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ABSTRACT 

 

Analysis and design involves consideration of many factors which are inherently 

uncertain. Reliability analysis requires information about the uncertainties in the 

system, and structural reliability is the probability of a structure performing its purpose 

adequately for the period of time intended under the operating conditions encountered. 

Many approaches developed for dealing with the uncertainties demand a mathematical 

representation of uncertainties on the basis of available information. Probability theory 

is the most customary technique to describe the uncertainties as random variables 

characterised by the probability density functions (PDF). However, if the data is 

inaccurate, ambiguous and incomplete, it is inept to form the PDF, and hence the 

conventional probabilistic approach becomes inadequate. Therefore, the imprecise 

parameters should be treated appropriately for improving the reliability of the system. 

If the information about the uncertainty is insufficient and non-stochastic in 

nature, the approaches based on interval analysis or fuzzy set theory can be adopted in 

uncertainty quantification. Hybrid approaches are also available to handle the situations 

where both the nature of uncertainties namely aleatory and epistemic are uniquely 

present in the system. In reality, when the aleatory uncertainty is characterised with 

imprecise parameters, none of the above approaches yields a reliable and optimum 

design. In such situations, the concepts of probability-box (p-box) can be adopted for 

characterising the uncertainties. 

Uncertainty analysis of multi-dimensional and highly nonlinear structures using 

simulation-based methods is cumbersome, and the hybridity demands the exploration 

of entire domain of bounds on imprecision. Response surface methods facilitate 

surrogate models to reduce the effort involved during the simulation. High dimensional 

model representation (HDMR) is a computationally efficient technique developed for 

the parameter interaction in physical problems.  

Therefore, in the present work, HDMR based uncertainty analysis is developed 

for estimating the structural reliability in the presence of various imprecise 

uncertainties. The methodology involves characterising the imprecise uncertainties as 

p-box variables, developing limit state functions using HDMR techniques, and 

estimating the reliability by interval Monte-Carlo simulations. Furthermore, as the 



 
 

prediction of structural behaviour might diverge due to the presence of various 

uncertainties, an attempt has been made by studying the systems with hybrid 

uncertainties from four different sources. The results of the numerical examples are 

compared with the traditional approaches to demonstrate the efficiency of the 

methodology. 

 

Keywords: High dimensional model representation; Imprecise uncertainty; Interval 

Monte Carlo simulation; Probability-box; Structural reliability. 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 STRUCTURAL SAFETY 

The performance of a structure is evaluated by its safety, serviceability and economy. 

Safety assessment of structures is a task of much importance. Safety of a structure 

depends on action on the structure and its resistance to the action. The action is a 

function of load acting on the structure and resistance which depends on material 

property as well as geometry of the structure. Generally, these parameters are subjected 

to statistical variations and are probabilistic or random variables. Necessary attempt 

was made for the evaluation of safety by including statistical variation of parameters, 

hence research started on safety of structures, by considering the random variations of 

these parameters from 1960. 

Design methods for structural systems are mainly categorised as permissible 

stress method or working stress design method, ultimate strength method and limit state 

method. In the first method, only the stresses occurring under maximum service loads 

were compared with permissible stresses. Hence, the safety is defined in terms of factor 

of safety, which is given by, 

 
failure stress

Factor of safety = 
permissible stress

 (1.1) 

In ultimate stress method, safety was ensured by introducing ultimate load factor, which 

is the magnification factor of service loads, defined as, 

 
ultimate load

Ultimate load factor = 
 service load

 (1.2) 

There was a limitation in assessing the safety by these methods, and therefore 

the limit state method was introduced. In this there are two categories, ultimate limit 

state and serviceability limit state. These are conventional methods based on the factors 

affecting the safety in the design of structures. On the other hand, risk and reliability 

can be evaluated by, deterministic (non-probabilistic) and probabilistic methods, which 

consider the safety conditions. As the name says, in the deterministic method, the 

parameters of the structures are considered to be deterministic (not subjected to 
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probabilistic variations), while, the parameters are considered as random variables in 

the probabilistic method. However, it is a fact that, loads (live load on floors, wind load, 

ocean waves, earthquake, etc.), strength of materials (material properties of concrete 

and steel, etc.), and geometric parameters (sectional dimensions of frame elements, 

effective depth, diameter of the reinforcement, etc.) are subjected to statistical 

variations. Hence, it is important to consider the statistical variations in estimating the 

structural safety.  

The information about input variables (loads, material property and geometric 

parameters) is never certain, precise or complete. Such imprecise and incomplete 

information about input variables are considered as uncertainties. Risk and safety of the 

structure is generally estimated in terms of reliability or failure probability. 

1.2  STRUCTURAL RELIABILITY 

Structural reliability is defined as the performance of a system not exceeding the 

threshold limit with given constraints. Structural reliability analysis aims at assessing 

the probability of occurrence of an extreme event related to a given structure. Reliability 

estimation demands evaluation of probability that a structural response oversteps a 

threshold limit, defined by a limit state function governed by assorted random 

parameters, denoted as g(X). The concept of limit state function is illustrated in Fig. 1.1 

and probability density functions (PDF) of ( )g X  is shown in Fig. 1.2. The notation

( ) 0g X , ( ) 0g X and ( ) 0g X denote limit state surface, safe domain and failure 

domain respectively. 

  

Fig. 1.1 Concept of limit state function 

  

g(X)=0 

g(X)≤0 

Failure domain 

(F) 

X
2
 

X
1
 

g(X)>0 

Safe domain 

Limit state surface 

g(X)=0 
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In the usual setting, limit state function describes the safety level of the structure 

for a given input vector X . Also, the failure domain F, i.e. { | }( ) 0F g  X X  

corresponds to the set of inputs for which the limit state function ( ) 0g X . Therefore, 

reliability can also be measured as, probability of failure of the system with given input 

vector X, which is 1 fR P  . The failure probability (
fP ) is mathematically stated as 

the evaluation of multi-dimensional integral as, 

  
( ) 0

( ) 0 ( ) 
g

f fg dP P x


   X

X

X x  (1.3) 

here,  1 2,  , ,  NX X X X  is N-dimensional vector of random variables of the system 

under observation, and ( )f
X

x  is the joint PDF of the influencing input variables. 

Probability theory is traditionally used for the reliability assessment wherein all the 

uncertain variables are random in nature.  

1.3 METHODS FOR STRUCTURAL RELIABILITY ANALYSIS 

Reliability analysis evaluates the failure probability of structural systems by 

determining whether the limit state function is exceeding the threshold value or not. 

However, reliability analysis is not limited to calculation of the failure probability. 

Several methods have been developed for reliability analysis in last few decades 

including enriched performance measure approach, complementary interaction method, 

sequential optimization, dimension reduction method, Bayesian reliability analysis 

method etc.  

 

Fig. 1.2 Probability density function of g(X) 

 

g(X)≤0 

 

g(X)=0 

g(X)>0 

μ
g
 

g(X) 

P
f
 

f
g
(g) 
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 Reliability assessment requires statistical knowledge about input parameters 

including probability distribution and statistical moments. In case, the input data is large 

and/or the knowledge about the variables are ambiguous, formulating the mathematical 

model of an existing system becomes tedious. In such situations, simulation techniques 

like Monte Carlo simulation (MCS) method is the only tool that can be used to get the 

relevant answers.  Response surface methods were also developed for systems with 

large number of variables, in order to reduce the computational efficiency (Wang and 

Chen 2016). There are well established traditional algorithms such as first order 

reliability method (FORM) and second order reliability method (SORM) which have 

grabbed the attention for probabilistic reliability assessment.  

1.3.1 Monte Carlo Simulation 

Monte Carlo Simulation (MCS) is a sampling method which generates random samples 

for uncertain variables as statistical trials that make realisation based on generated 

samples. It approximates probability of a specific event out of a series of stochastic 

processes. In case of structural reliability analysis, sampling of random variables are 

generated according to the PDF, then a mathematical model or limit state function g(X) 

consisting the random samples is set to determine failure probability. Finally, 

probabilistic characteristics of the system response can be extracted through the 

simulation for sN trials. Hence the failure probability is calculated as a ratio of number 

of failure events ( FN ) to the number of function evaluations ( sN ), given by, 

 F
f

s

N
P

N
  (1.4) 

MCS is robust and easy to operate, but impractical to generate more samples for 

realistic problems where each response computation may require dynamic analysis of 

nonlinear structural system.  

1.3.2 First Order Reliability Method 

In many engineering applications, ( )g X is a black-box model (or simulation model), 

and the evaluation of ( )g X is computationally expensive. Examples of black-box 

models include finite element analysis, dynamic simulation, and computational fluid 

dynamics. Because of the complexities, there is seldom an analytical solution to the 

probability integration, except for very special cases. It is also impractical using 
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numerical integration to find the solution due to the high dimensionality in most 

engineering applications. Therefore, approximation methods, such as the FORM and 

SORM have been developed for evaluating structural reliability.  

FORM is one of the most commonly used reliability analysis methods. Basic 

idea of the method is to ease the computational difficulties through simplifying the 

integrand ( )f
X

x  and approximating the function ( )g X (Ditlevsen and Madsen, 1996; Li 

and Foschi, 1998). The basic concepts of FORM is, transformation of arbitrary random 

uncertainty vectors into independent, standard normal vectors and approximation of the 

boundaries of componential failure domains by linear or quadratic expansions in a 

certain point on the failure boundary so that failure probabilities can simply be 

estimated from the probabilities of linear or quadratic forms in normal variables (Choi 

et al. 2007). 

1.3.3 Second Order Reliability Method 

FORM usually works well when the limit-state surface has only one minimal distance 

point and the function is nearly linear in the neighbourhood of the design point. 

However, if the failure surface has large curvatures (high nonlinearity), the failure 

probability estimated by FORM using the reliability index may give unreasonable and 

inaccurate results. To resolve this problem, the second-order Taylor series (or other 

polynomials) is considered. The main limitation of FORM/SORM is that, the limit state 

functions need to be specified explicitly.  

1.4  UNCERTAINTY 

Uncertainty is lack of certainty or imperfection about a quantity. Uncertainties 

influencing both structural parameters and imposed loads are important in the 

prediction of behaviour of the structure. Generally, parameters of the system are 

assumed to be deterministic, although real-world problems accommodate numerous 

uncertainties in design, service and ageing of the system. In order to maintain design 

safety, the impact of uncertainties has to be treated according to the needs of the 

situation. There are various connotations about uncertainties, such as variability, 

inaccuracy, degree of belief, likelihood of events, etc. But these representations may 

yield different interpretation of inaccuracy about a given quantity. Fig. 1.3 illustrates 

difference between variability and uncertainty. 
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1.4.1 Classification of Uncertainties 

The competence and limitations of different representations have been delineated by 

classifying uncertainties into two categories: aleatory and epistemic. Considering these 

two uncertainty factors comprehensively, some theoretical literature research studies 

were carried out in recent years.  Aleatory uncertainty is inherent and irreducible. 

Epistemic uncertainty is reducible that stems from lack of knowledge and data. Random 

variables/fields are part of aleatory uncertainties, wherein imprecise uncertainties fall 

into the latter category. Probability theory is the most customary technique to describe 

the uncertainties as random variables characterised by the PDF. In real-world scenario 

the uncertainty need not be equivalent to randomness, therefore classic probability 

approach is not an answer for incorporating such uncertainty. The difference between 

these theories is depicted in Fig. 1.4, which distinguishes the certainty with 

deterministic values of constant quantities and uncertainty by probability or interval 

information and other approaches. 

In most of the situations, information about the uncertainty may be non-

stochastic in nature.  Many approaches have been developed to deal with uncertainties 

for studying the system responses. These approaches demand a mathematical 

representation of uncertainties on the basis of available information. In this context, the 

approaches based on interval analysis or fuzzy set theory can be adopted in uncertainty 

quantification. 

Intervals represent range of values falling under upper and lower bounds, and 

do not involve any knowledge on cumulative distribution function (CDF) of values 

within the bounds. Interval field is the non-stochastic counterpart of the random field. 

Intervals are employed to represent spatial nondeterministic response of structural 

systems under various loading conditions (Faes and Moens 2019; Gao et al. 2018; Xiao 

et al. 2015). 

  

Fig. 1.3 Illustration of difference between variability and uncertainty (Moens and 

Vandepitte 2004) 

VARIABILITY UNCERTAINTY 

Certain  

Variabilities 
Invariable 

Uncertainties 

Uncertain  

Variabilities 
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Fuzzy set theory presents a concept for the description of instinctive knowledge 

and incomplete data in a non-probabilistic way. Fuzzy set introduces membership 

function, a degree of belongingness. Commonly adopted membership function shapes 

are triangular and Gaussian. Fuzzy finite element method is broadly accepted for non-

deterministic parameters in FE models (Balu and Rao 2012a; Lü et al. 2016; Zhang et 

al. 2018). 

 

     

 (a) Constants with deterministic values; (b) Probability density functions (aleatory); 

      

 (c) Interval information (aleatory/epistemic); (d) Symbolising other epistemic approaches 

Fig. 1.4 Comparison of certainty and uncertainty (Hou et al. 2019) 

1.4.2 Imprecise Uncertainties 

The design of civil engineering constructions frequently involves a great uncertainty 

about loading conditions, material properties and their degradation in time, human 

errors in modeling, construction and successive management. Information about an 

uncertain quantity under consideration is termed as imprecise when it is expressed as a 

set of possible values (rather deterministic) that the quantity may have. Source of such 

uncertainties can be dependency relationship, limited experimental data, material 

quality issues, inconsistent measurement data, inaccuracy in the way mathematical 

equations are solved (numerical uncertainty), imprecision in the way model parameters 

are defined (parameter uncertainty), etc. For example, the uncertainty associated with 
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modeling a boundary condition depends on the selected representation of the boundary 

(structural uncertainty), and the input parameters entered to define the boundary 

condition (parameter uncertainty). Therefore, these sources of uncertainty must be 

studied to quantify their degrading effects on the predictive capabilities of a computer 

model (Christie et al. 2005). One way to model imprecise probabilities is to represent a 

probability with the interval between the lowest possible and the highest possible 

probability, respectively. Probability-box is another conventional framework to 

represent imprecisely specified distributions. 

