈ C

which means Rq(dx) = m. However, according to the rank inequality we have Rq(dx) ≤

Rq(x1) + Rq(x2). Since Rq(x1) = Rq(x2) ≤ bm−1
2 c , Rq(dx) ≤ 2bm−1

2 c < m contradicting the

condition Rq(dx) = m. Thus, x1 = x2, indicating that the proposed decoding algorithm gives

unique solution if Rq(e) ≤ bm−1
2 c. To illustrate the rank error correction ability of the proposed

codes, let us consider a code designed over F23 . Consider (3, 1) punctured 1−QC code over

F23 . Let the free transform component be C1. Since 1 ∈ [1]7 with r1 = 3, the codeword

matrices will be of rank 3 over F2. Thus this code is rank b 3−1
2 c = 1 error correcting code.

Let the Error matrix be 
1 1 1

1 1 1

1 1 1


The above matrix corrupts all the codeword elements. However, since the rank of the error

matrix is 1, the proposed decoder will uniquely find the error pattern. Table 2.10 gives the

list of qkm = 23 solutions for error matrices and corresponding ranks. It can be observed that

out of these 8 solutions, there is one unique solution of rank 1 which is the desired solution.

Table 2.10: List of all solutions corresponding to Example 2.7.1
000

110

100



100

011

110



010

000

001



101

001

010



110

101

011



111

111

111



011

010

101



001

100

000


2 3 2 3 2 1 3 2
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2.8 Rank Distance Properties of (n, k) Cyclic Codes

Cyclic codes are a special class of arbitrary `− QC codes with ` = 1. The theorems presented

for arbitrary QC codes hold good for cyclic codes. The only difference is that since, ` = 1

the subspace from which the free transform domain components assume values will be β1

invariant subspce which is the extension field Fqm itself. Further, the transform components

of different q− cyclotomic cosets are unrelated. This implies that unlike QC codes (minimal)

full rank (n, k) cyclic codes over Fqm can be obtained if the indices are chosen form different

q− cyclotomic cosets. In Theorem 2.3.4 we the fundamental results pertaining to rank dis-

tance of cyclic codes.

Theorem 2.8.1: Let C be a Cyclic code obtained using free transform components {C j1 ,C j2 , · · · ,

C jk } with indices j1 , j2 , j3 , · · · , jk−1 ∈ [0, n − 1] and other transform components

constrained to zero.

1. If j1, j2, · · · jk ∈ [ j]n then there exists C with Rq(C ) = r j1 − (k − 1)g). Here g|S where

S is the separation between elements of [ j]n.

2. If j1 ∈ [ j1]n, j2 ∈ [ j2]n, · · · jk ∈ [ jk]n, then Rq(C ) = min(r j1 , r j2 , · · · , r jk ) .

The proof is similar to the one given in Theorem 2.3.1. However, the free transform compo-

nents will assume values from the field Fqm . Also it can be noted that in case of arbitrary QC

codes there can exist one QC code that is full rank despite chosing coefficients from same

q− cyclotomic coset. This is because the free transform components assume values from β`−

invariant subspace. However, in case of cyclic codes the rank degrades.

Case1: Example 2.8.1: Let us consider the design of Cyclic code C over F32 . The 3− cy-

clotomic cosets modulo 7 are given below: Let us consider C obtained using free transform

[0] = {0} [1] = {1, 3} [2] = {2, 6} [4] = {4} [5] = {5, 7}

components C1,C3. Following is the list of all 32 non-zero codewords of rank−1 obtained by

considering the IDFT equation 2.28.
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Table 2.11: Non-zero codewords of rank 1 in C . corresponding to Example 2.8.1[
0000000

22021101

] [
12202110
00000000

] [
02110122
01220211

] [
20211012
20211012

] [
22021101
22021101

] [
00000000
12202110

]
[
01220211
00000000

] [
20211012
10122021

] [
10122021
00000000

] [
22021101
11012202

] [
12202110
12202110

] [
00000000
01220211

]
[
00000000
10122021

] [
11012202
00000000

] [
12202110
21101220

] [
01220211
01220211

] [
01220211
02110122

] [
10122021
10122021

]
[
00000000
11012202

] [
21101220
00000000

] [
02110122
00000000

] [
10122021
20211012

] [
11012202
11012202

] [
00000000
21101220

]
[
21101220
21101220

] [
00000000
02110122

] [
20211012
00000000

] [
11012202
22021101

] [
21101220
12202110

] [
02110122
02110122

]
[
00000000
20211012

] [
22021101
00000000

]

Case2: Example 2.8.2: Let us consider the design of length 8 Cyclic code C over F32 . Let

us consider C obtained using free transform components C1,C7. Table 2.12 gives the list of

all 80 non-zero codewords obtained by making use of the IDFT equation (2.28) to define the

time-domain components.

2.9 Conclusion

In this chapter, we have analyzed the rank distance properties of Quasi-Cyclic (QC) codes.

The important class of cyclic codes are a sub-class of the class of QC codes. We have demon-

strated that (n, k) full rank QC codes can be obtained for any value of k ≥ 1. Further, we have

shown that full rank QC codes can be obtained only in the case of arbitrary QC codes and that

minimal QC codes are rank deficient. Additionally, we have stated and proved theorems that

allow the determination of the exact rank of (n, k) QC codes. Using the underlying geometric

progression property of (n, 1) codes we have constructed a parity check matrix for (n, k) QC

codes (Arbitrary and Minimal). A check matrix based decoding strategy has been derived to

correct rank errors. We have derived a class of rank distance codes called MRD-QC codes

and provided generator matrix representation of these codes. These codes are observed to be

analogous to MRD Gabidulin codes. In the concluding section of the chapter, we have pro-
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Table 2.12: List of all non-zero codewords of rank 2 in C . corresponding Example
2.8.201120221

11202210

 11202210
12022101

 12022101
20221011

 20221011
02210112

 02210112
22101120

 22101120
21011202

21011202
10112022

 10112022
01120221

 01220211
10122021

 02010102
21021201

 12122121
22111122

 10212012
00010002

21111222
12002100

 00100020
02220111

 20021001
01100220

 22201110
20201010

 11002200
11212212

 10122021
11012202

11212212
22211112

 21021201
20001000

 22111122
01200210

 00010002
10222011

 12002100
00110022

 02220111
02020101

01100220
21121221

 20201010
12102120

 11012202
21101220

 12102120
02000100

 22211112
00120021

 20001000
11022201

01200210
20011002

 10222011
10202010

 00110022
12112122

 02020101
01210212

 21121221
22221111

 21101220
02110122

22221111
10012002

 02000100
11102220

 00120021
22001100

 11022201
01020201

 20011002
21211212

 10202010
20121021

12112122
12222111

 01210212
00200010

 02110122
20211012

 00200010
01110222

 10012002
02200110

 11102220
10102020

22001100
22121121

 01020201
12012102

 21211212
11222211

 20121021
00020001

 12222111
21001200

 20211012
22021101

21001200
00220011

 01110222
01010202

 02200110
12212112

 10102020
21201210

 22121121
11122221

 12012102
10002000

11222211
02100120

 00020001
20111022

 22021101
12202110

 20111022
20101020

 00220011
21221211

 01010202
02120121

12212112
11112222

 21201210
01000200

 11122221
00210012

 10002000
22011102

 02100120
10022001

 12202110
01220211

10022001
12122121

 20101020
10212012

 21221211
21111222

 02120121
00100020

 11112222
20021001

 01000200
22201110

00210012
11002200

 22011102
02010102


vided a description of rank distance properties of cyclic codes which follow from the more

general results specified for Arbitrary QC codes. Applications of rank distance codes syn-

thesized in this chapter for STBC designs, channel codes for storage systems and powerline

communications have been discussed in chapters 4 and 5.
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Chapter 3

Rank-metric Abelian codes

In chapter 2 we have provided construction of n−length rank metric codes from Quasi-Cyclic.

The Galois field Fqm over which the codes are designed is chosen such that the length n of

the code is a divisor of qm − 1. In this chapter we will consider rank distance properties of

codes with length n such that n may or may not be a divisor of qm − 1. Following Rajan

and Siddiqi (1992), we have considered codes which are direct product of codes over cyclic

groups. These are termed as Abelian codes i.e. codes constructed over finite Abelian groups.

Any finite Abelian group G of order n can be expressed as a direct product of it’s r cyclic

subgroups, C0,C1, · · · Cr−1 having orders m0,m1, · · · ,mr−1 respectively. Then any element

g ∈ G can be represented as g = (g0)i0(g1)i1 · · · (gr−1)ir−1 , where gk is a generator of Ck,

k = 0, 1, · · · , (r − 1). Alternately, Abelian codes are considered as linear q− ary codes of

length n that are ideals in the Abelian group algebra of a finite Abelian group of order n

Rajan and Siddiqi (1992). Cyclic codes are special class of Abelian codes, in that a cyclic

code is an ideal over cyclic group, which is a special case of an Abelian group. Berman (1967)

has shown that under certain conditions the general class of Abelian codes have better error

correcting capabilities than the class of cyclic codes. Unlike cyclic and QC codes where the

length n is constrained to satisfy the condition n|qm−1, the length of Abelian codes is defined

as n = m0m1m2 · · ·mr−1, where mi is the order of the ith cyclic groups Ci constituting the

Abelian group and i varies from 0 to r − 1. Additionally, the Galois field over Abelian codes

are constructed can be subfield of the fields considered in the case of QC codes. This is

because the field over which Abelian codes are constructed is decided by the exponent (e)
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of the Abelian group. The exponent of the group is defined as the least common multiple

of the orders of constituent cyclic groups (i.e, e = lcm(m0,m1, · · · ,mr−1) ). The field Fqτ is

considered such that e|qτ − 1. This can be illustrated by considering construction of length 9

rank metric code. For a length 9 rank metric code, construction from QC codes demand the

Galois field to be 26 − 1, as 9|26 − 1. However, in case of Abelian codes the Galois field over

which rank metric codes can be constructed is F22 . This is because 9 = 3×3, e = lcm(3, 3) = 3

and 3|22 − 1. Thus, by suitable choice of m0,m1, · · · ,mr−1 greater flexibility in the codeword

length n can be attained. A transform domain description of Abelian codes considering them

as direct product of codes over cyclic groups has been provided in Rajan and Siddiqi (1992).

In Section 3.1 the transform domain description of Abelian codes and the preliminaries

required to understand the construction of has been discussed. In Section 3.2 the construction

of rank metric based Abelian codes has been discussed with relevant examples. In Section

3.4 we give the generator matrix representation of Abelian codes. Puncturing of Abelian

codes without altering their rank has been discussed in Section 3.3. In section 3.5 we gave

the details of parity check matrix construction for the rank metric Abelian codes and derive a

check matrix based decoding algorithm. This discussion has been concluded with a summary

of the obtained results and their significance. 3.6.

3.1 Abelian Codes in the Transform Domain

Let m0, · · · ,mr−1 be specified positive integers called mixed radixes and let n = m0m1 · · ·mr−1.

According to the definition, any integer i, 0 ≤ i ≤ (n−1) can be uniquely expressed as, (Rajan

and Siddiqi (1992))

i = ir−1(m0m1 · · ·mr−2) + ir−2(m0m1 · · ·mr−3) · · · i2(m0m1) + i1m0 + i0 (3.1)

where 0 ≤ ik ≤ mk, k = 0, 1, 2, (r − 1). If G is an Abelian group, then any element g ∈ G

can now be denoted by g<ir−1i1,i0> or simply by gi where i =< ir−1 · · · i1, i0 > in mixed radix

representation. Throughout our discussion on Abelian Codes we assume that the length n of
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the code is such that gcd(n, q) = 1.

3.1.1 Preliminaries

• Cyclotomic Cosets

Consider the set I = 0, 1, · · · , n − 1. For any j ∈ I and for any divisor d of mτ , the qd

- cyclotomic coset of j =< jr−1, jr−2, · · · , j0 > can now be written as.

[ j] =
{
< jr−1qt mod mr−1, · · · , j1qt mod m1, j0qt mod m0 >, t ≥ 0

}
Example 3.1.1: Let us consider an example to illustrate these concepts. Consider

an Abelian group G of length n = 21 expressed as G = C0 × C1 with cardinality of

|C0| = m0 = 3 and cardinality of |C1| = m1 = 7. The exponent of the Abelian group is

e = lcm(3, 7) = 21. Let us consider q = 2. The smallest integer ψ such that 21|2ψ − 1

is ψ = 6. We will express 26 − 1 as 23×2 − 1 and set m = 3, τ = 2.The 2− cyclotomic

cosets modulo 21 are listed in Table 3.1 below.

Table 3.1: List of 2− cyclotomic cosets modulo 21 corresponding to Example 3.1.1

{<0,0>} {<1,0>,<2,0>,<4,0>}
{<3,0>,<6,0>,<5,0>} {<1,1>,<2,2>,<4,1>}
{<1,2>,<2,1>,<4,2>} {<3,1>,<6,2>,<5,1>}
{<3,3>,<6,1>,<5,2>} {<0,1>,<0,2>}

Example 3.1.2: Let us consider an Abelian group G of length n = 9 expressed as

G = C0 × C1 with cardinality of |C0| = m0 = 3 and cardinality of |C1| = m1 = 3.

The exponent of the Abelian group is e = lcm(3, 3) = 3. Let us consider q = 2. The

smallest integer ψ such that 3|2ψ − 1 is ψ = 2. We will express 22 − 1 as 22×1 − 1 and

set m = 2, τ = 1.The 2− cyclotomic cosets modulo 9 are listed in Table 3.2 below.

Table 3.2: List of 2− cyclotomic cosets modulo 9 corresponding to Example 3.1.2

{<0,0>} {<1,0>,<2,0>}
{<0,1>,<0,2>} {<1,1>,<2,2>}
{<1,2>,<2,1>}
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• Separation of q− Cyclotomic Coset Coefficients

Let
[
j
]
n =

{
j, jq, · · · , jql, · · · , jqs, · · · , jql+s, · · · , jqr j−1

}
be the q− cyclotomic coset of

integer j. We define the Separation between two elements{
< jr−1ql mod mr−1, · · · , j1ql mod m1, j0ql mod m0 >

}
and{

< jr−1ql+s mod mr−1, · · · , j1ql+s mod m1, j0ql+s mod m0 >
}

as the difference in pow-

ers of q associated with the elements i.e. Separation is l + s − l = s.

For example consider the coset [< 0, 1 >] = {< 0, 1 >, < 0, 2 >}, the separation

between elements < 0, 2 >=< 0.21, 1.21 > and < 0.20, 1.20 > is 1 − 0 = 1.

• Conjugacy classes and Miminal Polynomials

Since each integer 0 ≤ i ≤ n − 1 can be represented using mixed radices, and since

n = m0m1 · · ·mr−1, any Galois field element can be uniquely decomposed into the

product of elements with orders m0,m1, · · · ,mr−1. This results in a one to one and

onto mapping, that allows us to extend the definition of conjugacy class and minimal

polynomials to the definition involving mixed radix representation. An example rep-

resentation of F24 is given in Table 3.3. Here n = q = 2m = 4 − 1 = 3 × 5 . Thus

m0 = 3,m1 = 5. We have αm0 = α5 as the element in F24 with order 3 and αm1 = α3 as

the elements in F24 with order 5. Table 3.4 below gives the F24 field elements and their

corresponding decomposition. Thus the conjugacy class, associated minimal poly-

nomial and corresponding reciprocal polynomials are given in Table 3.4 . Here z is

variable whose roots are of the form αi0
m0α

i1
m1 .

• DFT domain description of Abelian codes

The DFT over G with mixed radix number system as indexing scheme suitable for

length n Abelian codes over Fqm is obtained as follows. Let G be expressible as

the direct product of r cyclic subgroups C0,C1, · · · ,Cr−1 having orders respectively

m0,m1, · · ·mr−1. Let e be the exponent of G. Let τ be the smallest integer such

that e|qmτ − 1, where q is a power of a prime p. Let αm0 , αm1 , · · · , αmr−1 denote re-

spectively primitive elements of order m0,m1, · · · ,mr−1 in Fqmτ . Then for a vector

c = (c0, c1, · · · cn−1) ∈ Fnm
q , where gcd(n, q) = 1 (i.e n and q are relatively prime),
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Table 3.3: Galois field elements representation in terms of mixed radix notation

Representation in terms of α Representation in terms of αm0 , αm1

α0 (αm1)
0(αm0)

0

α1 (αm1)
2(αm0)

2

α2 (αm1)
4(αm0)

1

α3 (αm1)
1(αm0)

0

α4 (αm1)
3(αm0)

2

α5 (αm1)
0(αm0)

1

α6 (αm1)
2(αm0)

0

α7 (αm1)
4(αm0)

2

α8 (αm1)
1(αm0)

1

α9 (αm1)
3(αm0)

0

α10 (αm1)
0(αm0)

2

α11 (αm1)
2(αm0)

1

α12 (αm1)
4(αm0)

0

α13 (αm1)
1(αm0)

2

α14 (αm1)
3(αm0)

1

Table 3.4: Conjugacy class and Minimal Polynomials over F24

Conjugacy Class Minimal Polynomial Reciprocal Polynomial
{(αm1)

0(αm0)
0} z + 1 z + 1(αm1)

0(αm0)
0, (αm1)

4(αm0)
1,

(αm1)
3(αm0)

2, (αm1)
1(αm0)

1

 z4 + z + 1 z4 + z3 + 1(αm1)
1(αm0)

0, (αm1)
2(αm0)

0,

(αm1)
4(αm0)

0, (αm1)
3(αm0)

0

 z4 + z3 + z2 + z + 1 z4 + z3 + z2 + z + 1

{(αm1)
1(αm0)

1, (αm1)
1(αm0)

2} y2 + y + 1 y2 + y + 1(αm1)
4(αm0)

2, αm1)
3(αm0)

1,

(αm1)
1(αm0)

2, (αm1)
2(αm0)

1

 z4 + z3 + 1 z4 + z + 1

using the mixed radix representation the DFT domain description of Abelian codes is

given as Rajan and Siddiqi (1992).

C j = ci

mr−1−1∑
ir−1=0

· · ·

m1−1∑
i1=0

m0−1∑
i0=0

(
αm0

)i0 j0 (
αm1

)i1 j1 · · ·
(
αmr−1

)ir−1 jr−1 ; 0 ≤ i ≤ n − 1 (3.2)
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In the above equation αmk 0 ≤ k ≤ n − 1 represents the element of Fqmτ of order mth
k ..

