
MICROSERVICE ORCHESTRATION STRATEGIES

FOR CONTAINERIZED CLOUD ENVIRONMENTS

Thesis

Submitted in partial fulfilment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

by

CHRISTINA TERESE JOSEPH

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

NATIONAL INSTITUTE OF TECHNOLOGY KARNATAKA

SURATHKAL, MANGALORE - 575 025

May, 2021

DECLARATION

by the Ph.D. Research Scholar

I hereby declare that the Research Thesis entitled Microservice Orchestration

Strategies for Containerized Cloud Environments which is being submitted to the

National Institute of Technology Karnataka, Surathkal in partial fulfilment of the

requirements for the award of the Degree of Doctor of Philosophy in Department of

Computer Science and Engineering is a bonafide report of the research work carried out

by me. The material contained in this Research Thesis has not been submitted to any

University or Institution for the award of any degree.

Christina Terese Joseph, 165092 CS16F02

Department of Computer Science and Engineering

Place: NITK, Surathkal.

Date: May 8, 2021

CERTIFICATE

This is to certify that the Research Thesis entitled Microservice Orchestration

Strategies for Containerized Cloud Environments submitted by Christina Terese

Joseph (Register Number: 165092 CS16F02) as the record of the research work car-

ried out by her, is accepted as the Research Thesis submission in partial fulfilment of

the requirements for the award of degree of Doctor of Philosophy.

Prof. K. Chandrasekaran

Research Guide

(Signature with Date and Seal)

Chairman - DRPC

(Signature with Date and Seal)

ACKNOWLEDGEMENTS

“In order for the light to shine so brightly, the darkness must be present” -

Francis Bacon

First and foremost, I would like to express my gratitude to my supervisor, Prof. K.

Chandrasekaran for enabling me to identify the darkness and throwing light on the

topics, that came under my preview, to formulate my research.

I would like to thank my Research Progress Assessment Committee members, Dr.

Deepu Vijayasenan, Department of Electronics and Communication Engineering, NITK

and Dr. Jeny Rajan, Department of Computer Science and Engineering, NITK for

their valuable evaluation and feedback throughout the progress of my research. I am

thankful to Prof. A. Kandasamy, Department of Mathematical and Computational Sci-

ences, NITK, whose charisma and adroitness in problem solving helped to enlighten

my thoughts.

I would also like to extend my sincere thanks to Dr. Alwyn Roshan Pais, Head of

the Department of Computer Science and Engineering, all the faculty members, support

staff, fellow research scholars and my overseas research peers for the unstinting support

rendered over the course of my research. I am grateful to NITK Surathkal for providing

all the necessary infrastructure and facilities to pursue my research.

My parents and life partner John Paul Martin were my perennial source of inspira-

tion that helped me all the way in accomplishing this remarkable goal.

Above all, I thank God Almighty for showering me with abundant blessings that

constantly strengthened me to pass through all the difficult times.

Christina Terese Joseph

ABSTRACT

The explosion in the popularity of the Internet paralleled with the impetuous evolution
of computing and storage technologies has brought about a revolutionary shift in the
way computational resources are provisioned. The Cloud computing paradigm facil-
itates the lease of computational resources as services on a pay-per-use basis. Cloud
developers have rapidly embraced the Microservice Architecture to accelerate the de-
velopment and deployment of Cloud applications. However, the dynamism, agility and
distributed characteristics of microservices pose significant challenges in the resource
orchestration of microservice-based Cloud environments. Effectively utilizing the dis-
tributed resources of the Cloud to obtain performance gains is an issue of paramount im-
portance. Hence, this work focusses on the orchestrational challenges in microservice-
based Cloud environments.

In order to achieve the desired level of scalability and elasticity, microservice-based
Cloud applications are typically packaged in containers. Therefore, microservice or-
chestration strategies for Cloud environments must effectively manage container clus-
ters to automate processes such as resource allocation, autoscaling and load balancing.
In terms of system performance, a key concern is the initial placement of the microser-
vice applications. Placing microservice applications without considering the interac-
tions among the microservices forming an application results in a performance penalty.
Accordingly, an interaction-aware microservice placement strategy, called Interaction-
aware Microservice Allocation (IntMA) that preserves the Quality of Service and main-
tains resource efficiency, is devised in this research. The interaction pattern is modeled
using a doubly weighted interaction graph, which is then used to assign the incoming
microservice applications to appropriate nodes in the Cloud datacenter. Experiments
on the Google Cloud Platform substantiated that our proposed approach attains better
objective values than the existing placement policies.

The dynamism of microservice-based Cloud environments renders it essential to
revisit the initial placement decisions and perform rescheduling. Rescheduling strate-
gies must strive to resolve degradations in the performance due to fluctuations in the
workload. Existing rescheduling strategies, tailored for hypervisor-based virtualiza-
tion environments, do not consider the features specific to containers. Therefore, this
research work also explores the impact of container configuration parameters on mi-
croservice application performance. The experiments revealed that larger values for
container CPU throttling led to higher response times. In order to circumvent this,
a Throttling and Interaction-aware Anticorrelated Rescheduling Framework (TIARM)
for microservices, is proposed. Experimental results elucidate the efficacy of the pro-
posed approach in enhancing the performance of containerized Cloud environments.

Keywords: Cloud computing, Container virtualization, Microservice Architecture,
Microservice orchestration, Resource management, Microservice allocation, Microser-
vice re-scheduling.

CONTENTS

List of Figures viii

List of Tables x

List of Algorithms xi

List of Abbreviations xiii

1 Introduction 1

1.1 Evolution of Microservices Software Architecture (MSA) 3

1.1.1 Service Oriented Computing (SOC) 4

1.1.2 Service Oriented Architecture (SOA) 4

1.1.3 Inception of the Microservices Software Architecture (MSA) . . 5

1.2 Fundamental Concepts of Microservice Architecture (MSA) 5

1.2.1 Internal structure of Microservices 6

1.2.2 Domain-Driven Design . 7

1.2.3 Circuit Breaker Pattern . 8

1.2.4 12-factor app . 8

1.3 Container Virtualization and Container Technologies 9

1.4 Container Management Platforms . 10

1.5 Microservice Orchestration . 13

1.6 Motivation . 14

1.7 Distributed Computing Paradigms employing MSA 15

1.8 Organization of the Thesis . 17

2 Literature Review 19

2.1 Taxonomy based on different aspects of Microservice Architectures . . 19

2.1.1 Developmental Phase Concerns 22

2.1.2 Operational Phase Concerns 26

iii

2.1.2.1 Infrastructural Management Capabilities 27

2.1.2.2 Service Management Capabilities 34

2.2 Research Gaps . 37

2.3 Summary . 39

3 Problem Description 41

3.1 Scope and Focus of the Thesis . 41

3.2 Research Problem and Objectives . 44

3.3 Research Challenges . 45

3.4 Research Methodology . 46

3.5 Research Contributions . 47

4 IntMA: Dynamic Interaction-Aware Resource Allocation for Container-
ized Microservices in Cloud environments 53

4.1 Motivation . 55

4.2 Formal Description of the System model 56

4.3 Proposed Methodology . 59

4.3.1 Proposed Framework . 59

4.3.2 Interaction graph generation 61

4.3.3 Interaction factor . 63

4.3.4 Optimization Model . 63

4.3.5 Model Example . 64

4.3.6 Proposed Algorithms . 66

4.4 Experimental Evaluation . 70

4.4.1 Evaluation Environment . 70

4.4.2 Workload Microservice Applications 72

4.4.2.1 Sock Shop Application 72

4.4.2.2 Istio BookInfo App 73

4.4.2.3 Hipster Shop . 73

4.4.3 Performance metrics . 73

4.5 Results . 75

4.5.1 Evaluation of the metrics . 75

4.6 Discussion . 82

iv

4.6.1 Scheduling Duration . 83

4.6.2 QPP and Heuristic approach 85

4.6.3 Statistical Analysis . 85

4.6.4 Threats to Validity . 86

4.7 Summary . 87

5 Nature-Inspired Resource Management and Dynamic Rescheduling of Mi-
croservices in Cloud Datacenters 89

5.1 CPU requests, limits and Throttling 91

5.2 TIARM- Throttling and Interaction-aware Anti-correlated Rescheduling

for Microservices . 92

5.2.1 System Architecture . 93

5.2.2 Functional Details of the TIARM Framework 96

5.2.2.1 System Monitoring Agent 97

5.2.2.2 Descheduling Phase 97

5.2.2.3 Rescheduling Phase 100

5.2.2.3.1 Resizer . 100

5.2.2.3.2 MOMVO-based Node Selection Module . . 101

5.3 Experimental Design and Setup . 106

5.3.1 Microservice Application Deployment 108

5.3.2 Performance Metrics . 109

5.4 Experimental Results and Analysis . 109

5.4.1 Impact of Upper and Lower threshold values 110

5.4.2 Impact of weight vector in the weighted sum objective value . . 111

5.4.3 Analysis of varying rescheduling strategies 113

5.4.4 Performance comparison of anti-correlated workloads and cor-

related workloads . 114

5.4.5 Analysis of varying node selection strategies 115

5.4.6 Efficient Resource Management for various microservice appli-

cations . 116

5.5 Summary . 118

v

6 Conclusions and Future Scope 119

6.1 Future Research Directions . 120

6.1.1 Augmenting with autonomic capabilities 120

6.1.2 Exploring the impact of resource heterogeneity 120

6.1.3 Incorporating Machine Learning Techniques 121

6.1.4 Investigating additional optimization goals 121

6.1.4.1 Energy efficiency 121

6.1.4.2 Cost models . 121

6.1.4.3 Security features . 122

6.1.5 Integration with Serverless Computing and other emerging dis-

tributed computing environments 122

6.1.6 Integration with Blockchain technology 122

Appendices 123

A Resource Usage Analysis for Workload Microservice Applications deployed
using different Scheduling policies 125

Bibliography 128

Research Outcomes 150

vi

LIST OF FIGURES

1.1 A monolithic application transformed to a microservice-based application 2

1.2 Internal structure of a Microservice component 6

1.3 Organization of the thesis . 18

2.1 Taxonomy for the different research works in the literature under the

domain of Microservices Architectures 21

3.1 A framework for the deployment and execution of microservices 43

3.2 Overview of the research methodology followed in this thesis 46

3.3 Outline of the contributions of this thesis 48

4.1 Proposed framework for microservice allocation 60

4.2 Interaction graph for a toy microservice application with 4 microservice

components . 62

4.3 Performance metric values for Sock Shop application 76

4.4 Performance metric values for Istio BookInfo application 78

4.5 Performance metric values for Hipster Shop application 78

4.6 Interaction factor value for Sock Shop application across nodes 79

4.7 Interaction factor for Istio Book Info application across nodes 80

4.8 Interaction factor for Hipster Shop application across nodes 80

4.9 Overall Interaction factor value comparison for different schedulers . . 82

4.10 Average Scheduling Duration comparison across default, IntMA and

IntRR schedulers for different applications 85

5.1 Relation between CPU throttling and container CPU Limit 91

5.2 System Architecture . 94

vii

5.3 Internal Details of the Rescheduling Unit in the proposed system 96

5.4 Sequence of activities in the proposed rescheduling system 101

5.5 Overview of the exploration-exploitation steps in MOMVO 104

5.6 Communication between different entities in TIARM. 107

5.7 Performance Impacts of Underload Threshold (ULT) and Overload Thresh-

old (OLT) . 110

5.8 Comparison of throughput and response time for varying weight vector

values . 112

5.9 Performance comparison of BR, IRR, TRR and TIARM rescheduling

strategies . 114

5.10 Comparison of ‘Pending’ pods using the anti-correlated and co-related

strategy . 115

5.11 Analysis of different Node Selection Strategies 115

5.12 Downtime values for varying node selection Strategies 116

5.13 Values of the two objective functions across different generations for

MOMVO . 116

5.14 CDF of Throughput and Response Time for HipsterShop microservice

application . 117

5.15 CDF of Throughput and Response Time for BookInfo microservice ap-

plication . 117

5.16 CDF of Throughput and Response Time for TeaStore microservice ap-

plication . 117

5.17 Summary of Performance Analysis . 118

A.1 Memory usage values for Sock Shop microservice application 126

A.2 Memory usage values for Istio Book Info microservice application . . . 126

A.3 CPU usage values for Hipster Shop microservice application 127

viii

LIST OF TABLES

1.1 Comparative Analysis of container management platforms 11

2.1 Summary of research works on initial placement 38

2.2 Summary of research works on re-scheduling 38

3.1 Scope and focus of this thesis . 41

3.2 Details of Contributions of this Thesis 50

4.1 Notations used in the system model 58

4.2 Solutions obtained from mathematical optimization problem 66

4.3 Characteristics of reference microservice applications 72

4.4 The average response times (in ms) for the different applications 77

4.5 The average throughput (in ops) for the different applications 77

4.6 Comparison of different approaches for Sock Shop application 82

4.7 Comparison of different approaches for Istio BookInfo application . . . 82

4.8 Comparison of different approaches for Hipster Shop application 83

4.9 Scheduling Duration values for each microservice in the workload ap-

plications using IntMA, default and IntRR scheduling policies 84

4.10 Comparison of solutions obtained from mathematical optimization prob-

lem, the IntMA algorithm and the IntRR algorithm 86

4.11 p-values obtained from t-test . 86

5.1 Configuration of VM instances . 107

5.2 Parameter settings for MOMVO algorithm 108

5.3 Experiment parameters . 110

5.4 Different combinations of w1, w2 in Equation 5.3 111

ix

LIST OF ALGORITHMS

4.1 IntRR-Interaction-aware Round Robin algorithm 67

4.2 IntMA- Interaction-aware Microservice Allocation algorithm 69

4.3 Place- Subroutine invoked by IntRR and IntMA update residual capac-

ities on allocated nodes . 70

5.1 Monitoring Phase . 97

5.2 Descheduling Phase . 99

5.3 Rescheduling Phase . 100

5.4 MOMVO-based Node Selection Algorithm 105

xi

LIST OF ABBREVIATIONS

Abbreviations Expansion
API Application Programming Interface
AUFS Advanced multilayered Unification File System
BPM Business Process Modelling
CI/CD Continuous Integration and Continuous Delivery
CNA Cloud Native Application
DDD Domain Driven Design
DSL Domain Specific Language
ECS Elastic Container Service
FaaS Function as a Service
GCP Google Cloud Platform
GKE Google Kubernetes Engine
HCL HashiCorp Configuration Language
HTTP Hypertext Transfer Protocol
IaaS Infrastructure as a Service
IoT Internet of Things
JSON JavaScript Object Notation
k8s Kubernetes
MAPE Monitor-Analysis-Plan-Execute
MSA Microservice Architecture
NSGA Nondominated Sorting Genetic Algorithm
OASIS Organization for the Advancement of Structured In-

formation Standards
PaaS Platform as a Service
QoS Quality of Service
REST REpresentational State Transfer
RPC Remote Procedure Call
SaaS Software as a Service
SDN Software Defined Networks
SOA Service-Oriented Architecture
SOC Service-Oriented Computing
TCP Transmission Control Protocol
UML Unified Modelling Language
VM Virtual Machine

xiii

CHAPTER 1

INTRODUCTION

The Cloud Computing paradigm has rapidly proliferated as a platform to host appli-

cations across different sectors of the Information and Communication Technology

(ICT). As per Gartner forecasts (Katie 2019), the Cloud service industry is estimated to

grow at a rate three times greater than the overall Information Technology (IT) industry

through 2022. According to reports (Thomas et al. 2019), nearly all Fortune 500 com-

panies rely on the Cloud to host their organizational workloads. Cloud users leverage

on-demand access to a shared pool of hardware and software resources through differ-

ent service models, such as, Infrastructure as a Service (IaaS), Platform as a Service

(PaaS) and Software as a Service (SaaS).

Over the past few years, there has been a phenomenal change in the approach used

to develop and deliver Cloud applications and services. Enterprise solutions backed

by Cloud-based systems must heed to rapidly evolving customer needs by developing

software that can be scaled and updated at a swift pace. In this regard, the Microservice

Architecture (MSA) pattern has been gaining a foothold in the software development

industry and in particular, in Cloud application development.

In yesteryears, applications were packaged and deployed as a single component,

called monolith. An example of an e-commerce application designed using the mono-

lithic structure has been illustrated in Figure 1.1a. The monolithic design follows a

modular structure with the business logic at its core, packaged as a monolith. The

monolith contains all the modules of the application, including the user interface, busi-

1

1. Introduction

User
Interface

Data
Access
Layer

Business
Logic

Database

(a) Monolithic application

User
Interface

Shipping
microservice

Order
microservice

Catalog
microservice

Cart
microservice

Payment
microservice

(b) Microservice application

Figure 1.1: A monolithic application transformed to a microservice-based application

ness logic and data access layers. Such applications are easier to develop, test and

deploy. They also support scaling requirements. However, once deployed, several mod-

ifications made to the monolith tampers the intial structure of the monolithic application

and results in several drawbacks, such as an exponential increase in the Lines of Code

(LoC), increased start-up times and hindrance in upgrading project dependencies. The

initially simple monolithic application thus becomes too complex and difficult for the

developer to handle. The large monolithic application offers higher resistance to fu-

ture development due to the high level of interdependence among the different layers.

The evolution of the software thus becomes too cumbersome. Another major challenge

is the resistance offered by the large monolithic applications to agility and continuous

deployment. Other challenges include lower reliability values and less support for scal-

ability (Balalaie et al. 2014).

As a solution to these problems, several organizations such as Amazon and Netflix

adopted the Microservices Architecture pattern where a single application is split into

constituent independent microservice units. In the MSA, individual microservices are

developed to implement each functional unit of the application, as depicted in Figure

2

1.1. Evolution of Microservices Software Architecture (MSA)

1.1b. Separate microservices perform different e-commerce operations such as receiv-

ing customer orders, price listing and displaying product availability, adding items to

customer carts, managing customer payments and shipping the placed orders. Each

microservice accesses its own database and can be deployed independently. Since the

application is decomposed to multiple manageable units, the MSA application is less

complex and offers the benefits of modularity. Accordingly, the individual microser-

vices can be developed and maintained with lesser efforts. The other tangible benefits

of the MSA include improved scalability, agility and fault tolerance. Each microservice

unit can be scaled independently, thereby eliminating the need to scale the entire appli-

cation. As the MSA enables the independent deployment of each unit, changes that are

to be made locally to one unit can be tested and deployed without the need for coordi-

nated deployment, thereby supporting agile development. Additionally, since different

modules are deployed independently, bugs in individual modules do not hamper the

availability of the entire application, which is in contrast with the case of monolithic

applications where bugs in any of the modules can bring down the entire application.

Cloud applications pertaining to the MSA are characterised by features such as hy-

peragility and resilience that empower IT enterprises to reap maximum benefits offered

by the Cloud and cater to the evolving client requirements. The Microservice Archi-

tecture has also been influencing the Edge Computing, Fog Computing and Internet of

Things (IoT) paradigms (Yousefpour et al. 2019). Since the introduction of the archi-

tecture in 2014, there has been a tremendous explosion in the number of organizations

that have resorted to microservices (Fritzsch et al. 2019; Henry and Ridene 2020).

The MSA is thus an emerging distributed architectural style that is predominantly used

in the design of distributed systems. The following section presents the evolution of the

Microservices Software Architecture.

1.1 EVOLUTION OF MICROSERVICES SOFTWARE ARCHITECTURE (MSA)

The first object-oriented language, SIMULA, was developed in the 1970s (Meyer 1988).

In the early 1980s, Bjorn Stroustrup adopted the object-oriented programming features

into the C programming language, to develop C++ (Stroustrup 1994). By the 1990s,

3

1. Introduction

most of the computing systems made use of object oriented programming. To pro-

vide object-oriented features for multi-user environments, two distributed programming

models were introduced (Vinoski 1997): the Distributed Component Object Model

(DCOM) and the Common Object Request Broker Architecture (CORBA). The object-

oriented models were too complex as every action involved objects. Besides, the learn-

ing curve was very steep and security measures were also not stringent. This led to the

development of service-based systems, where the entire system is centered around units

called services (Tsai 2005).

1.1.1 Service Oriented Computing (SOC)

Service Oriented Computing (SOC) is a paradigm for designing software applications

for distributed systems (Papazoglou 2003). SOC relies on services as the fundamental

constructs and promotes the rapid development of software applications. These systems

comprises of three categories of entities: the provider who is responsible for providing

the service, the consumer who makes use of these services, and the most important en-

tity, the registry, where the providers display the functionalities offered by the services

hosted by them, which enables the consumers to identify the service suitable to their

needs/requirements and use them. The paradigm involves various services, with less

coupling among them, which interact with each other to deliver a business process.

