
FEATURE-ORIENTED MODEL-DRIVEN
DEVELOPMENT OF ENERGY-AWARE

SELF-ADAPTIVE SOFTWARE

Thesis

Submitted in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

by

MARIMUTHU C

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

NATIONAL INSTITUTE OF TECHNOLOGY KARNATAKA

SURATHKAL, MANGALORE-575025

June, 2021

Department or School Web Site URL Here (include http://www.cse.nitk.ac.in)
University Web Site URL Here (include http://www.nitk.ac.in)
University Web Site URL Here (include http://www.nitk.ac.in)




D E C L A R A T I O N
by the Ph.D. Research Scholar

I hereby declare that the Research Thesis entitled Feature-oriented Model-driven De-
velopment of Energy-aware Self-adaptive Software which is being submitted to the
National Institute of Technology Karnataka, Surathkal in partial fulfilment of the re-
quirements for the award of the Degree of Doctor of Philosophy in Computer Science
and Engineering is a bonafide report of the work carried out by me. The material con-
tained in this Research Thesis has not been submitted to any University or Institution
for the award of any degree.

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
(Register Number, Name and Signature of the Research Scholar)

(155126 CS15FV08, Marimuthu C)
Department of Computer Science and Engineering

Place: NITK SURATHKAL
Date: June 15, 2021

iii

Department or School Web Site URL Here (include http://www.cse.nitk.ac.in)




C E R T I F I C A T E

This is to certify that the Research Thesis entitled “Feature-oriented
Model-driven Development of Energy-aware Self-adaptive Software”

submitted by Marimuthu C (Register Number: 155126 CS15FV08) as

the record of the work carried out by him, is accepted as the Research

Thesis submission in partial fulfilment of the requirements for the award

of degree of Doctor of Philosophy.

Prof. K. Chandrasekaran
Research Guide

(Signature with Date and Seal)

Chairman - DRPC

(Signature with Date and Seal)

v





Acknowledgements

Firstly, I would like to express my sincere gratitude to my advisor Prof. K. Chan-
drasekaran for continuously supporting me throughout my Ph.D. study with motivation
and patience. His immense knowledge and guidance has always helped me. Without
his precious support, it would not have been possible to conduct this research.

Besides my advisor, I would like to thank the rest of my research progress assessment
committee members: Prof. A. Kandasamy, and Dr. Shashidhar G Koolagudi, for their
insightful comments, encouragement, and hard questions which incented me to widen
my research from various perspectives.

I would like to acknowledge Dr. Sridhar Chimalakonda (IIT Tirupati) for being instru-
mental in defining the path of my research. He has played a major role in polishing my
research writing skills. His endless guidance is hard to forget throughout my life.

I would always remember my fellow labmates and other research scholars for the fun-
time we spent together, sleepless nights that gave us the courage to complete tasks
before deadlines. In particular, I am thankful to my friend Mr. Raghavan for helping in
proofreading my research papers and Ph.D. thesis.

I express my deep gratitude to the present and previous Heads of the Department, De-
partment of Computer Science and Engineering, NITK Surathkal for their constant co-
operation, support, and for providing necessary facilities throughout my Ph.D. program.
I would like to take this opportunity to express my thanks to the teaching and non-
teaching staff in the Department of Computer Science and Engineering, NITK Surathkal
for their valuable help and support during my study.

Marimuthu C

vii

Department or School Web Site URL Here (include http://www.cse.nitk.ac.in)
Department or School Web Site URL Here (include http://www.cse.nitk.ac.in)
Department or School Web Site URL Here (include http://www.cse.nitk.ac.in)




Abstract

Smartphone applications are equipped with energy-hungry resources such as display,
GPS, and GPU. Mishandling of these resources and associated APIs might result in an
abnormal battery drain. In recent years, researchers have adopted self-adaptive strate-
gies to extend battery life with context information. However, the existing solutions
focus on the development and testing phases of software development. Handling the
energy-awareness and self-adaptive behavior directly at the development phase would
increase the development efforts. Therefore, there is a need to consider these require-
ments in the early phases of software development life cycle. Thus, in this research
work, the concepts of feature modeling, domain-specific modeling languages, and code
generation has been adopted to model and develop energy-aware self-adaptive software.
The location-based applications have been selected as an application domain to prove
the efficacy of the ideas presented in this research work. In addition, a self-adaptive
system has been selected as a system domain, and Android has been selected as an
operating domain. The first objective aims to empirically analyze and organize the
developer’s existing knowledge about energy-saving solutions for location-based appli-
cations. The second objective aims to aid the domain analyst with an energy-aware
modeling framework by extending the popular feature-oriented domain analysis frame-
work. The third objective aims to develop a domain-specific modeling tool (eSAP) for
the energy-aware modeling framework. The fourth objective aims to design and de-
velop a tool named eGEN, which includes a textual domain-specific modeling language
and automatic code generator. eGEN helps the domain analyst and developers spec-
ify energy-related requirements and generates battery-aware source code that can be
used in the existing location-based Android applications. The efficacy of the energy-
aware modeling framework and developed tools has been validated qualitatively using
the case studies in software engineering. The obtained results show that the developed
tools eSAP and eGEN help the domain analyst and developers reduce the development
efforts for introducing energy-awareness and self-adaptivity in the early phases of soft-

ware development.
Keywords: Energy-aware modeling framework; energy-saving self-adaptation plan-
ning; energy-saving code generator; energy-efficient software.

ix





Contents

Abstract ix

Contents xi

List of Figures xv

List of Tables xvii

List of Listings xix

Contents xix

List of Abbreviations xxi

1 INTRODUCTION 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Running Example: Location-based Applications . . . . . . . . . . . . . 5
1.3 Research Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 PRELIMINARIES 11
2.1 Smartphone Energy Inefficiencies . . . . . . . . . . . . . . . . . . . . 12
2.2 Energy-aware Self-adaptive Software . . . . . . . . . . . . . . . . . . 16
2.3 Modeling Frameworks . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.4 Model-driven Development . . . . . . . . . . . . . . . . . . . . . . . . 22
2.5 Feature-oriented Software Development . . . . . . . . . . . . . . . . . 24
2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3 LITERATURE SURVEY 27
3.1 Existing Empirical Studies . . . . . . . . . . . . . . . . . . . . . . . . 28

xi



Contents xii

3.1.1 Stack Overflow data . . . . . . . . . . . . . . . . . . . . . . . 28
3.1.2 GitHub data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2 Post-development Approaches . . . . . . . . . . . . . . . . . . . . . . 30
3.2.1 Energy profilers . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2.2 Energy diagnosis engines . . . . . . . . . . . . . . . . . . . . . 34

3.3 Pre-development Approaches . . . . . . . . . . . . . . . . . . . . . . . 45
3.3.1 Feature modeling approaches . . . . . . . . . . . . . . . . . . 45
3.3.2 Model-driven development approaches . . . . . . . . . . . . . 52

3.4 Research Gaps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4 Empirical Studies 59
4.1 Research Questions and Methodology . . . . . . . . . . . . . . . . . . 60

4.1.1 Research methodology . . . . . . . . . . . . . . . . . . . . . . 61
4.1.2 Variable selection for empirical study . . . . . . . . . . . . . . 61

4.2 Controlled Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.2.1 Experiment protocol . . . . . . . . . . . . . . . . . . . . . . . 62
4.2.2 Subject applications selection . . . . . . . . . . . . . . . . . . 63
4.2.3 Data collection and analysis . . . . . . . . . . . . . . . . . . . 63
4.2.4 Answering RQ1: LBAs energy consumption . . . . . . . . . . 63
4.2.5 Answering RQ2: Inertial sensors usage and energy consumption 64
4.2.6 Answering RQ3: Inertial sensors usage by API . . . . . . . . . 65

4.3 Mining StackOverflow . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.3.1 Mining protocol . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.3.2 Data collection and analysis . . . . . . . . . . . . . . . . . . . 69
4.3.3 Answering RQ4: Energy-saving solutions . . . . . . . . . . . . 69
4.3.4 Answering RQ5: API usage patterns . . . . . . . . . . . . . . . 73

4.4 Mining GitHub Commits . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.4.1 Mining protocol . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.4.2 Data collection . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.4.3 Data analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.4.4 Answer to RQ6: Development efforts . . . . . . . . . . . . . . 84

4.5 Implications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5 ENERGY-AWARE MODELING FRAMEWORK 89
5.1 Basics of Feature Modeling . . . . . . . . . . . . . . . . . . . . . . . . 90
5.2 Energy-aware Modeling Framework . . . . . . . . . . . . . . . . . . . 92

5.2.1 Energy-aware context modeling . . . . . . . . . . . . . . . . . 92
5.2.2 Energy-aware feature modeling . . . . . . . . . . . . . . . . . 97



Contents xiii

5.2.3 Energy-saving adaptation planning . . . . . . . . . . . . . . . . 100
5.3 Validation with a Case Study . . . . . . . . . . . . . . . . . . . . . . . 102

5.3.1 An example scenario . . . . . . . . . . . . . . . . . . . . . . . 102
5.3.2 Energy-aware context model . . . . . . . . . . . . . . . . . . . 106
5.3.3 Energy-aware feature model . . . . . . . . . . . . . . . . . . . 113
5.3.4 Energy-aware adaptation model . . . . . . . . . . . . . . . . . 118
5.3.5 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.4 Threats to Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6 ENERGY-SAVING ADAPTATION PLANNER 127
6.1 Extending FeatureIDE . . . . . . . . . . . . . . . . . . . . . . . . . . 128
6.2 eSAP Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
6.3 Validation with Case Study . . . . . . . . . . . . . . . . . . . . . . . . 135

6.3.1 An example scenario: Reference requirements . . . . . . . . . 136
6.3.2 Identifying energy-aware application configurations . . . . . . 137
6.3.3 Identifying valid triggering situations . . . . . . . . . . . . . . 141
6.3.4 Planning energy-saving adaptations . . . . . . . . . . . . . . . 143
6.3.5 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

6.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

7 ENERGY-SAVING CODE GENERATOR 149
7.1 Domain Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

7.1.1 Identifying self-adaptive location strategies . . . . . . . . . . . 150
7.1.2 Identifying commonalities and variabilities . . . . . . . . . . . 154
7.1.3 eGEN domain model . . . . . . . . . . . . . . . . . . . . . . . 159

7.2 eGEN Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
7.2.1 Technical background . . . . . . . . . . . . . . . . . . . . . . 162
7.2.2 eGEN grammar . . . . . . . . . . . . . . . . . . . . . . . . . . 162
7.2.3 Energy-aware code generator . . . . . . . . . . . . . . . . . . . 167

7.3 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
7.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

8 CONCLUSIONS AND FUTURE WORKS 173
8.1 Thesis Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
8.2 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
8.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178



Contents xiv

A PUBLICATIONS 179

B BIO-DATA 181

Bibliography 183



List of Figures

4.1 Experiment protocol of controlled experiment. . . . . . . . . . . . . . . 62
4.2 Impact of sensor usage on overall battery drop. . . . . . . . . . . . . . 65
4.3 Overall mining protocol of mining Stack Overflow. . . . . . . . . . . . 69
4.4 Most common energy-saving solutions. . . . . . . . . . . . . . . . . . 70
4.5 Energy-hungry (UP01) . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.6 Unregistering GPS (UP02) . . . . . . . . . . . . . . . . . . . . . . . . 74
4.7 Continuous GPS sensing (UP03) . . . . . . . . . . . . . . . . . . . . . 75
4.8 Energy-efficient alternatives (UP04) . . . . . . . . . . . . . . . . . . . 75
4.9 Checking if energy-efficient alternative is recent (UP05) . . . . . . . . 76
4.10 With sensing interval (UP06) . . . . . . . . . . . . . . . . . . . . . . . 76
4.11 With alarm manager or scheduler (UP07) . . . . . . . . . . . . . . . . 78
4.12 With activity recognition (UP08) . . . . . . . . . . . . . . . . . . . . . 78
4.13 Use of fused location API (UP09) . . . . . . . . . . . . . . . . . . . . 79
4.14 Adaptive location-sensing (UP10) . . . . . . . . . . . . . . . . . . . . 79
4.15 Overall mining protocol of GitHub commits. . . . . . . . . . . . . . . . 81
4.16 Development efforts needed to make changes in source code. . . . . . . 85

5.1 Sample feature model. adapted from (Benavides et al., 2010) . . . . . . 91
5.2 Overview of energy-aware modeling framework . . . . . . . . . . . . . 93
5.3 A basic feature model of map navigation application . . . . . . . . . . 103
5.4 Energy-aware context model of map navigation application . . . . . . . 107
5.5 Energy-aware feature model of map navigation application . . . . . . . 114
5.6 A sample energy-aware adaptation plan for valid context changes . . . . 119

6.1 Primary components and generated artifacts of eSAP . . . . . . . . . . 130
6.2 A screenshot of project manager that shows different types of projects . 131
6.3 A snapshot of assigning energy-aware labels . . . . . . . . . . . . . . . 132
6.4 A screenshot of energy-saving adaptation plan editor . . . . . . . . . . 134
6.5 Energy-aware feature model of MapNav application . . . . . . . . . . . 138
6.6 Energy-aware context model of MapNav application . . . . . . . . . . 143

xv



List of Figures xvi

7.1 eGEN eco-system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
7.2 Improvement in battery saving . . . . . . . . . . . . . . . . . . . . . . 170
7.3 Degrade in accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171



List of Tables

3.1 Summary of developer-centric finding approaches . . . . . . . . . . . . 39
3.2 Summary of developer-centric fixing approaches . . . . . . . . . . . . 43
3.3 Comparison of existing approaches with respect to specifying energy-

awarenss and self-adaptation. . . . . . . . . . . . . . . . . . . . . . . . 50
3.4 Comparison of model-driven development approaches for mobile app

development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.1 Selected subject applications for controlled experiment . . . . . . . . . 63
4.2 Energy contribution of each LBA to overall energy consumption of device 64
4.3 Inertial sensor usage per API at run-time . . . . . . . . . . . . . . . . . 66
4.4 Application active time vs GPS and sensors active time . . . . . . . . . 67
4.5 Search strings and search results of commits search phase . . . . . . . . 82
4.6 Data collection results of mining GitHub commits . . . . . . . . . . . . 86

5.1 Application Configurations (AC) for deriving family of map navigation
applications from basic feature diagram . . . . . . . . . . . . . . . . . 105

5.2 Sample valid triggering situations of map navigation application . . . . 109
5.3 Summary of converting basic feature model to energy-aware feature model111
5.4 Energy-aware application configurations of map navigation application . 117

6.1 Notations of energy-aware feature model . . . . . . . . . . . . . . . . . 132
6.2 Notations of energy-aware context model . . . . . . . . . . . . . . . . 133
6.3 MapNav’s functional requirements . . . . . . . . . . . . . . . . . . . . 136

7.1 Initial exploration of possible product categories (incomplete list) . . . 157

xvii





Listings

6.1 An energy-saving adaptation plan generated by eSAP representing ESA1 144
7.1 Domain model for modeling location-sensing . . . . . . . . . . . . . . 160
7.2 Structure of the features values . . . . . . . . . . . . . . . . . . . . . . 163
7.3 Structure of feature definition . . . . . . . . . . . . . . . . . . . . . . . 164
7.4 Structure of the context values . . . . . . . . . . . . . . . . . . . . . . 164
7.5 Structure of the context constraints . . . . . . . . . . . . . . . . . . . . 165
7.6 Structure of the adaptation policy . . . . . . . . . . . . . . . . . . . . . 166
7.7 An Excerpt from the egen model of subject application 2 . . . . . . . . 169

xix





List of Abbreviations

ABD Abnormal Battery Drain

ADB Android Debug Bridge

API Application Programming Interface

DSL Domain-specific Language

DSML Domain-specific Modeling Language

eGEN Energy-saving Code Generator

eSAP Energy-saving Adaptation Planner

FODA Feature-oriented Domain Analysis

FOSD Feature Oriented Software Development

GPS Global Positioning System

GPU Graphics Processing Unit

ICT Information and Communications Technology

LBA Location-based Application

MDD Model-driven Development

UML Unified Modeling Language

xxi





Chapter 1

INTRODUCTION

The Green IT (Murugesan, 2008) research aims to reduce the negative impact of Infor-
mation and Communication Technology (ICT) on the environment. In the last decade,
research in Green IT was more on hardware-based techniques than software-based tech-
niques (Mahmoud and Ahmad, 2014). The software aspects of Green IT have not
been investigated thoroughly because of their virtual nature and indirect impact on the
environment (Mahmoud and Ahmad, 2014). A study by Penzenstadler et al. (2014)
highlights the importance of considering greenness and sustainability as important non-
functional requirements like safety and security. Unfortunately, greenness and sustain-
ability are not considered in the traditional software life cycle process. Hence, to address
this issue, a new research field called green and sustainable software engineering (Kern
et al., 2015) has emerged recently. It is defined as the art of designing, developing, using,

and disposing of the long-lasting and energy-efficient software to reduce the negative

impact on the environment. In this thesis, the greenness aspect of the software is consid-
ered, and it refers to the software systems’ energy-efficiency. Energy-efficiency is not
a new terminology to the software research community. Researchers have previously
proposed several notable energy optimization techniques as part of source code opti-
mization, especially for embedded software. Some of the code optimization techniques
are cache skipping, use of register operands (Bellas et al., 2000), instruction clustering
(Naik, 2010), instruction re-ordering and memory addressing (Su et al., 1994), loop op-
timizations (Delaluz et al., 2000), eliminating recursion (Mehta et al., 1997), etc. All
these techniques require knowledge about low-level details and complex data structures

1



Chapter 1. Introduction 2

to achieve energy-efficiency. In practice, all application developers might not be aware
of all energy-saving techniques. Therefore, developers with less background knowl-
edge find it difficult to write energy-efficient embedded applications. It is even more
challenging in smartphone devices, as badly written application code may lead to a
shortened battery life. A possible solution to address this issue would be to consider
energy-efficiency from the initial stages instead of considering it later in the software
development life cycle. Therefore, this thesis aims to consider energy-efficiency as
an essential non-functional requirement in the early stages of software development.
Specifically, it aims to consider the energy-efficiency related requirements in the do-
main analysis phases of smartphone apps.

1.1 Motivation

Energy-efficiency is one of the important software quality parameters (Pinto and Castor,
2017) in smartphone devices. The empirical studies such as Pinto et al. (2014), Moura
et al. (2015), and Manotas et al. (2016) highlight the importance of reducing software
energy consumption while developing the software. Specifically, the studies Li et al.
(2014), Bao et al. (2016), and Chowdhury et al. (2018) report the role of developer
written code on the overall energy consumption of Android applications. As reported
in these studies, the improper usage of energy-hungry components such as GPS (Kim
et al., 2016b), Display (Wan et al., 2017), GPU (Kim et al., 2016a) and mobile data
(Li et al., 2014) consumes a lot of energy and drains the battery quickly. Researchers
typically refer to this situation as "Abnormal Battery Drain" (ABD) (Ma et al., 2013).
In the literature, it was reported that "unnecessary resource usage, faulty GPS behavior,

background activities, advertisements, and high GPU usages" (Pang et al., 2016, Pinto
et al., 2014) were the primary causes of abnormal battery drain issues in smartphone
devices. These ABD issues could be solved by adopting well-defined battery-aware
practices (Georgiou et al., 2019) while developing the software. A popular solution to
avoid ABD is to avoid wakelock bugs and unnecessary usage of energy-hungry compo-

nents Pathak et al. (2011) in Android applications. In a recent study conducted by Cruz



Chapter 1. Introduction 3

and Abreu (2018), and Morales et al. (2018), it is reported that optimizing the object-
oriented code smells and Android-specific code smells that contribute to the energy
consumption of Android applications would be a better energy-saving solution.

Over time, the researchers have adopted software engineering solutions such as program
analysis techniques (Liu et al., 2014), automated bug detection techniques (Morales
et al., 2018, Zhu et al., 2019), automated software repair (Banerjee et al., 2018), energy-
efficient programming practices (Sahar et al., 2019) and refactoring (Banerjee and Roy-
choudhury, 2016) to identify and fix the known energy bugs in Android applications. In
addition, few researchers have utilized the concept of self-adaptivity to provide suitable
solutions for energy-efficiency of Android applications (Cañete et al., 2020, Datta et al.,
2014, Mizouni et al., 2012, Moghimi et al., 2012, Ortiz et al., 2019). The researchers
have used the battery information to decide the run-time adaptation that may lead to
energy-saving.

Though self-adaptive solutions are proposed in the literature for energy-efficiency, de-
veloping such self-adaptive behavior is difficult for the developers (Krupitzer et al.,
2015) as it has to deal with a dynamically changing environment. Specifically, identify-
ing suitable context information for energy-saving adaptation is not a straight forward
task (Capurso et al., 2018). Self-adaptive software depends on sensing the contextual
changes and dynamic adaptation policies (Cheng et al., 2009a). Typically, the require-
ments of self-adaptive systems are uncertain, and it has to be managed at a higher level
of abstraction (De Lemos et al., 2013). In the literature, there were several research
efforts (Yang et al., 2017) on requirements engineering and analysis of the self-adaptive
software requirements. Specifically, several methods (Ahmad et al., 2012, Brown et al.,
2006, Cheng et al., 2009b, Inverardi and Mori, 2011, Zhuo-Qun and Zhi, 2012) have
been found for requirements analysis of self-adaptive software. Overall, these meth-
ods use goal-modeling methods such as KAOS (Dardenne et al., 1993), i* framework
(Franch et al., 2016), Tropos (Bresciani et al., 2004), and feature models (Kang et al.,
1990) for requirements specification and analysis of self-adaptive software systems.
Therefore, the feature model has been adopted in this research work to specify and ana-
lyze the energy-related requirements for deciding energy-saving self-adaptation. In the
literature, several studies (Asadi et al., 2014, Desmet et al., 2007, Inverardi and Mori,
2010, Mauro et al., 2018, Pascual et al., 2015a, Siegmund et al., 2012, Soltani et al.,



Chapter 1. Introduction 4

2012) have been found that adopts feature models for analyzing the self-adaptive soft-
ware. But none of the existing methods have focused explicitly on the energy-related
requirements, which are highly critical in battery-powered devices.

As highlighted in Morales et al. (2018), reducing battery consumption is one of the es-
sential quality factors of smartphone apps as it runs on limited-resource devices. The
existing energy-efficient solutions for smartphone applications primarily work at the
development and testing phases of the software development life cycle. Overall, exist-
ing solutions suggest ways to improve coding practice for energy-efficiency, demand-
ing developers to learn additional energy-optimization skills. In combination with the
development of self-adaptive behaviors, the introduction of energy-aware requirements
directly at the development phase would increase the development efforts if the develop-
ers are unaware of the energy-saving practices. A possible solution to this problem is to
consider the energy-efficiency and self-adaptive requirements early to reduce the devel-
opment efforts in the development and testing stages. The following research questions
arise while considering energy-related requirements early in the subject application de-
velopment life cycle:

• RQ1: What solutions do developers apply to reduce the energy consumption of
commonly used energy-hungry components?

• RQ2: Is it possible to consider energy-efficiency as an essential non-functional
requirement in the early stages of software development?

• RQ3: What is necessary to support domain analysts with suitable tool support to
consider energy-efficiency in the early stages?

• RQ4: Is it possible to support developers by transforming design-time models to
source code for reusable components to reduce the development efforts?

The research questions mentioned above motivate this thesis to consider energy and
self-adaptive requirements early to reduce the complexity in the development phase.
Hence, this research primarily focuses on incorporating energy-efficiency as a critical
non-functional requirement during the early stages before making any lower-level code
development decisions.



Chapter 1. Introduction 5

1.2 Running Example: Location-based Applications

A family of location-based applications is selected as an application domain as location-
sensing is an energy-hungry requirement in smartphone apps. In recent years, there is a
significant increase in the usage of location-based services in mobile apps. These apps
drain the smartphone battery faster if it uses the Global Positioning System’s (GPS)
location-sensing continuously. GPS provides high accuracy of user location compared
to other location-sensing techniques such as Wi-Fi positioning (Choi et al., 2017) and
Cell ID based positioning (Ibrahim and Youssef, 2012). One downside of GPS is its
abnormal amount of energy consumption for its operation. Therefore, GPS usage must
be reduced (Paek et al., 2010) when the smartphone is running on a low battery. In
the literature, several research works (Capurso et al., 2017, Kim et al., 2016b, Mo-
rillo et al., 2012) use self-adaptive strategies to manage the energy consumption of
location-sensing in smartphones. The adaptive strategies dynamically select a suitable
location-strategy based on the dynamic accuracy and energy requirements. In addition
to academic research efforts, the official Google Location APIs continuously evolve to
improve location-sensing energy-efficiency. For instance, Google location APIs such
as Fused Location Provider API, Fused Location Provider Client are evolving in every
release of API with new energy-saving methods.

The abnormal battery-draining behavior of GPS makes location-based applications as
the best candidate for conducting case studies in this thesis. The application of location-
sensing is found in almost all types of smartphone applications. Specifically, the follow-
ing category of smartphone applications uses location to provide user-friendly services:
Navigation, Fitness, Social Networking, Game, Automotive, Travel, and Advertising.
In this thesis, these application categories are considered as a family of location-based
applications to conduct the case studies presented in other chapters. Overall, location-
sensing is a common feature among the application categories, though the core busi-
ness logic differs. As this application domain shares commonality among the fam-
ily of location-sensing applications, it is suitable to provide a domain-specific solu-
tion for the commonly occurring problem. Location-sensing is the process of fetch-
ing the user locations from an available location-sensor. Typically, the most widely
used location-sensor for outdoor smartphone applications is GPS. However, alterna-
tive location-sensing sources such as Wi-Fi, Bluetooth, and Cell ID are also found in a



Chapter 1. Introduction 6

few smartphone applications to reduce GPS usage. Furthermore, the recent generation
of smartphone uses inertial sensors such as accelerometer, gyroscope, magnetometer,
etc., to reduce GPS usage. Generally, the location-sensing source code is not written
by the developers from scratch as it has to handle many location-sensors. Therefore,
the developers have used popular APIs such as Android native location API, Google
Location Service API, and Open Street Map API. However, using location APIs in an
energy-efficient way is the responsibility of the application developer. Unfortunately,
the abnormal battery-draining behavior of GPS makes it difficult for the new devel-
opers to decide battery-optimization at the development phase directly. It would be
beneficial to new developers if battery-related requirements are considered from the
early phases. It will also help new developers if location-sensing source code with
battery-optimization is generated from the design phase artifacts. Therefore, the devel-
opers can spend more time on improving the core business logic in the development
phase. This thesis considers reducing the energy consumption of location-sensing as a
non-functional requirement, and it is common for all application categories. Therefore,
providing an energy-saving solution for one application category could be reused in the
other application categories as well. With a brief analysis of the application domain, the
location-based applications have been selected to illustrate this thesis’s contributions.

1.3 Research Objectives

The primary objective of this research work is to assist the design and development

of energy-aware self-adaptive software through appropriate domain-specific modeling

language and automatic code generator. The solutions provided in this thesis might
help the domain analyst and developers to explore the different energy-saving opportu-
nities at design time to reduce the developer efforts. The main research objectives of
this research work are given below:

RO1 To empirically analyze and organize existing knowledge about energy-consumption
and energy-saving solutions of the application domain.
Here, the domain of Location-based Android applications is selected as an ap-
plication domain to conduct empirical studies. This objective aims to find out



Chapter 1. Introduction 7

the cause-effect relationship between location sensors and their impact on en-
ergy consumption. This objective also aims to organize the existing knowledge
of energy-saving solutions and API usage patterns from Stack Overflow discus-
sions. In addition, an analysis of GitHub commits has been performed to know
the development efforts invested by the developers to improve the apps energy-
efficiency after deploying the application.

RO2 To propose a suitable domain analysis framework for designing Energy-
aware Self-adaptive Software.
This objective aims to propose a modeling framework to conduct energy-aware
domain analysis of software under development. It provides a classification mech-
anism to classify the application’s context and features, at the early stages of soft-
ware development. An extension to Feature-oriented Domain Analysis Frame-
work (FODA) (Kang et al., 1990) has been provided to aid the domain analyst to
conduct the domain analysis of energy-aware self-adaptive software.

RO3 To design and develop a Domain-specific Modeling Language and a tool sup-
port for modeling energy-aware self-adaptive software.
This research objective aims to develop tool support for domain analysts, which
would be used in the domain analysis phase. The tool support has been devel-
oped on top of FeatureIDE (Thüm et al., 2014), so that it allows to plan platform-
independent energy-saving adaptations for energy-aware self-adaptive software.

RO4 To design and develop an automatic code generation tool for developing
energy-aware self-adaptive software.
The new developers may face difficulty in introducing self-adaptive behavior
along with energy-awareness directly at the code level. The development ef-
forts would increase further, if the energy-aware code is being developed from
scratch. Therefore, to reduce the developer’s efforts, this objective aims to pro-
vide a textual Domain-Specific Language (DSL) for adaptive location-sensing.
Finally, the code generation tool might automatically generate energy-aware self-
adaptive software artifacts reused in the family of location-based applications.



Chapter 1. Introduction 8

1.4 Thesis Structure

This thesis is structured into eight chapters, excluding the reference section and ap-
pendix. This section provides an overview of each chapter to guide the readers.

• Chapter 1 starts with a brief overview of the research field "Green and Sustain-

able Software Engineering". Then, it presents the research questions and motiva-
tion to conduct this research work. It also highlights the four research objectives
and thesis contributions. In addition, it mentions the target audience and the run-
ning example of location-based smartphone applications (application domain) to
show the efficacy of the methodology and tools presented in this thesis.

• Chapter 2 presents the fundamentals relevant to the concepts presented in this
thesis. This chapter begins with a summary of energy-related issues specific to
smartphone applications and existing solutions. Then, it provides an overview
of self-adaptive software as it is one of the important enabling technologies of
the concepts presented in this thesis. Furthermore, this chapter presents a brief
overview of feature-oriented software development and model-driven software
development.

• Chapter 3 summarizes the related research works found in the literature. It be-
gins with summarizing the empirical studies involving the energy consumption of
smartphone applications. Then, it describes the post-development research efforts
to reduce the energy consumption of smartphone applications. Further, it com-
pares the pre-development approaches that use feature modeling for specifying
self-adaptive requirements. Finally, it summarizes the research works relevant to
the model-driven development of smartphone applications.

• Chapter 4 is dedicated to present the empirical studies conducted on location-
based Android applications. Three data sources have been considered for empir-
ical studies: Controlled Experiments, Stack Overflow, and GitHub. This chapter
describes the research questions, data collection process, data analysis methods,
and answers to considered research questions. Overall, this chapter presents the



Chapter 1. Introduction 9

relation between location-sensors and energy consumption, energy-saving strate-
gies used by expert developers, and development efforts needed for optimizing
location-sensing for energy-efficiency.

• Chapter 5 introduces the concept of an energy-aware modeling framework for
specifying energy-saving self-adaptive plans. This chapter presents the extended
feature modeling rules for energy-aware context-modeling and feature-modeling.
Specifically, it explains the classification method for energy-aware context and
energy-aware features. Finally, it shows the presented modeling framework’s ef-
ficacy with a case study on location-based smartphone applications.

• Chapter 6 presents the tool support developed for the energy-aware modeling
framework presented in Chapter 5. This chapter begins with an overview of using
the tool Energy-saving Adaptation Planner eSAP. Then, it explains the notations
for context and feature categories of the energy-aware modeling framework. Fur-
thermore, it presents the validation and discussions through a case study on map
navigation applications.

• Chapter 7 describes the implementation of a tool named eGEN. First, it describes
location-based applications’ domain analysis to identify the common features to
be included in the domain-specific modeling language and code generator. Then,
it explains the domain model and grammar of textual domain-specific modeling
language of eGEN. Finally, the artifacts generated by eGEN has been validated
through a suitable case study on the activity tracking Android applications.

• Chapter 8 summarizes the thesis contribution. It concludes the thesis with the
results of the experiments and case studies conducted. Furthermore, it enumerates
and highlights future research directions to motivate prospective researchers.





Chapter 2

PRELIMINARIES

This chapter presents the background information relevant to this thesis. The concepts

presented in this thesis considers the energy-efficiency requirements as essential non-

functional requirements for smartphone apps. In this thesis, Android platform is con-

sidered as operating domain, and energy-efficiency related issues and existing solutions

are highlighted in Section 2.1. One of the significant underlying concepts of this thesis

is introducing self-adaptivity in software. The underlying concepts of self-adaptive soft-

ware are described in Section 2.2, along with few mentions about existing self-adaptive

solutions for energy-efficient smartphone apps. Furthermore, the enabling technolo-

gies underlying in this thesis, namely Model-driven Software Development (MDD) and
Feature-oriented Software Development (FOSD), are described in Section 2.4 and 2.5

respectively.

11



Chapter 2. Preliminaries 12

2.1 Smartphone Energy Inefficiencies

This thesis aims to consider the energy-efficiency of smartphone applications as one of
the essential non-functional requirements. Hence, discussing the smartphone’s energy-
inefficiencies would add more clarity to the contents presented in this thesis. There
are different categories of energy inefficiencies reported in the literature for smartphone
applications: energy bugs, energy leaks, energy hogs, and energy hotspots. Energy bugs
are referred to as an error in the system, either application, OS, hardware, firmware, or
external, that causes the system’s unexpected energy consumption as a whole (Pathak
et al., 2012b). Energy leaks are the form of energy inefficiencies where the energy
consumed by the actions never produced any useful output to the system (Zhang et al.,
2012). Energy leaks are also known as energy waste, as reported in Kim and Cha (2013),
Wang et al. (2014). Energy hog refers to the situation where the application’s average
discharge rate during the running state will be significantly higher than the average
discharge rate when the application is not running (Oliner et al., 2013). Energy hotspots
are the places that have the potential to save a significant amount of energy (Wan et al.,
2015). In other words, the execution of energy hotspots results in an abnormal amount
of battery drain even if the hardware resources are utilized significantly less (Banerjee
et al., 2016). This section describes the energy inefficiencies caused by programming
errors and mishandling of Android APIs.

Wakelock related issues

Wakelock is one of the PoweManager system service features in Android. Wakelock
keeps the necessary system resources running and prevents the device from entering the
sleep state (Kim and Cha, 2013). The developers can control the device’s power state
by adding WAKE_LOCK permissions in the manifest file (Liu et al., 2016). There are sev-
eral types of wakelocks (Wang et al., 2014): PARTIAL_WAKE_LOCK, SCREEN_DIM_WAKE_LOCK,

SCREEN_BRIGHT_WAKE_LOCK, FULL_WAKE_LOCK, etc. However, few wakelock types are depre-
ciated in the recent versions of the Android operating system. These wakelock types
have different wake levels and power consumption on the following system resources:
CPU, Screen, Keyboard. Any wakelock activated has to be deactivated after finishing
the execution of a particular task. Few buggy applications fail to release the acquired



Chapter 2. Preliminaries 13

wakelock, and results in unnecessary energy consumption. Pathak et al. (2012b) re-
ferred this situation as no sleep energy bug. In ELITE (Liu et al., 2016), the follow-
ing wakelock misuse patterns are discussed: unnecessary wakeup, wakelock leakage,

premature lock releasing, multiple lock acquisition, inappropriate lock type, problem-

atic timeout setting, inappropriate flags, and permission error. These wakelock misuse
patterns are considered to be one of the popular energy inefficiencies in the Android
platform.

Sensor related issues

Usage of smartphone sensors is an energy-hungry operation in smartphones (Carroll
and Heiser, 2010). Sensors with faster sensing rates consume more power. There are
two classifications of sensor-related energy-inefficiencies (Liu et al., 2014): (1) miss-
ing sensor deactivation, and (2) sensory data underutilization. The registered sensor
listeners must be unregistered when the application no longer needs sensor data. Failed
to unregister the sensor listener referred to as missing sensor deactivation. This type
of energy inefficiency leads to unnecessary sensing operation and corresponding un-
wanted power consumption. On the other hand, sensory data under utilization refers to
a situation where context information provided by the sensors is unused and results in
abnormal battery drain. For instance, the sensing rate of the sensing-related game must
be changed at run-time according to the following context information of accelerome-
ter: MOVING and MOTIONLESS (Li et al., 2015). Therefore, the sensor APIs must
be carefully used while setting the sensing interval and registering the sensor listener to
avoid unwanted battery drain.

Graphics related issues

Graphics-intensive mobile apps such as video players and games keep the screen ac-
tive during its execution (Jabbarvand and Malek, 2017). In recent Android platforms,
FLAG_KEEP_SCREEN_ON keeps the screen on, during the foreground execution of the appli-
cation. As mentioned in Google developer web page1 this flag must be used inside an

1https://developer.android.com/training/scheduling/wakelock#screen

https://developer.android.com/training/scheduling/wakelock#screen


Chapter 2. Preliminaries 14

activity rather than programming components. Unfortunately, few developers use this
screen flag inside services and results in abnormal battery draining. On the other hand,
the GPU usage by games to render the graphics has increased for recent generation
games (Kim et al., 2016a). The unnecessary GPU usage in graphics-intensive mobile
applications may result in an abnormal battery drain. The following situations are iden-
tified as the energy-hungry graphics operations (Kim et al., 2016a): (1) repeated texture
transfer inside render loop, (2) transferring multiple smaller images to GPU, and (3)
sending identical frames for rendering. The developers must be aware of best practices
to address these issues to avoid unwanted battery draining.

Connectivity related issues

The connectivity components such as GSM, WiFi, and Bluetooth usage also contributes
to the energy consumption of the Android application. Improper usage of few con-
nectivity components results in abnormal energy consumption. In TIDE (Dao et al.,
2017), the authors have suggested that energy consumption behavior depends on the
type and quality of the network used by the application. For instance, downloading a
large amount of data must be suspended when a user is on a slow network connection
. Therefore, by adjusting the application behavior based on the type of network at run-
time, unwanted battery consumption can be avoided. In ADEL (Zhang et al., 2012), the
authors have highlighted several root causes of network-related energy inefficiencies.
It includes misinterpretation of call back APIs, inefficient data refreshing, repetitive

downloads, and aggressive prefetching. Misinterpretation of callback APIs refers to
wasteful downloads due to a separate download thread after closing the main thread.
Inefficient data refreshing behaviors ignore the device and app state before initiating
any network operations. Repetitive downloads cause energy inefficiency as the energy
is spent downloading the same data every time instead of caching it. The aggressive
prefetching mechanism uses the prediction mechanism to download the data used by
the user in the future. Sometimes, downloaded data by a prefetching application might
not be used by the user and results in energy waste. Similar to wakelock related issues,
these connectivity components must be closed when the app is in the background or
closed by the user to avoid unwanted energy consumption.



Chapter 2. Preliminaries 15

The energy inefficiencies discussed so far are about the impact of programming er-
rors or mishandling of APIs on Android applications’ energy consumption. Besides
these inefficiencies, a few issues related to layouts, user behaviors, and android-specific
code smells have also been found. The layout defects (Cruz and Abreu, 2018) refer
to the energy inefficiency present in the UI definition of the Android applications. In
literature, the impact of different user behaviors also proved to one of the contributors
to energy inefficiency (Abbasi et al., 2018, Dao et al., 2017). In recent years, sev-
eral researchers investigated the energy impact of object-oriented and Android-specific
code smells on Android applications’ energy consumption. In recent studies (Carette
et al., 2017, Morales et al., 2018), the following object-oriented smells are reported to
be energy-hungry: blob, lazy Class, long-parameter list, refused bequest, speculative

generality. Besides, the Android-specific anti-patterns such as binding resources too

early, HashMap usage, private getters, and setters also reported as energy-hungry anti-
patterns. In a study conducted by Palomba et al. (2019), the following code smells are
considered to be energy-smells: leaking thread, member ignoring method, slow loop,

data transmission without compression, and internal setter. Overall, the energy inef-
ficiency studies are slowly shifting from resource-specific investigation to code smells
investigation. An Android application must be free from the program-specific energy
inefficiencies before deploying it on the user devices. Identifying these wide varieties
of energy inefficiencies becomes a significant challenge in the new generation of smart-
phone application development.

Traditionally, energy profilers (Ahmad et al., 2015) were used by the developers and
the researchers to reduce the negative impacts caused by the energy bugs. An en-
ergy profiler is a tool that provides sub-component-wise and app-wise energy con-
sumption values of smartphone devices (Hoque et al., 2016). These tools estimated
the power consumption through a well-defined power model, which considers various
sub-components of a mobile device (Hoque et al., 2016). Some of the examples include
Trepn Profiler, Powerbooter (Zhang et al., 2010), Sesame (Dong and Zhong, 2011), De-
vScope (Jung et al., 2012), AppScope (Yoon et al., 2012), eProf (Pathak et al., 2012a),
eLens (Hao et al., 2013), and Google Battery Historian. However, the developer needs
more technical knowledge to locate the code segments responsible for abnormal battery
drain. Hence, in recent years, the research community shifted its focus on adopting
automated software engineering methods to solve the energy-related issues at the code



Chapter 2. Preliminaries 16

level. The adopted software engineering methods include program analysis (Jiang et al.,
2017, Liu et al., 2014), software bug-localization (Banerjee and Roychoudhury, 2016),
refactoring (Gottschalk et al., 2016), mutation testing (Jabbarvand and Malek, 2017),
and automated software repair (Banerjee et al., 2018) to address the identified energy-
related issues. Overall, these tools are used to automatically locate the code segments
that are likely to have buggy code segments that affect the device’s energy-efficiency.
Researchers have proposed tools to automatically repair the buggy code segments in
recent years to make them energy-friendly. Overall, the current research works provide
solutions at the development or testing phases of the software development life cycle.

2.2 Energy-aware Self-adaptive Software

In this thesis, the term "energy-aware self-adaptive software" refers to software that
applies self-adaptive behavior to save energy at run-time. The concept of self-adaptive
software is not new to the software engineering research community. A self-adaptive
software (SAS) can automatically change its behavior according to changes in its oper-
ating environment (Kephart and Chess, 2003, Oreizy et al., 1999). Self-adaptive be-
havior development depends on basic system properties such as self-awareness and
context-awareness (Salehie and Tahvildari, 2009). Self-awareness describes the abil-
ity of a system to be aware of itself, i.e., to monitor its resources, state, and behavior
(Hinchey and Sterritt, 2006). Context-awareness means that the system is aware of its
operational environment, the so-called context (Schilit et al., 1994). According to (Dey,
2001) any information can be considered a context, if it is used to characterize the sit-
uation of an entity. An entity can be either a user or an application or an application
or an interacting user’s operating environment. In general, context information can be
classified under four categories: computing, user, physical (Schilit et al., 1994) and
time (Chen and Kotz, 2000) context. Computing context can be processors, memory,
network bandwidth, and other nearby computing resources. User context can be the lo-
cation, user profile, nearby people, current situation. Physical context can be lightning,
noise level, temperature, etc. Time context can be time, day, week, month, year. All
this context information might not be relevant to a single application. The nature of the
application decides the type of relevant context information. For instance, user location



Chapter 2. Preliminaries 17

may play a major role in location-based services, whereas it may be irrelevant in other
applications. Therefore, it is important to select relevant context information for the
desired context-awareness in context-aware systems.