In similar manner, the inverse DFT can be defined by

ci =
1

n mod p
C j

mr−1−1∑
jr−1=0

· · ·

m1−1∑
j1=0

m0−1∑
j0=0

(
αm0

)−i0 j0 (
αm1

)−i1 j1 · · ·
(
αmr−1

)−ir−1 jr−1 ; 0 ≤ j ≤ n−1

(3.3)

• Character representation An Fqm character Ψ of Abelian group G is an homomor-

phism of G into the group of eth roots of unity in Fqm . The group G
′

of all Fqm characters

is isomorphic to G. In this work we will denote Ψx(y) as Ψ(x, y) and consider it as a

map Ψ : G ×G → Fqm . With this consideration let Ψ : G ×G → Fqm be defined as

Ψ(x, y) = Ψ(< ir−1,··· ,i1,i0 >, < jr−1, · · · , j1, j0 >) = (αmr−1)ir−1 jr−1 · · · (αm0)i0 j0 → Fqm

(3.4)

• Discrete Fourier transform using character representation (DFT)

Using the character representation Eq. 3.2 can be rewritten as

C< jr−1qs,··· , j1qs, j0qs> =
1
|G|

∑
y∈G

Ψ (< ir−1, · · · , i1, i0 >, < jr−1, · · · , j1, j0 >) c<ir−1,··· ,i1,i0>

(3.5)

Similarly, IGFFT is given by 3.6.

c<ir−1,··· ,i1,i0> =
1
|G|

∑
y∈G

Ψ (< ir−1, · · · , i1, i0 >, < jr−1, · · · , j1, j0 >)−1 C< jr−1qs,··· , j1qs, j0qs>

(3.6)

In our study, we consider Abelian codes over Fqm such that e|qm − 1. The condition e|qm − 1

ensures that A j ∈ Fqm and that every qm -cyclotomic coset modulo e is a singleton set.
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3.2 Rank distance properties of Abelian codes

The IDFT equation with k− non-zero free transform components {C j1 ,C j2 , · · ·C jk },(and rest

of the components constrained to zero) is be given by,

ci = C< j11, j12,··· , j1r>Ψ(i, j1)−1 + · · · + C< jk1, jk2,··· , jkr>Ψ(i, jk)−1 (3.7)

Let Ψ(i, j1)−1, · · · ,Ψ(i, jk)−1 be roots of polynomial y(x) specified as

y(x) = be j x
e j + be j−1xe j−1 + be j−2xe j−2 + · · · + b1x + b0 (3.8)

Here bI ∈ Fq for all 0 ≤ I ≤ e j − 1. Since for 1 ≤ W ≤ k, ,Ψ(i, jW )−1 are roots of y(x),

from Eq. (3.8) we have

Ψ(i, jW )−1 = − 1
be j

∑e j−1
i=0 biΨ(i, jW )−1 1 ≤ W ≤ k (3.9)

For i = e j + v with 0 ≤ v ≤ n − e j − 1, from Eq. (2.7) we have

ce j+v = (n mod q)−1(C j1Ψ(e j + v, j1)−1 + · · · + C jkΨ(e j + v, jk)−1) (3.10)

Substituting for α−e j j1 , · · · , α−e j jW in Eq. (3.10) and considering b
′

i = bi/be j . The above Eq.

(3.10) can be simplified to

ce j+v =

∑e j

i=0 b
′

i(C j1Ψ(i + v, j1)−1 + · · · + C jkΨ(i + v, jk)−1)

(n mod q)
(3.11)

From Eq. (3.7), the term in the brackets on the RHS of Eq. (3.11) is equal to ci. Thus, Eq.

(3.11) can be written as

ce j+v −
1

(n mod q)

e j−1∑
i=0

b
′

ici+v =
1

(n mod q)

e j∑
i=0

b
′

ici+v = 0 (3.12)

Here b
′

e j
= (n mod q). From Eq. (3.12) we can infer that the codeword elements starting from
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index e j can be expressed as linear combination of previous e j elements. Thus, the rank of

any codeword vector can be decided by the number of linearly independent elements in the

set {c0, c1, · · · , ce j−1}.

Theorem 3.2.1: Let C be an Abelian code obtained using free transform components

{C< j11, j12,··· , j1r>, · · · ,C< j21, j22,··· , j2r>, · · · ,C< jk1, jk2,··· , jkr>} with indices < j11, j12, · · · , j1r >, <

j21, j22, · · · , j2r >, · · · , < jk1, jk2, · · · , jkr > set free and other transform components con-

strained to zero.

1. If < j11, j12, · · · , j1r >, < j21, j22, · · · , j2r >, · · · < jk1, jk2, · · · , jkr >∈ [ j1]n then

Rq(C ) = r< j11, j12,··· , j1r>− (k−1)g. Here g|S where S is the separation between elements

of [ j]n.

2. If< j11, j12, · · · , j1r >∈ [< j11, j12, · · · , j1r >]n, < j21, · · · , j2r >∈ [< j21, j22, · · · , j2r >

]n, · · · < jk1, jk2, · · · , jkr >∈ [< jk1, jk2, · · · , jkr >]n, then

Rq(C ) = min(r< j11, j12,··· , j1r>, r< j21, j22,··· , j2r>, · · · , r< jk1, jk2,··· , jkr>) .

Proof : Case 1: Without loss of generality let us consider the transform component indices <

j11, j12, · · · , j1r >=< j11, j12, · · · , j1r >, < j21, j22, · · · , j2r >=< j11qs1 , j12qs1 , · · · , j1rqs1 >

, · · · , < jk1, jk2, · · · , jkr >=< j11qsk−1 , j12qsk−1 , · · · , j1rqsk−1 >, that are chosen from the cyclo-

tomic coset [< j11, j12, · · · , j1r >]n of size r j1 . The reciprocal polynomial y< j11, j12,··· , j1r>(x)

associated with α j11
m0α

j12
m1 · · ·α

j1r
mr−1 will have representation as given in Eq. (2.8) with degree

e j = r j1 Roman (2005). Also, from (3.6) we have

ci = C< j11, j12,··· , j1r>Ψ(i, j1)−1 + · · · + C< j11qsk−1 , j12qsk−1 ,··· , j1rqsk−1>Ψ(i, j1qsk−1)−1 (3.13)

Since the first e j = r< j11, j12,··· , j1r> codeword elements determine the rank of the codeword, for

v = 0 in Eq. 3.12 we have

r j1∑
i=0

b
′

i(C< j11, j12,··· , j1r>Ψ(i, j1)−1 + · · · + C< j11qsk−1 , j12qsk−1 ,··· , j1rqsk−1>Ψ(i, j1qsk−1)−1) = 0 (3.14)

We are interested in determining codeword c that has rc < e j number of linearly independent
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elements. To this extent let us consider a subfield Fqg such that

g = gcd(r< j11, j12,··· , j1r>, S 1, S 2, · · · , S k−1,m). Here S u represents the separation between <

j11, j12, · · · , j1r > and < j11+u1, j12+u2, · · · , j1r+ur > for 0 ≤ u ≤ k − 1. From the DFT

description of Abelian codes we see that the free transform component assumes values from

the field Fqmτ . We know that there exists at least one element in the field Fqg with g|mτ. Let

us consider c obtained from C< j11, j12,··· , j1r>
−1 = x ∈ Fqg , then from Eq. (3.14) we have

ru∑
i=0

b
′

iΨ(i, j1)−1 + · · · + xC j1qsk−1

 ru∑
i=0

b
′

iΨ(i, j1qsk−1)−1

 = 0 (3.15)

ru∑
i=0

b
′

iΨ(i, j1)−1 + · · · + xC j1qsk−1

 ru∑
i=0

b
′

iΨ(i, j1)−1

qsk−1

= 0 (3.16)

Since x ∈ Fqg as seen earlier the element x can be expressed as
∑g−1

i=0 dixi, with di ∈ Fq. Eq.

(3.15) can now be written as

ru∑
i=0

b
′

iΨ(i, j1)−1 + · · · +

g−1∑
i=0

dixi

C< j11, j12,··· , j1r>qsk−1

 ru∑
i=0

b
′

iΨ(i, j1)−1

qsk−1

= 0 (3.17)

Let us define δw = C< j11, j12,··· , j1r>qsk−1

(∑ru
i=0 b

′

iΨ(i, j1)−1
)qsw−1

for w ∈ [1, k−1]. Eq. (3.17) can

now be written as
ru∑

i=0

b
′

iΨ(i, j1)−1 + (δ1 + · · · + δk−1)
g−1∑
i=0

dixi = 0 (3.18)

Following the definition of the Abelian code C< j11, j12,··· , j1r>,C< j21, j22,··· , j2r>, · · · ,C< jk1, jk2,··· , jkr>

take values independently from Fqmτ , there exist a codeword c for C j1 ,C j2 , · · · ,C jk such that

δ1 , δ2 , · · · , δk then the set {δ1x0, · · · , δ1xg−1, · · · , δkx0, · · · , δkxg−1, } can form the set of

kg linearly independent elements in the field Fqm From the theory of Galois fields we know

that if α− j1 ∈ Fqr j1 then {α− j1 , α−2 j1 , · · ·α−r j1 j1} forms the set of linearly independent elements

in Fqr j1 and also in Fqm since r j1 |m. However according to Eq. (3.14) the summation should

contain r j1 terms, thus ru = r j1 −kg = r j1 − (k−1)g. Since r j1 |m we have r j1 − (k−1)g < m lin-

early independent columns. Thus Rq(C ) = r j1−(k−1)g. If r j1 = m then Rq(C ) = m−(k−1)g.

Case 2: Since < j11, j12, · · · , j1r >∈ [< j11, j12, · · · , j1r >]n ,< j21, j22, · · · , j2r >∈ [<

j21, j22, · · · , j2r >]n , · · · ,,< jk1, jk2, · · · , jkr >∈ [< jk1, jk2, · · · , jkr >]n the polynomial
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y j(x) that has representation as given Eq. (3.8) has degree e j = r< j11, j12,··· , j1r>+r< j21, j22,··· , j2r>+

· · · + r< jk1, jk2,··· , jkr>. From Eq. (3.7) we have

ci = C< j11, j12,··· , j1r>Ψ(i, j1)−1 + · · · + C< j11qsk−1 , j12qsk−1 ,··· , j1rqsk−1>Ψ(i, jk)−1 (3.19)

Since the first e j codeword elements determine the rank of the codeword, for v = 0 in Eq.

3.12 we have

e j∑
i=0

b
′

i(C< j11, j12,··· , j1r>Ψ(i, j1)−1 + · · · + C< j11qsk−1 , j12qsk−1 ,··· , j1rqsk−1>Ψ(i, jk)−1) = 0 (3.20)

Similar to analysis given in case 1, we are interested in determining the existence of a

codeword c that has ru < e j number of linearly independent elements. In this case since

< j11, j12, · · · , j1r >, < j21, j22, · · · , j2r >, · · · , < jk1, jk2, · · · , jkr > are all chosen from dif-

ferent q−cyclotomic cosets modulo n, we consider g such that

g|r< j11, j12,··· , j1r>, g|r< j21, j22,··· , j2r>, · · · , g|r< jk1, jk2,··· , jkr>. Let us consider c obtained from

C< j11, j12,··· , j1r>
−1 = x ∈ Fqg , then from Eq. (3.20) we have

ru∑
i=0

b
′

iΨ(i, j1)−1 + · · · + xC< jk1, jk2,··· , jkr>

ru∑
i=0

b
′

iΨ(i, jk)−1 = 0 (3.21)

Similar to the analysis given in case 1, let us define ∆W = C jW
∑ru

i=0 b
′

iΨ(i, jw)−1 for

2 ≤ w ≤ k. From the theory of cyclotomic coset we know that the number of q−cyclotomic

cosets modulo n are upper bounded by bn/mc. Since free transform component indices are

chosen from k different q− cyclotomic cosets modulo n, this implies that k ≤ n/m. Follow-

ing the analysis given in case 1, we see that C< j11, j12,··· , j1r>,C< j21, j22,··· , j2r>, · · · ,C< jk1, jk2,··· , jkr>

can take values independently from Fqmτ then the set
{
δ1x0, · · · , δ1xg−1, · · · , δkx0, · · · , δkxg−1

}
forms the set of kg linearly independent elements in the field Fqm . This set of linearly indepen-

dent elements can be extended to form the non-trivial basis of Fqm by choosing the remaining

m − kg linearly independent elements in Fqm . Since Ψ(i, jw)−1 ∈ Fqr< j11 , j12 ,··· , j1r> ⊆ Fqm , the el-

ements {Ψ(i, j1)−1, · · · , {Ψ((m − g)i, j1)−1, δ1x0, · · · , δ1xg−1, · · · , δkx0, · · · , δkxg−1} can form

the set of m linearly independent elements. According to Eq. (3.14) the summation should

contain e j terms, thus ru = e j−(k−1)g = e j−(m−1)g. This implies that the codeword elements
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starting from location e j can be expressed as linear combination of previous e j elements. If

e j < m then the rank of this codeword is e j. This is indeed the minimum rank because for any

other values of C< j11, j12,··· , j1r>,C< j21, j22,··· , j2r>, · · · ,C< jk1, jk2,··· , jkr> the rank will be greater than

e j. Also, if e j ≥ m then rank of c is m. Since C< j11, j12,··· , j1r>,C< j21, j22,··· , j2r>, · · · ,C< jk1, jk2,··· , jkr>

take values independently, there exists codewords with only one non-zero free transform do-

main component, in which case the rank of the corresponding codeword is given by

r< jw1, jw2,··· , jwr> for 1 ≤ w ≤ k. Thus in general

Rq(C ) = min(r< j11, j12,··· , j1r>, r< j11, j12,··· , j1r>, · · · , r< j11, j12,··· , j1r>,m).

Case 1: Example 3.2.1. Let the free transform components C<1,0>,C<2,0>. The compo-

nent indices {< 1, 0 >} ∈ [< 1, 0 >]9, {< 2, 0 >} ∈ [< 1, 0 >]9. Here r<1,0> = r<1,2> = 2.

Table 3.5 gives the list of all codewords over F2 of (9, 2) Abelian code. It can be seen that

there are few non-zero codewords with rank 1. Hence Rq(C ) = 1.

Table 3.5: List of all codewords of (9, 2) Abelian code C over F22 corresponding to
Example 3.2.1000000000

000000000

 000111111
111111000

 111111000
111000111

 111000111
000111111

 000111111
111000111

000000000
000111111

 111000111
000000000

 111111000
111111000

 111000111
111111000

 111111000
000000000

000111111
000111111

 000000000
111000111

 111111000
000111111

 111000111
111000111

 000000000
111111000

000111111
000000000


Case 2: Example 3.2.2. Let the free transform components C<1,0>,C<1,2>. The component

indices {< 1, 0 >} ∈ [< 1, 0 >]9, {< 1, 2 >} ∈ [< 1, 2 >]9. Here r<1,0> = r<1,2> = 2. Table 3.6

gives the list of all codewords over F2 of (9, 2) Abelian code. All non zero codewords are of

rank 2.

Theorem 3.2.2: Let C be an (n, 1) Abelian cyclic code of length n|qm − 1 over Fqm

such that the transform domain component C< jqs> ∈ C[< j>] is free and all other transform
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Table 3.6: List of all codewords of (9, 2) Abelian code C over F22 corresponding to
Example 3.2.2000000000

000000000

 000111111
111000111

 111000111
111111000

 111111000
000111111

 011110101
101011110

011001010
010011001

 100110010
010100110

 100001101
101100001

 101011110
110101011

 101100001
001101100

010011001
001010011

 010100110
110010100

 110101011
011110101

 110010100
100110010

 001101100
100001101

001010011
011001010


components are constrained to zero. Let |[< j >]| = e j. Consider any non zero codeword

c ∈ C

c = {c0, c1, · · · ce j−1, · · · , cke j , · · · , c(k+1)e j−1 · · · cn−1}.

There are two cases:

(i). e j|n: If e j|n, then n
e j

sets {{c0, c1, · · · , ce j−1}, {ce j , · · · , c2e j−1} · · · , {cn−e j , · · · , cn−1}} are

linearly independent sets over Fq. If these sets are viewed as m × e j matrices over Fq, then

each matrix has Fq rank equal to e j.

(ii). e j does not divide n: If e j does not divide n, then b n
e j
c sets

{{c0, c1, · · · , ce j−1}, {ce j , · · · , c2e j−1} · · · , {cn−b
e j
n c−e j

, · · · , cn−b
e j
n c−1}} are linearly independent

sets over Fq and have rank e j if these sets are viewed as m × e j matrices over Fq. The last set

{cn−b
e j
n c
, · · · , cn−1}} consisting of n − b e j

n c terms is also linearly independent and has Fq rank

equal to n − b e j
n c when viewed as m × n − b e j

n c matrix over Fq.

3.3 Puncturing of Abelian codes

In section 3.2 we have seen that for any codeword c the codeword elements from index e j

are a linear combination of first e j elements. Hence the (1 × n) codeword vectors of an `−

Abelian code C can be punctured to (1×e j) codeword vectors without altering their rank and

structural relationship.

Theorem 3.3.1: If Cp be rank−m (m, 1) punctured code obtained from (n, 1) Abelian code
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C , then Cp is maximum distance separable (MDS) with d = m.

Proof : From Theorem 3.2.2, for (n, 1) Abelian code C of rank m, the value of e j is m resulting

in punctured code Cp with m × m codeword matrices. Since rank is m, any two codewords

in Cp will differ in m elements.In other words, the hamming distance d of Cp is equal to m.

Also according to singleton bound d ≤ n − k + 1 = m − 1 + 1 = m. Thus Cp is MDS.

3.4 Generator Matrix representation of rank-metric

Abelian codes

Following the DFT (3.2) the codeword vector of Abelian code C can be represented as

{c0, · · · , cn−1} =

 1
|G|

∑
y∈G

Ψ (< 0, j >)−1 C< jr−1qs,··· , j0qs>, · · ·
∑
y∈G

Ψ (< n − 1, j >)−1 C< jr−1qs,··· , j0qs>


(3.22)

Following the analysis given in Section 2.23 of Chapter 2, the generator matrix of the code

C is given by,

G =



1 Ψ(1, j1)−1 Ψ(2, j1)−1 Ψ(3, j1)−1 · · · Ψ(n − 1, j1)−1

1 Ψ(1, j2)−1 Ψ(2, j2)−1 Ψ(3, j2)−1 · · · Ψ(n − 1, j2)−1

...
...

...
...

. . .
...

1 Ψ(1, jk)−1 Ψ(2, jk)−1 Ψ(3, jk)−1 · · · Ψ(n − 1, jk)−1


(3.23)

Similarly, the (k × e j) generator matrix of the punctured (e j, k) code Cp is given by,

G =



1 Ψ(1, j1)−1 Ψ(2, j1)−1 Ψ(3, j1)−1 · · · Ψ(e j − 1, j1)−1

1 Ψ(1, j2)−1 Ψ(2, j2)−1 Ψ(3, j2)−1 · · · Ψ(e j − 1, j2)−1

...
...

...
...

. . .
...

1 Ψ(1, jk)−1 Ψ(2, jk)−1 Ψ(3, jk)−1 · · · Ψ(e j − 1, jk)−1


(3.24)
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3.5 Parity check matrix

Following the analysis give in chapter 2, the parity check matrix of (n, 1) Abelian codes is

given by,

Ψ(1, jqs)−1 −1 0 · · · 0 0

0 Ψ(1, jqs)−1 −1 · · · 0 0
...

...
...

. . .
...

0 0 0 · · · Ψ(1, jqs)−1 −1





c0

c1

...

cn−1


=



0

0
...

0


(3.25)

Similarly the parity check matrix of (n, k) Abelian codes can be given by

h0 h1 h2 · · · hk 0 · · · 0 0

0 h0 h1 · · · hk−1 hk · · · 0 0
...

...
...

. . .
...

...
. . .

...
...

0 0 0 · · · 0 0 · · · hk−1 hk


(3.26)

Here the values {h0, h1, · · · , hk} are obtained by convolution of k sets: {Ψ(1, j1)−1,−1},

{Ψ(1, j2)−1,−1}, · · · , {Ψ(1, jk)−1,−1} The check matrix in Eq. 3.26 is a band matrix with

bandwidth k + 1.

