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ABSTRACT

A complex square matrix A is said to be EP (EP stands for Equal Projections)

if ranges of A and its adjoint are equal. The class of EP matrices was introduced

by Schwerdtfeger (Schwerdtfeger, 1950) which contains the class of normal ma-

trices. Later the notion of EP matrix was extended to bounded linear operators

on Hilbert spaces with the additional assumption that the operators have closed

ranges and then this class of operators was generalized to hypo-EP operators.

In this thesis, we characterize the hypo-EP operators with the aid of factoriza-

tion of bounded linear operators. Precisely, two kinds of factorizations are involved

in these characterizations. One is factorization involving direct sum of operators

whereas another is similar to full rank factorization in matrix theory. Also, we

prove that for a given subspaceM of Cn, there exists an EP matrix whose range

space is M.

The product of two hypo-EP operators is not necessarily hypo-EP and hence

we derive necessary and sufficient conditions for product of two hypo-EP to be

hypo-EP . Also we come up with some conditions which are necessary or sufficient

for sum and restriction of hypo-EP operators to be again hypo-EP .

One of the classical results concerning normal operators is Fuglede theorem

which states that if a bounded linear operator commutes with a normal operator

then the bounded operator commutes with adjoint of the normal operator. We

show that this celebrated result is not true for EP operators and we find some

conditions so that the Fuglede-Putnam theorem is true for EP operators. Also,

we evince that if we replace adjoint operation by Moore-Penrose inverse, we arrive

at Fuglede-Putnam type theorems for EP operators.

We generalize quite a number of characterizations of EP operators on Hilbert

spaces into Krein space settings. We extend some of the results of EP and hypo-

EP bounded operators into unbounded densely defined closed operators on Hilbert

spaces.

Keywords : Moore-Penrose inverse, EP operator, Hypo-EP operator.
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NOTATIONS

K the field of real or complex scalars

`2 the set of all square summable sequences

C[0, 1] the set of all continuous functions on [0, 1]

C1[0, 1] the set of all continuously differentiable functions on [0, 1]

L2[0, 1] the set of all square integrable functions

Cm×n the set of all m× n matrices with complex entries

M the closure of M
M⊥ the orthogonal complement of M

X1 ⊕X2 ⊕ · · · ⊕ Xn external direct sum or internal direct sum

M1 ⊕⊥M2 ⊕⊥ · · · ⊕⊥Mn internal orthogonal direct sum

c(M,N ) cosine of the angle between two closed subspaces M and N
D(A) domain of A

N (A) null space of A

C(A) carrier of A

R(A) range space of A

A∗ adjoint of A

‖A‖ norm of the operator A

A† the Moore-Penrose inverse of A

A# the group inverse of A

γ(A) the reduced minimum modulus of A

PM orthogonal projection onto M
L(H,K) the space of all linear operators from H into K
B(H,K) the space of all bounded linear operators from H into K
Bc(H,K) the class of all operators in B(H,K) with closed range

C(H,K) the class of all closed linear operators from H into K

vii





CHAPTER 1

PRELIMINARIES

1.1 GENERAL INTRODUCTION

Among all operators on a Hilbert space, the class of normal operators are consid-

ered to be most well understood. The theory of normal operators is so successful

that much of the theory of non-normal operators is modeled after it. A natural

way to extend a successful theory is to weaken some of its hypotheses obscurely

and hope that the results are weakened only slightly. One weakening of normality

is EP . The class of EP matrices was first introduced by Schwerdtfeger (Schw-

erdtfeger, 1950) as complex square matrices of rank r satisfying certain conditions

concerning columns and rows. Pearl (Pearl, 1959) reformulated this condition in

a simpler form: a matrix A is an EP matrix if N (A) = N (A∗). A few years later,

in 1966, Pearl (Pearl, 1966) gave an interesting characterization of EP matrix

through Moore-Penrose inverse : A is an EP matrix if and only if A commutes

with its Moore-Penrose inverse A†. Campbell and Meyer (Campbell and Meyer,

1975) extended the notion of EP matrix into a bounded linear operator with closed

range defined on a Hilbert space, using the Pearl’s characterization. Itoh (Itoh,

2005) introduced hypo-EP operator by weakening the Pearl’s characterization as

A†A− AA† is a positive operator.

In the thesis, results on EP and hypo-EP operators on Hilbert spaces for

bounded and unbounded cases are discussed in detail. Basic definitions and results

are presented in the Chapter which are useful in the sequel.
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1.2 BASIC DEFINITIONS AND RESULTS

Definition 1.2.1. (Limaye, 2013) Let X be a linear space over a field of real or

complex scalars K. An inner product on X is a function 〈·, ·〉 from X × X to

K such that for all x, y, z in X and α ∈ K, we have

(a) 〈x, x〉 ≥ 0 and 〈x, x〉 = 0 if and only if x = 0,

(b) 〈x+ y, z〉 = 〈x, z〉+ 〈y, z〉 and 〈αx, y〉 = α 〈x, y〉,

(c) 〈y, x〉 = 〈x, y〉.

A linear space with an inner product is called an inner product space.

Definition 1.2.2. (Limaye, 2013) An inner product space which is complete with

respect to the norm induced by the inner product is said to be a Hilbert space.

We use the letter H for a Hilbert space.

Definition 1.2.3. (Limaye, 2013) Let X be an inner product space. For x and y

in X , we say that x and y are orthogonal if 〈x, y〉 = 0. In that case, we write

x ⊥ y. For a subset E of an inner product space X ,

E⊥ = {y ∈ X : y ⊥ x for every x ∈ E}.

Theorem 1.2.4. (Limaye, 2013) Let H be a Hilbert space and M be a nonempty

closed subspace of H. Then H =M+M⊥. Moreover, M⊥⊥ =M.

Definition 1.2.5. (Groetsch, 2007) Let H and K be Hilbert spaces. A map

A : H → K is called a linear operator if for any α, β ∈ K, x, y ∈ H,

A(αx+ βy) = αAx+ βAy.

Sometimes the operator may not be defined on the whole space H and it may

be defined on a proper subspace of H. In that case, we denote the domain of

operator A (simply domain) by D(A). We denote the set of all linear operators

from H into K by L(H,K) and L(H,H) = L(H).
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Every A ∈ L(H,K) gives rise to two important subspaces namely, the null

space N (A), defined by

N (A) = {x ∈ D(A) : Ax = 0}

and the range space R(A) defined as

R(A) = {Ax : x ∈ D(A)}.

If the quantity

‖A‖ := sup

{
‖Ax‖
‖x‖

: x ∈ D(A), x 6= 0

}
<∞,

then A is called bounded. If ‖A‖ =∞, then it is called an unbounded operator.

The quantity ‖A‖ is called the operator norm (or, simply norm) of the operator.

The basic difference between bounded and unbounded linear operators is the

domain on which they are defined. Domains of unbounded linear operators are

proper subspaces of Hilbert spaces.

Throughout the thesis, we consider only linear operators. Hence bounded

operator means bounded linear operator. The set of all bounded operators from

H to K is denoted by B(H,K). A linear operator from H to itself is called an

operator on H. We denote the collection of all bounded operators on H by B(H).

Theorem 1.2.6. (Limaye, 2013) Let A ∈ B(H,K). Then there is a unique oper-

ator B ∈ B(K,H) such that

〈Ax, y〉 = 〈x,By〉 for all x ∈ H, y ∈ K. (1.2.1)

The operator B is called the adjoint of A and it is denoted by A∗.

In general, a bounded operator on an inner product space need not have an

adjoint. The fact that the completeness is essential in the above theorem.
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Theorem 1.2.7. (Limaye, 2013) Let H be a Hilbert space. Consider A,B ∈ B(H)

and α ∈ K. Then

1. (A+B)∗ = A∗ +B∗, (αA)∗ = αA∗, (AB)∗ = B∗A∗, (A∗)∗ = A. Further, A

is invertible if and only if A∗ is invertible, and in that case (A∗)−1 = (A−1)∗.

2. ‖A∗‖ = ‖A‖ and ‖A∗A‖ = ‖A‖2 = ‖AA∗‖.

Definition 1.2.8. (Limaye, 2013) An operator A ∈ B(H) is said to be an

orthogonal projection if A2 = A = A∗.

Definition 1.2.9. (Limaye, 2013) Let A ∈ B(H). Then A is called

1. a self-adjoint operator if A = A∗.

2. a normal operator if AA∗ = A∗A.

3. an unitary operator if AA∗ = A∗A = I.

4. an isometry if ‖Ax‖ = ‖x‖ for all x ∈ H.

Theorem 1.2.10. (Limaye, 2013) Let A ∈ B(H). Then A is normal if and only

if ‖Ax‖ = ‖A∗x‖ for all x ∈ H. In that case

‖A2‖ = ‖A∗A‖ = ‖A‖2.

Theorem 1.2.11. (Limaye, 2013) Let A,B ∈ B(H).

1. Let A and B be self-adjoint. Then A + B is self-adjoint. Also AB is self-

adjoint if and only if A and B commute.

2. Let A and B be normal operators such that A commutes with B. Then A+B

and AB are normal.
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Theorem 1.2.12. (Limaye, 2013) Let H be a Hilbert space and let A ∈ B(H).

Then

1. N (A) = R(A∗)⊥ and N (A∗) = R(A)⊥. Further, A is injective if and

only if R(A∗) is dense in H, and A∗ is injective if and only if R(A) is dense

in H.

2. The closure of R(A) equals N (A∗)⊥, and the closure of R(A∗) equals N (A)⊥.

Definition 1.2.13. (Limaye, 2013) Let A ∈ B(H). A subspace M of a Hilbert

space H is said to be an invariant subspace for A if A(M) ⊆ M. It is called

a reducing subspace for A if both A(M) ⊆ M and A(M⊥) ⊆ M⊥. If M

is closed, then A(M) ⊆ M if and only if A∗(M⊥) ⊆ M⊥, and in that case

(A|M)∗ = PA∗|M, where P is the orthogonal projection from H onto M.

Theorem 1.2.14. (Limaye, 2013) Let A ∈ B(H). Then the following statements

are equivalent:

1. R(A) is closed in H ;

2. R(A∗) is closed in H ;

3. R(A) = N (A∗)⊥ ;

4. R(A∗) = N (A)⊥ ;

5. There exists k > 0 such that ‖Ax‖ ≥ k‖x‖ for all x ∈ N (A)⊥.

Definition 1.2.15. (Limaye, 2013) A self-adjoint operator A ∈ B(H) is said to

be positive if 〈Ax, x〉 ≥ 0 for all x ∈ H and we write A ≥ 0. If A and B are

self-adjoint operators and A−B ≥ 0, then we write A ≥ B or B ≤ A.

Definition 1.2.16. (Stampfli, 1962) An operator A ∈ B(H) is said to be a

hyponormal operator if A∗A− AA∗ is a positive operator on H.

Theorem 1.2.17. (Stampfli, 1962) Let A ∈ B(H). Then A is hyponormal if and

only if ‖Ax‖ ≥ ‖A∗x‖ for all x ∈ H.

5



Theorem 1.2.18 (Riesz representation theorem). (Limaye, 2013) Let f ∈ B(H,C).

Then there is a unique y ∈ H such that f(x) = 〈x, y〉 , for all x ∈ H.

Definition 1.2.19. (Kubrusly, 2001) Let X1,X2, . . . ,Xn be linear spaces over

the same field K (but not necessarily subspaces of the same linear space). The

external direct sum of X1,X2, . . . ,Xn, denoted by X1 ⊕ X2 ⊕ · · · ⊕ Xn, is the

set of all ordered n-tuples (x1, x2, . . . , xn) with each xi in Xi where vector addition

and scalar multiplication are defined as follows.

(x1, x2, . . . , xn)⊕ (y1, y2, . . . , yn) = (x1 + y1, x2 + y2, . . . , xn + yn),

α(x1, x2, . . . , xn) = (αx1, αx2, . . . , αxn)

for every (x1, x2, . . . , xn) and (y1, y2, . . . , yn) in X1 ⊕ X2 ⊕ · · · ⊕ Xn and every α

in K. The direct sum X1 ⊕ X2 ⊕ · · · ⊕ Xn is a linear space over K under vector

addition and scalar multiplication defined above. The underlying set of the linear

space X1 ⊕ X2 ⊕ · · · ⊕ Xn is the Cartesian product X1 × X2 × · · · × Xn of the

underlying sets of each linear space Xi.

Definition 1.2.20. (Kubrusly, 2001) Let X1,X2, . . . ,Xn be linear spaces over the

same field K and consider their direct sum X1⊕X2⊕ · · ·⊕Xn. Let A1, A2, . . . , An

be a family of bounded operators such that Ai ∈ B(Xi) for every i. The direct

sum of A1, A2, . . . , An, denoted by A1 ⊕ A2 ⊕ · · · ⊕ An, is the mapping from

X1 ⊕X2 ⊕ · · · ⊕ Xn into itself defined by

(A1 ⊕ A2 ⊕ · · · ⊕ An)(x1, x2, . . . , xn) = (A1x1, A2x2, . . . , Anxn)

for every (x1, x2, . . . , xn) ∈ X1 ⊕ X2 ⊕ · · · ⊕ Xn and (A1 ⊕ A2 ⊕ · · · ⊕ An) ∈

B(X1 ⊕X2 ⊕ · · · ⊕ Xn).

Remark 1.2.21. Let M1,M2, . . . ,Mn be closed subspaces of a linear space X

such that
∑n

k=1Mk = X and Mj ∩
∑n

k=1
k 6=j
Mk = {0} when j = 1, 2, . . . , n. Then

the linear space X is called the internal direct sum of M1,M2, . . . ,Mn.
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If Mi ⊥ Mj for i 6= j, then the internal direct sum is called the internal

orthogonal direct sum ofM1,M2, . . . ,Mn and it is denoted byM1⊕⊥M2⊕⊥

· · · ⊕⊥Mn. The use of the word external or internal is optional when referring to

linear space direct sums. Normally, the context does make it clear which type of

direct sum being considered.

1.3 MOORE-PENROSE INVERSES

Suppose that H and K are Hilbert spaces over C. Consider the problem of solving

a linear equation of the type

Ax = b (1.3.2)

where b ∈ K and A ∈ B(H,K). If the operator A has an inverse then equation

(1.3.2) has the unique solution x = A−1b. But in general such a linear equation

may have no solution or may have more than one solution. Even if the equation

has no solution in the traditional meaning, it is still possible to assign what is in

a sense a “best possible” solution to the problem. Such a solution is assured by

the generalized inverse of A.

Definition 1.3.1. (Groetsch, 1977) Let A ∈ B(H,K) have closed range. The

mapping A† : K → H defined by A†b = u, where u is the least squares solution of

minimal norm of the equation Ax = b, is called the generalized inverse of A.

Generalized inverses of matrices and linear operators may be defined in many

different ways. The above definition is called variational definition of generalized

inverse. Moore was the first to give an explicit definition of the generalized inverse

of an arbitrary matrix.

Definition 1.3.2. (Groetsch, 1977) Let A ∈ B(H,K) have closed range. Then A†

is the unique linear operator in B(K,H) satisfying

AA† = PR(A) and A†A = PR(A†)

where PM is the orthogonal projection from H onto M.

7



This definition was given by Moore in the paper published in Bulletin of the

American Mathematical Society in 1920 and its significance was not realized much.

Penrose was unaware of the work of Moore when he published his paper. Pen-

rose defined generalized inverse with four conditions which is equivalent to Moore’s

definition with two conditions. The following is the Penrose’s definition of gener-

alized inverse.

Definition 1.3.3. (Groetsch, 1977) Let A ∈ B(H,K) have closed range. Then A†

is the unique operator in B(K,H) satisfying

1. AA†A = A,

2. A†AA† = A†,

3. AA† = (AA†)∗,

4. A†A = (A†A)∗.

Moore-Penrose inverse of a closed range operator between Hilbert spaces exists

and it is unique. Moreover, all these three definitions of generalized inverse of an

operator A are equivalent and we call A† as the Moore-Penrose inverse of A.