Self-adaptive behaviors are introduced in software systems to satisfy non-functional re-
quirements such as maintainability, functionality, availability, portability, and usability
(Salehie and Tahvildari, 2009). The energy is limited in smartphone devices, and ex-
tending battery life becomes a primary non-functional requirement(Cañete et al., 2020).
Several self-adaptive approaches exist in the literature (Cañete et al., 2020, Datta et al.,
2014, Mizouni et al., 2012, Moghimi et al., 2012, Ortiz et al., 2019) to address the
energy-related issues in smartphone applications. These approaches aim at changing
the application behavior at run-time towards extending the battery life of the smart-
phone. Specifically, the results presented in the recent study (Cañete et al., 2020) show
that self-adaptation would be a suitable solution for addressing energy-related issues in
smartphone applications. Furthermore, several research works found in the literature
apply self-adaptive strategies for energy-savings in smartphone applications’ location-
sensing. Notably, Zhuang et al. (2010) proposed an adaptive location-sensing frame-
work that uses substitution, suppression, piggybacking, and adaptation. Here, substi-

tution uses the alternatives to GPS; suppression low-power intensive sensors such as
accelerometer; piggybacking uses the collaborative strategies; and adaptation adjust the
sensing interval to save energy at run-time. In this approach, all the other previous ap-
proaches are used in an adaptive way to improve the energy and accuracy requirements.
A-Loc (Lin et al., 2010) automatically manages location sensor availability, accuracy,
and energy by selecting the most suitable location-sensing mechanism at run-time. An-
other approach (Morillo et al., 2012), dynamically adapts between GPS, WiFi-based
localization, and accelerometer at run-time based on the user’s outdoor exit detection
to improve the GPS efficiency. In Virtual GPS (Thokala et al., 2014), a middleware
chooses a suitable location strategy (GPS or WiFi or Cell ID) for a given accuracy
requirement with minimum energy consumption. Kim et al. (2016b) uses the con-
text information such as the category of applications executed, the user’s movement
pattern, and the battery level to select the suitable location detection scheme (GPS or
Cell-tower). In recent research work, Capurso et al. (2017) proposed indoor-outdoor
detection techniques to switch between GPS and other indoor-localization methods to
improve the location-based energy efficiency applications. Typically, these approaches



Chapter 2. Preliminaries 18

consider the battery level of the smartphone applications to decide on energy-saving
adaptation.

Though self-adaptive solutions are proposed in the literature for energy-efficiency, de-
veloping such self-adaptive behavior is difficult for the developer (Krupitzer et al.,
2015). Specifically, identifying relevant context information for energy-saving adap-
tation is not a straight forward task (Capurso et al., 2018). It involves sensing, learning,
and acting upon the raw data produced by the smartphone sensors (Capurso et al., 2018).
In addition, planning the adaptation strategies needs a deep understanding of the prob-
lem domain and the affected software quality factors. Therefore, analyzing the require-
ments and context changes before development phases is essential to develop suitable
energy-saving self-adaptive smartphone applications. Therefore, having a dedicated re-
quirements analysis phase in place for self-adaptation planning for energy-efficiency is
highly recommended (Yang et al., 2017).

2.3 Modeling Frameworks

This section presents the popular modeling frameworks widely adopted for modeling
self-adaptive software.

KAOS

Knowledge Acquisition in autOmated Specification (KAOS) (Dardenne et al., 1993) is
a requirements engineering methodology that allows analysts to construct requirements
models and derive requirements documents from KAOS models. The KAOS has the fol-
lowing components: the conceptual model, acquisition strategies, and the acquisition

assistant.

• The conceptual model is a meta-model associated with a requirements acquisi-
tion language for acquiring and structuring requirement models. Unlike other



Chapter 2. Preliminaries 19

formal requirement languages, KAOS allows capturing both functional and non-
functional requirements of the system under consideration. The KAOS meta-
model involves three levels of abstractions: meta level, domain level, and in-

stance level. The meta level is a domain-independent abstractions that consists of
meta-concepts, meta-relationships, meta-attributes, and meta-constraints. The
instance level is considered to be the instance of the domain level concepts.

• Acquisition strategy consists of steps to create requirements models from the in-
stances of meta-model components. It helps the analyst to traverse the meta-
model graph with associated nodes and relationships. This strategy allows travers-
ing the meta-model either forward or backward. The acquisition strategy steps
might contain the following finer steps, such as question-answering, input valida-
tion, deductive inferencing, analogical inferencing, conflict resolution, etc.

• Acquisition assistant provides automated support to the analyst in applying ac-
quisition strategies. It depends on two components: requirements database and

requirements knowledge base. The requirements database contains all the re-
quirement models acquired by the analyst so far. The requirements knowledge
base consists of application domain-models and meta-level knowledge.

KAOS’s requirements model considers the critical system components, such as goals,
agents, and alternatives. Overall, this approach defines an initial set of goals, agents,
and their actions.

i* Framework

i* (Yu, 1997) framework is a system modeling approach used to understand the prob-
lem domain in the early requirements engineering phase. In the seminal work of i* (Yu,
1997), the authors have stated that the early requirements engineering could be sup-
ported with modeling stakeholders interest while later requirement engineering phases
supports completeness, consistency, and automated verification of requirements. The
i* approach adopts the concepts of actor-oriented modeling and goal modeling which



Chapter 2. Preliminaries 20

were predominantly used for modeling information systems of organization environ-
ment. This framework consists of two modeling components: Strategic Dependency

model and Strategic Rationale model.

• Strategic Dependency (SD) model captures the dependency relationship between
the actors in the organization environment. The model primarily uses the nota-
tions for actor and dependency among them. The node of the SD model refers
to the actor of the system and the link in the SD model refers to the dependency
relationship. In this model two types of actors have been used namely, depender,

and dependee.

• Strategic Rationale (SR) model captures the stakeholders’ concerns, interest, and
ways to satisfy them. This model specifically shows how an actor could achieve
their goals and soft goals. Formally, the SR model specifies the goals, soft goals,

task, and resource of the system. In contrast to SD model, the SR model gives de-
tailed information on why an actor would involve in using a resource to complete
the task, goals, and soft goals to express the stakeholder’s interest and concern.

In addition, this framework supports the analysis and reasoning for ability, workabil-
ity, viability, and believability of the systems requirements in the early phases. Over
time, the researchers have extended i* framework to support different needs in the re-
quirements engineering phase (Franch et al., 2016). Several notable extensions of i*
frameworks are social modeling Tropos (Bresciani et al., 2004), (Eric, 2009), and goal-
oriented requirements modeling (Surhone et al., 2010). The recent modified versions
of i* framework have been used for specifying the non-functional requirements through
goals and soft goals elements of the SR model.

Feature models

Feature models are originally introduced by Kang et al. (1990) in the Feature-Oriented
Domain Analysis (FODA) report (1990). Since then, feature models are considered to
be an important information model widely used in SPL engineering. A feature model

is a formal way of modeling the commonalities and variabilities of SPL (Batory, 2005,



Chapter 2. Preliminaries 21

Kang et al., 1998). A feature model represents the set of features, relationships, and con-
straints among them. A feature can be formally defined as user-visible property (Kang
et al., 1990) of the system. Feature models can be graphically represented through a
tree-like diagram called feature diagram. It represents the relationships among features
through parent-child relationships. The following relationships are the part of basic
feature models (Benavides et al., 2010) mandatory, optional, alternative, and OR.

• Mandatory relationship signifies that the child feature must be included in all the
product configurations if its parent feature is included.

• Optional relationship signifies that the child feature presence is optional even if
its parent feature is added into the product configuration. Hence, the child feature
with optional relationship may or may not be included in all the products.

• Alternative relationship signifies that exactly one child feature from a set of child
features can be added to the product configuration if its parent is part of the prod-
uct.

• OR relationship signifies that one or more child features can be included in the
product configurations along with its parent feature.

These basic relationships between parent and child features are sufficient to capture
all interdependencies among all features. Apart from these basic relationships, the
crosstree constraints must also be specified in the feature diagrams. The following are
the two basic constraints to capture the interdependencies or cross tree constraints of a
feature model: Requires and Excludes.

• Requires constraint signifies that the inclusion of particular feature requires inclu-
sion of other related features also.

• Excludes constraint signifies that the inclusion of a particular feature must discard
or exclude the other irrelevant features from the product configuration.

Overall, the approaches for modeling non-functional requirements of self-adaptive soft-
ware use goal-modeling methods such as KAOS (Dardenne et al., 1993), i* framework



Chapter 2. Preliminaries 22

(Franch et al., 2016), and feature models (Kang et al., 1990). However, none of the ex-
isting methods have specifically focused on the energy-related requirements, which are
highly critical in battery-powered devices. Among these modeling frameworks, feature

model have been adopted in this research to introduce the proposed concepts because of
its expressiveness, automated reasoning support, and formalism. Therefore, in this re-
search work feature model have been adopted to specify and analyze the energy-related
requirements for deciding energy-saving self-adaptation.

2.4 Model-driven Development

Model-driven Development (MDD) is a software development paradigm that aims to re-
duce software complexity and improve software quality by enabling developers to work
at a higher level of abstraction (Hailpern and Tarr, 2006). The notable characteristic of
MDD is that it primarily focuses on models instead of programs (Selic, 2003). The mod-
els aid the domain analyst or developers to specify the problem domain without bound-
ing to the actual programming language used for implementation. The models are easier
to specify, understand, and maintain even by the domain experts without help of devel-
opers written code (Selic, 2003). The term Model-driven Development is interchange-
ably used in the literature with the following terms: Model-driven Engineering (MDE)

(Schmidt, 2006), Model-driven Architecture (MDA) (Kleppe et al., 2003), Model-Driven

Software Engineering (MDSE) (Brambilla et al., 2017), and Model-driven Software De-

velopment (MDSD)2. All these terms refer to the same concepts as that of Model-driven
Development. Therefore, in this thesis, the term "Model-driven Development (MDD)"
is used to refer to the concept of using models for the development of energy-aware
self-adaptive software.

According to MDA concepts provided by Object Management Group (OMG) 3, the
models can be broadly classified into Computation-independent Model (CIM), Platform-

independent Model (PIM), and Platform-specific Model (PSM) (Truyen, 2006). The
Computation Independent Model (CIM) is a business requirement or domain model
which is not linked with the underlying technology stack. The Platform Independent

2https://martinfowler.com/bliki/ModelDrivenSoftwareDevelopment.html
3https://www.omg.org/

https://martinfowler.com/bliki/ModelDrivenSoftwareDevelopment.html
https://www.omg.org/


Chapter 2. Preliminaries 23

Model (PIM) refers to the model that is built with formal notations during the design
phase that is independent of the implementation platform of the software. The Platform

Specific Model (PSM) refers to a model that is more close to the programming language
in which the system will be implemented. It includes many details about libraries, pro-
gramming elements, database, interfaces that will be used in the development of the
software system. The concept model transformation is used in MDA predominantly to
transfer from CIM to PIM and PIM to PSM. Generally, MDA uses UML (France et al.,
2006) and meta-modeling (Atkinson and Kuhne, 2003) concepts to define Platform-
independent models and CASE tools for model transformation.

In recent years, the Domain-specific Modeling Language (DSML) and automatic code
generators are widely used in MDD for improving the productivity of the develop-
ers. The Domain-specific Modeling Language (DSML) is a Domain-specific Language
(DSL) tailored to a specific problem and application domain that have the modeling
element corresponding to domain-specific terms (Frank, 2013). The automatic code
generators use model-to-text transformation to convert the models produced by DSML
to a source code (Kelly and Tolvanen, 2008). The DSML could be both graphical
and textual. The models developed using the DSML could be considered as platform-
independent models. Typically, these models undergo a model-model-transformation
to produce the platform-specific models (, Völter). Finally, the platform-specific mod-
els could be converted to source code using model-to-text transformation (Kelly and
Tolvanen, 2008). The model-driven development approaches in practice aim to pro-
vide a CASE tool that automates the process of modeling and transforming the model
to source code. These tools help to reduce the development efforts and increase the
productivity of the developers. In industries, The tools like MetaEdit+4, and Xtext5

are the popular language workbenches for defining DSMLs. The tools like ATL6, Ac-
celeo7, and Xtend8 are widely used for defining a code generator. In research, the
DSML and code generators are used for domain such as context-aware web applica-
tions (Ceri et al., 2007), Concurrent Programming (Marand et al., 2015), cyber-physical
manufacturing systems (Thramboulidis and Christoulakis, 2016), smart service systems

4http://www.metacase.com/products.html
5https://www.eclipse.org/Xtext/
6http://eclipse.org/atl/
7https://eclipse.org/acceleo/
8https://www.eclipse.org/xtend/

http://www.metacase.com/products.html
https://www.eclipse.org/Xtext/
http://eclipse.org/atl/
https://eclipse.org/acceleo/
https://www.eclipse.org/xtend/


Chapter 2. Preliminaries 24

(Beverungen et al., 2019), etc. In the literature, several studies have been found that use
MDD concepts for mobile app development (Tufail et al., 2018, Vaupel et al., 2018) and
self-adaptive software (Vogel and Giese, 2014). In this thesis, the MDD concepts have
been adopted for modeling of self-adaptive behaviour with energy-saving as one of the
essential goal.

2.5 Feature-oriented Software Development

Feature-Oriented Software Development (FOSD) (Apel and Kästner, 2009) is a paradigm
for the construction, customization, and synthesis of large-scale software systems. In
FOSD, features are used as the primary units to analyze, design, and implement soft-
ware systems (Apel and Kästner, 2009). According to Kang et al. (1990), the feature is a
prominent or distinctive user-visible, quality, or characteristic of a software system. The
basic idea of FOSD is to decompose a software system in terms of the features it pro-
vides. FOSD is supported by four different phases: domain analysis, domain design and

specification, domain implementation, and product configuration and generation (Käst-
ner and Apel, 2011). The different features that are part of the software system will be
determined by domain analysis with help of feature models. In the domain design and
specification phase, structural and behavioral properties of each identified feature from
domain analysis will be modeled through formal modeling languages. Based on the
domain knowledge and design specifications a developer can manually code or auto-
matically generate code for each identified feature in the domain implementation phase.
In this phase, the concept of feature-oriented programming (FOP) (Prehofer, 1997) was
widely used by the researchers to separate the feature-related code and base programs.
In recent years, researchers have made significant advancements to FOP in the form
of dynamic slicing of feature-oriented programs with execution trace files (Sahu and
Mohapatra, 2017), concurrent feature-oriented programs (Sahu and Mohapatra, 2019),
and feature-oriented programs with aspect-oriented extensions (Sahu and Mohapatra,
2020). Finally, an efficient product can be generated based on the feature selection by
the users.



Chapter 2. Preliminaries 25

The proposed approach in this thesis follows the FOSD paradigm. In this research work,
the energy-aware self-adaptive software is decomposed into different features. The fea-
tures are selected in such a way that it consumes a different amount of energy under
different operating conditions. The final product(s) derived from the features would
consume different energy for its operation. Through domain analysis, the developers
would be able to understand the different energy-hungry features and their alternatives.
In addition, the developers might have a clear idea of different operating conditions.
The different product configurations will be mapped to different operating conditions at
run-time for better energy-savings. The domain design and specification is supported by
the domain-specific modeling language tailored for energy-aware software. The DSML
proposed in this research work can model and specify different features and operating
conditions. The domain implementation of the FOSD is supported by the automatic
code generation of MDD where the code will be generated from the textual domain-
specific language DSML. Finally, the final generated code would be used to construct
energy-aware software to complete the FOSD paradigm.

2.6 Summary

This chapter introduces the background knowledge relevant to the methodologies adopted
in the design and development of energy-aware self-adaptive software. In summary,
as reported in the literature, the existing research work has proved that changing the
application behavior at runtime based on battery-awareness would aid in developing
energy-efficient mobile apps. The energy-related context information such as battery
level, battery charging state, etc will be used as a primary source of context in this re-
search work. Therefore, using context-awareness and self-adaptivity to the application
will ensure that the energy-efficiency requirements are met. From the development per-
spective, this research work uses the FOSD and MDD paradigm for the development
of energy-aware self-adaptive software. The FOSD paradigm is used in this research
work as the development paradigm and the feature models are used for domain anal-
ysis. For domain design and domain implementation, Model-driven Development is
used. Further, the modeling aspects of MDD are covered through features, context, and
adaptation modeling.





Chapter 3

LITERATURE SURVEY

This chapter discusses and compares the concepts proposed in this thesis to the re-

search works published in the literature. The literature survey is presented under three

different categories. The first category covered the literature related to empirical stud-

ies about mobile apps’ energy consumption and summarized in Section 3.1. Notably,

it covers the literature that considers data from Stack Overflow and GitHub to analyze

data related to mobile apps’ energy consumption. The second category includes the

research efforts that can be considered after the development phase to reduce Android

applications’ energy consumption and is summarized in Section 3.2. Specifically, it

covers the tool support available for energy profiling, diagnosis, and automated repair

of energy-inefficiencies or energy bugs in Android apps. The third category considers

the research efforts applied in the early stages of software development and outlined

in Section 3.3. Mainly, it covers the research work related to the following topics: (1)

modeling frameworks for self-adaptive software; (2) feature modeling approaches for

specifying non-functional requirements; (3) model-driven development of mobile apps.

To the best of our knowledge, none of the research works presented in this category

have attempted to propose a method for modeling smartphone applications’ energy-

efficiency requirements at design time. However, the discussed research works motivate

us to provide a method for considering energy-efficiency and self-adaptivity in the early

phases of smartphone app development.

27



Chapter 3. Literature Survey 28

3.1 Existing Empirical Studies

This subsection summarizes empirical studies related to the Android application’s en-
ergy consumption, considering data available on Stack Overflow and GitHub.

3.1.1 Stack Overflow data

In recent years, there has been an increase in the number of empirical studies on de-
veloper discussions. In general, these studies are conducted using online surveys (Pang
et al., 2016), interviews (Manotas et al., 2016), and mining questions and answers on
online discussion forums (Malik et al., 2015, Pathak et al., 2011, Pinto et al., 2014). Off
late, online repositories such as Stack Overflow have proven to be a reliable source to
summarize a developer’s knowledge (Ahmed and Bagherzadeh, 2018, Rahman et al.,
2018). In general, mobile development teams are relatively small, and consist of de-
velopers with less background knowledge (Manotas et al., 2016, Pang et al., 2016) on
best practices of using location APIs. Therefore, the new developers post their issues
on developer discussion forums like Stack Overflow to get suitable and working so-
lutions (Calefato et al., 2018). Stack Overflow is one of the larger Q&A discussion
forums for developers with over 10 million users and 18 million posted questions. As
Stack Overflow is the largest developer discussion forum, it has become the ideal data
source for mining developer discussions. Stack Overflow has been used as a data source
by researchers to summarize the developer discussions in the recent past (Ahmed and
Bagherzadeh, 2018, Tahir et al., 2018). The Stack Overflow data has been analysed
using card sorting (Zimmermann, 2016), thematic analysis (Braun and Clarke, 2013),
and topic modeling methods (Blei et al., 2003, Deerwester et al., 1990, Lee and Seung,
1999). This shows the importance of considering Stack Overflow to organize the exist-
ing developers’ knowledge of new application platforms or programming languages. In
recent years, several empirical studies were (Malik et al., 2015, Manotas et al., 2016,
Pathak et al., 2011) conducted on Stack Overflow to summarize the knowledge on en-
ergy consumption of Android applications. This subsection summarizes current re-
search work related to mining Stack Overflow data to analyze developers’ experience
and challenges related to the energy consumption of software.



Chapter 3. Literature Survey 29

The first empirical study on categorizing the energy related issues of smartphones was
published by Pathak et al. (2011) in 2011. The authors have mined four online forums to
categorize energy-related issues of smartphones. The authors presented a comprehen-
sive taxonomy ranging from problems related to battery, SIM card, OS configurations
to no-sleep bugs covering hardware, software, and external conditions.

Pinto et al. (2014) mined StackOverflow for software energy consumption-related ques-
tions and answers. The authors have identified seven major causes for energy consump-
tion problems, varying from unnecessary resource usage, background activities, and
synchronization. In addition, the authors have discussed several possible solutions to
address the energy related issues.

Malik et al. (2015) explored the quantitative and qualitative aspects of energy-related
questions specific to the Android platform on StackOverflow. The authors have sum-
marized energy-related issues into four main categories and explores the APIs that are
significantly discussed in the energy-related posts. However this study does not con-
centrate on energy and accuracy related issues of location-based Android applications.

Although there have been several empirical studies on the StackOverflow data, none
of the studies have concentrated on the issues related to location-based Android ap-
plications. Hence, in contrast to these research efforts, this thesis attempt to mine the
developers’ discussions about location-based Android applications.

3.1.2 GitHub data

The data available from open-source Android repositories hosted on GitHub would help
us understand the developers’ perceptions from posted issues. The researchers have
considered GitHub as the majority of the open-source Android apps from F-Droid 1 is
hosted in GitHub. Also, GitHub allows non-members to browse through the source code
of the whole repository and post an issue. Therefore, the researchers have collected the
required data from the GitHub platform to answer the research questions. In literature,
two related studies has been found (Moura et al., 2015) and (Bao et al., 2016) that

1https://f-droid.org/



Chapter 3. Literature Survey 30

use GitHub data for answering their research questions. Both these studies focused on
finding a solution to energy consumption in various software fields.

Moura et al. (2015) focused on mining energy-aware commits of 317 non-trivial real-
world applications. An initial dataset of 2,189 commits containing 371 energy-aware
commits was used to perform a thorough qualitative study. The researchers have found
answers to certain questions regarding the solutions that developers use to save energy.
They found that frequency scaling and exploring multiple levels of idleness were being
used. Another important finding was the software quality attributes which would be
given precedence over energy consumption. However, their studies do not focus on
Android applications in specific.

On the other hand, Bao et al. (2016) has performed an empirical study on power man-
agement commits of 154 different Android applications obtained from F-Droid and
crawling 468 commits on GitHub. They have filtered the commits using a set of key-
words and conducting a manual analysis on it. Further, they used open card sorting to
categorize the commits into six groups. The developers have chosen to answer questions
on how the developers manage power consumption in Android applications and the type
of applications that are more concerned about power management. Their analysis said
that there are six main power management activities, namely: Power Adaptation, Power
Usage Monitoring, Power Consumption, Optimizing Wake Lock, Adding Bug Fix, and
Code Refinement. They have also found that Connectivity, Phone, and SMS category
applications are much concerned with power management commits.

In contrast to these studies, this thesis focus mainly on location-based Android appli-
cations’ energy-related commits to summarize the developer’s knowledge and help the
upcoming developers on energy and accuracy-related matters.

3.2 Post-development Approaches

The existing research works majorly contribute to tool support to reduce battery con-
sumption of Android applications. Typically these tools are used after the development
phase to check for energy-inefficiencies at run-time. This subsection discusses the re-
search works related to finding and fixing energy-inefficiencies in Android applications.



Chapter 3. Literature Survey 31

3.2.1 Energy profilers

Energy profilers are the tools that help in providing the component wise energy con-
sumption of mobile devices. Initially, external hardware-based profilers were used to
estimate the energy consumption of mobile devices. The popular hardware-based pro-
filer are Monsoon Power Monitor (Monsoon Solutions, 2018), BattOr (Schulman et al.,
2011), and NEAT (Brouwers et al., 2014). Here, an external power meter will be con-
nected to the mobile device battery to measure the overall energy drawn by the device.
The accuracy is good and gives better measurement results in all situations. The dis-
advantage of this approach is, it gives only the device energy consumption. It does
not give sub-components wise (CPU, 3G, GPS, etc.) or App wise energy consumption
values. On the other hand, optimizing smartphone applications for energy efficiency
requires fine granular level energy estimation of application components. Therefore,
software-based profilers were introduced to provide fine granular level energy estima-
tion (Ahmad et al., 2015). The software-based energy profilers can be broadly classified
into two categories: On-device profilers and off-device profilers (Hoque et al., 2016).
On-device profilers will be installed on the mobile device, and Off-device profilers will
be installed on the computer for estimation. The power model construction plays a
major role in deciding the accuracy of the profiler. Similar to deployment, the power
models can be constructed either on-device or off-device. After constructing a power
model, the profilers will be deployed on the mobile or computers. As summarized in
Hoque et al. (2016), there are three different type of approaches for energy profilers:
(1) On-device deployment with on-device model construction (Dong and Zhong, 2011,
Jung et al., 2012, Yoon et al., 2012, Zhang et al., 2010), (2) on-device deployment with
off-device model construction (Kjærgaard and Blunck, 2011), and (3) off-device de-
ployment with off-device model construction (Pathak et al., 2012a). In this sub-section,
a few notable research works on software-based energy profilers are discussed.

PowerBooter (Zhang et al., 2010), is an automatic power model generation technique
for mobile phone. This approach uses the built-in battery voltage sensors and battery
discharge behavior to generate the device-specific power models as the single device
power model is not suitable for other devices. Further, the authors described a tool
PowerTutor2, which uses PowerBooter to estimate the energy consumption of Android

2http://ziyang.eecs.umich.edu/projects/powertutor/

http://ziyang.eecs.umich.edu/projects/powertutor/


Chapter 3. Literature Survey 32

platform smartphones. PowerTutor is an Android application that runs on Android de-
vices to estimate the device’s hardware component level energy consumption. Power-
Tutor provides high accuracy only for HTC G1, HTC G2, and Nexus one device as it
was built on top of these devices’ power models.

Sesame (Dong and Zhong, 2011), a self-modeling approach, produces mobile systems’
energy models using self-modeling. Here, the mobile systems’ smart battery interface
is used to generate the power models to avoid external metering or interventions to
construct the power models. Sesame was developed for laptops and mobiles running
Linux based kernels. The system was evaluated using Lenovo ThinkPad T61 laptop
and Nokia N900 smartphone. The authors showed 95% accuracy for laptops and 86%
accuracy for smartphones.

DevScope (Jung et al., 2012) generates the accurate power model of Android hard-
ware components automatically. The authors solved the existing problem with Battery
Management Unit (BMU) and produced dynamic power models. DevScope analyzes
the power characteristics of CPU, display, WiFi, cellular, and GPS. The power models
generated by DevScope was used by AppScope (Yoon et al., 2012) to estimate the en-
ergy consumption of smartphone hardware components. Yoon et al. (2012) proposed
an Android-based energy metering framework (AppScope). This approach estimates
the energy consumption of device components by monitoring the hardware usage at
the kernel level. The authors claim that their approach provides fine granular energy
estimation with less overhead. Appscope is implemented as a dynamic module in the
Linux kernel 2.6.35.7 and evaluated on the Google Nexus One device running Android
platform version 2.3.

eLens (Hao et al., 2013) analyzes the Android applications at the source code level and
estimates it’s run-time energy consumption. This approach uses the concepts of static
program analysis and per-instruction energy modeling. eLens doesn’t require external
additional hardware or modification at the operating system to estimate energy con-
sumption. Being a lightweight approach, it works at the source code level and utilizes
per-instruction energy models to provide fine-grained energy consumption estimation.
eLens takes the input three inputs: (1) software artifact, (2) app’s run-time workload,
and (3) per-instruction energy models. The source code annotator component of eLens
creates the annotated version of the source code that may help developers understand



Chapter 3. Literature Survey 33

the source code’s energy consumption behavior. This tool provides energy consump-
tion at different granularity: the whole program, path, method, and source line. This
tool was empirically evaluated using the Java byte of six Android applications from the
Google Play Store. The results show that this approach is lightweight and accurate for
the Android application’s energy estimation at the source code level.

The previously described approaches are suitable for smartphones that use the earlier
version of the Android platform. Whereas, the recent generation of mobile devices does
not use those Android platform versions. Moreover, recent generation smartphones’
hardware capabilities have drastically changed, which makes the power models gener-
ated in the previous works unsuitable. A recent profiling tool developed by Qualcomm
developers called Trepn Profiler3 is suitable for most of the recent generation Android
smartphones. This tool is an Android application that runs on the device and monitors
other applications’ usage statistics running on the same device. This tool provides better
accuracy only on Snapdragon-powered smartphones. Though the tool is effective, the
additional overhead of running this tool on the smartphone remains a limitation of this
tool.

Google Battery Historian4 is the popular tool developed by Google developers for fine-
grained energy consumption estimation. This tool uses the bug report produced by
Batterystats5. This tool allows the developers to input their device bug report and visu-
alize the battery related information on a timeline. The web interface provided by this
tool provides the app wise, component-wise energy estimation values. Comparing two
different bug reports allows the developer to visualize the key issues in battery related
behaviors of two set of application events. The aggregated battery statistics provided by
this tool may give key insights to developers to optimize the application for energy ef-
ficiency. This tool can only estimate energy consumption, and this tool cannot pinpoint
the Android application’s energy inefficiencies.

The other important profiling tool for profiling applications energy usage is Android
studio energy profiler6. This tool monitors CPU, network, and GPS’s energy usage,
along with system events like wake lock, alarms, and job scheduler. This tool’s visual

3https://developer.qualcomm.com/software/trepn-power-profiler
4https://github.com/google/battery-historian
5https://developer.android.com/studio/profile/battery-historian
6https://developer.android.com/studio/profile/energy-profiler

https://developer.qualcomm.com/software/trepn-power-profiler
https://github.com/google/battery-historian
https://developer.android.com/studio/profile/battery-historian
https://developer.android.com/studio/profile/energy-profiler


Chapter 3. Literature Survey 34

timelines help the developers locate the system events responsible for abnormal energy
consumption. This tool also fails to automatically pinpoint the source code segment re-
sponsible for abnormal energy consumption. In addition to the support for developers,
the Android operating system supports smartphone users to inspect the energy usage
of their phone under settings. Users can see the energy usage of apps and take neces-
sary actions to reduce abnormal energy consumption. The actions like terminating the
background activities, background location sensing, and adjusting display settings are a
few of the most common methods for reducing energy consumption. Like other energy
profiling tools, this tool is also restricted only to work on the deployed application. This
tool cannot pinpoint the energy inefficiencies in the developer written code.

The existing energy profilers are capable of providing sub-component-wise and app-
wise energy consumption values. These tools estimated power consumption through
a well-defined power model, which considers various mobile device sub-components.
There are different power models available: utility-based models, event-based models,
code analysis based models, etc. These approaches can be well utilized for optimizing
the applications as it gives the energy consumption value per component. This ap-
proach’s major drawback is that the energy profilers failed to automatically identify the
particular code segment responsible for abnormal energy consumption. The tools need
a developer to manually identify energy-hungry elements in the code segment by look-
ing at the energy profiler report. Therefore, the research community started focusing on
developing automated energy diagnosis tools to identify the Apps’ energy-hungry code
segments. Besides profiling, these tools give an idea about the energy-hungry compo-
nents or code segments of the application. These energy diagnosis engines are handy
tools during the development, helping the developers identify energy bugs present in
the application before deployment.

3.2.2 Energy diagnosis engines

To overcome the limitations of energy profilers, researchers have introduced energy

diagnosis tools to automate the process of locating energy inefficiencies in Android ap-
plications. In literature, there are significant efforts made towards automatically detect-
ing the energy bugs of Android applications. There are several user-centric approaches



Chapter 3. Literature Survey 35

(Kim and Cha, 2013, Oliner et al., 2013, Wang et al., 2014) to optimize energy inef-
ficiency issues at run-time. These tools do not require the developer’s involvement to
fix energy inefficiencies. However, the solutions suggested by these approaches are
temporary as they do not modify the source code. On the other hand, there are a few
developer-centric approaches detecting sensor data under-utilization (Liu et al., 2014,0,
Wang et al., 2016). These approaches help developers optimize their app by pinpointing
energy bugs’ locations at Android applications’ source code level. Besides finding, few
approaches fix the energy inefficiencies automatically at source code level. These ap-
proaches use popular software engineering methods such as program analysis, software
bug-localization, refactoring, and automated software repair to address the identified
energy-related issues. Automated energy diagnosis tools help developers analyze the
source code or intermediate code to pinpoint energy inefficiencies with minimal man-
ual efforts. Leveraging energy diagnosis tools in the development and testing phases
may produce energy-friendly applications for battery-powered devices. This subsec-
tion summarizes significant automated energy diagnosis engine-related research efforts
that use program analysis and refactoring techniques. These approaches can be broadly
classified into two categories: finding only approaches and fixing approaches. The find-
ing only approaches include GreenDroid (Liu et al., 2014), E-GreenDroid (Wang et al.,
2016), µDroid (Jabbarvand and Malek, 2017), eDelta (Li et al., 2017a), TailEnergy Ab-
basi et al. (2018), and EnergyDebugger Banerjee et al. (2016). The fixing aapproaches
include EnergyPatch (Banerjee et al., 2018), Gottschalk et al. (2012), Banerjee and
Roychoudhury (2016), Leafactor (Cruz and Abreu, 2018), and EARMO (Morales et al.,
2018).

GreenDroid (Liu et al., 2014) is another approach that utilizes dynamic information flow
analysis (Kemerlis et al., 2012) to detect energy inefficiencies of Android applications.
The authors conducted a preliminary empirical study to identify common causes of
energy-related issues: "(1) missing deactivation of sensors or wakelock, and (2) under-

utilizing the sensory data" (Liu et al., 2014). GreenDroid takes input as Java bytecode
produced either from the source code or converting apps Dalvik bytecode (Octeau et al.,
2012). Further, GreenDroid analyzes the registering and unregistering of sensors and
wakelocks at each explored state to decide on energy-related issues. In this approach,
the sensor and wakelock management policies are used to detect the problems by adopt-
ing the resource leak detection techniques (Arnold et al., 2011, Weimer and Necula,



Chapter 3. Literature Survey 36

2004). The dynamic tainting approach was used to detect the sensory data underuti-
lization. GreenDroid contains the following three phases: "(1) tainting sensory data,

(2) propagating taint marks, and (3) analyzing the sensory data underutilization" (Liu
et al., 2014). The GreenDroid tool was implemented on top of JPF, and the approach is
evaluated with 13 popular Android applications.

E-GreenDroid (Wang et al., 2016) focused on addressing all the known limitations of
GreenDroid Liu et al. (2014). The effectiveness of E-GreenDroid was validated with
the same apps used to validate the original implementation of GreenDroid (Liu et al.,
2014). The experimental results show that the E-GreenDroid effectively provides sup-
port to Android 5.0 while retaining the same effectiveness of GreenDroid. Another
extension to the GreenDroid approach is CyanDroid (Li et al., 2017b), which aims at
using white box sampling technique (Bao et al., 2012) for handling multi-dimensional
data. The authors have highlighted two limitations of GreenDroid approach: (1) ran-
dom generation of sensory data, and (2) not considering different execution paths during
analysis. In CyanDroid (Li et al., 2017b), systematic generation of multi-dimensional
sensor data was investigated along with fine-granular state-space concept. A case study
was conducted on four popular Android apps to validate CyanDroid.

μDroid (Jabbarvand and Malek, 2017) is a mutation testing framework to reveal energy-
related defects in Android applications. This framework seeds artificial defects in the
program known as mutation operators to simulate commonly occurring energy defects.
The energy consumed by the mutated version and the original subject application are
compared to determine the defects. The framework consists of three components, a)
Eclipse Plugin b) Runner/Profiler c) Analysis Engine. The authors have collected 28
types of energy anti-patterns to create the mutation. The algorithm runs each test mul-
tiple times on both the original and modified copies of the application and determines
the corresponding power traces. The similarity between the power traces are compared
by calculating the "Dynamic Time Warping (DTW) distance" (Jabbarvand and Malek,
2017). The authors evaluated this framework on nine apps and used it to instrument
different mutation operators in subject applications. The framework was able to iden-
tify several unexplored energy bugs and showed an overall accuracy of 94% in correctly
identifying these energy bugs.



Chapter 3. Literature Survey 37

eDelta (Li et al., 2017a) is an automated trace-based detection framework to address
abnormal battery drain issues. It helps developers to pinpoint the energy-hungry APIs
with the help of comparative trace analysis. The key idea in this approach is to analyze
the energy consumption deviation in different user traces. eDelta works in two phases:
"1) online tracking on smartphones, and 2) offline diagnosis" Li et al. (2017a). eDelta
was evaluated using twenty apps running on Android version 4.4. The online track-
ing facility was installed on the user devices to collect the necessary information for
analysis. The usage of data and power traces were collected from multiple users under
different operating conditions and contexts. This tool suffers from the additional over-
head of app instrumentation and power consumption by the online tracking component.
The results show that eDelta reduces 94.6% of the code that the developer may search to
fix the energy defects. Therefore, the results of eDelta might help developers reduce the
time spent on analyzing and finding the root cause of Abnormal Battery Drain (ABD).

TailEnergy (Abbasi et al., 2018) introduce "Application Tail Energy Bugs (ATEBs)",
which occur when an Android app consumes abnormal power than expected while run-
ning in the background. The authors have developed a desktop application to test the
presence of ATEBs and conducted several experiments on five Android applications
using the "android debug bridge (adb)"7 command. This approach detects the ATEBs
by comparing the system states before running and after terminating the subject appli-
cations. In this approach, the following five actions are considered to close the app:
"pressing the home button, pressing the back button, using the swipe-out gesture, using

the force-stop option from the settings, and using the exit button if available" (Abbasi
et al., 2018). The log files are generated and saved in the server by the "daemon (adbd)

on the smartphone under test. These commands are executed twice, once before starting
the subject applications and once after terminating the applications. Later, the presence
of ATEBs is detected by the text parser after comparing the contents of two log files
generated by the daemon (adbd).

EnergyDebugger (Banerjee et al., 2016) analyzed the run-time log messages and sys-
tems states to detect energy-related field failures. The authors have provided an instru-
mentation method to address energy-related issues where the data logging code will be
added to the user application. The instrumented code is equipped with logging utility to

7https://developer.android.com/studio/command-line/adb

https://developer.android.com/studio/command-line/adb


Chapter 3. Literature Survey 38

record the execution logs at run-time. Later, this logging utility automatically uploads
the log files to the developer side tool for defect localization. This approach has the four
step process to address the energy-related issues. In the first phase, the user app is in-
strumented with logging utility, which captures the event-handlers, API calls, status of
wakelock, and GPS updates. In the second phase, log-messages shared by the user side
tool were converted to an energy profile call graph. In the third phase, the contextual
subgraph is extracted from the energy profile graph. In the fourth phase, the location or
origin of the defect is identified in the source code. In addition, this approach provides
patch suggestions to help developers improve energy efficiency. The developer tool of
this approach was developed as an Eclipse plugin8 and evaluated with two Android ap-
plications running on Samsung S4 smartphone running with Android version 4.4.2. The
authors have shown 5% to 29% energy saving as the result of patching energy defects.

As summarized in Table 3.1, the finding approaches primarily consider the energy in-
efficiencies of resources such as wakelock, sensors, UI, and connectivity. The dynamic
analysis approaches such as GreenDroid (Liu et al., 2014), E-GreenDroid (Wang et al.,
2016), and CyanDroid (Li et al., 2017b) were used to identify the sensor-related issues
such as missing sensor deactivation and sensor data under utilization. The network-
related issues are identified in TailEnergy (Abbasi et al., 2018). In contrast to the previ-
ous approaches, EnergyDebugger (Banerjee et al., 2016), and MuDroid (Jabbarvand and
Malek, 2017) consider energy issues related to multiple smartphone resources. This in-
cludes resource leaks, vacuous background services, immortality bug, loop energy bug,
anti-patterns in code related to location, connectivity, callbacks, and sensor. Overall,
researchers have adopted dynamic analysis approaches that include dynamic program
analysis and comparison of trace files by executing real devices’ applications. There-
fore, the popular Dynamic Information Flow Tracking (DFT) (Suh et al., 2004) has
been used in the approaches GreenDroid (Liu et al., 2014), E-GreenDroid (Wang et al.,
2016), and CyanDroid (Li et al., 2017b) to track the tainted object dynamically.

8https://www.comp.nus.edu.sg/ rpembed/energydebugger/index.html



C
hapter3.Literature

Survey
39

TABLE 3.1: Summary of developer-centric finding approaches

Approach Identified energy-inefficiencies Deployment Tool input Finding Method Representation
for analysis

Green Droid (Liu
et al., 2014)

Missing deactivation, Sensor
data under utilization

External Ap-
plication

Java Byte
Code and
Configuration
files

Dynamic informa-
tion tracking

Applications’s
state space

E-Green Droid
(Wang et al., 2016)

Sensor listener and wake lock
misusage, Sensory data under-
utilization

External Ap-
plication

Java Byte
Code and
Configuration
files

Dynamic informa-
tion tracking

Applications’s
state space

Cyan Droid (Li et al.,
2017b)

Sensory data underutilization External Ap-
plication

Java Byte
Code and
Configuration
files

Dynamic informa-
tion tracking

Applications’s
state space

Energy Debugger
(Banerjee et al.,
2016)

Resource leaks, suboptimal re-
source binding, wakelock bug,
tail-energy hotspot, vacuous
services, expensive services,
immortality bug, loop-energy
hotspot

Modifications
to App Exe-
cutable

apk Context-sensitive
pattern based fault
localization

Profile call graph

eDelta (Li et al.,
2017a)

abnormal battery drain Modification
to App Exe-
cutable

apk Trace segmenta-
tion and statistical
analysis

Action traces and
power traces

MuDroid (Jabbar-
vand and Malek,
2017)

anti-patterns in code Modification
to Source
Code

Source Code Mutation analysis
(Comparing power
traces original and
mutated version of
the apps)

Power traces

TailEnergy (Abbasi
et al., 2018)

ATEB (Application Tail Energy
Bugs)

External Ap-
plication

apk Comparing pre-state
and post-state file

Pre-state and post
state file



Chapter 3. Literature Survey 40

Besides these approaches, few trace analysis approaches compare the real user traces of
subject applications to determine energy inefficiencies. The trace analysis approaches
uses fault localization (Banerjee et al., 2016), trace segmentation (Li et al., 2017a),
mutation analysis (Jabbarvand and Malek, 2017), and comparing power states (Abbasi
et al., 2018) to detect the energy inefficiencies in Android applications. These tools
use the configuration files in addition to Java Byte Code. Further, the trace analysis
approaches such as EnergyDebugger (Banerjee et al., 2016), eDelta (Li et al., 2017a),
TailEnergy (Abbasi et al., 2018), (Jabbarvand and Malek, 2017) use the app executables
(apk) or source code as the input. The inputs given to the analysis tools are converted
into different representations for analyzing the subject applications for energy ineffi-
ciency. The source input of subject applications were further converted to a graph or
trace file suitable for the analysis.

Overall, the previously discussed approaches can automatically find out the energy-
inefficiencies in the apk source code of the Android applications. However, these tools
cannot automatically fix the identified energy-inefficiencies, and it requires manual in-
terventions of the developer. In contrast to the previously discussed approaches, there
are several fixing approaches found in the literature. These approaches can automat-
ically fix the identified energy inefficiencies besides finding them. The following ap-
proaches fix the energy inefficiencies automatically at source code level: EnergyPatch
(Banerjee et al., 2018), Gottschalk et al. (2012), Banerjee and Roychoudhury (2016),
Leafactor (Cruz and Abreu, 2018), and EARMO (Morales et al., 2018) . These ap-
proaches use popular software engineering methods such as program analysis, software

bug-localization, refactoring, and automated software repair to address the identified
energy-related issues. The remaining part of this subsection summarizes the approaches
that automatically fix the energy inefficiencies.