1.5 RESPONSE SURFACE METHODOLOGY 

Design of any structure needs excessive time for experiments and expensive 

simulations, which make design costly. Complex systems with multiple input variables, 

increase the severity of the design. Finite element (FE) model based simulation is one 

of the popular tools widely adopted for the analysis. The cost of performing such 

analyses that depends upon computational model, type of analysis, and uncertainty 

conditions is high and uneconomic. To minimize the number of performance function 

computations and to get the accurate estimation of responses, response surface methods 

(RSM) are available.  Response surface methodology is a collection of mathematical 

and statistical techniques for empirical model building. The main objective of RSM is 

to optimize output variable, which is governed by several independent input variables, 

by set of experiments. These experiments are series of tests, called runs, in which, 

modification is made in the input variables for the study of behaviour of output 

response. Application of RSM aims at reducing the cost of conventional methods. 

RSMs facilitate meta-models to reduce the effort involved during the simulation. These 

techniques are based on optimization and projection operator theory, which can 

dramatically reduce the sampling effort for learning the input-output behavior of high 

dimensional systems. 

1.5.1 Meta-modelling Methods 

Meta-models can govern any of the physical parameters present in the real-word 

problems. Nevertheless, the precision of the meta-model should be enhanced to reflect 

the real system and simulate the performance of a product or system, which has the 

preferred design configuration and set of design parameters, by choosing a better 
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model. In general, the better the model is, the more accurate it represents the real 

system. 

Some of the meta-modelling methods include gradient projection method (Kim 

and Na 1997; Alyanak et al. 2008), Rackwitz-Fiessler algorithms (Kim and Na 1997; 

Schanz and Salhotra 1992; Wu 1987), sensitivity analysis (Lee et al. 2011; Greerar and 

Manohar 2016; Wei et al. 2016; Schobi and Sudret 2019) which have been widely used 

in the uncertainty analysis. Also, these are popular in gathering needs of 

computationally demanding models in the uncertainty analysis. High dimensional 

model representation (HDMR) is one such technique developed for the parameter 

interaction in physical problems (Rabitz et al. 1999).  

Despite the fact that several sampling techniques and various meta-model 

formation methods are readily available for use, the selection of suitable meta-

modelling technique is the key concern in choosing the efficient one among the existing 

fracture analysis approaches. Since the entire sampling approaches and meta-modelling 

techniques have their unique properties, no universal meta-model is considered as a 

best choice for all types of problems. Therefore, the sampling method and meta-

modelling technique for a specific type of problem has to be decided based on the 

degree of model complexity, existence of error in sample data, type and extent of input 

variables, anticipated level of precision and computational effectiveness. Table 1.1 

summarises the different meta-modelling methods and sampling techniques applicable 

for reliability analysis studies. Furthermore, the sampling techniques and particular 

meta-modelling methods shown in Fig. 1.5 can be adopted to choose best likely 

performance of each model. 

1.5.2 High Dimensional Model Representation 

HDMR is a response surface method established as dimension reduction method for 

reliability analysis. This technique can dramatically reduce the sampling effort for 

learning the input-output behaviour of high dimensional systems by correlated 

functions. HDMR has been employed for structural damage identification, inverse 

reliability problems and cohesive zone models in finding crack propagation etc. Also, 

HDMR was incorporated in estimating reliability with random and fuzzy functions 

(Balu and Rao 2014), interval dependencies (Xie et al. 2017).  
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Hence there is a considerable interest in quantifying hybrid uncertainties in 

assessing the reliability of structural systems. Response surface methods facilitate 

meta-models to reduce the effort involved in analysing multidimensional systems. 

Therefore in the present work, HDMR technique is utilised for response surface 

generation and HDMR based uncertainty analysis is developed for estimating the 

structural reliability in the presence of various imprecise uncertainties.  

 

Table 1.1 Meta-modelling techniques 

Modeling Methods Sampling Techniques 

 Polynomial Regression (PR) 

 High dimensional model representation 

(HDMR)  

 Polynomial chaos expansion (PCE)  

 Splines [linear, cubic]  

 Multivariate adaptive regression splines 

(MARS)  

 Gaussian process 

 Kriging 

 Radial basis functions (RBF)  

 Least interpolating polynomials (moving 

least square) (MLS)  

 Artificial neural network (ANN)  

 Group method of data handling - polynomial 

neural network (GMDH - PNN)  

 Knowledge base or decision tree  

 Support vector machine (SVM)  

 Weighted least squares regression  

 Best linear unbiased predictor (BLUP)  

 Multi-point approximation (MPA) 

 Sequential or adaptive meta modeling  

 Hybrid models  

 Classic methods 

 Factorial design 

 Central composite design (CCD) 

 Box-Behnken 

 Optimal designs 

 Plackett-Burman 

 Space-filling methods 

 Simple grids 

 Latin Hypercube (LH) 

 Sobol sequence 

 Orthogonal arrays (Taguchi) 

 Hammersley sequence 

 Uniform designs 

 Minimax and maximin 

 Hybrid methods 

 Random or human selection 

 Importance sampling 

 Directional simulation 

 Discriminative sampling 

 Sequential or adaptive methods 
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Fig. 1.5 Meta-modelling methods and corresponding sampling techniques 
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1.6  ORGANISATION OF THESIS 

The proposed methodology comprises, development of response surface by utilising 

HDMR, incorporating the imprecise uncertainties present in the structural systems in 

to the response surface, formulating the limit state function, and evaluating failure 

probability bounds. Also, modelling the system by FE and simulating the limit state 

function using different methods like MCS, FORM and SORM for comparing the 

accuracy and computational efficiency of the proposed methodology.  Main objective 

of the study is to reduce the effort and achieve the accuracy efficiently in modelling the 

uncertainties and incorporating them into the high dimensional systems for finding the 

reliability. 

The thesis is organised as follows: 

i. The first chapter describes a brief introduction to structural safety and 

reliability, methods for assessing structural reliability. Uncertainties, types 

of uncertainties, response surface methods and their importance in reliability 

analysis have also been discussed along with significance of the present 

work. 

ii. The second chapter presents a detailed review of relevant literature on 

structural reliability, uncertainties and surrogate models followed by 

summary of literature and objectives of the proposed research work. 

iii. The third chapter demonstrates the application of HDMR in uncertainty 

analysis. Numerical examples with p-box variables have been presented and 

the efficiency of the proposed methodology is compared with the 

conventional methods. 

iv. The fourth chapter exhibits reliability assessment of structural systems with 

hybrid uncertainties.  

v. The last chapter presents the conclusions based on the findings from the 

present work, and also scope for the future work.  
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CHAPTER 2 

 

LITERATURE REVIEW 

 

2.1 GENERAL 

The complex engineering structures are analysed by computer simulations, popular tool 

among them is finite element model based simulation. Due to inherent imprecise 

parameters present in the structures, direct FE simulation becomes inefficient to treat 

the imprecise parameters. In this context, some of the methodologies like, structural 

reliability analysis, robust design optimization and sensitivity analysis have gained 

attention in recent research work. Structural reliability analysis has acquired 

considerable recognition for risk and safety evaluation of engineering systems in past 

few decades. Methods of reliability analysis have been applied in multidisciplinary 

design environment, considering performance requirement, safety and serviceability of 

a system. They are broadly categorised as probabilistic (Beer et al. 2013; Melchers 

2003; Sundgren et al. 2009; Zhang et al. 2019) and non-probabilistic methods (Faes and 

Moens 2019; Guo and Lu 2015; Li et al. 2016), depending on the input parameters. The 

input parameters such as loads, boundary conditions, geometrical and material 

properties for a system might be stochastic in nature, therefore it is utmost important to 

consider the variability of these input parameters. Due to insufficient or incomplete 

knowledge about the variability of input parameters, it is crucial to incorporate these 

imprecise parameters in estimation of reliability which contribute variability in the 

structural response. As the complexity of a system increases with increase in number 

of input parameters bearing variability, conventional simulation tools become 

inefficient and uneconomic. Hence, response surface methods or surrogate models 

(Balu and Rao 2012; Hajikolaei and Wang 2014; Lambert et al. 2016; Li et al. 2016; 

Xie et al. 2017) can be utilised in deriving mathematical formulation for an implicit 

system efficiently thereby reducing the effort involved in traditional simulation 

methods. A detailed literature study has been carried out on the structural reliability, 

imprecise uncertainties and surrogate models as a part of present work. 
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2.2 STRUCTURAL RELIABILITY  

Structural reliability is associated with formulation of performance function or limit 

state function for estimating the system response and failure probability as in Eq. (1.1). 

The limit state function can be divided as ultimate limit state and serviceability limit 

state function (Choi et al. 2007). The former method is related to complete collapse of 

a system or part of a system (for example; corrosion, fatigue, fracture etc.), in which, 

risk of life and financial losses occur, hence it should have lesser probability of 

occurrence. The latter method is associated with disruption of the system (for example; 

excessive deflection or displacement, vibration etc.).  

  Traditional reliability analysis requires probability distributions of all the 

uncertain parameters. Stochastic FE method (Faravelli 1989), FORM and SORM are 

some of the traditional methods used for probabilistic reliability estimation. However 

in many practical applications, the variation bounds can be only determined for the 

parameters with limited information. A probabilistic model for marine corrosion of 

steel was studied by considering nonlinear corrosion uncertainty (Melchers 2003). A 

reliability analysis was performed on random space without any nonlinear 

transformations of probabilistic constraints (Du 2008). The probabilistic approach has 

certain limitations for the complex structures, which lead to a larger error in the 

structural reliability calculation due to variability of the input data. In addition, only a 

certain range of uncertainties can be utilised which cannot define the inaccuracy of the 

data. Hence, non-probabilistic approach gained much attention in recent past.  

Non-probabilistic approach considers the imprecise data about input parameters 

based on the representation of uncertainties. Guo and Lu (2015) presented a non-

probabilistic reliability method by considering the bounded uncertainties, interval 

variables and convex-set models. A semi-analytic method for calculating the non- 

probabilistic reliability index was presented by Jiang et al. (2007). Non-probabilistic 

reliability-based design optimization and robust reliability design of structures with 

uncertain-but-bounded parameters were studied (Luo et al. 2009; Wang and Qiu 2009). 

Apart from probabilistic and non-probabilistic reliability methods, time variant 

(Czarnecki and Nowak 2008; Hawchar and Soueidy 2015) and time invariant methods 

(Astroza et al. 2017; Becker et al. 2012) have also gathered attention in estimating 

reliability. Yao and Wen (1996) estimated reliability of structures subjected to time 
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variant loads with uncertain parameters. Response surface model was derived by fast 

integration technique, and sensitivity analysis was carried out for finding the effect of 

uncertain parameters on the system reliability. Mejri et al. (2011) investigated lifetime 

of ageing naval structures by predicting the durability. The study was focused on time 

varying factors, corrosion and adhesive damage of the naval structures.  

Sundar and Manohar (2014) presented time variant reliability analysis of 

nonlinear vibrating systems with random parameters in which Monte Carlo variance 

reduction strategy which was based on Girsanov transformation was introduced. Zhao 

et al. (2014) evaluated dynamic structural reliability on considering time variant 

parameters by moment method for a pre-stressed concrete containment. Wang and 

Chen (2016) utilised the limit state surrogate model to tackle the time independent 

systems by translating the random processes and time parameter into random variables. 

The surrogate model was updated using maximum confidence enhancement sequential 

sampling scheme.  

Astroza et al. (2017) evaluated the time independent reliability using Bayesian 

methods. A framework was presented to identify the non-linear behaviour of structures 

due to seismic loading. Bayesian approach has widely been used in engineering fields 

to obtain balanced estimation by combining prior information with the observed data 

(Zhu and Frangopol 2013).  Becker et al. (2012) utilised Bayesian sensitivity analysis 

for nonlinear systems. Stochastic analysis has been performed on systems for dynamic 

loading. Dey et al. 2016 presented the natural frequency analysis on laminated 

composite curved panels for practical application of noise induced effects and the study 

has been extended to stability analysis under non-uniform dynamic loading (Dey et al. 

2018).   

2.3 IMPRECISE UNCERTAINTY 

Uncertainties are inevitable in every system due to direct or indirect influencing 

sources. The uncertain parameters are conventionally calibrated by probability theory, 

which characterises the variability of a parameter by a single measure. But, with limited 

information on the uncertainty, it is very difficult to construct precise probability 

distributions for some imprecise parameters in many practical applications. Imprecise 

uncertain parameters are generally expressed in lower and upper bounds over a range 

of values (Crespo et al. 2013; Guo and Lu 2015; Liu et al. 2017; Wang et al. 2018; Wei 
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et al. 2019). Various approaches such as evidence theory (Feng et al. 2012; Yang et al. 

