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ABSTRACT 

Structural performance depends on the design, construction, environment, utilization, 

and reliability aspects. From these, other factors can be controlled by adopting proper 

design and construction techniques, but the environmental factors are difficult to 

control. Hence, the environmental factors in the analysis and design are mostly not 

considered sufficient in practice; however, they have significant effects on the 

performance of the structures in the design life.  It is in this light that this study aimed 

at performing the time-dependent safety and serviceability performance analysis of 

reinforced concrete structures majorly considering environmental factors such as creep, 

shrinkage, and corrosion that possess uncertainty. To achieve the desired objective, a 

simply supported reinforced concrete beam was designed and detailed to Eurocode 

(EC2). Different design parameters such as corrosion parameters, creep and shrinkage, 

the time-dependent properties of the material have been identified and modeled through 

a thorough literature review. The empirical equations provided in design codes were 

modified to consider the time-variant parameters in time-dependent performance 

analysis.   

In the presence of uncertainty of parameters, it is impossible to obtain the 

absolute reliability of the structure. The sources of uncertainties in reinforced concrete 

are the randomness of variables, mathematical models, physical models, environmental 

factors, and gross error. Uncertainties broadly classified as aleatory and epistemic 

uncertainties. This research mainly addressed the epistemic uncertainty of reinforced 

concrete structure to handle the imprecise data using fuzzy concepts. The fuzziness of 

variables identified and their membership functions were generated by MATLAB 

R2018a using the heuristic method. In addition to the identification of fuzziness of 

variables, the study further extended to design optimization and performance level 

evaluation of reinforced concrete structure using fuzzy relation and fuzzy composition 

to explore the application of fuzzy concepts. In the design of reinforced concrete 

structure using fuzzy relation and composition methods, the design is taken as optimum 

when the performance degree of membership tends to unity. 

Failure possibility is a measure of safety when a structure encounters with fuzzy 

uncertainties. If uncertainties are time-dependent, the possibility of performance under 



 
 

zero results in time-dependent failure possibility, and it becomes more pronounced 

during improper consideration of environmental factors. Therefore, in this study, time-

dependent parameters are taken into account for exploring the effects of environmental 

factors in reinforced concrete structures. Possible failure modes were identified and 

estimated using modified time-variant empirical equations to consider the propagation 

of input variables that are characterized by membership functions to output responses. 

Then, the time-dependent failure possibility is evaluated by the numerical optimization 

procedure. Real-time data has been collected from the city of Addis Ababa, Ethiopia 

for the case study to substantiate the methodology presented in this study. From the 

detailed modeling and analysis, considering the moderate corrosion rate with 

corresponding ambient temperature and relative humidity of the considered site, the 

structure safely performs for less than half of its design life.   

Keywords: reinforced concrete, beam, environmental factors, time-dependent, flexure, 

shear, deflection, crack, performance, epistemic uncertainty, fuzzy sets, membership 

function, fuzzy operations, failure possibility  
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CHAPTER 1 

INTRODUCTION 

The performance of a structure for the intended purpose can be assessed by its safety, 

serviceability, and economy. The performance of the structure mainly depends on the 

input variables. The information of input variables is never certain, precise, and 

complete  (Ranganathan 1999), i.e., uncertainty. The sources of uncertainties can be 

physical uncertainty, statistical uncertainty, model uncertainty, and gross errors. Due to 

the presence of these uncertainties of material properties, loads on the structure during 

its life, structural idealization model, limitation of numerical methods, and other 

unforeseen factors, the absolute safety of a structure is impossible (Biondini et al. 

2004). Besides, the time-variant properties of the input variables lead the output 

performance to vary with the time (Fan et al. 2019).  

Uncertainties are broadly classified into aleatory and epistemic uncertainties. 

Aleatory uncertainty arises from the inherent randomness in the physical properties and 

the system environment (Li et al. 2016; Kiureghian and Ditlevsen 2008) whereas, 

epistemic uncertainty originates from a lack of sufficient knowledge and imprecision 

of information about a system going to be studied. The type of uncertainty and the way 

of dealing with them has been addressed by many investigators (Marano and Quaranta 

2008; Du et al. 2006; Brown et al. 1983; Pascal 1975) to solve problems in their 

respective areas of specialization. These studies concluded that, for aleatory 

uncertainty, the reliability estimation problem is usually carried out using probability 

theory, which requires a large number of samples and randomness of input variables; 

whereas epistemic uncertainty is usually modeled by possibility theory, which handles 

imprecision and fuzziness of input variables.  

In structural engineering, the structure's response is governed by basic variables 

such as mechanical properties of materials, dimensions, unit weights, environmental 

loads, etc. Such essential variables possess fuzzy uncertainty due to degradation of 

quality, skill and workmanship experience, project environmental impacts, and 

condition of existing structures. Through the extension principle of fuzzy variables, the 

existence of fuzzy uncertainty of input variables propagates output results. A fuzzy 

uncertainty of a variable is expressed by a membership function. There are numerous 
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types of membership functions, such as triangular, trapezoidal, Gaussian, singleton, 

etc., depending on the availability and characters of the variables. The triangular 

membership function is frequently used because of its simplicity.  

To evaluate the safety degree of the structure in the presence of the fuzzy 

uncertainty, an area ratio index of the are membership function of output performance 

in the failure domain to the whole area of the membership function of output 

performance is proposed (Shrestha and Duckstein 1997). However, the area ratio index 

can reflect to some extent the safety degree of the structure it cannot exactly substitute 

the possibility of the output performance locating in the failure domain (Fan et al. 

2019). Analogous to the reliability index to evaluate conventional reliability under 

random uncertainty, a failure possibility index measures the safety degree of the 

structure involving the fuzzy uncertainty by the possibility safety index of the 

performance locating in the failure domain. Moreover, the performance of the structure 

with time is nonlinear and deteriorate with time, consequently, the membership 

functions of the performance vary with time.  

The time-dependent failure possibility index of the structure is estimated by 

solving the membership function of the nonlinear performance function (Shrestha and 

Duckstein 1997). The membership function of the fuzzy uncertain variable can be 

generated by different methods, such as heuristics, histograms, clustering, simulating 

annealing, genetic method, particle swarm optimization, and neural network, etc. To 

determine the membership function of the performance, it is necessary to identify all 

possible failure modes of the structure. The structural failure mode is generally divided 

into ultimate and serviceability failure modes (Hess III et al. 2000). The time-dependent 

failure possibility can be readily estimated by the numerical optimization from the 

membership function of performance whose value is less than zero.  

Despite the expectation of long service of civil engineering structures, the 

resistances deteriorate with loads exceeding the expected design load and the various 

environmental changes that occur within the design life. The performance of reinforced 

concrete structures subjected to sustained load and corrosion and failure probability 

analysis, complementary to classical reliability analysis, are well-developed 

numerically and experimentally (Teplý et al. 1999; Afzal et al. 2016; Verma et al. 

2014). On the contrary, the time-dependent performance and failure possibility analysis 
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of concrete structures subjected to sustained load, corrosion, and creep and shrinkage 

lack sufficient research. Therefore, this study is significant to evaluate the time-

dependent performance level, the fuzziness of input and output response parameters, 

and the time-dependent failure possibility of the reinforced concrete structure subjected 

to sustained load and environmental factors (i.e., corrosion, creep, and shrinkage).  

1.1 Problem Statement  

Nowadays, in urban and suburban areas, reinforced concrete is commonly used in the 

construction industry. Private buildings such as apartments, hotels, shopping malls, 

offices, and the like occupy large areas. Even though it emits greenhouse gasses and 

consumes more energy, material, and economy, its lifetime is limited to 50 years  (ES 

EN 1992-1-1 2004) under normal conditions.  

Design codes of reinforced concrete structures treat the exposure condition of 

reinforced concrete by only providing respective concrete cover. The concrete cover 

can delay the initiation of corrosion but does not completely control corrosion in the 

design life of the structure. Besides, creep and shrinkage are also other essential factors 

that reduce the bending stiffness and induce additional deflection of the structure. 

Therefore, environmental factors such as aggressive chemicals, temperature, and 

relative humidity in the phases of analysis, design, construction, and operation should 

be considered to reduce the uncertainty of the parameters. 

To carry out this study, a particular reinforced concrete beam member has been 

designed and detailed as per Eurocode, and its time-dependent performance analysis is 

carried out to obtain the member's demand and capacity. These variations of cross-

section, the strength of materials, the diameter of reinforcing steel, and load with time 

possess fuzzy uncertainty that leads to conduct the possibilistic analysis. To estimate 

the safety of a particular structure, the probability analysis is not worth to generalize 

the properties of a small sample size; thus, it is important to adopt a time-dependent 

possibility analysis to measure the particularity of the sample in order to recommend 

the appropriate maintenance strategy to avoid premature failure of the structure.  
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1.2  Research Objectives  

The main objective of the study is to investigate the time-dependent failure possibility 

analysis of the reinforced concrete structures. To achieve this aim, the following 

specific objectives were set: 

 To design an optimum reinforced concrete beam based on Eurocode 

 To perform the time-dependent performance level of both ultimate and 

serviceability limit states 

 To generate fuzzy membership functions of the input and output variables 

 To analyze the time-dependent failure possibility of both ultimate and 

serviceability limit states  

1.3  Scope and Limitations 

A reinforced concrete beam that is subjected to a uniformly distributed load, which 

induces flexure and shear, and thus develops deflection and cracks. The considered 

beam is subject to sustained load, environmental loads, which have greater uncertainty, 

i.e., creep and shrinkage, and corrosion. However, the corrosion initiation period of 

flexural and shear reinforcement is different, the same corrosion rate was used in this 

study for both mild and high yield stress steel. There is no regard for the torsional 

constraint (i.e. torsion, flexure-torsion, and shear-torsion). However, the findings 

obtained from empirical expressions from different experimental and analytical 

researches, from relevant literature, can lead to possible errors due to the real problem's 

environmental factors.  

Fuzzy uncertainty is employed to handle the ambiguity of variables. The degree 

of the uncertainty of materials performance, load intensity, action responses, and 

performance level is expressed by membership functions. Since membership function 

is established through the available data and expert’s experience which inhold 

uncertainty. Additionally, there is no clear guideline and consensus for choosing the 

type of membership function for a particular fuzzy variable. This uncertainty of 

membership function can be refined by considering n type  fuzzy, whose fuzzy 

variable is 1m  fuzzy membership function, but not considered in this research. 
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1.4 Significance of the Study 

The resistance of the structure decreases with time due to the degradation of material 

strength and sectional dimension, creep and shrinkage, and residual stresses with time. 

The time-dependent failure possibility analysis is used to estimate failure possibility, 

complementary of reliability, from the initial function of the system for the desired 

purpose throughout its design life. The performance of time-dependent failure 

possibility analysis is important to plan maintenance strategies to ensure the 

performance of the structure, resolve premature failure, and the consequence of failure. 

This research is used to familiarize the possibility analysis of sample particularity 

instead of probability analysis because civil engineering structures are not identical in 

shape, size, material properties, analysis, and design methods, detailing, and 

construction techniques. Furthermore, the possibility safety index f  is used to employ 

the design optimization and evaluate the reliability of the structures in which the less 

f  more the structure reliable. Besides, the possibility-analysis can be extended to all 

civil engineering structures. 

1.5 Overview of the Thesis   

In this study, time-dependent failure possibility analysis of the reinforced concrete 

structures. Analystical study has been carried out for evaluating time-variant 

performance of the structure and finally time-dependent failure possibility analysis.  

The first chapter introduces the background, problem statement, objectives, 

scope and limitation of the study, and its significance. The second chapter presents a 

review of literature on reinforced concrete, design optimization, factors accelerating the 

failure possibility of concrete structures, uncertainties of design parameters, fuzziness 

and fuzzy set theory, fuzzy sets and its membership function, standard operation fuzzy 

set, reliability of structure and methods used for reliability analysis. 

The third chapter demonstrates the design optimization of the RC beam, time-

dependent performance analysis, deterioration of input variables due to corrosion, 

identification and estimation of possible failure modes, generation of membership 

functions, and failure possibility analysis. The fouth chapter discusses the optimal 

design of the RC beam used for the case study, general performance of structures, 
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evaluation of time-variant performance input variables, and the time-dependent safety 

and serviceability performance of the reinforced concrete structure. 

In fifth chapter, uncertainty of parameters, types of uncertainties, generation of 

membership function of fuzzy variables, uncertainty propagation, and a numerical 

approach for fuzzy uncertainty propagation, and application of fuzzy concepts in 

reinforced concrete structures were presented. The sixth chapter portrays the basic 

concepts of TDFP analysis, failure possibility index, and estimation of time-dependent 

failure possibility of the structure. The seventh chapter presents a summary, conclusion 

of the study, practical implication related to the study area ant the recommendation for 

further studies of the area. 
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CHAPTER 2  

LITERATURE REVIEW 

2.1  Introduction 

This chapter presents a review of literature on reinforced concrete, factors that 

accelerate the failure of concrete structures, and its design optimization. The review 

here mainly focuses on the reliability of structure and several methods employed to 

estimate the reliability of the structure. Besides, the sources and types of uncertainties 

in the structure that define the methods of reliability analysis are presented here. 

2.2  Reinforced Concrete 

The main objective of reinforced concrete design is to achieve a structural system or 

part of the structure that will result in a safe, serviceable, and economical solution. To 

achieve safety, serviceability, and economy criteria of structures, three design 

philosophies, working stress design method, ultimate strength design method, and limit 

state design method, had been adopted to consider uncertainty in loading pattern and 

materials strength. Among these limit state design method, in which both load and 

material uncertainties, and serviceability criteria are considered, is recommended to 

adopt in design codes (ES EN 1992-1-1 2004; IS 456 2000). Despite the availability of 

the constituents, economy, and easily molded to the desired shape, the properties of the 

concrete are complex compared to other construction materials, i.e., steel and timber. 

As a result, the uncertainty of the concrete structure requires more attention in analysis 

and design to ensure the reliability of the structure. 

2.3  Design optimization 

Design optimization is a design methodology using a mathematical formulation of a 

design problem to support the selection of the optimal design among many alternatives. 

Design optimization involves (Guerra and Kiousis 2006; Rahmanian et al. 2014; 

Ferreira et al. 2003; Lin and Frangopol 2002): variables that describe the design 

alternatives; objective(s) implies the selected functional combination of variables to be 

maximized or minimized; constraints that imply a combination of variables expressed 

as equalities or inequalities that must be satisfied for any acceptable design alternative, 
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and feasibility, i.e., values for the set of variables that satisfies all constraints and 

minimizes/maximizes objective. 

The commonly adopted practice in reinforced concrete structure design includes 

determining cross-sectional dimensions, materials property, and area of reinforcement 

that would meet the requirements proscribed by a given code of practice considering 

primarily strength, serviceability, and economy, as well as other imposed demands that 

result from the environment, and architectural requirements.  

The design optimization of the structure in the presence of the probabilistic 

uncertainty, probabilistic safety analysis methods are well developed and adopted by 

many investigators. Lin (1996) presented the reliability-based design optimization 

approach to the design of reinforced concrete girders for highway bridges. In the study, 

two optimization formulations were presented, i.e., the load and resistance design 

factors (LRFD) and the reliability approaches, in which both are based on their 

corresponding AASHTO format. Ferreira et al. (2003) carried out the optimization of 

the steel area and the steel localization in a T-beam under bending, analytically by 

applying the non-linear behavior of steel and concrete. Also developed alternative 

analytical expressions and delivered illustrative examples of design optimization. 

Ceranic (2018) investigated new approaches in the use of cost-efficient optimization 

and applied these to the multi-level design of skeletal systems. The study had shown 

that optimizing structural problems with a single load case does not give a realistic 

minimum cost of a structure and that frames consisting of multiple beam and column 

groups in general produce a more cost efficient design. 

Furthermore, the validity of structural optimization had been established, 

dependent directly on the balance between the mathematical model of the objective 

function and the design constraints, the algorithm that is applied, and the physical 

reality of the structural problem and its practical application. Tliouine and Fedghouche 

(2010) developed an analytical approach for design optimization of reinforced concrete 

T-beams under ultimate loads based on a minimum cost criterion and a reduced number 

of design variables. Milajić et al. (2013) reviewed the investigations being conducted 

20 years back and summarized as a great number of optimization methods in civil 

engineering have not found implementation in practice, mainly because the problems 
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were treated only from a mathematical point of view, disregarding applicability of 

obtained solutions in reality.  

Other investigators developed and applied computer programming for structural 

design optimization. Guerra and Kiousis (2006) presented optimal sizing and 

reinforcing for beam and column members in multi-bay and multi-story reinforced 

concrete structures incorporate optimal stiffness correlation among all structural 

members and results in cost savings over typical-practice design solutions using 

sequential quadratic programming algorithm (SQPA).  

Merta et al. (2010) formulated optimization as finding the minimum self-

manufacturing cost of the beam subjected to the structural analysis constraints based on 

Eurocode provisions for the conditions of both the ultimate and the serviceability limit 

states by the nonlinear programming approach. Babiker et al. (2012) presented the cost 

optimization of RC beams designed according to the requirements of the ACI 318-08 

code using the artificial neural networks (ANN) model. They compared the results 

obtained from the proposed model with the results obtained by using the classical 

optimization model, developed in the Excel software spreadsheet, and concluded that 

the two modes are in good agreement. Kulkarni and Bhusare (2016) presented the 

design optimization of multi-story reinforced concrete structures using structural 

analysis and design software and optimization algorithm.  

2.4  Factors accelerating the failure possibility of concrete structures 

Concrete is one of the composite materials normally used at every stage of construction 

and it may suffer damages (ES EN 1992-1-1 2004; Bakri and Mydin 2014; MacGregor 

et al. 1997) during its service life due to several reasons, i.e., poor workmanship, 

inappropriate design, structural overloading, chemical reaction, creep and shrinkage, 

the permeability of concrete, corrosion of reinforcement, poor maintenance, and 

foundation settlement. These factors are generally classified as (a) design aspects 

include the design criteria, accuracy of analytical and design equations, and design 

errors, (b) construction aspects include the natural variation of strength parameters and 

construction errors, (c) environment aspects include aggressive chemicals which lead 

to corrosion and ambient humidity and temperature which cause creep and shrinkage, 

(d) utilization aspects include the natural variations of service loads, utilization errors 
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and the man-made hazards, and (e) reliability aspects include the statistical and model 

uncertainties (Arafah 2000).  

However, it may not be possible to eliminate whole defects (Kumar et al. 2001; 

Wilmot 2006; Ho and Rahman 2004; Bremner et al. 2001; Bakri and Mydin 2014; 

Liubin et al. 2011; Mohamed et al. 2018; Qiao et al. 2014) the remedial measures for 

minimizing the defects of concrete structures can be used. These are adopting 

appropriate design, construction, utilization, and maintenance; improving quality of 

concrete by adopting appropriate constituents selection, mix design, compaction, and 

curing; preventing corrosion of reinforcement by increasing the depth of concrete 

cover, coating rebars, chloride extraction, waterproofing and patch repair, and 

upgrading supporting ground to control foundation settlement. 

 Creep and Shrinkage 

Creep of concrete is defined as plastic deformation under sustained load or stress 

whereas, shrinkage of concrete is the property of diminishing in the volume of concrete 

during the process of hardening. The effect of creep and shrinkage of the concrete 

depends on the ambient temperature and humidity, the dimensions of the element, and 

the composition of the concrete. Creep is also influenced by the maturity of the concrete 

when the load is first applied and depends on the duration and magnitude of the loading 

(ES EN 1992-1-1 2004). Creep and shrinkage affect the bending stiffness and 

significantly increase the deflection of the reinforced concrete structures (Lluka et al. 

2015; Haldar et al. 2010). The effects of creep and shrinkage increase with the decrease 

of relative humidity and increase of temperature and vice versa (Li and He 2018; Lluka 

et al. 2015). To prevent the effect of the creep and shrinkage, it must account for 

sustained loading for long-term effects while designing (Haldar et al. 2010; Madsen 

and Bazant 1983) and cyclic wetting and drying is recommended during construction 

(Li and He 2018).  

 Corrosion 

Many researchers investigated the effects of aggressive environments on reinforced 

concrete structures. Some of them are: Otieno et al. (2010 and 2016) investigated the 

corrosion rate prediction model by incorporating the effect of crack width, concrete 
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cover depth, and concrete quality. Besides, Yalciner et al. (2012) investigated the 

effects of corrosion on a 25-year-old reinforced concrete building’s performance and 

found that corrosion reduces the bond strength and the service life, affects the safety 

and economy of the built structure.  As per Almusallam (2001) investigation, corrosion 

of embedded reinforcement and the consequent cracking of concrete due to the 

diffusion of chloride ions to the reinforcement bar surface is significantly predominant 

than that due to carbonation. The effect of reinforcement steel corrosion has been 

investigated in many studies and founded that: reduce load carrying capacity; loss of 

diameter or effective cross-sectional area; significantly reduce bond strength;  increase 

crack width, strongly reduced elongation of reinforcement steel (Almusallam 2001; 

Stanish 1997; Xia et al. 2013; Zandi Hanjari et al. 2008; Loreto et al. 2011; Adukpo et 

al. 2013; Zhou et al. 2014; Baskaran and Gopinath 2011), and induces internal pressure 

(hoop tension), which is due to increasing corrosion products with time, that easily 

exceeds the limited tensile strength of concrete (Allam et al. 1994; François et al. 2013; 

Cabrera 1996; Li 2004; Hagino et al. 2013) that leads to cracking and spalling of 

concrete cover, and hence reduce the service life of the structure. 