1.1.2 Service Oriented Architecture (SOA)

In order to realize the vision of SOC, an architectural pattern was developed in the late

1990s, the Service Oriented Architecture (SOA). The Organization for the Advance-

ment of Structured Information Standards (OASIS) reference framework for SOA de-

fines a service as “A mechanism to enable access to one or more capabilities, where

the access is provided using a prescribed interface” (MacKenzie et al. 2006). The

SOA is thus an architectural style where business processes are implemented as differ-

ent components, with less degree of coupling, communicating with each other using

a middle layer with messaging capabilities. The Enterprise Service Bus (ESB) is the

central controller which controls and coordinates the flow of execution of services. The

degree of coupling in the system was slightly lower, when compared to monolithic ap-

4

1.2. Fundamental Concepts of Microservice Architecture (MSA)

plications, but this was not sufficient to completely realize the goal of Service Oriented

Computing. In particular, the SOA did not provide much support for agility and for

rapid deployment (Zimmermann 2016).

1.1.3 Inception of the Microservices Software Architecture (MSA)

In 2011, software architects proposed the microservices architectural style, though it

was only in 2012, that the term ‘microservices’ was used to refer to the architectural

style. The initial discussions on the architectural style were presented by Fred George

(George 2013) and James Lewis (Lewis 2012). Parallely, the Netflix team led by

Adrian Cockroft, re-designed all their applications to follow the ‘fine-grained’ SOA

principles, which was in alignment with the characteristics of the microservices ar-

chitectural style. Martin Fowler defines the microservices architectural style as “an

approach to developing a single application as a suite of small services, each running

in its own process and communicating with lightweight mechanisms, often an HTTP

resource API” 1. The microservice components focus on single business capabilities

and are independently deployable. Architecting applications as microservices, will re-

sult in an increased number of components which lead to an increase in the complexity

of management of the system. The MSA is often considered to be strongly related to

SOA (Bogner et al. 2018). The Microservices Architectural (MSA) style inherits most

of its features from the distributed computing paradigm and ideologies from Business

Process Modelling (BPM) (Geisriegler et al. 2017). The underlying concepts of MSA

are presented in Section 1.2.

1.2 FUNDAMENTAL CONCEPTS OF MICROSERVICE ARCHITECTURE
(MSA)

Microservices architecture is a software architectural pattern where applications are de-

composed into autonomous, loosely coupled, independently deployable units, called

microservices (Newman 2015). Generally microservices are formed by dividing an ap-

plication across the functional boundaries, resulting in each microservice dealing with

only one function. Each of the microservices is run separately and communicates via

1martinfowler.com/microservices.html

5

martinfowler.com/microservices.html

1. Introduction

lightweight mechanisms such as REpresentational State Transfer (REST) over Applica-

tion Programming Interface (API). In the following subsections, the internal structure

of microservices and the theoretical concepts underlying MSA are presented.

1.2.1 Internal structure of Microservices

The microservice components are usually characterized by the single responsibility

principle. Each microservice unit generally exposes their functionalities in the form of

interfaces. The microservices can be considered to have a layered structure 2as shown

in Figure 1.2, consisting of the following layers:

Figure 1.2: Internal structure of a Microservice component

• Resources: This layer maps the requests into messages to the objects in the do-

main. They carry out sanity checks for each request, transform the request into

invocations on the domain layer and provides a response in the specified format.

• Domain model Layer: This layer represents the business domain and contains the

business logic. This layer includes:

2martinfowler.com/microservices.html

6

martinfowler.com/microservices.html

1.2. Fundamental Concepts of Microservice Architecture (MSA)

– Services: The services layer contains implementations of business logic

which handles multiple domain objects.

– Domains: This layer includes entities, value objects and aggregate roots, all

of which are used to represent ‘things’ in the business model.

– Repositories: This layer acts as a storage for a collection of domain entities.

• Gateway: This layer enables communication with remote services. The layer

is responsible for marshalling requests and responses from and to objects of the

domain.

• Data Mapper: This layer provides persistence aspects for the domain objects

across requests. The layer generally includes Object Relational Mapping (ORM)

Models to transform entities or objects into atomic scalar values, which can be

directly stored in relational databases.

1.2.2 Domain-Driven Design

Developing software intuitively can lead to software systems that are extremely com-

plex. Software developers tackle this challenge by adopting the principles of Domain

Driven Design (DDD). Introduced by Eric Evans (Evans 2004), the DDD aims at de-

veloping solutions for a particular ‘domain’ or problem space. The domain is further

decomposed into sub-domains, which are termed ‘context maps’. Solutions are de-

signed for each context map, and these solutions are called ‘bounded contexts’. The

solutions involve two different type of objects ‘aggregates’ and ‘value objects’. Ag-

gregates are analogous to ‘objects’ in the Object Oriented Design (OOD), and usually

represent objects in a hierarchy, where only the object at the root node can be accessed

from the external world. On the other hand, value objects represent values like iden-

tifiers or measurement values. By default, they are static and does not vary. Systems

designed according to the DDD principles deploy individual units corresponding to

each bounded context. Each unit incorporates a domain layer that contains the business

logic, an infrastructure layer that houses the infrastructure that runs the other layers,

and a client layer that acts as the interface to the application. In addition, there are ‘do-

main services’ that has higher capabilities and can simultaneously access heterogeneous

7

1. Introduction

domain objects or bounded contexts.

Microservices are designed to handle the responsibility of a single functionality. A

better perspective to view microservices would be as components that provide solu-

tion for one bounded context. Thus, microservices may be designed adhering to the

credo of the DDD, which enables the units to be autonomous and independent. Once

the bounded contexts have been identified, the developer may proceed to identify the

aggregates and value objects corresponding to the bounded context. This can then be

translated to design microservice systems.

1.2.3 Circuit Breaker Pattern

A client request to a microservices system, usually results in a cascade of microservice

calls. Once the request has been processed by all the microservices in the workflow, the

result will be delivered back to the client. Such a distributed system, is more vulnerable

to failures. One of the promised characteristics of microservice architectures is fault

tolerance and graceful shut down. To enforce this characteristic, the failure of one

microservice instance must not hinder the users from getting responses from the other

microservices in the system. One measure to ensure this is to introduce circuit breakers

in between the microservice units (Montesi and Weber 2016). Circuit breakers are

proxies which function similar to the electric circuit breakers. In order to ensure that

the failure of one particular microservice, has reduced impacts on the functioning of

the system as a whole, these proxy circuit breakers trip down after a certain number of

failed requests to a service, and all further requests made to the service is terminated

immediately.

1.2.4 12-factor app

Though a consensus on an exact definition for microservices, is yet to be attained, there

are several guidelines on the approaches that may be adopted to decompose a system

into microservices. One of the most referred guidelines is the 12-factor app, which was

originally introduced by the Heroku in 2011 3, to guide the development of applications

to be run on the Heroku platform. In other words, these provide the guidelines to

312factor.net/

8

12factor.net/

1.3. Container Virtualization and Container Technologies

develop Cloud-native applications 4(Cito et al. 2015). The intent of the 12-factor app

is to build scalable and portable applications that are deployable in the Cloud. These

targets also align with those of the microservices architectures. Thus, the 12-factor app

can be adopted as a patten for developing microservices (Torkura et al. 2017). These

steps ensure that the application may be deployed and modified easily by the same

developer or other developers, to incorporate new features.

After development, the microservice applications are generally packaged and de-

ployed as containers. Section 1.3 sheds light on the container virtualization technology.

1.3 CONTAINER VIRTUALIZATION AND CONTAINER TECHNOLOGIES

The virtualization technology, which is considered as the backbone enabler of Cloud

computing, can be broadly classified into two: hypervisor-based virtualization and

container-based virtualization. In hypervisor-based virtualization, a Virtual Machine

Manager (VMM) runs atop the host Operating System (OS) and each Virtual Machine

(VM) instance includes its own guest OS. Containerization provides lightweight virtu-

alization through creation of self-contained application packages from image files. The

guest instances operate at virtualization layers at the OS kernel level.

Since 1970s, containerization has been used to provide isolated environments since

the 1970s. However, it was only by the year 2012, that Linux distributions introduced

kernel features such as namespaces, chroot and control groups, leading to the emer-

gence of Linux Containers (LXC). Various container technologies such as OpenVZ,

and CoreOS have been introduced. In 2013, the open-source Docker container tech-

nology was released, which catapulted the applicability of containers in the software

industry. Docker image files follow a layered structure known as Advanced multilay-

ered Unification File System (AUFS).

Cloud based applications were usually run on VMs. Cloud applications based on

the microservices architecture offers several advantages over the conventional mono-

lithic architectures. However, these advantages may be fully exploited only when it is

deployed in environments which provide adequate support for the architecture. When

4cyberlearn.hes-so.ch/mod/resource/view.php?id=766219&redirect=1

9

cyberlearn.hes-so.ch/mod/resource/view.php?id=766219&redirect=1

1. Introduction

microservices are deployed on VMs, the limitations of VMs, such as virtualization over-

head, degraded performance, will hinder the microservices from providing the expected

benefits. Based on this observation, several researchers explored the use of lightweight

virtualization techniques in deploying microservices (Amaral et al. 2015; Kang et al.

2016b; Peinl et al. 2016; Stubbs et al. 2015).

Container virtualization can be materialized in different forms: application contain-

ers and system containers. Application containers provide a more viable option for the

deployment of microservices. These containers wrap applications along with their de-

pendencies into a self-contained unit which can be deployed independently. They have

lower startup-times and offer near-native performances in several scenarios. Another

feature of containers is that they contain the application and all the libraries required

to run the application. This improves the portability of the application. These charac-

teristics of containers provide the agile environment required to deploy microservices.

These features of containers make it the unanimously accepted technology to enable

seamless execution of microservices in the Cloud. The various activities in the lifecycle

of containers such as creation, deployment and termination, are managed by container

management platforms, as detailed in Section 1.4.

1.4 CONTAINER MANAGEMENT PLATFORMS

The emerging dominance of containers in the Cloud Computing environment, has led to

the development of several platforms dedicated for the management of container-based

systems. These platforms may be adopted to run microservices in containers. A detailed

study on the different platforms has been presented by Peinl and Holzschuher (2015).

The major platforms are Apache Mesos Marathon, Amazon Elastic Container Service

(ECS), Docker Swarm, Google Kubernetes (earlier Google Borg) and Hashicorp No-

mad. A comparison of the major container management platforms is provided in Table

1.1. Container runtimes may be employed to spawn application containers in single

host scenario or across multiple hosts.

10

1.4. Container Management Platforms

C
on

ta
in

er
M

an
ag

em
en

tP
la

tfo
rm

s
Pl

ac
em

en
t/

A
llo

ca
tio

n
Sc

al
in

g
ru

le
s

L
oa

d
B

al
an

ci
ng

M
on

ito
ri

ng
A

pp
lic

at
io

n
D

es
cr

ip
tio

n
A

pa
ch

e
M

es
os

M
ar

at
ho

n
D

om
in

an
t

R
es

ou
rc

e
Fa

ir
(D

R
F)

Sh
ar

in
g

T
hr

es
ho

ld
-b

as
ed

(C
PU

or
m

em
or

y
ut

ili
za

tio
n)

M
ar

at
ho

n
L

B
(H

A
Pr

ox
y)

or
vi

rt
ua

lI
P

ba
se

d
H

T
T

P
en

dp
oi

nt
s

A
pp

lic
at

io
n

de
fin

iti
on

(J
SO

N
)

A
m

az
on

E
C

S
(E

la
st

ic
C

on
ta

in
er

Se
rv

ic
e)

B
in

pa
ck

in
g,

sp
re

ad
,

af
fin

ity
,

di
st

in
ct

in
-

st
an

ce

T
hr

es
ho

ld
-b

as
ed

(C
PU

or
m

em
or

y
ut

ili
za

tio
n)

A
pp

lic
at

io
n

L
oa

d
B

al
-

an
ce

rs
,

N
et

w
or

k
L

oa
d

B
al

an
ce

rs
,

an
d

C
la

ss
ic

L
oa

d
B

al
an

ce
rs

C
lo

ud
w

at
ch

Ta
sk

D
efi

ni
tio

n
(J

SO
N

)

D
oc

ke
rS

w
ar

m
B

in
pa

ck
in

g,
sp

re
ad

,
ra

nd
om

N
o

in
-b

ui
lt

su
pp

or
t

L
ay

er
4

T
C

P
(i

nt
er

na
l)

D
N

S
an

d
vi

rt
ua

l
IP

ba
se

d
R

ou
nd

R
ob

in

Pr
om

et
he

us
Se

rv
ic

e
de

fin
iti

on
(d

ec
la

ra
tiv

e)

G
oo

gl
e

K
ub

er
ne

te
s

(k
8s

)
Fi

t
Pr

ed
ic

at
e

(l
a-

be
ls

),
no

de
/p

od
af

fin
ity

&
an

ti-
af

fin
ity

&
ta

in
ts

T
hr

es
ho

ld
-b

as
ed

(C
PU

or
m

em
or

y
ut

ili
za

tio
n)

L
ay

er
4

T
C

P
R

ou
nd

R
ob

in
(k

ub
e-

pr
ox

y)
L

ay
er

7
H

T
T

P
R

ou
nd

R
ob

in

H
ea

ps
te

r,
cA

dv
is

or
Se

rv
ic

e
(R

E
ST

)

H
as

hi
co

rp
N

om
ad

B
in

Pa
ck

in
g

M
an

ua
l

C
PU

/
m

em
-

or
y

ba
se

d
sc

al
in

g
H

A
Pr

ox
y

T
C

P/
H

T
P

L
oa

d
B

al
an

ci
ng

N
om

ad
ag

en
t

w
ith

H
T

T
P

en
dp

oi
nt

Jo
bs

pe
c

(H
C

L
)

Ta
bl

e
1.

1:
C

om
pa

ra
tiv

e
A

na
ly

si
s

of
co

nt
ai

ne
rm

an
ag

em
en

tp
la

tf
or

m
s

11

1. Introduction

In single host systems, multiple containers are handled by the Linux kernel by con-

sidering them as equivalent to the other processes running in the system. The scheduler

used to schedule containers on a single host is the Completely Fair Scheduler (CFS).

The CFS maintains a list of incoming requests in the form of a red-black tree. The

nodes are structured on the basis of their execution times.

The container management platforms enable spawning containers across multiple

hosts connected to form a cluster. The platform takes care of deploying containers,

provides load balancing capabilities and scaling functionalities. The platform decides

where a container should be deployed in the cluster, initiates the container and provides

monitoring capabilities (usually with the help of other monitoring tools). In such multi-

host systems, the allocation policies generally followed are as follows:

• Dominant Resource Fair Sharing (DRF): This strategy attempts to maintain

fairness across different requests with multi-resource requirements. When job

requests arrive, the resource requirements for the various resources are consid-

ered. The proportion of each resource requested (with respect to the available

resources) is calculated. For each job, the resource with a higher proportion is

considered to be the dominant resource. Then, the strategy strives to allocate

equal proportion of the dominant resource for all the jobs.

• Bin Packing: This strategy attempts to complete all the resources on one node

before allocating containers to the next node. It tries to allot as many containers

as possible to the current node.

• Spread: The strategy places the containers on the different nodes in the cluster

by selecting them in a round-robin manner.

• Random: A node is selected at random to host the container. The selected node

must satisfy the constraints specified.

• Distinct Instance: Each incoming container request is allocated to a distinct host.

• Custom labels/rules: The allocation is done based on the information provided

12

1.5. Microservice Orchestration

by the user. The information may be in the form of tags, affinity values or anti-

affinity values.

Microservice applications are generally composed of numerous microservice compo-

nents hosted across multiple containers. Tackling the operational complexities of such

distributed systems presents numerous challenges. Though existing systems have em-

ployed these container management platforms as a middleware, they possess several

limitations. The current container management systems do not support dynamic man-

agement of the container system. In addition, the allocation, load balancing and scaling

rules adopted are ingenious. To overcome this, developing efficient microservice or-

chestration mechanisms is extremely important.

1.5 MICROSERVICE ORCHESTRATION

The resources in a microservice ecosystem must be managed across different phases

of the microservices’ lifecycle by means of processes and/or services to perform opera-

tions like resource selection, monitoring and controlling. All these activities collectively

fall under microservice orchestration. For container-based microservices, orchestration

involves automation of the process of co-ordinating the work of individual microservice

application containers. This involves the automation of tasks such as load balancing,

service discovery, provisioning and deployment. The recent practice of incorporating

microservices across different layers of the application stack results in having multiple

components that may not seamlessly integrate as a single unit. Having individual enti-

ties governed by different demands and dependencies raises the need for microservice

orchestration. In such scenarios, conventional service orchestration approaches may

deem insufficient due to the specific characteristics of microservices such as agility,

independence and asynchronous communication. In this thesis, the primal focus is on

the microservice orchestration activities of microservice allocation and microservice

re-scheduling.

In a nutshell, the contributions of this thesis can be categorised into three. First, so-

lutions to different problems in microservice-based environments are studied. Second,

a strategy for performing allocation of microservice components in Cloud datacenters,

13

1. Introduction

is proposed. Third, a framework for performing rescheduling in microservice-based

Clouds is proposed.

1.6 MOTIVATION

According to recent studies, the global microservices market is expected to grow at a

Compound Annual Growth Rate (CAGR) of 22.4% over the years 2018 to 2023 (Re-

search and Markets 2018). Enterprises worldwide have rapidly embraced the MSA to

develop and deploy applications. The switch to MSA enabled organizations to over-

come the performance barriers emanated by traditional monolithic applications. An

example is the significantly large performance improvements attained by Walmart’s

migration to microservices. The Information Technology (IT) team of Walmart in U.S.

was confronted with downtime issues on Black Fridays for two successive years. This

originated from the failure in being able to scale for handling around 6 million page

tracking hits per minute. Replatforming to MSA enabled Walmart to resolve all down-

time issues and moreover resulted in energy and cost savings (around 40% and 50%

respectively) (Vizard 2015).

Cloud applications structured as microservice components facilitate the optimal us-

age of the Cloud resources (Wu 2017). These microservices running on the Cloud

infrastructure exhibit many beneficial features like scalability and resilience. To ensure

this, the ecosystem of microservices must be dynamically orchestrated to improve re-

source utilization, minimize costs and meet the heterogeneous Quality of Service (QoS)

requirements. The deployment units have different options for packaging, either as VM

or container images. In containerized Cloud environments, the microservices are de-

ployed across clusters of multiple containers that must be coordinated to ensure seam-

less service delivery to end-users. Microservice orchestration includes activities such as

selection, deployment and dynamic configuration management that takes into consider-

ation the heterogeneities of the microservices, container engines and Cloud datacenter

resources that support the execution of the microservice applications (Zhong and Buyya

2020). The focus of this research work is on the scheduling and re-scheduling activities

in containerized environments.

14

1.7. Distributed Computing Paradigms employing MSA

Scheduling strategies form the crux of microservice orchestration platforms. They

play a primal role in harnessing the benefits of the underlying resources. Although

a plethora of approaches have been proposed to address the application scheduling

problem in Cloud environments, research focussing on the specific characteristics of

microservices is essential (Fazio et al. 2016). Using the traditional scheduling ap-

proaches may result in compromised QoS values as, contrary to the standalone mono-

lithic applications, microservice applications are constituted of multiple interacting mi-

croservice units (Esposito et al. 2016). Accordingly, there is a dire need to consider

the communication among the multiple microservices constituting an application, while

taking scheduling decisions. Hence, the scheduling strategy developed in this research

attempts to place the frequently interacting microservices together.

Regardless of the optimality of the initial scheduling strategy, the quality of the

arrangement degrades with fluctuations in resource utilization and workload rate (Ro-

driguez and Buyya 2020; Zhong and Buyya 2020). Therefore, re-arrangement of the

microservice containers through re-scheduling activities is vital. The majority of ex-

isting research targets the re-scheduling in hypervisor-based virtualized datacenters.

However, adopting these approaches in containerized datacenters would fail to achieve

optimal performance. Hence, the re-scheduling solution developed in this research,

considers the container configuration parameters in combination with the resource us-

age statistics to perform re-scheduling in containerized datacenters.

1.7 DISTRIBUTED COMPUTING PARADIGMS EMPLOYING MSA

The emerging MSA architectural pattern has been applied to several computing realms,

such as ubiquitous computing (Fano and Gershman 2002). The MSA may be used to

realize other recent computing paradigms/ models, such as:

• Reactive Computing:

Reactive programming is programming with asynchronous data streams. A stream

is a sequence of ongoing events ordered in time. The emitted events are captured

only asynchronously, by defining a function that will execute when a value is

emitted and another function when an error is emitted. Responsiveness is one of

15

1. Introduction

the key characteristics of reactive systems (Bonér et al. 2014). Microservices

can be effectively used to achieve Reactive Computing functionalities.

• Osmotic Computing:

The Osmotic Computing paradigm was conceptuated by Villari et al. (2016).

