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ABSTRACT

This thesis is devoted for obtaining a stable approximate solution for ill-posed

operator equation F x = y. In the second Chapter we consider a non-linear ill-

posed equation F x = y, where F is monotone operator defined on a Hilbert space.

Our analysis in Chapter 2 is in the setting of a Hilbert scale.

In the rest of the thesis, we studied weighted or fractional regularization

method for linear ill-posed equation. Precisely, in Chapter 3 we studied fractional

Tikhonov regularization method and in Chapters 4 and 5 we studied fractional

Lavrentiv regularization method for the linear ill-posed equation Ax = y, where

A is a positive self-adjoint operator. Numerical examples are provided to show

the reliability and effectiveness of our methods.

Keywords: Ill-Posed Problem,Regularization parameter, Discrepancy prin-

ciple, Fractional Tikhonov regularization method, Monotone Operator, Lavren-

tiev Regularization, Hilbert Scales, Adaptive Parameter Choice Strategy.

Mathematics Subject Classification: 47A52, 47H09, 47J060, 65J10, 65J15,
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CHAPTER 1

INTRODUCTION

Inverse problems are reverse side of some direct problem. The transformation

of known causes into effects that are determined by some model is called direct

problem. Inverse problem occurs in almost all fields of sciences, in particular

(Kabanikhin (2008)):

”• Physics (quantum mechanics, acoustics, electrodynamics , etc.);

• Geophysics (seismic exploration, logging, magnetotelluric sounding, etc.);

• Medicine (X-ray and NMR tomography, ultrasound testing, etc.);

• Economics (optimal control theory, financial mathematics, etc.).”

For examples, and more details about inverse problems can be found in (Ka-

banikhin (2008); Groetsch (2015)).

By nature, inverse problems are ill-posed in the sense of Hadamard (Hadamard

(1953); Keller (1976)). A problem is not well-posed then it is said to be ill-posed

(see section 1.1).

Many inverse problems can be formulated as an operator equation

T x = y, (1.0.1)

where T : X → Y is a linear or non-linear operator between suitable normed

spaces.
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1.1 PRELIMINARIES

Throughout the thesis we will be using the following notations.

• X and Y are Hilbert spaces.

• Let 〈·, ·〉 and ‖ · ‖, respectively stand for inner product and norm.

• D(T ), R(T ) and N(T ) denote the Domain of T, Range of T, Nullspace of T,

respectively.

• B(X, Y ) denote the set of all bounded linear operators from X to Y.

• B(x, r) denote the open ball centered at x with radius r > 0.

• X stands for the closure of X.

• T ∗ stands for the adjoint of an operator T.

According to Hadamard (1953), (cf. Kabanikhin (2008); Engl et al. (1996)),

the problem of solving the operator equation (1.0.1) is said to be well-posed if

the following conditions hold:

(i) for each y ∈ Y there exists a solution x̂ ∈ X to the equation T x = y (the

existence condition), i.e., R(T ) = Y ;

(ii) the solution x̂ to the equation T x = y is unique in X (the uniqueness

condition), i.e., there exists an inverse operator T−1 : Y → X;

(iii) for any B(x̂, r) ⊂ X of the solution x̂ to the equation T x = y, there is a

B(y, δ) ⊂ Y such that for each yδ ∈ B(y, δ) the element T−1 yδ = xδ belongs

to B(x̂, r), i.e., the operator T−1 is continuous (the stability condition)

A typical example of equation (1.0.1) is the Fredholm integral equation of the

first kind ∫ b

a

k(s, t)x(t)dt = y(s), a ≤ s ≤ b (1.1.2)

2



with non-degenerate kernel k(s, t). Here X = Y = L2[a, b] and T : L2[a, b] →

L2[a, b] defined by (Tx)(s) =

∫ b

a

k(s, t)x(t)dt = y(s), a ≤ s ≤ b is a compact

operator (i.e., T (B) is compact in Y for every bounded set B in X). Note that

Fredholm integral equations of the first kind appears in many inverse problems of

practical importance, for example

Example 1.1.1. (A Gravitation problem) (cf. Groetsch (2007)) The inverse prob-
lem of determining the interior mass distribution f from observation of the force
g on the outer ring is formulated as an integral equation of the first kind given by

g(ϕ) = γ

∫ 2π

0

2− cos(ϕ− θ)
(5− 4 cos(ϕ− θ))3/2

f(θ)dθ

where γ is the universal gravity constant.

Example 1.1.2. (Steady State Heat distributions) (cf. Groetsch (2007))
Consider the problem of determining the temperature flux on the left edge of a

semi-infinte strip from observation of the temperature on that face when the tem-
perature in the strip is at steady state. The problem may be stated mathematically
as follows: Let

Ω = {(x, y) : 0 < x, 0 < y < π}

and suppose v = v(x, y) is a function defined on the closure of Ω and satisfying

∂2v

∂x2
+
∂2v

∂y2
= 0 in Ω

and
v(x, 0) = v(x, π) = 0 for x > 0.

Suppose we wish want to find the temperature flux

g(y) =
∂v

∂x
(0, y), 0 < y < π

given the temperature distribution h(y) = u(0, y). Again it is the problem of solving
integral equation of first kind given by

h(y) =
∞∑
n=1

an sin ny

= −
∞∑
n=1

2

nπ

∫ π

0

g(ξ) sin nξ dξ sin ny

=

∫ π

0

k(y, ξ) g(ξ) dξ

3



where

k(y, ξ) = − 2

π

∞∑
n=1

1

n
sin ny sin nξ.

The operator equation (1.0.1) has a solution if and only if y ∈ R(T ). If

y /∈ R(T ), then we look for an element x0 ∈ X such that Tx0 is close to y. i.e, to

find x0 ∈ X such that

‖Tx0 − y‖ = inf {‖Tx− y‖ : x ∈ X} .

If such x0 exists, then we call it a least residual norm solution or LRN-solution of

(1.0.1).

The following theorems gives the characterization for LRN-solution.

Theorem 1.1.3. (cf. Nair (2009), Theorem 4.2 ) Suppose T : X → Y be a linear
operator. Let P : Y → Y be the orthogonal projection onto R(T ). For y ∈ Y, the
following are equivalent.

(i) T x = y has an LRN-solution.

(ii) y ∈ R(T ) +R(T )⊥.

(iii) The equation Tx = Py has a solution.

Theorem 1.1.4. (cf. Nair (2009), Theorem 4.5) Let T ∈ B(X, Y ), and y ∈
R(T ) +R(T )⊥. Then x ∈ X is an LRN-solution of (1.0.1) if and only if

T ∗ T x = T ∗ y.

Note that, if T is not one-to-one then LRN-solution is not unique because, if

u is a LRN-solution then so is u+ v for any v ∈ N(T ). By Theorem 1.1.4, the set

of all LRN-solution of (1.0.1) given by the set

Sy = {u ∈ X : T ∗ T u = T ∗ y}.

By using the continuity and linearity of T and T ∗, we can prove that Sy is closed

convex set.

It is known that (cf. Groetsch (1977), Theorem 1.1.4 ) closed convex set in

a Hilbert space has unique element of minimal norm. So there exists a unique

x̂ ∈ Sy such that

‖x̂‖ = inf{‖u‖ : u ∈ Sy} and T x̂ = Py.

4



Definition 1.1.5. (cf. Groetsch (1977), page 115) Let T ∈ B(X, Y ). The operator
T † : D(T †) ⊂ Y → X, where D(T †) = R(T ) + R(T )⊥, defined by T †y = x̂, where
x̂ is the LRN-solution of minimal norm of the equation Tx = y, is called the
Generalized inverse of T .

It is known that (cf. Groetsch (1977), Theorem 3.1.2 ) T † is continuous if and

only if R(T ) is closed. So the problem of solving the operator equation (1.0.1) in

the sense of generalized inverse is also ill-posed if R(T ) is not closed.

In the thesis we say the problem (1.0.1) with T ∈ B(X, Y ) is ill-posed, we

mean that T † is not continuous, i.e., the stability condition in the definition of

well-posed problem is not satisfied.

1.2 REGULARIZATION

We can not make an unstable problem into stable problem, so one has to use

the regularization techniques. Roughly, regularization means approximating an

ill-posed problem by a family of neighbouring well-posed problems. We want to

approximate the LRN-solution of minimal norm x̂ = T †y of equation (1.0.1) for

a specific right hand side y in the situation that the exact data y is not known

precisely, but that only an approximation yδ with ‖y − yδ‖ ≤ δ is available.

In the ill-posed case, T †yδ is not a good approximation of T †y due to the

unboundedness of T † even if it exists. The idea is looking for some approximation,

say xδα depend continuously on the data yδ with the property that as noise level δ

decreases to zero and α is chosen appropriately, then xδα tends to x̂.

Definition 1.2.1. (Engl et al. (1996)) Let T ∈ B(X, Y ) and α0 ∈ (0,+∞]. For
every α ∈ (0, α0), let Rα : Y → X be a continuous operator. The family {Rα}
is called regularization if for all y ∈ D(T †) there exists a parameter choice rule
α = α(δ, yδ) such that

lim
δ→0

sup{‖Rαy
δ − T †y‖ : yδ ∈ Y, ‖yδ − y‖ ≤ δ} = 0 (1.2.1)

holds. Here, α : R+ × Y → (0, α0) is such that

lim
δ→0

sup{α(δ, yδ) : yδ ∈ Y, ‖yδ − y‖ ≤ δ} = 0. (1.2.2)

5



For a specific y ∈ D(T †), a pair (Rα, α) is called a regularization method if (1.2.1)
and (1.2.2) hold.

The quality of a regularization method is determined by the asymptotic of

‖x̂−Rαy
δ‖ as δ tends to 0.

Definition 1.2.2. (Engl et al. (1996)) Let α be a parameter choice rule according
to Definition 1.2.1. If α depends only on δ, i.e., α = α(δ), then α is called
an a-priori parameter choice rule. Otherwise, α is called an a-posteriori
parameter choice rule.

The well known regularization method used for approximating x̂ is the so called

Tikhonov regularization (Engl (1987a,b); Engl et al. (1996); Engl and Neubauer

(1985b, 1987, 1985a); George and Nair (1998, 1994b); Groetsch (1984, 1983);

Schock (1984b,a); Tikhonov and Arsenin (1977)) in which a minimizer of the

functional

Jα(x) := ‖Tx− yδ‖2 + α‖x‖2, α > 0 (1.2.3)

is taken as an approximation for x̂, here α > 0 is a regularization parameter. It

is known that, if T is bounded linear operator then the minimizer xδα of Jα(x) is

given by

xδα = (T ∗ T + αI)−1T ∗yδ (1.2.4)

and if x̂ ∈ R((T ∗ T )ν), 0 < ν ≤ 1, then

‖x̂− xδα‖ ≤ c1 α
ν + c2

(
δ√
α

)
.

Throughout this thesis c, c1, c2, . . . denote generic positive constants which may

take different values at different places.

The choice of regularization parameter α is an important problem in regular-

ization theory of ill-posed Problems. It is known that (Engl et al. (1996); Groetsch

(1984); Nair (2009)) if

α(δ) = c δ
2

2ν+1 , (1.2.5)

then

‖x̂− xδα‖ = O
(
δ

2ν
2ν+1

)
(1.2.6)
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and this rate is optimal for such a choice of α(δ). But since ν is unknown, the

choice (1.2.5) is not possible. Therefore one has to consider a-posteriori parameter

choice strategy, i.e., α = α(δ, yδ) is determined during the course of computation

of xδα. Well known methods in this regard are the discrepancy principles (i.e., α is

chosen as the solution of the equation given in the discrepancy principles).

1. Morozov (Morozov (1984, 1968); Groetsch (1983))

‖Txδα − yδ‖ = δ. (1.2.7)

2. Arcangeli (Arcangeli (1966); George and Nair (1998); Nair (1992); Groetsch

and Schock (1984)) ‖Txδα − yδ‖ = δ√
α
.

3. Schock (Schock (1984b,a)) ‖Txδα − yδ‖ = δp

αq
p > 0 , q > 0.

4. Engl (Engl (1987a,b)) ‖T ∗Txδα − T ∗yδ‖ = δp

αq
p > 0 , q > 0.

If T is a bounded linear positive self-adjoint operator, then one can consider

the solution wδα of the equation

(T + α I)x = yδ (1.2.8)

as an approximation to x̂. The above regularization method is called Lavrentiev or

simplified regularization method. Note that wδα is the minimizer of the functional

Jα(x) = 〈Tx, x〉 − 2〈y, x〉+ α 〈x, x〉. (1.2.9)

If x̂ ∈ R(T ν), 0 < ν ≤ 1, then it is known that (George and Nair (1993))

‖wδα − x̂‖ = O(δ
ν
ν+1 ). (1.2.10)
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To improve the order in (1.2.6) and (1.2.10), many authors studied Tikhonov

regularization method (Lu et al. (2010); Natterer (1984); Tautenhahn (1996, 1993);

Neubauer (1988)) and Lavrentiev regularization method (George and Nair (1997);

George et al. (2013)) in the setting of Hilbert scales.

1.3 HILBERT SCALES

Definition 1.3.1. (cf. Nair (2015), Definition 1.1) A family of Hilbert spaces Xs,
s ∈ R, is said to be Hilbert scale if t > s implies Xt ⊆ Xs and the inclusion is
a continuous embedding, i.e., there exists cs,t > 0 such that

‖x‖s ≤ cs,t ‖x‖t ∀x ∈ Xt. (1.3.1)

The construction of Hilbert scales are given by first defining Xs for s ≥ 0, and

then defining Xs for s < 0 using the concept of a Gelfand triple. Let V be a dense

subspace of Hilbert space X with norm ‖ · ‖. Suppose V also a Hilbert space with

respect to a norm ‖ · ‖V such that the inclusion of V into X is continuous, i.e.,

there exists c > 0 such that

‖x‖ ≤ c ‖x‖V ∀x ∈ V.

For x ∈ X, let

‖x‖∗ = sup{|〈v, x〉| : v ∈ V, ‖v‖V ≤ 1}.

Then ‖ · ‖∗ is a norm on X and it is weaker than the original norm ‖ · ‖. Let Ṽ be

the completion of X with respect to the norm ‖ · ‖∗.

Definition 1.3.2. (cf. Nair (2015), Definition 1.2) The triple (V,X, Ṽ ) is called
a Gelfand triple.

Theorem 1.3.3. (cf. Nair (2015), Theorem 1.4) The space Ṽ is linearly isometric
with V ′, V ⊆ X ⊆ Ṽ and the inclusions are continuous embeddings.

Example 1.3.4. (cf. Nair (2015), Example 2.2 ) Let {vn : n ∈ N} be an or-
thonormal basis of a separable Hilert space X. Let (ωn) be a sequence of positive
real numbers with ωn → 0. For t ≥ 0, let

Xt =

{
x ∈ X :

∞∑
n=1

|〈x, vn〉|2

ω2t
n

<∞

}
.
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Then Xt is a Hilbert space with inner product

〈x, y〉t =
∞∑
n=1

〈x, vn〉 〈vn, y〉
ω2t
n

.

The corresponding norm ‖x‖t is given by

‖x‖2t = 〈x, x〉t =
∞∑
n=1

|〈x, vn〉|2

ω2t
n

.

Observe that
‖x‖ ≤ ‖x‖t ∀x ∈ Xt, t > 0.

Thus, (Xt, X,X−t), with X0 = X and X−t = X̃t, is a Gelfand triple for each t > 0,
and {Xt : t ∈ R} is a Hilbert Scale.

Example 1.3.5. (cf. Nair (2015), Example 2.4) For t ≥ 0, the sobolev space

H t(Rk) =

{
f ∈ L2(Rk) :

∫
Rk

(1 + |x|2)t |f̂(x)|2 dx <∞
}

is a Hilbert space with inner product

〈f, g〉t =

∫
Rk

(1 + |x|2)t f̂(x) ĝ(x) dx

and the corresponding norm

‖f‖t =

[∫
Rk

(1 + |x|2)t |f̂(x)|2 dx
]1/2

.

For t < 0, H t(Rk) is defined via Gelfand triple. It can be shown that for t < s
the inclusion Hs ⊆ Ht is continuous , and hence {H t(Rk) : t ∈ R} is a Hilbert
scale.

Natterer (1984) introduce the notion of Hilbert scales in Tikhonov regulariza-

tion to get better order in the error estimate. Natterer’s idea was to look for a

modification of the Tikhonov regularization which yield an approximation of the

LRN-solution which minimizes the function

x→ ‖x‖s,

where ‖ · ‖s for s > 0 is the norm on the Hibert space Xs corresponding to a

Hilbert scale {Xs : s ∈ R} for which the Interpolation inequality

‖u‖s ≤ ‖u‖1−λr ‖u‖λt
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holds for r ≤ s ≤ t. This purpose was served by considering the minimizer xδα,s of

the functional Jα(x) with

Jα(x) = ‖Tx− yδ‖2 + α‖x‖2s, x ∈ X, α > 0.