Gottschalk et al. (2014,0) have presented the first research effort on considering energy
inefficiencies as code smells and the importance of applying refactoring techniques.
The authors have presented an approach to detect and restructure the energy-inefficient
patterns in Android applications. The refactoring process begins by forming an ab-
stract representation of the app’s Java code and storing it into a central repository. The
refactored source was compiled and deployed on the test device to show the efficacy of



Chapter 3. Literature Survey 41

this approach. The authors have considered five code smells: "a) data transfer, b) back-

light, c) statement change, d) third-party advertising and e) binding resources too early"
(Gottschalk et al., 2014,0). The validation was performed on the applications GpsPrint
and TreeGenerator using two smartphones Samsung Galaxy S4 and HTC One X. The
energy-saving measurement obtained from delta-B measurements was 14%, from file-
based measurements, it was 8.6%, and from energy, profile measurements were about
8.3%. The results show that it is feasible to adopt refactoring techniques for improving
the energy-efficiency of Android applications.

Banerjee and Roychoudhury (2016) have presented a light-weight refactoring method to
assist the energy-aware app development. This approach detects and refactors abnormal
energy-draining behavior with the help of energy-efficiency guidelines. This approach
relies on the following three components: "(a) design extraction component (b) refac-

toring component and (c) code generation component" (Banerjee and Roychoudhury,
2016). The "design extraction component" is responsible for generating the design-
expression of the subject applications. The objective of the refactoring component is to
refactor the design-expressions by evaluating them for any guideline violations. Further,
the "code generation component" connects the changes introduced in the refactored de-
sign expression to the source code of the subject applications. The exact location in
the app source code is identified, and modifications are applied as suggested by the
refactored expressions. This approach’s effectiveness was evaluated by identifying the
existence of energy-hungry design patterns in ten open-source subject applications. This
evaluation was performed on Samsung S4 supported by a case study on the application
Sensorium. Experimental results show a 3% to 29% reduction in energy consumption
of subjection application after applying the refactoring.

Cruz and Abreu (2018) presented an automated refactoring approach to improve the
energy efficiency of Android applications. The authors have used a tool named Leafac-
tor (Cruz et al., 2017) to analyze and refactor applications to make them energy effi-
cient. The static code analysis was used to detect the Android-specific anti-patterns
automatically. The anti-patterns related to the following elements were considered in
this approach: ViewHolder, DrawAllocation, Wakelock, Recycle, and ObsoleteLayout-

Param. The proposed automated refactoring approach was implemented as an exten-
sion to the Eclipse-based AutoRefactor Plugin. The AutoRefactor supports only Java



Chapter 3. Literature Survey 42

refactoring, and XML refactoring was done using a separate refactoring engine called
Leafactor. The authors have evaluated the proposed approach on 45 open-source An-
droid applications and identified 222 anti-patterns using Leafactor. The experimental
results show that the ObsoleteLayoutParam and Recycle are most frequently occurring
energy-related anti-patterns in the subject apps.

EARMO (Morales et al., 2018) is an anti-pattern detection and correction approach for
addressing improper energy consumption issues. This framework refactors anti-patterns
if it affects the energy-efficiency of the system. It covers the following object-oriented
anti-patterns: "blob, lazy class, long-parameter list, refused bequest, and speculative

generality" (Morales et al., 2018). In addition, this approach addresses the following
Android anti-patterns: "binding resources too early, hashmap usage, and private getters

and setter" (Morales et al., 2018). EARMO consists of 4 steps: a) Energy consumption
estimation, b) Code meta-model generation, c) Code meta-model assessment, and d)
Refactoring. The measurement given by "TiePie Handyscope HS5"9 was used to eval-
uate the results produced by EARMO. It adopts search-based algorithms with multiple
objectives to select the optimal refactoring sequence from the available list of refactor-
ing opportunities. This approach was evaluated with 20 open-source Android subject
applications on LG Nexus 4 device. From the experimental results, it can be observe
that this approach produces recommendations for refactoring in less time and removes
84% of code with energy-related issues.

EnergyPatch (Banerjee et al., 2018) is an automatic software repair ? based approach
to automatically fix the energy inefficiencies by adopting the suitable combination of
static and dynamic analysis methods. EnergyPatch has three important phases: "detec-

tion, validation, and repair" (Banerjee et al., 2018). The detection phase identifies the
program paths that may contain potential energy bugs using a static analysis approach.
The validation phase explores the buggy program paths to ensure the presence of energy
inefficiencies. Finally, the third phase repair identifies the location of validated energy
bugs to fix them using the automatically generated repair expressions. The developed
tool handles the energy bugs caused by resource leaks, wakelock misuse, and vacuous

background services. This framework is implemented as a plugin to Eclipse, and freely
available10 for usage. The authors have evaluated this framework on 35 subject apps

9https://www.tiepie.com/en/usb-oscilloscope/handyscope-hs5
10https://www.comp.nus.edu.sg/~rpembed/epatch/home.html

https://www.tiepie.com/en/usb-oscilloscope/handyscope-hs5
https://www.comp.nus.edu.sg/~rpembed/epatch/home.html


Chapter 3. Literature Survey 43

TABLE 3.2: Summary of developer-centric fixing approaches

Approach Identified energy ineffi-
ciencies

Input to analysis Finding Method Fixing Method

Program Repair Approach
EnergyPatch
Banerjee
et al. (2018)

Resource leaks, Wake-
lock bugs, Vacuous
Background Services,
Immortality Bug and
inappropriate usage of
system call APIs

Event Flow Graphs
(EFG)

Combination of static
and dynamic program
analysis

Inserting Repair Ex-
pressions

Refactoring Approaches
Gottschalk
et al.
Gottschalk
et al. (2012)

Loop bugs, inline code,
dead code, immortality
bugs

TGraphs produced
from source code

Static analysis and
graph transformation

Refactoring

Banerjee et
al. Banerjee
and Roy-
choudhury
(2016)

Inefficiency of app due to
ineffictive design patterns

Succinct repre-
sentation (Design
expressions)

Checking for vio-
lation of energy-
efficiency guidelines

Guideline based
refactoring of defect
expressions

Leafactor
Cruz and
Abreu
(2018)

Android specific energy
smells

Android project Static Program Analy-
sis

Automatic code refac-
toring

EARMO
Morales
et al. (2018)

Object-oriented anti-
patterns, Android anti-
patterns

Code meta-model Code meta-model as-
sessment

Evolutionary multi-
objective technique

Instrumentation Approach
Li et al. Li
et al. (2015)

Sensor data underutiliza-
tion

smali code Static analysis Insert adaptive sens-
ing policies to smali
code

running on LG Optimus E400 smartphone. Further, the buggy applications were re-
paired using the automated repair expressions, and the experimental results show the
improvement in energy efficiencies.

As shown in Table 3.2, the developer-centric fixing approaches are summarized based
on the following parameters: identified energy inefficiencies, input to analysis, finding

method, and fixing method. The approaches under this category can be further classified
into the following themes based on the fixing scheme: instrumentation and refactoring

approaches. The approach presented in Li et al. Li et al. (2015) instruments existing An-
droid apps with adaptive sensing policies to fix the sensor-related energy inefficiencies.
There are few classical refactoring approaches also found in Gottschalk et al. Gottschalk
et al. (2012), Leafactor Cruz and Abreu (2018) to refactor the code smells that causes
energy issues in Android applications. In addition, evolutionary multi-objective tech-
niques were used in EARMO Morales et al. (2018) to correct the anti-patterns. The
EnergyPatch Banerjee et al. (2018) approach uses the automated program repair to fix



Chapter 3. Literature Survey 44

the energy inefficiency issues. These approaches primarily rely on the finding meth-

ods, such as program analysis and code meta-model assessment. The program analysis

techniques are used in Li et al. Li et al. (2015) and EnergyPatch Banerjee et al. (2018)
to find the energy inefficiencies. Particularly, EnergyPatch Banerjee et al. (2018) uses
the combination of static and dynamic program analysis to detect and validate energy
inefficiencies. In Li et al. Li et al. (2015), only static program analysis method is used
to find the energy inefficiencies. In addition to program analysis techniques, the fol-
lowing finding techniques has been found in other candidate studies: GREQL is used
in Gottschalk et al. Gottschalk et al. (2012); code meta-model assessment is used in
EARMO Morales et al. (2018); and checking for a violation of energy-efficiency guide-
lines is used in Banerjee et al. Banerjee and Roychoudhury (2016) to find out the energy
inefficiencies.

To summarize the input to analysis, the approaches use intermediate representations

and Android project files as an input to the analysis tool. For instance, Gottschalk et
al. Gottschalk et al. (2012), Li et al. Li et al. (2015), Banerjee et al. Banerjee and
Roychoudhury (2016), EARMO Morales et al. (2018), and EnergyPatch Banerjee et al.
(2018) use the intermediate representations of Android applications. On the other hand,
whole android project files are used by Leafactor Cruz and Abreu (2018) for analy-
sis. With respect to identified energy inefficiencies, Li et al. Li et al. (2015) only deals
with the sensor data underutilization problem. The EnergyPatch covers many ineffi-
ciencies, which includes "resource leaks, wakelock bugs, vacuous background services,

immortality bug and inappropriate usage of APIs" Banerjee et al. (2018). In addition
to resource-specific issues, the refactoring approaches introduced a new class of energy
bugs by investigating the energy impact of object-oriented smells and Android-specific
smells. For instance, EARMO deals with object-oriented anti-patterns such as "blob,

lazy class, long-parameter list, refused request, speculative generality" Morales et al.
(2018). In addition, the authors have considered Android-specific code smells such as
"binding resources too early, hashmap usage, private getter and setters" Morales et al.
(2018). In LeaFactor Cruz and Abreu (2018), the authors have introduced a new class of
energy in-efficiencies, namely energy code smells by investigating the Java and Layout
files of Android applications.



Chapter 3. Literature Survey 45

3.3 Pre-development Approaches

The research work proposed by Kelényi et al. (2014) supports the development of an
energy-efficient mobile application with model-driven code generation. Mainly, the
authors aim to assist the developer through a model and code library-based approach.
In addition, the importance of considering energy efficiency at the modeling level rather
than directly optimizing at the code level was pointed out clearly. The results presented
in this motivates us to carry out this research work to propose suitable solutions through
modeling. Our approach is different from this approach in terms of using context-
awareness and self-adaptivity for energy savings.

3.3.1 Feature modeling approaches

In the literature, graphical feature model notations provided by FODA framework Kang
et al. (1990) were widely used in the subsequent research efforts, such as FeatuRSEB
Griss et al. (1998), FORM Kang et al. (1998), and generative programming Czarnecki
and Eisenecker (2000). These research efforts have added extra modeling notations
to the original FODA notations. These studies have the aim of analyzing common-
ality and variability in a software system. Several tools such as FDL Van Deursen
and Klint (2002), FeaturePlugin Antkiewicz and Czarnecki (2004), FAMA Benavides
et al. (2007), CVM Reiser (2009), TVL Classen et al. (2011), FAMILIAR Acher et al.
(2013), and FeatureIDE Thüm et al. (2014) have focused on facilitating modeling of
feature models. Previous secondary studies such as Schobbens et al. Schobbens et al.
(2006), Sinnema et al. Sinnema and Deelstra (2007), Benavides et al. Benavides et al.
(2010), and Noorian et al. Noorian et al. (2012) compared several extensions and tool
support to basic feature models. Recently, several studies Soltani et al. (2012) Sieg-
mund et al. (2012) Asadi et al. (2014) Mauro et al. (2018) have focused on leveraging
the ability of feature models to analyze non-functional requirements and self-adaptive
or context-aware requirements Desmet et al. (2007) Inverardi and Mori (2010) Mauro
et al. (2018). This section systematically compares these approaches. Specifically, the
support for energy-related requirements and self-adaptation planning has been investi-
gated. First, the related works have been summarized, and then the approaches have
been compared based on the following criteria: (1) configuration generation time, (2)



Chapter 3. Literature Survey 46

type of representation, (3) support for energy-awareness, (4) support for context repre-
sentation, (5) support for self-adaptation planning, and (6) tool support.

Context-Oriented Domain Analysis (CODA) (Desmet et al., 2007) approach is a sys-
tematic method for gathering and analyzing the requirements of context-aware systems.
This approach presents the notations for specifying variation point, context condition,

and adaptation along with the notations suggested in FODA (Kang et al., 1990). This
approach depends on the graphical models and decision tables to specify correspond-
ing adaptive actions for each allowed context changes. Here, the context information
is modeled as an attribute to the feature diagrams. This approach does not provide ex-
plicit support for specifying energy-related requirements. Instead, it provides support
to specify the energy-related context in the feature model through context conditions.

Inverardi and Mori (2010) proposed a feature-oriented approach to cover the require-

ments and design phases of developing dynamically evolving systems to plan run-time
adaptations. This approach suggests to define the features, system variants, and context

using feature models. Here, feature models are used to specify the functional require-
ments and to derive system configurations. A separate model is used to specify the
context and to derive context-changes. A table-based method was used to map the con-
text changes to its corresponding system variant to execute at runtime. This method
does not have explicit support for energy-related requirements.

Soltani et al. (2012) proposed a framework that uses annotations to specify the non-
functional properties. This approach computes feature ranks based on the impact of
non-functional properties on the stakeholder’s preferences. The calculated feature ranks

are essentially used for optimizing the generated feature model configurations. This ap-
proach provides partial support for specifying energy-related requirements as it captures
the non-functional properties. However, this approach does not provide explicit support
for energy requirements, context modeling, and self-adaptation planning.

SPL Conqueror (Siegmund et al., 2012) attempts to optimize the non-functional prop-
erties during the product derivation phase of software product line engineering. The au-
thors have introduced the importance of satisfying the user-specific quality requirements
of product variants. The non-functional properties such as reliability, code complexity,

footprint, and performance are measured and optimized in this approach. However,



Chapter 3. Literature Survey 47

this approach does not provide explicit support for energy-related requirements while
deriving the product variants. Besides, this approach has no provision for modeling the
context information and planning run-time adaptation.

The approach presented by Asadi et al. (2014) also aims at optimizing the non-functional
requirements while generating the feature model configurations. This framework is
driven by the positive and negative impact of features on the non-functional require-
ments of the system. Unlike other approaches, this approach considers the interde-
pendencies between the non-functional requirements. This approach provides annota-

tion based extension to feature models for specifying the non-functional requirements.
However, this approach does not support energy-awareness, context modeling, and self-
adaptation planning.

Pascual et al. (2015a) used feature models to model the variability of mobile applica-
tions. The multi-objective evolutionary algorithms are used to optimize the product con-
figurations at run-time. This approach considers the non-functional requirements, such
as usability, battery consumption, and memory footprint. The cross-tree constraints are
used to represent the inter-dependencies of non-functional properties. Finally, the opti-
mal configuration is selected for the current context execution using the multi-objective
algorithms. This approach partially supports energy-awareness and context modeling as
it used feature models to specify these details. Besides, this approach produces run-time
re-configurations for self-adaptation.

Common Variability Language (CVL) (Pascual et al., 2015b) generates run-time config-
urations and re-configurations for the self-adaptation of mobile systems. This approach
uses CVL for generating design-time configurations, and the run-time configurations are
generated using a genetic algorithm. The language proposed in this approach aims at
modeling the architectural level variability of the self-adaptive system. In this approach,
the energy-related information and mobile-specific context information are added into
the feature models for generating optimal configurations.

Mauro et al. (2018) presented a method to model context-aware feature models for
evolving software product lines. The authors have highlighted that all configurations
given by the basic feature model would not be sufficient to deal with dynamic changes
in the context and user preferences. To address these issues, the authors have proposed



Chapter 3. Literature Survey 48

a framework and two tools, namely "DARWINSPL" and "HyVarRec". This approach
suggests adding the context information in the feature diagram itself along with the fea-
tures. This approach provides explicit support for context modeling and self-adaptation.
However, this approach failed to consider the energy-awareness while defining context
information or while generating re-configurations. ’

CIM-CSS (Baddour et al., 2019) focuses on intelligent context-sensitive systems to for-
mally model its context identification and management. This approach primarily fo-
cuses on the dynamically changing context of smart spaces and the Internet of Things
(IoT). The authors have employed a goal-driven, entity-centered context identification
method to find out the influential context information that can adapt the system be-
haviour at run-time. This approach uses Unified Modeling Language (UML), Object
Constraint Language (OCL), and First-order Language (FOL) to formalize the context-
identification and management. The authors have developed tool support and evaluated
it through a smart meeting room application. This approach provides explicit support
for context modeling and self-adaptation. The support for energy-awareness is not con-
sidered in this approach.

(Duhoux et al., 2019) covers the context model and behavioural adaptations that may
be possible at run-time. This approach follows feature-based context-oriented program-
ming and uses feature models for representing context and features separately. In ad-
dition, this approach covers the dependencies between the context model and feature
model. The authors have developed a visualization tool that displays the activated or
changed context information dynamically and the features affected by respective con-
text changes. The developed tool has explicit support for self-adaptivity. The energy-
awareness feature is not considered in this approach.

RETAkE (dos Santos et al., 2021) focuses on addressing the run-time defects and sys-
tem failures caused by dynamic adaptation in self-adaptive systems. Specifically, this
approach performs run-time testing of adaptive behavior, based on context variation
and feature models to determine run-time system failure. Primarily, RETAkE approach
provides test case generation and verification to verify adaptation rules at run-time. Ad-
ditionally there is a tool support provided, that can be adapted to existing dynamically
adaptive systems to control context and verify feature status. The authors have also
provided support for modeling self-adaptation and energy awareness.



Chapter 3. Literature Survey 49

Comparing approaches

The related works has been compared based on the following criteria: (1) configura-
tion generation time, (2) type of representation, (3) support for energy-awareness, (4)
support for context representation, (5) support for self-adaptation planning, and (6) tool
support. The results of the comparison of the approaches is presented in Table 3.3. With
respect to configurations generation time, most of the approaches Mauro et al. (2018),
Pascual et al. (2015b), Siegmund et al. (2012), Soltani et al. (2012) generate the con-
figurations and re-configurations at design-time and run-time. However, employing a
suitable mechanism at the requirements phase Inverardi and Mori (2010) would help
the development team to plan a better energy-saving adaptation. With respect to type

of representation, the majority of the approaches Asadi et al. (2014), Baddour et al.
(2019), Desmet et al. (2007), dos Santos et al. (2021), Duhoux et al. (2019), Inverardi
and Mori (2010), Soltani et al. (2012) used a graphical model over textual models. It
has been observed that the graphical models are more suitable for the early stages of
software development, while textual models are useful for later stages with model-to-
model transformation support. With respect to support for energy-awareness, it can
be observed from Table 3.3, few approaches provided partial support for considering
energy-related requirements.

These approaches added energy-related information in the form of attributes Desmet
et al. (2007) and annotations Soltani et al. (2012) for planning re-configurations. How-
ever, none of the existing approaches have considered energy as an important quality
criterion. With respect to context-representation, energy-information have been added
as an attribute Desmet et al. (2007) and annotation Soltani et al. (2012) in the exist-
ing feature model. In a few approaches dos Santos et al. (2021), it has been added in
the feature model itself with additional notations. Few approaches Asadi et al. (2014),
Siegmund et al. (2012), Soltani et al. (2012) does not provide any support for specify-
ing context information. Notably, the approach by Inverardi et al. Inverardi and Mori
(2010) uses separate artifact for modeling the context information separating it from the
basic feature model. Inspired by this study, having a separate context model would be
essential when the number of context information and feature grows in size.



C
hapter3.Literature

Survey
50

TABLE 3.3: Comparison of existing approaches with respect to specifying energy-awarenss and self-adaptation.

Approach Configuration
Time

Model Type Energy-
awareness

Context
Model

Adaptation
Planning

Tool
support

CODA (Desmet et al., 2007) Design Time Graphical Partial Attributes Table No

Inverardi and Mori (2010) Requirements,
Design Time

Graphical No Separate Table No

Soltani et al. (2012) Design Time Graphical Partial No No Yes

Siegmund et al. (2012) Design, Run
Time

NA No No No Yes

Asadi et al. (2014) Design Time Graphical No No No Yes

Pascual et al. (2015a) Run Time Graphical Partial Feature Model Yes Yes

CVL (Pascual et al., 2015b) Design, Run-
time

Graphical Partial Partial Yes Yes

Mauro et al. (2018) Design-time Graphical,
textual

No Hybrid Yes Yes

Baddour et al. (2019) Design-time Graphical No Goal Model Yes Yes

Duhoux et al. (2019) Run-time Graphical No Feature Model Yes Yes

dos Santos et al. (2021) Run-time Graphical Partial Feature Model Yes Yes

This Approach Early Stages Graphical,
Textual

Primary Feature Model Yes Yes



Chapter 3. Literature Survey 51

With respect to support for self-adaptation planning, it is observed from the related
works, none of the approaches have a dedicated module for planning the adaptation.
However, decision tables Desmet et al. (2007) and multi-objective algorithms Pascual
et al. (2015a) approaches also were found for automated reconfiguration generation.
The decision tables would not serve the purpose of adaptation planning as it does not
have an automated validation method. On the other hand, having a sophisticated opti-
mization technique would be more suitable for run-time configuration generation. As
the scope of this research work is in the domain analysis phase, extension to the cross-
tree constraints and configuration generator of FeatureIDE Thüm et al. (2014) has been
provided to validate the configuration along with the dedicated module for planning the
energy-saving self-adaptation. With respect to tool support, it has been learned that a
tool is essential in this research area. Therefore, to provide the tool support, an extension
to popular feature modeling tool FeatureIDE Thüm et al. (2014) has been developed.

Overall, the existing approaches Mauro et al. (2018), Pascual et al. (2015b), Siegmund
et al. (2012), Soltani et al. (2012) are involved in optimizing the reconfiguration gen-
erations, which is needed during the run-time. In addition, few approaches focus on
providing design-time models to support the context representation. However, since the
energy-aware self-adaptive software is the new problem domain, it is better to have a
framework that produces artifacts during the requirements time. The only approach by
Inverardi and Mori (2010) provides suitable notations for specifying and analyzing the
requirements and self-adaptivity at requirements time. Therefore, this thesis focuses on
providing support at the early stages of software development. On the other hand, to
the best of our knowledge, none of the existing approaches provides explicit support for
specifying and analyzing energy-related information to provide energy-saving adapta-
tion plans. Though few approaches provide partial support through attributes Desmet
et al. (2007) and annotations Soltani et al. (2012) of feature diagrams, it may not be suf-
ficient enough for planning better energy-savings. Therefore, to fill this research gap, an
explicit framework and tool support has been provided for energy-aware requirements
specification and energy-saving adaptation planning.



Chapter 3. Literature Survey 52

3.3.2 Model-driven development approaches

In literature, several academic research approaches have been found about model-driven
development of mobile applications. Primarily, these approaches build tools that contain
a Domain-specific language and code generator. Here, domain specific-languages are
used for specifying the app functionalities. The code generators are used for generating
source code for target platforms like Android and iOS. Several approaches generate
only native application source code targeted at a single platform, while other approaches
serve as a cross-platform code generator to generate code for multiple platforms. This
subsection discusses relevant academic domain-specific language and code generator
for smartphone applications.

MD2 (Heitkötter et al., 2013) is an approach for developing mobile apps with model-
driven development methods. It consists of a domain-specific language to specify the
data-driven business apps. It also contains a separate code generator for generating
native Android and iOS code. The language and code generated by MD2 follow the
Model-View-Controller (MVC) pattern. Here, the Model component allows the devel-
opers to define the application’s data model. The View component helps in describing
the user interface and its elements. The Controller component aids to describe the user
interaction and events associated with the apps. The DSL was defined with Xtext, and
Xtend defines the code generator. The recent version of MD2 (Heitkötter et al., 2015)
includes the following capabilities: device-specific layout, extended control structures,

and offline computing.

Xmob (Le Goaer and Waltham, 2013) is a platform-independent DSL for creating
mobile applications for multiple platforms. It is developed with three sub-languages
(Xmob-data, Xmob-ui, Xmob-event) to follow the MVC pattern. The Xmob-data helps
the developers to specify the way retrieving form database, web service, or other data
sources. The Xmob-ui helps the developers to describe the UI elements such as widgets,
forms, buttons, etc. The Xmob-event helps the developers to link the user interfaces
and data sources. Xmob involves model-to-model transformation and model-to-text
transformation to generate the source code of the desired platform. The model-to-
model transformation converts the platform-independent model to a platform-specific
model. The model-to-text generates the source code corresponding to the elements in a



Chapter 3. Literature Survey 53

platform-specific model. Xmob uses Xtext for language definition, Kermeta for model-
to-model transformation, and Xpand for the code generator.

ADSML (Jia and Jones, 2015) is an adaptive domain-specific modeling language for
native mobile app development. The syntax and rules of ADSML evolve in line with the
evolution of the target platform’s evolutions. It relies on meta-model extraction, meta-
model elevation, meta-model alignment, and meta-model unification to create target
apps for the Android and iOS platforms. The meta-model extraction phase extracts
the platform-specific meta-models from the targeted platforms native APIs. The meta-

model elevation phase abstracts the platform-specific API models and select the sub-
set for further analysis. The meta-model alignment phase find out the similar meta-
model elements among different platforms. Finally, the meta-model unification phase
creates the platform-independent DSL from the platform-specific models identified in
the previous phase. The current implementation of ADSML does not have the support
for code generation. The authors claim that the ADSML is adaptable to the target
platform’s evolution and develops the high-performance native application.

DSL-Comet (Vaquero-Melchor et al., 2017) is the active DSL that targets a smart city or
IoT applications. It primarily runs on mobile devices to tag the location and contextual
information on the model elements created by DSL-Comet. The DSL-Comet includes
Open, Geo, and Contextual DSLs to form an active DSL. The Open DSLs interact with
external APIs to retrieve the information related to model elements. The Geo DSLs ren-
der the models on the map interface to tag the current location on the models associated
with geo-services. The Contextual DSLs are context-aware and helps to re-organize the
model after encountering the contextual changes. It has iOS and Eclipse-based editors
that permits the users to model either on the mobile or desktop. The iOS editor stores
the models in JSON format, and the Eclipse-based editor stores the models in XMI for-
mat. The DSL-Comet does not have a code generator to generate source code for the
targeted platform.

Rapid APPlication Tool (RAPPT) (Barnett et al., 2019) aids the developers in specify-
ing the characteristics of mobile applications using domain-specific visual language and
textual language. Initially, the developers can use visual language to specify the high-
level architecture and the number of screens with navigation. The developers can then



Chapter 3. Literature Survey 54

use textual language to add more specific information, such as data schema, authenti-
cation, web service, etc., to define the app. The combination of the model described by
the visual language and textual language is called the App model. The model-to-model
transformation then takes place to convert the app model to the Android model, where
high-level specification will be transferred to Android-specific elements such as classes,
activities, fragments, etc. Finally, the RAPPT generates the source code from the An-
droid model that resembles the developer’s written code. The generated code produces
the working prototype, and developers need to add the business logic to deliver the
working application.

MoWebA Mobile (Núñez et al., 2020) is a model-driven approach covering the mo-
bile apps’ data layer. This approach mainly defines the data source of application to
develop offline access to business applications in case of network connectivity issues.
This approach consists of three phases: (1) Problem Modeling, (2) Solution Modeling,
and (3) Source Code Definition. The problem modeling phase uses the Computational-
independent Model (CIM) and Platform-independent Model (PIM). The solution mod-

eling phase uses the Architecture-specific Model (ASM) to specify the architectural
requirements. It uses UML profiles to create Platform-independent models and EMF to
convert the PIM to ASM. Finally, it uses Acceleo to transform models to generate code
for developing native applications for Android and Windows platforms.

The comparison of the model-driven development of mobile apps is given in Table
3.4. The approaches are compared based on the following criteria: DSL Type, Targeted

Platform, Domain, Modeling Scope, Support for Context-awareness, and Support for

Energy-awareness. The existing approaches are compared with the concepts presented
corresponding to the eGEN tool described in Chapter 7. As shown in Table 3.4, the
considered approaches can be broadly classified into two categories, namely, Textual

and Graphical based on the DSL Type. The approaches such as MD2 (Heitkötter et al.,
2013) , Xmob (Le Goaer and Waltham, 2013), ADSML (Jia and Jones, 2015) uses
the textual DSL to specify the app functionalities. The graphical DSL is used in the
approaches like DSL-Comet (Vaquero-Melchor et al., 2017), RAPPT (Barnett et al.,
2019), and MoWebA Mobile (Núñez et al., 2020).



C
hapter3.Literature

Survey
55

TABLE 3.4: Comparison of model-driven development approaches for mobile app development

Approach DSL
Type

Targeted
Platforms

Domain Modeling Scope Context-
awareness

Energy-
awareness

MD2 (Heitkötter
et al., 2013)

Textual Android and
iOS

Data-driven
Business
Apps

Data, UI and User
Interaction

No No

Xmob (Le Goaer
and Waltham,
2013)

Textual Android,
iOS, and
Windows

All Mobile
Apps

Data, UI and
Events

No No

ADSML (Jia and
Jones, 2015)

Textual Android and
iOS

All Mobile
Apps

All aspects No No

DSL-Comet
(Vaquero-Melchor
et al., 2017)

Graphical NA Smart City
Applications

Business Functions Yes Partial

RAPPT (Barnett
et al., 2019)

Graphical
and Tex-
tual

Android All Mobile
Apps

Views No No

MoWebA Mobile
(Núñez et al.,
2020)

Graphical Android and
Windows

Offline Busi-
ness Apps

Data Layer and
Network Connec-
tivity

No No



Chapter 3. Literature Survey 56

In this research work, eGEN tool adopts the textual DSL for modeling the energy-saving
self-adaptive requirements of smartphone applications. The Target Platform criteria re-
fer to the mobile platform for which the source code generated by the code generator
associated with the discussed tools. Most of the approaches generate code for multiple
platforms such as Android, iOS, and Windows. The RAPPT (Barnett et al., 2019) ap-
proach considers only the Android platform for code generation. In this research work,
the eGEN tool covers only the Android platform, and other platforms will be considered
in the future releases of the tool. The Domain criteria refer to the application domain
covered by the DSL and code generator. As shown in Table 3.4, most of the approaches
cover all the aspects of mobile apps. In contrast approaches such as MD2 (Heitkötter
et al., 2013), DSL-Comet (Vaquero-Melchor et al., 2017), and MoWebA Mobile (Núñez
et al., 2020) covers the specific application domains. Specifically, the MD2 (Heitköt-
ter et al., 2013) is for data-driven business apps, DSL-Comet (Vaquero-Melchor et al.,
2017) is for smart city applications, and MoWebA Mobile (Núñez et al., 2020) is for
business applications with offline access. As observed from the Table, none of the
approaches have considered location-based Android applications. Therefore, in this ap-
proach, family of location-based applications has been considered as the application
domain for DSL and code generator. The modeling scope criteria refer to the elements
that can be modeled with the DSL provided in the related approaches. As shown in Ta-
ble 3.4, most of the approaches cover the data and UI modeling of mobile apps. None of
the existing approaches have considered modeling the location-sensing of mobile apps.
In contrast, this research work’s modeling scope covers the location-sensing of mo-
bile apps. Finally, the existing approaches have been compared for self-adaptivity and

energy-awareness support. As observed from Table 3.4, none of the existing approaches
has considered the self-adaptivity and energy-awareness of the mobile apps, which is
the essential non-functional requirements for the recent generation smartphones. There-
fore, in this research work, the modeling of energy-awareness and self-adaptivity has
been considered for location-based Android applications.



Chapter 3. Literature Survey 57

3.4 Research Gaps

Overall, the post-development solutions suggest ways to improve coding practice for
energy-efficiency, demanding a better way of developing applications among the soft-
ware developer communities. At the same time, educating such a large number of de-
velopers will be difficult, directly at the code level. Therefore, it is necessary to con-
sider energy-efficiency as a critical component during the early stages before making
any decisions on lower level code development. Under pre-development approaches, a
significant amount of work has been done on design time and run-time models for self-
adaptive software. Further, some research works have used feature models to model
the system’s features and context information for dynamic self-adaptivity. However,
none of the research works attempted to model the energy-aware context and adaptation
plans. This research work aims to provide a modeling approach and tool support based
on feature models to consider energy-related requirements in the early software devel-
opment phases. Here, our objective is to help the designer find out the energy-saving
self-adaptations at design time with the feature-based modeling framework. This re-
search work aims to address the following Research Gaps (RG):

RG1 Limited information existing energy-saving practices and API usage patterns

RG2 Lack of domain analysis framework to analyse the energy saving opportunities

RG3 Lack of domain-specific modeling tools to model the energy related context in-
formation and energy-savings adaptations

RG4 Lack of automated tools to assist the developers by generating energy-aware
source code artifacts





Chapter 4

Empirical Studies

This chapter presents the results of Research Objective 1 (RO1), including the empiri-

cal studies conducted on the location-based Android applications. The Empirical soft-

ware engineering studies such as controlled experiments, qualitative analysis of Stack

Overflow data, and GitHub data are included in this objective. The primary purpose

of RO1 is to analyze the effectiveness of location-based Android applications’ existing

energy-saving techniques. This objective’s first contribution is to check the cause-effect

relationship between location-sensors and energy consumption, as presented in Section

4.2. The second contribution is to analyze Stack Overflow data to document the exist-

ing knowledge base of energy-related issues of location-based Android applications, as

reported in Section 4.3. The third contribution is to analyze GitHub commits to iden-

tify the research efforts needed to fix energy consumption-related issues of open-source

location-based Android applications after deployment, as presented in Section 4.4.

59



Chapter 4. Empirical Studies 60

Despite the widespread interest in using location-based applications, there is little knowl-
edge of energy-saving programming practices that are being followed by expert devel-
opers. It was initially challenging to introduce self-adaptive solutions, feature-oriented
domain analysis, and model-driven solutions without a conceptual starting point. There-
fore, it has been decided to identify the contribution of location-based applications in
the smartphone device’s overall battery consumption. In addition, organizing the ex-
isting developer knowledge about Location-based Android applications’ energy-saving
practices is also considered before proposing a model-driven solution. Therefore, this
objective employs empirical software engineering methods such as controlled experi-
ments and mining software repositories to organize the existing knowledge. The re-
maining part of this chapter presents the research questions, methodology, and findings
of the various empirical studies conducted on location-based Android applications.

4.1 Research Questions and Methodology

The following research questions have been formed to document the existing energy-
saving techniques and their effectiveness in the location-based Android applications
domain:

• RQ1 What is the contribution of LBAs to the overall energy consumption of a
Smartphone?

• RQ2 Does the use of inertial sensors reduce energy consumption?

• RQ3 Which App / API best utilizes the inertial sensors at run-time to save energy?

• RQ4 What are the most common energy-saving solutions suggested by the devel-
opers?

• RQ5 What are the popular energy-saving location API usage patterns?

• RQ6 How much development effort does it take to improve energy-efficiency
after deployment?



Chapter 4. Empirical Studies 61

4.1.1 Research methodology

The guidelines given by Easterbrook et al. (2008) have been used to choose empirical
methods, and it is found that a single data source and empirical method cannot answer
all the research questions. Therefore, three different data sources have been used with a
suitable empirical method to answer the research questions as below:

• For RQ1, RQ2, and RQ3 Controlled experiments have been selected as answers
to the questions demand data from existing applications.

• For RQ4 and RQ5 Qualitative data analysis has been selected as the answers
demand developers’ experience.

• For RQ6 Mining software repositories have been selected as the answer demands
data from development effort at the source code level.

4.1.2 Variable selection for empirical study

As the main objective of this study is to analyze the cause-effect relationships between
location sensors usage and energy consumption of location-based application, the rele-
vant independent and dependant variables are selected as follows:

• Independent variables The Number of sensors usage has been selected as a
primary independent variable as the usage of inertial sensors like accelerome-
ter might reduce energy consumption. Further, GPS and sensor active time has
also been used as an independent variable in a controlled experiment.

• Dependent variables The Energy consumption or Battery Drop of LBAs is the
first affected variable because of GPS and location sensor usage. Therefore, it
is selected as a dependant variable to verify the cause-effect relationship of sen-
sors usage and energy consumption in the controlled experiment. Second depen-
dent variable is Accuracy of location sensing. Improving the energy-efficiency of
location-sensing might directly affect the accuracy of the fetched location. There-
fore, Accuracy is considered a dependent variable for mining Stack Overflow dis-
cussions and GitHub commits.



Chapter 4. Empirical Studies 62

>_

Subject

Applications
Test

Device

Android Device

Bridge (ADB)
Bug ReportBug Report

Google Battery Historian

(Energy and Sensor

Usage Analysis)

Installed Connected Produced UploadedDownloaded

Executing each 

use case for 

3 times

FIGURE 4.1: Experiment protocol of controlled experiment.

4.2 Controlled Experiments

The controlled experiment has been carried out by executing the subject map navigation
applications on the testing device. The experiment protocol and results are presented in
this sub-section.

4.2.1 Experiment protocol

The experiment has been conducted on the selected map navigation subject application
running on Android devices. As shown in the experiment protocol (see Figure 4.1), the
selected applications have been installed on the test device, Google Nexus 6 running
Android 7.1.1. The test device was prepared for the experiment by disabling all back-
ground and scheduler services. The device was allowed to access Mobile data only for
the application under test to minimize unwanted battery consumption by other applica-
tions. Each selected subject application was installed and executed separately to collect
the required data. A well-defined usage scenario has been used across all the applica-
tions to ensure the replicability of the experiments. The experiment was carried out near
Surathkal town by navigating from Surathkal Bus Stand to Sadashiva temple. Each trial
took approximately 2.1 Kilometers, and the destination was reached by cycling from the
source. The use case was repeated three times per application, and the aggregated value
was considered for analysis. The Android Device Bridge (ADB) was used to export the
bug reports or log files. The bug reports produced by ADB were considered for energy
consumption and sensor usage analysis. The exported bug reports have been further
uploaded to Google Battery Historian tool to extract the energy consumption data, GPS
usage, and other inertial sensors usage data. Finally, the numerical results have been
analyzed with suitable analysis techniques.



Chapter 4. Empirical Studies 63

TABLE 4.1: Selected subject applications for controlled experiment

AppID AppName Category Map Type Location Provider
GM Google Maps Navigation Online Google
MM Maps.ME Navigation Offline Open Street Map
OA OsmAnd Navigation Offline Open street Map

4.2.2 Subject applications selection

Table 4.1 shows the list of subject applications that have been considered for a controlled
experiment. The subject application is the popular map navigation application running
on Android devices. The Google Play Store has been used as the repository to search
and download the subject applications. The subject application is selected if it satisfies
the following criteria:

• If the subject application detects the source and destination of use case locations

• If the subject application is compatible with Android versions 5.x to 8.x.

• If the subject application provides directions from source to destination

4.2.3 Data collection and analysis

The required data have been collected by uploading the bug report of each trial sepa-
rately to Google Battery Historian. The data such as energy consumption, number of

GPS usage, used inertial sensors with its frequency of usage have been collected from
execution traces. The collected data have been analyzed quantitatively by selecting the
appropriate data analysis technique. For RQ1, the data have been collected under each
application and tabulated. A multi-axis bar and line plot have been selected and pre-
sented for the cause-effect relationship between sensor usage and energy consumption.

4.2.4 Answering RQ1: LBAs energy consumption

The aim is to determine the energy consumption contributed by LBAs to the smartphone
device’s overall power consumption for a given time. The energy consumption value



Chapter 4. Empirical Studies 64

TABLE 4.2: Energy contribution of each LBA to overall energy consumption of device

Trial ID Total Battery Drop By App By Screen By Others (approx.)
GM1 5% 1.43% 2.8% 0.77%
GM2 4% 1.69% 2.11% 0.2%
GM3 5% 1.86% 2.35% 0.79%
MM1 10% 2.34% 3.32% 4.34%
MM2 8% 2.01% 2.11% 3.88%
MM3 8% 2.08% 3.79% 2.13%
OA1 8% 3.39% 3.42% 1.19%
OA2 8% 2.21% 3.57% 2.22%
OA3 8% 2.17% 3.48% 2.35%

is reported as a percentage of battery drop. Table 4.2 shows the percentage of battery
drop by each selected subject application under each trial. In Table 4.2, Total battery

drop, Appwise battery drop, screen battery drop, and other battery drops (which is

an approximated value) are collected from the bug reports and tabulated. The battery
drop by screen stands on top of all other components as the screen was ON during the
navigation. The next major contributor is Core application logic of map applications.
The battery drop by Others is derived by subtracting the sum of App battery drop and

screen battery drop from Total battery drop. the results show that screen contributed
42.1%, app contributed 30% and other components contributed 27.9% on an average
to overall battery drop of the smartphone device. The tabulated results show that LBAs
are one of the major contributors to the smartphone device’s overall power consumption.
Hence, the location sensing, navigation, map display of the LBAs must be optimized
further to reduce the abnormal battery drain.

4.2.5 Answering RQ2: Inertial sensors usage and energy consump-
tion

Here, the aim is to prove that inertial sensors’ usage at run-time reduces energy con-
sumption with empirical evidence from controlled experiments. The inertial sensors’
usage has been extracted from each trial’s bug report, and the extracted data is used
for the analysis against battery drop. The data analysis has been carried out to report
the impact of sensors used on the application’s overall energy consumption. The data



Chapter 4. Empirical Studies 65

0

5

10

0

1

2

3

GM1 GM2 GM3 MM1 MM2 MM3 OA1 OA2 OA3

Subject Applications

F
re

q
u
e
n
c
y
 o

f 
U

s
a
g
e

B
a
tte

ry
 D

ro
p
 b

y
 A

p
p
 [%

]

FIGURE 4.2: Impact of sensor usage on overall battery drop.

obtained from subject applications’ sensor usage and battery drop percentage have been
used to show the impact of sensor usage. Here, the variables Frequency of sensors

usage is an independent variable while Battery drop percentage is dependant variable.
The two selected variables data are plotted in a single graph containing a bar plot for
the independent variable and one line plot for the dependent variable with the secondary
Y-axis. Figure 4.2 shows the impact of the sensor’s usage on the overall battery drop
percentage. As shown in Figure 4.2, Google maps contributed less compared to the
other two navigation applications. As nine inertial sensors are used along with GPS by
the Google maps application, the battery drop is less in all three sample trials (GM1,
GM2, and GM3). In case of Maps me application, the number of sensor usage reduced
to three. Consequently, the app battery drop has increased on the other side (MM1,
MM2, and MM3). Similarly, the sensor usage is further dropped to one in OsmAnd

application, and the battery drop increased further as recorded in OA1, OA2, and OA3.
Hence, from the preliminary results, it is inferred that more sensor usage will reduce
the overall battery drop.