2017), convex models (Liu and Zhang 2014; Wang et al. 2014), interval analysis (Jiang 

et al. 2012; Wu et al. 2017), fuzzy sets (Balu and Rao 2011; He et al. 2015), p-box 

(Simon and Bicking 2017; Schobi and Sudret 2017; Schobi and Sudret 2019), etc. have 

been developed to quantify imprecise uncertainties in the analysis of structural systems 

so far. These approaches differ from one another by the way the incomplete knowledge 

is interpreted/described thereby the type of mathematical propagation of the 

uncertainty. Also, these theories need the description of variables in bounds rather than 

precise information of probability distribution. 

Evidence theory also called Dempster-Shafer theory or belief functions theory, 

is a convenient framework for modelling imperfect data. It is mainly used to define 

belief and plausibility for decision making. Belief functions naturally blend 

probabilistic and interval parameters (Simon and Bicking 2017). Convex models are 

generally represented as ellipsoidal models or interval models (Liu and Zhang 2014).  

Interval approach was first introduced by Ben-Haim and Elishakoff (1990) and further 

developed by many other researchers. Interval arithmetic can be applied for solving the 

mathematical problem, especially FE formulation of any system using interval FE 

concept with bounded parameters. Element-by-element technique was used to tackle 

the overestimation and compatibility condition using penalty method (Muhanna et al. 

2007). Sundgren et al. (2009) demonstrated probabilistic networks for the study of 

imprecise probabilities. Effect of order of distributions on interval probabilities were 

investigated, and found that, for the wider intervals, the second order distribution is 

wrapped towords lower bound, thereby loosing the most of the data about the 

uncertainty. Zhang et al. (2010) modelled uncertain parameters by interval bounds 

constructed from confidence intervals. Both epistemic and aleatory uncertainties were 

generated separately, and interval FE method was utilised to estimate the ranges of 

structural responses. Jiang et al. (2011) developed a technique based on the hybrid 

uncertainties present in the structural systems. The uncertainties were modelled as 

random fields and intervals. Reliability index approach (RIA), and performance 

measurement approach (PMA) were introduced based on the hybrid reliability models. 

Also, a monotonicity analysis was adopted to formulate algorithms for solving RIA and 
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PMA based reliability models. These efficient algorithms were introduced as 

replacement for low efficient two layer optimization.  

Han et al. (2014) developed a hybrid reliability method to compute the failure 

probability of the structure due to probability interval hybrid uncertainty. In their study, 

a response surface was constructed using quadratic polynomial and a modified axial 

experimental design method. Liu et al. (2016) explored the impact of epistemic 

uncertainties on the reliability assessment. An adaptive surrogate model was developed 

for optimizing the multi-dimensional intervals by defining the width of interval as an 

objective function. The framework was set to find the lower value of reliability for 

multi-dimensional intervals. In the context of imprecise probability, the structural 

reliability bounds have been evaluated by considering imprecise measurements for 

concrete structure in FE model updating by Biswal and Ramaswamy (2017). Muscolino 

and Sofi (2017) presented interval analysis to limit the dependency overestimation, by 

applying improved interval analysis via extra unitary interval. Wang et al. (2018) 

estimated the reliability of systems subjected to imprecise probabilistic information by 

linear programming optimization. Two objective functions were formulated for 

calculating failure probability bounds, which were tighter compared to bounds obtained 

by interval MCS. Failure probability functions subjected to rare failure events with 

hybrid uncertainties were presented by Wei et al. 2019. 

( )P E and ( )P E are a generalized representation of lower and upper probabilities 

of an event E respectively, with 0 ( ) ( ) 1P E P E    for any imprecise variable. To 

handle imprecise uncertainties, interval analysis is unified with traditional probability 

theory, called probability bounds analysis, which is generally represented as p-box. P-

box is a general representation of uncertainty, it can model epistemic and aleatory 

uncertainty on parameters by a family of probabilities (Simon and Bicking 2017). The 

propagation mechanism of p-boxes through mathematical functions was given by 

Ferson et al. (2002). P-box is a convenient representation of imprecise uncertainty, 

which ensemble lower and upper bounds of a quantity on its cumulative distribution 

function (CDF). The p-box approach renders a rigorous way to account for uncertainty 

for unknown dependence of random variables (Xiao et al. 2018). Karanki et al. (2009) 



18 

presented a novel probabilistic safety assessment based on probability bounds approach 

by unifying interval arithmetic and probability theory in constructing p-box.  

It can be constructed with incomplete information about the probability 

distribution of a parameter regardless of the dependency. Zhang et al. (2013) presented 

construction of p-box by four different approaches, i.e., Kolmogorov-Smirnov 

confidence limits, bounded one-sided Chebyshev’s inequality, Confidence interval on 

the mean value and the envelop of five candidate distributions. Out of these four, 

confidence interval p-box gives the most reasonable reliability assessment. They 

developed quasi-Monte Carlo method for reliability analysis for p-boxes, and also 

randomised variance-type error was estimated which replaced the pseudo random 

numbers by the low-discrepancy sequences. Guimaraes et al. (2018) adopted 

confidence interval of reliability estimates based on bootstrapping technique. 

Crespo et al. (2013) utilised p-box in a reliability analysis framework for 

mechanical structure design that depends polynomially on uncertain parameters. Xiao 

et al. (2016) analysed the structural system with uncertain parameters which are 

modelled by p-boxes. Both load and material uncertainties were handled using non 

Monte Carlo p-box approach. Matrix decomposition strategy and fixed point 

formulation were utilised to reduce the over estimation of bounds. Schobi and Sudret 

(2017) utilized free and parametric p-boxes along with Kriging meta-models with 

adaptive experimental designs for estimating the probability of failure. Liu et al. (2017) 

developed intergeneration projection genetic algorithm for reliability assessment 

comprising p-box and random variables. Zhang et al. (2017) investigated application of 

p-box variables on the multiple dependent competing failure processes in predicting the 

reliability. An efficient method, dimension-reduced sequential quadratic programming 

was developed for the construction of p-box. Zhang et al. (2018) proposed a novel 

hybrid reliability analysis comprising p-box with fuzzy variables for turbine discs.  

Computation of reliability index or failure probability becomes burdensome and 

impractical for the multi-dimensional systems comprising insufficient data or 

uncertainty. On incorporating p-box approach in reliability assessment to represent 

imprecise uncertainties, significantly better bounds on system responses can be 

obtained. Therefore, p-box approach is prominently adopted to construct imprecise 
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uncertainties and the effect of p-boxes on structural systems along with other sources 

of uncertainties has been studied in the present work.  

2.4 SURROGATE MODELING 

High dimensional systems are cumbersome for the computation of reliability. 

Therefore, RSMs have been adopted which facilitates surrogate models or meta-models 

to reduce the effort involved during the simulation. Surrogate models enable 

approximation of implicit systems by deriving limit state or performance function, by 

facilitating the computational efficiency with accuracy. Some of the surrogate models 

like; polynomial regression (Bucher and Most 2008), polynomial chaos expansion (Xu 

and Kong 2018), Kriging (Echard et al. 2013; Yang et al. 2017), HDMR (Rabitz et al. 

1999; Valko et al. 2017) and many more, to identify the possible failure events. These 

methods require sampling of the input parameters in-order to derive the response 

surface. Latin hypercube (Dolšek 2012; Giunta et al. 2006), Sobol sequence (Balesdent 

et al. 2016; Lambert et al. 2016), importance sampling (Echard et al. 2013; Murangira 

et al. 2015), sequential or adaptive methods (Lee et al. 2011) are generally used for 

sampling the input parameters. 

Polynomial chaos expansion (PCE) facilitates random variables in an infinite 

series for higher order polynomial functions. This deterrents modelling of highly 

nonlinear systems in which the order of polynomial function increases and makes the 

model expensive and inaccurate. Hawchar et al. (2015) utilised PCE for addressing 

time-variant parameters in reliability analysis. Xu and Kong (2018) proposed a cubature 

collocation based sparse PCE for efficient structural reliability analysis.  

Wang and Wang (2013) presented nested extreme response surface for time-

variant reliability assessment by employing Kriging model. Yang et al. (2015) 

developed a method combining Kriging model with optimisation based interval Monte 

Carlo simulation (OIMCS). Since the Kriging model only predicts sign of the 

performance rather than the specific value which is needed for accurate results, a new 

method, active learning Kriging (ALK) was introduced for getting bounds of the failure 

probability. Li et al. (2017a) utilised Kriging based surrogate model for non-

probabilistic reliability assessment with interval parameters by belief and plausibility 

measures. Although Kriging based meta-models are desired for approximating 

expensive black-box simulations, these snag by allowing exponential growth of training 
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samples as the dimensionality of the system increases. Ulaganathan et al. (2016) 

developed gradient enhanced Kriging surrogate by reducing the number of samples, 

which is more efficient than Kriging based meta-model.   

The application of antecedently mentioned theories is restricted, since they are 

computationally burdensome to adopt for high dimensional complex structural models. 

Cost of performing such analyses is uneconomic which is directly proportional to 

complexity of the structure, type of analysis, and uncertainty conditions. In order to 

overcome these rigorous methods, HDMR was introduced by Rabitz et al. (1999).  

HDMR expansions are attractive for representing functions with large number 

of input variables (Rabitz et al. 1999). The technique HDMR, basically facilitates 

lower-dimensional approximation of the original high-dimensional implicit function. 

Thereby, response surface generation of HDMR component function, can be simulated 

using simulation methods like MCS for computing the failure probabilities.  

Various forms of HDMR can be constructed for different purposes such as 

ANOVA-HDMR (Li et al. 2000), Cut-HDMR (Xie et al., 2017) and RS-HDMR 

(Random sampling HDMR) (Rao and Balu 2018), adopted depending on the 

requirement in finding the component function. ANOVA-HDMR measures the 

contributions of the variance of each component functions to the overall variance of the 

output, while the cut-HDMR specifically exhibits the output ( )g X in the hyperplane 

passing through a reference point  1 2, ,..., Nc c cc  defined in the variable space. RS-

HDMR facilitates random sample points along with linear combination of basic 

functions (Hajikolaei and Wang 2014; Wei et al. 2019).  

Kaya et al. (2004) presented a recursive algorithm for computing HDMR 

component functions individually which also calculates sensitivity indices. Chowdhury 

et al. (2008) utilized HDMR to explore the potential of the tool for tackling univariate 

and multivariate piece-wise continuous function. Ziehn and Tomlin (2009) developed 

an extended RS-HDMR, a surrogate model, which utilises graphical user interface 

(GUI). This surrogate model also performs efficiently in finding variance based 

sensitivity indices. Indexing HDMR (I-HDMR) was proposed by Tunga (2011) for 

multivariate interpolation systems with random fields. An adaptive support vector 

regression (SVR) was utilised along with HDMR by Xiong et al. (2012) for nonlinear 
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models. Mukhopadhyay et al. (2015) introduced an efficient hybrid method based on 

RS-HDMR and GA with unconstrained multivariable function. The application of 

HDMR in stochastic multi-scale modeling in conjunction with multi-element least 

square approach was carried out by Jiang and Li (2015). Concept of SVR was utilised 

in computing the sensitivity indices with an adequate number of sample points in 

accordance with HDMR (Li et al. 2017b). Jha and Li (2017) combined HDMR and 

artificial neural network (ANN) for estimating failure probability in presence of random 

variables. Naveen and Balu (2017) presented a genetic algorithm (GA) with HDMR for 

structural damage identification in large structures by finite element model updating. 

Principle component analysis combined with HDMR (PCA-HDMR), was proposed by 

Hajikolaei and Wang (2017) for finding coefficients that provide linear combination 

without using integrals.  

In recent years, the research is extended for the application of HDMR to non-

probabilistic uncertainty analysis. Fuzzy analysis for implicit and explicit functions 

were developed (Balu and Rao 2012a; b) using integrated finite element modelling and 

HDMR based response surface generation. The uncertainties involved in the systems 

were modelled as fuzzy variables and random variables. The study was extended to get 

the explicit expression without derivatives of response function with respect to 

uncertainties. Fast Fourier Transformation techniques were used to obtain the unknown 

design parameters in inverse reliability analysis (Balu and Rao 2013).  

Xie et al. (2017) considered hybrid uncertainties consisting of dependent 

interval variables and random variables for the reliability analysis. Due to dependent 

intervals, the evaluation of reliability for every pair of dependent intervals, need nested 

double-loop procedure. This makes the analysis inefficient, hence to increase the 

efficiency, cut-HDMR was utilised, with leave-one-out sampling strategy.  

There is a considerable interest for HDMR based uncertainty analysis with 

uncertainty other than intervals and fuzzy variables. Therefore, in present work, HDMR 

is utilised for deriving surrogate model with p-box uncertainties.  
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2.5  SUMMARY OF LITERATURE REVIEW 

Structural reliability is estimated with respect to performance or limit state function. 

Simulation techniques are necessary to estimate the probability of failure when 

analytical approaches are impractical. Complicated large engineering systems are 

expected to have multiple number of uncertain variables. Such complex structures, 

cannot be analysed only by simulations. To minimise the number of performance 

function computations and to get the accurate estimation of failure probability, meta-

modelling or surrogate modelling techniques are used. Many researchers in the past 

have focused on the improvements with respect to the computational efficiency in the 

reliability and risk management. Extensive review has been made on RSMs in presence 

of uncertainties in terms of Dempster Shafer evidence theory, random set theory, fuzzy 

set theory or p-box variables.  

 Only a limited amount of research has been carried out for meta-modelling 

of the structural systems in presence of p-box uncertainties. Similarly 

efficient surrogate model suitable for the imprecise probability descriptions 

are hardly present in the literature. 

 In order to address the severity in the systems having large inputs, an 

approximation technique called HDMR has been developed to study the 

input-output relationships of the system. The concepts of HDMR have been 

extensively implemented in uncertainty analysis when the input uncertain 

variables are random or fuzzy. However the practical description of 

uncertainties by means of p-box is not explored in the context of 

computational efficiency using HDMR techniques. 