This paradigm took birth at the intersection of the Cloud and Edge Computing

domains. Applications in the Osmotic Computing paradigm are deployed as mi-

croservices. One of the central elements of the Osmotic paradigm is the decision

maker which maps each microservice to the best location (Nardelli et al. 2017).

Villari et al. (2017) also proposed an Osmotic flow, which is a model for mod-

elling and executing the IoT workflow applications in an Osmotic environment.

Sharma et al. (2017) propose a fitness-based algorithm which considers the load,

energy and processing time requirements and then take a threshold-based decision

for the placement of the service request. Medical domains can also harness the

potential of the osmotic computing environment, by leveraging them to develop

Hospital Information Systems (HIS). Carnevale et al. (2017) describes one such

approach , where the application is decomposed into microservices and deployed

across the Cloud and edge resources.

• Serverless Computing and Functional PaaS:

Serverless computing allows users to build and run applications and services

without thinking about servers. One of the models that enable clients to lever-

age serverless computing capabilities is through Function-as-a-Service (FaaS)

(Van Eyk et al. 2018). FaaS provides a platform allowing the developers to

execute code in response to events without the complexity of building and main-

taining the infrastructure. The tenets of serverless and FaaS can be materialized

by adopting fine-tuned microservices (Van Eyk et al. 2019). Contrary to other

computing paradigms, FaaS eliminates the need to keep components up and run-

ning at all times by employing time-sharing principles, thereby cutting down op-

erating costs to a great extent.

16

1.8. Organization of the Thesis

• Cloud Computing:

Cloud Native applications (CNA) are applications built specifically for running

on the Cloud. Though there exists no formal definition for the term, these ap-

plications are said to exhibit certain properties called the CNA properties, which

include scalability and elasticity (Khan 2017). Other properties include deal-

ing with constant failures, support for Continuous Integration and Continuous

Development (CI/CD) and security. In order to develop applications with the

CNA properties, it was necessary to decompose applications into functional units.

Thus, the CNA are architected as microservices that are generally stateless and

communicate using Representational State transfer or Remote Procedure Call

(RPC)- based calls. The CNA are mostly run on containers, which provide iso-

lation and enable packaging of all dependencies as a single unit. Decomposing

applications into microservices provide agility and ease the maintainability of

microservices.

• Other Distributed Computing Paradigms: The Industry 4.0 Revolution has

fostered the adoption of IoT, Fog computing and other related edge computing

paradigms (Yousefpour et al. 2019). The aforementioned paradigms necessitate

the development and deployment of applications as interconnected, autonomous

modules. These features are perfectly in alignment with the characteristics of

MSA-based applications (Pallewatta et al. 2019). In addition, other requirements

of IoT applications such as robustness, modularity, scalability and resilience are

also met by the MSA (Buzachis et al. 2019; de Santana et al. 2019). Conse-

quently, the MSA has been widely embraced by application developers.

1.8 ORGANIZATION OF THE THESIS

This thesis is organized as illustrated in Figure 1.3. Chapter 1 provides a brief preface to

the domain of microservices and containerized Cloud environments. Chapter 2 presents

a taxonomy of the different aspects of MSA and a comprehensive study on the related

research works. Chapter 3 describes the research problem that forms the focus of this

thesis. Chapter 4 presents an interaction-aware allocation algorithm to effectively place

17

1. Introduction

Chapter 1

Introduction

Chapter 2

Taxonomy and Literature
Review

Chapter 3

Problem Description

Microservice Allocation Microservice Re-scheduling

Chapter 4 Chapter 5

Chapter 6

Conclusions and Future
Directions

Algorithm for interaction-aware
allocation of microservice
components

1. Framework for microservice
re-scheduling

2. Algorithms for container
selection and re-scheduling

Figure 1.3: Organization of the thesis

microservice components in containers across the multiple hosts in a Cloud datacen-

ter. Chapter 5 describes the proposed framework to perform dynamic re-scheduling in

Cloud datacenters. Chapter 6 outlines the findings of the thesis and also provides the

future research directions.

18

CHAPTER 2

LITERATURE REVIEW

Researchers and practitioners have adopted microservices into several application do-

mains such as Internet of Things, Cloud Computing, Service Computing and Health-

care. Apart from the development of microservice-based applications, devising tech-

niques to efficiently coordinate and manage the various microservices is equally es-

sential. Applications developed in alignment with the microservices principles require

an underlying platform with management capabilities to coordinate the different mi-

croservice units and ensure that the application functionalities are delivered to the user.

A multitude of approaches have been proposed for the various tasks in microservices-

based systems. However, since the field is relatively young, there is a need to organize

the different research works. Accordingly, a multi-level taxonomy to categorize the

existing research is provided in Section 2.1 of this chapter. The section also presents

a comprehensive review of the research approaches directed towards microservice ar-

chitectures. Section 2.2 presents the outcome of the study conducted and enlists the

research gaps in the domain.

2.1 TAXONOMY BASED ON DIFFERENT ASPECTS OF MICROSERVICE
ARCHITECTURES

Since 2014, when the microservice architecture was first introduced, several researchers

have attempted to overcome the various challenges in adopting microservice architec-

tures to develop systems and applications. As the trend in research community, there

are a lot of studies, including systematic reviews and mapping studies (Dragoni et al.

19

2. Literature Review

2017; Fernández Villamor et al. 2010; Katuwal 2016; Kratzke and Quint 2017; Maz-

zara et al. 2016; Pozdniakova and Mazeika 2017; Salah et al. 2016; Zimmermann

2016) that attempt to review the research works carried out in this domain. These

include studies that consider sub-domains of MSA related concerns, such as security

(Almeida et al. 2017) and granularity (Hassan et al. 2020) of microservices . A

majority of these studies consider the software engineering aspects of microservices.

The systematic studies review the works, with the aim of identifying possible research

directions and the research trends in the domain. They do not attempt to provide a clas-

sification taxonomy for the various aspects of microservice architectures. This work

considers all research works and solutions by the industry, in the different sub-domains

of microservices and attempts to classify the research studies into different categories,

based on the aspect considered.

The proposed taxonomy classifies the existing research broadly into two: research

addressing development phase and operational phase aspects. The classification taxon-

omy is illustrated in Figure 2.1. The taxonomy considers research efforts that address

issues either in the development phase or the operational phase.

The developmental phase concerns include the challenges faced in the development

of microservice-based systems (such as deciding the size of microservices, approaches

to model the requirements for the microservice-based systems, all of which come under

the Software Engineering concerns, already discussed in existing surveys). Research

studies that fall under this category have been briefly discussed in Section 2.1.1.

The operational phase concerns include the challenges faced once the microservices

has been deployed into the system. Rolling out new updates, constant monitoring, and

other issues come under this category. This category of research works has not been

considered in the earlier studies. The issues in this category can be further classified

into two: the infrastructural management issues and the service management issues.

The works in each category have been reviewed and analyzed in Section 2.1.2.

20

2.1. Taxonomy based on different aspects of Microservice Architectures

Different
Aspects of

Microservice
Architectures

Operational
Phase

Concerns

Service Management
Capabilities

Configuration

Load
Balancing

Routing

Service
Discovery

Infrastructural Management
Capabilities

Security

Autonomic
Capabilities

(self-*)

Monitoring &
Performance
Engineering

Anomaly
Detection

Performance
Testing

& Modeling

Performance
Monitoring

Microservice
Migration

Microservice
Placement

Development
Phase

Concerns

Software
Engineering

Aspects

Software
Quality

Software
Testing

Software
Maintenance

Software
Design &

Development
Software

Modelling
Feature

Modelling

Software
Structure &
Architecture

Figure 2.1: Taxonomy for the different research works in the literature under the domain
of Microservices Architectures

21

2. Literature Review

2.1.1 Developmental Phase Concerns

This category considers challenges or issues faced in the development of microservices

based systems. The challenges come under the Software Engineering challenges.

Software Engineering

Microservice architectures are by and large associated with continuous software engi-

neering, where software is updated on a very frequent basis (O’Connor et al. 2017). It

is common that Software Engineers use microservices to develop systems that are agile

(Rosenberg et al. 2017). The process of engineering microservices poses several chal-

lenges. There is a need for research on the design of microservices (Tai 2016), as the

architectural pattern brings about several challenges in the field of Software Engineer-

ing. There are different Software Engineering sub-disciplines that have been considered

by researchers working in the domain of microservices such as software design & de-

velopment, software maintenance, software testing and software quality.

1. Software Design & Development: The design of microservice system encom-

passes different elements, which include: Design of the service (or microser-

vice), Solution, Process and Tools, Organization and Culture (Nadareishvili et al.

2016). The design element involves the design of the microservice units them-

selves. The decision challenge is to correctly determine the microservice bound-

aries and the granularity. It also deals with the designing of the APIs. The so-

lution provides a global view of the microservice system, which follows certain

architectural patterns. Selection of the tools and enablers for the development

of the microservices system, directly influences the characteristics of the system,

such as resistance to change, and therefore, is a vital part of the design phase.

Apart from this, the formation of teams developing the microservices, is another

design-level concern. Cultural factors also contribute to determining the proper-

ties of the developed system. The scope of the MSA architectural style is often

restricted only to the back-end or server-side of applications. Harms et al. (2017)

demonstrate the viability of the microservices architectural style for providing the

front-end services. The different types of front-end architectures are: monolith,

22

2.1. Taxonomy based on different aspects of Microservice Architectures

plug-in and the self-contained systems (SCS). Tizzei et al. (2017) conducted a

study on how Software Product Lines (SPL) processes can be integrated with the

microservices architectural concepts.

• Software Structure & Architecture: The design of microservices can

adopt different architectural patterns. The architectural pattern language

developed by Chris Richardson (2017) is a conglomeration of different pat-

terns with relationships defined between them. Granchelli et al. (2017a)

proposed the MicroArt tool that employs model-driven concepts and can be

effectively used by the software architects (Di Francesco 2017). Kleehaus

et al. (2018) proposed Microlyze, that can enable developers to recover the

software architecture of microservices, using data collected in the monitor-

ing process. At the design level, different decisions can lead to different

patterns. In order to ensure that the design complies with the patterns, Zdun

et al. (2017) proposed few metrics that can be used to assess the compliance

with the patterns. Most of the metrics are associated with the number of

components shared among the microservices. Ideally, microservice archi-

tectures strive to keep ‘sharing’ at the bare minimum.

• Software Modelling: In order to develop microservices-based systems, it

is necessary to devise techniques capable of representing user requirements

as design specifications. This implies that there is a need for researchers to

work on developing methods and languages for modelling microservice-

based applications. Rademacher et al. (2017) presented a study on the

model-driven development techniques for SOA that may be equally perti-

nent for microservices architectures as well. Metamodels for MSA must

capture additional information, such as the container technology used and

communication protocol, among other details. Modelling languages for

MSA must take into consideration the features of MSA, such as single ca-

pability and polyglot nature, where each team can have their own choice for

the modelling language as well. Petrasch (2017) proposed extended Uni-

fied Modelling Language (UML) diagrams with the ‘microservice’ stereo-

23

2. Literature Review

type to support MSA. The UML diagrams are then subjected to Enterprise

Integration Patterns (EIP) to extract accurate specifications to engineer mi-

croservice applications that also reflect the communications carried among

the microservice components. Diepenbrock et al. (2017) developed an ap-

proach to apprehend the ontological information in domain metamodels,

that can be used to model microservices. Microservice ambients proposed

by Hassan et al. (2017) can be used to model microservices. Granchelli

et al. (2017b) proposed an approach for Model Driven Reverse Engineering.

They developed a MicroART prototype that is capable of extracting the ar-

chitecture of the system, when provided with the source code. Zúñiga-Prieto

et al. (2017) proposed an extended architecture model that can integrate sev-

eral models of microservices and can be used to guide design decisions for

the code generation phase. Düllmann and van Hoorn (2017) proposed a

metamodel for MSA that can be used to generate synthetic microservices to

simulate the changes arising in the deployed microservices, which can then

aide the collection of data for monitoring. Model-integrating components

along with microservices can be applied to better support continuous soft-

ware engineering (Derakhshanmanesh and Grieger 2016). The modelling

language combining both these concepts can provide as a model language

whose applicability spans the entire lifecycle of the software. The Commu-

nity Application Editor (Lange et al. 2016) tool can be used to model web

applications based on microservices.

One of the important instruments used by software engineers for domain

modelling is feature modelling, that can be used to represent the variability

in the applications.

Feature modelling Klock et al. (2017) proposed the MicADO (Microser-

vice Architecture Deployment Optimizer) tool which accepts the architec-

ture model and workload model to develop a possible feature placement

model depicting the features provided by each microservice. Given the set

of features to be provided by a microservice system, and the expected work-

24

2.1. Taxonomy based on different aspects of Microservice Architectures

load, the tool outputs the features that will be provided by each microser-

vice, by applying the Genetic Algorithm metaheuristic.

2. Software Maintenance: This phase starts once the software has been devel-

oped. The maintenance activities involve rectifying faults in the working of the

software and several other tasks such as modifying the software to adapt to ex-

ternal changes, or providing enhancements to the software to improve the perfor-

mance. Microservice architectures are expected to reduce the costs incurred for

maintenance activities (Esposito et al. 2016). Bogner et al. (2017) observe that

most of the metrics, related to measurements of maintainability involving the size

and complexity or degrees of coupling and cohesion, are applicable to evaluate

the maintainability of microservice-based software as well.

3. Software Testing: Along with the benefits that the microservices architectures

offers, it also introduces new challenges in the software testing domain. Develop-

ing effective testing strategies for the microservices applications is a challenging

task (Sundar 2017), owing to the dynamicity and agility involved. The polyglot

nature of the microservices architecture, coupled with the continuously changing

environment of the microservices architecture deems it challenging to perform

testing for the system resilience using conventional methods. However, it is most

essential to analyze the fault handling capability of the microservices. Heorhiadi

et al. (2016) proposed Gremlin, a technique underpinned by Software Defined

Networks (SDN) to enable systematic testing of the microservices- based sys-

tems. The faults to be injected are communicated to the control plane in the form

of Python recipes, which then takes the appropriate actions on the data plane. The

major advantage of the Gremlin approach is that the latency involved in getting

the feedback is very low. In order to develop a testing strategy tailored to the

requirements of the microservices architectures, Savchenko et al. (2015) anal-

ysed the features specific to testing of microservices and then proposed a frame-

work called Mjolnirr, for the validation and testing of microservices. Savchenko

and Radchenko (2015) proposed a framework for validation of microservices that

spans the entire development cycle of the application, and can provide an abet

25

2. Literature Review

for the Mjolnirr system. Testing the functional aspects of the microservice-based

systems can be done by adopting a black-box approach, using a learning-based

strategy (Meinke and Nycander 2015). The approach involves modelling the sys-

tems as Finite State Machines (FSM) and then checking for System Under Test

(SUT) errors. In addition, faults may be injected to verify the robustness of the

system. Schermann et al. (2016) proposed Bifrost middleware to perform live-

testing in microservice-based systems. The proposed middleware, which is based

on the formal model specified in a DSL, can be used to automatically perform

live testing in different phases across the rollout process.

4. Software Quality: The microservices architecture design is perceived by differ-

ent practitioners in different forms. In view of the fact that there are no formal def-

initions or guidelines to develop microservices architectures, it deems imperative

that the developed software be verified for conformance to design requirements.

Possible quantifiers for software quality of microservice architectures include the

size of the service, that may be measured by considering the resources accessed

and the number of external clients communicating with the service. Commu-

nications between the services also needs to be considered to measure the soft-

ware quality. Asik and Selcuk (2017) proposed a static tool that can be used

to effectively analyze the microservice based software and rate the quality of

the software. Ulander (2017) observed that structural metrics such as flexibility,

reusability and understandability are effective measures of the quality of the de-

veloped software. However, these metrics vary according to the characteristics of

the system where the software is deployed.

2.1.2 Operational Phase Concerns

Microservice Architectures (MSA) aim at making application development simpler by

decomposing the application into different modules and assigning different teams the

responsibility of each module. Each team can develop the microservice while choosing

from a wide range of technology options that best support their requirements. However,

the backstage tasks for supporting such an application is plenty. Removing the com-

26

2.1. Taxonomy based on different aspects of Microservice Architectures

plexities in application development is actually virtual and is realized by pulling more

responsibilities to the supporting environment. This implies that an ecosystem that

supports the microservice-based applications has more responsibilities, such as han-

dling the communication between the entities and ensuring the overall co-ordination

and seamless operation of the several distributed entities. This section discusses the

various operational functionalities that come under the responsibilities of the support-

ing infrastructure. The different tasks can be broadly classified into two: infrastructural

management capabilities and service management capabilities. Research works falling

under the two categories are discussed in Sections 2.1.2.1 and 2.1.2.2 respectively.

2.1.2.1 Infrastructural Management Capabilities

The microservices are generally run on containers that are spawned on physical ma-

chines or hosts. Ensuring that the microservices are provided adequate resources with-

out interrupting the microservice activities such as scaling, observing the microservice

instances for their runtime behaviour and making corresponding adaptations in the in-

frastructure, and several other activities come under the management tasks of infras-

tructure for microservices (Sousa et al. 2016; Wizenty et al. 2017). The infrastructural

management capabilities may be viewed as the activities at the boundary between the

microservice instances and the underlying infrastructure. The major activities are mi-

croservice placement, microservice migration, performance monitoring & engineering,

autonomic management and security mechanisms. The research state-of-art for each of

the activities are discussed in this section.

1. Microservice Placement:

Container runtimes offer the most suitable deployment strategy for the microser-

vice architectures. With the surge in usage of containers in Cloud data centers,

the efficient allocation of containers is a key concern with regard to the resource

utilization and the overall performance of the system. There are container orches-

tration tools to perform the container lifecycle management. However there are

unsettled issues in the container resource management. Guerrero et al. (2018a)

proposed a NSGA-II based approach for the initial placement of microservices

27

2. Literature Review

on containers. The authors considered the objectives of balancing the system

workload, system reliability and the network overhead. To quantify the objec-

tives the authors proposed metrics and employed the metaheuristic technique to

solve the optimization problem. Selimi et al. (2017) proposed an approach to

effectively place services in a network. The state of the network in which the

services are to be deployed is also to be taken into account. However, this ap-

proach does not consider the specific characteristics of microservices architec-

tures. The MiCADO tool (Kiss et al. 2017) includes an optimised deployment

phase, where the application description is taken as input, and an optimal deploy-

ment schedule is generated, taking into consideration the QoS parameters and

security requirements. However, the authors proposed only a generic framework

and implementation specifics are not discussed. Other relevant research works

include the works in the literature for container allocation.

2. Microservice Migration: Microservices architecture is transpiring as the pre-

dominant application architecture for Cloud Computing. In this milieu, the ne-

cessity of orchestrators and schedulers cannot be neglected. One of the tech-

niques which the orchestrators may employ to ensure optimality in the environ-

ment is microservices migration, which involves discontinuing the execution of

a microservice at the current location and re-scheduling the microservice to an-

other node. This process may be initiated for the objectives of better energy con-

sumption or balanced load across all nodes or for maintenance purposes. Rusek

et al. (2016) proposed de-centralized approaches based on the bio-inspired swarm

algorithms for initiating the migration process. The probability to migrate a mi-

croservice is deduced from the pheromone calculated value. As an extension to

this research, Karwowski et al. (2017) also proposed a swarm-intelligence based

approach for an environment that consists of non-homogeneous hosts, varying in

CPU and memory capabilities.

3. Performance Monitoring & Performance Engineering: Performance Engi-

neering deals with ensuring that the non-functional requirements are met. Per-

formance Engineering considers the supporting infrastructure and monitors the

28

2.1. Taxonomy based on different aspects of Microservice Architectures

non-functional requirements, in order to ensure that the service levels are met. By

virtue of the agility and Continuous Integration and Continuous Deployment/De-

livery (CI/CD) properties of MSA, there is a need to investigate how performance

engineering activities can be carried out for microservices. The conventional

methods may prove insufficient. Performance Engineering involves: performance

monitoring, performance testing & performance modelling and anomaly detec-

tion.

• Performance Monitoring: Microservice Architectures deployed in an

environment undergo rapid and continuous changes, in the form of new

versions replacing older ones or existing versions being upgraded and so

on. All these changes can be vital in the context of application perfor-

mance monitoring. In a microservices-based system, performance moni-

toring involves the collection of several metrics such as service request re-

sponse times, resource consumption, interactions among the components,

etc. Haselböck and Weinreich (2017) performed a comparison study of the

various monitoring tools. These tools can be used to collect metrics at the

service level and/or the infrastructure level. Based on the results obtained

from their study, they proposed models that can aid developers and opera-

tors in decision-making for microservices monitoring. The models can be

used to take decisions on which monitoring tool may be employed to col-

lect the metrics that the user is interested in. Mayer and Weinreich (2017)

conducted a study to collect the parameters of microservices based systems

that needs to be monitored. Apart from the system metrics, certain static

and dynamic metrics also need to be monitored, such as API-related metrics

and workload of each service. Thalheim et al. (2017) observed that trans-

forming the monitored metrics into useful information is equally important

as the monitoring activity itself. A framework, SIEVE, was proposed to

perform the metrics reduction using clustering, to reduce the dimensional-

ity and then derive the dependencies among the metrics by performing the

Granger causality test.