3.5.1 Decoding in Rank metric

Let Rx = C + E be the received matrix with elements over Fq. Equivalently, let r = c + e

be the received vector with elements over Fqm . Decoding is realized by solving Hr = S ,

where S is e j × 1 syndrome vector. Since the check matrix is of dimension n − k × n,

there exists qkm solutions for the same syndrome. Solutions can be obtained using numerical

methods or computer program based interative simulations. The decoder selects the solution

with minimum rank as an estimate of the error vector. This estimated error vector is then

used to obtain an estimate of the transmitted vector. It can be noted that the decoder gives

correct solution only if it has the knowledge of the transform component indices used at the

transmitter. The solution of the decoding algorithm is unique if Rq(e) ≤ bm−1
2 c: Without loss

of generality let x1, x2 be two solutions of rank ≤ bm−1
2 c such that H · (x1) = H · (x2) =⇒
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H · (x1 − x2) = H · dx = 0. Since H is orthogonal to C , this is true only if dx = 0 or dx ∈ C

which means Rq(dx) = m. However, according to the rank inequality we have Rq(dx) ≤

Rq(x1) + Rq(x2). Since Rq(x1) = Rq(x2) ≤ bm−1
2 c , Rq(dx) ≤ 2bm−1

2 c < m contradicting the

condition Rq(dx) = m. Thus, x1 = x2, indicating that the proposed decoding algorithm gives

unique solution if Rq(e) ≤ bm−1
2 c.

3.6 Conclusion

In this chapter, we have analyzed the rank distance properties of Abelian codes that are more

general class of cyclic codes. We have analyzed rank distance properties of (n, k) Abelian

codes and demonstrated that (n, k) full rank Abelian codes can be obtained for any value of

k ≥ 1 and 1 ≤ k ≤ b n
e
c, for any length n which is not divisor of qm − 1. We have stated and

proved theorems that allow the determination of the exact rank of (n, k) Abelian codes. Using

the underlying geometric progression property (in terms of character) of (n, 1) Abelian codes

we have constructed a parity check matrix for (n, k) Abelian codes. A check matrix based

decoding strategy has been derived to correct rank errors. Applications of Abelian codes as

full rank distance codes for MIMO systems has been discussed in chapter 4.
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Chapter 4

(n, k) Cyclic codes and Abelian codes
as Block codes for MIMO Systems

The m×e j codeword matrices of full rank codes C can be used as space-time/frequency block

codes in NT × NR MIMO systems with NT = m antennas. However, the codeword matrices

that are obtained cannot be directly used in MIMO communication because the symbols of

the code arise from the finite field Fq, and the symbols of any constellation used in practice

are drawn from the real number field R or complex number field C. A rank-preserving map

is used to map symbols of codeword matrices C between symbols from Fq and complex

constellations (Konishi (2017)). In (Lusina et al. (2003)), the map between Galois field Fq

with q = 4K +1, K ≥ 0 and the a residue class of Gaussian integers with q = u+ iv (u,v are

integers ) is shown to be rank preserving Huber (1994b). This map is used to construct STBCs

from Gabidulin codes. Based on the analysis given in (Lusina et al. (2003)), Puchinger et al.

(2016) has shown that for q = 6K + 1 with K ≥ 0, the map between Finite field Fq and

residue class modulo Eisenstein-Jacobi integer (Huber (1994a)) with q = µ + ρν, µ, ν , 0,

ρ = (−1 + i
√

3)/2 is rank preserving and is used to construct STBCs.

4.1 Preliminaries

• Gaussian Integers (Huber (1994b)):

Gaussian integer is a complex number of the form u + iv with u and v as integers.
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Following Fermat’s theorem, Huber (1994b) considered primes that are product of

complex conjugate Gaussian Integers. If π is a Gaussian integer of the form u + iv then

a prime q can be expressed as ππ̇
′

. Every prime number of the form q = 4K + 1 can

be expressed as the product of two complex conjugate Gaussian integers. Let G be

the set of Gaussian Integers and let Gπ residue class of G modulo π obtained using the

modulo function µ defined as

µ(ζ) = ζ −
[
ζπ

ππ̇
′

]
π (4.1)

Here [·] denotes the round-off operation.

Lusina et al. (2003) has shown that the map between Galois field Fq with q = 4K +

1, K ≥ 0 and Gaussian integer field (residue class Gπ) with q = u+ iv is rank preserv-

ing. Here, u and v are integers. This map is used to construct STBCs from Gabidulin

codes. Table 4.2 gives the Gaussian integer fields that are used in this chapter.

Table 4.1: Gaussian-Integers fields Gπfor various values of π.

q(π) Gπ

5 (2 + i) {0, 1, i,−1,−i}

13 (3 + 2i)
{
0, 1, 1 + i, 2i,−i, 1 − i, 2,−1,−1 − i,−2i, i,−1 + i,−2

}
17 (4 + i)

0, 1, 1 + i, 2i,−1 − 2i, i,−1 + i,−2, 2 − i,
−1,−1 − i,−2i, 1 + 2i,−i, 1 − i, 2,−2 + i



• Eisenstein-Jacobi Integers (Huber (1994a)):

Eisenstein-Jacobi integers Π are numbers of the form u + ρv where ρ = −1+i
√

3
2 and

u, v are integers. is a complex number with u and v as integers. It was shown that

primes of the form 6K + 1 with K ≥ 0 can be written as q = u2 + 3v2 = ΠΠ̇
′

. Here

Π
′

= u+v+ρ22v. LetJ denote the set of Eisenstein-Jacobi Integers and letJΠ denote

the residue class of J modulo Π obtained using modular operation

µ(ζ) = ζ −
[
ζπ

ππ̇
′

]
π (4.2)
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Based on the analysis given in Lusina et al. (2003), Puchinger et al. Puchinger et al.

(2016) showed that for q = 6K + 1, K ≥ 0 the map between Galois field Fq and

Eisenstein-Jacobi integer field (residue class modulo Π) with q = u + ρv, u, v , 0,

ρ = (−1 + i
√

3)/2 is rank preserving and can be used to construct STBCs. Table 4.2

gives the Residue classes of Eisenstein-Jacobi integers that are used in this chapter.

Table 4.2: Residue classes JΠ of Eisenstein-Jacobi Integers for various values of Π.

q(Π) JΠ

7 (3 + ρ · 2) {0, 1, 1 + ρ, ρ,−1,−1 − ρ,−ρ}

13 (3 + ρ · 4)

 0, 1, 1 + 2ρ, 1 + ρ,−1 + ρ, ρ,−2 − ρ,
−1,−1 − 2ρ,−1 − ρ, 1 − ρ,−ρ, 2 + ρ,



4.1.1 Space-Time Block Codes from Full Rank Codes

Space-time/frequency block codes (SFBC) can be obtained from codewords C of full rank

code C by mapping each symbol of the codeword matrix C into symbol of Gaussian integer

constellation or Eisenstein-Jacobi integer constellation. The resulting STBC/SFBC is shown

below.

Xρ =



ζ(c00) ζ(c01) ζ(c02) · · · ζ(c0 e j−1)

ζ(c10) ζ(c11) ζ(c12) · · · ζ(c1 e j−1)
...

...
... · · ·

...

ζ(cm−1 0) ζ(cm−1 1) ζ(cm−1 2) · · · ζ(cm−1 e j−1)


Where, ζ is either Gaussian integer map or Eisenstein-Jacobi integer map based on the value q

of the field Fq. The obtained STBC/SFBC codewords have columns that are generally having

non-orthogonal in nature. Hence, the resultant STBC/SFBC can be termed as non-orthogonal

STBC/SFBC (NSTBC/NSFBC).
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Figure 4.1: Block diagram of NT × NR MIMO system.

4.2 Application 1: Non-Orthogonal Space-Time Block

codes for MIMO Systems

The block diagram of the conventional NT × NR MIMO transmitter and receiver is shown in

Figure. 4.1. The number of transmit antennas NT is considered to be equal to the value e of

the field Fqe . The incoming bit stream is split into frames of size
⌊
log2

(
q2e

)⌋
. The codeword

mapper maps the frame to corresponding codeword matrix c ∈ C . STBC mapper maps the

elements of codeword C to complex symbols (Lusina et al. (2003); Puchinger et al. (2016)).

The mapping process is illustrated in (4.3)

(10111 · · · 0111)→ Xρ =



ζ(c00) ζ(c01) ζ(c02) · · · ζ(c0 n−1)

ζ(c10) ζ(c11) ζ(c12) · · · ζ(c1 n−1)
...

...
... · · ·

...

ζ(cm−1 0) ζ(cm−1 1) ζ(cm−1 2) · · · ζ(cm−1 n−1)


(4.3)

Each row of the NSTBC matrix Xρ is transmitted through different transmit antenna.

4.2.1 Channel

The channel is assumed to be Quasi-Static Rayleigh fading channel with independent and

identically distributed components.
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4.2.2 Decoding

Decoding employs optimum Maximum Likelihood(ML) decoding algorithm The input at the

MIMO receiver with NR receiving antennas is given by,

Y =

√
Es

N0
HXρ + ηAWGN (4.4)

Where,

Xρ is STBC codeword of size NT × n

H is the channel matrix of size NR × NT which depends on the channel distribution.

ηAWGN is a NR × n matrix of circularly symmetric i.i.d complex Gaussian random numbers.

Assuming that channel state information(CSI) is perfectly available at the receiver, an

estimate X̂ρ of the transmitted Xρ can be obtained using,

X̂ρ = argmin
∥∥∥∥Y −HX̂i

ρ

∥∥∥∥2
0 ≤ i ≤ qm − 1. (4.5)

4.2.3 Simulation Results

Simulations are performed under Quasi-Static Rayleigh fading channel environment. Table

4.3 gives the simulation parameters used for performance evaluation:

Table 4.3: Simulation Parameters

m = NT = 4 NR = 1, 2
q = 7 m0 = 2,m1 = 5

n = m0m1 = 10

Following Chapter 3, for length n = 10 Abelian codes we have exponent e = lcm(2, 5) = 10.

Since 10|74 − 1, we have considered codes over F74 . The 7−cyclotomic cosets mod 10 are

given below.

[< 0, 0 >] = {< 0, 0 >}

[< 1, 0 >] = {< 1, 0 >}

[< 0, 1 >] = {< 0, 1 >, < 0, 2 >, < 0, 4 >, < 0, 3 >}
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[< 1, 1 >] = {< 1, 1 >, < 1, 2 >, < 1, 4 >, < 1, 3 >}

The values of j =< j1, j0 > are chosen to be < 0, 1 > and < 1, 1 > resulting in (10, 2) Abelian

code C. Figure 2. is the exponent table for J3+2ρ and Figure ??. shows the constellation map

ζ : F7 ⇒ J3+2ρ. Here ρ = −1+i
√

3
2

q = 7 0 1 2 3 4 5
Π = 3 + 2ρ 1 1 + ρ ρ −1 −1 − ρ −ρ

Spectral efficiency of proposed scheme can be calculated to be η =
b(log2(78)c

10 = 1.9bpcu

Figure. 4.2 shows the comparisons ABER performance of 4 × 2, STBC-MIMO system over

Figure 4.2: ABER of STBC over F7

F7 with C(4,2,4) code proposed in (Perişoară (2012)). It can be seen that with two free trans-

form domain components the code provides a gain of approximately 4 dB when compared to

C(4,2,4) code„ at a BER of 10−4. The spectral efficiency is 1.9bpcu. In case of a 4×1 MIMO

system the proposed STBC provides an asymptotic gain of approximately 2 dB.
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4.3 Application 2: Non-orthogonal Space Frequency

Block codes for MIMO-OFDM System

4.3.1 NSFBC Codebook Formulation

We have seen that the full rank codes over Fqm can be constructed by choosing k free trans-

form components, with each index chosen from a different q−cyclotomic coset of size m. If

there are L ≥ k q− cyclotomic cosets, each of which are having size m, then we can have(
L

k

)
possible choices of k q− cyclotomic cosets that are grouped together. Of which, k free

transform component indices can be chosen at a time with each from different q− cyclotomic

coset. Since the q− cyclotomic cosets are of same size m, there are mk possible choices of

k− free transform components. Each choice produces a full rank code (cyclic or Abelian) Ci

with qkm codewords (matrices).

It can be stated that the rank distance between any two codewords (rank of difference

matrix) of different codes such as Ci and C j 0 ≤ i, j ≤
(
L

k

)
mk−1, i , j may be less than

m. The difference matrix which is obtained may not be a codeword and due to this, it is

clearly understood that the rank goes down. However, from Case 2 of Theorem 6 in chapter

2, one can see that there exists a few codes whose codewords can be at a rank-distance m

with respect to the codewords within the code and a few other codes as well (following Case

2 of Theorem 6, chapter 2). The reason here is that no two indices are chosen from the same

q−cyclotomic coset. Thus, the codewords that belong to these two component codes of rank

m can be grouped to form a composite code X having rank m. The composite code can

be represented by X = ∪mL −1
i=0 Ci. A composite NSFBC code XNS FBC corresponding to

composite NSFBC code X has been obtained using rank preserving maps. Since all zero

codeword is common for all component codes, the number of codewords in a composite

NSFBC code XNS FBC will be
((
L

k

)
qkm − 1

)
+ 1.

The working of MIMO-OFDM-IM system employing the proposed composite NSFBCs

is detailed in the next subsection.
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4.3.2 Working principle NSFBC-MIMO-OFDM System
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Figure 4.3: Block-Diagram of NSFBC based NT × NR MIMO-OFDM-IM system.

In this section we propose the NSFBC based MIMO-OFDM-IM system with NF = GN

– OFDM carriers. Figure 4.3 illustrates the working of proposed NSFBC based MIMO-

OFDM-IM system employing NF > N subcarriers. To facilitate the use of cyclic codes as

NSFBCs, we consider the MIMO-OFDM system with NT = m – number of transmit antennas

and NR – number of receive antennas. Since there are NF = GN number of subcarriers that

are available for communication, we use G – NSFBC-IM blocks at the transmitter, with each

block providing NT × N NSFBC-IM codeword. Thus, the available NF carriers are divided

among these G blocks, with N = NF/G subcarriers per block. The value of G is selected in

such a way that the adjacent subcarriers are uncorrelated. i.e. Bc/G is less than subcarrier

spacing. Here, Bc is the coherence bandwidth of the channel.

4.3.2.1 Transmitter
In Section 4.3.1, we have seen that there are

(
L

k

) (
qkm − 1

)
+ 1 codewords per XNS FBC . Since

NT = m, mbG =

(
log2

((
L

k

)
(qkNT − 1) + 1

)
+ nm · log2

(
N
e j

))
G – number of input bits are con-
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sidered at the input of block–splitter. These input bits are then split into G groups where,

each group consisting of mb = log2
((
L

k

)
(qkNT − 1) + 1

)
+ nm · log2

(
N
e j

)
– number of infor-

mation bits (Ib). At each NSFBC-IM block, the mb information bits are further split into

p1 = log2
((
L

k

) (
qkNT − 1

)
+ 1

)
– number of data bits (Db); and p2 = nm · log2

(
N
e j

)
– number of

carrier selection bits (Csb). The p1 data bits are processed by the NSFBC encoder to obtain

the corresponding NSFBC codeword. The NSFBC codeword Xρ is then considered as input

for the index modulator (IM). Based on the carrier selection bits p2, the index modulator

select NA = e j carriers out of available N subcarriers. The subcarriers that are chosen can be

Same for all the rows of NSFBC (full rank mapping), or Different for each row of NSFBC

(rank-deficient mapping).

1) In the first case, at any instance of time, the subcarriers that are chosen for all the rows of

NSFBC codeword Xρ are same . This process is to preserve the full rank property. Hence,

p2 = log2
(

N
e j

)
. This process give rise to NT × N – NSFBC-IM codewords, with all symbols

along each column being either zero (if the carrier frequency is not chosen) or non-zero (if

the carrier frequency is chosen). An example representation of NSFBC-IM codeword Xρ−IM

is given as.

Xρ,IM =



X0,0 X0,1 · · · X0,N−1

X1,0 X1,1 · · · X1,N−1

...
... · · ·

...

XNT−1,0 XNT−1,1 · · · XNT−1,N−1


=



ζ(c0,0) 0 · · · ζ(c0,e j−1)

ζ(c1,0) 0 · · · ζ(c1,e j−1)
...

... · · ·
...

ζ(cNT−1,0) 0 · · · ζ(cNT−1,e j−1)


(4.6)

Thus, the symbols along each column of Xρ,IM are either 0 or ζ(ck,l), with 0 ≤ k ≤ m−1, 0 ≤

l ≤ e j − 1. The codewords obtained are termed as full rank NSFBC-IM codewords and

corresponding codes as full rank NSFBC-IM codes (FR NSFBC-IM).

2) In the second case, the index modulator selects different subcarriers for different rows

of NSFBC codeword. Hence, in this case p2 = mlog2
(

N
e j

)
. This process gives rise to NT × N

NSFBC-IM codewords, with each symbol along each row being either zero (if the carrier

frequency is not chosen) or non-zero (if the carrier frequency is chosen). An example repre-
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sentation of NSFBC-IM codeword Xρ−IM is given below:

Xρ,IM =



X0,0 X0,1 · · · X0,N−1

X1,0 X1,1 · · · X1,N−1

...
... · · ·

...

XNT−1,0 XNT−1,1 · · · XNT−1,N−1


=



ζ(c0,0) ζ(c0,1) · · · 0

0 ζ(c1,0) · · · ζ(c1,e j−1)
...

... · · ·
...

ζ(cNT−1,0) ζ(cNT−1,1) · · · 0


(4.7)

From (4.7), based on the carrier selection bits, it is observed that the element Xi, j ( 0 ≤

i ≤ NT − 1, 0 ≤ j ≤ N − 1) of Xρ,IM is either ζ(ck,l)
(
0 ≤ k ≤ NT − 1, 0 ≤ l ≤ e j − 1

)
or

0. Hence, the codewords obtained are termed as rank deficient NSFBC-IM codewords and

corresponding codes are termed rank deficient NSFBC-IM codes (RD NSFBC-IM).

In this work, we have considered FR-NSFBC-IMs for MIMO-OFDM-IM system with

NR < 4 antennas and RD-NSFBC-IMs for MIMO-OFDM-IM system with NR ≥ 4 antennas.

In any case, the output of index modulator, Xρ,IM, is given by either (4.6) or (4.7). For

convenience, let Xρ,IM be represented as

Xρ,IM = {X0,X1,X2 · · · ,XN−1} ,

where, Xρ is the ρth column of the NSFBC-IM codeword Xρ,IM. At the transmitter, each

NSFBC-IM block gives rise to one NSFBC-IM codeword. Since there are G NSFBC-IM

blocks, G NSFBC-IM codewords are available at the input of interleaver (Π). The interleaver

stacks G = NF/N such NSFBC-IM codewords to form one NSFBC-OFDM-IM block S,

given by

S =
{
X0
ρ,IM,X

1
ρ,IM, · · · ,X

G−1
ρ,IM

}
=

{
X0

0,X
0
1, · · · ,X

0
N−1,X

1
0,X

1
1, · · · ,X

1
N−1,X

G−1
0 ,XG−1

1 , · · · ,XG−1
N−1

}
. (4.8)

Where, XGρ,IM is the Gth, 0 ≤ G ≤ G − 1, NSFBC-IM codeword of S. XGρ is the ρth column of
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the Gth NSFBC-IM codeword Xi
ρ,IM, given by

XGρ =

[
XG0,ρ, X

G

1,ρ, X
G

2,ρ · · · , X
G

NT−1,ρ

]T
; 0 ≤ ρ ≤ N − 1, 0 ≤ G ≤ G − 1

The terms G and ρ can be related as G = b
ρ
N c. Here, G = NF/N, is number of NSFBC-IM

codewords with N carriers per NSFBC-IM codeword.