Theorem 1.3.4. (Groetsch, 1977) Let A ∈ B(H,K) have closed range. Then the

following statements are true.

1. A† ∈ B(K,H).

2. R(A†) = R(A∗) = R(A†A).

3. A† = (A∗A)†A∗ = A∗(AA∗)†.

1.4 UNBOUNDED OPERATORS

Definition 1.4.1. (Rudin, 1991) An operator A ∈ L(H,K) with domain D(A) is

said to be densely defined if D(A) = H.

8



Definition 1.4.2. (Rudin, 1991) Let A,B ∈ L(H,K). If D(A) ⊆ D(B) and

Ax = Bx for all x ∈ D(A),

then A is called a restriction of B (or, B is called an extension of A) and is

denoted by A ⊆ B (or, by B ⊇ A). Note that if A ⊆ B and B ⊆ A, then A = B.

Let A : D(A) ⊆ H → K be a bounded operator. Then

‖Ax− Ay‖ ≤ ‖A‖ ‖x− y‖ for all x, y ∈ D(A).

The operator A defined on the subspace D(A) of H can be extended continuously

to the closure of D(A) and then it can be extended further to the whole space

H by defining 0 on D(A)⊥. Thus, without loss of generality, we assume that

a bounded operator is an everywhere defined operator. This type of operators

arise in boundary value problems and domains of unbounded operators are proper

subspaces of Hilbert spaces. Thus specification of a domain is an essential part of

the definition of an unbounded operator.

Example 1.4.3. Consider the differential map A defined on C1[0, 1], a subspace

consisting of all differentiable functions whose derivatives are continuous on [0, 1].

Then the operator A : C1[0, 1] ⊆ C[0, 1] → C[0, 1] (with the sup norm ‖.‖∞) is a

densely defined unbounded operator.

Example 1.4.4. Let H := `2 and

D(A) =
{

(x1, x2, . . . ) ∈ H : (x1, 2x2, 3x3, . . . ) ∈ H
}
.

Define

A(x1, x2, x3, . . . ) = (x1, 2x2, 3x3 . . . ) for all (x1, x2, . . . ) ∈ D(A).

If {en : n ∈ N}, where en(m) = δnm, the Kronecker delta function, then Aen =

nen. Hence the operator A is unbounded.

We have seen that if A is a bounded operator and if the relation (1.2.1) holds

for all x ∈ H, y ∈ K, then B would be the uniquely defined bounded operator,

9



called the “adjoint of A.” However, in the unbounded case, the relation (1.2.1) by

itself does not define B uniquely. It is possible although not obvious that of all

the operators satisfying (1.2.1) there will be one with a domain which is maximal

(in the sense of set inclusion). If D(A) is a dense subspace of H, the maximal

operator, A∗ say, provides the required generalization of the adjoint of A.

Definition 1.4.5. (Rudin, 1991) Let A ∈ L(H,K) be a densely defined operator.

Then there exists a unique operator A∗ such that

〈Ax, y〉 = 〈x,A∗y〉 for all x ∈ D(A) and y ∈ D(A∗).

This operator is known as the Hilbert adjoint or simply the adjoint of A. In

this case

D(A∗) :=
{
y ∈ K : x 7→ 〈Ax, y〉 for all x ∈ D(A), is continuous

}
.

Equivalently,

D(A∗) : =
{
y ∈ K : for some y∗ ∈ H, 〈Ax, y〉 = 〈x, y∗〉 for all x ∈ D(A)

}
and in this case,

A∗y = y∗ for all y ∈ D(A∗).

Definition 1.4.6. (Dunford and Schwartz, 1988) Let A ∈ L(H,K). If A is one-

to-one, then the inverse of A is the linear operator A−1 : R(A) → H defined by

A−1(Ax) = x for all x ∈ D(A). It can be seen that AA−1y = y for all y ∈ R(A).

An unbounded operator A : D(A) → H on H is said to be invertible if there

exists an everywhere defined bounded operator B such that BA ⊆ AB = I.

Definition 1.4.7. (Riesz and Sz.-Nagy, 1955) Let A,B ∈ L(H,K), C ∈ L(K, I)

and α ∈ C\{0}. Then

(a) A+B ∈ L(H,K) with domain D(A+B) = D(A) ∩ D(B) and

(A+B)x = Ax+Bx for all x ∈ D(A+B)
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(b) CA ∈ L(H, I) with domain D(CA) := {x ∈ D(A) : Ax ∈ D(C)} and

(CA)x = C(Ax) for all x ∈ D(CA).

(c) αA ∈ L(H,K) with domain D(αA) = D(A) and

(αA)x = αAx for all x ∈ D(A).

Proposition 1.4.8. (Riesz and Sz.-Nagy, 1955)

1. If A ∈ L(H,K) is densely defined, then (αA)∗ = ᾱ A∗, for any scalar α.

2. If A,B ∈ L(H,K) are densely defined such that A + B is densely defined,

then (A+B)∗ ⊇ A∗ +B∗ (equality holds if A is everywhere defined).

3. If A,B are densely defined such that D(AB) is dense, then (AB)∗ ⊇ B∗A∗

(equality holds if A is everywhere defined).

4. If A is one-to-one and R(A) is dense in K, then (A∗)−1 = (A−1)∗.

5. If A is densely defined such that A ⊆ B, then B∗ ⊆ A∗.

11
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CHAPTER 2

CHARACTERIZATIONS OF

HYPO-EP OPERATORS

2.1 INTRODUCTION

A square matrix A over the complex field is said to be an EP matrix if ranges

of A and A∗ are equal. The EP matrix was defined by Schwerdtfeger (Schwerdt-

feger, 1950). But it did not get any greater attention until Pearl (Pearl, 1966)

characterized it through Moore-Penrose inverse which is shown below.

Theorem 2.1.1. (Pearl, 1966) Let A ∈ Cn×n. Then the following are equivalent:

(i) A is an EP matrix ;

(ii) AA† = A†A ;

(iii) A† can be expressed as a polynomial in A with scalar coefficients.

Because of Pearl’s characterizations, there are several characterizations of EP

matrices available in literature. The following characterizations describe the struc-

ture of EP matrices.

Theorem 2.1.2. (Katz and Pearl, 1966) Let A be a complex square matrix of

order n with rank r. Then the following are equivalent:

(i) A is an EP matrix ;
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(ii) A can be represented as

A = P

 D DX∗

XD XDX∗

P ∗,
where P is a permutation matrix, D is a non-singular matrix of order r and

X is an n− r × r matrix ;

(iii) There exist a non-singular matrix Q of order n and a non-singular matrix

D of order r such that QAQ∗ =

 D 0

0 0

 ;

(iv) There is a non-singular matrix Q of order n such that A∗ = QA ;

(v) There is a matrix Q of order n such that A∗ = QA ;

(vi) There exist a unitary matrix U and a non-singular matrix D of order r such

that UAU∗ =

 D 0

0 0

 ;

(vii) A is the matrix of linear transformation T acting on Cn, and there are mu-

tually orthogonal subspaces V1 and V2 of Cn such that V1 has dimension r,

T (V1) = V1 and T (V2) = 0.

Theorem 2.1.3. (Baksalary and Trenkler, 2008; Cheng and Tian, 2003) Let A ∈

Cn×n. Then the following are equivalent:

(i) A is an EP matrix ;

(ii) A commutes with AA† ;

(iii) A† commutes with AA† ;

(iv) r(A) = r(A2) and A†A commutes with AA† ;

(v) r(A) = r(A2) and A∗A commutes with AA† ;

(vi) (AA†)2 = A2(A†)2 ;

(vii) AAA† + (AAA†)∗ = A+ A∗.

The notion of EP operator was introduced by Campbell and Meyer (Campbell

and Meyer, 1975) in 1975. Brock (Brock, 1990) gave few more characterizations

of EP operators.

14



Definition 2.1.4. (Campbell and Meyer, 1975) An operator A ∈ B(H) is called

an EP operator if A has closed range and R(A) = R(A∗).

Theorem 2.1.5. (Brock, 1990) Let A ∈ Bc(H). Then the following are equivalent:

(i) A is an EP operator ;

(ii) AA† = A†A ;

(iii) N (A)⊥ = R(A) ;

(iv) N (A) = N (A∗) ;

(v) A∗ = PA, where P is a bijective bounded operator on H.

Note that the set of all EP operators contains the set of all normal operators

with closed range. We denote the set of all operators on H with closed range by

Bc(H).

Example 2.1.6. Let A : `2 → `2 be defined by

A(x1, x2, x3, x4, x5, . . .) = (x1 + x2, 2x1 + x2 + x3,−x1 − x3, x4, x5, . . .).

Then

A∗(x1, x2, x3, x4, x5, . . .) = (x1 + 2x2 − x3, x1 + x2, x2 − x3, x4, . . .)

and

N (A) = N (A∗) = {(x1,−x1,−x1, 0, 0, . . .) : x1 ∈ C}.

But AA∗ 6= A∗A. Hence A is an EP operator but not normal.

Some results for EP matrices are not true for EP operators. For example,

Theorem 2.1.3 (vi,vii) will not be true in general for EP operators.

Example 2.1.7. (Djordjević, 2007) Consider the real Hilbert space `2 and let A

be a bounded operator with closed range defined as

A(x1, x2, . . .) = (x2, x3, . . .).

Then

A∗(x1, x2, . . .) = (0, x1, x2, . . .)
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and A† = A∗. In this case AA† = I and

A†A(x1, x2, . . .) = (0, x2, x3, . . .).

Hence A is not an EP operator. But still it is true that

AA† = A2(A†)2 and AAA† + (AAA†)∗ = A+ A∗.

Definition 2.1.8. (Djordjević and Koliha, 2007) The ascent and descent of

A ∈ B(H) are defined by

asc A = inf
{
p : N (Ap) = N (Ap+1)

}
,

dsc A = inf
{
p : R(Ap) = R(Ap+1)

}
.

If they are finite, they are equal and their common value is called the index of A

and it is denoted by ind(A).

In Example 2.1.7, asc(A) = ∞, if we include the additional condition that

asc(A) <∞, then the Theorem 2.1.3 can be extended to operators.

Theorem 2.1.9. (Djordjević, 2007) Let A ∈ Bc(H). Then the following state-

ments are equivalent:

(i) A is EP ;

(ii) AA† = A2(A†)2 and asc(A) <∞ ;

(iii) AAA† + (AAA†)∗ = A+ A∗ and asc(A) <∞.

Definition 2.1.10. Let A ∈ B(H). The group inverse of A is the unique

operator A# ∈ B(H) such that

1. AA# = A#A,

2. AA#A = A,

3. A#AA# = A#.

An operator A ∈ B(H) is said to be group invertible if and only if ind(A) ≤ 1.
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Theorem 2.1.11. (Djordjević and Koliha, 2007) Let A ∈ Bc(H). Then the fol-

lowing statements are equivalent:

(i) A is EP ;

(ii) ind(A) ≤ 1 and A∗A commutes with AA† ;

(iii) ind(A) ≤ 1 and A commutes with A†A# ;

(iv) ind(A) ≤ 1 and A# commutes with AA†.

2.2 CONSTRUCTION OF EP MATRICES

Let H be a complex Hilbert space. Given an EP operator A on H, we get a

closed subspace R(A) which is the same as R(A∗). On the other hand, one may

ask whether every closed subspaceM of H is the range of some EP operator (not

necessarily normal) on H. The answer is affirmative in a finite dimensional Hilbert

spaceH. We give a procedure to construct such EP matrices and this construction

has been used in the sequel to provide suitable examples of EP matrices.

Theorem 2.2.1. If W is a subspace of Cn, then there exists an EP matrix A of

order n such that R(A) =W.

Proof. If W is a trivial subspace of Cn, then it holds trivially. Without loss of

generality, let W be a subspace of Cn with of dimension n − 1. Then W can be

expressed as

{
(x1, x2, . . . , xi−1,

n−1∑
k=1

akxk, xi, . . . , xn−1) : xk ∈ C, k = 1, 2, . . . , n− 1
}
.

Let{
vj =

(
xj1, xj2, . . . , xj(i−1),

n−1∑
k=1

akxjk, xji, . . . , xj(n−1)
)
, j = 1, 2, . . . , n− 1

}

be a basis for W which can be regarded as column vectors.

Take

A =
[
v1 v2 · · · vi−1 v′ vi · · · vn−1

]
17



where

v′ =

(
n−1∑
k=1

akxk1,

n−1∑
k=1

akxk2, . . . ,

n−1∑
j=1

n−1∑
k=1

ajakxkj, . . . ,

n−1∑
k=1

akxk(n−1)

)
.

Since the columns of A contain a basis of W , R(A) = W . Now we need to show

that A is EP . But the selection of v′ ensures that each row of A is in W . Hence

R(A∗) =W . Therefore the result is true when dimension of W is n− 1.

For the sake of completeness we also prove the result when the dimension of

W is n− 2. Thus one can construct EP matrices for a given subspace W having

any dimension. Suppose that W is of dimension n− 2. Then W can be expressed

as{
(x1, x2, . . . , xi−1,

n−2∑
k=1

akxk, xi, . . . , x`−1,

n−2∑
k=1

bkxk, x`, . . . , xn−2) : xk ∈ C,

k = 1, 2, . . . , n− 2
}
.

Let{
vj =

(
xj1, . . . , xj(i−1),

n−2∑
k=1

akxjk, xji, . . . , xj(`−1),
n−2∑
k=1

bkxjk, xj`, . . . xj(n−2)
)
,

j = 1, 2, . . . , n− 2
}

be a basis for W which can be regarded as column vectors. Take

A =
[
v1 v2 · · · vi−1 v′ vi · · · v`−1 v′′ v` · · · vn−2

]
where

v′ =

(
n−2∑
k=1

akxk1,

n−2∑
k=1

akxk2, . . . ,

n−2∑
j=1

n−2∑
k=1

ajakxkj, . . . ,

n−2∑
j=1

n−2∑
k=1

bjakxkj, . . . ,

n−2∑
k=1

akxk(n−2)

)
and

v′′ =

(
n−2∑
k=1

bkxk1,
n−2∑
k=1

bkxk2, . . . ,
n−2∑
j=1

n−2∑
k=1

ajbkxkj, . . . ,
n−2∑
j=1

n−2∑
k=1

bjbkxkj, . . . ,

n−2∑
k=1

bkxk(n−2)

)
.

As in the first case, R(A) = R(A∗) =W .
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Remark 2.2.2. If A is a complex EP matrix of rank 1, then it must be normal:

Let A ∈ Cn×n. Then A can be expressed as A = uv∗ for some u, v ∈ Cn×1 and

A∗ = vu∗. Since A is EP , one has R(A) = R(A∗) and so sp{u} = sp{v}, where

sp denotes the linear span. Thus v = αu for some complex scalar α. It now follows

that AA∗ = A∗A.

Remark 2.2.3. If A is a real EP matrix of rank 1, then it must be a symmetric

matrix. Indeed, as in Remark 2.2.2, A = αuuT for some α ∈ R and uT denotes

the transpose of u. This proves that A is symmetric.

Example 2.2.4. Let W = {(x1, x1 + x2, x2) : x1, x2 ∈ C} be a subspace of C3

with basis

v1 = (1, 1 + i, i) and v2 = (1, 0,−1).

By the proof of the Theorem 2.2.1, we have

v′ = (2, 1 + i, i− 1).

Then

A =


1 2 1

1 + i 1 + i 0

i i− 1 −1

 .
Here A is an EP matrix (non-normal) with R(A) =W.

Conjecture 2.2.5. Let W be a closed subspace of a Hilbert space H. Then there

exists an EP (non-normal) operator A on H such that R(A) =W.

2.3 CHARACTERIZATIONS OF HYPO - EP

OPERATORS

All characterizations of EP matrices and EP operators available in literature are

algebraic in nature as the definitions of EP matrices and EP operators involve

Moore-Penrose inverses.
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Definition 2.3.1. (Itoh, 2005) An operator A ∈ B(H) is called hypo-EP oper-

ator if A has closed range and A†A− AA† ≥ 0.