29

2. Literature Review

• Performance Testing and Modelling: Performance tests are performed

on software systems, to analyze whether the non-functional requirements

are satisfied or not. One of the main challenges offered by the microservice

systems is testability. The different component microservices will have to

be tested individually and each of these microservices may be modified on

the fly. To add to the complexities, each of the microservice component may

be developed using different languages, which should be taken into consid-

eration for developing effective testing strategies. de Camargo et al. (2016)

proposed techniques to carry out the performance tests on microservices

in an automated manner. The proposed approach requires each microser-

vice to include a test specification which provides the methods available

and sample input data to generate requests to the microservice. Heinrich

et al. (2017) evaluated the performance of the nested and master-slave mod-

els for microservices running on containers. Khazaei et al. (2016) proposed

a performance model to check the efficiency of the provisioning phase for

microservices. The authors resorted to metrics like response time, utiliza-

tion and rejection rate.

• Anomaly Detection: In constantly changing environments of the Mi-

croservices Architectures, performance monitoring can be a challenging

task. The observed metrics will have to be constantly analyzed to detect

if there are occurrences of any unwanted events. In order to ensure that the

system is functioning as expected, the data must be analyzed and anomaly

detection techniques must be applied to detect any deviations from the ex-

pected behaviour. One method to detect anomalies is to measure the re-

sponse times. However, owing to the continuously changing nature of the

environment, several false positives may be detected, arising due to the in-

crease in response times due to new versions of the microservices instances

being released or due to upgrades performed on the existing microservices.

In order to deal with this, microservice architectures may be generated from

models to resemble the actual scenario, and these generated microservices

30

2.1. Taxonomy based on different aspects of Microservice Architectures

may be used to collect data for monitoring. At a fundamental level, anomaly

detection is usually done by collecting historical data, deducing a baseline

from the collected data and analysing the future data to identify any devia-

tions from the baseline data. Any deviation is considered to be an anomaly.

However, this technique cannot be used to detect anomalies in the microser-

vice architectures. Event information also needs to be taken into account

for anomaly detection in MSA-based systems. Düllmann (2017) proposed

the Event-Aware Anomaly Revision (EAR), which involves event-triggered

increasing and reduction of the anomaly threshold.

4. Autonomic Capabilities for MSA-based systems: The dynamicity of microser-

vices introduces several changes in the environment, to which the system has to

respond appropriately. The management of microservices can be done in an au-

tonomic manner, where the system is self-managing. Autonomic Systems are

capable of adapting to the changes in its environment with minimal intervention

of human users. Autonomicity in cyber-physical systems is generally achieved

by employing the Monitor-Analysis-Plan-Execute (MAPE) control loop. Toffetti

et al. (2015) observed that the management functionalities can be incorporated as

part of the microservices itself rather than separating it out to an external entity.

Regular monitoring must be done to ensure that the topology is maintained and

any failures occurring must be handled to avoid any hindrance in the functioning

of the system. Florio (2015) observed that self-adaptive mechanisms are required

to handle the fluctuating workload in a system of microservices. Baylov and

Dimov (2017) proposed a reference architecture, for developing microservices

systems with self-adaptive capabilities. The proposed architecture, inspired by

reference models for SOA, augmented each service with an autonomic manager,

responsible for performing the actions of the MAPE loop. The self-management

capabilities are generally classified into four: Self-Configuration, Self-Healing,

Self-Optimization and Self- Protection. In addition to this, systems that support

elasticity also exhibit autoscaling mechanisms. The following subsections discuss

the works that incorporate Self-Configuration, Self-Optimization and Autoscal-

31

2. Literature Review

ing capabilities in microservices-based systems.

• Self-Configuration: Self-configuring systems for microservices are ca-

pable of deploying the microservice components in an autonomic manner.

Gabbrielli et al. (2016) proposed an approach that autonomically derives

the optimal placement mapping for microservices. The authors considered

a system where the microservices are reconfigurable. The approach relied

on a tool, Zephyrus, that is adept in generating the optimal architecture that

convey the number of instances and their distribution, when provided with

an abstract-level description of the microservices-based application.

• Self-Optimization: The resource allocation task in dynamic environments

is an NP-hard problem. Several researchers have attempted to develop so-

lutions for the task of optimizing the configuration in microservice systems.

HoseinyFarahabady et al. (2017) proposed a solution for the resource allo-

cation problem in microservice environments. A controller controlled the

resource allocation process based on the predicted future events, while sat-

isfying QoS constraints. The authors considered a metric termed as the QoS

detriment value, which measures the QoS violations.

• Autoscaling: One of the quintessential features of microservices is scala-

bility. The microservice instances responsible for one functionality receives

service requests from the client. When the number of client requests to the

microservice increases, replicas of the microservice may be instantiated to

better serve the requests. Similarly, as the number of requests decreases,

few replicas of the microservices may be terminated. These scenarios are

frequently encountered in an ecosystem of microservices. Thus, it is ad-

vocated that these actions may be carried out in an automated manner, by

incorporating autonomicity. Kampars and Pinka (2017) observed that ef-

fective scaling mechanisms take decisions based on the observed values of

application-level metrics. The objective of these autonomic systems is to

maintain the QoS level perceived by the users. The authors proposed a

Context Driven approach which incorporates machine learning and graph

32

2.1. Taxonomy based on different aspects of Microservice Architectures

processing capabilities provided by the Spark framework to take scaling de-

cisions. Kukade and Kale (2015) proposed a threshold-based scaling mech-

anism for microservices. The services provided and the history of the client

requests are constantly monitored to take scaling decisions. López and Spill-

ner (2017) observed that too many replicas may also deteriorate application

performance, due to the Amdahl’s law effect and several services competing

for the limited amount of resources available. The authors adopted a math-

ematical approach to determine the optimal number of service instances,

based on the application characteristics and the number of incoming re-

quests. MiCADO- Microservices based Cloud Application-Level Dynamic

Orchestrator proposed by Kiss et al. (2017) provided automated scalabil-

ity for Cloud Applications deployed as microservices. The MiCADO tool

takes in the application topology and the QoS requirements to generate the

deployment of services for the application.

5. Security: The offerings of microservices architectures do not come free of

cost. There are several challenges inherent in the microservices architectures.

One specific challenge is considering the security aspect. Several features of mi-

croservices introduces few challenges specific to the security aspect of microser-

vice architectures. The polyglot stack functionality of microservices induces the

risks of higher number of security culpabilities. The highly dynamic nature of

the microservices also raises issues in discoverability. Various microservice in-

stances may be incorporated on-the-fly while existing ones may be discontinued.

The short span of the development cycles of microservices also make the test-

ing process cumbersome. Due to extensive communication between the various

instances, several points of entry and exit contribute in increasing the attack sur-

face. Besides security concerns after the deployment of microservices, security

measures must be adopted while developing the applications as well.

33

2. Literature Review

2.1.2.2 Service Management Capabilities

Client or user requests to microservices are directed to the appropriate microservice in-

stance. The interactions between the client and the microservice instances are governed

by the service management activities, such as service discovery, routing, load balancing

and configuration management. Research efforts towards these service management

activities are discussed in this section.

1. Service Discovery: Microservice Architectures decompose applications into

multiple constituent microservices, which communicate with each other using

lightweight mechanisms. At present, microservices do not conform to a standard

definition. However, in general, certain features are considered to be possessed

by most microservices. The feature with substantially high importance is the

discoverability feature, which implies that the different microservices must be

able to locate the other microservice instances currently running in the system.

Service discovery is the process which enables the clients or the consumers to

identify the location of the providers of the services they require and thereby

enables communication between these two entities. Microservice architectures

require service discovery mechanisms to provide the IP address and port number

to correctly locate other microservice instances (Khan 2017). Service discovery

solutions may be centralized or de-centralized. MSA call for de-centralized solu-

tions that can be modified dynamically to reflect the correct location information

of each service provided by the system, which changes frequently during runtime.

Microservices-based systems are highly dynamic- microservices are spawned and

de-registered on the fly. During the lifetime of the microservice instance, it may

be migrated to other hosts. A service discovery solution for microservices must

be capable of handling all these scenarios. The service discovery solution must

be scalable (Tellago 2016), as it should be scaled in or out, corresponding to

the changes in the microservices deployed. Stubbs et al. (2015) proposed a de-

centralised solution for the service discovery problem in microservices, using

Serfnode. Serfnode is an open-source, lightweight Docker image that comprises

additional capabilities exhibited by the Serf agent. Long et al. (2017) proposed

34

2.1. Taxonomy based on different aspects of Microservice Architectures

a service discovery mechanism that adopts the concepts of information-centric

networks. Similar to the named data networks, each microservice is assigned a

hierarchical name which is updated in the registry using routing protocols that

are name based. When a request arrives, the service that offers the longest prefix

match, is invoked.

Consul and etcd are cluster-based solutions (Rotter et al. 2017) that uses the

Raft consensus algorithm to ensure consistent records. The discoverability of

stateful microservices must also be considered. Policies are required to allow the

correct instance of a stateful microservice to be invoked. All the session data is

maintained in a common persistent storage, which also maintains the details of

the entity owning each session. Gadea et al. (2016) proposed a solution which

couples service discovery information, changes in microservice descriptions and

other updates related to the deployed microservices. All the information is stored

in a NoSQL database, to which the clients can subscribe to be notified when any

updates are made in the database. Messina et al. (2016) proposed to use separate

database servers as a cluster to provide database-as-a-service. Requests from the

clients are received by a load balancer, which are then directed to the appropriate

database server.

2. Routing: Applications designed using microservice architectures encompass

several microservice units. Different microservices provide different function-

alities. Different instances of microservices providing the same functionalities

are also available in the system. Upon receiving a client service request, routing

capabilities are required to determine the microservice instance to which the re-

quest may be directed. The client requests are directed to the API Gateway, the

only component of the microservices systems that is publicly exposed. A routing

layer handles the responsibility of forwarding requests from the API Gateway to

the appropriate microservice instance (Bakshi 2017; Naily et al. 2017; Verst-

eden and Pauwels 2016). The routing layer is usually provided as part of the

infrastructure layer. Researchers have attempted to develop solutions for routing

in microservice applications. One unique challenge faced by researchers is that

35

2. Literature Review

there may be different versions of the same microservice. For usecases like per-

formance or resilience testing, the request may be targetted at a specific version.

In this context, there is a need for routing mechanisms that are version-aware. A

group of researchers from IBM developed Amalgam8 1 that performs routing by

considering the version of the microservice to be accessed. The routing solution

is inspired by the Software Defined Networks (SDN) concepts (Rajagopalan and

Jamjoom 2015; Rajagopalan et al. 2016).

3. Load Balancing: Microservice ecosystems contain several microservice units

interacting with each other. One of the major attractions of MSA is the ability for

different microservice units to be scaled depending on the load. A load balanc-

ing component may be introduced to effectively distribute the incoming requests

among the different instances of the same microservice. The load balancing task

may be performed either at the server-side or at the client-side, giving rise to the

two types of load balancing. In the server-side load balancing, all the requests are

directed to a proxy address which hosts the load balancer and also maintains a

directory of all the microservice instances in the system. The server then applies

the load balancing algorithm to determine which instance can handle the current

request. The client-side load balancing entrusts more power in the client. Each

client first directs the requests to the service discovery agent which returns all

the potential microservice instances to handle the request, from the service reg-

istry. On receiving the information of all the running instances, the client then

applies load balancing algorithms such as the Round-Robin algorithm, to deter-

mine where their current request must be directed to. Alternatively, a local cache

may be housed at the client side, to avoid the communication with the service

registry for each request. The client-side mechanism is considered to be more

suitable for the decentralized microservices systems. The Netflix Ribbon is an

example of a client-side load balancer 2.

4. Configuration Management: Dynamic environments of the microservices re-

1www.amalgam8.io/
2github.com/Netflix/ribbon

36

www.amalgam8.io/
github.com/Netflix/ribbon

2.2. Research Gaps

quire tools for configuration management, which ensure that all the dynamic en-

tities in the system follow the same configuration settings. Configuration man-

agement ensures that all the containers running microservices adhere to the re-

quirement specifications. Even with container technologies like Docker and Rkt,

where containers are spawned according to the specified configuration, configu-

ration management tools are still required to create the base image and also to

manage configuration settings of the containers that are running. Tools such as

Chef and Ansible 3 can be used in collaboration with the container technologies,

to ensure that all the running containers heed to any modifications to the configu-

ration made at the server node and thus help in the automation of the lifecycle of

microservices (Familiar 2015).

2.2 RESEARCH GAPS

The extensive study conducted brought to light that the domain of MSA presents much

scope for further research. In this context, the domain offers several research challenges

that demand solutions. Few of these challenges that directed the research presented in

this thesis are as follows:

• In the case of developmental concerns of MSA, a considerably large body of lit-

erature exists. However, only a limited number of studies focus on the challenges

posed in the operational phase of microservice systems. The operational phase

presents numerous challenges such as energy profiling, workload modelling, re-

source demand profiling and estimation.

3https://www.chef.io/ansible/

37

https://www.chef.io/ansible/

2. Literature Review
R

es
ea

rc
h

W
or

k
M

an
ag

em
en

tT
as

k
M

an
ag

ed
U

ni
t

So
lu

tio
n

ap
pr

oa
ch

Pa
ra

m
et

er
sc

on
si

de
re

d
G

ue
rr

er
o

et
al

.(
20

18
a)

C
on

ta
in

er
A

llo
ca

tio
n

M
ic

ro
se

rv
ic

es
in

co
nt

ai
ne

rs
N

SG
A

-I
I

L
at

en
cy

,
ne

tw
or

k
us

ag
e

an
d

re
so

ur
ce

us
ag

e
Fi

lip
et

al
.(

20
18

)
C

on
ta

in
er

Sc
he

du
lin

g
M

ic
ro

se
rv

ic
es

in
co

nt
ai

ne
rs

R
ou

nd
R

ob
in

,
Fi

rs
t

C
om

e
Fi

rs
t

Se
rv

e
(F

C
FS

),
H

eu
ri

st
ic

ba
se

d

B
an

dw
id

th
,

la
te

nc
y

be
-

tw
ee

n
ph

ys
ic

al
no

de
s

B
uy

ya
et

al
.(

20
18

)
C

on
ta

in
er

or
ch

es
tr

at
io

n
C

on
ta

in
er

s
A

rc
hi

te
ct

ur
al

Fr
am

e-
w

or
k

Pr
ic

in
g

m
od

el
of

re
so

ur
ce

s
an

d
Q

oS
W

an
et

al
.(

20
18

)
A

pp
lic

at
io

n
D

ep
lo

ym
en

t
M

ic
ro

se
rv

ic
es

in
co

nt
ai

ne
rs

E
xe

cu
tio

n
C

on
ta

in
er

Pl
ac

em
en

t
an

d
Ta

sk
A

ss
ig

nm
en

ta
lg

or
ith

m

D
ep

lo
ym

en
t,

ex
ec

ut
io

n
an

d
co

m
m

un
ic

at
io

n
co

st

Ta
o

et
al

.(
20

17
)

C
on

ta
in

er
de

pl
oy

m
en

t
C

on
ta

in
er

s
Fu

zz
y

In
fe

re
nc

e
Sy

s-
te

m
R

es
ou

rc
e

us
ag

e

Ta
bl

e
2.

1:
Su

m
m

ar
y

of
re

se
ar

ch
w

or
ks

on
in

iti
al

pl
ac

em
en

t
R

es
ea

rc
h

W
or

k
St

ra
te

gy
O

pt
im

iz
at

io
n

O
bj

ec
-

tiv
es

M
an

ag
ed

U
ni

t
So

lu
tio

n
A

pp
ro

ac
h

E
va

lu
at

io
n

Pl
at

fo
rm

(W
an

g
et

al
.

20
19

b)
V

M
R

e-
sc

he
du

lin
g

Im
pr

ov
ed

R
es

ou
rc

e
ut

i-
liz

at
io

n
V

M
H

os
t

sw
itc

hi
ng

be
ha

vi
ou

r
in

sy
m

bi
ot

ic
en

vi
ro

nm
en

ts
Si

m
ul

at
io

n
ex

pe
ri

-
m

en
ts

(S
ha

rm
a

et
al

.
20

19
)

V
M

R
e-

sc
he

du
lin

g
R

ed
uc

ed
Fa

ilu
re

oc
cu

r-
re

nc
e

ra
te

V
M

Fa
ilu

re
pr

ed
ic

tio
n

ba
se

d
on

E
xp

on
en

tia
lS

m
oo

th
in

g
Si

m
ul

at
io

n
ex

pe
ri

-
m

en
ts

(M
ah

dh
ia

nd
M

ez
ni

20
18

)
V

M
R

e-
sc

he
du

lin
g

E
ne

rg
y

ef
fic

ie
nc

y
V

M
K

er
ne

l
D

en
si

ty
E

st
im

at
io

n
(K

D
E

)t
ec

hn
iq

ue
Si

m
ul

at
io

n
ex

pe
ri

-
m

en
ts

(W
ita

nt
o

et
al

.
20

18
)

V
M

R
e-

sc
he

du
lin

g
C

lo
ud

pr
ov

id
er

go
al

s-
sp

ec
ifi

c
V

M
D

ee
p

N
eu

ra
l

N
et

w
or

k
to

se
-

le
ct

am
on

g
m

ul
tip

le
al

go
-

ri
th

m
s

Si
m

ul
at

io
n

ex
pe

ri
-

m
en

ts

(W
an

g
et

al
.

20
19

a)
V

M
R

e-
sc

he
du

lin
g

E
ne

rg
y

ef
fic

ie
nc

y
V

M
Te

m
pe

ra
tu

re
m

od
el

ba
se

d
Si

m
ul

at
io

n
ex

pe
ri

-
m

en
ts

Ta
bl

e
2.

2:
Su

m
m

ar
y

of
re

se
ar

ch
w

or
ks

on
re

-s
ch

ed
ul

in
g

38

2.3. Summary

• A significant concern in the operational phase is the initial placement or allo-

cation of the microservice workload. Allocation mechanisms in the container

orchestration engines are based only on the resource capacity and do not consider

the nature of the workload. There is a need for allocation strategies that are further

optimized in terms of the various QoS parameters in containerized systems.

• Microservice applications are composed of multiple microservice entities that fre-

quently interact with each other. The pattern of microservice interaction is equally

important as the interacting entities. There is a lack of research on allocation

approaches that determine the placement strategy of microservice components

based on the frequency of interactions and the characteristics of the interacting

entities (as inferred from Table 2.1).

• A multitude of research has been directed towards re-scheduling in hypervisor-

based virtualized datacenters. On the contrary, there is a dearth of research that

targets the re-scheduling in containerized datacenters (as inferred from Table 2.2),

which is another crucial issue in the operational phase.

• Unlike virtual machine re-scheduling approaches, the approaches for re-scheduling

in containerized datacenters must consider the container configuration parame-

ters. There is a need to investigate the impact of re-scheduling activities on the

performance of microservice workloads.

2.3 SUMMARY

This chapter mainly focusses on the research works dealing with the operational phase

concerns of microservices. The study presented in this chapter briefly discusses re-

search works on developmental phase concerns of microservices, without delving into

much details. The study also categorises works on the operational phase of microser-

vices. However, the design concerns of microservice architectures are not considered

in this study. The domain of microservice architectures holds much scope for future re-

search especially in the resource management and orchestration of microservice-based

systems. Considering the features particularly exhibited by microservices, there is a

39

2. Literature Review

need for research on tasks such as workload modelling, resource profiling, energy-

efficiency and securing the microservice based systems.

The study presented in this chapter furnishes a body of knowledge to the domain of

Microservice Architectures by i) discussing a taxonomy to classify the various works

in the literature, ii) classifying and reviewing the existing research contributions on the

various aspects of Microservice Architectures and iii) pointing out the open challenges

in the domain.

40

CHAPTER 3

PROBLEM DESCRIPTION

Adopting microservices in Cloud environments results in an ecosystem of microser-

vices interacting with each other and their environment. Microservices make applica-

tion delivery more simple and efficient. The microservice components that are part of

an application follow a simplified structure. However, this reduction in complexity of

software design and architecture is at the cost of thrusting more responsibilities on to

the underlying infrastructure layer (Abeysinghe 2016). Managing the operational com-

plexity of such a distributed system is a challenge, which must be addressed through

orchestration mechanisms.