Since the interleaving is in the frequency dimension, the number of rows of S remain

same as that of Xρ,IM, i.e. equal to NT . Each row of the NSFBC-IM-OFDM block S is then

sent to the corresponding IFFT block. Further, the IFFT block computes 1×NF time domain

vector. The obtained NF-point time domain vector is then padded with a cyclic prefix (CP)

and then modulated onto NF + NCP carriers. Since, the IFFT computation occurs at each

transmit antenna (corresponding to each row of S), NT – IFFT vectors are available at the

output of transmitter. These NT – IFFT vectors are transmitted simultaneously over MIMO

channel. For better resilience to inter-symbol interference (ISI), the length of cyclic prefix

L, is chosen to be greater than the channel length L. The spectral efficiency is defined as the

number of bits transmitted per channel usage per carrier frequency and is given by

η =

G.
(
log2

((
L

k

)
(qkNT − 1) + 1

)
+ nm · log2

(
N
e j

))
NF + NCP

, nm =


1 FR-NSFBC-IM

NT RD-NSFBC-IM

 (4.9)

4.3.2.2 Channel

The channel is considered to be frequency selective and time-flat with L < L (length of

cyclic prefix) – number of taps. Fading between each transmitting and receiving antenna is

considered to be independent and identically distributed (I.I.D) with the Rayleigh distribution

at a particular carrier frequency ρ. The Rayleigh distribution of channel coefficient h is given

by

fH(h) =
2h
Ω

e−h2/Ω, h ≥ 0 (4.10)

Where, Ω = E(H2). The channel coefficients among various subcarriers are also considered

to be identically distributed. Further assumption has been made that the wireless channels

remain constant during the transmission of a MIMO-OFDM-IM frame.
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4.3.2.3 Receiver

After removing the CP of length L per OFDM symbol and applying FFT at each branch of

the receiver, the received NR × NF matrix at the input of deinterleaver is given by,

Y =
{
Y0,Y1, · · · ,YG−1

}
=

{
Y0

0,Y
0
1, · · · ,Y

0
N−1,Y

1
0,Y

1
1, · · · ,Y

G−1
1 ,YG−1

0 ,YG−1
1 , · · · ,YG−1

N−1

}

with each column YGρ representing the NR × 1 received vector at particular frequency ρ (after

FFT), given by

YGρ =



yρ0

yρ1

yρ2
...

yρNR−1


=



Hρ
0,0 Hρ

0,1 · · · Hρ
0,NT−1

Hρ
1,0 Hρ

1,1 · · · Hρ
1,NT−1

Hρ
2,0 Hρ

2,1 · · · Hρ
2,NT−1

...
...

...
...

Hρ
NR−1,0 Hρ

NR−1,1 · · · Hρ
NR−1,NT−1





XG0,ρ

XG1,ρ

XG2,ρ
...

XGNT−1,ρ


+



wρ
0

wρ
1

wρ
2
...

wρ
NR−1


0 ≤ ρ ≤ NF − 1 (4.11)

Where, Hρ
ωΩ

=
L−1∑
l=0

hωΩ(l)e− j
(

2π
Nc

)
lρ; with hωΩ ≡ [hωΩ(0), hωΩ(1), · · · , hωΩ(L−1)] representing

the baseband equivalent impulse response of the channel between ωth transmit antenna and

Ωth receive antenna, and L denoting the length of the channel impulse response. Following

(4.8) , for simplicity, (4.11) can be written as

YGρ = HGρ XGρ + WGρ ; 0 ≤ ρ ≤ NF − 1 & G =

⌊
ρ

N

⌋
(4.12)

Where, WGρ is the NR×1 vector of elements that are realizations of Gaussian random variable

with zero mean. HGρ is NR × NT baseband equivalent impulse response of the channel matrix

at a particular frequency ρ.

The deinterleaver (Π−1) considers the received matrix, constructs a block of N− columns,

and feeds the NR × N matrix to the detector. The detection employed is either a single-stage

Maximum Likelihood (ML) detection of the entire NSFBC-IM code, or a two-stage mini-
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mum mean square estimation (MMSE)-ML decoder. In the case of two-stage MMSE-ML

decoder, the first stage is for the detection of carrier selection bits using Minimum Mean

Square Estimation (MMSE), and the second stage is for the detection of data bits using Max-

imum Likelihood (ML) decoder. Thus the receiver is either

1. Single stage ML receiver or

2. Two Stage MMSE-ML receiver.

1. Single Stage ML Receiver

In this case, the NSFBC-IM decoder is considered to be ML detector. At particular

subblock G, the ML detector considers the NR × N matrix YG corresponding to that

subblock G and obtains an estimate of the transmitted NT × N matrix for estimating

the transmitted NSFBC-IM codeword Xρ−IM. Following (4.11), the received NR × N

matrix can be given as,

YG = ĤG
(
XGρ,IM

)T
+ WG; 0 ≤ G ≤ G − 1 (4.13)

Where,

YG =

[
YG0 ,Y

G

1 , · · · ,Y
G

N−1

]T
; ĤG =



ĤG0 0 0 · · · 0

0 ĤG1 0 · · · 0

0 0 ĤG2 · · · 0
...

...
...

. . .
...

0 0 0 · · · ĤGN−1


,

XGρ,IM =

[
XG0 ,X

G

1 ,X
G

2 , · · · ,X
G

N−1

]
; WG =

[
WG0 ,W

G

1 , · · · ,W
G

N−1

]
The ML decision required in estimating one transmitted NSFBC-IM codeword XGρ,IM,

is then given by

(
XGρ,IM

)
ML

= arg min
(∥∥∥∥YG − ĤG

(
XGρ,IM

)T ∥∥∥∥2

F

)
; 0 ≤ G ≤ G − 1 (4.14)
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From the estimated NSFBC-IM matrix, the information bits (Ib) transmitted are then

decoded.

2. MMSE-ML Based Receiver

(a) In this case the detection is a two-stage process. At the first stage, the infor-

mation conveyed using index modulator is obtained using MMSE based index

demodulator. At the second stage, the modulated data is obtained using ML

based NSFBC decoder. Assuming availability of perfect channel state informa-

tion (CSI) at the receiver the MMSE estimation of X̂Gρ can be obtained in the

following manner. At the first stage, MMSE estimation is performed for each

column of the decoded NSFBC-OFDM-IM block S. The estimated vector X̂Gρ is

obtained using

X̂Gρ = HGρ
H

(
HGρ HGρ

H
+ λI

)−1
YGρ ; 0 ≤ ρ ≤ NF − 1

X̂Gρ = HGρ
H

(
HGp HGρ

H
+ λI

)−1 (
HGρ XGρ + Wρ

)
(4.15)

Where, λ is a constant and is equal to NT

( Eb
N0

)
in the case of linear MMSE estimators.

An estimate of the transmitted NSFBC-IM is then given by

X̂Gρ,IM =

{
X̂G0 , X̂

G

1 , X̂
G

2 , · · · , X̂
G

N−1

}
As seen from (4.15), X̂Gρ,IM contains Gaussian noise which is scaled by fading

coefficients. From X̂Gρ,IM, it is possible to obtain the carrier selection bits by

finding locations of minimum magnitude. The remaining e j high magnitude

complex values of each row are considered to form an estimate of the m × e j

NSFBC matrix. This matrix is then fed as input to NSFBC decoder.

(b) The second decoder (NSFBC decoder) considers the estimated m×e j matrix and

compares it with all the codewords of the corresponding composite NSFBC Xi.

The codeword which is at the minimum distance with this m × e j matrix is then

considered as X̂p. The information corresponding to X̂p is considered as data

bits.
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The carrier selection and data bits together form an estimate of the transmitted informa-

tion bits.

4.3.2.4 Computational Complexity

Below we discuss the computational complexity (in terms of number of complex multiplica-

tions) of the receiver in decoding information pertaining to one SFBC codeword.

1. MMSE-ML decoder.

Computation of HGp
H

(
HGp HGp

H
+ λI

)−1
: Since HGp is of dimension NR×NT the number

of complex multiplications required to compute HGp HGp
H

is N2
RNT . Since the dimension

of HGp
H

(
HGp HGp

H
+ λI

)−1
is NR × NT , the estimation of one column of the SFBC-IM

codeword requires NRNT complex multiplications. Since there are N columns per

SFBC-IM, the total number of complex multiplications required in estimating one

transmitted SFBC-IM is N2
RNT + NNRNT .

Once the estimate of SFBC-IM is obtained, the decoding of data bits require com-

parison with SFBC codewords. This requires
((
L

k

) (
qkm − 1

)
+ 1

)
comparisons with

each comparison resulting in m × e j multiplications. Hence the total number of mul-

tiplications in estimating one block of information bits and carrier selection bits is

N2
RNT + NNRNT +

((
L

k

) (
qkm − 1

)
+ 1

)
.m× e j. Therefore the computational complexity

is given by

CMMS E = N2
RNT + NNRNT +

((
L

k

) (
qkm − 1

)
+ 1

)
.m × e j (4.16)

2. Single stage ML receiver:

In this Section, the computational complexity (in terms of the number of complex mul-

tiplications) of the receiver in decoding information which is pertaining to one NSFBC

codeword is discussed. The terms K, p1,M mentioned in Table 4.4 are taken from

Basar (2016). Where, K represents the number of subcarriers assigned per MIMO-

OFDM-IM codeword, M is the order of QAM used, and p1 is the number of data
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bits per group in MIMO-OFDM-IM system. We outline the receiver complexity as

the number of floating point operations (flops) needed per ML decision metric. As

given in Trefethen and Bau III (1997), we consider every addition,subtraction, multi-

plication, division,and square-root operation as a single flop. Consider equation 4.14.

Since N columns represent SFBC-IM codeword, following equation 4.14 the received

matrix YGp corresponding to one SFBC-IM codeword can be given by

YGp = HGρ,IM(Imn ⊗ X̂Gρ,IM) + WG

ρ,IM 0 ≤ G ≤ G − 1 (4.17)

Where HGρ,IM =
[
HG0 ,H

G

1 , · · · ,H
G

N−1

]
is NR×NT N matrix obtained by stacking N chan-

nel matrices corresponding to Gth SFBC-IM codeword.

X̂Gρ,IM represents Gth SFBC-IM codeword that is transmitted.

WG

ρ,IM represents NR×N noise matrix whose columns are N vectors WGp corresponding

to Gth SFBC-IM codeword.

The Kronecker product
(
Imn ⊗ X̂Gρ,IM

)
requires NT N multiplications and will result

in NT N × N matrix. Each complex multiplication requires 2 real multiplications.

Since HGρ,IM is of dimension NR × NT N and
(
Imn ⊗ X̂Gρ,IM

)
is of dimension NT N × N,

computation of HGρ,IM

(
Imn ⊗ X̂Gρ,IM

)
requires NRNT N2 complex multiplications with

each complex multiplication requiring 4 real multiplications. Therefore each com-

parison requires 4NRNT N2 + 2NT N total number of real multiplications. There are(
N
e j

)m ((
L

k

) (
qkm − 1

)
+ 1

)
possible SFBC-IM codewords. Therefore the total number of

computations (real multiplications) required are

CML =

(
N
e j

)m ((
L

k

) (
qkm − 1

)
+ 1

) (
NRNT N2 + NT N

)
(4.18)

As seen from above, the single stage ML decoding complexity is exponential in
(

N
e j

)
,

increasing the decoding complexity with m. Hence this may not be suitable for codes

over higher fields Fqm
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The computational complexity of the proposed scheme and computational complexities

of traditional MIMO-OFDM and MIMO-OFDM-IM is shown in Table 4.4 below.

Table 4.4: Computational complexity

Method Complexity
MIMO-OFDM NR(NT + 1)MNT

MIMO-OFDM-IM NR(NT + 1)(2p1 MK)NT

Proposed Method (MMSE-ML) NRNT (NR + N) + e jm
((
L

k

) (
qkm − 1

)
+ 1

)
Proposed Method(ML)

(
N
e j

)m ((
L

k

)
(qkm − 1) + 1

) (
NRNT N2 + NT N

)

4.3.3 Analytical Upper Bound

In Torabi et al. (2007), an upper bound on the probability of error of Alamouti based space-

frequency block codes (SFBC) is provided. The bound is derived by exploiting the structure

of Alamouti code which is resulting in a closed form expression. Because of the frequency

selective nature of the channel and structure of the Alamouti code, joint detection of the

symbols has been employed (Torabi et al. 2007). However, in this approach, as the structure

is non-orthogonal and also because of the assumption that L > L, we have employed the use

of BER analysis provided in Basar (2016).

Since the value of G is considered in such a way that the subcarriers are uncorrelated,

the pairwise error events within different subblocks are identical (Basar (2016)). Hence, it

is sufficient to estimate the PEP associated with one subblock to evaluate the performance

of the proposed scheme. To derive the bound, we consider single stage ML detection of

entire NT × N NSFBC-IM codeword including joint detection of symbols along NT rows of

the received matrix, and for N consecutive columns that are corresponding to N columns of

Xρ,IM.

Based on the analysis given in Basar (2016), the analytical upper bound (union bound) is

derived with reference to (4.14) and is given as,

Pb ≤
1

Nc

Nc−1∑
i=0

Nc−1∑
j=0

P
(
Xi
ρ,IM → X j

ρ,IM

)
ni, j

Nb
; i , j (4.19)

Where,
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• Nc =
((
L

k

)
(qkNT − 1) + 1

) (
N
e j

)nm – total number of NSFBC-IM codewords.

• Nb – total number of bits associated with the NSFBC-IM codeword.

• ni, j – number of bits in error between binary tuple associated with Xi
ρ,IM and X j

ρ,IM.

• P
(
Xi
ρ,IM → X j

ρ,IM

)
represents the Pairwise Error Probability (PEP).

In (4.19), PEP is obtained by computing conditional PEP (CPEP) between two NSFBC-

IM codewords and averaging the CPEP over all channel realizations. Following Simon and

Alouini (2005), the CPEP P
(
Xi
ρ,IM → X j

ρ,IM | Ĥ
G

ρ,IM

)
is given by,

P
(
Xi
ρ,IM → X j

ρ,IM | Ĥ
G

ρ,IM

)
= Q


√√
ρ
∥∥∥∥HGρ,IM

(
Xi
ρ,IM − X j

ρ,IM

) ∥∥∥∥2

2

 (4.20)

Using Craig’s formula, this can be expressed as

P
(
Xi
ρ,IM → X j

ρ,IM | Ĥ
G

ρ,IM

)
=

1
π

∫ π/2

0
exp


ρ
∥∥∥∥HGρ,IM

(
Xi
ρ,IM − X j

ρ,IM

) ∥∥∥∥2

4sin2φ

 dφ (4.21)

The pairwise error probability (PEP) can be obtained by integrating (4.21) over probabil-

ity density of Γ =
∥∥∥∥HGρ,IM

(
Xi
ρ,IM − X j

ρ,IM

) ∥∥∥∥2
. Following Basar (2016); Simon and Alouini

(2005), the PEP is given by

P
(
Xi
ρ,IM → X j

ρ,IM

)
=

1
π

∫ π/2

0

Nk∏
k=0

 1

1 +
Ebλi, j,k

4N0sin2φ


nR

dφ (4.22)

Where, Nk is the number of Eigen values, and λi, j,k are the Eigen values of the difference ma-

trix
(
Xi
ρ,IM → X j

ρ,IM

) (
Xi
ρ,IM → X j

ρ,IM

)H
. It can be noted that, the value of Nk = NA = e j in

the case of FR-NSFBC-IM. Where as, the value of Nk can be less than e j for RD-NSFBC-IM

codewords.

Following (Simon and Alouini (2005)), using partial fraction expansion, a closed form solu-
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tion of PEP can be given by,

P(Xi
ρ,IM → X j

ρ,IM) ≤
1
2

Nk∏
l=1

(
1

(1 + cl)

)NR

(4.23)

Where, cl =
Ebλi, j,k

4NO
.

Substituting (4.23) in (4.19), union bound can be given by,

Pb ≤
1

Nc

Nc−1∑
i=0

Nc−1∑
j=0

1
2
∏Nk

l=1

(
1

(1+cl)

)NR ni, j

Nb
; i , j (4.24)

Pb ≤
1

2NcNb

Nc−1∑
i=0

Nc−1∑
j=0

Nk∏
l=1

(
1

(1 + cl)

)NR

ni, j; i , j (4.25)

4.3.4 Simulation Results

Based on the criteria given in Basar (2016); Martin and Taylor (2004), the number of transmit

antennas NT is considered to be two and four. We consider a 10-path frequency-selective

Rayleigh fading MIMO channel with the maximum delay spread of 10Ts for fair comparison

with existing results Basar (2016). Table 4.5 gives the values of various system parameters

considered for simulations.

Table 4.5: MIMO-OFDM-IM system parameters (Basar (2016)).

Number of subcarriers(NF) 512
Number of subcarriers per NSFBC-IM Block(N) 4,8,16

Subcarrier spacing(∆ f ) 15KHz
Sampling frequency( fs) 7.68MHz
Cyclic prefix length (L) 36

Gaussian or Eisenstein Constellations F(5),F(7),F(13)

It is assumed that the channel state information (CSI) is unknown to the transmitter but,

perfectly known to the receiver. The value of N is selected such that Bc/G = BcN/NF is less

than the subcarrier spacing, resulting in uncorrelated channel coefficients associated with
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adjacent subcarriers. Here, Bc = (10Ts)−1. Since, NF = 512,∆ f = 15KHz to meet the

condition N is chosen to be N = 4, 8, or 16. Each value of N results in G = G = NF/N =

128, 64, or 32 number of NSFBC-IM codewords per NSFBC-OFDM-IM block.

Table 4.6, Table 4.7, and Table 4.8 give spectral efficiencies that can be achieved by the

proposed codes for various (e j, k) codes over Fq2 and Fq4 respectively. From Table 4.6, it can

be seen that a theoretical spectral efficiency of around 2.45 b/s/Hz can be achieved by us-

ing codes over F52 when compared to 1.87b/s/Hz offered by MIMO-OFDM-IM with BPSK

(Basar (2016)). From Table 4.7, we note that the improvement in spectral efficiency achieved

by FR-NSFBC-IM codes over Fq4 is around 0.2 b/s/Hz for most of the values of q when

compared to the corresponding FR-NSFBC-IM codes over Fq2 . From Table 4.8, we see that

the proposed RD-NSFBC-IM codes achieve better spectral efficiencies which is almost >2

b/s/Hz while comparing with the corresponding FR-NSFBC-IM codes over Fq4 . The reason

is that the carrier selection bits per RD-NSFBC-IM codeword are nm times more than FR-

NSFBC-IM codeword.

Table 4.6: Spectrally efficiencies of proposed FR-NSFBC-IM codes over Fq2 .

ηtheoretical (bpcu) ηpractical (bpcu)
CR −

(
e j, k

)
N q=5 q=7 q=13 q=5 q=7 q=13

(2, 1) 4 2.45 2.93 3.97 2.10 2.56 3.50
(4, 2) 8 2.44 2.92 3.79 2.33 2.80 3.73
(8, 4) 16 2.33 2.84 3.71 2.27 2.80 3.67

Table 4.7: Spectrally efficiencies of proposed FR-NSFBC-IM over Fq4 .

ηtheoretical (bpcu) ηpractical (bpcu)
CR −

(
e j, k

)
N q=5 q=7 q=13 q=5 q=7 q=13

(2, 1) 4 2.64 3.10 3.93 2.56 3.03 3.85
(4, 2) 8 2.66 3.12 3.96 2.62 3.03 3.91
(8, 4) 16 2.64 3.10 3.94 2.62 3.09 3.91

In Figure 4.4, the simulation results and upper bound of proposed (e j, k) NSFBCs over
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Table 4.8: Spectrally efficiencies of proposed RD-NSFBC-IM codes over Fq4 .

ηtheoretical (bpcu) ηpractical (bpcu)
CR −

(
e j, k

)
N q=5 q=7 q=13 q=5 q=7 q=13

(2, 1) 4 4.79 5.25 6.08 4.67 5.13 5.95
(4, 2) 8 5.05 5.51 6.35 4.90 5.31 6.18
(8, 4) 16 5.19 5.66 6.49 5.16 5.63 6.45

Figure 4.4: BER performance of FR-NSFBC-IMs over F52 ,F72 with NT =2, NR=2,
N = 4, 8, 16 corresponding to e j = 2, 4, 8 and ML-ML decoding.