Before corrosion takes place, the concrete structure is only subjected to the 

applied load, creep, and shrinkage. To prevent the effect of an aggressive environment, 

design codes (ES EN 1992-1-1 2004; IS 456 2000) provided respective concrete cover 

based on the exposure condition of the structural element. The concrete cover may 

delay the corrosion initiation time but does not fully control the corrosion. To consider 

the effect of corrosion on the serviceability of the structure the corrosion initiation time 

is a critical factor. The corrosion initiation time depends on the concrete cover, chloride 

diffusion coefficient, chloride concentration percentage to the weight of concrete, 

concrete strength, and the expression to determine the corrosion initiation time was 

derived by (Thoft-Christensen et al. 1996) using Fick’s law of diffusion. The corrosion 

initiation time iT  can be obtained from the determining parameters C , 0C  and cD  

given in expression (Thoft-Christensen et al. 1996) as:  
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where C  is the concrete cover thickness in (cm); cD is the chloride diffusion coefficient 

in (cm2/year); 0C  (% weight of concrete) is the equilibrium chloride concentration at 

the concrete surface, and crC (% weight of concrete) is the critical chloride concentration 

The time-variant resistance of the concrete section is then determined by 

considering the deterioration of the reinforcing steel diameter about the corrosion 

initiation time. The reduction of the steel diameter is determined from the expression 

(Val et al. 1998): 
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where,  iD t  is the thi  diameter of the reinforcing bars at a time t ; 
iD  is the initial 

diameter of the thi  bar before corrosion at the time t ; n is the number of the bars, and 

corrr  is the rate of corrosion that is given by 0.0232 corri  in which 21 μA/cm  is equal to 

11.6 μm/year   

Table 2.1: Ranges of corrosion rate and its significance level (Val et al. 1998)  

Current density 
2 (μA/cm )corri  

Corrosion rate 

 (μm/year)corrr  
Corrosion level 

< 0.1 < 0.026912 Negligible 

0.1-0.5 0.0269-0.13456 Low 

0.5-1.0 0.13456-0.26912 Moderate 

> 1.0 > 0.26912 High 

 

Corrosion of embedded reinforcement not only reduces the bar diameter but also 

the strength of concrete and yield stress of steel with time. The reduction of concrete 

strength with time is given by the expression (Kliukas et al. 2015): 

    2cc cc ckf t k t f  (2.3) 

in which 1 0.1cc G EM M   ;    2 0.85 1.7k t t    and  
 s

c

A t
t

A
  , where GM

is the bending moment caused by permanent force; EM  is bending moment caused by 

permanent and transient loads, and  t is time-dependent reinforcement ratio. 
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Similarly, the yield stress of the embedded reinforcement bars reduces according to the law 

proposed by (Du et al. 2005).  

  
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where yof  is the initial yield stress of non-corroded reinforcement steel; y  is the coefficient 

and its value is taken as 0.005 which is recommended by (Du et al. 2005) and adopted by 

(Marano et al. 2010);  pitA t  is the net cross-sectional area of a corroded bar at a time it T  

2.5  Uncertainties of Design Parameters 

Civil engineering structures like buildings, bridges, transmission towers, and the like 

are complex and usually large. Hence, there will be almost no chance to test the 

prototype rather than checking specific criteria on uncertain software models and 

limited numerical methods which are based on incomplete human knowledge to solve 

a real problem. Due to the presence of these uncertainties of materials property, loads 

on the structure during its life, structural idealization model, limitation of numerical 

methods, and so on, the absolute safety of a structure is impossible (Ranganathan 1999). 

For instance, to determine the best frame design for a building, one may be constrained 

by design codes as well as by the design specifications such as functional, architectural, 

and structural behavior requirements. Once these constraints are satisfied, the 

remaining problem may be to find and design that requires the least construction 

material. 

Depending on the nature of the structure, environmental conditions, and applied 

actions, some types of uncertainties may become critical. The following types of 

uncertainties can usually be identified (Milan Holicky 2009): natural randomness of 

actions, materials properties, and geometric data; statistical uncertainties due to limited 

available data; uncertainties of theoretical models owing to the simplification of actual 

conditions; vagueness due to inaccurate definitions of performance requirements; gross 

errors in design, execution, and operation of the structure; and lack of knowledge of the 

behavior of new materials in real conditions. 

Most of the uncertainties are associated with material properties, geometry, 

loads, and models due to a lack of knowledge and environmental factors (Matos 2007). 
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For the system analysis and design, the uncertainties are classified, sorted, analyzed, 

and used to predict system parameters and performances. The sources of uncertainties 

are (1) physical randomness, (2) statistical uncertainty, (3) model uncertainty, and (4) 

gross errors. Despite the significant success of the probabilistic methods in structural 

reliability assessment due to randomness, many investigators (Kai-Yuan et al. 1991a; 

Kai-Yuan et al. 1993; Szeliga 2004; Li et al. 2015; Tang et al. 2014; Naderpour and 

Alavi 2015; Fan et al. 2019) have indicated that there are other types of uncertainties, 

i.e., fuzziness.  

2.6 Fuzziness and Fuzzy set theory 

Fuzziness means an expression having an uncertain extensional denotation that has an 

ambiguous boundary (Zhang 1998) and also arises from inconsistency or error. 

Fuzziness can be applied in civil engineering disciplines with linguistic variables, 

words or sentences in a natural or artificial language as (Zimmermann 2011) very cold, 

cold, warm, hot and very hot for temperature; low, moderate and high for corrosion 

rate; under-reinforced, balanced and over-reinforced for reinforced concrete section, 

and no damage, slight damage, moderate damage, severe damage and destructive 

damage for damage assessment of earthquake effect on structures with unclear 

boundaries.  

Fuzzy set theory is a suitable tool used for professional decision-making in 

structural engineering specializations such as risk assessment, reliability analysis, 

design optimization, and performance evaluation of the structures. These decisions are 

expressed in linguistic terms (e.g., “the structure is slightly damaged” or “the quality 

control is not adequate”) with a vagueness that avoids the usual conventional set 

representation. For this reason, a fuzziness can be encountered to answer unclear 'how' 

questions. Each form of query is intended for the reference sense of the expression and 

has no specific boundary in which to address the question (Zhang 1998).  

The human reasoning to counteract these complexities, uncertainties, 

imprecision, and vagueness of data in professional judgment lead the main motivation 

to use fuzzy concepts. To handle this problem Zadeh (1965) introduced a fuzzy set 

theory, which holds a continuum of the degree of membership to model the vagueness. 

Many investigators proved that (Biondini et al. 2004; Fan et al. 2019; Tang et al. 2014; 
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Bagheri et al. 2017; Sarkar et al. 2016; Yeh and Hsu 1990) the fuzzy theory is a suitable 

tool and effectively well-designed for the problems in structural engineering to perform 

the reliability analysis and optimal design solution. Fuzzy concepts resemble human 

reasoning through providing a simple way to handle real problems due to their 

simplicity and versatility, being easy to handle problems with imprecise and incomplete 

data, being able to handle complexity and nonlinearity, covering a broader variety of 

operational conditions, and being more readily adaptable in terms of natural or 

linguistic words. 

 Fuzzy Sets  

The fuzzy set concept was introduced by its pioneer Zadeh (1965) to represent variables 

with imprecise or ambiguous boundaries.  Therefore, the fuzzy set theory is used to 

handle ambiguity, vagueness, imprecision, and insufficient level of expert knowledge 

on real-life phenomena as a source of uncertainty. 

In ordinary set theory (Mazeika et al. 2007), the element that fulfills some 

defined conditions by a set is only considered as members of this set. In this case, the 

degree of membership is binary, i.e. either zero or one. Therefore, in ordinary set theory, 

there are well-defined boundaries to identify an object that belongs to a set or does not. 

On the contrary, the fuzzy set theory directly addresses the limitation of a crisp set by 

letting membership degree to which extent a variable belongs to a set. A fuzzy set is 

prescribed by vague or ambiguous properties; thus, its boundaries are ambiguously 

specified. 

According to (Holicky and Schneider 2002) notion, the fuzzy set is usually 

represented as a set of ordered pairs of elements; each presents the element together 

with its membership value. A fuzzy set is represented as “ A ” whereas a crisp set is 

represented as “ A ”. The fuzzy sets can be represented mathematically for finite and 

infinite elements. The elements of the discrete fuzzy set A  can be represented with its 

membership function as: 

    ,
A

A x x   or   
1

n

i iA
i

A x x


  (2.5a) 

For elements of the continuous fuzzy set as: 
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  i iA
A x x   (2.5b) 

where, 
A

  is the membership function or grade of membership of x  in A  that maps 

X  to the membership space, and in the expressions, the symbol ‘ ’ or ‘  ’ implies 

not addition or integration, respectively but union. 

 Membership function 

In the fuzzy set theory, a fuzzy set A  in the universe of discourse X  is characterized 

by a characteristic function ( )
A

x  (Zadeh 1965), which associates with each point in 

the universe of discourse X  a real number in the interval [0, 1], with the value of ( )
A

x   

at x  representing the degree of membership of x  in A  is called membership function. 

The universe of discourse X  in concrete cases has to be chosen according to a real 

problem in a specific situation. The membership function indicates the transition of an 

object from not belonging to belonging is gradual, which helps us to handle 

impreciseness and vagueness of variables. Mathematically, the membership function 

can be expressed by: 

 0 ( ) 1    for  
( )=

0                       for x A
                                                    

A
A

x x A
x




  
  (2.6) 

in which ‘0’ means complete exclusion from the set A , "0 ( ) 1"
A

x   means partial 

inclusion from the set A  and ‘1’ means absolute inclusion in the set A .  

Membership functions are the crucial component of fuzzy set theory, i.e., 

fuzziness in a fuzzy set is determined by its membership function. Accordingly, the 

shapes of membership functions are a useful tool for a particular problem since they 

affect a fuzzy inference system. It was introduced (Zadeh 1965; Zadeh 1978) and 

initially widely accepted as membership functions are the subjective and based context 

of the events, latter from measurement view, it is the connection of both subjective and 

objective to make a sound decision. There are numerous types of membership functions 

such as triangular, trapezoidal, Gaussian, singleton, bell curves, sigmoidal functions, 

etc. However, the only condition a membership function must satisfy is that it must 

vary between zero and one. To make the best choice, one needs a lot of “experience” 
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with the given situation. Due to its simplicity, the frequently applied membership 

function is the triangular membership function, which is formed using straight lines. 

 Fuzzy Numbers  

The fuzzy number is expressed as a fuzzy set defining a fuzzy interval in the real number 

 . Since the boundary of a fuzzy interval is ambiguous, the interval is also a fuzzy set. 

Generally, a fuzzy interval is represented by two endpoints (0)

1x

 and (0)

3x , and a peak 

point 
2

(1)x  as shown in Figure 1. Fuzzy numbers are a special case of fuzzy sets that have 

to satisfy (Lee 2004) all the conditions: convex fuzzy set; normalized fuzzy set; its 

membership function is piecewise continuous and it’s defined in the real number. 

Mathematically, fuzzy numbers are expressed as:
 

        , : ; 0,1X XX x x x x     (2.7) 

where X  is the fuzzy number;  X x  is the membership value of the element x  to 

the fuzzy number X , and   is the set of real numbers 

The condition of normalization in the fuzzy set implies that the maximum membership 

value is 1.  

 ,            1
A

x x    

The convex condition of a fuzzy set is that the line by cut   is continuous and  -cut 

interval satisfies the following relation. 

 
   

1 3,A x x
 


 
 

 (2.8) 

          ' '

1 1 3 3' ,x x x x
   

    
 

The convex fuzzy set condition may also be written as (Lee 2004)

   '' A A     .  If all the  -cut sets are convex, the fuzzy set with these  -

cut sets is convex (see Figure 1). In other words, if a relation 

      1 2min ,
A A A

x x x       (2.9) 

where    1 2 1 21 ,   , , 0,1nx x x x x        holds, the fuzzy set A  is convex. A 

fuzzy variable X  with the membership function  X x is strongly convex if and only if 

the event   | Xx x  is strongly convex  0,1  . 
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 Standard Operation Fuzzy Set  

Zadeh (1965) induced the combination of membership functions and their several 

properties involving fuzzy sets that are noticeable extensions of the corresponding 

definitions for conventional sets. The membership function is a crucial part of a fuzzy 

set. It is, therefore, operations with fuzzy sets are defined through their membership 

functions.  The most widely used operations are called standard fuzzy set operations 

such as complements, intersections, and union. 

Complement: The  complement of a fuzzy set A  is denoted by 'A  and is defined by   

    
'

1 ,
A A

x x x X     (2.10) 

Union: The union of two fuzzy sets A  and B  with respective membership functions 

 
A

x  and   
B

x  is a fuzzy set C , written as        C A B , whose membership  

function  is  related  to  those  of A   and  B   by  

       Max , ,
C A B

x x x x X     (2.11) 

Intersection: The intersection of two fuzzy sets A  and B  with respective membership 

functions  
A

x  and   
B

x  is a fuzzy set C , written as         C A B , whose 

membership function is related to those of A   and  B   by  

       Min , ,
C A B

x x x x X     (2.12) 

 

1 

 

 

                                               

 

 

 

Figure 2.1: Alpha-cut fuzzy number   (source: K. H. Lee 2004) 
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 Operation of Fuzzy Interval and α -Cut Interval 

The  -cut interval of fuzzy numbers is a crisp set and the operation of the fuzzy 

numbers can be generalized from that of a crisp interval. Suppose 

   1 3 1 3, , , ,A x x B y y   
1 3 1 3, , ,x x y y   that A  and B  as numbers are articulated as 

the fuzzy interval, and the main operations of these intervals are (Lee 2004) addition 

(+) and subtraction (-), in which the shape of membership function will not be changed; 

multiplication ( ) and division (/), in which the shape of membership function will be 

changed and inverse interval,    
1

1 3 1 3 1 3, 1/ 1/ ,1/ 1/x x x x x x

    excluding the case 

1 0x   or 3 0x  .  

The  -cut set is the crisp set of the elements whose degree of membership is 

greater than or equal to  , (Lee 2004; Zimmermann 2011) i.e., 

    , : ; 0,1XX x x x       , and   , XX x x     is strong  -cut set in 

which X is the crisp set at the  -level set and  is the credibility level. Note that the 

fuzzy operations such as addition, subtraction, multiplication, division, cross product, 

disjunction, conjunction, implication, relation, and composition are an extension of 

standard fuzzy set operations (Lee 2004).  

2.7  Reliability of Structure 

The structural design aims to provide the optimum level of safety and serviceability 

during its design life. However, design engineers try to provide the optimum design it 

is inevitable to avoid uncertainties of design parameters that are associated with 

different factors that lead to over or under-design solutions. In practice, the distribution 

of either aleatory or epistemic uncertainties of variables may not be appropriately 

represented (Balu and Rao 2012). Eventually, factitious assumptions for the distribution 

of the variable uncertainties will lead to inaccurate results. 

Reliability is defined as the probability that a structure or system under 

consideration can perform the intended function under specified service conditions over 

a given time (Ranganathan 1999; Lemaire 2009). Conversely, the failure probability is 

the probability that a structure does not perform satisfactorily within a given time and 

stated conditions. Contrary to reliability, failure possibility is the possibility of 
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performance less than zero under fuzzy uncertainty (Fan et al. 2019). These definitions 

emphasis five important elements, such as (i) because of aleatory uncertainties or 

epistemic uncertainties reliability is a probability or possibility, respectively; (ii) 

intended function indicates the reliable structure perform a certain function(s) 

satisfactorily; (iii) time is the design life of a structure, and (iv) service condition 

signifies the actions or stresses that may be imposed on the structure.   

 Methods of Reliability Analysis 

In the real structures, both fuzzy uncertainty and random uncertainty widely exist. Thus, 

it is necessary to develop reliability analysis methods for guaranteeing the safe service 

of the designed structure under the whole life based on the existing type of uncertainty. 

To handle these uncertainties several investigators developed and illustrated different 

methods of structural reliability analysis considering probability theory (Dolinski 1982; 

Madsen 1985; Du and Sudjianto 2008; Barbato et al. 2008; Zhang and Du 2010). The 

design of the structure in the presence of the aleatory uncertainty is common practice, 

and probabilistic reliability analysis methods are well developed and adopted by several 

investigators. Lu et al. (1994) performed the reliability analysis is using first-order 

reliability methods (FORM) in which the formulation of the limit-state functions is 

consistent with the underlying design criteria. Reliability indices for various failure 

modes are compared and a system reliability analysis is performed to include all failure 

modes of the reinforced concrete beam. Val et al. (1998) elaborated several aspects of 

a method for reliability assessment of the RC slab bridges with corroded reinforcement 

using the FORM considering probabilistic models for design variables.  

Abdelouafi et al. (2015) evaluated the reliability analysis of reinforced concrete 

structures for seismic performance-based probability theory. The study found that the 

reliability results are sensitive to the reliability analysis method used in that importance 

sampling method (ISM) is recommended over FORM because the latter overestimates 

the probability of failure. Pantoja et al. (2010) calculated the reliability index and 

probability of failure modes, considering both the safety and ductile behavior of the 

strut-and-tie model using Monte Carlo simulation (MCS). Mori and Ellingwood (1993) 

presented a method for evaluating the time-dependent reliability of a structural system 

subjected to stochastic loads using MCS and adaptive importance sampling (AIS) by 
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taking account of the structural deterioration due to environmental stressors. Found that 

unlike systems evaluated by simple MCSs, the accuracy of the failure probability 

evaluated by adaptive importance sampling is relatively insensitive to the magnitude of 

the probability.  

Stewart and Rosowsky (1998) developed a structural deterioration reliability 

model due to corrosion to calculate probabilities of structural failure for a typical 

reinforced concrete continuous slab bridge. Bhargava et al. (2011b) addressed time-

dependent reliability analyses of RC beams affected by reinforcement corrosion using 

the MCS. In the study, initially, the predictive models are presented for the quantitative 

assessment of time-dependent damages in RC beams recognized as a loss of mass and 

cross-sectional area of reinforcing bar, loss of concrete section owing to the peeling of 

cover concrete, and loss of bond between corroded reinforcement and surrounding 

cracked concrete. The time-dependent reliability analysis was also developed (Hu and 

Du 2013) by a more accurate method that relaxes the assumption by using joint 

upcrossing rates. The method extends the existing joint upcrossing rate method to 

general limit-state functions with both random variables and stochastic processes 

employing FORM. Wang et al. (2015) presented the evaluation of the time-dependent 

reliability for dynamic mechanics with insufficient time-varying uncertainty 

information using a non-probabilistic convex process model.  

Dealing with uncertainties in human knowledge is a difficult task within the 

probabilistic framework (Sexsmith 1999). The fuzzy concept has been adopted to 

overcome drawbacks with uncertainties in human knowledge and design parameters. 

The conventional reliability theory is based on the system alternates between two states, 

i.e., functioning or failed, and the system behavior is fully characterized in the context 

of probability measure assumptions. On the contrary, (Kai-Yuan et al. 1993; Kai-Yuan 

et al. 1991b; Kai-Yuan et al. 1991a; Kai-Yuan et al. 1991c; Kai-Yuan et al. 1991; Kai-

Yuan et al. 1995) were the pioneers to introduce the possibility and fuzzy-state 

assumptions to replace the probability and binary-state assumptions. Based on this 

direction, probability and fuzzy-state assumptions reliability theory, possibility and 

binary-state assumptions reliability theory, and possibility and fuzzy-state assumptions 

reliability theory were established.  
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Several investigators conducted comparative studies between probability theory 

with possibility theory using probability theory with fuzzy set theory and found (Kai-

Yuan et al. 1991a; Cremona and Gao 1997; Nikolaidis et al. 1998; Nikolaidis et al. 

2003; Agarwal and Nayal 2015) that: Possibility can be less conservative than 

probability in risk assessment with many failure modes; In case of small sample size, 

possibility measure is preferable to characterize the sample particularly in place of 

probability measures, which measure for sample generality; In the axioms for the union 

of disjoint events, the probability of the union is the sum of the probabilities of these 

events, whereas the possibility is equal to the largest possibility; Value of each 

probability distribution is required to add to 1, while for possibility distributions the 

largest values are required to be 1; Possibility of failure is exact in the sense that no 

approximation is required, whereas as in probabilistic approach.  

Investigators have further expanded their studies along with these directions. 

Utkin et al. (1995) investigated the reliability analysis of a general system. Cheng and 

Mon (1993) conducted a fuzzy system reliability analysis using confidence intervals. 

Furuta (1995) summarized fuzzy logic and its application to reliability analysis. De 

Cooman (1996) used the binary-state theory to model possibilistic uncertainty to 

conduct reliability. Cremona and Gao (1997) constructed a possibilistic alternative to 

the probabilistic one to provide uncertainty modeling and possibility distribution. 

Dodagoudar and Venkatachalam (2000) presented a possibilistic approach for the 

stability analysis of slopes incorporating fuzzy uncertainty. MoÈller et al. (2000) 

developed and formulated a general method for fuzzy structural analysis based on the 

fuzzy set theory in terms of level  optimization with the application of a modified 

evolution strategy. Further described coupling between level  optimization and the 

deterministic fundamental solution. Savoia (2002) introduced fuzzy numbers to 

structural reliability analysis and further extended it to stability analysis. Balu and Rao 

(2011) presented a practical approach based on high dimensional model representation 

(HDMR) for analyzing the response of structures with fuzzy parameters by integrating 

finite element modeling, HDMR based response surface generation, and explicit fuzzy 

analysis procedures. The uncertainties in the material, geometric, loading, and 

structural parameters represented using fuzzy concepts. Liu and Liu (2003) developed 

a numerical algorithm to analyze the fuzzy reliability of mechanical structures. Marano 
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and Quaranta (2010) formulated Cornell fuzzy reliability index for structural reliability 

analysis, and proved it with illustrative examples.  

Balu and Rao (2014) presented uncertainty analysis for estimating the 

possibility distribution of structural reliability in the presence of mixed uncertain 

variables i.e., random and fuzzy uncertainties. The proposed method involves high 

dimensional model representation for the approximation to limit state function, 

transformation technique to obtain the contribution of the fuzzy variables to the 

convolution integral, and fast Fourier transforms for solving the convolution integral. 

Others also investigated the possibilistic safety model of structures with fuzzy variables 

and also proposed a target performance-based design approach (TPBDA), which is a 

double-loop one, to reduce the computation cost of a triple-loop nested problem of 

possibilistic safety index-based design optimization (PSIBDO) by the sequential 

quadratic programming (SQP) algorithm (Tang et al. 2014; Zhangchun and Zhenzhou 

2014). 

The time-dependent failure possibility (TDFP) to measure the safety degree of 

the structure under the fuzzy uncertainty in a given time interval as, (Fan et al. 2019) 

the possibility of the performance less than zero under the fuzzy uncertainty in the given 

time interval, is proposed based on the possibility theory of the safety measure. In the 

study, the TDFP model has been established to measure the safety degree for the 

structure under the fuzzy uncertainty over a given time interval. Based on the definition 

investigators also established a double-loop nested optimization method (DLOM) to 

compute the TDFP, but the computational cost of the DLOM is too high to solve the 

problems of practical engineering. Therefore, the efficient single-loop optimization 

method (SLOM) was established based on the extreme value transformation of the 

time-dependent performance function to compute TDFP.  