4.2.6 Answering RQ3: Inertial sensors usage by API

Here the aim is to determine the type of inertial sensors used by the navigation appli-
cation (APIs) at run-time. Generally, the sensors are used through API calls, and the
developers are unaware of the sensors used at run-time. This data will give developers
a clear idea about the type of sensors used by the APIs to select the energy-efficient



Chapter 4. Empirical Studies 66

TABLE 4.3: Inertial sensor usage per API at run-time

Sensor ID Sensor Name Google Open Street Map
Ori Orientation 3

Mag Magnetometer 3 3

Acc Accelerometer 3 3

Gyro Gyroscope 3

StepD Step Detector 3

RotV Rotation Vector 3

GRot Game Rotation Vector 3

GyroU Gyroscope Uncalibrated 3

LAcc Linear Acceleration 3

Grav Gravity 3

MagU Magnetometer Uncalibrated 3

location API. As reported in Table 4.3, the two location APIs, such as Google location
API and Open Street Map API, have been primarily used by the subject applications.
To be more specific, Google Maps uses Google location API while Maps.Me and Os-

mAnd use Open Street Map API. Google API uses more sensors such as Magnetometer,

Accelerometer, Step Detector, Rotation Vector, Game Rotation Vector, Gyroscope Uncal-

ibrated, Linear Acceleration, Gravity, Magnetometer Uncalibrated which is common
for all the trials (GM1, GM2, and GM3). Whereas, the Open Street Maps API uses few
sensors such as Magnetometer, Accelerometer, Gyroscope, Orientation sensor.

The data on sensor and GPS active time have been extracted for each trial and reported in
Table 4.4 to show the API that better utilizes the sensors at run-time for energy-saving.
The app OsmAnd, used only Orientation sensor in all trails (OA1, OA2, and OA3),
and the sensor has been active along with GPS all the time, thus resulted in increased
battery drop. Similarly, the Maps.Me application uses Magnetometer along with GPS
all the time. In addition, this app kept Accelerometer active for more time (approx. 4
minutes) which contributes to less battery drop compared to OsmAnd. This shows the
battery drop difference between using Orientation sensor and magnetometer. Further,
as in the Table 4.4, Google Maps uses more sensors but for very less amount of time
(less than a minute) and showed less battery drop among all subject applications. These
results conclude that the battery drop of LBAs can be reduced by inertial sensors usage
provided that suitable sensors are used only when required. Hence, Google API better
utilizes the inertial sensor for energy-efficiency compared to open street map API.



C
hapter4.E

m
piricalStudies

67

TABLE 4.4: Application active time vs GPS and sensors active time

Trial
ID

App
Active

GPS Ori Mag Acc Gyro StepD RotV GRot GyroU LAcc Grav MagU

GM1 9m 50s
827ms

9m 50s
805ms

NA 31s 193ms 6s 342ms NA 31s
765ms

31s
261ms

31s
141ms

17s
144ms

17s
142ms

17s
116ms

14s
777ms

GM2 12m 6s
605ms

12m 7s
96ms

NA 45s 627ms 8s 421ms NA 46s
660ms

45s
698ms

45s
604ms

21s
519ms

21s
511ms

21s
494ms

21s
61ms

GM3 11m 25s
239ms

11m 25s
255ms

NA 39s 260ms 7s 82ms NA 39s
885ms

39s
301ms

39s
207ms

18s
576ms

18s
574ms

18s
546ms

16s
475ms

MM1 12m 35s
195ms

12m 17s
222ms

NA 12m 0s
333ms

4m 48s
893ms

24ms NA NA NA NA NA NA NA

MM2 12m 16s
265ms

11m 55s
173ms

NA 11m 52s
156ms

4m 43s
149ms

6ms NA NA NA NA NA NA NA

MM3 12m 41s
536ms

12m 33s
341ms

NA 11m 42s
43ms

4m 40s
631ms

7ms NA NA NA NA NA NA NA

OA1 12m 43s
728ms

12m 42s
443ms

12m 42s
406ms

NA NA NA NA NA NA NA NA NA NA

OA2 11m 40s
969ms

11m 39s
774ms

11m 38s
616ms

NA NA NA NA NA NA NA NA NA NA

OA3 11m 26s
600ms

11m 25s
366ms

11m 22s
685ms

NA NA NA NA NA NA NA NA NA NA



Chapter 4. Empirical Studies 68

4.3 Mining StackOverflow

This empirical study aims to organize the developer’s discussions on Stack Overflow 1

related to improving location-based Android applications’ energy-efficiency. The quali-
tative data analysis method has been used to answer the research questions. The domain-
specific terms and most common energy-saving solutions identified as part of the answer
to RQ4 would serve as the body of knowledge in designing the case studies presented in
the later chapters. The expert developer’s energy-saving usage patterns identified as part
of the answer to RQ5 have been used to design and develop Domain-specific language
and code generator described in chapters 6 and 7. This sub-section presents the process
of mining stack overflow data and answers to the research questions.

4.3.1 Mining protocol

The mining process is two-fold. The first one is an automated method to collect the
data, and the second method is semi-automated qualitative data analysis. The detailed
steps involved in the mining process are depicted in Figure 4.3. The first step in the
mining process is to query the Stack Exchange Data Explorer 2, which is a data dump
of all questions and answers of Stack Overflow. The ability to query the data source is
given through the SQL query interface. The returned data sets can be downloaded as a
.csv file for further analysis. The keywords android, location, gps on the fields title, tags

have been used. The query was made on July 04, 2018 (12:45PM IST), with the relevant
SQL queries. The SQL query returned a total of 11,911 questions in the form of a .csv
file. This file is our raw data set, which is used for the further filtering process. The
raw data set has been further processed with suitable Python scripts to get the candidate
studies containing the energy-related questions. The python pre-processing returned
almost 651 questions, which have been considered as candidate sets for data analysis.

1https://stackoverflow.com/
2https://data.stackexchange.com/



Chapter 4. Empirical Studies 69

Quering With

MySQL

Dataset

(11911 Questions)
Filtring with Python

Candidate Dataset

(651 Questions)

(a) Automated Data Collection Process

Candidate Dataset

(651 Questions)
Manual Filtering Working Dataset

(78 Questions)

Qualitative Data

Analysis with R
Data Analysis Results

(b) Qualitative Data Analysis Process

Stack Over�ow

Data Dump

FIGURE 4.3: Overall mining protocol of mining Stack Overflow.

4.3.2 Data collection and analysis

The 651 candidate Stack Overflow posts have been considered for manual analysis. The
questions with Unaccepted answers have been rejected from the candidate data set, and
the relevant questions are reduced to 78 in numbers. The working data set is analyzed
using the R programming language3. Specifically, the R Package for Qualitative Data
Analysis (RQDA)4 has been used. The relevant codes have been manually marked
by reading each question and its accepted answer. Broadly two code categories have
been identified: Goals Category (Energy, Accuracy, Energy-Accuracy) and Solutions

Category (Refer Figure 4.4). The collected data are further analysed to answer the
research questions. The RQ4 has been answered by taking the frequency of occurrences
of each energy-saving technique, and the data has been plotted in Figure 4.4. The RQ5
has been answered by manual source code analysis of the code segments, and the usage
patterns are presented as Figures (From Figure 4.5 to Figure 4.14).

4.3.3 Answering RQ4: Energy-saving solutions

What are the most common energy-saving solutions suggested by the developers?
The energy-saving solution category has been identified by reading the title, body filed

3https://www.r-project.org/
4http://rqda.r-forge.r-project.org/



Chapter 4. Empirical Studies 70

11

9

8

8

6

6

5

4

3

3

2

2

2

1

1

Unregistering GPS

Use Alarm Manager or Scheduler

Fused Location Provider

Sensing Interval

Switch to Google API

Non−GPS

Use Passive Provider

Sensors

Single Update

Use Last Known Location

Geofencing

Use Proximity

Adaptive

Reduce Accuracy

Battery Manager

0 3 6 9

Frequency

S
o
lu

ti
o
n

FIGURE 4.4: Most common energy-saving solutions.

of questions, and expert developers’ responses. The thematic analysis has been used to
answer this research question. Finally, fifteen themes have been found and each themes
frequency is plotted as shown in Figure 4.4. Each theme in Figure 4.4 corresponds
to an energy-saving solution suggested by the expert developers commonly occurring
energy-related problems in location-based applications. Overall, the expert develop-
ers’ solutions cover two popular location APIs, namely Android Native Location API

and Google Location API. The following solutions correspond to Android Native Lo-

cation API: Unregistering GPS, Non-GPS, Reduce Accuracy. The following solutions
correspond to Google Location API: Geofencing, Switch to Google API, Sensing In-

terval, and Fused Location Provider. The other solutions such as Battery Manager,

Adaptive, Use Proximity, Use Last Known Location, Single Update, Sensors, Use Pas-

sive Provider, and Use Alarm Manager correspond to both the APIs. These solutions
specifically discuss the way of using existing API calls to reduce unnecessary battery
consumption. A brief discussion of each energy-saving solution is given below:

• Unregistering GPS: This solution was suggested to reduce the unwanted energy
drain by continuous GPS sensing. After unregistering, the GPS will immediately
stop looking for location updates. This solution can be applied when the applica-
tion requirements do not demand continuous GPS sensing.



Chapter 4. Empirical Studies 71

• Use Alarm Manager or Scheduler: Unregistering GPS requires manual inter-
vention to register it again. This is not suitable for the LBAs where the require-
ments change most often at run-time. Therefore, the usage of an alarm manager
or scheduler was suggested by the developers. This solution provides the ability
to programmatically schedule the GPS re-registering activity after a specific time
interval or distance. Unfortunately, these two options have been depreciated in
recent Android versions.

• Fused Location Provider: It is the best solution suggested by many developers
to use Google location API instead of Android native location API. The Google
location API calls choose the best location provider by considering the dynamic
energy and accuracy requirements. The developer may not have control over
selecting the location source at run-time as it is a black box technique.

• Sensing Interval: It has been used to stop the continuous polling of GPS requests
when not needed. The sensing interval informs the time difference between the
subsequent location-sensing requests. More prolonged the sensing interval results
in lesser energy consumption.

• Switch to Google API: In the older version of Android (V3.x.x.), Native location

API was used, and it was not energy-efficient. The developers have to write a lot
of configurations to make it energy-efficient. Therefore, Google provided loca-
tion API, which abstracts APIs’ usage with custom parameters and state of the
art energy-saving techniques. Google API consumes less energy compared to na-
tive APIs. Therefore, expert developers suggested migrating the location-sensing
code from Android native API to Google location API.

• Non-GPS: The selection of location sources is controlled by the developer in the
Android native location API. The expert developers suggested non-GPS solutions
like Wi-Fi, CellID, Bluetooth, and other location sensors as they consume less
energy than GPS. On the other hand, these sources do not provide accuracy equal
to GPS and not suitable for applications that require high accuracy.

• Use Passive Provider: Instead of polling GPS for every new request, the location
data can be obtained from the other app, which recently accessed the GPS. The



Chapter 4. Empirical Studies 72

number of GPS usage could be reduced with this technique. Thus it reduces
energy consumption.

• Sensors: The most recent energy-saving technique widely used nowadays in most
applications is to combine activity recognition with GPS. Sensors like accelerom-
eters, magnetometers, gyroscopes, etc., are used for activity recognition. These
sensors are used to detect user activity like moving to still. The sensors can be
combined to check whether the user has moved from the last location before cre-
ating a new GPS request. A new GPS request can be created if the user has
moved from the previously known location. Otherwise, the new GPS request can
be avoided. Hence, the usage of the sensor reduces the GPS usage and supports
energy-saving.

• Single Update: This is one of the energy-saving techniques used in Android
native location APIs. This option updates the location only once and deactivates
it automatically without a separate deactivating mechanism. This is helpful in the
accidental misuse of GPS when not needed.

• Use Last Known Location: The last known location was useful when the user is
not moved from the place when the previous location was fetched. Here, instead
of using GPS polling, the last retrieved location can be directly used to save the
battery.

• Geofencing: It is part of Google location API and uses users’ current location and
proximity to detect the user’s entry and exit to the defined geofence boundary. The
systems send events to the user when the entry or exit happens with the particular
geofence.

• Use Proximity: It is an alert used in Android native location API to find out the
user’s entry or exit at some location to trigger the predefined events. Similar to
Geofence, the interesting location will be predefined to set the alert of entry/exit.

• Adaptive: The adaptive methods are used for balancing energy-accuracy require-
ments. In general, this method combines existing energy-saving techniques and
calls it when a suitable situation is sensed for the dynamically changing require-
ments.



Chapter 4. Empirical Studies 73

• Reduce Accuracy: It is not recommended as it reduces the accuracy requirements
to reduce energy consumption. Some applications may not give the expected
output when the location accuracy is compromised.

• Battery Manager This is one of the recent methods introduced and quite suc-
cessful in balancing energy-accuracy requirements. Here, the battery manager is
used to get the battery percentage and state to decide the suitable method to be
called adaptively at run-time.

As summarized above, most of the discussed energy-saving techniques are pretty old,
and for Android native location API, which is no longer supported by the recent Android
versions. Solutions like Fused location, Geofence are related to Google location APIs,
and they are continuously evolving in the recent Android versions. The most promis-
ing solution for the new generation smartphones is using adaptive strategies with the
battery manager to balance energy-accuracy requirements. Therefore, combining bat-
tery manager results and adaptive location-sensing strategies would reduce unwanted
battery consumption while meeting dynamic accuracy requirements. Hence, the later
chapter’s case studies have been designed by considering battery percentage and charg-
ing state as the essential criteria to introduce self-adaptive location-sensing strategies
for energy-savings.

4.3.4 Answering RQ5: API usage patterns

What are the popular energy-saving location API usage patterns?
The code segments from the accepted solutions of candidate Stack Overflow questions
have been analyzed to answer this research question. The selected questions mostly
discuss about using Android Native APIs and Google location APIs. Through manual
analysis, ten different Usage Patterns (UP) have been identified and depicted in Figure
4.5 to Figure 4.14. These identified usage patterns will help to design the grammar for
domain-specific modeling language and code generator in Research Objective III and
Research Objective IV. The analysis of these usage patterns would help the software
architects choose suitable usage patterns for their location-sensing requirements. This
Subsection presents the identified usage patterns through the manual analysis of source
code segments.



Chapter 4. Empirical Studies 74

Application Starts

Request Location

Use GPS

FIGURE 4.5: Energy-hungry
(UP01)

Application Starts

Request Location

Use GPS

Unregister (not used)

FIGURE 4.6: Unregistering GPS
(UP02)

Energy-hungry (UP01)

This is a fundamental usage pattern and considered to be an energy-inefficient method
as it is not unregistering the GPS after its use as shown in Figure 4.5. This pattern
provides accurate location-sensing while results in abnormal battery drain by polling
the GPS even when the application no longer needs the location updates.

Unregistering GPS (UP02)

This is an energy-efficient version of UP01 as it unregisters the GPS explicitly after its
use as shown in Figure 4.6. The unregister GPS call will explicitly kill the location-
listener object and avoid the unnecessary polling of GPS when the application doesn’t
need the location. This method requires to restart the application when the application
needs location while using the application. Because of the strict unregistering behavior,
this method might not be suitable when the location requirement changes dynamically.



Chapter 4. Empirical Studies 75

Application Starts

Request Location

Use GPS

No

Yes

Continous?

Use GPS

Unregister

FIGURE 4.7: Continuous GPS
sensing (UP03)

Application Starts

Request Location

Use Last Known / 

Passive / CellId 

/ WiFi / etc

FIGURE 4.8: Energy-efficient al-
ternatives (UP04)

Continuous GPS sensing (UP03)

This method is suitable for a situation where continuous GPS sensing is needed and
can be unregistered when the application does not require location-sensing. Figure
4.7 shows that this usage pattern allows developers to check the need for continuous
location-sensing. The location listener is kept active if the application requirements
demand continuos location-sensing. Otherwise, the GPS request can be unregistered.
This method is ideal for the application, which may later need the location data contin-
uously. Later, the GPS can be unregistered when the application is terminated or in the
background depends on its requirements. However, energy consumption by continu-
ous GPS sensing cannot be avoided as the applications send high accurate location data
continuously.

Energy-efficient alternatives (UP04)

This usage pattern uses alternative location sources instead of selecting GPS for location-
sensing. As shown in Figure 4.8, the developers could use the last known location or
passive location if the application does not require accurate location-sensing. This usage
pattern might not be suitable where the application needs accurate location data. This
usage pattern is considered to be an energy-efficient method as it reduces the new GPS



Chapter 4. Empirical Studies 76

Application Starts

Request Location

Yes

No

Is Recent?

Use GPS

Use Last Known / 

Passive / CellId 

/ WiFi / etc

FIGURE 4.9: Checking if energy-
efficient alternative is recent

(UP05)

Application Starts

Request Location

Use GPS

No

Yes

Continous?Unregister

Yes

No

Is reached?

Use GPS

Sensing Interval /

Proximity Alert

FIGURE 4.10: With sensing in-
terval (UP06)

request. Similarly, this usage pattern also allows the developers to use passive location
or Non-GPS methods such as Wi-Fi and CellID positioning to save energy.The location
data given by alternative methods would not be useful if the last known location is not
recent or meets the location accuracy requirements.

Checking if energy-efficient alternative is recent (UP05)

This usage pattern is an improved version of UP04. As shown in Figure 4.9, the devel-
oper could check if the alternative methods’ location is recent and meets applications
accuracy requirements. If the location is recent, this pattern uses the returned location



Chapter 4. Empirical Studies 77

without a new GPS request. Otherwise, it creates a new GPS request to fetch a re-
cent and more accurate location. However, this method has the additional overhead of
unregistering and re-registering GPS when the user is on the move.

With sensing interval (UP06)

The usage patterns discussed so far are suitable only in the application when the lo-
cation is needed once or occasionally. Those usage patterns fail when the application
requires location logs periodically. The expert developers have suggested using sens-

ing interval to set the time difference between subsequent location requests. Therefore,
the application would get location updates when needed. As shown in Figure 4.10, the
developers suggest to use GPS initially and check if it is required continuously. Unlike
UP03, this usage pattern replaces the continuous sensing with periodic sensing to avoid
abnormal battery consumption. This usage pattern might not be valid if the application
is terminated or in the background.

With alarm manager or scheduler (UP07)

As shown in Figure 4.11, this usage pattern uses Android’s Alarm Manager to sched-
ule the location updates. It is an improved version of UP06, as it replaces the sensing

interval by Alarm manager. In the case of sensing interval, the value will be fixed and
may not suitable when the application requires dynamically changing sensing interval.
Therefore, the Alarm manager has been introduced, which automatically triggers the
defined procedure when the specified event occurs. This usage pattern addresses the
shortcomings of previously discussed usage patterns and provides better results com-
paratively. Unfortunately, the Android operating system no longer supports Alarms’
usage and makes this usage pattern obsolete.

With activity recognition (UP08)

As shown in Figure 4.12, this usage pattern utilizes the results from activity monitoring
sensors before making a new GPS request. This usage pattern is an improved version



Chapter 4. Empirical Studies 78

Application Starts

Request Location

Use GPS

No

Yes

Continous?Unregister

Yes

No

Is reached?

Use GPS

Alarm Manager / 

Scheduler

FIGURE 4.11: With alarm man-
ager or scheduler (UP07)

Application Starts

Request Location

Use GPS

No

Yes

Continous?Unregister

Yes

No

Is reached?

Use GPS

Activity Recognition 

Sensors

FIGURE 4.12: With activity
recognition (UP08)

of UP07, and it is widely used in activity monitoring or trajectory tracking applica-
tions. Here, sensors like accelerometer, magnetometer, gyroscope, etc. are used as an
alternative technique to Alarm manager. Here, the new GPS request is executed if the
sensors’ results imply that the user has moved from the previous location. Otherwise,
the developers can hold the new GPS request to avoid unnecessary battery consumption
through repeated GPS requests. This technique is energy-efficient and calls the GPS
request when the application needs at run-time to satisfy the accuracy requirements.



Chapter 4. Empirical Studies 79

Application Starts

Use Google 

Fused Location

Returns the 

best results

Read Accuracy

Requirements

FIGURE 4.13: Use of fused
location API (UP09)

Application Starts

Read Accuracy

Requirements
Battery Percentage

and State

Adaptive Decision 

Making

Call the Best

API / Method

FIGURE 4.14: Adaptive location-
sensing (UP10)

Use of fused location API (UP09)

The usage patterns discussed so far are for Android Native Location API where devel-
opers involvement is more for controlling GPS and other location-sensing alternatives.
Those usage patterns require more technical knowledge and might not be easy for the
new developers to follow as it may involve a sequence of function calls. The location-
sensing code might behave differently if the developer misses or misplaces the function
calls. Few of the unforeseen, dynamically changing requirements might not be ad-
dressed by the previous usage patterns. The source code corresponding to the previous
usage patterns are nearly hardcoded and does not consider dynamically changing op-
erating conditions. Therefore, the Google developers have released a new version of
location APIs, which abstracts the series of function calls with a single function call.
As shown in Figure 4.13, this usage pattern replaces the Fused Location API by Google
with several function calls and condition checks while using the Android native location
API. This usage pattern is the most suitable version for location-sensing in dynamically
changing requirements. The fused location provider selects the best available sensor by
considering energy and accuracy at run-time. This usage pattern was suggested mostly



Chapter 4. Empirical Studies 80

by expert developers since 2015. The Fused Location APIs evolve with every Android
operating system release and considered more energy-efficient than other location APIs.

Adaptive location-sensing (UP10)

In recent years, expert developers have coupled the location-sensing with the Android
battery manager. As shown in Figure 4.14, this usage pattern utilizes the battery per-
centage and battery charging state values to decide the suitable location-sensing strate-
gies. For instance, the developers can use an energy-efficient location-sensing strategy
if the device battery state is discharging, and the battery percentage is low. In this sit-
uation, the application might degrade with the accuracy requirements. Similarly, when
the device is charging and has a healthy battery level, a more accurate location-sensing
strategy could be used to meet the accuracy requirements. This is an improved version
of all other usage patterns as it uses the battery manager and accuracy requirements be-
fore choosing the location strategy. This usage pattern is more context-aware in nature
and produces the best energy-accuracy trade-offs at run-time. This usage pattern gives
more flexibility to the developers to balance between energy and accuracy requirements.

These reported usage patterns are the most widely discussed usage patterns by the de-
velopers on Stack Overflow. Further, these usage patterns have been analyzed to de-
sign the domain-specific modeling language and code generator for energy-saving self-
adaptative location-sensing. The recent Stack Overflow posts and official Google de-
veloper documentation states that the Android Native APIs are energy-hungry and no
longer supported. Therefore, the usage patterns related to Android Native APIs are not
considered in this research work. The domain-specific modeling language and code
generator designed to cover the energy-saving aspects of Fused Location API, which is
part of Google Location API. In addition, the usage pattern, UP10, has been selected
as a primary energy-saving pattern for defining the code generator. Further, these pat-
terns will help new developers choose the usage pattern to meet their energy-accuracy
requirements.



Chapter 4. Empirical Studies 81

1. Source Code Repo

and Commits

2. Searching and Filtering

Energy-related Commits

3. Investigating 

Relevant Commits
4. Data Collection

5. Qualitative 

& Quantitative

Data Analysis

FIGURE 4.15: Overall mining protocol of GitHub commits.

4.4 Mining GitHub Commits

This empirical study aims to find out the development efforts needed to improve the
application’s energy-efficiency after deployment. The open-source location-based ap-
plications hosted on the GitHub platforms have been chosen for determining the de-
velopment efforts. The version history and commit interface to keep track of changes
made to GitHub’s code base helped find out the source code level development efforts.
The results obtained from this empirical study showed the importance of defining a
code generator for commonly occurring programming errors towards reducing the de-
velopment efforts after deployment. This sub-section presents mining protocol, data
collection, results, and analysis of the relevant GitHub commits.

4.4.1 Mining protocol

The protocol for mining energy-related commits of open-source location-based Android
applications on GitHub is shown in Figure 4.15. The search strings shown in Table 4.5
have been used to search for commits related to Energy consumption of Location-based

Android applications. The search results returned irrelevant commits also. A filtering
process has been carried out to remove the irrelevant search results to ensure that only
relevant commits are considered for the final analysis. After choosing the relevant com-
mits, the meta-data is collected, as shown in the data collection table 4.6. Finally, the
collected data is taken for qualitative and quantitative analysis to answer the research
question. The relevant search strings have been composed to search for energy-related



Chapter 4. Empirical Studies 82

TABLE 4.5: Search strings and search results of commits search phase

SearchID Search String Total Commits Related Commits
S01 android location battery 3460 3
S02 android gps battery 1997 2
S03 android location energy 2569 0
S04 android gps energy 49 0
S05 android location power 13782 2
S06 android navigation power 370 1

Total 22227 8

commits of location-based Android applications. Therefore, the keyword "android" is
chosen and fixed for search strings. The next important term is the selected applica-
tion domain. Thus, words such as location, GPS, navigation have been added to the
search string. The next important dimension of this research is to search for energy-
related commits. Therefore, terms such as battery, energy, power have been added to
the search string. Finally, the following search strings have been formed: android loca-

tion battery, android gps battery, android location energy, android gps energy, android

location power, and android navigation power. The Table 4.5 shows the search strings
and their corresponding search results. As shown in Table 4.5, the search results re-
turned 22227 commits in total. The irrelevant commits have been ignored immediately
without taking it for further in-depth analysis. At the end of the filtering phase, eight

commits have been found related to location-based Android applications’ energy con-
sumption.

4.4.2 Data collection

The relevant commits and their meta-data have been manually read through the interface
provided by GitHub. The following data have been collected during the data collection
phase:

• Commit ID has been assigned to each commits to identify them uniquely.

• Application Name has been extracted from each commit to trace it back to the
corresponding open-source application.



Chapter 4. Empirical Studies 83

• Year refers to the commit posted year, and it has been useful to ensure that the
commits have been posted after 2015.

• Theme refers to the energy-saving solutions applied in the relevant commits.

• Improved Variable refers to the primary reasons for committing. This includes
energy, accuracy, and energy-accuracy.

• Files refers to the number of files affected by source code changes corresponding
to a particular commit.

• Additions refers to the number of lines added to the code base as a consequence
of committing a change.

• Deletions refers to the number of lines deleted from the codebase.

The data such as Files, Additions, and Deletions have been primarily collected to deter-
mine the development efforts needed to improve energy-efficiency after deploying the
application. The collected data for each commit is represented in Table 4.6.

4.4.3 Data analysis

The data analysis is two-fold. First, the qualitative data analysis is performed for the
fields Theme and Improved Variable. The popular thematic analysis has been used to
categorize each commit under Theme Category and Improved Variable Category. The
following themes have been identified for Theme Category:

• Battery Saving Option theme refer to the commits that are about changing the
settings to battery saving from GPS.

• Changed to Google API theme has been assigned to the commits that change the
codebase from Android location API to Google location API.

• Unregister Location Updates theme has been assigned to commits that explicitly
unregister the location updates from the existing location-sensing code base.



Chapter 4. Empirical Studies 84

• Adjusting Accuracy Requirements theme refers to the source code level change
that changes the accuracy requirements to balance between energy-accuracy re-
quirements.

• Use Last Known Location refers to the commits that add an option to use last
known location before making new GPs location request.

• Use Fused Location refers to the commit that changes the location-sensing API
from Android location API to the most recent version of Google Location API,
Fused Lost API.

For the Improved Variable field, the following categories have been found through the-
matic analysis:

• Energy: The commits have been classified under this category if it is explicitly
concerned about reducing the battery usage by ignoring accuracy.

• Accuracy: The commits have been classified under this category if it is explicitly
concerned about increasing the accuracy by ignoring battery-draining behavior.

• Energy-Accuracy: The commits have been classified under this category if it is
about balancing between energy and accuracy-related requirements.

The relevant themes have been assigned to each commit for Theme and Improved Vari-

able to check the developer’s preferences and applied energy-saving solutions in the
open-source Android applications.

4.4.4 Answer to RQ6: Development efforts

The second data analysis phase has been conducted using the quantitative analysis on
the field Files, Additions, Deletions. The numerical values returned for each field have
been considered to calculate the development efforts numerically. The analysis result is
plotted in Figure 4.16.



Chapter 4. Empirical Studies 85

FIGURE 4.16: Development efforts needed to make changes in source code.

How much development effort does it take to improve energy-efficiency after de-
ployment? As shown in Table 4.6, the following categories have been found from the
collected data: Battery saving option, Changing to Google API, Unregistering Loca-

tion Updates, Adjusting accuracy requirements, Using Last known location, and Using

Fused Location. All these solutions are widely accepted solutions by the developers
from the results of Qualitative data analysis of Stack Overflow Posts. Therefore, these
solutions and corresponding commits are suitable for calculating the development ef-
forts needed for open-source applications. This research question aims to find out how
much development efforts are needed to update the source code for each category of
commits. The analysis results have been plotted in area plot, as shown in Figure 4.16.
As shown in Figure 4.16, the data such as changed files, added, or deleted lines from
each commit has been collected. The analysis shows that changing GPS to battery sav-

ing needs more development efforts than other types of commits. Similarly, Changing

from native to Google API also needs more development efforts as it has been sug-
gested in 3 commits and involves changes in 5 files, addition of 107 lines, deletion of
33 lines on an average. As shown in Table 4.6, using Fused location requires changes
from 7 files. Other types of commits need moderate development efforts as it involves
less number of files. Overall, the energy-saving efforts are more in terms of source
code changes. Hence it is recommended for developers to use energy-efficient practices
while developing the application itself.



C
hapter4.E

m
piricalStudies

86

TABLE 4.6: Data collection results of mining GitHub commits

Commit
ID

Application Name Year Theme Improved
Variable

Files Additions Deletions

C1 android-packages-
apps-SetupWizard

2015 Replace GPS option with Battery
Saving option

Energy 3 130 86

C2 Project FollowWe 2016 Changed to Google API Energy 7 154 37

C3 StorkApp 2017 Changed to Google API Energy 2 60 29

C4 mapsme-omim 2017 Unregister location updates Energy 4 96 75

C5 openlocate-android 2017 Adjusting accuracy requirements Energy-
Accuracy

2 5 1

C6 bo-android 2017 Use Last known Energy 2 12 33

C7 LocationStuff 2018 Use Fused Location Energy 7 118 12

C8 GeoNotes 2018 Unregister location updates Energy 3 51 13



Chapter 4. Empirical Studies 87

4.5 Implications

This section presents the implications of the empirical studies results. These implica-
tions helped in positioning the ideas and designing the case studies presented in the
upcoming chapters.

Implications from Controlled Experiment : The important finding from the con-
trolled experiments is that the location-sensing and GPS usage are the second major
contributors to overall energy consumption. Therefore, reducing the energy consump-
tion of location-sensing would significantly reduce the energy consumption of location-
based Android application. Hence, selecting location-based Android applications as
application domain is a valid research direction for showing the efficacy of energy-
aware modeling framework and code generator. The answer to RQ2 shows that the use
of inertial sensors and GPS location-sensing reduces energy consumption. At the same
time, the selection of suitable sensors and the frequency of their usage play a significant
role in overall energy consumption. As shown in the results, the inappropriate use of
inertial sensors sometimes could lead to abnormal battery drain like Open Street Map
Location API. This finding helped in choosing an energy-efficient strategy for using
sensors in the code generator. From the answer to RQ3, it has been found that Google

Location API is energy-efficient than Open Street Map API, as it uses suitable sensors
only when needed instead of making it active all the time. Therefore, the code generator
is developed to generate location-sensing code for Google Location API calls.

Implications from Stack Overflow : The results of analyzing Stack Overflow post
show that the self-adaptive location-sensing, coupled with battery-awareness, is a promis-
ing strategy for battery-powered devices. Therefore, the self-adaptive strategy has been
adopted in the energy-aware modeling framework and code generator. In addition, bal-
ancing between energy and accuracy requirements is an essential criterion for the ap-
plication’s success. Hence, the subject applications used in the case studies have been
designed to balance energy and accuracy requirements depending on the operating con-
ditions.



Chapter 4. Empirical Studies 88

Implications from Mining GitHub commits : The results from mining GitHub com-
mits show that cost of improving energy-efficiency is high after deployment in terms of
several modified files and function calls. Therefore, considering energy-related require-
ments in the early stages would help developers to write energy-aware code to reduce
the development cost after deployment. In addition, as reported in answer to RQ6,
the energy-saving solutions found in the GitHub repositories have been repeating and
following a common usage pattern. Therefore, having a code generator that generates
code from design-time models would reduce the developer’s efforts during software
construction.

4.6 Summary

The contributions of this objective can be summarized as follows:

• The controlled experiment has been carried out on three popular location-based
Android applications to show the energy consumption data and the cause-effect
relationship between energy consumption and location sensors.

• Qualitative data analysis has been performed on relevant Stack Overflow posts to
determine the most widely suggested energy-saving solutions and energy-saving
API usage patterns to balance energy-accuracy requirements. The self-adaptive
location-sensing pattern is promising, and the same has been used in the remain-
ing part of this thesis. In addition, the discussed energy-saving usage patterns will
be helpful for software architects to make suitable architectural design decisions.

• Energy-related commits on GitHub sources have been performed on open-source
location-based Android applications to determine the development efforts needed
to fix energy-related issues after deployment. The study results show that energy
improvement after deployment is costly in modified files and source code.

Overall, the results presented in this objective satisfactorily answered the research ques-
tions. The presented results and data will be a clear conceptual starting point for design-
ing an energy-aware modeling framework and code generator.



Chapter 5

ENERGY-AWARE MODELING
FRAMEWORK

This chapter presents the energy-aware modeling framework for domain analysts to

conduct the domain analysis of applications under development. The modeling frame-

work includes a context and feature classification method along with planning energy-

saving self-adaptations. The presented modeling framework’s primary goal is to de-

rive Valid Triggering Situations (VTS) and corresponding Energy-aware Application

Configurations (EAC). Further, the framework suggests a way to plan energy-saving

self-adaptation strategies based on Event-Condition-Action (ECA) rules. Overall, this

framework adopts feature models to carry out the domain analysis considering energy-

aware requirements. The extended rules and categories for energy-aware context mod-

els and energy-aware feature models are described in Section 5.2. As part of empirical

evidence, the efficacy of the proposed approach has been demonstrated through a case

study on the family of map navigation applications. In Section 5.3, the case study based

validation and discussions are presented. The case study results show that the presented

modeling framework can be effectively used to generate re-usable design-time artifacts

and energy-saving adaptation plans for a family of software systems.

89



Chapter 5. Energy-aware Modeling Framework 90

5.1 Basics of Feature Modeling

Feature models are originally introduced by (Kang et al., 1990) in the Feature-Oriented
Domain Analysis (FODA) report (1990). Since then, feature models are considered to
be an important information model widely used in SPL engineering. A feature model

is a formal way of modeling the commonalities and variabilities of SPL (Kang et al.,
1998), Batory:2005:FMG:2162231.2162236. A feature model represents the set of fea-
tures, relationships, and constraints among them. A feature can be formally defined as
user-visible property (Kang et al., 1990) of the system. Feature models can be graphi-
cally represented through a tree-like diagram called feature diagram as shown in Figure
5.1. It represents the relationships among features through parent-child relationships.
The following relationships are part of basic feature models (Benavides et al., 2010):

• Mandatory relationship signifies that the child feature must be included in all the
product configurations, if its parent feature is included. For instance, from Figure
5.1, the child feature Calls will be added to all product configurations as it has
mandatory relationship with its parent feature Mobile.

• Optional relationship signifies that the child feature presence is optional even if
its parent feature is added into the product configuration. Hence, the child feature
with optional relationship may or may not be included in all the products. For
instance, from Figure 5.1, the optional child features GPS and Media may be
added or discarded in all the product configurations of Mobile.

• Alternative relationship signifies that exactly one child feature from a set of child
features can be added to the product configuration if its parent is part of the prod-
uct. For instance, from Figure 5.1, any one of Basic, Color, High Resolution can
be selected when its parent Screen is part of the product.

• OR relationship signifies that one or more child features can be included into the
product configurations along with its parent feature. For instance, from Figure
5.1, either of Camera, or MP3, or both can be added to the product configuration
whenever the Media feature gets selected.



Chapter 5. Energy-aware Modeling Framework 91

FIGURE 5.1: Sample feature model. adapted from (Benavides et al., 2010)

These basic relationships between parent and child features are sufficient to capture all
interdependencies among all features. Apart from these basic relationships, the cross-
tree constraints also must be specified along with the feature diagrams. Following are
the two basic constraints to capture the cross-tree constraints of a feature model:

• Requires constraint signifies that the inclusion of particular feature requires in-
clusion of other related features also. For instance, from Figure 5.1, requires con-
straint is established between Camera and High Resolution as Camera=>"High

Resolution". This signifies that the child feature Camera under Media requires
the presence of High Resolution under Screen in the same product configuration.

• Excludes constraint signifies that the inclusion of a particular feature must dis-
card or exclude the other irrelevant features from the product configuration. For
instance, from Figure 5.1, the excludes constraint is established between GPS and
Basic as ¬(GPS ∧ Basic). This signifies that the child feature GPS under Mo-

bile and child feature Basic under Screen cannot be selected together in the same
product configurations. That is feature GPS is incompatible with Basic.

The energy-aware modeling framework adopts this feature model to specify energy-
related requirements of the software. For this purpose, the semantics of the relation-
ships between parent and child features have been modified, considering each fea-
ture’s energy impact. Specifically, the semantics of relationships varies based on the
energy-aware categories introduced in this framework. The remaining part of this chap-
ter presents detailed information about adopting feature models for the energy-aware
modeling framework.



Chapter 5. Energy-aware Modeling Framework 92

5.2 Energy-aware Modeling Framework

The energy-aware modeling framework aims at introducing energy-awareness into the
reference requirements of the application domain under consideration. This framework
aids domain analyst to identify energy-hungry requirements and to introduce its energy-
efficient alternatives. As illustrated in Figure 5.2, the framework produces the following
artifacts: energy-aware context model, energy-aware feature model, and energy-saving

adaptation plan. The framework is suitable for the software that applies self-adaptive
behavior for energy-saving by re-configuring the application to its energy-efficient ver-
sion at run-time. Typically, the reconfiguration occurs when a critical battery situation
(valid triggering situation) is identified at run-time. The energy-aware context model

could be used to specify the dynamic context changes and corresponding battery critical
situations to trigger the energy-saving adaptation. On the other hand, the energy-aware

feature model could be used to derive different application variants for energy-saving
self-adaptation that could be re-configured at run-time. The energy-aware feature mod-
els consist of energy-efficient alternatives added to the energy-hungry requirements of
a specific application domain. As illustrated in Figure 5.2, the outcome of the energy-
aware context model and energy-aware feature model can be combined to generate the
energy-saving adaptation plans. The modeling framework’s core idea is to derive valid
triggering situations (VTS) from the energy-aware context model and the energy-aware
application configurations (EAC) from the energy-aware feature model. Finally, the
VTS and EAC can be combined using the ECA based rules to plan the adaptation at
an early stage of software development. In this section, the conceptual idea behind the
energy-aware modeling framework is elaborated.

5.2.1 Energy-aware context modeling

An energy-aware context modeling is the process of specifying context information of
smartphones that positively or negatively impact the energy-efficiency. In the smart-
phone domain, the following can be considered important context information: per-

centage of available battery, battery charging state, the status of smartphone resources,

applications state, user’s physical context, and user’s preferences. It is essential to
capture the energy impact of battery-related context information in the early stages of



Chapter 5. Energy-aware Modeling Framework 93

FIGURE 5.2: Overview of energy-aware modeling framework

software development to make the development team aware of different battery criti-
cal situations. A feature diagram is adopted to create an energy-aware context model,
which includes context information, context value, energy-aware context label, energy-

aware context relationships, context constraints, and valid triggering situations. The
energy-aware context model can be created by domain analysts aware of smartphone
resources, application requirements, and it’s battery consumption behavior. An Energy-
aware Context Model (EACM) can be defined as follows:

EACM = {CR, CI, CV, ECL, ECR, CC, VTS} (5.1)

Where,

• CR represents the Context Root

• CI represents the Context Information

• CV represents the Context Values

• ECL represents the Energy-aware Context Labels

• ECR represents the Energy-aware Context Relationships

• CC represents the Context Constraints



Chapter 5. Energy-aware Modeling Framework 94

• VTS represents the Valid Triggering Situations

The traditional feature model proposed by Kang et al. (1990) with a suitable extension
to generate the energy-aware context model has been adopted.

Definition 5.1 (Context Information (CI)). A Context Information (CI) is a non-root
and non-atomic entry of an energy-aware context model that must be specified with it’s
allowed context values. It can be defined as follows:

C = {C1, C2, C3, ..., Cp} (5.2)

Where,

• C refers to Context Root (CR)

• C1...p, refers to set of all identified context information

Definition 5.2 (Context Value (CV)). A Context Value (CV) is an atomic and leaf entry
of the energy-aware context model, which is considered to be the children of context
information. It can be defined as follows:

Ci = {ci.1, ci.2, ci.3, ... cp.q} (5.3)

Where,

• Ci refers to Context Information

• ci.q refers to context values of Ci

• i is an integer and ranges from 1...p

• q is an integer and may contain any finite value based on the number of context
values



Chapter 5. Energy-aware Modeling Framework 95

In this framework, domain analysts are suggested to assess the energy impact of each
context information to assign suitable energy-aware labels. More information on energy-
aware context labels are given below:

Definition 5.3 (Energy-aware Context Label (ECL)). An Energy-aware Context Label
(ECL) is a tag assigned to each context information to express its energy impact on the
system. For this purpose, the following labels are provided in this framework:

• Primary-influencing Context (PC) refers to the context information that directly
relates to the system’s energy consumption. The primary influencing context must
be selected in a way such that a change in its value influences the other context
information. In addition, the context values of primary influencing context have a
more significant impact on the selection of application features.

• Secondary-influencing Context (SC) refers to the context information not di-
rectly associated with the system’s energy consumption. However, this context
information has a moderate impact on selecting energy-hungry or energy-friendly
features of the system.

• User-influencing Context (UC) refers to the context information controlled or
selected by the user at run-time. This context information and its context values
have a direct or indirect impact on the system’s energy-efficiency.

A domain expert can label all the possible context information with suitable energy-
aware context labels. This framework extends the relationships introduced in the basic
feature models to add more value to the context-aware labels.

Definition 5.4 (Energy-aware Context Relationship (ECR)). An Energy-aware Context
Relationship (ECR) is a relationship between the context root, context information, and
context value of the energy-aware context model. The following semantic level modifi-
cations have been applied to the relationships proposed in FODA (Kang et al., 1990):

• Mandatory relationships must be established with the primary-influencing con-

text information and context root. In addition, the secondary-influencing context

information also can be considered for mandatory relationships if its presence is
essential for better energy-savings.



Chapter 5. Energy-aware Modeling Framework 96

• Optional relationships can be established by default between the context root and
the secondary-influencing context.

• Alternative relationships must be established for all the allowed context values.

• OR relationship cannot be established between any context values as only one
context value can be sensed at a time.

Besides specifying energy-aware context information, context values, and relationships,
it is important to specify the context constraints between context values.

Definition 5.5. A Context Constraint (CC) is cross-tree constraints established between
two different context information or it’s context values to represent its inter-dependency
or mutual exclusiveness. The requires and excludes constraints of FODA (Kang et al.,
1990) has been extended to specify the context constraints.

The following semantic klevel extensions has been provided to requires and exclude

constraints of FODA for context constraints:

• Requires could be established between the context values of distinct context in-
formation. Specifically, it is used between the context values of primary-influencing

and secondary-influencing context information to express the inter-dependencies.