F52 ,F72 are depicted. It can be seen that for a particular value of q, the BER performance

improves with an increase in the values of e j, k. It is observed that, (16, 8) codes over F52

provide a gain of around 1.5dB when compared to (8, 4) codes over F52 . The above re-

sults are observed at a BER of 10−5. A similar pattern is also observed in the case of codes

over F72 . In addition to that, we see that the codes over F52 achieve a spectral efficiency of

around 2.4 b/s/Hz from Table 4.12. Whereas, codes over F72 achieve a spectral efficiency of

around codes over 2.9 b/s/Hz. From Figure 4.4, it can also be seen that the proposed (8, 4)

FR NSFBC-IM codes provide similar BER performance when compared to Rate-1 Alamouti
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code based MIMO-OFDM-IM. However, in a 2×2 MIMO-OFDM-IM system with NF = 512

and N = 4, the Alamouti code with QPSK symbols (with rank preserving index modulation)

provide a theoretical spectral efficiency of 1.5 b/s/Hz which is approximately 1 b/s/Hz less

than the spectral efficiency provided by FR-NSFBC-IM codes over F52 . Furthermore, it is ob-

served that at lower values of (e j, k), constructions over F72 provide similar performance with

respect to constructions over F52 . However, we see that the spectral efficiency is increased by

about 0.3 b/s/Hz as shown in Table 4.12.

Figure 4.5: BER performance of NSFBC-IMs (FR and RD) over F52 and F54 for
MIMO-OFDM-IM system with ML-ML decoding and NT = NR=2,4, N=4,8,16,32.

In Figure 4.5, we compare the BER performance of 2× 2 MIMO-OFDM-IM system em-

ploying NSFBC codes over F52 , Rate-1 OSFBC (Alamouti) codes (Torabi et al. (2007)) and

full rate quasi-orthogonal space frequency block codes (QOSFBC) (Vakilian and Mehrpouyan

(2016)). The detection is based on single-stage ML decoding. Moreover, VBLAST based

MIMO-OFDM scheme is also considered for comparison. One can observe from Figure

4.5 that the proposed (8, 4) FR-NSFBC-IM codes provide an asymptotic gain of around 1 dB

when compared to MIMO-OFDM-IM with BPSK uncoded constructions (Basar (2016)). The
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improvement in spectral efficiency is about 0.6b/s/Hz. A similar asymptotic performance is

observed with (8, 4) NSFBC code with an improved spectral efficiency of around 0.9b/s/Hz

when compared to Rate-1 Alamouti based MIMO-OFDM-IM (with rank preserving index

mapping). It can be seen that (16, 8) NSFBC codes offer an asymptotic gain of around 0.5 dB

when compared to QOSFBC (Vakilian and Mehrpouyan (2016)) based MIMO-OFDM-IM

system. The performance is approximately 2 dB when compared to OSFBC based MIMO-

OFDM-IM system. In this case, the improvement in spectral efficiency when compared to

OSFBC-MIMO-OFDM-IM and QOSFBC-MIMO-OFDM-IM is 0.5 and 0.9 b/s/Hz respec-

tively. In case of a 4×4 MIMO system, the asymptotic performance of (8, 4) RD-NSFBC-IM

codes over F54 is observed to be similar at a BER of 10−4. Here, both simulation and analyti-

cal performances have been realized to offer a gain difference of approximately 0.1 dB when

compared to the existing method (Basar (2016)). However, from Table 4.8, the obtained

spectral efficiency is found to be 1.3 b/s/Hz higher than the spectral efficiency quoted by

MIMO-OFDM-IM system with BPSK (Basar (2016)). Hence, the proposed RD-NSFBC-IM

codes offer higher spectral efficiency, when compared with the uncoded MIMO-OFDM-IM

scheme (Basar (2016)). In this case, the BER performance is similar. In addition to that the

proposed (4, 2) outperforms VBLAST OFDM. However, both the systems maintain the same

spectral efficiency.

In Figure 4.6, the performance of 2 × 2 MIMO-OFDM-IM system employing MMSE

detection has been depicted. We can see that the the proposed constructions over F52 provide

a gain of approximately 2dB when compared to uncoded communication using BPSK (Basar

(2016)). This is observed when BER is 10−3. In the case of (8, 4) FR-NSFBC-IM codes over

F132 , F132 , and F172 , the BER performance gets deteriorated with an increase in the attribute

q. However, Table 4.8 shows that the spectral efficiency of FR-NSFBC-IM codes over F72

is about 1.1 b/s/Hz higher than that of MIMO-OFDM-IM with BPSK (Basar (2016)). It is

also observed that (16, 8) FR-NSFBC-IM code over F52 offer asymptotic gain of around 1dB

when compared to (8, 4) FR-NSFBC-IM codes over F52 . The spectral efficiency is same in

both the cases.
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Figure 4.6: BER of the proposed NSFBC over F52 ,F72 ,F132 ,F172 , for MIMO-OFDM-
IM system with MMSE-ML decoding and NT = NR=2, N=4 corresponding to e j =8.

We next consider an application that involves communication between source and sink

through relay network. This scenario will allow us to examine the performance of the Block

codes derived from rank codes in a two-fading channel.

4.4 Application 3: MIMO LOS communication using

Relay network

Relay network based communication is gaining importance in application like surveillance

and cellular communications in which communication coverage and reliability are impor-

tant factors. In surveillance applications UAVs are considered for monitoring the border and

transmit the information securely and reliably to the control and command station. In cellu-

lar communications Unmanned Aerial Vehicles are used as High Altitude Platforms that can

increase the coverage radius. However due to altitudes at which the UAVs are placed, and the
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frequency (wavelength) at which communication happens, the channels between UAV and

the receiver is strongly Line of sight (LOS). However, it has been shown that spatial diversity

can be created between UAV and ground station using relay network. The relay network pro-

vides virtual MIMO link between the source and the receiver. The growing demand for relay

based services in case of LOS MIMO communications has created the need to examine the

possibility of employing multiple antennas for realizing spatial diversity (Huo et al. (2019);

Li et al. (2018)). In (Driessen and Foschini (1999); Liu and Springer (2015)), essential con-

ditions required to obtain spatial diversity in LOS MIMO communication have been derived.

It has been shown that if the inter-antenna separation at the transmitter (dT ) and the inter-

antenna separation at the receiver (dR ) is such that dT dR ≥
√
λR/4 (where R represents the

transmitter-receiver separation and λ represents the operating wavelength), spatial diversity

can be achieved. Thus, relay units can be located in a distributed manner to achieve spatial

diversity, which can be brought about by ensuring proper separation between antennas placed

on the relay unit and the antennas placed in the ground station or separation between relay

units and the corresponding antennas in the ground station. In dense environments, spatial

diversity combined with the use of STBCs and energy efficient spatial modulation strate-

gies can result in reliable communication with improved spectral efficiency. In (Driessen

and Foschini (1999)) authors have considered the creation of spatial diversity LOS MIMO

channels. Hanna et al. (2019) proposed two distributed algorithms that adapt UAV position,

to achieve multiplexing gain in cooperative communications containing UAV relay networks.

One algorithm is based on gradient change and the other algorithm is based on brute force op-

timization. In (Liu and Springer (2015)) authors have proposed the use of space shift keying

strategies in applications that involve spatially diverse LOS MIMO channels. In (Choi et al.

(2016)) authors have attempted to use STBCs in a network of UAVs that act as relay nodes.

The relay node UAVs work in cooperative mode to provide a virtual MIMO link (An effective

MIMO link between the transmit and receive antenna systems with the repeater in between).

The architecture in (Choi et al. (2016)) employs STBCs in a distributed manner. Following

the analysis given in (Choi et al. (2016); Fotouhi et al. (2019)), in this work we propose two

cooperative architectures that use relay units to achieve spatial diversity in LOS communi-
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cation. The first design employs Space-Time Block Codes for 2 × 2 LOS MIMO network.

The second design employs energy-efficient Space-Time Block Coded Spatial Modulation

(STBC-SM) technique for 4 × 4 LOS MIMO network.

4.4.1 System model

h11
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TX RX
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Figure 4.7: LOS MIMO architectures with cooperative relay network

The communication architectures that facilitate the use of NSTBC and NSTBC-SM are

shown in Fig 4.7. The units labelled RL are the relay units that provide virtual MIMO link

between transmitter (Tx) and receiver (Rx). The arrangement of relay units, inter-unit dis-

tance d1 and the minimum distance R between the relay network and the receiver are chosen

to ensure orthogonality between relay units’ signatures (Driessen and Foschini (1999); Liu

and Springer (2015)). The orthogonality between signatures ensures spatial diversity and

maximizes the diversity gain between transmitter and receiver. Further, the relay units are

equipped with two directional antennas to support simultaneous transmission and reception

using frequency division duplexing (FDD). In our work, the transmitter (Tx) is considered to

UAV that possesses multiple directional antennas and supports beamforming (Fotouhi et al.

(2019)). The transmitter UAV is either master drone (surveillance) or the mobile base station

(cellular communications). The number of transmitter antennas NT at Tx is equal the number

of relay units. Further, the value of NT is chosen to be equal to the number of rows of STBC,

for STBC based communication. The value of NT is chosen to be greater than the number of

rows of STBC, for the case of STBC-SM. The relay units can be either ground-based relay
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units or UAVs. In case of relay network formed by UAVs, the velocity of all the UAVs is

constrained to provide minimal or negligible Doppler shift in the received signal. This can

be achieved using additional sensors at UAVs, with each sensor sharing its coordinates with

other sensors (Hanna et al. (2019)) so that the UAVs can maintain the same relative distance

and orientation with respect to each other and the receiver (ground station). Alternatively, we

can assume that the UAVs are firmly tethered to the ground so that they appear to be more

or less stationary. In this work, we consider NSTBCs obtained in Section 4.1.1 and show

that they can be used to enhance communication security. The reason for choosing these

constructions is two-fold: a) rectangular STBCs of the desired length can be obtained, that

can offer greater euclidean distance between codewords when compared with square con-

structions. b) the constructions provide an additional degree of freedom in choosing the free

transform component indices that constitute the cyclic code. This can be used to construct a

cryptographic key.

4.4.2 Transmitter

Consider a vector c = {c0, c1, · · · , cn−1} with ci ∈ Fqr , 0 ≤ i ≤ n − 1. In Chapter 2, it was

shown that the elements of vector c (i.e ci, 0 ≤ i ≤ n−1) can be obtained using GFFT equation

ci = 1
(n mod q)

∑n−1
w=0 Vwβ

−iw with Vw ∈ Fqm for all 0 ≤ w ≤ n− 1. Here, β is the nth root of unity

in Fqr . It was shown that the rank of c depends on the choice of indices w ∈ W ⊂ [0, n−1] for

which Vw|w ∈ W are free and rest of the indices are constrained to zero. More specifically it

was shown that the rank of c depends on the size of the q− cyclotomic cosets from which the

index w ∈ W is chosen. The number of free transform indices k is equal to the size of the set

W and the set of codeword vectors c obtained for all possible values of Vw ∈ Fqm is called an

(n, k) code C . Since Vw take all possible values from Fqm and since there are k− Vws, there

will be qkm distinct vectors in C . It was shown that if index subset W contains indices with

each chosen from a distinct q− cyclotomic coset of size r, then the matrix associated with

each codeword vector c is of rank−m. The corresponding code C obtained for all possible

values of Vws is a rank−r code . This (n, k) full row rank code C can be used as Space Time

Block Code using suitable rank preserving maps. Following Theorem 1-6 in chapter 2, the
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number of columns of STBC codeowrd is given by e j = |W |r. The elements of codeword

matrix are over Fq and are mapped to complex constellation using rank preserving maps like

Gaussian integer map (Huber (1994b)) or Eisenstein-Jacobi integer map (Huber (1994a)).

Since the proposed architectures have 2/4 relay units, and since number of rows of STBC

is equal to the number of transmit antennas, in this application we consider codewords over

Fq2 ,Fq4 .

4.4.2.1 Formation of index key

We see that the subset W contains k− elements that are chosen from k different q− different

cyclotomic cosets of size m. From the definition of q− cyclotomic cosets we see that for

any integer set Z = {0, 1, · · · , n − 1}, if L represent the number of q− cyclotomic coset

of size m then we have
(
L

k

)
possible group of cyclotomic cosets of size r from which we

can select k free transform component indices. From this group of k cyclotomic cosets we

have mk number of k− tuple indices which each giving rise to unique full rank code C .

Thus in total we have Nk =
(
L

k

)
mk number of possible k− tuple combinations with each

combination giving rise to rank−m code and hence corresponding STBC. Each STBC, in

turn, has qkm number of codeword matrices. Using this additional degree of freedom offered

by the choice of free transform component indices, the transmitter and receiver can jointly

establish an arrangement to follow through the set of component codes in a particular order.

This arrangement is called the index key and is given by.

{(`0
0, `

0
1, · · · , `

0
k−1), (`1

0, `
1
1, · · · , `

1
k−1), · · · , (`L−1

0 , `L−1
1 , · · · , `L−1

k−1 )} (4.26)

The length of the key (represented by L) is defined as the number of combinations in the key.

To illustrate this idea we consider the following example.

Example: Let n = 15, l = 3, q = 2, m = 4.

The 2− cyclotomic cosets mod 15 are given by:

[0]15 = {0}, [1]15 = {1, 2, 4, 8}, [3]15 = {3, 6, 12, 9}, [5]15 = {5, 10} [7]15 = {7, 14, 13, 11}

The residue classes modulo n
m = 5 are given by
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(0)15,3 = {0, 5, 10}, (1)15,3 = {1, 6, 11}, (2)15,3 = {2, 7, 12}, (3)15,3 = {3, 8, 13}, (4)15,3 =

{4, 9, 14}.

Following case 2 of proposition 2 and also from (Dey and Rajan (2003)), we see that (8, 2)

quasi-cyclic codes of rank 4 can be obtained by choosing any one combination of indices

listed in the table 4.9

Table 4.9: List of Combinations which can give rise to full rank codes

(1, 6) (1, 11) (6, 11) (2, 7) (2, 12) (7, 12) (3, 8) (8, 13) (3, 13)
(4, 9) (9, 14) (4, 14) (1, 7) (1, 12) (1, 3) (1, 13) (1, 9) (1, 14)
(6, 2) (6, 7) (6, 8) (6, 13) (6, 4) (6, 14) (11, 2) (11, 12) (11, 3)

(11, 8) (11, 4) (11, 9) (2, 3) (2, 13) (2, 9) (2, 14) (7, 3) (7, 8)
(7, 4) (7, 9) (12, 8) (12, 13) (12, 4) (12, 14) (3, 4) (3, 14) (8, 9)

(8, 14) (13, 4) (13, 9) NA

There are 48 number of free transform component indices indicated in table 4.9. Each

choice of transform domain indices will give rise to a rank-4 3-quasi cyclic code, which

we will refer to as a component code Cp. An example representation of key obtained by

following the rows of the row table one by one is given below.

(1, 6), (1, 11), · · · , (3, 13), (4, 9), · · · , (9, 14) · · · , (1, 14), · · · , · · · , (8, 14), (13, 4), (13, 9).

In practice the order of key can be random, component indices can repeat and length of key

can be users choice. The length of the key (represented by L) is defined as the number of com-

binations in the key. Each combination specifies a particular component code (or equivalently

an entry in Table 4.9). Similar to cryptographic keys, the level of security of communication

increases with randomness in the order of selection and length of the key. In addition to this

security can be enhanced by dynamically changing the key during communication. This adds

to the security in applications where secure transfer of tactical information is required.
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4.4.2.2 Transmission

One the index key is formed, the transmitter uses a secure channel to communicate the index

key to the receiver. Initially a frame of length blog2(qkb)c bits is considered at the input of the

transmitter. Let the frame be represented as u =
(
u0,0, · · · , u0,b−1, · · · , uk−1,0, · · · , uk−1,b−1

)
.

The frame u is then split into k parallel streams each of length b given by

uw =
(
uw,0, uw,1, · · · , uw,m−1

)
with 0 ≤ w ≤ k − 1. Each uw is mapped onto m− tuple vector

with elements over Fq. This is analogous to m− tuple integer representation of b− length

binary vector with b = qm. This m−tuple vector is the assigned an equivalent symbol from

Fqm with m = 2, 4. k− such symbols obtained are assigned to corresponding k−free transform

components with free transform component indices obtained from index key. m × n full

rank codeword is then obtained using the procedure mentioned Chapter 2. The codeword

matrices obtained will have elements from the finite field Fq. These elements are mapped

onto two dimensional complex plane using rank preserving maps like Gaussian Integer map

(Huber (1994b)) and Eisenstein-Jacobi Integer map (Huber (1994a)). This result in NSTBC

codeword X with symbols from rectangular or hexagonal constellation as given by 4.1.1 and

is rewritten below.

X =



ζ(c00) ζ(c01) ζ(c02) · · · ζ(c0 e j−1)

ζ(c10) ζ(c11) ζ(c12) · · · ζ(c1 e j−1)
...

...
... · · ·

...

ζ(cm−1 0) ζ(cm−1 1) ζ(cm−1 2) · · · ζ(cm−1 e j−1)


(4.27)

If spatial modulation is employed then the transmitter considers sa bits after the data frame to

select the active transmit antennas through which the NSTBC codeword symbols are trans-

mitted. The selected active antenna combination remain same throughout the NSTBC trans-

mission. Since rows represent antenna dimension, the resulting NSTBC-SM codeword is
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given as

XIM =



ζ(c00) ζ(c01) ζ(c02) · · · ζ(c0 e j−1)

0 0 0 · · · 0

ζ(c10) ζ(c11) ζ(c12) · · · ζ(c1 e j−1)
...

...
... · · ·

...

0 0 0 · · · 0

ζ(cm−1 0) ζ(cm−1 1) ζ(cm−1 2) · · · ζ(cm−1 e j−1)



(4.28)

Each row of NSTBC/NSTBC-SM codeword is then transmitted to its corresponding relay

unit UR which decodes and forwards to the receiver.

4.4.2.3 Choice of index key

In practice, the index key can be random, and the length of the index key (L) can be cho-

sen as per the requirement. From the formation of index key one can observe that if the

index combinations are selected such that they have more than one common element (but

not all) at different locations, then the amount of uncertainty in estimating the transmit-

ted codeword, in the absence of index key is high. To illustrate this idea let us consider

STBCs obtained from cyclic codes of length 15 over F24 constructed with k = 2 free trans-

form component indices. 4.9 there are 48 choices of 2-tuple free transform component in-

dices that will result in a rank-4 cyclic code. A possible index key with k = 2 is given by

{(1, 6), (1, 3), (3, 7) · · · , (3, 8), (4, 9), · · · , (1, 13), · · · · · · , (8, 9)}. The index key contains the

combinations (1,3) and (3,7) with element 3 in common but at a different location. That is

in the combination (1,3) element 3 is in the second place and in the combination (3,7) el-

ement 3 is in the first place. For the component code designed using a combination (1,3),

the codeword obtained for the data sequence ’00001010’ and the codeword obtained for the

data sequence ’10100000’ with (3,7) as the index combination is same. This means that in

the absence of the knowledge of index key, there is uncertainty regarding the data sequence

associated with the codeword. It can be noted that the amount of uncertainty increases with

an increase in k as there can be more than one index element in common between the free

transform domain combinations, and also depend on the length of index key L which is user
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choice. In particular, there can be Nk
L number of possible index key combinations. For

the example chosen above if the length of the key is full (i.e if L = 48) then there can be

4848 = 2240 + 2192 possible number of index key combinations out of which one is legiti-

mate. In the case of the AES-128 encryption scheme, the total possible combinations are

2126. Thus, for an unintended user, the possibility of finding out the key and then the trans-

mitted information in real time is highly complex and practically improbable and is almost

impossible in case if index key hopping is employed. Table 4.10 gives the number of possible

key combinations for various values of q,m,L, e j, k,Nk.

