
AN EFFICIENT MAPREDUCE SCHEDULER
FOR CLOUD ENVIRONMENT

Thesis

Submitted in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

by

RATHINARAJA JEYARAJ

Reg. No.: 155031 IT15F01

DEPARTMENT OF INFORMATION TECHNOLOGY

NATIONAL INSTITUTE OF TECHNOLOGY KARNATAKA

SURATHKAL, MANGALURU - 575025

MAY 2020





DECLARATION
By the Ph.D. Research Scholar

I hereby declare that the Research Thesis entitled AN EFFICIENT MAPRE-

DUCE SCHEDULER FOR CLOUD ENVIRONMENT which is being submitted to

the National Institute of Technology Karnataka, Surathkal in partial fulfillment of

the requirements for the award of the Degree of Doctor of Philosophy in Information

Technology is a bonafide report of the research work carried out by me. The material

contained in this Research Thesis has not been submitted to any University or Institution

for the award of any degree.

Rathinaraja Jeyaraj

Reg. No.: 155031 IT15F01

Department of Information Technology

Place: NITK, Surathkal.

Date:





CERTIFICATE

This is to certify that the Research Thesis entitled AN EFFICIENT MAPRE-

DUCE SCHEDULER FOR CLOUD ENVIRONMENT submitted by Rathinaraja

Jeyaraj, (Reg. No.: 155031 IT15F01) as the record of the research work carried out by

him, is accepted as the Research Thesis submission in partial fulfillment of the require-

ments for the award of degree of Doctor of Philosophy.

(Dr. Ananthanarayana V S)

Research Supervisor

Chairman - DRPC





DEDICATION AND ACKNOWLEDGMENT

It is a great opportunity to thank Prof.Ananthanarayana V S (Research super-

visor, Department of Information Technology, National Institute of Technology Kar-

nataka) for being constant motivation and providing valuable suggestions throughout

my research journey. I express my sincere and deepest gratitude to Prof.Ananthanarayana

V S, for the freedom he provided to set the research goals and pursue without any re-

striction. I thank the Research Progress Assessment Committee (RPAC) members for

their continuous support and encouragement. I convey many thanks to all fellow doc-

toral students, teaching faculties, and non-teaching staffs in the Department of Informa-

tion Technology for encouraging to pursue hardwork and their cooperation. Especially,

I thank Dr.Karthik Narasimman (Karunya University, Coimbatore) for the timely sup-

port during many odd times and am grateful to all who helped me directly/indirectly.

It would not be an exaggeration to thank Prof.Anand Paul (Department of Com-

puter Science and Engineering, Kyungpook National University, Korea) for providing

me an opportunity to work in his lab for six months and for his valuable suggestions to

shape my research work.

It is always impossible without the family support to invest huge time for research.

I am debted to my parents, Mrs.Radha Ambigai Jeyaraj and Mr.Jeyaraj Rathi-

nasamy, for the whole life. I also thank my brothers Mr.Sivaraja Jeyaraj and Mr.Elay-

araja Jeyaraj for supporting me financially without any expectation. Life would be in-

complete without friends Mr.Benjamin Santhosh Raj and Mr.Rajkumar Rathinam

for spending their lovely time and fun talk. Finally, I should mention my source of inspi-

ration right from graduate studies, my wife, Dr.Sujiya Rathinaraja, who consistently

gave mental support all through the tough journey. Infinite thanks to her for keeping my

life green and lovable.





ABSTRACT

Hadoop MapReduce is one of the cost-effective ways to process a large volume of data

for reliable and effective decision-making. As on-premise Hadoop cluster is not afford-

able for short-term users, many public cloud service providers like Amazon, Google,

and Microsoft typically offer Hadoop MapReduce and relevant applications as a ser-

vice via a cluster of virtual machines over the Internet. In general, these Hadoop vir-

tual machines are launched in different physical machines across cloud data-center and

co-located with non-Hadoop virtual machines. It introduces many challenges, more

specifically, a layer of heterogeneities (hardware heterogeneity, virtual machine het-

erogeneity, performance heterogeneity, and workload heterogeneity) that impacts the

performance of MapReduce job and task scheduler. Containing physical servers of

different configuration and performance in cloud data-centers is called hardware het-

erogeneity. Existence of different size of virtual machines in a Hadoop virtual cluster

is called virtual machine heterogeneity. Hardware heterogeneity, virtual machine het-

erogeneity, and co-located non-Hadoop virtual machine’s interference together cause

varying performance for the same map/reduce task of a job. This is called performance

heterogeneity. Latest MapReduce versions allow users to customize the resource ca-

pacity (container size) for the map/reduce tasks of different jobs. This leads a batch of

MapReduce of jobs to be heterogeneous.

These heterogeneities are inevitable and profoundly affect the performance of MapRe-

duce job and task scheduler concerning job latency, makespan, and virtual resource uti-

lization. Therefore, it is essential to exploit these heterogeneities while offering Hadoop

MapReduce as a service to improve MapReduce scheduler performance in real-time.

Existing MapReduce job and task schedulers addressed some of these heterogeneities

but fell short in improving the performance. In order to improve these qualities of ser-

vice further, we proposed a following set of methods: Dynamic Ranking-based MapRe-

duce Job Scheduler (DRMJS) to exploit performance heterogeneity, Multi-Level Per

Node Combiner (MLPNC) to minimize the number of intermediate records in the shuf-

fle phase, Roulette Wheel Scheme (RWS) based data block placement and a constrained

2-dimensional bin packing model to exploit virtual machine and workload level hetero-

i



geneities, and Fine-Grained Data Locality Aware (FGDLA) job scheduling by extend-

ing MLPNC for a batch of jobs.

Firstly, DRMJS is proposed to improve MapReduce job latency and resource utiliza-

tion by exploiting heterogeneous performance. The DRMJS calculates the performance

score for each Hadoop virtual machine based on CPU and Disk IO for map tasks, CPU

and Network IO for reduce tasks separately. Then, a rank list is prepared for scheduling

map tasks based on map performance score, and reduce tasks based on reduce perfor-

mance score. Ultimately, DRMJS improved overall job latency, makespan, and resource

utilization up to 30%, 28%, and 60%, respectively, on average compared to existing

MapReduce schedulers. To improve job latency further, MLPNC is introduced to min-

imize the number of intermediate records in the shuffle phase, which is responsible for

the significant portion of MapReduce job latency. In general, each map task runs a ded-

icated combiner function to minimize the number of intermediate records. In MLPNC,

we split the combiner function from map task and run a single MLPNC in every Hadoop

virtual machine for a set of map tasks of the same job. These map tasks write its output

to the common MLPNC, which minimizes the number of intermediate records level

by level. Ultimately, MLPNC improved job latency up to 33% compared to existing

MapReduce schedulers for a single job. However, in production environment, a batch

of MapReduce jobs is periodically executed. Therefore, to extend MLPNC for a batch

of jobs, we introduced FGDLA job scheduler. Results showed that FGDLA minimized

the amount of intermediate data and makespan up to 62.1% and 32.4% when compared

to existing schedulers.

Secondly, virtual machine and workload level heterogeneities cause resource under-

utilization in the Hadoop virtual cluster and impact makespan for a batch of MapReduce

jobs. Considering this, we proposed RWS based data block placement, and a con-

strained 2-dimensional bin packing to place heterogeneous map/reduce tasks onto het-

erogeneous virtual machines. RWS places data blocks based on the processing capacity

of each virtual machine, and bin packing model helps to find the right combination of

map/reduce tasks of different jobs for each bin to improve makespan and resource uti-

lization. The experimental results showed that the proposed model improved makespan

ii



and resource utilization up to 57.9% and 59.3% over MapReduce fair scheduler.

KEYWORDS: Bin Packing; Combiner; Heterogeneous Performance; Heteroge-

neous MapReduce Workloads; MapReduce Job Scheduler; MapRe-

duce Task Placement.

iii





Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i

1 INTRODUCTION 1

1.1 Big data and Hadoop . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 MapReduce Job . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 MapReduce Job Execution Sequence . . . . . . . . . . . . . . . . . . . 4

1.4 MapReduce on Cloud . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4.1 Heterogeneity for MapReduce on cloud . . . . . . . . . . . . . 7

1.4.2 Resource usage of the MapReduce execution sequence . . . . . 8

1.4.3 Dynamic/Heterogeneous performance of VMs . . . . . . . . . 10

1.4.4 Heterogeneous VMs and heterogeneous MapReduce workloads 12

1.5 Research Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.6 Outline of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2 Literature Survey and Proposed Works 17

2.1 Literature Survey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.1.1 MapReduce job and task scheduling in a virtualized heteroge-

neous environment . . . . . . . . . . . . . . . . . . . . . . . . 17

2.1.2 Scheduling reduce tasks based on its input size . . . . . . . . . 21

2.1.3 Minimizing the size of intermediate data during the shuffle phase

in a virtual environment . . . . . . . . . . . . . . . . . . . . . 22

2.1.4 Block placement schemes in HDFS . . . . . . . . . . . . . . . 26

2.1.5 Bin packing tasks . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2 Key Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

v



2.2.1 MapReduce job and task scheduling in a virtualized heteroge-

neous environment . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2.2 Scheduling reduce tasks based on its input size . . . . . . . . . 28

2.2.3 Minimizing the size of intermediate data during the shuffle phase

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.2.4 Block placement schemes in HDFS . . . . . . . . . . . . . . . 29

2.2.5 Bin packing tasks . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.3 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.4 Research Objectives and Works . . . . . . . . . . . . . . . . . . . . . 29

3 MapReduce Task Scheduling 31

3.1 Proposed Methodologies . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.1.1 Dynamic Ranking based MapReduce Job Scheduler (DRMJS) . 32

3.1.2 Map and reduce task scheduling based on performance rank . . 34

3.1.3 Scheduling reduce tasks based on its input size . . . . . . . . . 37

3.1.4 Multi-Level Per Node Combiner (MLPNC) . . . . . . . . . . . 42

3.2 Results and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2.1 Dynamic Ranking based MapReduce Job Scheduler (DRMJS) . 46

3.2.2 Multi-Level Per Node Combiner (MLPNC) . . . . . . . . . . . 55

3.2.3 Reduce task scheduling based on performance rank after MLPNC 57

3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4 MapReduce Job Scheduling 65

4.1 Proposed Methodologies . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.1.1 Roulette Wheel Scheme (RWS) based data block placement . . 65

4.1.2 Constrained 2-dimensional bin packing map/reduce tasks . . . 68

4.1.3 Packing map/reduce tasks using Ant Colony Optimization (ACO) 73

4.1.4 Fine Grained Data Locality Aware (FGDLA) job scheduling . . 76

4.2 Results and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.2.1 Bin packing map/reduce tasks using ACO . . . . . . . . . . . 79

4.2.2 Fine-Grained Data Locality-Aware scheduler (FGDLA) . . . . 84

4.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

vi



5 Conclusion and Future Work 91

5.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6 Appendix 93

6.1 Course Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.2 Work Timeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.3 List of Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.3.1 International Journals . . . . . . . . . . . . . . . . . . . . . . . 95

6.3.2 International Conferences . . . . . . . . . . . . . . . . . . . . 95

6.4 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

vii





List of Figures

1.1 Hadoop MapReduce v2 cluster . . . . . . . . . . . . . . . . . . . . . . 3

1.2 MapReduce phases . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Containers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 MapReduce execution sequence . . . . . . . . . . . . . . . . . . . . . 5

1.5 Hadoop VMs deployed in CDC . . . . . . . . . . . . . . . . . . . . . . 7

1.6 Heterogeneity in different layers . . . . . . . . . . . . . . . . . . . . . 8

1.7 Disk and network IO consumption by map and reduce task for word-

count job . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.8 CPU usage by map and reduce task for wordcount job . . . . . . . . . . 10

1.9 Disk IO consumption of map task for wordcount job during co-located

VM’s interference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.10 IO (Disk and N/W) consumption for reduce task in wordcount job dur-

ing co-located VM’s interference . . . . . . . . . . . . . . . . . . . . . 11

1.11 Map and reduce task latency variation on different class of PMs for

wordcount job . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.12 Unused CPU and N/W resources due to Disk IO contention in each PM

for map task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.13 Heterogeneous workloads, VMs, PMs . . . . . . . . . . . . . . . . . . 14

1.14 Task scheduling with/without heterogeneous capacity . . . . . . . . . . 14

2.1 Default combiner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2 Per Node Combiner (PNC) [11] . . . . . . . . . . . . . . . . . . . . . 24

3.1 VMs sharing resources in a PM . . . . . . . . . . . . . . . . . . . . . . 33

3.2 Workflow of DRMJS . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.3 MLPNC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

ix



3.4 Storing intermediate records in Memcache . . . . . . . . . . . . . . . . 45

3.5 MLPNC system architecture . . . . . . . . . . . . . . . . . . . . . . . 45

3.6 Average map/reduce task latency of wordcount job with different cases . 49

3.7 Average map/reduce task latency of sort job with different cases . . . . 49

3.8 Average map/reduce task latency of wordmean job with different cases . 50

3.9 Job latency of different workloads with different cases . . . . . . . . . 50

3.10 Makespan of different cases . . . . . . . . . . . . . . . . . . . . . . . 50

3.11 Average reduce task latency of Case 3 and Case 4 for wordcount job . . 52

3.12 Performance score vs number of map/reduce tasks allocated . . . . . . 53

3.13 Resource utilization after DRMJS . . . . . . . . . . . . . . . . . . . . 54

3.14 Number of shuffled records generated by different approaches for dif-

ferent sizes of dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.15 Average shuffle latency using different approaches for different sizes of

dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.16 Reduce task start latency for all datasets based on different approaches 57

3.17 Overall job latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.18 Case 1: Reduce task latency with no combiner . . . . . . . . . . . . . . 59

3.19 Case 2: Reduce task latency with combiner . . . . . . . . . . . . . . . 61

3.20 Reduce task latency with dynamic performance vs MLPNC . . . . . . . 62

4.1 Number of map/reduce task combinations of different jobs . . . . . . . 73

4.2 Finding map/reduce task combinations using ACO . . . . . . . . . . . 74

4.3 Example using FGDLA . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.4 FCFS vs FAIR vs FGDLA . . . . . . . . . . . . . . . . . . . . . . . . 78

4.5 Latency of jobs using different schedulers . . . . . . . . . . . . . . . . 81

4.6 Number of non-local executions . . . . . . . . . . . . . . . . . . . . . 81

4.7 Makespan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.8 Utilization of the vCPU . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.9 Utilization of the memory . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.10 Average resource wastage of different schedulers . . . . . . . . . . . . 84

4.11 Resource requirements of each job . . . . . . . . . . . . . . . . . . . . 85

x



4.12 Latency of jobs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.13 Number of non-local executions . . . . . . . . . . . . . . . . . . . . . 86

4.14 Size of shuffle data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.15 Makespan, number non-local executions, shuffle data size of each job . 88

4.16 Unused number of vCPUs during execution . . . . . . . . . . . . . . . 88

4.17 Unused memory during execution . . . . . . . . . . . . . . . . . . . . 89

xi





List of Tables

1.1 Physical machines configuration . . . . . . . . . . . . . . . . . . . . . 12

3.1 Performance class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2 Physical Machines (PM) configuration . . . . . . . . . . . . . . . . . . 46

3.3 Hadoop virtual cluster . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.4 Average map/reduce task latency for different workloads on heteroge-

neous environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.5 Number of reduce tasks and its average latency for wordcount job using

Case 3 and Case 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.6 Avoidance of map/reduce tasks from interference . . . . . . . . . . . . 54

3.7 Number of reduce tasks for all cases . . . . . . . . . . . . . . . . . . . 59

3.8 Number of reduce tasks and its average latency . . . . . . . . . . . . . 60

4.1 Percentage of blocks to store in different VM Flavours . . . . . . . . . 66

4.2 Possible combination of map tasks of different jobs in a VM . . . . . . 71

4.3 Maximum number of map tasks for each job in each VM flavour . . . . 74

xiii





ABBREVIATIONS

ACO Ant Colony Optimization

CDC Cloud Data-Center

CSP Cloud Service Provider

DRMJS Dynamic Ranking based MapReduce Job Scheduler

FGDLA Fine Grained Data Locality Aware

HDD Hard Disk Drive

HDFS Hadoop Distributed File System

IaaS Infrastructure as a Service

IO Input/Output

IS Input Split

LFS Local File System

MLPNC Multi Level Per Node Combiner

NIC Network Interface Card

MRAppMaster MapReduce Application Master

OCRU Overall Cluster Resource Utilization

PM Physical Machines

PNC Per Node Combiner

QoS Quality of Services

RR Record Reader

RW Record Writer

RWS Roulette Wheel Scheme

TAR Total Allocated Resource

UIB Utilization of Individual Bin

VM Virtual Machine

YARN Yet Another Resource Negotiator

i





Chapter 1

INTRODUCTION

Big data analytics [1] using Hadoop MapReduce on cloud [2] by small scale enter-

prises, research departments, and educational institutions is increasingly becoming pop-

ular. As on-premise Hadoop cluster is not affordable for short-term users, public Cloud

Service Providers (CSP) like IBM, Microsoft, Amazon, and Google offer MapReduce

and relevant applications as a service. Therefore, end users make use of them without

any up-front capital investment for on-premise IT infrastructure and software licensing

by leveraging cloud’s cost-efficient, scalable on-demand service nature. CSP typically

offer MapReduce via a cluster Virtual Machines (VM), which are placed across Cloud

Data Center (CDC) and co-located with non-Hadoop VMs. This introduces many chal-

lenges for Hadoop MapReduce to face in a virtualized environment. More specifically,

heterogeneity impacts the performance of MapReduce job and task schedulers in a vir-

tualized environment. This thesis investigates various heterogeneities that exist while

offering Hadoop MapReduce as a service and proposes a set of methods to improve job

latency, makespan, and resource utilization.

1.1 Big data and Hadoop

Any characteristic (volume/velocity/variety/value/variability/complexity) of data that

outpaces the storage capacity, computation capability, and algorithm ability in a ma-

chine is called big data [3]. Processing big data helps to increase productivity in busi-

ness, improve operational efficiency in management, and get insight (knowledge) in

scientific research. There are various big data processing frameworks: Hadoop, Strato-

sphere, Spark, Storm, etc. Hadoop is one of the best batch processing tools to store and

1



process huge amount of data using a cluster of unreliable, low-cost commodity servers.

Hadoop includes three primary tools to batch process big data: Hadoop Distributed File

System (HDFS), Yet Another Resource Negotiator (YARN), and MapReduce. HDFS

is used to store and retrieve big data from distributed storage on a cluster of servers. It

breaks massive data into equal sized chunks (called blocks) and stores in different slave

nodes with the desired number of replication. Hadoop MapReduce [4] is a distributed

data parallel programming model to crunch huge data uploaded onto HDFS. MapRe-

duce is highly distributed, horizontally scalable, fault tolerant, high throughput, and

flexible software programming model that helps to write scalable algorithms to process

big data stored, typically, in HDFS. YARN is a centralized cluster resource manager to

share cluster resources and data stored in HDFS among different data frameworks. The

sub-components of these three tools are:

• YARN: Resource Manager (RM), Node Manager (NM)

• HDFS: Name Node (NN), Secondary Name Node (SNN), Data Node (DN)

• MapReduce v2: MapReduce Application Master (MRAppMaster), Job History

Server (JHS)

As shown in Figure 1.1, consider a CDC containing four racks each with four Physical

Machines (PM), denoted as nodes, and two MapReduce jobs. A typical Hadoop cluster

on a physical server cluster is shown in Figure 1.1. Each master sub-component (NN,

RM, JHS) is installed in a dedicated node and slave sub-components (DN, NM) are

installed in all other nodes in the cluster. There are two MRAppMaster components, as

two MapReduce jobs are running.

1.2 MapReduce Job

A MapReduce job consists of two phases: map phase, and reduce phase. Map phase

executes a set of map tasks and reduce phase executes a set of reduce tasks of a job.

Shuffle in reduce phase transfers output of all map tasks from map phase to all the

reduce tasks in reduce, as shown in Figure 1.2. Map and reduce tasks may be executed

2



Figure 1.1 Hadoop MapReduce v2 cluster

in any nodes in the cluster. For instance, consider a MapReduce job with four map

tasks and two reduce tasks. map task 1 and map task 2 are executed in node 1, but map

task 3 is executed in node 2 and map task 4 is executed in node 3. Similarly, both the

reduce tasks are executed in different nodes. Map phase starts when the first map task

is executed and ends when all the map tasks of a job is completed. Similarly, reduce

phase starts when the intermediate data is moved to reduce node, however, a reduce task

is executed only after shuffle is completed.

Figure 1.2 MapReduce phases

3



Each map task is given one or more data blocks from HDFS as input. A map task

reads data from data blocks as records (key:value pairs), typically performs a record-

level transformation such as filtering/extracting relevant fields, and produces an ar-

bitrary number of records as intermediate output (map output). These intermediate

records are moved to reduce nodes (server running reduce tasks) over the network.

Each reduce task receives input (intermediate records) from all map tasks and produces

the final output records onto HDFS. Map and reduce tasks are assigned with a resource

unit, called container, for execution. A container is a logical pack of a small portion

of memory and vCPU (typically virtual cores C1, C2, etc.), as shown in Figure 1.3.