 In many situations, the sources of uncertainties may not be same, hence the 

hybrid nature of uncertainties is inevitable.  Only a limited studies have been 

conducted in the context of hybrid uncertainties, for example interval & 

random, and fuzzy & random.  The hybrid nature among p-box, random 

variables, interval and fuzzy variables is not explored in the literature so far 

for the estimation of structural responses and structural reliability. 

 From the literature study, the proposed research addresses the application of 

efficient meta-model techniques in the uncertainty analysis of structures 

when the uncertain variables are described as p-box. 
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2.6 RESEARCH OBJECTIVES 

The objectives of the present research work are as follows:  

i. To study the uncertainty analysis of the structures with imprecise uncertain 

parameters using HDMR.  

ii. To estimate the reliability of structures with p-box uncertain variables by 

interval Monte Carlo method.  

iii. To evaluate the reliability of structures in presence of hybrid uncertain 

variables.  

2.7 SCOPE OF PRSENT RESEARCH  

i. To model the uncertain parameter as p-box based on the available imprecise 

data for a given structure.  

ii. To develop HDMR based approximation function for a given structure with 

uncertainties. 

iii. To evaluate bounds on response of the system, and thereby failure 

probability bounds according to corresponding threshold limits by static 

analysis method.  

iv. To determine bounds on failure probability for hybrid uncertainties. 

v. To verify the results obtained from proposed HDMR based uncertainty 

analysis with conventional methods like interval Monte Carlo Simulation.  
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CHAPTER 3 

 

HDMR BASED UNCERTAINTY ANALYSIS 

 

3.1 UNCERTAINTY ANALYSIS 

Uncertainty analysis investigates the knowledge based uncertainty of a parameter 

which is knowledge based by quantifying with relevant available data. Uncertainty 

quantification emphasis characterisation and reduction of uncertainties in 

computational analysis. The method allows to determine the possible outcomes of a 

system with insufficient quantities which regulate the outcome. Most of the engineering 

systems rife with sources of uncertainties, which may arise in various context in 

different stages of experiments or mathematical modelling. Fig. 3.1 shows some of the 

sources of uncertainties, and corresponding description is stated in Table 3.1. 

Uncertainty quantification is intended to treat and/or reduce the uncertainties. 

For aleatory uncertainties, quantification is relatively straightforward. Techniques like 

Monte Carlo method is generally used in this case, where probability distribution of 

variables are given by moments (i.e., mean and standard deviation), wherein 

quantifying epistemic uncertainties is tedious in which efforts are made to gain better 

knowledge about the uncertainty. Probability bounds analysis, fuzzy logic, evidence 

theory, Dempster-Shafer theory or Bayesian theory are used in quantification of 

epistemic uncertainties. SVR based uncertainty quantification in conjunction with Latin 

hypercube sampling was developed (Dey et al. 2016). 

Irrespective of type of uncertainty, quantification can be done in two ways, 

firstly forward propagation and secondly inverse propagation (Faes and Moens 2019). 

In forward propagation of uncertainty, various sources of uncertainty is disseminated 

in predicting the system response through a model. This method focused on influence 

of parametric variability on the output. In inverse method of quantification, parameter 

uncertainty is calibrated and estimation of discrepancy between mathematical model 

and experimental results. 
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Table 3.1 Description of sources of uncertainties 

SOURCES DESCRIPTION 

Parameter uncertainty 

Arises due to errors in computer models or mathematical 

models, whose physical values are unknown and 

insufficient to perform experiments. 

Parametric variability 

The variability in input parameters due to manufacturing 

defects (material property and dimensions) which in turn 

affects the performance of the system. 

Structural uncertainty 

Refers to model discrepancy, which arises due to lack of 

knowledge about the system parameters in mathematical 

modelling. This accumulates errors in mathematical model 

consisting of defective or ambiguity input parameters.  

Algorithmic uncertainty 
Arises due to numerical errors and approximations in 

modelling the system. 

Experimental uncertainty 
An observational error arises in experimental 

measurements. 

Interpolation uncertainty 

If simulation results are insufficient, the data generated 

should be interpolated or extrapolated in predicting the 

responses. 

  

  

Fig. 3.1 Sources of uncertainties 
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Forward uncertainty propagation includes probabilistic and non-probabilistic 

approaches. Probabilistic methods are rigorous to perform as the random variability is 

considered in forming joint PDF of various parameters present in the system under 

consideration, some of the methods are mentioned as, 

 Simulation based methods: Monte Carlo simulations, importance sampling,                

adaptive sampling, etc. 

 Local expansion-based methods: Taylor series, perturbation method, etc. 

 Functional expansion-based methods: Neumann expansion, orthogonal or 

Karhunen-Loeve expansions (KLE), polynomial chaos expansion (PCE) 

etc. 

 Most probable point (MPP) based methods:  First-order reliability method 

(FORM) and second-order reliability method (SORM). 

 Numerical integration-based methods: Full factorial numerical integration 

(FFNI) and dimension reduction (DR) methods. 

Non-probabilistic approaches include, interval analysis, Fuzzy theory, 

possibility theory, evidence theory and probability-box approach etc.  

Inverse uncertainty propagation includes majorly Bayesian approach and 

regression analysis which require lesser subjective information on the imprecise 

probability. 

3.1.1 Failure Probability and Reliability Index 

Reliability analysis evaluates the failure probability of structural systems by 

determining whether the limit state function is exceeding the threshold value or not.  

Considering a simple structure, suppose, Y is the resistance/strength of the 

structure, and W is the action/load effect (force or displacement response) on the 

structure, its failure criteria is defined as,  

 
 

 0

fP P Y W

P Y W

 

  
 (3.1) 

Reliability index and failure probability is derived for the two cases, as mentioned 

below: 

Case 1: On assuming Y as a random variable, with PDF of ( )Yf y and W to be 

deterministic, failure probability is expressed as in Eq. (3.2) and is shown in Fig. 3.2. 
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          ( )         Y

W

f dyf y yP


     (3.2) 

Case 2: if both Y and W are random variables, the PDF of both Y and W are shown in 

Fig. 3.3. The shaded portion in figure, indicates failure probability and is computed as 

follows: 

Assuming, the probability density of W as w, and the area 1A , as shown in Fig. 3.4, 

where Y w  is equal to the shaded area 2A  under the density Y. 

Therefore,  

 
1  ( )  = 

2 2
W

dw dw
P w W w f w dw A
 

     
 

 (3.3) 

 2( ) ( )  Y

w

P Y w f y dy A



    (3.4) 

When W takes the value w, reliability is the product of these two probabilities in Eqs. 

(3.3) and (3.4), 

 ( )  ( ) W Y

w

dR f w dw f y dy



   (3.5) 

  

Fig. 3.2 Failure probability of deterministic strength of structure (Y) 

  
Fig. 3.3 Failure probability of strength (Y) and load effect (W) 
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 In other words, R is the probability of Y being greater than all possible values of W, 

 ( ) ( )            W Y
w

R dR f w f y dy dw w






     
      (3.6) 

Generally, limit state indicates the margin of safety between resistance (Y) and 

loading (W) of the structure under consideration. Therefore, )(g X is expressed as the 

function of Y and W, and according to the definition of limit state function, failure 

probability is defined as, 

 ( ) ( ) ( )g Y W X X X  (3.7) 

 
 

 

( ) ( ) 0

( ) 0

fP P Y W

P g

    

 

X X

X
 (3.8) 

where Y and W are the function of random variables. Such that, ( ) 0g X  denotes 

failure region, ( ) 0g X  and ( ) 0g X  denote limit state surface and safe region 

respectively, as shown in Figs. 1.1 and 1.2. 

If the mean and standard deviation of ( )g X  are denoted as  and g g 

respectively, then by definition, it is the difference of the mean and standard deviation 

of Y and W, i.e., 

 
g Y W     (3.9) 

 
2 2 2g Y W YW Y W         (3.10) 

  

Fig. 3.4 Concept of reliability 
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where YW is the coefficient of correlation between Y and W. The safety index or 

reliability index  is defined as, 

 
2 2 2

g Y W

g Y W YW Y W

  


     


 

 
 (3.11) 

If Y and W are uncorrelated  0YW  , reliability index is expressed as,  

 
2 2

g Y W

g Y W

  


  


 


 (3.12) 

If Y and W are assumed to be normally distributed and uncorrelated, and the limit state 

function is also normally distributed, then, PDF of is expressed as, 

 

2

1 1
( ) exp

22

g

g

gg

g
f g



 

  
        

 (3.13) 

Hence the failure probability is evaluated as,  

 

0

( ) f gP f g dg


   (3.14) 

If, ( ) 0g X  (normally distributed), the failure probability is computed as, 

 

 

 

2
0

0

2

01 1
 exp  

22

1 1
 exp  

22

1

g

f

gg

g

P dg

dg



 


 









  
        

 
  

 

 

  



  (3.15) 

where,  is standard normal cumulative distribution function. For the multi-

dimensional case, the generalised Eq. (1.3) becomes, 

    1 2 1 2( ) 0 ... , ,...   ... f N NP P g f x x x dx dx dx     XX  (3.16) 

Computation of failure probability as in Eq. (3.16) is applicable for aleatory 

uncertainties with corresponding distributional parameters and PDF. However, it is 

challenging to estimate failure probabilities in presence of imprecise uncertainties. 

Hence the reliability analysis demands the exploration of entire domain of bounds on 

imprecision in input variables. 

( )g X ( )g X
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3.1.2 Probability-box  

Imprecise probability analysis distinguishes the well-known probability theory by 

probability bounds analysis for uncertainties with bounds. Probability bounds analysis 

is combination of interval analysis and probability theory, and the uncertainty is stated 

as, probability-box (p-box). P-box describes an ambiguous quantity with lower and 

upper bounds as a unified mathematical model to describe uncertainties with imprecise 

dependencies. Bounds on the parameter can be obtained from interval arithmetic 

functions (Chakraborty et al. 2017) and optimization methods (Liu et al. 2017). 

Efficiency of arithmetic functions is higher than that of the optimization methods but 

bounds are wider than the actual, which in turn results in overestimation. To overcome 

these overestimation, some of the techniques have been developed are Tailor series 

expansion method and Chebyshev interval method (Wu et al. 2017).  

P-box can be constructed in various aspects on the basis of available insufficient 

data about a quantity as,  

i. Distributional p-box or parametric p-box: P-box whose probability 

parameters are specified indefinitely as intervals with known shape (i.e., 

normal, uniform, beta, weibull, etc.). Bounds of the p-box are enclosed by 

extreme values of distributions in terms of mean and standard deviation of 

the given parameter.  

ii. Distribution free p-boxes or free p-box: P-box whose mean and standard 

deviation is known, but distribution family is unknown. Here there is no 

assumption of shape or family of distribution but bounds are enclosed 

significantly when distribution is considered as unimodal. Distributions 

which match the given moments can be considered by some inequalities 

such as Markov, Chebyshev, etc.  

iii. P-boxes from imprecise measurements: When random sample data are 

ample, the empirical distributions can be used for calculating the values with 

significant measurement uncertainty represented by ranges about the 

sample, as p-box.  

iv. Confidence bands: If probability is designated by confidence bands, it is 

required to select the confidence level less than 100% for the result to be 

non-vacuous. They will completely enclose the distribution from which the 
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data were randomly sampled. A confidence band about a distribution 

function is sometimes used as p-box even though it represents statistical data 

rather than rigorous or sure bounds.  

v. Envelopes of possible distributions: P-box can be constructed as the 

envelope of various cumulative distributions, as a variable can be described 

by multiple probability distributions.  

vi. P-boxes from calculation results: P-box can arise from computations 

involving probability distribution or involving both a probability 

distribution and an interval, or involving other p-boxes.  

P-box approach has been used in many fields specially in engineering and 

environmental science. Some of the applications are mentioned below: 

 Reliability and risk assessment in structural engineering  

 Sensitivity analysis in aerospace engineering  

 Groundwater modelling  

 Uncertainty propagation for salinity risk models  

 Engineering systems for drinking water treatment, and heavy metal 

contamination in soil  

 Safety assessment of power supply system 

 Some of the applications other than engineering disciplines are, human 

health, endangered species assessment, agriculture, water pollution, cost 

estimates, weather forecasting, groundwater pollution, etc.  

3.1.3 Construction of p-box 

Consider a p-box variable defined as, [ ,  ]x x x , with x  as lower bound  and x  as 

upper bound within the interval. Let the CDF, ( )F x for a random variable X lies in the 

space [0, 1]. For every x, an interval    ,F x F x 
   extensively is found to bound the 

possible values of ( )F x as, 

      F x F x F x     (3.17) 

such a pair of two CDFs constructs p-box. The expression for failure probability from 

MCS is given by,  
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    
1

1 1,    if  [ ] is true
( ) 0   

0,   if  [ ] is false

sN

f k

ks

I
P I g x

IN 


  

   (3.18) 

where sN is number of samples, and [ ]I   is indicator function, and kx is kth simulated 

sample of X, which can be generated using inverse transform method. 

  1                1,2,...k X jx F v j N   (3.19) 

where
jv is sample of random variable. If the variable X is not precisely defined with 

known PDF, then it may be assumed to fall in between two extreme ranges for the PDF. 

In this context, failure probability also varies in ranges[ ,  ]f fP P . This interval of failure 

probability can be evaluated using IMCS (Zhang et al. 2010) as expressed in Eqs. (3.20) 

and (3.21) which represent lower and upper bounds of failure probability respectively 

for all possible values of ( )F x .  