Summary  

The performance of the structure depends on the strength of materials, cross-sectional 

dimensions, and operating conditions in its design life.  Due to the presence of the 

uncertainties in material properties, loads on the structure during its life, structural 

idealization model, and limitation of numerical methods, the absolute safety of a 

structure is impossible.  
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There are many important factors, generally classified as design, construction, 

environment, and utilization that can significantly affect the reliability of reinforced 

concrete structures. Factors like design, construction, and utilization can be controlled 

by adopting proper design and construction techniques, and desired utilization in its 

design life, whereas the environmental factors are difficult to control.  

The corrosion of the bar induced by carbonation is uniform and had no obvious 

abrupt changes in geometry along the length of the bar. By contrast, the corrosion 

pattern of the bar induced by chloride aggression is somewhat abrupt changes in bar 

geometry (localized failure) and a great variation in cross-sectional area. 

However, uncertainty broadly classified as aleatory uncertainty and epistemic 

uncertainty that defines the method of reliability analysis, there are several sources of 

uncertainties. Many types of research carried out several investigations to estimate the 

reliability of structures using different methods like First-Order Reliability Methods, 

First Order Second Moment (FOSM), Mean-value First-order Second-moment Method 

(MVFOSM), Second-Order Reliability Method (SORM), Advanced First Order Second 

Moment (AFOSM), Response Surface Method (RSM), Importance Sampling Method, 

Monte Carlo simulation, etc., considering either random variables or fuzzy variables 

using probability theory. Probability theory is not worth to be used for a small sample 

size to generalize about the sample. However, the fuzzy set theory has been introduced 

some decades before, possibilistic theory analysis, which concerns sample particularity 

for small sample size, in structural engineering needs further investigations. 
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CHAPTER 3  

RESEARCH METHODOLOGY 

3.1 Introduction 

This chapter mainly describes the design of the rectangular RC beam to EC2, the effects 

of environmental factors, computation procedure of the degradation of input variables, 

and consequently, the performance of the structure, and failure possibility analysis to 

achieve the desired objectives. It also justifies the research approach adopted over the 

other relevant methods. 

3.2  Design Optimization of RC Beam 

The design of reinforced concrete is the art of structural analysis to wisely decide the 

size, shape, and quantity of steel, dimension of the section, the cover thickness, the 

fashion how to detail the rebars to bring out a skeleton of reinforcements, and the 

concrete mix as well. This is typically done to ensure safety against the intended 

purpose and take care of the environmental effects on the concrete taking into 

consideration the location and mitigation measures taken to prevent the same on the 

structure during the design stage. The reliable design of the concrete structure is 

attained by considering appropriate materials properties, maximum possible actions, 

adequate concrete cover, appropriate methods of analysis and design, determining 

design life, and control of deflection and crack widths in its design life. 

The design optimization was carried out by considering material properties and 

breadth of the beam as random variables, the total area of the reinforcement and 

effective depth of beam as design variables, and flexure, shear, long-term deflection, 

and crack were considered as design constraints based on EC2. Material properties were 

obtained from Eurocode, and site data has been collected from relevant sources for 

Addis Ababa, Ethiopia. 

3.3  Time-Dependent Performance Analysis 

The adequate reliability of the structure is the assured safety against the intended 

purpose in its design life. The reliability of the structure typically depends on the 

structural and mathematical models, material properties, design and construction 
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aspects, and the structure system. In design, construction and successful operation of 

the structure could be exposed to different uncertainties that precisely define the 

efficient method of reliability analysis. The sources of uncertainties can represent 

insufficient knowledge of expert level on structure modeling, analysis, design, and 

construction; environmental factors such as creep and shrinkage that progressively 

reduce the bending stiffness and increase action on the structure system, and corrosion 

that deteriorates the material properties and steel diameter; and inappropriate utilization 

that leads to surpass of maximum expected load on the structure.  

In this study, the three important environmental factors, i.e., creep, shrinkage, 

and corrosion, that degrade the performance of the concrete structures through 

deteriorating materials properties and the diameter of reinforcing steel, and increase 

action on the structure were considered. The time-variant creep coefficient and 

shrinkage strain model has been developed for the cross-section of the reinforced 

concrete beam considered in the case study and the ambient temperature and relative 

humidity of the considered site based on Eurocode 2 Appendix B. To account for the 

corrosion effect, the baseline values for parametric studies have been adopted from the 

relevant literature and presented in Chapter 5.    

 Identification and Estimation of Possible Failure Modes 

The performance evaluation of the structure needs the estimation of the capacity 

(resistance) and demand (action) of the structure, in which the structure to be safe the 

capacity should be greater than the demand of the structure. The concrete structure 

resistance deteriorates and the action increases with time due to corrosion, creep, and 

shrinkage. Corrosion deteriorates the structure resistance through deteriorating material 

properties and the diameter of reinforcement steel whereas, creep and shrinkage 

deteriorate the structure resistance by reducing the bending stiffness and increase the 

action through developing additional curvature with time. 

The structure system or part of the structure may fail due to the failure of one or 

more constraints. In general, failure occurs when the action S  exceeds the resistance R  

for ultimate limit state constraints, and the estimated maximum value exceeds the 

limiting value provided in the standard code for serviceability limit state. The reinforced 

concrete beam, which is subjected to concentric transverse load, resist the applied load 
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in terms of flexure and shear strength, i.e., ultimate limit state. As a result, these action 

effects cause deflection and crack, i.e., serviceability limit state, on the structural 

member in the critical sections.  

As a result of the deterioration of the material properties and the variation of 

force with time, the performance of the structure deteriorates with time. The time-

dependent performance of the structure can be obtained from Equation (3.1). 

      , , ,j i j i j iG X t R X t S X t   (3.1) 

where  ,G X t  is the performance of the structure with time;  ,R X t  is the resistance 

of the structure with time;  ,S X t  is the action on the structure with time; i  represents 

the input variables (i.e., material properties, section dimensions, loads, etc.), and j  

represents constraints of the structure (i.e., flexure, shear, deflection and crack width)  

3.4  Generation of Membership Functions 

The membership function is an appropriate mathematical description to make a 

subjective evaluation of different real problems. The fuzziness of variables is 

characterized by membership functions, which recognize the degree of belonging of the 

variable to the fuzzy set of study variables. A membership function (MF) is a curve that 

defines how each point in the input space is mapped to a membership value (or degree 

of membership) between 0 and 1. There are various types of membership functions, 

such as triangular, trapezoidal, Gaussian, bell curves, sigmoidal functions, singleton, 

etc.  

However, there is no specific rule and consensus to follow to generate 

membership, rather it depends on the expertise and the availability of data. The only 

condition a membership function must satisfy is that it must vary between 0 and 1. 

There are important steps to generate the membership function of fuzzy variables, such 

as (i) the identification of fuzzy variables; (ii) the determination of fuzzy interval (lower 

and upper limit); (iii) the selection of an appropriate type of membership function; (iv) 

the discretization of the degree of membership and the size of the variable to a 

reasonable figure; and (v) the generation of the membership function 

In this study, the material properties and steel diameter that deteriorate due to 

corrosion, the variation of load on the structure, and consequently the deterioration of 
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structural capacity with time are considered as fuzzy variables. To generate a fuzzy 

membership function, the heuristic method, which uses predefined shapes, is used for 

both input variables and output performance. Frequently used shapes of heuristic 

membership functions are piecewise linear functions and piecewise monotonic 

functions. In the case of piecewise monotonic functions, there is a smooth transition 

between the non-member and full-member regions (Medasani et al. 1998). The linear 

and piecewise linear membership functions give a reasonably smooth transition, easily 

handled by fuzzy operators, and easily implemented. The membership functions 

generated by the heuristic function have the following features (Dombi 1990): (i) all 

membership functions are continuous; (ii) all membership functions map an interval 

 , 0,1x x   
 

, and (iii) membership functions are either monotonically increasing or 

monotonically decreasing or both increasing and decreasing. Triangular and trapezoidal 

membership functions are generated by using this method. In this research, the 

triangular MF is employed because of its simplicity and frequently used in other studies.  

From the definition, fuzziness is the imprecision of study variables. Therefore, 

a small variation of the fuzzy input variables may significantly affect the output 

quantities. Thus, due attention is required while choosing the type of membership 

function. From a list of MFs, let us see the features of triangular, trapezoidal, and 

Gaussian membership functions. Mathematically, the functions of triangular, 

trapezoidal, and Gaussian membership are represented in equations (3.5a), (3.5b), and 

(3.5c), respectively. 
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where x  is the fuzzy variable within the fuzzy interval; a  is the lower bound of the 

fuzzy variable; c  is the upper bound of the fuzzy variable for triangular and Gaussian 

MF; d  is the upper bound of the fuzzy variable for triangular and trapezoidal MF, and 

m  is the nominal or mean value of the fuzzy variable, and   is the standard deviation 

                                                                                                       

 

 

 

 

  

From the features and numerical expression of the membership function 

described above, we can select the appropriate one for this study. Nevertheless, for 

trapezoidal MF there is a defined fuzzy interval, as shown in Figure 3.1(c) the degree 

of membership is unity for the interval [b, c]. The input variable's sensitivity depends 

on the nature of the problem and error tolerance. In the case of reinforced concrete, the 

desired constraints such as bending moment, shear force, deflection, and crack are 

significantly affected by a small variation of the input variable. As expressed in 

Equation 3.2(c), the generation of Gaussian MF requires the mean value, standard 

deviation, and fuzzy interval of the study variable. If the assumed standard deviation is 

applied, this leads to the variables being further uncertain. To get a mean value and 

standard deviation, therefore, a representative sample size is necessary. Hence, it is 

rational for the case study to employ a triangular MF that needs a fuzzy interval and 

nominal value of the study variable. 

3.5  Failure Possibility Analysis 

Civil engineering structures are quite complex and have different size, shape, system, 

and performance capacity. Therefore, the performance of each for its intended purpose 

depends on material properties, analysis and design accuracy, section dimensions, 

environmental factors, construction techniques, and loading conditions. Despite using 

uncertain software models and limited numerical methods there is almost no chance to 

test the prototype of the civil engineering structure to ensure its absolute reliability. 
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a) Triangular MF                          b) Trapezoidal MF                          c) Gaussian MF 

Figure 3.1: Features of membership functions 
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Hence, each structure needs its version of performance and reliability analysis to ensure 

whether the structure is safe or in a failure state.  

Based on the sample size and types of parameter uncertainty, the reliability 

analysis methods are classified as probability and possibility methods. The reliability 

analysis of the structure with random and fuzzy variables based on the probability 

theory is well developed. In probability theory, the fuzzy variables are converted to 

random variables based on their corresponding membership grade. However, it is 

possible to convert fuzzy variables to random variables, it is not worth using the 

probability theory, which requires a large sample size for sample generality. On the 

contrary, possibility theory is worthwhile to adopt the reliability analysis for small 

(even for a single sample) with fuzzy variables. Thus, the time-dependent failure 

possibility analysis of the reinforced concrete structure exposed to different 

environmental factors that deteriorate material properties, the diameter of the 

reinforcement bar, increase action on the structure and consequently deteriorate the 

performance of the structure that possesses fuzzy uncertainty of different input and 

output variables. This fuzziness of the section capacity leads to considering the 

possibility theory to accurately estimate the failure possibility of the structure. 

In this study, the failure possibility, complementary to the reliability, analysis is 

employed to estimate the reliability of concrete structure because a single structure 

member is considered and fuzziness of input and output variables. To evaluate the time-

dependent failure possibility analysis, the time-dependent performance and 

membership functions of the input variables and defined constraints were determined 

for the specified time interval [ , ]s et t t . In a specified time interval, the minimum 

performance of the structure governs the reliability of the structure. Thus, using the 

extreme value transformation method, 
 

 
,

, , [ , ]
s e

s e
t t t
Min G X t t t t


  and 
 

min
,G Y t

  used to 

estimate the time-dependent failure possibility of the concrete structure from the 

following expression (Fan et al. 2019).      
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The time-dependent failure possibility of the reinforced concrete structure is estimated 

using a numerical algorithm, presented in Chapter 6. The generalized methodology of 

this study is shown in Figure 3.2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2: Flow chart of research methodology 
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CHAPTER 4  

TIME-DEPENDENT PERFORMANCE OF CONCRETE STRUCTURES 

4.1  Introduction 

The performance of a structure can be assessed for its safety, serviceability, and 

economy criteria in design life to know whether the system is reliable. Despite the 

expectation of long service of civil engineering structures, the resistance deteriorates 

with time due to loads exceeding the expected design load and the various 

environmental factors that will occur within the design life. 

This chapter presents the conventional design optimization of the RC beam to 

Eurocode, the general performance of the structure for various resistance and actions. 

It predominantly portrays time-variant materials properties, the time-dependent 

performance of concrete structures of both safety and serviceability criteria.  

4.2 General Performance of Structures 

The structure performance can be evaluated based on its capacity-demand ratio. Let us 

take R  to be the resistance (capacity) (e.g., flexure, shear, axial, torsion, or combination 

of two or more) of the structure and S  be the demand (action) (e.g., dead loads, imposed 

loads, environmental loads, or combination of two or more) of the structure. In a real 

problem, both resistance and action may be a combination of random and fuzzy 

uncertain variables. Based on appropriate consideration of the uncertainty of variables 

and design methods to achieve reliable (i.e., capacity greater than demand) structure. 

The structure may fail by implementing poor design methods via insufficient 

knowledge, deterioration of constituent material strength along with design life. 

Suppose the space D  in a two-dimensional plane is a plot of capacity and demand. In 

reliability analysis, the space D  of the capacity-demand curve may divide into the 

failure and safe region shown in Figure 4.1. The mathematical expression of the 

performance function is the difference between the capacity  R X  and demand  S X

of the structure. 

      G X R X S X   (4.1) 
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Three critical safety states from Equation (4.1) of the performance of the 

structure are: when the performance  , 0G X t   falls in the failure state; the 

performance  , 0G X t   falls in the safe state, and the performance  , 0G X t   is the 

limit state. The degree of curve in Figure 4.1 depends on the type of loading, type of 

constraints (e.g., flexure, shear, axial load, deflection or crack), the shape of the 

structure, structural system (i.e., support condition), and so on.   

  

 

 

 

 

 

 

 

4.3 Time-Dependent Performance of RC Structure 

The design of a structure is to satisfy the intended purpose in its design life. However, 

the performance of the structure deteriorates with time due to operating conditions and 

environmental factors that deteriorate material properties and induce additional load 

with time. Properties of the material deteriorate over time shown in Table 4.1 results 

degradation in the performance of the structure. In general, the time-dependent 

performance of the structure obtained from the expression: 

    , ( , ) ,G X t R X t S X t   (4.2) 

where,  ,G X t  is the performance of the structure with time; ( , )R X t  is the resistance 

of the structure with time, and   ,S X t  is the action on the structure with time. The 

representation Equation (4.2) applies to all desired ultimate and serviceability limit state 

constraints. Thus, the failure of the structure is progressive and time-dependent. To 

explore the time-dependent failure possibility of the concrete structure the following 

case study has been employed through the procedures shown in Figure 3.2. 
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 Figure 4.1:  Shows limit state, safe and unsafe regions 
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A simply supported 6 m span reinforced concrete beam provided in the salt 

storage building in Addis Ababa, Ethiopia, is subjected to a permanent load of 12 kN/m

and an imposed load of 18 kN/m is considered. Addis Ababa, the capital of Ethiopia, 

lies at an elevation of 2355 m above mean sea level and is located at 
0 ' ''9 0148 N  

0 ' ''38 4224 E , where the average annual temperature and relative humidity of 
o15.9 C  

and 60.7 % , respectively. The average minimum temperature of consecutive three 

months (i.e., November, December, and January) is o7 C , which indicates below o7 C  

also exists that can meltdown the salt deposit.  

The core value of loading 1.35 1.5k kw g q   is equal to 43.20 kN/m  at the time 

0t  , whose design bending moment and shear force are 194.40 kNmEdM  and 

129.60 kNEdV  , respectively. The design of flexural reinforcement is carried out based 

on EC2 shown in Figure 4.2 using materials of concrete grade C25/30, steel grade 

460 MPa  for longitudinal reinforcement, cement type is class N and maximum size of 

aggregate, 25 mmad  . The design optimization of flexural reinforcement and the 

effective depth of the beam section has been maintained by Equation (4.3) constraint 

expressions. 

Objective: Mimimize dEdst yMA zf  and d  

Constraints:   

 0.87 0.652 0
st y

st yd Ed

ck

A f
A f d M

bf

 
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 
 (4.3a) 

 
310

Basic . 0
s

L L

d d
   (4.3b) 

 ,max0.3 0kw   (4.3c) 

 ,min 0.04st st cA A A  ; 300 500d   (4.3d) 

where: EdM  is the design bending moment;  ,b d  are breadth (300 mm is considered) 

and effective depth of the beam, respectively; L  is the effective span length of the 

beam, i.e., 6000 mm; the limiting deflection is span/250, i.e., lim = m6000 250 24 m

in EC2 (Clause 7.4.1 ); basic span/depth ratio and 
s  are provided in EC2 (clause 7.4.2 
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); and  ,minstA  is the minimum area of steel required in the section, i.e., 0.26 ctm ykf bd f

.  

Similarly, the design optimization of shear reinforcement of the beam section 

for a steel grade of links  250 MPa  is maintained by satisfying Equation (4.4). 

Objective: Mimimize 
swA  and s  

Constraints:  

 
,

0.9
0

sw ywd

Rd s

A df
s

V
   (4.4a) 

 
min maxs s s   (4.4b) 

where: ,Rd sV  is the design shear resisted by stirrups i.e., , ,Rd s Ed Rd cV V V  in which 
EdV  

is the design shear force due to applied load at d  distance from the face of support; 

,Rd cV is the shear resistance of the concrete section; 
swA  is the area of two-legged shear 

reinforcement; ywdf  is the design yield stress of the shear reinforcement; mins  is the 

minimum spacing shear reinforcement, i.e., (0.08 )sw yk ckA f b f ; maxs  is the maximum 

spacing of shear reinforcement which is equal to 0.75d . 

 

 

 

 

 

 

 

 

 Evaluation of Time-Variant Performance of Input Variables   

Concrete, reinforcing steel, and loads are key input variables in reinforced concrete 

structures. The material properties deteriorate over time, even under normal 

environmental conditions, due to creep, shrinkage, and cyclic loading. 
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Figure 4.2:  Detail of reinforced concrete beam section 
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4.3.1.1 Effects of Creep and Shrinkage 

The time-variant creep coefficient and shrinkage strain model have been developed for 

the concrete beam using empirical expressions provided in Eurocode 2  Annex B (ES 

EN 1992-1-1 2004). Input parameters considered for time-variant creep coefficient and 

shrinkage strain model were the cross-sectional area of concrete 20.15 mcA  , three 

parts of cross-section perimeter exposed to drying 1.3 mu  , age of concrete loading 

7 daysot  , the ambient temperature and relative humidity of Addis Ababa are 

15.9 oC  and 60.7 %RH  , respectively, the type of cement considered is  Class N , 

and the age of the concrete at the end of curing 7 daysst  .  The creep coefficient and 

shrinkage strain increase rapidly at an early stage and attain their maximum intensity 

slowly as shown in Figure 4.3.  The final creep coefficient and shrinkage strain at the 

infinite time are  0 15, 3. 9t    and   540.97, 10 ,cs st     respectively. The detail 

of the model is provided in Appendix A.   
  

 

 

4.3.1.2 Deterioration of Input Variables due to Corrosion  

Corrosion is a significant factor in a hostile environment, which adversely affects the 

material properties, diameter of steel reinforcement, and changes the color of the 

concrete. The corrosion initiation time is an important parameter to consider its effect 

on the structure's design life. To estimate the corrosion initiation time, parameters such 

as the chloride diffusion coefficient, chloride concentrations, and the concrete cover of 

the structure member are required. The baseline values of the corrosion parameters used 
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Figure 4.3: Variation of creep coefficient and shrinkage strain with time 
 

 

Figure 3.4: The variation of creep coefficient and shrinkage strain with time 
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for parametric studies proposed by Enright and Frangopol (1998) were: chloride 

diffusion coefficient 21.29 cm /yearcD  ; surface chloride concentration 0.10oC 

(percentage to the weight of concrete), and critical chloride concentration 0.04crC 

(percentage to the weight of concrete) and these parameters later adopted by different 

researchers (François et al. 2013; Kliukas et al. 2015; Chehade et al. 2018). The rate of 

corrosion is also an important parameter required to estimate the corrosion initiation 

time. The corrosion rate corrr  is obtained from the corrosion current density, 
corri  which 

is given by μA/cm2 (Enright and Frangopol 1998; Val et al. 1998) in which 1μA/cm2   

is equal to  11.6μm/year. In this research, a moderate corrosion rate is considered as the 

current density of 20.75 μA/cmcorri   that is 8.7 μm/yearcorri  . 

 0.0232corr corrr i  (4.5) 

 In addition to corrosion parameters, concrete cover, i.e., 5.8 cm  and 5 cm  for 

flexural and shear reinforcement, respectively, provided in Figure 4.2 is required to 

determine the corrosion initiation time. Thus, the corrosion initiation time from 

Equation (2.1) is 18.410th year and 13.368th year for flexural and shear reinforcement, 

respectively, using the MATLAB program. Thus, the time-variant diameter of the 

flexural reinforcement is determined using Equation (2.2) for various corrosion rates,  

 

Figure 4.4: Reduction of reinforcement bar diameter vs time for various corrosion rates 

and the reduction of steel diameter increases with increased corrosion rate as shown in 

Figure 4.4. 

A moderate corrosion current density of 20.75 /A cm  which is 8.7 m / year  

considered in this research. The deterioration of steel diameter, concrete strength, and 
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yield stress of steel due to corrosion are obtained by using Equation (2.2), (2.3), and 

(2.4), respectively, and results for the corrosion current density 20.75 A / cm  shown 

in Table 4.1.  