We first derive an interesting characterization of hypo-EP operator which does

not involve Moore-Penrose inverse. Consequences of this characterization and few

more characterizations of hypo-EP operators through factorizations are given in

the Chapter.

We now start with some known characterizations of hypo-EP operators.

Theorem 2.3.2. (Itoh, 2005) Let A ∈ Bc(H). Then the following are equivalent:

1. A is hypo-EP ;

2. R(A) ⊆ R(A∗) ;

3. N (A) ⊆ N (A∗) ;

4. A = A∗C, for some C ∈ B(H).

Example 2.3.3. Let A : `2 → `2 be defined by

A(x1, x2, x3, . . .) = (0, x1, x2, . . .).

Then A∗(x1, x2, x3, . . .) = (x2, x3, x4, . . .). Here R(A) ⊆ R(A∗) and R(A) is closed.

Hence A is a hypo-EP operator.

Remark 2.3.4. The class of all hypo-EP operators contains the class of all EP

operators and hyponormal operators with closed ranges. Hence it contains all nor-

mal with closed ranges and invertible operators. In the case of finite dimensional,

EP and hypo-EP are same.

Theorem 2.3.5. (Douglas, 1966)[Douglas’ Theorem] Let H1,H2,H be Hilbert

spaces and let A ∈ B(H1,H), B ∈ B(H2,H). Then the following are equivalent:

1. A = BC, for some C ∈ B(H1,H2) ;

2. ‖A∗x‖ ≤ k‖B∗x‖, for some k > 0 and for all x ∈ H ;

3. R(A) ⊆ R(B).
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Theorem 2.3.6. Let A ∈ Bc(H). Then A is hypo-EP if and only if for each

x ∈ H, there exists k > 0 such that

|〈Ax, y〉| ≤ k‖Ay‖, for all y ∈ H. (2.3.1)

Proof. Suppose A is hypo-EP . If x ∈ N (A), then the result is trivial. Let x ∈ H

such that Ax 6= 0. Then Ax ∈ R(A) ⊆ R(A∗). Therefore there exists a non-zero

z ∈ H such that A∗z = Ax. Then for all y ∈ H,

|〈Ax, y〉| = |〈A∗z, y〉| = |〈z, Ay〉| ≤ ‖z‖‖Ay‖.

Taking k = ‖z‖, we get

|〈Ax, y〉| ≤ k‖Ay‖,

for all y ∈ H.

Conversely, assume that for each x ∈ H, there exists k > 0 such that

|〈Ax, y〉| ≤ k‖Ay‖

for all y ∈ H. Let x ∈ H be fixed. Then for all y ∈ H,

k‖Ay‖ ≥ |〈x,A∗y〉| = |fx(A∗y)|

setting fx(A
∗y) = 〈A∗y, x〉. Hence

|(Af ∗x)∗y| ≤ k‖(A∗)∗y‖

for some k > 0, for all y ∈ H. By Douglas’ theorem,

Af ∗x = A∗D,

for some D ∈ B(C,H). Taking adjoint on both sides gives

fxA
∗ = gxA

where gx = D∗ ∈ B(H,C). By Riesz representation theorem, there exists x′ ∈ H

such that

gx(Az) = 〈Az, x′〉
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for all z ∈ H. Hence for z ∈ H,

fxA
∗z = gxAz

implies that

〈A∗z, x〉 = 〈Az, x′〉.

Therefore for each x ∈ H there exists x′ ∈ H such that Ax = A∗x′. Thus

R(A) ⊆ R(A∗).

The following example given by Barnes shows that A ∈ Bc(H) but A2 /∈ Bc(H).

Example 2.3.7. (Barnes, 2007) LetH be an infinite dimensional separable Hilbert

space with closed subspaces K1 and K2 such that K1 +K2 is not closed. Let P1 and

P2 be orthogonal projections with

R(P1) = K1 and R(P2) = K⊥2 .

Since K1 and K⊥2 are both separble Hilbert spaces which are not finite dimensional,

there is an isometry S from K⊥2 onto K1. Take

A = P1SP2 ∈ B(H).

Clearly R(A) = K1. Let x ∈ N (A). Then

0 = Ax = P1(SP2x)

and hence SP2x ∈ K⊥1 . But SP2x ∈ K1. Hence SP2x = 0. Since S is an isometry,

P2x = 0. Therefore N (A) ⊆ N (P2). Clearly N (P2) ⊆ N (A). Hence

N (A) = N (P2) = K2.

Thus A has closed range and

R(A) +N (A) = K1 +K2.

Now we claim that A(R(A) + N (A)) = R(A2). Let Ax ∈ R(A2). Then there

exists y ∈ H such that Ax = A2y. Hence x− Ay ∈ N (A). Now

x = Ay + (x− Ay) ∈ R(A) +N (A).
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Therefore

R(A2) ⊆ A(R(A) +N (A)).

The other inclusion relation is obvious. From this we have

A−1{R(A2)} = R(A) +N (A).

Since R(A) +N (A) is not closed, R(A2) is not closed.

We have seen an example of a closed range operator A such that A2 does not

have closed range. But we now prove that if A is hypo-EP , then A2 has closed

range always. Moreover any natural power of A has closed range. Thus it is

redundant that R(An) is closed for any n ∈ N when A is hypo-EP .

Theorem 2.3.8. If A is hypo-EP , then An has closed range for any n ∈ N.

Proof. Suppose that A is hypo-EP . Then for any m,n ∈ N with m ≤ n,

Am[N (An)⊥] ⊆ Am[N (A)⊥] ⊆ R(A) ⊆ R(A∗) = N (A)⊥. (2.3.2)

As A has closed range, there exists k > 0 such that

‖Ax‖ ≥ k‖x‖,

for all x ∈ N (A)⊥. Let x ∈ N (An)⊥. Then by (2.3.2),

‖Anx‖ = ‖A(An−1x)‖ ≥ k‖An−1x‖ ≥ · · · ≥ kn‖x‖.

Thus An has closed range, for any n ∈ N.

If we start with any A ∈ B(H), the null spaces of An are growing in nature

along with increasing values of n. But interestingly, all null spaces are same when

A is hypo-EP . However, range spaces of An may not be the same for any n ∈ N.

For instance, the right shift operator A on `2 is hypo-EP , but R(A) 6= R(An) for

any n > 1.

Theorem 2.3.9. If A is hypo-EP , then N (An) = N (A), for each n ∈ N. More-

over, if A is nilpotent, then A = 0.

23



Proof. It is enough to prove that N (An) = N (An+1) for each n ∈ N. Let z ∈ H

be fixed. If we apply Theorem 2.3.6 to an element x = An−1z, there exists k > 0

such that

|〈A(An−1z), y〉| ≤ k‖Ay‖, for all y ∈ H.

In particular taking y = Anz, we get

|〈Anz, Anz〉| ≤ k‖An+1z‖.

If z ∈ N (An+1), then z ∈ N (An). Hence N (An) = N (An+1) for each n ∈ N. Thus

N (An) = N (A), for each n ∈ N.

Remark 2.3.10. The condition N (A) = N (An), for each n ∈ N is necessary

for A to be hypo-EP . It is not a sufficient condition for A to be hypo-EP . For

example, let A ∈ B(`2) be defined by

A(x1, x2, x3, x4, . . .) = (x1 + x2, 0, x3, x4, . . .).

Here A is not hypo-EP , but N (An) = N (A) for each n ∈ N.

Theorem 2.3.11. If A is hypo-EP , then An is hypo-EP , for any n ∈ N.

Proof. Suppose that A is hypo-EP . Then for any n ∈ N,

N (An) = N (A) ⊆ N (A∗) ⊆ N (AA(n−1)∗),

soN (AA(n−1)∗)⊥ ⊆ N (An)⊥. SinceR(An∗) is closed andR(A(n−1)A∗) ⊆ R(A(n−1)A∗),

R(A(n−1)A∗) ⊆ R(An∗).

Then by Douglas’ theorem

‖AA(n−1)∗x‖ ≤ `‖Anx‖, for some ` > 0, for all x ∈ H and n ∈ N.

By Theorem 2.3.6, for each x ∈ H, there exists k > 0 such that

|〈Anx, y〉| = |〈Ax,A(n−1)∗y〉| ≤ k‖AA(n−1)∗y‖ ≤ k`‖Any‖, for all y ∈ H and n ∈ N.

Thus for any natural number n, An is hypo-EP .
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Remark 2.3.12. Theorems 2.3.8, 2.3.9 and 2.3.11 have been observed in the paper

(Patel and Shekhawat, 2016), but our characterization given in Theorem 2.3.6 was

used to prove the results.

Pearl (Pearl, 1959) showed that a matrix A is EP if and only if A can be

expressed as U(B ⊕ 0)U∗ with U unitary and B an invertible matrix. Drival-

liaris (Drivaliaris et al., 2008) extended the results to EP operators on Hilbert

spaces. Here we also extend the results to hypo-EP operators on Hilbert spaces.

We extend Pearl’s characterizations of matrices to hypo-EP operators through

factorizations.

Lemma 2.3.13. Let H,K be Hilbert spaces and let A ∈ Bc(H) and B ∈ Bc(K).

Then A⊕B is hypo-EP if and only if A and B are hypo-EP .

Proof. Suppose that A⊕B is hypo-EP and x ∈ N (A). Then

(x, 0) ∈ N (A⊕B) ⊆ N (A∗ ⊕B∗)

and x ∈ N (A∗). Hence A is hypo-EP . Similarly B is also hypo-EP . Conversely,

suppose that A,B are hypo-EP and (x, y) ∈ N (A⊕B), then Ax = 0 and By = 0.

This implies A∗x = 0 and B∗y = 0. Hence

(x, y) ∈ N (A∗ ⊕B∗).

Therefore A⊕B is hypo-EP .

Lemma 2.3.14. Let A ∈ Bc(H), B ∈ Bc(K) and U ∈ B(K,H) be injective such

that A = UBU∗. Then A is hypo-EP if and only if B is hypo-EP .

Proof. Suppose that B is hypo-EP and x ∈ N (A). Then UBU∗x = 0. Since U

is injective, BU∗x = 0 implies that B∗U∗x = 0 (B is hypo-EP), which in turn

implies that UB∗U∗x = 0, equivalently x ∈ N (A∗). Hence A is hypo-EP .

Conversely, suppose that A is hypo-EP and x ∈ N (B). Therefore Bx = 0.

Since U is injective, U∗ is surjective. Hence for x ∈ K there exists y ∈ H such

that U∗y = x. Therefore BU∗y = 0 implies that UBU∗y = Ay = 0. Since A

is hypo-EP , A∗y = UB∗U∗y = 0. Using injectivity of U and U∗y = x, we get

x ∈ N (B∗). Hence B is hypo-EP .
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Theorem 2.3.15. Let A ∈ Bc(H). Then the following are equivalent:

1. A is hypo-EP ;

2. There exist Hilbert spaces K1 and L1, U1 ∈ B(K1 ⊕ L1,H) unitary and

B1 ∈ B(K1) injective such that A = U1(B1 ⊕ 0)U∗1 ;

3. There exist Hilbert spaces K2 and L2, U2 ∈ B(K2⊕L2,H) isomorphism and

B2 ∈ B(K2) injective such that A = U2(B2 ⊕ 0)U∗2 ;

4. There exist Hilbert spaces K3 and L3, U3 ∈ B(K3 ⊕ L3,H) injective and

B3 ∈ B(K3) injective such that A = U3(B3 ⊕ 0)U∗3 .

Proof. It is enough to prove (1 ⇒ 2) and (4 ⇒ 1). All other implications follow

trivially. Let K1 = R(A∗) and L1 = N (A). Define U1 : K1 ⊕ L1 → H by

U1(y, z) = y + z

for y ∈ R(A∗), z ∈ N (A). Then

U∗1x = (PR(A∗)x, PN (A)x),

for all x ∈ H and U1 is unitary. Take

B1 = A|R(A∗) : R(A∗)→ R(A∗)

which is injective. Since APR(A∗) = A,

A = U1(B1 ⊕ 0)U∗1 .

Hence the implication (1 ⇒ 2) is proved. Lemma 2.3.13 and Lemma 2.3.14 give

(4 ⇒ 1).

Theorem 2.3.16. Let A ∈ Bc(H). Then the following are equivalent:

1. A is hypo-EP ;

2. There exist Hilbert spaces K1 and L1, V1 ∈ B(K1 ⊕ L1,H) injective, W1 ∈

B(K1 ⊕ L1,H), S1 ∈ B(H,K1 ⊕ L1), B1 ∈ B(K1) injective and C1 ∈ B(K1)

such that A = V1(B1 ⊕ 0)S1 and A∗ = W1(C1 ⊕ 0)S1.
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Proof. The implication (1 ⇒ 2) follows from Theorem 2.3.15. Now assume (2),

then from A = V1(B1 ⊕ 0)S1 and injectivity of V1 and B1, we get

N (A) = S−11 ({0} ⊕ L1).

From A∗ = W1(C1 ⊕ 0)S1, we get

S−11 ({0} ⊕ L1) ⊆ N (A∗).

Therefore N (A) ⊆ N (A∗). Hence A is hypo-EP .

Theorem 2.3.17. Let A ∈ Bc(H). Then the following are equivalent:

1. A is hypo-EP ;

2. There exist Hilbert spaces K1 and L1, U1 ∈ B(K1 ⊕ L1,H) isomorphism,

B1 ∈ B(K1) injective and C1 ∈ B(K1) such that

A = U1(B1 ⊕ 0)U−11 and A∗ = U1(C1 ⊕ 0)U−11 .

Proof. The implication (1 ⇒ 2) follows from Theorem 2.3.15.

The proof of (2 ⇒ 1) follows from Theorem 2.3.16.

Next we are going to prove another characterization through the factorization

of the form A = BC which involves the Moore-Penrose inverse of an operator.

Let A ∈ Bc(H). Then A = A|R(A∗)PR(A∗), where A|R(A∗) is the restriction of the

operator A to R(A∗) and PR(A∗) is the projection onto R(A∗). Here B = A|R(A∗)

and C = PR(A∗) in the factorization A = BC. Also, B is an injective operator

with closed range and C is a surjective operator. The factorization of the form

A = BC is not unique because of the following reason.

Suppose that U ∈ B(K,R(A∗)) is an isomorphism, BU ∈ B(K,H) is injective

with closed range and U−1C ∈ B(H,K) is surjective. Thus

A = (BU)(U−1C)
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is also a factorization of the same type. Therefore the factorization A = BC is

not unique. Thus if A ∈ Bc(H), then there exists a Hilbert space K such that

B ∈ B(K,H) injective and C ∈ B(H,K) surjective with A = BC. Moreover,

R(A) = R(B),R(A∗) = R(C∗), B†B = IK, CC† = IH and A† = C†B†.

Theorem 2.3.18. (Bouldin, 1982) Let A,B ∈ Bc(H) such that AB ∈ Bc(H).

Then (AB)† = B†A† if and only if R(A∗AB) ⊆ R(B) and R(BB∗A∗) ⊆ R(A∗).

Theorem 2.3.19. Let A ∈ Bc(H) and A = BC be a factorization of A, for some

B,C ∈ Bc(H). Then the following are equivalent:

1. A is hypo-EP ;

2. C†C ≥ BB† ;

3. R(B) ⊆ R(C∗) ;

4. B = C†CB ;

5. B† = B†C†C ;

6. AA∗ = BCC∗B∗C∗(C∗)† ;

7. A∗A = C∗B∗C†CBC.

Proof. Since A† = C†B†, CC† = I and B†B = I, A is hypo-EP if and only

if A†A ≥ AA† if and only if C†C ≥ BB†. Hence (1) and (2) are equivalent.

The equivalence of (1) and (3) are trivial from the relations R(A) = R(B) and

R(A∗) = R(C∗). Let R(B) ⊆ R(C∗). Since R(C∗) = R(C†C) and C†C acts

like identity on its range, it follows that C†CB = B. Assume B = C†CB. Since

the conditions for Theorem 2.3.18 are satisfied for C†C and B, taking the Moore-

Penrose inverse on both sides gives (5). Now we prove (5) ⇒ (3). Suppose that

B† = B†C†C, then

N (C) ⊆ N (B†C†C) = N (B†).