Table 4.10: Number of possible key combinations for codes over Fq.

q m L (e j, k) Nk # of possible key combinations
5 2 10 (4,2) 180 180L

7 2 21 (4,2) 840 840L

Figure 4.8: Number of possible keys in logarithmic scale

Figure4.8 gives the graph of a logarithmic number of possible keys (in terms of log2) with

respect to the length of the key. The length of the key is varied from 2 to 180. As can be

seen from the figure the number of possible keys is around 2450 in case of codewords de-

signed over F52 with an index key of length L = 62. The number of possible keys is 2600 in
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case of codewords designed over F72 for a key of length L =62. Thus, for the appropriate

length of the index key, the illegitimate user will not be able to decode the information in

real time in the absence of the index key. Further, for the appropriate choice of the index key,

the ambiguity in the information in the absence of index key can be high. Thus making the

proposed scheme best suitable for tactical communications involving relays. The output of

each transmit antenna is then received by the corresponding relay unit.

4.4.3 Relay network

Assuming that all relay units receive the symbols simultaneously (cooperative), the received

vector representing the received symbols at corresponding relay units is given by

Y i = Hi
relayXi

IM (4.29)

Here, Xi represents ith column of the STBC codeword.

Hi
relay = diag(h0,0, h1,1, h2,2, · · · , hNt−2,Nt−2, hNt−1,Nt−1). with hi,i representing the channel fad-

ing coefficient between transmitting antenna i and corresponding relay unit i. In this chapter

we have considered the fading between transmitting antenna and the corresponding relay

network unit to be Rician distributed. A Rician fading channel can be described by two pa-

rameters: K and Ω.K is the ratio between the power in the direct path and the power in the

other, scattered, paths. Ω is the total power from both paths (Ω = ν2 + 2σ2), and acts as a

scaling factor to the distribution.

The channel coefficient amplitude h is then Rice distributed with parameters ν2 =
K

1 + K
Ω

and σ2 =
Ω

2(1 + K)
. The resulting PDF then is:

f (h) =
2(K + 1)h

Ω
exp

(
−K −

(K + 1)h2

Ω

)
I0

2
√

K(K + 1)
Ω

h

 (4.30)

where, I0(·) is the 0th order modified Bessel function of the first kind. Each relay unit em-

ploys the decode and forward strategy. The MMSE estimated vector at the relay unit can be

obtained by,

X̂i
IM = HiH

relay(Hi
relayHiH

relay + ρ−1I)Y i (4.31)
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Each UR then forwards the estimated symbols to the receiver.

4.4.4 Receiver

After n time slots, the received NR × NT matrix is given by

Y = HX̂IM + N (4.32)

Here X̂IM = { ˆX0
IM,

ˆX1
IM, · · · ,

ˆXn−1
IM }, is the estimated codeword forwarded by the relay net-

work. N is the noise matrix of dimension NR × n with elements that are realizations of

circularly symmetric complex Gaussian distribution with zero mean and variance σ2
n. H−

represents the NR × NT channel matrix between relay network and the receiver. The general

representation of H that can be used for both correlated and uncorrelated channels is given

by H = RRxHuRUR . Here RRx is the NR × NR receiver correlation matrix, is the NT × NT relay

network correlation matrix, and Hu is the uncorrelated channel matrix representing the uncor-

related Rayleigh, Rician or Nakagami-m distribution. In case of uncorrelated Rayleigh and

Rician fading, the channel magnitude follows (4.10), (4.30). When representing the uncor-

related Nakagami-m fading, the fading coefficient hu follows the following density function

f (hu; m,Ω) =
2mm

Γ(m)Ωm h2m−1
u exp

(
−

m
Ω

h2
u

)
,∀hu ≥ 0. (m ≥ 1/2, and Ω > 0) (4.33)

Following (GD et al. (2017); Yacoub (2009)), a more realistic non uniform phase distribu-

tion has been considered to model the channel coefficients that exhibit Nakagami-m fading

environment. Assuming the availability of perfect channel state information (CSI) at receiver

end, the estimate of vector X̂IM is obtained by.

̂̂XIM = argmin
(
‖Y −HXIM‖

2
)
, ∀XIM ∈X (4.34)

Here, ̂̂XIM is an estimate of the transmitted codeword XIM and X refers to the NSTBC-SM

code X that is used at the transmitter. After obtaining ̂̂XIM the receiver decodes antenna

selection bits by finding rows with more number of zeros (in case of architecture supporting
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STBC-SM) and data bits by searching nearest codeword of the component code. At this point

it can be noted that the receiver can decode the data bits correctly only if the search is within

the component code that is used at the transmitter. In the next section we derive an union

bound on the probability of error of the proposed scheme.

4.4.5 Analytical Upper bound

Tx Relay Network Rx
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Figure 4.9: Graphical representation for Error computation

From the previous section, we infer that the decoding error at the receiver depends on

two factors: 1) Symbols estimated at the relay network. 2) MIMO Channel between the relay

network and receiver. The union bound on average BER can be expressed as

ABER =
1

Nc

Nc−1∑
i=0

Nc−1∑
j=0

N(Xi
IM, X

j
IM)

η
Perror (4.35)

Here, N(Xi
IM, X

j
IM) represents the number of errors in the data sequences associated with Xi

IM

and X j
IM, η represents the spectral efficiency and Nc represents the number of codewords in

component STBC. From Figure 4.9 we infer that Perror can be obtained by evaluating the

probability that Xi
IM is decoded as Xk

IM, 0 ≤ i, k ≤ Nc−1 and probability that Xk
IM is decoded

as X j
IM, k , j. Let p1 denote the probability of error at relay network and let p2 denote the

probability of error at receiver. It can be seen that the symbol estimation at each relay unit

RL is independent of the symbol estimations of other relay units and also independent with

respect to symbol estimation in different time slots. The r− independent symbol estimations

at the r− relay units, of a particular ith column vector X̂i
IM of X̂IM, can be considered as an
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estimation of r−length vector by the relay network. Since there is no interference between

symbols of a column and between different columns of NSTBC/NSTBC-SM codeword, the

conditional pdf of MMSE estimated X̂IM, is given by (Basar (2016)).

f (X̂IM |XIM) =
πmn

det(C)
exp{−(X̂IM − µ)HC−1(X̂IM − µ)} (4.36)

Where, µ = E(XIM) is the mean matrix of XIM and C = cov(XIM) is the covariance matrix

of XIM. The simple MMSE detector decides onto the most likely codeword by maximizing

the pdf f (X̂IM |XIM), as (Basar (2016))

X̂IM = arg max
XIM

f (X̂IM |XIM)

= arg max
XIM

∑r−1
i=0

∑n−1
j=0
|x̂i, j

IM−Qi, j x
i, j
IM |

2

Ci, j

(4.37)

After the estimation of n− columns vectors, following the analysis given in (Basar (2016)),

p1 can be given by

p1 = EH
(
P1

(
X̂IM → XIM |Hrelay

))
. (4.38)

Here EH(·) represents the expectation over Hrelay. P1
(
X̂IM → XIM |Hrelay

)
is obtained by

maximizing f (X̂IM |XIM). Following (26) of (Basar (2016)) we have

P1
(
XIM → EIM |Hrelay

)
= P1

(∑r−1
i=0

∑n−1
j=0
|x̂i, j

IM−Qi, j x
i, j
IM |

2−|x̂i, j
IM−Qi, je

i, j
IM |

2

Ci, j
> 0

)
(4.39)

Following complex constellation with i.i.d real and imaginary parts P1
(
XIM → EIM |Hrelay

)
given in 4.39 can be given by, (Basar (2016))

P1
(
XIM → EIM |Hrelay

)
= Q


√√√√m−1∑

i=0

e j−1∑
j=0

Vi, jδi, j

 (4.40)

With Vi, j =
Qi, j
2Ci, j

. Here, Ci, j is (i, j)th element of a covariance matrix C of X̂IM. Similarly

Qi, j ∈ Q = HH
relay(HrelayHH

relay + ρ−1I)HHH and δi, j = |xi, j
IM − ei, j

IM |
2. Since LOS MIMO
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channels are considered, Qi, j ≈ 1 and Ci, j ≈ ni(h
relay
i, j )−1((hrelay

i, j )−1)H . Using Craig’s formula

P1
(
X̂IM → XIM |Hrelay

)
< 1/π

π/2∫
0

exp


−

r−1∑
i=0

n−1∑
j=0

Zi, jδi, j

4N0sin2(θ)

 dθ (4.41)

Here Zi, j = 1/((h−1
i, j )Hh−1

i, j ), has exponential distribution, Since NT is equal to the number of

relay units, the Moment Generating Function of zi, j is given by Mz(t) = 1/(1 − t) 0 ≤ t ≤

NT − 1(Basar (2016) ). Averaging (4.41) over Hrelay, we have

p1 = EH
(
P1

(
X̂IM → XIM |Hrelay

))
<

1
π

∫ π/2

0

r∏
i=1

n∏
j=1

 sin2θ

sin2θ +
δi, j
4N0

 dθ (4.42)

Equation (4.42) has a closed form expression given in appendix 5A of (Simon and Alouini

(2005)). Similarly p2 is evaluated at the receiver. Since ML decoding is employed, following

(Simon and Alouini (2005)) the CPEP at receiver is given by

P2 (XIM → EIM |H) = Q
( √

(ρ/2) ‖H (XIM − EIM)‖
)

(4.43)

Following (Simon and Alouini (2005)), p2 is obtained by considering Craig’s formula for Q−

function and averaging over all possible channel realizations H, given by

p2 = EH (P2 (XIM → EIM |H)) <
1
π

∫ π/2

0

N∏
n=1

 sin2θ

sin2θ +
‖H(XIM−EIM)‖2

4N0,F

 dθ (4.44)

Closed form expression of (4.44) for various channel models are given in chapter 5 of (Simon

and Alouini (2005)). Following this, from 4.35 and Figure 4.9 ABER is then given by (4.45).

ABER =
1
Nc

Nc−1∑
i=0

Nc−1∑
j=0

N(Xi
IM, X

j
IM)

η
(1 − p1)

p2

Nc − 1
+

p1

Nc − 1
(1 − p2)(Nc − 2)

p1 p2

(Nc − 1)2

(4.45)
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Figure 4.10: BER performance NSTBC-SM for LOS MIMO channel (Rician-Rician fading)

Figure 4.11: BER performance of NSTBC-SM for Rician-Rayleigh fading
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Figure 4.12: BER performance of NSTBC-SM for Rician-Nakagami-m fading

4.4.6 Simulation Results

Performance of the proposed codes is evaluated in an NT × NR system with the parameters

specified in Table 4.11. These designs are based on full rank codes obtained from cyclic codes

over Fqr with q = 5, 7 and r = 2. Further, we choose k = |W | = 2 resulting in n = |W |r = 4.

Each subset W is chosen such that the (4, 2) component NSTBC is of rank r = 2. Since NT

is 4 in the second architecture, we have used 4 out of
(
4
2

)
= 6 combinations to obtain 4 × 4

NSTBC-SM codewords. For fair comparison we have considered codes that offer spectral

efficiency of approximately η = 3 bpcu. The spectral efficiency of NSTBC over GF(72) is

2.8 bpcu and NSTBC-SM over GF(52) is 3.32 bpcu. To understand the performance of the

proposed architectures in various environments that support spatial diversity, we have em-

ployed the empirical UAV channel described in (Khuwaja et al. (2018)). More specifically,

due to the presence of strong LOS component, we consider Rician fading between the trans-

mitting antennas and the corresponding relay unit. The channels between each relay unit and
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Table 4.11: Simulation Parameters

Parameter Value
NT 2,4
NR 2,4
q 5,7
r 2

Rician f actor K 5,10

receiver are modelled using Rician/Nakagami-m fading that accommodates Rayleigh fading

as a special case. For fair comparison in terms of spectral efficiencies, we have considered

Alamouti STBC with 8-PSK and Alamouti STBC-SM with QPSK that result in η = 3 bpcu.

Figure 4.10 shows the performance of the proposed scheme in case of Rician-Rician fading

(LOS MIMO) between transmitter and receiver. That is the channel between the transmitter

and relay units is considered as Rician fading with strong LOS and the channel between re-

lay network and receiver is considered to be Rician with strong and weak LOS component.

The Rician factor K is considered to be 5,10. Simulation results show that in the presence of

index the proposed NSTBC codes over F52 provide an asymptotic gain of around 1dB with

increased spectral efficiency of 0.32 bpcu when compared to Alamouti STBC. Further, the

proposed NSTBC-SM codes are observed to offer a gain of around 3 dB when compared to

corresponding NSTBC codes.

Figure 4.11 shows the performance of the proposed scheme in case of Rician-Rayleigh

fading (both correlated and uncorrelated). In the case of correlated channels, the correlation

is considered to be dense (inter antenna separation is 0.1λ). From the figure, it can be inferred

that in the case of uncorrelated fading environment, the asymptotic performance of the pro-

posed NSTBC-SM scheme is around 3dB greater than NSTBC codewords. Further, it can be

noticed that the performance of the NSTBC/NSTBC-SM codes in the presence of Rician fad-

ing with K=10 between the transmitter and Relay units is 10dB better than its performance in

Rician fading environment with K=3. In case of an environment characterized by the antenna

correlation, the performance of the NSTBC scheme is better than NSTBC-SM. This may be

due to an error in estimating antenna selection bits. Additionally, the proposed NSTBC is ob-
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served to perform slightly better (0.5db SNR gain) with improved spectral efficiency of about

0.32bpcu when compared with Alamouti STBC. Figure 4.12 shows the performance of the

proposed scheme in case of Rician-uncorrelated Nakagami-m fading channel. The results

follow a similar trend as in Fig 4.10. From simulations (Figure 4.10,4.11,4.12) it can be ob-

served that the BER of the proposed scheme reaches error floor at around 10−2 in the absence

of index key. Thus, proper decoding can be performed only if the receiver has knowledge of

the index key used at the transmitter. Thus, a layer of security can be added to the system

by following this approach. Further, it can be noticed that for the same spectral efficiency,

the proposed NSTBC/NSTBC-SM offers improved BER performance with improvement in

SNR by about 0.5 to 1dB when compared with Alamouti code. Further, for similar BER

performance, the NSTBC/NSTBC-SM offers increment in the η by about 0.3 to 0.5 bpcu.

4.4.6.1 Spectral efficiency

There are qkm possible m × e jcodewords in a particular component code C . If NT > m

then there are
(

NT
m

)
possible choices of antennas for spatial modulation. Thus, The spectral

efficiency can given by,

η =
log2

(
ncqkm

)
n


nc = 1 NSTBC

nc =
(

NT
m

)
NSTBC-SM

 (4.46)

Table 4.12 below gives the values of η that can achieved by the proposed codes and the

traditional OSTBC. The codes considered are over Fqm with m = 2, 4 and q = 5, 7, 13, 17. All

codes have rate R = 1/m. In table 4.12M− represents the modulation order ofM− PS K

Table 4.12: Spectral efficiencies of cyclic codes (l = 1−quasi-cyclic codes) in m×m
MIMO systems

NSTBC OSTBC NSTBC OSTBC
q m (e j, k) η M η q m (e j, k) η M η

5 2 (4,2) 2.32 4 2 13 2 (4,2) 3.70 16 4
5 4 (8,2) 2.32 4 2 13 4 (8,2) 3.70 16 4
7 2 (4,2) 2.8 4 2 17 2 (4,2) 4.08 16 4
7 4 (8,2) 2.8 4 2 17 4 (8,2) 4.08 16 4

orM− QAM.
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Table 4.13: Spectral efficiencies l−quasi-cyclic codes in m × m MIMO systems with
l = 2, 3

l = 2 l = 3 l = 2 l = 3
q m (e j, k) ηNS T BC ηNS T BC q m (e j, k) ηNS T BC ηNS T BC

5 2 (4,2) 1.85 1.58 13 2 (4,2) 3.20 2.91
5 4 (8,2) 2.07 1.92 13 4 (8,2) 3.45 3.30
7 2 (4,2) 2.32 2.04 17 2 (4,2) 3.58 3.30
7 4 (8,2) 2.55 2.41 17 4 (8,2) 3.8 3.7

4.5 Rate Diversity trade-off

In this section, we will consider the Rate-Diversity trade-off for STBC/SFBC codes derived

from quasi-cyclic (cyclic) codes. We will show that these codes achieve the upper bound

derived by Lu and Kumar (2003) with equality. Consider m × e j block code C employed

in a MIMO system with NT = m transmit antennas. Let the channel be quasi-static. Since

m = NT then e j ≥ NT . Let ζ denote the signal alphabet (constellation) and X ⊂ (ζ)NT e j be a

Space-time block code. Each codeword X ∈ X is an m × e j matrix. Following, let us define

the rate R of the m × e j STBC X as,

R =
1
e j

log|ζ ||X | (4.47)

Under this definition, a rate 1 code corresponds to a Space-Time Block Code of size |ζ |e j ,

i.e a code which transmits on an average one symbol from the constellation |ζ | per time slot.

For a given SNR ρ and a constant c the proposed STBC X achieves a diversity gain of Nrν

if the power series expansion of the maximum PEP is expressed as

PEP = cρ−Nrν + O(ρ−Nrν) (4.48)

The quantity ν is termed as the transmit diversity gain (Tarokh et al. (1998)). It has been

shown (Tarokh et al. (1998)), that from the point of view of the PEP, an STBC X achieves a

diversity gain ν if and only if for every X1 , X2 ∈ X , the difference matrix (X1 − X2) has

rank at least ν over the field of complex numbers. In (Lu et al. (2003)), it has been shown
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that the transmit diversity gain equals ν even when one replaces the pairwise error probability

(PEP) criterion with either the codeword error probability or the symbol error probability.

For a fixed signal constellation X , it has been shown in (Lu and Kumar (2003)) that there is

a trade- off between the rate R and the transmit diversity gain ν of a STBC code X . Given

the transmit diversity gain ν, the rate is upper bounded by,

R ≤ NT − ν + 1. (4.49)

Lu and Kumar (2003) have given systematic code construction techniques for binary phase-

shift keying (BPSK) and quaternary phase-shift keying (QPSK) signal constellations which

are characterized by rate R which achieves the upper bound R ≤ NT − ν+ 1 for every ν ≤ NT

and for any NT and e j with NT ≤ e j ≤ ∞. The following observations follow from an

inspection of 4.49.

• The trade-off between rate R and maximum transmit diversity gain ν is independent

of the number of receive antennas NR.

• For NT ≤ e j, the trade-off is independent of e j.

• Let d ∗ (R) be the maximum achievable diversity gain given rate R. As the diversity

gain ν must be an integer, we have from (6.3) that

d ∗ (R) ≤ NRbNT −R + 1c (4.50)

where b·c is the floor function. This is illustrated in Figure (7.1) for NT = 4 and NR = 1.

In the following section, we will show that full-rank STBC codes derived from quasi-cyclic

codes achieve the upper bound R ≤ NT−ν+1 for given NT and e j. If the number of codewords

is increased by relaxing the full-rank requirement, the upper bound R ≤ NT − ν + 1 can still

be achieved under certain conditions.