Table 4.1: Time-variant c/s area and yield stress of steel, strength and modulus of 

elasticity of concrete due to corrosion  
Time  

 year  
 iD t

 
(mm) 

 slA t
 

(mm2)
 

 ckf t    

 MPa
 

 cmE t    

 GPa  

 ylf t    

 MPa
 

 swA t
 

(mm2)
 

 ywf t    

 MPa  

0 22 1520.531 25 31 460 100.531 250 

5 22 1520.531 25 31 460 100.531 250 

10 22 1520.531 25 31 460 100.531 250 

15 22 1520.531 25 31 460 93.946 249.989 

20 21.679 1476.493 20.307 29.530 459.989 71.027 249.746 

25 20.670 1342.226 20.288 29.518 459.815 51.307 249.184 

30 19.661 1214.358 20.267 29.506 459.428 34.787 248.305 

35 18.651 1092.889 20.245 29.492 458.829 21.467 247.107 

40 17.642 977.820 20.222 29.479 458.015 11.346 245.590 

45 16.633 869.150 20.198 29.464 456.989 4.425 243.756 

50 15.624 766.880 20.172 29.449 455.750 0.703 241.603 

 Safety Performance Criteria 

The ultimate limit state (ULS) deals with the strength and stability of the structure under 

the maximum overload it is expected to carry. That implies that the system should not 

fail under any combination of anticipated maximum stress. The safety performance 

evaluation is an examination of the carrying capacity and the internal design force of 

the structure. A reinforced concrete beam may be subjected to bending, shear, torsional 

stress, or their combination in a lifetime. Bending stress is the critical stress in the 

design of a reinforced concrete member (Koteš et al. 2016) to decide the size of the 

section, area, and configuration of the steel reinforcement. Then, the member is 

designed for shear to ensure the safety against the shear stress (Koteš et al. 2015; ES 

EN 1992-1-1 2004; Mosley et al. 2012) in a whole lifetime because a shear failure is 

mostly sudden and brittle. 

A concrete structure performs its intended purpose satisfactorily over its design 

life against all anticipated stresses to achieve safety performance. The two essential 

safety criteria, such as flexure and shear, are explored by the time-varying parameters 

in this study. 
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4.3.2.1 Flexural Performance 

Adequate design loads, suitable material properties, corrosion, creep coefficient, and 

shrinkage strain are critical factors that need consideration for assessing the time-

dependent flexural resistance of the section. The flexural capacity of concrete structures 

degrades over time because of increased creep and shrinkage and degradation of the 

steel reinforcement area by corrosion shown in Table 4.1. The time-dependent flexural 

performance of the beam section estimated from the general expression: 

        ( ) , , , , ,... , , ,...i R s y ck a DL LLG X t M A f f d b t M w w sh t   (4.6) 

where,  ( )RM t is the ultimate bending moment capacity of the beam, and ( )aM t is the 

actual bending moment load at mid-span  

The resistance and action in the beam section vary with time shown in Equation 

(4.6). The time-variant flexural resistance of the RC beam section that considers the 

effect of corrosion in terms of material properties and area of steel reinforcement is 

from Equation (4.7). 

  
( ) ( )

0.87 ( ) ( ) 0.652
( )

s y

R s y

ck

A t f t
M t A t f t d

bf t

 
  

 
 (4.7) 

Creep affects the concrete property by reducing the modulus of elasticity of the concrete 

and consequently, the flexural rigidity of the member reduces. The effective time-

variant modulus of the elasticity of the concrete due to corrosion and creep is obtained 

from: 

       , 0/ 1 ,c ef cmE t E t t t   (4.8) 

 
0.3

,( )
( ) 22

10

cm
cm

f t
E t

 
  

 
  (4.9) 

where  cmE t  is the time-dependent elastic modulus of concrete in [GPa], and  0,t t  

is the time-variant creep coefficient 

In combination, creep and shrinkage induce additional curvature on the member, 

which also induces additional bending moment and shear force on the member (Mosley 

et al. 2012).  

 
   

 
,

,

c ef c

t sh

sh

E t I t
r

M t
  (4.10) 
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Hence, the flexural force induced by creep and shrinkage is time-dependent and can be 

obtained from the moment-curvature relationship as expressed in Equation (4.11). 

  
   ,

,

c ef c

sh

t sh

E t I t
M t

r
  (4.11) 

in which ,1 t csr  is the curvature from shrinkage and expressed as: 

      
,

1 1 1
1

sc sut sh

t t
r r r

 
   

     
   

 (4.12) 

where   is the coefficient given by  1 sr s   allowing for tension stiffening; 

  1
su

r t  and   1
sc

r t are the time-variant curvature of the uncracked and cracked 

section, respectively; sr s cr QpM M   ; 
sr  is the steel stress at first cracking; 

s is 

the steel stress of quasi-permanent service load;   is the coefficient takes into account 

duration of loading and which is 0.5 for sustained loads; crM is the crack moment of 

the concrete section, . ( )cr ctm u uM f I h x  ; QpM  is the moment of the quasi-permanent 

moment at the critical section 

Therefore, the time-variant bending moment (or action) of a simply supported 

reinforced concrete beam subject to uniformly distributed load and creep and shrinkage 

effect can be determined from: 

   
2

,, ,

,

( ) ( )( ( ))

8

c ef cd DL d LL

a

t sh

E t I tw w t L
M t

r


   (4.13) 

The curvature of both uncracked and cracked conditions of creep and shrinkage are 

estimated from the Equations (4.14) and (4.15), respectively (ES EN 1992-1-1 2004; 

Mosley et al. 2012). 

  
   . .1 cs e u

su u

t t S
t

r I

  
 

 
 (4.14) 

  
     . .1 cs e c

sc c

t t S t
t

r I

  
 

 
 (4.15) 

where ( )e t is the effective time-variant modular ratio given by   , (t)e s c efft E E  ; 
sE  

is the elastic modulus of steel reinforcement (200GPa); ( )cs t  is the time-variant 
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shrinkage strain; uI  and cI  are the second moment of area for an uncracked and cracked 

condition, respectively; ux  and cx  are the neutral axis for an uncracked and cracked 

condition, respectively; Su  and  Sc t  are the first moments of area of the 

reinforcement about the centroid of the uncracked and fully cracked section, 

respectively  

A sufficiently accurate calculation is performed for neutral axis depth, the first 

and second moment of area of the section (Mosley et al. 2012; MacGregor et al. 1997), 

by considering the transformed section as shown in Figure 4.5. The neutral axis depth, 

the first and second moment of area of the transformed section determined from 

Equations (4.16) - (4.21). 

 

 

 

 

 

 

 

 

 

Uncracked section properties 

Depth of the neutral axis, ux : 

 Area Moment / Areaux   (4.16a) 

where:  

     2Area Moment 1 ' 1 / 2e sc e sA d A d bh       (4.16b) 

    Area 1 1e sc e sA A bh       (4.16c) 

The first-moment area uS  of the reinforcement about the centroid of the section: 

  .u s uS A d x   (4.17) 

The second-moment area, uI : 

 , , , 
sc su u conc u A u AI I I I    (4.18a) 
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(a) Cross-section (b) Uncracked transformed 

section 

(c) Cracked transformed section 

Figure 4.5:  Shows the transformed uncracked and cracked sections 
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Where:  

  
23

, /12 / 2u conc uI bh bh x h    (4.18b) 

    
2

, 1 '
scu A e sc uI A x d    (4.18c) 

    
2

, 1
su A e s uI A d x    (4.14d) 

Cracked section properties 

Depth to the neutral axis, cx :  

  
0.5

4 2c eq eqx b b ac a    
  

 (4.19a) 

Where: / 2a b  (4.19b) 

        1eq e sc e sb t t A t A     (4.19c) 

      1 'e sc e sc t A d t A d        (4.19d) 

The first-moment area  cS t  of the reinforcement about the centroid of the section: 

       .c s cS t A t d x t   (4.20) 

The second moment of area, cI : 

        , , , 
sc sc c conc c A c AI t I t I t I t    (4.21a) 

Where:  

        3 3 3

, /12 / 4 3c conc c c cI t bx t bx t bx t    (4.21b) 

          
2

, 1 '
scc A e sc cI t t A t x t d    (4.21c) 

         
2

, sc A e s cI t t A t d x t   (4.21d) 

As expressed in Equation (4.7), the flexure resistance of reinforced concrete 

structure depends on material properties, cross-sectional dimensions, area of steel 

reinforcement, structural system, loading condition, creep, and shrinkage. The 

increment of applied bending moment from creep and shrinkage grow rapidly and reach 

the highest intensity at an early age (see Figure 4.6), due to the maturity of concrete and 

the effect of creep, which grows rapidly in early age shown in Figure 4.3 that reduces 

the elastic modulus of concrete. Besides, the performance of reinforced concrete beam 

significantly decreases with time due to corrosion of reinforcement steel that 
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deteriorates the effective diameter of reinforcement steel and concrete strength and 

reduces the elastic modulus of concrete with creep increases. 

 

Figure 4.6: Time-dependent flexural performance of the RC beam  

The flexural capacity and demand of the section coincide, i.e., the capacity to 

demand ratio is equal to unity, at a time of 19.5th year shown in Figure 7. In other words, 

the point at which demand and capacity coincide that point is said to be a limit state, 

i.e.,  ( , ) , - ( , ) 0M R aG X t M X t M X t  . Therefore, at the time after the 19.5th year, 

the structure becomes unsafe due to its limited flexural capacity, i.e., demand exceeds 

the capacity of the section.  

4.3.2.2 Shear Performance 

The transfer of shear in reinforced concrete members occurs by a combination of the: 

shear resistance of the uncracked concrete in compression, aggregate interlock force 

that can be developed tangentially along with the expected crack propagation, and 

similar to a frictional force due to the irregular interlocking of aggregates along the 

rough concrete surface on each side of the crack, dowel action of the longitudinal 

reinforcement is the resistance of the longitudinal bars to transverse force, and shear 

reinforcement resistance from stirrups. From these, the shear resisted by concrete is the 

sum of shear in the uncracked compression zone, aggregate interlock force, and dowel 

action of the longitudinal reinforcement taken as ,Rd cV  (ES EN 1992-1-1 2004; Mosley 

et al. 2012), and the remaining shear force ,Rd sV  resisted by stirrups. 

The performance of the reinforced concrete structure for shear estimated from 

the expression: 
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           , ,, , ,...,i R Rd c Rd s a DL LL shG X t V V t V t V V V V t   (4.22) 

where  ,Rd cV t  is the design shear resistance of the member without shear 

reinforcement;  ,Rd sV t  is the shear resistance of the member by stirrups; ,DL LLV V  is 

the applied shear from the live load and dead load, respectively; and  shV t  is the 

additional load-induced from creep and shrinkage 

The time-variant shear resistance and the applied shear force of the reinforced 

concrete section obtained from the following equations. 

         
1 3

, , min100Rd c Rd c l ck wV t C k t t f t b d v bd  
  

 (4.23) 

  
 

,

sw

Rd s ywd

A t
V t zf

s
  (4.24) 

 
2 2

, D L
DL

L
LL

Lw L
V

w L
V   (4.25) 

  
   , ,4 1c ef c t sh

sh

E t I t r
V t

L
  (2.26) 

Corrosion affects the shear resistance of the reinforced concrete beam mainly through 

the loss of effective area of reinforcement and degrading the strength of the concrete as 

provided in Equations (4.23) - (4.25). Thus, the shear resistance of the section decreases 

aggressively. Besides, the concrete cover of the stirrups is lower than that of flexural 

reinforcement, which means that the beam is more susceptible to shear failure due to 

corrosion than to moment failure in time shown in Figure 4.6 and Figure 4.7.  

 

Figure 4.7: Time-dependent shear performance of reinforced beam concrete  
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time 15.8th year, the shear capacity and demand of the section coincide, so the limit 

state of the section takes place (see Figure 4.7). Therefore, at the time after the 15.8th 

year, the structure becomes unsafe due to its limited shear capacity. 

 Serviceability Performance Criteria 

Serviceability limit state (SLS) deals with conditions such as deflection, crack of a 

structure under service loads, excessive vibration, fatigue, etc. The SLS performance 

measurement is an evaluation of the maximum effects of action (e.g., deflection, crack 

width, etc.) and their limit values in standard codes. The serviceability of the structural 

system ensured by a part/member or whole structural system that has been serviceable 

against deflection, crack, and vibration, i.e., the action effect should be less than or 

equal to the limiting values of each constraint provided in design codes.  A serviceable 

structural system has to be well designed, constructed, and operated for the intended 

purpose. In addition to adopting the poor design, construction, and utility the 

environmental factors such as corrosion, creep, and shrinkage also significantly affect 

the serviceability of the structure. 

Creep and shrinkage occur simultaneously and jointly influence the behavior of 

reinforced concrete members. Creep and shrinkage increase rapidly and reach the 

highest intensity at an early age shown in Figure 3 and then continue to increase 

gradually approach their limiting value, .i.e., time-dependent process.  In the limit state 

method, it is necessary to assess deformations due to creep and shrinkage from 

serviceability considerations. In addition to that, in an aggressive environment, concrete 

structures face reinforcement corrosion, which is a significant factor impacting the 

durability of reinforced concrete through severe cracking of the concrete, and severe 

structural damage (Malhas and Mahamid 2016). In this study, two critical serviceability 

criteria, deflection, and crack were investigated by considering time-variant parameters. 

The expressions provided in EC2 (ES EN 1992-1-1 2004) were modified to 

estimate the time-dependent performance of both deflection and crack, to consider the 

environmental factors. These expressions account for the effect of creep and shrinkage 

that reduces the effective modulus of elasticity of the concrete induces additional 

curvature that increases the long-term deflection of the concrete structure. 
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4.3.3.1 Deflection Performance 

Important factors that need consideration in the computation of time-dependent 

deflection are criteria defining the limiting deflection, appropriate design loads, 

material properties, creep, and shrinkage. In concrete structures, deflections increase 

with time due to the reduction of reinforcing steel area through corrosion as presented 

in Table 4.1, creep under sustained load reduces the modulus of elasticity with time, 

and shrinkage induces additional curvature of section.  

The design load to estimate long-term deflections is the quasi-permanent load, 

kG  and 2 kQ  in which  
2  is equal to 0.8 for storage purposes. The total time-

dependent deflection of the section is a combined effect of flexure and shrinkage and 

which can be estimated from the following expressions: 

    2

, ,1 1t Qp t cst kL r r    (4.27) 

where ,1 t Qpr
 
is the flexural curvature due to quasi-permanent load and estimated from 

Equation (4.28) and  ,1 t csr is the curvature from shrinkage and estimated from Equation 

(4.12) 

      
,

1 1 1
1

c ut Qp

t t
r r r

 
   

     
   

 (2.28)

  

The curvature of both uncracked and cracked condition for the quasi-permanent 

load estimated from the Eqs. (2.29) and (2.30), respectively. 

  
 ,

1

.

Qp

u c eff u

M
t

r E t I

 
 

 
 (2.29)  

  
   ,

1

.

Qp

c c eff c

M
t

r E t I t

 
 

 
 (2.30)  

where QpM  is the moment of the quasi-permanent moment at critical section; k  is the 

factor taken in to account the distribution of bending moment and is equal 0.104 for a 

simply supported beam subjected to uniformly distributed load, and L  is the beam span  

As expressed in Equations, the deflection of reinforced concrete structures 

depends on material properties, cross-sectional dimensions, area of reinforcing steel, 

structural system (i.e., supporting system), loading condition, creep, and shrinkage. 



48 
 

From the detailed computation, the majority of deflection induced due to sustained 

loads. The effect of creep rapidly increased at an early shown in Figure 4.3, due to the 

immaturity of the concrete, which decreases the concrete elastic module and 

subsequently increases the deflection rapidly to the highest intensity early shown in 

Figure 4.8. 

 

Figure 4.8: Time-dependent and limit deflection of the RC beam 

However, the deflection occurs in rapid intensity early, slowly increases in 

normal conditions but, the intensity of deflection rapidly changes due to corrosion of 

steel reinforcement shown in Figure 4.8 (i.e., after 18.410th year). Therefore, 

environmental factors significantly affect the built structures through deteriorating 

material strength. The expressions provided in design codes estimate the deflection of 

the structural member with no variation with overtime, whereas, in a real problem, the 

deflection of the structure is progressive and increases with time. 

The limiting value of deflection
 lim  of a beam subjected to quasi-permanent 

load is span/250, i.e.,
 

250 24l  mm. As shown in Figure 4.8, at the time of the 23rd 

year, the limiting deflection and estimated deflection coincide, i.e., the limiting value 

and the demand of the section are equal at the time shown in Figure 4.8. Therefore, at 

the time after 23-year, the structure becomes unserviceable due to excessive deflection 

that denies the comfort of the occupants. 
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4.3.3.2 Crack Performance 

The performance of the reinforced concrete structure for crack width estimated from 

the expression: 

         , lim , ( ) , , , , , ( ),...i k k ap c y c sG X t w w b d f t f t E t A t   (4.31) 

Crack width due to applied load before corrosion 

The crack of the concrete section begins early due to service load because of the limited 

tensile strength of the concrete. In a simply supported beam subjected to uniformly 

distributed load, the maximum bending stress 
max /M y I   occurs at mid-span that is 

much greater than the tensile strength 
ctf  of the concrete. Therefore, the concrete 

section cracks before corrosion take place. The maximum crack width of the section 

before corrosion takes place is estimated from the expression provided in EC2 (ES EN 

1992-1-1 2004) as:   

 ,  , ( )( )k ap r max sm cmw s t    (4.32) 
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 , 1 2 ,3.4 0.425 /r max p effs c k k     (4.34) 

where , k apw  is the maximum crack width from service load; ,r maxs  is the maximum 

crack spacing; ( )( )sm cm t   is the difference mean strain in the reinforcement under 

relevant load combination and the mean strain in the concrete between cracks, and all 

other variables and relevant constants in the expressions were obtained from EC2 

As expressed in Equations (2.32)–(4.34), crack width performance depends on 

materials properties, cross-sectional dimensions, applied load, and environmental 

factors. Besides these factors, the way the concrete structures are designed, detailed and 

constructed also affects crack performance.  However, once the maximum crack is 

formed due to loading, the stress in the section increases, which can not change the 

crack spacing; however, the crack width increases because of variations in other 

parameters.   
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Crack width after corrosion of embedded reinforcement takes place 

The thick wall cylinder with embedded reinforcement, subject to internal corrosion 

pressure from the corrosion product, between the concrete-bar-interface, was modeled 

to investigate the combined effect of applied load and corrosion (Bazant 1979) as shown 

in Figure 4.9.  

 

 

 

 

 

 

 

where D  is the diameter of the embedded bar; 0d  is the thickness of the annular layer 

of concrete pores at the concrete-bar interface; C  is the thickness of the concrete cover, 

and 02a D d   and 02b C D d    are the inner and outer radii of the thick-wall 

cylinder, respectively 

In the thick-wall concrete cylinder, the internal stress ( )f t  is induced from (1) 

the corrosion products of the embedded reinforcement, which increases along time and 

denoted as 1( )f t , and (2) the radial component of the stress from applied load between 

the reinforcing bar and the concrete and denoted as 2f  
(Yang 2010). Therefore, the 

total spread-out stress ( )f t  is given by: 

    1 2f t f t f   (4.35) 

The corrosion-induced expansion along time due to the internal pressure induced from 

corrosion products along time which needs to generate the radial pressure (Liu and 

Weyers 1998) determined as: 

 
 
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 
  

  
 (4.36) 

where 
rust is the coefficient of corrosion product; rust  is the density of corrosion 

products; st  is the density of the steel, and (t)rustW  is the mass of corrosion products 

which is time-dependent and obtained from the expression provided in (Liu and Weyers 

1998) 

a 
ro 

do 

dc(t) 

P(t) D 

do 
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b 

a 

a) Corrosion initiated               b) Corrosion Propagation                       c) Concrete crack propagation 

Figure 4.9: Illustration of the internal pressure-induced concrete cracking process due to corrosion 

b 
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After corrosion products fill the annular pores it induces stress and partially 

cracks the thick-wall concrete cylinder along a concrete cylinder radius 
0r , which varies 

between the radii a  and b (Yang 2010) shown in Figure 4.9(c). The radial 

displacement u(r) and the stress components developed from the theory of elasticity.   

    
 2

1

o

o

c r
u r c r r

r
   (4.37) 

  
 

r

du r
r
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    and   

 u r
r

r
   (4.38) 

The stress components from the radial equilibrium are obtained (Sadd 2009) from 

Figure 4.11 in the finite element form of the thick-wall concrete cylinder: 
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The crack can propagate to the area of the concrete cylinder to completely crack 

the section as corrosion products increase over time. he section's radial displacement 

( )u r  is expressed as follows (Yang 2010): 

  
  3 4u r c r c r  

 (4.42) 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

Figure 4.10: Stress components in cylindrical coordinates 
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where r  and   are the radial and tangential strain, respectively; efE  is the effective 

modulus of elasticity taking into account the time-variant creep effect; cv  is the 

Poisson’s ratio of the concrete; and   1 oc r ,  2 oc r  are the coefficients, which are a 

function of 
0r , which varies between a  and b   as shown in Figure 4.10 

The constants  1 oc r  and  2 oc r  be obtained by considering boundary 

conditions for the concrete cylinder, i.e.,  r ta f   and   0r b   at the stage of crack 

initiates. The constants 3c  and 4c  are coefficients to be determined by setting the 

boundary conditions for the cracked section with fully corroded reinforcement in the 

beam section as    c pu a d t d 
 
and   0r b  . in which: pd  is the displacement 

caused by 2f  at a point r a  in the uncracked concrete cylinder that satisfy the 

boundary conditions, i.e.,   2r a f    and   0r b  , had been estimated from the 

expression provided (Liu and Weyers 1998): 

The stiffness reduction factor   is to account for the residual stiffness and 

residual stress, which varies with time (not with radius) is proposed in (Yang 2010). 

Having the coefficients obtained by setting desired boundary conditions, the stiffness 

reduction factor expressed as:  
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 (4.43)  

fG - is the fracture energy, which is determined from a base value of foG  and the mean 

compressive strength of concrete cmf  according to (Pantazopoulou and Papoulia 2001) 
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in which 
0 10 MPacmf  ; 33 MPacmf   for C25/30 concrete grade from EC2 (Table 

3.1), and foG  is obtained by Lagrange interpolation based on the maximum aggregate 

size, ad  between the values of 0.025N/mm, 0.030N/mm, and 0.038N/mm 

corresponding to ad = 8mm, 16mm and 32mm, respectively.   

In this research, the maximum aggregate considered size is ad = 25mm provided 

in the case study, and the corresponding value of fracture energy fG  has been estimated 

and provided in Table 4.2.  

 

Figure 4.11: Variation of stiffness reduction factor with time 

By solving coefficients of boundary conditions, fracture energy, and stiffness reduction 

factor in Equation (4.43) simultaneously  has been determined using the MATLAB. 

The reduction of the stiffness reduction factor for specified material properties and 

solving boundary conditions shown in Figure 4.11. 