Since N (B†) = N (B∗), we have

N (C) ⊆ N (B∗).
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Hence

R(B) ⊆ R(C∗).

Suppose that B = C†CB, then (6) and (7) follow directly. Suppose that

AA∗ = BCC∗B∗C∗(C∗)†,

then

N (A) = N (C) = N (C∗)† ⊆ N (AA∗).

Since N (AA∗) = N (A∗), we have N (A) ⊆ N (A∗). Hence A is hypo-EP .

Finally if A∗A = C∗B∗C†CBC, then A∗A = A∗PR(A∗)A. This implies

‖Ax‖2 = ‖PR(A∗)Ax‖2.

Therefore Ax = PR(A∗)Ax and hence R(A) ⊆ R(A∗). Thus A is hypo-EP .
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CHAPTER 3

SUM, PRODUCT AND

RESTRICTION OF HYPO-EP

OPERATORS

3.1 INTRODUCTION

The sum of two self-adjoint operators on a Hilbert space is again a self-adjoint

operator. But the similar result will not hold for normal operators (hence, for

hypo-EP operators). Suppose that A,B ∈ B(H) are normal operators. Then

A+B is normal if A commutes with B∗ (Mortad, 2012). In the Chapter, we first

discuss necessary and sufficient conditions for sum of two hypo-EP operators to

be again a hypo-EP operator. The work of Meenakshi (Meenakshi, 1983) on sum

of EP matrices motivated us to analyze the sum of hypo-EP operators.

We next consider a problem of finding conditions (necessary or sufficient or

both) such that the product of hypo-EP operators is again a hypo-EP opera-

tor. The problem on the product of EP matrices was open around twenty five

years. Later a necessary and sufficient condition was given by Hartwig in (Hartwig

and Katz, 1997) and the product of EP operators was studied by Djordjevic in

(Djordjević, 2001). Nevertheless, Patel in (Patel and Shekhawat, 2016) discussed

the product of hypo-EP operators, we give results for the product to be hypo-EP

31



or EP , if either A or B, is hypo-EP or EP . To prove most of the results regarding

product of EP and hypo-EP operators, we use the tool of “angle between a pair

of closed subspaces of a Hilbert space”. The restriction of hypo-EP operators is

discussed in the final section of the Chapter.

3.2 SUM OF HYPO-EP OPERATORS

In general, the sum two hypo-EP operators is not necessarily hypo-EP which is

illustrated in the following example.

Example 3.2.1. Let A,B ∈ B(`2) be defined by

A(x1, x2, x3, x4, . . .) = (x1 + x2, x2, x3, x4, . . .)

and B = −I. Then A + B(x1, x2, x3, x4, . . .) = (x2, 0, 0, . . . ). Here A and B are

hypo-EP , but A+B is not hypo-EP .

Meenakshi (Meenakshi, 1983) discussed results on sum of EP matrices. The

next theorem gives a sufficient condition for the sum of hypo-EP operators to be

a hypo-EP operator.

Theorem 3.2.2. Let A,B be hypo-EP operators such that A+B has closed range.

If

‖Ax‖ ≤ k‖(A+B)x‖, for some k > 0 and for all x ∈ H, (3.2.1)

then A+B is hypo-EP .

Proof. From (3.2.1), for all x ∈ H, we have

‖Bx‖ ≤ ‖(A+B)x‖+ ‖Ax‖

≤ ‖(A+B)x‖+ k‖(A+B)x‖

≤ (k + 1)‖(A+B)x‖.

Since A and B are hypo-EP , for each x ∈ H there exist k1, k2 > 0 such that

|〈Ax, y〉| ≤ k1‖Ay‖ and |〈Bx, y〉| ≤ k2‖By‖ for all y ∈ H.

32



Now, we have

|〈(A+B)x, y〉| ≤ |〈Ax, y〉|+ |〈Bx, y〉|

≤ k1‖Ay‖+ k2‖By‖

≤ k1k‖(A+B)y‖+ k2(k + 1)‖(A+B)y‖.

Thus

|〈(A+B)x, y〉| ≤ [k1k + k2(k + 1)] ‖(A+B)y‖.

Hence A+B is hypo-EP .

Corollary 3.2.3. Let A,B be hypo-EP operators such that A + B has closed

range. If A∗B +B∗A = 0, then A+B is hypo-EP .

Proof. The assumption A∗B +B∗A = 0 gives

(A+B)∗(A+B) = A∗A+B∗B.

Then

‖(A+B)x‖2 = 〈(A+B)x, (A+B)x〉 = 〈(A∗A+B∗B)x, x〉 ≥ ‖Ax‖2.

From Theorem 3.2.2, A+B is hypo-EP .

Remark 3.2.4. In the above theorem, the condition (3.2.1) is equivalent to

N (A+B) ⊆ N (A).

But the condition (3.2.1) is not necessary for the sum of A and B to be hypo-EP .

For example, let A,B ∈ B(`2) be defined by

A(x1, x2, x3, x4, . . .) = (x1,−x2, x3, x4, . . .)

and B = I. Then A,B and A+B are hypo-EP . But N (A+B) * N (A).

Suppose A and B are hypo-EP . Then by Douglas’ theorem A∗ = DAA and

B∗ = DBB for some operators DA, DB ∈ B(H). The next theorem shows that

the condition (3.2.1) is both necessary and sufficient condition for the sum to be

hypo-EP under the assumption that DA −DB is invertible.
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Theorem 3.2.5. Let A,B ∈ Bc(H) be hypo-EP operators such that A + B has

closed range and DA − DB be invertible where DA, DB as defined above. Then

A+B is hypo-EP if and only if

‖Ax‖ ≤ k‖(A+B)x‖

for some k > 0 and for all x ∈ H.

Proof. Assume A+B is hypo-EP . Then

A∗ +B∗ = (A+B)∗ = E(A+B)

for some E ∈ B(H). Hence

DAA+DBB = E(A+B)

which implies that

(DA − E)A = (E −DB)B.

Taking K = DA−E,L = E−DB, we have KA = LB and (K+L)A = L(A+B).

Then

A = (K + L)−1L(A+B),

since K + L = DA −DB is invertible. Hence

‖Ax‖ ≤ k‖(A+B)x‖

for all x ∈ H, where k = ‖(K + L)−1L‖. The converse follows from Theorem

3.2.2.

Remark 3.2.6. The following example ensures that there are operators A,B ∈

Bc(H) such that DA − DB is invertible: Let A,B ∈ Bc(`2) be EP operators de-

fined by A(x1, x2, x3, x4, . . .) = (x1 + x2, x1, x3, x4, . . .) and B(x1, x2, x3, x4, . . .) =

(ix1, ix2, ix3, ix4, . . .). Here DA = I, DB = −I and DA −DB = 2I.
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3.3 PRODUCT OF HYPO-EP OPERATORS

Every hypo-EP operator is necessarily an operator with closed range. There

is an example in (Barnes, 2007) for a bounded operator A in Bc(H) such that

A2 /∈ Bc(H). But it has been observed that if A is hypo-EP , then A2 has closed

range always. Moreover, any natural power of A has closed range.

We derive few results on product of operators with closed ranges to analyze

closed rangeness of “product of hypo-EP operators”. We use the notion of angle

between a pair of closed subspaces in a Hilbert space and give some of the basic

results.

Definition 3.3.1. (Deutsch, 1995) Let M and N be closed subspaces of a Hilbert

space H. The angle between M and N is the angle α(M,N ) in [0, π/2] whose

cosine is defined by

c(M,N ) = sup
{
|〈x, y〉| : x ∈M∩ (M∩N )⊥, ‖x‖ ≤ 1,

y ∈ N ∩ (M∩N )⊥, ‖y‖ ≤ 1
}
.

We list some consequences of the definition of angle and a result pertaining to

the product of operators with closed range.

Theorem 3.3.2. (Deutsch, 1995) Let M and N be closed subspaces of a Hilbert

space H. Then

1. 0 ≤ c(M,N ) ≤ 1.

2. c(M,N ) = c(N ,M).

3. |〈x, y〉| ≤ c(M,N )‖x‖‖y‖, for all x ∈ M and y ∈ N , and at least one of x

or y is in (M∩N )⊥.

4. c(M,N ) = 0 if and only if the orthogonal projection ontoM commutes with

the orthogonal projection onto N .

5. c(M,N ) = c(M⊥,N⊥).
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Theorem 3.3.3. (Deutsch, 1995) Let A and B be bounded operators on H with

closed ranges. Then the following statements are equivalent:

1. AB has closed range ;

2. c(R(B),N (A)) < 1 ;

3. R(B) +N (A) is closed.

The following example illustrates the fact that there are operators A and B in

Bc(H) such that AB ∈ Bc(H) but BA /∈ Bc(H). We shall prove that when A and

B are EP operators, the closed rangeness of AB implies the closed rangeness of

BA and vice-versa.

Example 3.3.4. (Sam Johnson and Ganesa Moorthy, 2006) Let A and B be

operators on `2 defined by

A(x1, x2, x3, . . .) = (x1, 0, x2, 0, . . .)

and

B(x1, x2, x3, . . .) =
(x1

1
+ x2,

x3
3

+ x4,
x5
5

+ x6, . . .
)
.

One can verify that both A and B are bounded operators and are having closed

ranges. Also, R(AB) is closed but R(BA) is not closed.

Theorem 3.3.5. Let A and B be EP operators on H. Then R(AB) is closed if

and only if R(BA) is closed.

Proof. Suppose that R(AB) is closed. Then by Theorem 3.3.3,

c(R(B),N (A)) < 1.

Now using Theorem 3.3.2, we get

c(R(B)⊥,N (A)⊥) = c(R(A∗),N (B∗)) < 1.

Since R(A) = R(A∗) and N (B) = N (B∗),

c(R(A),N (B)) = c(R(A∗),N (B∗)).
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Therefore c(R(A),N (B)) < 1. Hence R(BA) is closed.

Conversely, suppose R(BA) is closed. Then

c(R(A),N (B)) < 1.

Now again using Theorem 3.3.2, we get

c(R(A)⊥,N (A)⊥) = c(R(B∗),N (A∗)) < 1.

Since R(A) = R(A∗) and N (B) = N (B∗),

c(R(B),N (A)) = c(R(B∗),N (A∗)).

Hence c(R(B),N (A)) < 1 which implies that R(AB) is closed.

We now discuss results for the product to be hypo-EP if either A or B is

hypo-EP . We first give an example to show that product AB is not necessarily a

hypo-EP operator even though A and B are hypo-EP .

Example 3.3.6. Let A and B be operators on `2 defined by

A(x1, x2, x3, . . .) = (0, x1, x2, . . .)

and

B(x1, x2, x3, . . . ) = (0, x2, 0, x4, . . .).

Both A and B are hypo-EP operators. Since

R(AB) =
{

(0, 0, x1, 0, x2, 0, . . .) :
∞∑
i=1

|xi|2 <∞
}

and

R((AB)∗) =
{

(0, x1, 0, x2, 0, . . .) :
∞∑
i=1

|xi|2 <∞
}
,

AB is not a hypo-EP operator.

Theorem 3.3.7. Let A be a hypo-EP operator and P be the orthogonal projection

onto R(A). Then AP is a hypo-EP operator.
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Proof. Since A has closed range, there is a k > 0 such that

‖Ax‖ ≥ k‖x‖

for all x ∈ N (A)⊥. Now let us take x ∈ N (AP )⊥, then

x ∈ N (P )⊥ = R(P ) = R(A) ⊆ R(A∗) = N (A)⊥

and Px = x. Hence for x ∈ N (AP )⊥, we have

‖APx‖ = ‖Ax‖ ≥ k‖x‖.

Thus R(AP ) is closed. Now

R(AP ) ⊆ R(A) = P (R(A)) ⊆ P (R(A∗)) = R(PA∗)

which implies that AP is hypo-EP .

Corollary 3.3.8. Let A be an EP operator and P be the orthogonal projection

onto R(A). Then AP is an EP operator.

Proof. From the proof of the Theorem 3.3.7, we can say R(AP ) is closed. Since

P is the orthogonal projection onto R(A),

R(AP ) = R(A) = P (R(A)) = P (R(A∗)) = R(PA∗).

Hence AP is EP .

Theorem 3.3.9. Let A be a hypo-EP operator and B ∈ Bc(H). If R(B) ⊆ R(A)

and N (B) ⊆ N (A), then AB is hypo-EP .

Proof. Since R(B) and N (A) are closed subspaces of H, the angle between R(B)

and N (A) is the angle α ∈ [0, π/2] whose cosine is defined by

c(R(B),N (A)) = sup
{
|〈x, y〉| : x ∈ R(B) ∩ (R(B) ∩N (A))⊥, ‖x‖ ≤ 1,

y ∈ N (A) ∩ (R(B) ∩N (A))⊥, ‖y‖ ≤ 1
}
. (3.3.2)

Since A is hypo-EP ,

R(B) ⊆ R(A) ⊆ R(A∗) = N (A)⊥
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and hence R(B) ∩N (A) = {0}, so (3.3.2) becomes

c(R(B),N (A)) = sup
{
|〈x, y〉| : x ∈ R(B), ‖x‖ ≤ 1, y ∈ N (A), ‖y‖ ≤ 1

}
≤ sup

{
|〈x, y〉| : x ∈ N (A)⊥, ‖x‖ ≤ 1, y ∈ N (A), ‖y‖ ≤ 1

}
= 0.

Hence AB has closed range. Since A is hypo-EP , N (B) ⊆ N (A) ⊆ N (A∗) and

hence R(A) ⊆ R(B∗).

Now R(AB) = A(R(B)) ⊆ A(R(A)) ⊆ A(R(A∗)) = R(AA∗) = R(A) ⊆

R(B∗) = R(B∗B) = B∗(R(B)) ⊆ B∗(R(A)) ⊆ B∗(R(A∗)) = R(B∗A∗). Hence

AB is hypo-EP .

Corollary 3.3.10. Let A be a hypo-EP operator on H. Then An is hypo-EP for

any integer n ≥ 1.

Proof. The conditions in Theorem 3.3.9 are trivial when A = B. Hence A2 is hypo-

EP . Continuing this process, we get An is hypo-EP for any integer n ≥ 1.

Remark 3.3.11. When A and B are EP matrices, the conditions R(B) ⊆ R(A)

and N (B) ⊆ N (A) imply that A and B have the same range and null spaces, that

is, R(A) = R(B) and N (A) = N (B). The following examples illustrate that there

are hypo-EP operators A and B on an infinite dimensional Hilbert space such that

the inclusion relation either in R(B) ⊆ R(A) or in N (B) ⊆ N (A) is proper.

Example 3.3.12. Let A and B be operators on `2 defined by

A(x1, x2, . . .) = (0, x1, x2, . . .)

and

B(x1, x2, . . .) = (0, x1, 0, x2, . . .).

Here both A and B are hypo-EP operators. Also R(B) ( R(A) and N (A) =

N (B) = {0}.

Example 3.3.13. Let A and B be operators on `2 defined by

A(x1, x2, . . .) = (x1, 0, x3, 0, . . .)
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and

B(x1, x2, . . .) = (x1, 0, x2, 0, . . .).

Even though both A and B are hypo-EP operators with R(A) = R(B) but N (B) (

N (A).

Remark 3.3.14. If one of the sufficient conditions in Theorem 3.3.9 is not true,

then the product of hypo-EP operator and an operator with closed range need not be

a hypo-EP operator. The operators A and B given in Example 3.3.6 are hypo-EP

operators and R(B) ⊆ R(A) but AB is not hypo-EP . Note that N (B) * N (A).

Theorem 3.3.15. Let A and B be EP operators on H such that AB ∈ Bc(H).

Then AB is EP if and only if R(AB∗) = R(B∗A).

Proof. Suppose that A and B are EP operators. Then the following equality

relations are true.