Natterer showed that if T satisfies

‖Tx‖ ≥ c‖x‖−a, ∀x ∈ X

for some a > 0 and c > 0, and if x̂ ∈ Xt where 0 ≤ t ≤ 2s+a and the regularization

parameter α is chosen such that α ∼ δ
2(a+s)
a+t , then

‖xδα,s − x̂‖ = O(δ
t
t+a ).

Thus, higher smoothness requirement on x̂ and with higher level of regularization

gives higher order of convergence.

In Chapter 2, we studied Lavrentiev regularization method for non-linear ill-

posed equation in the setting of Hilbert scale.

It is known that the term α ‖x‖2 in (1.2.3) and α〈x, x〉 in (1.2.9) over smooth

the solution x̂. So many authors (Klann and Ramlau (2008); Hochstenbach and

Reichel (2011); Hochstenbach et al. (2015); Reddy (2018)) studied fractional or

weighted Tikhonov regularization method to reduce the oversmoothing.

1.4 WEIGHTED REGULARIZATION METHOD

Let T be a compact operator, (σn;un, vn) be the singular system of T and Gα be

real valued functions satisfying the following conditions

sup
n
|Gα(σn)σ−1n | = c(α) <∞,

lim
α→0

Gα(σn) = 1 pointwise in σn,

|Gα(σn)| ≤ c ∀α, σn.

Then the family {Rα} of operators given by

Rα (y) =
∑
σn>0

Gα(σn) 〈y, vn〉un (1.4.1)
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becomes regularization. The functions Gα are called Filter function.

Definition 1.4.1 (cf.Klann and Ramlau (2008)). Let β ∈ [0, 1] and Gα : R+ → R
denote a filter function. Then Gβ

α(x) = (Gα (x))β is called the fractional filter
function with parameter β.

For a given filter function Gα and β ∈ [0, 1] the operator Rα,β : Y → X is
given by

Rα,β (y) =
∑
σn>0

Gβ
α(σn) 〈y, vn〉un

is called the fractional filter operator with parameter β.

The Tikhonov method can be written in the form (1.4.1) with a filter function

Gα(σ) = σ
σ2+α

. Klann and Ramlau (2008) consider the family of filter functions

GKR(σ) =
σ2β−1

(σ2 + α)β

with parameter β > 1
2
.

In (Hochstenbach et al. (2015)) the LRN-solution of minimal norm x̂ is ap-

proximated by xα,β, which are minimizer of the functionals

Jα,β(x) := ‖Ax− yδ‖2W + α ‖x‖2, (1.4.2)

where ‖y‖W = ‖(AAT )
β−1
4 y‖ and A ∈ Rm×n. The normal equation associated

with (1.4.2) is given by

((AT A)
β+1
2 + α I)x = (AT A)

β−1
2 AT yδ.

The filter function for fractional Tikhonov regularization (1.4.2) with β > 0 is

given by

Gα,β(σ) =
σβ

σβ+1 + α
.

Note that the standard Tikhonov regularization is recovered for β = 1.

In this thesis, except Chapter 2, we deal with weighted regularization methods

for linear ill-posed equations.
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1.5 OUTLINE OF THE THESIS

The rest of the thesis is organized as follows.

In chapter 2, we considered a derivative-free iterative method for approximately

solving non-linear ill-posed equations involving a monotone operator in the setting

of Hilbert scales.

In Chapter 3, we considered the fractional Tikhonov regularization (FTR)

method and used Schock-type discrepancy principle for choosing regularization

parameter α. We showed that FTR method gives better error estimate than that

of Tikhonov regularization method.

In Chapter 4, we considered weighted simplified regularization method for

approximately solving the equation Ax = y, where A : X → X is a positive

self-adjoint operator and considered three discrepancy principles to choose the

regularization parameter α. We obtained an optimal order error estimate under a

general Hölder type source condition.

In Chapter 5, we considered the finite dimensional realization for weighted

simplified regularization consider in the Chapter 4, and for choosing regularization

parameter α we considered the adaptive parameter choice method considered by

Pereverzev and Schock (2005). We obtained an optimal order error estimate under

a general Hölder type source condition.

Chapter 6 gives conclusion of the thesis and future work.
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CHAPTER 2

DERIVATIVE FREE
REGULARIZATION METHOD
FOR NON-LINEAR ILL-POSED
EQUATIONS IN HILBERT
SCALES

2.1 INTRODUCTION

In this chapter, we consider the problem of approximating a solution x̂ of the

non-linear equation

F (x) = y, (2.1.1)

where F : D(F ) ⊂ X −→ X is a non-linear monotone operator. Recall (cf. Alber

and Ryazantseva (2006)), that F is said to be monotone if

〈F (x)− F (y), x− y〉 ≥ 0

for all x, y ∈ D(F ).

A typical example of (2.1.1) is the parameter identification problem in an

elliptic PDE (Hofmann et al. (2016)); i.e., to find the source term q in the elliptic

boundary value problem

−∆u+ ξ(u) = q in Ω (2.1.2)

u = 0 on ∂Ω
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from measurement of u in Ω. Here ξ : R −→ R is a Lipschitz continuously differ-

entiable monotonically increasing function and Ω ⊆ R3 is a smooth domain. The

corresponding forward operator in this case is F : H2(Ω) −→ H2(Ω) defined by

F (q) = u.

Note that the equation (2.1.1) is in general ill-posed in the sense that the

solution x̂ of (2.1.1) is not depending continuously on the data y. We assume that

the available data, yδ ∈ X is such that

‖y − yδ‖ ≤ δ

and equation (2.1.1) is ill-posed. Therefore one has to use regularization methods

for approximating x̂. Since F is monotone, one may use Lavrentiev regularization

method (Tautenhahn (2002); George and Nair (2008); Hofmann et al. (2016)), in

which the solution xδα of the equation

F (x) + α(x− x0) = yδ (2.1.3)

is taken as an approximation for x̂ where x0 is some initial guess. Note that a

closed form solution for (2.1.3) is not easy to find for non-linear F. Therefore, many

authors (Tautenhahn (2002); Alber and Ryazantseva (2006); George and Nair

(2008)) considered iterative methods to find an approximation for xδα. George and

Nair (2017) considered a derivative-free iterative method defined for n = 0, 1, 2, . . .

by

xδn+1,α = xδn,α − β
[
F (xδn,α) + α(xδn,α − x0)− yδ

]
, (2.1.4)

where β is a scaling parameter and α is a regularization parameter for approxi-

mating xδα. It is known that (Tautenhahn (1998, 2002); Hofmann et al. (2016)),

the optimal order error estimate for Lavrentiev regularization is

‖xδα − x̂‖ = O
(
δ

ν
ν+1

)
(2.1.5)

under the source condition

x0 − x̂ ∈ R (F ′(x0)
ν) , 0 < ν ≤ 1,
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or

x0 − x̂ ∈ R (F ′(x̂)ν) , 0 < ν ≤ 1.

In order to improve the convergence rate in (2.1.5), many authors considered iter-

ative regularization method for (2.1.1) in the setting of Hilbert scales (Tautenhahn

(1996); George and Nair (1997); Tautenhahn (1998); Neubauer (2000); Egger and

Neubauer (2005); George et al. (2013)). Here we consider Lavrentiev regular-

ization method for (2.1.1) in the setting of Hilbert scales. We also consider an

inverse free, derivative-free iterative method for approximating x̂ in the setting of

a Hilbert scales.

The rest of the Chapter is organized as follows: Preliminaries are given in

Section 2.2, the method and its convergence analysis are given in Section 2.3.

Error bounds are given in Section 2.4, parameter choice strategies are given in

Section 2.5. Implementation of the adaptive parameter choice is given in Section

2.6 and the numerical experiments are given in Section 2.7. Finally, the Chapter

ends with a conclusion in Section 2.8.

2.2 PRELIMINARIES

In this study, we consider a Hilbert scale {Xs}s∈R generated by a strictly positive

definite, unbounded, densely defined, self-adjoint operator L : D(L) ⊆ X → X.

That is L satisfies:

〈Lx, x〉 > 0, ∀x ∈ D(L)

D(L) is dense in X and

‖Lx‖ ≥ ‖x‖, x ∈ D(L).

Recall (cf. George and Nair (1997)) that the space Xt is the completion of

D :=
∞⋂
k=0

D(Lk)

with respect to the norm ‖x‖t, induced by the inner product

〈u, v〉t = 〈Ltu, v〉, u, v ∈ D.
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Moreover, {Xs}s∈R satisfies the Definition 1.3.1 (cf. Engl et al. (1996); George

and Nair (1997)). Next we show that the equation

F (x) + αLs(x− x0) = yδ (2.2.1)

has unique solution xδα,s. We need the following definition for our proof.

Definition 2.2.1. (cf. Alber and Ryazantseva (2006), Definition 1.1.42) An op-
erator A : D(A) ⊆ X → X is said to be coercive if there exists a function c(t)
defined on [0,∞) such that c(t)→∞ as t→∞, and the inequality

〈A(x), x〉 ≥ c(‖x‖) ‖x‖

holds for all x ∈ D(A).

Next, we prove that the operator T := F + αLs is coercive. This can be seen

as follows:

〈T (x), x〉 = 〈F (x) + αLs(x), x〉

= 〈F (x)− F (0) + αLs(x), x− 0〉+ 〈F (0), x〉

= 〈F (x)− F (0), x− 0〉+ 〈αLs(x), x〉+ 〈F (0), x〉

≥ α‖x‖2s − ‖F (0)‖‖x‖ (by the monotonicity of F )

≥ α
1

c0,s
‖x‖2 − ‖F (0)‖‖x‖ (by (1.3.1))

and hence

lim
‖x‖→∞

〈T (x), x〉
‖x‖

≥ lim
‖x‖→∞

α
1

c0,s
‖x‖ − ‖F (0)‖ =∞.

That is T = F + αLs is coercive. Further,

〈T (x)−T (y), x− y〉 = 〈F (x)−F (y), x− y〉+α〈Ls(x− y), x− y〉 ≥ α
1

c0,s
‖x− y‖2,

i.e., T is strongly monotone. So by Minty-Browder Theorem (Alber and Ryazant-

seva (2006), page 54) for given α > 0, (2.2.1) has unique solution xδα,s for any

yδ ∈ X.

Let r0 = ‖x0 − x̂‖s. The following Lemmas is used to prove our main results.
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Lemma 2.2.2. Let xδα,s be the solution of (2.2.1) and xα,s is the solution of

F (x) + αLs(x− x0) = y. (2.2.2)

Then

‖xδα,s − xα,s‖s ≤ c0,s
δ

α

and

‖xα,s − x̂‖s ≤ ‖x0 − x̂‖s.

In particular,

‖xδα,s − x0‖s ≤ c0,s
δ

α
+ 2r0. (2.2.3)

Proof. Observe that by (2.2.1) and (2.2.2), we have

F (xδα,s)− F (xα,s) + αLs(xδα,s − xα,s) = yδ − y.

Hence

〈F (xδα,s)−F (xα,s), x
δ
α,s−xα,s〉+α〈Ls(xδα,s−xα,s), xδα,s−xα,s〉 = 〈yδ−y, xδα,s−xα,s〉.

By using (1.3.1) and the monotonicity of F, we have

α ‖xδα,s − xα,s‖2s ≤ δ ‖xδα,s − xα,s‖

≤ δ c0,s ‖xδα,s − xα,s‖s.

Thus,

‖xδα,s − xα,s‖s ≤ c0,s
δ

α
.

Again, since y = F (x̂), we have

F (xα,s) + αLs (xα,s − x0) = F (x̂),

so that

F (xα,s)− F (x̂) + αLs (xα,s − x0) = 0,

i.e.,

F (xα,s)− F (x̂) + αLs (xα,s − x̂) = αLs(x0 − x̂).
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Hence

〈F (xα,s)− F (x̂), xα,s − x̂〉+ α〈Ls(xα,s − x̂), xα,s − x̂〉 = α〈Ls(x0 − x̂), xα,s − x̂〉.

Again, using the monotonicity of F , we have

α‖xα,s − x̂‖2s ≤ α‖L
s
2 (xα,s − x̂)‖‖L

s
2 (x0 − x̂)‖

≤ α‖xα,s − x̂‖s‖x0 − x̂‖s.

Thus,

‖xα,s − x̂‖s ≤ ‖x0 − x̂‖s.

Now (2.2.3) follows from the triangle inequality:

‖xδα,s − x0‖s ≤ ‖xδα,s − xα,s‖s + ‖xα,s − x̂‖s + ‖x̂− x0‖s.

This completes the proof.

2

Remark 2.2.3. Note that by (1.3.1) and (2.2.3), we have

‖xδα,s − x0‖ ≤ c0,s ‖xδα,s − x0‖s ≤ c0,s

(
c0,s

δ

α
+ 2r0

)
i.e., xδα,s ∈ B(x0, R), where

R = c0,s

(
c0,s

δ

α
+ 2r0

)
.

2.3 THE METHOD AND THE CONVERGENCE

ANALYSIS

Let ρ = c0,s(c0,s + 1)(c0,s + 2r0). We assume that the following conditions hold:

(i) B̄(x0, ρ) ⊆ D(F ),

(ii) F has self-adjoint Fréchet derivative F ′(x) for every x ∈ B̄(x0, ρ),
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(iii) there exists β0 > 0 such that

‖L−
s
2F ′(x)L−

s
2‖ ≤ β0 for all x ∈ B̄(x0, ρ).

(iv) there exist positive constants d1, d2, b such that

d1‖x‖−b ≤ ‖F ′(y)x‖ ≤ d2‖x‖−b for all y ∈ B̄(x0, ρ) and x ∈ X.

Let f(t) := min{dt1, dt2}, g(t) := max{dt1, dt2}, t ∈ R and |t| ≤ 1. Further,

let Ms,y := L−
s
2F ′(y)L−

s
2 for y ∈ B̄(x0, ρ).

We shall make use of the following proposition, the proof of which is analogous

to the proof of Proposition 3.1 in (George and Nair (1997)).

Proposition 2.3.1. (cf. George and Nair (1997), Proposition 3.1) For s > 0 and
|ν| ≤ 1,

f
(ν

2

)
‖x‖− ν(s+b)

2

≤ ‖Mν/2
s,y x‖ ≤ g

(ν
2

)
‖x‖− ν(s+b)

2

, x ∈ X and y ∈ B̄(x0, ρ).

The method: Let δ ∈ (0, d] and α ∈ [δ, a). We define the sequence {xδn,α,s}

iteratively for n = 0, 1, 2, 3, . . . by

xδn+1,α,s = xδn,α,s − β
[
L−s(F (xδn,α,s)− yδ) + α(xδn,α,s − x0)

]
, (2.3.1)

where xδ0,α,s = x0 and β := 1
β0+a

. We observe that if {xδn,α,s} is converges, then the

limit xδα,s (say), is the solution of (2.2.1). Next, we prove the main results of this

Section.

Theorem 2.3.2. For each δ ∈ (0, d] and α ∈ [δ, a), the sequence {xδn,α,s} is in
B̄(x0, ρ) and it converges to xδα,s. Further,

‖xδn,α,s − xδα,s‖ ≤ k qnα,s,

where qα,s := 1− βα and k ≥ c0,s(c0,s + 2r0) with β := 1
β0+a

.

Proof. Clearly, we have xδ0,α,s = x0 ∈ B̄(x0, ρ). Also, since ρ ≥ c0,sR by

(2.2.3), we have xδα,s ∈ B̄(x0, ρ). By the Fundamental Theorem of Integration, we

have

F (x)− F (u) =

[∫ 1

0

F ′(u+ θ(x− u)) dθ

]
(x− u)
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whenever x and u are in a ball contained in D(F ). We show iteratively that

xδn,α,s ∈ B̄(x0, ρ), the operator

An,θ :=

∫ 1

0

F ′(xδα,s + θ(xδn,α,s − xδα,s))dθ

is a well defined, positive self-adjoint operator and

‖xδn+1,α,s − xδα,s‖s ≤ (1− βα)‖xδn,α,s − xδα,s‖s

for n = 0, 1, 2, . . ., which will complete the proof, since

‖x0 − xδα,s‖ ≤ c0,s‖x0 − xδα,s‖s ≤ c0,sR ≤ ρ.

Formally, by (1.3.1), we have

xδn+1,α,s − xδα,s = xδn,α,s − xδα,s − β
[
L−s(F (xδn,α,s)− F (xδα,s)) + α(xδn,α,s − xδα,s)

]
.

Since

F (xδn,α,s)− F (xδα,s) = An,θ(x
δ
n,α,s − xδα,s),

we have

xδn+1,α,s − xδα,s = [I − β(L−sAn,θ + αI)](xδn,α,s − xδα,s). (2.3.2)

Now, let n = 0. We have already seen that ‖x0−xδα,s‖ < ρ so that xδα,s ∈ B̄(x0, ρ)

and A0,θ is a well defined positive self-adjoint operator with ‖L− s2A0,θL
− s

2‖ ≤ β0.