By applying the boundary conditions of stress,  , tr t f   and the surface 

crack width of the thick-wall concrete cylinder estimated from the expression (Yang 

2010): 

    ,2 e m

cw b b        (4.45) 

in which  ,e m b  is the maximum elastic strain of concrete at the radius of the thick-

wall concrete cylinder, r b  as (Timoshenko and Goodier 1970) becomes 
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Table 4.2: Values of basic variables used in crack width computation 
Parameter Symbol Unit Values Sources 

Diameter of rebar D mm 24 Case study (Figure 4.2) 

Concrete cover C mm 58 Case study (Figure 4.2) 

Compressive strength of concrete 
ckf  MPa 25 ES EN 1992-1-1(2004) 

Mean compressive strength at 28 days, i.e., 

8 MPacm ckf f   
cmf  MPa 33 ES EN 1992-1-1(2004) 

Modulus of elasticity of concrete 
cmE  GPa  31 ES EN 1992-1-1(2004) 

Yield stress of rebar 
yf  MPa 460 ES EN 1992-1-1(2004) 

Yield stress of stirrups 
ywf  MPa 250 ES EN 1992-1-1(2004) 

Modulus of elasticity of steel 
sE  GPa  200 ES EN 1992-1-1(2004) 

Fracture energy 
fG  N/mm 0.0803 Pantazopoulou (2001) 

The current density of corrosion  
corri  μA/cm2 0.75 Enright and Frangopol (1998) 

Poisson’s ratio of concrete 
cv  - 0.18 Liu and Weyers (1998) 

Poisson’s ratio of steel 
sv  - 0.3 ES EN 1992-1-1(2004) 

The thickness of the annular layer at the 

concrete-bar interface 
od  μm 12.5 Liu and Weyers (1998) 

Coefficient of corrosion product 
rust  - 0.57 Liu and Weyers (1998) 

The density of corrosion products 
rust  kg/m3 3600 Liu and Weyers (1998) 

The density of the steel 
st  kg/m3 7850 ES EN 1992-1-1(2004) 

 

In normal conditions, the crack width is estimated empirically due to quasi-permanent 

load, which is time-invariant before corrosion initiates as shown in Equations (4.32)-

(4.34) and Figure 4.13. Hence, corrosion reduces the cross-sectional area of reinforcing 

steel, and the strength of concrete, the term ( )( )sm cm t   expressed in Equation 4.33
 

increases with time due to corrosion, eventually, the crack width increases with time 

shown in Figure 4.12.  

The total crack width of the section under the combined effect of embedded 

reinforcement corrosion and applied load was estimated using Equation (4.46) by 

considering a thick-walled concrete cylinder. Therefore, we can conclude that the crack 

width of the reinforced concrete beam subjected to chloride diffusion is related to 

corrosion products, the applied load, the concrete properties, and geometry of the 
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section as indicated in Equation (4.46), in which the crack width increases with time as 

shown in Figure 4.12. 

 

Figure 4.12: Time-dependent and limit crack width of the RC beam 

The corrosion crack commences at the time of 0.654th year after the initiation of 

corrosion, derived from the expression in (Liu 1996) and Table 4.2 data. The limiting 

value of crack width 
 

 is the limit value and depends on the exposure condition of 

the structural member exposed to chloride in moderate humidity (wet, rarely dry, XD2)  

is 0.3mm (ES EN 1992-1-1 2004).  At the time of 21.5th year, the limiting crack width, 

0.3 mm, and estimated crack width coincide as shown in Figure 4.12. Therefore, the 

limit state of crack width occurs at the time of the 21.5th year.  

Note that the limit state of the considered reinforced concrete beam against 

shear, flexure, crack, and deflection occurs at 15.8, 19.5, 21.5, and 23rd year, 

respectively. Therefore, among the ultimate limit state, the reinforced concrete beam 

section is more susceptible to the shear failure, because the concrete cover of the links 

is smaller than that of longitudinal reinforcement in which corrosion of links begins 

before the longitudinal reinforcement. Moreover, the effective area as well as strength  

of links and flexural reinforcement, and concrete strength reduce due to corrosion, 

eventually; the shear capacity of the section significantly decreases with time.  From 

the time-dependent performance evaluation, considering creep and shrinkage for 

specified ambient temperature and relative humidity, and moderate corrosion rate of 

the current density of 0.75 µA/cm2, the service life of the reinforced concrete beam is 

reduced to less than 50% of its design life. 
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CHAPTER 5  

UNCERTAINTIES OF PARAMETERS 

5.1 Introduction 

The structural engineering activities are broadly categorized as (Savoia 2012) (a) to 

predict the behavior of the structure under fully and partially known conditions and (b) 

to design a structural system that satisfies the desired criteria for the intended purpose 

in its lifetime. While designing and predicting the performance of the structure, there 

will be unavoidable uncertainties. However, avoiding uncertainty can be minimized by 

developing adequate knowledge to establish parameters, boundary conditions, and 

constructing accurate mathematical and physical models is a difficult task. Most of the 

uncertainties are associated with material properties, geometry, loads, and models due 

to a lack of knowledge and environmental factors (Matos 2007).  

This chapter presents uncertainty in parameters, fuzzy concepts and set theory, 

generation of membership functions, fuzzy operators, uncertainty propagation, and 

numerical examples for relevant sections.  

5.2 Uncertainty in Parameters 

The structural reliability analysis involves the rational treatment of parameter 

uncertainty in structural analysis and the design of sound decisions. Basic parameters 

(except for physical properties and mathematical constants, e.g., the density of 

materials, modulus elasticity of steel, partial safety factors, etc.) that involve in 

structural analysis and design associated with some degree of different uncertainties 

(Thoft-Christensen and Baker 1982). Uncertainties in reinforced concrete occur due to 

the possibility of deviation of materials strength, deviation of magnitude and 

distribution of loads, deviation of the sectional dimensions, impacts of environmental 

factors, improper position of reinforcement, inaccuracy of calculation procedures, and 

discontinuity of adjacent strips (or bond problem).  

In general, the source of uncertainties may be (i) inherent randomness, i.e., 

physical uncertainty from material properties, and geometric data, (ii) limited 

information, i.e., statistical uncertainty due to limited available data and economic 
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constraint to test more specimens, (iii) imperfect knowledge, i.e., model uncertainty 

from limited numerical models, vagueness due to inaccurate definitions of performance 

requirements, and inappropriate structural modeling, and (iv) gross errors in design, 

execution, and operation of the structure; and lack of knowledge of the behavior of new 

materials in real conditions. 

 Uncertainty in Materials 

The physical and mechanical properties of materials must be defined to undertake a 

structural design and performance evaluation. The uncertainty of the mechanical 

properties of concrete mainly depends on properties of ingredients, concrete 

composition, testing procedure, the variation of concrete being in the structure than in 

control specimens, material degradation, execution, etc. Therefore, variability in the 

mechanical properties of concrete is considerably higher. 

On the other hand, the variability of the mechanical properties of steel is usually 

negligible in production due to higher industrialization and manufacturing quality 

control. The desired properties of steel are preserved by proper handling, transport, and 

protection from aggressive chemicals to satisfy the anticipated requirements of the 

structure. Steel variations exist because of the cross-section and yield stress 

deterioration resulting from corrosion, load experience, etc. 

 Uncertainty in Geometry 

The variability in the geometry of concrete elements is due to the deviation of the cross-

sectional dimension and shape specified in the design document due to the 

misalignment of member(s), the inappropriate position of reinforcement, etc. 

 Uncertainty in Loads 

A designed structure should withstand the maximum expected load in its lifetime. In 

the design of a reliable structural system, it is necessary to consider all possible actions 

that can apply to the structural system in a specified location. Loads that act on the 

system broadly categorized based on magnitude and location with respect to time as 

dead loads, live loads, and environmental loads. 

Dead loads are loads that do not change its magnitude and location with time. 

Dead load is generated from the self-weight of the structure itself and fixed equipment 
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(if applicable). It is possible to determine dead load with better accuracy from the 

dimension of the structural members and the specific weight of materials. Therefore, 

its variability with time is negligible, and the uncertainty in magnitude is insignificant 

compared with other kinds of loads. 

Live loads consist of occupancy loads (i.e., human occupation, movable 

equipment, and materials) in building and traffic loads on bridges. They may be either 

fully or partially preset or not at all and may also change in location. Their magnitude 

and distribution are uncertain with respect to time. Their maximum intensities 

throughout the life of the structure is not known with precision, but occurs only on 

special occasions during a short or even moderate period and significantly considered.  

Environmental loads consist of earthquake loads, wind loads, snow loads, soil 

pressure, loads caused by temperature differentials (e.g., contraction and relaxation, 

creep and shrinkage), etc. Environmental loads at any given time are uncertain in 

intensity, distribution, and location.  

5.3 Types of Uncertainties 

Based on the sources, uncertainties broadly classified as aleatory uncertainties and 

epistemic uncertainties. Aleatory (or random) uncertainty is associated with the 

inherent randomness in the physical properties and the system environment, whereas 

epistemic (or fuzzy) uncertainty arises from insufficient knowledge and imprecision of 

information about a problem that is going to be studied (Kai-Yuan et al. 1991a; Kai-

Yuan et al. 1993; Szeliga 2004; Li et al. 2015; Tang et al. 2014; Naderpour and Alavi 

2015; Fan et al. 2019). In general, aleatory uncertainty is data-based, whereas epistemic 

uncertainty is knowledge-based. However, both types of uncertainties may be 

combined and analyzed as total uncertainty or treated separately depending on the 

chosen analysis method. 

In a stochastic analysis, variables that involve aleatory uncertainty represented 

by a probability distribution, which provides information on their mean values, standard 

deviations, and correlation with other variables. However, observation of specific 

variable quantities will not always provide sufficient data to allow for an interpretation 

of the distribution type of uncertain quantities. The results of the reliability analysis are 

sensitive to the probability distribution. Therefore, the selection of an appropriate 
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distribution type is a crucial tool. When there is no detailed information about variables, 

normal and lognormal distributions are used. In structural engineering, mechanical 

properties of materials and load intensity are non-negative, whereas performance 

variables may be negative values. Therefore, the lognormal distribution is used to 

describe load and material variables, whereas the normal distribution is used to describe 

resistance (performance) variables. Furthermore, the reliability analysis of a structure 

that involves aleatory uncertainty of variables carried out by probability theory. 

Epistemic uncertainty of variables is represented by possibility distribution 

using the membership function. The choice of membership function depends on 

available data and experience of the expert knowledge level. In a possibility analysis, 

the reliability analysis of a structure that involves the epistemic uncertainty of variables 

evaluated by using possibility theory. In this study, epistemic uncertainty is explored 

well and applied to achieve the desired objectives.   

 Fuzzy Variables  

Suppose Y  be a linguistic variable with the label “reinforcement” with the universe of 

discourse, ,min ,max,s sU A A    . For the linguistic variable reinforcement, the terms that 

are fuzzy sets referred to as under-reinforcement, balanced reinforcement, and over-

reinforcement may be considered. Here, the base variable x  is the area of reinforcement 

in mm2 or cm2. The expression  M X  is the mathematical rule that assigns a fuzzy set 

to the terms x  as expressed in Equation (5.1). 

      under reinforcemet , |uM x x x U   (5.1) 

where  

  

   

   

,min , ,min ,min ,

, , , , ,

       if  

        if  

0                                              Otherwise

s s cal s s s cal

u s bal s bal s cal s cal s bal

x A A A A x A

x A x A A A x A

    


    



 (5.2) 

Thus, reinforcement is a fuzzy variable with the universe of discourse and expressed in 

linguistic terms based on the amount of the steel reinforcement, i.e., satisfy interval 

(lower and upper bound) provided in design codes, provided in the designed section. 
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 Relationship Between Fuzzy Number and a Real Number  

The   is the threshold for two adjacent data to be considered belonging to the same 

class. Note that the small   will have a large fuzzy interval, and the large   will have 

a smaller fuzzy interval. Let us consider the fuzzy set of concrete strength:  

 0 / 20 0.2 / 21 0.4 / 22 0.6 / 23 0.8 / 24 1/ 25 0.8 / 26 0.6 / 27 0.4 / 28 0.2 / 29 0 / 30ckF           

This fuzzy set of concrete strength can be set into several  -cut sets and strong  -cut 

sets, all of which are crisp for the arbitrary values of  = 0, 0.2, 0.4, 0.6, 0.8, and 1.  

The  -cut sets are:  0.2 21 22 23 24 25 26 27 28 29ckF  ;

 0.4 22 23 24 25 26 27 28ckF  ;  0.6 23 24 25 26 27ckF  ;  0.8 24 25 26ckF  , and 

 1 25ckF    

Strong  -cut sets are:  0.2 22 23 24 25 26 27 28ckF  ;  0.4 23 24 25 26 27ckF  ; 

 0.6 24 25 26ckF  , and  0.8 25ckF    

For a fuzzy number denoted by X and a real number denoted by 
0r , Figure 5.1 (a and 

b) show their possible order relations using  -cut. The mathematical notations, 

 X r represents the membership function of X ; m  is the mean of  X  with  X m

=1; the vertical axis denotes the degree of membership; 
0 , 1  and 

2  are three 

degrees of membership with the condition 
1 0 2    ; 

0  is the membership degree 

of a real number 
0r , i.e.,  0 0X r  , X  represents the  -cut of X  satisfying the 

condition   |  XX r r     (Tang et al. 2014). For each  0,1i  , 

  |  
i XX r r i     is an interval defined as ,i ix x

   
  , as shown in Figure 5.1 (a 

and b). We can obtain three important points from Figure 2 (a): the equality 0

0x r



 

supports; x   is larger than 
0r  when 0  , such as 

2  where 2 0   and 2

0x r   

hold; and x   is less than 
0r  when 0  , such as 1  where 

1 0   and 1

0x r   

hold. Thus, the critical degree of membership 
0  can be used to define the possibility 

that (Tang et al. 2014) X  is less than 
0r , i.e.,  0 0Poss X r   . 
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 Generation of Membership Function of Fuzzy Variables 

The fuzziness of the variable is expressed by its degree of membership. The generation 

of membership functions for imprecise data is a basic stage in applications of fuzzy 

concepts (Medasani et al. 1998). To generate the membership function of the variable, 

its ranges i.e., the lower and upper limit should be identified. Besides, the range of 

variables is an appropriate limit to handle the variation of parameters easily and 

precisely. To do so, the value obtained through the deterministic design procedure 

considered as the core value, whose degree of membership is unity, of the study 

parameter (Lu et al. 1994). And the upper and lower bound of the variables obtained 

from code provisions and the evaluation of the existing situation.   

5.3.3.1 Membership Function of Corrosion Rate 

Suppose that corrI  is the universe of discourse of the corrosion density. Let us classify 

the level of corrosion current density as low, moderate, and high in the linguistic 

variable. From statistical investigations, these low, moderate, and high rates of 

corrosion current density are a subset of corrI  with the interval of 

2 0.1–  0.5 μA/cmcorri   for low corrosion rate; 20.5 –1 μA/cmcorri   for moderate 

corrosion rate; and 2 1 μA/cmcorri   for high corrosion rate as shown in Table 2.1. 

 

 

 

  

 

 

 

 

1 

 
 

 

 

 

 

1 

 

 

 

 

 

(b) (a) 

0 0 

Figure 5.1: The order relation between fuzzy and real numbers   
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The classical approach, the probability, one way to describe the classical set is 

a low rate. Suppose a low rate, corrosion current density membership to a low rate set 

that belongs to the universal set corrI , such that the corrosion current density is between 

0.1 μA/cm2 and 0.5μA/cm2. Similarly, the member of corrosion current density belongs 

to moderate rate, if it is between 0.5μA/cm2 and 1μA/cm2. Besides, when the density 

of the corrosion current is greater than 21 μA/m , the member's corrosion current density 

is at a high rate. In the classical approach, it is obvious that 20.49 μA/m  is a low rate 

whereas 20.51 μA/m  is a moderate rate which means the classic sets are rigidly bounded, 

making it very difficult to express the imprecise data. However, representing them in a 

fuzzy set based on their respective degrees membership is very simple. 

 

 

If the corrosion current density is around 0.25 μA/cm2, it is a low rate;  corrosion 

current density is around 0.75 μA/cm2, it is a moderate rate, and when the corrosion 

current density is around 1.25 μA/cm2, it is a high rate as shown in Figure 5.2. In this 

sense, the fuzzy sets have no rigid boundary. Let us consider a corrosion current density 

of 0.5μA/cm2 that can simultaneously belong to a low rate as well as a moderate rate, 

with a fuzzy membership grade of 0.5.  When 0.625μA/cm2 is considered, it is likely in 

the category of moderate rate with a membership degree of 0.75, whereas the 

0.35μA/cm2 is with a membership degree of 0.8 at a low rate and 0.2 in moderate rate. 

In this study, the upper bound of corrosion current density is taken as 2μA/cm2 for 

illustration but its value may be more or less than 2μA/cm2 in a real problem. This 

illustrates how imprecise data can be categorized in a clear way using fuzzy sets.   

 
1  

 

Figure 5.2: Fuzzy membership function of corrosion current density 
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5.3.3.2 Membership Function of Input and Output Variables of RC Structure 

The corrosion parameters, cross-section dimensions are considered as the input 

variables, whereas the deterioration of material properties as output variables as shown 

in Table 5.1 from the detailed calculation. Furthermore, the material properties 

considered as input variables, and the safety and serviceability constraints are the output 

variables. The time-variant concrete strength and effective steel reinforcement area due 

to the moderate corrosion rate are determined, and the result is shown in table 5.1 during 

design life. The corrosion rate, a fuzzy variable, is considered as an input variable that 

deteriorates the strength of concrete, the diameter of steel reinforcement, and the yield 

strength of reinforcement steel. The fuzziness of the corrosion rate propagates to the 

output variables along with the design life of the concrete structure.  

Table 5.1. Intervals of input and output variables 

Note that the database with single values is the constant values of design parameters 

and baseline values of corrosion parameters. 

To generate the membership function of the fuzzy input variables, their interval 

determined as presented in Table 5.1. As presented in Section 4.3.1.2, reasoning and 

citations about corrosion parameters, and from Figure 4.2, the concrete cover do not 

have minimum and maximum ranges. The initially provided material properties of the 

concrete beam are 25 MPackf  , 460 MPayf 
 
and the area of steel is 21520.53 mm . At 

the end of the design life, the material properties deteriorated to concrete strength of 

Variables Parameter Unit Abbreviation Database range 

Minimum Maximum 

 

Input 

Corrosion current density  μA/cm2 
corrr  0.75 

Chloride diffusion coefficient  cm2/year 
cD  

 

Surface chloride concentration (%) - 
0C  

 

Critical chloride concentration (%) - 
crC  

 

Concrete cover  cm C  5.8 

Time  year t  0 50 

Design load kN/m w  16 46.04 

Output Compressive strength of concrete  MPa  ( )ckf t  20.167 25 

Modulus of elasticity of concrete GPa  ( )cmE t  29.501 31 

Yield stress of steel (flexural) MPa  ( )yf t  455.374 460 

Yield stress of steel (stirrups) MPa  ( )ywf t  233.206 250 

The effective area of rebar mm2 ( )stA t  766.880 1520.531 

The effective area of a stirrup mm2 ( )swA t  0.704 100.531 

1.29

0.10

0.04
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20.167 MPa , the yield stress of steel is 455.75 MPa
 
and the area of steel reinforcement 

is 2766.8  mm8  due to corrosion.  

In design codes of concrete structure, the concrete grades such as C20/25, 

C25/30, C30/37, etc., in which the intermediate grades are not recognized. However, 

the desired grade of concrete is achieved during construction due to the aggressive 

environment the strength of concrete may decrease along with the design life of the 

structure and these intermediate strengths can be recognized by fuzzy set theory with 

their respective membership degrees. Therefore, the fuzzy interval of the concrete 

strength is limited to the lower and upper bound lies in between 20 MPa  and 30 MPa  

from EC2 (Table 3.1). 

The area of steel reinforcement in a singly reinforced concrete beam section is 

limited to ,min , 0.04st st prov cA A A   as provided in EC2, in which ,minstA  is 2189.57 mm ; 

,st provA  is 21520.53 mm , and 0.04 cA  is 26000 mm . However, the maximum limit of the 

steel area in a singly reinforced concrete beam is 0.04 cA  it should not exceed 

2
, 1935.04 mmst balA   in the under-reinforced section. Therefore, the fuzzy interval of 

the steel area is limited to the lower and upper bound lies in between 2189.57 mm  and 

21935.04 mm  with the core value of 21378.56 Nmm .  

On the contrary, the design load varies from a dead load of 16 kN/m ,  dead load 

and live load 43.2 kN/m  to 46.04 kN/m  as Eurocode. This variation of input variables 

possesses fuzziness. Therefore, for the fuzzy input variables  0 0, , , ,ck cm yo stoX f E f A F  

provided in Table 5.1, the triangular membership functions are in Equations (5.3) – 

(5.7), respectively.  

 

( ) 20
   if  20 ( ) 25

25 20

30 ( )
( ( ))    if  25 ( ) 30

30 25

0                  Otherwise

ck

ck
ck

ck
ck ckF

f t
f t

f t
f t f t


  




  






 (5.3) 
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( ) 420
     if  420 ( ) 460

460 420

500 ( )
( ( ))      if  460 ( ) 500

500 460

0                     Otherwise

y

y

y

y

y yF

f t
f t

f t
f t f t


 




  






 (5.4) 

 

( ) 189.57
       if  189.57 ( ) 1378.56

1378.56 189.57

1935.04 ( )
( ( ))      if  1378.56 ( ) 1935.04

1935.04 1378.56

0                                 Otherwise

st

st
st

st
st stA

A t
A t

A t
A t A t


  




  






 (5.5)                                                                              

 

( ) 16
     if  16 ( ) 43.2

43.2 16

46.04 ( )
( )      if  43.2 ( ) 46.04

46.04 43.2

0                Otherwise

W

w t
w t

w t
w w t


  




  






 (5.6)            

  

( ) 29
     if  29 ( ) 31

31 29

31 ( )
( )      if  31 ( ) 33

33 31

0                  Otherwise

cm

cm
cm

cm
cm cmE

E t
E t

E t
E E t


  




  






   (5.7) 

Note: Variables with a constant value (for example, density and modulus of elasticity 

of steel) are treated as a fuzzy variable with the membership function of singleton, 

whose degree of membership is unity.    