R(AB) = A(R(B)) = A(R(B∗)) = R(AB∗)

and

R(B∗A) = B∗(R(A)) = B∗(R(A∗)) = R(B∗A∗).

Hence AB is EP if and only if R(AB∗) = R(B∗A).

Corollary 3.3.16. Let A and B be EP operators on H such that AB ∈ Bc(H).

Then AB is hypo-EP if and only if A(R(B∗)) ⊆ B∗(R(A)).

Corollary 3.3.17. Let A and B be hypo-EP operators on H such that AB ∈

Bc(H). If

A(R(B∗)) ⊆ B∗(R(A)), (3.3.3)

then AB is hypo-EP .

Proposition 3.3.18. Let A ∈ B(H) be hypo-EP and B ∈ B(H) such that AB ∈

Bc(H). If there exists k > 0 such that

‖Ax‖ ≤ k‖ABx‖ for all x ∈ H, (3.3.4)

then AB is hypo-EP .
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Proof. Let x ∈ H. Since A is hypo-EP , for ABx ∈ R(A) there exists z ∈ H such

that ABx = A∗z. Hence for each y ∈ H,

| 〈ABx, y〉 | = | 〈A∗z, y〉 | = | 〈z, Ay〉 | ≤ ‖z‖‖Ay‖ ≤ k‖z‖‖ABy‖. (3.3.5)

Take ` = k‖z‖. Therefore for each x ∈ H, there exists ` > 0 such that

| 〈ABx, y〉 | ≤ `‖ABy‖

for all y ∈ H. Hence by Theorem 2.3.6, AB is hypo-EP .

Remark 3.3.19. The condition (3.3.4) is equivalent to N (AB) ⊆ N (A). Also

this condition is not necessary for AB to be hypo-EP . For example, let A,B ∈

B(`2) be defined by A = I and

B(x1, x2, x3, x4, . . .) = (x1 + x2, x1 + x2, x3, x4, . . .).

Here N (AB) * N (A). But A,B and AB are all hypo-EP .

Proposition 3.3.20. Let A ∈ Bc(H) and B be hypo-EP operator. If R(A) ⊆

R(B) and A is injective, then AB is hypo-EP .

Proof. Since B is hypo-EP , by Theorem 2.3.6, for each x ∈ H, there is k1 > 0

such that

| 〈Bx, y〉 | ≤ k1‖By‖

for all y ∈ H. Let x ∈ H. Since R(A) ⊆ R(B) and ABx ∈ R(A), there exists

x′ ∈ H such that ABx = Bx′. Hence for each y ∈ H,

| 〈ABx, y〉 | = | 〈Bx′, y〉 | ≤ k1‖By‖. (3.3.6)

Since A is injective and R(A) is closed, there exists k2 > 0 such that

‖ABy‖ ≥ k2‖By‖

for all y ∈ H. Therefore

| 〈ABx, y〉 | ≤ k1
1

k2
‖ABy‖

for all y ∈ H. Hence AB is hypo-EP .
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3.4 RESTRICTION OF HYPO-EP OPERATORS

In this section we discuss restriction of hypo-EP operators. The restriction of

A ∈ B(H) to an invariant subspace M is denoted by A|M. The adjoint of A|M
is denoted by (A|M)∗ and defined by (A|M)∗ = PA∗|M where P is the orthogonal

projection onto M. The restriction operator A|M coincides with the following

properties as in the operator A ∈ B(H). The proof of the following proposition is

obvious from the definition.

Proposition 3.4.1. Let A,B ∈ B(H) and M be an invariant subspace for both

A and B. Then

1. (A|M)∗∗ = A|M.

2. (AB|M)∗ = (B|M)∗(A|M)∗.

From the definition of hypo-EP operator, for any A ∈ B(H), we say A|M is

hypo-EP if R(A|M) is closed and R(A|M) ⊆ R((A|M)∗).

Theorem 3.4.2. Let A ∈ B(H) and M be an invariant subspace for A such that

A|M has closed range. Then A|M is hypo-EP if and only if for each x ∈M there

exists k > 0 such that

|〈A|Mx, y〉| ≤ k‖A|My‖, for all y ∈M.

Proof. We get the proof by applying Theorem 2.3.6 and Proposition 3.4.1.

Corollary 3.4.3. Let A be a hypo-EP operator and M be an invariant subspace

for A such that A|M has closed range. Then A|M is hypo-EP .

Remark 3.4.4. There are sufficient conditions available in literature that range

of A|M is closed when A ∈ Bc(H). In (Barnes, 2007) Barnes gave a sufficient

condition that “R(A|M) = R(A) ∩M” to have R(A|M) is closed. The following

example tells that the condition is not necessary.

Example 3.4.5. Let A be the right shift operator on `2 and M = R(A). Then

A|M is hypo-EP operator, but R(A|M) 6= R(A) ∩M.
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Theorem 3.4.6. Let A ∈ Bc(H) and R(A) be a reducing subspace for A. If A|R(A)

is hypo-EP , then A is hypo-EP .

Proof. Let y ∈ H. Then y can be expressed as y = y1 + y2 such that y1 ∈ R(A)

and y2 ∈ R(A)⊥. For all y ∈ H,

|〈Ax, y〉| = |〈Ax, y1〉+ 〈Ax, y2〉|

where y1 ∈ R(A), y2 ∈ R(A)⊥. As Ax ∈ R(A) and y2 ∈ R(A)⊥, we get |〈Ax, y〉| =

|〈Ax, y1〉|.

Since A|R(A) is hypo-EP , there exists k > 0 such that

|〈Ax, y〉| = |〈Ax, y1〉| ≤ k‖Ay1‖.

Since R(A) is a reducing subspace for A, we have

‖Ay‖2 = ‖Ay1‖2 + ‖Ay2‖2.

Hence

|〈Ax, y〉| ≤ k‖Ay1‖ ≤ k‖Ay‖.

Thus A is hypo-EP .
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CHAPTER 4

FUGLEDE-PUTNAM TYPE

THEOREMS FOR EP

OPERATORS

4.1 INTRODUCTION

The Fuglede-Putnam theorem (first proved by B. Fuglede (Fuglede, 1950) and then

by C. R. Putnam (Putnam, 1951) in a more general version) plays a major role

in the theory of bounded (and unbounded) operators. Many authors have worked

on it since the papers of Fuglede and Putnam got published (Duggal, 2001; Gong,

1987; Gupta and Patel, 1988; Mecheri, 2004). There are various generalizations

of the Fuglede-Putnam theorem to non-normal operators, for instance, hyponor-

mal, subnormal, etc. This Chapter deals with the study of Fuglede-Putnam type

theorems for EP operators.

We show that the Fuglede theorem (Fuglede, 1950) is not true in general for

EP operators and we prove that the commutativity relation in Fuglede theorem

is true for EP operators if the adjoint operation is replaced by Moore-Penrose

inverse. Moreover, several versions of Fuglede-Putnam type theorems are given

for EP operators. In the last section of the Chapter, we prove some interesting

results using Fuglede-Putnam type theorems for EP operators on Hilbert spaces.
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4.2 FUGLEDE-PUTNAM TYPE THEOREMS

The well-known Fuglede theorem for a bounded operator is stated as follows.

Theorem 4.2.1. (Fuglede, 1950). Let N ∈ B(H) be a normal operator and

T ∈ B(H). If TN = NT , then TN∗ = N∗T .

The following example illustrates that Fuglede theorem does not hold good for

EP operators. The theorem cannot be extended to the set of EP operators on a

Hilbert space H. Howsoever, every normal operator with closed range is EP .

Example 4.2.2. Consider the EP operator A on `2 defined by

A(x1, x2, x3, x4, . . .) = (x1 − x2, x1 + x3, 2x1 − x2 + x3, x4, . . .)

and T ∈ B(`2) defined by

T (x1, x2, x3, x4, . . .) = (x2,−x1 + x2 − x3,−2x1 + x2, x4, . . .).

Here TA = AT but TA∗ 6= A∗T .

We have seen in the above example that Fuglede theorem is not true in gen-

eral for EP operators. The following theorem is a Fuglede type theorem which

says that if an EP operator commutes with a bounded operator, then the EP

operator commutes with the Moore-Penrose inverse of the bounded operator. Our

result just replaces the “adjoint” operation by the “Moore-Penrose inverse” in the

Fuglede theorem stated in Theorem 4.2.1, however proofs are totally different.

Theorem 4.2.3. Let A be an EP operator on H and T ∈ B(H). If TA = AT ,

then TA† = A†T .

Proof. As A is an EP operator, we have AA† = A†A. From the assumption

TA = AT , we have

TA† = TA†AA† = TA(A†)2 = AT (A†)2 = AA†AT (A†)2 = A†ATA(A†)2 =

A†ATA† = A†TAA† = A†AA†TA†A = (A†)2ATA†A = (A†)2TAA†A = (A†)2TA =

(A†)2AT = A†T.
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Example 4.2.4. The assumption that A is an EP operator cannot be dropped in

Theorem 4.2.3. For instance, T = A is a bounded operator on `2 defined by

A(x1, x2, x3, . . .) = (x1 + x2, 2x1 + 2x2, x3, . . .).

Then

A†(x1, x2, x3, . . .) =
( 1

10
(x1 + 2x2),

1

10
(x1 + 2x2), x3, . . .

)
.

Note that A is not an EP operator and TA = AT but TA† 6= A†T .

Under some conditions, we prove that Fuglede theorem is true for EP operators

and we give examples which embellish that those conditions are necessary.

Theorem 4.2.5. Let A be an EP operator on H and T ∈ B(H). If TA = AT

and TA∗A = A∗AT , then TA∗ = A∗T .

Proof. Suppose A ∈ B(H) is an EP operator with TA = AT and TA∗A = A∗AT .

Then by Theorem 4.2.3, we have TA∗ = T (AA†A)∗ = TA∗(AA†)∗ = TA∗AA† =

A∗ATA† = A∗AA†T = (AA†A)∗T = A∗T.

Example 4.2.6. The condition TA∗A = A∗AT is essential in Theorem 4.2.5.

Consider the EP operator A on `2 defined by

A(x1, x2, x3, . . .) = (x1 + x3, 0, x3, . . .)

and T ∈ B(`2) defined by

T (x1, x2, x3, . . .) = (x1 + 2x3,−x2, x3, . . .).

Then TA = AT and TA∗A 6= A∗AT . But TA∗ 6= A∗T .

Theorem 4.2.7. Let A be an EP operator on H and T ∈ B(H). If TA = AT

and TA†A∗ = A†A∗T , then TA∗ = A∗T .

Proof. As A ∈ B(H) is an EP operator, we have AA† = A†A. From the given

facts TA = AT and TA†A∗ = A†A∗T , we have TA∗ = T (AA†A)∗ = TA†AA∗ =

TAA†A∗ = ATA†A∗ = AA†A∗T = (AA†A)∗T = A∗T .

47



Example 4.2.8. The condition TA†A∗ = A†A∗T cannot be dropped in Theorem

4.2.7. Let T and A be as in Example 4.2.2. But TA†A∗ 6= A†A∗T and TA∗ 6= A∗T .

Remark 4.2.9. In general, the operator equations TA∗A = A∗AT and TA†A∗ =

A†A∗T are not equivalent. For example, let us consider the EP operator A on `2

defined by

A(x1, x2, x3, x4, . . .) = (x1 + x3, 0, x3, x4, . . .)

and the bounded operator T on `2 defined by

T (x1, x2, x3, x4, . . .) = (2x1 + x3, x2, x3, x4, . . .).

Then A†(x1, x2, x3, x4, . . .) = (x1 − x3, 0, x3, x4, . . .). Here TA†A∗ = A†A∗T , but

TA∗A 6= A∗AT .

Fuglede theorem was generalized for two normal operators by Putnam, which

is well-known as Fuglede-Putnam theorem and is stated as follows.

Theorem 4.2.10. (Putnam, 1951) Let N,M be bounded normal operators on H

and T ∈ B(H). If TN = MT , then TN∗ = M∗T .

Fuglede-Putnam theorem is not true in general if we replace bounded normal

operators by EP operators, as shown in the following example.

Example 4.2.11. Consider the EP operators A and B on `2 defined by

A(x1, x2, x3, . . .) = (x1 + x3, 0, x3, . . .),

B(x1, x2, x3, x4, . . .) = (x1 + x2, x2, , 0, x4, . . .)

and T ∈ B(`2) defined by

T (x1, x2, x3, x4, . . .) = (x1 − x3, x3, 2x2, x4, . . .).

Then TA = BT . But TA∗ 6= B∗T.

Theorem 4.2.12. Let A,B be EP operators on H and T ∈ B(H). If TA = BT

and TA∗A = B∗BT , then TA∗ = B∗T .
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Proof. Suppose that A,B ∈ B(H) are EP operators with TA = BT and TA∗A =

B∗BT . Then we have TA∗ = T (AA†A)∗ = TA∗AA† = B∗BTA† = B∗BB†T =

(BB†B)∗T = B∗T .

Example 4.2.13. The condition TA∗A = B∗BT in Theorem 4.2.12 is essential.

Let A,B be EP operators and T be the bounded operator as in Example 4.2.11.

Here TA∗A 6= B∗BT and TA = BT but TA∗ 6= B∗T .

Theorem 4.2.14. Let A,B be EP operators on H and T ∈ B(H). If TA = BT

and TA†A∗ = B†B∗T , then TA∗ = B∗T .

Proof. As A and B are EP operators with TA = BT and TA†A∗ = B†B∗T ,

we have TA∗ = T (AA†A)∗ = TA†AA∗ = TAA†A∗ = BTA†A∗ = BB†B∗T =

(BB†B)∗T = B∗T.

Example 4.2.15. The condition TA†A∗ = B†B∗T in Theorem 4.2.14 is essential.

Let A,B be EP operators and T be the operator as in Example 4.2.11. Here

TA†A∗ 6= B†B∗T and TA = BT but TA∗ 6= B∗T .

The following Fuglede-Putnam type theorem for EP operators is a generaliza-

tion of Theorem 4.2.3 involving two EP operators.

Theorem 4.2.16. Let A,B be EP operators on H and T ∈ B(H). If TA = BT ,

then TA† = B†T .

Proof. As A and B are EP operators, we have AA† = A†A and BB† = B†B. From

the given fact TA = BT , we have TA† = TA†AA† = TA(A†)2 = BT (A†)2 =

BB†BT (A†)2 = B†BTA(A†)2 = B†BTA† = B†TAA† = B†BB†TA†A =

(B†)2BTA†A = (B†)2TAA†A = (B†)2TA = (B†)2BT = B†T .

Example 4.2.17. In the Theorem 4.2.16, if one of the operators, A or B fails to

be EP , then the theorem is not valid. Consider the EP operator A on `2 defined

by

A(x1, x2, x3, . . .) = (x1 + x3, 0, x3, . . .)

and the non-EP operator B on `2 defined by

B(x1, x2, x3, x4, . . .) = (x1 + x2, 0, 0, x4, . . .).
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Let T ∈ B(`2) be defined by

T (x1, x2, x3, x4, . . .) = (x2 + 2x3,−x2,−x2, x4, . . .).

Then TA = BT . But TA† 6= B†T .

Theorem 4.2.18. Let A,B be EP operators on H. If T, S ∈ B(H) with TA = BS

and TA2 = B2S, then TA† = B†S.

Proof. Suppose that T, S,A,B ∈ B(H) with TA = BS and TA2 = B2S, where A

and B are EP operators. Then TA† = T (A†AA†) = TAA†A† = BSA†A† =

BB†BSA†A† = B†B2SA†A† = B†TA2A†A† = B†TAA† = B†B†BTAA† =

B†B†B2SA† = B†B†TA2A† = B†B†TA = B†B†BS = B†S.

Example 4.2.19. The assumptions that A and B are EP operators in Theorem

4.2.18 cannot be dropped. For instance, let T, S,A,B ∈ B(`2) be defined by

T (x1, x2, x3, . . .) = (x2, x1, x3, . . .),

S = I,

A(x1, x2, x3, . . .) = (x1 + x2,−x1 − x2, x3, . . .)

and

B(x1, x2, x3, . . .) = (−x1 − x2, x1 + x2, x3, . . .).