A node is capable of holding more than one container depending on the amount of

resource available.

Figure 1.3 Containers

1.3 MapReduce Job Execution Sequence

Map task and reduce task go through a sequence of steps (Figure 1.4) to carry out data

processing. Input and output of every step are based on key-value pairs (records). Ma-

jor steps are given below.

Loading input file onto HDFS: Input file→ blocks

Initially, the input file is loaded onto HDFS by dividing into equal sized chunks, called

blocks. Three copies of each block are prepared by default and stored onto HDFS to

ensure fault tolerance.

Map phase: file input format→ Input Split (IS)→ Record Reader (RR)→ mapper→

partitioner→ combiner

4



Figure 1.4 MapReduce execution sequence

Once a MapReduce job is launched on the input file, one or more blocks is given

as input (called as IS) to each map task. The file input format prepares the records

(key:value pairs) from IS. The RR converts byte-oriented input records to MapReduce

data type and feeds to the mapper function. Mapper is an user-defined function that

takes a record as input and produces an arbitrary number records as output, which are

called as intermediate output and locally stored in in-memory buffer (by default 100

MB). Once buffer capacity reached a threshold, a partitioner function splits the inter-

mediate output into a number of partitions, which is equal to the number of reduce tasks

assigned for the job, and stores them into the local disk. There can be many spills over

time in the local disk. Once a map task completed, the spilled partitions for respective

reduce tasks are merged, and moved to the reduce nodes. If the output of map task is

huge, transferring them to reduce node over the network will introduce more traffic.

5



So, the combiner function is applied to minimize the number of intermediate records.

Both combiner and partitioner functions are optional and can be defined by the users.

Executing map task in a node where the data block available is called data locality.

Reduce phase: shuffle→ merge→ sort→ group→ reducer→ File Output Format→

Record Writer (RW).

Shuffle moves the output of all map tasks over the network to the nodes running re-

spective reduce tasks.A reduce task receives its inputs from all map tasks and merges

them. Then, merged records are sorted based on key, and the values that belong to

the same key are grouped. MapReduce framework takes care of these magical steps

(shuffle, sort, merge, group). Finally, reducer function processes these grouped records

(key:list(values)) and produces an arbitrary number of records as job output onto HDFS

by RW based on file output format.

Output file onto HDFS: RW writes the arbitrary number of output records onto HDFS

based on file output format. If the output file size goes beyond default block size, then

it is divieded into multiple blocks.

1.4 MapReduce on Cloud

On-premise IT infrastructure for Hadoop MapReduce is not affordable for short-term

users. Therefore, CSP offers MapReduce and relevant applications as a service on-

demand for pay-per-use basis. CSP deliver MapReduce service to end users via Infras-

tructure as a service (IaaS) with different flavors, as given below.

• Private Hadoop MapReduce (pay per VM or PM hired).

– Purchase VMs or PMs from CSP and setup MapReduce manually.

– Purchase MapReduce as a service on a cluster of PMs or VMs.

• Sharing MapReduce service with more than one users (pay per job basis).

Obtaining MapReduce as a service on a cluster of VMs is highly scalable and based on

pay-per-use basis. Therefore, short-term users highly prefer this service from cloud. As

shown in Figure 1.5, VMs (shaded) in Hadoop virtual cluster are typically spread across

the CDC to achieve fault tolerance and co-located with non-Hadoop VMs. It introduces

6



Figure 1.5 Hadoop VMs deployed in CDC

many challenges, more specifically, a layer of heterogeneities (hardware heterogeneity,

virtual machine heterogeneity, performance heterogeneity, and workload heterogene-

ity) impacts the performance of MapReduce job and task scheduler. In the subsequent

sections, these heterogeneities and its impact on the performance of MapReduce job

and task schedulers are discussed.

1.4.1 Heterogeneity for MapReduce on cloud

In general, heterogeneity is the characteristics of containing dissimilar elements. Het-

erogeneity may exist [5] in CPU, storage, and network resources in a CDC. Typically,

CDC is composed with different types of computing, storage, and network components

to support a wide range of workloads and various user needs. A layer of heterogeneity

7



[6] is identified while offering MapReduce on a cluster of VMs from cloud, as shown

in Figure 1.6.

• Hardware heterogeneity: All inter-connected physical servers are not of the same

configuration and performance. Hybrid cloud involves large hardware hetero-

geneity.

• VM heterogeneity: A cluster of VMs allocated for MapReduce may not be the

same size (flavor) due to horizontal scaling service nature.

• Performance heterogeneity: VM performance varies dynamically due to hard-

ware heterogeneity, VM heterogeneity, and co-located VM’s interference.

• Workload heterogeneity: This indicates jobs of different size (number of map and

reduce tasks), job latency, resource requirement (container size ), the size of data

to process, etc.,

Figure 1.6 Heterogeneity in different layers

1.4.2 Resource usage of the MapReduce execution sequence

A MapReduce job consumes varying resource during execution sequence. In this sec-

tion, we give some experimental evidence on map and reduce tasks resource consump-

tion behavior. To demonstrate resource usage during execution, we used wordcount

8



job on PUMA Wikipedia dataset [7]. collectl tool is used to monitor CPU, Disk, net-

work (N/W) consumption and MapReduce counters to get HDFS IO related metrics.

For wordcount job, map task takes more Disk IO and CPU, while reduce task takes

more of CPU and N/W IO (Figure 1.7). During shuffle phase, N/W bandwidth is highly

consumed in a particular area of the virtual cluster. To differentiate HDFS access with

local file system access, we split Disk IO into Local File System (LFS) IO and HDFS

IO. Because HDFS is used only when input blocks are read, and output blocks are writ-

ten, whereas LFS is used to spill intermediate results of the map and shuffled records in

reduce tasks.

Figure 1.7 Disk and network IO consumption by map and reduce task for wordcount
job

From Figure 1.7, we can observe that map tasks use more Disk IO than reduce tasks.

Because, initially, HDFS brings data blocks for map tasks into memory on demand;

later, intermediate records are spilled into LFS. At the time of merging intermediate

files, LFS is heavily used for preparing partitions to send to reduce tasks. In the reduce

phase, shuffle involves a lot of N/W IO as every reduce task fetches its input from all

map tasks. LFS is accessed in reduce phase for merge and sort operations. Network

IO is used over 65% than Disk IO for reduce tasks. From Figure 1.8, we can observe

that CPU is used more for reduce tasks compared to map tasks. Because, in the map

phase, only pre-processing records/merge operations are carried out. However, major

algorithm implementations, sorting, grouping operations are carried out in the reduce

phase, which demands 60% of CPU compared to map tasks. Default schedulers (FIFO,

Capacity, Fair) place map and reduce tasks upon resource availability (resource-aware).

9



Being resource-aware vastly reduces resource utilization in the virtual cluster. For ex-

ample, if disk IO bottleneck is encountered in a node, map task keeps CPU idle for a

long time as resource allocation for tasks is space sharing. Therefore, instead of launch-

ing a map task at this moment, reduce task can be launched to make use of CPU and

N/W IO.

Figure 1.8 CPU usage by map and reduce task for wordcount job

1.4.3 Dynamic/Heterogeneous performance of VMs

Every PM in CDC hosts a set of VMs. A Hadoop virtual cluster is launched across

racks in different PMs to ensure fault tolerance. This causes to different latency for

the same task. Hadoop VMs are typically co-located with non-Hadoop VMs, where

CPU and memory are space-shared while IO (N/W and disk) is time-shared for VMs.

Therefore, co-located VMs cause varying performance for the same task due to VM’s

competition to hold shared resources on demand. To experiment this, we launched

a Hadoop VM along with non-Hadoop VM in a PM and run wordcount job to display

how resources are consumed during interference. We introduced random read and write

to disk and N/W (for IO contention) via non-Hadoop VMs. It largely impacted map

and reduce tasks latency, as evidenced in Figure 1.9 and Figure 1.10. Figure 1.9 shows

Disk IO consumption of map task with four cases: HDFS access with interference,

HDFS access with no interference, LFS access with interference, and LFS access with

no interference. It is evident that map latency of wordcount job increased up to 50%

than map task execution with no interference. Similarly, Figure 1.10 shows IO (disk

10



and N/W) consumption of reduce task with six cases: HDFS access with interference,

HDFS access with no interference, LFS access with interference, LFS access with no

interference, N/W access with interference, and N/W access with no interference. We

can observe that reduce task latency increased over 60% due to co-located VM’s race

on shared resources.

Figure 1.9 Disk IO consumption of map task for wordcount job during co-located VM’s
interference

Figure 1.10 IO (Disk and N/W) consumption for reduce task in wordcount job during
co-located VM’s interference

From Figure 1.9, it is evident that the map task uses disk IO for long time due to

co-located VM’s interference and holds CPU idle. It directly increased job latency and

also leads to resource under-utilization. Similarly, Figure 1.10 illustrates that reduce

11



task uses N/W IO for quite some time due to co-located VM’s demand on a N/W re-

source. Therefore, not only map/reduce task latency increased and also resources were

held idle until task completion. Finally, PMs that host VMs are of different configu-

rations and capacities in a cluster, as given in Table 1.1. To experiment heterogeneous

performance and the impact of IO contention placed by non-Hadoop VMs in a dif-

ferent class of PMs, we run wordcount job in a VM of each PM class. As shown in

Figure 1.11, both map and reduce task’s latency vary considerably depending on the

performance of PMs. The interesting fact is that, when IO contention is on a roll, CPU

and memory are held idle by map task. For instance, PM4 in Figure 1.12 shows that

when Disk IO contention is encountered due to co-located non-Hadoop VMs, CPU and

N/W resources of Hadoop VM are mostly unused. This indicates that hired virtual re-

sources are not utilized beneficially and job latency increased consequently. Varying

resource consumption behaviour of map/reduce tasks and heterogeneous performance

suggest that just allocating map/reduce tasks in a VM increased job latency and caused

resource under-utilization in a heterogeneous, virtualized environment. This motivated

us to exploit underlying hardware heterogeneity and co-located VM’s interference.

1.4.4 Heterogeneous VMs and heterogeneous MapReduce work-
loads

For both map and reduce tasks, a container is allocated for execution, which is repre-

sented as < vCPU,Memory>. The container is flexible and can be defined for each job.

For instance, from Figure 1.13, there are six jobs (Ji | i=1 to 6), whose map and reduce

tasks demand different size of containers. For example, J1 demands 1 vCPU and 2 GB

Table 1.1 Physical machines configuration

PMs class Configuration of PMs
PM1 1.90GHz 6 cores, 32 GB memory, 1 TB HDD
PM2 2.40GHz 28 cores, 132 GB memory, 3 TB HDD
PM3−4 3.20GHz 4 cores, 8 GB memory, 1 TB HDD
PM5−8 3.40GHz 4 cores, 8 GB memory, 1 TB HDD

12



Figure 1.11 Map and reduce task latency variation on different class of PMs for word-
count job

Figure 1.12 Unused CPU and N/W resources due to Disk IO contention in each PM for
map task

memory for map tasks, and 1 vCPU and 1 GB memory for reduce tasks. A number of

map and reduce tasks, and job nature also vary in each job. However, such flexibility

introduced challenges to be addressed to improve makespan and resource utilization as

heterogeneous jobs are periodically submitted as a batch. Even though CSP offer un-

limited virtual resources, it is questionable whether all the hired virtual resources are

utilized maximum at any point of time during service lifetime. In a rough estimation,

if a VM wastes 0.5 GB memory in the cluster of 200 VMs, net wastage is 100 GB.

This primarily affects cloud users to pay for unused capacity over a period. Such re-

source under-utilization happens due to many reasons for different applications. VMs

deployed for MapReduce may be of different size (flavor) [5],[6] and causes varying

number of containers to accomodate.

13



Figure 1.13 Heterogeneous workloads, VMs, PMs

For instance, as shown in Figure 1.14, consider two VMs with different configu-

ration of < vCPU,Memory >:< 4,6 >, and < 2,4 > respectively. As shown in Fig-

ure 1.14(a), if map tasks of J4 are scheduled in V M1, only two map tasks can be placed

resulting to 3 GB unused memory until running map tasks finished execution. Similarly,

if a map task from J3 and J2 is scheduled in V M2, 1.5 GB memory is not utilized until

these map tasks get over. However, if we schedule map tasks of different jobs under-

standing the capacity of VMs, it is possible to minimize the hired resource wastage. As

shown in Figure 1.14(b), if we launch a map task of J1, J5, J6 in V M1 and J1, J5 in V M2,

it is possible to utilize the entire hired virtual resources. It is also true for reduce tasks of

Figure 1.14 Task scheduling with/without heterogeneous capacity

14



different jobs demanding the varying size of the containers. Therefore, scheduling map

and reduce tasks of different jobs in the right combination improves resource utilization

of individual VMs. Therefore, it is essential to exploit these heterogeneities while of-

fering Hadoop MapReduce as a service to improve MapReduce scheduler performance

in real-time.

1.5 Research Motivation

Offering MapReduce as a service faces many challenges in a virtualized environment.

More significantly, heterogeneity that exists at various level while offering MapReduce

as a service impacts MapReduce task and job schedulers performance. This motivated

us to develop an efficient MapReduce task and job scheduler to improve job latency,

makespan, and resource utilization in a heterogeneous virtualized environment.

1.6 Outline of the Thesis

Related works on MapReduce task and job scheduling in a heterogeneous virtualized

environment for heterogeneous workloads are discussed in Chapter 2. Subsequently,

research objectives are set considering the shortcomings identified. Chapter 3 presents

a set of proposed methods for MapReduce task scheduler to improve job latency and

resource utilization, while Chapter 4 accounts the proposed methods for MapReduce

job scheduler to improve makespan and resource utilization. Conclusion and future

works are mentioned in Chapter 5.

15





Chapter 2

Literature Survey and Proposed Works

2.1 Literature Survey

MapReduce job/task scheduling is very challenging in a virtualized environment while

offering as a service. Notably, different levels of heterogeneity is unavoidable and must

be addressed to improve MapReduce job latency, makespan, and virtual resource uti-

lization. Some of the prominent works are discussed below in order to emphasize this

thesis importance. This section surveys the existing works on the following topics:

1. MapReduce job and task scheduling in a virtualized heterogeneous environment.

2. Scheduling reduce tasks based on its input size.

3. Minimizing the size of intermediate data during the shuffle phase.

4. Block placement schemes in HDFS.

5. Bin packing tasks.

2.1.1 MapReduce job and task scheduling in a virtualized hetero-
geneous environment

MapReduce scheduler determines how to distribute map/reduce tasks of a job across

a cluster of nodes to execute. A MapReduce job can have any number of map and

reduce tasks depending upon the requirements of parallelism. Once a job is selected

to launch, map and reduce are distributed to different VMs and assigned with a con-

tainer. Resource requirements of the map and reduce tasks are not the same as map

17



involves with much disk activity while reduce is more of computing and network ac-

tivity. Running these tasks in a VM residing in a heterogeneous environment leads to

varying job latency. Moreover, co-located VM’s interference causes temporary unavail-

ability of shared IO (disk, network) resources. Therefore, it is essential to launch tasks

on the right VM based on its heterogeneous performance and resource availability. Key

challenges here are to improve job latency and resource utilization. Co-located VM’s

interference plays a vital role in minimizing the performance [30]-[33] of data-intensive

applications in a virtualized environment. Therefore, heterogeneous performance leads

to varying job latency and resource under-utilization. Classical MapReduce scheduler

is not designed to exploit heterogeneous performance. Most of the Hadoop modified

versions for the cloud platform from Hortornworks and MapR perform well only in

homogeneous environment. Therefore, it is essential to consider heterogeneous perfor-

mance to improve job latency and resource utilization, thereby minimizing the service

cost.

MapReduce job/task scheduling plays a vital role in improving the performance

of the application by satisfying user-defined constraints. There are various schedul-

ing approaches targeting different QoS parameters such as cost [6], latency [19], [20],

makespan [21], resource utilization [22], etc. It is always hard to find a solution to

optimize all these parameters together. However, schedulers are always based on one

or more QoS parameters. MapReduce job scheduling is not exceptional and has seen

different job and task schedulers over a decade. MapReduce distribution comes with

three basic schedulers for job scheduling: First Come First Serve (FCFS) scheduler,

fair scheduler [22], and capacity scheduler [23]. FCFS dedicates the entire cluster re-

sources for a job one after the other as it arrives. Only after the first job gets completed,

the next job is executed. Fair scheduler equally shares the cluster resources among a set

of jobs. Therefore, every job in a batch has an equal share in a given time. Capacity

scheduler reserves the amount of resources for any job.

Task scheduling largely affects the makespan and resource utilization of a system.

Makespan is minimized by forming two different queues (IO bound and CPU bound) to

classify a batch of heterogeneous MapReduce jobs in [24]. Then, system resource con-

18



sumption is dynamically monitored at runtime to classify the heterogeneous MapRe-

duce jobs to schedule tasks. Authors claim that the makespan is improved over 20%

compared to the classical schedulers. In a virtual environment with heterogeneous

capacities, containers for heterogeneous jobs are dynamically decided at runtime by

Dazhao Cheng et al. in [25] and improved latency and resource utilization by 20%, and

15% respectively. Authors proposed self-adaptive task tuning, where similar hardware

configurations are grouped from heterogeneous clusters into several pools. Then, an

algorithm continuously updates the list of machines in the pool based on task perfor-

mance. Genetic algorithm is used to escape from a local optimum for selecting the best

configurations.

Two classes of algorithms are proposed in [26] to minimize makespan and total

completion time for an offline batch of workloads in a virtual environment. Authors

ordered the jobs in a batch under given slot configuration mentioned at the time of sub-

mission. During the job execution, the configuration parameters are adjusted in order

to consume adequate resources if available. Similar work has been done in [27] to

optimize the slot configuration parameters at runtime by learning from previously com-

pleted workloads. Authors assume that same batch of jobs are periodically executed

on the dataset and claim significant improvement in makespan and resource utiliza-

tion at runtime. Ming-Chang Lee et al. presented a scheduler, JoSS [28], to schedule

map/reduce tasks by classifying the job types to design scheduling policy at runtime.

Authors classify MapReduce jobs based on job scale, and job type to design scheduling

policy to improve data locality for map tasks and task assignment speed. A random

forest approach is attempted to predict the optimal slot configuration for different jobs

in [29]. Authors use genetic algorithm to explore the configuration parameter solution

space to find an optimal combination of parameters. Thus, makespan is improved up to

2.1 times compared to classical MapReduce schedulers.

Performance interference of co-located VMs [34] is predicted for the network, disk,

and CPU to achieve efficient scheduling. Authors have designed a prediction-based

scheduler to understand interference. Hierarchical clustering is applied in [35] to group

cluster hardware based on the performance of tasks (CPU and IO bound) dynamically in

19



a heterogeneous cluster. IO access prediction of a node is proposed in [36] to optimize

MapReduce output writing continuously in a virtualized environment. Authors applied

a Markov model for predicting an IO access pattern of a node writing MapReduce VM

results and other non-MapReduce VM outputs. By predicting MapReduce output gen-

eration to write on the disks, algorithm coordinates the writing of MapReduce outputs

continuously to read efficiently later.

Varying resource requirements of tasks during their lifetime complicates job sched-

ulers to fruitfully use the free resources to minimize the job latency, eventually to

achieve throughput. To address this challenge, [37] introduces a resource-aware MapRe-

duce scheduler, which breaks the execution of tasks into phases: processing, storage,

and data transfer (network). According to this, the phase is a gap between any IO CPU

resource access, which takes some time. For instance, when a task involves IO, its CPU

can be used by some other task. Therefore, the author focuses on scheduling and alloca-

tion at the phase level to avoid resource contention due to too many simultaneous tasks

on a machine. Adaptive Task Allocation Scheduler (ATAS) attempts to improve LATE

schedulers on a heterogeneous cloud computing environment in [38]. ATAS employs

a method to calculate the response time and inspect backup tasks affecting latency and

enhance the backup task success ratio. A fine-grained dynamic MapReduce scheduling

algorithm is proposed in [40], which significantly minimizes task latency and improves

resource utilization. It tracks historical and real-time information obtained from each

node to find slow nodes dynamically. In order to further improve cluster performance,

it classifies map nodes into high-performing nodes and low-performing nodes for allo-

cating tasks by inferring task profile.

Feng Yan et al. [41] proposed a mechanism for task placement in MapReduce

considering heterogeneity that exists in processor cores to improve latency. Authors

classify cores as fast/slow, and identify MapReduce tasks that require more processing

power and assign them to appropriate cores to improve latency. This specifically targets

workflows that are completion time sensitive. MapReduce latency is improved with a

machine learning algorithm in [42] on a heterogeneous cloud. Authors employed three

main aspects: 1. Building a model that can learn system performance by analyzing

20



historical job information in a cluster. They obtain a list of tasks that have already been

executed in every node, task running time, the size of the data block, and other statisti-

cal information. 2. Then, the performance value of each node is calculated in the cloud

cluster. 3. Finally, based on the performance value, reduce tasks are assigned. ARIA

[43] (Automatic Resource Inference and Allocation) develops a Soft Level Objective

(SLO), which uses the earliest deadline first job ordering and calculates resource re-

quirements to satisfy job deadlines. Initially, a job profile that comprises the details of

mappers, shuffle, sort, and reducers statistics is built based on the previous execution

of production workloads. Then, a performance model is constructed for new jobs pro-

cessing new datasets based on the job profile. Finally, a job is selected that meets SLO

with minimal resources, and it is launched. Zaharia et al. introduced delay scheduling

in [45] to achieve data locality for map tasks to minimize latency. A map task is made

to wait for a short time when it did not have the opportunity to achieve data locality.