3.1 SCOPE AND FOCUS OF THE THESIS

In this thesis, the resource orchestration challenges for Cloud environments have been

investigated. The objective of the thesis is to enhance the performance of Cloud envi-

ronments by addressing the resource management concerns for an ecosystem of con-

tainerized microservices. The focus is on Cloud environments where containers are

used to deploy microservice workload applications as illustrated in Table 3.1.

Facet Thesis Scope
Virtualization level Operating system level virtualization - Containers
System resources Processing and memory resources
Workload application Microservice workload applications
Orchestration techniques Microservice allocation and microservice re-scheduling

Table 3.1: Scope and focus of this thesis

41

3. Problem Description

Cloud applications deployed as microservices must meet specific performance re-

quirements. In order to facilitate effective utilization of the Cloud resources by the

microservice applications, the Cloud platform must be augmented with microservice

orchestration capabilities. A platform deploying microservices must possess different

orchestrational capabilities to support the deployed microservices. These capabilities

include all the activities to support the microservice applications during the operational

phase. The activities in such a platform can be broadly classified into two: the ser-

vice management capabilities, which involve the operations interfacing the client and

the microservices, and the infrastructural management capabilities, which involve the

operations interfacing the microservices and the underlying hardware. A framework

that deals with the operational phase challenges of MSA has been diagrammatically

represented in Figure 3.1.

From the customers’ perspective, the flow of activities in the framework starts with

users submitting requests to microservices. Users can take the form of any digital com-

puting device such as mobile phones, laptops, Personal Computers, etc. The requests

are decussated at the microservices platform. On the arrival of user requests, the ser-

vice management operations are carried out to perform tasks such as identifying the

microservice that can handle the request (service discovery and load balancing) and

directing the request to the appropriate microservice instance (routing). A registry of

services contains the information of all the different microservice modules in the plat-

form. Service discovery is performed using the information contained in the service

registry. For uniformly distributing load across the running microservice instances,

load balancing mechanisms are applied. In Figure 3.1, the first component (first white

box in Figure 3.1) enlists the service management capabilities.

The user requests are serviced by the different microservice module types ‘Mi-

croservice A’ to ‘Microservice n’. Each microservice module type has different in-

stances µxy, where x represents the microservice module type of which it is an instance

(ranging from A to n) and y represents the index of the specific instance. The different

microservice instances can communicate with each other using messaging interfaces

(generally REST-based). On receiving the requests, the microservices process the re-

42

3.1. Scope and Focus of the Thesis

Service Management capabilities

Service Discovery
Load Balancing

Routing
Configuration

*

*
*

*

--------

Microservice A

....

Microservice B

....

Microservice n

Microservices Operational Phase

....

Microservice requests
from end-devices

Results of microservice execution
sent back to user device

Infrastructural Management capabilities

*
* *
*

*Microservice Deployment
Microservice Re-scheduling

Monitoring & Performance Engineering
Autonomic Capabilities (self-*)

Security

Messaging Interface

Figure 3.1: A framework for the deployment and execution of microservices

quests. During the processing, other microservices may be invoked in a cascaded man-

ner. The results of processing are directed back to the end users leveraging the service

management capabilities.

Infrastructural management capabilities ensure that the required microservices are

up and available to receive and process the user requests. The infrastructural manage-

ment operations involve actions performed over the entire lifecycle of the microservice,

starting from deployment. Identifying the appropriate node to host the microservice (al-

location), observing the runtime metrics of the microservice (monitoring) and securing

the different processes during the microservice execution are all examples of opera-

tions carried out as part of the infrastructural management. The underlying hardware

43

3. Problem Description

is thus managed by leveraging the infrastructural management capabilities (depicted by

the second white box in Figure 3.1).

3.2 RESEARCH PROBLEM AND OBJECTIVES

The aim of the research work presented in this thesis is to address the challenges pertain-

ing to infrastructural management capabilities for microservice deployment platforms.

In particular, this work explores the research problems of microservice deployment and

microservice re-scheduling in containerized Cloud environments.

In order to address these issues, the research problem investigated in this thesis is as

follows:

To design and develop algorithms, for the efficient allocation and re-scheduling

of microservice components, which meet the microservice performance objectives in

containerized Cloud environments.

The first goal of this work is to devise a strategy to schedule microservice con-

tainers in the Cloud datacenters. This process consists of assigning the microservice

workload containers to suitable hosts or nodes in the datacenter. The mapping is to be

done in such a manner that the various Quality of Service (QoS) parameters are met.

In general, for service-based distributed systems, these QoS parameters are defined as

performance metrics encompassing both functional requirements such as response time

and non-functional requirements like energy efficiency and security. The microservice

scheduling problem is a variant of the bin packing problem, which is NP-hard (Be-

loglazov and Buyya 2012) and therefore an optimal solution cannot be obtained in

polynomial time. In this thesis, the terms scheduling, deploying, placing and allocating

have been used interchangeably and refers to the activity of mapping each microservice

container onto the most aptly suited resource.

The second goal of this work is to develop an approach for microservice re-scheduling

in Cloud datacenters. The highly dynamic nature of the workloads arriving at the Cloud

datacenters leads to unprecedented variations in the resources offered by the Cloud

providers. As a consequence, Cloud providers must leverage techniques to effectively

reallocate or reschedule microservice containers in order to adapt to the fluctuations

44

3.3. Research Challenges

in the resource usage. This is essential to eliminate unwarranted degradations in the

performance of the hosted microservice applications. The process of microservice re-

scheduling can be considered as a multi-stage problem that involves the activities of

identifying the conditions under which the re-scheduling process is to be triggered,

identifying the candidate nodes or hosts to be subjected to re-scheduling and determin-

ing the apt alterations in the assignment of the microservice containers to the datacenter

resources.

To address the aforementioned goals, the research objectives identified are as fol-

lows:

1. To propose a model for the deployment of microservice components considering

QoS parameters.

2. To design and develop a resource-aware allocation algorithm, to place the mi-

croservice components, maintaining the interdependencies among the compo-

nents.

3. To design a dynamic microservice re-scheduling algorithm which meets the mi-

croservice performance objectives.

4. To implement and evaluate the effectiveness of the microservice re-scheduling

algorithm.

3.3 RESEARCH CHALLENGES

Resource orchestration in distributed systems involves numerous inherent challenges

such as resource and workload heterogeneities and support for QoS constraints (Hilman

et al. 2020; Krauter et al. 2002). Strategies devised for resource orchestration must

carefully consider these particularities. The orchestration strategies must have a gen-

eral approach to handle the heterogeneity of resources in the Cloud environment (Bit-

tencourt et al. 2018; Gonzalez et al. 2017). Furthermore, a key characteristic of

distributed systems is resource co-allocation. Accordingly, resource attributes must be

considered as a defining characteristic of the Cloud datacenter nodes while determining

45

3. Problem Description

Literature Review and Problem
Identification

Exploring state-of-art to identify
primary research problem and
research objectives.

Solution Design and
Implementation

Solution Evaluation and
validation

Research Reflection

Optimization problem formed
based on optimization objectives,
heuristic and meta-heuristic
algorithms developed, conceptual
framework developed

Experiments on Google Cloud
Platform using benchmark
microservice applications

Publication of contributions in the
form of technical papers

Figure 3.2: Overview of the research methodology followed in this thesis

the strategy. A wide spectrum of applications that vary in resource and performance re-

quirements can be deployed in the Cloud distributed environment. The suitability of the

orchestration strategies for the heterogeneous workload must be thoroughly investigated

by considering diverse microservice applications in the validation process. In order to

handle the performance variability in Cloud environments, re-allocation strategies that

consider the QoS attributed must be incorporated.

3.4 RESEARCH METHODOLOGY

Research in the field of information systems is determined by two paradigms, namely,

behavioral science and design-science (Hevner et al. 2004).

Considering the synthetic nature of the software engineering domain, the research

presented in this thesis is in alignment with the field of study in the design-science

paradigm, as shown in Figure 3.2. The artifacts resulting from this work are portrayed

as a set of models, frameworks and algorithms in the application domain of Cloud

computing. The research activities were conducted in different phases:

1. Literature Review and Problem Identification: In this phase, an exhaustive

46

3.5. Research Contributions

study of the research in the domain of Microservice Architecture, was conducted.

Based on this study, the research gaps in the field of study were identified. Fol-

lowing this step, the primary research problem and the research objectives were

formulated.

2. Solution Design and Implementation: In this phase, potential solutions were

devised and developed to accomplish the research objectives identified in the pre-

vious step. The outcomes of this step include an optimization model, algorithms

and a framework.

3. Solution Evaluation and validation: In this phase, the different solution con-

tributions were evaluated and validated. The microservice allocation and re-

scheduling approaches were evaluated by conducting experiments in real Cloud

environments using microservice benchmark applications. Extensive experiments

were conducted on the Google Cloud Platform using reference microservice work-

load applications with different characteristics. This phase aimed at establishing

the performance enhancements attained by the proposed contributions.

4. Research Reflection: Research reflection includes activities to illustrate the im-

pact of the research outcomes. In this regard, the outcomes of this research have

been communicated to the scientific community via the channels of technical

conference proceedings and journal publications.

3.5 RESEARCH CONTRIBUTIONS

The contributions of this thesis can be broadly classified into three, namely systemati-

zation and analysis of prior research, proposition of an efficient dynamic microservice

allocation strategy and presentation of a dynamic microservice re-scheduling technique.

An outline of the contributions is provided in Figure 3.3. The core contributions are as

follows:

1. A comprehensive review of the literature on Microservice Architectures.

• A multi-level taxonomy to classify existing research works on Microservice

Architectures, based on the aspect considered.

47

3. Problem Description

Microservices Operational Phase

Microservice Allocation

Microservice Re-scheduling

Interaction graph to capture
interaction patterns
of microservices

IntMA- Approach for allocating
microservice containers to
nodes in an interaction-aware manner

TIARM - Framework to perform
proactive re-scheduling of microservice
containers

Metaheuristic based optimizer to
perform node selection

Modelling of microservice allocation
as a binary quadratic programming
problem

Performance analysis of IntMA
based on performance metrics

Investigate impact of container
configuration parameters on QoS

Experimental evaluation of TIARM
to analyze performance impacts

Figure 3.3: Outline of the contributions of this thesis

• A survey and analysis of the various works that discuss different aspects of

Microservice Architectures.

2. A dynamic interaction-aware allocation strategy for containerized microservices.

• Formulation of the microservice allocation problem as a (0/1)-Quadratic

programming Problem (QPP), which includes the constraints on computa-

tion and memory resource requirements.

• A doubly weighted complete graph, called the Interaction Graph to cap-

ture the interaction patterns between microservices, which includes the fre-

quency of interactions and the characteristics of the interacting components.

A framework for recording the information required to generate the Interac-

tion Graph.

• A novel and efficient approach, IntMA-Interaction-aware Microservice Al-

location, is proposed to allocate the microservices to different nodes in the

48

3.5. Research Contributions

Cloud, in an interaction-aware manner.

• An analysis of the performance of the proposed approach by collecting the

microservice-specific metrics such as response time, throughput and a com-

parison with a well-known heuristic based algorithm, IntRR-Interaction-

aware Round Robin, and the Kubernetes default scheduling policies.

3. An approach for rescheduling in container-based Clouds running microservice

applications.

• An examination of the impact of the container configuration parameters on

the observed QoS values to establish the relationship between the different

variables.

• A framework, TIARM, that enables Cloud providers to control and co-

ordinate adaptations in the runtime deployment of microservice containers.

The framework proactively identifies scenarios in which re-scheduling is to

be done and also determines the targets for the re-scheduling activities.

• Design and implementation of a novel metaheuristic-based optimizer to find

the best set of nodes suited for a set of migrating containers, taking into

account the migration overheads incurred. The optimizer also ensures that

the CPU resource demands complement each other, to reduce the resource

contention.

49

3. Problem Description
R

es
ea

rc
h

C
on

tr
ib

ut
io

n
Sp

ec
ifi

cs
of

R
es

ea
rc

h
C

on
tr

ib
ut

io
n

R
es

ea
rc

h
O

bj
ec

tiv
e

(R
O

)
ad

dr
es

se
d

T
he

si
s

C
ha

pt
er

pr
es

en
tin

g
C

on
tr

ib
ut

io
n

C
ha

pt
er

de
ri

ve
d

fr
om

Pu
bl

ic
at

io
n

M
ul

til
ev

el
Ta

xo
no

m
y

C
om

pr
eh

en
si

ve
re

vi
ew

on
M

SA
Su

rv
ey

an
d

an
al

ys
is

of
ex

is
tin

g
w

or
ks

C
ha

pt
er

2

Jo
se

ph
,C

.T
.&

C
ha

nd
ra

se
ka

ra
n,

K
.(

20
19

).
St

ra
dd

lin
g

th
e

cr
ev

as
se

:A
re

vi
ew

of
m

ic
ro

se
rv

ic
e

so
ft

w
ar

e
ar

ch
ite

ct
ur

e
fo

un
da

tio
ns

an
d

re
ce

nt
ad

va
nc

em
en

ts
.W

ile
y

So
ft

w
ar

e
Pr

ac
tic

e
an

d
E

xp
er

ie
nc

e,
49

(1
0)

,1
44

8-
14

84
.

Fo
rm

ul
at

io
n

of
al

lo
ca

tio
n

pr
ob

le
m

as
Q

PP
R

O
1

M
od

el
in

g
in

te
ra

ct
io

n
pa

tte
rn

s
as

a
do

ub
ly

w
ei

gh
te

d
co

m
-

pl
et

e
gr

ap
h

R
O

1

In
tM

A
al

lo
ca

tio
n

ap
pr

oa
ch

R
O

2

D
yn

am
ic

in
te

ra
ct

io
n-

aw
ar

e
al

lo
ca

tio
n

st
ra

te
gy

Pe
rf

or
m

an
ce

an
al

ys
is

of
In

tM
A

R
O

2

C
ha

pt
er

4

Jo
se

ph
,C

.T
.&

C
ha

nd
ra

se
ka

ra
n,

K
.(

20
20

).
In

tM
A

:D
yn

am
ic

In
te

ra
ct

io
n-

A
w

ar
e

R
es

ou
rc

e
A

llo
ca

tio
n

fo
rC

on
ta

in
er

iz
ed

M
ic

ro
se

rv
ic

es
.

E
ls

ev
ie

rJ
ou

rn
al

of
Sy

st
em

s
A

rc
hi

te
ct

ur
e.

E
xa

m
in

at
io

n
of

im
pa

ct
of

th
e

co
nt

ai
ne

r
co

nfi
gu

ra
tio

n
pa

-
ra

m
et

er
so

n
th

e
ob

se
rv

ed
Q

oS
va

lu
es

R
O

3

T
IA

R
M

fr
am

ew
or

k
to

pe
r-

fo
rm

re
sc

he
du

lin
g

R
O

4

M
et

ah
eu

ri
st

ic
-b

as
ed

op
-

tim
iz

er
to

fin
d

th
e

be
st

de
st

in
at

io
n

no
de

s
su

ite
d

fo
r

a
se

to
fm

ig
ra

tin
g

co
nt

ai
ne

rs

R
O

4
R

es
ch

ed
ul

in
g

A
pp

ro
ac

h

Pe
rf

or
m

an
ce

an
al

ys
is

of
T

IA
R

M
R

O
4

C
ha

pt
er

5

Jo
se

ph
,C

.T
.&

C
ha

nd
ra

se
ka

ra
n,

K
.

N
at

ur
e-

In
sp

ir
ed

R
es

ou
rc

e
M

an
ag

em
en

ta
nd

D
yn

am
ic

R
es

ch
ed

ul
in

g
of

M
ic

ro
se

rv
ic

es
in

C
lo

ud
D

at
ac

en
te

rs
,W

ile
y

C
on

cu
rr

en
cy

an
d

co
m

pu
ta

tio
n:

pr
ac

tic
e

an
d

ex
pe

ri
en

ce
(“

U
nd

er
R

ev
ie

w
”)

Ta
bl

e
3.

2:
D

et
ai

ls
of

C
on

tr
ib

ut
io

ns
of

th
is

T
he

si
s

50

3.5. Research Contributions

• Experimental demonstration of the effectiveness of the proposed framework

through extensive experiments using well-known microservice benchmark

applications in real-time Cloud environments and reveal the superior per-

formance of the proposed re-scheduling approach in comparison with other

baseline strategies.

The work presented in this thesis addresses the objectives listed in Section 3.2. The

contributions drawn from the thesis corresponding to the different objectives are pro-

vided in Table 3.2. Due to the logical dependencies between the objectives, the research

work directed towards the first and second objectives are jointly presented in Chapter 4.

Similarly, the research work directed towards the third and fourth objectives are jointly

presented in Chapter 5.

51

CHAPTER 4

IntMA: DYNAMIC INTERACTION-AWARE
RESOURCE ALLOCATION FOR CONTAINERIZED

MICROSERVICES IN CLOUD ENVIRONMENTS

The allocation strategy adopted for deploying/placing the microservice application con-

tainers to the different nodes in a Cloud data center determines the efficiency of the

microservice-based systems. An inefficient allocation strategy may lead to increased re-

sponse times and low throughput which affects the user experience. Resource manage-

ment techniques that consider the resource requirements and other key elements such as

communication among the microservice components, are essential to ensure seamless

running of microservice applications. Determining the right amount of resources to be

allocated to an incoming microservice application is an intricate task which involves

many challenges (Fazio et al. 2016).

In view of the recent adoption of container virtualization to run applications in the

Cloud (Goldschmidt et al. 2018), researchers have addressed resource management for

containers. Fazio et al. (2016) discussed the various challenges in adopting microser-

vices in the Cloud. Though the application characteristics suit the Cloud environment,

there are several operational challenges that needs to be tackled. Guerrero et al. (2018a)

proposed a Genetic Algorithm based solution for allocation of containers running mi-

croservices in the Cloud environments. The objectives of cluster reliability and load

balancing were considered in the deployment strategy based on the Ant Colony meta-

heuristic proposed by Lin et al. (2019). Netaji and Bhole (2019) developed a hybrid

53

4. IntMA: Dynamic Interaction-Aware Resource Allocation for Containerized
Microservices in Cloud environments

container allocation approach that combines the Whale and Lion metaheuristic algo-

rithms. Another work by Guerrero et al. (2018b) proposes the use of Non Dominated

Sorting Genetic Algorithm (NSGA)-II for the container allocation problem in multi-

cloud environments. Filip et al. (2018) considered microservice placement across het-

erogeneous environments. Wan et al. (2018) considered the minimization of the total

cost involved with application deployment in container based systems. Zheng et al.

(2019) devised an autoscaling approach that differentiates workloads based on their

characteristics. Adhikari and Srirama (2019) adopted the accelerated Particle Swarm

Optimization technique to place containers in IoT environments. Pallewatta et al. (2019)

considered microservice placement in Fog environments. A recent study presented by

Rodriguez and Buyya (2019) highlighted the challenges involved in the resource man-

agement for container-based systems, which form the crux in container orchestration

systems. Buyya et al. (2018) proposed a framework for the cost-efficient orchestration

of containers in the Cloud environment. They also emphasised the need for more re-

search works to be carried out in the container-based Cloud environments, specifically

on the initial placement of containers and to optimize the placement at run time through

migration, rescheduling or autoscaling of the clusters. Tao et al. (2017) proposed an

algorithm for the container resource allocation based on Fuzzy Inference System (FIS).

Kaewkasi and Chuenmuneewong (2017) developed an Ant Colony Optimization (ACO)

based scheduling algorithm for the allocation of containers. Kang et al. (2016a) pro-

posed an energy efficient brokering system for the containers. The aforementioned

research works do not consider the interaction patterns among the microservices to be

allocated. The frequency of interactions and the interacting entities are significant fac-

tors in determining the values of microservice-specific response times.

Few researchers considered interactions among microservices. Wen et al. (2019)

developed GA-Par that adopts Genetic Algorithm to perform microservice composition

that fulfills the security requirements of the user and deploy the resulting microservice

workflow while ensuring system dependabillity. Štefanič et al. (2019) considered time

critical microservice applications in the Software Workbench for Interactive, Time Crit-

ical and Highly self-adaptive Cloud applications (SWITCH) workbench that captures

54

4.1. Motivation

the application logic details using Topology Orchestration Specification for Cloud Ap-

plications (TOSCA). However, GA-Par and SWITCH workbench considers mainly the

logical invocations and does not consider the service runtime chain. Thus, there is a

need for placement schemes that consider the runtime dependencies among microser-

vice components.