Here both A,B are not EP operators with TA = B = BS. But TA† 6= B†S.

Example 4.2.20. The condition TA2 = B2S in Theorem 4.2.18 is essential. For

instance, let A,B ∈ B(`2) be EP operators defined by

A(x1, x2, x3, x4, . . .) = (x1 − x2, x1 + x3, 2x1 − x2 + x3, x4, . . .),

B(x1, x2, x3, . . .) = (x1 + x2, x2, x3, . . .)

and let T, S ∈ B(`2) be defined by

T (x1, x2, x3, x4, . . .) = (x1 + 2x2 − x3,−x1 − x2 + x3, 2x1 + 2x2 − 2x3, x4, . . .),

S(x1, x2, x3, x4, . . .) = (x1 + x3, 0, x1 + x2, x4, . . .).

Then TA = BS and TA2 6= B2S. But TA† 6= B†S.
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Theorem 4.2.21. Let A be an EP operator on H and T, S ∈ B(H). If TA = AS

and SA = AT , then TA† = A†S and SA† = A†T .

Proof. From given hypotheses, (T + S)A = A(T + S). By Theorem 4.2.3,

(T + S)A† = A†(T + S)

TA† + SA† = A†T + A†S

TA† − A†S = A†T − SA†. (4.2.1)

Again using given hypotheses, (T − S)A = −A(T − S). By Theorem 4.2.16,

(T − S)A† = −A†(T − S)

TA† − SA† = −A†T + A†S

TA† − A†S = −A†T + SA†. (4.2.2)

Adding (4.2.1) and (4.2.2), we have TA† = A†S. Similarly subtracting (4.2.2)

from (4.2.1), we have SA† = A†T .

Theorem 4.2.22. Let A,B be EP operators on H and T, S ∈ B(H). If TA = BS

and SA = BT , then TA† = B†S and SA† = B†T .

Proof. From given hypotheses, (T + S)A = B(T + S). By Theorem 4.2.16,

(T + S)A† = B†(T + S)

TA† + SA† = B†T +B†S

TA† −B†S = B†T − SA†. (4.2.3)

Again using given hypotheses, (T − S)A = −B(T − S). By Theorem 4.2.16,

(T − S)A† = −B†(T − S)

TA† − SA† = −B†T +B†S

TA† −B†S = −B†T + SA†. (4.2.4)

Adding (4.2.3) and (4.2.4), we have TA† = B†S. Similarly subtracting (4.2.4)

from (4.2.3), we have SA† = B†T .
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4.3 CONSEQUENCES OF FUGLEDE - PUTNAM

TYPE THEOREMS FOR EP OPERATORS

The product of EP operators is not an EP operator in general, which is illustrated

in the following example.

Example 4.3.1. Let A,B ∈ B(`2) be defined by

A(x1, x2, x3, . . .) = (x1 + x2, x1 + x2, x3, . . .)

and

B(x1, x2, x3, . . .) = (0, x2, x3, . . .).

Here A and B are EP operators, but the product AB is not an EP operator.

Djordjević has given a necessary and sufficient condition for product of two

EP operators to be an EP operator again.

Theorem 4.3.2. (Djordjević, 2001) Let A,B be EP operators on H. Then the

following statements are equivalent :

1. AB is an EP operator ;

2. R(AB) = R(A) ∩R(B) and N (AB) = N (A) +N (B).

Example 3.3.4 shows that there are operators A and B on H in which R(AB)

is closed but R(BA) is not closed. Also we proved in Theorem 3.3.5 that if A and

B are EP operators, then R(AB) is closed if and only if R(BA) is closed.

Example 4.3.3. Consider the EP operators A,B ∈ B(`2) defined by

A(x1, x2, x3, . . .) = (x1 + x2, x2, x3, . . .)

and

B(x1, x2, x3, . . .) = (x1, 0, x3, . . .).

Here AB is an EP operator, but BA is not EP .
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Theorem 4.3.4. Let A,B ∈ B(H) be such that (AB)† = B†A†. Then AB and

BA are EP if and only if A†AB = BAA† and ABB† = B†BA.

Proof. Suppose AB and BA are EP . Then (AB)† and (BA)† are also EP . Hence

we have A†(AB)† = A†B†A† = (BA)†A†. Therefore by Theorem 4.2.16, we have

A†AB = BAA†. In a similar way we have (AB)†B† = B†A†B† = B†(BA)†. Now

we use Theorem 4.2.16, we get ABB† = B†BA.

Conversely, suppose we have

A†AB = BAA† (4.3.5)

ABB† = B†BA. (4.3.6)

From the equation (4.3.5), we get B†A†AB = B†BAA† and from the equation

(4.3.6), we get ABB†A† = B†BAA†. Since the right side of these two equations are

same, we have B†A†AB = ABB†A†. Hence (AB)†AB = AB(AB)†. Therefore AB

is EP . Similarly from the equation (4.3.5), we get A†ABB† = BAA†B† and from

the equation (4.3.6), we get A†ABB† = A†B†BA. Therefore BAA†B† = A†B†BA.

Hence BA(BA)† = (BA)†BA. Thus BA is EP .

Corollary 4.3.5. Let A = UP ∈ Cn×n be a polar decomposition of A where

U ∈ Cn×n is unitary and P ∈ Cn×n is positive semi-definite Hermitian and let

B ∈ Cn×n with (AB)† = B†A†. If BU is EP and PBU = BUP , then AB and

BA are EP .

Proof. Suppose BU is EP and PBU = BUP , then BAA† = B(UP )(UP )† =

BUPP †U∗ = PBUP †U∗ = PP †BUU∗ = PP †B = P †PB = P †U∗UPB =

(UP )†UPB = A†AB. Since BU is EP and PBU = BUP , we have P (BU)† =

(BU)†P . Therefore ABB† = UPBUU∗B† = UPBU(BU)† = UBUP (BU)† =

UBU(BU)†P = U(BU)†BUP = UU∗B†BUP = B†BA. Thus by Theorem 4.3.4,

AB and BA are EP .
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CHAPTER 5

EP OPERATORS ON KREIN

SPACES

5.1 INTRODUCTION

An indefinite inner product space is a real (complex) vector space together with

a symmetric (Hermitian) bilinear form prescribed on it so that the corresponding

quadratic form assumes both positive and negative values. As complete inner

product space is called Hilbert space, complete indefinite inner product space is

called Krein space with respect to the induced metric. Positive definite inner

product spaces are well known objects. Negative definite inner product spaces

do not possess any new properties and semi-definite inner product spaces can be

reduced to definite ones. Many results in classical inner product spaces will not

follow in indefinite inner product settings. In this Chapter, we extend results

of EP operators on Hilbert spaces to Krein space settings. Any indefinite inner

product space K can have the following subsets:

� β+ = {x ∈ K : [x, x] > 0} is called the “positive cone,”

� β− = {x ∈ K : [x, x] < 0} is called the “negative cone,”

� β0 = {x ∈ K : [x, x] = 0} is called the “neutral cone.”
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Here β+, β− and β0 may not be subspaces of K, but all definite subspaces are

subsets of β+ or β−. Through the definite subspaces, we now define Krein space.

Definition 5.1.1. If the inner product space K admits a fundamental decompo-

sition of the form K = K+ ⊕ K−; K+ ⊂ β+ ∪ {0},K− ⊂ β− ∪ {0}, where the

subspaces K+,K− are complete with respect to the norm ‖x‖ =
∣∣[x, x]

∣∣1/2, then we

say that K is a Krein space.

We can also make any Hilbert spaceH into a Krein space by suitablely changing

the inner product with a help of self-adjoint bounded operator on H. Let H be

a Hilbert space over C and let J be a self-adjoint bounded operator on H with

J2 = I. Then the inner product 〈·, ·〉 defined in H can be made into sesquilinear

form [·, ·] as follows:

[x, y] = 〈Jx, y〉 , for x, y ∈ H.

Unless J = I or J = −I, this quadratic form [x, x] is indefinite which means

that for some x, y ∈ H, we have [x, x] < 0 and [y, y] > 0. The space H with the

sesquilinear form [·, ·] generated by J as defined above is called a Krein space.

Definition 5.1.2. A Krein space is an indefinite inner product space (K, [·, ·])

such that there exists an automorphism J of K which squares to the identity and

〈x, y〉 = [Jx, y]

defines a positive definite inner product and (K, 〈·, ·〉) is a Hilbert space. The

operator J is called a fundamental symmetry.

The study of EP matrices on finite dimensional Krein spaces was done by

Jayaraman (Jayaraman, 2012). In this Chapter we are giving characterizations of

EP operators on the Krein space settings.

If a bounded operator on a Hilbert space has closed range, then the unique

Moore-Penrose inverse exists which is bounded and having closed range. But in the

case of Krein space, closed range is not sufficient for existence of Moore-Penrose

inverse. One of the main reasons for this to happen is that closed subspace of a

Krein space is not necessarily a Krein space.
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Example 5.1.3. (Bognár, 1974) Consider K = {(xi)∞i=1 :
∑∞

i=1 |xi|2 <∞, xi ∈ C}

with the inner product

[(xi)
∞
i=1, (yi)

∞
i=1] =

∞∑
i=1

(−1)ixiyi.

Let L = {(xi)∞i=1 : x2i = 2i
2i−1x2i−1, i = 1, 2, 3, . . .}. Here L is a closed subspace of

K, but L is not complete with respect to the given inner product.

For any given Krein spaces K1 and K2, we denote the set of all bounded

operators from K1 to K2 by B(K1,K2) and B(K,K) = B(K).

Definition 5.1.4. (Mary, 2008) A subspace L of a Krein space K is said to be

regular if L ⊕ L⊥ = K.

Definition 5.1.5. (Mary, 2008) An operator A ∈ B(K1,K2) is regular if both

R(A) and N (A) are regular.

Theorem 5.1.6. (Mary, 2008) Let A ∈ B(K1,K2) be regular. Then there exists

a unique regular operator B ∈ B(K2,K1) such that

1. ABA = A,

2. BAB = B,

3. (AB)∗ = AB,

4. (BA)∗ = BA.

The operator B is called the Moore-Penrose inverse of A and it is denoted

by A†. Xavier Mary (Mary, 2008) has given necessary and sufficient conditions

for existence of Moore-Penrose inverse in Krein spaces.

Theorem 5.1.7. (Mary, 2008) Let A ∈ B(K) be regular. Then the following are

equivalent:

1. AA† = A†A ;

2. N (A)⊥ = R(A) ;

3. N (A) = N (A∗) ;

4. R(A) = R(A∗).
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5.2 FACTORIZATION OF EP OPERATORS ON

KREIN SPACES

Definition 5.2.1. An operator A ∈ B(K) is called an EP operator if A is regular

and AA† = A†A.

In this section, we see some characterizations of EP operators on Krein spaces

through factorization.

Lemma 5.2.2. Let A1 ∈ B(K1) and A2 ∈ B(K2) be regular. Then A1⊕A2 is EP

if and only if A1 and A2 are EP .

Proof. Suppose A1 ⊕ A2 is EP and x ∈ N (A1). Then (x, 0) ∈ N (A1 ⊕ A2) =

N (A∗1 ⊕ A∗2) and x ∈ N (A∗1). On the other hand if x ∈ N (A∗1), then we have

x ∈ N (A1). Hence A1 is EP . Similarly A2 is also EP .

Conversely, suppose A1, A2 are EP and (x, y) ∈ N (A1 ⊕ A2), then A1x = 0

and A2y = 0. This implies x ∈ N (A1) = N (A∗1) and y ∈ N (A2) = N (A∗2). Hence

(x, y) ∈ N (A∗1 ⊕ A∗2). Therefore A1 ⊕ A2 is EP .

Lemma 5.2.3. Let A1 ∈ B(K1) and A2 ∈ B(K2) be regular and U ∈ B(K2,K1) be

injective such that A1 = UA2U
∗. Then A1 is EP if and only if A2 is EP .

Proof. Suppose A2 is EP and x ∈ N (A1). Then UA2U
∗x = 0. Since U is

injective, A2U
∗x = 0 implies that U∗x ∈ N (A2) = N (A∗2), which in turn implies

that UA∗2U
∗x = 0, equivalently x ∈ N (A∗1). The other implication follows in a

similar way. Hence A1 is EP .

Conversely, suppose A1 is EP and x ∈ N (A2). Therefore A2x = 0. Since

U is injective, U∗ is surjective. Hence for x ∈ K2 there exists y ∈ K1 such that

U∗y = x. Therefore A2U
∗y = 0 implies that UA2U

∗y = A1y = 0. Since A1 is EP ,

A∗1y = UA∗2U
∗y = 0. Using injectivity of U and U∗y = x, we get x ∈ N (A∗2). The

other implication follows in a similar way. Hence A2 is EP .

Remark 5.2.4. The Lemma 5.2.3 is not true if U is not injective. Consider the

Krein space K in Example 5.1.3. Let A1, U, A2 be operators on K defined by

A1(x1, x2, . . . , ) = (x1, 0, x3, 0, . . .),
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U(x1, x2, . . .) = (x1 − x2, x3 − x4, . . .),

and

A2(x1, x2, . . .) = (x2, 0, x4, . . .)

respectively. Then we have U∗(x1, x2, . . . , ) = (x1, x1, x2, x2, . . .). Here A1 =

UA2U
∗ and A1 is EP , but U is not injective and A2 is not EP .

Theorem 5.2.5. Let A ∈ B(K) be regular. Then the following are equivalent:

1. A is EP ;

2. There exist Krein spaces H1,L1, U1 ∈ B(H1⊕L1,K) unitary and B1 ∈ B(H1)

isomorphism such that A = U1(B1 ⊕ 0)U∗1 ;

3. There exist Krein spaces H2,L2, U2 ∈ B(H2⊕L2,K) isomorphism and B2 ∈

B(H2) isomorphism such that A = U2(B2 ⊕ 0)U∗2 ;

4. There exist Krein spaces H3,L3, U3 ∈ B(H3 ⊕ L3,K) injective and B3 ∈

B(H3) isomorphism such that A = U3(B3 ⊕ 0)U∗3 .

Proof. Assume that A is EP . LetH1 = R(A),L1 = N (A). SinceR(A) and N (A)

are regular, they are Krein spaces. Then the map U1 : H1⊕L1 → K is defined by

U1(x, y) = x+ y

for all x ∈ R(A), y ∈ N (A).

To say U1 is unitary we have to show U1 is surjective and [U1(y1, z1), U1(y2, z2)] =

[(y1, z1), (y2, z2)]. This can be done since R(A)⊕⊥ N (A) = K. In fact we can ex-

plicitly say

U∗1k = (PR(A)k, PN (A)k), k ∈ K.

Then B1 = A |R(A): R(A) → R(A) is isomorphism, since R(A∗) = R(A). Hence

A = U1(B1 ⊕ 0)U∗1 . This proves (1⇒ 2).

The implications (2⇒ 3) and (3⇒ 4) are obvious. (4⇒ 1) follows from Lemmas

5.2.2 and 5.2.3.
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Remark 5.2.6. Theorem 5.2.5 gives a key idea to construct Moore-Penrose in-

verse of an EP operator. If A = U1(B1 ⊕ 0)U∗1 , then A† = U1(B
−1
1 ⊕ 0)U∗1 . Also

if we do not assume U3 is injective, then A is not necessarily EP .

In Theorem 5.2.5 if we assume B1 is injective with closed range, then A is

not necessarily EP . The next characterization is given through simultaneous

factorization of A and A∗ of the form A = U(B ⊕ 0)U∗ and A∗ = U(C ⊕ 0)U∗

with U,B and C injective.

Theorem 5.2.7. Let A ∈ B(K) be regular. Then the following are equivalent:

1. A is EP ;

2. (a) There exist Krein spaces H1 and L1, V1 ∈ B(H1 ⊕ L1,K) injective,

W1 ∈ B(H1 ⊕ L1,K), S1 ∈ B(K,H1 ⊕ L1), B1 ∈ B(H1) injective and

C1 ∈ B(H1) such that A = V1(B1 ⊕ 0)S1 and A∗ = W1(C1 ⊕ 0)S1.