However, to avoid starvation, after a given time has passed, the required data block is

moved to another machine and executed non-locally. Tian et al. [46] devised a work-

load prediction on-the-fly to categorize MapReduce workloads into different patterns

based on the utilization of computing resources. Authors devised a scheduler with three

queues (CPU bound, IO bound, and wait) for a heterogeneous environment to optimize

CPU and disk IO resource usage.

2.1.2 Scheduling reduce tasks based on its input size

In general, the output of map tasks is evenly distributed to reduce tasks to balance re-

duce input in [47]. Authors have introduced an intermediate task between map and

reduce phase that balances the load across reduce nodes. FP-Hadoop [9] applies more

parallelism in reduce phase by efficiently tackling the problem of reduce input size.

FP-Hadoop introduces a new phase, where blocks of intermediate values are processed

by intermediate reduce workers in parallel. With this approach, even when all inter-

mediate values are associated with the same key, the central part of the reducing work

can be performed in parallel taking the benefit of the computing power of all available

workers. A set of sample map tasks is used to track its output in [10]. Based on the

output, it evenly divides the key range space and directs subsequent map tasks output to

21



split in the same fashion to load balance among reduce tasks. Authors consider cluster

heterogeneity while allocating reduce tasks by finding the amount of data processed per

unit of time dynamically. To mitigate partitioning skew, rather than dividing partitions

to balance the load among reduce tasks, the amount of resources allocated to reduce

task is increased/decreased in [48]. Therefore, each reduce task gets different size of

resources based on the size of its input; consequently, the completion time of a job is

minimized.

Therefore, each reduce task gets different size of resources based on the size of its

input; consequently, the completion time of a job is minimized. However, in a het-

erogeneous environment, despite allocating more resources for a reduce task, if the

performance of a node is poor, then there is no guarantee in minimizing the comple-

tion time. The uneven distribution of map outputs to the reduce tasks are discussed in

[49]. It considers historical records for constructing profiles for every job type because

production jobs are routinely launched in production clusters. It dynamically calculates

the size of the partition for each reduce task and allocates adequate resources to reduce

tasks. For instance, reduce task having more input will get more resources than other

reduce tasks. Reduce task is compute-intensive as it runs the major part of algorithms.

Therefore, it dynamically adjusts the size of the container (CPU and memory) to reduce

tasks according to the partition size. Gufler’s et al. [50] worked on the partitioning

problem in scientific applications to handle the uneven size of data distribution of map-

per outputs. Authors have focused on minimizing reduce task execution time, balancing

the load evenly among reduce tasks. Fan Yuanquan et al. used support vector machine

to predict the performance of target node to choose the right one for reduce task and

heterogeneity-aware partitioning that balances the skewed reduce input size in [51].

2.1.3 Minimizing the size of intermediate data during the shuffle
phase in a virtual environment

Shuffle phase in MapReduce execution sequence consumes huge network bandwidth

taking a major portion of job latency. A research finding [8] shows that 26%-70%

of job latency is due to the shuffle phase. It sets a trade-off between job latency and

network bandwidth. To minimize job latency, assign more bandwidth, which leads to

22



pay more, and vice versa. At times, even though having allocated more bandwidth,

due to co-located VM’s dynamic bandwidth consumption behavior, there is a chance

to face network bottleneck. Miguel Liroz et al. introduced a new phase, intermediate

reduce in [9], to minimize the map output further. It sits in between combiner and

reducer execution. Authors achieved up to 10 times reduction in reduce phase latency,

and 5 times reduction in job latency. A small fraction of intermediate output is used to

determine which reduce task can get more input, and load is balanced using a distributed

method in [10]. This work also considers the heterogeneity of computing resources for

more precise load balancing.

Figure 2.1 Default combiner

Rather than balancing the load of reduce task input, there is a chance to minimize

the size of intermediate output to minimize the job latency and network bandwidth con-

sumption. Default combiner [4] minimizes the number of intermediate records trans-

ferred over the network, as shown in Figure 2.1. Default combiner is executed an arbi-

trary number of times on the map output records before spilling them into a disk. It runs

in parallel with map task and shrinks the size of data stored into a disk. Consequently,

it minimizes the amount of data spilled into a disk, so disk access is largely minimized

and also the amount of data in the shuffle phase. However, the downside of default

combiner is, until combiner function finishes its execution, map function does not end

to enter the shuffle phase. Moreover, the number of times the combiner function exe-

cuted is not fixed. Therefore, a map task finishes its execution and sends intermediate

results to reduce nodes at a different time.

A “Per Node Combiner” (PNC) [11] was proposed by Lee et al. to minimize the

amount of shuffle data, thereby minimizing job latency. Unlike running a dedicated

23



combiner function (Figure 2.2) for each map task, a single combiner is executed in each

node. All map tasks running in a specific node writes their intermediate output in a

common distributed cache database (Redis) rather than writing in an in-memory buffer.

The combiner function is executed when the size of the distributed cache fills up to a

specific threshold, and the final result is sent over the network only when the last map

task in the specific node arrives. However, one cannot easily determine which map task

could be the last map task in each node if a batch of jobs is running. iShuffle is pro-

posed in [12] by Yanfei Guo et al. to perform the shuffle-on-write operation and move

to reduce nodes by decoupling shuffle and reduce task execution. So, shuffle is allowed

to make decisions independently by predicting the partition size dynamically to balance

the reduce inputs. It achieved 30.2% improvement in overall job latency. IO overhead

in JVM also affects shuffle time, and it is addressed by Wang et al. in [13]. By default,

Hadoop framework uses java stack based IO protocols (HttpServlets) for shuffling in-

termediate data. It performs 40%-60% slower when compared to IO framework written

in C. Therefore, authors proposed a JVM bypass shuffling to eliminate this overhead

by leveraging TCP/IP and remote direct memory access to speed up shuffle phase. JBS

achieves up to 66.3% reduction in job latency and lowers the CPU time by 48.1%.

Figure 2.2 Per Node Combiner (PNC) [11]

Huan Ke et al. [14] proposed three approaches to minimize network traffic during

the shuffle phase: intra-machine aggregation, inter-machine aggregation, and in-cloud

aggregation. Authors developed an aggregator service that can be launched anywhere

in the cluster independent to reduce tasks for decreasing map output size before sending

24



to reduce tasks. In the first approach, authors launch aggregator whenever a set of map

tasks in a node tends to produce huge intermediate records. It merges all intermediate

records generated by all map tasks in the same node before sending over the network.

In inter-machine data aggregation, the aggregator is launched in any one of the nodes

running map tasks. Other map task nodes send its intermediate results to the node

running aggregator service. Authors try to minimize the number of intermediate records

at rack level before sending to reduce task nodes. In cloud aggregation, aggregator

service runs anywhere in the cluster. Nodes running map tasks send their intermediate

results to this node, which decreases the number of records and forwards it to the reduce

nodes.

Push-based aggregation and parallelizing shuffle phase are introduced in [15] to

minimize network traffic and efficiently use available network bandwidth in data-centers.

Authors proposed IRS-based on in-network aggregation tree, and SRS-based shuffle

aggregation subgraph based on data-center topology. Authors also designed scalable

forwarding schemes based on Bloom filters to implement in-network aggregation over

massive concurrent shuffle transfers. Authors saved network traffic by 32.87% on an

average for small-scale shuffle and 55.33% over large scale shuffle in data-center. Wei

et al. [16] aim to minimize the overall network traffic, manage workload balancing, and

eliminate network hotspots to improve performance in arbitrary network topologies.

Uneven distribution of map output to different nodes causes more traffic at a specific

portion of the data-center. An algorithm “smart shuffling” is proposed to suggest a set of

candidate nodes to launch reduce tasks. Camdoop [17] solves the shuffling bottleneck

due to intermediate records by decreasing the network traffic. Authors perform shuf-

fling using hierarchical aggregation before sending over the network. However, cam-

doop is only effective in special network topology, such as 3D torus network, and its

performance degrades sharply in common network topologies adopted by data-centers.

Liang and Lau [18] introduced bandwidth-aware shuffler to maximize the utiliza-

tion of network bandwidth, which leads to increase shuffle throughput at the application

level. Authors argue that random source selection policy introduces the network bottle-

neck in case of heterogeneous bandwidth in the cluster while choosing nodes for reduce

25



tasks. Authors proposed a partial greedy source selection, which sets a load count in

each slave node to track how many number of fetches may happen for a shuffle shortly.

A node that has the largest load count will be indicated as reduce node, which needs the

maximum network bandwidth. It incurs a small scheduling overhead. However, authors

claim that the proposed algorithm shortens the reduce phase latency 29% and overall

job latency up to 21%.

2.1.4 Block placement schemes in HDFS

Sometimes, block placement also determines the latency of a job in a heterogeneous

virtualized environment. Xie et al. consider the capacity of nodes to distribute data

in a heterogeneous environment to improve the performance of MapReduce applica-

tions in [44]. Authors introduce a novel file system for data distribution that relocates

data during execution to improve performance. This proposed algorithm has different

functionalities: break input data based on the capacity of machines, redistribute data

blocks based on current CPU processing speed, and fresh incoming data handling. This

work achieves a 33% improvement in minimizing latency by balancing the workloads

in different VMs on a heterogeneous environment. A replica balanced distribution tree

structure is designed to achieve optimal data blocks placement policy in [52]. Authors

focus on minimizing the global data access cost and the number of non-local execution

and achieved up to 32.5% improvement over classical MapReduce schedulers.

A novel data block distribution technique is proposed by Vrushali Ubarhande et

al. in [53] for cloud heterogeneous environment to improve makespan. In this work,

a speed analyzer is used to find the computing performance of virtual nodes to dis-

tribute blocks. Similarly, Chia-Wei Lee et al. proposed a dynamic data block placement

scheme [54] to minimize the number of non-local execution based on the virtual node’s

computing capacity in a heterogeneous virtual environment. Authors indicate that vir-

tual node’s processing capacity is not the same for different types of MapReduce jobs.

Therefore, the data blocks of each workload are placed based on the computing ca-

pacity for the respective workload. Consequently, authors improved performance over

23.5% compared to the classical MapReduce schedulers. MRA++ [39], a data block

placement technique, is introduced for a heterogeneous environment. Few map tasks

26



are used as training tasks to explore the heterogeneous performance and capacity before

distributing blocks. Typically, slower nodes are not preferred as it will lead tasks to be

stragglers. Therefore, authors employ a classification method to group virtual nodes

based on the computing capabilities using the information collected during training

time. This minimized the job latency and balanced the load across nodes.

2.1.5 Bin packing tasks

Utilizing maximum resources of VMs for heterogeneous workloads is a challenging

task. Bin packing [56], [60] tasks improves resource utilization, and it has a wide

variety of applications. Task consolidation using bin packing with meta-heuristic algo-

rithms [55], [57], [61], [66], [67] is widely applied. When the number of constraints in-

creases, the possible solution space decreases and finding an optimal solution by avoid-

ing unfavorable solutions from solution space becomes complex. Some works focus on

heterogeneous bin capacity [55], [58], [59], [62], [64], [65] while some works focus

on varying size of workloads [63], [68] to pack them into homogeneous/heterogeneous

bins. Despite there is no known application of bin packing of map/reduce tasks, we just

mentioned the bin packing problems with heterogeneous workloads and bin capacities

in different application areas.

2.2 Key Observations

2.2.1 MapReduce job and task scheduling in a virtualized hetero-
geneous environment

Map/reduce tasks are scheduled based on either performance-aware or resource-aware

or interference-aware techniques.

• Performance-aware task scheduling considers the performance of nodes based on

the past task execution.

• Resource-aware scheduling focuses on scheduling tasks based on the availability

of resources.

• Interference-aware task scheduling predicts the disturbance of co-located VMs

and schedules tasks accordingly.

27



Merely understanding the performance of a node from the past epoch may not improve

task latency and resource utilization. For example, the map phase requires more of disk

IO and CPU, while reduce phase requires network IO and CPU. When performance

for a node is calculated based on CPU and Disk IO, reduce task might face bottleneck

due to network congestion. Performance of a VM also varies dynamically due to the

interference of co-located VMs. Also, independent jobs go for non-local execution due

to static scheduling decision. Moreover,

• all these works suffer from computational load imbalance as data locality is

mandatory to minimize the job latency.

• data locality is significantly affected while concentrating on the performance of a

node to place tasks. .

• dynamically tuning container configurations minimizes the latency but at the cost

of resource under-utilization.

2.2.2 Scheduling reduce tasks based on its input size

Unlike map tasks receiving same size of input, reduce tasks receive various size of input.

Existing works either balance the input size for all reduce tasks or place them based on

the computing power of each node. Authors do not consider the dynamic performance

of VMs.

2.2.3 Minimizing the size of intermediate data during the shuffle
phase

It is important to minimize the number of intermediate records transferred in the shuffle

phase rather than supplying more network bandwidth that results in increased service

cost. Interestingly, PNC [11] performs node level intermediate records aggregation in

the memory itself. All map tasks of a specific job writes its intermediate data in the

in-memory buffer. Once the buffer exceeds a threshold, PNC is applied on intermediate

records and the results are moved to reduce nodes. PNC involves a several shuffle emits

during the job life cycle. Moreover, once a first shuffle emit happens, all the reduce

tasks of a job should be launched to collect the intermediate records as there is no

28



spilling in PNC. Holding containers for reduce tasks until job completion may clog the

available resources in the virtual cluster leading to less throughput. While this method

promises a reduction in the number of records in shuffle phase, there is still a possibility

to minimize the number of intermediate records further.

2.2.4 Block placement schemes in HDFS

Heterogeneous VM capacities are not considered while placing the data blocks to mini-

mize the number of non-local execution, which in turn minimizes job latency. Learning

the history of workloads and predicting the block placement for future workloads may

not be meaningful if the jobs are not homogeneous.

2.2.5 Bin packing tasks

While placing heterogenous tasks in heterogeneous VMs, a large portion of virtual clus-

ter resource is wasted. So, finding the right combination of tasks to schedule in each

VM is a possible option for task scheduling. To the best of our knowledge, bin packing

has not been applied for MapReduce task scheduling.

2.3 Problem Definition

Tuning MapReduce job and the task scheduler to improve job latency, makespan, and

resource utilization by exploiting underlying heterogeneities in the cloud environment.

2.4 Research Objectives and Works

Considering the outcomes of literature survey, we proposed a set of methods for MapRe-

duce task and job scheduler to improve job latency, makespan, and resource utilization,

as given below.

• Objective 1: Scheduling map/reduce tasks to improve job latency and resource

utilization. For this, we proposed

1. Dynamic Ranking based MapReduce Job Scheduler (DRMJS) to exploit

heterogeneous performance.

2. Multi-Level Per Node Combiner (MLPNC) to minimize the number of in-

termediate records in the shuffle phase.

29



3. Reduce task scheduling based on performance rank after MLPNC.

• Objective 2: Scheduling MapReduce jobs to improve makespan and resource

utilization. For this, we proposed

1. Roulette Wheel Scheme (RWS) based data block placement in HDFS to

minimize job latency.

2. Constrained 2-dimensional bin packing map/reduce tasks using Ant Colony

Optimization (ACO) to exploit heterogeneous VM capacities and work-

loads.

3. Fine-Grained Data-Locality Aware (FGDLA) job scheduling to minimize

the number of intermediate records for a batch of jobs.

30



Chapter 3

MapReduce Task Scheduling

3.1 Proposed Methodologies

Resource requirements of map/reduce tasks, and heterogeneous performance of Hadoop

VMs pose a major challenge for MapReduce task schedulers to improve job latency and

resource utilization in a virtualized environment. Therefore, we proposed the follow-

ing methods in order to improve the performance of MapReduce task scheduler in a

virtualized environment.

1. Dynamic Ranking based MapReduce Job Scheduler (DRMJS) to exploit hetero-

geneous performance

2. Multi-Level Per Node Combiner (MLPNC) to minimize the number of interme-

diate records in the shuffle phase.

3. Reduce task scheduling based on performance rank after MLPNC.

Firstly, DRMJS is proposed to improve MapReduce job latency and resource utiliza-

tion by exploiting heterogeneous performance. The DRMJS calculates the performance

score for each Hadoop virtual machine based on CPU and Disk IO for map tasks, CPU

and Network IO for reduce tasks separately. Then, a rank list is prepared for scheduling

map tasks based on map performance score, and reduce tasks based on reduce perfor-

mance score. Ultimately, DRMJS improved overall job latency, makespan, and resource

utilization up to 30%, 28%, and 60%, respectively, on average compared to existing

MapReduce schedulers. To improve job latency further, MLPNC is introduced to min-

imize the number of intermediate records in the shuffle phase, which is responsible for

31



the significant portion of MapReduce job latency. In general, each map task runs a ded-

icated combiner function to minimize the number of intermediate records. In MLPNC,

we split the combiner function from map task and run a single MLPNC in every Hadoop

virtual machine for a set of map tasks of the same job. These map tasks write its output

to the common MLPNC, which minimizes the number of intermediate records level

by level. Ultimately, MLPNC improved job latency up to 33% compared to existing

MapReduce schedulers for a single job. These methods are discussed in detail in the

subsequent sections.

3.1.1 Dynamic Ranking based MapReduce Job Scheduler (DRMJS)

Performance of VMs is highly dynamic due to different types of hardware and co-

located VM’s resource consumption behavior. It is beneficial allocating map and re-

duce tasks based on the heterogeneous performance of each VMs. In order to calculate

the performance of VMs dynamically, we need to develop a model that captures the re-

source usage of each VM periodically. Consider s Hadoop VMs hosted on t PMs. CPU

performance of jth VM in ith PMCPU
i j is calculated by finding the PM having maximum

CPU frequency (CPU_freq) among t PMs in which Hadoop VMs have been hosted, as

given in Equation 3.1.

V MCPU
i j =

V MCPU_ f req
i j

max(∀i,PMCPU_ f req
i )

(3.1)

Note that the performance of all VMs hosted in a PM is not necessarily to be the same.

We observed that many VMs hosted in a PM may have storage allocated in different

Hard Disk Drives (HDD), data transfer on different Network Interface Card (NIC), and

executed by different cores, as shown in Figure 3.1. For instance, the contention of

disk IO may be different in different HDD. Therefore, we calculate the performance

of all VMs hosted in a PM. Disk IO performance of jth VM in ith PM (V MDiskIO
i j ) is

calculated using Equation 3.2 based on the current disk bandwidth rate of jth VM in

ith PM (V Mcurr_disk_band
i j ) over the disk bandwidth of kth disk in ith PM (PMDisk_band

ik ).

Network IO performance of jth VM in ith PM (V MNetIO
i j ) is calculated using Equation

3.3 based on the current bandwidth rate of jth VM in ith PM (V Mcurr_net_band
i j ) over the

Nework bandwidth of lth NIC in ith PM (PMNet_band
il ).

32



Figure 3.1 VMs sharing resources in a PM

∀i, j, V MDiskIO
i j = ∀k,

∑V Mcurr_disk_band
i j

PMDisk_band
ik

(3.2)

∀i, j, V MNetIO
i j = ∀l,

∑V Mcurr_net_band
i j

PMNet_band
il

(3.3)

Resource requirements of map and reduce tasks are different as map task requires CPU

and disk activities while reduce task demands more of CPU and network activities.

Therefore, we need to place map/reduce tasks based on the map/reduce node perfor-

mance rather than the overall performance of a VM. Before calculating the performance

of a VM for map and reduce tasks separately, we calculate the influence of jth VM in ith

PM for map (V Mmap_in f
i j ) and reduce (V Mreduce_in f

i j ) by considering the latency of last z

map/reduce tasks executed in jth VM using Equation 3.4 and Equation 3.5).

∀ j, V Mmap_in f
i j = min

(
∀z,

map_latency jz

∑
z
m=1 map_latency jm

)
(3.4)

∀ j, V Mreduce_in f
i j = min

(
∀z,

reduce_latency jz

∑
z
m=1 reduce_latency jm

)
(3.5)

Existing approaches calculate the overall performance of a VM regardless of type of

tasks. But, in DRMJS, we calculate the performance of VM for map and reduce sepa-

rately. Therefore, map performance (V Mmap_per f
i j ) is calculated based on CPU and Disk

IO of respective VM in each PM using Equation 3.6). Similarly, reduce performance

(V Mreduce_per f
i j ) is calculated using CPU, and Network IO of respective VM in each PM

using Equation 3.7).

∀i, j,V Mmap_per f
i j =V MCPU

i j × (1−V MDiskIO
i j )× (1−V Mmap_in f

i j ) (3.6)

∀i, j,V Mreduce_per f
i j =V MCPU

i j × (1−V MNetIO
i j )× (1−V Mreduce_in f

i j ) (3.7)

33



Map and reduce performance of all Hadoop VMs are sorted using Equation 3.8 and

Equation 3.9 to find the best nodes for map tasks (map_rank) and redue tasks (reduce_rank)

separately.

map_rank = sort(V Mmap_per f
i j ) (3.8)

reduce_rank = sort(V Mreduce_per f
i j ) (3.9)

There can be more than one VM having the same score, which gives the option to

choose any one of the VM for allocating tasks. In short, Algorithm 1 summarizes the

dynamic rank calculation for heterogeneous performance of virtual nodes.