    

Figure 5.3: Membership function of time-variant input variables 
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A triangular membership function of the flexural capacity developed for the lower 

bound is 31.89 kNm  from the concrete strength of 20 MPa  and steel area 

2189.57 mm .  The core value is 206.82 kNm  which is a deterministic design moment 

from applied and long-term effect loading, and the upper bound (or limiting bending 

moment) is 273.01 kNm , which is from concrete strength of  25 MPa  and the 

balanced section steel area of 1935.04 mm2 of the same cross-sectional dimension 

shown in Figure 3.1. Similarly, the membership functions of other constraints were 

developed in Chapter 6 to perform an analysis of the possibility of failure. 

5.4 Uncertainty Propagation 

Structural engineers have developed analytical models to represent systems by 

incorporating physical laws, empirical tools, and experimental results based on 

observing the system output variables. These models intend to relate input-output 

variables (i.e., the relationship between independent and dependent variables). For 

instance, the deflection of the girder is an output of the function of the input variables, 

such as loads, material properties, span length, and support conditions. Similarly, other 

relevant output variables (i.e., ultimate and serviceability limit state criteria) depend on 

the controllable and uncontrollable input variables. In the modeling, the uncertainty of 

the physical laws, material mechanics, sustained and environmental loads, and 

boundary conditions lead to the uncertainty of the output variables. This functional 

relationship problem is known as the uncertainty propagation of the input to output 

variables (Ayyub and Klir 2006; Li 2013; Caoa et al. 2019). The complexity of 

uncertainty propagation increases by considering nonlinearity in behavior, bifurcation, 

instability, logic rules, and across-discipline interactions. In general, uncertainty 

propagation can be expressed by using the function of random variables and fuzzy 

variables in the input-out relationship.  

Several methods used to solve the propagation of the aleatory input-output 

uncertain variables provided in (Ayyub and Klir 2006), and in general expressed by:  

  f g x  (5.8) 

where  x  is the input variable, f  is the output variable, and g is the function that relates 

input-output variables 
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Based on Zadeh’s extension principle, the propagation of an m - dimensional vector of 

fuzzy input variables  X  expressed by (Adhikari and Khodaparast 2014): 

  f g X  (5.9) 

where f  is the n - dimensional vector of fuzzy output variables that can be obtained 

from appropriate numerical optimization ( ) : m ng X R R  applied to m fuzzy input 

variables X   

The function ( )g   depends on the material properties, types, and behavior of 

structure or system, constraints, etc., of a real problem under consideration. This study 

mainly focused on epistemic uncertainty; hence, the propagation of the epistemic 

uncertainty has been discussed herein wide.  

 A Numerical Approach for Fuzzy Uncertainty Propagation 

The numerical strategy for propagating uncertainty, characterized as fuzzy sets, is 

presented in a three-step procedure by using the extension principle (Chen et al. 2015; 

Jakeman et al. 2010). These three-step procedures used to solve the propagation of 

epistemic uncertain variables involve: i) identifying the ranges of the uncertain inputs, 

ii) generating an accurate numerical approximation of the solution within the estimated 

ranges, and iii) post-processing the results. 

Extension principle: Let 1 2, ,..., mA A A  be fuzzy sets with the corresponding 

membership functions 
1 2
, ,...,

mA A A
    defined on their corresponding universe of 

discourse 1 2, ,..., mX X X , respectively, and let X  be the Cartesian product 

1 2 x  x ,..., x mX X X X . Let f  be a mapping from X  to a set Y , i.e., 

 1 2, ,..., my f x x x , i.e., , ,x A y B y f x  or 
1x f y . Then, the extension 

principle allows us to define a fuzzy set B  in Y  by (Zimmermann 2011; Lee 2004): 

        1 2 1 2, | , ,..., , , ,...,m mB
B y y y f x x x x x x X    (5.10) 

where  
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      
        

 

1
1 21 2

1

1 2, ,...,

1

sup min , ,...,    if  

0                                                                                   if   

mm
mA A Ax x x f y

B

x x x f y
y

f y

  










  
 



 (5.11) 

where 

1f   is the inverse of f  

For 1m  , the extension principle reduces to        

      , | ,
B

B y y y f x x X    (5.12) 

where 

  
 

   

 

1

1

1

sup    if  

0                           if   

Ax f y

B

x f y
y

f y












  
 



 (5.13) 

Example 5.1: Let -1,0.3 , 0,0.7 , 1,1 , 2,0.5A  be a fuzzy set and 
2f x x , 

find B f A  by applying the extension principle. Since the problem belongs to 1m 

, then B  can be obtained by using Equations (5.12) and (5.13).  

0, 0 , 1, 1 , 4, 4
B B B

B  

10 0

0 0.7 0.7supB

f

; 
11,1 1

1 1 1supB

f

; 
12 4

4 0.5 0.5supB

f

 

Therefore, 0,0.7 , 1,1 , 4,.5B  

Example 5.2: For 2m   

        1 1,1 , 0,0.4 , 1,0.2 , 2,0.5A    and         2 1,0.5 , 0,0.08 , 1,1 , 2,0.4A   , if

2 2

1 2 1 2,f x x x x . Find 1 2,B f A A . By applying the extension principle, B  

obtained by using Equations (5.10) and (5.11). 

2 20,0 0 0 0f , 
10,0 0

0 min 0.4,0.08 0.08supB

f

 

11,0 1

1,0

0, 1

0,1

1 min 1,0.08 ,min 0.2,0.08 ,min 0.4,0.5 ,min 0.4,1

        sup 0.08,0.08,0.4,0.4 0.4

supB

f
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11, 1 2

1,1

1, 1

1,1

2 min 1,0.5 ,min 1,1 ,min 0.2,0.5 ,min 0.2,1

        sup 0.5,1,0.2,0.2 1

supB

f

 

10,2 4

2,0

4 min 0.4,0.4 ,min 0.4,0.4

        sup 0.4,0.4 0.4

supB

f

12,2 8

8 min 0.5,0.4 0.4supB

f

 

11,2 5

1,2

2, 1

2,1

5 min 1,0.4 ,min 0.2,0.4 ,min 0.5,0.5 ,min 0.5,1

        sup 0.4,0.2,0.5,0.5 0.5

supB

f

 

Therefore, 0,0.08 , 1,0.4 , 4,0.4 , 5,0.5 , 8,0.4B  

The commonly used numerical approach to solve uncertainty propagation is a 

global optimization approach (GOA). In GOA, each cut   used to solve both 

minimum and maximum values of the output quantities. A cut   value of 0 is used 

to obtain the interval (or support), beyond which the output variable is not the issue, of 

the fuzzy output variables. The nominal value of output quantities can be obtained by 

setting the value of 1  . Thus, by combining all possible results for all cuts,   one 

can obtain the fuzzy description of the output quantities. Although several tools are 

available for numerical optimization, its computational cost is high to solve two 

optimization problems for each cut  .  Therefore, adopting an efficient numerical 

method is necessary to employ the approach. 

5.5  Application of Fuzzy Concepts in Reinforced Concrete Structures  

 Design of RC Structure Using Fuzzy Set Theory  

In structural engineering, the design parameters are not certain due to different factors. 

Some uncertainties can be estimated by preparing sufficient sample data, but human 

knowledge is limited to define and handle all uncertainties. The design optimization of 

the reinforced concrete structure possesses various constraints and bound of design 
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variables (objectives). The lower and upper bound of the design variable implies the 

fuzzy interval of the variables. Within the fuzzy interval, the specific value of the 

variable has its corresponding membership function.  

In reinforced concrete structure, the presence of fuzzy uncertainty of input 

variables such as material properties, cross-sectional dimensions, load uncertainties, 

and model uncertainties (Fan et al. 2019) also propagates to the output performance of 

the structure by the function relationship between the input variables and output 

performance. In this research, the optimum design of reinforced concrete structure 

based on the membership degree of input variables (concrete strength and 

reinforcement steel area) and the flexural performance of the structure as an output 

variable is carried out using fuzzy relation and fuzzy composition.  

To illustrate the problem, let us consider the same problem used in Chapter 4 and taking 

some elements of concrete strength and reinforcement steel with their respective degree 

of membership from Figure 5.3, and the flexural performance of the RC beam section. 

Let’s take fuzzy sets of steel area:  

  , ,/
st

st st i st iA
A A A  (5.14) 

The compressive strength of concrete 

  , ,/
ck

ck ck j ck jF
F f f   (5.15) 

The flexural resistance of the beam section 

   , ,/
R

R R k R kM
M M M  (5.16) 

The fuzzy relation of steel area and the flexural resistance of the section is given by:  

 xst RR A M    , , , ,, ,
pm

R st i R k st i R k

i k

A M A M  (5.17) 

in which  , ,,st i R kR
A M    , ,st Rst i R kA M

A M      , ,min ,
st Rst i R kA M

A M     . 

Similarly, the fuzzy relation of concrete strength and the flexural resistance of the 

section is: 

  xck RS F M    , , , ,, ,
pm

ck j R k ck j R kR
i k

f M f M    , ,min ,
ck Rck j R kF M

f M  
 

 (5.18) 
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As if R  and S are two fuzzy relations the fuzzy composition, which is used to obtain 

optimum design solution and to evaluate the performance of the structure (Brown et al. 

1983), is given by: 

     , , , ,max min , , ,st i R k ck j R kR S
R S A M f M   

   (5.19) 

 Let us consider the input variables of concrete strength and area of 

reinforcement with cut   of 0.6 in which the combination of the lower and upper 

bound of variables to be considered. From the triangular membership function of 

concrete strength and area of reinforcement from Figure 5.3, let us consider the -cut 

of 0.6 for these input variables. The fuzzy sets of concrete strength, area of 

reinforcement, and the flexural capacity of the section which is computed from the 

section for corresponding strength of concrete and area of steel, respectively, as 

follows: 

 0.6 / 23   0.8/24   1/25   0.8/26   0.6/27ckF   

 0.6 / 902.96   0.934/1300   1/1378.56   0.934/1415.29   0.6/1601.15stA   

 195.43 20 210.62 /141.13   0 0 2.94/ 0  1/ 6.7 .94 1 .03   /    0.52/237.4RM    

The fuzzy relation of the area of reinforcement and flexural capacity of the 

section is obtained by the cross product of the column vector of the area of 

reinforcement and row vector flexural capacity using Equation (5.17). Similarly, the 

fuzzy relation of concrete strength and flexural capacity of the section is obtained by 

the cross product of a column vector of concrete strength and row vector flexural 

capacity using Equation (5.18). Then finally, from Equation (5.19) the design 

optimization can be decided from the fuzzy composition of two relations. Using a 

similar procedure of fuzzy concepts, the level of time-dependent performance of the 

structure can also be evaluated. 


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0.60    0.60     0.60     0.60     0.52

0.62    0.934   0.934   0.934   0.52

x 0.62    0.94     1.00     0.94     0.52

0.62    0.934   0.934   0.934   0.52

0.60    0.60     0.60     0.60     0.52

st RR A M



 




 
 
 
 
 
 



; 

0.60   0.60   0.60   0.60  0.52

0.62   0.80   0.80   0.80  0.52

x 0.62   0.94   1.00   0.94  0.52

0.62   0.80   0.80   0.80  0.52

0.60   0.60   0.60   0.60  0.52

ck RS F M

 
 
 
  
 
 
 
 

 

0.60   0.60   0.60   0.60  0.52

0.62   0.80   0.80   0.80  0.52

0.62   0.94   1.00   0.94  0.52

0.62   0.80   0.80   0.80  0.52

0.60   0.60   0.60   0.60  0.52

D R S

 
 
 
   
 
 
  

 is fuzzy composition 

The membership function of input variables and the fuzzy composition matrix 

are closely related. When the degree of membership approaches unity the design is good 

and the degree of membership approaches zero (0) design becomes poor. For a single 

-cut there is one lower and one upper bound of both input variables and output 

variables except for 1,   which has a single value. If cut   approaches zero (0), the 

lower bound of the input variable is very small and the performance of the structure 

becomes unsafe. For example, for the input variables, a concrete strength of 0.6/23, and 

the steel area of 0.6/902.96 the capacity of the section is 141.13 kNm , which is very 

small compared with the demand of the section. The upper bound of the section’s 

performance is larger than the core value leads to a safe section but it leads to over-

strength deign and the economy can be under question.  For example, the 0.6/27 

concrete strength and 0.6/1601.15 steel area are the input variables, and the capacity of 

the section becomes 237.42 kNm , whose membership is 0.52, which is significantly 

larger than the demand of the section; consequently, the section becomes uneconomical. 

Except for the core value of the structural performance, the other membership degrees 

have both lower and upper bounds of the section capacity.  


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However, the degree of membership of the lower bound approaches to unity, 

the capacity is less than the demand of the section but, the structure will not collapse 

because the reinforced concrete structure fails after attaining its possible plastic 

mechanisms. In optimum design, the combination of concrete strength with 

membership degree 0.6 and steel area with a membership degree of unity both the lower 

and upper bound of flexural capacity are close to the demand of the section. This implies 

and strengthens the principle that the capacity of a singly reinforced section governed 

by steel and wise consideration of fuzzy interval for a reasonable solution.   

 Performance Evaluation of RC Structure Using Fuzzy Set Theory  

All the possible combination of input variables (concrete strength in N/mm2 and area 

of reinforcement in mm2) with their respective membership function and the flexural 

capacity in kNm of the reinforced concrete beam section is represented in Table 5.2. 

The flexural capacity of the section is obtained by using Equation (4.5). 

Table 5.2: Membership function, the fuzzy interval of input variables, and the section 

capacity 
Material Membership  

function 

Interval Flexural capacity 

Interval of section 

Membership of 

flexural capacity 

Concrete 0.6 [23, 27] [141.13, 230.81] [0.62, 0.62] 

Steel  0.6 [902.96, 1601.15] [143.23, 237.42] [0.64, 0.52] 

Concrete 0.6 [23, 27] [194.21, 208.58] [0.93, 0.96] 

Steel  0.934 [1300,1415.15] [198.56, 213.74] [0.95, 0.89] 

Concrete 0.6 [23, 27] 
[204.06, 208.96] [0.98, 0.95] 

Steel 1 [1378.56, 

1378.56] 

Concrete 0.8 [24, 26] [141.72, 232.67] [0.63, 0.60] 

Steel  0.6 [902.96, 1601.15] [142.77, 235.97] [0.63, 0.54] 

Concrete 0.8 [24, 26] [195.43, 210.03] [0.94, 0.94] 

Steel  0.934 [1300,1415.15] [197.60, 212.60] [0.95, 0.90] 

Concrete 0.8 [24, 27] 
[205.44, 208.96] [0.99, 0.97] 

Steel  1 [1378.56, 

1378.56] 

Concrete 1 [25, 25] 
[206.71, 206.71] [1, 1] 

Steel  1 [1378.56, 

1378.56] 

Note that, in concrete steel combination, the interval of section capacity and 

membership function the first row and the second row of each combination rather than 

a membership grade is unity was determined by considering the lower bound and the 

upper bound of concrete strength, respectively. 
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CHAPTER 6  

TIME-DEPENDENT FAILURE POSSIBILITY ANALYSIS 

 

6.1 Introduction 

This chapter mainly presents the basic concepts of time-dependent failure possibility, 

estimation of possibilistic safety index, and finally estimation of time-dependent failure 

possibility. 

6.2  Basic Concepts of Time-Dependent Failure Possibility  

The time-dependent failure possibility is the possibility of performance less than zero 

under fuzzy uncertainty in a specified time interval. The failure possibility is defined as 

the maximum membership function of the performance of all possible constraints at 

which 0Gf
   (Tang et al. 2014; Zhangchun and Zhenzhou 2014). The method of 

failure possibility evaluation depends on the type of MF selected for structure 

performance. As membership functions are complex, the computational cost of the 

failure possibility analysis increases and leads to inaccurate results. For instance, 

pseudo exponential, and general bell membership functions lead to high computational 

cost and inaccurate results, whereas the triangular membership functions lead to simple 

failure possibility analysis such as simple interpolation or bisection method that has a 

low computational cost and gives accurate results.   

 

  

 

 

 

 

  

 

 

 

    

 

   

 

 

Figure 6.1: The relationship between fuzzy intervals of performance, membership 

                    function of performance and the failure possibility index 
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where: ( )
lG   and ( )

uG   
are the lower and upper bounds of ( )G  , which is cut   of 

( , )G X t ; ( , )jG X t  is the performance of a specified constraint; Gf
  is the lower bound 

of GF


 which is cut   of GF  and  f
 
is the failure possibility of the structure 

As shown in Figure 6.1 the performance of structure less than zero, which is 

indicated in part A  (hatched), and greater than zero is indicated in part B . Any 

combination of input variables, output responses, and performance of different 

constraints in part A  leads to failure of the structure whereas, in part B , these 

combinations give reliable (safe) structure and similarly, the interface that separate two 

parts A  and B  the combination of parameters yield 0P  , at which the safety of the 

structure ceases or attains limit state.  

Suppose that  1 2 3, , ,..., mX X X X X
 
is the fuzzy input variables with the MF of 

 
iX x  1,2,...,mi  . Assume that the time-dependant performance (TDP) of the thj  

constraint of the structure is given by ( , )jG X t , which is a function of the fuzzy input 

variables Y  and the time t . In the structure system, the presence of fuzzy uncertainty 

of input variables (Fan et al. 2019) also propagates to the output responses and 

performance of the structure by the function relationship between the input variables, 

output responses, and performance by extension principle. The MF   1,2,...,
jG g j n 

 

of the structure performance can be evaluated by using the optimization algorithm.  

In the study, the time-dependent performance of different constraints, i.e., 

flexure, shear, deflection, and crack of the beam subjected to sustained load, corrosion, 

creep and shrinkage have been performed analytically to check whether the beam is 

safe using Equation (3.4). Since deterioration of material properties and variation of 

action lead to the imprecision of data that possesses fuzziness. The fuzzy uncertainty of 

input variables propagates to the output response; eventually, the output responses and 

performances are fuzzy variables. 
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Table 6.1: Time-dependent resistance, action, limit values and performance of the RC beam 

Time 
(year) 

Resistance Action Action effects Limiting values Performance 
Flexure 
(kNm) 

Shear 
(kN) 

Flexure 
(kNm) 

Shear 
(kN) 

Deflection 
(mm) 

Crack 
(mm) 

Deflection 
(mm) 

Crack 
(mm) 

Flexure 
(kNm) 

Shear 
(kN) 

Deflection 
(mm) 

Crack 
(mm) 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (2)-(4) (3)-(5) (8)-(5) (9)-(7) 

0 218.99 122.71 72.00 48.00 3.32 0.00 24.00 0.30 146.99 74.71 20.68 3.00 

5 218.99 122.71 206.02 118.77 22.32 0.23 24.00 0.30 12.97 3.94 1.68 0.07 

10 218.99 122.71 206.08 118.81 22.87 0.23 24.00 0.30 12.91 3.90 1.13 0.07 
15 218.99 122.03 206.27 118.94 23.05 0.23 24.00 0.30 12.72 3.09 0.95 0.07 
20 203.77 106.03 206.42 119.04 23.43 0.27 24.00 0.30 -1.86 -13.00 0.57 0.03 

25 189.42 95.18 206.58 119.14 24.37 0.34 24.00 0.30 -16.63 -23.97 -0.37 -0.04 

30 174.89 85.63 206.74 119.25 25.41 0.40 24.00 0.30 -31.52 -33.62 -1.41 -0.10 

35 160.31 77.41 206.93 119.38 26.58 0.45 24.00 0.30 -46.44 -41.97 -2.58 -0.15 

40 145.81 70.50 207.06 119.46 27.88 0.51 24.00 0.30 -61.18 -48.96 -3.88 -0.21 

45 131.52 64.92 207.13 119.51 29.43 0.57 24.00 0.30 -75.60 -54.59 -5.43 -0.27 

50 117.54 60.63 207.18 119.44 31.18 0.64 24.00 0.30 -89.64 -58.92 -7.18 -0.34 

The TDFP analysis can be performed by fuzzy operations and numerical algorithm 

based on possibility theory as follows: 

 
    

    

,
0

             sup 0, ,

j s e
jf t t t

j s e

Poss G t

G t t t t






 

  
 (6.1) 

where  ,j s ef t t t


  is the TDFP at the time instant  ,s et t t ;  Poss   is the possibility of 

the event;  G t  is the TDP of the thj  constraint;  sup   represents the supremum of 

the set and   is the membership degree of the performance at the time instant 

[ , ]s et t t  

The constraints of the concrete structures depend on material properties that 

deteriorate with time and the structural system (e.g., member arrangement and support 

condition, span length of the structural members, and types of load). Due to 

environmental factors such as corrosion, creep and shrinkage, and residual stress from 

improper utilization, the performance of the structure deteriorates with time. These 

reduced performances of the structure with time ( , )G X t  increase the failure possibility 

with time. Figure 6.2 shows the increment of TDFP of the structure.  This shows, the 

service life of a structure increases the deterioration of material properties, and creep 

and shrinkage increases, eventually the resistance of the structure decreases. 

Consequently, the performance of the structure decreases with a time that increases 

failure possibility. To show the increment of the TDFP, the distribution of the MF 

 
jG g  of the structure performance is arranged in descending order of time because 
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the performance reduction increase with time (i.e., negative part), and failure possibility 

increases with time.  

Similar to the MF of the fuzzy variables, the value of the TDFP of the structure 

should satisfy the inequality [ , ]0 1
j s ef t t t   . For boundaries of the time interval, i.e., 

[ , ]s eit t  and [ , ]s ejt t  satisfy the inequality ei ejt t , the time-dependent failure possibility  

[ , ]s eift t t   and [ , ]s ejft t t   should satisfy the following inequality (Fan et al. 2019). 

 
[ , ] [ , ]s ei s ejft t t ft t t    for   ei ejt t  (6.2) 

Therefore, for every instant of time 1 2 3,[ , , ..., ]i nt t t t t , the performance of the 

structure ( )( 1,2,..., )iG t i n  satisfies the inequality 1 2( ) ( ) ,..., ( )nG t G t G t   ; 

consequently, the TDFP has to satisfy the following inequality. 

 
       1 2 3

,....,
nft ft ft ft        (6.3) 

 

 

 

 

 

 

 

 

where, l
j iG t  and u

j iG t  are the lower and upper bounds of ( )jG t
 

the interval, 

respectively; 
( ) ( )

jG t g  is the MF of the thj  constraint performance at the time t ; (i)jf t  

is the failure possibility of the thj  constraint at the time instant ( )t i ; m
jG  is the nominal 

value of the thj  constraint, and 1 2 3,[ , , ..., ]nt t t t  represents the descending order of the time 

set.  