(b) There exist Krein spaces H2 and L2, V2 ∈ B(H2⊕L2,K), W2 ∈ B(H2⊕

L2,K) injective, S2 ∈ B(K,H2 ⊕ L2), B2 ∈ B(H2) and C2 ∈ B(H2)

injective such that A = V2(B2 ⊕ 0)S2 and A∗ = W2(C2 ⊕ 0)S2.

Proof. (1⇒ 2) : The proof follows from Theorem 5.2.5.

(2 ⇒ 1) : Assume (a) holds. A = V1(B1 ⊕ 0)S1 and V1 and B1 are injective, we

get

N (A) = S−11 ({0} ⊕ L1)

and A∗ = W1(C1 ⊕ 0)S1 gives

S−11 ({0} ⊕ L1) ⊆ N (A∗).

Therefore N (A) ⊆ N (A∗). By (b) we get N (A∗) ⊆ N (A). Hence A is EP .

The above statement may look clumsy, but it tells us the effectiveness of B1

is isomorphism. The next theorem we are going to show that effectiveness of the

assumption that B1 is isomorphism.
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Theorem 5.2.8. Let A ∈ B(K) be regular. Then the following are equivalent:

1. A is EP ;

2. There exist Krein spaces H1,L1, U ∈ B(H1 ⊕ L1,K) isomorphism and B ∈

B(H1) isomorphism and C ∈ B(H1) such that A = U(B ⊕ 0)U−1 and A∗ =

U(C ⊕ 0)U−1.

Proof. (1⇒ 2) : The proof follows from Theorem 5.2.5.

(2 ⇒ 1) : From the proof of (2 ⇒ 1) in Theorem 5.2.7 we get N (A) ⊆ N (A∗).

Taking adjoint in expressions given by A and A∗, we get

A∗ = (U∗)−1(B∗ ⊕ 0)U∗, A = (U∗)−1(C∗ ⊕ 0)U∗.

In the same argument, we get N (A∗) ⊆ N (A). Hence A is EP .

5.3 SIMULTANEOUS FACTORIZATION OF AA∗

AND A∗A

In the section, we use simultaneous factorization of AA∗ and A∗A to characterize

EP operators on Krein spaces.

Proposition 5.3.1. Let A ∈ B(K) be regular. Then the following are equivalent:

1. A is EP ;

2. There exist Krein spaces H1,L1, U1 ∈ B(H1⊕L1,K) unitary and B1 ∈ B(H1)

isomorphism such that A∗A = U1(B
∗
1B1⊕0)U∗1 and AA∗ = U1(B1B

∗
1⊕0)U∗1 ;

3. (a) There exist Krein spaces H2 and L2, V2 ∈ B(H2 ⊕ L2,K) injective,

W2 ∈ B(H2 ⊕ L2,K), S2 ∈ B(K,H2 ⊕ L2), B2 ∈ B(H2) injective and

C2 ∈ B(H2) such that A∗A = V2(B2 ⊕ 0)S2 and AA∗ = W2(C2 ⊕ 0)S2;

(b) There exist Krein spaces H3 and L3, V3 ∈ B(H3⊕L3,K), W3 ∈ B(H3⊕

L3,K) injective, S3 ∈ B(K,H3 ⊕ L3), B3 ∈ B(H3) and C3 ∈ B(H3)

injective such that AA∗ = V3(B3 ⊕ 0)S3 and AA∗ = W3(C3 ⊕ 0)S3;
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4. There exist Krein spaces H4,L4, U4 ∈ B(H4⊕L4,K) isomorphism and B4 ∈

B(H4) isomorphism and C4 ∈ B(H4) such that A∗A = U4(B4 ⊕ 0)U−14 and

AA∗ = U4(C4 ⊕ 0)U−14 .

Proof. (1⇒ 2) : By Theorem 5.2.5. (2⇒ 3), (2)⇒ (4) and (3⇒ 1) are obvious.

(2 ⇒ 1) : As in proof of (2 ⇒ 1) in Theorem 5.2.7, we get N (AA∗) = N (A∗A).

But we know that N (AA∗) = N (A∗) and N (A∗A) = N (A). Therefore N (A) =

N (A∗). Hence A is EP .

Remark 5.3.2. If we assume that one of the conditions in (2) holds, then A

is not in general EP . Consider the Krein space K in Example 5.1.3. Let A ∈

B(K) be defined by A(x1, x2, x3, . . .) = (x2, 0, 0, . . .). Then A∗(x1, x2, x3, . . .) =

(0,−x1, 0, . . .). Here AA∗(x1, x2, x3, . . .) = (−x1, 0, 0, . . .) and A∗A = 0. Since A

is not EP , factorization of AA∗ exists whereas factorization of A∗A does not exist.

Proposition 5.3.3. Let A ∈ B(K) be regular. Then the following are equivalent:

1. A is EP ;

2. There exists an isomorphism N1 ∈ B(K) such that A∗ = N1A ;

3. There exists N2 ∈ B(K) injective such that A∗ = N2A ;

4. There exist S1, S2 ∈ B(K) such that A∗ = S1A and A = S2A
∗.

Proof. (1⇒ 2) : By Theorem 5.2.5, we have A = U(B1 ⊕ 0)U∗ with U ∈ B(H⊕

L,K) unitary and B ∈ B(H) an isomorphism. If we take N1 = U(B∗B−1⊕ I)U∗ :

K → K, then N1 is an isomorphism with A∗ = N1A. (2⇒ 3) is direct and (2⇒ 4)

follows from A = N−11 A∗.

(3 ⇒ 1) : As A∗ = N1A, we get N (A) ⊆ N (A∗). But N1 is injective implies

N (A∗) ⊆ N (A). Hence A is EP . (4⇒ 1) : By A∗ = S1A, we haveN (A) ⊆ N (A∗)

and by A = S2A
∗ we get that N (A∗) ⊆ N (A).

Proposition 5.3.4. Let A ∈ B(K) be regular. Then the following are equivalent:

1. A is EP ;
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2. There exists an isomorphism N1 ∈ B(K) such that A† = N1A = AN1 ;

3. There exists N2 ∈ B(K) injective such that A† = N2A ;

4. There exist S1, S2 ∈ B(K) such that A† = S1A and A = S2A
†.

Proof. (1⇒ 2) : By Theorem 5.2.5, we have A = U(B1 ⊕ 0)U∗ with U ∈ B(H⊕

L,K) unitary and B ∈ B(H) an isomorphism. If we take N1 = U(B−2 ⊕ I)U∗ :

K → K, then N1 is an isomorphism with A† = N1A = AN1. As N (A†) = N (A∗),

the rest follows from the proof of Theorem 5.3.3.

Proposition 5.3.5. Let A ∈ B(K) be regular. Then the following are equivalent:

1. A is EP ;

2. There exists an isomorphism N1 ∈ B(K) such that A∗A = N1AA
∗ ;

3. There exists N2 ∈ B(K) injective such that A∗A = N2AA
∗ ;

4. There exist S1, S2 ∈ B(K) such that A∗A = S1AA
∗ and AA∗ = S2A

∗A.

Proof. (1⇒ 2) : By Theorem 5.2.5, we have A = U(B1 ⊕ 0)U∗ with U ∈ B(H⊕

L,K) unitary andB ∈ B(H) an isomorphism. If we takeN1 = U(B∗B(B∗)−1B−1⊕

I)U∗ : K → K, then N1 is an isomorphism with A∗A = N1AA
∗. As N (AA∗) =

N (A∗) and N (A∗A) = N (A). The rest follows from the proof of Theorem

5.3.3.
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CHAPTER 6

UNBOUNDED EP AND

HYPO-EP OPERATORS ON

HILBERT SPACES

6.1 INTRODUCTION

The theory of unbounded operators developed in the late 1920s and early 1930s

as part of developing a rigorous mathematical framework for quantum mechanics.

They are called unbounded observables in quantum mechanics. This type of op-

erators arise in boundary value problems and they are not everywhere defined on

Hilbert spaces. Moreover, they are not continuous on their domains of definition.

The basic difference between bounded and unbounded operators is the domain

on which they are defined. Domains of unbounded operators on a Hilbert space

H are always proper subspaces of H. Because of this fact, many aspects of the

theory of unbounded operators are somewhat counter-intuitive. For example, the

algebraic rules for sums and products break down. Hence, one has to be careful

while dealing with unbounded operators. Nevertheless the techniques of bounded

operators may fail to hold in the case of unbounded operators; in some cases, they

work for a certain class of unbounded operators.
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Definition 6.1.1. (Akhiezer and Glazman, 1993) Let A be a linear operator from

a Hilbert space H with domain D(A) to a Hilbert space K. If the graph of A defined

by

G(A) = {(x,Ax) : x ∈ D(A)}

is closed in H×K, then A is called a closed operator. Equivalently, A is a closed

operator if xn ∈ D(A) such that xn → x and Axn → y for some x ∈ H, y ∈ H,

then x ∈ D(A) and Ax = y.

The set of all closed operators from H to K is denoted by C(H,K) and we

write C(H,H) = C(H).

Theorem 6.1.2. (Riesz and Sz.-Nagy, 1955) Let A be a linear operator on H

with domain D(A). Then the following are true.

1. If A is closed and everywhere defined, then A is bounded.

2. If A is bounded, then A is closed if and only if D(A) is a closed subspace of

H.

Theorem 6.1.3. (Goldberg, 1966) Let A ∈ C(H,K). Then the following state-

ments are true.

1. N (A) is a closed subspace of H.

2. If A−1 exists, then A−1 is closed. In this case,

G(A−1) = {(Ax, x) : x ∈ D(A)}.

The denseness of domain is necessary and sufficient for existence of the adjoint.

That is, A∗ exists if and only if D(A) is dense in H. Given any densely defined

operator A (not necessarily closed), the adjoint of A is always closed. We call

D(A) ∩N (A)⊥, the carrier of A and it is denoted by C(A).
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Theorem 6.1.4. (Ben-Israel and Greville, 2003) Let A ∈ C(H) be densely defined.

Then the following are true.

1. N (A) = R(A∗)⊥, N (A∗A) = N (A).

2. N (A∗) = R(A)⊥, N (AA∗) = N (A∗).

3. R(A) = N (A∗)⊥, R(A) = R(AA∗).

4. R(A∗) = N (A)⊥, R(A∗) = R(A∗A).

Definition 6.1.5. (Rudin, 1991) Let A be a densely defined linear operator with

domain D(A). The operator A is said to be

1. normal if AA∗ = A∗A,

2. symmetric if A ⊂ A∗,

3. self-adjoint if A = A∗,

4. positive if 〈Ax, x〉 ≥ 0 for all x ∈ D(A).

Definition 6.1.6. (Nashed, 1976) Let A ∈ C(H) be densely defined. The Moore-

penrose inverse of A is the linear operator A† defined on the dense subspace

D(A†) := R(A) +R(A)⊥ on H and taking values in N (A)⊥∩D(A) with N (A†) =

R(A)⊥ and

A†Ax = Px for x ∈ D(A),

where P is the orthogonal projection of H onto N (A)⊥.

From the definition it follows that for y ∈ D(A†), A†y is the unique element of

N (A)⊥ ∩ D(A) satisfying

AA†y = Qy,

where Q is the orthogonal projection of H onto R(A).

The Moore-Penrose inverse A† of A is closed and densely defined. Moreover,

A† is bounded if and only if R(A) is closed.
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Theorem 6.1.7. (Ben-Israel and Greville, 2003) Let A ∈ C(H) be densely defined.

Then the following are true.

1. D(A†) = R(A)⊕R(A)⊥.

2. N (A†) = R(A)⊥ = N (A∗).

3. R(A†) = C(A).

Theorem 6.1.8. (Nashed, 1976) Let A ∈ C(H) be densely defined. Then each of

the following set of conditions characterizes the Moore-Penrose inverse of A.

1. (a) A†AA†y = A†y for all y ∈ D(A†),

(b) A†Ax = PR(A†)
x for all x ∈ D(A),

(c) AA†y = PR(A)y for all y ∈ D(A†).

2. (a) AA†Ax = Ax for all x ∈ D(A),

(b) A†AA†y = A†y for all y ∈ D(A†),

(c) A†A and AA† are symmetric operators.

Definition 6.1.9. (Ben-Israel and Greville, 2003) Let A ∈ C(H) be densely de-

fined. Then the number

γ(A) = inf{‖Ax‖ : x ∈ C(A), ‖x‖ = 1}

is called the reduced minimum modulus of A. Moreover, γ(A) = γ(A∗).

Theorem 6.1.10. (Ben-Israel and Greville, 2003) Let A be a densely defined

closed operator on H. Then the following statements are equivalent:

1. R(A) is closed ;

2. R(A∗) is closed ;

3. R(A∗A) is closed ;

4. R(AA∗) is closed ;
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5. A|C(A) has a bounded inverse ;

6. γ(A) > 0 ;

7. A† is bounded.

Theorem 6.1.11. (Ben-Israel and Greville, 2003) Let A ∈ C(H) be densely de-

fined. Then the following are true.

1. A†† = A.

2. A∗† = A†∗.

3. N (A∗†) = N (A).

4. A∗A and A†A∗† are non-negative and (A∗A)† = A†A∗†.

5. AA∗ and A∗†A† are non-negative and (AA∗)† = A∗†A†.

6. A is bounded if and only if R(A†) is closed.

Theorem 6.1.12. (Douglas, 1966) Let A and B be densely defined operators in

C(H). Then the following are true:

1. If AA∗ ≤ BB∗, there exists a contraction C so that A ⊆ BC.

2. If C is an operator so that A ⊆ BC, then R(A) ⊆ R(B).

3. If R(A) ⊆ R(B), then there exists a densely defined operator C so that

A = BC and a number k > 0 so that ‖Cx‖2 ≤ k {‖x‖2 + ‖A∗x‖2} for

x ∈ D(C).

6.2 UNBOUNDED EP OPERATORS ON HILBERT

SPACES

Definition 6.2.1. Let A ∈ C(H) be densely defined. The operator A is said to be

an EP operator if R(A) is closed and R(A) = R(A∗).
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Example 6.2.2. (Huang et al., 2012) Let t : [0, 1]→ C by

t(x) =

 1 if x = 0

1√
x

if 0 < x ≤ 1.

Define

Af = tf

for all f in the domain

D(A) =
{
f ∈ L2[0, 1] : tf ∈ L2[0, 1]

}
.

Then A is a densely defined closed operator. As |t(x)| ≥ 1 for all x ∈ [0, 1], we

have R(A) = L2[0, 1] and A has bounded inverse A−1 : L2[0, 1]→ L2[0, 1] defined

by A−1g = t1g for all g ∈ L2[0, 1] where

t1(x) =

 1 if x = 0
√
x if 0 < x ≤ 1.

Hence A is a closed EP operator on L2[0, 1].

Example 6.2.3. Let H = L2[0, 1]. Let

AC[0, 1] =
{
f ∈ H : f : [0, 1]→ C is absolutely continuous and f ′ ∈ H

}
.

Let D(A) =
{
f ∈ AC[0, 1] : f(0) = f(1)

}
.

Define A : D(A)→ H by

Af = if ′ for all f ∈ D(A).

We claim that A is self-adjoint. Let f ∈ D(A) and g ∈ D(A). Then

〈Af, g〉 =

1∫
0

if ′(t)g(t)dt = i[(fg)(t)]10 − i
1∫

0

g(t)f ′(t)dt

= i

1∫
0

g(t)f ′(t)dt since f(0)ḡ(0) = f(1)ḡ(1)

= 〈g, Af〉.
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This shows that A ⊂ A∗. It only remains to prove D(A∗) ⊆ D(A). Let g ∈ D(A∗).