Algorithm 1: Dynamic Performance Rank Calculation
1 Notation:
2 PMi− ith PM in CDC
3 V Mi j− jth VM in ith PM in Hadoop virtual cluster
4 Input:
5 VM parameters (virtual CPU, virtual Disk, virtual Network)
6 System parameters (CPU, Disk, Network)
7 Output:
8 performance rank of map and reduce tasks separately for each VM
9 while do

10 calculate the CPU performance V MCPU
i j

11 calculate the Disk IO rate V MDiskIO
i j (Disk IO includes both HDFS and LFS

IO)
12 calculate the network performance V MNetIO

i j

13 calculate the map task influence V Mmap_in f
i j

14 calculate the map task performance V Mmap_per f
i j

15 sort V Mmap_per f
i j in descending order to find map_rank

16 calculate the reduce task influence V Mreduce_in f
i j

17 calculate the reduce task performance V Mreduce_per f
i j

18 sort V Mreduce_per f
i j in descending order to find reduce_rank

19 end

3.1.2 Map and reduce task scheduling based on performance rank

Algorithm 2 explains how map tasks of nth job (Jn) are scheduled by getting map rank

list. mapnp denotes pth map task of nth job and initlized to 0 as map tasks are not yet

34



Algorithm 2: Heterogeneous performance aware map task scheduling
1 Input: map tasks of a job, map rank of VMs
2 Output: assign map tasks to the right V Mi j
3 m − number of map tasks of a job Jn

4 mapnp− pth map task of nth job
5 ∀p,mapnp = 0
6 Cn = 0− number of completed map tasks of job Jn
7 while Cn < m do
8 Pick up a map task (p) from task list
9 if mapnp == 0 then

10 Choose top 10% VMs from V Mmap_per f
i j rank list

11 while until 10% nodes do
12 if containers possible for mapnp && data locality then
13 mapnp=1
14 Launch map task, Cn++
15 break
16 end
17 end
18 end
19 else if mapnp == 0 then
20 Choose rest 90% VMs from V Mmap_per f

i j rank list
21 while until 90% nodes do
22 if containers possible for mapnp && data locality then
23 mapnp=1
24 Launch map task, Cn++
25 break
26 end
27 end
28 end
29 else if mapnp == 0 then
30 perform non-local execution
31 mapnp=1
32 Launch map task, Cn++
33 end
34 else
35 add mapnp into task queue
36 end
37 end

scheduled. Initially, top 10% of map nodes from the rank list is chosen to schedule

map tasks. If container for map task is possible, then map task is scheduled and mapnp

is assigned to 1. If there are not enough resources available to form container and no

35



Algorithm 3: Heterogeneous performance aware reduce task scheduling
1 Input: reduce tasks of a job, reduce rank of VMs
2 Output: assign reduce tasks to the right V Mi j
3 r − number of reduce tasks of a job Jn

4 reducenq− qth reduce task of nth job
5 ∀q,reducenq = 0
6 Cn = 0− number of completed reduce tasks of job Jn
7 while Cn < r do
8 Pick up a reduce task (q) from task list
9 if reducenq == 0 then

10 Choose top 10% VMs from V Mreduce_per f
i j rank list

11 while until 10% nodes do
12 if containers possible for reducenq then
13 reducenp=1
14 Launch reduce task, Cn++
15 break
16 end
17 end
18 end
19 else if reducenq == 0 then
20 Choose rest 90% VMs from V Mreduce_per f

i j rank list
21 while until 90% nodes do
22 if containers possible for reducenq then
23 reducenq=1
24 Launch reduce task, Cn++
25 break
26 end
27 end
28 end
29 else
30 add reducenq into task queue
31 end
32 end

data locality is possible, then rest 90% of the nodes in the rank list is considered for

scheduling map tasks. If there is no data locality possible in any of the nodes in the

rank list, then non-local execution is performed. If there is no scope for a map task

at this moment, it is added back to the task queue. MRAppMaster usually checks for

data-locality by default. Similarly, Algorithm 3 schedules reduce tasks on the top 10%

high performing VMs. If it is not possible to form containers, then rest 90% of nodes

36



are inspected for containers to launch reduce tasks. If more than one VM has the same

rank, then VM, which has significant network bandwidth, is chosen to launch containers

for reduce tasks.

3.1.3 Scheduling reduce tasks based on its input size

Even though performance rank helps in finding VM that is capable of minimizing re-

duce task latency, as given in Algorithm 3, still there is a chance to improve reduce task

latency further. Unlike map tasks receiving same size of input, the input size of reduce

tasks is not uniform and unpredictable. Therefore, scheduling reduce tasks without con-

cerning its input size could increase job latency. For instance, consider a reduce task

r taking huge input and gets allocated with a low performing reduce node for execu-

tion. Consider another reduce task r+1 taking less input and gets allocated with high

performing reduce node for execution. r takes more time to complete as it is being ex-

ecuted by low performing reduce node. But, assigning r to high perfoming node helps

to minimize task latency, consequently, overall job latency is also improved. To find

the input size of each redue task before map tasks completed, we dynamically interact

with partitioner to track the amount of each reduce task’s input size. With this infor-

mation, we allocate reduce tasks that get huge input onto high performing node using

performance rank.

In order to assign reduce tasks to the right high performing reduce node, we ini-

tially classify all VMs into any one of four classes (C1, C2, C3, and C4) using values of

(V Mreduce_per f
i j ). Table 3.1 contains values of all components, as in Equation 3.7. We

categorize the values of (V Mreduce_per f
i j ) into five (low, below average, average, above

average, and high) to set the ranges for C1, C2, C3, and C4. Values filled up for the

components in Table 3.1 are based on the observation from our experiment, so as to

pick the right VM for reduce tasks. The class ranges are formed as follows: C1 = 1 to

0.343, C2 = 0.342 to 0.064, C3= 0.063 to 0.008, C4 = 0.007 to 0.001. Once rank list

for reduce is prepared, each node with its reduce performance score is compared with

the ranges of C1, C2, C3, and C4. We considered only four classes as forming ranges

would be too narrow for cases below average. As given in Algorithm 4, partition size of

respective reduce task from all map tasks is aggregated globally using Equation 3.10.

37



Table 3.1 Performance class

Category V MCPU
i j V MNetIO

i j V Mreduce
i j V Mreduce_per f

i j

low 0.1 0.1 0.1 0.001
below average 0.2 0.2 0.2 0.008

average 0.4 0.4 0.4 0.064
above average 0.7 0.7 0.7 0.343

high 1 1 1 1

Then, we find the maximum partition size, using which the probability of each partition

is calculated with Equation 3.11 to assign reduce task to the node that belongs to any

one of the classes (C1, C2, C3, and C4).

It is important because, relatively equal performance nodes are put into the same

class. So, even if there is no container possible for reduce task in a node that belongs to

C1, another node in the same class is inspected for containers. If none of the nodes in

the same class is possible to form container, then immediate next class (C2) is inspected

if particular reduce task waits up to 30 seconds to avoid starving. Because, all reduce

tasks should be launched to receive inputs from map tasks. If nodes in C2 also don’t have

sufficient resources, then reduce task is added back into task queue. Because, assigning

reduce tasks (intended for C1) in C3 or C4 may lead to huge latency. Similarly, reduce

tasks that fall on C2 may be tried with C3, if there is no possibility of containers in

C2. If there are no resources in C2, and C3, then immediate upper class C1 can be tried

if there are no other tasks intended to launch in C1. The same way, reduce tasks that

fall in C3 may be tried in other classes in a sequence (C4/C2/C1) ensuring there are no

other reduce tasks intended in C2 and C1. Finally, reduce tasks that belong to C4 can be

assigned with any of the upper classes (inspected in C3/C2/C1 sequence) if there are no

resources available in C4.

Algorithm 4: Reduce task scheduling based on its input size and performance

Notation:
m− the number of map tasks of job Jn

partition_sizenq − partition size of qth reduce task of nth job

38



V M_Pq
p − partition for qth reduce task from pth map task

reducenq
j − assign qth reduce task of nth job in jth VM

probabilitynq − qth reduce task partition of nth job
r − number of reduce tasks of Jn

∀q, reducenq
j = 0 // qth reduce task of nth job

Cn = 0 // number of completed reduce tasks of job Jn

Input: partition size for each reduce task and VMs performance
Output: assign reduce tasks onto the right VM
calculate partition size of each reduce task from all map nodes
partition_sizenq=∑

m
p=1 size(V M_Pq

p) (3.10)
max = max(partition_sizenq)

reduce rank is divided into 4 classes based on values given in Table 3.1
∀q, probabilitynq = partition_sizenq/max (3.11)
Pick up a reduce task (q) from the task list
while reducenq

j !=1 && Cn < r do
if probabilitynq falls in C1 then

if container_possible
assign reducenq

j in C1

q++, Cn++, reducenq
j =1

end
elseif

inspect other nodes in C1

assign reducenq
j in C1

q++, Cn++, reducenq
j =1

end
elseif q is starving for 30 seconds

inspect other nodes in C2

assign reducenq
j in C2

q++, Cn++, reducenq
j =1

end
else

add q into the task queue
end
else if probabilitynq falls in C2 then

if container_possible
assign reducenq

j in C2

q++, Cn++, reducenq
j =1

end

39



elseif
inspect other nodes in C2

assign reducenq
j in C2

q++, Cn++, reducenq
j =1

end
elseif q is starving for 30 seconds

inspect other nodes in C3/C1

assign reducenq
j in C3/C1

q++, Cn++, reducenq
j =1

end
else

add q into the task queue
end
else if probabilitynp falls in C3 then

if container_possible
assign reducenq

j in C3

q++, Cn++, reducenq
j =1

end
elseif

inspect other nodes in C3

assign reducenq
j in C3

q++, Cn++, reducenq
j =1

end
elseif q is starving for 30 seconds

inspect other nodes in C4/C2/C1

assign reducenq
j in C4/C2/C1

q++, Cn++, reducenq
j =1

end
else

add q into the task queue
end

else
if container_possible

assign reducenq
j in C4

q++, Cn++, reducenq
j =1

end
elseif

inspect other nodes in C4

40



assign reducenq
j in C4

q++, Cn++, reducenq
j =1

end
elseif q is starving for 30 seconds

inspect other nodes in C3/C2/C1

assign reducenq
j in C3/C2/C1

q++, Cn++, reducenq
j =1

end
else

add q into the task queue
end

end

Figure 3.2 exhibits the overall workflow of DRMJS. Hadoop virtual cluster is formed

by launching Hadoop VMs in various PMs hosted with other general purpose VMs.

Consider a set of PMs (node1,...,noden) in different racks. We deploy Hadoop 2.7.0 for

our experiment and work with YARN. YARN is a cluster resource management tool and

contains two major services: Resource Manager (RM), and Node Manager (NM). RM

is a master process that manages cluster resources and schedules YARN applications

(MapReduce, Spark, HPC, etc.). NM runs in every Hadoop VMs to carry out the com-

mands delivered by RM. Initially, the user submits MapReduce jobs at RM, which are

added then to the job queue. RM launches MapReduce Application Master (MRApp-

Master) for each MapReduce job to manage job life cycle, schedule map/reduce tasks,

guarantee fault tolerance, etc., DRMJS is run in any one of the Hadoop VMs (prefer-

ably in RM) and dynamically collects information such as VM resource usage and PMs

resource availability via Heartbeat message to calculate performance score of each VM

for map and reduce tasks separately using Algorithm 1. Based on the performance

score, rank is prepared. MRAppMaster receives the performance rank list, picks top

VMs, and requests RM to launch container in preferred VM for map/reduce tasks us-

ing Algorithm 2 and Algorithm 3. Further, based on the size of input, reduce tasks are

scheduled using Algorithm 4.

41



Figure 3.2 Workflow of DRMJS

3.1.4 Multi-Level Per Node Combiner (MLPNC)

To improve job latency further, MLPNC is introduced to minimize the number of in-

termediate records in the shuffle phase, which is responsible for the significant portion

of MapReduce job latency. In general, each map task runs a dedicated combiner func-

tion (as shown in Figure 2.1) to minimize the number of intermediate records. PNC

[11] is used to minimize the number of intermediate records in the shuffle phase at the

node-level (as shown in Figure 2.2) by splitting combiner function from map tasks and

running a single combiner for all map tasks per node. The significant constraint of PNC

is, once in-memory cache is filled up 80%, all the reduce tasks have to be launched

to receive map outputs. It causes all reduce tasks to hold containers (resources) and

wait for a long time to receive its whole input. Although it reduces job latency in large

proportion, yet there is a possibility to minimize the number of intermediate records

further. In MLPNC, we split the combiner function from map task and run a single

MLPNC in every Hadoop virtual machine for a set of map tasks of the same job. These

map tasks write its output to the common MLPNC, which minimizes the number of

42



intermediate records level by level until there is no further possibility in minimizing the

intermediate records, unlike PNC. Therefore, reduce tasks are launched a little later.

As shown in Figure 3.3, consider node1 containing four cores, in which first three

cores are executing three map tasks concurrently, but core4 is running a combiner func-

tion level by level. All map tasks write its output into the common cache memory

(Memcache), which is used to keep intermediate records in memory itself without

spilling into disks. As shown in Figure 3.4, in-memory cache is initialized with S

MB that gets filled circular fashion. P is a current pointer in the cache. When cache

reaches a threshold T MB (T «S), two combiners COMB1, COMB2 are launched in sep-

arate threads, as given in Algorithm 5 for wordcount job pseudocode. There are three

functions in the map task of wordcount job. setup() establishes the connection between

the map task (map_id) and Memcache running in the respective node (node_id). map()

tokenizes the input value and assigns 1 to each word. cleanup() disconnects map task

from the Memcache. Combiner function aggregates all the values of each word and

adds up to the result. COMB1 takes 0 to T/2 MB, and COMB2 takes T/2+1 to T MB

of the cache. The output of these combiners and current output of map tasks are written

into cache until (T +1 to (P mod S)) <= T . When (P mod S == T/2) is met, COMB3

is launched on the current map tasks output and previous combiner results. In this way,

combiner execution is repeated until there is no further reduction in the map output

Figure 3.3 MLPNC

43



Algorithm 5: Minimize the number of intermediate records for wordcount job
1 Input parameters initialization:
2 Mem −Memcache
3 static HashMap Map_timer=new HashMap()
4 S − total cache size in MB
5 T − threshold size in MB
6 P − current_cache_pointer
7 COMBi − combiners
8 current_cache_pointer P=0
9 threshold_seconds=30

10 combiner_enabled=true
11 node_id − VM id
12 map_id − map task ID
13 current_time − time at which map task launched
14 MLPNC
15 Start this service in the node where map tasks are launched
16 while true do
17 if P>=T || size(T+1 to (P mod S))<=T then
18 launch x=COMBi++, y=COMBi++
19 x takes 0 to T/2 && y takes T/2+1 to T
20 write records from (P+1 mod S) to T
21 if P mod S == T/2 then
22 launch (COMBi) taking ( P mod S)+1 to T/2
23 write records from (P+1 mod S) to T
24 if (current_time − current_time(node_id+map_id)) > threshold_seconds)

|| last_mapper then
25 emit(records) −> reducers
26 end
27 Map task
28 class Mapper<LongWritable, Text, IntWritable, Text> {
29 Function setup():
30 Map_timer.put((node_id+map_id), current_time);
31 connect to Mem in node_id from map_id
32 Function map(LongWritable key, Text value):
33 String val[]=tokenize value with space separation;
34 for 1 to end(val) do
35 Mem <− write(word,1);
36 end
37 Function cleanmap():
38 disconnect from Mem
39 }
40 Combiner function (COMB)
41 class Reducer<IntWritable, Text, IntWritable, Text > { // combiner method
42 Function reduce(Text key, Iterable<IntWritable> values):
43 for k in key do
44 result=sum(all values in the key)
45 Mem <− write(key,result)
46 end

44



Figure 3.4 Storing intermediate records in Memcache

reaching threshold T or threshold seconds or until the last map task of a job arrives in

the particular node. This whole process is controlled by MRAppMaster, which informs

slave nodes about the last map task. Finally, the output records from cache are moved

to shuffle phase by a current last map task. In the end of the map phase, the number of

records is reduced as minimum as possible. Reduce tasks are also launched only when

there is no further reduction is possible or last map task of a node arrives. So, resources

are not held by reduce tasks for a long time.

Figure 3.5 MLPNC system architecture

MLPNC component is run in every Hadoop VM as a separate service, as shown

in Figure 3.5. Each node sends the map tasks status information to MRAppMaster for

deciding which map tasks to send output records from the in-memory cache. Other

advantages using an in-memory cache are:

• Consider four map tasks are running in a node. Assume map1 did not produce

more output records, but yet holding memory empty and map4 generates more

45



records exceeding the reserved memory. Hence, memory usage varies across map

tasks. However, map task latency is the same for all map tasks as they process

every record once. Therefore, some map tasks hold memory without utilizing

until the map task completion. By creating a common cache, such problems are

overcome.

• As combiner is decoupled from map phase, map task latency is very less. It leads

to achieve more number of data-local map tasks possible in a VM.

3.2 Results and Analysis

3.2.1 Dynamic Ranking based MapReduce Job Scheduler (DRMJS)
3.2.1.1 Experimental Setup

We evaluate our ideas on a testbed of eight PMs with different configuration and ca-

pacity to host VMs on KVM hypervisor. Table 3.2 lists out the configurations and the

number of VMs hosted in each PM. 29 VMs are dedicated for Hadoop virtual cluster,

and 14 VMs are for non-Hadoop VMs to trigger resource contention for Hadoop VMs

as given in Table 3.3. We introduce random read/write (2 to 15 MB/s) to generate disk

contention and random read/write (1 to 100 KB/s) to generate network contention via

non-Hadoop VMs. Each PM’s CPU performance is differentiated with different pro-

cessor clock rate. Every VM is assigned with 2 virtual cores, 4 GB memory, 100 GB

storage, and runs Ubuntu 16 OS. We also assume that each container size of MapRe-

Table 3.2 Physical Machines (PM) configuration

Class
of PMs Configuration of PM VMs VM configurations

PM1
Intel(R) Xeon(R) CPU E5-2420 0, 1.90
GHz 6 cores, 32 GB memory, 1 TB HDD 8

2 virtual cores, 4 GB
memory, 100 GB HDD

PM2
Intel(R) Xeon(R) CPU E5-2680 v4, 2.40
GHz 28 cores, 132 GB memory, 3 TB HDD 23

2 virtual cores, 4 GB
memory,100 GB HDD

PM3−4
Intel(R) Core(TM) i5 CPU 650, 3.20
GHz 4 cores, 8 GB memory, 1 TB HDD 2x2

2 virtual cores, 4 GB
memory, 100 GB HDD

PM5−8
Intel(R) Core(TM) i7-3770 CPU, 3.40
GHz 4 cores, 8 GB memory, 1 TB HDD 4x2

2 virtual cores, 4 GB
memory, 100 GB HDD

46



Table 3.3 Hadoop virtual cluster

PM number of VMs number of Hadoop VMs number of non Hadoop VMs

PM1 8 5 3
PM2 23 16 7
PM3 2 1 1
PM4 2 2 0
PM5 2 1 1
PM6 2 1 1
PM7 2 2 0
PM8 2 1 1

Total 43 29 14

duce job holds 1 virtual core, and 1 GB memory. Local network bandwidth of VMs is

1 Gbps, and storage data rate is over 40 MB/s. We used workloads (wordcount, sort,

wordmean) to experiment on PUMA [7] Wikipedia (150 GB) dataset. Despite dataset

size is small to go for Hadoop, our intention is to demonstrate the ideas we have. HDFS

block size is 128 MB, which results in 1200 blocks for 150 GB dataset. Therefore,

there can be 1200 map tasks and we used 200 reduce tasks. We modify Fair scheduler

to incorporate DRMJS and compared with default Fair scheduler [22] (resource-aware),

and interference-aware scheduler [34].