Next assume that for some n ≥ 0, xδn,α,s ∈ B̄(x0, ρ) and An,θ is a well defined

positive self-adjoint operator with ‖L− s2An,θL−
s
2‖ ≤ β0. Then from (2.3.2),

L
s
2 (xδn+1,α,s − xδα,s) =

[
I − β(L−

s
2An,θL

− s
2 + αI)

]
L
s
2 (xδn,α,s − xδα,s),

so

‖xδn+1,α − xδα,s‖s ≤ ‖I − β(L−
s
2An,θL

− s
2 + αI)‖ ‖(xδn,α − xδα,s)‖s.

Since L−
s
2An,θL

− s
2 and I−β(L−

s
2An,θL

− s
2 +αI) are positive self-adjoint operator,

we have

‖I − β(L−
s
2An,θL

− s
2 + αI)‖ = sup

‖x‖=1

|〈[I − β(L−
s
2An,θL

− s
2 + αI)]x, x〉|

= sup
‖x‖=1

|(1− βα)− β〈L−
s
2An,θL

− s
2x, x〉|
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and since ‖L− s2An,θL−
s
2‖ ≤ β0 for all n ∈ N and β = 1

β0+a
, we have

0 ≤ β〈L−
s
2An,θL

− s
2x, x〉 ≤ β‖L−

s
2An,θL

− s
2‖ ≤ ββ0 < 1− βα

for all α ∈ (0, a). Therefore,

‖I − β(L−
s
2An,θL

− s
2 + αI)‖ ≤ 1− βα.

Thus,

‖xδn+1,α,s − xδα,s‖s ≤ (1− βα)‖xδn,α − xδα,s‖s.

Hence,

‖xδn+1,α,s − xδα,s‖ ≤ c0,s ‖xδn+1,α,s − xδα,s‖s ≤ c0,s ‖x0 − xδα,s‖s

and

‖xδn+1,α,s − x0‖ ≤ c0,s‖xδn+1,α,s − x0‖s

≤ c0,s
[
‖xδn+1,α,s − xδα,s‖s + ‖xδα,s − x0‖s

]
≤ c0,s(c0,s + 1)‖x0 − xδα,s‖s ≤ c0,s(c0,s + 1)(2r0 + c0,s) ≤ ρ.

Thus, xδn+1,α,s ∈ B̄(x0, ρ). Also, for 0 ≤ θ ≤ 1,

‖[xδα,s + θ(xδn+1,α,s − xδα,s)]− x0‖ = ‖(xδα,s − x0) + θ(xδn+1,α,s − xδα,s)‖

≤ ‖xδα,s − x0‖+ θ‖xδn+1,α,s − xδα,s‖

≤ c0,s[‖xδα,s − x0‖s + θ‖xδn+1,α,s − xδα,s‖s]

≤ c0,s(c0,s + 1)‖xδα,s − x0‖s

≤ c0,s(c0,s + 1)(2r0 + c0,s)

≤ ρ.

Hence, An+1,θ is a well defined positive self-adjoint operator with ‖L− s2An+1,θL
− s

2‖ ≤

β0. This completes the proof. 2
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2.4 ERROR BOUNDS UNDER SOURCE CON-

DITIONS

In order to obtain estimate for ‖xδα,s−x̂‖, we have to impose some non-linearity

conditions on F and assume that x0 − x̂ belongs to some source set. We use the

following two assumptions to obtain an error estimate for ‖xδα,s − x̂‖.

Assumption 2.4.1. There exists a constant k0 ≥ 0 such that for every x ∈
B̄(x0, ρ) and v ∈ X, there exists an element Φ(x, x0, v) ∈ X such that

[F ′(x)− F ′(x0)]v = F ′(x0)Φ(x, x0, v)

and
‖Φ(x, x0, v)‖ ≤ k0‖v‖‖x− x0‖.

for all x, v ∈ B̄(x0, ρ).

Assumption 2.4.2. There exists some E > 0, t > 0 such that x0 − x̂ ∈ Xt and

‖x0 − x̂‖t ≤ E.

Theorem 2.4.3. Let xδα,s be the solution of (2.2.1), let xα,s be solutions of (2.2.2)
respectively, and let Assumption 2.4.1 and Assumption 2.4.2 with t ≤ s + b hold.
Further, suppose

ρ k0 <
f
(

s
s+b

)
g
(

s
s+b

) .
Then, we have the following estimates:

(a)We have ‖xδα,s − xα,s‖ ≤
c−s,0

f( s
s+b

)− g( s
s+b

)ρk0

δ

α
b
s+b

.

(b)We have ‖xα,s − x̂‖ ≤
g( s−t

s+b
)

f( s
s+b

)− g( s
s+b

)k0ρ
Eα

t
s+b .

(c)In particular, for α = δ
s+b
b+t , we have ‖xδα,s − x̂‖ = O

(
δ

t
t+b

)
.

Proof. Let As =
∫ 1

0
F ′(xα,s + θ(xδα,s − xα,s))dθ. Then, since

F (xδα,s)− F (xα,s) + αLs(xδα,s − xα,s) = yδ − y,

we have

(As + αLs)(xδα,s − xα,s) = yδ − y.
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In particular,

(F ′(x0) + αLs)(xδα,s − xα,s) = yδ − y + (F ′(x0)− As)(xδα,s − xα,s).

Therefore, we have

xδα,s − xα,s = (F ′(x0) + αLs)−1
[
yδ − y + (F ′(x0)− As)(xδα,s − xα,s)

]
= (F ′(x0) + αLs)−1

[
yδ − y − F ′(x0)

∫ 1

0

Φ(x0, xα,s + θ(xδα,s − xα,s), xδα,s − xα,s)dθ
]

and hence

‖xδα,s − xα,s‖ ≤ ‖(F ′(x0) + αLs)−1(yδ − y)‖

+

∥∥∥∥(F ′(x0) + αLs)−1F ′(x0)

∫ 1

0

Φ(x0, xα,s + θ(xδα,s − xα,s), xδα,s − xα,s)dθ
∥∥∥∥

= Γ1 + Γ2,

where

Γ1 = ‖(F ′(x0) + αLs)−1(yδ − y)‖, and

Γ2 =

∥∥∥∥(F ′(x0) + αLs)−1F ′(x0)

∫ 1

0

Φ(x0, xα,s + θ(xδα,s − xα,s), xδα,s − xα,s)dθ
∥∥∥∥ .

Note that by Proposition 2.3.1, we have

Γ1 = ‖(F ′(x0) + αLs)−1(yδ − y)‖

= ‖L−
s
2 (L−

s
2F ′(x0)L

− s
2 + αI)−1L−

s
2 (yδ − y)‖

≤ 1

f
(

s
s+b

)‖B s
s+b
s (Bs + αI)−1L−

s
2 (yδ − y)‖

≤ c−s,0

f
(

s
s+b

) δ

α
b
s+b

,

where

Bs = L−
s
2F ′(x0)L

− s
2 .
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Again by Proposition 2.3.1, we have

Γ2 =

∥∥∥∥L− s2 (Bs + αI)−1L−
s
2F ′(x0)

∫ 1

0

Φ(x0, xα,s + θ(xδα,s − xα,s), xδα,s − xα,s)dθ
∥∥∥∥

≤ 1

f
(

s
s+b

) ∥∥∥∥B s
s+b
s (Bs + αI)−1BsL

s
2

∫ 1

0

Φ(x0, xα,s + θ(xδα,s − xα,s), xδα,s − xα,s)dθ
∥∥∥∥

≤ 1

f
(

s
s+b

) ∥∥∥∥(Bs + αI)−1BsB
s
s+b
s L

s
2

∫ 1

0

Φ(x0, xα,s + θ(xδα,s − xα,s), xδα,s − xα,s)dθ
∥∥∥∥

≤
g
(

s
s+b

)
f
(

s
s+b

) ∥∥∥∥∫ 1

0

Φ(x0, xα,s + θ(xδα,s − xα,s), xδα,s − xα,s)dθ
∥∥∥∥

≤
g
(

s
s+b

)
f
(

s
s+b

) k0 ∫ 1

0

‖x0 − xα,s − θ(xδα,s − xα,s)‖‖xδα,s − xα,s‖dθ

≤
g
(

s
s+b

)
f
(

s
s+b

)ρ k0 ‖xδα,s − xα,s‖.
The last step follows from the fact that xα,s, x

δ
α,s ∈ B(x0, ρ) and hence

xα,s + θ(xδα,s − xα,s) ∈ B(x0, ρ).

This proves (a). To prove (b), we notice that since y = F (x̂), we have by (2.2.2)

F (xα,s)− F (x̂) + αLs(xα,s − x0) = 0. (2.4.1)

Let

A =

∫ 1

0

F ′(x̂+ θ(xα,s − x̂))dθ.

Then by (2.4.1) we have

(A+ αLs)(xα,s − x̂) = αLs(x0 − x̂)

or

(F ′(x0) + αLs)(xα,s − x̂) = (F ′(x0)− A)(xα,s − x̂) + αLs(x0 − x̂).

Therefore, we have

xα,s − x̂ = (F ′(x0) + αLs)−1[(F ′(x0)− A)(xα,s − x̂) + αLs(x0 − x̂)].
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Hence, using Assumptions 2.4.1 and 2.4.2, we have

xα,s − x̂ = L−
s
2 (Bs + αI)−1L−

s
2

[
−F ′(x0)

∫ 1

0

Φ(x0, x̂+ θ(xα,s − x̂), xα,s − x̂)dθ

]
+αL−

s
2 (Bs + αI)−1L−

s
2Ls(x0 − x̂)

= L−
s
2 (Bs + αI)−1L−

s
2

[
−F ′(x0)

∫ 1

0

Φ(x0, x̂+ θ(xα,s − x̂), xα,s − x̂)dθ

]
+αL−

s
2 (Bs + αI)−1L

s
s (x0 − x̂).

‖xα,s − x̂‖ ≤
∥∥∥∥L− s2 (Bs + αI)−1L−

s
2 [F ′(x0)

∫ 1

0

Φ(x0, x̂+ θ(xα,s − x̂), xα,s − x̂)dθ

∥∥∥∥
+α‖L−

s
2 (Bs + αI)−1L

s
2 (x0 − x̂)‖

≤ 1

f
(

s
s+b

) ∥∥∥∥B s
s+b
s (Bs + αI)−1BsL

s
2

∫ 1

0

Φ(x0, x̂+ θ(xα,s − x̂), xα,s − x̂)dθ

∥∥∥∥
+

1

f
(

s
s+b

)α‖B s
s+b
s (Bs + αI)−1L

s
2 (x0 − x̂)‖

≤ 1

f
(

s
s+b

) ∥∥∥∥(Bs + αI)−1BsB
s
s+b
s L

s
2

∫ 1

0

Φ(x0, x̂+ θ(xα,s − x̂), xα,s − x̂)dθ

∥∥∥∥
+

1

f
(

s
s+b

)α‖B s
s+b
s (Bs + αI)−1L

s
2 (x0 − x̂)‖

≤
g
(

s
s+b

)
f
(

s
s+b

)k0‖x0 − x̂− θ(xα,s − x̂)‖‖xα,s − x̂‖

+
1

f
(

s
s+b

)α‖(Bs + αI)−1B
t
s+b
s ‖‖B

s−t
s+b
s L

s
2 (x0 − x̂)‖

≤
g
(

s
s+b

)
f
(

s
s+b

) k0 ρ ‖xα,s − x̂‖+
g
(
s−t
s+b

)
f
(

s
s+b

)α t
s+b‖x0 − x̂‖t

≤
g
(

s
s+b

)
f
(

s
s+b

) k0 ρ ‖xα,s − x̂‖+
g
(
s−t
s+b

)
f
(

s
s+b

) E α t
s+b .

This completes the proof of (b). Now (c) follows from (a) and (b).

2.5 A PRIORI CHOICE OF THE PARAME-

TER

Note that by (a) and (b) of Theorem 2.4.3, we have

‖xδα,s − x̂‖ ≤ C

(
δ

α
b
s+b

+ α
t
s+b

)
, (2.5.1)

25



where

C = max

{
c−s,0

f
(

s
s+b

)
− g

(
s
s+b

)
ρ k0

,
g
(
s−t
s+b

)
E

f
(

s
s+b

)
− g

(
s
s+b

)
k0 ρ

}
. (2.5.2)

Further, observe that the error δ

α
b
s+b

+ α
t
s+b in (2.5.1) is of optimal order if αδ :=

α(t, δ) satisfies
δ

α
b
s+b

= α
t
s+b .

That is αδ = δ
s+b
t+b . Hence by (2.5.1) we have the following Theorem.

Theorem 2.5.1. Let the assumptions in Theorem 2.3.2 and Theorem 2.4.3 hold.

For δ > 0, let α := αδ = δ
s+b
t+b . Let nδ be such that

nδ := min

{
n : qnα,s ≤

δ

α
b
s+b

}
.

Then
‖xδnδ,α,s − x̂‖ = O

(
δ

t
t+b

)
.

2.5.1 Adaptive Scheme and Stopping Rule

Pereverzev and Schock (2005) introduced the adaptive selection of the parameter

strategy, we modified the adaptive method suitably for the situation for choosing

the regularization parameter α. For convenience, take xδi,α,s := xδni,αi,s. Let i ∈

{0, 1, 2, . . . , N} and αi = µiα0, where µ > 1 and α0 > δ. Let

l := max

i : α
t
s+b

i ≤ δ

α
b
s+b

i

 < N and (2.5.3)

k := max

i : ‖xδi,α,s − xδj,α,s‖ ≤ 4C̄
δ

α
b
s+b

j

, j = 0, 1, 2, . . . , i− 1

 (2.5.4)

where C̄ = C + k, C as in (2.5.2) and k as in Theorem 2.3.2. Now we have the

following theorem.

Theorem 2.5.2. Assume that there exists i ∈ {0, 1, · · · , N} such that

α
t
s+b

i ≤ δ

α
b
s+b

.
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Let the assumptions of Theorem 2.3.2 and Theorem 2.4.3 be fulfilled, and let l and
k be as in (2.5.3) and (2.5.4) respectively. Let

ni = min

n : qnαi,s ≤
δ

α
b
s+b

i

 .

Then l ≤ k and
‖xδnk,α,s − x̂‖ ≤ 6 C̄ µ

b
s+b δ

t
t+b .

Proof. To prove l ≤ k, it is enough to show that, for each i ∈ {1, 2, . . . N},

α
t
s+b

i ≤ δ

α
b
s+b

i

=⇒ ‖xδni,α,s − x
δ
nj ,α,s
‖ ≤ 4 C̄

δ

α
b
s+b

, ∀j = 0, 1, 2, . . . i− 1.

For j < i, we have

‖ xδni,α,s − x
δ
nj ,α,s

‖ ≤ ‖ xδi,α,s − x̂ ‖ + ‖ x̂− xδj,α,s ‖

≤ C̄

α t
s+b

i +
δ

α
b
s+b

i

+ C̄

α t
s+b

j +
δ

α
b
s+b

j


≤ 2 C̄ α

t
t+b

i + 2 C̄
δ

α
b
s+b

j

≤ 4 C̄
δ

α
b
s+b

j

.

Thus, the relation l ≤ k is proved. Observe that

‖ x̂− xδnk,α,s ‖≤‖ x̂− x
δ
nl,α,s

‖ + ‖ xδnk,α,s − x
δ
nl,α,s

‖,

where

‖ x̂− xδnl,α,s ‖≤ C̄

α t
s+b

l +
δ

α
b
s+b

l

 ≤ 2 C̄
δ

α
b
s+b

l

.

Now since l ≤ k, we have

‖ xδnk,α,s − x
δ
nl,α,s

‖ ≤ 4 C̄
δ

α
b
s+b

l

.

Hence

‖ x̂− xδnk,α,s ‖≤ 6 C̄
δ

α
b
s+b

l
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Now, since α
b
s+b

δ = δ
b
t+b ≤ α

b
s+b

l+1 ≤ µ
b
s+bαl

b
s+b , it follows that

δ

α
b
s+b

l

≤ µ
b
s+b

δ

α
b
s+b

δ

= µ
b
s+b δ

t
t+b .

This completes the proof.

2.6 IMPLEMENTATION OF ADAPTIVE CHOICE

RULE

The balancing algorithm associated with the choice of the parameter specified in

Theorem 2.5.2 involves the following steps:

• Choose α0 > 0 such that δ < α0 and µ > 1.

• Choose αi := µiα0, i = 0, 1, 2, . . . , N.

2.6.1 Algorithm

1. Set i = 0.

2. Choose ni := min

{
n : qnαi,s ≤

δ

α
b
s+b
i

}
.