The primal focus of this chapter is to address container orchestration for microser-

vice allocation in Cloud with an objective of minimizing the communication among the

physical nodes deploying the application. It is assumed that each microservice compo-

nent is hosted in an independent container which is to be mapped to a suitable physical

node. Several mission-critical systems designed using microservice architectures have

stringent constraints on response time. So, the objective of minimizing the response

time is considered, by ensuring that interacting microservice components are deployed

on the same node.

This chapter presents two heuristic based interaction-aware microservice allocation

algorithms, Interaction-aware Microservice Allocation (IntMA) and Interaction-aware

Round Robin (IntRR). The remainder of this chapter is organized as follows: Section

4.1 presents a use case that motivates the proposed approach, Section 4.2 provides the

formal description of the system, Section 4.3 details the proposed methodology and

Section 4.4 discusses the experimental configurations that were adopted to validate the

proposed approach. Sections 4.5 and 4.6 provide a detailed analysis of the results.

4.1 MOTIVATION

On the basis of the review of the existing literature, it is observed that the research

works on deployment of microservices give equal weight to any interaction between

microservice components. The pattern of microservice interaction is equally important

as the interacting entities. There is a lack of research that considers the frequency of

interactions and the characteristics of the interacting entities.

The intuition behind the work discussed in this chapter is that the communication

latency between the microservice components forming the application is a key factor

which affects the response time experienced by the user (Zhang et al. 2018). This

55

4. IntMA: Dynamic Interaction-Aware Resource Allocation for Containerized
Microservices in Cloud environments

implies that in order to reduce the response time, it is crucial to reduce the microser-

vice communication latency. This latency depends on various parameters such as the

interconnecting interface, the network characteristics and most importantly the network

distance between the communicating entities. In this work, the focus is on reducing

the network distance between the entities that frequently interact with each other. The

term ‘interaction’ is used to denote the invocation of one microservice component by

another. To portray the need for such a system, a use case scenario is described.

Consider a microservice application with 3 components. The ith component is rep-

resented as Mi. Let M1 be dependent with M2 and M3. M2 is dependent with M1

and M3, M3 is dependent with M1 and M2. The existing approaches for microservice

application deployment consider all the dependencies to be of equal weights. Suppose

that M1 exhibits the highest dependency with M3. Employing the existing approaches

would place M1 and M2 on the same node before considering M3. However, the num-

ber of times that M3 invokes M1 is much larger when compared to the number of times

that M2 and M1 invokes each other. In such cases, more time is spent in the commu-

nication between the modules M1 and M3. If these modules are on different hosts,

the communication latency between them increases which leads to an increase in the

overall response time.

Therefore, it is of utmost importance that the frequency of the interactions and the

characteristics of the interacting microservices, be considered while performing the ap-

plication deployment. Interactions that are more frequent are considered to be more

critical in deriving the application deployment strategy.

4.2 FORMAL DESCRIPTION OF THE SYSTEM MODEL

In this section, a formal model for the aspects of container-based Cloud data centers

used in the proposed microservice allocation approach is presented.

Consider a Cloud datacenter with N physical hosts/nodes, H = {h1, h2, ..., hN}.

Let hz denote an individual host/node. Each host/node is characterised by the tuple

< cpu,mem > denoting the number of processing cores and memory units on the

physical host/node respectively. Every host/node is capable of running application con-

56

4.2. Formal Description of the System model

tainers (hosted on bare-metal or on virtual machines).

Applications comprise of different microservice components (referred to as mi-

croservices or modules in the subsequent sections). The microservice components are

run on containers hosted on the physical machines/nodes. Microservice components

belonging to the same application may interact among themselves for servicing the re-

quests submitted by users. The microservices belonging to different applications thus

form an ecosystem of interacting microservices. Let dij denote the number of interac-

tions between the microservice components vi and vj , respectively. Each microservice

component is characterised by a 2-tuple, < cpu req,mem req > corresponding to the

number of processing cores and the amount of memory requested by the microservice

component. Every host in the datacenter will have some resources currently in use

by other processes. For the allocation process, only the remaining resource or resid-

ual resource capacity must be considered. Let F denote the set of feasible nodes with

sufficient residual resource capacities. Each feasible node is denoted as fk. The resid-

ual CPU and memory capacities (denoted as hcpu resz and hmem res
z , respectively) on

each node can be computed from the current CPU and memory utilization on the node

(hcpu utilz and hmem util
z), using Equation 4.1.

hu resz = huz (1− hu utilz);u ∈ {cpu,mem} (4.1)

Each microservice is allocated to the available host which satisfies the resource

requirements of the microservice. The model can be extended to include other resources

such as storage, bandwidth, etc. Table 4.1 provides the different elements in the system

with their representations. The microservice allocation policy determines the host on

which the microservice must be deployed. The allocation problem is first modelled

as a quadratic programming problem and then an interaction-aware allocation policy,

IntMA, to determine the mapping of microservice requests to the feasible nodes, is

proposed in the subsequent sections.

57

4. IntMA: Dynamic Interaction-Aware Resource Allocation for Containerized
Microservices in Cloud environments

N
ot

at
io

n
E

le
m

en
t

D
es

cr
ip

tio
n

H
Ph

ys
ic

al
H

os
t/

N
od

e
Se

to
fa

ll
ph

ys
ic

al
ho

st
s/

no
de

s
in

th
e

sy
st

em

N
#

ph
ys

ic
al

ho
st

s/
no

de
s

in
th

e
sy

st
em

,i
.e

.|
H
|

h
z

zt
h

ph
ys

ic
al

ho
st

/n
od

es
,∀

N z
=
1
h
z
∈
H

h
cp
u

z
#

of
pr

oc
es

si
ng

co
re

s
on
zt
h

ph
ys

ic
al

ho
st
h
z

(e
xp

re
ss

ed
in

m
ill

ic
pu

,m
C

PU
)

h
m
em

z
A

m
ou

nt
of

m
em

or
y

on
zt
h

ph
ys

ic
al

ho
st

/n
od

e
h
z

(e
xp

re
ss

ed
in

by
te

s)
h
cp
u
u
ti
l

z
C

PU
ut

ili
za

tio
n

of
zt
h

ph
ys

ic
al

ho
st

/n
od

e
h
z
,i

n
cu

rr
en

tt
im

e
in

te
rv

al
(e

xp
re

ss
ed

in
%

)
h
m
em

u
ti
l

z
U

til
iz

at
io

n
of

m
em

or
y
zt
h

ph
ys

ic
al

ho
st

/n
od

e,
h
z

in
cu

rr
en

tt
im

e
in

te
rv

al
(e

xp
re

ss
ed

in
%

)
h
cp
u
r
es

z
R

es
id

ua
lp

ro
ce

ss
in

g
ca

pa
ci

ty
on
zt
h

ph
ys

ic
al

ho
st

/n
od

e
h
z

h
m
em

r
es

z
R

es
id

ua
la

m
ou

nt
of

m
em

or
y

on
zt
h

ph
ys

ic
al

ho
st

/n
od

e
h
z

F
Fe

as
ib

le
no

de
s;

Se
to

fa
ll

ph
ys

ic
al

no
de

s
w

ith
h
u
r
es

z
>
m
in
(v
u
r
eq

i
)

w
he

re
u
∈
{c
pu
,m

em
}

Q
#

fe
as

ib
le

no
de

s
in

th
e

sy
st

em
,i

.e
.|
F
|

f k
k
th

fe
as

ib
le

no
de

,∀
Q k
=
1
f k
∈
F

V
M

ic
ro

se
rv

ic
e

C
om

po
ne

nt
Se

to
fm

ic
ro

se
rv

ic
e

co
m

po
ne

nt
s

in
th

e
ap

pl
ic

at
io

n

M
#

m
ic

ro
se

rv
ic

e
co

m
po

ne
nt

s
in

th
e

ap
pl

ic
at

io
n,

i.e
.|
V
|

v i
it
h

m
ic

ro
se

rv
ic

e
co

m
po

ne
nt

,∀
M i=

1
v i
∈
V

v
cp
u
r
eq

i
#

of
pr

oc
es

si
ng

co
re

s
re

qu
es

te
d

by
it
h

m
ic

ro
se

rv
ic

e
co

m
po

ne
nt
v i

(e
xp

re
ss

ed
in

m
ill

ic
pu

,m
C

PU
)

v
m
em

r
eq

i
A

m
ou

nt
of

m
em

or
y

re
qu

es
te

d
by
it
h

m
ic

ro
se

rv
ic

e
co

m
po

ne
nt
v i

(e
xp

re
ss

ed
in

by
te

s
D

In
te

ra
ct

io
n

Se
to

fi
nt

er
ac

tio
ns

am
on

g
th

e
m

ic
ro

se
rv

ic
e

co
m

po
ne

nt
s,

de
riv

ed
fr

om
ed

ge
w

ei
gh

ts
in

in
te

ra
ct

io
n

gr
ap

h
d
ij

In
te

ra
ct

io
n

be
tw

ee
n

m
ic

ro
se

rv
ic

e
co

m
po

ne
nt

s
v i

an
d
v j

,w
he

re
d
ij
∈
D

an
d
v i
∈
V
,v
j
∈
V

Ta
bl

e
4.

1:
N

ot
at

io
ns

us
ed

in
th

e
sy

st
em

m
od

el

58

4.3. Proposed Methodology

4.3 PROPOSED METHODOLOGY

Application developers design applications composed of different microservices. The

different microservices and their instances are submitted to the Cloud datacenter. Cloud

providers that offer support for microservices-based applications extend different func-

tionalities that can be broadly classified into two:

• Service Management Capabilities: These include activities at the interface be-

tween users and the microservices. These include routing, service discovery, etc.

• Infrastructure Management Capabilities: These include activities that manage the

mapping between microservices and the underlying infrastructure.

In an ecosystem of microservices, the first step is that the application developer sub-

mits the different microservices that form an application. Once the microservices ar-

rive, the Cloud provider considers the requirements of each microservice component to

derive an optimal placement or deployment strategy for the application. This task falls

under the infrastructure management capability. The various microservices are assigned

to suitable physical nodes in the datacenter, that can satisfy the resource requirements

and other objectives of the microservices. A group of related microservices running

on the physical node form a pod, which is the basic unit of management. Once the

deployment operation is completed, the microservice containers are started. After the

microservice containers are in the ‘running’ state, user requests are accepted. The user

requests for microservices are received by the Cloud platform. The service management

capabilities identify the microservice instance and the node hosting the microservice in-

stance, to which the requests are forwarded. After the request has been processed, the

service management capabilities ensure that the results are delivered back to the user

who initiated the request.

4.3.1 Proposed Framework

The microservices lifecycle can be divided into two phases: the developmental phase

and the operational phase. The operational phase involves the service management

capabilities and the infrastructure management capabilities. This work deals with mi-

59

4. IntMA: Dynamic Interaction-Aware Resource Allocation for Containerized
Microservices in Cloud environments

croservice deployment, which falls under the infrastructure management capabilities.

Pod Pod

µs

µs

µs

µs

Pod Pod

µs

µs

µs

µs

Pod Pod

µs

µs

µs

µs

Flannel Networking

Physical Nodes

Interaction Graph Generation

Interaction factor calculation

Scheduling Engine

Deployment module

Scheduling
Policy

Infrastructure
Management
Capabilities

Service Management capabilities

Service Discovery

Load Balancing

Routing

Configuration

*

*

*

*

...

....

Microservice A

....

Microservice B

....

Microservice n

Microservices Operational Phase

....

Developer

Microservice requests
from end-devices

Results of microservice execution
sent back to user device

µN1

µB1

µA1 µA2 µAi

µN2 µNl

µB2 µBj

h1 h2 hN

Figure 4.1: Proposed framework for microservice allocation

Figure 4.1 illustrates the proposed framework for microservice deployment. The de-

veloper submits different types of microservices, Microservice A, Microservice B,

· · · , Microservice N . Each microservice has several instances. For example, the

Microservice A has different instances µA1, µA2, · · · , µAi. Each of these instances are

considered as different modules while scheduling by the Cloud provider. The microser-

vices scheduling is performed in various steps:

1. Interaction Graph Generation: The first step is to capture the interactions among

60

4.3. Proposed Methodology

the various microservice components. This can be done by subjecting the mi-

croservices based application to a load test. The developer provides the applica-

tion along with a load test script which can then be used to capture the interac-

tions. This information is represented as an interaction graph.

2. Interaction factor calculation: The next step is to calculate the interaction factor

which symbolizes the number of interactions among each microservice compo-

nent. This is represented by the edge weights in the interaction graph. Based on

the different equations defined in the subsequent sections, the interaction factor

is computed for each pair of microservices.

3. Scheduling Engine: Once the interaction factors are obtained, the next step is

to apply different scheduling policies to derive near-optimal scheduling strate-

gies. The Scheduling Engine may employ a solver to obtain the solution for the

Quadratic Programming problem representing the allocation problem. IntMA and

IntRR are the other scheduling policies discussed in this chapter, which can also

be plugged in to the scheduling engine.

4. Deployment module: Once the scheduling strategy is obtained, the deployment

module takes care of initiating the assigned microservice components on the cor-

responding physical nodes. Information about the microservice components is

also entered in a registry service, such as etcd, to ensure that the microservices

are discoverable.

The steps are discussed in detail in the following subsections.

4.3.2 Interaction graph generation

The different components that form part of an application may interact with each other

while processing the requests received from the users. In this context, the direction of

communication between the microservice components, is immaterial, as communica-

tions in any direction will result in interaction between the nodes on which they are

deployed. Thus, the interactions among the microservice components can be captured

in the form of an undirected graph.

61

4. IntMA: Dynamic Interaction-Aware Resource Allocation for Containerized
Microservices in Cloud environments

M2 M1

M4M3

8

7
1

3

< 4, 30 > < 3, 10 >

< 5, 14 >< 3, 24 >

Figure 4.2: Interaction graph for a toy microservice application with 4 microservice
components

The interaction graph G is an undirected complete doubly-weighted graph denoted

by < V, T,E,D > where the microservice components form the vertices, V and the

interactions among the components form the edges, E. T represents the weights as-

sociated with the vertices in V . The weights in T are 2-tuples < vcpu req, vmem req >,

representing the processing and memory requirements of the associated microservice at

vertex v. All the vertices of the graph G are connected with edges. D denotes the set

of edge weights. Each edge is associated with a weight dij ∈ D denoting the number

of interactions among the microservice components (which is the sum of interactions

in both directions) at the associated vertices. The weight of each edge can be computed

as defined in Equation 4.2.

dij =





t, where t denotes the number of interactions, if microservice i interacts

with microservice j

0, otherwise.
(4.2)

The interaction graph for a toy microservice application with 4 modules is illustrated

in Figure 4.2.

62

4.3. Proposed Methodology

4.3.3 Interaction factor

The aim is to allocate the microservice components to the physical nodes in such a

manner that the microservices with frequent interactions are placed on the same node

or next to each other as much as possible. This ensures that communication across

different physical nodes is minimal thereby reducing the latencies involved in request

processing. To quantify the interactions across different nodes, we define a parameter,

interaction factor in Equation 4.3.

interaction factor, cvihzvjhw =





1
2
dvivj , if hz 6= hw

0, if hz = hw

(4.3)

where vi, vj are microservice components and hz, hw are the physical nodes to which

the microservices vi and vj are respectively allocated. For each pair of interacting hosts

hz and hw, the cost of interaction is equally divided among them, by assigning the

interaction factor value for each of the hosts as half of the edge weight. Thus, interaction

factor value is dependent on the number of interactions, dij and also on the physical

node hz and hw hosting these microservices. It must be noted that the interaction factor

will be zero for all cases where hz and hw are the same, regardless of the edge weight

value.

4.3.4 Optimization Model

The system comprising of hosts in the datacenter and microservice components to be

allocated to these hosts can be formulated as a (0/1) Quadratic Programming Problem

(QPP) with linear constraints, which is a special case of the class of Mixed Integer Non-

Linear Programming (MINLP) optimization problems (Caprara 2008). The objective

of the problem is to minimize the total cost of interaction, subject to the resource capac-

ity constraints. The values of the decision variables of the problem denote the node to

which the module is allocated. The binary decision variable denoted as xvihz is defined

in Equation 4.4.

63

4. IntMA: Dynamic Interaction-Aware Resource Allocation for Containerized
Microservices in Cloud environments

xvihz =




1, if vi is allocated on node hz

0, otherwise
(4.4)

In other words, if the value of x32 = 1, it implies that in the optimal allocation

strategy, the 3rd microservice component is placed on the 2nd host.

Minimize
N∑

z=1,w=1
z 6=w

M∑

i=1,j=1
i 6=j

cvihzvjhw ∗ xvihz ∗ xvjhw

subject to,

∀hz ∈ H,
M∑

i=1

vcpu reqi ∗ xvihz ≤ hcpu resz (4.5)

∀hz ∈ H,
M∑

i=1

vmem req
i ∗ xvihz ≤ hmem res

z (4.6)

∀vi ∈ V,
N∑

z=1

xvihz = 1 (4.7)

The optimization problem aims to reduce the inter-node communications and thereby

reduce the latency experienced by the users. Equations 4.5 and 4.6 provide the con-

straints on the processing and memory requirements. The sum of the resources re-

quested by all the microservice components placed on the host must not exceed the

total residual resource capacity. Equation 4.7 ensures that each microservice compo-

nent is placed on one and only one host in the system.

The number of terms in the optimization objective, can be expressed in terms of

the number of hosts, N and the number of microservice components, M as provided in

Equation 4.8.

M ∗ (M − 1) ∗N ∗ (N − 1) (4.8)

4.3.5 Model Example

A toy microservice application with 4 components is considered. The communications

between the different microservice components has been recorded in Figure 4.2. In this

section, a quadratic programming problem is formulated to represent the allocation of

64

4.3. Proposed Methodology

the application components across a system with 2 nodes H = {h1, h2}. The resource

capacities of the nodes are given as: < 8, 50 >,< 10, 50 >. The total number of terms

in the objective function, according to Equation 4.8 is 4 ∗ (4 − 1) ∗ 2 ∗ (2 − 1) = 24

terms.

From the interaction graph, the values of dij are obtained as:

d12 = 8, d14 = 3, d13 = 1, d23 = 7, d24 = 0, d34 = 0

The objective function after eliminating the terms with coefficient 0, is given in

Equation 4.9.

Minimize 4x11x22 + 0.5x11x32 + 1.5x11x42+

4x21x12 + 3.5x21x32 + 0.5x31x12 + 3.5x31x22+

1.5x41x12 + 4x12x21 + 0.5x12x31 + 1.5x12x41+

4x22x11 + 3.5x22x31 + 0.5x32x11+

3.5x32x21 + 1.5x42x11

(4.9)

subject to

3x11 + 4x21 + 3x31 + 5x41 ≤ 8

3x12 + 4x22 + 3x32 + 5x42 ≤ 10

10x11 + 30x21 + 24x31 + 14x41 ≤ 50

10x12 + 30x22 + 24x32 + 14x42 ≤ 50

x11 + x12 = 1

x21 + x22 = 1

x31 + x32 = 1

x41 + x42 = 1

The QPP may be solved by any MINLP solver. On solving the problem with AP-

Monitor optimization suite (Hedengren et al. 2014), the solution obtained is furnished

in Table 4.2. For small problem sizes, classical optimization solutions, provide accu-

rate results. With increase in the problem size, the number of decision variables grow

exponentially, making it infeasible to correctly derive and solve the QPP.

65

4. IntMA: Dynamic Interaction-Aware Resource Allocation for Containerized
Microservices in Cloud environments

Parameter Mathematical optimization
Objective value 11

x11 0
x12 1
x21 0
x22 1
x31 1
x32 0
x41 1
x42 0

Table 4.2: Solutions obtained from mathematical optimization problem

4.3.6 Proposed Algorithms

In large problem spaces, heuristic algorithms are considered to be more computationally

feasible, than classical optimization techniques. This section discusses two heuristic

algorithms that can aid in obtaining near optimal solutions for the interaction-aware

allocation of microservice components.

First, a baseline approach that was developed to benchmark the performance of

the proposed approach is described. The aim of this work is to take into account the

interactions among the microservice components while deriving the placement strategy.

This attribute will ensure that the inter-node communication is reduced. Algorithm 4.1

describes the Round Robin heuristic (Interference-aware Round Robin, IntRR) that

considers the microservice interactions for deploying the modules. Both the lists of

available nodes and the value of interaction factors are arranged in non-increasing order.

Then, each pair of microservices is selected based on the interaction factor value and

placed together on the next node traversed in a circular order. The process is repeated

till a suitable node is identified for every microservice component.

Initially, all the nodes with residual CPU and memory resources are filtered (in F),

which are then sorted based on the availability of the dominant resource on the nodes.