  1

1

1
min ( ) 0

sN

f X j

ks

P I g F v
N





 
    

 
  (3.20) 

and  

  1

1

1
max ( ) 0

sN

f X j

ks

P I g F v
N





 
    

 
  (3.21) 

Similarly, for the response function ( )g X , CDF intervals are defined as [ ,  ]g g . The 

lower and upper bounds of the interval are expressed as Eqs. (3.22) and (3.23) 

respectively, 

  
,

min ( )
x x x

g g
  

 x  (3.22) 

and 

  
,

max ( )
x x x

g g
  

 x  (3.23) 

For example, if X is a normal random variable with standard deviation of 0.5, 

and due to limited resource, mean of the variable is not precise and lies in an interval 

between [2, 3], then the variable is modelled as p-box as shown in Fig. 3.5.  

Cartesian product method is commonly adopted for computations involving p-

boxes. Interval arithmetic is another way to compute with p-boxes, where numerical 

calculations for interval numbers are required, for example, interval finite element 
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method (IFEM). Elementary operations of real arithmetic can be extended to interval 

numbers also. Eq. (3.24) implies the arithmetic operation, where x and y are the generic 

elements, i.e.,   , ,  and , , ,x X y Y       . 

  min ,  maxx y x y x y  (3.24) 

3.2 HIGH DIMENSIONAL MODEL REPRESENTATION 

Computational complexity in generating a multivariate function increases as the 

number of input variables increases for conventional methods. HDMR is a tool 

established to capture multiple input-output relation of the system (Balu and Rao 

2012a).  Although multi-dimensional systems require higher order correlations in 

formulating system response, HDMR allows lower order terms to enamour the entire 

system response.  

 HDMR is a correlated function expansion which maps input-output in an 

orderly manner. Let ( )g X  be the response function with N input variables. The first-

order HDMR expansion is defined as, 

        
1 2 1 2

1 2

0 12 1 2

1 1

  ,    ,  , ,    
N

i i i i i N N

i i i N

ig g g x g x x g x x x

   

     X  (3.25) 

where 0g  is a constant term representing the response at reference point c. Here, ( )i ig x

is a first-order term indicating the effect of ix  acting alone. The function 
1 2 1 2

(  ),i i i ig x x  

is a second-order term which defines the interdependent effects of the variables 
1i

x and 

 

Fig. 3.5 P-box with a mean [2, 3] and standard deviation 0.5 
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2i
x , and  1 2, ..., 1 2,  ,  ... ,  N Ng x x x  represents any residual dependence of all the input 

variables, which shows the impact on the output ( )g X . With all the component 

functions in Eq. (3.25), an efficient model can be derived which replaces an expensive 

implicit system without compromising accuracy. Based on the previous studies, it is 

witnessed that, first-order expansions are likely sufficient to characterise outputs of 

varied realistic systems.  

Different forms of HDMR can be constructed for different purposes which are 

adopted depending on the requirement in finding the component function. ANOVA-

HDMR allows the decomposition of a multivariate dependence into a hierarchical sum 

of terms with increasing dimensionality. The cut-HDMR expansion is an exact 

representation of the output in the hyperplane passing through a reference point in the 

variable space. The approximation contains contribution from all input variables. Thus, 

the infinite number of terms in the Taylor series is partitioned into finite different 

groups, and each group corresponds to one cut-HDMR component function. Therefore, 

any truncated cut-HDMR expansion provides a better approximation and convergent 

solution of ( )g X . RS-HDMR is a practical procedure based on randomly sampled input 

variables. Evaluation of the high-dimensional integrals in the RS-HDMR expansion can 

be carried out by Monte Carlo random sampling. To reduce the sampling effort, the RS-

HDMR component functions may be approximated by expansions in terms of a suitable 

set of functions, such as orthonormal polynomials, spline functions, or even simple 

polynomial functions. 

In order to derive an exact output for given variable space, cut-HDMR method 

is utilised in the proposed research. To begin with, a reference point  1 2, ,..., Nc c cc

is chosen for an input vector X, within the region of interest. Then, expansion functions 

are determined by using responses relative to the predefined reference point c, all along 

the input variable space. Suppose N is the number of variables present in the system 

under consideration, and n is the number of sample points considered on the variable 

axes, then the number of function evaluations ( sN ) for any order is calculated (Rao and 

Chowdhury 2009) as, 
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 


  (3.26) 

where s is the order of the component function. On considering only up to first-order 

term, the component functions from Eq. (3.25) can be written as, 

 0 = ( )g g c  (3.27) 

     0 ,  i i i ig x g x c g  (3.28) 

here,    1 2 1 1,  , ,..., , ,...,,i i i i i i Ng x c g c c c x c c  which implies that, all the values of input 

parameters are at c except ix . Values of 0g  at each point on the variable axes can be 

calculated by any existing analysis tool, like finite element method. Further, for j

i ix x

the function is defined for n sample points as,  

    1 2 1 1, , ,... , , ,...     1,2,...,j j

i i i i i Ng x c g c c c x c c j n    (3.29) 

The function is evaluated for each division on the variable space by interpolating the 

values using Lagrange’s interpolation method, hence the component function  i ig x

from Eq. (3.29) is expressed as,  

    1 1 1
1

, ,,  ( ) ,.. ..., , ,.i

N
j j

i j i i Ni i
j

g x c x g c c x c c 


   (3.30) 

where, )(j ix is Lagrange’s interpolation term for first-order, evaluated as,  

 
      
      

1 1 1

1 1 1
( )

j j n

i i i i i i i i

j i j j j j j j n

i i i i i i i i

x x x x x x x x
x

x x x x x x x x

 

 

     
 

     
 (3.31) 

Similarly, all the remaining component functions should be generated so as to 

formulate the output function ( )g X . On substituting     ,  ,i i i

j
ig x c g x c in Eq. (3.28) 

and adding Eqs. (3.27) and (3.28), the first-order approximation function ( )g X can be 

obtained as,  

        1 1 1 0

1 1

     ,  ,  ,  ,  ,  ,  1
N n

j

j i i i i N

i j

g x g c c x c c N g 

 

     X  (3.32) 

The HDMR is implemented in various disciplines such as, optimization, 

molecular physics, chemical kinematics, atmospheric models, etc. for failure and risk 

assessments, and uncertainty analysis. Also, mathematical models can be constructed 
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impressively by using laboratory or field data with lesser computational effort. The 

HDMR is utilised in deriving response function for linear as well as nonlinear systems 

(Naveen and Balu 2017; Rao and Balu 2019). Also, it has been applied to the 

uncertainty analysis with dependant intervals (Xie et al. 2017) and fuzzy variables (Balu 

and Rao 2014).  

Based on the previous studies, it is witnessed that, the correlated functions in an 

HDMR expansion are optimal choices tailored to ( )g X over the entire domain of X, 

hence, the high order terms in the expansion are often negligible. Therefore, in this 

work, first-order HDMR expansions, which are likely sufficient to characterize outputs 

of varied realistic systems, is utilised in deriving the approximation function for various 

systems with imprecise uncertainties. Also, very small number of sample points should 

be avoided in HDMR approximation, as it may not capture the nonlinearity outside the 

domain of sample points and this in turn affects the estimated solution (Rao and 

Chowdhury 2009). The sampling scheme for a function having one variable (X) and 

two variables (X
1
, X

2
) is shown in Figs. 3.6 (a) and (b), respectively. 

  

 (a) (b) 

Fig. 3.6 Sampling scheme for first-order HDMR: (a) for a function with one variable

( )X ; and (b) for a function with two variables  1 2 and X X  
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3.3 NUMERICAL EXAMPLES 

The proposed HDMR based uncertainty analysis is verified for the efficiency and 

accuracy by applying to some of the explicit and implicit structural problems. Figure 

3.7 shows the steps involved in first-order HDMR based uncertainty analysis. First two 

examples are presented to study the responses of the function with imprecise variables, 

and the rest of the examples demonstrate the efficiency in the reliability estimation. An 

exact continuous and approximated function obtained from the HDMR technique is 

simulated with IMCS for different function evaluations corresponding to various 

sample points and variation in the bounds of response of the models and failure 

probability is studied.  

  

Fig. 3.7 Flowchart for the first-order HDMR based function. 

 

 Start 

Select sample points (n = 3, 5, 7, or 9) on the variable axes i.e., 

  

Evaluate response of the system using finite element analysis at all the 

sample points, including reference point c 

 

 

Generate HDMR based limit state function 

 

Simulate the function by IMCS  

Interpolate each low dimensional terms with respect to input values 

using Lagrange interpolation method  

 

 



39 

3.3.1 Explicit Cubic Function 

An explicit cubic function is considered (Chowdhury et al. 2009) as in Eq. (3.33) 

consisting of two normal independent p-box variables with interval mean [7.06, 12.94] 

and standard deviation 3.0.   

 3

1 2 1 2

0.025 2 33
( ) 2.2257 ( 20) ( )

27 140
g x x x x     X  (3.33) 

The function ( )g X is simulated using crude IMCS for 1,00,000 evaluations to 

obtain the response bounds. Then, the first-order HDMR is applied to obtain the 

approximated response function which replaces the function ( )g X with computational 

efficiency. The number of sample points on p-box variables 1 2 and x x  have been varied 

from 3 to 7n  for the parametric study. The response bounds are presented in Table 

3.2, which are compared with the direct IMCS results. The corresponding CDF curves 

are shown in Fig. 3.8. 

From Table 3.2, it is witnessed that sample point 3n  is showing slight error 

in response bounds, wherein 5n  is showing negligible error and 7n  is nearing to 

the original model results with more accurate bounds. Hence CDF of HDMR curves 

are overlapping the CDF of original model in Fig. 3.8. 

 

Fig. 3.8 CDF of explicit function in Eq. (3.33) 
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Table 3.2 Response bounds of explicit function in Eq. (3.33) 

 
Response % Error Effort 

LB UB LB UB LB UB 

Direct IMCS 0.8405 3.6095 - - 100000 100000 

HDMR (n=3) 0.8526 3.6043 1.44 0.140 5 5 

HDMR (n=5) 0.8430 3.6062 0.30 0.090 9 9 

HDMR (n=7) 0.8410 3.6093 0.06 0.005 13 13 

3.3.2 Nonlinear Response Function 

An explicit nonlinear function is considered (Yang et al. 2015) as,  

 
  2

1 2 2
1 4 5

( ) 2 sin
20 2

x x x
g

 
 
 

 
  X  (3.34) 

In this example, 1 2 and x x are p-box uncertain variables with normal 

distribution. [1.52, 3.48] and [1.4, 1.6] are interval mean values, and 1 and [0.9, 1.1] 

are the standard deviations of 1 2 and x x respectively. Since Eq. (3.34) is an explicit 

function, the IMCS is directly applied to obtain the response bounds with 5,00,000 

simulations.  Then, first-order HDMR technique is utilised to approximate the 

responses of the function for 3,5,7n  . Further the function is simulated using the 

IMCS, and the results are presented in Table 3.3. Figure 3.9 shows the CDF of the 

response function for different sample points. As the results obtained by the proposed 

method do not have much variation with respect to the direct IMCS, the deviation of 

the values is not prominent in Fig. 3.9. 

 

Fig. 3.9 CDF of explicit nonlinear function in Eq. (3.34) 
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Table 3.3 Response bounds of explicit nonlinear function in Eq. (3.34) 

 
Response % Error  Effort 

LB UB LB UB LB UB 

Direct IMCS 0.4305 1.4930 - - 500000 500000 

HDMR (n=3) 0.4420 1.5098 2.67 1.13 5 5 

HDMR (n=5) 0.4407 1.5086 2.37 1.04 9 9 

HDMR (n=7) 0.4400 1.5075 2.21 0.97 13 13 

Further, the computational efficiency is studied with respect to number of 

function evaluations required for estimating the response bounds, as run time of the 

original complex model reflects the required effort, and the percentage errors observed 

in the results with reference to the original function are presented in Table 3.3.  From 

the parametric study, for n=7 (from Table 3.3), the error is minimum, and the 

computational effort is only 13, which is very less compared to the effort required for 

direct IMCS. 

3.3.3 Creep-Fatigue Interaction 

A nonlinear creep-failure criterion is considered on the basis of creep and fatigue 

damage accumulation. The initial explicit model is defined as, 

   
 

 
  1

1 2 1 2

2

exp 2
, , , , , 2 exp exp 1

exp 1
c f c f c c fg N N n n D D D


   




     


 (3.35) 

Here, an d c fD D  are creep damage and fatigue damage by definition, 

/c c cD n N and /f f fD n N respectively.  and c cn N are number of loading cycles and 

life of creep, and  and f fn N  are number of loading cycles and life of fatigue. 1 2 and    

are experimental parameters. Interval mean and standard deviation of all the p-box 

variables are listed in Table 3.4.  

Table 3.4 Input parameters for creep-fatigue interaction 

Variables Interval Mean Std. Dev 

 
[5294,5686] 549 

 
[15876,18324] 3420 

 
[496,504] 10 

 
[11737,12263] 600 

 
[0.402,0.438] 0.042 

 
[5.737,6.263] 0.6 

cN

fN

cn

fn

1

2
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The function in Eq. (3.35) is analysed using the proposed method by deploying 

three samples along each of the variable axis. The original function was evaluated only 

at the selected sample point locations, and the corresponding component functions are 

developed, then the HDMR response function was obtained. The IMCS was applied on 

the developed HDMR function by simulating the input variables based on their 

characterization. Bounds of creep are presented in Table 3.5. In this process, 13 number 

of function evaluations resulted for the construction of the HDMR function. To study 

the impreciseness of the failure probability, the CDF was drawn for the lower and upper 

bounds, as shown in Fig. 3.10.  