Consider C , a length n cyclic code over Fqm where q = 2 or q is a prime of the form

4k + 1 or 6k + 1 for some constant k ≥ 1. From chapter 2, we know that n length full-
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rank quasi-cyclic codes over Fqm having cardinality qm can be obtained by having only one

free transform component, C j with j ∈ [ j] of cardinality |[ j]| = m and constraining all other

transform domain components to zero. The non zero codewords of the code Cp can be viewed

as m× e j matrices over Fq having Fq - rank equal to m. Further, we know that in any non zero

codeword c = {c0, c1, · · · , cm−1, cm, · · · , ce j−1} ∈ C with e j > m, then Cp is characterized by

the diversity gain ν = m NT = m and e j ≥ m. The symbol rate R is given by

R =
1
e j

logq(qe j) = 1 (4.51)

Further, NT − ν + 1 = m −m + 1 = 1. Hence R = 1 = NT − ν + 1 and the rate-diversity trade

off is met with an equality.

4.6 Conclusion

In this chapter, we have provided two applications which facilitate the use of proposed full

rank codes. In applications 1 and 2, we have proposed the use of full rank codes as STBC for

MIMO Systems and SFBCs for MIMO-OFDM-IM systems. The full rank codes that are de-

rived from cyclic codes have been employed to synthesize space-frequency block codes that

are non-orthogonal in nature (NSFBCs). The performance of MIMO-OFDM-IM system has

been evaluated on a 10-path frequency selective MIMO channel. The results obtained through

simulation says that the proposed RD-NSFBC-IM codes over F54 provide considerable im-

provement in spectral efficiency of about 1.3 b/s/Hz when compared to MIMO-OFDM-IM

with BPSK, in the case of 4×4 MIMO scenario. Moreover, the BER performance is observed

to be similar. For a 2 × 2 system, the proposed FR-NSFBC-IM codes over F52 provide an

improvement in spectral efficiency of about 0.9 b/s/Hz when compared to MIMO-OFDM-IM

system, with Rate-1 Alamouti code and QPSK. The BER performance is observed to be sim-

ilar in this case as well. Additionally, in case of a 2 × 2 MIMO system, the proposed codes

provide an improvement in spectral efficiency by 0.6 b/s/Hz with SNR gain of 1dB, when

compared to QOSFBC based design.
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In application 3, we have proposed two architectures containing cooperative relay net-

works that facilitate the use of full rank codes as Non-orthogonal STBCs (NSTBC) in LOS

MIMO based communications. We have constructed an index key that is used to secure the

communication between the transmitter and legitimate receiver. Simulation results show that

the BER of the proposed codes reaches error floor at around 10−1 in the absence of index

key. Further, simulation results indicate that in the presence of correlated fading, NSTBC

codewords are observed to offer better performance as compared to NSTBC-SM codewords.

An analytical upper bound on the average BER has been derived and presented. Designs de-

rived from suitably truncated one-information symbol and two-information symbol e j−length

cyclic codes over Fqm meet the rate-diversity trade-off with equality. In this chapter we have

shown that the STBCs that are obtained from cyclic codes designed with transform compo-

nents from different q− cyclotomic cosets of size m, have rate diversity trade-off with equal-

ity. However, the rate decreases if STBCs are obtained from cyclic codes with transform

component indices chosen from same q− cyclotomic coset.
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Chapter 5

Rank codes (RC) derived from
(n, k)-Cyclic codes for correcting
crisscross errors

In this chapter we have discussed the application of the rank codes derived from cyclic

codes to protect the integrity of information when transferred over channels inducing criss-

cross errors. We have considered two main applications: 1) Multi-carrier power line commu-

nication. 2) Multilevel storage devices. In this chapter we consider (m, 1) rank codes obtained

from GFFT description of cyclic codes.

5.1 Application 1: Power Line Communication

In this section, we consider multicarrier powerline communication system (mPLC) employ-

ing Index modulation (mPLC-IM). Power line communication is gaining importance in ap-

plications involving communication between appliances connected to power lines. In the

case of mPLC, information is generally communicated in 2-D arrays, where symbols along

a given row are modulated onto one subcarrier, and information symbols in different rows

are transmitted using different subcarriers. Information is corrupted due to the presence of

Narrowband noise, Impulse noise, Background noise and Frequency selective nature of the

channel (Chee et al. (2013)). The effect of the channel on information transmission is mod-

elled using various methods which are classified into two approaches: top-down approach and

bottom-up approach (Zhu et al. (2013)). Many widely used channel models employ the top-
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down approach. The frequency selective nature of the power line channel has been mimicked

using the well-known characterization proposed by Zimmermann and Dostert (2002). The

Background noise is modelled using the Nakagami-m model (Mathur et al. (2014)). Most

of the work in literature uses BPSK modulation, where symbols belong to the set {1,−1}

(Mathur and Bhatnagar (2014); Mathur et al. (2014)). It has been shown that the PLC chan-

nel impairments can result in two types of errors: Random errors (due to background noise)

and Crisscross errors (due to narrowband noise or impulse noise).

In multicarrier Power Line Communication (mPLC) with dominant Narrowband noise

and Impulse noise, crisscross errors are predominantly observed. In case of dominant random

noise or background noise, random errors are observed. Random errors can be corrected by

using suitable Hamming metric based random error correcting codes. Burst errors can be

corrected using the Reed Solomon codes or product codes. Similarly Crisscross errors can be

corrected by using product codes, employing a complex interleaver. Alternately, crisscross

errors can be corrected using rank codes (RC) (Gabidulin (1985)-Roth (1991)).

In this chapter, we have synthesized (n, k) cyclic codes with good rank distance properties

for correcting criss-cross errors in an mPLC system with an added Index Modulation (IM)

arrangement to yield information integrity as well as a degree of data security. We have

employed the proposed rank-metric based decoding strategy for correcting criss-cross errors.

The GFFT approach provides an additional degree of freedom, in the choice of free transform

component indices. This has been used to design an index key based scheme that can enhance

the physical layer security of a mPLC system . Thus, this arrangement is capable of providing

an additional layer of security over and above its primary duty of preserving information

integrity.

In Section 5.1.1 we revisit the details of Power Line Communication using Orthogonal

Frequency Division Multiplexing (OFDM) and Low Rank Parity Check Codes (LRPC). In

Section 5.1.2, we present the details of the proposed PLC system employing OFDM, Index

Modulation and rank-metric based cyclic codes. The decoding strategy for correcting criss-

cross errors that was presented in chapter 2, has been employed. In Section 5.1.3, we discuss

the performance of the proposed scheme. We consider a 4-path frequency selective PLC
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channel. For fair comparison we have considered RC codes over F2m with m = 4, 6, 8. In

Section 5.2 we have synthesized few (n, k) cyclic codes that can be used in storage devices

like LTO and TLC Flash drives. The chapter is concluded in Section 5.2.3 by comparing the

performance of RC based schemes with conventional schemes (Chee et al. (2013); Kabore

et al. (2015); Yazbek et al. (2017)) and quantifying the improvements obtained.

5.1.1 Coded PLC system with OFDM revisited

Figure 5.1: Block diagram of OFDM based PLC (Zhang and Cheng (2004))

Figure 5.1 shows the block diagram of OFDM based PLC employing Low-Rank Parity

Check codes (Zhang and Cheng (2004)). The input data is encoded using Rate 1/2 LRPC

encoder over F2. LRPC coding ensures the mitigation of crisscross errors. The LRPC coded

output is encoded using convolutional coder, to mitigate the random errors due to background

noise. To match the rate of LRPC encoder, the convolutional encoder of rate 1/2 is chosen.

The encoded symbols, which are over base field F2, are mapped onto symbols in BPSK

constellation and then passed onto 256 point IFFT, for OFDM modulation. The OFDM

modulated data is then sent through the low voltage PLC channel. At the receiver, a soft

decision Viterbi decoder is used to overcome the random errors due to background noise and

LRPC decoder mitigates the effect of rank errors induced by narrowband noise and Impulse

noise. We now discuss the details of the proposed secure multicarrier PLC system.
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5.1.2 Secure Multicarrier PLC system with Index Modulation

5.1.2.1 Construction of Index key

In Section 4.4.2.1 we have seen that using this additional degree of freedom (freedom to

chose the transform component indices) the transmitter and receiver can jointly establish an

arrangement to follow through the set of component codes in a particular order. This ar-

rangement was called the index key, given by {k0,k1, · · · ,kG−1}. Index key is used in this

application to secure the communication between the legitimate user and smart grid that uses

power line channel.
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Figure 5.2: Proposed Secure PLC with index modulation
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The block diagram of the proposed secure multicarrier PLC system is shown in Figure

5.2. Initially, the incoming bG bit stream is split into G parallel streams of length b (serial

to parallel conversion). At each RC Encoder (RCE), bI = bm · log2(q)c bits out of b bits are

considered to obtain codeword matrix. The remaining bs = blog2
(

N
m

)
c bits out of b bits are

considered for subcarrier selection. The bI information bits at the encoder are encoded into

m × m RC codeword by using the appropriate value of index key element (ki). Each encoder

branch is assigned with N = NF/G number of subcarriers in a predetermined order. Index

modulator (IM) now considers the bs selection bits to select m subcarriers out of available

N subcarriers, for transmitting symbols along each column of RC codeword. To maintain

constant minimum weight (CW) and improve the performance, the m carriers chosen will be

the same for the entire m × e j RC codeword. This results in (N × e j) Index Modulated RC

(Im-RC) codeword. An example representation of IM-RC can be given by.

C =



c0,0 c0,1 · · · c0,m−1

0 0 · · · 0

c1,0 c1,1 · · · c1,m−1

...
...

. . .
...

0 0 · · · 0

cN−2,0 cN−2,1 · · · cN−2,m−1

cN−1,0 cN−1,1 · · · cN−1,m−1



(5.1)

The N × m Im-RC codeword is then fed to the convolutional encoder. The convolutional

encoder (CE) considers each row of the index modulated RC and encodes the data along
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each row. The convolutionally encoded Im-RC is as given as

CIM =



c0,0 c0,1 · · · c0,m−1 · · · c0,n−1

0 0 · · · 0 · · · 0

c1,0 c1,1 · · · c1,m−1 · · · c1,n−1

...
...

. . .
...

. . .
...

0 0 · · · 0 · · · 0

cN−2,0 cN−2,1 · · · cN−2,m−1 · · · cN−2,n−1

cN−1,0 cN−1,1 · · · cN−1,m−1 · · · cN−1,n−1



(5.2)

Traditionally the input to the OFDM modulator is a sequence of symbols obtained from a

two-dimensional complex number plane. However, the elements of convolutionally encoded

Im-RC are over Fq with q taking integer values. Hence, there is a need for one-to-one and

onto-map to obtain a codeword with symbols over the complex plane. In literature, two well-

known rank preserving maps have been defined: Gaussian Integer map and Eisenstein-Jacobi

Integer map. The Convolutionally coded Im-RC obtained after using rank-preserving maps

is given as,

XIM =



x0,0 x0,1 · · · x0,m−1 · · · x0,n−1

0 0 · · · 0 · · · 0

x1,0 x1,1 · · · x1,m−1 · · · x1,n−1

...
...

. . .
...

. . .
...

0 0 · · · 0 · · · 0

xN−2,0 xN−2,1 · · · xN−2,m−1 · · · xN−2,n−1

xN−1,0 xN−1,1 · · · xN−1,m−1 · · · xN−1,n−1



(5.3)

Where xi, j = ζ(ci, j); 0 ≤ i ≤ m − 1, 0 ≤ j ≤ m − 1, and

ζ is either Gaussian Integer map of Eisenstein-Integer map.

Each branch of the transmitter results in a corresponding XIM. Since there are G branches,

G− such XIM matrices are considered column by column and interleaved. The interleaver

(Π) stacks corresponding rows of G codewords one below the other (in row dimension).

Each column of the interleaved codeword S , is considered as one frame. Since there are
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n columns, n interleaved frames are obtained. The NF point IFFT block considers each

interleaved frames and then outputs the OFDM frame containing complex symbols. The

OFDM-IM block is represented as S . In case of simple stacking based interleaver, S is given

by

S = [XIM
0,XIM

1, · · · ,XIM
G−1]T (5.4)

Where Xi
IM is as given in (5.3). Since there are G IM-RC codewords, the dimension of S is

NG × e j = NF × e j. A cyclic prefix of suitable length is padded at the end of each N length

OFDM frame (column of S ), and then transmitted through PLC channel.

Rate of codes

Following (Chee et al. (2013)), the code rate is defined as

R = RIM−RC · Rconv =
G

(
log2

(
qkm

)
+ log2

(
N
m

))
e j (NF + NCP)

Rconv

Here RIM−RC represents overall rate of the RC and IM block together.

Rconv represents the rate of convolutional encoder.

5.1.2.2 Power Line Channel

The multipath power line channel is shown to be frequency selective with a complex fre-

quency response given by Zimmermann and Dostert (2002),Katayama et al. (2006).

H( f ) =

N∑
i=1

gie−(α0+α1 f κ)Di .e−2π f (Di/Vi) (5.5)

Here, gi is the weighting parameter. α0, α1 are the attenuation parameters. Di is the length of

ith path. Vi is the velocity of the wave propagating through ith path. κ is the exponent. Besides

frequency selective fading (η f ), noise in the PLC channel has three main components:

• Background noise (Nb): The background noise is assumed to be additive. The effect

of background noise is most commonly characterized by Nakagami-m distribution

(Mathur and Bhatnagar (2014)Mathur et al. (2014)).
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• Narrowband noise (Nnb): In case of PLC narrowband interference is caused by ingress

of signals from broadcast stations transmitting in Medium wave (MW), Short wave

(SW) and Very High Frequency (VHF) bands. Various models have been proposed

in literature to model the effect of narrowband noise. In this work, we use the model

described in (Shongwe and Vinck (2013)) with narrow band interference probability

p.

• Impulsive noise (Ni)- Impulse noise occurs mainly due to switching or surge in volt-

age. Based on the nature of the occurrence, the impulse noise can be periodic and

asynchronous to mains, or periodic and synchronous to mains, or Asynchronous to

mains. The most widely used channel description is Middleton class A model, with a

pdf given by, Di Bert et al. (2011),Ndo et al. (2013).

pη(v) =

∞∑
k=0

e−AAk

k!
1√

2πσ2
k

exp(−v2/2σ2
k) (5.6)

Here, A is impulse index.

σ2
k =

(
1 + 1

Γ

) (
k/A+Γ
1+Γ

)
σ2

b

σ2
b is the background noise variance.

Γ is the Background to impulse noise ratio.

In this work, the value of impulse index A is chosen to be 0.3 and the value of back-

ground to impulse noise ratio Γ as 0.1.

The effect of errors on 2D codeword matrices is shown below:

1. Errors due to the presence of dominant Background noise (Nb). These errors are

termed as Random errors. The baseband 2D error matrix pertaining to background

noise is as shown

Nb →


e 0 0 0 0
0 0 0 e e
0 0 0 0 0
0 e 0 0 0


Figure 5.3: Error Patterns due to various noises in PLC (Chee et al. (2013))
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2. Errors due to presence of dominant Narrowband noise (Nnb) or Impulse noise (Ni).

These errors are classified as Burst errors, and Crisscross errors. The baseband 2D

error matrix pertaining to narrowband noise and impulse noise is as shown

Nnb(Nn f )→


0 0 0 0 0
e e e e e
0 0 0 0 0
0 0 0 0 0

 Ni →


0 0 0 0 e
0 0 0 0 e
0 0 0 0 e
0 0 0 0 e


Figure 5.4: Error Patterns due to narrow band noise, impulse noise and frequency
selective nature of PLC channel (Chee et al. (2013))

As seen in Figure 5.4, Impulse noise (Ni) disturbs all frequencies at a particular instant of

time resulting in column errors, and Narrowband noise (Nnb) disturbs a specific frequency or

a set of frequencies resulting in row errors.

5.1.2.3 Receiver

At the receiver the received block matrix corresponding to OFDM-IM block S is given by:

YS = HS + N (5.7)

Where N is the additive noise comprising narrowband noise Nnb, Background noise Nb and

Impulse noise Ni. The effect and distribution of various noise components are as discussed in

section 1. Since FFT/IFFT is a linear process, following central limit theorem and the analysis

given in (Meng et al. (2005)), the Noise matrix N = FFT (N) will have entries following

Gaussian distribution with mean µ = µx and variance σ2 = σ/sqrt(NF). After the removal of

CP and performing NF point FFT, the deinterleaver rearranges the interleaved convolutionally

encoded IM-RC codewords, before passing onto the Index demodulator block. The output

of FFT block is a NF × n matrix corresponding to transmitted OFDM block S . The de-

interleaver splits the OFDM block into G− (N × n) X̂IMs and then passes onto the bank of

convolutional decoders. The convolutional decoder considers one row of the received Im-RC

codeword and finds an estimate of the transmitted Im-RC codeword. This is then fed to Index

Demodulator. The index demodulator considers N × e j matrix and uses majority logic to

estimate the carrier selection bits assigned to a particular RC. The resulting m × e j matrix
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is then fed to the proposed rank metric decoder. Following (Chee et al. (2013)) ,the m × e j

matrix at the input of proposed decoder, corresponding to m j × e j RC, can be modelled using

the following equation:

Y = X + EN (5.8)

With EN representing the m × e j error matrix reflecting the error patterns shown in Fig 5.3.

and Figure 5.4, caused due to ηn f ,ηnb,ηb and frequency selective nature of PLC. Using Inverse

Rank-preserving map (5.8) can be equivalently represented as

ζ−1 (Y) , R = C + E (5.9)

The proposed rank metric decoder now refers to the index key value and estimates the trans-

mitted RC and its corresponding bs length binary data using the proposed decoding. At this

point, it can be noted that the binary data at the output of the decoder will be a correct estimate

of the corresponding binary data used at the transmitter, if and only if the index key value

used at both encoder and corresponding decoder are same. The rank metric decoder uses the

decoding method proposed in chapter 2 to find an estimate of the transmitted information.

5.1.3 Simulation Results

We have considered 4-path PLC channel with the parameters given in Table 5.1.

Table 5.1: Parameters of 4-path model

Attenuation Parameters
k=1 α0=0 α1=7.8 × 10−8 m/s

Path Parameters
i gi Di/m i gi Di/m
1 0.64 200 3 -0.15 244.8
2 0.38 222.4 4 0.05 267.5

In the presence of dominant narrowband noise and Impulse noise, the errors are consid-

ered to follow crisscross patterns (Chee et al. (2013); Yazbek et al. (2017)) as shown in Figure
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5.4. Plass et al. (2008) proposed the use of rank-metric codes for applications involving nar-

rowband noise, impulse noise and frequency selective fading. Chee et al. (2013) proposed

the use of matrix codes for correcting crisscross errors in multitone power line communica-

tion. To have a fair comparison with the existing results (Chee et al. (2013); Yazbek et al.

(2017)), we have considered the simulation of the Proposed system employing only the pro-

posed rank-metric cyclic codes and decoding, with and without index modulation. Further,

we have considered Multitone Frequency Shift Keying (FSK) modulation instead of OFDM.

The proposed codes are compared with Constant Column Weight codes proposed by Chee

et al. (2013)

For simulations we have considered RC(n, k) over F24 and F28 , a 4-path PLC model with

channel coefficients given in Table 5.1. The number of available data sub-carriers NF =512.

Table 5.2 gives rate comparisons of the proposed codes with the existing CCW codes. Fig-

ure 5.5 shows the BER performance of the proposed RC(4,1)16, RC(8,3)256 codes. From

figure we infer that RC(4,1)16 gives approx. 25% improvement in SER as compared to

CW(13, 6, 5)2 ◦ RS [15, 14, 2]16 (Chee et al. (2013)). Further, the proposed RC(8, 3) codes

provide an improvement by about 30%, as compared to CW(9, 4, 4)2 ◦RS [15, 14, 2]16 codes.