3.2.1.2 Map and reduce task scheduling based on performance rank

In this section, we compared and contrasted four different cases on a set of workloads

(wordcount, sort, wordmean) concerning map task latency, reduce task latency, and

overall job latency on a heterogeneous environment. Case 1. Fair scheduler with no

co-located VM’s interference [22], Case 2. Fair scheduler with co-located VM’s inter-

ference, Case 3. Interference-aware fair scheduler [34], and Case 4. DRMJS. Table 3.4

accounts the metrics we collected from these cases. It is observed that average map and

reduce task latency of different workloads in case 2 increased over 200% and 75% re-

spectively. Job latency peaked over 58% and makespan also doubled due to co-located

VM’s interference. It indicates that default resource-aware MapReduce scheduler per-

formance is worse in multi-tenant environment. An interference-aware scheduler (Case

3) [34] considers historical interference pattern to predict the interference degree and

47



Table 3.4 Average map/reduce task latency for different workloads on heterogeneous
environment

Job Average map latency Average reduce latency Job latency Makespan
Case 1: Fair scheduler with no interference [22]

wordcount 8.9 73.5 420
1289sort 12.3 91.3 681

wordmean 9.1 67.2 403
Case 2: Fair scheduler with co-located VM’s interference

wordcount 21.9 141 787
2479sort 29.2 149.5 991

wordmean 27.4 121.1 709
Case 3: Interference-aware scheduler [34]

wordcount 16.5 117.7 700
2189sort 28.9 119.3 919

wordmean 23.4 109.7 668
Case 4: DRMJS

wordcount 11.7 73.9 463
1479sort 21.7 94.1 713

wordmean 15.3 64.2 419

avoids scheduling tasks in such nodes. It achieved 14% and 16% improvements in map

and reduce task latency respectively in average of different workloads. But, there is no

significant reduction in average job latency (9%) and makespan (12%). It is because,

they consider past resource usage pattern of physical and virtual machines. It is not

useful for increasing size of workloads and requires some extra work to predict co-

located non-Hadoop VM’s resource usage behaviour. To precisely predict co-located

VM’s resource usage behavior, we need to know the type of applications running. It

is not possible due to tight isolation and privacy of VMs. Moreover, the dynamic per-

formance of Hadoop VMs also is not considered. Therefore, we designed DRMJS that

dynamically (every 30 seconds) calculates the performance of Hadoop VMs. The per-

formance score is calculated for map and reduce task separately for each VM, unlike

previous methods discussed in the literature survey that calculate node performance for

both map and reduce tasks in common. It is essential to calculate the performance of

map/reduce tasks in every VM separately as they demand different resources during

their execution. As shown in Figure 3.6, Figure 3.7 and Figure 3.8, DRMJS improved

48



average map task latency of wordcount, sort, and wordmean jobs up to 30%, 25%, and

26% respectively than Case 3. Similarly, average reduce task latency of wordcount,

sort, and wordmean jobs improved up to 38%, 22%, and 42% respectively than Case 3.

DRMJS improved overall job latency up to 34%, 23%, 38% for wordcount, sort, and

wordmean jobs, respectively than Case 3, as shown in Figure 3.9. Ultimately, makespan

also improved over 33% than Case 3, as shown in Figure 3.10.

Figure 3.6 Average map/reduce task latency of wordcount job with different cases

Figure 3.7 Average map/reduce task latency of sort job with different cases

49



Figure 3.8 Average map/reduce task latency of wordmean job with different cases

Figure 3.9 Job latency of different workloads with different cases

Figure 3.10 Makespan of different cases

3.2.1.3 Scheduling reduce task based on its input size and performance rank

In the previous section, we discussed the allocation of the map and reduce tasks by

understanding the dynamic performance of VMs. Input size of map tasks is always the

50



Table 3.5 Number of reduce tasks and its average latency for wordcount job using Case
3 and Case 4

S.
No.

reduce input
size (GB)

number of
reduce tasks

Case 3 average reduce
latency (in seconds)

Case 4 average reduce
latency (in seconds)

1 1.9 16 242 173
2 1.7 15 212 151
3 1.6 13 221 148
4 1.5 11 190 134
5 1.3 7 231 120
6 1.1 9 167 90
7 1 10 148 91
8 0.9 7 130 87
9 0.8 13 105 60

10 0.7 12 95 52
11 0.6 15 57 38
12 0.5 13 68 41
13 0.4 9 42 20
14 0.3 18 31 17
15 0.2 15 29 15
16 0.1 17 23 14

same. However, the input size of reduce tasks is heterogeneous. At times, reduce task

taking very less input may be allocated to high performing VM (C1) or reduce task tak-

ing huge input may be allocated to low performing VM (C4). The later one may lead

to reduce task to be a straggler, which ultimately prolongs overall job latency. Case

4 handles this problem in an elegant way. After applying Algorithm 1, MRAppMas-

ter classifies (Algorithm 4) Hadoop VMs into four performance classes (C1,C2,C3,C4)

based on the reduce performance of each VM. We then dynamically find the total size

of reduce task input (adding up all partitions available in all map tasks) and map them

with any one of the four classes (C1,C2,C3,C4) of reduce node performance. Classifying

nodes like this is important, because, relatively equal performance nodes are put into

the same class. So, even if there is no container possible in a node of C1, another node

in the same class can be inspected for containers. If none of the nodes in the same class

have resources, the successive classes are inspected to launch containers.

We discuss reduce task allocation with Case 3 and Case 4 based on three parameters

51



(Table 3.5): reduce task’s input size, number of reduce tasks, and an average latency of

reduce task having same input size. From Table 3.5, we can observe that there are

different reduce tasks taking different size of the input. For instance, reduce input size

varies from 1.9 GB to 0.1 GB. Case 3 launched 15 reduce tasks each taking 1.7 GB

input with an average job latency of 212 seconds. To understand average job latency

variation, consider Case 3 that launches 7 reduce tasks taking 1.3 GB input. It takes

231 seconds on average to complete, which is almost equivalent to 13 reduce tasks

taking 1.6 GB input. It is because, Case 3 allocates reduce tasks just by observing the

interference degree (level of interference) of VMs, but not the amount of work each

reduce task does. Therefore, it is essential to consider the amount of reduce tasks input

along with the dynamic performance of Hadoop VM to minimize latency further. Case

4 (DRMJS) minimized average task latency over 28%-50% than Case 3 (Figure 3.11).

It is because, Case 4 rightly placed reduce tasks considering its input size and allocates

onto the right VM by considering dynamic performance.

Figure 3.11 Average reduce task latency of Case 3 and Case 4 for wordcount job

3.2.1.4 Performance score vs the number of map/reduce tasks in a Hadoop VM

While scheduling map/reduce tasks based on the rank of VMs, we tracked how many

number of map and reduce tasks was placed according to the performance score. For

instance, when a VM has high reduce performance score, then reduce task is preferred

to launch as map latency will be prolonged due to interference. After finding VMs rank,

it is mapped with one of the four classes (C1,C2,C3,C4) to choose the right VM for re-

52



duce tasks. Figure 3.12 exhibits the various cases of map and reduce performance score

of VMs. Let us consider a VM taking 12 different possible performance score com-

Figure 3.12 Performance score vs number of map/reduce tasks allocated

binations in map/reduce task allocation sequence. Consider task allocation sequence

1.When map and reduce performance score are high (0.9) then particular VM has no

interference, and a maximum number of containers for map/reduce tasks can be allo-

cated. When the performance score of map and reduce task is less than 0.008, then there

is no scope to launch a map or reduce task. When map performance score is high (0.9)

and reduce performance score is low (0.007) as in task allocation sequence 11, map

tasks are assigned subsequently satisfying data locality. Table 3.6 lists out the number

of map and reduce tasks avoided from being allocated to a node where co-located VM’s

interference is possible. For instance, PM1 avoids over 90% map tasks, and 100%

reduce tasks, while PM2 avoids 92% map tasks, and 84% reduce tasks. A map/reduce

task latency prolongs when it takes more time than the average map/reduce latency of

the current job. The interesting point is that the percentage of map/reduce tasks being

avoided from interference increases while number of non-Hadoop VMs increase in a

physical host. Because the possibility of allocating container for tasks without inter-

ference goes less likely when a number of co-located VM increases. PM4 and PM7

53



Table 3.6 Avoidance of map/reduce tasks from interference

PM wise
task allocation

Case 3 Case 4
number of map
tasks prolonged

its latency

number of reduce
prolonged its

latency

number of map
tasks avoided the

interference

number of reduce
tasks avoided the

interference
PM1 23 11 21 11
PM2 51 19 47 16
PM3 4 2 4 2
PM4 9 3 8 1
PM5 3 2 3 1
PM6 5 2 5 1
PM7 8 4 8 3
PM8 5 2 4 2

do not have co-located VMs. Therefore, it is decided to schedule tasks based on the

performance of VM.

3.2.1.5 Resource utilization

As shown in Figure 1.12, utilization of other resources is minimized gradually when

IO resource enters into bottleneck. Figure 3.13 shows the improved resource utiliza-

tion wne disk IO is prone to bottleneck. With DRMJS, CPU utilization and N/W IO

improved 30%-65%, and 35%-60%, respectively, on average by understanding interfer-

Figure 3.13 Resource utilization after DRMJS

54



ence of co-located VMs when disk IO contention exists. It has become possible as we

allocate map and reduce tasks not only based on the hardware heterogeneity and also

considering the co-located VM’s interference.

3.2.2 Multi-Level Per Node Combiner (MLPNC)
3.2.2.1 Experimental Setup

We experimented and evaluated MLPNC on a testbed with the following configuration:

physical server with Xeon processor, KVM hypervisor, VMs with the configuration

of dual-core (hyper-threaded), 8 GB memory, 50 GB HDD, and 1 Gbps full duplex

network link, Linux OS, and Hadoop 2.7.0. We preferred wordcount job for the ex-

periment, which is the best candidate to evaluate the shuffle phase as the number of

records emitted by map tasks are greater than its input. We tested a wordcount job on

three different virtual clusters with 2, 3, and 4 nodes (VMs). Each VM is hosted in

different physical server (in the same cluster) to track the number of records prepared

for the shuffle phase. We used three different sizes of text dataset: 10 GB, 15 GB, 20

GB with default HDFS block size 128 MB. These text datasets are generated by the

pre-defined MapReduce job “randomtextwriter” that comes along with Hadoop distri-

bution. A number of map tasks launched for 10 GB, 15 GB, 20 GB input dataset are

90, 135, and 180 respectively. Number of reduce tasks are 5 for all experiments. Since

each VM contains 8 GB memory, there can be 7 containers (each with 1 virtual core

and 1 GB memory) for map tasks possible at any point of time. For reduce tasks, we

allocate a container with 1 virtual core and 2 GB memory. We considered two meth-

ods to compare the efficiency of MLPNC: default combiner, PNC [29]. Comparisons

among these approaches are extensively presented based on number of shuffled records,

average shuffle latency, average merge latency, and average reduce task start latency.

3.2.2.2 Results and Analysis

MLPNC minimizes the number of shuffle records by running combiner function multi-

ple levels until there is no further reduction possible or last map task arrives in a node.

Figure 3.14 illustrates the number of shuffled records (in millions) produced by differ-

ent approaches for different size of datasets on two nodes (Figure 3.14(a)), three nodes

55



(Figure 3.14(b)), four nodes (Figure 3.14(c)). MLPNC produced less number of records

than other approaches such as default combiner and PNC. MLPNC minimized the num-

ber of shuffled records up to 33% compared to PNC. Shffule phase is responsible for

the major portion of job latency. As there is a significant drop in the number of shuffled

records, shuffle phase latency also minimized significantly, as shown in Figure 3.15,

using MLPNC up to 40% compared to PNC. When the number of records received at

reducer side is high, records have to be spilled into the local disk from memory. Once

all records received from all map tasks, spilled files have to be merged in order to per-

form the sort. This merging time is dependent on the number of shuffled records. So,

MLPNC minimized the shuffle latency up to 30% compared to PNC on average for

different cluster size. This results in minimizing the reduce task latency up to 20-25%

on average compared to PNC.

It is very important to launch reduce tasks at the right time to receive map output

records. Launching reduce tasks early (along with map tasks) clogs up the cluster re-

Figure 3.14 Number of shuffled records generated by different approaches for different
sizes of dataset

Figure 3.15 Average shuffle latency using different approaches for different sizes of
dataset

56



Figure 3.16 Reduce task start latency for all datasets based on different approaches

Figure 3.17 Overall job latency

sources for a long time. Launching reduce tasks after all the map tasks completed leads

to massive network bandwidth consumption, which increased job latency. Because

all map nodes start transferring the intermediate results to reduce nodes at the same

time. MapReduce has properties to customize when to launch reduce tasks. However,

in PNC, when cache hits threshold or last map tasks launched in a VM, intermediate

records are moved to reduce nodes. So, it requires reduce tasks to be launched once

any of the nodes running PNC reach cache threshold. In contrast, MLPNC minimizes

the number of intermediate records level by level until there is no further reduction is

possible or last map task of that node arrived. Figure 3.16 shows that MLPNC launches

reduce tasks after 10-15 seconds on average than PNC. Consequently, MLPNC mini-

mized overall job latency up to 32% on average, as shown in Figure 3.17, compared to

PNC for different datasets on a different number of nodes in the cluster.

3.2.3 Reduce task scheduling based on performance rank after MLPNC
3.2.3.1 Experimental Setup

We evaluated this idea with Hadoop 2.7.0 on a testbed with eight different physical

machines of different configuration and capacity to host VMs using KVM hypervisor.

Table 3.2 lists the PM’s configuration and number of VMs hosted in each PM. As given

57



in Table 3.3, 29 VMs are dedicated for Hadoop virtual cluster, and 14 VMs are for non-

Hadoop VMs to trigger resource contention for Hadoop VMs. We introduced random

read/write (5 to 15 MB/s) to generate disk contention and random read/write (1 to 100

KB/s) to generate network contention via non-Hadoop VMs. Each PM’s CPU perfor-

mance is differentiated with different processor clock rate. Every VM is assigned with

2 virtual cores, 4 GB memory, 100 GB storage, and runs Ubuntu 16 OS. We also as-

sume that each container size of MapReduce job holds 1 virtual core and 1 GB memory.

Local network bandwidth of VMs is 1 Gbps, and storage data rate is over 15 MB/s. We

used PUMA [7] Wikipedia (150 GB) dataset to experiment with wordcount job further.

Despite dataset size is small to go for Hadoop, our intention is to demonstrate the idea

we proposed. HDFS block size is 128 MB, which results in 1200 blocks for 150 GB

dataset. Therefore, there can be 1200 map tasks (1 map task for each block) for the

wordcount job.

3.2.3.2 Results and Analysis

Even though DRMJS minimized the latency of map and reduce tasks, yet there is a

possibility to minimize reduce task latency by understanding the size of each reduce

task’s input. While scheduling reduce tasks, nodes for reduce tasks are selected from

the reduce rank list based on the size of reduce task’s input. We demonstrated reduce

task allocation and its latency based on 4 cases: Case 1. job with no combiner, Case

2. job with a combiner, Case 3. job with MLPNC, and Case 4. job with MLPNC

using DRMJS. We compared and contrasted each case with 3 parameters: number of

reduce tasks, reduce task’s input size, and average latency of reduce tasks having the

same input size. For all these cases, we set a constraint that the number of reduce tasks

depends on the size of overall map tasks output. Table 3.7 accounts the number of

reduce tasks launched for first three cases. For example, if map phase output is 4 GB,

then 8 reduce tasks (assuming 500 MB input for each reduce task) are decided, to avoid

a single reduce task dumped with huge input. At times, before some map tasks get over,

we have to launch reduce tasks. In this case, the number of reduce tasks is determined

based on the overall map phase output dynamically. This constraint is to decide the

number of reduce tasks, and nothing to do with reduce tasks input size. This constraint

58



Table 3.7 Number of reduce tasks for all cases

Different cases
Total map phase
output (in GB) Number of

reduce tasksjob input 150
Case 1 178 356
Case 2 81.2 163
Case 3 53.2 107

is required because, when we launch 200 reduce tasks for Case 1, each reduce task will

have a large size of the input. If we run 200 reduce tasks for Case 3, then most of the

reduce tasks will do very little work, which leads to resource under-utilization.

Table 3.8 records reduce input size, number of reduce tasks with the same input size,

and its average latency for all four cases. From Table 3.8, we can observe that there are

different reduce tasks taking the different size of the input. For instance, for Case 1,

reduce input size varies from 1.9 GB to 0.1 GB. Seven reduce tasks take 1.9 GB input

with average latency of 191 seconds. Average reduce task latency does not decrease

linearly with decreasing reduce tasks input size (Figure 3.18). It is because most of the

reduce tasks taking less input size are sprawled across a virtual cluster. This point is

valid for Case 2, as shown in Figure 3.19. Similarly, for Case 1, the average latency of

10 reduce tasks taking 1.2 GB input is 167 seconds.

Figure 3.18 Case 1: Reduce task latency with no combiner

59



Ta
bl

e
3.

8
N

um
be

ro
fr

ed
uc

e
ta

sk
s

an
d

its
av

er
ag

e
la

te
nc

y

S.
N

o.
w

ith
no

co
m

bi
ne

r(
C

as
e

1)
w

ith
co

m
bi

ne
r(

C
as

e
2)

w
ith

M
L

PN
C

(C
as

e
3)

M
L

PN
C

w
ith

dy
na

m
ic

pe
rf

or
m

an
ce

(C
as

e
4)

re
du

ce
in

pu
t

si
ze

(G
B

)

nu
m

be
r

of
re

du
ce

ta
sk

s

av
er

ag
e

la
te

nc
y

(i
n

se
co

nd
s)

re
du

ce
in

pu
t

si
ze

(G
B

)

nu
m

be
r

of
re

du
ce

ta
sk

s

av
er

ag
e

la
te

nc
y

(i
n

se
co

nd
s)

re
du

ce
in

pu
t

si
ze

(G
B

)

nu
m

be
r

of
re

du
ce

ta
sk

s

av
er

ag
e

la
te

nc
y

(i
n

se
co

nd
s)

re
du

ce
in

pu
t

si
ze

(G
B

)

nu
m

be
r

of
re

du
ce

ta
sk

s

av
er

ag
e

la
te

nc
y

(i
n

se
co

nd
s)

1
1.

9
7

19
1

1.
5

8
17

9
1.

7
2

18
9

1.
7

2
13

7
2

1.
6

3
18

0
1.

4
2

18
7

1.
5

3
17

3
1.

5
3

12
1

3
1.

4
2

17
1

1.
2

11
17

1
1.

4
4

18
3

1.
4

4
11

9
4

1.
3

5
12

3
1.

1
7

13
3

1.
1

7
15

6
1.

1
7

10
7

5
1.

2
10

16
7

0.
9

9
16

9
1

5
16

7
1

5
99

6
1.

1
3

12
7

0.
7

7
10

1
0.

8
7

12
7

0.
8

7
93

7
1

13
11

3
0.

6
12

89
0.

6
11

11
3

0.
6

11
73

8
0.

9
5

12
1

0.
5

5
83

0.
4

3
87

0.
4

3
61

9
0.

8
15

12
3

0.
4

21
71

0.
3

25
71

0.
3

25
53

10
0.

7
17

97
0.

3
19

53
0.

2
21

51
0.

2
21

49
11

0.
6

42
78

0.
2

25
37

0.
1

19
39

0.
1

19
37

12
0.

5
44

89
0.

1
37

31
13

0.
4

41
78

14
0.

3
49

57
15

0.
2

57
43

16
0.

1
43

41

60



It is comparatively not much better than 2 reduce tasks taking 1.4 GB input that

complete in 171 seconds. It is because reduce tasks are allocated arbitrarily regardless

of the dynamic performance of VMs. The same scenario can be observed in Case 2 and

Case 3 also, as shown in Figure 3.19. Therefore, it is important to understand the dy-

namic performance of each VM. MLPNC considers the input of reduce tasks from every

VM rather than every map tasks. With MLPNC, at times, reduce task receiving 1.5 GB

input takes more or equal time as reduce tasks processing 1 GB. It is because some of

the reduce tasks processing 1.5 GB is allocated to low performing VM. Therefore, de-

spite minimizing the number of intermediate records in the shuffle phase using MLPNC,

there is a scope to improve job latency further by exploiting performance heterogene-

ity in a virtual environment. While exploiting dynamic performance for MLPNC, we

initially find the total size of reduce phase input (adding up all partitions available in

all VMs) and classifies them into any one of the four class of node performance (C1,C2,

C3, C4). It is important because relatively equal performance nodes are put into the

same class. So, even if there is no container possible in a node of C1, another node

that belongs to the same class can be inspected for containers. If none of the nodes

in the same class has a container, then the successive class is inspected for containers.

Assigning reduce tasks that belong to C1 to other lower classes may result in a straggler.

However, reduce tasks that belong C4, can be assigned with any of the upper classes.

Figure 3.19 Case 2: Reduce task latency with combiner

61



Figure 3.20 Reduce task latency with dynamic performance vs MLPNC

Figure 3.20 shows the comparison between MLPNC and MLPNC with dynamic per-

formance. It is observed that the latency of particular reduce tasks having bigger input

size is vastly reduced. For instance, reduce task taking 1.7 GB input takes 28% less

time than MLPNC with no dynamic performance. Similarly, 28%-41% improvement

in reduce task latency is achieved for reduce tasks taking input from 1.7 GB to 0.6 GB

as they will have more probability to get allocated with high performing nodes class

(C1, C2). However, there is no much improvement in average reduce latency with an

input size of fewer than 0.5 GB. It is because the number of reduce tasks taking less

than 0.5 GB input size is high, and they are sprawled in all nodes in the virtual cluster.

3.3 Summary

The primary concerns for Hadoop users are improving job latency and resource utiliza-

tion. However, Hadoop virtual cluster faces many challenges as they are spread across

racks in CDC and co-located with non-Hadoop VMs. One of the significant problems is

the heterogeneous performance of VMs due to hardware heterogeneity and co-located

VM’s interference. It largely impacts job latency and resource utilization. So, we pro-

posed DRMJS to improve job latency and resource utilization in a virtual cluster. DR-

MJS dynamically observe the performance of a VM for map and reduce tasks sepately.