3. Solve xi,α,s := xδni,αi,s by using the iteration (2.3.1).

4. If ‖xi,α,s − xj,α,s‖ > 4C̄ δ

α
b
s+b
j

, j < i, then take k = i− 1 and return xk,α,s.

5. Else set i = i+ 1 and go to 2.

2.7 NUMERICAL EXPERIMENTS

In this section, we present a numerical experiment for the elliptic boundary-value

problem 2.1.2 and compare the results of method (2.3.1) with that of method

(2.1.4). Let us define the linear operator

L : H2 ∩H1
0 [0, 1] ⊂ L2[0, 1] 7→ L2[0, 1]
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by Lx = −x′′. Then L is densely defined, self-adjoint and positive definite (Jin

(2000)) and the Hilbert scale {X}s generated by L is given by

Xs =

{
x ∈ Hs[0, 1] : x(2l)(0) = x(2l)(1) = 0, l = 0, 1, . . . ,

[
s

2
− 1

4

]}
for any s ∈ R, where Hs[0, 1] is the usual Sobolev space and

‖x‖s =

∫ 1

0

|x(s)(t)|dt

for all s = 0, 1, 2, . . .. We have taken s = b = 2 in our computation. Table 2.1 and

2.2 gives the number of iterations, alpha and the relative error.

Table 2.1: Table showing the number of iterations, alpha and the error for µ = 1.15
δ = 1/153, β = 0.25.

Method (2.3.1) Method in (2.1.4)

Function k nk α(k)
‖x̂−xδn,αk,s‖
‖xδn,αk,s‖

k nk α(k)
‖x̂−xδn,αk‖
‖xδn,αk‖

x̂ = min{x, 1− x}, 5 31 0.0829 0.0074 7 24 0.0312 0.3021
x ∈ [0, 1]
x̂ = x2 if 5 32 0.0954 0.0093 6 27 0.0474 0.4655

0.2 < x < 0.7,
else x̂ = x

Table 2.2: Table showing the number of iterations, alpha and the error for µ = 1.25
δ = 1/590, β = 0.25.

Method (2.3.1) Method in (2.1.4)

Function k nk α(k)
‖x̂−xδn,αk,s‖
‖xδn,αk,s‖

k nk α(k)
‖x̂−xδn,αk‖
‖xδn,αk‖

x̂ = min{x, 1− x}, 23 15 0.0080 0.0085 20 16 0.0100 0.0926
x ∈ [0, 1]
x̂ = x2 if 12 20 0.0245 0.0086 15 18 0.0157 0.1548

0.2 < x < 0.7,
else x̂ = x

Remark 2.7.1. From the tables and figures, one can see that the method (2.3.1)
gives a better approximation than the method (2.1.4).
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2.8 CONCLUSION

In this chapter, we considered a derivative-free iterative method for approximately

solving ill-posed equations involving a monotone operator in the setting of Hilbert

scales. We obtained an optimal order error estimate under a general Hölder-

type source condition. Also we considered the adaptive parameter choice strategy

considered by Pereverzev and Schock (2005), for choosing the regularization pa-

rameter.
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Figure 2.1: Exact and approximate data and solution of method (2.3.1) for x̂ =
min{x, 1− x}, where µ = 1.15 δ = 1/153, β = 0.25.
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Figure 2.2: Exact and approximate data and solution of method (2.1.4) for x̂ =
min{x, 1− x}, where µ = 1.15 δ = 1/153, β = 0.25.
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Figure 2.3: Exact and approximate data and solution of method (2.3.1) for x̂ = x2

if 0.2 < x < 0.7, else x̂ = x, where µ = 1.15 δ = 1/153, β = 0.25.
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Figure 2.4: Exact and approximate data and solution of method (2.1.4) for x̂ = x2

if 0.2 < x < 0.7, else x̂ = x, where µ = 1.15 δ = 1/153, β = 0.25.

32



0 0.5 1

-0.1

0

0.1

0.2

0.3

0.4

0.5
sources

reconstruction

true

0 0.5 1

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045
data

reconstruction

true

observation

Figure 2.5: Exact and approximate data and solution of method (2.3.1) for x̂ =
min{x, 1− x}, where µ = 1.25 δ = 1/590, β = 0.25.
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Figure 2.6: Exact and approximate data and solution of method (2.1.4) for x̂ =
min{x, 1− x}, where µ = 1.25 δ = 1/590, β = 0.25.
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Figure 2.7: Exact and approximate data and solution of method (2.3.1) for x̂ = x2

if 0.2 < x < 0.7, else x̂ = x, where µ = 1.25 δ = 1/590, β = 0.25.
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Figure 2.8: Exact and approximate data and solution of method (2.1.4) for x̂ = x2

if 0.2 < x < 0.7, else x̂ = x, where µ = 1.25 δ = 1/590, β = 0.25.
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CHAPTER 3

DISCREPANCY PRINCIPLES
FOR FRACTIONAL
TIKHONOV
REGULARIZATION

3.1 INTRODUCTION

Let T : X → Y be a bounded linear operator with non closed range R(T ) and

y ∈ R(T ) + R(T )⊥. In this Chapter, we consider the problem of approximating

the minimal norm least square solution x̂ = T †y of ill-posed operator equation

Tx = y (3.1.1)

with the help of well-posed equations (Engl et al. (1996); Groetsch (1977, 1984);

Guacaneme (1988); Nair (2009)). As, already mentioned in Chapter 2, we assume

that the available data yδ satisfies

‖y − yδ‖ ≤ δ. (3.1.2)

Since (3.1.1) is ill-posed, one has to use some regularization method to approximate

x̂.

It is known that the solution xδα of (1.2.4) over smooths the solution x̂, and to

overcome this problem many authors considered fractional or weighted Tikhonov

regularization method (Bianchi et al. (2015); Bianchi and Donatelli (2017); Gerth
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et al. (2015); Hochstenbach and Reichel (2011); Huckle and Sedlacek (2012);

Hochstenbach et al. (2015); Klann and Ramlau (2008); Reddy (2018)) for ap-

proximating x̂. In this method, the minimizer of the functional

Jα,w(x) := ‖Tx− yδ‖2W + α‖x‖2 (3.1.3)

is taken as an approximation for x̂. Here

‖y‖W = ‖W
β
2 y‖Y , β ∈

[
−1

2
, 0

]
(3.1.4)

with W = (T T ∗) is the weighted semi-norm. Reddy (2018) consider the Engl

type discrepancy principle for choosing the regularization parameter α. Precisely,

Reddy consider the following discrepancy principles

G(α, yδ) := ‖α
(
(T ∗ T )

β+1
2 + αI

)−1
(T ∗ T )

β−1
2 T ∗yδ‖2 = τ1

δp

αq
, τ1 > 0

and

G1(α, y
δ) := ‖T ∗Txδα,β − T ∗yδ‖2 =

δp

αq
p > 0 , q > 0, α > 0

for choosing the regularization parameter α for weighted Tikhonov regularization

with the weighted semi-norm

‖y‖W = ‖W
β−1
4 y‖Y ,

for some parameter 0 ≤ β ≤ 1. Throughout this Chapter xδα,β is the minimizer of

(3.1.3).

In this Chapter, we consider the fractional or weighted Tikhonov regularization

method (3.1.3) with the weighted semi-norm (3.1.4) and studied the parameter

choice strategy for choosing the parameter α in (3.1.3), namely, the Schock type

(Schock (1984b)) discrepancy principle

G(α, yδ) := ‖Txδα,β − yδ‖ =
δp

αq
, p > 0 , q > 0. (3.1.5)
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The rest of the Chapter is organized as follows. In Section 3.2, we consider the

error analysis of the proposed method and in Section 3.3 we consider the Schock-

type discrepancy principle. Numerical examples are provided in Section 3.4 and

the Chapter ends with concluding remarks in Section 3.5.

3.2 ERROR ANALYSIS

Let xδα,β be the minimizer of (3.1.3) with semi norm (3.1.4). Then

xδα,β =

(
(T ∗ T )1+β + αI

)−1
(T ∗ T )βT ∗yδ. (3.2.1)

Let

xα,β =

(
(T ∗ T )1+β + αI

)−1
(T ∗ T )βT ∗y (3.2.2)

and

x̂ ∈ R
(

(T ∗ T )ν
)
, 0 < ν ≤ 1 + β. (3.2.3)

We need the following result for our error analysis.

Proposition 3.2.1. (cf. Louis (1989), Proposition 3.4.3) Let xδα,β and xα,β be as
in (3.2.1) and (3.2.2), respectively. Let x̂ satisfies (3.2.3). Then

(i) ‖xδα,β − xα,β‖ ≤ c1
δ

α
1

2(1+β)

,

(ii) ‖x̂− xα,β‖ ≤ c2 α
ν

1+β .

In particular, we have

(iii) ‖x̂− xδα,β‖ ≤ c1
δ

α
1

2(1+β)

+ c2 α
ν

1+β .

Proof. Note that by (3.2.1) and (3.2.2) we have

‖xδα,β − xα,β‖ =

∥∥∥∥∥
(

(T ∗ T )1+β + αI

)−1
(T ∗ T )βT ∗(y − yδ)

∥∥∥∥∥
≤ sup

λ∈σ(T ∗ T )

∣∣∣∣ λ(β+
1
2
)

λ1+β + α

∣∣∣∣ ‖y − yδ‖
≤ c1

δ

α
1

2(1+β)

.
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This proves (i). Again by (3.2.2), we have

||x̂− xα,β|| =

∥∥∥∥∥x̂−
(

(T ∗ T )1+β + αI

)−1
(T ∗ T )βT ∗y

∥∥∥∥∥
=

∥∥∥∥∥
(

(T ∗ T )1+β + αI

)−1
α x̂

∥∥∥∥∥
=

∥∥∥∥∥α
(

(T ∗ T )1+β + αI

)−1
(T ∗T )νz

∥∥∥∥∥ , ν ≤ 1 + β

≤ sup
λ∈σ(T ∗ T )

∣∣∣∣ αλν

λ1+β + α

∣∣∣∣ ‖z‖
≤ c2 α

ν
1+β .

This proves (ii), now (iii) follows from (i) and (ii).

2

Remark 3.2.2. (cf. Bianchi et al. (2015), Proposition 10) Observe that, δ

α
1

2(1+β)
is

decreasing for β ∈ [−1
2
, 0], whereas α

ν
1+β is increasing for β ∈ [−1

2
, 0]. Therefore,

one has to choose β ∈ [−1
2
, 0], such that δ

α
1

2(1+β)
= α

ν
1+β in order to obtain an

optimal order error estimate for ‖x̂ − xδα,β‖. For a fixed, δ > 0, ν > 0 and α ∈
[δ

2
2ν+1 , δ

1
2ν+1 ], the best possible choice for β is

β =

(
2ν + 1

2

)
logα

log δ
− 1.

In this case β ∈ [−1
2
, 0] and α = δ

2(β+1)
2ν+1 . In Section 3.3, we study Schock-type

discrepancy principle for choosing α in (3.2.1), for a fixed β.

3.3 SCHOCK-TYPE DISCREPANCY PRINCI-

PLE

In this Section, we consider Schock-type discrepancy principle for choosing the

regularization parameter α. We obtained error estimate for ‖x̂− xδα,β‖, when the

parameter α is chosen according to the Schock-type discrepancy principle and the

error estimate is of order optimal if the parameters are chosen properly. Interested

readers may refer Section 3 in (Hochstenbach and Reichel (2011)) for a detailed

discussion about the dependance of the parameter α and β.
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Next, we prove some lemmas to prove our main result in this section.

Lemma 3.3.1. Let p > 0, q > 0 and yδ satisfies (3.1.2). Then there exists a unique
α such that (3.1.5) holds.

Proof. Consider the function H(α, yδ) = αq G(α, yδ). By spectral radius the-

orem, we have

H(α, yδ) = α2q

∫ ‖T‖2
0

(
αλ

λ2β+1 + α

)2

d‖Eλyδ‖2

where Eλ is the spectral family of T T ∗. Hence, H(α, yδ) is strictly increasing,

continuous, H(α, yδ) tends to ∞ as α tends to ∞ and tends to 0 as α tends to 0.

The result now follows from the intermediate value theorem.

2

Lemma 3.3.2. Let α = α(δ) be the unique solution of (3.1.5). If y 6= 0, then

α(δ)→ 0 as δ → 0. Furthermore, for 0 < δ ≤ ‖y‖
2
, α(δ) = O(δ

p
q+1 ).

Proof. Suppose α(δ) does not converges to 0 as δ tends to 0. Then there exists

a sequence (δn) with δn → 0 and α(δn)→ r > 0. From (3.1.5) we have

δp = αq‖Txδα,β − yδ‖.

In particular, we have

δpn = α(δn)q

∥∥∥∥∥T
(

(T ∗ T )1+β + α(δn)I

)−1
(T ∗ T )βT ∗yδn − yδn

∥∥∥∥∥ .
As δn tends to 0, we get

0 = rq

∥∥∥∥∥T
(

(T ∗ T )1+β + rI

)−1
(T ∗ T )βT ∗y − y

∥∥∥∥∥
and hence (

(T T ∗)1+β + rI

)−1
[(T T ∗)1+βy − (T T ∗)1+βy − r y] = 0
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i.e., r y = 0 implies y = 0. Which is a contradiction to our assumption. Thus

α(δ)→ 0 as δ → 0. Now by (3.1.5) and (3.2.1), we have

‖yδ‖ − δp

αq
= ‖yδ‖ − ‖Txδα,β − yδ‖

≤ ‖Txδα,β‖

=
1

α
‖T (αxδα,β)‖

≤ ‖T‖
α
‖αxδα,β‖

=
‖T‖
α
‖(T ∗T )βT ∗(Txδα,β − yδ)‖

≤ ‖T‖2(1+β)

α
‖Txδα,β − yδ‖

≤ ‖T‖2(1+β)

αq+1
δp.

Therefore,

‖y‖
2
≤ ‖y‖ − δ ≤ ‖y‖ − ‖y − yδ‖ ≤ ‖yδ‖

≤ ‖T‖2(1+β) + α

αq+1
δp

and hence

αq+1 ≤ 2(‖T‖2(1+β) + α)

‖y‖
δp.

From this the result follows.

2

Hereafter, we assume that 0 < δ ≤ ‖y‖
2
.

Lemma 3.3.3. Suppose x̂ ∈ R((T ∗ T )ν), 0 < ν ≤ 1 + β. Then∥∥∥∥∥α
(

(T T ∗)1+β + αI)

)−1
T x̂

∥∥∥∥∥ = O(αw),

where w = min
{

1, 2ν+1
2(1+β)

}
.

Proof. Let T = U (T ∗T )1/2 be the polar decomposition of T, where U is a
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unitary operator, and let z ∈ X be such that x̂ = (T ∗T )ν z. Then we have∥∥∥∥∥α
(

(T T ∗)1+β + αI

)−1
T x̂

∥∥∥∥∥ =

∥∥∥∥∥αT
(

(T ∗ T )1+β + αI)

)−1
x̂

∥∥∥∥∥
=

∥∥∥∥∥αU (T ∗T )1/2
(

(T ∗ T )1+β + αI

)−1
(T ∗T )ν z

∥∥∥∥∥
≤ sup

λ∈σ(T ∗T )

{
αλ(ν+

1
2
)

λ1+β + α

}
‖z‖

≤

{
c1 α

2ν+1
2(1+β) if ν < β + 1

2

c2 α if ν ≥ β + 1
2

= O(αw).

2

Lemma 3.3.4. Let x̂ ∈ R((T ∗ T )ν), 0 < ν ≤ 1 + β. Suppose

w = min

{
1,

2ν + 1

2(1 + β)

}
,

p

q + 1
≤ min

 1

w
,

2[
1 + 2ν

1+β
+ 1−w

q

]


and α = α(δ) is chosen according to (3.1.5). Then

δ

α
1

2(1+β)

= O(δµ), µ = 1− p

q + 1

[
1

2(1 + β)
+

1− w
2q(1 + β)

]
.

Proof. Using (3.1.5) and (3.2.1), we have

‖Txδα,β − yδ‖ = ‖T ((T ∗T )1+β + αI)−1(T ∗T )βT ∗yδ − yδ‖

= ‖((TT ∗)1+β + αI)−1(TT ∗)βTT ∗yδ − yδ‖

= ‖α((TT ∗)1+β + αI)−1yδ‖

≤ ‖α((TT ∗)1+β + αI)−1(yδ − y)‖+ ‖α((TT ∗)1+β + αI)−1y‖,

where ‖α((TT ∗)1+β + αI)−1(yδ − y)‖ ≤ δ and by Lemma 3.3.3, we have

‖α((TT ∗)1+β + αI)−1y‖ = O(αw).