• Exclude could be established between the context values of conflicting context
information. For instance, the exclude constraint could be established between
the context values of user-influencing context with other context values as it has
a higher preference.

Definition 5.6. Valid Triggering Situations (VTS) refers to the set of valid configu-
rations generated from the energy-aware context model by applying the context con-

straints and energy-aware context relationships. These situations represent the state
of the user and smartphone in any operating condition. The decision on selecting an
appropriate set of features for each VTS is defined in the adaptation planning phase.



Chapter 5. Energy-aware Modeling Framework 97

5.2.2 Energy-aware feature modeling

An energy-aware feature modeling is the process of specifying the reference require-
ments along with its energy-impact and energy-efficient alternatives. The basic feature
model has been adopted to introduce energy impact and energy-efficient alternatives.
In the energy-aware modeling framework, the energy-aware feature model consists of
root feature, atomic features, non-atomic features, energy-aware feature labels, energy-

aware feature relationships, feature constraints, and energy-aware application config-

urations. The domain analyst can assess each feature’s energy impact requested by the
stakeholders to label them with energy-aware context labels. An Energy-aware Feature
Model (EAFM) can be defined as follows:

EAFM = {RF, NF, AF, EFL, EFR, FC, EAC} (5.4)

Where,

• RF represents the Root Feature

• NF represents the Non-atomic Feature

• AF represents the Atomic Feature

• EFL represents the Energy-aware Feature Labels

• EFR represents the Energy-aware Feature Relationships

• FC represents the Feature Constraints

• EAC represents the Energy-aware Application Configurations

Definition 5.7 (Root Feature (RF)). Root Feature (RF) refers to an abstract feature that
describes the whole energy-aware feature model.

Definition 5.8 (Non-atomic Features (NF)). Non-atomic Features (NF) refers to the
abstract features of the energy-aware feature model, which are considered to be a parent
or grouping feature to represent the energy consumption. The identified non-atomic
features can be specified, as shown below:



Chapter 5. Energy-aware Modeling Framework 98

F = {F1, F2, F3, ..., Fn} (5.5)

Where,

• F refers to Root Feature

• F1...n, refers to set of all identified non-atomic features and its sub-features

Definition 5.9 (Atomic Features (AF)). Atomic Features (AF) refers to the concrete
child or leaf feature of the energy-aware feature model. The identified atomic features
can be specified as follows:

Fi = {fi.1, fi.2, fi.3, ... fn.m} (5.6)

Where,

• i is an integer and ranges from 1...n

• m is an integer and may contain any finite value based on the number of sub
features

The domain analysts are suggested to assess the energy impact of each atomic and

non-atomic features to tag them with the suitable energy-aware labels proposed in this
framework.

Definition 5.10. Energy-aware Feature Labels (EFL) refers to the tag that specifies
each identified feature’s energy impact. For this purpose, the following energy-aware
feature labels are provided in this framework:

• Energy-friendly Feature (EF) refers to the features that consume less energy
for its operation under any operating conditions. The features under this label
must be considered as default features while generating the energy-aware feature
model configurations. This label can be applied to non-atomic features if all its
atomic features are energy-friendly.



Chapter 5. Energy-aware Modeling Framework 99

• Energy-hungry Feature (EH) refers to the features that consume relatively more
energy for its operation under different operating conditions. By default, the in-
clusion of these energy-hungry features into the energy-aware feature model con-
figurations can be optional for energy-savings. If this feature’s presence is in-
evitable, a domain analyst can consider to use its energy-efficient alternatives for
better energy-savings.

• Energy-efficient Alternatives (EA) refers to the atomic sub-features of the energy-

hungry features. Each sub-feature will be decided in such a way that it consumes
less or more energy than its alternatives. Only one alternative feature can be se-
lected at the same time for better energy-savings.

Definition 5.11. Energy-aware Feature Relationships (EFR) refers to the relationships
between the root feature, non-atomic features, and atomic features of the energy-aware
feature model. In this framework, the following semantic level modifications to the
existing feature model relationships are provided to support energy-awareness:

• Mandatory relationship could be established by default between root feature and
non-atomic feature if it is labeled with Energy-friendly Features. Also, a manda-
tory relationship can be established between root feature and energy-hungry non-

atomic feature, if its presence is inevitable. For each mandatory energy-hungry
non-atomic features, the energy-efficient alternatives must be specified to intro-
duce energy-awareness. Otherwise, these features will not be considered for
mandatory relationships.

• Optional relationship could be established by default between the energy-hungry
non-atomic feature and root feature in order to save energy in the limited resource
situations. Specifying energy-efficient alternatives for the features under this re-
lationship is also optional.

• Alternative relationship could be established between the child features of the
energy-hungry non-atomic features. As per the basic definition of alternatives, a
maximum of one feature can be selected among the energy-efficient alternatives.

• OR relationship could be established between the optional energy-friendly fea-

tures and its sub-features. Strictly, the OR relationship cannot be established
between the energy-hungry features and its alternatives.



Chapter 5. Energy-aware Modeling Framework 100

A domain analyst can apply the relationships mentioned above to the labeled energy-
aware feature model to ensure that the feature model generates multiple energy-aware
configurations of the system.

Definition 5.12 (Feature Constraints (FC)). Feature Constraints (FC) refers to the con-
straints established between the features in the energy-aware feature model to express
the cross-tree constraints. Here, the constraints Excludes and Requires are used in basic
feature models.

Finally, the energy-aware labels, relationships, and constraints can be applied to gener-
ate more suitable application variants that can be used after the occurrence of any valid
triggering situations.

Definition 5.13 (Energy-aware Application Configurations (EAC)). Energy-aware Ap-

plication Configurations (EAC) refers to the valid configurations generated from the
energy-aware feature model. A list of energy-aware application configurations could
be derived by applying energy-aware labels, relationships, and constraints. An EAC is
valid if it conforms to the EFR and FC. An EAC is complete if it is atomic and repre-
sents a valid run-time application configuration that can be executed for the system’s
energy-savings.

The energy-aware application configurations generated from energy-aware feature model

represents the application variants that consume different energy for its operation. In
other words, few configurations consume more energy while the other configurations
consume less or moderate energy. Meanwhile, the valid triggering situations generated
from the energy-aware context model can be mapped with the appropriate energy-aware

application configuration to reduce energy consumption.

5.2.3 Energy-saving adaptation planning

After modeling energy-aware context information and features, the next step is to plan
the energy-saving adaptation strategies. Adaptation policies decide when and how to
change the software behavior. The basic idea here is to make the adaptation plans
towards energy-savings.



Chapter 5. Energy-aware Modeling Framework 101

Therefore, the following terms are defined:

Definition 5.14. An Energy-saving Adaptation (ESA) refers to the adaptations that in-
tend to reduce the software’s energy consumption by selecting the appropriate applica-
tion configurations at run-time.

The energy-saving adaptation plans follow the Event Condition Action (ECA) rules
pattern. Here, event is the dynamic contextual changes (related to battery-critical situ-
ations), condition is to check the occurrence of valid entry in the energy-saving adap-
tation plan, action is the suggested energy-saving adaptation. This adaptation may be
expressed in general as follows:

On V TSk...r Execute EACl...s (5.7)

Where,

• k is an integer and ranges from 1...r

• r is a total number of valid triggering situations

• l is an integer ranges from 1...s

• s is a total number of energy-aware application configurations

The energy-saving adaptation plans specified by the domain analyst might give signifi-
cant clarity to the developers about energy-saving adaptations at run-time. In summary,
the energy-aware modeling framework presented in this section is targeted for the early
stages of software engineering. The presented modeling framework is a generic mod-
eling framework that can be applied to any energy-aware self-adaptive software, irre-
spective of the platform. However, in this thesis, the aim is to apply the energy-aware
modeling framework to the energy-aware self-adaptive smartphone applications.



Chapter 5. Energy-aware Modeling Framework 102

5.3 Validation with a Case Study

The energy-aware modeling framework is validated based on the guidelines by East-
erbrook et al. (2008), Runeson and Höst (2009). Here, family of map navigations ap-
plications are selected as a subject application to show the efficacy of the presented
modeling framework. A case study based empirical method has been selected to vali-
date the modeling framework as applying the energy-aware modeling framework on the
map navigation application is an exploratory problem. Therefore, the case study has
been designed to answer the following research questions (RQs):

• RQ1: How to introduce the energy-related requirements at design-time for the
family of map navigation applications?

• RQ2: How to design an energy-saving self-adaptation plan for the family of map
navigation applications?

• RQ3: What is the impact of an energy-aware modeling framework on designing
a family of map navigation applications?

A qualitative validation of the energy-aware modeling framework is presented by an-
swering these research questions at the end of the case study. This section presents fea-
ture models for the family of map navigation application, energy-aware context model,
feature model, adaptation model for dynamic energy-savings.

5.3.1 An example scenario

The map navigation application aims to assist the users in finding directions for walking,

cycling, and driving. Additionally, the map also shows on the go directions to the
destination from any source (most preferably the user’s current location). Key features
of the example application are described below:

• Location Sensing: The application must automatically fetch the user’s current lo-
cation. High accuracy location sources such as GPS must be used as a navigation
application requires a more accurate user location.



Chapter 5. Energy-aware Modeling Framework 103

Cycling

Navigation

GPSNavigation

DirectionsMap View

DrivingSatellite Text

GPS

Normal

Live Traffic

On the MapWalking On the Go

Audio

Legend:

Mandatory

Optional

Abstract

Concrete

FIGURE 5.3: A basic feature model of map navigation application

• Map Display: The default business functionality of the navigation application is
to display a map on the user’s device. The user interface must include the normal
view and satellite view of the map.

• Directions: The navigation application must show the directions to reach the
destination from the user’s current location. The directions must be separately
displayed for walking, cycling, and driving. Sometimes, the live traffic of the
route must be displayed to the user for driving directions.

• Navigation: The important requirement of this navigation application is to show
the turn-by-turn directions to the user to reach the destination. These instruc-
tions can be displayed while the user is moving with audio as an optional feature.
However, the application should show the directions on the map or as text-based
instructions by default.

• Energy Saving: One of the essential features mentioned explicitly is Energy Sav-
ing. This application involves many energy-hungry operations such as GPS, au-
dio instructions, and satellite view; it is important to consider energy-saving as
an essential requirement. Especially on mobile devices, unnecessary usage of
energy-hungry operations may drain the device battery quickly. Therefore, there
should be a mechanism to extend the battery life as and when required.

• User preference: The application must provide users with the ability to specify
their preferences, such as energy-saving or more accurate location, etc.

With the given requirements, a basic feature diagram of the family of map navigation
application is illustrated in Figure 5.3. The feature diagram of the subject application



Chapter 5. Energy-aware Modeling Framework 104

scenario consists of the features GPS, Map View, Directions, and Navigation. The fea-
ture diagram of the map navigation application can be formally represented, as shown
in Equation 5.8. All features have Mandatory relationship; therefore, these features will
be added into all application configurations by default.

FGPSNavigation = {FGPS, FMapView, FDirections, FNavigation} (5.8)

The map navigation application’s sub-features can be represented, as shown in Equation
5.9. The Map View feature can be further divided into Normal and Satellite views,
which show different viewing options to the user. These two features will be added by
default to the application configurations as it has Mandatory relationship. As specified
in the requirements, the Directions feature can be further divided into Walking, Cycling,

Driving to provide different route options for the users. As these features belong to the
application’s core business functionality, they are designated as Mandatory features of
the application. In addition, the application also shows live traffic as an optional feature
for driving directions.

FMapView= {Normal, Satellite},

FDirections= {Walking, Cycling, Driving},

FDriving= {LiveTraffic},

FNavigation= {OntheGo, OntheMap, Text},

FOntheGo= {Audio}

(5.9)

The next critical feature of the subject application is Navigation. It has Mandatory

relationship with immediate sub-features On the Go, On the Map, Text. Further, On the

Go feature has a Optional relationship with its sub-feature Audio to provide the voice
instructions. The feature model relationship rules and cross-tree constraints are applied
on the feature model to derive Application Configurations (AC). Table 5.1 shows four

different application configurations that have been derived from the basic feature model
of the map navigation application (refer Figure 5.3).



Chapter 5. Energy-aware Modeling Framework 105

TABLE 5.1: Application Configurations (AC) for deriving family of map navigation
applications from basic feature diagram

Features AC1 AC2 AC3 AC4
GPS × × × ×
Map View × × × ×
Normal × × × ×
Satellite × × × ×
Walking × × × ×
Cycling × × × ×
Driving × × × ×
Live Traffic × ×
Navigation × × × ×
On the Go × × × ×
Audio × ×
On the Map × × × ×
Text × × × ×

The next step is to analyze the impact of derived ACs on the applications’ overall en-
ergy consumption. As shown in Table 5.1, AC1 does not contain energy-hungry opera-
tions Live Traffic and Audio. Compared to other AC configurations AC1 may consume
less energy. The AC2 configuration uses Live Traffic and AC3 uses Audio as extra fea-
tures and will result in more energy consumption when compared to AC1. Finally, the
AC4 will result in high energy consumption as it includes all energy-hungry features.
Overall, AC4 might consume more energy and AC1 might consume comparatively less
energy. Unfortunately, all the generated ACs uses GPS and Satellite view as a default
feature and no option of disabling it at run-time. Therefore, these generated ACs failed
to provide significant energy-savings as they do not provide much flexibility to bind
energy-efficient version at the run-time when the mobile is running with low battery. In
order to provide more flexibility for better energy-savings, it is important to introduce
context-awareness and the corresponding self-adaptivity in the feature diagram depicted
in Figure 5.3.



Chapter 5. Energy-aware Modeling Framework 106

5.3.2 Energy-aware context model

The energy-aware modeling framework suggests the specification of context informa-
tion that influences the map navigation application’s energy consumption. As the tar-
geted platform is a smartphone, battery availability becomes more crucial, and context
information becomes a critical factor in deciding energy-saving adaptations. In this
sub-section, the selection of suitable context information and its influence on the map
navigation application is considered. The list of identified context information is given
below:

• Battery Percentage: The amount of remaining battery plays a major role in
deciding energy-saving adaptations. For example, when the device runs out of
battery, the adaptation engine or application itself should disable all the energy-
hungry features. This context information can influence all the features of the
navigation application.

• Battery State: Strict energy-saving rules may not be needed when the device bat-
tery is low and is connected with a charger. The application can bind the features
which can balance both accuracy and energy-related requirements. Therefore,
monitoring the state of battery charging can also be considered as another essen-
tial context information.

• Network Speed: Like battery-related context, the network speed can also help
the application be more energy-efficient. For example, when the network runs on
the slow 2G network, running features like satellite view or audio may lead to
more processing time, which in-turn drain the battery at a faster pace. Therefore,
capturing network speed can also be considered as important context information.

• User Preferences: Most of the applications might include user preferences to
give more user satisfying services. Sometimes, user preferences may lead to ab-
normal energy consumption when the battery level is low. The adaptation en-
gine must identify such information at run-time, and the preferences should be
changed for energy-savings.

With this preliminary analysis, the energy-aware context model has been modelled as
depicted in Figure 5.4. The energy-aware context model contains context information



Chapter 5. Energy-aware Modeling Framework 107

High

Network Speed

Charging

Battery State

Slow

Battery Percentage

Discharging

EA-GPSNavigationContext

Energy SavingModerateLowMedium Fine AccuracyFast

User Preference

Low     Discharging  =>  "Energy Saving"

Low    Charging     Slow  =>  "Energy Saving"

Medium Discharging Slow => "Energy Saving"

Legend:

Mandatory

Optional

Alternative

Abstract

Concrete

v

v

v

v

v

FIGURE 5.4: Energy-aware context model of map navigation application

Battery Percentage, Battery State, Network Speed, and User Preference. The energy-
aware context model can be formally represented, as shown in Equation 5.10:

CGPSNContext = {CBatteryPercentage, CBatteryState, CNetworkSpeed, CUserPreference}
(5.10)

The context values of the different context information is represented formally in Equa-
tion 5.11.

CBatteryPercentage= {High, Medium, Low},

CBatteryState= {Charging, Discharging},

CNetworkSpeed= {Fast, Moderate, Slow},

CUserPreference= {EnergySaving, FineAccuracy}

(5.11)

As suggested by the energy-aware modeling framework, the identified context infor-
mation and constraints can be categorized into Primary Influencing Context, Secondary

Influencing Context, and User Influencing Context.

5.3.2.1 Primary influencing context

From the map navigation application, Battery Percentage and Battery State can be con-
sidered as a primary influencing context. Therefore, these two context information have
Mandatory relationship and must be used in all the situations as it decides energy-saving
adaptations. In addition, some set of values of these two context information may affect



Chapter 5. Energy-aware Modeling Framework 108

the network speed and user preferences. The Battery Percentage has context values of
High, Medium, and Low to change application behavior corresponding to the mobile’s
battery life. These context values have an Alternative relationship with its parent, and
therefore, only one value can be read at a time. Similarly, the Battery State has context
values of Charging or Discharging with Alternative relationship.

5.3.2.2 Secondary influencing context

The context information, Network Speed can be considered for this category as it has an
indirect impact on the overall energy consumption. In addition, the selection of some
context values depends on the values of primary influencing contexts. It has Optional

relationship, therefore adding this context information at run-time is not mandatory.
However, the network speed further has the context values of Fast, Moderate, and Slow

with an Alternative relationship.

5.3.2.3 User influencing context

Finally, the User Preference can be considered under this category. This context infor-
mation has Mandatory relationship with the values Energy Saving, and Fine Accuracy.
This context information is mainly used to reset the user’s preferences at run-time, lead-
ing to abnormal battery drain. Therefore, these context values have an Alternative re-
lationship between its values to set the contrasting dynamic requirements. The context
values can be changed by the application at run-time in response to the change in values
of Battery Percentage, Battery State, and Network Speed if the specified user preference
is not energy-friendly.

5.3.2.4 Context constraints

As illustrated in Figure 5.4, context constraints are established between some set of
context information for energy-savings. The context constraints are represented in the



Chapter 5. Energy-aware Modeling Framework 109

TABLE 5.2: Sample valid triggering situations of map navigation application

Context VTS1 VTS2 VTS3 VTS4 VTS5 VTS6
Battery Percentage × × × × × ×
High ×
Medium × × × ×
Low ×
Battery State × × × × × ×
Charging × × ×
Discharging × × ×
Network Speed × × × × ×
Fast × ×
Moderate ×
Slow × ×
User Preference × × × × × ×
Energy Saving × × ×
Fine Accuracy × × ×

Equation 5.12:

Low ∧Discharging ⇒ ”EnergySavings”,

Low ∧ Charging ∧ Slow ⇒ ”EnergySavings”,

Medium ∧Discharging ∧ Slow ⇒ ”EnergySavings”

(5.12)

The first constraint of the Equation 5.12, signifies the smartphone is running out of
battery through Low battery percentage and the Discharging battery state. At this situ-
ation, the User Preferences value Fine Accuracy cannot be set as it is a energy-hungry
requirement. Similarly, the second constraint signifies the same critical situation with
Low battery percentage, Charging battery state, and Slow network speed. Though the
battery is in a charging situation, running an energy-hungry operation at slow network
speed may increase the discharging rate compared to the charging rate. Therefore, in
this situation, strict Energy Savings must be enabled. The third constraint is also used
for a similar purpose.



Chapter 5. Energy-aware Modeling Framework 110

5.3.2.5 Valid triggering situations

The context values, context constraints that are illustrated in Figure 5.4 are applied
along with modified rules. The valid triggering situations are to be identified in such a
way that they trigger energy-saving adaptations. The valid triggering situations derived
from the context-model are listed in Table 5.2. For simplicity, only the minimal set of
representative context situations have been listed. From Table 5.2, the following valid
triggering situations can be derived:

• VTS1: (Battery Percentage, Low, Battery State, Discharging, User Preference,

Energy Saving)

• VTS2: (Battery Percentage, Medium, Battery State, Discharging, Network Speed,

Slow, User Preference, Energy Saving)

• VTS3: (Battery Percentage, Medium, Battery State, Charging, Network Speed,

Slow, User Preference, Energy Saving)

• VTS4: (Battery Percentage, Medium, Battery State, Charging, Network Speed,

Moderate, User Preference, Fine Accuracy)

• VTS5: (Battery Percentage, Medium, Battery State, Charging, Network Speed,

Fast, User Preference, Fine Accuracy)

• VTS6: (Battery Percentage, High, Battery State, Discharging, Network Speed,

Fast, User Preference, Fine Accuracy)

With the basic analysis of energy-aware context, constraints, and valid triggering situ-
ations, the energy-aware context model can be applied to the basic feature model illus-
trated in Figure 5.3. This activity aims to find out more energy-saving opportunities on
the basic feature model. At the end of applying the context model, the energy-aware
feature model can be generated with more flexibility to choose the run-time binding of
energy-efficient ACs. Table 5.3 presents the summary of finding energy-efficient al-
ternatives for energy-hungry features. The information presented in this table will be
useful to modify the basic feature model illustrated in Figure 5.3 towards supporting
more flexible energy-saving adaptations at run-time.



C
hapter5.E

nergy-aw
are

M
odeling

Fram
ew

ork
111

TABLE 5.3: Summary of converting basic feature model to energy-aware feature model

Category Context Values Suitable Features

Battery
Level

High On sensing this context value, the application can bind energy-hungry operations such as
GPS, Satellite View, Live Traffic, On the Go, Audio.

Medium The application cannot run GPS continuously as it may drain the battery very fast on
sensing this context value. There should be a mechanism to periodically activate GPS to
find out the user’s current exact location. Unfortunately, the basic feature model does not
contain any such mechanism. Therefore, for better energy-saving, some complementary
methods should be in place to improve the efficiency of the GPS.

Low On sensing this context, the application must avoid using energy-hungry operations. In
the existing basic feature model, there is an option for disabling On the Go, Audio. Unfor-
tunately, there is no option for disabling GPS, Satellite View, and Live Traffic. Therefore,
the energy-aware feature model must be able to provide an energy-efficient alternative for
those features.

Battery
Sate

Charging On sensing this context value, battery level must be checked for the value Low battery
percentage and Slow network speed to enforce strict energy-saving adaptations. Then
energy-hungry operations are not allowed to bind. If the battery percentage is Medium or

High and network speed is Moderate or Fast the application can be set as Fine Accuracy.
That is GPS can be used without any restrictions.

Discharging This context value can be combined with the context values of Battery Percentage = Low

and Network Speed = Slow to add more flexibility to choose a energy-efficient AC.

Continued on next page



C
hapter5.E

nergy-aw
are

M
odeling

Fram
ew

ork
112

Table 5.3 – continued from previous page
Category Context Values Suitable Features

Network
Speed

Fast On sensing this context information, energy hungry-features like Satellite View, Live Traf-

fic, On the Go, Audio can be built without any degradation provided the battery context
supports Fine accuracy preferences.

Moderate This context value requires an energy-efficient way of using energy-hungry operations
without much degradation in the accuracy requirements. Unfortunately, there is no pro-
vision for improving location sensing for this context value. However, features like Live

traffic, On the Map can be built if there is sufficient battery level.
Slow On sensing this context value, there should be strict restrictions applied on Satellite View,

On the Go, On the Map. Executing these energy-hungry features on a slow network
connection may take more time and drain the battery faster. Therefore, on finding slow
network connectivity, the application must switch to energy-saving mode.

User
Preference

Energy
Saving

This context value directly implies that only energy-friendly features can be selected for
the operations of the application.

Fine Ac-
curacy

This context information implies that energy-hungry operations like GPS can be used if
there are enough battery and a fair network connection.



Chapter 5. Energy-aware Modeling Framework 113

5.3.3 Energy-aware feature model

This subsection presents the process of including energy-aware features into basic fea-
ture models (Figure 5.3). As an initial step, the inputs from Table are analyzed, and the
following decisions are taken:

• There is no energy-efficient alternative for GPS. Therefore, WiFi and Cell-ID

have been added to the feature model as energy-efficient alternatives of GPS.

• There is no complimentary method to update location information periodically.
Therefore, two features, namely Sensing Interval and Accelerometer, have been
added. The purpose of the Accelerometer is to find out if the user moved too far
from the last known location, which will be used for deciding Sensing Interval

value. More the sensing interval, the lesser the energy consumption.

• Satellite View and Normal View can be considered an energy-efficient alternative,
and therefore an Alternative relationship has been added.

• On the Go, On the Map, Text features are considered as energy-efficient-alternatives.
Therefore, an Alternative relationship has been added.

• Appropriate energy-aware constraints are added.

The extension to the basic feature model presented in Subsection 5.2.2 has been applied
on the basic feature model, and the modified energy-aware feature model is shown in
Figure 5.5. The features of an energy-aware map navigation application can be formally
represented, as shown in Equation 5.13.

FEA−GPSNavigation = {FLocationSensing, FSensingInterval, FAccelerometer, FMapView, FDirections, FNavigation}
(5.13)

The sub-features of energy-aware GPS navigation application can be represented, as
shown in Equation 5.14.



Chapter 5. Energy-aware Modeling Framework 114

Sensing Interval

Lengthy Cycling

NavigationDirections

Cell ID

Map View

DrivingSatellite TextGPS Normal

Live Traffic

On the Map

Location Sensing

WalkingModerate

EA-GPSNavigation

Accelerometer

On the GoWiFi

Audio

Short

WiFi  =>  ¬ "On the Go"

"Cell ID"  =>  ¬ "On the Go"

Legend:

Mandatory

Optional

Alternative

Abstract

Concrete

FIGURE 5.5: Energy-aware feature model of map navigation application

FLocationSensing= {GPS, WiFi, CellID},

FSensingInterval= {Lengthy, Moderate, Short},

FMapView= {Satellite, Normal},

FDirections= {Walking, Cycling, Driving},

FDriving= {LiveTraffic},

FNavigation= {OntheGo, OntheMap, Text},

FOntheGo= {Audio}

(5.14)

The next step in the energy-aware modeling is to categorize the identified features into
the following categories: energy-hungry, energy-friendly, energy-efficient alternatives,

energy-aware constraints, and energy-aware application configurations.

5.3.3.1 Energy-friendly features

The basic feature diagram of the map navigation application does not contain any
energy-friendly features. Therefore two features, namely Sensing Interval and Ac-

celerometer have been added to the energy-aware feature model. The newly added
features can be represented as shown in Equation 5.15:

EF= {SensingInterval, Accelerometer},

EFSensingInterval= {Lengthy, Moderate, Short}
(5.15)



Chapter 5. Energy-aware Modeling Framework 115

Mandatory relationship has been established for Sensing Interval and Accelerometer

with it’s parent, hence it can be added to the application configuration by default. Fur-
ther, the Alternative relationship has been added for the sub-features of Sensing Interval

to give more flexibility for run-time energy-saving. Therefore, only one sub-feature can
be added at a time.

5.3.3.2 Energy-hungry features

The identified energy-hungry features are Location Sensing, Map View, Directions, Nav-

igation as they consume more battery for its operation. Specifically, Location Sensing,

Map View, Directions, Navigation has energy-hungry operations such as GPS, Satellite,

Driving (Live Traffic), On the Go (Audio) respectively. The different energy-hungry
features are represented in the Equation 5.16:

EH= {LocationSensing, MapView, Directions, Navigation},

EHLocationSensing= {GPS},

EHMapView= {Satellite},

EHDirections= {Walking, Cycling, Driving},

EHDriving= {LiveTraffic},

EHNavigation= {OntheGo},

EHOntheGo= {Audio}
(5.16)

As shown in Figure 5.5, all the identified energy-hungry features of EH (refer Equation
5.16) have a Mandatory relationship with its parent. Therefore, these features must be
added to all application configurations by default. As per the energy-aware modeling
framework rules, the domain analyst has to specify energy-efficient alternatives if any
energy-hungry operation has Mandatory relationship. Therefore, energy-efficient alter-
natives are added for GPS, Satellite, On the Go as represented in Equation 5.17. Further,
the energy-hungry features Live Traffic and Audio are Optional features with its parent,
and hence adding energy-efficient alternatives is not required.



Chapter 5. Energy-aware Modeling Framework 116

5.3.3.3 Energy-efficient alternatives

The next step is to add energy-efficient alternatives to the feature model. As shown in
Equation 5.17, GPS has WiFi and Cell ID; Satellite has Normal; and On the Go has On

the Map and Text as an energy-efficient alternatives.

EAGPS= {WiFi, CellID},

EASatellite= {Normal},

EAOntheGo= {OntheMap, Text}

(5.17)

The Alternative relationship has been added to energy-efficient alternatives and its cor-
responding energy-hungry features as suggested in the energy-aware modeling frame-
work. For instance, Location Sensing can use any one of GPS or WiFi or Cell ID at
any given time. Similarly, the Alternative relationship has been established between the
choice of Satellite and On the Go.

5.3.3.4 Energy-aware constraints

As shown in Figure 5.5, energy-aware constraints have been added to the energy-aware
feature model. The list of energy-aware constraints are represented in Equation 5.18:

WiFi⇒ ¬”OntheGo”,

CellID ⇒ ¬”OntheGo”,
(5.18)

These energy-aware context-constraints have Exclude relationship for On the Go. This
signifies that On the Go cannot be used in the application configuration when the Loca-

tion Sensing is equal to WiFi or Cell ID. On the Go navigation requires accurate location
information from GPS. As WiFi and Cell ID failed to provide accurate location infor-
mation, using energy-hungry operation like On the Go may increase the overall energy
consumption unnecessarily. Therefore, it is advisable not to use On the Go when there
is no accurate location information.



Chapter 5. Energy-aware Modeling Framework 117

TABLE 5.4: Energy-aware application configurations of map navigation application

Context EAC1 EAC2 EAC3 EAC4 EAC5 EAC6
Location Sensing × × × × × ×
GPS × ×
WiFi ×
Cell ID × × ×
Sensing Interval × × × × × ×
Lengthy ×
Moderate × × ×
Short × ×
Accelerometer × × × × × ×
Map View × × × × × ×
Satellite × × ×
Normal × × ×
Directions × × × × × ×
Walking × × × × × ×
Cycling × × × × × ×
Driving × × × × × ×
Live Traffic × ×
Navigation × × × × × ×
On the Go ×
Audio ×
On the Map × ×
Text × × ×

5.3.3.5 Energy-aware application configurations

Energy-aware application configurations are selected in such a way that it corresponds
to any valid triggering situations. From Table 5.2, 6 valid triggering situations have
been found. Therefore, corresponding six energy-aware application configurations are
identified and listed in Table 5.4. Each energy-aware application configuration can be
considered as a member of a family of map navigation applications for energy-savings.
These identified application configurations can be executed through self-adaptation at
run-time when the application encounters the corresponding triggering situations. The
identified application configurations are:



Chapter 5. Energy-aware Modeling Framework 118

• EAC1: (Location Sensing, Cell ID, Sensing Interval, Lengthy, Accelerometer,

Map View, Normal, Directions, Walking, Cycling, Driving, Navigation, Text)

• EAC2: (Location Sensing, Cell ID, Sensing Interval, Moderate, Accelerometer,

Map View, Normal, Directions, Walking, Cycling, Driving, Navigation, Text)

• EAC3: (Location Sensing, Cell ID, Sensing Interval, Short, Accelerometer, Map

View, Normal, Directions, Walking, Cycling, Driving, Navigation, Text)

• EAC4: (Location Sensing, WiFi, Sensing Interval, Moderate, Accelerometer, Map

View, Satellite, Directions, Walking, Cycling, Driving, Navigation, On the Map)

• EAC5: (Location Sensing, GPS, Sensing Interval, Moderate, Accelerometer, Map

View, Satellite, Directions, Walking, Cycling, Driving, Live Traffic, Navigation,

On the Map)

• EAC6: (Location Sensing, GPS, Sensing Interval, Short, Accelerometer, Map

View, Satellite, Directions, Walking, Cycling, Driving, Live Traffic, Navigation,

On the Go, Audio)

5.3.4 Energy-aware adaptation model

The final step of the energy-aware modeling framework is to plan the energy-saving
adaptation policies by combining the energy-aware context model and energy-aware
feature model results. Here, the energy-aware modeling framework adopts the ECA
rules structure for the specification of energy-saving adaptation policies. Here, event is
the change in context value, condition is to check the adaptation policies for matching
plan, action is binding energy-efficient versions at run-time. The sample or representa-
tive energy-saving adaptation policies can be modeled as represented in Equation 5.19
and in Figure 5.6. Initially, if the application encounter VTS 6, the EAC6 could be
bounded at run-time. As per the plan, the system initially starts with energy-hungry
configurations as it uses all the energy-hungry features. Now, the goal of the system is
to change to energy-saving state as it encounters corresponding degradation in the con-
text information. As shown in Figure 5.6, Battery Percentage drops down from High to

Medium, it encounters the state VTS5. Hence, as specified in ESA5, the corresponding



Chapter 5. Energy-aware Modeling Framework 119

FIGURE 5.6: A sample energy-aware adaptation plan for valid context changes

application configuration EAC5 can be bounded with Sensing Interval changed from
Short to Moderate; Navigation changed from On the go to On the Map; Audio feature
is Disabled. When the application encounters a new context change, that is Network

Speed drops from Fast to Moderate, the VTS4 can be realized and as per ESA4, the cor-
responding EAC4 will be bounded by changing Location Sensing from GPS to WiFi and
Live Traffic being removed or disabled from the binding. Similarly, the application can
be dynamically bounded with appropriate configurations based on ESA3, ESA2 when
it encounters VTS3, VTS2 respectively. Finally, when the Battery Percentage drops to
Low, the application must be in an energy-saving state. At this situation , the ESA1 will
instruct the adaptation engine to bind the EAC1 which is most energy-efficient configu-
ration of the given navigation application example.

ESA1 = On V TS1 Bind EAC1,

ESA2 = On V TS2 Bind EAC2,

ESA3 = On V TS3 Bind EAC3,

ESA4 = On V TS4 Bind EAC4,

ESA5 = On V TS5 Bind EAC5,

ESA6 = On V TS6 Bind EAC6

(5.19)

In summary, the energy-aware context, feature, and adaptation modeling can be effi-
ciently applied to analyze energy-saving opportunities at run-time. As illustrated in the



Chapter 5. Energy-aware Modeling Framework 120

map navigation application, the input from the context model can be used to change
the basic feature models to suit energy-savings and self-adaptation. Finally, the energy-
aware adaptation can be modeled at design-time itself before developing the applica-
tion. This facilitates the decision-making about the run-time energy-saving adaptation
at design-time, reducing the developers’ development efforts.

5.3.5 Discussions

The case study results show that the energy-aware modeling framework can serve as
an effective way to help domain analysts plan energy-saving adaptations in the early
stages of software development. Based on guidelines from Easterbrook et al. (2008), a
case study based empirical method has been used to validate the energy-aware modeling
framework. The case study aimed at answering the following research questions:

• RQ1: How to introduce the energy-related requirements at design-time for
the family of map navigation applications? The case study scenario presented
in the previous sub-sections shows how to introduce energy-aware context in-
formation, features of the energy-aware self-adaptive navigation application us-
ing an energy-aware modeling framework. The energy-aware context informa-
tion can be further classified into primary, secondary, alternative and user in-
fluencing context to prioritize context information for triggering energy-saving
adaptations. Furthermore, the energy-aware context model helps designers iden-
tify energy-saving opportunities on the existing basic feature model. Similarly,
the energy-aware features can be classified into energy-friendly, energy-hungry,

energy-efficient alternative to decide the most suitable version of features for
energy-savings at run-time.

• RQ2: How to design an energy-saving self-adaptation plan for the family
of map navigation applications? The case study results show how energy-
awareness can be introduced during adaptation modeling. The valid triggering
situations derived from the energy-aware context model and energy-aware ap-
plication configurations derived from the energy-aware feature model are well
utilized in the case study to model energy-saving adaptation policies. The case



Chapter 5. Energy-aware Modeling Framework 121

study results show six sets of VTS configurations and corresponding EACs for
energy-aware self-adaptation. The sample adaptation plan illustrated in Figure
5.6 is evidence for modeling energy-savings opportunities of map navigation ap-
plications.

• RQ3: What is the impact of an energy-aware modeling framework on de-
signing a family of map navigation applications? The proposed modeling
framework produces energy-aware design-time models of navigation applications
in the early stages of software development. Introducing dynamic requirements
early in the life cycle of the software project will give clear information to de-
velopers. The developers can efficiently use energy-aware models and adaptation
plans to develop a dynamically adaptive application. Design-time models can
be mapped easily to compile-time or deployment-time, or run-time models for
dynamic binding or reconfigurations of the application.

To the best of our knowledge, sufficient conceptual contribution has been added to the
model of energy-aware context, features, and adaptation requirements. To summarize,
the energy-aware modeling framework has made the following contributions:

1. Adopted feature models to specify energy-aware context information

2. Adopted feature models to specify energy-aware feature information

3. Extended rules and energy-aware categories for specifying the context and feature
based on its impact on energy consumption

4. A way to derive Valid Triggering Situations (VTS) and Energy-aware Application
Configurations (EAC) through energy-aware context model and energy-aware
feature model

5. ECA based method for modeling energy-saving adaptations through VTS and
EAC

The presented modeling framework uses feature models to specify energy-aware con-
text information, features, and self-adaptation adaptation plans. The modified rules



Chapter 5. Energy-aware Modeling Framework 122

introduced energy-awareness into the existing basic feature model of the map naviga-
tion application. The case study results show that the context categories and application
categories can be easily derived from energy consumption analysis. The valid trigger-
ing situation and energy-aware application configurations provide clear information on
modeling energy-saving adaptations. Through the case study, it has been shown that
how energy-saving adaptations could be planned.

5.4 Threats to Validity

In this section, the potential threats to the validity of the presented case study are dis-
cussed. The guidelines given by Runeson and Höst (2009) are followed to categorize
and discuss the threats.

Construct Validity

Construct validity refers to the correctness of interpretation and measurement of the
theoretical constructs. The modeling language with high construct validity would re-
duce the confusion while interpreting the models produced using the language. In the
energy-aware modeling framework, the primary threat to validity is the usage of Fea-
tureIDE notations for representing energy-aware context and feature categories. As
the default notations of FeatureIDE have a different meaning compared to categories
presented in this modeling framework, there is a high possibility of confusion while
interpreting the model. The second threat to construct validity is the manual deriva-
tion of energy-saving adaptation plans, and there is no structured format to represent
the adaptation plans. This might make the readers interpret the energy-saving adapta-
tion models differently. This threat can be addressed by providing a dedicated notation
for energy-aware modeling, as presented in Chapter 6. In addition, the introduction of
structured XML notations for energy-saving adaptation plans in Chapter 6 would miti-
gate the threat of misinterpretation of models by different stakeholders. However, this
framework’s significant shortcoming is the manual derivation of valid triggering situa-
tions and energy-aware application configurations. This issue is addressed by providing
tool support for the presented conceptual modeling framework.



Chapter 5. Energy-aware Modeling Framework 123

Internal Validity

Internal validity refers to the causal relationships between the energy-aware context
model, energy-aware feature models, and energy-saving adaptation plans. There is a
possibility of validity threats in deciding the factors that affect smartphone applications’
battery consumption. Therefore, in the energy-aware modeling framework, the different
categories of context information like primary, secondary, and user-influencing context
have been added. Thus, the model would serve the purpose of analyzing the relation-
ship between factors and battery consumption while using this modeling framework.
Similarly, suitable categories such as energy-hungry and energy-friendly were added to
the feature model to include the ability to analyze the relationship between features and
battery consumption. The other threat to internal validity is related to analyzing the rela-
tionship between the energy-aware context model and the energy-aware feature model.
This threat was mitigated by adding energy-saving adaptation plans to the energy-aware
modeling framework. Overall, the models are designed so that it considers the factors
affecting battery consumption and other influencing factors. From the case study, it is
evident that there is less possibility of internal threat while using this model, as it covers
most of the aspects of causal relationships in the domain of energy-aware self-adaptive
software.

External Validity

The external validity refers to the generalizability of the models and case study results
presented in this chapter. There is a possibility of validity threats in terms of the ap-
plication domain considered in this case study. The location-based Smartphone appli-
cations considered in this case study can only be generalized to the family of location-
based applications. On the other hand, it would not be possible to generalize the case
study results to different application domains. However, the results presented for bat-

tery percentage and battery state can be generalized to other applications that can be
used on smartphones. Further, the concepts such as categories about context model,
feature model, and adaptation model have kept application domain-independent to in-
crease the generalizability. Hence, the presented energy-aware modeling framework is



Chapter 5. Energy-aware Modeling Framework 124

generic for all energy-aware self-adaptive applications. Thus, the energy-aware model-
ing framework can be re-used for any other domain to introduce energy-awareness and
self-adaptivity. Hence, the method and results presented in this chapter are conceptual
starting points for further research in modeling energy-saving adaptation policies.

Reliability

Reliability refers to the extent to which the presented case study is repeatable by other
researchers. A possible threat to validity under this category is the unavailability of
dedicated notations and tool support for the energy-aware context model and energy-
aware feature model of the proposed modeling framework. As the proposed modeling
framework uses the FeatureIDE interface, there is a high possibility of error while the
researchers repeat the case study after few years. This threat is addressed by providing
a separate set of notations and tool support developed as part of this research work
presented in Chapter 6.

5.5 Summary

This chapter presents the energy-aware modeling framework to explicitly consider energy-
efficiency-related requirements in the early stages of software development. A basic fea-
ture model provided by Kang et al. (1990) has been adopted to specify energy-efficiency
related information. The contributions of this objective is to provide an energy-aware
modeling framework for domain analysts to introduce energy-aware requirements in
the early software development phases. The energy-aware modeling framework pro-
vides a systematic way of analyzing energy-related requirements and situations to en-
force energy-saving self-adaptations. This framework adopts feature diagrams to model
energy-aware requirements. It primarily provides extended notations and rules for using
feature models to introduce energy-related requirements. In addition, it provides a sep-
arate classification mechanism for the features and context of the software under devel-
opment. For instance, the context classification includes Primary-influencing Context.

Secondary-influencing Context, and User-influencing Context. Likewise, the feature



Chapter 5. Energy-aware Modeling Framework 125

classification includes Energy-friendly Feature, Energy-hungry Feature, and Energy-

efficient Alternatives. Here, context information refers to the device operating con-
ditions or user preferences that affect software’s energy-efficiency. On the other hand,
features refer to the functional requirements of the software. The outcome of the energy-
aware modeling framework is a set of Valid Triggering Situations (VTS) and Energy-
efficient Application Configurations (EAC). Further, the modeling framework provides
Event Condition Action (ECA) based adaptation rules for specifying the energy-saving
adaptation plan. As proof of concept, the energy-aware modeling framework has been
applied to a family of map navigation applications. The case study results show that
the energy-aware modeling framework can be effectively used to specify energy-aware
requirements of the family of software systems.