Ultimately, DRMJS improved overall job latency, makespan, and resource utilization

62



up to 30%, 28%, and 60%, respectively, on average compared to existing MapReduce

schedulers. To minimize job latency further, we minimized the number of intermediate

records using MLPNC. MLPNC outperformed PNC up to 33% reduction in a number of

shuffled records, and up to 32% reduction in average job latency. We also placed reduce

tasks based on its input size by exploiting heterogeneous performance after MLPNC.

Results claimed that 28%-41% of reduce task latency improvement is possible by ex-

ploiting performance heterogeneity.

63





Chapter 4

MapReduce Job Scheduling

4.1 Proposed Methodologies

From the outcome of literature survey, we can understand that yet there are opportuni-

ties for Hadoop MapReduce to improve makespan and resource utilization by schedul-

ing heterogeneous jobs in heterogeneous virtualized environment. The proposed works

are:

1. Roulette Wheel Scheme (RWS) based data block placement in HDFS to minimize

job latency.

2. Constrained 2-dimensional bin packing map/reduce tasks using Ant Colony Op-

timization (ACO).

3. Fine-Grained Data-Locality Aware (FGDLA) job scheduling to minimize the

number of intermediate records for a batch of jobs.

4.1.1 Roulette Wheel Scheme (RWS) based data block placement

We developed a model that helps to place data blocks across Hadoop VMs based on

the capacity of VM flavors. In general, data is divided into equal sized (128 MB)

chunks, called blocks, before loading onto HDFS. By default, the replication factor of

data blocks in HDFS is 3. So, three copies of a data block are stored based on the

topology awareness in the physical cluster. However, topology awareness in virtual

cluster is not yet known to be implemented in HDFS. Therefore, every VM will receive

the same number of data blocks at any point of time. Consider v number of VMs (V M1,

65



V M2,..., V Mv) in the Hadoop virtual cluster. If the data size is t TB and default data

block size is 128 MB, then the number of data blocks n is calculated as n = t/128MB.

If the replication factor is 3, the total number of data blocks is n ∗ 3. These blocks are

placed across VMs equally, which means that each VM will get (n∗3)/v blocks. Now,

consider five different VM flavors (V MF1, V MF2, V MF3, V MF4, V MF5), as given in

Table 4.1, with different resource capacity. In V MF1, at any point in time, there can be

only one block processed or one map/reduce task can be launched. In V MF5, up to 12

different tasks can be launched if each container requires exactly 1 vCPU. For instance,

at time Ct , V MF5 will be able to complete over 10 map/reduce tasks while V MF1 can

finish only one map/reduce task. If every VM has to process an equal number of blocks,

VM flavors containing more capacity will complete more number of blocks in parallel

compared to V MF1. At this moment, V MF5 becomes idle as there are no more blocks

to process but V MF1 has to finish processing some more blocks. Now, blocks from

V MF1 are copied into V MF5 for non-local execution. This incurs network bandwidth

to transfer those unprocessed data blocks over the network. Therefore, the latency of a

job increases, which in turn increases the makespan.

In order to minimize the makespan, we have to place blocks based on the capacity of

individual VM. This means that the number of data blocks loaded into each VM depends

upon the number of vCPU allocated to VMs considering a task demands one core at

any time. Placing blocks with this idea, when V MF1 completes one task, V MF5 can

complete as maximum as possible, thus parallelism is achieved. We used a probability

method, Roulette Wheel Scheme (RWS), to find the number of blocks that can be placed

in each VM flavor based on its resource capacity. RWS is a French word meaning “little

Table 4.1 Percentage of blocks to store in different VM Flavours

V MFf Flavor name V MFf < vCPU,Memory,Storage > Pf
V MF1 small V MF1 < 1,2,20 > 1/27=0.037%
V MF2 medium V MF2 < 2,4,40 > 2/27=0.07%
V MF3 large V MF3 < 4,8,80 > 4/27=14%
V MF4 x large V MF4 < 8,16,160 > 8/27=29%
V MF5 2x large V MF5 < 12,24,250 > 12/27=44%

66



wheel”. The concept is, a wheel is divided with pie-cut pizza shape. If we rotate this

wheel with a small ball rolling on it, the probability of ball resting on the large pizza-cut

is high when the wheel stops rotating. Similarly, to place data blocks, we consider the

number of vCPUs in a VM flavor. Therefore, VM having more vCPU will attract more

number of blocks. Equation 4.1 generalizes this statement based on the number VM

flavors given in Table 4.1.

∀ f ,Pf =
V MFf < vCPU >

∑
5
z=1V MFz < vCPU >

(4.1)

We consider only the available number of vCPU in each VM flavor as map/reduce tasks

are space shared (not time shared) and constitute the number of containers that can

be formed in a VM. Equation (4.1) adds up all the vCPU allocated in each flavor and

calculates the relative percentage of data blocks to store in each VM flavor. Therefore,

each VM that belongs to V MF1 gets 0.037% of overall blocks intended to be stored

in HDFS. Similarly, V MF2, V MF3, V MF4, V MF5, get 0.07%, 14%, 29%, and 44%

of overall data blocks stored in HDFS as given in Table 4.1. However, this model

is applicable only when the replications of a data block are stored in the VMs of the

same flavor. In general, different copies of a data block are placed in different VMs

regardless of the VM flavor. For instance, consider a dataset with 1000 blocks (bi|i =

1 to 1000). If the replication factor is 3, there will be 3000 blocks. As there is no

rack awareness in the virtual environment, copies of a data block may be stored in two

different cases:

• Case 1: If block b1 is stored in different VMs of the same flavor, in which VM

should map task for block b1 be executed? It is done in any VM of the same

flavor. This does not affect the overall probability of map task execution of a VM

flavor.

• Case 2: If block b1 is stored in VMs of different flavors (say, V MF1, V MF3, and

V MF5), in which VM flavor should map task for block b1 be executed? Now,

executing in any of the VM flavors affect the overall probability of map tasks

processed in each VM flavor.

Therefore, if a block b1 is stored in V MF1, then its replica should be stored in the VM

67



of same flavor satisfying data locality. This is the major idea in our block placement

strategy. Achieving this, every VM flavor has a Pf probability of blocks to be processed

for each workload. Moreover, non-local execution is avoided as maximum as possible.

4.1.2 Constrained 2-dimensional bin packing map/reduce tasks

Bin packing tasks is largely studied in a heterogeneous virtual environment. However,

bin packing concept is entirely new for map/reduce task scheduling to the best of our

knowledge. Placing map/reduce tasks of different jobs affects resource utilization and

makespan. Therefore, MapReduce scheduler should be aware of VM flavors and its

capacity in order to place the right combination of map/reduce tasks of heterogeneous

jobs. To achieve this, we transform the map/reduce task scheduling problem into 2-

dimensional constrained bin packing problem.

4.1.2.1 Challenges

Two major challenges are considered to improve the makespan and resource utilization

of a MapReduce job scheduler.

• Heterogeneous jobs (varying size container, varying number of tasks).

• Heterogeneous VM capacities.

4.1.2.2 Problem definition

“Placing map/reduce tasks of heterogeneous jobs onto bins (VMs) of heterogeneous

capacities to improve makespan and resource utilization” is represented as Equation

4.2.

F : ∀ j,∀i,CombJ j < map,reduce >→ Bh,g
i (4.2)

n map tasks and m reduce tasks of a job (J j) may be executed at any point of time

in a bin (Bh,g
i ) obeying the constraints of map and reduce tasks. A combination of

map and reduce tasks of a job executed in a bin is denoted as ordered pair CombJ j <

n ∗map,m ∗ reduce >. A bin may execute any combination of map/reduce tasks (for

instance, CombJ1 < 5,0>∧CombJ2 < 0,2>∧CombJ3 < 0,0>∧...∧CombJM < 3,0>)

of M different jobs. However, it is not certain that map/reduce tasks of all the jobs

should be executed in a bin at any time. Because, if there are no data blocks to be

68



processed by a job in a bin, then map/reduce tasks of that particular job will not be

included in this pair sequence.

4.1.2.3 Notations used

We list some of the notations and its descriptions used in our problem formulation.

X - Number of racks in a CDC.

Rg - gth rack {R1,R2...Rg...RX}.

Y - Number of PMs in each Rg.

Pg
h - hth PM in gth rack {Pg

1 ,P
g
2 ...P

g
h ...P

g
Y }.

N - Number of VMs (bins).

Bh,g
i - ith bin in hth PM in gth rack {Bh,g

1 ,Bh,g
2 ...Bh,g

i ...Bh,g
N }.

M - Number of workloads (jobs).

J j - jth job {J1,J2...J j...JM}.

BRv,u
i - Bin Resource: Number of vCPU (v) and amount of memory (u) in ith bin.

Taskp,q
j - Number of map tasks (p) and reduce tasks (q) of each J j

AR_Mv,u,r
i, j - Allocated Resources (v vCPU, and u Memory) for rth map task of J j in

ith bin.

AR_Rv,u,s
i, j - Allocated Resources (v vCPU, and u Memory) for sth reduce task of J j in

ith bin.

Ti - Number of map/reduce tasks allocated in ith bin.

CombJ j < map,reduce > - Combination of map/reduce tasks of different J j in a bin.

Ct - Commit time: launching map/reduce tasks of different jobs every t seconds.

4.1.2.4 Objective function

Our main objective of bin packing map/reduce tasks is to improve the resource utiliza-

tion for a batch of heterogeneous jobs in heterogeneous bin capacities. As a result of

packing map/reduce tasks as much as possible utilizing all the resources of a virtual

cluster, makespan also could be minimized as a by-product. However, individual job

completion time could vary. For instance, the completion time of the shortest job could

be higher than a bigger job in the batch. Because we submit a batch of jobs, where

69



individual job latency is ignored to improve resource utilization. We initially find dif-

ferent possible combinations < map,reduce > for each job in every bin. For instance,

consider two jobs (J1, J2), 100 VMs each with 4 containers. For simplicity, we con-

sider only map tasks of jobs in finding combinations for each bin, because only after

all map tasks completed, reduce tasks are launched. Therefore, possible combinations

of map/reduce tasks of jobs (J1, J2) in all bins are < 4,0 >< 0,0 >,< 3,0 >< 1,0 >

,< 2,0 >< 2,0 >,< 1,0 >< 3,0 >,and < 0,0 >< 4,0 >. As we are going to modify

fair scheduler to incorporate bin packing scheme, we need to ensure a fair share of re-

sources among jobs. For instance, < 4,0 >< 0,0 > from Bh,g
1 , < 2,0 >< 2,0 > from

Bh,g
2 , < 1,0 >< 3,0 > from Bh,g

3 , etc. After finding these combinations, we need to

evaluate whether the resources in each bin are utilized the maximum or not using Equa-

tion 4.3, which comprises two components (vCPU, and memory) to find Total Allocated

Resource in ith bin (TARi).

Total Allocated Resource in Bh,g
i =TARi=

∑
Ti
k=1 AR_Mv

k ∨AR_Rv
k

BRv
i

× ∑
Ti
k=1 AR_Mu

k ∨AR_Ru
k

BRu
i

, at Ct (4.3)

To find the utilization of vCPU of a bin, we find the ratio between the number of vCPU

occupied by all tasks (Ti) running in the ith bin at present and the total number of vCPU

available in the bin. Similarly, we calculated the utilization of memory as well. If any

one of the resources is utilized very less, for example, 90% (vCPU) and 10% (mem-

ory), then TARi will be just 0.09 (0.9 x 0.1), which is not desired. Therefore, for all

the combinations found in each bin, TARi is calculated as given in Table 4.2. We only

consider the combinations that result in over 90%. After calculating TARi, our objective

is to improve the resource utilization in individual bin, and overall resource utilization.

Equation 4.4 calculates the Utilization of Individual Bin (UIB) for different combina-

tions while the Overall Cluster Resource Utilization (OCRU) is calculated by Equation

4.5. Table 4.2 lists out the combinations of different jobs for VMs of different flavor.

UIB = Min(1−TARi) (4.4)

OCRU = Min
N

∑
i=1

(1−TARi) (4.5)

70



Table 4.2 Possible combination of map tasks of different jobs in a VM

J1 J2 J3 J4 J5 J6 Resource utilization (TAR)
V Ms ∈V MF1

1 0 0 0 0 0 100
0 0 0 0 1 0 100

V Ms ∈V MF2

2 0 0 0 0 0 100
1 0 0 0 1 0 100
0 0 1 0 1 0 93.75
1 0 1 0 0 0 93.75

V Ms ∈V MF3

4 0 0 0 0 0 100
2 0 0 0 2 0 100
1 0 0 0 3 0 100
0 0 0 0 4 0 100
0 0 1 0 3 0 96.88
3 0 1 0 0 0 96.88
2 0 1 0 1 0 96.88
3 1 0 0 0 0 93.75
0 1 1 0 2 0 90.62

V Ms ∈V MF4

8 0 0 0 0 0 100
0 0 0 0 8 0 100
5 0 0 0 0 2 100
0 0 0 0 0 6 100
0 0 1 0 7 0 98.44
0 2 5 0 2 0 98.44
5 1 0 0 2 0 96.88
4 0 3 0 1 0 95.31
1 1 2 0 4 0 93.75
5 1 2 0 0 0 93.75
2 1 3 0 2 0 92.19
1 2 2 0 3 0 90.62
3 2 1 0 2 0 92.19

V Ms ∈V MF5

0 0 0 0 0 6 100
6 0 0 0 0 4 100
0 0 0 5 2 2 98.96
0 4 0 5 2 0 98.96
0 3 0 1 5 2 96.88
8 0 3 0 1 0 96.88
4 1 2 0 5 0 95.83
5 0 4 0 3 0 95.83
3 2 1 0 4 1 90.62
1 2 1 0 6 1 90.62
4 4 1 0 3 0 90.62
1 2 0 1 7 0 90.62
0 3 0 0 7 1 90.5871



As the solution space is huge, we select z different combinations of map/reduce tasks

that gives minimized resource wastage in each bin periodically for every Ct seconds.

Because, scheduling decision must be near real-time as jobs are being executed. Con-

straints of map and reduce shrink the solution space that can be searched. As we are

modifying fair scheduler, a fair share of resources among jobs must be ensured at every

Ct . This is verified by calculating the amount vCPU and memory used by map/reduce

tasks of different jobs at Ct with the overall resources available in the virtual cluster

using Equation 4.6.

∀ j,
∑

p
r=1 AR_Mv

j +∑
q
s=1 AR_Rv

j

∑
N
i=1 Bv

i
×

∑
p
r=1 AR_Mu

j +∑
q
s=1 AR_Ru

j

∑
N
i=1 Bu

i
≤ ∑

N
i=1 Bv

i
|J|

× ∑
N
i=1 Bu

i
|J|

(4.6)

It is important to note that a fair share of resources for jobs is not assured in its whole

lifetime, but it is ensured at every Ct when a job gets its opportunity satisfying the

resource utilization. In addition, data locality is the primary constraint for map tasks

to minimize the latency and ensured using Equation (4.7). In order to achieve this, we

firstly get the block location information from namenode service and determine whether

tasks can be launched in the respective bin (Taskr
j ∈ Bh,g

i ) as three bins are available for

each block. As RWS based block placement is used, it does not matter which bin

is chosen for each block. Therefore, the bin that corresponds to maximum resource

utilization is preferred.

∀ j,p,AR_Mp
i, j← Taskp

j ∈ TAR (4.7)

Finally, to avoid overallocation of map/reduce tasks in Bh,g
i , the amount of resources

planned for map and reduce tasks in each bin are summed up and compared with the

amount of resources available in Bh,g
i using Equation (4.8), in which vCPU and Mem-

ory are added separately and compared with the overall resources.

0≤
Ti

∑
k=1

AR_Mv
k ∨AR_Rv

k ≤ BRv
i ∧0≤

Ti

∑
k=1

AR_Mu
k ∨AR_Ru

k 6 BRu
i (4.8)

72



4.1.3 Packing map/reduce tasks using Ant Colony Optimization (ACO)

If there are hundreds of VMs and tens of MapReduce jobs, then finding all combinations

of map/reduce tasks of different jobs in each VM is a time-consuming process. For in-

stance, as shown in Figure 4.1, for two MapReduce jobs < J1,J2 > to run in a bin, there

are five possible combinations available. If there are 100 bins, then 5100 combinations

are possible in the solution space, which is huge to find fair share among jobs, and we

need a schedule in a few seconds. Moreover, when the number of jobs, the number of

containers, and the number of bins increases, solution space goes exponentially high,

which is not possible to evaluate in short-time for finalizing the schedule. Therefore,

Figure 4.1 Number of map/reduce task combinations of different jobs

we used a meta-heuristic algorithm, ACO, which is well known for finding an optimal

solution from huge discrete solution space. As given in Algorithm 6, we initially find

the maximum number of map tasks of each job possible in each VM flavor, as listed in

Table 4.3. For any solution space, we need to know the range within which we have

to look for the solution. For instance, V MF5 can execute 12, 12, 12, 6, 12, and 6 map

tasks of J1, J2,..., and J6 respectively. Now, in each bin that belongs to different flavor

finds different combinations of map tasks from different jobs, subsequently, TARi is

calculated, as given in Table 4.2. One possible combination of map tasks of each job

in a bin that belongs to V MF5 is (0, 0, 0, 5, 2, 2) and TARi is calculated. Similarly, we

calculate the resource utilization of all possible combinations in the respective bin and

choose combinations that has TARi over 90%. Table 4.2 displays the possible map tasks

combination in a bin of each VM flavour when there are no tasks running previously.

We prefer top 5 map task combinations of different jobs in each bin with data locality.

73



Table 4.3 Maximum number of map tasks for each job in each VM flavour

Job V MF1 V MF2 V MF3 V MF4 V MF5

1 1 2 4 8 12
2 1 2 4 8 12
3 1 2 4 8 12
4 0 1 2 4 6
5 1 2 4 8 12
6 0 1 2 4 6

For reduce tasks, we find a set of VMs running in a specific rack. Firstly, we find

a rack that may transfer more map output data among all the racks in the CDC using

Equation 4.9. As we cannot find the exact map output size in advance before all map

tasks completed, we add up the map output stored in the in-memory buffer. After find-

ing a rack that may cause more map output, we find a set of VMs in the rack that will

produce more map output, in the same way, using Equation 4.10. After this, a right

Figure 4.2 Finding map/reduce task combinations using ACO

74



Algorithm 6: Bin packing map/reduce tasks using ACO

1. Get the information on the workloads and bins.

2. Find the different combinations of map/reduce tasks of different jobs that can be
run in each bin.
For the map tasks

(a) Find the maximum number of map tasks of each job possible in each VM
falvor (Table 4.3) to set the limit for number of combinations.

(b) Find all possible combinations of map tasks from all the jobs that are
currently active and find TARi (Table 4.2).

(c) Consider top z combinations of map tasks in each Bh,g
i that belongs to a

particular VM flavour ensuring data locality.

For the reduce tasks.

(a) Map output in racks

∀g,MORg = ∀ j,
∑

N
i=1(∑

p
r=1 TaskOut putr

j ∈ Bh,g
i )

∑
X
g=1(∑

N
i=1(∑

p
r=1 TaskOut putr

j ∈ Bh,g
i ))

(4.9)

(b) Preferred rack to process the reduce task Pref_Rack=max(MORg)

(c) Map output in VMs in Pref_Rack

∀i,MOVi =
∑

p
r=1 TaskOut putr

j ∈ Bh,Pre f Rrack
i

∑
N
i=1

(
∑

p
r=1 TaskOut putr

j ∈ Bh,Pre f Rack
i

) (4.10)

(d) Preferred VMs to process the reduce task Pref_VM=sort_des_order(MOV )

(e) Consider the top 50% of bins from Pref_VM to launch reduce tasks.

(f) Find the possible combinations < map,reduce > tasks that belong to J j in
each bin (if early reduce enabled) and find TAR.

3. Apply ACO taking Table 4.2 as input for every 10 bins (Figure 4.2) to find the
fair share among jobs and picking up the map/reduce task combinations that
results TAR over 90%.

4. Collect schedule and commit tasks.

5. Check for unused resources every Ct , and repeat step 2 until all jobs are
completed.

combination of < map,reduce > is found for each job. If early reduce feature is en-

abled, then before all map tasks of a job is over, all reduce tasks are launched. Therefore,

we need to include the reduce tasks also in finding the right combinations (as given in

75



ordered pair) that results to resource utilization. Mostly, 1000s of map tasks are ex-

ecuted for the huge dataset, so over 90% of the time only map tasks combination of

different jobs are considered. This way, we minimize the inter-rack bandwidth con-

sumption while launching reduce tasks. After finding possible bins to launch map and

reduce tasks, as shown in Figure 4.2, we run ACO for every b bins to find the right com-

bination of map/reduce tasks to maximize the individual bin resource utilization. For

instance, < 4,0 >< 0,0 > from Bh,g
1 , < 2,0 >< 2,0 > from Bh,g

2 , < 1,0 >< 3,0 > from

Bh,g
3 , etc. In order to ensure a fair share of resources among jobs, we need to evaluate all

5100 combinations for 100 bins. Therefore, we breakdown the combinations by taking

every b bins to find fair share, which will cause just 510 combinations. This takes a few

seconds to find the right combinations and schedule map/reduce tasks in real-time.