That is, we have by Lemma 3.3.2

δp

αq
= ‖Txδα,β − yδ‖ ≤ δ + c δ

pw
q+1 .
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Hence

δ

α
1

2(1+β)

= δ1−
p

2q(1+β)

[
δp

αq

] 1
2q(1+β)

≤ δ
2q(1+β)−p
2q(1+β)

[
δ + cδ

pw
q+1

] 1
2q(1+β)

≤
[
δ2q(1+β)−p+1 + cδ2q(1+β)−p+

pw
q+1

] 1
2q(1+β)

≤ δ
2q(1+β)+1−p

2q(1+β) + cδ1−
p
q+1 [ 1

2(1+β)
+ 1−w

2q(1+β ].

This completes the proof.

2

Now, we state the main theorem of this Section.

Theorem 3.3.5. Let x̂ ∈ R((T ∗ T )ν), 0 < ν ≤ 1 + β and 0 < δ ≤ ‖y‖
2
. Suppose

w = min

{
1,

2ν + 1

2(1 + β)

}
,

p

q + 1
≤ min

 1

w
,

2[
1 + 2ν

1+β
+ 1−w

q

]


and α = α(δ) is chosen according to (3.1.5). Then

‖x̂− xδα,β‖ = O(δρ), ρ = min

{
µ,

pν

(q + 1)(1 + β)

}
.

In particular, if
p

q + 1
=

2(1 + β)

2ν + 1 + 1−w
q

,

then

‖x̂− xδα,β‖ = O

(
δ

2ν

2ν+1+1−w
q

)
.

Proof. The proof of the first part follows from Proposition 3.2.1, Lemma 3.3.2

and Lemma 3.3.3 and the second part follows by noting that

µ = pν
(q+1)(1+β)

if and only if p
q+1

= 2(1+β)

2ν+1+ 1−w
q

.

2

Remark 3.3.6. 1. Note that we obtained the optimal rate O(δ
2ν

2ν+1 ) for

β + 1
2
≤ ν ≤ 1 + β by choosing p

q+1
= 2(1+β)

2ν+1
.
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3.4 NUMERICAL EXAMPLES

In this section, we pick up two examples for the numerical discussion to validate

our theoretical results. The discrete version of the operator T is taken from the

Regularization Toolbox by Hansen (2007). We take the singular value decompo-

sition (SVD)

T = UΣV T , (3.4.1)

where U = [u1, u2, . . . , un] ∈ Rn×n and V = [v1, v2, . . . , vn] ∈ Rn×n are orthogonal

matrices, and

Σ = diag[λ1, λ2, . . . , λn] ∈ Rn×n,

whose singular values are ordered according to

λ1 ≥ λ2 ≥ . . . ≥ λr > λr+1 = . . . = λn = 0.

Substituting the SVD (3.4.1) into (3.2.1) and (3.1.5) yield

xδα,β = V (Σ2(β+1) + αI)−1Σ2β+1UTyδ (3.4.2)

and

G(α, yδ) := ‖αU(Σ2(β+1) + αI)−1UTyδ‖2 =
δ2p

α2q
. (3.4.3)

We adopted the Newton’s method to solve above nonlinear equation for α

with different values β, δ and q with q = p − 1. Precisely, we use the Newton’s

iteration αm = αm−1 − f(αm−1)
f ′(αm−1)

, m = 1, 2, 3, . . . with an initial guess α0, where

f(α) = α2(q+1)‖U(Σ2(β+1) + αI)−1UTyδ‖2 − δ2p for solving (3.4.3).

Relative errors Eα,β :=
(
‖xδα,β−x̂‖
‖x̂‖

)
, and α are presented in the tables for dif-

ferent values of β, p, n (size of the mesh) and noise level δ. In each figure, plot (a)

contains the computed solution (C.S) and exact solution ( exact sol.) for method

(3.1.5) plot (b) contains the exact data and noise data; and plots (c) contains the

computed solution (C.S) and exact solution ( exact sol.) for method (1.2.7).
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Example 3.4.1. We choose Foxgood example from the Regularization Tool-

box by Hansen (2007) with n points. It is defined as follows:

[Tx](s) :=

∫ 1

0

√
s2 + t2x(t)dt = y(s), 0 ≤ s ≤ 1 (3.4.4)

with noise free data y(s) = 1
3
((1 + s2)3/2 − s3) and solution x̂(t) = t. The exact

data contaminated by introducing random noise level δ = 0.05 and 0.01. In Table

3.1 and Table 3.2 respectively, we present the relative errors as well as α values

using discrepancy principle (3.1.5) and (1.2.7) (i.e. Morozov’s) with xδα,β replacing

xδα, for different values of β, δ, p and n; and the best reconstruction happened at

β = −0.15. Plots of Foxgood example for different values of δ, n and β are given

in Fig:3.1 - Fig: 3.18, with captions.

Table 3.1: Relative errors of Foxgood example using Schock-type discrepancy
principle.

β n = 100 n = 500 n = 1000
δ = 0.05 δ = 0.01 δ = 0.05 δ = 0.01 δ = 0.05 δ = 0.01

α 5.5642e− 03 1.0888e− 03 2.2502e− 03 4.4600e− 04 1.6203e− 03 3.3702e− 04
0 Eα,β 5.5000e− 02 3.8270e− 02 3.0538e− 02 1.4404e− 02 3.7297e− 02 2.5219e− 02

p 2(β + 1) 2(β + 1) 2(β + 1) 2(β + 1) 2(β + 1) 2(β + 1)
α 8.3551e− 03 1.5829e− 03 1.7749e− 03 1.3546e− 03 1.6727e− 03 4.7055e− 04

−0.15 Eα,β 2.5289e− 02 1.4220e− 02 1.3625e− 02 1.0526e− 02 1.3909e− 02 7.8764e− 03
p 2(β + 1) 2(β + 1) 2(β + 1) 2(β + 1) 2 2(β + 1)
α 6.5768e− 03 4.4953e− 02 5.2176e− 03 1.4110e− 03 2.7313e− 03 1.0424e− 03

−0.25 Eα,β 3.4220e− 02 1.2546e− 02 2.7996e− 02 1.1207e− 02 2.1871e− 02 1.0552e− 02
p 2(β + 1) 2(β + 1) 2 2(β + 1) 2 2(β + 1)
α 2.4995e− 02 5.4093e− 03 1.1585e− 02 2.0394e− 03 9.0796e− 03 1.8336e− 03

−0.35 Eα,β 5.0517e− 02 2.7007e− 02 3.0893e− 02 1.3559e− 02 3.1528e− 02 1.8870e− 02
p 2 2 2 2(β + 1) 3 3

Remark 3.4.1. From Table 3.1 and Table 3.2 (also see the Fig :3.1 to Fig:3.18),
one can see that Schock-type discrepancy principle gives better results that of Mo-
rozov’s discrepancy principle.

Example 3.4.2. We consider Shaw example from the Regularization Toolbox

by Hansen (2007) with n points. It is defined as follows:

[Tx](s) :=

∫ π

−π
k(s, t)x(t)dt = y(s), −π ≤ s ≤ π, (3.4.5)

where k(s, t) = (cos(s)+cos(t))2( sin(u)
u

)2 and u = π(sin(s)+sin(t)). The solution x̂

is given by x̂(t) = a1 exp (−c1(t− t1)2) +a2 exp (−c2(t− t2)2). We have introduced
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Table 3.2: Relative errors of Foxgood example using Morozov’s discrepancy prin-
ciple.

β n = 100 n = 500 n = 1000
δ = 0.05 δ = 0.01 δ = 0.05 δ = 0.01 δ = 0.05 δ = 0.01

α 2.115917e− 02 2.768679e− 02 2.124497e− 02 2.799350e− 02 2.138771e− 02 2.758640e− 02
0 Eα,β 2.094633e− 01 2.220851e− 01 2.411659e− 01 2.259165e− 01 2.095151e− 01 2.248150e− 01

p 1 1 1 1 1 1
α 2.124176e− 02 2.761705e− 02 2.130926e− 02 2.794182e− 02 2.130313e− 02 2.746932e− 02

−0.15 Eα,β 1.132394e− 01 1.957755e− 01 1.531136e− 01 1.812302e− 01 1.533963e− 01 1.840433e− 01
p 1 1 1 1 1 1
α 2.109719e− 02 2.653435e− 02 2.214646e− 02 2.687400e− 02 2.123106e− 02 2.710374e− 02

−0.25 Eα,β 8.446746e− 02 1.391500e− 01 1.180537e− 01 1.514214e− 01 1.448442e− 01 1.458631e− 01
p 1 1 1 1 1 1
α 2.096463e− 02 2.517483e− 02 2.114938e− 02 2.640352e− 02 2.119726e− 02 2.609331e− 02

−0.35 Eα,β 2.529874e− 01 9.518773e− 02 1.600357e− 01 1.096781e− 01 1.003286e− 01 1.098752e− 01
p 1 1 1 1 1 1

the random noise level δ = 0.05 and 0.01 in the exact data. In Table 3.3 and

Table 3.4 respectively, we present the relative errors as well as α values using

discrepancy principle (3.1.5) and (1.2.7) for different values of β, p, n and δ; and

the best reconstruction took place at β = −0.15 and−0.25. Plots of Shaw example

for different values of δ, n and β are given in Fig:3.19 - Fig: 3.36, with captions.

Table 3.3: Relative errors of Shaw example using Schock-type discrepancy prin-
ciple.

β n = 100 n = 500 n = 1000
δ = 0.05 δ = 0.01 δ = 0.05 δ = 0.01 δ = 0.05 δ = 0.01

α 5.1766e− 03 9.8614e− 04 2.2498e− 03 4.8070e− 04 1.6163e− 03 3.3178e− 04
0 Eα,β 8.9961e− 02 7.4335e− 02 8.0229e− 02 6.1092e− 02 7.5070e− 02 5.6923e− 02

p 2(β + 1) 2(β + 1) 2(β + 1) 2(β + 1) 2(β + 1) 2(β + 1)
α 2.0193e− 03 4.3750e− 04 6.5349e− 04 1.3105e− 04 3.9097e− 04 7.5181e− 05

−0.15 Eα,β 5.9217e− 02 4.0732e− 02 4.4175e− 02 3.2936e− 02 4.2000e− 02 2.7380e− 02
p 2(β + 1) 2(β + 1) 2(β + 1) 2(β + 1) 2(β + 1) 2(β + 1)
α 1.4227e− 02 2.4848e− 02 4.8714e− 03 4.9989e− 04 1.6835e− 03 3.3915e− 04

−0.25 Eα,β 7.2247e− 02 3.8546e− 02 5.2663e− 02 3.7078e− 02 3.5475e− 02 2.9615e− 02
p 2(β + 1) 2(β + 1) 2 2 2 2
α 1.7544e− 02 1.0803e− 03 4.1877e− 02 1.2057e− 03 3.0734e− 03 3.2087e− 04

−0.35 Eα,β 7.7159e− 02 4.7244e− 02 5.3164e− 02 3.5334e− 02 4.8028e− 03 3.0082e− 02
p 2 2 2 2 2 2

Remark 3.4.2. From Table 3.3 and Table 3.4 (also see the Fig :3.19 to Fig:3.36),
one can see that Schock-type discrepancy principle gives better results that of Mo-
rozov’s discrepancy principle.
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Table 3.4: Relative errors of Shaw example using Morozov’s discrepancy principle.
β n = 100 n = 500 n = 1000

δ = 0.05 δ = 0.01 δ = 0.05 δ = 0.01 δ = 0.05 δ = 0.01
α 2.114466e− 02 2.725112e− 02 2.128403e− 02 2.818781e− 02 2.134104e− 02 2.856375e− 02

0 Eα,β 1.627051e− 01 1.651075e− 01 1.688977e− 01 1.661034e− 01 1.654460e− 01 1.668177e− 01
p 1 1 1 1 1 1
α 2.111252e− 02 2.947128e− 02 2.139182e− 02 2.844304e− 02 2.132938e− 02 2.850540e− 02

−0.15 Eα,β 1.902385e− 01 1.597346e− 01 1.408892e− 01 1.550010e− 01 1.650700e− 01 1.548001e− 01
p 1 1 1 1 1 1
α 2.121291e− 02 2.969247e− 02 2.138218e− 02 2.918355e− 02 2.134521e− 02 2.930549e− 02

−0.25 Eα,β 1.070037e− 01 1.391788e− 01 1.229891e− 01 1.437794e− 01 1.327417e− 01 1.453733e− 01
p 1 1 1 1 1 1
α 2.118527e− 02 2.919855e− 02 2.139795e− 02 3.022258e− 02 2.139716e− 02 2.954102e− 02

−0.35 Eα,β 1.489167e− 01 1.110051e− 01 1.376022e− 01 1.273378e− 01 1.372250e− 01 1.230665e− 01
p 1 1 1 1 1 1

3.5 CONCLUDING REMARKS

In this Chapter, we considered, the Schock-type discrepancy principle for choosing

the regularization parameter α in fractional Tikhonov regularization method for

ill-posed problem. As mentioned in the Remark 3.2.2, it is not easy to choose

β ∈ [−1
2
, 0] to obtain a better error estimate, but we observe (see Tables 3.1,

3.2, 3.3 and 3.4) that the relative errors Eα,β =
(
‖xδα,β−x̂‖
‖x̂‖

)
< Eα,0 :=

(
‖xδα−x̂‖
‖x̂‖

)
holds, when α is chosen according to the Schock-type discrepancy principle and

Morozov’s discrepancy principle for β ∈ [−1
2
, 0). This shows that FTR method

gives better error estimate than that of ordinary Tikhonov regularization method.

The best possible choice of β is an open problem (Morigi et al. (2017)).
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Figure 3.1: Solution with δ = 0.05 and n = 100 for method (3.1.5).
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Figure 3.2: Data of Foxgood example with δ = 0.05 and n = 100.
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Figure 3.3: Solution with δ = 0.05 and n = 100 for method (1.2.7).
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Figure 3.4: Solution with δ = 0.01 and n = 100 for method (3.1.5).
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Figure 3.5: Data of Foxgood example with δ = 0.01 and n = 100.
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Figure 3.6: Solution with δ = 0.01 and n = 100 for method (1.2.7).
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Figure 3.7: Solution with δ = 0.05 and n = 500 for method (3.1.5).
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Figure 3.8: Data of Foxgood example with δ = 0.05 and n = 500.
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Figure 3.9: Solution with δ = 0.05 and n = 500 for method (1.2.7).
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Figure 3.10: Solution with δ = 0.01 and n = 500 for method (3.1.5).
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Figure 3.11: Data of Foxgood example with δ = 0.05 and n = 500.
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Figure 3.12: Solution with δ = 0.01 and n = 500 for method (1.2.7).
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Figure 3.13: Solution with δ = 0.05 and n = 1000 for method (3.1.5).
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Figure 3.14: Data of Foxgood example with δ = 0.05 and n = 1000.
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Figure 3.15: Solution with δ = 0.05 and n = 1000 for method (1.2.7).
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Figure 3.16: Solution with δ = 0.01 and n = 1000 for method (3.1.5).
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Figure 3.17: Data of Foxgood example with δ = 0.01 and n = 1000.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
(c)

exact sol.

 C. S. with =0.0,

C. S. with =-0.15,

C. S. with =-0.25,

C. S. with =-0.35,

Figure 3.18: Solution with δ = 0.01 and n = 1000 for method (1.2.7).
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Figure 3.19: Solution with δ = 0.05 and n = 100 for method (3.1.5).
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Figure 3.20: Data of Shaw example with δ = 0.05 and n = 100.
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Figure 3.21: Solution with δ = 0.05 and n = 100 for method (1.2.7).
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Figure 3.22: Solution with δ = 0.01 and n = 100 for method (3.1.5).
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Figure 3.23: Data of Shaw example with δ = 0.01 and n = 100.
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Figure 3.24: Solution with δ = 0.01 and n = 100 for method (1.2.7).
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Figure 3.25: Solution with δ = 0.05 and n = 500 for method (3.1.5).
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Figure 3.26: Data of Shaw example with δ = 0.05 and n = 500.
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Figure 3.27: Solution with δ = 0.05 and n = 500 for method (1.2.7).
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Figure 3.28: Solution with δ = 0.01 and n = 500 for method (3.1.5).
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Figure 3.29: Data of Shaw example with δ = 0.01 and n = 500.
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Figure 3.30: Solution with δ = 0.01 and n = 500 for method (1.2.7).
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Figure 3.31: Solution with δ = 0.05 and n = 1000 for method (3.1.5).
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Figure 3.32: Data of Shaw example with δ = 0.05 and n = 1000.
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Figure 3.33: Solution with δ = 0.05 and n = 1000 for method (1.2.7).
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Figure 3.34: Solution with δ = 0.01 and n = 1000 for method (3.1.5).
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Figure 3.35: Data of Shaw example with δ = 0.01 and n = 1000.
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Figure 3.36: Solution with δ = 0.01 and n = 1000 for method (1.2.7).
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CHAPTER 4

PARAMETER CHOICE
STRATEGIES FOR WEIGHTED
SIMPLIFIED
REGULARIZATION METHOD

4.1 INTRODUCTION

In this chapter, we consider the operator equation

Ax = y, (4.1.1)

where A : X −→ X is a positive self- adjoint operator. Precisely, we studied the

weighted or fractional simplified regularization method, in which the minimizer

wδα,β of the functional

Jβα(x) = 〈Ax, x〉 − 2 〈y, x〉+ α 〈Aβx, x〉, α > 0,

where β ∈ [0, 1), is taken as an approximation for the solution x̂ of (4.1.1). The

minimizer of above functional wα,β, satisfies the operator equation

(A1−β + α I)x = A−β y. (4.1.2)

Let wδα,β be the solution of

(A1−β + α I)x = A−β Qyδ. (4.1.3)

Where Q is the orthogonal projection onto R(A)
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Remark 4.1.1. We define A−1 as (cf. (Groetsch, 1977, Theorem 3.2.2)) fol-
low. Let {Uρ(x)} is a net of continuous real-valued function on [0, ‖A‖] such that
{xUρ(x)} is uniformly bounded and limρ Uρ(x) = x−1 for x 6= 0 then

x = lim
ρ
Uρ(A)z

for all z = Ax ∈ R(A). For example one may define A−1 =
∫∞
0
e−Audu.