Chapter 6

ENERGY-SAVING ADAPTATION
PLANNER

The energy-aware modeling framework presented in Chapter 5 (Research Objective II)

provides conceptual extensions to feature models. The domain analyst has to use the

existing feature modeling tools such as FeatureIDE to model the energy-aware require-

ments. However, the current feature modeling tools do not have specific notations for

differentiating context categories and feature categories. Therefore, this objective aims

to develop dedicated notations and tool support for energy-aware context modeling,

energy-aware feature-modeling, and energy-saving adaptation planning. This chapter

presents a tool named "energy-Saving Adaptation Planner (eSAP)" that has been de-

veloped by extending a popular feature modeling tool FeatureIDE. The developed tool

would help the domain analyst to model, label, and validate the energy-saving adapta-

tion plans in the early stages of software development. The notations are described in

Section 6.2 along with tool description. In Section 6.3, the tool’s efficacy is presented

and validated through a case study focusing on map navigation application require-

ments.

127



Chapter 6. Energy-saving Adaptation Planner 128

6.1 Extending FeatureIDE

A popular feature modeling tool FeatureIDE (Thüm et al., 2014) has been extended to
develop tool support for the energy-aware modeling framework presented in the pre-
vious chapter. FeatureIDE is an Eclipse-based open source tool for feature-oriented
software development. FeatureIDE supports the following feature-oriented software
development techniques: feature-oriented programming, aspect-oriented programming,

delta-oriented programming, and preprocessors. It is widely used in the development
of Software Product Lines (SPL) (Clements and Northrop, 2001). The FeatureIDE sup-
ports the development of such re-usable SPLs in an Integrated Development Environ-
ment (IDE). It supports the following phases of FOSD for developing SPL: domain

analysis, domain design, domain implementation, requirements analysis, software gen-

eration, and quality assurance. In this thesis, the domain analysis and requirement
analysis phases of FeatureIDE are extended to provide tool support for an energy-aware
modeling framework.

The domain analysis phase of FeatureIDE produces the feature models to identify the
commonalities and variabilities among the family of software systems. FeatureIDE pro-
vides a diagram editor with graphical notations to create feature models. The graphical
notations cover the relationships mentioned in FODA such as and, or, xor in the form
of mandatory, optional, alternative features. In addition, it supports the abstract, con-

crete, and dead feature notations in the feature diagram. The crosstree constraints like
includes and excludes are supported by the propositional formula notations in the fea-
tureIDE. Finally, FeatureIDE applies the relationships and cross-tree constraints on the
features mentioned in the feature diagram to generate a set of valid configurations that
are a subset of all features. It also allows the user to change the configurations to check
if the specified configurations are valid or invalid. Each valid configuration would be
considered as a member of a family of software products. FeatureIDE supports both
visual and textual representation of the feature diagram, valid and invalid configura-
tions. The graphical representation is in the form of a feature diagram with colored
notations to differentiate feature groups. The textual notations are in the form of XML
for features, relationships, cross-tree constraints, and generated configurations.



Chapter 6. Energy-saving Adaptation Planner 129

FeatureIDE is selected to develop energy-Saving Adaptation Planner (eSAP) as it is
open-source software. The development team has provided several extension points for
building our ideas as an Eclipse plugin. Specifically, the extension points of feature

diagram editor and configuration editor have been used to develop eSAP. As presented
in the energy-aware modeling framework, context information specification is essential
in modeling energy-aware self-adaptive software. The energy-aware modeling frame-
work highlights the importance of energy-saving adaptation plans to take decisions at
the design phase. Hence, there is a distinct lack of support to produce adaptation mod-
els combining feature and context models. Moreover, the FeatureIDE cannot explicitly
introduce energy-related requirements to the feature and context model. Therefore this
objective aims at providing the following support:

1. Ability to introduce energy impact of features and energy-efficient alternatives
with suitable energy-aware labels

2. Ability to introduce suitable context information and label them with its energy
impact

3. Ability to plan energy-saving adaptations

The existing implementation of FeatureIDE supports only the feature model and does
not support the specification of context information. Therefore, it has been decided to
extend the FeatureIDE project types to have three models, namely, energy-aware con-

text model, energy-aware feature model, and adaptation model. The feature diagram
editor of FeatureIDE is extended to introduce the new notations. The energy-aware
context model and energy-aware feature models are generated using the diagram editor.
On the other hand, the adaptation models are generated using the configuration editor of
the FeatureIDE. In eSAP, the configuration editor of FeatureIDE is extended as Config-
uration generator to allow the user to save the customized configurations of their choice
using the energy-aware context and energy-aware feature models. Finally, the XML
files of the configurations are used to generate the adaptation model specified by the
domain analyst. The eSAP source code is hosted on GitHub1 and is freely available for
usage and contribution. The remaining part of this chapter presents the tool description,
notations, and case study related to eSAP.

1https://github.com/marimuthuc/esap

https://github.com/marimuthuc/esap


Chapter 6. Energy-saving Adaptation Planner 130

Project Manager Constraints Editor

Configurations
Generator

Adaptation Planner

Diagram Editor

Energy-aware Feature 

Model (EAFM)

High

Charging

BatteryPercentage

Slow

Discharging

FineAccuracy

NetworkSpeed Moderate

Low

Medium

EnergySaving

BatteryState

RunningCM

LocationSettings

Fast

Low ? Discharging ? EnergySaving

High ? Charging ? FineAccuracy

Legend:

Mandatory

Optional

Alternative Group

Primary influencing context

Secondary influencing context

User influencing context

Energy-aware Context 

Model (EACM)

Energy-saving Adaptation
Plans (in XML)

+

All Possible
VTS and EAC (in XML)

FIGURE 6.1: Primary components and generated artifacts of eSAP

6.2 eSAP Description

eSAP aids domain analysts to enumerate all the possible features and context values
that are associated with a particular domain. This tool also allows them to assign la-
bels that represent the energy impact of these features and context information on the
overall energy consumption of the system. For this purpose, popular feature model-
ing tool FeatureIDE has been extended using the available extension points. The fol-
lowing extensions have been made to develop eSAP: project manager, diagram editor,

constraint editor, configuration generator, and adaptation planner. Using these exten-
sions, the eSAP is able to produce three artifacts in the requirement collection phase:
(1) Graphical energy-aware feature model, (2) Graphical energy-aware context model,
(2) Textual energy-saving adaptation plans. The overall workflow of eSAP is depicted
in Figure 6.1 with its components and produced artifacts. As shown Figure 6.1, the
components diagram editor and constraints editor produce either energy-aware context

model or energy-aware feature model. Similarly, the configuration generator produces
XML-based configurations called as valid triggering situations (VTS) and energy-aware

application configurations (EAC). Finally, the energy-saving adaptation planner com-
bines the VTS and EAC to provide the XML-based self-adaptation plans that represent
the run-time reconfiguration for particular battery-related contextual change. This sec-
tion presents the details about the components of eSAP and descriptions of graphical



Chapter 6. Energy-saving Adaptation Planner 131

FIGURE 6.2: A screenshot of project manager that shows different types of projects

notations.

Project manager: The first extension has been introduced to the project manager to
create appropriate project types for three different artifacts. As shown in Figure 6.2,
the following project types are added in eSAP: feature modeling, context modeling, and

adaptation modeling. Using the extended project manager, the domain analyst can se-
lect the appropriate model type during the new project creation wizard for the domain
under investigation. Here, the project type feature modeling refers to the energy-aware

feature model of the framework presented in Section 5.2.2. Similarly, the context mod-

eling refers to the energy-aware context modeling and adaptation modeling refers to the
energy-saving adaptation planning of the energy-aware modeling framework presented
in Section 5.2.1 and Section 5.2.3.

Diagram editor: The second extension has been made to the feature diagram editor of
FeatureIDE. As explained in Section 5.2, the energy-aware modeling framework con-
tains two different feature diagrams. For this purpose, eSAP allows the domain analyst
to create separate feature diagram types for specifying features and context information.
The FeatureIDE’s feature model editor has been extended to add energy-aware labels,
as mentioned in Section 5.2. FeatureIDE uses colored notation to differentiate the ab-

stract feature, concrete feature, dead feature, etc of the basic feature model. Similarly,
suitable colored notations (See Table 6.1 and Table 6.2) have been added to eSAP to
differentiate different labels of energy-aware feature model and energy-aware context
model.

As shown in Table 6.1, the eSAP consists of three labels for specifying the energy
impact of each feature identified from the requirements. A domain analyst can assign



Chapter 6. Energy-saving Adaptation Planner 132

TABLE 6.1: Notations of energy-aware feature model

Notation and Label Allowed Rela-
tionship(s)

Description

Energy-hungry feature Optional By default
Mandatory Must specify Energy-

efficient alternatives
Energy-efficient alternative Alternative Child of Energy-hungry

features
Energy-friendly feature Mandatory By default

FIGURE 6.3: A snapshot of assigning energy-aware labels

a suitable label to the feature using the extensions made to the feature diagram editor
as shown in Figure 6.3. In addition to specifying energy-aware labels, the diagram
editor allows the domain analysts to redefine relationships such as mandatory, optional,

and alternative among the feature and context models. Here, mandatory relationship
is assigned to energy-friendly features by default. The optional relationship can be
established between root feature and energy-hungry feature by default. However, the
domain analyst can change it to mandatory relationship by specifying atomic energy-

efficient alternatives. The alternative relationship is established between the energy-

efficient alternatives of the energy-aware feature model.

As shown in Table 6.2, eSAP tool consists of colored notations for specifying the energy



Chapter 6. Energy-saving Adaptation Planner 133

TABLE 6.2: Notations of energy-aware context model

Notation and Label Allowed Rela-
tionship(s)

Description

Primary influencing context Mandatory Must specify its context
values

Secondary influencing context Optional, Manda-
tory

By default it is optional,
and can be modified to
mandatory if it is directly
associated with primary-
influencing context

User influencing context Mandatory By default

impact of possible context information of application under development. The leaf
nodes represent the context values, and non-root and non-atomic nodes in the energy-
aware context model refer to the context information. The appropriate label can be
assigned to context information added using the feature diagram editor. In addition,
the relationships such as mandatory, optional, alternative can be added between root

context, context information, and context value. The mandatory relationship is allowed
between the root context and the primary-influencing context information by default.
On the other hand, secondary-influencing context information will be considered for
default optional relationship with context root. The context values will be assigned with
alternative relationship by default with it’s parent. The user-influencing context can be
considered for mandatory relationship by default as it represents the user preferences.

Constraint Editor: The constraint editor primarily uses the requires and exclude con-
straints of the basic feature model along with the Boolean expressions provided in the
FeatureIDE. The domain analyst can establish constraints between the feature, context
values, which has a conflicting impact on energy consumption. Similarly, constraint
editor can be used to establish constraints between a group of features or context values
using the (, ), AND, OR, NOT boolean expressions. The constraint editor also ensures the
validation of cross-tree constraints along with a check for mismatching brackets, redun-
dant constraints, disallowed feature and context constraints. The feature diagram editor
with the constraints added using the constraint editor produces the graphical feature dia-
gram that represents the energy-aware models. The produced models are energy-aware

feature model and energy-aware context model.



Chapter 6. Energy-saving Adaptation Planner 134

FIGURE 6.4: A screenshot of energy-saving adaptation plan editor

Configuration Generator: The configuration generator has been created by extend-
ing the configuration editor interface of FeatureIDE. This allows the domain analyst to
select or deselect the context and feature added in the energy-aware feature diagrams.
This also checks that the selection of context and feature follows the rules assigned to
relationships and cross-tree constraints. Using this interface, the domain analyst can
generate valid triggering situations and energy-aware applications, which later will be
used for planning self-adaptation. This interface allows the domain analyst to generate
more than one configurations as an XML file that can be stored inside the configurations

folder of the project workspace. Finally, the generated configurations can be validated
against the energy-aware relationships and constraints.

Energy-aware adaptation model planner: The energy-aware adaptation model editor
is one of the additional project types added to the basic FeatureIDE tool. The domain
analyst can select the adaptation modeling type in the project manager while creat-
ing a new project. The adaptation model editor requires configurations generated from
energy-aware feature model and an energy-aware context model to create the adaptation
plans. As shown in Figure 6.4, on creating the adaptation modeling project, the project
manager shows an interface to import the context model and feature model through an
drop-down interface. The project explorer browses through all the active projects and
populates them under feature project and context project field of adaptation plan editor.



Chapter 6. Energy-saving Adaptation Planner 135

The domain-expert can select the feature models under analysis for creating the adapta-
tion plan. The other pre-requisite to create adaptation plans is to create VTS and EAC
from the appropriate models. After selecting the feature project and context project,
the adaptation model editor browse through the configuration folder and populates all
the generated VTS and EAC for the selected feature models. The left side pane shown
in Figure 6.4 lists out the available valid triggering situation as context configurations.
Similarly, the right side pane shown in Figure 6.4 lists out the energy-aware applica-
tion configurations. The checkbox added in front of all listed configurations enables
the domain analyst to select the needed configuration to create the adaptation plan. One
configuration from the left side pane and right side pane can be selected at a time, which
refers to mapping the VTS to EAC. The domain analyst can select such pairs for all the
available configurations. Finally, on clicking Done button, the adaptation plans will be
generated as an XML file in the project folder.

6.3 Validation with Case Study

A case study has been conducted for specifying energy-saving self-adaptive require-
ments for map navigation application to show the efficacy of eSAP. The guidelines
suggested by Easterbrook et al. (2008) have been followed to conduct this case study.
Therefore, the case study has been designed to answer the following research questions
(RQs):

• RQ1: How to introduce energy-related requirements for the family of map navi-
gation applications?

• RQ2: How to create an energy-saving adaptation plan for the family of map
navigation applications?

• RQ3: What is the impact of eSAP on modeling energy-aware requirements of
map navigation applications?

The case study aims at answering the research questions mentioned-above by applying
eSAP tool on a subject application domain. The case study has been conducted for



Chapter 6. Energy-saving Adaptation Planner 136

TABLE 6.3: MapNav’s functional requirements

Name Description
GetCurrentLocation Fetches the current location of the user using GPS
DisplayMap Displays map using Satellite, Terrain and Street Views
ShowDirections Shows the walking, cycling, and driving directions
PerformNavigation Helps the user to navigate with turn-by-turn directions
PerformReroute Reroutes the user if he/she deviated from the originally

suggested direction
UpdateDistance Calculates and updates the estimated distance and esti-

mated time of arrival
ShowTrafficinfo Shows live traffic information during cycling and driving
ShowPublicTransport Shows available public transports from a source to desti-

nation for any given day and time
VoiceAssistance Gives voice commands during turn-by-turn navigation

the domain of map navigation applications by analyzing the features of famous map
navigation applications.

6.3.1 An example scenario: Reference requirements

Consider the example of Map Navigation application (MapNav) for Android. The appli-
cation requirements are inspired by popular map navigation applications such as Google
Maps, OpenStreetMap, and Maps.me. MapNav assists the users in finding walking, cy-

cling, and driving directions from any source to destination. It also shows turn-by-turn
directions to the destination from user’s current location. Let us assume that MapNav

application will be developed to satisfy the requirements listed in Table 6.3. The en-
ergy impact analysis of given functional requirements are presented in this sub section.
GetCurrentLocation demands high accuracy as it sense the user’s current location us-
ing GPS. However, user might not need high accuracy all the time, and this requirement
must be extended with GPS-alternative options also. DisplayMap displays the map and
it may consume more energy for downloading the data from map provider and to render
the images. Therefore, this requirement is energy-hungry and must be light-weight on
slow internet connection as it might take longer to get downloaded. ShowDirections
needs data connection to download the information from map provider. Also, it involves
adding extra lines on the map to show the directions. PerformNavigation depends on



Chapter 6. Energy-saving Adaptation Planner 137

the following requirements: DisplayMap, PerformReroute, UpdateDistance, and
VoiceAssistance. PerformReroute requires computation and mobile data to reroute
the user, if he/she deviates from the originally suggested route. As this requirement
needs continuous location monitoring, it may consume too much of energy by polling
the GPS continuously. UpdateDistance calculates the distance between the users cur-
rent location and the destination during the turn-by-turn navigation. This requirements
also needs continuous location monitoring and computation to calculate the distance.
VoiceAssistance provides the voice navigation to the user while driving a car. This
is an additional feature to the on-map turn-by-turn navigation which requires the access
to audio resources of the smartphone device. It can be considered as energy-hungry
requirements as it performs the text-to-speech conversation. ShowTrafficinfo needs
the connection to map provider as it has to download the live traffic data over internet.
ShowPublicTransport also needs the connection to map provider to provide recent
public transport available from the source to destination.

Overall, the given requirements require continuous GPS sensing, monitoring user move-

ment, connection to the internet, audio, and displaying map. All these activities are con-
sidered to be energy-hungry activities when the battery level is low. Specifically, during
the battery discharge, these energy-hungry activities must be dealt with it’s energy-
efficient alternatives. Therefore, switching from the energy-hungry components to it’s
alternatives becomes essential to reduce battery consumption.

6.3.2 Identifying energy-aware application configurations

As mentioned earlier, the majority of the reference requirements are energy-hungry as
they require continuous location-sensing. However, few of the requirements could be
made energy-efficient and delivered to the end-user to satisfy the given requirements.
Therefore, the domain analyst has identified the energy-efficient alternative for each
energy-hungry reference requirement and produced the energy-aware feature model, as
shown in Figure 6.5 using eSAP tool. As shown in Figure 6.5, the following features
(Equations 6.1 and 6.2) are added to the reference requirements to find out various
energy-efficient versions suitable for contextual changes:

F = {FLocationSensing, FSensingInterval, FDirections, FTravelType, FGuidance, FLiveTraffic, FPublicTransport, FReroute}
(6.1)



Chapter 6. Energy-saving Adaptation Planner 138

MapNavFM

TextInstructions

Quick

Cycling

Lengthy

GPSOnly

TravelType

Reroute

Directions

Driving

SensingInterval

Turn-by-turn

LocationSensing

AnySource

LiveTraffic

Guidance

OnMap

PublicTransport

Walking

Moderate

VoiceAssistance

GPSwithMotion

GPSAlternative

Walking ⇒ ¬(LiveTraffic ∧ GPSOnly)

AnySource ⇒ Lengthy

AnySource ⇒ ¬(Reroute ∧ VoiceAssistance)

Legend:

Mandatory
Optional
Or Group
Alternative Group
Energy-efficient alternative
Energy-friendly feature
Energy-hungry feature
Abstract feature
Concrete feature

FIGURE 6.5: Energy-aware feature model of MapNav application

FLocationSensing= {GPSOnly, GPSwithMotion, GPSAlternative},

FSensingInterval= {Quick, Moderate, Lengthy},

FDirections= {Turn− by− turn, AnySource},

FTravelType= {Walking, Cycling, Driving},

FGuidance= {OnMap, VoiceAssistance, TextInstructions}

(6.2)

The energy impact of each feature has been analyzed and the suitable energy-aware
feature labels and relationships have been assigned using eSAP tool. As shown in Fig-
ure 6.5, LocationSensing has been assigned as energy-hungry feature as it uses GPS
for high accuracy location-sensing. Since it has been a mandatory feature, the follow-
ing energy-efficient alternatives have been added to the energy-aware feature model:
GPSwithMotion, GPSAlternative. Here, GPSWithMotion uses motion sensors like
an accelerometer to reduce unwanted energy consumption when the user is not mov-
ing. On the other hand, GPSAlternative refers to location sensing using non-GPS
mechanisms such as CellID, WiFi which provides less accuracy with less energy con-
sumption. SensingInterval is newly introduced in the energy-aware feature model as



Chapter 6. Energy-saving Adaptation Planner 139

it decides the duration of GPS requests. This feature has been considered with manda-
tory relationship as Quick sensing interval would consume abnormal energy because
of frequent GPS request. Hence, its energy-efficient alternatives Moderate, Lengthy

have been added to the energy-aware feature model. Here, Lengthy GPS sensing in-
terval refers to GPS location requests every 5 minutes while Moderate GPS sensing
interval could be considered every minute. These sensing intervals can be dynamically
switched when there is a critical battery situation which is sensed from context informa-
tion. Directions is considered as energy-hungry as it involves continuous monitoring
of the user’s current location along with calculating the route from the most recent lo-
cation during the navigation. However, sometimes users might prefer to just look at the
route without actual turn-by-turn navigation. Therefore, the energy-efficient alternative
AnySource has been added in the energy-aware feature model. Therefore, based on the
user preference, the two ways of navigation could be made adaptive to avoid unwanted
location monitoring and route calculation. TravelType contains three sub-features,
namely Walking, Cycling, Driving which refers to the travel type of the user. This
feature is considered for mandatory energy-friendly as it is the core functional require-
ment of the MapNav application. As it has the OR relationship among the sub-features,
more than one instance could exist in the application configuration at the same time.
Guidance refers to the assistance given by the map navigation applications to the user
during turn-by-turn navigation. This feature is considered as energy-hungry as it in-
volves in graphics rendering (OnMap)and audio instructions (VoiceAssistance). In
addition, this feature is considered for mandatory relationship as it is the core busi-
ness requirement. In order to save energy consumption, the energy-efficient alterna-
tive, namely TextInstructions which does not require graphics or audio is used to
guide the users. Therefore, these features can be switched at run-time whenever there
is a need to save energy. LiveTraffic, PublicTransport, Reroute are labeled as
energy-hungry features in the energy-aware feature model as they require continuous
location sensing, route calculation, and downloading data from the internet. In addi-
tion, they add extra graphical elements on the map application to show the live traffic.
Unlike other energy-hungry features, these features have been considered for optional

relationships as they do not have energy-efficient alternatives. Therefore, the domain
analyst has decided to discard these features from configurations during the battery crit-
ical situations.



Chapter 6. Energy-saving Adaptation Planner 140

As shown in Figure 6.5, few constraints are also added to illustrate the energy-saving
opportunities. For instance, the constraint Walking ⇒ ¬(LiveTraffic ∧ GPSOnly)

refers to the constraint where it states that LiveTraffic is invalid as the user is looking
for Walking direction. With the help of this constraint, the data downloaded from the
internet for showing live traffic could be saved. In addition, the walking takes longer
time to reach the destination compared to Driving, and Cycling. Therefore, in this
situation, GPSOnly location-sensing may drain the battery quickly as it is active for
a longer duration. Therefore, GPSOnly can be replaced with GPSwithMotion, which
is its energy-efficient alternative. Similarly, the constraint AnySource ⇒ Lengthy

refers to a situation where the source is manually entered by the user, and it does not
require frequent sensing interval to avoid continuous GPS polling. Further, the con-
straint AnySource⇒ ¬(Reroute∧VoiceAssistance) refers to the situation when the
reroute and voice assistance becomes invalid if the user is only looking for directions
instead of turn-by-turn navigation instructions. With the updated energy-aware feature
model and constraints, a domain analyst can generate energy-aware application config-
urations with the help of a configuration generator. The eSAP tool produced a total of
1748 valid configurations for the given energy-aware feature model. For the demon-
stration purpose, few representative energy-aware application configurations have been
picked and listed below:

• EAC0: LocationSensing, GPSOnly, SensingInterval, Quick, Directions,
Turn− by− turn, TravelType, Cycling, Driving, Guidance, OnMap,

LiveTraffic, PublicTransport, Reroute

• EAC1: LocationSensing, GPSOnly, SensingInterval, Quick, Directions,
Turn− by− turn, TravelType, Cycling, Driving, Guidance, VoiceAssistance,

Reroute

• EAC2: LocationSensing, GPSOnly, SensingInterval, Quick, Directions,
Turn− by− turn, TravelType, Cycling, Driving, Guidance, OnMap



Chapter 6. Energy-saving Adaptation Planner 141

6.3.3 Identifying valid triggering situations

With the given functional requirements as shown in Table 6.3, the domain analyst has to
identify the situations when the application requirements show negative energy impact.
Let us assume that with existing domain knowledge the domain analyst has identified
the context information and context values as shown in Equations 6.3 and 6.4.

C = {CBatteryLevel, CBatteryState, CNetworkSpeed, CAppState, CSourceLoc} (6.3)

CBatteryLevel= {High, Medium, Low},

CBatteryState= {Charging, Discharging},

CNetworkSpeed= {Fast, Moderate, Slow},

CAppState= {ForeGround, BackGround},

CSourceLoc= {CurrentLoc, AnyLoc}

(6.4)

To create the energy-aware context model, the energy impact of each context infor-
mation and context values must be analyzed and energy-aware labels must be assigned
appropriately. The context information and it’s influence on the MapNav’s functional re-
quirements are discussed in this sub section. BatteryLevel and BatteryState refers
to the remaining available battery percentage and status of charging respectively. This
information is primary source for deciding run-time energy-saving adaptation. For ex-
ample, a BatteryLevel with discharging BatteryState would refer to battery critical
situation which needs a strict energy saving plan to be enforced. NetworkSpeed refers
to speed at which the data can be downloaded from the map provider over internet.
This context information can be used to deactivate the data-intensive download activi-
ties when the device has slow internet connection. For instance, downloading data to
find out ShowTrafficinfo and ShowPublicTransport would take longer time when
it is executed on the slow internet connection which in-turn will consume more energy
than downloading in faster internet connection. Therefore, this context information can
be used to make few energy-hungry features optional at run-time. AppState refers to
the status of the running application. It can be either foreground or background. This



Chapter 6. Energy-saving Adaptation Planner 142

information can be used to select between alternatives of the energy-hungry compo-
nents. For instance, if the application in the background is using maps for turn-by-
turn instructions, it may consume energy unwantedly. Thus, instead VoiceAssistance

could be used to reduce the energy consumed by the DisplayMap activity. SourceLoc
refers to the starting location to perform the actions in MapNav application. The source
location of the user decides the accuracy required for proving the MapNav’s functional-
ity. For instance, the functionality PerformNavigation requires high accuracy (user’s
current location using GPS) while ShowDirections requires coarse-grained accuracy
(manually entered location by the user). Here, fetching current location using GPS con-
sumes battery compared to user-entered location, which does not require GPS. There-
fore, user’s starting location and associated accuracy requirement can be made adaptive
to avoid GPS usage when it is not required.

With this preliminary energy impact analysis, the domain analyst can assign the suitable
energy-aware label suggested in the framework. The Figure 6.6 shows the energy-aware
context model created by eSAP tool. It shows the list of context information, its val-
ues and assigned energy-aware label. As shown in Figure 6.6, the context information
BatteryLevel and BatteryState are labeled as Primary-influencing Context as it di-
rectly associated with the energy consumption. These two context information would
serve as a primary factor to trigger the run-time adaptation. Similarly, NetworkSpeed
is labelled as Secondary-influencing Context as different energy-hungry features shows
various energy consumption behaviour under these conditions. An AppState is also
considered as Secondary-influencing Context as the switching between energy-hungry
components can be triggered inline with the change in its values. Finally, the SourceLoc
is considered as the User-influencing Context, as this information will be selected by the
user during the application startup.

After modeling the context information, a domain analyst could use the configuration

generator to generate and validate the valid triggering situations. For the given energy-
aware context model, the eSAP produced 144 valid triggering situations. For demon-
stration purpose, a few significant valid triggering situations have been listed below:

• VTS0: BatteryLevel, High, BatteryState, Charging, NetworkSpeed, Fast,
AppState, ForeGround, SourceLoc, CurrentLoc



Chapter 6. Energy-saving Adaptation Planner 143

High

Charging

BatteryLevel

Background

AnyLoc

Slow

Discharging

NetworkSpeed

CurrentLoc
SourceLoc

Moderate

Low

Medium

BatteryState

AppState
ForeGround

Fast

MapNavCM

Legend:

Mandatory
Optional
Alternative Group
Primary influencing context
Secondary influencing context
User influencing context

FIGURE 6.6: Energy-aware context model of MapNav application

• VTS1: BatteryLevel, High, BatteryState, Discharging, NetworkSpeed, Fast,
AppState, BackGround, SourceLoc, CurrentLoc

• VTS2: BatteryLevel, Medium, BatteryState, Discharging, NetworkSpeed,
Moderate, AppState, ForeGround, SourceLoc, CurrentLoc

6.3.4 Planning energy-saving adaptations

The representative energy-aware application configurations (EAC) presented in Section
6.3.2 and valid triggering situations (VTS) presented in Section 6.3.3 are considered to
plan the energy-saving adaptation. By analyzing the representative EAC and represen-
tative VTS, the following energy-saving adaptation (ESA) plans are derived:

ESA0 = On VTS0 Execute EAC0,

ESA1 = On VTS1 Execute EAC1,

ESA2 = On VTS2 Execute EAC2,

(6.5)



Chapter 6. Energy-saving Adaptation Planner 144

The adaptation planner component of the eSAP tool helps the domain analyst to map
the corresponding VTS and EAC derived from the energy-aware context and feature
model, respectively. The energy-saving adaptation plans are returned as the XML rep-
resentation, as shown in Listing 6.1.
<AdaptationModel>

<On VTS="1">

<configuration>

<feature automatic="selected" name="MapNavCM"/>

<feature automatic="selected" name="BatteryLevel"/>

<feature manual="selected" name="High"/>

<feature automatic="unselected" name="Medium"/>

<feature automatic="unselected" name="Low"/>

<feature automatic="selected" name="BatteryState"/>

<feature automatic="unselected" name="Charging"/>

<feature manual="selected" name="Discharging"/>

<feature automatic="selected" name="NetworkSpeed"/>

<feature manual="selected" name="Fast"/>

<feature automatic="unselected" name="Moderate"/>

<feature automatic="unselected" name="Slow"/>

<feature automatic="selected" name="AppState"/>

<feature automatic="unselected" name="ForeGround"/>

<feature manual="selected" name="Background"/>

<feature automatic="selected" name="SourceLoc"/>

<feature manual="selected" name="CurrentLoc"/>

<feature automatic="unselected" name="AnyLoc"/>

</configuration>

</On>

<Execute EAAC="1">

<configuration>

<feature automatic="selected" name="MapNavFM"/>

<feature automatic="selected" name="LocationSensing"/>

<feature manual="selected" name="GPSOnly"/>

<feature automatic="unselected" name="GPSwithMotion"/>

<feature automatic="unselected" name="GPSAlternative"/>

<feature automatic="selected" name="SensingInterval"/>

<feature manual="selected" name="Quick"/>

<feature automatic="unselected" name="Moderate"/>

<feature automatic="unselected" name="Lengthy"/>

<feature automatic="selected" name="Directions"/>

<feature automatic="selected" name="Turn-by-turn"/>

<feature automatic="unselected" name="AnySource"/>

<feature automatic="selected" name="TravelType"/>

<feature manual="selected" name="Cycling"/>

<feature manual="selected" name="Driving"/>

<feature automatic="selected" name="Guidance"/>

<feature automatic="unselected" name="OnMap"/>

<feature manual="selected" name="VoiceAssistance"/>

<feature automatic="unselected" name="TextInstructions"/>

<feature manual="selected" name="Reroute"/>

</configuration>

</Execute>

</AdaptationModel>

LISTING 6.1: An energy-saving adaptation plan generated by eSAP representing

ESA1

As shown in Listing 6.1, the VTS1 represents the situation when the application is in
the background, during the turn-by-turn direction while the battery state is changed to
Discharging. As the application uses CurrentLoc and BatteryLevel is High, it is



Chapter 6. Energy-saving Adaptation Planner 145

suitable situation to execute energy-hungry components. However, OnMap produces un-
wanted energy consumption as the application is running in the background. Therefore,
it makes sense if the application is reconfigured to disable graphics rendering associ-
ated with OnMap to avoid energy waste. However, to guide the user, as per ESA1, the
VoiceAssistance could be enabled as an alternative to satisfy the application require-
ments. Similar to the energy-saving adaptation plan mentioned in Listing 6.1, multiple
critical battery situations can be identified in the domain analysis phase itself to provide
more clarity to developers during the programming of the energy-saving self-adaptive
behavior.

6.3.5 Discussions

As mentioned before, based on the guidelines given by Easterbrook et al. (2008) has
been used to conduct the case study to validate the abilities of eSAP. The case study
aimed at answering the following research questions:

• RQ1: How to introduce energy-related requirements for the family of map
navigation applications? The energy-aware context model, energy-aware fea-
ture model, and energy-saving adaptation plan have been introduced for this pur-
pose. The energy-aware context model classifies the context information into
primary-influencing, secondary-influencing, and user-influencing context to show
the energy impact of context information. Furthermore, the energy-aware context
model helps domain analysts to identify critical battery situations (Valid Trig-
gering Situations [VTS]) to trigger the energy-saving adaptation. Similarly, the
energy-aware feature model classifies the features into energy-friendly, energy-

hungry, energy-efficient alternative based on its impact on energy consumption.
The energy-aware feature model generates multiple versions of application con-
figurations (Energy-aware Application Configurations [EAC]) to decide the most
suitable version of features for energy savings at run-time. The project manager,

diagram editor, constraints editor, configuration generator components of eSAP
tool helps the domain analysts to introduce energy-related requirements to the
existing functional requirements.



Chapter 6. Energy-saving Adaptation Planner 146

• RQ2: How to create an energy-saving adaptation plan for the family of
map navigation applications? The case study results show the generation of
VTS and EAC from the corresponding energy-aware feature diagrams. The valid
triggering situations and energy-aware application configurations are well uti-
lized in the case study to plan energy-saving adaptation policies. The adaptation

planner components of the eSAP tool facilitate the domain analyst to create the
energy-saving adaptation plans in the XML format. The case study results show
five sets of VTS configurations and corresponding EACs for energy-saving self-
adaptation. The sample adaptation plan illustrated in Listing 6.1 is evidence for
planning energy-saving adaptation of map navigation applications.

• RQ3: What is the impact of eSAP on modeling energy-aware requirements
of map navigation applications? The eSAP produces energy-saving adaptation
plans for map navigation applications, which will be used at the early stages of
software development. Introducing dynamic requirements early in the life cycle
of the software project will give clear information to developers. The develop-
ers can efficiently use energy-aware models and adaptation plans to develop an
energy-friendly, dynamically adaptive application. Further, the artifacts produced
by the eSAP tool might reduce the efforts spent at the development phase.

To the best of our knowledge, a sufficient contribution has been made to the modeling
and analyzing energy-aware context, features, and adaptation. The tool presented in this
chapter might aid domain analysts to apply an energy-aware modeling framework on
any other application domain, which has energy as one of the important software quality.
To summarize, the following contributions have been made through the development of
eSAP:

1. Introduction of graphical notations to group the context and feature based on their
energy impact;

2. A tool support to aid the domain analyst to model and validate energy-aware
requirements and energy-saving self-adaptation.



Chapter 6. Energy-saving Adaptation Planner 147

The eSAP uses feature diagrams for modeling energy-aware context information and
energy-aware features. The feature diagrams are widely used modeling methods to iden-
tify the commonality and variability in the software systems. Therefore, it is believed
that using feature models would be a suitable technique for identifying various energy-
aware application configurations. The energy-saving adaptation planning presented in
this chapter would help understand the uncertainty and battery critical situations be-
fore developing the application. The case study shows that the energy-aware labels
can be easily derived from energy impact analysis. The valid triggering situation and
energy-aware application configurations provide clear information on planning energy-
saving adaptations. The artifacts produced by eSAP tool are platform-independent and
are generic for all application domain. Thus, the energy-aware modeling framework
and eSAP can be re-used for other applications domain as well to introduce energy-
awareness and self-adaptivity.

6.4 Summary

This chapter introduces the tool support for specifying energy-related requirements in
the early stages of software development. The contribution of this objective is to pro-
vide a tool support, namely, Energy-saving Adaptation Planner (eSAP) for the con-
cepts presented in the energy-aware modeling framework. The popular feature model-
ing tool FeatureIDE (Thüm et al., 2014) has been modified with the following exten-
sions: project manager, diagram editor, configuration editor, and energy-saving adap-

tation planner to develop eSAP. The eSAP tool produces the following artifacts, namely
energy-aware context model, energy-aware feature model, and energy-saving adapta-

tion plans. Further, eSAP aids the domain analyst to generate valid triggering situations

and energy-aware application configurations in order to produce XML-based energy-
saving adaptation plans. The efficacy of eSAP is shown with the help of a case study
focusing on the map navigation application. The presented approach and tool support
may help the domain analyst plan energy-saving adaptation before implementing the
application. In addition, the case study results show that this approach would serve as
a starting point in considering energy-efficiency and self-adaptivity as critical factors
during software development.





Chapter 7

ENERGY-SAVING CODE
GENERATOR

The tool developed in Research Objective III (eSAP) aids the domain analyst create

domain-specific models that are platform-independent. The models generated by eSAP

gives the developers conceptual clarity for writing code that is self-adaptive for energy-

saving. However, eSAP cannot generate source code from the generated models to

aid the developers in the development phase. Therefore, this objective aims to develop

a domain-specific language and corresponding code generator, namely eGEN, to aid

the developer in the development phase. In this objective, textual domain-specific lan-

guage and automatic code generator concepts have been adopted to generate domain-

dependent models and platform-specific source code. In Section 7.1, the domain anal-

ysis of location-based applications is presented to identify the features to be included

in eGEN. This section also presents the way of identifying reusable components that

can be added to the code generator. The actual tool description and language grammar

are explained in Section 7.2. Finally, the validation of eGEN with the case study is

presented in Section 7.3.

149



Chapter 7. Energy-saving Code Generator 150

Previously, the developers’ community used automatic code generation tools to help
new developers who face commonly occurring problems. As the adaptive location-
sensing is common for all location-based applications, there is a need to assist the de-
velopers in introducing self-adaptive behaviors for energy savings. Therefore, in this
objective, the aim is to develope a tool to help developers by automatically generat-
ing and suggesting the Android Java code, which can be added to the existing Android
repositories.

7.1 Domain Analysis

Domain analysis about the location-based smartphone applications has been conducted
and possible ways of introducing model-driven development solutions have been re-
searched. The goal of introducing self-adaptive behavior for reducing battery consump-
tion has been our primary importance during the domain analysis. Primarily, the focus is
on reducing GPS usage for reducing battery consumption while maintaining accuracy-
related requirements. The domain analysis has been conducted from two perspectives.
The first perspective is about identifying a suitable methodology for balancing energy-
accuracy requirements of location-based applications. Therefore, literature and devel-
oper documents have been explored to get domain knowledge about reducing location-
based applications’ energy consumption. The second perspective is about considering
the location-based applications as self-adaptive software to find out the common fea-
tures among all location-based applications. Here, the findings would be beneficial
while designing the domain-specific language and code generator to have included the
artifacts for all common features.

7.1.1 Identifying self-adaptive location strategies

There are several energy-efficient location strategies available in the literature for location-
based applications at development time. This sub-section presents some significant re-
search works towards reducing the energy consumption of location-sensing.



Chapter 7. Energy-saving Code Generator 151

Alternatives to GPS

Under this category, the approaches completely replace the GPS-based positioning with
other energy-efficient alternative techniques such as WiFi, Cell ID, etc. One such ap-
proach uses Cell-ID sequencing matching (Paek et al., 2011) for energy-efficient posi-
tioning on the smartphones. The authors have proposed CAPS, a Cell-ID Aided Po-
sitioning System that aims to improve the accuracy of the cell tower-based approach
while keeping the energy overhead low. CAPS identifies the user’s current position
cell-ID information and the past GPS coordinates. The authors have claimed that the
proposed approach provides accuracy comparable to GPS positioning with minimum
energy consumption. GSM positioning system, CellSense (Ibrahim and Youssef, 2012)
is proposed for GSM-based cell phones with a probabilistic fingerprinting. Cellsense
also provides a hybrid approach that uses probabilistic and deterministic techniques to
achieve high accuracy with less computation overhead. Another system, Placemap (Ya-
dav et al., 2014) is proposed to discover different places and routes with the help of
GSM information. This approach uses the initial WiFi-based positioning for improv-
ing location accuracy. WiFi-based positioning system consumes comparatively more
energy than the GSM or cell ID based techniques. The research work by Choi et al.
(2017) aims at reducing the energy consumption of WiFi scanning by predicting the
optimal number of scanned access points. WiFi-based positioning system requires the
dense deployment of access points to provide location accuracy, which is an extra over-
head. To address this issue, SAIL was proposed by Mariakakis et al. (2014), which uses
a single WiFi access point with the help of precise dead-reckoning using smartphone
motion sensors. Overall, these approaches promising energy savings compared to GPs
techniques; on the other hand, failed to give high accuracy.

Combining movement detection

The continuous GPS based positioning systems failed because of the unwanted GPS
scans when the user is not moving. The recent research works focus on reducing the
number of unwanted GPS scans by identifying the user’s movement with the built-in
smartphone sensors. Kjærgaard et al. (2009) proposed EnTracked, a system for energy-
efficient and robust position tracking. This system estimates the system condition and



Chapter 7. Energy-saving Code Generator 152

mobility to schedule the location updates effectively. Another approach, rate-adaptive
positioning system (RAPS) (Paek et al., 2010) aims to turn off the GPS when it is not
available. The RAPS system uses a duty-cycled accelerometer, Bluetooth communica-
tion to estimate the user movement. In addition, RAPS uses the cell tower-RSS black-
listing to detect if the GPS signal is available or not. To support the continuous location
determination, Höpfner and Schirmer (2012) uses the mobility profile of the user with
the help of an accelerometer. Similar to postponing the GPS positioning, PlaceWalker
(Cho et al., 2015) postpones the WiFi positioning by monitoring the user activity with
the accelerometer’s help. In general, compass, gyroscope, barometer, and other inertial
sensors are also used for movement detection. An important disadvantage with these
techniques are not all smartphones are equipped with inertial sensors.

Collaborative strategies

Fetching location from other location-based applications or neighboring devices can
be used to reduce the number of GPS requests found in several research works. One
such framework (Man and Ngai, 2014) aims to coordinate with multiple location-based
applications to reduce energy consumption on GPS location updates further. In this
approach, the GPS location received by the application can be reused among the other
applications in a short period. In another approach, the aggregator and collector groups
are used for location-sensing (Xi et al., 2015). Here, the collector group uses aggregator
groups’ location, which turns on their GPS periodically to determine the location.

Adaptive strategies

The adaptive strategies dynamically select a suitable location strategy based on dy-
namic accuracy and energy requirements. Zhuang et al. (2010), proposed an adaptive
location-sensing framework which uses substitution, suppression, piggybacking, and
adaptation. Here, substitution uses the alternatives to GPS; suppression low-power in-
tensive sensors such as accelerometer; piggybacking uses the collaborative strategies;
and adaptation adjust the sensing interval to save energy at run-time. In this approach,
all the other previous approaches are used in an adaptive way to improve the energy and
accuracy requirements. A-Loc (Lin et al., 2010), automatically manages location sensor



Chapter 7. Energy-saving Code Generator 153

availability, accuracy, and energy by selecting the most suitable location sensing mecha-
nism at run-time. Another approach (Morillo et al., 2012), dynamically adapts between
GPS, WiFi-based localization, and accelerometer at run-time based on the user’s out-
door exit detection to improve the GPS efficiency. In Virtual GPS (Thokala et al., 2014),
a middleware chooses a suitable location strategy (GPS or WiFi or Cell ID) for a giver
accuracy requirement with minimum energy consumption. Kim et al. (2016b) use the
context information such as a category of applications executed, the user’s movement
pattern, and the battery level to select the suitable location detection scheme (GPS or
Cell-tower). In recent research work, Capurso et al. (2017) proposed indoor-outdoor
detection techniques to switch between GPS and other indoor-localization methods to
improve the energy efficiency of the location-based applications. In addition to aca-
demic research works, the official Google Location APIs has continuously evolved to
improve location-sensing energy-efficiency. For instance, Google location APIs such
as Fused Location Provider API1, FusedLocationProviderClient2 are evolving in every
release of API with new energy-saving methods.