The values of the interaction factor (in D) are also sorted in non-increasing order. The

variable ‘k’ is used to keep track of the index of the current node under consideration in

the set F . The pair of microservices corresponding to the edge with highest interaction

factor is picked. Lines 7 - 9 check whether both the microservices connected by the

66

4.3. Proposed Methodology

edge can be placed in the same node. The corresponding edge interaction factor is

removed from D and k is updated to point to the next node in F . In cases where both

microservice components cannot be placed together on the same node, but either one

of the microservice components can be placed, the individual microservice component

is placed on the current node. The values of k and D are also updated accordingly

(Lines 11-13). In all other cases, where none of the microservice components can be

accommodated, the current node is skipped and the value of k is updated to point to the

next node in circular order (Line 15).

Algorithm 4.1: IntRR-Interaction-aware Round Robin algorithm
Input : Interaction Graph, G =< V,E > with edge weights D and vertex

weights T
Output: Mapping from V to F

1 Initialize F with all nodes having hu resz > 0;u ∈ {cpu,mem}
2 Sort F in non-increasing order of fmem res

k /* for memory intensive
applications */

3 Initialize k as 1
4 Sort weights in D in non-increasing order
5 while all microservices have not been placed do
6 Select α = max(D); Let α = dij be the weight of the edge connecting the

microservices at vertices vi and vj
7 if both microservices vi and vj are not placed and both can be

accommodated on current node then
8 Place both microservices on current node
9 Update D as D − α; Update k as (k + 1)%Q

10 end
11 else if either one of the microservices not placed and can be accommodated

on current node then
12 Place the microservice on current node
13 Update D as D − α; Update k as (k + 1)%Q

14 else
15 Update k as (k + 1)%Q
16 end
17 end

The core idea of this algorithm is to ensure that microservice components with more

number of interactions among themselves are placed on the same node. However, the

algorithm mainly considers interactions among pairs of microservices. In scenarios

where several microservices interact frequently with each other, this algorithm may

67

4. IntMA: Dynamic Interaction-Aware Resource Allocation for Containerized
Microservices in Cloud environments

not provide the best possible solution. To overcome this, another heuristic algorithm is

proposed, IntMA, a heuristic algorithm inspired by the Prim’s Minimum Spanning Tree

(MST) algorithm, to perform allocation of microservice components in an interaction-

aware manner.

In the initial step of the IntMA algorithm described in Algorithm 4.2, the nodes

feasible for scheduling any of the microservice components (satisfies resource require-

ments), are collected in the set F . The elements in this set are then sorted in non-

increasing order of remaining processing capacity (for CPU-intensive applications) or

remaining memory bytes (for memory intensive applications). The edge weights are

considered in non-increasing order. An array, ALLOCATED is initialized with ze-

roes. This array keeps track of the node allocated for each microservice component.

For the first edge, both the connected microservice components can be placed on the

same node, if the first node in F can accommodate the processing and memory require-

ments of both the microservices combined.

Lines 17-25 iterate through the microservice components that interact with the mi-

croservices that have been already allocated on the current node. The algorithm at-

tempts to place as many dependent microservices together on the same node, restricted

by the processing and memory resources available on the node. On each node, once all

the dependent microservices are exhausted, any remnant microservices with no residual

dependencies (ie. does not interact with any unallocated microservices implying that

all interacting microservices, if any, have already been placed on a different node) are

considered for possible placement on the current node. If the processing and memory

requirements can be met by the current node, then, the microservices will be placed on

the node. This step is included to ensure maximum utilization of the nodes deploying

the application. Then, the next physical node is identified as target for the incoming

microservice requests. Lines 41-54 consider this scenario. In this step, microservice

components which interact with any other microservice component that has been al-

ready placed are considered. While considering the first microservice to be placed on

the current node, a re-check is performed to ensure that no re-allocations are required.

Once the decision to allocate is made, the residual capacities on the current node are

68

4.3. Proposed Methodology

Algorithm 4.2: IntMA- Interaction-aware Microservice Allocation algorithm
Input : Interaction Graph, G =< V,E > with edge weights D and vertex weights

T = {< V cpu req , Vmem req >}, Set of feasible nodes, F
Output: ALLOCATED Array

1 Initialize F with all nodes having hu res
z > 0;u ∈ {cpu,mem}

2 Create an array, ALLOCATED with size as |V | and initialize with zeroes
3 Sort F in non-increasing order of fmem res

k /* for memory intensive applications */
4 Initialize k as 1
5 Select α = max(D); Let α = dij be the weight of the edge connecting the vertices vi and vj
6 if (vcpu req

i + vcpu req
j < fres cpu

k) and (vmem req
i + vmem req

j < fres mem
k) then

7 Place (vi, fk)
8 Place (vj , fk)
9 Assign ALLOCATED[vi] = k

10 Assign ALLOCATED[vj] = k

11 else
12 Place (vi, fk)
13 Assign ALLOCATED[vi] = k

14 end
15 S := Set of all edges incident on vi where ALLOCATED[vi] = k
16 dij := max(S) where ALLOCATED[vi] = k and ALLOCATED[vj] = 0
17 while dij 6= NULL do
18 if (vcpu req

j < fres cpu
k and vmem req

j < fres mem
k) then

19 Place (vj , fk)
20 Assign ALLOCATED[vj] = k
21 goto Line 15
22 else
23 Find next maximum weighted edge from S, dij
24 end
25 end

/* allocate pending microservice components */
26 if ∃ALLOCATED[vj] = 0 then
27 vj := Microservice component to be placed

/* check for residual dependencies with unallocated microservice components

*/
28 int factor(vj , vunallocated) :=

∑
(djl) ∀ microservice components l where ALLOCATED[vl] = 0

29 if (int factor(vj , vunallocated) = 0) and (vcpu req
j < fres cpu

k and vmem req
j < fres mem

k) then
30 Place (vj ,fk)
31 Assign ALLOCATED[vj] = k

32 end
33 end
34 Increment k by 1
35 if k > Q or @ALLOCATED[vj] = 0 then
36 break
37 end
38 else
39 S := Set of all edges incident on vi where ALLOCATED[vi] 6= 0
40 dij := max(S) where ALLOCATED[vi] 6= 0 and ALLOCATED[vj] = 0
41 if ALLOCATED[vi] = (k − 1) then
42 int factor(vi, vallocated) :=

∑
(dil) ∀ microservice components l where

ALLOCATED[vl] = (k − 1)
43 if dij > int factor(vi, vallocated) /* greater dependency with current

microservice component, so attempt to re-allocate */
44 then
45 if (vcpu req

i + vcpu req
j < fres cpu

k) and (vmem req
i + vmem req

j < fres mem
k) /* can be

accommodated on current node */
46 then
47 Assign ALLOCATED[vi] = 0
48 Place (vi, fk)
49 Assign ALLOCATED[vi] = k

50 end
51 Place (vj , fk)
52 Assign ALLOCATED[vj] = k
53 goto Line 15
54 end
55 end
56 end

69

4. IntMA: Dynamic Interaction-Aware Resource Allocation for Containerized
Microservices in Cloud environments

Algorithm 4.3: Place- Subroutine invoked by IntRR and IntMA update
residual capacities on allocated nodes

Input: Microservice component to be placed, m, Node, n
1 Subroutine Place:
2 nres cpu = nres cpu −mreq cpu

3 nres mem = nres mem −mreq mem

4 if nres cpu < min(V cpu req) or nres mem < min(V mem req) then
5 Increment k by 1
6 end

updated as shown in Algorithm 4.3. In this Algorithm, the residual resource capacities

are updated to reflect the current allocations by deducting the requested resources from

the available resources on that node. If the updated residual resource capacities are not

sufficient to satisfy the resource requirements of the smallest microservice component,

then, the algorithm proceeds to the next node in the sorted list. Algorithm 4.2 termi-

nates either when there are no more microservice components to be placed or when

there are no more feasible nodes to accommodate the microservices. On completion of

the algorithm, the allocation strategy can be obtained from the ALLOCATED array.

The index of the array gives the microservice component identifier and the value at that

index gives the identifier of the physical node to which the component has been allo-

cated. If the value is 0, no feasible nodes have been assigned to the component and the

microservice continues to wait in the scheduling queue till nodes become available.

4.4 EXPERIMENTAL EVALUATION

This section describes the experiments conducted for the evaluation of the proposed

approach against the baseline approach and the default scheduling policy employed in

the GKE. The experimental settings, performance metrics and the results are discussed

in this section.

4.4.1 Evaluation Environment

In order to evaluate the performance of the proposed solution in real Cloud environ-

ments, microservices-based applications were run on the Google Cloud Platform (GCP)

(Google 2020). Google Kubernetes (k8s) (Kubernetes 2020a) was employed as the

container management platform to coordinate the application containers running across

70

4.4. Experimental Evaluation

different nodes. The experimental testbed consists of one k8s cluster with a single

master node. The cluster is enabled with autoscaling features, allowing the cluster to

comprise of worker nodes ranging from 3 to 10, based on the incoming requests for

application pod deployment. Each worker node has 2 virtual CPUs (vCPUs) and 7.5

GB of memory. Every node in the Cloud environment runs the kubelet service enabling

the containers hosted on it to be managed by a node designated as the master node.

Applications are submitted to the master node. The scheduler component running on

the master node deploys the application in containers across all the nodes. Docker con-

tainers (Docker 2020) were considered to encapsulate the application modules. The

containers are configured with resource requirements and limits corresponding to the

specifications in the application deployment YAML (YAML Ain’t Markup Language)

files.

There exists numerous solutions to support logging and monitoring of microservice-

based systems, by collecting logs and other metrics. In our experiments, we used the

Jaeger, Prometheus and Grafana open-source monitoring tools. Jaeger is a microser-

vices tracing tool (JaegerTracing 2020) which was used to extract the runtime metrics

of the microservices containers. Prometheus monitoring tool was employed to col-

lect other time series metrics (Prometheus 2020) during the microservices’ lifecycle.

Grafana (Grafana 2020) works on top of Prometheus to provide data visualisation ca-

pabilities.

The IntRR algorithm and IntMA algorithm were provided as the scheduling policy

for the scheduler component. The performance was evaluated and compared with the

baseline container deployment algorithm (represented as ‘default’ policy in the remain-

der of this chapter) provided by the k8s container platform manager. In the k8s system,

‘pod’ is the basic unit of deployment. A pod may comprise of one or multiple con-

tainers. The default scheduler maintains a queue of pods to be scheduled (Netto et al.

2017). For each pod to be scheduled, the scheduler follows a two-step strategy. In the

first step, the nodes are filtered according to resource requirements and other predicates

specified by the user. In the next step, the filtered nodes are sorted according to priority

functions (affinity-based, balanced resource usage, etc.) . Finally, the pod is created on

71

4. IntMA: Dynamic Interaction-Aware Resource Allocation for Containerized
Microservices in Cloud environments

Name Microservice
types

No. of
instances

Microservice Components

SockShop 9 13 Orders, Payment, User, Catalogue,
Carts, Front-end, Shipping, Carts-
db, Orders-db

BookInfo 4 6 Details, ProductPage, Ratings, Re-
views

HipsterShop 10 12 adservice, cartservice, checkout-
service, currencyservice, emailser-
vice, frontend, paymentservice,
productcatalogservice, recommen-
dationservice, shipping service

Table 4.3: Characteristics of reference microservice applications

the node with the highest score.

The results were also compared with a graph-partition based service placement pol-

icy proposed by Lera et al. (2018). According to this policy, applications are partitioned

into sets of services by finding the transitive closure of the nodes in the graph represent-

ing the application. The policy then uses the first-fit decreasing algorithm to map the

service sets to the nodes. This policy is represented as the Transitive Closure (TC)

policy in the remainder of this chapter.

4.4.2 Workload Microservice Applications

To analyze the performance of the proposed approaches, different microservice appli-

cations were used : the Weaveworks Sock Shop application (Weaveworks 2017), Istio

Book Info (Istio 2020) application and the Hipster Shop application (Github 2020).

These applications were chosen as they represent the real-life microservices based ap-

plications. The different characteristics of these applications are provided in Table 4.3.

4.4.2.1 Sock Shop Application

Sock Shop is a reference application designed by Weaveworks to be used for testing the

performance of solutions for microservice systems. It includes the user interface of an

e-shopping website for socks. The application uses Go, Node.js and Spring Boot tech-

nologies. The application consists of different microservices such as front-end, order,

payment, catalogue, carts and shipping. The designers of the application included sev-

72

4.4. Experimental Evaluation

eral microservices into the application to ensure that the application closely resembles

real applications.

4.4.2.2 Istio BookInfo App

The BookInfo is a simple application with fewer number of microservice components.

The application includes components to display the information of a book and display

the review and ratings corresponding to each book. Envoy sidecars provided with each

service are responsible for telemetry collection while enabling communication among

the various components.

4.4.2.3 Hipster Shop

The Hipster Shop Cloud native microservice application consists of 10 tiers. The dif-

ferent microservices constituting the application are written in different languages. The

application is an e-commerce application enabling users to view items, drop them into

carts and buy the items.

4.4.3 Performance metrics

In order to analyze the performance parameters, the following metrics were considered.

• Response Time: Application response time is considered to be of primal impor-

tance in service based systems. The user QoS also features application response

time as a key performance indicator. Response time is defined as the time taken

to generate a response to a user request. It is measured from the time the user re-

quest is received upto the point in time when the user receives the corresponding

response.

In the context of microservices, application response time can be decomposed

into microservice response times. Further, the processing of each microservice

request might include a sequence of invocations to other microservice compo-

nents. In such cases, the microservice response time includes the sum of re-

sponses times of all the invoked microservices. When compared to monolithic

applications, microservice-based applications may sometimes experience higher

response times. However, this increase can be tackled by efficient orchestration

73

4. IntMA: Dynamic Interaction-Aware Resource Allocation for Containerized
Microservices in Cloud environments

of the microservices belonging to an application.

• Throughput: Throughput is the rate at which requests are processed by a service.

This can be computed as the number of requests serviced in unit time interval.

The rate of requests flowing in the system is impacted by several factors such as

time taken for computation, communication latencies and resource capacities of

the nodes on which the requests are processed.

For microservices, in addition to the aforementioned, the time spent in communi-

cation between the different microservices also affects the observed throughput.

Due to these reasons, throughput can be considered to be one of the vital metrics

to evaluate the ‘fairness’ of an allocation / placement strategy.

• Interaction factor: The interaction factor metric is defined as the overhead in-

curred on the system due to communications between microservices deployed on

different nodes. In this work, the communication between two microservice com-

ponents is referred to as ‘interaction’. Two types of interaction factor values are

considered:

– Inter-node interaction factor: The inter-node interaction factor value for a

pair of nodes is computed as the sum of interactions between the different

microservice components deployed on each node.

– Overall interaction factor: This metric is calculated as the total of the inter-

node interaction factor values across different pairs of nodes on which the

application microservices are deployed.

An increase in the interaction factor value indicates increased communication

across the physical nodes deploying the application which incurs an overhead

on the system. It leads to higher communication latencies and also significantly

increases the response times experienced by the users. Thus lower interaction

factor values are desirable.

74

4.5. Results

4.5 RESULTS

The evaluative analysis of the proposed algorithm was done mainly using three applica-

tions, Sock Shop application, Istio BookInfo application and Hipster Shop application.

Several runs were conducted for each of the experiments and the presented results con-

tain the averaged values across the runs.

4.5.1 Evaluation of the metrics

The microservices are assigned to different nodes according to the IntMA, IntRR schedul-

ing algorithms and the default k8s scheduling policy. All the performance metrics are

evaluated and compared with respect to the values obtained by deploying the applica-

tion using the k8s scheduler. The values of the performance metrics, response time

and throughput obtained when the microservice applications are deployed using the TC

policy, are also presented.

Figure 4.3a shows the Cumulative Distribution Function (CDF) of response time

values for different component microservices of the Sock Shop application, deployed

using the IntMA, TC, default and IntRR scheduling policies. It is observed that on

adopting IntMA, 90% of the requests are serviced within time less than 0.1 ms. It is

observed that the response times are lower for the IntMA policy. The lower response

times are mainly due to the fact that the microservice units which frequently interact are

placed on the same nodes. In the Cloud datacenter, the communication latency among

containers hosted on the same node is negligible when compared to the communication

across containers on different nodes.

The default scheduler policy, schedules the microservice components without re-

gard for the interaction pattern, thus leading to higher waiting times. From the average

response time values (averaged across the entire time interval of 55 minutes) in Table

4.4, it is seen that the response time is lowered by 62% when the microservice appli-

cation is scheduled using the IntMA approach and there is a 78% increase when the

application is scheduled using the IntRR policy. The response time increases by 88%

when the application is scheduled according to the TC policy.

Figure 4.3b shows the CDF of throughput for the SockShop application scheduled

75

4. IntMA: Dynamic Interaction-Aware Resource Allocation for Containerized
Microservices in Cloud environments

0.0 0.1 0.2 0.3 0.4

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Response Time (ms)

C
D

F

IntMA

Default

IntRR

TC

(a) CDF of Response Time for SockShop application

0 20 40 60 80 100 120

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Throughput (ops)

C
D

F

IntMA

Default

IntRR

TC

(b) CDF of Throughput for Sock Shop application

Figure 4.3: Performance metric values for Sock Shop application

76

4.5. Results

IntMA IntRR TC Default
Sock Shop application 0.0335 0.1551 0.1640 0.0871
Istio BookInfo application 0.0138 0.0161 0.0147 0.0166
Hipster Shop application 0.1188 0.1883 0.1752 0.1563

Table 4.4: The average response times (in ms) for the different applications

IntMA IntRR TC Default
Sock Shop application 8.3843 7.9347 7.8423 7.9613
Istio BookInfo application 1.2553 1.1480 1.1473 1.0908
Hipster Shop application 1.2389 1.0415 1.0173 1.0286

Table 4.5: The average throughput (in ops) for the different applications

by the IntMA, default and IntRR approaches respectively. The throughput is measured

in terms of operations per second (ops). When the application is deployed using the

IntMA policy, throughput is higher than 50 ops in 50% of the cases. For the SockShop

application, IntMA provides a 5% increase in the throughput, while the IntRR provides

a 0.3% decrease and TC provides a decrease of 1.5%, as can be observed from the

average throughput values (averaged across the entire time interval of 55 minutes) in

Table 4.5.

Figure 4.4a gives the CDF of response time values for the BookInfo application

corresponding to the IntMA, default, TC and IntRR scheduling policies, respectively.

It is observed that the IntMA policy reduces the average response time by 16%, while

the TC and IntRR witnesses 11% and 3% decrease in the response time respectively.

The IntRR policy considers the interactions while alloting the components to the nodes

in a circular manner. This may lead to neglection of some interactions. However, the

IntMA ensures that the maximum possible number of interacting components are placed

together.

Figure 4.4b shows the CDF of throughput for the BookInfo application scheduled

by the IntMA, default, TC and IntRR approaches respectively. For the BookInfo ap-

plication, IntMA scheduling policy provides a 9% increase in the average throughput,

while TC and IntRR leads to a 5.1% and 5.2% increase in the throughput, respectively.

The proposed IntMA places the frequently communicating entities close to each other,

thereby reducing the communication latencies. This positively impacts the number of

77

4. IntMA: Dynamic Interaction-Aware Resource Allocation for Containerized
Microservices in Cloud environments

0
.0

0
0

.0
1

0
.0

2
0

.0
3

0
.0

4
0

.0
5

0
.0

6

0.00.20.40.60.81.0

R
e

s
p

o
n

s
e

 T
im

e
 (

m
s
)

CDF

In
tM

A

D
e

fa
u

lt

In
tR

R

T
C

(a
)C

D
F

of
R

es
po

ns
e

Ti
m

e
fo

rB
oo

kI
nf

o
ap

pl
ic

at
io

n

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

0.00.20.40.60.81.0

T
h

ro
u

g
h

p
u

t
(o

p
s
)

CDF

In
tM

A

D
e

fa
u

lt

In
tR

R

T
C

(b
)C

D
F

of
T

hr
ou

gh
pu

tf
or

B
oo

kI
nf

o
ap

pl
ic

at
io

n

Fi
gu

re
4.

4:
Pe

rf
or

m
an

ce
m

et
ri

c
va

lu
es

fo
rI

st
io

B
oo

kI
nf

o
ap

pl
ic

at
io

n

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0.00.20.40.60.81.0

R
e

s
p

o
n

s
e

 T
im

e
 (

m
s
)

CDF

In
tM

A

D
e

fa
u

lt

In
tR

R

T
C

(a
)C

D
F

of
R

es
po

ns
e

Ti
m

e
fo

rH
ip

st
er

Sh
op

ap
pl

ic
at

io
n

0
2

4
6

8

0.00.20.40.60.81.0

T
h

ro
u

g
h

p
u

t
(o

p
s
)

CDF
In

tM
A

D
e

fa
u

lt

In
tR

R

T
C

(b
)C

D
F

of
T

hr
ou

gh
pu

tf
or

H
ip

st
er

Sh
op

ap
pl

ic
at

io
n

Fi
gu

re
4.