Table 5.2. gives the comparison of rates of codes used in Multitone FSK (Chee et al. (2013)).

Table 5.2: Comparison of Rates of RC and CCW codes

Code n N f R

CW(13, 6, 5)2 ◦ RS[15, 14, 2]16 15 13 log|C|/nlog
(

N f
w

)
= 0.36

Im-RC(4, 1)24 4 8 0.31
CW(9, 4, 4)2 ◦ RS[15, 14, 2]16 15 9 log|C|/nlog

(
N f
w

)
= 0.53

RC(6, 3)26 6 6 0.50
RC(8, 3)28 8 8 ≈ 0.40

Figure 5.6 shows the performance of the proposed scheme in the presence of dominant back-

ground, noise narrowband with probability p affecting two rows and impulse noise with prob-

ability p = 0.05. At a BER of 10−4, in the presence of narrowband noise affecting two rows,
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16
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RC(8,3)
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°RS[15,14,2]

16
(R=0.361)

CW(9,4,4)
2
°RS[15,14,2]

16
(R=0.535)

approx. 25 % improvement

approx. 30 % improvement

Figure 5.5: SER plot of RC(R=0.4,0.5) and CCW(R =0.361,0.535) codes

Figure 5.6: BER plot of RC-Conv. codes and LRPC/Gabidulin-Conv. codes
.

the proposed RC(8, 3)28 code with rate 1/2 convolutional code provides a gain of approx. 3 dB

as compared to the case of Rate 2/3 convolutional code. Further, in the case of rate 1/3 con-
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volutional code along with the proposed RC(8, 4)28 , an additional gain of 0.8 dB is achieved,

when compared to RC(8, 3) codes. Additionally, it can be seen that in the absence of the ex-

act knowledge of the index key at the receiver, the performance in the presence of rank three

errors reaches the error floor at a BER of approximately 1 × 10−2. When compared with the

existing LRPC/Gabidulin based design with rate 1/2 convolutional code, the performance of

the proposed scheme is slightly better. The use of the index key provides and additional layer

of security. In terms of the complexity of encoding and decoding, the codes proposed by us

enjoy a significant advantage over the codes proposed by Kabore et al. (2015); Yazbek et al.

(2017). The computations required by the constructions in (Kabore et al. (2015); Yazbek

et al. (2017)) are over the Galois field F246 whereas our constructions are based on computa-

tions over the Galois field F28 . This brings about a significant reduction in the complexity of

the encoding and decoding operations. Thus, these codes provide equivalent (slightly better)

performance with significantly reduced computational complexity.

Figure 5.7: BER plot of RC-Conv. codes and LRPC/Gabidulin-Conv. codes for
various values of Nnb

.

Figure 5.7 shows the BER performance of the proposed scheme in case of dominant
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background noise, and background noise along with narrowband noise (Nnb) affecting one,

two and three rows with impulse noise characterized by probability p = 0.05. It can be

observed that the performance offered by the proposed scheme is similar in both the cases

(with dominant background noise only and with background, impulse noise and narrowband

noise). However, the proposed codes require knowledge of index key at the receiver, as seen

from Figure 5.7.

In Figure 5.8 we have shown the performance of the proposed system in the presence of dom-
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SNR
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Sphere Decoder (r=1)

Sphere Decoder (r=3)

Sphere Decoder (r=5)

Sphere Decoder (r=7)

Sphere Decoder (r=9)

Sphere Decoder (r=10)

ML decoder

Increasing radius

Figure 5.8: BER performance of proposed RC-codes in the presence of dominant
background noise

inant background noise and in the absence of convolutional encoder/decoder. The decoding

is single stage ML or Sphere decoding, for case of background noise, dominant narrowband

noise affecting three rows, and impulse noise with probability p = 0.05. The BER curve for

sphere radius r = 10 is similar to that of ML decoding. It can be observed that the perfor-

mance of a single stage ML/Sphere decoder is inferior as compared to two-stage decoding,
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because of the presence of rank errors and background errors. In the presence of errors with

rank < bm − 1/2c, but spread across all rows of the transmitted codeword, the proposed rank

decoder can still decode without any error, however, the ML decoder can result in the wrong

estimate as the decision metric is Euclidean distance and not rank distance, and the search

space all possible Im-RC codewords, as evident from Figure5.8.

5.2 Application 2: Tape drives and MLC storage

In the introduction we have discussed that crisscross error can arise in tape drives and multi

level cell flash drives. The standards defined for storage devices suggest the use of product

code with Reed Solomon (RS) code as inner code and LDPC/RS code as outer code. We

propose the use of RS codes for correcting burst errors (column errors) and the use of rank

metric codes for correcting rank errors (especially row errors). The outer code can be a rank

metric code and the inner code can be a RS code.

5.2.1 Linear Tape Open

Since cyclic codes like BCH codes and Reed-Solomon codes or product codes based on

BCH/RS codes are most widely used in memory devices, in this section we synthesize some

of the rank metric codes over Fqm .

The data layout of LTO drive is give as:

Number of Tracks per Tape-2176

Number of Data bands-4

Number of Servo Bands-5

Number of Write Heads/Data band-16

Number of wraps per/Data band-32.

Magnetic tape storage products are designed to ensure a Raw Bit Error Rate (RBER)

of 10−17 to 10−20. However, when aerial density increase the RBER tends to increase due

to inter-bit interference. Linear block codes such as RS codes and LDPC codes are usually

employed as inner and outer codes of product codes, to correct random and burst errors due
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Figure 5.9: Data layout of tape drive LTO (Quantum-Corporation (2009))

to scratches or damage in certain part of the the tape. However, when viewed from the criss-

cross perspective, it is evident that a code with good rank distance properties will possess the

ability to correct criss-cross errors which are the most common types of errors encountered

in tape drives. The tape head has 8, 16, or 32 data read/write head elements and 2 servo

read elements. Thus codes over F28 are best suitable for tape devices. Since Reed Solomon

codes (constructed over F28) are the codes used in standards defined for storage devices, we

synthesize rank-metric cyclic codes over F28 . Below we synthesize rank − d codes over F28 .

Since n = 28 − 1, the q−cyclotomic cosets modulo 255 are listed in Table 5.3 below Table

5.3 lists all possible 2− cyclotomic cosets modulo 255. We can see that there are 30 cosets

of size 8. Following theorem 4 we see that rank−8 cyclic codes can be obtained by choosing

k = 30 resulting in (255, 30). These can be punctured to (30, 30 ∗ 8) = (240, 30) codes.

Similarly (240, 60) rank−7 codes, (240, 90) rank −6 codes and (240, 120) rank 5 codes can

be obtained. It can observed that (240, 30) and (240, 60) have rank error correcting capability

of b d−1
2 c = 3 and burst error correcting capability of 155, 90 respectively. Similarly the

rank error correcting capability of (240, 90) and (240, 120) is 2 and the burst error correction

capability of 75, 60 respectively. The most commonly used RS code is (255, 233) with burst

error correction capability of 10 symbols. The maximum value of k that can be obtained for
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Table 5.3: List of 2− cyclotomic cosets modulo 255

[0],
[1, 2, 4, 8, 16, 32, 64, 128], [3, 6, 12, 24, 48, 96, 129, 192],

[5, 10, 20, 40, 65, 80, 130, 160], [7, 14, 28, 56, 112, 131, 193, 224],
[9, 18, 33, 36, 66, 72, 132, 144], [11, 22, 44, 88, 97, 133, 176, 194],

[13, 26, 52, 67, 104, 134, 161, 208], [15, 30, 60, 120, 135, 195, 225, 240],
[17, 34, 68, 136], [19, 38, 49, 76, 98, 137, 152, 196],

[21, 42, 69, 81, 84, 138, 162, 168], [23, 46, 92, 113, 139, 184, 197, 226],
[25, 35, 50, 70, 100, 140, 145, 200], [27, 54, 99, 108, 141, 177, 198, 216],
[29, 58, 71, 116, 142, 163, 209, 232], [31, 62, 124, 143, 199, 227, 241, 248],
[37, 41, 73, 74, 82, 146, 148, 164], [39, 57, 78, 114, 147, 156, 201, 228],

[43, 86, 89, 101, 149, 172, 178, 202], [45, 75, 90, 105, 150, 165, 180, 210],
[47, 94, 121, 151, 188, 203, 229, 242], [51, 102, 153, 204],
[53, 77, 83, 106, 154, 166, 169, 212], [55, 110, 115, 155, 185, 205, 220, 230],

[59, 103, 118, 157, 179, 206, 217, 236], [61, 79, 122, 158, 167, 211, 233, 244],
[63, 126, 159, 207, 231, 243, 249, 252], [85, 170],
[87, 93, 117, 171, 174, 186, 213, 234], [91, 107, 109, 173, 181, 182, 214, 218],

[95, 125, 175, 190, 215, 235, 245, 250], [111, 123, 183, 189, 219, 222, 237, 246],
[119, 187, 221, 238], [127, 191, 223, 239, 247, 251, 253, 254]

designing rank 1 codes is k = 186. Thus the rank 1 error correcting code will be a (255, 186)

cyclic code with code (186/255) = 0.7

5.2.2 NAND FLASH

Crisscross errors can also be found in TLC NAND flash memories. In TLC memories each

cell (FET) can hold 3 bits of data (equivalent to 8 voltage levels). The data layout of NAND

FLASH is as given in Figure 5.10.

Referring to Figure 1.2,1.3 we see that retention errors can lead to crisscross error patterns.

Since the current generation NAND flash drives are MLC (4 voltage levels) and TLC (8

voltage levels), each cell can hold 2 and 3 bits respectively. Also referring to Figure 1.3

we see that errors are mostly confined to upper row (LSB) resulting in rank-1 errors. Thus

rank−3 codes over F23 can be synthesized for NAND FLash memories. The details of which

can be found below: The 2− cyclotomic cosets modulo 7 are given by,
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Figure 5.10: NAND Flash memory organization Micron (2006)

[0] = {0}, [1] = {1, 2, 4}, [3] = {3, 5, 6}

As we can see that there are two 2− cyclotomic cosets of size m = 3. Various possible

rank 3 codes that can correct rank-1 crisscross errors are given in the Table 5.4 below. These

Table 5.4: List of number of rank-3 codes

(n, k) Number of possible codes
(3, 1) 6
(6, 2) 9

are rate 1/3 rank−1 error correcting codes that can be used as inner code along with burst

error correcting RS outer codes. However since the MLC flash cell can hold 4 voltage levels.

We can define a quantization table to map 4 voltage levels to 3 integer values and then con-

struct codes over F3m . The mapping Table is as given below:

Table 5.5: Encoding/Mapping table from binary toZ3

bits 0 01 11
value 0 1 2
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Table 5.6: List of 3− cyclotomic cosets mod 242 in F35

[0], [1, 3, 9, 27, 81], [2, 6, 18, 54, 162],
[4, 12, 36, 82, 108], [5, 15, 45, 135, 163], [7, 21, 63, 83, 189],

[8, 24, 72, 164, 216], [10, 28, 30, 84, 90], [11, 33, 55, 99, 165],
[13, 39, 85, 109, 117], [14, 42, 126, 136, 166], [16, 48, 86, 144, 190],
[17, 51, 153, 167, 217], [19, 29, 57, 87, 171], [20, 56, 60, 168, 180],
[22, 66, 88, 110, 198], [23, 69, 137, 169, 207], [25, 75, 89, 191, 225],
[26, 78, 170, 218, 234], [31, 37, 91, 93, 111], [32, 46, 96, 138, 172],
[34, 64, 92, 102, 192], [35, 73, 105, 173, 219], [38, 58, 100, 114, 174],
[40, 94, 112, 118, 120], [41, 123, 127, 139, 175], [43, 95, 129, 145, 193],

[44, 132, 154, 176, 220], [47, 59, 141, 177, 181], [49, 97, 113, 147, 199],
[50, 140, 150, 178, 208], [52, 98, 156, 194, 226], [53, 159, 179, 221, 235],
[61, 65, 101, 183, 195], [62, 74, 182, 186, 222], [67, 103, 115, 119, 201],

[68, 128, 142, 184, 204], [70, 104, 146, 196, 210], [71, 155, 185, 213, 223],
[76, 106, 116, 200, 228], [77, 143, 187, 209, 231], [79, 107, 197, 227, 237],
[80, 188, 224, 236, 240], [121], [122, 124, 130, 148, 202],

[125, 133, 157, 203, 229], [131, 149, 151, 205, 211], [134, 160, 206, 230, 238],
[152, 158, 212, 214, 232], [161, 215, 233, 239, 241]

The 3− cyclotomic cosets mod 242 can be given in Table 5.6. As can be seen from the

table there are 48 3− cyclotomic cosets from which (5, 3) rank−3 cyclic codes can be con-

structed. The rate of these codes is 3/5 = 0.6.
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From the analysis given in Chapter 2, we can observe that the rank error correction ca-

pability of the proposed rank codes depend on the number of rows and not on the number of

columns. Thus, for the same rank error correction capability (m, k) codes are preferred than

(e j, k) codes. These codes are analogous to Gabidulin codes.

5.2.3 Conclusion

In this chapter, we have tested the performance of the proposed codes in applications that

induce crisscross errors. At first we have proposed a PLC communication scheme employing

OFDM and Index Modulation. The proposed scheme employs cyclic codes with good rank

distance properties for correcting crisscross errors, and convolutional codes for correcting

random background errors. We have used the proposed rank-metric based decoding strategy

for rank codes obtained from transform domain description of cyclic codes. Performance of

RC with the proposed decoding strategy is evaluated in a multicarrier power line communica-

tion system employing Index modulation. In case of PLC with OFDM-IM simulation results

show that a coding gain of approximately 2dB can be achieved with RC over F28 in the pres-

ence of rank-2 errors as compared to the performance in the presence of rank three errors.

Additionally, a coding gain of 1dB can be achieved by using the proposed codes with rate

1/3 convolutional code as compared to that using rate 1/2 convolutional code. Additionally, it

was shown that in the absence of index key the receiver could not decode correct information,

resulting in the error floor in the BER performance. In the case of PLC with multitone FSK,

simulation results show that with RC codes SER graph shows an improvement of about 25-

30% as compared to CCW codes proposed by Chee et al. Additionally, the codes proposed in

this work offer additional layer of security, equivalent (slightly superior) error performance

and reduced computational complexity when compared with LRPC/Gabidulin codes.

As part of the second application we have considered storage devices: Linear Tape Open

(LTO) and MLC/TLC Flash drives. We have proposed few code constructions over F28 that

can be used in these devices to overcome crisscross errors. Exploiting the underlying linear

structure a parallel decoding method can be used to overcome the decoding delay. However,
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since the rank error correction capability of the proposed codes depend on the number of

rows (and not on number of columns), rank codes obtained from various (m, 1) codes can be

used in memory devices inducing crisscross errors.
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Chapter 6

Conclusions and Suggestions for
Future Work

The work started with a study of rank-metric codes with an intent to apply these construc-

tions for correcting crisscross errors. Crisscross errors are commonly found in multi-carrier

communication, storage devices like tape drives and multi level flash memories. During this

phase, we became interested in analysing the rank distance properties of [n × n, k] `− Quasi

cyclic codes (general class of widely used cyclic codes). After completing this work we de-

cided to study the rank properties of n−length Abelian codes over Fqm by making use of the

DFT domain description of these codes. In Chapter 2, we have given theorems for construct-

ing n−length ` QC codes over Galois field Fqm with desired rank. We have given closed form

expressions for the Fq− rank of a n−length quasi cyclic code over Fqm characterized by a

single free transform domain component. For such codes, we have shown that the codeword

vector can be divided into b n
e j
c sets of size e j , whose components are linearly independent.

Thus, each of these sets can be viewed as m × e j matrices over Fq having terms which has

Fq− rank equal to e j. The last set comprises of (n − b n
e j
ce j) linearly independent terms which

has Fq− rank (n − b n
e j
ce j) when viewed as an m × (n − b n

e j
ce j) matrix over Fq. In the case of

(n, k) rank metric code constructions if the free transform components are confined to single

q− cyclotomic coset of size e j, we have shown that the first e j components of the codeword

completely determine it’s rank. This result has been used to obtain full rank punctured codes.

We have obtained a procedure for designing constant rank codes for k > 1. Also we have
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provided a check matrix construction that has properties of band matrix and provided a de-

coding strategy using this check matrix. A class of MRD codes were obtained when the free

transform components are drawn from more than one q−cyclotomic coset.

In Chapter 3, we have characterized Abelian codes using the rank-metric. We have been

able to generalize many of the results obtained for quasi cyclic codes into the more general

setting of Abelian codes. We have obtained exact results for the Fq−rank of an n−length

Abelian code over Fqm characterized by a tow or more free transform components drawn

from different q-cyclotomic cosets of size e j. We have been successful in obtaining exact

results which determine the rank of Abelian codes characterized by two free transform com-

ponents drawn from the same/different q−cyclotomic coset. In the second part of the thesis,

we have applied the theorems associated with the rank characterization of cyclic codes to

derive designs for STBCs/SFBCs. Also we have analyzed their performance in applications

involving crisscross errors. In Chapter 4, we have derived designs for quasi-static fading

channels from full-rank cyclic codes. In Chapter 5, we have derived designs for applications

involving crisscross errors. In simulations, these codes are observed to have performed very

well. In this section which deals with directions for further research, we have briefly discuss

several possible extensions for further study.

FUTURE SCOPE

• In Chapter 2, we have been able to derive exact expressions for the rank of a (n, k)

quasi-cyclic code when the free transform components are confined to a single and/ or

multiple q− cyclotomic cosets. However we were unable to obtain the weight spectrum

of the codes.

• In Chapter 3, we have been able to extend to a general class of multivariate polynomial

codes called Abelian codes. However, these results can be extended to a more general

class of multivariate polynomial codes called Quasi-Abelian codes. Also, it will be of

interest to explore the rank distance properties of other general classes of cyclic codes

such as constacyclic coded, and a special class called negacyclic codes.

128



• In carrying out simulations to determine the error performance of STBCs derived from

cyclic codes, we have performed check matrix based decoding. It will be interesting

to know whether list based decoding algorithms can be designed which admit lower

decoding complexity and better error correcting capability.

• Array codes are two dimensional codes which can be of either Block or Convolutional

type. These have been extensively used for providing error protection in storage de-

vices. Roth has shown that a rank µ − [n × n] array code over a finite field F is a

k-dimensional linear space of n × n matrices over F , such that every non zero matrix

has rank ≥ µ. Further, he has given a decoding algorithm to retrieve Γ ∈ C, given

a possibly erroneous received array Γ + E, as long as Rq(E) ≤ µ − 1. These codes

have found application in decoding criss-cross errors in n × n arrays. Similar to MRA

codes, the codewords of a linear n−length cyclic code over Fqm can be viewed as m×n

matrices over Fq. With the help of the characterization for n−length cyclic codes over

Fqm , we can construct full-rank (= m) cyclic codes over Fqm . It would be interesting to

study how effective these codes can be in correcting errors in semiconductor memories

and tape drive systems where the dominant error mechanisms are burst row errors and

data erasures.

• Multiuser MIMO and Non-orthogonal Multiple Access is gaining importance in the

study of Massive MIMO and Multiuser MIMO. The proposed codes are non-orthogonal

in nature and can be considered as suitable candidates for synthesizing non-orthogonal

designs for Massive MIMO and Multiuser MIMO.

• Due to their full rank property constant full rank codes could find application in net-

work coding. We have not addressed this aspect in this thesis. This could be considered

as a fertile avenue in the search for channel codes for network coding.
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