 
 
 

 
 …       

                             
 
 

 
 

 
 

 
   …      

  

                                                                    
                                              

                                              

                                              

                                              

                                              

                                              

Figure 6.2: The relationship between TDFP and MF of the performance in the time interval 
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6.3  Estimation of Possibilistic Safety Index  

Form the definition of failure possibility f
 
expressed mathematically in Equation 

(6.1): if the specific constraint’s performance with time satisfies the inequality  
m0
j t

G  

then   1
f t

  , which implies complete failure (unreliable); if   0 , tl
j s eG t t   then 

 ,
0

j s ef t t t



  implies no failure (reliable), and if 

        m, t , t , tl
j s e j s e j s eG t t G t t G t t     , the time-dependent failure possibility 

 ,j s ef t t t


   can be obtained from Equation (6.4) (Tang et al. 2014). 

 

 

      

m

0                                              if  0 

0, 0,1     if  0  

1                                              if  0

G t

m
f jG t G t

j

f

Poss f f G

G



   



 

 



    

 


 (6.4)                                                               

To estimate the failure possibility of the structure, the performance function should 

satisfy the inequality  0 m

G t
f G   and its solution obtained from an expression:  

  ,t
0

j s eG t t
f 


  (6.5) 

To obtain TDFP  ,j s ef t t t


  from Equation (6.5), one should first determine the 

lower bound  ,tj s eG t t
f 


 of 

 G t
F


 which is cut   of  jG t

F . The performance function 

may or may not be linear, depending on input variables and type of constraints. For a 

reinforced concrete structure involving fuzzy input variables, the output variables (i.e., 

responses) obtained from Equation (6.5) are nonlinear. For instance, flexural, shear, 

deflection, and crack performances of the reinforced concrete structure possess 

nonlinearity depending on material properties, loading type, and structure system. The 

nonlinearity of performance complicates the solution methods, consequently, increases 

computational cost.  

In general, the time-dependent performance, i.e.,    ,jG t G X t  is a function 

of the fuzzy input variables X  and the time t . Hence,  jG t  is also a fuzzy variable 

because of fuzzy uncertainty propagation with time through the extension principle. 

Eventually, the MF of the performance  jG t  is also time-dependent. Similar to time-

independent failure possibility (TIFP), the TDFP is the maximum failure possibility of 
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the structure over a specified time interval [ , ]s et t t . If the membership degree of TDFP 

is greater than  ,tj s ef t t


 , then  jG t  always could be nonnegative over the time interval 

[ , ]s et t t , which guarantees the reliability of the structure. For a specific time instant t

, we could have the time-invariant material properties, sectional dimensions, and 

loading. Therefore, the performance  jG t  of the structure system becomes time-

invariant. Thus, based on the extreme value transformation method, the minimum 

performance  minG X  is considered to evaluate the time-dependent failure possibility 

f  at a specific time interval [ , ]s et t t . Therefore, the TDFP is equivalent to the TIFP 

of the minimum performance function  min
[ , ]s et t t

G Y


 of    ,jP t P Y t  estimated from the 

numerical algorithm (Fan et al. 2019): 

 
   

 
 

 
   

min,t
,

,

, 0, ,

           sup Y, 0, 0.1

j s e

s e

s e

s ef t t
t t t

t t t

Poss G X t t t t

Min G t



 






  
    

  

 
   

 

 (6.6) 

From the time-dependent performance analysis, we can have the lower bound 

 ,tj s eG t t
f 


, the core value  

m

,ts ejt t
G

 ,
 
and the upper bound  ,tj s eG t t

f 


 of the structural 

performance. To generate a triangular MF of performance obtained from Equation 

(6.5), the lower bound and nominal value of a defined constraint is sufficient. After 

obtaining the lower bound, whose value is less than zero at a specified time instant, and 

the nominal value of performance function, the failure possibility  ,tj s e
f t t




 is computed 

by using the optimization algorithm by setting    ,t ,t
0f

j s e j s eG t t G t t
f f

 

 
  . Because a 

membership function of performance for a specific constraint is continuous from lower 

bound to a core value, consequently f  is a continuous function defined on the 

membership interval  ,a b , with  f a  and  f b  of opposite sign. The intermediate 

value theorem denotes that a number c  exists in  ,a b  with   0f c  . In this procedure, 

there is only one possible root in the interval  ,a b  because there is only one point at 

which the MF crosses the ordinate axis. 



81 
 

From the intermediate value theorem (Burden and Faires 2011); (Hoffman 

2001), the numerical analysis is employed to obtain the solution for Equation (6.4). The 

procedure is summarized as follows:  

i. Initialization: set 0
1 0   and 0

2 1  , and terminating condition as 81x10   

ii. Iteration 1: compute  

0
1

,tj s eG t t
f



  and  

0
2

,tj s eG t t
f



 , and if     

0
2 1

,t,t
0

jj s ej s e
GG t tG t t

f f m
 


    

holds, the structure is considered as unreliable (complete failure), no iteration is 

required and the failure possibility of the structure can be taken as  ,t
1

j s ef t t



 , 

else, evaluate  
 0 0

1 2 2

,tj s eG t t
f

  


 , and go to the next step. 

iii. Iteration   1k k  : If  

1
1

,t

k

j s eG t t
f

 

  and  

1 1
1 2( ) 2

,t

k k

j s eG t t
f

   

  have the same sign, set 

 1 1
1 1 2 2k k k      , and 1

2 2
k k   . Otherwise, update the values as 1

1 1
k k    

and  1 1
2 1 2 2k k k     . Go to the next step. 

iv. Terminating condition: calculate 1 1
2 1
k k   , and if the absolute value is less 

than or equal to the stopping condition that set in the initialization step holds, 

stop the iteration, and the time-dependent failure possibility  ,tj s ef t t


  can be 

estimated as 
   1 1

1 2,t
2;

j s e

k k

f t t
   


   else, go to step 3 and carry out the 

iterative procedure until the terminating condition satisfied.  

6.4 Estimation of Time-Dependent Failure Possibility 

To perform the TDFP analysis, the estimation of the nominal value and the lower bound 

of performance l
j iG t , which is less than or equal to zero, of the corresponding constraint 

at a specified time interval [ , ]s et t t  carried out. From the analysis, the nominal value 

of flexure is 206.82 kNm , the shear force is 111 kN , as per EC2  the nominal value of 

deflection is a limit deflection of the horizontal element, / 250 24 mmL  , and the limit 

crack width is 0.3 mm. The result of TDFP of each constraint at the specified time 

interval [ , ]s et t t  is shown in Table 6.2 and Figure 6.3 using the triangular MF, which 

is simple to apply.  
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The TDFP of the concrete structure increases with time due to deterioration of 

material properties and loss of steel cross-section due to corrosion, reduction of bending 

stiffness, and additional action from creep and shrinkage that reduces the performance 

of the structure. As shown in Figure 6.2, for each MF, a point at which it crosses the 

ordinate axis is taken as a failure possibility f  for each time instant [ , ]s et t t . For 

different constraints of the structure, the membership function of performance could be 

different. Therefore, each constraint has different membership functions and time-

dependent failure possibilities shown in Figures 6.2 and 6.3, respectively.  

The failure possibility of the structure is the maximum failure of all possible 

constraints in its design life as expressed in Equation (6.7) and its result is represented 

in the last column of Table 6.2 

 
 

 
 

 
 

 
 

 
min min min min

, , , ,

,t
0, 0, 0, 0

s e
t t t t t t t t t t t ts e s e s e s e

G G G Gft t
Max flexure shear deflection crack    

   



 
     

 

 (6.7) 

                    Table 6.2: TDFP for different constraints of the RC beam 

Time instant (yr.) 

        [ , t ]s et t  

FP of constraints 

 ( [ ,t ]j s ef t t  ) 

FP  of structure

[ ,t ]s ef t t   

Flexure shear Deflection Crack Max( [ ,t ]j s ef t t  ) 

[0, 0] 0 0 0 0 0 

[0, 5] 0 0 0 0 0 

[0, 10] 0 0 0 0 0 

[0, 15] 0 0 0 0 0 

[0, 16] 0 0.00946 0 0 0.00946 

[0, 20] 0.01209 0.11718 0 0 0.11718 

[0, 22] 0.03742 0.15807 0 0.02000 0.15807 

[0, 24] 0.06895 0.19726 0.00833 0.10000 0.19726 

[0, 25] 0.08297 0.21581 0.01542 0.13333 0.21581 

[0, 30] 0.15400 0.30282 0.05875 0.33333 0.33333 

[0, 35] 0.22454 0.37803 0.10750 0.50000 0.50000 

[0, 40] 0.29615 0.44099 0.16167 0.70000 0.70000 

[0, 45] 0.36529 0.49170 0.22625 0.90000 0.90000 

[0, 47] 0.39295 0.50872 0.254167 0.99333 0.99333 

[0, 48] 0.40654 0.51656 0.26875 1.00000 1.00000 

[0, 50] 0.43342 0.53062 0.29917 1.00000 1.00000 

For the specified site condition and corrosion current density 20.75 μA/cm , the 

reinforced concrete beam is unsafe from the 16th year in its lifetime due to the 

performance of the beam against shear criterion, the other criteria follow, as shown in 
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Table 6.2. The susceptibility of the RC beam section to the shear failure over the 

flexural criteria is due to the smaller concrete cover of the links that initiate the 

corrosion of links before longitudinal reinforcement (ES EN 1992-1-1 2004; IS 456 

2000), and shear performance highly depends on the area and yield strength of links, 

the strength of concrete, and the dowel action of the longitudinal reinforcements.   

 

Figure 6.3: TDFP for different constraints of the reinforced concrete beam 

The TDFP as shown in Figure 6.3 and Table 6.2, the failure initiation time and 

the degree of failure of each constraint were different due to the functional relationship 

between input variables and the performance of the structure.  However, each constraint 

owns its MF of the performance, only the worst-case governs the failure possibility of 

the structure. For example, the structure is safe against flexure, deflection, and crack 

before the 19.5th year of its design life whereas, the structure failure against shear 

initiates in the 15.8th year of its design life. The reinforced concrete beam, which is 

considered in this study, failure is governed by shear stress up to the 29th year, and then 

by crack failure until the design life. For a specific time instant [ , ]s et t t  for instance 

[0, 25], the failure possibility f  of the RC beam against shear is 0.21581, flexure is 

0.08297, deflection is 0.01542, and crack is 0.13333 for the specified environmental 

factors. Therefore, in the 25th year, the possibility of failure is 0.21581, which is 

governed by shear stress. Similarly, for a specific time instant [0, 40], the failure 

possibility f   of the RC beam against shear is 0.44099, flexure is 0.29615, deflection 

is 0.16167, and crack is 0.70000 for the specified environmental factors. Therefore, in 

the 40th year of the structure, the possibility of failure is 0.70000, governed by crack, 
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i.e., due to the combined effect of applied load and the corrosion products. The 

complete failure of the RC beam, considered in this study, occurs in the 48th year.  

6.5 Validation of the Study 

The time-invariant performance analysis methods expressed in standard codes and 

other literature do not consider the deterioration of material properties and load with 

respect to time that contrasts the real problem. In this study, the expressions with time-

variant have been developed to account for the deterioration of the input variables and 

variation load over time and compared with the relevant literature. To perform the time-

variant performance of the structure, site data, material properties, and sectional 

dimension of the RC beam using the EC2 Appendix B, a time-variant creep coefficient 

and shrinkage strain model has been established. The corrosion data has been. The 

baseline values of corrosion parameters for parametric studies proposed by (Enright 

and Frangopol 1998) and adopted by (Kliukas et al. 2015; Chehade et al. 2018) has 

been applied in this study.  

Possibility analysis applies to the system problem processes epistemic 

uncertainty. Zadeh (1978);  Kai-Yuan et al. (1991, 1993 & 1995) introduced the 

possibility theory and fuzzy-state assumptions to replace conventional probability 

theory and binary-state assumptions to handle imprecise information and small sample 

size of the real problem. The failure possibility analysis was introduced by (Zhangchun 

and Zhenzhou 2014; Tang et al. 2014) to perform design optimization of mechanical 

structure based on the possibility safety index method. Besides, the time-dependent 

failure possibility analysis introduced by (Fan et al. 2019) and several numerical 

examples and steel beam subjected to time-variant load and corrosion were used to 

verify the rationality of the established method. This study is carried out based on 

theories and examples articulated in literature and the results obtained were 

crosschecked using Excel Sheet and Matlab.   
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CHAPTER 7  

CONCLUSIONS AND RECOMMENDATIONS 

7.1 Summary 

The study was carried out by reviewing literature in the area of structural reliability to 

identify the causes and types of uncertainties. Further, the literature conducted on 

factors accelerating failure possibility, and reliability analysis methods. After 

identification of time-variant uncertainty of input variables and its propagation to the 

output performance, the time-dependent failure possibility analysis of the reinforced 

concrete beam was performed. To achieve this, four specific objectives were set as 

presented in Section 1.3 and performed through the methodology provided in Chapter 

3.     

Uncertainties specifically emerging in environmental dynamics are difficult to 

identify, predict, evaluate, and mitigate. The effects of such uncertainties need to be 

examined for decision-making so as to minimize the negative impacts. However, 

different types of uncertainties complicate the assessment of safety levels based on 

predictions, and in civil engineering structures, it is addressed by means of safety 

factors that are necessarily derived based on precise information or data. Nevertheless, 

all information may not be precise or complete, hence probability theory may not be 

handy to treat such uncertainties. This paper considers fuzzy uncertainties characterized 

by membership functions to handle incomplete or imprecise data, which leads to the 

assessment of safety in terms of failure possibility.  

To carry out failure possibility analysis, firstly, the possible failure modes of the 

structure such as flexure, shear, deflection, and crack were identified and their time-

dependent performance is estimated with an appropriate numerical model that varies 

with time. If the nominal value of collapse criteria and the limit value of the 

serviceability criteria are below applied stress and the stress effects, the failure 

possibility of the structure is zero. Therefore, the failure possibility evaluation is 

performed when the performance function is less than or equal to zero.   
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7.2 Conclusions 

The results indicate that the performance of the reinforced concrete beam significantly 

decreases with the increase of corrosion rate, creep, and shrinkage in its design life, 

whereas the action on the structure increases due to creep and shrinkage. As the 

corrosion rate increases the diameter loss of reinforcement and strength loss of concrete 

increases, consequently the flexural and shear resistance decrease, whereas the 

deflection and crack increase. The empirical expressions provided in design codes 

estimate both deflection and the crack width constant, but in a real problem, both 

constraints of the reinforced concrete structure are progressive and significantly 

increase with time due to environmental factors. For the considered beam, the long-

term deflection is 21.99 mm, the crack width is 0.233 mm, and the design load is 43.2 

kN/m under normal conditions, while the deflection, crack, and the design load 

increased to 31.18 mm, 0.637 mm, and 46.04 kN/m (increased by 6.57 % of the factored 

load), respectively at the end of design life due to corrosion, creep and shrinkage. 

The fuzzy uncertainty treats the partial belonging of the parameter to handle 

imprecise information. For example, the concrete strength in its design life has declined 

from 25 N/mm2 to 20.167 N/mm2, which lost its degree of membership to about zero 

(0), but this zero degree of membership does not mean that the concrete has no strength; 

rather its strength has fallen fully to the next lower grade given in EC2. Likewise, the 

steel area deteriorates from 1520.31 mm2 to 766.88 mm2, whose degree membership at 

the end of its design life becomes 0.48555. This degradation of material properties and 

variation load with time propagates to the performance of the structure.   

The failure possibility overshoots due to deterioration of material properties and 

cross-section caused by environmental factors such as corrosion, creep and shrinkage, 

inappropriate consideration of mathematical and structural models. Analogous to the 

series circuit system, the failure of a reinforced concrete structure occurs even due to 

the failure against a single constraint in its design life. Among the constraints, the 

performance of structure against shear force, whose failure possibility initiates early 

and has high intensity, governs the service life whereas the deflection contributes the 

least for specified environmental factors. The partial failure of the concrete beam is 

governed by shear stress till the 25th year, then governed by crack and the complete 

failure occurs in the 48th year.  The majority of failure intensity is caused by corrosion 
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that deteriorates both concrete and steel grade and diameter of reinforcing bars whereas, 

creep and shrinkage that reduce bending stiffness and induce extra deflection. Hence, 

imprecise uncertainties originating from the environmental factors that cause corrosion 

need to be appropriately characterized for uncertainty quantification. 

7.3 Practical Implications 

The performance of structure degrades with time due to corrosion from aggressive 

chemical attack, creep, shrinkage, and inappropriate utility. Therefore, the time-

dependent performance evaluation of the structure gives important inputs to know the 

level of damage and decide the maintenance strategy for preventing the premature 

failure of structures due to environmental effects. 

From the extension principle approach, a straightforward approach, the fuzzy 

set theory is applicable in design optimization or performance level evaluation of 

reinforced concrete structure in which both system safety and economic requirements 

can be fulfilled when the degree membership of input variables approaches unity. 

However, the computational cost is high the inverse reliability analysis is used for 

design optimization based on the possibility safety index.  

7.4  Recommendations 

The concrete structure is safe against collapse state; excessive crack width imparts the 

serviceability of the structure in terms of the loss of water tightness, decay of aesthetic 

value, and damage of protection against corrosion of reinforcement. Therefore, during 

the construction of concrete structures to be built in the area of aggressive chemicals 

(e.g., the underground water tank and offshore structures), the treatment of steel, 

improving the quality of concrete, and providing adequate concrete cover is required to 

control corrosion. Similarly, excessive deflection affects the serviceability in terms of 

inducing extra moment and crack, deny occupants comfort, deny operation of 

mechanical equipment (if any), and may stagnate water in a low-lying area. Thus, 

appropriate design and detailing is required to improve the serviceability. 

In this study, the RC beam with the flexure, shear, deflection, and crack 

constraints with material and load uncertainty due to corrosion, creep, and shrinkage 

considered. Hence, uncertainty from other environmental loads (e.g., earthquake and 



88 
 

wind), soil-structure interaction, 3D structures, i.e., structure with multiple constraints 

need further investigation. Because, there is no specific rule to generate membership 

functions that leads membership function itself to fuzzy, thus, fuzzy variables with an 

n-type fuzzy need to be investigated for accurate results.   

The spalling o concrete cover leading to the reduction in cross-sectional area of 

member, but no investigation was done before to quantify the spalling size of concrete. 

Therefore, in further studies it is recommended to consider the spalling of concrete 

cover to obtain more accurate results. In addition, the phenomena of creep and 

shrinkage leads to nano/micro-cracks formation in RC and thus could accelerate the 

corrosion of the steel in concrete. In this study the variables involved in the above-

mentioned two phenomena are considered as statistically independent due to lack of 

related work (either  analytical or experimental), therefore, this area to be addressed 

in further studies. 
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Appendix-A: Time-variant creep and shrinkage model 

Cement type: Class N       Age of concrete at end of curing: 7 daysst  . 

15.9 T C                      Age of concrete at loading: 
0 7 dayst  , 

60.7 %RH                     Concrete characteristic strength: 25 MPackf  

Three parts of cross-section perimeter exposed to drying. 

The coefficient hk  depending on the notional size 0h  calculated as a function of 0h  in accordance with 

EN1992-1-1 Table 3.3. With linear interpolation, the following value obtained hk  = 0.82. The adjusted 

value of concrete age at loading t0 by taking into account both contributions of ambient temperature and 

cement type is 0t  = 5.756 days. 

 

Description Formula Estimated value 
Coefficients and  that consider the influence of concrete 
strength: 

 
7

1
0.