In summary, the alternative strategy, sensor-based strategy, and collaborative strategy

relies on a static model that does not balance energy-accuracy requirements at run-time.
Since users move from indoor to outdoor, a static model may fail to serve both environ-
ments. In such a situation, adaptive strategies provide better results by switching be-
tween suitable location strategies based on the user context such as indoor-outdoor, dy-
namic accuracy-energy requirements. The previously discussed self-adaptive location-
sensing strategies are development time solutions to tackle GPS-based applications’
energy consumption issues. In general, the solutions attempt to change the application
behavior dynamically in response to the change in context and user preferences. These
solutions suggest ways to improve coding practice directly at the source code level. The
software development cost might increase if the self-adaptive location-sensing decisions
are taken during development. Therefore, it is essential to abstract the energy-saving de-
cisions to the design-time before making decisions on lower-level code development. To
the best of our knowledge, there is a lack of tool support for specifying location-based

1https://developers.google.com/android/reference/com/google/
android/gms/location/FusedLocationProviderApi

2https://developers.google.com/android/reference/com/google/
android/gms/location/FusedLocationProviderClient

https://developers.google.com/android/reference/com/google/android/gms/location/FusedLocationProviderApi
https://developers.google.com/android/reference/com/google/android/gms/location/FusedLocationProviderApi
https://developers.google.com/android/reference/com/google/android/gms/location/FusedLocationProviderClient
https://developers.google.com/android/reference/com/google/android/gms/location/FusedLocationProviderClient


Chapter 7. Energy-saving Code Generator 154

Android applications’ self-adaptive location-sensing strategies. Therefore, the aim is to
develop a tool, eGEN, to consider energy-related requirements at the design phase.

7.1.2 Identifying commonalities and variabilities

As a second perspective, considered location-based applications have been considered
as Software Product-lines (SPL) to find out the common and variable features. A Soft-
ware Product-line (SPL) is a set of software-intensive systems that share a common,
managed set of features satisfying the specific needs of a particular market segment or
mission developed from a common set of core assets in a prescribed way (Clements
and Northrop, 2002). Software product lines are widely used in the industries to pro-
vide a set of reusable assets for the software developers to reduce the development
efforts (Van Gurp et al., 2001). The commonality among similar products is captured
to develop reusable assets in software product lines. The software developers can focus
more on product-specific aspects rather than common aspects. The map navigation ap-
plication also can be realized as a software product line as it has lots of commonality
among the family of location-based applications. This sub-section presents an initial
exploration of product families of general map navigation application with a running
example to show the SPL-based solution’s suitability. Here, common features will be
considered for designing the domain-specific language and code generator. The vari-
able features will be considered as business requirements and will not be included in
the domain-specific language and code generator.

Scoping of map navigation applications

In general, all navigation applications may consist of identifying the users location,

accessibility of the application, viewing the places and directions on the map, directions

instructions, additional features such as saving, printing, and sharing. Here, reusable
assets or features of the map navigation application are analyzed.



Chapter 7. Energy-saving Code Generator 155

Location sensing

Location sensing is the process of identifying the user’s current location with the smart-
phone’s capabilities.The user’s current position can be identified by GPS, WiFi, Cellular

ID, Collaborative methods. GPS is most suitable in outdoor situations and for more ac-
curacy. WiFi is mostly ideal for indoor scenarios and sometimes for Urban areas where
there are many WiFi access points. The Cellular ID is also preferred sometimes as
an alternative to WiFi-based positioning. The collaborative location sharing between
the location-based application of a smartphone is also used to reduce the unnecessary
usage of location sources. The smartphone inertial sensors such as accelerometer, com-
pass, gyroscopes, barometer, proximity sensors, microphone, and camera sensors are
also used in combination with GPS to improve the location sensing efficiency. For any
map navigation application, location sensing is the common mandatory feature added
by default. On the other hand, many location-sensing mechanisms are available; each
has variable capabilities with respect to Energy consumption, accuracy, etc. In addition,
instead of using the current location, the user can select any location manually to see
the directions or navigation options. Therefore, location sensing is the most common
feature which can be reused in different navigation applications.

Accessibility

Providing accessibility to the user is an essential aspect of location-based applications.
In general, most location-based applications provide accessibility to the user with or
without an internet connection. The online maps require internet connectivity, whereas
offline maps do not require internet connectivity.

Map views

Viewing the maps on the user’s smartphone is an essential feature of the map navigation
applications. Many navigation applications provide different types of views to users.
The most commonly used views are normal view, satellite view, terrain view. And
recently, street views of the urban areas have also been displayed in the maps. Similar



Chapter 7. Energy-saving Code Generator 156

to location sensing, the map view also a mandatory feature that must be available in all
the map navigation applications. Therefore, the different map views can be reused in
the various versions of the map navigation applications.

Directions

The important feature of map navigation applications is providing directions between
two locations. There are two different aspects of the directions feature. The first one is
the type of directions provided; the second one is the display type. The different cate-
gories under direction types are: walking directions for pedestrians, cycling directions
for cyclers, driving directions for cars, and public transport information for everyone.
Displaying the direction is the default feature of the map navigation application. The
next important aspect is displaying the directions from source to destination. The di-
rections can be displayed as text, or it can be displayed on the maps. Further, the map
application can show the go navigation information (turn-by-turn) based on the user’s
current location with the help of GPS.

Extra features

In addition to the mandatory features mentioned before, some maps also provide some
extra features like saving the maps or directions for offline use, printing the map or
directions, and sharing the location or directions through messages, emails, or social
networks. This capability can be considered an optional feature as it is not the essential
feature of a map navigation application.

Initial exploration of possible product categories

Product Configuration 1 (Street View) This product configuration can produce a set
of applications that are targeted for people to find out the street view of the new place to
be visited. This product contains the GPS, and Manual location sensing techniques that
provide only online access to the user. This is a fundamental application derived from
the Table 7.1.



Chapter 7. Energy-saving Code Generator 157

TABLE 7.1: Initial exploration of possible product categories (incomplete list)

Category Features PL1 PL2 PL3 PL4 PL5

Location Sensing
GPS (GP) × × × × ×
WiFi (WF)
Cell ID (CL) ×
Manual (MN) × × × × ×

Access
Online (ON) × × × × ×
Offline (OF)

Maps Views

Normal View (NV) × × × ×
Satellite View (SV) × × ×
Terrain View (TV)
Street View (SrV) ×

Directions Type

Walking (WK) × ×
Cycling (CY) × ×
Driving (DR) × ×
Live Traffic (LT) ×
Public Trans. (PT) ×
Schedule (SL) ×

Directions Display
Text (TX) × × ×
On Map (OM) × × × ×
On the Go (OG) ×

Extra
Save (SE) ×
Print (PR) ×
Share (SH)

Product Configuration 2 (Live Traffic) This product configuration can produce a
set of applications which provides the live traffic on the roads and are used by the
car drivers. Similar to product configuration 1, this configuration also uses GPS, and

Manual for location sensing and provides online access. Whereas it does not provide
a street view, instead it provides the normal and satellite view on the maps. It also
provides the driving directions with live traffic data that will be marked on the map.
This configuration has the commonality in location sensing technique and variants in
map view compared to previous application configurations. It has extra features in
showing directions. The applications that are developed using this configuration will be
useful for car drivers.



Chapter 7. Energy-saving Code Generator 158

Product Configuration 3 (Maps with Directions) This product configurations can
produce a set of applications which provide the directions from source to destination.
This product configuration has the commonality in location sensing and accessibility as
it uses GPS, Manual and Online. Compared to product configuration 2, this product
configuration has the commonality with map views as it provides Normal and Satellite

view. With respect to directions, this product configuration varies in terms of direction

type and direction display as it provides walking, cycling directions with text and on the

map instructions. The applications derived from these product configurations will be
useful to pedestrians and cyclers who use GPS enables devices.

Product Configuration 4 (GPS Navigation) This product configuration can produce
a set of applications that has on the go directions for walking, cycling, and driving.
This configuration has commonality with product configuration 2 and 3 in terms of
location sensing, map views. Similar to product configuration 3, this configuration
also provides walking, cycling directions, and ability to provide driving directions. In
addition, it has the additional feature of showing the directions by fetching the user’s
current location on the map. The applications from these product configurations can be
useful for pedestrians, cyclers, and car drivers.

Product Configuration 5 (Public transport) This product configuration can produce
a set of applications that produces the schedule for public transport. In terms of location
sensing, this application can get the user’s location from either GPS or Cellular ID or
Manually. This product configuration provides online connectivity to the user. As a
new feature, it gives the ability to save, share, and print the location information. This
application can satisfy the needs of users looking for public transport options.

From the family of products derived from the running example, the following can be
sketched:

• Commonality: The map navigation application contains some common features
like location sensing, map views, direction type, etc. Suitable artifacts can be
developed to use different map navigation applications in the family when it has



Chapter 7. Energy-saving Code Generator 159

the common requirements. Finally, the implementation of the software artifacts
will result in common reusable components.

• Reusable variation: As shown in the running example, by using the reusable
components of the navigation application, many different applications can be de-
veloped for targetting different application requirements.

• Product specifics: The product specific features need not be included in the prod-
uct lines. For instance, more variable features can be added to list nearby locations
for travelers or find out the hotels or petrol pumps as product-specific features sep-
arately. Therefore, variable applications can be developed using the basic set of
reusable product line components.

With this brief analysis, it can be concluded that the map navigation application can be
considered as an SPL as it exhibits several reusable features and product-specific fea-
tures. From the domain-analysis, it can be inferred that location-sensing is a common
feature that exists in all types of location-based applications. Therefore, the model and
the generated location-sensing code using eGEN can be used in all kinds of location-
based applications to reduce the development efforts. Therefore, the aim is to provide
domain-specific language and code generator for common reusable features in this ap-
proach.

7.1.3 eGEN domain model

As shown in Listing 7.1, the domain model contains the entities AdaptationPolicy,
Context, Feature. The AdaptationPolicy refers to the self-adaptive energy-saving
location-sensing strategies. It can be defined with the combination of Context and
Feature. The entity Context refers to the contextual situation suitable for enabling
energy-saving self-adaptation. The context information primarily includes BatteryState,
BatteryLevel, and ApplicationState. The BatteryLevel refers to the remaining
battery percentage of the smartphone. The BatteryState refers to the charging or dis-
charging status of the smartphone. The ApplicationState refers to the background
or foreground execution of the application.



Chapter 7. Energy-saving Code Generator 160

1 entity AdaptationPolicy {

2 PolicyID

3 Context

4 Adaptation

5 }

6 entity Context {

7 BatteryState = (Charging | Discharging)

8 BatteryLevel = (Low | Medium | High)

9 ApplicationState (ForeGround | Background)

10 }

11 entity Feature {

12 SensingInterval

13 DecreasingFactor

14 BatteryAwareFunction

15 }

LISTING 7.1: Domain model for modeling location-sensing

The entity Feature includes the following: SensingInterval, DecreasingFactor,
and BatteryAwareFunction. The SensingInterval refers to the time difference
between two subsequent location-sensing requests. The DecreasingFactor refers to
the numerical value that will be used to calculate the sensing interval for each battery
drop in the exponential battery-aware function. The BatteryAwareFunction refers to
the type of change (exponential or linear) in fixing the sensing interval. This domain
model is used as a basis for defining the grammar of the DSML, which is part of eGEN.

7.2 eGEN Description

The basic idea of energy-saving location-sensing is to enforce energy-saving policies
in the following situations: (1) when the battery is discharging, and the battery level is
critical, (2) when the app is in the background. Therefore, eGEN is designed to give
domain analysts options to assign values for critical battery level, and sensing-interval



Chapter 7. Energy-saving Code Generator 161

FIGURE 7.1: eGEN eco-system

based on the application requirements. A domain-specific modeling language, and au-
tomatic code generation tool, namely eGEN has been developed, with the help of Xtext

and Xtend (Behrens et al., 2008), an Eclipse-based language development framework.
As shown in Figure 7.1, the uses of eGEN consists of seven steps. In the first step,
the domain analyst use the Eclipse editor to specify the energy-saving location-sensing
using the textual domain-specific modeling language. In the second step, the editor cre-
ates the .egen model. In the third step, the validator module of Xtext checks the .egen
model whether it is following the eGEN meta-model defined in DSML. In the fourth
step, the code generator takes the validated .egen model as the input and generates the
Java code using model-to-text transformation in the fifth step. Here, the code generator
converts the textual .egen model to a native Android code. The generated code contains
the self-adaptive location-sensing combined with battery-aware code. In the sixth step,
the developer could add the generated code to existing Android applications to make
it energy-aware. Finally, in the seventh step, the updated Android project can be built
and installed on the Android device by the user. The DSML enables the definition of
context and run-time re-configurations. The adaptation policies written in eGEN are
more concise, easier to maintain, can be written quickly.



Chapter 7. Energy-saving Code Generator 162

7.2.1 Technical background

A domain-specific language (DSL) and automatic code generation tool, namely eGEN
has been developed with the help of Xtext and Xtend, an Eclipse-based language de-
velopment framework. Xtext covers all aspects of language infrastructure including a
parser, linker, compiler, interpreter, and IDE support. Especially, Xtext with Eclipse
provides syntax coloring and code completion features to make the job easier for the
developers. Additionally, Xtext offers validation, code generation, customization, and
many more features. This makes Xtext a suitable language development framework for
developing domain-specific languages. The developed DSL specification is defined in
grammar like EBNF form with the help of Xtext. The self-adaptation policies can be
created with the file extension .egen by using the eGEN tool. The DSL enables the
definition of context and run-time re-configurations. The adaptation policies written in
eGEN are more concise, easier to maintain, can be written quickly. The eGEN tool uses
the following Android APIs to achieve self-adaptation: Battery Manager API, Fused

Location API, and Android Activity Life Cycle. Here, Battery Manager API provides a
method for querying battery and charging properties; Fused Location API provides the
ability to control location-sensing; and Android Activity Life Cycle helps to identify the
status of the Android activity. The source code of eGEN is available in GitHub3 for use.

7.2.2 eGEN grammar

This subsection describes the eGEN grammar along with the structure of the language
elements such as features, context, and adaptation policy. The defined grammar is easy
to understand, and it allows even a non-programmer to model the textual adaptation
policy for energy-aware self-adaptive location-sensing. In addition, the DSL grammar
is platform-independent, and it can be applied to other platforms as well.

3https://github.com/marimuthuc/egen

https://github.com/marimuthuc/egen


Chapter 7. Energy-saving Code Generator 163

Allowed features

The feature element of eGEN is used to define the application requirements that affect
the battery consumption of smartphone devices. Especially in location-based applica-
tions, the features like location-sensing interval, type of change in sensing interval play
a significant role in deciding the self-adaptive location-sensing strategies. Therefore, in
eGEN, the values for Features that are allowed during the definition of features have
been fixed, as shown in 7.2.

1 Features:

2 SensingInterval | Decreasing_Factor | BatteryAwareFunction;

LISTING 7.2: Structure of the features values

As shown in Listing 7.2, eGEN allows following Features for specifying energy-aware
requirements:

• SensingInterval refers to the time difference between two subsequent location-
sensing requests.

• DecreasingFactor refers to the numerical value that will be used to calculate the
sensing interval for each battery drop in the exponential battery-aware function.

• BatteryAwareFunction refers to the type of change (exponential or linear) in
fixing the sensing interval.

Feature definition

Each Feature can have their own rules for defining the corresponding values as shown
in Listing 7.3. The rules for defining feature values are given below:

• The definition of location-sensing interval starts with the keyword "SensingInterval"
and can be assigned with an integer value (refer lines1 − 2 in listing 7.3). Here,
the "SensingInterval" must be assigned in milliseconds.



Chapter 7. Energy-saving Code Generator 164

• The definition of decreasing factor starts with the keyword "DecreasingFactor"
and can be assigned with the integer value (refer lines3 − 4 in listing 7.3) as
decided by the domain analyst.

• The definition of a type of battery-aware function starts with defining the value
for keyword "BatteryAwareFunction" and can be assigned with one of the fol-
lowing fixed values: linear, exponential (refer lines5 − 6 in listing 7.3).

1 SensingInterval:

2 ’SensingInterval’ ’=’ ivalue = MYINT_T;

3 DecreasingFactor:

4 ’DecreasingFactor’ ’=’ ivalue=MYINT_T;

5 BatteryAwareFunction:

6 ’BatteryAwareFunction’ ’=’ value=(’Exponential’ | ’Linear’)

;

LISTING 7.3: Structure of feature definition

Allowed context

The Context element of eGEN is used to define the valid situations to enforce self-
adaptive energy-saving policies of smartphone applications. For location-based appli-
cations, the following context is considered in eGEN: remaining battery percentage,

charging state of the device, and state of the application.

1 Context:

2 BatteryState | BatteryLevel | AppState | Threshold_Medium |

Threshold_High

LISTING 7.4: Structure of the context values

As shown in Listing 7.4, eGEN allows following Context for specifying energy-saving
situations:

• BatteryState refers to the charging or discharging status of the smartphone.



Chapter 7. Energy-saving Code Generator 165

• BatteryLevel refers to the remaining battery percentage of the smartphone. Fur-
ther, the context Threshold_High and Threshold_Medium is used to define the
maximum and medium battery percentage for triggering self-adaptive behavior.

• ApplicationState refers to the background or foreground execution of the ap-
plication.

Context definition

According to eGEN grammar, the definition of each allowed context can have its pre-
defined values, and domain analyst defined values.

1 BatteryState:

2 ’BatteryState’ ’=’ value=(’Charging’ | ’Discharging’);

3 BatteryLevel:

4 ’BatteryLevel’ ’=’ value=(’High’ | ’Medium’ | ’Low’);

5 Threshold_High:

6 ’Threshold_High’ ’=’ ivalue=MYINT_T;

7 Threshold_Medium:

8 ’Threshold_Medium’ ’=’ ivalue=MYINT_T;

9 AppState:

10 ’AppState’ ’=’ value=(’Foreground’ | ’Background’)

LISTING 7.5: Structure of the context constraints

As shown in Listing 7.5, the rules for specifying context values are given below:

• The definition of charging state of the device starts with the keyword "BatteryState"
and can have one of the following values: Charging, Discharging (refer lines1 − 2

in listing 7.5).

• The definition of remaining battery level starts with the keyword "BatteryLevel"
and can have any one of the following values: High, Medium, Low (refer lines3 − 4

in listing 7.5). Domain analyst can assign the values for High and Medium as an
integer value based on the application requirements (refer lines5 − 8 in listing



Chapter 7. Energy-saving Code Generator 166

7.5). The value Low will be inferred by the code generator script based on the
range given for High and Medium.

• The definition of application execution state starts with the keyword "AppState"
and can have any one of the following values: Foreground, Background (refer
lines9 − 10 in listing 7.5).

Adaptation policy

According to eGEN grammar, the definition of adaptation policy consists of assigning
five contexts and three features. The specification of a self-adaptive location-sensing
policy can have one or more entries differentiated with a unique ID.

1 Model:

2 eGEN += AdaptationPolicy*;

3 AdaptationPolicy:

4 ’AdaptationPolicy’ ivalue=MYINT_T ’{’ ’Condition’ ’{’

Situation1 = Context ’AND’ value=(Situation2);

5 Situation2:

6 Block = Situation3 ’}’ ’then’ ’Adaptation’ ’{’

FeatureBlock1 = Features ’AND’ value=(FeatureBlock2) ’}’ ’}

’;

7 Situation3:

8 Context = Context ’AND’ value=(Situation4);

9 Situation4:

10 Context = Context ’AND’ value=(Situation5);

11 Situation5:

12 Context = Context ’AND’ value=(Context);

13 FeatureBlock2:

14 Feature2 = Features ’AND’ value=(Features);

LISTING 7.6: Structure of the adaptation policy

As shown in Listing 7.6, a single adaptation policy definition contains following parts:

• starts with the keyword AdaptationPolicy to describe an adaptation policy fol-
lowed by the unique ID of type integer (refer lines3 − 4 in listing 7.6).



Chapter 7. Energy-saving Code Generator 167

• an opening brace for adaptation policy definition

• a keyword Condition to describe the allowed context changes that trigger the
self-adaptation

• an opening brace for context block definition

• five condition definition, each consists of context assigned with allowed values.
The description of context values is given in Listing 7.5. Here, the context defi-
nition can be in any order. However, the repetition of context information is not
allowed inside the same context block.

• multiple valid contexts can be separated by the keyword Condition.

• a closing brace for context block

• a keyword Adaptation to describe the corresponding set of features to be exe-
cuted at run-time for the contextual changes described with the keyword Condition.

• an opening brace for a feature block

• three feature definition, each consists of features assigned with allowed values.
The description of feature definition is given in Listing 7.3. Here, the feature
definition can be in any order. However, the repetition of feature information is
not allowed inside the same feature block.

• multiple adaptations can be separated by the keyword Condition.

• a closing brace for a feature block

• Finally, a closing brace for adaptation policy

7.2.3 Energy-aware code generator

The code generator is defined by mapping each element in the eGEN DSML to a corre-
sponding Android library. The BatteryManager class is used to fetch the BatteryState,
BatteryLevel of the Android device. The application’s status is identified using the
Android activity lifecycle onStart(), onResume(), onPause(). The SensingInterval ,



Chapter 7. Energy-saving Code Generator 168

DecreasingFactor ,BatteryAwareFunction elements are mapped to the location re-
quest block of FusedLocationProviderClient API. Especially, the BatteryAwareFunction
uses the battery percentage fetched from battery manager and decreasing factor men-
tioned by domain analyst in the script to calculate the dynamic sensing interval. The
code generator creates following Java files that contains the artifacts for the self-adaptive
location-sensing: MainActivity .Java, LocationUtility .Java, BatteryAware.Java, and
AdaptationUtility .java. BatteryAware.java is the file that does the adaptive location-
sensing activity. MainActivity extends the BatteryAware activity and fetches the lo-
cation coordinates from the function onLocationUpdate() defined in the batteryAware
class. The application developers can modify MainActivity .java to write their business
logic. The file AdaptationUtility .java contains the code that alters the sensing-interval
based on the context provided. The battery state defined in the eGEN model is verified
against the charging status obtained from the BatteryManager API. LocationUtility .java
contains the code that does the location fetching activity as per the sensing-interval
captured in the AdaptationUtility .java. The generated code can be appended to the
existing Android projects to make their app self-adaptive for location-sensing.

7.3 Validation

The code generated by the eGEN tool is validated through controlled experiments. The
variables such as percentage of battery drop and location accuracy is used for validating
the tool. The code generator has been redefined till it produces the source code that
reduces battery consumption. In addition, the code has been defined to make sure that
it balances accuracy requirements with acceptable degradation. Two different subject
applications with the same functional requirements have been developed to validate the
code generated by eGEN. The subject application functionalities are given below:

• Location fetching: This functionality fetches the location coordinates of the user
device from GPS. The Fused-location provider-client API is used to fetch location
in the subject applications.



Chapter 7. Energy-saving Code Generator 169

• Location logging: This functionality sends the location coordinates to the Fire-
base database periodically. The time difference between the subsequent location-
sensing will be decided by the sensing-interval defined by the developer.

• Calculating Distance: This function calculates the distance covered by the user
with the help of GPS logs from the FireBase database. In addition, the application
would have a option to stop the location logging.

The two versions of subject applications have been developed as follows: (1) without
code from eGEN and (2) with code generated from eGEN. The first version of the
subject application has static sensing-interval and is considered too energy-hungry. The
sensing interval doesn’t change even if the device is running on a low battery. On
the other hand, the second subject application has been developed by applying code
generated from eGEN, which will work based on dynamically adaptive location-sensing
strategies. An excerpt of the adaptation policy is shown in Listing 7.7. The generated
Java code has been added to the first subject application to make it self-adaptive. As a
result, it produced the second subject application.

1 AdaptationPolicy 01 {

2 Condition {

3 BatteryState = Discharging AND

4 BatteryLevel = Low AND

5 Threshold_High = 63 AND

6 Threshold_Medium = 46 AND

7 AppState = Background

8 } then

9 Adaptation {

10 SensingInterval = 250 AND

11 Decreasing_Factor = 20 AND

12 BatteryAwareFunction = Linear

13 }

14 }

LISTING 7.7: An Excerpt from the egen model of subject application 2

As shown in Listing 7.7, one of the self-adaptive location-sensing policies would be to
execute an energy-efficient version when the device is running with a low-battery and



Chapter 7. Energy-saving Code Generator 170

0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4
Percentage of Battery Drop (%)

Without eGEN

With eGEN

Su
bj

ec
t A

pp
lic

at
io

n

FIGURE 7.2: Improvement in battery saving

in a discharging state. Similar to this adaptation policy, several other policies have been
defined for the second subject application.

The controlled experiments have been performed with fifteen trials for each subject
application on Redmi Note 8 running Android 10 to see the improvement in battery

consumption and accuracy. The BatteryConsumption has been calculated using the
Google Battery Historian tool in terms of PercentageofBatteryDrop. The Accuracy
has been calculated as the DistanceCovered using the GPS logs in meters. The output
of the subject application without the generated code and with the generated code have
been analyzed. The results of Battery consumption are shown in Figure 7.2, and the
accuracy (distance covered) is shown in Figure 7.3. As observed from Figure 7.2, the
inter-quartile range of percentage of battery drop produced by the first subject appli-
cation (without eGEN) is between 0.9% to 1.0%. On the other hand, the inter-quartile
range of percentage of battery drop produced by the second subject application (with
eGEN) is between 0.7% to 0.8%. The results show that the code generated by eGEN
produce battery-aware code that consumes comparatively less battery for its operation.

With respect to Accuracy parameter, as shown in Figure 7.3, the inter-quartile range of
distance covered produced by the first subject application (without eGEN) is between
505 meters to 513 meters. In contrast, the inter-quartile range of distance covered pro-
duced by the second subject application (with eGEN) is between 492 meters to 497
meters. As a result, the second application shows an inaccurate location with 13 meters



Chapter 7. Energy-saving Code Generator 171

485 490 495 500 505 510 515 520
Covered Distance (m)

Without eGEN

With eGEN
Su

bj
ec

t A
pp

lic
at

io
n

FIGURE 7.3: Degrade in accuracy

to 16 meters difference which is negligible when the second subject application reduces
the percentage of battery drop. Therefore, from the results, it is empirically evident that
the code generated by eGEN can balance between battery and accuracy requirements
with acceptable level of degradation.

7.4 Summary

This chapter presents a description of eGEN tool for modeling energy-aware self-adaptive
behaviors of location-based mobile applications. The primary contribution of this ob-
jective is eGEN tool which aids the domain analyst and developers in designing and
developing battery-aware code for energy-saving location-sensing. eGEN is developed
using Xtext and Xtend as an Eclipse plugin. eGEN currently supports the Android plat-
form and covers the battery manager API, fused location provider client, and Android

activity life cycle. The case study shows that eGEN provides the ability to specify
self-adaptive location-sensing strategies before development. The subject application
developed using the generated code shows less battery consumption with negligible
degradation in accuracy. The primary target audience of eGEN tool are the domain
analysts and developers. The domain analyst would use the tool for specifying the
energy-saving adaptation plans, and the developer would use the generated code in the
existing Android applications for handling location-based services.





Chapter 8

CONCLUSIONS AND FUTURE
WORKS

This chapter of the thesis concludes our work by giving a summary of the preceding
chapters and describing some of the future work directions.

8.1 Thesis Summary

The thesis starts with introducing the motivation, running example, and research ob-
jectives of this research work. Then, in Chapter 2, it presents the following back-
ground information relevant to this thesis: smartphone energy inefficiencies, energy-

aware self-adaptive software, existing modeling frameworks for self-adaptive software,

feature-oriented software development, and model-driven development. In Chapter 3,
a detailed summary of relevant research has been presented under empirical studies,

post-development approaches, and pre-development approaches. The research gaps
highlighted at the end of Chapter 3 positions this research in the early stages of software
development. The remaining chapters of this thesis present the respective contributions
for each research objective. The research questions introduced in the motivation section
of Chapter 1 considered throughout this thesis to find out appropriate answers. Here, the

173



Chapter 8. Conclusion and Future Work 174

research questions listed and identified answers are discussed to recapitulate the thesis
contribution:

• RQ1: What solutions do developers apply to reduce the energy consumption of
commonly used energy-hungry components?
The empirical studies in software engineering have been used to find out the
energy-saving solutions, and the answer is presented in Chapter 4. Three types
of empirical studies have been conducted, which include controlled experiments,

qualitative data analysis of Stack Overflow data, and quantitative data analysis of

GitHub data. The controlled experiments results show that the popular location-
APIs use inertial sensors to reduce Android apps’ battery consumption provided
the sensors are used only when needed. The qualitative analysis of Stack Over-
flow discussions about location-based Android applications’ energy consumption
helps to identify the energy-saving solutions suggested by the developers. Over-
all, the expert developers recommend using self-adaptive location-sensing along
with the battery manager. Analyzing GitHub commits shows that developers have
applied energy-saving solutions after deployment and it resulted in more devel-
opment efforts. Hence, introducing energy-saving solutions early would help de-
velopers get more clarity on energy-saving before development to reduce devel-
opment efforts.

• RQ2: Is it possible to consider energy-efficiency as an essential non-functional
requirement in the early stages of software development?
Yes, it is possible to introduce energy-efficiency as an essential non-functional
requirement in the early stages, and the proof of concept is presented in Chapter
5. In literature, there exist several modeling frameworks to model self-adaptive
behavior as a non-functional requirement. But none of the existing modeling
frameworks can explicitly specify the energy-related requirements. Hence, in
Chapter 5, a conceptual modeling framework for energy-aware modeling with
self-adaptation planning is discussed. The energy-aware modeling framework
answer this research question by categorizing the requirements into the following
models: energy-aware context model, energy-aware feature model, and energy-

saving adaptation plan. The popular feature-oriented domain analysis framework
has been adopted with suitable extensions to introduce formalism in energy-aware



Chapter 8. Conclusion and Future Work 175

modeling. The energy-aware context model classifies the requirements into the
following based on its impact on energy consumption: primary-influencing con-

text, secondary-influencing context, and user-influencing context. The energy-

aware feature model classifies the requirements into the following based on its
energy consumption: energy-hungry features, energy-efficient alternatives, and

energy-friendly features. The configurations generated from energy-aware con-

text model and energy-aware feature model could be combined to plan energy-
saving adaptation plans. The case study presented in Chapter 5 shows the effi-
cacy of the energy-aware modeling framework. The case study results show that
it is possible to introduce energy-related requirements along with self-adaptive re-
quirements in the early stages with the help of an energy-aware modeling frame-
work.

• RQ3: What is necessary to support domain analysts with suitable tool support to
consider energy-efficiency in the early stages?
The answer to this research question is presented in Chapter 6. The conceptual
framework presented in Chapter 5 is a manual feature modeling process and has
no tool support. Therefore, it has been decided to find available options to pro-
vide tool support for the energy-aware modeling framework. After a thorough
search in the literature, the popular feature modeling tool feature IDE is selected
to develop tool support as it is an open-source tool. As a result, the extension
points of FeatureIDE have been studied and analyzed to introduce concepts pre-
sented in the energy-aware modeling framework. Finally, three project types have
been added to FeatureIDE’s project manager. It includes energy-aware context

modeling, energy-aware feature modeling, and energy-saving adaptation model-

ing. A colored notations representing the energy-aware labels have been added
to the FeatureIDE code base under each model type. Finally, the XML adapta-
tion model generator has been added to the FeatureIDE code base to help model
energy-saving adaptation plans. The developed tool is named as energy-saving
Adaptation Planner (eSAP) and is freely available for use and contribution in
GitHub1. The case study shows that eSAP contains all necessary components to
model the energy-aware self-adaptive behavior.

1https://github.com/marimuthuc/esap

https://github.com/marimuthuc/esap


Chapter 8. Conclusion and Future Work 176

• RQ4: Is it possible to support developers by transforming design-time models to
source code for reusable components to reduce the development efforts?
Yes, it is possible to generate source code for battery-aware location-sensing from
the design-time artifacts. In Chapter 7, the energy-saving Code Generator (eGEN)
is discussed with a textual domain-specific modeling language and code genera-
tor. The textual domain-specific language has been designed after conducting
the domain analysis on popular location-based applications to ensure it covers
all the modeling elements. Domain-specific modeling has been developed using
the Xtext tool. The model elements are concise and easy to understand to the
domain analyst which help introduce better-awareness in the early stages. Fur-
ther, a corresponding code generator has been developed to generate native Java
code, including battery manager API and Fused Location Provider Client API.
The code generator tool eGEN is developed as an Eclipse plugin and freely avail-
able for use in GitHub2. The experimental results show that the code generation
of the battery-aware source code is possible for location-sensing. The subject
applications show that the generated code could be added to existing Android ap-
plications to make them battery-aware. The experimental results show that the
generated code balances between energy and accuracy requirements of location-
based Android applications.

In summary, this thesis contributes the following to the research community:

• Energy-saving usage patterns of location-based Android applications

• Research efforts needed for fixing energy-related issues after deployment in open
source applications

• An energy-aware modeling framework for energy-aware self-adaptive software

• An energy-saving adaptation planner for energy-aware self-adaptive software

• An energy-saving code generator for location-based applications
2https://github.com/marimuthuc/egen

https://github.com/marimuthuc/egen


Chapter 8. Conclusion and Future Work 177

8.2 Conclusion

The results of empirical studies (Objective 1) show that the expert developers suggest
self-adaptive location-sensing strategies to reduce battery consumption. However, an-
alyzing GitHub commits implies that the introduction of energy-aware self-adaptive
behavior after deployment would increase the development efforts. Therefore, the de-
cision to contribute tool support to the early stages of software development has been
taken to carry out the remaining research activities. The case study conducted to show
the efficacy of the energy-aware modeling framework (Objective 2) shows that self-
adaptive behavior would be a potential solution for solving the smartphone’s energy
consumption issues. It also highlights the importance of classifying the context and
features based on their impact on battery consumption. However, the conceptual frame-
work lacks tool support and providing tool would help the domain analyst. Therefore,
to consider the self-adaptive energy-savings in the early stages, tool support eSAP has
been developed as part of research objective 3, which will be used during the domain
analysis phase. This tool facilitates the domain analyst to analyze the possibility of in-
troducing self-adaptive energy-saving strategies to the application under development.
The tool produces the following artifacts: energy-aware feature model, energy-aware

context model, and energy-aware adaptation model. This tool has been developed on
top of the popular feature modeling tool, FeatureIDE. The case study and results sug-
gest that the energy-aware modeling framework and the eSAP tool would serve as the
starting point in the research area of specifying and analyzing the energy-saving self-
adaptive requirements in the early stage of software development. Finally, for research
objective 4, a code generator, namely eGEN has been developed that automatically gen-
erates the battery-aware code for energy-saving adaptive location-sensing. The gener-
ated code could be added to the existing location-based Android applications to make it
energy-aware self-adaptive software. The results show that the subject application with
generated code can balance battery consumption and accuracy-related requirements.
Overall, the presented methodology would aid the domain analyst to enumerate energy-
saving opportunities in the early stages. The artifact produced by eSAP would help
the developers to make energy-saving decisions at the code level. Further, the code
generated from eGEN would reduce the development efforts to introduce energy-aware
self-adaptive behavior for the developers.



Chapter 8. Conclusion and Future Work 178

8.3 Future Work

The energy-aware modeling framework, eSAP and eGEN would serve as the starting
point in the research area of specifying and analyzing the energy-saving self-adaptive
requirements in the early stage of software development. However, there are several
improvements to the developed tools that can be carried out in the future, as listed
below:

• The first potential future work would be the addition of quantitative aspects of
energy-related requirements to the models produced by eSAP. The energy-aware
modeling framework focuses only on the qualitative aspects of the energy-related
requirements. Adding quantitative aspects could make the models more realistic.

• The negative impact of energy-savings is not explicitly considered in the current
version of eSAP tool. In the future, a module could be added to consider the trade-
off between other affected software quality factors caused by strict energy-saving
adaptations.

• The preliminary version of eGEN supports only Android platform, and in the
future, support to iOS platform could also be considered. In addition, location-
based features such as activity recognition and inertial sensors like accelerometer
and magnetometer could also be added in the next version. Furthermore, the
developed tool could be evaluated with Mobile app developers for its usability
and completeness by conducting industrial case studies.

• The eGEN tool is restricted only to the Android application’s location-sensing. In
future, the eGEN can be extended to cover other energy-hungry components such
as screen, CPU, GPU, and Network.



Appendix A

PUBLICATIONS

Journal Publications

Published

1. Marimuthu C, K. Chandrasekaran, Sridhar Chimalakonda. (2020). "Energy
Diagnosis of Android Applications: A Thematic Taxonomy and Survey." ACM

Computing Surveys, ACM, 53 (6), Article 117, 36 Pages, DOI: https://doi
.org/10.1145/3417986

2. Marimuthu C, Sridhar Chimalakonda, K. Chandrasekaran. (2020). "How do
open source app developers perceive API changes related to Android battery op-
timization? An empirical study." Journal of Software: Practice and Experience,
Wiley, p. 1-20, DOI: https://doi.org/10.1002/spe.2928

3. Marimuthu Chinnakali, Sanjana Palisetti, K. Chandrasekaran. (2020). "Orga-
nizing the knowledge from Stack Overflow about location-sensing of Android
applications." IET Software. IET Digital Library, 14 (3), p. 221-233, DOI:
https://doi.org/10.1049/iet-sen.2019.0284

179

https://doi.org/10.1145/3417986
https://doi.org/10.1145/3417986
https://doi.org/10.1002/spe.2928
https://doi.org/10.1049/iet-sen.2019.0284


Appendix A. PUBLICATIONS 180

Under Review

1. Marimuthu C, Sridhar Chimalakonda, and K. Chandrasekaran., "An Energy-
aware Modeling Framework for Self-adaptive Smartphone Applications." Journal

of Systems and Software. Elsevier.

Conference Publications

Published
1. Marimuthu C, Sanjana Palisetti, K. Chandrasekaran. (2019). "An empirical

study on managing energy and accuracy requirements of location based android
applications". In Proceedings of the 31st International Conference on Software

Engineering and Knowledge Engineering (SEKE 2019), Lisbon, Portugal (pages.
553-556). DOI: https://doi.org/10.18293/SEKE2019-179

2. Marimuthu C, K. Chandrasekaran. (2017). "Software engineering aspects of
green and sustainable software: A systematic mapping study". In Proceedings
of the 10th Innovations in Software Engineering Conference (ISEC 2017), ACM,
Jaipur, India (Pages 34-44). DOI: https://doi.org/10.1145/3021460
.3021464

3. Marimuthu C, K. Chandrasekaran. (2016). "Feature-Oriented Domain Anal-
ysis Framework for Energy-Aware Self-Adaptive Software". In Proceedings of
the IEEE Green Computing and Communications (GreenCom), IEEE, Chengdu,
China (Pages 773-776). DOI: https://doi.org/10.1109/iThings-GreenCom

-CPSCom-SmartData.2016.163

Under Review

1. Marimuthu C, Kowndinya Boyalakuntla, Sridhar Chimalakonda, and K. Chan-
drasekaran., "eGEN: An Energy-saving Modeling Language and Code Generator
for Location-sensing of Mobile Apps." Submitted to 36th IEEE/ACM Interna-

tional Conference on Automated Software Engineering (ASE 2021).

https://doi.org/10.18293/SEKE2019-179
https://doi.org/10.1145/3021460.3021464
https://doi.org/10.1145/3021460.3021464
https://doi.org/10.1109/iThings-GreenCom-CPSCom-SmartData.2016.163
https://doi.org/10.1109/iThings-GreenCom-CPSCom-SmartData.2016.163


Appendix B

BIO-DATA

Name : Marimuthu C

Email Id : muthucwc.seopro@gmail.com

Date of Birth : May 12, 1990
Address : 56A, Kottamedu,

Mettur Road, Mecheri,
Salem, Tamilnadu,
PIN: 636 453.

Educational Qualifications:

Degree Year of Passing University

Ph.D., (CSE) 2015 - Pursuing National Institute of Technology Karnataka, Surathkal.

M.Tech., (CSE) 2015 National Institute of Technology Karnataka, Surathkal.

B.E., (CSE) 2007 Sona College of Technology, Salem.

181



Appendix B. Bio-Data 182

Short Bio and Research Interest:

Marimuthu C is a Ph.D. student in the Department of Computer Science and Engineer-
ing at National Institute of Technology Karnataka, Surathkal . He is working under the
supervision of Prof. K. Chandrasekaran for his Ph.D. degree in the area of "Model-
driven development of Energy-aware Self-adaptive Software". He also works in the
field of Empirical Software Engineering and Mining Software Repositories. Specifi-
cally, he works with data available on StackOverflow and GitHub to summarize the ex-
isting knowledge of developers and their perspectives on Non-functional requirements.

His research interest includes Software Engineering, particularly Energy-aware Soft-
ware, Empirical Software Engineering, Mining Software Repositories, Machine Learn-
ing for Software Engineering, Modeling of Self-adaptive Software, Domain-specific
Languages.



Bibliography

Abbasi, A. M., Al-Tekreeti, M., Naik, K., Nayak, A., Srivastava, P., and Zaman, M.
(2018). “Characterization and detection of tail energy bugs in smartphones.” IEEE

Access, 6, 65098–65108.

Acher, M., Collet, P., Lahire, P., and France, R. B. (2013). “Familiar: A domain-specific
language for large scale management of feature models.” Science of Computer Pro-

gramming, 78(6), 657–681.

Ahmad, M., Bruel, J.-M., Laleau, R., and Gnaho, C. (2012). “Using relax, sysml and
kaos for ambient systems requirements modeling.” Procedia Computer Science, 10,
474–481.

Ahmad, R. W., Gani, A., Hamid, S. H. A., Xia, F., and Shiraz, M. (2015). “A review on
mobile application energy profiling: Taxonomy, state-of-the-art, and open research
issues.” Journal of Network and Computer Applications, 58, 42–59.

Ahmed, S. and Bagherzadeh, M. (2018). “What do concurrency developers ask about?:
a large-scale study using stack overflow.” Proceedings of the 12th ACM/IEEE Inter-

national Symposium on Empirical Software Engineering and Measurement, ACM,
30.

Antkiewicz, M. and Czarnecki, K. (2004). “Featureplugin: feature modeling plug-
in for eclipse.” Proceedings of the 2004 OOPSLA workshop on eclipse technology

eXchange, ACM, 67–72.

Apel, S. and Kästner, C. (2009). “An overview of feature-oriented software develop-
ment..” J. Object Technol., 8(5), 49–84.

183



References 184

Arnold, M., Vechev, M., and Yahav, E. (2011). “Qvm: An efficient runtime for detect-
ing defects in deployed systems.” ACM Transactions on Software Engineering and

Methodology (TOSEM), 21(1), 2.

Asadi, M., Soltani, S., Gasevic, D., Hatala, M., and Bagheri, E. (2014). “Toward au-
tomated feature model configuration with optimizing non-functional requirements.”
Information and Software Technology, 56(9), 1144–1165.