The function was analysed using other available methods like direct IMCS, 

FORM and SORM. Here, the direct IMCS, which requires 500000 function 

evaluations, is taken as the reference for the comparison. The proposed technique 

predicts the failure probability with least computational effort. However, the bounds 

are wider compared to IMCS. Therefore, the chosen number of sample points along 

each of the axis was varied from 3 to 7 for seeking improvement in the constructed 

HDMR model, and the results are presented in Table 3.6 and Fig.3.10.  

The CDF for 5n   and 7n   are overlapping exactly with the original 

function, wherein, the pattern of CDFs for 3n   are significantly showing the 

deviation, and the curves are wide covering ample of lower and upper bounds. 

 

Fig. 3.10 CDF of limit state function for creep-fatigue interaction 
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Table 3.5 Bounds of creep-fatigue interaction 

 
Creep Effort 

LB UB LB UB 

Direct IMCS 0.188 0.322 500000 500000 

HDMR (n=3) 0.131 0.347 13 13 

HDMR (n=5) 0.189 0.324 25 25 

HDMR (n=7) 0.188 0.322 37 37 

 

Table 3.6 Failure probability and reliability index of creep-fatigue interaction 

 
Failure Probability Reliability Index % Error 

LB UB LB UB LB UB 

Direct IMCS 0.0032 0.0039 2.6606 2.7266 - - 

HDMR (n=3) 0.0531 0.0890 1.3469 1.6155 93.97 95.62 

HDMR (n=5) 0.0034 0.0051 2.5690 2.7065 5.88 23.53 

HDMR (n=7) 0.0033 0.0046 2.6045 2.7164 3.03 15.22 

FORM 0.0093 0.0156 2.1545 2.3535 65.59 75.00 

SORM 0.0178 0.0425 1.7224 2.1015 82.02 90.82 

3.3.4 Fracture of Turbine Disk 

A turbine disk (Jia and Lu 2018) shown in Fig. 3.11 is considered in this example.  The 

radius of crack of the turbine disk exposed to cyclic loading cN  is defined as,  

  
2/(2 )

/2 1 /2

max 0(2 ) / 2 (2 / )
m

m m m

ca m c N F a  


      (3.36) 

where c, max and 0a represent the crack propagation, maximum stress and the radius of 

initial crack on the surface of the material. The correction factor (Fc), and the crack 

propagation index (m), are taken as 1.122 and 3.285 respectively. The stress intensity 

factor for maximum stress near crack tip is defined as max max2 /cK F a    .  

 

Fig. 3.11 Model of turbine disk 

Turbine blade 
Turbine disk 
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The limit state function is expressed as the difference of critical fracture 

toughness ICK  and stress intensity factor.  

  max max, 2 / 73IC IC cg K K F a        (3.37) 

The input p-box variables considered for this study are listed in Table 3.7. 

Practically, the number of loading cycles cN  can be accurately controlled as a constant, 

similarly the crack propagation 𝑐 as well as the initial surface crack radius 0a can also be 

treated as constants when the crack is clear.  

Table 3.7 Input parameters for turbine disk 

Variables Interval Mean Std. Dev 

max      (MN/m
2
) [655.7, 694.3] 54.0 

ICK  (kN/m
1.5

) [83.9, 90.1] 8.7 

The first-order HDMR function is established for the fracture strength of turbine 

disk by considering n sample points along each of the variable axes, considering c as 

the mean of p-box variables. Also the function in Eq. (3.37) is evaluated using crude 

IMCS for comparing the computational effort of the HDMR uncertainty analysis which 

is appreciably lesser than the original function evaluation. Only five function 

evaluations were required for obtaining the responses, which is computationally very 

less intensive compared to the direct IMCS (i.e., 500000 function evaluations). Bounds 

of fracture strength and failure probability of the function along with reliability index 

are presented in Tables 3.8 and 3.9 respectively. The corresponding CDFs of the 

responses are shown in Fig. 3.12.  

Table 3.8 Fracture strength of turbine disk 

 
Fracture Strength (kN/m1.5) Effort 

LB UB LB UB 

Direct IMCS 66.75 73.92 500000 500000 

HDMR (n=3) 66.77 73.93 5 5 

HDMR (n=5) 66.75 73.92 9 9 

HDMR (n=7) 66.75 73.92 13 13 
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Table 3.9 Failure probability and reliability index of turbine disk 

 
Failure Probability Reliability Index % Error 

LB UB LB UB LB UB 

Direct IMCS 0.0172 0.0200 2.0537 2. 1154 - - 

HDMR (n=3) 0.0177 0.0202 2.0496 2.1038 2.82 1.00 

HDMR (n=5) 0.0174 0.0198 2.0579 2.1107 1.14 1.01 

HDMR (n=7) 0.0174 0.0197 2.0579 2.1132 1.14 1.52 

Further, n is varied from 3 to 7 to examine the accuracy. It is evident from Table 

3.9 that, the failure probability bounds for the limit state function obtained using HDMR 

( 3n  ) have a slight variation with reference to the original model. However, for 

5 and 7n  the CDFs are exact. The effort taken for getting zero error is (9 evaluations)  

much lesser than that of the direct IMCS. However, as there is no error resulted for the 

higher values of n, the respective bounds are overlapping in Fig. 3.12. 

3.3.5 Portal Frame Structure 

A portal frame structure of single storey and single bay as shown in Fig. 3.13 is 

considered (Balu and Rao 2013). The cross-sectional areas 1 2 and A A  (log-normal) and 

horizontal load P (normal) are modelled as imprecise uncertainties, and their 

parameters are given in Table 3.10. The values of the second moment of areas are 

expressed as  2

2

11,2; 0.08333, 0.16670i i iI A i      . 

 

Fig. 3.12 CDF of limit state function for turbine disk 
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The limit state function is defined for deflection in the horizontal direction at 

the top of the frame.  

  1 2 lim, , hg A A P     (3.38) 

where lim 6 mm   and h is the horizontal displacement. 

 The limit state function for the displacement of the portal frame is derived using 

the first-order HDMR technique by distributing n sample points along each of the 

variable axis and taking respectively, the mean values of the p-box variables as 

reference point c. Bounds of horizontal displacement are presented in Table 3.11. 

Table 3.10 Input parameters for portal frame structure 

Variables Distribution Interval Mean Std. Dev. 

A
1   (m

2
) Log-normal [0.325, 0.395] 0.036 

A
2   (m

2
) Log-normal [0.162, 0.198] 0.018 

P    (kN) Normal [15, 25] 5.0 

The failure probability is evaluated for all the values of 3n  . Only seven 

function evaluations were required for obtaining the responses, which is 

computationally very less intensive compared to the direct IMCS (i.e., 500000 function 

evaluations). Bounds of failure probability of the function are presented in Table 3.12, 

and the corresponding CDFs of the responses are shown in Fig. 3.14. Table 3.12 also 

presents the bounds of failure probability for sample points 5 and 7n  , and FE results 

by direct IMCS without adopting HDMR for evaluating the efficiency of the 

methodology. Fig. 3.14 shows CDF of limit state function for different sample points.  

  

Fig. 3.13 Portal frame structure 
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Table 3.11 Horizontal displacement of portal frame structure 

 Displacement  

(in mm) 
Effort 

LB UB LB UB 

Direct IMCS 2.86 6.89 500000 500000 

HDMR (n=3) 2.63 6.64 7 7 

HDMR (n=5) 2.63 6.66 13 13 

HDMR (n=7) 2.64 6.66 19 19 

Table 3.12 Failure probability and reliability index of portal frame structure 

 
Failure Probability Reliability Index % Error 

LB UB LB UB LB UB 

Direct IMCS 0.0057 0.0121 2.2539 2.5302 - - 

HDMR (n=3) 0.0046 0.0082 2.3999 2.6045 23.91 47.56 

HDMR (n=5) 0.0044 0.0082 2.3867 2.6045 29.54 47.56 

HDMR (n=7) 0.0046 0.0085 2.3999 2.6197 23.91 42.35 

The results of the frame for three different variables show the different bounds 

for all sample points when compared with the direct FE analysis using IMCS without 

adopting HDMR. From Table 3.12, for sample points 3 and 5, bounds are nearer, 

however 7n   significantly reduces the error with minimum computational effort 

compared to direct IMCS. 

 

Fig. 3.14 CDF of limit state function for portal frame structure 
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3.3.6 Plane Truss Structure 

A 15-bar steel truss structure (Zhang et al. 2010) is studied with small modification, 

shown in Fig. 3.15. The cross-sectional areas (normal) are  1 2 15,  ,  ,  A A A A and 

three loads (log-normal),  1 2 3,  ,  P P PP  are considered as p-box variables for the 

study. First and second moments are listed in Table 3.13. The limit state function is 

defined for vertical deflection at the node-5 with limit of 0.06 m. 

  1 2 15 1 2 3 lim, ,.. , , , vg A A A P P P     (3.39) 

where lim 0.06 m   and v is the vertical deflection obtained by the proposed method, 

and the bounds are presented in Table 3.14. From FE analysis, vertical deflection at 

node-5 is calculated for all the mean values of variables for deriving the explicit 

approximated limit state function.  

Table 3.13 Input parameters for plane truss structure 

Variables Distribution Interval Mean Std. Dev 

A
1
 to A

6    (m
2
) Normal  [0.001014, 0.001051] 0.00516 

A
7
 to A

15   (m
2
) Normal  [0.000634, 0.000657] 0.00323 

P
1      

(kN) Log-normal [84.73, 92.47] 5.836 

P
2    (kN) Log-normal [254.19, 277.44] 15.839 

P
3    (kN) Log-normal [84.73, 92.47] 5.836 

 

 

Fig. 3.15 Plane truss structure 
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Table 3.14 Vertical deflection of plane truss structure 

 Deflection (in m) Effort 

 LB UB LB UB 

Direct IMCS 0.0565 0.0624 500000 500000 

HDMR (n=3) 0.0563 0.0623 37 37 

HDMR (n=5) 0.0563 0.0627 73 73 

HDMR (n=7) 0.0566 0.0625 109 109 

The failure probability is evaluated for all the values of 3n  . As the number of  

input variables is high compared to other examples, 37 function evaluations were 

required for obtaining the responses, which is still computationally very less intensive 

compared to the direct IMCS (i.e., 500000 function evaluations). Bounds of failure 

probability and reliability index of the function are presented in Table 3.15, and the 

corresponding CDFs of the responses are shown in Fig. 3.16.  

Table 3.15 Failure probability and reliability index of plane truss structure 

 
Failure Probability Reliability Index % Error 

LB UB LB UB LB UB 

Direct IMCS 0.0544 0.1227 1.1616 1.6036 - - 

HDMR (n=3) 0.0639 0.1068 1.2437 1.5228 14.87 14.89 

HDMR (n=5) 0.0669 0.1113 1.2196 1.4993 18.68 10.24 

HDMR (n=7) 0.0518 0.1247 1.1518 1.6276 5.02 1.60 

 

Fig. 3.16 CDF of limit state function for plane truss structure 
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Similar to the other examples, a parametric study has been carried out for

3,  5,  and 7n  . The errors in the results are compared with that of FE analysis using 

IMCS. Sample point 7n   is showing more accurate results compared to 3 and 5n  . 

The effort taken for FE analysis with IMCS is way greater than the effort taken for 

sample point 7n   (i.e., 109).  
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CHAPTER 5 

 

HYBRID STRUCTURAL RELIABILITY  

 

4.1 HYBRID UNCERTAINTIES 

Structural reliability estimation gets complicated as number of uncertainties increases, 

and/or if different sources of uncertainties are present in a system. The hybrid 

uncertainty analysis merges the diverse types of uncertainty modelling strategies into a 

single computational scheme. The mixed nature of aleatory and epistemic uncertainties 

propagated from the model inputs to an output is to be quantified for structural 

reliability assessment. The performance function with aleatory and epistemic 

uncertainties can be represented as, 

      1 2 1 2, , ,... , , ,...r pg g g X X X Y Y Y Z X Y  (4.1) 

where  1 2, ,... rX X XX  and  1 2, ,... pY Y YY are vectors of aleatory and epistemic 

uncertainties respectively. The uncertainty associated with the model inputs X and Y 

are propagated through the model ( )g Z . Balu and Rao (2012b) presented failure 

probabilities for systems with random and fuzzy variables. Coexistence of random 

variables and intervals in structural systems was investigated (Bai et al. 2017; Han et 

al. 2014; Wu et al. 2017) for hybrid reliability approach. Greegar and Manohar (2016) 

presented global response sensitivity analysis for intervals and fuzzy variables. Zhang 

et al. (2019) presented a novel approach, chance theory by combining probability theory 

and uncertainty theory for reliability analysis. Subjective randomness and fuzziness 

were modelled as uncertainties for the study. 

Further, hybrid uncertainties where more than two sources of uncertainties 

present in the system are taken into account in assessing the structural behaviour. Wang 

et al. (2014) proposed a hybrid reliability analysis comprising convex theory for 

structures with multi-source uncertainties. Non-probabilistic boundedness was 

combined with convex models in different combinations, such as, convex with random, 

convex with fuzzy random, and convex with interval.  
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In the present work, vector Y is assumed to be divided into sub-vectors as,

 1 2, ,... lY Y Y ,  1 2, ,...,l l fY Y Y 
 and  1 2, ,...f f pY Y Y 

 representing different sources, 

intervals, fuzzy and p-box variables respectively as, 

 1 2 1 2 1 2, ,... , , ,... , , ,...l l l f f f pY Y Y Y Y Y Y Y Y   Y .  Figure 4.1 shows the flowchart for first-

order HDMR based hybrid uncertainty analysis. Steps involved in the analysis include, 

modelling the uncertainties according to the available data by differentiating aleatory 

and epistemic uncertainties. For the HDMR response surface generation, sample points 

should be selected on the variable axes and response at each point on the variable axis 

should be calculated for all the uncertainties. Lagrange’s interpolation method is used 

to interpolate the hidden values on the variable axes to derive the continuous first-order 

response function. Failure probability bounds are estimated by simulating the response 

function using IMCS. 