Note that, if Qyδ /∈ R(A), then for Qyδ ∈ R(A)−R(A), one can find ỹδ ∈ R(A)
such that ‖ỹδ −Qyδ‖ ≤ ε for any ε > 0. Therefore, we may take ỹδ in place of yδ

with δ = δ+ ε (because ‖ỹδ−y‖ ≤ ‖ỹδ−Qyδ‖+‖Qyδ−y‖ ≤ δ+ ε), in (3.1.2). So
without loss of generality we assume that Qyδ ∈ R(A) and A−βQyδ is well defined.

As we mention in the earlier Chapters, one of the main constrain in regu-

larization methods is the choice of the regularization parameter α. Discrepancy

principles are considered for choosing the regularization parameter.

For simplified regularization method, in (George and Nair (1993)), the follow-

ing discrepancy principle was considered

D(α, x) := α2p+2
〈
(A+ αI)−2p−2Qx,Qx

〉
= cδ2, c > 1 (4.1.4)

and in (George and Nair (1994a)), the following discrepancy principle was consid-

ered

‖Awδα − yδ‖ =
δp

αq
, p > 0, q > 0. (4.1.5)

In this study, we consider the analogues of the discrepancy principles (4.1.4) (see

Section 4.3) and (4.1.5) (see Section 4.4) for weighted or fractional simplified reg-

ularization method. We also consider the adaptive parameter choice method con-

sidered by Pereverzev and Schock (2005) for choosing the regularization parameter

α in (4.1.2).

The rest of Chapter is organized as follows. In Section 4.2 we provide error

estimates for for ‖wδα,β − wα,β‖ and ‖wα,β − x̂‖. In Section 4.3 and Section 4.4

we considered the modified form of discrepancy principles (4.1.4) and (4.1.5),

respectively and in Section 4.5 we consider the adaptive parameter choice strategy

for weighted or fractional simplified regularization method. Numerical example is

given in Section 4.6 and conclusion in Section 4.7.
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4.2 ERROR ESTIMATES

In this Section, we obtain the error estimates for ‖wδα,β − wα,β‖ and ‖wα,β − x̂‖

under the assumption (3.1.2) and

x̂ ∈ X := {x : x = Aνz, ‖z‖ ≤ ρ}, 0 < ν ≤ 1− β. (4.2.1)

Proposition 4.2.1. Suppose yδ satisfies (3.1.2) and x̂ satisfies (4.2.1). Then

(i) ‖wα,β − x̂‖ = O
(
α

ν
1−β

)
,

and

(ii) ‖wα,β − wδα,β‖ = O

(
δ

α
1

1−β

)
.

In particular,

(iii) ‖wδα,β − x̂‖ ≤ c1
δ

α
1

1−β
+ c2 α

ν
1−β .

Proof. By (4.1.2) and (4.2.1), we have

‖x̂− wα,β‖ = ‖α (A1−β + αI)−1 x̂‖

= ‖α (A1−β + αI)−1Aν z‖

≤ sup
λ>0

∣∣∣∣ αλν

(λ1−β + α)

∣∣∣∣ ‖z‖
= O

(
α

ν
1−β

)
.

Similarly, by (4.1.3) and (4.1.2), we have

‖wα,β − wδα,β‖ = ‖(A1−β + α)−1A−β Q(y − yδ)‖

≤ δ sup
λ>0

∣∣∣∣ λ−β

(λ1−β + α)

∣∣∣∣
= O

(
δ

α
1

1−β

)
.

Hence we proved (i) and (ii). Now (iii) follows from (i) and (ii). This completes

the proof.

2
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4.3 DISCREPANCY PRINCIPLE -I

In this section, we consider the discrepancy principle studied in (George and Nair

(1993)) suitably modified for choosing the regularization parameter α in (4.1.4).

For α > 0, β < p ≤ 1 and x ∈ X, let

Dp(α, x) := α2p+2
〈
(A1−β + αI)−2p−2A−βQx,A−βQx

〉
.

The following lemma is used for proving our main results in this Section.

Lemma 4.3.1. For each non-zero x ∈ X, β < p ≤ 1, the map α → Dp(α, x) is
continuous, strictly increasing,

lim
α→0

Dp(α, x) = 0 and lim
α→∞

Dp(α, x) = ‖A−βQx‖2.

In particular, if yδ /∈ N(A) and yδ satisfies

‖y − yδ‖ < δ <
‖A−βQyδ‖√

c
(4.3.1)

for some c > 1, then the equation

Dp(α, y
δ) = cδ2 (4.3.2)

has unique solution α = α(δ) such that α(δ)→ 0 as δ → 0.

Proof. Let {Eλ} be the spectral family of the operator A. Then we have

Dp(α, x) =

∫
α2p+2 λ−2β

(λ1−β + α)2p+2
d 〈EλQx,Qx〉 .

Note that the map α→ fp(α, λ) = (α2p+2 λ−2β)/(λ1−β +α)2p+2 is strictly increas-

ing for each λ > 0, and satisfies fp(α, λ) → 0 as α → 0 and fp(α, λ) → λ−2β as

α→∞. Hence the result follows from the Dominated convergence theorem and by

the intermediate value theorem the equation (4.3.2) has unique solution α = α(δ).

Proof of α(δ)→ 0 as δ → 0 follows as in (Schock (1984b), Lemma 1).

2

Lemma 4.3.2. Suppose that y 6= 0, yδ satisfies (4.3.1), c3 = (
√
c − 1)2, c4 =

(
√
c+ 1)2 and α = α(δ) is chosen according to (4.3.2). Then

c3 δ
2 ≤ Dp(α(δ), y) ≤ c4 δ

2.
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Proof. For α > 0, β < p ≤ 1, let Bα = αp+1 (A1−β + α I)−p−1. Then, for each

non-zero x ∈ X, we have ‖BαA
−βQx‖2 = Dp(α, x). Therefore,

Dp(α, y)
1
2 = ‖BαA

−βy‖

≥ ‖BαA
−βQyδ‖ − ‖BαA

−βQ(y − yδ)‖

≥
√
c δ − δ,

and

Dp(α, y)
1
2 = ‖BαA

−βy‖

≤ ‖BαA
−βQyδ‖+ ‖BαA

−βQ(y − yδ)‖

≤
√
c δ + δ.

This completes the proof.

2

Theorem 4.3.3. Let y 6= 0, yδ satisfies (4.3.1), x̂ satisfies (4.2.1) and α = α(δ)
is chosen according to (4.3.2). Then, wδα(δ),β → x̂ as δ → 0.

Proof. By (4.1.2) we have,

‖x̂− wα,β‖ = ‖α (A1−β + α I)−1x̂‖ = ‖Rα,βx̂‖, (4.3.3)

where Rα,β = α (A1−β + α I)−1. Then, in order to prove the theorem, by (4.3.3)

and (ii) of Proposition 4.2.1, it is enough to prove that

(1)Rα(δ),β x̂→ 0 as δ → 0,

and

(2) δ

α
1

1−β
→ 0 as δ → 0.

Note that ‖Rα,β‖ ≤ 1 for all α > 0 and for every u ∈ R(A),

‖Rα,β u‖ = ‖Rα,β Av‖

≤ sup
λ>0

∣∣∣∣ αλ

λ1−β + α

∣∣∣∣ ‖v‖
≤ c4 α

1
1−β ‖v‖
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for some v ∈ X. Therefore, Rα,β u → 0 as α → 0 for every u in a dense subspace

of the Hilbert space N(A)⊥ and as a consequence of the uniform boundedness

principle we obtain (1). To prove (2) let

Cα = αp
(
A1−β + α I

)−p−1
A1−β, α > 0.

Then for all u ∈ R(Ap),

‖Cα u‖ = ‖CαAp v‖

= αp‖(A1−β + α I)−p−1A1−β Ap v‖

≤ αp sup
λ>0

∣∣∣∣ λ1−β+p

(λ1−β + α)p+1

∣∣∣∣ ‖v‖
≤ c4 α

p
1−β ‖v‖

for some v ∈ X. Since ‖Cα‖ ≤ 1 for all α > 0 and R(Ap) is dense in N(A)⊥, by the

uniform boundedness principle, we obtain Cα(δ) x → 0 as δ → 0. Now by Lemma

4.3.2,

c3 δ
2 ≤ Dp(α, y)

= α2p+2
〈
(A1−β + αI)−2p−2A−βy, A−βy

〉
= α2p+2

〈
(A1−β + αI)−2p−2A−β Ax̂,A−β Ax̂

〉
= α2p+2

〈
(A1−β + αI)−2p−2A2(1−β)x̂, x̂

〉
= α2 ‖Cα x̂‖2

≤ c24 α
2+2(p−β)

1−β ‖v‖2.

Since p > β, we have,

δ2

α
2

1−β
≤ c24‖v‖2

c3
α

2(p−β)
1−β → 0 as δ → 0,

this proves (2).

2
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Lemma 4.3.4. Let y 6= 0, yδ satisfies (4.3.1), x̂ satisfies (4.2.1) and α = α(δ) be
chosen according to (4.3.2). Then, we have the following:

(i) α = O
(
δ

1
p+1

)
,

(ii)
δ

α
1

1−β
= O

(
δ

ν−β
1−β+ν

)
, β ∈ [0, ν).

Proof. By Lemma 4.3.2, for all sufficiently small α > 0, we have

c4 δ
2 ≥ Dp(α, y)

= α2p+2 ‖(A1−β + αI)−p−1A−βy‖2

≥ α2p+2 ‖A−βy‖2

‖A1−β + αI‖2(p+1)

≥ c5 α
2p+2,

for some constant c5. Thus α = O
(
δ

1
p+1

)
, this proves (i).

By (4.2.1), there exists z ∈ X such that x̂ = Aνz, so that y = Ax̂ = A1+νz.

Therefore by Lemma 4.3.2, we have

c3 δ
2 ≤ Dp(α, y)

= α2p+2
〈
(A1−β + αI)−2p−2A−βy, A−βy

〉
= α2p+2

〈
(A1−β + αI)−2p−2A−β A1+νz, A−β A1+νz

〉
= α2p+2 ‖(A1−β + αI)−p−1A1+ν−βz‖2

≤ α2p+2 sup
λ>0

∣∣∣∣ λ2(1+ν−β)

(λ1−β + α)2(p+1)

∣∣∣∣
= O

(
α

2(1+ν−β)
1−β

)
.

Hence for β ∈ [0, ν), we have δ = O
(
α

1+ν−β
1−β

)
, this proves (ii).

2

Combining the results in Proposition 4.2.1 and Lemma 4.3.4, we have the

following Theorem.

Theorem 4.3.5. Let yδ satisfy (4.3.1), α = α(δ) chosen according to (4.3.2) and
x̂ satisfies (4.2.1). Then, for β ∈ [0, ν)

‖x̂− wδα,β‖ = O
(
δ

ν−β
(1+p) (1−β)

)
.

2
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4.4 DISCREPANCY PRINCIPLE -II

In this section, we consider the discrepancy principle studied in (George and Nair

(1994a)), suitably modified for choosing the regularization parameter α in (4.1.5).

Precisely, for given r > 0, q > 0, we choose α such that

‖A−β(Awδα,β −Qyδ)‖ =
δr

αq
. (4.4.1)

Let

φ(α) = α2q ‖A−β(Awδα,β −Qyδ)‖2, α > 0.

Lemma 4.4.1. The function φ(α) is continuous and strictly increasing for α > 0,
and satisfies limα→0 φ(α) = 0 and limα→∞ φ(α) = ∞. In particular, there exists
unique α = α(δ) satisfying (4.4.1). Further α(δ)→ 0 as δ → 0.

Proof. Observe that

φ(α) = α2q ‖A−β(Awδα,β −Qyδ)‖2, α > 0

= α2q ‖A−β(A (A1−β + α I)−1A−βQyδ −Qyδ)‖2

= α2q ‖αA−β (A1−β + α I)−1Qyδ‖2

= α2q

∫ ‖A‖
0

(
αλ−β

λ1−β + α

)2

d〈EλQyδ, Qyδ〉,

where Eλ is spectral family of A.

Note that the map α → f(α, λ) = α2 λ−2β/(λ1−β + α)2 is strictly increasing.

Thus φ(α) is continuous, φ(α) → 0 as α → 0, φ(α) → ∞ as α → ∞ and φ(α)

is strictly increasing for α > 0. By the intermediate value theorem the equation

(4.4.1) has unique solution α = α(δ). Now, using the arguments similar to the

ones in (Schock (1984b), Lemma 1), one can prove α(δ)→ 0 as δ → 0.

2

Theorem 4.4.2. If α = α(δ) is chosen according to (4.4.1), then α = O
(
δ

r
q+1

)
.

If, in addition, r ≤ (q + 1)(1 − β), then δ

α
1

1−β
= O (δm) , m = 1 − r

(q+1)(1−β) , and

wδα,β → x̂ as δ → 0.
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Proof. Note that

‖A−βQyδ‖ − δr

αq
= ‖A−βQyδ‖ − ‖A1−β wδα,β − AβQyδ‖

≤ ‖A1−β wδα,β‖

=
‖A1−β(A1−β wδα,β − A−βQyδ)‖

α

≤ ‖A1−β‖ δr

αq+1
,

so,

‖A−βQyδ‖ ≤ δr

αq

(
1 +
‖A1−β‖
α

)
≤ δr

αq+1

(
α + ‖A1−β‖

)
αq+1 ≤ δr

(
α + ‖A1−β‖

)
‖A−βQyδ‖

.

This implies α = O
(
δ

r
q+1

)
.

Further, note that

δr

αq
= ‖A1−βwδα,β − AβQyδ‖ = ‖αwδα,β‖ ≤ α (‖wδα,β − wα,β‖+ ‖wα,β‖). (4.4.2)

But by Proposition 4.2.1,

‖wα,β − wδα,β‖ = O

(
δ

α
1

β+1

)

and ‖wα,β‖ = ‖(A1−β + α I)−1A1−β x̂‖ ≤ ‖x̂‖. Therefore, we have

δr

αq
≤ α

(
c2

δ

α
1

β+1

+ ‖x̂‖
)

= c2α
β
β+1 δ + α ‖x̂‖.
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Now using the estimate α = O
(
δ

r
q+1

)
, we get

δ

α
1

1−β
= δ1−

r
q(1−β)

(
δr

αq

) 1
q(1−β)

≤ δ1−
r

q(1−β) (c2α
β

1−β δ + α ‖x̂‖)
1

q(1−β)

≤
(
c2δ

1+(1−β)q−r α
β

1−β + c6 δ
(1−β)q−r+ r

q+1

) 1
q(1−β)

≤
(
c7 δ

1+(1−β)q−r+ rβ
(q+1)(1−β) + c6 δ

(1−β)q−r+ r
q+1

) 1
q(1−β)

= O
(
δ1−

r
(q+1)(1−β)

)
= O (δm)

where m = 1− r
(q+1)(1−β) . So wδα,β → x̂ follows as in Theorem 4.3.3.

2

Theorem 4.4.3. Let x̂ satisfies (4.2.1), q > 0, r ≤ (q + 1)(1 − β) and α = α(δ)
be chosen according to (4.4.1). Then

(i) ‖x̂− wδα,β‖ = O(δs),

where s = min
{

rν
(q+1)(1−β) , 1− r

(q+1)(1−β)

}
. For a fixed ν the best rate is obtained

when r = (q+1)(1−β)
ν+1

which gives α = O
(
δ

1−β
ν+1

)
and

(ii) ‖x̂− wδα,β‖ = O
(
δ

ν
ν+1

)
.

Proof. From Proposition 4.2.1, we have

‖x̂− wδα,β‖ ≤ c2α
ν

1−β + c1
δ

α
1

β+1

,

so that the result in (i) follows from Theorem 4.4.2. If r = (q+1)(1−β)
ν+1

then

rν
(q+1)(1−β) = 1 − r

(q+1)(β+1)
so that O

(
α

ν
1−β

)
= O

(
δ

α
1

1−β

)
= O

(
δ

ν
ν+1

)
, proving

(ii).