4.1.4 Fine Grained Data Locality Aware (FGDLA) job scheduling

Virtual network bandwidth consumption is always critical while sharing among a set of

VMs. As MapReduce jobs consume an arbitrary amount of network bandwidth during

the shuffle, it is important to minimize service cost and improve makespan. As already

mentioned, MLPNC was introduced to minimize the number of intermediate records for

a job. While running a batch of jobs, map tasks of different jobs are executed arbitrarily

depending upon data locality. Therefore, it becomes challenging to find a set of map

tasks that belong to the same job in a node in a given time, to run a single combiner

common for them. To minimize virtual network bandwidth consumption further, we

introduce FGDLA by extending MLPNC for a batch of jobs. MLPNC is fruitful only

when a greater number of map tasks of the same job is executed in a node so that the

number of times a combiner invoked is minimized. If there are four map tasks from

different jobs running in a bin, there has to be four MLPNC running because each job

has its combiner functionality.

Therefore, each MLPNC reserves some memory and runs as a separate thread. This

adds overhead, and there is no much reduction in map output data size. However, if

there are four map tasks of the same job running in a bin, then it is enough to run its

respective MLPNC. While running a batch of jobs, it is tricky to ensure all map tasks

are from the same job to ensure only one MLPNC is running. So, while executing a

76



batch of jobs, FGDLA schedules a set of map tasks of a job to exploit MLPNC. For

instance, as shown in Figure 4.3, consider Rack1 containing PMs (PM1, PM2), four

VMs (VM1, VM2, VM3, VM4) running in different PMs, and two MapReduce jobs

(job1, job2) with 16 blocks and 8 reduce tasks each. Each VM contains a different

number of containers, for instance VM1, VM2, VM3, VM4 contains (C1, C2), (C1,

C2, C3), (C1, C2, C3, C4), and (C1, C2) containers respectively. Blocks of job1 are

denoted as A1...A16 and for job2 as B1...B16. The same representation is used for map

task execution, as shown in Figure 4.4. Reduce tasks of job1 are denoted as AR1...AR8,

and for job2 as BR1...BR8. Non-local execution for map tasks is circled. We discuss

FGDLA for a batch of two jobs scheduled with FCFS, and Fair scheduler. x and y

axis in the graph (Figure 4.4) is a task commit sequence, and VMs chosen for tasks

respectively. In every commit sequence, a set of tasks of different jobs is scheduled for

execution. In FCFS, jobs are scheduled based on arrival time. A job that comes first

gets complete resources available in the cluster. So, job1 is executed in the first commit

sequence. Job2 starts executing in the second commit sequence once map tasks of job1

completed. Therefore, there is very less chance of non-local execution as map tasks

Figure 4.3 Example using FGDLA

77



Figure 4.4 FCFS vs FAIR vs FGDLA

are scheduled when a node has free container. However, makespan is affected because

job2 comes into picture only after all map/reduce tasks allocated. In fair scheduling,

jobs are given an equal share of resources from the cluster. By doing so, small jobs

can be finished early, and makespan also improved a little bit. Since map tasks of all

jobs are executed simultaneously, there may not be chances to exploit MLPNC. The

number of non-local execution also could be higher (circled) as jobs are guaranteed

with an equal share of resources but not with the chance of data locality. In contrast,

FGDLA takes a different approach using time-sharing (round robin) fashion to provide

all available resources to each job but in different commit sequence. Therefore, both

jobs are executed in alternative cycle of commit sequence as shown in Figure 4.4. By

doing so, the number of non-local execution can be minimized as in FCFS, further

providing a fair chance for each job. The advantage is, the shortest job need not wait

for a long time if a long job gets its chance in the first commit sequence. Additionally,

in every commit sequence, it is ensured that the maximum number of map tasks of

a job are executed together. It helps to extend MLPNC to minimize the number of

intermediate records further. Since FGDLA is a combination of FCFS and time-sharing

strategy, the number of non-local execution also is largely minimized. Algorithm 7

78



exhibits the procedures in short. Once FGDLA applied for a batch of jobs, default

combiner function and MLPNC can be applied. More specifically, MLPNC is extended

to minimize the number of intermediate records, thereby minimizing the makespan.

Algorithm 7: Fine Grained Data Locality Aware scheduler
1. Find the bins where map tasks of each job are executed.
2. Find maximum number of map tasks of each job possible in Bh,g

i at every Ct .
3. Launch J j in time-sharing fashion at every Ct .
4. If not all map tasks of a job can be placed, next job is given an opportunity
in fine-grained fashion sharing time.

5. Apply MLPNC.

4.2 Results and Analysis

4.2.1 Bin packing map/reduce tasks using ACO
4.2.1.1 Experimental setup

In this section, we discussed the efficiency and effectiveness of our proposed model over

classical fair scheduler in Hadoop MapReduce v2 as there is no bin packing model for

map/reduce tasks to the best of our knowledge. We implemented our MapReduce sim-

ulator [69] running in a server computer with 12 core (hyper-threaded), 32 GB memory.

Along with the information given in Figure 1.13, we additionally consider the following

parameters for VM and workloads in our experiment.

• PMs in CDC are heterogeneous.

• Number of VMs (bins) is fixed and deployed across the racks in CDC.

• There are five different flavors of VMs and 20 VMs in each flavor.

• No interference is assumed by co-located VMs.

• Capacity < vCPU,Memory,HDD > of VMs is heterogeneous.

• Dimensions for bin packing are < vCPU,Memory >

• Constraints: data locality for map tasks, fair sharing among jobs at every Ct .

• Number of workloads (jobs) are fixed (batch processing).

• Workloads are wordcount, wordmean, word standard deviation, kmean, sort, join.

• Workloads demand heterogeneous containers (varying size of < vCPU,Memory>).

79



• Size of dataset (in HDFS) considered for these six workloads is 128 GB, 64 GB,
256 GB, 192 GB, 76.8 GB, 153.6 GB respectively and 870.4 GB in total.

• HDFS block size is 128 MB with replication factor 3.

• Number of map tasks (one map task for each block) possible for each job is 1000,
500, 2000, 1500, 600, and 1200, respectively.

• Number of reduce tasks of each job is: 20, 15, 50, 10, 0, and 5, respectively.

We developed two modules along with the basic MapReduce functionalities to as-

sist fair scheduler. The first module overrides the default block placement scheme in

HDFS to place data blocks based on RWS. The second module assists fair scheduler

to place map/reduce tasks with the right combination to maximize resource utilization,

thus minimizing job latency and makespan consequently. We compare and contrast the

results of our model with classical fair scheduler based on latency, makespan, number

of non-local execution, and average number of unused vCPU and memory.

4.2.1.2 Results and Analysis

We used general ACO algorithm with pheromone decay factor 0.1 to get the solution

quicker, and pheromone value for each path is 1. If pheromone decay factor is high,

then the exploration time is high, which takes a high number of iterations to find an

optimal solution. We fixed Ct to be 10 seconds as average map task latency in the batch

is 10 seconds. This is observed as the batch of jobs are being periodically executed,

however, this can be modified. Moreover, it considers top 5 combinations from each bin

that results TAR over 90% to find fair share of resources among all the jobs at every Ct .

Every ten bins are passed to ACO to find a good schedule as the number of combinations

to evaluate is very less for ACO. We compared and contrasted three different cases in

this regard: Case 1.Classical fair scheduler with default block placement [22], Case

2.Classical fair scheudler with RWS block placement scheme, and Case 3.ACO based

bin packing map/reduce tasks with RWS block placement scheme.

Figure 4.5 shows the latency of each workload for the three cases. Case 2 minimized

7%-21% of latency for each workload. The latency of wordcount, wordmean, word

standard deviation, kmean, sort, and join jobs minimized up to 17.6%, 15.2%, 9%, 7%,

80



-3%, and 20.7% respectively. Sort job latency slightly increased due to more number of

non-local execution for map tasks. Similarly, wordcount, wordmean, word standard de-

viation, kmean, sort, and join jobs latency slashed up to 52.5%, 33.7%, 59.4%, 60.4%,

-0.09%, and 68.8% respectively using Case 3 over Case 1. Case 3 also minimized job

latency up to 42.3%, 21.8%, 55.2%, 57.2%, -0.06%, and 60.8% respectively over Case

2. Minimization of latency is possible for two reasons: Firstly, placing data blocks

based on the number of containers (vCPU) possible in each VM flavor, and finiding a

different combination of map/reduce tasks in VMs of different flavors. In average, Case

2 and Case 3 achieved up to 11.1%, and 44.1% improvement in latency over Case 1

while Case 3 achieved 38.6% improvement in latency over Case 2. Figure 4.6 exhibits

Figure 4.5 Latency of jobs using different schedulers

Figure 4.6 Number of non-local executions

81



the number of non-local execution for map tasks of different jobs under three different

cases. Our another claim concerning number non-local execution is, Case 2 and Case 3

minimized non-local execution up to 21.1% and 24.3% respectively over Case 1. Case

3 did not show much improvement in minimizing the number of non-local execution

compared to Case 2. It is because, in order to improve resource utilization using a bin

packing model, sometimes it is required to compromise with the non-local executions.

Therefore, Case 3 just improved 0.04% in minimizing the number of non-local execu-

tion over Case 2. Being more resource-aware helps to place the right combination of

map/reduce tasks in each VM using ACO. As shown in Table 4.2, any one of the com-

binations in each bin that belongs to a particular VM flavor is considered to pack tasks.

Therefore, it is possible to schedule tasks without wasting much resources.

As Case 3 scheduler monitors the resource availability every Ct , ACO comes up

with different possible combinations to improve resource utilization. As thousands

of map tasks are scheduled, most of the combination could be map tasks of different

jobs. Therefore, we discuss the results for bin packing concentrating map task com-

binations of different jobs. Along with the improvements in latency, makespan also

has largely improved with our model, as shown in Figure 4.7. Case 2 and Case 3 im-

proved makespan up to 19.6% and 57.9% respectively, over Case 1. Especially, Case 3

improved makespan up to 47.7% over Case 2. This is possible because ACO finds dif-

ferent combinations in each bin that gives over 90% resource utilization. Our primary

motivation behind using RWS based block scheme is bin packing map/reduce tasks by

loading more blocks on to the larger bins. This will increase the number of data local

execution. Figure 4.8 and Figure 4.9 illustrate the utilization of vCPU and memory

using three cases at every 10 seconds. As ACO finds the right combination of tasks

in each bin, resources are utilized maximum at any point of time. So, the amount of

unused resources such as vCPU and memory is minimized compared to the other two

cases. At times, in order to keep resources busy, some non-local execution is performed,

which indirectly affects job latency slightly. However, Case 3 has largely minimized the

resource wastage compared to the other two cases as shown in Figure 4.10.

82



Figure 4.7 Makespan

Figure 4.8 Utilization of the vCPU

Figure 4.9 Utilization of the memory

83



Figure 4.10 Average resource wastage of different schedulers

Case 2 also minimized the idle resources (vCPU and memory) up to 3% and 6% re-

spectively, over Case 1. However, Case 3 has minimized the idle resources (vCPU and

memory) up to 60.8% and 77.6% respectively, over Case 1. Case 3 has also improved

up to 59.3% and 75.9% for vCPU and memory, respectively compared to Case 2.

4.2.2 Fine-Grained Data Locality-Aware scheduler (FGDLA)

As already discussed in Section 3.2.2, MLPNC considerably minimized the number of

intermediate records for a single job. To generalize MLPNC for a batch of jobs, we have

to make sure more number of map tasks of a job to run at any time. FGDLA achieves

this idea and extends MLPNC to minimize the makespan. In this section, we simulated

and evaluated the performance of FGDLA with MLPNC by comparing with classical

schedulers (FCFS and fair scheduler [22]), FGDLA, FGDLA with default combiner for

a batch of jobs in Hadoop MapReduce v2. We implemented our MapReduce simulator

[69] for these schedulers and used a server computer with 12 core hyper-threaded, 32

GB memory for simulation. We set the following parameters for VMs and workloads

in our experiment.

• Physical servers in CDC are heterogeneous.

• We used 100 VMs and deployed across the racks in CDC.

• No interference is considered among VMs.

84



• Workloads are wordcount (J1), wordmean (J2), wordmedian (J3), and kmean (J4)
in the sizes of 128 GB, 64 GB, 256 GB, 192 GB respectively and 640 GB in total.

• Workload description:

– Wordcount job counts the occurrences of each word given in the files.

– Wordmean job counts the average length of the words in the given files.

– Wordmedian job counts the median length of the words in the given files.

– Kmean job finds the cluster of similar elements from the given numeric data.

• HDFS block size is 128 MB with replication factor 3.

• Workloads demand heterogeneous containers (varying size of <vCPU, Memory>)
as shown in Figure 4.11.

• The number of map tasks (one map task for each block) possible for each job is
1000, 500, 2000, and 1500 respectively.

• A number of reduce tasks for each job is: 20, 15, 50, and 10, respectively.

Figure 4.11 Resource requirements of each job

We have considered these workloads as it can apply combiner function to minimize

the size of intermediate data. Combiner function can be either reduce function itself

or user-defined function. To use reduce function itself as combiner function, it should

satisfy commutative and associative properties on the map output records. Users also

can define custom combiner function that can minimize shuffle data. We have compared

and contrasted our approach with other schedulers based on the parameters such as job

latency, makespan, number of non-local execution, size of shuffle data, and finally, the

amount of resources unused. A major motivation of FGLDA to extend MLPNC is

to minimize the amount of intermediate data transferred in the shuffle phase, and job

latency, thereby minimizing the makespan for a batch of jobs.

85



This is shown in Figure 4.12, in which we compared the latency of J1, J2, J3, and J4

jobs. Initially, we compared FGDLA with FCFS and Fair schedulers. Then, we com-

pared FGDLA against FGDLA with the default combiner and FGDLA with MLPNC.

As shown in Figure 4.12, FGDLA improved latency of J1, J2, J3, and J4 jobs by 43.6%,

17.1%, 20.7%, and 46.8% compared to Fair scheduler and by 43.5%, 18%, 6%, and

57.5% compared to FCFS scheduler. This large minimization is possible by minimizing

the number of non-local execution. FGDLA minimized the number of non-local execu-

tion up to 31.1%, and 14.9% over FCFS and Fair scheduler as shown in Figure 4.13. As

Figure 4.12 Latency of jobs

Figure 4.13 Number of non-local executions

86



FGDLA outperformed the classical schedulers for a batch of jobs, we evaluate FGDLA

with default combiner and FGDLA extending MLPNC. As a result, FGDLA with de-

fault combiner minimized the job latency further up to 12.5%, 24.2%, 43.3%, and -10%

respectively over FGDLA. Here, the kmeans algorithm performs more computation in

combiner function, as it takes an extra 10% latency when compared to FGDLA. After

extending MLPNC for FGDLA, it further minimized the job latency by 41.2%, 49.4%,

35.6%, and 32.7% respectively when compared to FGDLA with default combiner. Sim-

ilarly, the number of non-local execution is also minimized up to 9% when compared

to FGDLA with default combiner.

The major claim of this work is to minimize the size of intermediate data in the

shuffle phase. FCFS, Fair, and FGDLA scheduler transfer 356.3 GB of intermediate

data in total, as shown in Figure 4.14. After applying default combiner in FGDLA, size

of intermediate reduced to 48 GB in total. However, extending MLPNC with FGDLA

minimized the size of shuffle data further by 62.1%. This is mainly because the FGDLA

algorithm allows each job to time share in every commit sequence. Therefore, interme-

diate data is written in the in-memory cache for each job entirely. Scheduling many map

tasks of the same job in a node minimizes the number of non-local execution as already

explained. These two factors together helped to minimize the makespan for FGDLA

up to 21.4%, and 30% compared to FCFS and Fair scheduler, as shown in Figure 4.15.

Similarly, FGDLA with default combiner reduced makespan by 29.4% compared to

Figure 4.14 Size of shuffle data

87



FGDLA. Finally, FGDLA with MLPNC improved makespan over 32.4% compared to

FGDLA with default combiner.

FGDLA also improved the resource utilization of hired virtual resources. Cloud

users expect all the hired resources to be utilized in a given time. As shown in Fig-

ure 4.16, FGDLA minimized unused vCPU up to 2%, and 8% compared to FCFS and

Fair scheduler on average. 21.3% improvement was observed by using FGDLA with

default combiner over FGDLA. By extending MLPNC with FGDLA, unused vCPU is

minimized by 18.2% further over FGDLA with default combiner. Similarly, FGDLA

minimized unused memory up to 9%, and 12.7% compared to FCFS and Fair scheduler.

Figure 4.15 Makespan, number non-local executions, shuffle data size of each job

Figure 4.16 Unused number of vCPUs during execution

88



FGDLA with MLPNC largely minimized the unused memory by 28.7% compared to

FGDLA with default combiner, as shown in Figure 4.17. As combiner is split from map

tasks and run as a separate thread, more map tasks can be scheduled in a short time.

Figure 4.17 Unused memory during execution

4.3 Summary

Hadoop MapReduce on cloud is increasingly being used. Although resources are scal-

able on demand, it is doubtful whether all the hired resources are utilized entirely or not.

As MapReduce jobs and VM capacities are becoming heterogeneous, it is challenging

to schedule map/reduce tasks in order to improve makespan and resource utilization.

Considering this, we proposed RWS to place data blocks of different workloads based

on the capacity of VM to minimize job latency. To improve resource utilization, we in-

troduced a constrained 2-dimensional bin packing model to find the right combination

of map/reduce tasks using ACO to improve resource utilization. As we expected, our

proposed model improved makespan and resource utilization up to 57.9% and 59.3%

over classical MapReduce fair scheduler. It is observed that 26%-70% of MapReduce

job latency is due to the shuffle phase affecting the overall makespan. Therefore, we

proposed FGDLA to form a set of map tasks of a same job, thereby MLPNC can be ex-

tended for a batch of jobs. FGDLA with MLPNC minimized the amount of intermediate

data up to 62.1% when compared to FGDLA with combiner. As a result, makespan also

was improved by 32.4% over FGDLA with combiner.

89





Chapter 5

Conclusion and Future Work

5.1 Conclusion

Hadoop MapReduce on cloud is increasingly being used. The primary concern for

Hadoop users is improving job latency, makespan, and resource utilization. However,

Hadoop in virtual environment faces many challenges as Hadoop VMs are spread across

racks in CDC. One of the significant problems is the heterogeneous performance of

VMs due to hardware heterogeneity and co-located VM’s interference. It primarily

impacts job latency, makespan, and resource utilization. So, we proposed DRMJS to

improve job latency and resource utilization in a virtual cluster. DRMJS improved

overall job latency, makespan, and resource utilization up to 30%, 28%, and 60%, re-

spectively, on average compared to existing MapReduce schedulers. To minimize job

latency further, we introduced MLPNC to minimize the number of intermediate records,

there by minimizing the job latency. MLPNC outperformed PNC up to 33% reduction

in number of shuffled records, and up to 32% reduction in average job latency. We also

placed reduce tasks based on its input size by exploiting heterogeneous performance

after MLPNC. Results claimed that 28%-41% of reduce task latency improvement is

possible by exploiting performance heterogeneity. Although resources are scalable on

demand, it is doubtful whether all the hired resources are utilized entirely or not. As

MapReduce jobs and VM capacities are becoming heterogeneous, it is challenging to

schedule map/reduce tasks in order to improve makespan for a batch of jobs and re-

source utilization. Considering this, we introduced RWS to place data blocks of dif-

ferent workloads based on the capacity of VM. To improve resource utilization, we

introduced a constrained 2-dimensional bin packing model to find the right combina-

91



tion of map/reduce tasks using ACO to minimize the resource wastage in each bin. As

we expected, our proposed model improved makespan and resource utilization up to

57.9% and 59.3% over classical MapReduce fair scheduler. Minimizing MapReduce

job latency is very important to minimize makespan while executing a batch of jobs.

Therefore, we proposed FGDLA to form a set of map tasks of a same job, thereby

MLPNC can be extended for a batch of jobs. FGDLA with MLPNC minimized the

amount of intermediate data up to 62.1% when compared to FGDLA with combiner.

As a result, makespan also was improved by 32.4% over FGDLA with combiner.

5.2 Future Work

There are ample opportunities to improve job latency, makespan, and resource utiliza-

tion further for MapReduce job and task scheduling in a virtualized environment. An

interesting research question is, can we bin pack right mix of CPU-intensive and IO

intensive tasks of different jobs to improve resource utilization?

92



Chapter 6

Appendix

6.1 Course Work

6.2 Work Timeline

93





6.3 List of Publications

6.3.1 International Journals

1. Rathinaraja Jeyaraj, Ananthanarayana V S, Anand Paul, “Fine-grained data-locality
aware MapReduce job scheduler in a virtualized environment,” accepted in Jour-
nal of Ambient Intelligence and Humanized Computing (Springer), 2020. (SCIE
and Scopus, IF: 1.9)

2. Rathinaraja Jeyaraj, Ananthanarayana V S, Anand Paul, “Improving performance
of MapReduce Scheduler for Heterogeneous Workloads in a Heterogeneous En-
vironment,” Concurrency and Computation: Practice and Experience (Wiley),
2019. (SCIE and Scopus, IF: 1.1)

3. Rathinaraja Jeyaraj, Ananthanarayana V S, Anand Paul, “Dynamic Ranking based
MapReduce Job Scheduler to Exploit Heterogeneous Performance on Virtualized
Environment,” Journal of Supercomputing (Springer), pp. 1-30, 2019. (SCI, IF:
2.15)

6.3.2 International Conferences

1. Rathinaraja Jeyaraj, Ananthanarayana V S, Anand Paul, “MapReduce Scheduler
to Minimize the Size of Intermediate Data in Shuffle Phase,” 18th International
Conference on Computer and Information Science (ICIS), June 17-19, 2019, Bei-
jing, China. (Core C, SCI).