Atkinson, C. and Kuhne, T. (2003). “Model-driven development: a metamodeling foun-
dation.” IEEE software, 20(5), 36–41.

Baddour, A. M., Sang, J., Hu, H., Akbar, M. A., Loulou, H., Ali, A., and Gulzar, K.
(2019). “Cim-css: A formal modeling approach to context identification and man-
agement for intelligent context-sensitive systems.” IEEE Access, 7, 116056–116077.

Banerjee, A., Chong, L. K., Ballabriga, C., and Roychoudhury, A. (2018). “Energy-
patch: Repairing resource leaks to improve energy-efficiency of android apps.” IEEE

Transactions on Software Engineering, 44(5), 470–490.

Banerjee, A., Guo, H.-F., and Roychoudhury, A. (2016). “Debugging energy-efficiency
related field failures in mobile apps.” Proceedings of the International Conference on

Mobile Software Engineering and Systems, ACM, 127–138.

Banerjee, A. and Roychoudhury, A. (2016). “Automated re-factoring of android apps
to enhance energy-efficiency.” Mobile Software Engineering and Systems (MOBILE-

Soft), 2016 IEEE/ACM International Conference on, IEEE, 139–150.

Bao, L., Lo, D., Xia, X., Wang, X., and Tian, C. (2016). “How android app devel-
opers manage power consumption?: An empirical study by mining power manage-
ment commits.” Proceedings of the 13th International Conference on Mining Soft-

ware Repositories, ACM, 37–48.

Bao, T., Zheng, Y., and Zhang, X. (2012). “White box sampling in uncertain data
processing enabled by program analysis.” ACM SIGPLAN Notices, Vol. 47, ACM,
897–914.

Barnett, S., Avazpour, I., Vasa, R., and Grundy, J. (2019). “Supporting multi-view
development for mobile applications.” Journal of Computer Languages, 51, 88–96.



References 185

Batory, D. (2005). “Feature models, grammars, and propositional formulas.” Proceed-

ings of the 9th International Conference on Software Product Lines, SPLC’05, Berlin,
Heidelberg, Springer-Verlag, 7–20.

Behrens, H., Clay, M., Efftinge, S., Eysholdt, M., Friese, P., Köhnlein, J., Wannheden,
K., and Zarnekow, S. (2008). “Xtext user guide.” Dostupné z WWW: http://www.

eclipse. org/Xtext/documentation/1_0_1/xtext. html, 7.

Bellas, N., Hajj, I., Polychronopoulos, C., and Stamoulis, G. (2000). “Architectural
and compiler techniques for energy reduction in high-performance microprocessors.”
Very Large Scale Integration (VLSI) Systems, IEEE Transactions on, 8(3), 317–326.

Benavides, D., Segura, S., and Ruiz-Cortés, A. (2010). “Automated analysis of feature
models 20 years later: A literature review.” Information systems, 35(6), 615–636.

Benavides, D., Segura, S., Trinidad, P., and Cortés, A. R. (2007). “Fama: Tooling a
framework for the automated analysis of feature models..” VaMoS, 2007, 01.

Beverungen, D., Breidbach, C. F., Poeppelbuss, J., and Tuunainen, V. K. (2019). “Smart
service systems: An interdisciplinary perspective..” Inf. Syst. J., 29(6), 1201–1206.

Blei, D. M., Ng, A. Y., and Jordan, M. I. (2003). “Latent dirichlet allocation.” Journal

of machine Learning research, 3(Jan), 993–1022.

Brambilla, M., Cabot, J., and Wimmer, M. (2017). “Model-driven software engineering
in practice.” Synthesis lectures on software engineering, 3(1), 1–207.

Braun, V. and Clarke, V. (2013). Successful qualitative research: A practical guide for

beginners. sage.

Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F., and Mylopoulos, J. (2004). “Tro-
pos: An agent-oriented software development methodology.” Autonomous Agents

and Multi-Agent Systems, 8(3), 203–236.

Brouwers, N., Zuniga, M., and Langendoen, K. (2014). “Neat: a novel energy analysis
toolkit for free-roaming smartphones.” Proceedings of the 12th ACM conference on

embedded network sensor systems, ACM, 16–30.



References 186

Brown, G., Cheng, B. H., Goldsby, H., and Zhang, J. (2006). “Goal-oriented specifica-
tion of adaptation requirements engineering in adaptive systems.” Proceedings of the

2006 international workshop on Self-adaptation and self-managing systems, ACM,
23–29.

Calefato, F., Lanubile, F., and Novielli, N. (2018). “How to ask for technical help?
evidence-based guidelines for writing questions on stack overflow.” Information and

Software Technology, 94, 186–207.

Capurso, N., Mei, B., Song, T., Cheng, X., and Yu, J. (2018). “A survey on key fields
of context awareness for mobile devices.” Journal of Network and Computer Appli-

cations, 118, 44–60.

Capurso, N., Song, T., Cheng, W., Yu, J., and Cheng, X. (2017). “An android-based
mechanism for energy efficient localization depending on indoor/outdoor context.”
IEEE Internet of Things Journal, 4(2), 299–307.

Carette, A., Younes, M. A. A., Hecht, G., Moha, N., and Rouvoy, R. (2017). “Investigat-
ing the energy impact of android smells.” 2017 IEEE 24th International Conference

on Software Analysis, Evolution and Reengineering (SANER), IEEE, 115–126.

Carroll, A. and Heiser, G. (2010). “An analysis of power consumption in a smart-
phone.” Proceedings of the 2010 USENIX Conference on USENIX Annual Technical

Conference, USENIXATC’10, Berkeley, CA, USA, USENIX Association, 21–21,
<http://dl.acm.org/citation.cfm?id=1855840.1855861>.

Cañete, A., Horcas, J.-M., Ayala, I., and Fuentes, L. (2020). “Energy efficient adap-
tation engines for android applications.” Information and Software Technology, 118,
106220.

Ceri, S., Daniel, F., Matera, M., and Facca, F. M. (2007). “Model-driven development of
context-aware web applications.” ACM Transactions on Internet Technology (TOIT),
7(1), 2–es.

Chen, G. and Kotz, D. (2000). “A survey of context-aware mobile computing research.”
Report No. 867843, Hanover, NH, USA.



References 187

Cheng, B. H., De Lemos, R., Giese, H., Inverardi, P., Magee, J., Andersson, J., Becker,
B., Bencomo, N., Brun, Y., Cukic, B., et al. (2009a). “Software engineering for
self-adaptive systems: A research roadmap.” Software engineering for self-adaptive

systems, Springer, 1–26.

Cheng, B. H., Sawyer, P., Bencomo, N., and Whittle, J. (2009b). “A goal-based mod-
eling approach to develop requirements of an adaptive system with environmental
uncertainty.” International Conference on Model Driven Engineering Languages and

Systems, Springer, 468–483.

Cho, D.-K., Lee, U., Noh, Y., Park, T., and Song, J. (2015). “Placewalker: An energy-
efficient place logging method that considers kinematics of normal human walking.”
Pervasive and Mobile Computing, 19, 24–36.

Choi, T., Chon, Y., and Cha, H. (2017). “Energy-efficient wifi scanning for localization.”
Pervasive and Mobile Computing, 37, 124–138.

Chowdhury, S., Di Nardo, S., Hindle, A., and Jiang, Z. M. J. (2018). “An exploratory
study on assessing the energy impact of logging on android applications.” Empirical

Software Engineering, 23(3), 1422–1456.

Classen, A., Boucher, Q., and Heymans, P. (2011). “A text-based approach to feature
modelling: Syntax and semantics of tvl.” Science of Computer Programming, 76(12),
1130–1143.

Clements, P. and Northrop, L. (2002). Software product lines. Addison-Wesley,.

Clements, P. C. and Northrop, L. (2001). Software Product Lines: Practices and Pat-

terns. SEI Series in Software Engineering. Addison-Wesley.

Cruz, L. and Abreu, R. (2018). “Using Automatic Refactoring to Improve Energy Ef-
ficiency of Android Apps.” Proceedings of the XXI Iberoamerican Conference on

Software Engineering, 163–176.

Cruz, L., Abreu, R., and Rouvignac, J.-N. (2017). “Leafactor: Improving energy
efficiency of android apps via automatic refactoring.” 2017 IEEE/ACM 4th Inter-

national Conference on Mobile Software Engineering and Systems (MOBILESoft),
IEEE, 205–206.



References 188

Czarnecki, K. and Eisenecker, U. W. (2000). Generative Programming: Methods, Tools,

and Applications. ACM Press/Addison-Wesley Publishing Co., New York, NY, USA.

Dao, T. A., Singh, I., Madhyastha, H. V., Krishnamurthy, S. V., Cao, G., and Mohapatra,
P. (2017). “Tide: A user-centric tool for identifying energy hungry applications on
smartphones.” IEEE/ACM Transactions on Networking, 25(3), 1459–1474.

Dardenne, A., Van Lamsweerde, A., and Fickas, S. (1993). “Goal-directed requirements
acquisition.” Science of computer programming, 20(1-2), 3–50.

Datta, S. K., Bonnet, C., and Nikaein, N. (2014). “Self-adaptive battery and context
aware mobile application development.” 2014 International Wireless Communica-

tions and Mobile Computing Conference (IWCMC), IEEE, 761–766.

De Lemos, R., Giese, H., Müller, H. A., Shaw, M., Andersson, J., Litoiu, M., Schmerl,
B., Tamura, G., Villegas, N. M., Vogel, T., et al. (2013). “Software engineering for
self-adaptive systems: A second research roadmap.” Software Engineering for Self-

Adaptive Systems II, Springer, 1–32.

Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer, T. K., and Harshman, R. (1990).
“Indexing by latent semantic analysis.” Journal of the American society for informa-

tion science, 41(6), 391–407.

Delaluz, V., Kandemir, M., Vijaykrishnan, N., and Irwin, M. J. (2000). “Energy-
oriented compiler optimizations for partitioned memory architectures.” Proceed-

ings of the 2000 International Conference on Compilers, Architecture, and Syn-

thesis for Embedded Systems, CASES ’00, New York, NY, USA, ACM, 138–147,
<http://doi.acm.org/10.1145/354880.354900>.

Desmet, B., Vallejos, J., Costanza, P., De Meuter, W., and D’Hondt, T. (2007).
“Context-oriented domain analysis.” International and Interdisciplinary Conference

on Modeling and Using Context, Springer, 178–191.

Dey, A. K. (2001). “Understanding and using context.” Personal Ubiquitous Comput.,
5(1), 4–7.



References 189

Dong, M. and Zhong, L. (2011). “Self-constructive high-rate system energy modeling
for battery-powered mobile systems.” Proceedings of the 9th international conference

on Mobile systems, applications, and services, ACM, 335–348.

dos Santos, E. B., Andrade, R. M., and de Sousa Santos, I. (2021). “Runtime testing of
context-aware variability in adaptive systems.” Information and Software Technology,
131, 106482.

Duhoux, B., Dumas, B., Leung, H. S., and Mens, K. (2019). “Dynamic visualisation
of features and contexts for context-oriented programmers.” Proceedings of the ACM

SIGCHI Symposium on Engineering Interactive Computing Systems, 1–6.

Easterbrook, S., Singer, J., Storey, M.-A., and Damian, D. (2008). “Selecting empirical
methods for software engineering research.” Guide to advanced empirical software

engineering, 285–311.

Eric, S. Y. (2009). “Social modeling and i.” Conceptual modeling: Foundations and

applications, Springer, 99–121.

France, R. B., Ghosh, S., Dinh-Trong, T., and Solberg, A. (2006). “Model-driven de-
velopment using uml 2.0: promises and pitfalls.” Computer, 39(2), 59–66.

Franch, X., López, L., Cares, C., and Colomer, D. (2016). “The i* framework for
goal-oriented modeling.” Domain-specific conceptual modeling, Springer, 485–506.

Frank, U. (2013). “Domain-specific modeling languages: requirements analysis and
design guidelines.” Domain Engineering, Springer, 133–157.

Georgiou, S., Rizou, S., and Spinellis, D. (2019). “Software development lifecycle for
energy efficiency: Techniques and tools.” ACM Comput. Surv., 52(4).

Gottschalk, M., Jelschen, J., and Winter, A. (2014). “Saving energy on mobile devices
by refactoring..” EnviroInfo, 437–444.

Gottschalk, M., Jelschen, J., and Winter, A. (2016). “Refactorings for energy-
efficiency.” Advances and New Trends in Environmental and Energy Informatics,
Springer, 77–96.



References 190

Gottschalk, M., Josefiok, M., Jelschen, J., and Winter, A. (2012). “Removing energy
code smells with reengineering services.” INFORMATIK 2012.

Griss, M. L., Favaro, J., and d’Alessandro, M. (1998). “Integrating feature modeling
with the rseb.” Proceedings. Fifth International Conference on Software Reuse (Cat.

No. 98TB100203), IEEE, 76–85.

Hailpern, B. and Tarr, P. (2006). “Model-driven development: The good, the bad, and
the ugly.” IBM systems journal, 45(3), 451–461.

Hao, S., Li, D., Halfond, W. G., and Govindan, R. (2013). “Estimating mobile applica-
tion energy consumption using program analysis.” Proceedings of the 2013 Interna-

tional Conference on Software Engineering, IEEE Press, 92–101.

Heitkötter, H., Kuchen, H., and Majchrzak, T. A. (2015). “Extending a model-driven
cross-platform development approach for business apps.” Science of Computer Pro-

gramming, 97, 31–36.

Heitkötter, H., Majchrzak, T. A., and Kuchen, H. (2013). “Cross-platform model-driven
development of mobile applications with md2.” Proceedings of the 28th Annual ACM

Symposium on Applied Computing, 526–533.

Hinchey, M. G. and Sterritt, R. (2006). “Self-managing software.” Computer, 39(2),
107–109.

Höpfner, H. and Schirmer, M. (2012). “Energy efficient continuous location determina-
tion for pedestrian information systems.” Proceedings of the Eleventh ACM Interna-

tional Workshop on Data Engineering for Wireless and Mobile Access, ACM, 58–65.

Hoque, M. A., Siekkinen, M., Khan, K. N., Xiao, Y., and Tarkoma, S. (2016). “Mod-
eling, profiling, and debugging the energy consumption of mobile devices.” ACM

Computing Surveys (CSUR), 48(3), 39.

Ibrahim, M. and Youssef, M. (2012). “Cellsense: An accurate energy-efficient gsm
positioning system.” IEEE Transactions on Vehicular Technology, 61(1), 286–296.

Inverardi, P. and Mori, M. (2010). “Feature oriented evolutions for context-aware adap-
tive systems.” Proceedings of the Joint ERCIM Workshop on Software Evolution



References 191

(EVOL) and International Workshop on Principles of Software Evolution (IWPSE),
ACM, 93–97.

Inverardi, P. and Mori, M. (2011). “Requirements models at run-time to support consis-
tent system evolutions.” 2011 2nd International Workshop on Requirements@ Run.

Time, IEEE, 1–8.

Jabbarvand, R. and Malek, S. (2017). “µdroid: an energy-aware mutation testing frame-
work for android.” Proceedings of the 2017 11th Joint Meeting on Foundations of

Software Engineering, ACM, 208–219.

Jia, X. and Jones, C. (2015). “An approach for the automatic adaptation of domain-
specific modeling languages for model-driven mobile application development.” IC-

SOFT, Springer, 365–379.

Jiang, H., Yang, H., Qin, S., Su, Z., Zhang, J., and Yan, J. (2017). “Detecting en-
ergy bugs in android apps using static analysis.” International Conference on Formal

Engineering Methods, Springer, 192–208.

Jung, W., Kang, C., Yoon, C., Kim, D., and Cha, H. (2012). “Devscope: a nonintrusive
and online power analysis tool for smartphone hardware components.” Proceedings

of the eighth IEEE/ACM/IFIP international conference on Hardware/software code-

sign and system synthesis, ACM, 353–362.

Kang, K., Cohen, S., Hess, J., Novak, W., and Peterson, A. (1990). “Feature-
oriented domain analysis (foda) feasibility study.” Report No. CMU/SEI-90-TR-

021, Software Engineering Institute, Carnegie Mellon University, Pittsburgh, PA,
<http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=11231>.

Kang, K. C., Kim, S., Lee, J., Kim, K., Shin, E., and Huh, M. (1998). “Form: A feature-
; oriented reuse method with domain-; specific reference architectures.” Annals of

Software Engineering, 5(1), 143.

Kästner, C. and Apel, S. (2011). “Feature-oriented software development.” Interna-

tional Summer School on Generative and Transformational Techniques in Software

Engineering, Springer, 346–382.



References 192

Kelényi, I., Nurminen, J. K., Siekkinen, M., and Lengyel, L. (2014). Advanced Com-

putational Methods for Knowledge Engineering: Proceedings of the 2nd Interna-

tional Conference on Computer Science, Applied Mathematics and Applications

(ICCSAMA 2014). Springer International Publishing, Cham, Chapter Supporting
Energy-Efficient Mobile Application Development with Model-Driven Code Gen-
eration, 143–156.

Kelly, S. and Tolvanen, J.-P. (2008). Domain-specific modeling: enabling full code

generation. John Wiley & Sons.

Kemerlis, V. P., Portokalidis, G., Jee, K., and Keromytis, A. D. (2012). “libdft: Practical
dynamic data flow tracking for commodity systems.” Acm Sigplan Notices, Vol. 47,
ACM, 121–132.

Kephart, J. O. and Chess, D. M. (2003). “The vision of autonomic computing.” Com-

puter, 36(1), 41–50.

Kern, E., Naumann, S., and Dick, M. (2015). “Processes for green and sustainable
software engineering.” Green in Software Engineering, Springer, 61–81.

Kim, C. H. P., Kroening, D., and Kwiatkowska, M. (2016a). “Static program analysis
for identifying energy bugs in graphics-intensive mobile apps.” Modeling, Analy-

sis and Simulation of Computer and Telecommunication Systems (MASCOTS), 2016

IEEE 24th International Symposium on, IEEE, 115–124.

Kim, D., Lee, S., and Bahn, H. (2016b). “An adaptive location detection scheme for
energy-efficiency of smartphones.” Pervasive and Mobile Computing, 31, 67–78.

Kim, K. and Cha, H. (2013). “Wakescope: runtime wakelock anomaly management
scheme for android platform.” Proceedings of the Eleventh ACM International Con-

ference on Embedded Software, IEEE Press, 27.

Kjærgaard, M. B. and Blunck, H. (2011). “Unsupervised power profiling for mobile
devices.” International Conference on Mobile and Ubiquitous Systems: Computing,

Networking, and Services, Springer, 138–149.



References 193

Kjærgaard, M. B., Langdal, J., Godsk, T., and Toftkjær, T. (2009). “Entracked: energy-
efficient robust position tracking for mobile devices.” Proceedings of the 7th interna-

tional conference on Mobile systems, applications, and services, ACM, 221–234.

Kleppe, A. G., Warmer, J., Warmer, J. B., and Bast, W. (2003). MDA explained: the

model driven architecture: practice and promise. Addison-Wesley Professional.

Krupitzer, C., Roth, F. M., VanSyckel, S., Schiele, G., and Becker, C. (2015). “A
survey on engineering approaches for self-adaptive systems.” Pervasive and Mobile

Computing, 17, 184–206.

Le Goaer, O. and Waltham, S. (2013). “Yet another dsl for cross-platforms mobile
development.” Proceedings of the First Workshop on the globalization of domain

specific languages, 28–33.

Lee, D. D. and Seung, H. S. (1999). “Learning the parts of objects by non-negative
matrix factorization.” Nature, 401(6755), 788.

Li, D., Hao, S., Gui, J., and Halfond, W. G. (2014). “An empirical study of the en-
ergy consumption of android applications.” Software Maintenance and Evolution

(ICSME), 2014 IEEE International Conference on, IEEE, 121–130.

Li, L., Beitman, B., Zheng, M., Wang, X., and Qin, F. (2017a). “edelta: Pinpointing
energy deviations in smartphone apps via comparative trace analysis.” 2017 Eighth

International Green and Sustainable Computing Conference (IGSC), IEEE, 1–8.

Li, Q., Xu, C., Liu, Y., Cao, C., Ma, X., and Lü, J. (2017b). “Cyandroid: stable and
effective energy inefficiency diagnosis for android apps.” Science China Information

Sciences, 60(1), 012104.

Li, Y., Guo, Y., Kong, J., and Chen, X. (2015). “Fixing sensor-related energy bugs
through automated sensing policy instrumentation.” Low Power Electronics and De-

sign (ISLPED), 2015 IEEE/ACM International Symposium on, IEEE, 321–326.

Lin, K., Kansal, A., Lymberopoulos, D., and Zhao, F. (2010). “Energy-accuracy trade-
off for continuous mobile device location.” Proceedings of the 8th international con-

ference on Mobile systems, applications, and services, ACM, 285–298.



References 194

Liu, Y., Xu, C., Cheung, S.-C., and Lu, J. (2014). “Greendroid: Automated diagnosis
of energy inefficiency for smartphone applications.” IEEE Transactions on Software

Engineering, (1), 1–1.

Liu, Y., Xu, C., Cheung, S.-C., and Terragni, V. (2016). “Understanding and detecting
wake lock misuses for android applications.” Proceedings of the 2016 24th ACM

SIGSOFT International Symposium on Foundations of Software Engineering, ACM,
396–409.

Ma, X., Huang, P., Jin, X., Wang, P., Park, S., Shen, D., Zhou, Y., Saul, L. K., and
Voelker, G. M. (2013). “Edoctor: Automatically diagnosing abnormal battery drain
issues on smartphones..” NSDI, Vol. 13, 57–70.

Mahmoud, S. S. and Ahmad, I. (2014). “A green model for sustainable software engi-
neering.” International Journal of Software Engineering and Its Applications, 7(4),
55–74.

Malik, H., Zhao, P., and Godfrey, M. (2015). “Going green: An exploratory analysis
of energy-related questions.” Proceedings of the 12th Working Conference on Mining

Software Repositories, IEEE Press, 418–421.

Man, Y. and Ngai, E. C.-H. (2014). “Energy-efficient automatic location-triggered ap-
plications on smartphones.” Computer Communications, 50, 29–40.

Manotas, I., Bird, C., Zhang, R., Shepherd, D., Jaspan, C., Sadowski, C., Pollock, L.,
and Clause, J. (2016). “An empirical study of practitioners’ perspectives on green
software engineering.” Software Engineering (ICSE), 2016 IEEE/ACM 38th Interna-

tional Conference on, IEEE, 237–248.

Marand, E. A., Marand, E. A., and Challenger, M. (2015). “Dsml4cp: a domain-specific
modeling language for concurrent programming.” Computer Languages, Systems &

Structures, 44, 319–341.

Mariakakis, A. T., Sen, S., Lee, J., and Kim, K.-H. (2014). “Sail: Single access point-
based indoor localization.” Proceedings of the 12th annual international conference

on Mobile systems, applications, and services, ACM, 315–328.



References 195

Mauro, J., Nieke, M., Seidl, C., and Yu, I. C. (2018). “Context-aware reconfiguration in
evolving software product lines.” Science of Computer Programming, 163, 139–159.

Mehta, H., Owens, R. M., Irwin, M. J., Chen, R., and Ghosh, D. (1997). “Techniques
for low energy software.” Proceedings of the 1997 International Symposium on Low

Power Electronics and Design, ISLPED ’97, New York, NY, USA, ACM, 72–75,
<http://doi.acm.org/10.1145/263272.263286>.

Mizouni, R., Serhani, M. A., Benharref, A., and Al-Abassi, O. (2012). “Towards
battery-aware self-adaptive mobile applications.” 2012 IEEE Ninth International

Conference on Services Computing, IEEE, 439–445.

Moghimi, M., Venkatesh, J., Zappi, P., and Rosing, T. (2012). “Context-aware mobile
power management using fuzzy inference as a service.” International Conference on

Mobile Computing, Applications, and Services, Springer, 314–327.

Monsoon Solutions, I. (2018). Mobile Device Power Monitor Manual Ver

1.19, <https://msoon.github.io/powermonitor/PowerTool/doc/Power Monitor
Manual.pdf> (Jun).

Morales, R., Saborido, R., Khomh, F., Chicano, F., and Antoniol, G. (2018). “Earmo: an
energy-aware refactoring approach for mobile apps.” IEEE Transactions on Software

Engineering, 44(12), 1176–1206.

Morillo, L. S., RamíRez, J. O., GarcíA, J. A., and Gonzalez-Abril, L. (2012). “Outdoor
exit detection using combined techniques to increase gps efficiency.” Expert Systems

with Applications, 39(15), 12260–12267.

Moura, I., Pinto, G., Ebert, F., and Castor, F. (2015). “Mining energy-aware commits.”
Proceedings of the 12th Working Conference on Mining Software Repositories, IEEE
Press, 56–67.

Murugesan, S. (2008). “Harnessing green it: Principles and practices.” IT professional,
10(1), 24–33.

Naik, K. (2010). “A survey of software based energy saving methodologies for handheld
wireless communication devices.” Report No. Tech. Report No. 2010-13, Dept. of
ECE, University of Waterloo. May 08, 2015.



References 196

Noorian, M., Bagheri, E., and Du, W. (2012). “Non-functional properties in software
product lines: A taxonomy for classification..” SEKE, Vol. 12, 663–667.

Núñez, M., Bonhaure, D., González, M., and Cernuzzi, L. (2020). “A model-driven ap-
proach for the development of native mobile applications focusing on the data layer.”
Journal of Systems and Software, 161, 110489.

Octeau, D., Jha, S., and McDaniel, P. (2012). “Retargeting android applications to java
bytecode.” Proceedings of the ACM SIGSOFT 20th international symposium on the

foundations of software engineering, ACM, 6.

Oliner, A. J., Iyer, A. P., Stoica, I., Lagerspetz, E., and Tarkoma, S. (2013). “Carat:
Collaborative energy diagnosis for mobile devices.” Proceedings of the 11th ACM

Conference on Embedded Networked Sensor Systems, ACM, 10.

Oreizy, P., Gorlick, M. M., Taylor, R. N., Heimhigner, D., Johnson, G., Medvidovic,
N., Quilici, A., Rosenblum, D. S., and Wolf, A. L. (1999). “An architecture-based
approach to self-adaptive software.” IEEE Intelligent Systems and Their Applications,
14(3), 54–62.

Ortiz, G., García-de Prado, A., Berrocal, J., and Hernandez, J. (2019). “Improving
resource consumption in context-aware mobile applications through alternative ar-
chitectural styles.” IEEE Access, 7, 65228–65250.

Paek, J., Kim, J., and Govindan, R. (2010). “Energy-efficient rate-adaptive gps-based
positioning for smartphones.” Proceedings of the 8th international conference on Mo-

bile systems, applications, and services, ACM, 299–314.

Paek, J., Kim, K.-H., Singh, J. P., and Govindan, R. (2011). “Energy-efficient posi-
tioning for smartphones using cell-id sequence matching.” Proceedings of the 9th

international conference on Mobile systems, applications, and services, ACM, 293–
306.

Palomba, F., Di Nucci, D., Panichella, A., Zaidman, A., and De Lucia, A. (2019).
“On the impact of code smells on the energy consumption of mobile applications.”
Information and Software Technology, 105, 43–55.



References 197

Pang, C., Hindle, A., Adams, B., and Hassan, A. E. (2016). “What do programmers
know about software energy consumption?.” IEEE Software, 33(3), 83–89.

Pascual, G. G., Lopez-Herrejon, R. E., Pinto, M., Fuentes, L., and Egyed, A. (2015a).
“Applying multiobjective evolutionary algorithms to dynamic software product lines
for reconfiguring mobile applications.” Journal of Systems and Software, 103, 392–
411.

Pascual, G. G., Pinto, M., and Fuentes, L. (2015b). “Self-adaptation of mobile systems
driven by the common variability language.” Future Generation Computer Systems,
47, 127–144.

Pathak, A., Hu, Y. C., and Zhang, M. (2011). “Bootstrapping energy debugging on
smartphones: A first look at energy bugs in mobile devices.” Proceedings of the 10th

ACM Workshop on Hot Topics in Networks, HotNets-X, New York, NY, USA, ACM,
5:1–5:6, <http://doi.acm.org/10.1145/2070562.2070567>.

Pathak, A., Hu, Y. C., and Zhang, M. (2012a). “Where is the energy spent inside my
app?: fine grained energy accounting on smartphones with eprof.” Proceedings of the

7th ACM european conference on Computer Systems, ACM, 29–42.

Pathak, A., Jindal, A., Hu, Y. C., and Midkiff, S. P. (2012b). “What is keeping
my phone awake?: Characterizing and detecting no-sleep energy bugs in smart-
phone apps.” Proceedings of the 10th International Conference on Mobile Systems,

Applications, and Services, MobiSys ’12, New York, NY, USA, ACM, 267–280,
<http://doi.acm.org/10.1145/2307636.2307661>.

Penzenstadler, B., Raturi, A., Richardson, D., and Tomlinson, B. (2014). “Safety, se-
curity, now sustainability: The nonfunctional requirement for the 21st century.” Soft-

ware, IEEE, 31(3), 40–47.

Pinto, G. and Castor, F. (2017). “Energy efficiency: A new concern for application
software developers.” Commun. ACM, 60(12), 68–75.

Pinto, G., Castor, F., and Liu, Y. D. (2014). “Mining questions about software en-
ergy consumption.” Proceedings of the 11th Working Conference on Mining Software

Repositories, ACM, 22–31.



References 198

Prehofer, C. (1997). “Feature-oriented programming: A fresh look at objects.” Euro-

pean Conference on Object-Oriented Programming, Springer, 419–443.

Rahman, A., Partho, A., Morrison, P., and Williams, L. (2018). “What questions do
programmers ask about configuration as code?.” Proceedings of the 4th International

Workshop on Rapid Continuous Software Engineering, ACM, 16–22.

Reiser, M.-O. (2009). Core Concepts of the Compositional Variability Management

Framework (CVM): A Practitioner’s Guide. Citeseer.

Runeson, P. and Höst, M. (2009). “Guidelines for conducting and reporting case study
research in software engineering.” Empirical software engineering, 14(2), 131.

Sahar, H., Bangash, A. A., and Beg, M. O. (2019). “Towards energy aware object-
oriented development of android applications.” Sustainable Computing: Informatics

and Systems, 21, 28–46.

Sahu, M. and Mohapatra, D. P. (2017). “Computing dynamic slices of feature–oriented
programs using execution trace file.” ACM SIGSOFT Software Engineering Notes,
42(2), 1–16.

Sahu, M. and Mohapatra, D. P. (2019). “Computing dynamic slices of concurrent
feature-oriented programs.” Arabian Journal for Science and Engineering, 44(11),
9471–9497.

Sahu, M. and Mohapatra, D. P. (2020). “Computing dynamic slices of feature-oriented
programs with aspect-oriented extensions.” Informatica, 44(2).

Salehie, M. and Tahvildari, L. (2009). “Self-adaptive software: Landscape and research
challenges.” ACM Trans. Auton. Adapt. Syst., 4(2), 14:1–14:42.

Schilit, B., Adams, N., and Want, R. (1994). “Context-aware computing applications.”
Proceedings of the 1994 First Workshop on Mobile Computing Systems and Ap-

plications, WMCSA ’94, Washington, DC, USA, IEEE Computer Society, 85–90,
<http://dx.doi.org/10.1109/WMCSA.1994.16>.

Schmidt, D. C. (2006). “Guest editor’s introduction: Model-driven engineering.” Com-

puter, 39(2), 25–31.



References 199

Schobbens, P.-Y., Heymans, P., and Trigaux, J.-C. (2006). “Feature diagrams: A survey
and a formal semantics.” 14th IEEE International Requirements Engineering Confer-

ence (RE’06), IEEE, 139–148.

Schulman, A., Schmid, T., Dutta, P., and Spring, N. (2011). “Phone power monitoring
with battor.” Proc. Annu. ACM Int. Conf. Mobile Comput. Netw.

Selic, B. (2003). “The pragmatics of model-driven development.” IEEE software, 20(5),
19–25.

Siegmund, N., Rosenmüller, M., Kuhlemann, M., Kästner, C., Apel, S., and Saake,
G. (2012). “Spl conqueror: Toward optimization of non-functional properties in
software product lines.” Software Quality Journal, 20(3-4), 487–517.

Sinnema, M. and Deelstra, S. (2007). “Classifying variability modeling techniques.”
Information and Software Technology, 49(7), 717–739.

Soltani, S., Asadi, M., Gašević, D., Hatala, M., and Bagheri, E. (2012). “Au-
tomated planning for feature model configuration based on functional and non-
functional requirements.” Proceedings of the 16th International Software Product

Line Conference-Volume 1, ACM, 56–65.

Su, C.-L., Tsui, C.-Y., and Despain, A. (1994). “Low power architecture design and
compilation techniques for high-performance processors.” Compcon Spring ’94, Di-

gest of Papers., 489–498 (Feb).

Suh, G. E., Lee, J. W., Zhang, D., and Devadas, S. (2004). “Secure program execution
via dynamic information flow tracking.” ACM Sigplan Notices, Vol. 39, ACM, 85–96.

Surhone, L. M., Tennoe, M. T., and Henssonow, S. F. (2010). Goal-Oriented Require-

ments Language. Betascript Publishing, Beau Bassin, MUS.

Tahir, A., Yamashita, A., Licorish, S., Dietrich, J., and Counsell, S. (2018). “Can you
tell me if it smells?: A study on how developers discuss code smells and anti-patterns
in stack overflow.” Proceedings of the 22nd International Conference on Evaluation

and Assessment in Software Engineering 2018, ACM, 68–78.



References 200

Thokala, S. K., Koundinyaa, P., Mishra, S., and Shi, L. (2014). “Virtual gps: A mid-
dleware for power efficient localization of smartphones using cross layer approach.”
Proceedings of the Middleware Industry Track, Industry papers, New York, NY, USA,
ACM, 2:1–2:7, <http://doi.acm.org/10.1145/2676727.2676729>.

Thramboulidis, K. and Christoulakis, F. (2016). “Uml4iot—a uml-based approach to
exploit iot in cyber-physical manufacturing systems.” Computers in Industry, 82,
259–272.

Thüm, T., Kästner, C., Benduhn, F., Meinicke, J., Saake, G., and Leich, T. (2014).
“Featureide: An extensible framework for feature-oriented software development.”
Science of Computer Programming, 79, 70–85.

Truyen, F. (2006). “The fast guide to model driven architecture the basics of model
driven architecture.” Cephas Consulting Corp.

Tufail, H., Azam, F., Anwar, M. W., and Qasim, I. (2018). “Model-driven development
of mobile applications: A systematic literature review.” 2018 IEEE 9th Annual Infor-

mation Technology, Electronics and Mobile Communication Conference (IEMCON),
IEEE, 1165–1171.

Van Deursen, A. and Klint, P. (2002). “Domain-specific language design requires fea-
ture descriptions.” Journal of Computing and Information Technology, 10(1), 1–17.

Van Gurp, J., Bosch, J., and Svahnberg, M. (2001). “On the notion of variability in soft-
ware product lines.” Software Architecture, 2001. Proceedings. Working IEEE/IFIP

Conference on, IEEE, 45–54.

Vaquero-Melchor, D., Palomares, J., Guerra, E., and de Lara, J. (2017). “Active
domain-specific languages: Making every mobile user a modeller.” 2017 ACM/IEEE

20th International Conference on Model Driven Engineering Languages and Systems

(MODELS), IEEE, 75–82.

Vaupel, S., Taentzer, G., Gerlach, R., and Guckert, M. (2018). “Model-driven develop-
ment of mobile applications for android and ios supporting role-based app variabil-
ity.” Software & Systems Modeling, 17(1), 35–63.



References 201

Vogel, T. and Giese, H. (2014). “Model-driven engineering of self-adaptive software
with eurema.” ACM Transactions on Autonomous and Adaptive Systems (TAAS), 8(4),
18.

Völter, M. “Best practices for dsls and model-driven development.” Journal of Object

Technology, 8(6), 79–102.

Wan, M., Jin, Y., Li, D., Gui, J., Mahajan, S., and Halfond, W. G. (2017). “Detecting
display energy hotspots in android apps.” Software Testing, Verification and Reliabil-

ity, 27(6), e1635.

Wan, M., Jin, Y., Li, D., and Halfond, W. G. (2015). “Detecting display energy hotspots
in android apps.” Software Testing, Verification and Validation (ICST), 2015 IEEE

8th International Conference on, IEEE, 1–10.

Wang, J., Liu, Y., Xu, C., Ma, X., and Lu, J. (2016). “E-greendroid: effective energy
inefficiency analysis for android applications.” Proceedings of the 8th Asia-Pacific

Symposium on Internetware, ACM, 71–80.

Wang, X., Li, X., and Wen, W. (2014). “Wlcleaner: Reducing energy waste caused by
wakelock bugs at runtime.” Dependable, Autonomic and Secure Computing (DASC),

2014 IEEE 12th International Conference on, IEEE, 429–434.

Weimer, W. and Necula, G. C. (2004). “Finding and preventing run-time error handling
mistakes.” ACM SIGPLAN Notices, Vol. 39, ACM, 419–431.

Xi, T., Wang, W., Ngai, E. C.-H., Song, Z., Tian, Y., and Gong, X. (2015). “Energy-
efficient collaborative localization for participatory sensing system.” Global Commu-

nications Conference (GLOBECOM), 2015 IEEE, IEEE, 1–6.

Yadav, K., Naik, V., Kumar, A., and Jassal, P. (2014). “Placemap: Discovering human
places of interest using low-energy location interfaces on mobile phones.” Proceed-

ings of the Fifth ACM Symposium on Computing for Development, ACM, 93–102.

Yang, Z., Li, Z., Jin, Z., and Zhang, H. (2017). “Review on requirements model-
ing and analysis for self-adaptive systems: A ten-year perspective.” arXiv preprint

arXiv:1704.00421.



References 202

Yoon, C., Kim, D., Jung, W., Kang, C., and Cha, H. (2012). “Appscope: Application en-
ergy metering framework for android smartphone using kernel activity monitoring..”
USENIX Annual Technical Conference, Vol. 12, 1–14.

Yu, E. S. (1997). “Towards modelling and reasoning support for early-phase require-
ments engineering.” Proceedings of ISRE’97: 3rd IEEE International Symposium on

Requirements Engineering, IEEE, 226–235.

Zhang, L., Gordon, M. S., Dick, R. P., Mao, Z. M., Dinda, P., and Yang, L. (2012).
“Adel: An automatic detector of energy leaks for smartphone applications.” Proceed-

ings of the eighth IEEE/ACM/IFIP international conference on Hardware/software

codesign and system synthesis, ACM, 363–372.

Zhang, L., Tiwana, B., Qian, Z., Wang, Z., Dick, R. P., Mao, Z. M., and Yang, L.
(2010). “Accurate online power estimation and automatic battery behavior based
power model generation for smartphones.” Proceedings of the eighth IEEE/ACM/I-

FIP international conference on Hardware/software codesign and system synthesis,
ACM, 105–114.

Zhu, C., Zhu, Z., Xie, Y., Jiang, W., and Zhang, G. (2019). “Evaluation of machine
learning approaches for android energy bugs detection with revision commits.” IEEE

Access, 7, 85241–85252.

Zhuang, Z., Kim, K.-H., and Singh, J. P. (2010). “Improving energy efficiency of lo-
cation sensing on smartphones.” Proceedings of the 8th international conference on

Mobile systems, applications, and services, ACM, 315–330.

Zhuo-Qun, Y. and Zhi, J. (2012). “Requirements modeling and system reconfigura-
tion for self-adaptation of internetware.” Proceedings of the Fourth Asia-Pacific Sym-

posium on Internetware, Internetware ’12, New York, NY, USA, ACM, 11:1–11:6,
<http://doi.acm.org/10.1145/2430475.2430486>.

Zimmermann, T. (2016). “Card-sorting: From text to themes.” Perspectives on Data

Science for Software Engineering, Elsevier, 137–141.


	Abstract
	Contents
	List of Figures
	List of Tables
	List of Listings
	Contents
	List of Abbreviations
	1 Introduction
	1.1 Motivation
	1.2 Running Example: Location-based Applications
	1.3 Research Objectives
	1.4 Thesis Structure

	2 Preliminaries
	2.1 Smartphone Energy Inefficiencies
	2.2 Energy-aware Self-adaptive Software
	2.3 Modeling Frameworks
	2.4 Model-driven Development
	2.5 Feature-oriented Software Development
	2.6 Summary

	3 Literature Survey
	3.1 Existing Empirical Studies
	3.1.1 Stack Overflow data
	3.1.2 GitHub data

	3.2 Post-development Approaches
	3.2.1 Energy profilers
	3.2.2 Energy diagnosis engines

	3.3 Pre-development Approaches
	3.3.1 Feature modeling approaches
	3.3.2 Model-driven development approaches

	3.4 Research Gaps

	4 Empirical Studies
	4.1 Research Questions and Methodology
	4.1.1 Research methodology
	4.1.2 Variable selection for empirical study

	4.2 Controlled Experiments
	4.2.1 Experiment protocol
	4.2.2 Subject applications selection
	4.2.3 Data collection and analysis
	4.2.4 Answering RQ1: LBAs energy consumption
	4.2.5 Answering RQ2: Inertial sensors usage and energy consumption
	4.2.6 Answering RQ3: Inertial sensors usage by API

	4.3 Mining StackOverflow
	4.3.1 Mining protocol
	4.3.2 Data collection and analysis
	4.3.3 Answering RQ4: Energy-saving solutions
	4.3.4 Answering RQ5: API usage patterns

	4.4 Mining GitHub Commits
	4.4.1 Mining protocol
	4.4.2 Data collection
	4.4.3 Data analysis
	4.4.4 Answer to RQ6: Development efforts

	4.5 Implications
	4.6 Summary

	5 Energy-aware Modeling Framework
	5.1 Basics of Feature Modeling
	5.2 Energy-aware Modeling Framework
	5.2.1 Energy-aware context modeling
	5.2.2 Energy-aware feature modeling
	5.2.3 Energy-saving adaptation planning

	5.3 Validation with a Case Study
	5.3.1 An example scenario
	5.3.2 Energy-aware context model
	5.3.3 Energy-aware feature model
	5.3.4 Energy-aware adaptation model
	5.3.5 Discussions

	5.4 Threats to Validity
	5.5 Summary

	6 Energy-saving Adaptation Planner
	6.1 Extending FeatureIDE
	6.2 eSAP Description
	6.3 Validation with Case Study
	6.3.1 An example scenario: Reference requirements
	6.3.2 Identifying energy-aware application configurations
	6.3.3 Identifying valid triggering situations
	6.3.4 Planning energy-saving adaptations
	6.3.5 Discussions

	6.4 Summary

	7 Energy-saving Code Generator
	7.1 Domain Analysis
	7.1.1 Identifying self-adaptive location strategies
	7.1.2 Identifying commonalities and variabilities
	7.1.3 eGEN domain model

	7.2 eGEN Description
	7.2.1 Technical background
	7.2.2 eGEN grammar
	7.2.3 Energy-aware code generator

	7.3 Validation
	7.4 Summary

	8 Conclusions and Future Works
	8.1 Thesis Summary
	8.2 Conclusion
	8.3 Future Work

	A PUBLICATIONS
	B Bio-Data
	Bibliography