2

Remark 4.4.4. 1. Note that we obtained the optimal rate O
(
δ

v
v+1

)
, by choos-

ing r
q+1

= (1−β)
v+1

.

68



2. The discrepancy principle-I and discrepancy principle-II considered in Sec-
tion 4.3 and in Section 4.4, can achieve the so-called better rates only when
p, q and r are chosen depending on ν in the source condition. Unfortu-
nately this ν is difficult to know in practical applications. So, we consider
the adaptive selection of parameter, which is independent of ν, considered by
Pereverzev and Schock (2005) in the next section.

4.5 ADAPTIVE SELECTION OF THE

PARAMETER

Note that by (iii) of Proposition 4.2.1, we have

‖wδα,β − x̂‖ ≤ C

(
δ

α
1

1−β
+ α

ν
1−β

)
(4.5.1)

where

C = max{c1, c2}.

Further, observe that the error δ

α
1

1−β
+ α

ν
1−β in (4.5.1) is of optimal order if

αδ := α(δ) satisfies, δ

α
1

1−β
= α

ν
1−β . That is αδ = δ

1−β
ν+1 . In order to obtain the

optimal order in (4.5.1), Pereverzev and Schock (2005), introduced the adaptive

selection of the parameter strategy, we modified adaptive method suitably for the

situation for choosing the parameter α. Let i ∈ {0, 1, 2, . . . , N} and αi = µiα0

where µ > 1 and α0 > δ.

Let

l := max

i : α
ν

1−β
i ≤ δ

α
1

1−β
i

 < N and (4.5.2)

k := max

i : ‖wδαi,β − w
δ
αj ,β
‖ ≤ 4C

δ

α
1

1−β
j

, j = 0, 1, 2, . . . , i− 1

 (4.5.3)

where C = max{c1, c2} where c1, c2 is as in Proposition 4.2.1. Now we have the

following Theorem.

Theorem 4.5.1. Assume that there exists i ∈ {0, 1, . . . , N} such that α
ν

1−β
i ≤

δ

α
1

1−β
i

. Let assumptions of Proposition 4.2.1 be fulfilled, and let l and k be as in

(4.5.2) and (4.5.3) respectively. Then l ≤ k; and

‖wδαk,β − x̂‖ ≤ 6C µ
ν+1
1−β δ

ν
ν+1 .
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Proof. To prove l ≤ k, it is enough to show that, for each i ∈ {1, 2, . . . , N},

α
ν

1−β
i ≤ δ

α
1

1−β
i

=⇒ ‖wδαi,β −w
δ
αj ,β
‖ ≤ 4C δ

α
1

1−β
j

, ∀j = 0, 1, 2, . . . , i− 1. For j < i, we

have

‖ wδαi,β − w
δ
αj ,β
‖ ≤ ‖ wδαi,β − x̂ ‖ + ‖ x̂− wδαj ,β ‖

≤ C

α ν
1−β
i +

δ

α
1

1−β
i

+ C

α ν
1−β
j +

δ

α
1

1−β
j


≤ 2C α

ν
1−β
i + 2C

δ

α
1

1−β
j

≤ 4C
δ

α
1

1−β
j

.

Thus the relation l ≤ k is proved. Further note that

‖ x̂− wδαk,β ‖≤‖ x̂− w
δ
αl,β
‖ + ‖ wδαl,β − w

δ
αk,β
‖

where

‖ x̂− wδαl,β ‖≤ C

α ν
1−β
l +

δ

α
1

1−β
l

 ≤ 2C
δ

α
1

1−β
l

.

Now since l ≤ k, we have

‖ wδαk,β − w
δ
αl,β
‖ ≤ 4C

δ

α
1

1−β
l

.

Hence

‖ x̂− wδαk,β ‖≤ 6C
δ

α
1

1−β
l

Again, since α
ν+1
1−β
δ = δ ≤ α

ν+1
1−β
l+1 ≤ µ

ν+1
1−βαl

ν+1
1−β , it follows that

δ

α
1

1−β
δ

≤ δ

α
1

1−β
l

≤ µ
ν+1
1−βαl

ν
(1−β) ≤ µ

ν+1
1−βαδ

ν
(1−β) ≤ µ

ν+1
1−β δ

ν
ν+1 .

This completes the proof.

70



4.5.1 Implementation of adaptive choice rule

Finally the balancing algorithm associated with the choice of the parameter spec-

ified in Theorem 4.5.1 involves the following steps:

• Choose α0 > 0 such that δ < α0 and µ > 1.

• Choose αi := µiα0, i = 0, 1, 2, . . . , N.

4.5.2 Algorithm

1. Set i = 0.

2. Solve wδαi,β by using (4.1.3).

3. If ‖wδαi,β − w
δ
αj ,β
‖ > 4C δ

α
1

1−β
j

, j = 0, 1, 2, . . . , i − 1, then take k = i − 1 and

return wαk,β.

4. Else set i = i+ 1 and go to 2.

4.6 NUMERICAL EXAMPLES

In this section, we consider an academic example for the numerical discussion to

validate our theoretical results. The discrete version of the operator A is taken

from the Regularization Toolbox by Hansen (2007).

We adopted the Newton’s method to solve above non-linear equations (4.3.2)

and (4.4.1) for α with different values β, δ, p, r and q with q = r − 1. Relative

errors Eα,β :=
(
‖wδα,β−x̂‖
‖x̂‖

)
, and α are presented in the tables for different values of

β, p, r, n (size of the mesh) and noise level δ.

Example 4.6.1 Let

[Tx](s) :=

∫ π

−π
k(s, t)x(t)dt = g(s), −π ≤ s ≤ π,

where k(s, t) = (cos(s) + cos(t))2
(
sin(u)
u

)2
and u = π(sin(s) + sin(t)). We take

A := T ∗T and y = T ∗g for our computation. The solution x̂ is given by x̂ =
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a1exp(−c1(t− t1))2) + a2exp(−c2(t− t2)2)). We have introduced the random noise

level δ = 0.05 and 0.01 in the exact data. Relative errors and α values are

showcased in Tables 4.1–4.3 obtained using discrepancy principle-I, discrepancy

principle-II, and the adaptive method respectively, for different values of β, p, r,

n and δ.

Table 4.1: Relative errors for discrepancy principle-I.
β n = 100 n = 500 n = 1000

δ = 0.05 δ = 0.01 δ = 0.05 δ = 0.01 δ = 0.05 δ = 0.01
α 1.038235e− 01 5.633752e− 02 5.709557e− 02 2.983508e− 02 4.201687e− 02 2.288945e− 02

0 Eα,β 1.846841e− 01 1.777739e− 01 1.802147e− 01 1.670909e− 01 1.683492e− 01 1.637891e− 01
p 1/2 1/2 1/2 1/2 1/2 1/2
α 9.034614e− 02 4.018162e− 02 4.900657e− 02 2.153913e− 02 3.784975e− 02 1.482163e− 02

0 Eα,β 1.867070e− 01 1.707974e− 01 1.737618e− 01 1.622070e− 01 1.696070e− 01 1.573365e− 01
p 2/3 2/3 2/3 2/3 2/3 2/3
α 6.318497e− 02 9.587215e− 03 3.307382e− 02 4.056634e− 03 2.709670e− 02 2.331297e− 03

0 Eα,β 1.849394e− 01 1.481517e− 01 1.675791e− 01 1.365604e− 01 1.670293e− 01 1.182621e− 01
p 1 1 1 1 1 1
α 1.121729e− 01 5.931568e− 02 5.762544e− 02 3.140849e− 02 4.407745e− 02 2.381447e− 02

0.15 Eα,β 1.928669e− 01 1.718287e− 01 1.643411e− 01 1.573068e− 01 1.595378e− 01 1.523359e− 01
p 1/2 1/2 1/2 1/2 1/2 1/2
α 9.368723e− 02 4.350537e− 02 5.386323e− 02 2.154639e− 02 3.938599e− 02 1.351661e− 02

0.15 Eα,β 1.807037e− 01 1.641363e− 01 1.695588e− 01 1.483044e− 01 1.603532e− 01 1.370803e− 01
p 2/3 2/3 2/3 2/3 2/3 2/3
α 6.392676e− 02 7.187664e− 03 3.210264e− 02 4.068169e− 03 1.954892e− 02 2.769513e− 03

0.15 Eα,β 1.705366e− 01 1.104975e− 01 1.571158e− 01 1.028908e− 01 1.428269e− 01 8.778747e− 02
p 1 1 1 1 1 1
α 1.027793e− 01 5.891488e− 02 5.830293e− 02 3.198677e− 02 4.494245e− 02 2.389980e− 02

0.25 Eα,β 1.590265e− 01 1.609385e− 01 1.590501e− 01 1.475253e− 01 1.531484e− 01 1.373195e− 01
p 1/2 1/2 1/2 1/2 1/2 1/2
α 8.613665e− 02 4.458716e− 02 5.541284e− 02 2.258585e− 02 3.180878e− 02 1.609262e− 02

0.25 Eα,β 1.508893e− 01 1.538537e− 01 1.638523e− 01 1.377718e− 01 1.208649e− 01 1.284374e− 01
p 2/3 2/3 2/3 2/3 2/3 2/3
α 6.610678e− 02 1.128888e− 02 3.754577e− 02 5.500000e− 03 3.255848e− 02 3.733918e− 03

0.25 Eα,β 1.719273e− 01 1.155649e− 01 1.508187e− 01 1.028954e− 01 1.563724e− 01 7.240657e− 02
p 1 1 1 1 1 1
α 1.044218e− 01 5.891491e− 02 5.656391e− 02 3.188663e− 02 4.605740e− 02 2.391486e− 02

0.35 Eα,β 1.828589e− 01 1.537426e− 01 1.445362e− 01 1.266817e− 01 1.520494e− 01 1.175264e− 01
p 1/2 1/2 1/2 1/2 1/2 1/2
α 8.151534e− 02 4.521998e− 02 5.598205e− 02 2.376004e− 02 3.951507e− 02 1.718729e− 02

0.35 Eα,β 1.338753e− 01 1.401163e− 01 1.544583e− 01 1.219481e− 01 1.385935e− 01 1.110965e− 01
p 2/3 2/3 2/3 2/3 2/3 2/3
α 5.576333e− 02 1.137152e− 02 2.465876e− 02 4.966749e− 03 1.593763e− 02 3.733918e− 03

0.35 Eα,β 1.315137e− 01 9.130048e− 02 1.301862e− 01 5.466374e− 02 1.022811e− 01 7.240657e− 02
p 1 1 1 1 1 1

4.7 CONCLUSION

In this chapter, we considered three parameter choice strategies for weighted sim-

plified regularization method for ill-posed equations involving positive self-adjoint
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Table 4.2: Relative errors for discrepancy principle-II.
β n = 100 n = 500 n = 1000

δ = 0.05 δ = 0.01 δ = 0.05 δ = 0.01 δ = 0.05 δ = 0.01
α 2.409365e− 02 4.960682e− 03 1.823065e− 02 4.054100e− 03 1.626371e− 02 3.482412e− 03

0 Eα,β 1.617371e− 01 1.319166e− 01 1.621281e− 01 1.355377e− 01 1.590535e− 01 1.284244e− 01
r 3 3 3 3 3 3
α 2.388507e− 02 4.958752e− 03 1.821108e− 02 4.052624e− 03 1.625577e− 02 3.480592e− 03

0.15 Eα,β 1.260072e− 01 1.088610e− 01 1.378881e− 01 1.022840e− 01 1.457864e− 01 9.255840e− 02
r 3 3 3 3 3 3
α 2.382287e− 02 4.958898e− 03 1.823654e− 02 4.050538e− 03 1.622840e− 02 3.479817e− 03

0.25 Eα,β 1.427260e− 01 9.135510e− 02 1.487823e− 01 7.232072e− 02 1.083420e− 01 8.011626e− 02
r 3 3 3 3 3 3
α 1.648290e− 02 3.568452e− 03 1.103797e− 02 2.563328e− 03 9.250479e− 03 2.022885e− 03

0.35 Eα,β 1.552694e− 01 1.355981e− 01 8.589792e− 02 4.765525e− 02 8.444161e− 02 7.593863e− 02
r 2 2 2 2 2 2

Table 4.3: Relative errors obtained from Adaptive method
β n = 100 n = 500 n = 1000

δ = 0.05 δ = 0.01 δ = 0.05 δ = 0.01 δ = 0.05 δ = 0.01
α 1.169230e− 01 7.260000e− 02 8.784600e− 02 6.600000e− 02 7.986000e− 02 6.600000e− 02

0 Eα,β 2.020121e− 01 1.850613e− 01 1.929860e− 01 1.821091e− 01 1.876446e− 01 1.820621e− 01
α 1.286153e− 01 7.260000e− 02 8.784600e− 02 6.600000e− 02 7.986000e− 02 6.600000e− 02

0.15 Eα,β 1.976656e− 01 1.775612e− 01 1.812653e− 01 1.731357e− 01 1.812824e− 01 1.734605e− 01
α 1.556245e− 01 7.986000e− 02 9.663060e− 02 7.260000e− 02 8.784600e− 02 6.600000e− 02

0.25 Eα,β 1.945216e− 01 1.709314e− 01 1.754912e− 01 1.678725e− 01 1.722799e− 01 1.655920e− 01
α 1.883057e− 01 8.784600e− 02 1.169230e− 01 7.260000e− 02 9.663060e− 02 7.260000e− 02

0.35 Eα,β 1.871009e− 01 1.682024e− 01 1.732220e− 01 1.548234e− 01 1.641372e− 01 1.587685e− 01

operator. We obtained an optimal order error estimate under a general Hölder

type source condition. Numerical experiments confirms the theoretical results.
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Figure 4.1: (a) Solution and (b) data of Shaw example (using discrepancy principle
I) with β = 0.35, δ = 0.01, p = 1 and n = 1000.
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Figure 4.2: (a) Solution and (b) data of Shaw example (using discrepancy principle
II) with β = 0.35, δ = 0.01, r = 2 and n = 1000.
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CHAPTER 5

WEIGHTED SIMPLIFIED
REGULARIZATION METHOD:
FINITE DIMENSIONAL
REALIZATION

5.1 INTRODUCTION

In the previous chapter, we assume that the available data Qyδ ∈ R(Aβ), where Q

is the orthogonal projection onto R(A). This, is a severe restriction, so we consider

the finite dimensional realization of (4.1.3), namely, we consider the wδα,β,h, the

solution of

(A1−β
h + α I)x = A−βh Phy

δ, (5.1.1)

where Ph is the orthogonal projection onto R(Ph) and Ah = PhAPh.

Remark 5.1.1. Note that, Phy
δ ∈ R(Ah), i.e., Phy

δ ∈ R(Aβh) for β ∈ [0, 1). So,
wδα,β,h is well defined.

One of the main constrain in regularization methods is the choice of the regu-

larization parameter α. In this chapter, we consider the finite dimensional version

of the adaptive parameter choice method considered by Pereverzev and Schock

(2005) for choosing the regularization parameter α in (5.1.1).

The rest of the Chapter is organized as follows. In Section 5.1 we provide error

estimates for ‖wδα,β,h − wα,β,h‖, ‖wα,β,h − wα,β‖ and ‖wα,β − x̂‖, where wα,β,h is
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the solution of (5.1.1) with y in the place of yδ. In Section 5.2 we consider the

finite dimensional version of the adaptive parameter choice strategy for weighted

simplified regularization method. Numerical example is given in Section 5.3 and

the conclusion in Section 5.4.

5.2 ERROR ESTIMATES

In this Section, we obtain the error estimates for ‖wδα,β,h − wα,β,h‖ and ‖wα,β,h −

wα,β‖ under the assumption (3.1.2) and the source condition given in (4.2.1)

If x̂ satisfies (4.2.1), then by (i) in proposition 4.2.1 we have

‖wα,β − x̂‖ = O(α
ν

1−β ). (5.2.1)

For the results that follow, we impose the following conditions (cf. Plato and

Vainikko (1990)). Let

εh := ‖A(I − Ph)‖

and assume that limh→0 εh = 0. The above assumption is satisfied if Ph → I

point-wise and if A is a compact operator. Let Ah := PhAPh. Then

‖Ah − A‖ ≤ ‖PhA(Ph − I)‖+ ‖(Ph − I)A‖ ≤ 2εh.