2. Rathinaraja Jeyaraj, Ananthanarayana V S, “Dynamic Performance Aware Re-
duce Task Scheduling in MapReduce on Virtualized Environment,” 16th IEEE/ACIS
International Conference on Software Engineering Research, Management and
Applications (SERA), June 13-15, 2018, Kunming, China. (Core B3, EI, DBLP)

3. Rathinaraja Jeyaraj, Ananthanarayana V S, “Multi-Level Per Node Combiner
(MLPNC) to Minimize MapReduce Job Latency on Virtualized Environment,”
33rd ACM Symposium on Applied Computing (SAC), April 9-13, 2018, Pau,
France, pp. 167-174. (Core A1).

95





6.4 References

[1] I.A.T.Hashem, I.Yaqoob, N.B.Anuar, S.Mokhtar, A.Gani, and S.Ullah Khan, “The

rise of big data on cloud computing: Review and open research issues,” Informa-

tion Systems, vol. 47, pp. 98-115, 2015.

[2] Yanfei Guo, Jia Rao, Changjun Jiang, “Moving Hadoop into the Cloud with Flex-

ible Slot Management and Speculative Execution,” IEEE Transactions on Parallel

and Distributed Systems, Vol. 28, No. 3, pp. 798-812, 2017.

[3] D.H.Shin, “Demystifying big data: Anatomy of big data developmental process,”

Telecommunications Policy, vol. 40, no. 9, pp. 837-854, 2016.

[4] J.Dean and S.Ghemawat, “MapReduce: Simplified Data Processing on Large

Clusters,” Sixth Symposium on Operating System Design and Implementation,

pp. 137-149, 2004.

[5] R.Boutaba, L.Cheng, and Q.Zhang, “On Cloud computational models and the

heterogeneity challenge,” Journal of Internet Services and Applications, vol. 3,

no. 1, pp. 77-86, 2012.

[6] Zhuoyao Zhang, Ludmila Cherkasova, Boon Thau Loo, “Exploiting Cloud Het-

erogeneity to Optimize Performance and Cost of MapReduce Processing,” ACM

SIGMETRICS Performance Evaluation Review archive, Volume 42, Issue 4, Pages

38-50, 2015.

[7] https://engineering.purdue.edu/ puma/datasets.htm, last accessed online July 2019.

[8] Mosharaf Chowdhury, Matei Zaharia, Justin Ma, Michael I. Jordan, Ion Stoica.,

“Managing data transfers in computer clusters with orchestra,” ACM SIGCOMM

Computer Communication Review, Vol. 41 (4), pp. 98-109, 2011.

[9] M. Liroz-Gistau, R. Akbarinia, D. Agrawal, and P. Valduriez, “FP-Hadoop: Effi-

cient processing of skewed MapReduce jobs,” Information Systems, vol. 60, pp.

69-84, 2016.

97



[10] Q. Chen, J. Yao, and Z. Xiao, “LIBRA: Lightweight Data Skew Mitigation in

MapReduce,” IEEE Transactions on Parallel and Distributed Systems, vol. 26,

no. 9, pp. 2520-2533, 2015.

[11] W.H. Lee, H.G. Jun, and H.J. Kim, “Hadoop Mapreduce Performance Enhance-

ment Using In-Node Combiners,” International Journal of Computer Science and

Information Technology, vol. 7, no. 5, pp. 1-17, 2015.

[12] Y.Guo, J.Rao, D.Cheng, and S.Member, “iShuffle: Improving Hadoop Perfor-

mance with Shuffle-on-Write,” IEEE Transactions on Parallel and Distributed

Systems, vol. 9219, no. 2, 2016.

[13] Y.Wang, C.Xu, X.Li, and W.Yu, “JVM-bypass for efficient Hadoop shuffling,”

IEEE 27th International Symposium on Parallel and Distributed Processing, pp.

569-578, 2013.

[14] H.Ke, P.Li, S.Guo, and I.Stojmenovic, “Aggregation on the fly: Reducing traffic

for big data in the cloud,” IEEE Network, vol. 29, no. 5, pp. 17-23, 2015.

[15] D.Guo, J.Xie, X.Zhou, X.Zhu, W.Wei, and X.Luo, “Exploiting efficient and scal-

able shuffle transfers in future data center networks,” IEEE Transactions on Par-

allel and Distributed Systems, vol. 26, no. 4, pp. 997-1009, 2015.

[16] W.Shi, Y. Wang, J.P.Corriveau, B.Niu, W.L.Croft, and M.Peng, “Smart Shuf-

fling in MapReduce: A Solution to Balance Network Traffic and Workloads,”

IEEE/ACM 8th International Conference on Utility and Cloud Computing, pp.

35-44, 2015.

[17] P.Costa, A.Donnelly, A.Rowstron, and G.O.Shea, “Camdoop: Exploiting In-network

Aggregation for Big Data Applications,” 9th USENIX Symposium on Networked

Systems Design and Implementation, pp. 1-14, 2012.

[18] F.Liang and F.C.M.Lau, BAShuffler: Maximizing Network Bandwidth Utiliza-

tion in the Shuffle of YARN, 25th ACM International Symposium on High Per-

formance Parallel and Distributed Computing, pp. 281-284, 2016.

98



[19] Y.Yao, J.Tai, B.Sheng, and N.Mi, “LsPS: A Job Size-Based Scheduler for Ef-

ficient Task Assignments in Hadoop,” IEEE Transactions on Cloud Computing,

vol. 3, no. 4, pp. 411-424, 2015.

[20] R.Y.Ming-Chang Lee, Jia-Chun Lin, “Hybrid Job-Driven Scheduling in Virtual

MapReduce Cluster,” IEEE transactions on parallel and distributed systems, vol.

27, pp. 1687-1699, 2016.

[21] A.Verma, L.Cherkasova, “Orchestrating an Ensemble of MapReduce Jobs for

Minimizing Their Makespan,” IEEE Transactions on Dependable and Secure

Computing, Vol. 10, Issue 5, 2013.

[22] “Hadoop MapReduce Fair Scheduler,” Available: https://hadoop.apache.org/docs

/r2.7.4/hadoop-yarn/hadoop-yarn-site/FairScheduler.html. [Last accessed: July,

2019]

[23] “Hadoop MapReduce Capacity Scheduler,” Available: https://hadoop.apache.org/

docs/r2.7.4/hadoop-yarn/hadoop-yarn-site/CapacityScheduler.html. [Last accessed:

July, 2019]

[24] W.Hu et al., “Multiple-job optimization in mapreduce for heterogeneous work-

loads,” Sixth International Conference on Semantics, Knowledge and Grids, pp.

135-140, 2010.

[25] D.Cheng, J.Rao, Y.Guo, C.Jiang, and X.Zhou, “Improving Performance of Het-

erogeneous MapReduce Clusters with Adaptive Task Tuning,” IEEE transactions

on parallel and distributed systems, vol. 28, no. 3, pp. 774-786, 2017.

[26] S.Tang, B.S.Lee, and B.He, “Dynamic Job Ordering and Slot Configurations for

MapReduce Workloads,” IEEE Transactions on Services Computing, vol. 9, no.

1, pp. 4-17, 2016.

[27] Y.Yao, J.Wang, B.Sheng, C.C.Tan, and N.Mi, “Self-Adjusting Slot Configura-

tions for Homogeneous and Heterogeneous Hadoop Clusters,” IEEE Transactions

on Cloud Computing, vol. 5, no. 2, pp. 344-357, 2017.

99



[28] Z.Ming-Chang Lee, Jia-Chun Lin, and Ramin Yahyapour, “Hybrid Job-Driven

Scheduling for Virtual MapReduce Clusters,” IEEE transactions on parallel and

distributed systems, vol. 27, no. 6, 2016.

[29] Zhendong Bei, Zhibin Yu, Huiling Zhang, Wen Xiong, Chengzhong Xu, Lieven

Eeckhout, Shengzhong, “FengRFHOC: A Random-Forest Approach to Auto-

Tuning Hadoop’s Configuration,” IEEE transactions on parallel and distributed

systems, vol. 27, no. 5, 2016.

[30] Yiduo Mei, Ling Liu, Xing Pu, Sankaran Sivathanu, “Performance Measurements

and Analysis of Network I/O Applications in Virtualized Cloud,” IEEE 3rd Inter-

national Conference on Cloud Computing, pp. 59-66, 2010.

[31] Ron C. Chiang, H.Howie Huang, “TRACON: Interference-Aware Scheduling for

Data-Intensive Applications in Virtualized Environments,” IEEE transactions on

parallel and distributed systems, Vol. 25, No. 5, pp.1349-1358, 2014.

[32] Xiangping Bu, Jia Rao, Cheng-Zhong Xu, “Interference and Locality-Aware Task

Scheduling for MapReduce Applications in Virtual Clusters,” 22nd international

symposium on High-performance parallel and distributed computing, pp. 227-

238, 2013.

[33] Ripal Nathuji, Aman Kansal, Alireza Ghaffarkhah, “Q-Clouds: Managing Per-

formance Interference Effects for QoS-Aware Clouds,” 5th European conference

on Computer systems, pp. 237-250, 2010.

[34] Lei Yang,Yu Dai, Zhang, “MapReduce Scheduler by Characterizing Performance

Interference,” China Communications, Volume 13 , Issue 10 , pp. 253-262, 2016.

[35] Vasile, Mihaela-Andreea and Pop, Florin and Tutueanu, Radu-Ioan and Cristea,

Valentin and Kolodziej, Joanna, “Resource-aware Hybrid Scheduling Algorithm

in Heterogeneous Distributed Computing,” Future Generation Computer Sys-

tems, Volume 51, pp. 61-71, 2015.

[36] Ikken, Sonia and Renault, Eric and Kechadi, M. Tahar and Tari, Abdelkamel,

“Toward scheduling I/O request of Mapreduce tasks based on Markov model,”

100



International Conference on Mobile, Secure and Programmable Networking, pp.

78-89, 2015.

[37] Q. Zhang and M.F.Zhani and Y.Yang and R.Boutaba and B.Wong, “PRISM:

Fine-Grained Resource-Aware Scheduling for MapReduce,” IEEE Transactions

on Cloud Computing, Vol. 3, pp. 182-194, 2015

[38] Yang, Shin-Jer and Chen, Yi-Ru, “Design Adaptive Task Allocation Scheduler

to Improve MapReduce Performance in Heterogeneous Clouds,” Journal of Net-

work and Computer Applications, Volume 57, pp. 61-70, 2015.

[39] Anjos, Julio and Izurieta, Ivan Carrera and Kolberg, Wagner and Tibola, Andre

Luis and Arantes, Luciana and Geyer, Claudio, “MRA++: Scheduling and data

placement on MapReduce for heterogeneous environments,” Future Generation

Computer Systems, Vol. 42, pp. 22-35, 2015.

[40] Mao, Yingchi and Zhong, Haishi and Wang, Longbao, “A Fine-Grained and Dy-

namic MapReduce Task Scheduling Scheme for the Heterogeneous Cloud Envi-

ronment,” 14th International Symposium on Distributed Computing and Appli-

cations for Business Engineering and Science, pp. 155-158, 2015.

[41] F.Yan and L.Cherkasova and Z.Zhang and E.Smirni, “DyScale: A MapReduce

Job Scheduler for Heterogeneous Multicore Processors,” IEEE Transactions on

Cloud Computing, Vol. 5, pp. 317-330, 2017.

[42] Lin, Wen-hui and LEI, Zhen-ming and Jun, YANG and Fang, LIU and Gang,

HE and Qin, WANG, “MapReduce optimization algorithm based on machine

learning in heterogeneous cloud environment,” The Journal of China Universities

of Posts and Telecommunications, Volume 20, Issue 6, pp. 77-87, 2013.

[43] Verma, Abhishek and Cherkasova, Ludmila and Campbell, Roy H, “ARIA: Au-

tomatic Resource Inference and Allocation for Mapreduce Environments,” 8th

ACM International Conference on Autonomic Computing, pp. 235-244, 2011.

[44] Xie, Jiong and Yin, Shu and Ruan, Xiaojun and Ding, Zhiyang and Tian, Yun and

Majors, James and Manzanares, Adam and Qin, Xiao, “Improving mapreduce

101



performance through data placement in heterogeneous hadoop clusters,” Parallel

and Distributed Processing, Workshops and Phd Forum, pp. 1-9, 2010.

[45] Zaharia, Matei and Borthakur, Dhruba and Sen Sarma, Joydeep and Elmeleegy,

Khaled and Shenker, Scott and Stoica, Ion, “Delay scheduling: a simple tech-

nique for achieving locality and fairness in cluster scheduling,” 5th European

conference on Computer systems, pp. 265-278, 2010.

[46] Tian, Chao and Zhou, Haojie and He, Yongqiang and Zha, Li, “A dynamic mapre-

duce scheduler for heterogeneous workloads,” 8th International Conference on

Grid and Cooperative Computing, pp. 218-244, 2009.

[47] Jianjiang Li, Yajun Liu, Jian Pan, Pend Zhang, Wei Chen, Lizhe Wang, “Map-

Balance-Reduce: An improved parallel programming model for load balancing

of MapReduce,” Future Generation Computer Systems, 2017.

[48] Jaeseok Myung, Junho Shim, Jongheum Yeon, Sang-goo Lee, “Handling data

skew in join algorithms using MapReduce,” Expert Systems with Applications,

Volume 51, pp. 286-299, 2016.

[49] Zhihong Liu, Qi Zhang, Reaz Ahmet, “Dynamic Resource Allocation for MapRe-

duce with Partitioning Skew,” IEEE Transactions on Computers, Volume 65, Is-

sue 11, pp. 3304-3317, 2016.

[50] Benjamin Gufler, Nikolaus Augsten, Angelika Reiser, Alfons Kemper, “Handling

Data Skew In Mapreduce,” 1st International Conference on Cloud Computing and

Services Science, pp. 574-583, 2011.

[51] F.A.N. Yuanquan, W.U.Weiguo, X.U.Yunlong, and C.Heng, “Improving MapRe-

duce Performance by Balancing Skewed Loads,” China Communications, Vol-

ume 11, Issue 8, pp. 85-108, 2014.

[52] W.Chen, I.Paik, and Z.Li, “Tology-Aware Optimal Data Placement Algorithm

for Network Traffic Optimization,” IEEE Transactions on Computers, Volume

65, Issue 8, pp. 2603-2617, 2016.

102



[53] V.Ubarhande, A.M.Popescu, “Novel Data-Distribution Technique for Hadoop in

Heterogeneous Cloud Environments,”Ninth International Conference on Com-

plex, Intelligent, and Software Intensive Systems, pp. 217-224, 2015.

[54] C.W.Lee, K.Y.Hsieh, S.Y.Hsieh, and H.C.Hsiao, “A Dynamic Data Placement

Strategy for Hadoop in Heterogeneous Environments,” Big Data Research, Vol-

ume 1, pp. 14-22, 2014.

[55] Xueping Li, Kaike Zhang, “A hybrid differential evolution algorithm for multi-

ple container loading problem with heterogeneous containers,” Computers and

Industrial Engineering, Volume 90, pp. 305-313, 2015.

[56] Jesus Iglesias, Milan De Cauwerb, Deepak Mehtab, Barry O’Sullivan b, “Increas-

ing task consolidation efficiency by using more accurate resource estimations,”

Future Generation Computer Systems, vol. 56, pp. 407-420, 2016.

[57] Christian Bluma, Verena Schmidc, “Solving the 2D bin packing problem by

means of a hybrid evolutionary algorithm,” International Conference on Com-

putational Science, vol. 18, pp. 899-908, 2013.

[58] Georgios L.Stavrinides, Helen D.Karatza, “Scheduling real-time DAGs in het-

erogeneous clusters by combining imprecise computations and bin packing tech-

niques for the exploitation of schedule holes,” Future Generation Computer Sys-

tems, vol. 28, pp. 977-988, 2012.

[59] Célia Paquay, Sabine Limbourg, Michaël Schyns, “A tailored two-phase con-

structive heuristic for the three-dimensional Multiple Bin Size Bin Packing Prob-

lem with transportation constraints," European Journal of Operational Research,

vol. 267, pp. 52-64, 2018.

[60] Yusen Li, Xueyan Tang, Wentong Cai, "Dynamic Bin Packing for On-Demand

Cloud Resource Allocation,” IEEE Transactions On Parallel And Distributed Sys-

tems, Vol. 27, No. 1, January 2016.

[61] Adam Stawowy, “Evolutionary based heuristic for bin packing problem,” Com-

puters and Industrial Engineering, Vol. 55,pp. 465-474, 2008.

103



[62] Christine Bassema, Azer,“"Multi-Capacity Bin Packing with Dependent Items

and its Application to the Packing of Brokered Workloads in Virtualized Envi-

ronments,” Future Generation Computer Systems, vol. 72, pp. 129-144, 2017.

[63] Cong Liu, Sanjeev Baskiyar, “Scheduling Mixed Tasks with Deadlines in Grids

using Bin packing,” 14th IEEE International Conference on Parallel and Dis-

tributed Systems, pp. 229-236, 2008.

[64] Lijun Wei, Wee-Chong Oon, Wenbin Zhu, Andrew Lim, “A goal-driven approach

to the 2D bin packing and variable-sized bin packing problems,” European Jour-

nal of Operational Research, vol. 224, pp. 110-121, 2013.

[65] Alessio Trivella, David Pisinger, “The load-balanced multi-dimensional bin-packing

problem,” Computers and Operations Research, vol. 74, pp. 152-164, 2016.

[66] D.S.Liu, K.C.Tan, S.Y.Huang, C.K.Goh, W.K.Ho, “On solving multiobjective

bin packing problems using evolutionary particle swarm optimization,” European

Journal of Operational Research, vol. 190, pp. 357-382, 2008.

[67] Marc P.Renaulta, AdiRoséna, Robvan Steeb, “Online algorithms with advice for

bin packing and scheduling problems,” Theoretical Computer Science, vol. 600,

pp. 155-170, 2015.

[68] Zhao-hong Jia, Joseph Y.T.Leung, “A meta-heuristic to minimize makespan for

parallel batch machines with arbitrary job sizes,” European Journal of Operational

Research, vol. 240, pp. 649-665, 2015.

[69] https://github.com/rathinaraja/Binpacking-using-ACO

[70] J.Liao, L.Zhang, T.Li, J.Wang, and Q.Qi, “Efficient and fair scheduler of multiple

resources for MapReduce system,” IET Software, vol. 10, pp. 182-188, 2016.

104


	Abstract
	List of Figures
	List of Tables
	Abstract
	INTRODUCTION
	Big data and Hadoop
	MapReduce Job
	MapReduce Job Execution Sequence
	MapReduce on Cloud
	Heterogeneity for MapReduce on cloud
	Resource usage of the MapReduce execution sequence
	Dynamic/Heterogeneous performance of VMs
	Heterogeneous VMs and heterogeneous MapReduce workloads

	Research Motivation
	Outline of the Thesis

	Literature Survey and Proposed Works
	Literature Survey
	MapReduce job and task scheduling in a virtualized heterogeneous environment
	Scheduling reduce tasks based on its input size
	Minimizing the size of intermediate data during the shuffle phase in a virtual environment
	Block placement schemes in HDFS
	Bin packing tasks

	Key Observations
	MapReduce job and task scheduling in a virtualized heterogeneous environment
	Scheduling reduce tasks based on its input size 
	Minimizing the size of intermediate data during the shuffle phase 
	Block placement schemes in HDFS
	Bin packing tasks

	Problem Definition
	Research Objectives and Works 

	MapReduce Task Scheduling
	Proposed Methodologies
	Dynamic Ranking based MapReduce Job Scheduler (DRMJS)
	Map and reduce task scheduling based on performance rank 
	Scheduling reduce tasks based on its input size
	Multi-Level Per Node Combiner (MLPNC)

	Results and Analysis
	Dynamic Ranking based MapReduce Job Scheduler (DRMJS)
	Multi-Level Per Node Combiner (MLPNC)
	Reduce task scheduling based on performance rank after MLPNC

	Summary

	MapReduce Job Scheduling
	Proposed Methodologies
	Roulette Wheel Scheme (RWS) based data block placement
	Constrained 2-dimensional bin packing map/reduce tasks 
	Packing map/reduce tasks using Ant Colony Optimization (ACO)
	Fine Grained Data Locality Aware (FGDLA) job scheduling

	Results and Analysis
	Bin packing map/reduce tasks using ACO 
	Fine-Grained Data Locality-Aware scheduler (FGDLA)

	Summary

	Conclusion and Future Work
	Conclusion
	Future Work

	Appendix
	Course Work
	Work Timeline
	List of Publications
	International Journals
	International Conferences

	References