35 / cmMPa f  ,  
0.2

2   35 / cmMPa f   

 
0.5

3  35 / cmMPa f   

1  1.042=  

2  1.012   

3  1.030   

Coefficient   depends on the cement type - 0   

Factor  accounts for the effect of relative humidity 3
01 (1 /100) / 0.1.RH RH h     1.641RH     

Coefficient  allows for the effect of concrete strength 0.5( ) 16.8 /cm cmf f   ( ) 2.925cmf   

Coefficient allows for the effect of concrete age at loading.    0.2
0 01/ (0.1 )t t     0 0.658t   

Coefficient depends on the RH
 
and 0h   

18
01.5[1 0.012 ]h +250 1500H RH     597.307=H  

Notional creep coefficient                      
0 0. ( ). ( )RH cmf t   

 

0 3.259   

 -  0, 1t    

Final creep coefficient  at infinite time  0 0 0( , ) . ,t t   

 

0( , ) 3.159t    

Coefficients depend on the cement type 

- 

1 4ds   

2 0.12ds   

Factor  accounts for the effect of relative  3
0  1.55[1 ( / ) ]RH RH RH  

 

 1.203RH 
 

Basic drying shrinkage 6
,0 1 2 00.85[(220 110. ).exp( . / )].10 .cd ds ds cm cm RHf f     

 

5
,0 45.43 10cd x   

Coefficient to describe the development of creep with time 

after loading 
  0.3

0 0 0, [( ) / ( )]t t t t H t t    

 

0( , ) 1t    

Autogenous shrinkage strain at infinite time   6( ) 2.5 10 10ca fck MPa     

 

  53.75 10ca     

Total shrinkage strain 
,0.cs h cd cak       5, 40.97 10cs st     

 

Time, t 

(day) 
 0,c t t  ( , )ds st t  ( , )as st t   0,t t   ,cs st t  

0 0.00000000 0 0.0000000 0.000000000 0.000000000 

7 0.10598482 1.004628 0.4108947 0.334491743 0.000384684 

200 0.672481995 0.998405 0.9408943 2.122376341 0.000402241 

400 0.773581515 0.999334 0.9816844 2.441449907 0.000404116 

600 0.825239784 0.999579 0.9925458 2.604485183 0.000404615 

800 0.857271907 0.999692 0.9965065 2.705579667 0.000404806 

1000 0.879228131 0.999757 0.9982082 2.774874268 0.000404894 

1200 0.895264539 0.999800 0.9990202 2.825485723 0.000404940 

1400 0.907509567 0.999830 0.9994376 2.864131453 0.000404967 

1600 0.917173988 0.999852 0.9996645 2.894632699 0.000404984 

1800 0.924999948 0.999869 0.9997935 2.919331697 0.000404995 

2000 0.931468682 0.999882 0.9998695 2.939747245 0.000405003 

2200 0.936906336 0.999893 0.9999157 2.956908668 0.000405008 

2400 0.941541982 0.999902 0.9999444 2.971538927 0.000405013 

2600 0.945541332 0.999910 0.9999628 2.984161014 0.000405016 

5
0
0

m
m

 

300 mm 

Beam 

cross-
section 
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2800 0.949027281 0.999917 0.9999747 2.995162789 0.000405019 

3000 0.952092924 0.999922 0.9999825 3.004838063 0.000405022 

3200 0.954810090 0.999927 0.9999878 3.013413532 0.000405024 

3400 0.957235096 0.999932 0.9999914 3.021066935 0.000405026 

3600 0.959412728 0.999935 0.9999939 3.027939615 0.000405027 

3800 0.961379048 0.999939 0.9999956 3.034145392 0.000405028 

4000 0.963163429 0.999942 0.9999968 3.039776958 0.000405030 

4200 0.964790032 0.999945 0.9999977 3.044910573 0.000405031 

4400 0.966278918 0.999947 0.9999983 3.049609549 0.000405032 

4600 0.967646883 0.999950 0.9999987 3.053926892 0.000405033 

4800 0.968908094 0.999952 0.9999990 3.057907320 0.000405033 

5000 0.970074590 0.999954 0.9999993 3.061588820 0.000405034 

5200 0.971156660 0.999955 0.9999995 3.065003871 0.000405035 

5400 0.972163157 0.999957 0.9999996 3.068180409 0.000405035 

5600 0.973101735 0.999959 0.9999997 3.071142593 0.000405036 

5800 0.973979049 0.999960 0.9999998 3.073911426 0.000405037 

6000 0.974800910 0.999961 0.9999998 3.076505250 0.000405037 

6200 0.975572419 0.999963 0.9999999 3.078940157 0.000405037 

6400 0.976298066 0.999964 0.9999999 3.081230326 0.000405038 

6600 0.976981826 0.999965 0.9999999 3.083388295 0.000405038 

6800 0.977627225 0.999966 0.9999999 3.085425195 0.000405039 

7000 0.978237404 0.999967 0.9999999 3.087350941 0.000405039 

7200 0.978815170 0.999968 1.0000000 3.089174393 0.000405039 

7400 0.979363042 0.999969 1.0000000 3.090903493 0.000405040 

7600 0.979883280 0.999970 1.0000000 3.092545383 0.000405040 

7800 0.980377925 0.999970 1.0000000 3.094106501 0.000405040 

8000 0.980848821 0.999971 1.0000000 3.095592666 0.000405041 

8200 0.981297639 0.999972 1.0000000 3.097009150 0.000405041 

8400 0.981725896 0.999973 1.0000000 3.098360743 0.000405041 

8600 0.982134974 0.999973 1.0000000 3.099651807 0.000405041 

8800 0.982526133 0.999974 1.0000000 3.100886318 0.000405042 

9000 0.982900526 0.999974 1.0000000 3.102067915 0.000405042 

9200 0.983259208 0.999975 1.0000000 3.103199928 0.000405042 

9400 0.983603148 0.999975 1.0000000 3.104285416 0.000405042 

9600 0.983933237 0.999976 1.0000000 3.105327189 0.000405042 

9800 0.984250296 0.999977 1.0000000 3.106327836 0.000405043 

10000 0.984555080 0.999977 1.0000000 3.107289746 0.000405043 

10200 0.984848290 0.999977 1.0000000 3.108215127 0.000405043 

10400 0.985130573 0.999978 1.0000000 3.109106021 0.000405043 

10600 0.985402528 0.999978 1.0000000 3.109964320 0.000405043 

10800 0.985664712 0.999979 1.0000000 3.110791782 0.000405043 

11000 0.985917642 0.999979 1.0000000 3.111590039 0.000405044 

11200 0.986161801 0.999979 1.0000000 3.112360611 0.000405044 

11400 0.986397636 0.999980 1.0000000 3.113104915 0.000405044 

11600 0.986625566 0.999980 1.0000000 3.113824270 0.000405044 

11800 0.986845982 0.999981 1.0000000 3.114519911 0.000405044 

12000 0.987059250 0.999981 1.0000000 3.115192992 0.000405044 

12200 0.987265712 0.999981 1.0000000 3.115844593 0.000405044 

12400 0.987465688 0.999981 1.0000000 3.116475725 0.000405044 

12600 0.987659480 0.999982 1.0000000 3.117087339 0.000405045 

12800 0.987847370 0.999982 1.0000000 3.117680327 0.000405045 

13000 0.988029624 0.999982 1.0000000 3.118255526 0.000405045 

13200 0.988206491 0.999983 1.0000000 3.118813725 0.000405045 

13400 0.988378207 0.999983 1.0000000 3.119355667 0.000405045 

13600 0.988544994 0.999983 1.0000000 3.119882053 0.000405045 

13800 0.988707061 0.999983 1.0000000 3.120393542 0.000405045 

14000 0.988864606 0.999984 1.0000000 3.120890758 0.000405045 
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14200 0.989017815 0.999984 1.0000000 3.121374291 0.000405045 

14400 0.989166865 0.999984 1.0000000 3.121844697 0.000405045 

14600 0.989311923 0.999984 1.0000000 3.122302504 0.000405046 

14800 0.989453147 0.999984 1.0000000 3.122748212 0.000405046 

15000 0.989590687 0.999985 1.0000000 3.123182294 0.000405046 

15200 0.989724686 0.999985 1.0000000 3.123605199 0.000405046 

15400 0.989855278 0.999985 1.0000000 3.124017354 0.000405046 

15600 0.989982593 0.999985 1.0000000 3.124419162 0.000405046 

15800 0.990106751 0.999985 1.0000000 3.124811010 0.000405046 

16000 0.990227869 0.999986 1.0000000 3.125193262 0.000405046 

16200 0.990346057 0.999986 1.0000000 3.125566268 0.000405046 

16400 0.990461420 0.999986 1.0000000 3.125930358 0.000405046 

16600 0.990574058 0.999986 1.0000000 3.126285848 0.000405046 

16800 0.990684067 0.999986 1.0000000 3.126633040 0.000405046 

17000 0.990791538 0.999986 1.0000000 3.126972221 0.000405046 

17200 0.990896557 0.999987 1.0000000 3.127303665 0.000405046 

17400 0.990999207 0.999987 1.0000000 3.127627633 0.000405046 

17600 0.991099569 0.999987 1.0000000 3.127944377 0.000405047 

17800 0.991197716 0.999987 1.0000000 3.128254134 0.000405047 

18000 0.991293723 0.999987 1.0000000 3.128557134 0.000405047 

18200 0.991387657 0.999987 1.0000000 3.128853595 0.000405047 

18400 0.991479587 0.999988 1.0000000 3.129143727 0.000405047 

18600 0.991569574 0.999988 1.0000000 3.129427730 0.000405047 

18800 0.991657680 0.999988 1.0000000 3.129705796 0.000405047 

19000 0.991743964 0.999988 1.0000000 3.129978110 0.000405047 

19200 0.991828481 0.999988 1.0000000 3.130244848 0.000405047 

19400 0.991911285 0.999988 1.0000000 3.130506181 0.000405047 

19600 0.991992427 0.999988 1.0000000 3.130762269 0.000405047 

19800 0.992071958 0.999988 1.0000000 3.131013271 0.000405047 

20000 0.992149924 0.999989 1.0000000 3.131259335 0.000405047 
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Appendix-B: Time-variant material properties 

Time 

(year) 
( )D t  

(mm) 

( )A t   

(mm2) 

( )yf t  

(N/mm2) 

( )wsD t    

(N/mm2) 

( )wsA t    

(mm2) 

( )ywf t  

(N/mm2) 

( )ckf t  

(N/mm2) 

( )cmE t  

(GPa) 

0 22.000 1520.531 460.000 8.000 100.531 250.000 25.000 31.000 

1 22.000 1520.531 460.000 8.000 100.531 250.000 25.000 31.000 

2 22.000 1520.531 460.000 8.000 100.531 250.000 25.000 31.000 

3 22.000 1520.531 460.000 8.000 100.531 250.000 25.000 31.000 

4 22.000 1520.531 460.000 8.000 100.531 250.000 25.000 31.000 

5 22.000 1520.531 460.000 8.000 100.531 250.000 25.000 31.000 

6 22.000 1520.531 460.000 8.000 100.531 250.000 25.000 31.000 

7 22.000 1520.531 460.000 8.000 100.531 250.000 25.000 31.000 

8 22.000 1520.531 460.000 8.000 100.531 250.000 25.000 31.000 

9 22.000 1520.531 460.000 8.000 100.531 250.000 25.000 31.000 

10 22.000 1520.531 460.000 8.000 100.531 250.000 25.000 31.000 

11 22.000 1520.531 460.000 8.000 100.531 250.000 25.000 31.000 

12 22.000 1520.531 460.000 8.000 100.531 250.000 25.000 31.000 

13 22.000 1520.531 460.000 8.000 100.531 250.000 25.000 31.000 

14 22.000 1520.531 460.000 7.935 98.914 249.999 25.000 31.000 

15 22.000 1520.531 460.000 7.734 93.946 249.978 25.000 31.000 

16 22.000 1520.531 460.000 7.532 89.107 249.931 25.000 31.000 

17 22.000 1520.531 460.000 7.330 84.395 249.860 25.000 31.000 

18 22.000 1520.531 460.000 7.128 79.811 249.762 25.000 31.000 

19 21.881 1504.114 459.998 6.926 75.355 249.64 20.307 29.587 

20 21.679 1476.493 459.989 6.724 71.027 249.491 20.303 29.584 

21 21.477 1449.127 459.971 6.523 66.827 249.318 20.300 29.584 

22 21.275 1422.018 459.945 6.321 62.755 249.119 20.296 29.582 

23 21.074 1395.165 459.910 6.119 58.811 248.894 20.292 29.582 

24 20.872 1368.567 459.867 5.9179 54.995 248.644 20.288 29.578 

25 20.670 1342.226 459.815 5.715 51.307 248.369 20.284 29.578 

26 20.468 1316.140 459.755 5.513 47.747 248.068 20.28 29.576 

27 20.266 1290.311 459.686 5.311 44.315 247.741 20.275 29.573 

28 20.064 1264.737 459.608 5.110 41.011 247.389 20.271 29.571 

29 19.863 1239.419 459.522 4.908 37.835 247.012 20.267 29.572 

30 19.661 1214.358 459.428 4.706 34.787 246.609 20.263 29.572 

31 19.459 1189.552 459.325 4.504 31.867 246.181 20.258 29.590 

32 19.257 1165.003 459.213 4.302 29.075 245.727 20.254 29.588 

33 19.055 1140.709 459.093 4.100 26.411 245.248 20.25 29.585 

34 18.853 1116.671 458.965 3.899 23.875 244.743 20.245 29.583 

35 18.651 1092.889 458.828 3.697 21.467 244.213 20.241 29.565 

36 18.450 1069.364 458.682 3.495 19.187 243.658 20.236 29.564 

37 18.248 1046.094 458.528 3.293 17.034 243.077 20.231 29.561 

38 18.046 1023.080 458.365 3.091 15.010 242.470 20.227 29.559 

39 17.844 1000.322 458.194 2.889 13.114 241.838 20.222 29.558 

40 17.642 977.820 458.015 2.688 11.346 241.181 20.217 29.557 

41 17.440 955.574 457.827 2.486 9.706 240.498 20.212 29.556 

42 17.239 933.584 457.630 2.284 8.194 239.789 20.208 29.555 
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43 17.037 911.850 457.425 2.082 6.809 239.056 20.203 29.551 

44 16.835 890.372 457.211 1.880 5.553 238.296 20.198 29.550 

45 16.633 869.150 456.989 1.678 4.425 237.512 20.193 29.549 

46 16.431 848.184 456.758 1.477 3.425 236.701 20.188 29.549 

47 16.229 827.474 456.519 1.275 2.552 235.866 20.183 29.543 

48 16.028 807.020 456.271 1.073 1.808 235.005 20.177 29.544 

49 15.826 786.822 456.015 0.871 1.192 234.118 20.174 29.542 

50 15.624 766.880 455.750 0.669 0.703 233.206 20.167 29.541 
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Appendix-C: Time-variant flexural and shear capacity of the RC beam 

Time 

(year) 

x   

(mm) 

a              

(mm) 

MR      

(kNm) 

VRd,s 

(kN) 

VRd,c         

(kN) 

VRd        

(kN) 

0 174.861 139.889 218.990 42.289 80.422 122.711 

1 174.861 139.889 218.990 42.289 80.422 122.711 

2 174.861 139.889 218.990 42.289 80.422 122.711 

3 174.861 139.889 218.990 42.289 80.422 122.711 

4 174.861 139.889 218.990 42.289 80.422 122.711 

5 174.861 139.889 218.990 42.289 80.422 122.711 

6 174.861 139.889 218.990 42.289 80.422 122.711 

7 174.861 139.889 218.990 42.289 80.422 122.711 

8 174.861 139.889 218.990 42.289 80.422 122.711 

9 174.861 139.889 218.990 42.289 80.422 122.711 

10 174.861 139.889 218.990 42.289 80.422 122.711 

11 174.861 139.889 218.990 42.289 80.422 122.711 

12 174.861 139.889 218.990 42.289 80.422 122.711 

13 174.861 139.889 218.990 42.289 80.422 122.711 

14 174.861 139.889 218.990 41.608 80.422 122.0308 

15 174.861 139.889 218.990 39.517 80.422 119.9395 

16 174.861 139.889 218.990 37.478 80.422 117.9002 

17 174.861 139.889 218.990 35.491 80.422 115.9133 

18 174.861 139.889 218.990 33.557 80.422 113.9791 

19 212.947 170.358 207.460 31.675 74.767 106.442 

20 209.073 167.259 204.561 29.847 74.301 104.1485 

21 205.221 164.177 201.655 28.073 73.836 101.9083 

22 201.410 161.128 198.738 26.352 73.368 99.71911 

23 197.63 158.104 195.814 24.684 72.898 97.58233 

24 193.883 155.106 192.883 23.071 72.427 95.49814 

25 190.167 152.134 189.947 21.512 71.955 93.46668 

26 186.483 149.187 187.006 20.007 71.481 91.48807 

27 182.841 146.273 184.060 18.557 71.004 89.56126 

28 179.223 143.378 181.113 17.161 70.527 87.68869 

29 175.637 140.509 178.165 15.820 70.049 85.86926 

30 172.084 137.667 175.216 14.534 69.569 84.10303 

31 168.573 134.858 172.266 13.303 69.086 82.38891 

32 165.086 132.069 169.318 12.126 68.603 80.72921 

33 161.633 129.307 166.373 11.004 68.119 79.12279 

34 158.222 126.578 163.430 9.9374 67.631 77.56852 

35 154.837 123.869 160.492 8.9255 67.143 76.06864 

36 151.493 121.194 157.558 7.9685 66.652 74.62086 

37 148.183 118.547 154.630 7.0663 66.160 73.22626 

38 144.901 115.920 151.710 6.219 65.667 71.88583 

39 141.659 113.328 148.796 5.4264 65.171 70.5973 

40 138.453 110.762 145.892 4.6885 64.673 69.36167 

41 135.281 108.225 142.997 4.0051 64.174 68.17881 

42 132.137 105.710 140.113 3.3762 63.673 67.04962 

43 129.035 103.228 137.240 2.8017 63.170 65.97182 
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44 125.968 100.774 134.379 2.2812 62.665 64.94631 

45 122.936 98.3489 131.531 1.8148 62.158 63.97289 

46 119.940 95.9518 128.697 1.4022 61.649 63.05134 

47 116.979 93.5831 125.878 1.0433 61.138 62.18143 

48 114.059 91.2474 123.074 0.7377 60.624 61.36192 

49 111.159 88.9269 120.288 0.4854 60.111 60.59653 

50 108.316 86.6528 117.517 0.2859 59.592 59.87801 
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Appendix-D: Additional flexure and shear on RC beam due to creep and 

shrinkage 

Time 

(year) 
Ec,ef 

(GPa) m 

Sc  

(mm3) 
Ic   

(109mm) 

(1/r)sc 

(/mm) 

(1/r)su 

(/mm) 

(1/r)sn 

(/mm) 

Mshc 

(kNm) 

Vshc 

(kN) 

0 31.5 6.354 400777 1.1E+9 0.00000 0.00000 0.00000 0.00 0.00 

1 9.66 20.71 196933 3.2E+9 3.83E-7 3.39E-7 3.79E-7 11.52 7.68 

2 8.84 22.62 176373 3.6E+9 3.91E-7 4.25E-7 3.94E-7 11.57 7.72 

3 8.48 23.57 166418 3.7E+9 3.87E-7 4.66E-7 3.94E-7 11.59 7.73 

4 8.28 24.15 160541 3.8E+9 3.82E-7 4.90E-7 3.92E-7 11.61 7.74 

5 8.18 24.46 157306 3.9E+9 3.79E-7 5.03E-7 3.90E-7 11.62 7.74 

6 8.07 24.78 154093 3.9E+9 3.75E-7 5.17E-7 3.88E-7 11.62 7.74 

7 8.01 24.97 152174 4.0E+9 3.73E-7 5.25E-7 3.86E-7 11.64 7.76 

8 7.95 25.16 150263 4.0E+9 3.70E-7 5.32E-7 3.84E-7 11.65 7.76 

9 7.91 25.29 148993 4.0E+9 3.68E-7 5.37E-7 3.83E-7 11.66 7.77 

10 7.89 25.35 148359 4.0E+9 3.69E-7 5.41E-7 3.84E-7 11.68 7.79 

11 7.85 25.48 147094 4.1E+9 3.66E-7 5.45E-7 3.82E-7 11.74 7.83 

12 7.83 25.54 146463 4.1E+9 3.65E-7 5.48E-7 3.81E-7 11.75 7.83 

13 7.81 25.61 145832 4.1E+9 3.65E-7 5.50E-7 3.81E-7 11.80 7.86 

14 7.79 25.67 145202 4.1E+9 3.64E-7 5.53E-7 3.80E-7 11.80 7.87 

15 7.79 25.67 145202 4.1E+9 3.64E-7 5.53E-7 3.80E-7 11.87 7.91 

16 7.77 25.73 144573 4.1E+9 3.63E-7 5.56E-7 3.80E-7 11.87 7.91 

17 7.77 25.73 144573 4.1E+9 3.63E-7 5.57E-7 3.80E-7 11.89 7.93 

18 7.75 25.8 143945 4.1E+9 3.62E-7 5.59E-7 3.79E-7 11.93 7.95 

19 7.73 25.86 144503 4.1E+9 3.69E-7 5.61E-7 3.86E-7 11.98 7.98 

20 7.73 25.86 146398 4.0E+9 3.82E-7 5.61E-7 3.97E-7 12.02 8.01 

21 7.71 25.92 147565 3.9E+9 3.93E-7 5.63E-7 4.08E-7 12.05 8.04 

22 7.71 25.92 149190 3.8E+9 4.07E-7 5.64E-7 4.20E-7 12.08 8.05 

23 7.71 25.92 150676 3.8E+9 4.20E-7 5.64E-7 4.32E-7 12.10 8.07 

24 7.70 25.99 151489 3.7E+9 4.31E-7 5.66E-7 4.43E-7 12.17 8.12 

25 7.70 25.99 152718 3.6E+9 4.44E-7 5.66E-7 4.54E-7 12.18 8.12 

26 7.70 25.99 153814 3.5E+9 4.57E-7 5.66E-7 4.67E-7 12.22 8.14 

27 7.70 25.99 154780 3.5E+9 4.70E-7 5.67E-7 4.79E-7 12.24 8.16 

28 7.68 26.05 155143 3.4E+9 4.82E-7 5.68E-7 4.89E-7 12.27 8.18 

29 7.68 26.05 155869 3.3E+9 4.94E-7 5.68E-7 5.01E-7 12.31 8.21 

30 7.68 26.05 156472 3.3E+9 5.07E-7 5.68E-7 5.12E-7 12.34 8.23 

31 7.68 26.05 156953 3.2E+9 5.20E-7 5.68E-7 5.24E-7 12.35 8.24 

32 7.68 26.05 157316 3.1E+9 5.32E-7 5.68E-7 5.35E-7 12.41 8.28 

33 7.66 26.12 157156 3.1E+9 5.43E-7 5.70E-7 5.45E-7 12.44 8.30 

34 7.66 26.12 157301 3.0E+9 5.57E-7 5.71E-7 5.58E-7 12.47 8.31 

35 7.66 26.12 157334 2.9E+9 5.69E-7 5.71E-7 5.69E-7 12.53 8.35 

36 7.66 26.12 157258 2.9E+9 5.81E-7 5.71E-7 5.80E-7 12.54 8.36 

37 7.66 26.12 157074 2.8E+9 5.93E-7 5.71E-7 5.91E-7 12.57 8.38 

38 7.66 26.12 156785 2.7E+9 6.05E-7 5.71E-7 6.02E-7 12.61 8.41 

39 7.66 26.12 156394 2.7E+9 6.17E-7 5.71E-7 6.13E-7 12.63 8.42 

40 7.66 26.12 155902 2.6E+9 6.29E-7 5.71E-7 6.24E-7 12.66 8.44 

41 7.66 26.12 155313 2.6E+9 6.40E-7 5.71E-7 6.34E-7 12.67 8.45 

42 7.64 26.18 154329 2.5E+9 6.50E-7 5.72E-7 6.44E-7 12.70 8.47 
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43 7.64 26.18 153562 2.5E+9 6.62E-7 5.72E-7 6.54E-7 12.71 8.48 

44 7.64 26.18 152705 2.4E+9 6.73E-7 5.73E-7 6.65E-7 12.73 8.49 

45 7.64 26.18 151759 2.4E+9 6.85E-7 5.74E-7 6.76E-7 12.73 8.49 

46 7.64 26.18 150726 2.3E+9 6.96E-7 5.74E-7 6.86E-7 12.74 8.50 

47 7.64 26.18 149611 2.3E+9 7.07E-7 5.74E-7 6.95E-7 12.75 8.50 

48 7.64 26.18 148414 2.2E+9 7.17E-7 5.74E-7 7.05E-7 12.77 8.52 

49 7.64 26.18 147138 2.2E+9 7.27E-7 5.74E-7 7.14E-7 12.77 8.51 

50 7.64 26.18 145785 2.1E+9 7.38E-7 5.74E-7 7.23E-7 12.78 8.52 
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