In order to obtain an estimate for ‖wα,β,h − wα,β‖, we shall make use of the

following formula (Krasnosel skĭı et al. (1976), Page 287);

Bzx =
sin πz

π

∫ ∞
0

tz
[
(B + tI)−1x− θ(t)

t
x+ . . .+ (−)n

θ(t)

tn
Bn−1x

]
dt

+
sin πz

π

[
x

z
− Bx

z − 1
+ . . .+ (−1)n−1

Bn−1x

z − n+ 1

]
, x ∈ X,

where

θ(t) =

{
0 if 0 ≤ t ≤ 1

1 if 1 < t <∞

for any positive self-adjoint operator B and for any complex number z such that

0 < Rez < n. Taking z = 1− β, 0 ≤ β < 1, we have
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B1−βx =
sin π(1− β)

π

[
x

1− β
+

∫ ∞
0

t1−β(B + tI)−1xdt−
∫ ∞
1

x

tβ
dt

]
.

Using the above formula, for any Z ∈ X, we have,

[A1−β
h −A1−β]Z =

sinπ(1− β)

π

∫ ∞
0

t1−β(Ah+tI)−1(A−Ah)(A+tI)−1Zdt. (5.2.2)

Proposition 5.2.1. Suppose yδ satisfies (3.1.2) and wα,β,h satisfies (5.1.1) with y
in place of yδ. Then, for ν < 1− β the following hold:

(i) ‖wδα,β,h − wα,β,h‖ = O

(
δ

α
1

1−β

)
.

and

(ii) ‖wα,β,h − wα,β‖ = O

(
εh

α
1

1−β

)
.

In particular,

(iii) ‖wδα,β,h − x̂‖ ≤ c1
δ+εh

α
1

1−β
+ c2 α

ν
1−β .

Proof. From (5.1.1), we have

‖wα,β,h − wδα,β,h‖ = ‖(A1−β
h + α)−1A−βh Ph(y − yδ)‖

≤ δ sup
λ>0

∣∣∣∣ λ−β

(λ1−β + α)

∣∣∣∣
= O

(
δ

α
1

1−β

)
.

Hence we proved (i). To Prove (ii), notice that

wα,β,h = (A1−β
h + α I)−1A−βh Phy

= (A1−β
h + α I)−1A−βh PhAx̂

= (A1−β
h + α I)−1A1−β

h x̂+ (A1−β
h + α I)−1A−βh PhA(I − Ph)x̂,

wα,β = (A1−β + α I)−1A−βy

= (A1−β + α I)−1A1−βx̂
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and hence

wα,β,h − wα,β = [(A1−β
h + α I)−1A1−β

h − (A1−β + α I)−1A1−β]x̂

+(A1−β
h + α I)−1A−βh PhA(I − Ph)x̂.

So

‖wα,β,h − wα,β‖ ≤ ‖ L‖+ ‖(A1−β
h + α I)−1A−βh PhA(I − Ph)x̂‖, (5.2.3)

where  L = [(A1−β
h + α I)−1A1−β

h − (A1−β + α I)−1A1−β]x̂.

Further, we have

‖(A1−β
h + αI)−1A−βh PhA(I − Ph)x̂‖ ≤

εh

α
1

1−β
‖x̂‖ (5.2.4)

and

 L = [(A1−β
h + αI)−1A1−β

h − (A1−β + αI)−1A1−β]x̂

= (A1−β
h + αI)−1[A1−β

h (A1−β + αI)− (A1−β
h + αI)A1−β](A1−β + αI)−1x̂

= (A1−β
h + αI)−1α[A1−β

h − A1−β](A1−β + αI)−1x̂

= (A1−β
h + αI)−1[A1−β

h − A1−β]α(A1−β + αI)−1x̂,

so by (5.2.2), we have

‖ L‖ = ‖sin π(1− β)

π
α(A1−β

h + αI)−1

×
∫ ∞
0

t1−β(Ah + tI)−1(A− Ah)(A+ tI)−1(A1−β + αI)−1x̂dt.‖

≤ sin π(1− β)

π
‖α(A1−β

h + αI)−1‖

×
∫ ∞
0

t1−β‖(Ah + tI)−1(A− Ah)(A+ tI)−1(A1−β + αI)−1x̂‖dt

≤ sin π(1− β)

π
‖α(A1−β

h + αI)−1‖

×[

∫ 1

0

t1−β‖(Ah + tI)−1(A− Ah)(A+ tI)−1(A1−β + αI)−1x̂‖dt

+

∫ ∞
1

t1−β‖(Ah + tI)−1(A− Ah)(A+ tI)−1(A1−β + αI)−1x̂‖dt]
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‖ L‖ ≤ sin π(1− β)

π
[

∫ 1

0

t1−β‖(Ah + tI)−1‖‖A− Ah‖‖(A+ tI)−1(A1−β + αI)−1Aνz‖dt

+

∫ ∞
1

t1−β‖(Ah + tI)−1‖‖A− Ah‖‖(A+ tI)−1‖‖(A1−β + αI)−1x̂‖dt]

≤ sin π(1− β)

π
[

∫ 1

0

t1−β
2εh
t
‖(A+ tI)−1Aν(A1−β + αI)−1 z‖dt

+

∫ ∞
1

t1−β2εh
t2

‖(A1−β + αI)−1Aνz‖dt]

Therefore,

‖ L‖ ≤ sin π(1− β)

π

[∫ 1

0

t1−β
2εh
t2−ν
‖(A1−β + αI)−1 z‖dt

+ 2εh‖z‖
νν

(1− β)(1− β − ν)1−ν
1

α1− ν
1−β

∫ ∞
1

1

t1+β
dt

]
≤ sin π(1− β)

π

[
‖z‖
α

∫ 1

0

2εh
t1−ν−β

dt

+ 2εh‖z‖
νν

β(1− β)(1− β − ν)1−ν
1

α1− ν
1−β

]
≤ sinπ(1− β)

π

[
‖z‖
α

2εh
ν

+ 2εh‖z‖
νν

β(1− β)(1− β − ν)1−ν
1

α1− ν
1−β

]
≤ 2

sinπ(1− β)‖z‖
π

[
1

ν
+

νν

β(1− β)(1− β − ν)1−ν

]
εh

α
1

1−β
. (5.2.5)

Hence (ii) follows from (5.2.3), (5.2.4) (5.2.5) and the fact that max{ 1
α
, 1

α
1− ν

1−β
} ≤

1

α
1

1−β
.

The result (iii) is follows from (i), (ii) and (5.2.1).

2

5.3 ADAPTIVE SELECTION OF THE PARAM-

ETER

Note that by (iii) of Proposition 5.2.1, we have

‖wδα,β,h − x̂‖ ≤ C

(
δ + εh

α
1

1−β
+ α

ν
1−β

)
, (5.3.1)

where

C = max{c1, c2}.
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Further, observe that the error δ+εh

α
1

1−β
+ α

ν
1−β in (5.3.1) is of optimal order if

αδ := α(δ) satisfies, δ+εh

α
1

1−β
= α

ν
1−β . That is αδ = (δ+εh)

1−β
ν+1 . Pereverzev and Schock

(2005), introduced the adaptive selection of the parameter strategy, we modified

adaptive method suitably for the situation for choosing the parameter α to obtain

the optimal order in (5.3.1). Let i ∈ {0, 1, 2, . . . , N} and αi = µiα0 where µ > 1

and α0 > δ.

Let

l := max

{
i : α

1+ν
1−β
i ≤ δ + εh

}
< N and (5.3.2)

k := max

i : ‖wδαi,β,h − w
δ
αj ,β,h

‖ ≤ 4C
δ + εh

α
1

1−β
j

, j = 0, 1, 2, . . . , i− 1

 (5.3.3)

where C = max{c1, c2} where c1, c2 is as in Proposition 5.2.1. Now we have the

following Theorem.

Theorem 5.3.1. (cf. George and Nair (2008)) Assume that there exists i ∈
{0, 1, . . . , N} such that α

1+ν
1−β
i ≤ δ + εh. Let assumptions of Proposition 5.2.1 be

fulfilled, and let l and k be as in (5.3.2) and (5.3.3) respectively. Then l ≤ k; and

‖wδαk,β,h − x̂‖ ≤ 6Cµ
ν+1
1−β (δ + εh)

ν
ν+1 .

Proof. To prove l ≤ k, it is enough to show that, for each i ∈ {1, 2, . . . , N},

α
ν

1−β
i ≤ δ+εh

α
1

1−β
i

=⇒ ‖wδαi,β,h −w
δ
αj ,β,h

‖ ≤ 4C δ+εh

α
1

1−β
j

, ∀ j = 0, 1, 2, . . . , i− 1. For j < i,

we have

‖ wδαi,β,h − w
δ
αj ,β,h

‖ ≤ ‖ wδαi,β,h − x̂ ‖ + ‖ x̂− wδαj ,β,h ‖

≤ C

α ν
1−β
i +

δ + εh

α
1

1−β
i

+ C

α ν
1−β
j +

δ + εh

α
1

1−β
j


≤ 2C α

ν
1−β
i + 2C

δ + εh

α
1

1−β
j

≤ 4C
δ + εh

α
1

1−β
j

.

Thus the relation l ≤ k is proved. Further note that

‖ x̂− wδαk,β,h ‖≤‖ x̂− w
δ
αl,β,h

‖ + ‖ wδαl,β,h − w
δ
αk,β,h

‖
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where

‖ x̂− wδαl,β,h ‖≤ C

α ν
1−β
l +

δ + εh

α
1

1−β
l

 ≤ 2C
δ + εh

α
1

1−β
l

.

Now since l ≤ k, we have

‖ wδαk,β,h − w
δ
αl,β,h

‖ ≤ 4C
δ + εh

α
1

1−β
l

.

Hence

‖ x̂− wδαk,β,h ‖≤ 6C
δ + εh

α
1

1−β
l

Again, since α
ν+1
1−β
δ = δ + εh ≤ α

ν+1
1−β
l+1 ≤ µ

ν+1
1−βαl

ν+1
1−β , it follows that

δ + εh

α
1

1−β
δ

≤ δ + εh

α
1

1−β
l

≤ µ
ν+1
1−βαl

ν
(1−β) ≤ µ

ν+1
1−βαδ

ν
(1−β) ≤ µ

ν+1
1−β (δ + εh)

ν
ν+1 .

This completes the proof.

5.3.1 Implementation of adaptive choice rule

Finally the balancing algorithm associated with the choice of the parameter spec-

ified in Theorem 5.3.1 involves the following steps:

• Choose α0 > 0 such that δ < α0 and µ > 1.

• Choose αi := µiα0, i = 0, 1, 2, . . . , N.

5.3.2 Algorithm

1. Set i = 0.

2. Solve wδαi,β,h by using (5.1.1).

3. If ‖wδαi,β,h − w
δ
αj ,β,h

‖ > 4C δ+εh

α
1

1−β
j

, j = 0, 1, 2, . . . , i − 1, then take k = i − 1

and return wαk,β,h.

4. Else set i = i+ 1 and go to 2.
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5.4 NUMERICAL EXAMPLES

In this section, we consider an academic example for the numerical discussion to

validate our theoretical results. The discrete version of the operator A is taken

from the Regularization Toolbox by Hansen (2007).

Relative errors Eα,β,h :=
(
‖wδα,β,h−x̂‖
‖x̂‖

)
, and α are presented in the tables for

different values of β, n (size of the mesh) and noise level δ.

Example 5.1 (cf. Phillips (1962)) Define the function

φ(x) =

1 + cos
(
xπ
3

)
|x| < 3

0 |x| ≥ 3.

Consider the problem of solving integral equation

[Tx](s) :=

∫ 6

−6
k(s, t) x(t)dt = g(s), −6 ≤ s ≤ 6,

where k(s, t) = φ(s− t), g(s) = (6− |s|)
(
1 + 1

2
cos
(
sπ
3

))
+ 9

2π
sin
(
|s|π
3

)
. We take

A = T ∗ T.

The solution of this problem x̂(t) is given by x̂(t) = φ(t). We have introduced

the random noise level δ = 0.05 and 0.01 in the exact data. Relative errors and α

values are showcased in Tables 5.1 obtained using adaptive method for different

values of β, n and δ. In figures, Fig: 5.1, Fig: 5.3, Fig: 5.5 and Fig: 5.7 contains

the computed solution (C.S) and exact solution ( exact sol.). Fig: 5.2, Fig: 5.4,

Fig: 5.6 and Fig: 5.8 contains the exact data and noise data.

Table 5.1: Relative errors obtained from Adaptive method
β n = 100 n = 500 n = 1000

δ = 0.05 δ = 0.01 δ = 0.05 δ = 0.01 δ = 0.05 δ = 0.01
α 1.393509e+ 00 4.884165e− 01 1.266827e+ 00 3.335950e− 01 1.151661e+ 00 3.032682e− 01

0 Eα,β,h 1.114813e− 01 5.507954e− 02 1.063084e− 01 4.492278e− 02 1.040632e− 01 4.212422e− 02
α 1.686146e+ 00 4.440150e− 01 1.532860e+ 00 3.032682e− 01 1.393509e+ 00 2.756984e− 01

0.15 Eα,β,h 1.059385e− 01 4.664234e− 02 1.004385e− 01 4.396330e− 02 1.002486e− 01 4.037034e− 02
α 1.854761e+ 00 4.036500e− 01 1.686146e+ 00 2.756984e− 01 1.266827e+ 00 2.506349e− 01

0.25 Eα,β,h 1.057641e− 01 4.397211e− 02 1.008134e− 01 4.237829e− 02 8.230723e− 02 3.856134e− 02
α 2.040237e+ 00 3.669545e− 01 1.854761e+ 00 2.506349e− 01 1.151661e+ 00 2.278499e− 01

0.35 Eα,β,h 1.047137e− 01 4.313658e− 02 1.000185e− 01 3.810415e− 02 6.896331e− 02 3.495328e− 02
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5.5 CONCLUSION

In this Chapter, we considered weighted simplified regularization method for ill-

posed equations in the finite dimensional subspaces of a Hilbert space involving

positive self-adjoint operator. We obtained an optimal order error estimate un-

der a general Hölder type source condition. Numerical experiments confirms the

theoretical results.
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Figure 5.1: Solution of Phillips example with δ = 0.01, β = 0 and n = 1000.

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

-0.2

0

0.2

0.4

0.6

0.8

1

1.2
(b)

exact data

noise data

Figure 5.2: Data of Phillips example with δ = 0.01, β = 0 and n = 1000.
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Figure 5.3: Solution of Phillips example with δ = 0.01, β = 0.15 and n = 1000.

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

-0.2

0

0.2

0.4

0.6

0.8

1

1.2
(b)

exact data

noise data

Figure 5.4: Data of Phillips example with δ = 0.01, β = 0.15 and n = 1000.
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Figure 5.5: Solution of Phillips example with δ = 0.01, β = 0.25 and n = 1000.

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

-0.2

0

0.2

0.4

0.6

0.8

1

1.2
(b)

exact data

noise data

Figure 5.6: Data of Phillips example with δ = 0.01, β = 0.25 and n = 1000.
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Figure 5.7: Solution of Phillips example with δ = 0.01, β = 0.35 and n = 1000.
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Figure 5.8: Data of Phillips example with δ = 0.01, β = 0.35 and n = 1000.
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CHAPTER 6

CONCLUSION AND FUTURE
WORK

In Chapter 1, we have given a brief introduction to the ill-posed operator equations

involving bounded linear operator between Hilbert spaces. Further, we defined the

concepts and terms are used in this thesis.

In Chapter 2, we considered a derivative-free iterative method to find stable

approximation for the solution of non-linear equation involving with monotone op-

erator. We obtained an optimal order error estimate under a general Hölder-type

source condition. Also we used the adaptive parameter choice strategy considered

by Pereverzev and Schock (2005), for choosing the regularization parameter.

In Chapter 3, we considered Schock-type discrepancy principle for choosing the

regularization parameter α for weighted Tikhonov regularization and we showed

that weighted Tikhonov regularization gives better error estimate than Tikhonov

regularization. We obtained an optimal order error estimate under a general

Hölder-type source condition.

In Chapter 4, we considered weighted simplified regularization to find stable

approximation for the solution of operator equation Ax = y, where A : X → X

is a positive self-adjoint operator. We consider three discrepancy principle for

choosing the regularization parameter α and we obtained optimal order under a

general Hölder-type source condition.
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In Chapter 5, we considered finite dimensional realization of weighted simpli-

fied regularization. We obtained an optimal order error estimate under a general

Hölder type source condition.

The methods studied in this thesis for ill-posed operator equation, by no means,

is exhaustive. During the study, we come across the following problems, where

further research may be possible.

1) Can we consider Rule of Raus and Gfrerer (Gfrerer (1987); Raus (1984,

1985)) for choosing the regularization parameter in weighted Tikhonov reg-

ularization method?

2) We have studied weighted or fractional regularization method for linear op-

erator equations. So, can we extend the weighted or fractional regularization

method to non-linear ill-posed operator equations ?

3) Can we extend the fractional method to steepest descent and minimal error

methods for linear and non-linear ill-posed problems ?

4) Finite dimensional realization of method considered in Chapter 3, is another

problem, we would like to attend( We have obtained partial success in this

direction).

It future, we are interested in studying the above problems.
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