Put φ = A∗g and Φ(x) =
x∫
0

φ. Then, for any f ∈ D(A), we have

1∫
0

if ḡ = 〈Af, g〉 = 〈f, φ〉 = f(1)Φ(1)−
1∫

0

f ′Φ. (6.2.1)

Since D(A) contains nonzero constants, substituting f = c 6= 0 in Equation 6.2.1,

we end up with Φ(1) = 0 and ig − Φ ∈ R(A)⊥, where

R(A) =
{
u ∈ H :

1∫
0

u(t)dt = 0
}

= span{1}⊥.

Hence ig − Φ = α, for some constant α 6= 0. As Φ is absolutely continuous, it

follows that g is absolutely continuous. Using the fact that Φ(1) = 0 = Φ(0) and

ig − Φ = α, we can conclude that g(0) = g(1). Hence g ∈ D(A). This proves that

A = A∗. Hence A is a closed EP operator.

Theorem 6.2.4. (Kulkarni and Ramesh, 2011) If A is a densely defined closed

operator on H, then C(A) = N (A)⊥.

Theorem 6.2.5. Let A ∈ C(H) be a densely defined with closed range. Then the

following are equivalent:

1. A is an EP operator ;

2. AA† = A†A on D(A) ;

3. N (A) = N (A†) ;

4. N (A) = N (A∗) ;

5. C(A) = R(A) ;

6. H = N (A)⊕R(A) ;

7. If D(A) = D(A∗), then A∗ = PA , where P is a bijective linear operator on

H.
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Proof. Assume that A is an EP operator. Let x ∈ D(A) = N (A)⊕ C(A). Then

x = x1 + x2, x1 ∈ N (A), x2 ∈ C(A) = R(A†). Hence A†Ax = A†A(x1 + x2) =

A†Ax2 = x2. As C(A) = R(A†) ⊆ R(A∗) = R(A) and N (A) = R(A∗)⊥ =

R(A)⊥ = N (A†), AA†x = AA†(x1 + x2) = AA†x1 + AA†x2 = AA†x2 = x2.

Therefore AA† = A†A on D(A).

Now assume A†A = AA† on D(A). Then R(A†) = R(A) and hence R(A∗) =

R(A). Therefore A is EP .

The following set of equations will prove the implications (1 ⇔ 3 ⇔ 4).

R(A) = R(A∗)

⇔ R(A)⊥ = R(A∗)⊥

⇔ N (A†) = N (A)

⇔ N (A∗) = N (A).

Assume R(A) = R(A∗). Then

H = R(A)⊕R(A)⊥

= R(A)⊕R(A∗)⊥

= R(A)⊕N (A).

Assume H = N (A)⊕R(A). But we have H = R(A)⊥ ⊕R(A). Hence we get

N (A) = R(A)⊥ = N (A∗). Therefore by (4), R(A) = R(A∗). Hence A is EP . (1

⇔ 6)is trivial from the fact that R(A) = R(A∗) = N (A)⊥ = C(A).

Assume N (A) = N (A∗). Let x ∈ H = R(A)⊕N (A). Then x = x1 + x2, x1 ∈

R(A), x2 ∈ N (A). Since x1 ∈ R(A) and A is bijective from C(A) to R(A), there

exists u ∈ C(A) such that Au = x1. Define Px = A∗u + x2. If x ∈ R(A), then

Px = A∗u where u ∈ C(A) and Au = x.

First we prove that P is linear. Let x, y ∈ H. Then x = x1+x2, y = y1+y2 with

x1, y1 ∈ R(A), x2, y2 ∈ N (A). Let u, v ∈ C(A) such that Au = x1, Av = x2. Then

Px = A∗u+x2, Py = A∗v+y2. For α, β ∈ C, αx+βy = (αx1 +βy1)+(αx2 +βy2)
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and A(αu+ βv) = αx1 + βy1. Therefore

P (αx+ βy) = A∗(αu+ βv) + (αx2 + βy2)

= α(A∗u+ x2) + β(A∗v + y2)

= αPx+ βPy.

Hence P is linear.

Now we prove that PA = A∗. Let x ∈ D(A) = C(A)⊕N (A) and x = x1 + x2

where x1 ∈ C(A), x2 ∈ N (A). Then

PAx = PA(x1 + x2)

= PAx1.

As Ax1 ∈ R(A), PAx1 = A∗u, where u ∈ C(A) and Au = Ax1. Since A is

bijective from C(A) to R(A) and u, x1 ∈ C(A), Au = Ax1 implies u = x1.

Hence PAx = PAx1 = A∗u = A∗x1. But A∗x = A∗x1 + A∗x2 = A∗x1. Hence

PAx = A∗x.

We now claim that P is injective. Take x ∈ H such that Px = 0, where x =

x1 +x2, x1 ∈ R(A), x2 ∈ N (A). Then A∗u+x2 = 0 where Au = x1 and u ∈ C(A).

Hence A∗u = −x2. But A∗u ∈ R(A∗) = N (A)⊥ and x2 ∈ N (A). Therefore

A∗u = x2 = 0. As u ∈ C(A) = C(A∗) and A∗ is a bijective map from C(A∗) to

R(A∗), u = 0. Hence x1 = Au = 0 and x = x1 + x2 = 0. Therefore P is injective.

Finally we prove that P is surjective. Let y = y1 + y2 ∈ H = R(A) ⊕ N (A),

where y1 ∈ R(A) = R(A∗), y2 ∈ N (A). As y1 ∈ R(A∗), there exists u ∈ D(A∗)

such that A∗u = y1. Let u = u1 + u2 with u1 ∈ C(A) and u2 ∈ N (A) = N (A∗).

Therefore y1 = A∗u = A∗u1 + A∗u2 = A∗u1. Take x = Au1 + y2 ∈ R(A)⊕N (A).

Then

Px = A∗u1 + y2

= y1 + y2

= y.

Therefore P is surjective. Hence A∗ = PA.
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Assume A∗ = PA for some bijective operator P ∈ L(H). Then N (A) ⊆

N (PA) = N (A∗). Also A = P−1A∗. Then we have N (A∗) ⊆ N (P−1A∗) = N (A).

Therefore N (A) = N (A∗).

If we drop the assumption that R(A) is closed, then the part (4) of Theorem

6.2.5 can be restated as “AA† ⊆ A†A if and only if N (A) = N (A∗) and D(A†) ⊆

D(A).” Indeed, if AA† ⊆ A†A, then D(A†) ⊆ D(A) and

AA† = A†A on D(A†)

PR(A) = PR(A†)

R(A) = R(A†)

R(A)
⊥

= R(A†)
⊥

N (A∗) = N (A).

Conversely, if N (A) = N (A∗) and D(A†) ⊆ D(A), then

N (A) = N (A†)

N (A)⊥ = N (A†)⊥

C(A) = R(A)

R(A†) = R(A).

Then by Theorem 6.1.8, we have AA†x = A†Ax for all x ∈ D(A†). Hence AA† ⊆

A†A. Similarly, we can prove that A†A ⊆ AA† if and only if N (A) = N (A∗) and

D(A) ⊆ D(A†).

Example 6.2.6. (Kulkarni and Ramesh, 2010) LetH be the real space L2[0, π] of real valued functions

and H′ =
{
φ ∈ AC[0, π] : φ′ ∈ H

}
. Let A be the operator

d

dt
with

D(A) = {x ∈ H′ : x(0) = x(π) = 0}.

It can be shown using the fundamental theorem of integral calculus that A ∈

C(H). Since {sin nt : n ∈ N} is an orthonormal basis for H and is contained in

D(A), A is densely defined. Also C(A) = D(A). i.e., A is one-to-one. It can

be shown that R(A) = {y ∈ H :
π∫
0

y(t) dt = 0} = span {1}⊥. Hence in this case
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D(A†) = H. Let z ∈ H. Then z = y + c, where y ∈ R(A) and 0 6= c ∈ R(A)⊥.

Hence

z = y + c⇒ y = z − c⇒ 0 =

π∫
0

y(t)dt =

π∫
0

(z(t)− c)dt

⇒ c =
1

π

π∫
0

z(t)dt.

Hence y(t) = z(t)− 1

π

π∫
0

z(t)dt.

Since y ∈ R(A), we have A†y = A†z. Thus

A†z = A†y = A−1y =

s∫
0

y(t)dt =

s∫
0

z(t)dt− 1

π

s∫
0

π∫
0

z(u)dudt.

Hence A†z =

s∫
0

z(t)dt − s

π

π∫
0

z(u)du, 0 ≤ s ≤ π. Also AA† = A†A. Hence A

is a closed EP operator.

6.3 UNBOUNDED HYPO-EP OPERATORS ON

HILBERT SPACES

Definition 6.3.1. Let A ∈ C(H) be densely defined. The operator A is said to be

a hypo-EP operator if R(A) is closed and R(A) ⊆ R(A∗).

Example 6.3.2. Let H = `2 and

D(A) = {(x1, x2, . . .) ∈ H : (x1, 2x2, 3x3, . . .) ∈ H} .

Define A(x1, x2, x3, . . .) = (0, x1, 2x2, 3x3, . . .) for all (x1, x2, x3, . . .) ∈ D(A). The

operator A is a hypo-EP operator, but not EP .

Theorem 6.3.3. Let A ∈ C(H) be closed range. Then A is hypo-EP if and only

if A†A2A† = AA†.
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Proof. Suppose R(A) ⊆ R(A∗) and R(A) is closed. Then AA†x ∈ R(A) for each

x ∈ H and hence AA†x ∈ R(A†) = R(A∗). As A†A is a projection onto R(A†),

we have A†A(AA†x) = AA†x. Hence A†A2A† = AA†.

Theorem 6.3.4. Let A ∈ C(H) be densely defined. Then each of the following

statements implies the next statement:

1. A is hypo-EP ;

2. A(A†)2A = AA† on D(A) ;

3. AA† ≤ A†A on D(A) ;

4. ‖AA†x ≤ ‖A†Ax‖ for all x ∈ D(A).

Proof. Assume that A is hypo-EP and x ∈ D(A). Then〈
AA†A†Ax, x

〉
=
〈
(AA†)∗A†Ax, x

〉
=
〈
A†Ax,AA†x

〉
=
〈
(A†A)∗x,AA†x

〉
=
〈
x,A†A2A†x

〉
=
〈
x,AA†x

〉
=
〈
AA†x, x

〉
.

Hence A(A†)2A = AA† on D(A).

Assume that A(A†)2A = AA† on D(A). Let x ∈ D(A). Then〈
AA†x, x

〉
=
〈
AA†AA†x, x

〉
=
〈
(AA†)∗AA†x, x

〉
= ‖AA†x‖2

= ‖A(A†)2Ax‖2

≤ ‖AA†‖2‖A†Ax‖2

= ‖A†Ax‖2

=
〈
A†Ax,A†Ax

〉
=
〈
A†Ax, x

〉
.

76



Hence AA† ≤ A†A on D(A).

Assume that AA† ≤ A†A on D(A). Let x ∈ D(A). Then

〈
AA†x, x

〉
≤
〈
A†Ax, x

〉
⇒
〈
AA†AA†x, x

〉
≤
〈
A†AA†Ax, x

〉
⇒
〈
AA†x,AA†x

〉
≤
〈
A†Ax,A†Ax

〉
⇒‖AA†x‖2 ≤ ‖A†Ax‖2.

Thus ‖AA†x ≤ ‖A†Ax‖ for all x ∈ D(A).

Remark 6.3.5. If R(A) ⊆ D(A), all the necessary conditions for hypo-EP in

Theorem 6.3.4 become sufficient conditions for hypo-EP operators.

Theorem 6.3.6. Let A ∈ C(H) be densely defined. If A is hypo-EP , then there

exists k > 0 such that |〈Ax, y〉| ≤ k‖Ay‖, for all y ∈ D(A).

Proof. Suppose A is hypo-EP . If x ∈ N (A), then the result is trivial. Let

x ∈ D(A) such that Ax 6= 0. Then Ax ∈ R(A) ⊆ R(A∗). Therefore there exists a

non-zero z ∈ D(A) such that A∗z = Ax. Then for all y ∈ D(A),

|〈Ax, y〉| = |〈A∗z, y〉| = |〈z, Ay〉| ≤ ‖z‖‖Ay‖.

Taking k = ‖z‖, we get

|〈Ax, y〉| ≤ k‖Ay‖,

for all y ∈ D(A).

The converse of Theorem 6.3.6 has been proved for bounded hypo-EP op-

erators on Hilbert spaces in Chapter 2 in which Douglas’ theorem for bounded

operators was used. Unlike the bounded operators, Douglas’ theorem for densely

defined closed operators does not guarantee the equivalance of the notions of ma-

jorization, range inclusion and factorization.
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CHAPTER 7

CONCLUSION AND FUTURE

WORK

7.1 CONCLUSION

Bounded EP operators behave better than closed range operators on Hilbert

spaces because of the additional “range-Hermitian” condition. For instance, there

are operators A and B on a Hilbert space H such that A,B and AB have closed

ranges but BA does not have closed range. However when A and B are EP

operators, the closed rangeness of AB implies the closed rangeness of BA and

vice-versa. Also, there are operators A on H such that A has closed range but A2

does not have closed range. However it has been observed that if A is EP , then

A2 has closed range always. Moreover, any natural power of A has closed range.

Because of the Pearl’s characterization, several characterizations came out

in terms of Moore-Penrose inverses. There are at least 60 characterizations for

EP matrices available in literature and most of them are extended to infinite-

dimensional settings. However, much attention has not been paid to study un-

bounded EP operators which would be quite useful to know the properties which

resemble those of normal/hyponormal operators. In the case of finite dimensional

settings, EP and hypo-EP are the same. There are few more types of EP matrices

(k-EP , Cen-EP , Con-S-K-EP , Co-EP , Core-EP ) being studied by mathemati-

cians.
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In this thesis we have discussed the following for EP and hypo-EP operators :

1. Algebraic and analytic characterizations for bounded and unbounded oper-

ators on Hilbert spaces ;

2. Algebraic sum, product and restriction for bounded operators on Hilbert

spaces ;

3. Factorization of operators on Krein spaces ;

4. As an application, Fuglede-Putnam type theorems for bounded operators on

Hilbert spaces.

7.2 FUTURE WORK

Moore-Penrose inverses of matrices have important roles in theoretical and nu-

merical methods of linear algebra. The most significant fact is that we can use

Moore-Penrose inverse of matrices, in the case when ordinary inverses do not ex-

ist, in order to solve some matrix equations. Similar reasoning can be applied to

linear (bounded or unbounded) operators on Hilbert spaces. Then, it is interesting

to consider Moore-Penrose inverses of elements in Banach and C∗-algebras, more

generally, in rings with or without involution.

Rakocevic (Rakočević, 1988) introduced the notion of Moore-Penrose inverse

to elements of a Banach algebra, which led to study EP Banach space operators

and EP Banach algebra elements by Boasso (Boasso, 2008). Well-known results

obtained in the frame of Hilbert space operators and C∗-algebra elements are

extended for EP Banach space operators and Banach algebra elements.

In rings with involution, EP elements are elements for which the Drazin and

the Moore-Penrose inverse exist and coincide. Dijana et al. (Mosić and Djordjević,

2012) introduced and investigated generalized normal and generalized Hermitian

elements in rings. As a consequence, several new characterizations for elements in

rings with involution to be normal and Hermitian elements are presented. More-

over, Dijana et al. have investigated EP elements in Banach algebras (Mosić and
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Djordjević, 2011a) and weighted-EP elements in C∗-algebras (Mosić and Djord-

jević, 2011b).

EP modular operators on Hilbert C∗-modules have been first studied by Kam-

ran Sharifi (Sharifi, 2014) and necessary and sufficient conditions are provided for

the product of two EP modular operators to be EP . These results are extension of

results by Koliha (Koliha, 2000) for an arbitrary C∗-algebra and the C∗-algebras

of compact operators. We have seen theoretical developments of EP operators

from finite dimensional spaces to Hilbert C∗-modules.

Our future plan is to analyze algebraic and topological structures of those

collection of operators in a much more general settings, such as C∗-algebras and

Hilbert C∗-modules.
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Mosić, D. and Djordjević, D. S. (2011b). Weighted-EP elements in C∗-algebras.

Electron. J. Linear Algebra, 22:912–930.
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