4.2  RELIABILITY ANALYSIS WITH MIXED UNCERTAINTIES 

Nonlinear structural mechanics problems are presented to illustrate the behaviour of 

structures with mixed variables. First-order HDMR technique is adopted for deriving 

response function and bounds of system responses, and failure probability are 

calculated for the same. Sampling is considered from 3 to 7n  where intervals are 

kept same and sampling is within the bounds.  
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Fig. 4.1 Flowchart for first-order HDMR failure probability for hybrid uncertainties 
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4.2.1  Hollow Cantilever Tube Structure 

A cantilever tube is considered as shown in Fig. 4.2 (Jiang et al. 2011). 1 2, ,  and F F P T

are the external forces and torsion applied on the cantilever tube respectively. The limit 

state function is defined for the maximum stress of the cantilever which should be less 

than the yield strength
yf , and is expressed as, 

  1 2 1 max2, , , , , yF F P fLg T L    (4.2) 

where, max is the maximum von-Mises stress on top surface of the tube, expressed as, 

 
2 2

max 3x zx     (4.3) 

where x is normal stress. The torsional stress
zx , the area of cross section A, the 

bending moment and moment of inertia, M and I respectively are expressed as, 

 1 2 2 1Sin Sin

2
x

P F F Md

A I

 


 
   (4.4) 

 
4

zx

Td

I
   (4.5) 

  
22 2

4
A d d t

    
 

 (4.6) 

 1 1 2 2 2 1Cos CosM F L F L    (4.7) 

  
44 2

64
I d d t

    
 

 (4.8) 

  

Fig. 4.2 Hollow cantilever tube structure 
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In this example, the external forces are constructed as p-boxes, and length of 

the tube is assumed to be normally distributed random variable. The associated 

distributional parameters are given in Table 4.1. Diameter (d) and thickness (t) of the 

tube are considered to be absolute. θ
1 and θ

2 are the angles at which F
2
 and F

1
 are applied 

to the cantilever tube respectively. 

HDMR based mixed uncertainty analysis is carried out for the limit state 

function in Eq. (4.1), which is a replacement of the explicit expression for maximum 

von-Mises stress. Also FE analysis is carried out at reference point c, for deriving the 

HDMR approximated limit state function. FE Modelling of the structure is shown in 

Fig. 4.3, and Table 4.2 presents the max  values at all sample points. 

Table 4.1 Input mixed uncertainties for hollow cantilever tube structure 

Variable Uncertainty 
Distributional 

parameter-1 

Distributional 

parameter-2 

F1  (N) p-box [2850, 3150] 300 

F2  (N) p-box [2850, 3150] 300 

P  (N) p-box [11423, 12638] [1140, 1260] 

T  (N-mm) p-box [85673, 94782] [8550, 9450] 

L1  (mm) Random 60 6 

L2  (mm) Random 120 12 

 The deformed shapes in von-mises and the displacement from FE analysis are 

shown in Fig. 4.4. Similar to the other examples, a parametric study has been carried 

out for 3,  5,  and 7n  . The failure probability is evaluated for all the values of n . As 

the number of input variables is slightly high, 37 function evaluations were required for 

obtaining the responses, which is still computationally very less intensive compared to 

the direct IMCS (i.e., 500000 function evaluations).  

  

Fig. 4.3 FE model of hollow cantilever tube structure 
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Table 4.2 Von-Mises stress of hollow cantilever tube structure 

 
Von-Mises Stress  

(in MPa) 
Effort 

 LB UB LB UB 

Direct IMCS 94.03 163.89 500000 500000 

HDMR (n=3) 15.54 175.14 13 13 

HDMR (n=5) 93.22 167.03 25 25 

HDMR (n=7) 94.12 162.92 37 37 

Failure probability and corresponding reliability index bounds for HDMR 

sample points 3 to 7n  are presented in Table 4.3 along with the computational 

efficiency. The error in the values are compared with that of crude IMCS for the explicit 

function in Eq. (4.3). The corresponding CDFs of limit state function are shown in Fig. 

4.5.  

    

 (a)  (b) 

Fig. 4.4 Deformed shape of hollow cantilever tube structure; (a) Mises stress; (b) 

Displacement 

 

Fig. 4.5 CDF of limit state function for hollow cantilever tube structure 
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Table 4.3 Failure probability and reliability index of hollow cantilever tube structure 

 
Failure probability Reliability Index % Error 

LB UB LB UB LB UB 

Direct IMCS 0.00091 0.0013 3.0224 3.1194 -- -- 

HDMR (n=3) 0.01040 0.0095 2.3112 2.3466 91.25 86.32 

HDMR (n=5) 0.00076 0.0011 3.0712 3.1703 16.48 15.38 

HDMR (n=7) 0.00080 0.0011 3.0679 3.1770 12.08 15.38 

 

From Table 4.3, sample point 7n  is showing more accurate results compared 

to 3 and 5n  . The effort taken for FE analysis with IMCS is way greater than the effort 

taken for sample point 7n   (i.e., 37).  

4.2.2 Ten-Storey Irregular RCC structure  

Residential and commercial buildings commonly have asymmetric plans and 

irregularities, which lead to increase in stresses in certain elements and hence result in 

destruction of the structure. This becomes a concern of safety of the building, if the 

structure is located in the seismic zone.  

Symmetric and asymmetric structures are commonly seen everywhere. In real 

scenario, most of the structures are asymmetric, due to architectural or aesthetic needs.  

Asymmetric structures are more vulnerable to earthquakes, hence deformation (or 

failure) prediction is uncertain when it is compared with symmetric structures.  

A ten-storey stiffness irregular reinforced cement concrete (RCC) structures is 

considered, for the study of behaviour of the structure with irregularity in presence of 

mixed uncertainties. Since it is an implicit problem, direct simulation is 

computationally inefficient. Therefore, a regular structure possessing same dimensional 

and material properties is considered for comparing the results. Figure 4.6 shows plan 

and elevation of both irregular and regular structures. The dimensions of the structural 

elements and other data are listed in Table 4.4. The structure is assumed to be located 

in zone-V, with seismic zone factor 0.36. M25 grade of concrete and Fe415 grade of 

steel are adopted in modelling the structure. 
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Table 4.4 Input parameters for irregular and regular structures 

Variables Description 
Distributional 

parameter-1 

Distributional 

parameter-2 

Ec (MPa)  Modulus of elasticity of concrete [22.8,  27.2] 5 

bb (mm) Width of beam [280, 320] 30 

db (mm) Depth of beam [420, 480] 45 

bc (mm) Width of column [280, 320] 30 

dc  (mm) Depth of column [560, 640] 60 

LL  (kPa) Live load 3 0.3 

 Pushover analysis is carried out for implicit RC structures at reference point for 

the HDMR sampling as g (25, 300, 450, 300, 600, 3). The horizontal displacement at 

the reference point by pushover analysis and linear static analysis at 3 and 5n  for 

both the structures are presented in Table 4.5. Hinges formed by pushover analysis for 

the corresponding displacements are shown in Fig. 4.7. The maximum horizontal 

displacement for limit state function in Eq. (4.9) for the mixed uncertainties is limited 

to 500 mm.  

   lim, , , ,c b b c hcg E b d b d     (4.9) 

 

  

Fig. 4.6 Plan and elevation details; (a) Plan of regular and irregular structures; 

(b) Elevation of regular structure; (c) Elevation of irregular structure 
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Table 4.5 Horizontal displacement of irregular and regular structures 

 
Displacement (in mm) 

on linear loading on nonlinear loading 

Stiffness irregular RC structure 

at reference point c 120 494 

HDMR (n=3) [36, 171] [180, 561] 

HDMR (n=5) [92, 162] [261, 500] 

Regular RC structure 

at reference point c 115 486 

HDMR (n=3) [36, 162] [160, 540] 

HDMR (n=5) [85, 152] [248, 480] 

The first-order HDMR function is established for the static linear and static 

nonlinear (pushover) displacements by considering sample points ( 3 and 5n  ) along 

each of the variable axes, considering c as the mean values of mixed variables. It is 

evident from Table 4.5 that, the displacement bounds are getting narrowed from 

3 to 5n  for both the structures, wherein, the displacement of stiffness irregular 

structure is greater to the value of regular structure, in both linear and nonlinear loading.

 

  

 (a)  (b) 

Fig. 4.7 Hinge formation at reference c for (a) Irregular structure at 10th step; 

(b) Regular structure at 12th step 
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25 function evaluations were required for obtaining the responses, which is 

computationally very less intensive. Bounds of failure probability and reliability index 

of the function in Eq. (4.9) for nonlinear loading are presented in Table 4.6, and the 

corresponding CDFs of the limit state function are shown in Figs. 4.8 and 4.9. From the 

results, it is clear that, the bounds of failure probability of regular structure is wider than 

the stiffness irregular structure, and the failure probability values for 5n  are efficient 

than that of 3n  , for corresponding displacement values (from Table 4.5). 

 

Fig. 4.8 CDF of limit state function for irregular structure 

 

Fig. 4.9 CDF of limit state function for regular structure 
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Table 4.6 Failure probability and reliability index of irregular and regular structures 

 
Failure probability Reliability Index Effort 

LB UB LB UB LB UB 

Stiffness irregular RC structure     

HDMR (n=3) 0.0110 0.05600 1.2291 1.5897 13 13 

HDMR (n=5) 0.0004 0.00048 3.2990 3.3500 25 25 

Regular RC structure     

HDMR (n=3) 0.03510 0.05380 1.6088 1.8101 13 13 

HDMR (n=5) 0.00016 0.00017 3.5855 3.5921 25 25 

 

4.2.3 Nuclear Containment Structure 

Nuclear reactor is a device designed to maintain chain reaction producing a steady flow 

of neutrons generated by the fission of heavy nuclei. Nuclear reactors are used at 

nuclear power plants for generation of electricity and in propulsion of ships. Heat from 

nuclear fission is passed to a working fluid (water or gas), which in turn runs through 

steam turbines. Nuclear reactors are further differentiated either by their purpose or by 

their design features. In terms of purpose they are either research reactors or power 

reactors. Research reactors are operated at universities and research centres. These 

reactors serve primarily as a neutron source. The neutrons generated are used for 

multiple purposes such as production of radioisotopes, non-destructive testing, medical 

research etc. Power reactors are usually found in nuclear power plants. They are 

dedicated for generating heat mainly for electricity production. 

 Reactors are designed with the expectation that they will operate safely without 

releasing radioactivity to their surroundings. It is however recognized that accidents 

can occur. An approach using multiple fission product barriers has been adopted to deal 

with such accidents. The containment is the fourth and final barrier to radiation release, 

the first being the fuel ceramic, the second being the metal fuel claddings, the third 

being the reactor vessel and coolant system.  

The containment structure is a gas-tight shell or other enclosure housing a 

nuclear reactor to contain the escape of fission products and radioactive gases that 

otherwise might be released to the atmosphere in the event of an accident. Such 
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enclosures are usually dome shaped and made of steel reinforced concrete. In practice, 

the containment structure must be able to maintain its integrity under circumstances of 

drastic nature. It has to withstand pressure build ups and damage from debris propelled 

by an energy burst within the reactor, and it must pass appropriate tests to demonstrate 

that it will not leak more than a small fraction of its contents over a period of several 

days, even when its internal pressure is well above the surrounding atmospheric 

pressure. The containment building must also protect components located inside it from 

external forces such as tsunamis, tornadoes, and airplane crashes. 

Containment model 

For this study a 1:4 scaled model has been constructed. It includes all the main features 

of a prototype such as the pre-stressed concrete cylindrical wall structure with a tori-

spherical dome. There are five major openings in the structure, two steam generator 

openings in the dome along with main air lock, fuelling machine air lock and emergency 

air lock barrel openings in the cylindrical wall. Figs. 4.10 and 4.11 show cross sectional 

details of axisymmetric model. 

The model includes cylindrical and dome portion along with ring beam and raft. 

The internal radius of containment model is 6.188m with the cylindrical wall thickness 

of 188mm and total height of 15.75m. The dome has mean radius of 9.794m and 

average thickness of 164mm with higher thickness at ring beam and opening locations. 

  

Fig. 4.10 Cross section details of axisymmetric model 
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The local areas around the openings are thickened to account for the 

discontinuity effects. The model is pre-stressed by post-tensioning 176 vertical tendons 

and 108 hoop tendons. A typical vertical tendon is anchored at stressing gallery and 

ring beam. The hoop tendon is a C-cable which is anchored at buttresses and covers the 

full circumference of the containment wall. The buttresses are located at 0, 90, 180 & 

270 degree. The dome is pre-stressed by 95 J-cables alternately in each direction which 

continue from raft to the other end of the ring beam. Figures 4.12 and 4.13 show 

developed view of the hoop and vertical tendons and dome tendons respectively. 

  

Fig. 4.11 Section view of nuclear containment model 

  

Fig. 4.12 Developed view of the hoop & vertical tendons 
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(a) 

 

(b) 

Fig. 4.13 (a) Dome tendons; and (b) Hoop and vertical tendons 

The properties of materials used in the modelling of containment is given in 

Table 4.7. Concrete damaged plasticity (CDP) model is used for the present study. 

Model proposed by Hsu and Hsu is used for getting the stress-strain relationship of 

concrete. Atomic energy regulatory board (AERB) recommends safety codes to ensure 

nuclear safety in India. One of the recommendations stemming from this requirement 

is evaluation of ultimate load capacity (ULC) of the containment structure considering 

pressure load. The objective of this analysis is to understand the behaviour of 

containment model under internal pressure load and to predict the failure modes with 

regard to the concrete cracking and tendon inelastic behaviour along with the estimation 

of ultimate load capacity of the containment model. 
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Table 4.7 Material properties based on test data  

Material Property Value 

Pre-stressing 

Tendons 

0.2% proof stress (N/mm2) 1683 

1% extension stress (N/mm2) 1649 

Ultimate tensile strength (N/mm2) 1848 

Modulus of elasticity (N/mm2) 189600 

Cross-sectional area (mm2) 142.8 

Concrete 

Cube strength  ckf  (N/mm2) 45 

Modulus of elasticity (N/mm2) 33540 

Ultimate tensile strength (N/mm2) 2.78 

On loading the model in various steps with increase in design pressure
dP  , the 

ultimate load was attained at 2.29 dP . The model undergoes failure at 0.4% strain in 

concrete cracking for the ultimate load. Therefore, the model should be designed for 

the internal pressure load, which should be less than 0.4% strain.  

The mixed uncertainties (p-box and random variables) are modelled for the 

material properties, cross-sectional details, pre-stress and internal pressure loads. The 

distributional parameters of all the uncertainties are given in Table 4.8. FE analysis has 

been carried out on the model by considering the structural properties for mean values 

of all the mixed variables (i.e., at reference point c). The limit state function for the 

containment model is as stated in Eq. (4.10). Figure 4.14 shows FE meshing and 

deformed shapes of the model.  

   max 0.0, , , 04c t pt dE A Pg     (4.10) 

In order to study the behaviour of the containment model due to mixed 

uncertainties, first-order HDMR based uncertainty analysis is carried out. The limit 

state function for the maximum strain in concrete cracking is derived for sample points

3 to 5n  . The failure probabilities are presented in Table 4.9, along with the 

computational efficiency. The CDF for the limit state function in Eq. (4.10) are shown 

in Fig. 4.15. 
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Table 4.8 Input mixed uncertainties for nuclear containment structure 

Variable Description 
Distributional 

parameter-1 

Distributional 

parameter-2 

Ec   (MPa) Modulus of elasticity of concrete [24524, 31949] 8471 

At    (mm2) Cross-sectional area of tendons [125, 161] 28.5 

σpt    (MPa) Pre-stress load [869, 1132] 150 

Pd    (MPa) Design pressure load 0.144 0.0144 

 

   

 (a) (b) 

       

 (c) (d) (e) 

Fig. 4.14 (a) FE meshing of the model; (b) Deformed at self-weight and pre-stressed 

load; (c) Deformed at design pressure load; (d) Deformed at ULC on dome; and        

(e) Deformed at ULC on opening 
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Table 4.9 Failure probability and reliability index of nuclear containment structure 

 
Failure probability Reliability Index Effort 

LB UB LB UB LB UB 

HDMR (n=3) 0.01040 0.0095 2.3112 2.3466 9 9 

HDMR (n=5) 0.00076 0.0011 3.0712 3.1703 17 17 

From Fig. 4.15 it is clear that, curves corresponding to sample point 5n   

showing complete deviation from 3n  on the limit state function for strain values. 

Bounds are narrowed for 5n   on the limit state axis. 

4.3 RELIABILITY ANALYSIS WITH HYBRID UNCERTAINTIES 

In order to study the behaviour of systems in presence of various sources of 

uncertainties, hybrid reliability analysis is carried out using first-order HDMR. Two 

examples are presented as follows. 

 

Fig. 4.15 CDF of limit state function for nuclear containment structure 

4.3.1 Cantilever Beam Structure 

An aluminium cantilever beam shown in Fig. 4.16 is considered for the study of hybrid 

uncertainties. Combination of a fuzzy variable, an interval, and a random variable along 

with a p-box variable is taken for the study on the basis of the level of knowledge about 

the variable. Here, load (P) applied at the free end of the beam is assumed to be fuzzy 

variable with a triangular membership function. Modulus of elasticity   = 69 GPaE  
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is considered as deterministic. Details about the uncertainties considered is given in 

Table 4.10.  

Table 4.10 Input hybrid uncertainties for cantilever beam structure 

Parameter Description Uncertainty 
Distributional 

parameter-1 

Distributional 

parameter-2 

P   (N) Load on beam Fuzzy  [250  275  300] -- 

L   (mm) Span of beam Interval [760, 770] -- 

b
b
   (mm) Width of beam p-box [24, 26] 3.75 

d
b
  (mm) Depth of beam Random 65 13.00 

Maximum deflection ( max ) at the free end is defined explicitly as in Eq. (4.11). 

On considering the hybrid uncertainties, max is limited to lim 3 mm  . The limit state 

function obtained from HDMR based hybrid uncertainty analysis is expressed as in Eq. 

(4.12).  

 
3

max 3

4
 

b b

PL

Eb d
 (4.11) 

   max lim, , ,b bg P L b d     (4.12) 

 First-order HDMR hybrid uncertainty analysis is applied for the cantilever beam 

explicit function bearing hybrid uncertainties. The failure probability curves are shown 

in Fig. 4.17 for 3 to 7n  . The curve for sample point 7n   is nearing the values to 

that of direct MCS which is carried for the function in Eq. (4.11). 

 

Fig. 4.16 Cantilever beam structure  

4.3.2 Plane Truss Structure 

A 15-bar steel truss structure (Zhang et al. 2010) is considered as shown in Fig. 3.15. 

In this example, the cross-sectional areas and three loads (at node-2, 5 and 6), are 

modelled as the p-boxes, interval, fuzzy and random uncertainties respectively 

P 

L 
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considered for the HDMR based hybrid uncertainty analysis. Input hybrid uncertainties 

are given in Table 12 along with the corresponding distributional parameters. The limit 

state function is defined for vertical deflection at the node-5 limited to lim 0.06 m  .  

  1 2 15 1 2 3 lim, ,... , , , vg A A A P P P     (4.13) 

From FE analysis, vertical deflection at node-5 is calculated for all the mean 

values of variables for deriving the explicit approximated limit state function. The 

failure probability is evaluated for all the values of 3 to 7n  . As the hybrid 

uncertainties varies characteristically, the failure probabilities obtained resulted in wide 

trapezoidal membership curves, as shown in Fig 4.18. 

 

Fig. 4.17 Failure probability curves of cantilever beam structure 

 

Fig. 4.18 Failure probability curves of plane truss structure with hybrid uncertainties 
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Table 12 Input hybrid uncertainties for plane truss structure 

Variables Uncertainty 
Distributional 

parameter-1 

Distributional 

parameter-2 

A
1
 to A

6
    (m

2
) p-box [0.001014, 0.001051] 0.0000516 

A
7
 to A

15
   (m2) p-box [0.000634, 0.000657] 0.0000323 

P
1
   (kN) Interval [85, 95] -- 

P
2
   (kN) Fuzzy [250   275   300] -- 

P
3
   (kN) Random 90 18 

 

As the number of variables is high compared to other examples, 109 function 

evaluations were required for obtaining the responses for 7n   which is still 

computationally very less intensive compared to the direct IMCS (i.e., 500000 function 

evaluations). From Fig. 4.18, sample point 7n   is showing more accurate results as 

compared to 3 and 5n  .  
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CHAPTER 5 

 

SUMMARY AND CONCLUSION 

 

5.1 RESULTS AND DISCUSSIONS 

Uncertainty is inherent in most of the physical processes, and it should be quantified 

efficiently so as to make the design more reliable and optimum. Primarily, appropriate 

characterization of uncertain input is essential, however, it is a challenging task while 

dealing with the limited information. Moreover, in real-time systems, it is sensible to 

consider different kinds of uncertainties in the system, when the information of the 

uncertainties have impreciseness and originate from different sources.  

In this context, a computationally efficient uncertainty analysis procedure is 

presented in this study to estimate the failure probability of structural systems by 

modelling the imprecise input as probability-box. The numerical examples possessing 

the explicit relationships are directly used in simulation, and also the function is 

approximated using first-order HDMR, in which the polynomial type function replaces 

the original nonlinear function for studying the efficiency of the HDMR in imprecise 

uncertain situations. The number of sample points in each of the variable axis is varied 

from 3 to 7 so that the improvement in the accuracy of the approximated HDMR 

function is witnessed.  

In all the numerical examples, the bounds of failure probabilities obtained from 

the proposed method are closer to the bounds of original models evaluated by crude 

Monte Carlo method. Also the results are obtained with lesser effort and more 

efficiently. In the example of creep-fatigue interaction, it is evident that sample point 

5n  is showing accuracy for failure probability bounds with the direct IMCS results 

with lesser error of 5.88% for LB and 23.53% for UB. Further, the sample point 7n 

is showing even lesser error of 3.03% and 15.22% for LB and UB respectively, which 

is acceptably lesser than the results obtained from conventional methods i.e., FORM 

and SORM. As these methods are approximation methods, the explicit function is going 

to carry a considerable amount of error in the results. Further if the HDMR based limit 

state function is simulated by these methods, the accumulated error will give huge 



72 

deviation from the original model. It can be witnessed from Table 3.6 that, FORM and 

SORM results on the model are showing acute amount of error as [65.59%, 75%] and 

[82.02%, 90.82%] respectively, whereas in case of fracture turbine disk example, 7n 

shows the lesser percentage of error [1.14%, 1.52%] with the lesser effort of 13 

evaluations compared to direct IMCS (i.e., 500000 evaluations). 

In the case of implicit situations, the FE analysis of real complex models 

requires tremendous effort for simulating the model many times, which is 

computationally tedious. Therefore, first-order HDMR is adopted to derive the explicit 

limit state function before the simulation is performed.  In the example of portal frame 

structure, 5n   shows nearer bounds of failure probability, i.e., [0.0044, 0.0088], but 

further 7n  has no much improvement in the results of failure probability bounds 

[0.0046, 0.0085]. Though plane truss structure example requires more effort compared 

to other examples (109 evaluations for 7n  ) with eighteen number of p-boxes that is 

lesser to the direct IMCS (for 500000 function evaluations). The structure exhibits 

similar trend of results, where 7n  has lesser error of [5.02%, 1.60%] with respect to 

failure probability bounds obtained from direct IMCS. 

An attempt has been made to study the behaviour of structural systems, when 

more than two sources of uncertainties are present. In hollow cantilever tube example, 

lesser error in the failure probability bounds of [0.0008, 0.0011] for 7n   is observed 

as compared to the original model evaluation from the IMCS with high efficiency in 

presence of mixed uncertainties, where probability-box and random variables coexist 

in the system simultaneously.  

Real-time examples have been considered for validating the proposed 

methodology. The mixed uncertainties present in both the systems are modelled as 

probability-box and random variables with corresponding distributional parameters. As 

the systems are of multi-dimension, the run time of model is too high, specially for 

nuclear containment example. The model takes 5-days for a single run in ABAQUS 

finite element package on a computer (with 8GB RAM). Hence sample points of 3 and 

5 have been considered for deriving HDMR limit state function.  

Nuclear containment structure is an implicit nonlinear example, which has been 

modelled for mixed uncertainties. The failure probability bounds are tight for 5n   as 
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compared to 3n  for the limit state function derived from HDMR. The effort taken for 

deriving HDMR function is 17 number of evaluations. In the irregular RC structure 

example, failure probability bounds are getting narrowed from 3n   to 5n  . Also, 

the results are compared with a regular RC structure possessing same structural 

parameters. And observed similar trend in the failure probability bounds. 

Cantilever beam and plane truss structures are considered in the present work, 

in order to study the behaviour of model accommodating hybrid uncertainties 

comprising random, interval and fuzzy variables along with p-box. Since there exist 

interval variable with lower and upper bounds, and fuzzy variable with triangular 

membership function, the resulting failure probability is a trapezoidal membership 

function. For both the examples, failure probability curves for 7n  are nearer to the 

original model.  

5.2 CONCLUSIONS 

The simulation of the original explicit nonlinear function over million times is evidently 

cumbersome.  Moreover, in case of implicit situations, the FE analysis carried out for 

original function evaluation with IMCS is very tedious, as each run takes more time. 

Therefore, first-order HDMR is adopted to derive the limit state function, and the 

simulation is performed on the HDMR function. The CDFs are presented for all the 

bounds of the limit state function, as the input variables are represented by imprecise 

probability distributions. Distributions of all the variables are predefined and no 

assumptions are introduced in the numerical examples. The proposed method holds 

good for all kinds of distributions of parameters with inadequate statistical data.  

From the results obtained using the proposed methodology, the application of 

HDMR makes the uncertainty quantification more efficient when the imprecise 

uncertainties are characterised as p-box variables in the systems. It is recommended 

that the proposed method can be applied to any kind of imprecise uncertainties with 

less computational effort without compromising on the accuracy.   
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5.2 SCOPE FOR FUTURE WORK 

i. In the present work, first order HDMR expansions are utilized to develop 

the response equations. The accuracy can be significantly improved by 

employing the second order HDMR, but with slightly increased 

computational effort. 

ii. Time variant reliability problems with imprecise uncertainties can be solved 

in time-dependent situations. 

iii. Inverse reliability assessment can be done by utilizing optimization 

techniques considering the imprecise uncertainties. 
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