5:
Pe

rf
or

m
an

ce
m

et
ri

c
va

lu
es

fo
rH

ip
st

er
Sh

op
ap

pl
ic

at
io

n

78

4.5. Results

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

IntMA Default IntRR TC

In
te

r-
n

o
d

e
 I

n
te

ra
c
ti
o

n
 f
a

c
to

r

Different Scheduling policies

N1-N2
N1-N3
N2-N3

80

251

459

288

0

355

781

00 0

80

0

Figure 4.6: Interaction factor value for Sock Shop application across nodes

successful responses returned per unit time.

The CDF of response time values obtained by the Hipster Shop application when

scheduled using the IntMA, default, TC and IntRR scheduling policies are plotted in

Figure 4.5a. Response time values are highest when the application is deployed accord-

ing to the IntRR scheduling policy. The least values for response times are obtained

when the application is deployed according to the IntMA scheduling policy. The values

recorded in Table 4.4 indicate that the IntMA scheduling policy lowers the response

time by approximately 36%.

Figure 4.5b illustrates the CDF of throughput values for the Hipster Shop applica-

tion. It may be noted that instantaneous throughput values in few instants is higher

when using the default scheduler. However, the averaged values, which better captures

the trend of the throughput values, indicates that the IntMA scheduling policy improves

the throughput by 18.9%.

Figures 4.6, 4.7 and 4.8 show the inter-node interaction factors of the different nodes

(N1, N2 and N3) hosting the applications - Sock Shop application, Istio BookInfo

application and Hipster Shop application. For all applications, the IntMA scheduling

policy ensures that there is no interaction between the second and third nodes. For

79

4. IntMA: Dynamic Interaction-Aware Resource Allocation for Containerized
Microservices in Cloud environments

 0

 20

 40

 60

 80

 100

 120

IntMA Default IntRR TC

In
te

r-
n
o

d
e

 I
n

te
ra

c
ti
o

n
 f
a
c
to

r

Different Scheduling policies

N1-N2
N1-N3
N2-N3

0

113

84

71

0

29

71

00

42

29

0

Figure 4.7: Interaction factor for Istio Book Info application across nodes

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

IntMA Default IntRR TC

In
te

r-
n
o
d
e
 I
n
te

ra
c
ti
o
n

 f
a

c
to

r

Different Scheduling policies

N1-N2
N1-N3
N2-N3

0 0

79

4
0

6

0

92

0

90 92

75

Figure 4.8: Interaction factor for Hipster Shop application across nodes

80

4.5. Results

the Sock Shop application, the first and second nodes interact with each other with

an interaction factor of 80. It is also perceived that none of the nodes interact between

themselves when Istio BookInfo application and Hipster Shop application are scheduled

using the IntMA policy. For the smaller application Istio BookInfo, IntRR has lower

interaction factor values than the default policy, whereas for the larger applications,

Sock Shop application and Hipster Shop application, the default scheduler provides

lower values for the interaction factor. Since the TC scheduling policy places services

only based on the transitive closure and does not consider the interaction factor value,

TC has higher interaction factor values for all applications.

The higher the interaction factor value, higher the frequency of interactions between

the physical nodes. This leaves provisions for increase in waiting times for responses

from the component microservices resulting in higher response time values. Thus,

lower interaction factor values are desirable. In this context, the proposed algorithm

IntMA outperforms the baseline IntRR and TC algorithms and the default scheduling

policy. The IntMA algorithm attempts to place all entities that interact with each other,

on the same node. If any of the nodes have sufficient capacity, IntMA places all com-

ponents of the application on that node itself. When all components are placed on the

same node, there will not be any interactions pertaining to the application, between

different nodes, thereby reducing the internode interaction factor value to 0.

Figure 4.9 shows the overall interaction factor values for the different applications

deployed using different scheduling policies. The proposed policy works as expected,

with the interaction factor value as zero for Istio BookInfo application and Hipster Shop

application. The SockShop application, deployed using the IntMA scheduling policy

spans multiple nodes and the resource requirements cannot be satisfied by any individ-

ual node alone, results in an overall interaction factor of 80, which is negligible when

compared to the factor values obtained while using the default and IntRR scheduling

policies. It must be observed that the IntRR algorithm works similar to the default al-

gorithm for applications with fewer number of microservice components. However, the

IntRR algorithm fares significantly lower than the other scheduling policies discussed,

when the number of microservice components are higher.

81

4. IntMA: Dynamic Interaction-Aware Resource Allocation for Containerized
Microservices in Cloud environments

 0

 200

 400

 600

 800

 1000

 1200

 1400

Sock Shop Istio BookInfo Hipster Shop

IntMA
Default

IntRR
TC

80

0 0

606

184

96

1320

184 171

288

71

171

Figure 4.9: Overall Interaction factor value comparison for different schedulers

IntMA IntRR TC Default
Avg. Response time (ms) 0.0335 0.1551 0.1640 0.0871
Avg. Throughput (ops) 8.3843 7.9347 7.8423 7.9613

Table 4.6: Comparison of different approaches for Sock Shop application

4.6 DISCUSSION

The consolidated results across the different applications for the different scheduling

policies are provided in Tables 4.6, 4.7 and 4.8. In all the considered test cases, the

IntMA vanquishes the other described scheduling policies. The baseline approach, In-

tRR performs well in scenarios where the number of microservice components is less.

However, it is not preferable to schedule applications with more number of microservice

components using IntRR.

The applications were subjected to a load test in order to evaluate how the applica-

tions deployed handles user load. For this, a large number of requests were submitted

IntMA IntRR TC Default
Avg. Response time (ms) 0.01384 0.0161 0.0147 0.0166
Avg. Throughput (ops) 1.2553 1.1480 1.1473 1.0908

Table 4.7: Comparison of different approaches for Istio BookInfo application

82

4.6. Discussion

IntMA IntRR TC Default
Avg. Response time (ms) 0.1188 0.1883 0.1752 0.1563
Avg. Throughput (ops) 1.2389 1.0415 1.0173 1.0286

Table 4.8: Comparison of different approaches for Hipster Shop application

to the applications using the open-source Locust tool (Heyman et al. 2020). A de-

tailed analysis of the resource consumption by the workload microservice applications

deployed using the different scheduling policies discussed in this chapter is provided in

Appendix A. To assess the performance of the scheduler, the scheduling duration values

were collected for the different experimental settings.

4.6.1 Scheduling Duration

In our experiments, we defined scheduling duration as the time spent waiting to be

scheduled by the submitted pods/microservices. According to the pod’s lifecycle in

the k8s platform (Kubernetes 2020b), when an application is deployed on the GKE

cluster, the associated pods are created. They continue in a ‘Pending’ state till they

are scheduled. This time involves the time spent in waiting for the scheduler and the

time required for pulling of the container images. In the experiments conducted, all

the container images are pre-pulled from the registry. Thus, the scheduling duration

includes the time elapsed since the pod creation to the time when the pod starts running

on the scheduled node.

Figure 4.10 presents the average scheduling duration for the different workload ap-

plications considered. The results are averaged across the scheduling durations of all

pods constituting the application. The scheduling duration details for the individual

pods of each workload application is presented in Table 4.9. At the pod level, the IntMA

scheduling policy reduces the scheduling duration for some pods, while increasing the

scheduling duration for the remaining pods.

However, while considering the average scheduling duration across pods for each

application, it is observed that the IntMA scheduling policy increases the scheduling

duration by 2 − 5 milliseconds, while the IntRR scheduling policy performs slightly

better where the increase is between 1− 4 milliseconds, when compared to the default

83

4. IntMA: Dynamic Interaction-Aware Resource Allocation for Containerized
Microservices in Cloud environments

Application Details IntMA Default IntRR
Weaveworks SockShop carts 16 ms 2 ms 16 ms

carts-db 20 ms 26 ms 17 ms
catalogue 15 ms 6 ms 20 ms
catalogue-db 16 ms 2 ms 19 ms
front-end 17 ms 11 ms 17 ms
orders 33 ms 25 ms 10 ms
orders-db 5 ms 5 ms 6 ms
payment 4 ms 4 ms 7 ms
queue-master 15 ms 10 ms 14 ms
rabbitmq 17 ms 3 ms 15 ms
shipping 12 ms 3 ms 12 ms
user 8 ms 7 ms 7 ms
user-db 9 ms 7 ms 10 ms

Istio BookInfo details 9 ms 2 ms 9 ms
ratings 19 ms 18 ms 9 ms
reviews-v1 4 ms 2 ms 4 ms
reviews-v2 6 ms 2 ms 7 ms
reviews-v3 4 ms 1 ms 7 ms
productpage-v1 4 ms 2 ms 4 ms

HipsterShop adservice 60 ms 117 ms 5 ms
cartservice 61 ms 59 ms 44 ms
checkoutservice 41 ms 28 ms 17 ms
currencyservice 23 ms 32 ms 14 ms
emailservice 63 ms 23 ms 66 ms
frontend 38 ms 30 ms 52 ms
loadgenerator 76 ms 85 ms 94 ms
paymentservice 46 ms 26 ms 46 ms
productcatalogservice 18 ms 20 ms 38 ms
recommendationservice 28 ms 20 ms 42 ms
Redis-cart 23 ms 20 ms 37 ms
shippingservice 32 ms 14 ms 39 ms

Table 4.9: Scheduling Duration values for each microservice in the workload applica-
tions using IntMA, default and IntRR scheduling policies

84

4.6. Discussion

 5

 10

 15

 20

 25

 30

 35

 40

 45

Sock Shop Istio BookInfo Hipster Shop

A
v
e
ra

g
e
 S

c
h
e
d
u
lin

g
 D

u
ra

ti
o
n
 (

m
s
)

Different Applications

IntMA
Default

IntRR

14

8

42

9

5

40

13

7

41

Figure 4.10: Average Scheduling Duration comparison across default, IntMA and In-
tRR schedulers for different applications

scheduler. However, this increase is negligible when compared to the performance

improvement obtained using the IntMA approach in the throughput and response time

values.

4.6.2 QPP and Heuristic approach

Table 4.10 provides the solutions obtained for the toy problem presented in Section 4.3.4

using classical optimization, and the IntMA, IntRR algorithms discussed in this chapter.

For small solution spaces, all the three methods provide similar results, indicating that

the proposed heuristic approach, IntMA closely approximates the QPP. However, as the

number of nodes and the number of microservice components increases, the number of

terms in the objective function undergoes an exponential increase, thereby introducing

several challenges in solving the problem using classical optimization techniques.

4.6.3 Statistical Analysis

In order to evaluate the validity and effectiveness of the proposed approach, statistical

analysis was conducted. For hypothesis testing, t-test was performed on the perfor-

mance metric values for the proposed IntMA and the IntRR allocation policy. The

results of the t-test are provided in Table 4.11. The commonly used significance level

85

4. IntMA: Dynamic Interaction-Aware Resource Allocation for Containerized
Microservices in Cloud environments

Parameter Mathematical
optimization

IntMA IntRR

Objective value 11 11 11
x11 0 1 1
x12 1 0 0
x21 0 1 1
x22 1 0 0
x31 1 0 0
x32 0 1 1
x41 1 0 0
x42 0 1 1

Table 4.10: Comparison of solutions obtained from mathematical optimization prob-
lem, the IntMA algorithm and the IntRR algorithm

Algorithm p-value
IntMA-Default 0.011
IntMA-IntRR 0.023

Table 4.11: p-values obtained from t-test

of α = 0.05 was used in the conducted tests. For all cases, the p-value obtained was

lower than the significance level, thus providing evidence of the effectiveness of the

proposed allocation policy in improving the performance metrics.

4.6.4 Threats to Validity

The following threats to validity have been identified.

• Scheduling Duration metric: In the experiments conducted, it was assumed that

all images have already been pre-pulled on the nodes on which it runs. The re-

sults obtained depend on various conditions such as network throughput, con-

tainer image size, etc.). The collected results may vary according to the different

conditions. Though the actual values may vary, the proportion of the values will

be maintained.

• Workload Applications: The experiments considered three open-source web-based

microservice applications. In order to evaluate the feasibility of the proposed ap-

proach to the generic environment, several other types of applications will have

to be considered. The performance must also be evaluated when there are several

instances of different applications with confilicting resource requirements.

• Interaction Graph Generation: A pre-requisite for the proposed IntMA is the

86

4.7. Summary

availability of a load test script that can be used to generate the interaction graph

corresponding to the application. The load test must be structured in such a way

that all possible interactions among all the components of the application are sim-

ulated in the load test.

4.7 SUMMARY

The transition to microservices brings a wide range of infrastructural orchestration chal-

lenges. Microservice application deployment in containerized datacenters must be op-

timized to enhance the overall system performance. In this chapter, the deployment

of microservice application modules on the Cloud infrastructure is first modelled as a

Binary Quadratic Programming Problem. In order to reduce the adverse impact of com-

munication latencies on the response time, a novel, robust heuristic approach IntMA is

proposed for deploying the microservices in an interaction-aware manner with the aid of

the interaction information obtained from the Interaction Graph. The interaction pattern

between the microservice components is modelled as an undirected doubly weighted

complete Interaction Graph. The proposed allocation policies are implemented in k8s.

The effectiveness of the proposed approach is evaluated on the Google Cloud Platform,

using different microservice reference applications. Experimental results indicate that

the proposed approach improves the response time and throughput of the microservice-

based systems.

87

CHAPTER 5

NATURE-INSPIRED RESOURCE MANAGEMENT
AND DYNAMIC RESCHEDULING OF

MICROSERVICES IN CLOUD DATACENTERS

Devising performance-optimized solutions that guarantee QoS is of paramount impor-

tance. Container orchestration platforms incorporate activities to integrate and manage

the high footprint microservice applications running on containers, providing support

for tasks such as initial deployment, state management and scaling while ensuring fault

tolerance (Khan 2017). However, these platforms seldom consider the fluctuations

involved in Cloud environments. To alleviate this gap, degradations in the initial de-

ployment configurations may be handled by re-scheduling and consolidating the mi-

croservice application containers to new nodes (Rodriguez and Buyya 2019), enabling

the nodes with lesser workloads to be switched off for energy-savings.

It is imperative that Cloud providers tackle the performance-energy tradeoff in Cloud

resource management. Two significant mechanisms that facilitate this are virtual ma-

chine (VM) Consolidation (VMC) and Dynamic Voltage Frequency Scaling (DVFS).

VM consolidation techniques reschedule the tasks across fewer number of nodes, en-

abling the unused nodes to be switched off. VMC techniques can be broadly classified

into static and dynamic VMC algorithms (Bermejo et al. 2019). VMC algorithms are

generally considered to comprise of three core phases (Khan et al. 2018): Source Node

Selection, VM Selection and Destination Node Selection. Most of the existing research

on VMC focus on virtual-machine based environments.

89

5. Nature-Inspired Resource Management and Dynamic Rescheduling of
Microservices in Cloud Datacenters

Cloud datacenters are now shifting to microservice-based applications running in

containers. There is a need to consider the rescheduling of microservice containers

to ensure that the performance objectives are met in containerized Cloud data centers

(Fazio et al. 2016; Rodriguez and Buyya 2019). Microservice re-scheduling is a

NP-hard problem and there exists much scope for further optimization.

Xu et al. (2018) proposed iBrownout for energy-aware scheduling microservices

using the concept of brownout. The research was further extended in BrownoutCon

(Xu and Buyya 2019) to support resource management in containerized Clouds. How-

ever, the system does not include any migration of microservice containers and rather

switches off the optional components of microservice applications.

Piraghaj et al. (2015) conceptualized a framework for container consolidation that

dealt with consolidating containers on virtual machines. Only simulation experiments

were carried out. On the contrary, we have considered real-world microservice applica-

tions in our system. Rattihalli (2018) proposed a container migration system that also

identifies the right-size of each job by offline profiling. The authors have not considered

the QoS attained by the system. Rodriguez and Buyya (2018) presented a k8s-based

framework for autoscaling and reactive re-scheduling in containerized Cloud environ-

ments. However, a better alternative is to use a proactive strategy. Thus, there is a

need for systems that proactively trigger re-scheduling activities which includes node

and container selection, based on the values monitored at regular intervals, rather than

waiting till incoming pods get stuck in the ‘pending’ state.

These issues served as the motivation to design and develop a novel system to dy-

namically perform the re-scheduling of microservice containers based on periodically

monitored resource utilization values. In this work, the main aim was to achieve better

average response time. It was observed that a key factor affecting the response time is

the container CPU throttling values. Communication overhead between the different

microservice components of an application equally affected the response time. In the

context of microservice containers, there are additional configuration factors such as

CPU/memory limits, to be considered.

90

5.1. CPU requests, limits and Throttling

5.1 CPU REQUESTS, LIMITS AND THROTTLING

The k8s container management platform deploys Docker application containers by

means of .yaml deployment files. These files generally contain resource requirements

for the containers. CPU and memory resource configurations can be specified in two

types: Resource requests and Resource limits. Requests specify the amount of resources

required by the container to ensure proper execution and is considered by the k8s sched-

uler to schedule the containers. The pods with single or multiple containers are sched-

uled on to nodes with resources that can satisfy the resource requests. However, the

containers are permitted to use resources upto the specified limits.

 0

 200

 400

 600

 800

 1000

 1200

 0 1 2 3 4 5 6 7

C
P

U
 L

im
it
 (

m
ill

ic
o
re

)

CPU Throttling (s)

Figure 5.1: Relation between CPU throttling and container CPU Limit - Figure shows
the level of container CPU throttling corresponding to the variation in container CPU
limits. Containers with lower CPU limits are subjected to more CPU throttling.

The CPU requests and CPU limits can be considered to be soft limits and hard lim-

its respectively. The CPU control groups (cgroups) value is set by the CPU requests.

Based on the CPU requests and limits of all containers in a pod, pods are categorized

into different QoS classes: Guaranteed, Burstable and Best-Effort. As CPU is a com-

pressible resource, containers with CPU resource usage greater than the CPU limits,

are throttled as a precaution against the noisy neighbour effect. The importance of con-

tainer CPU throttling in determining response time, which is one of the key Application

Performance Indicators, was analysed by varying the container CPU limits and measur-

ing the response time. Figure 5.1 depicts how the amount of throttling that a container

is subjected to, is affected by the CPU resource limits. When the CPU limit is suffi-

ciently high, the containers experience negligible throttling and vice-versa. To capture

91

5. Nature-Inspired Resource Management and Dynamic Rescheduling of
Microservices in Cloud Datacenters

the relationship of the variation in response time, different workloads were considered.

The CPU limits were varied and service response time values were measured. The Pear-

son correlation co-efficient between the CPU throttling and response time values was

calculated to be 0.611, indicating a moderate to strong positive correlation which is not

linear. Further, a value of 1 for both the non-parametric rank-based statistics Spearman

rank coefficient and Kendall’s correlation coefficient indicate that the response time is

monotonically related to the CPU throttling level. In order to evaluate the statistical

significance of the observations, t-test analysis was performed. At a significance level

of α = 0.05, the P-value is 2.315, which falls outside the critical region. Thus, the

alternate hypothesis stating that response time and throttling level are correlated, is ac-

cepted.

Rescheduling is often done to optimize the overall system performance. Though

initial scheduling is done in an optimized manner, the dynamic behaviour of the system

can tend to decrease the performance of the current configuration, calling for reschedul-

ing decisions. One of the key parameters indicating the microservice application per-

formance is the response time. High level of throttling generally implies that the cur-

rent host node does not have sufficient CPU resource to accommodate the container’s

CPU resource demands. Thus, triggering rescheduling operations to reduce the CPU

throttling level can result in an improvement in the performance of microservice-based

systems.

5.2 TIARM- THROTTLING AND INTERACTION-AWARE ANTI-CORRELATED
RESCHEDULING FOR MICROSERVICES

Traditional re-scheduling approaches guided by the resource usage profiling have been

found to be effective in hypervisor virtualization based data centers. However, in

the context of microservice containers, there are additional configuration factors such

as CPU/memory limits, to be considered. To alleviate this gap, container orchestra-

tion platforms must be augmented with re-scheduling strategies that perform relocat-

ing of the microservice containers to ensure optimized performance. These strate-

gies must also take into consideration the container configuration parameters. To ad-

dress the aforementioned challenges, we propose Throttling and Interaction-aware Anti-

92

5.2. TIARM- Throttling and Interaction-aware Anti-correlated Rescheduling for
Microservices

correlated Rescheduling for Microservices (TIARM), a system for performing re-scheduling

activities in container-based clusters running microservice applications. In the TIARM

framework, continuous monitoring is done to perform rescheduling activities which will

ensure optimized placement of microservice containers, thereby improving the QoS

attained by the system. The proposed TIARM framework thus deals with dynamic

rescheduling of containerized microservices using resource monitoring data. Section

5.2.1 presents the context and the overall architecture of the TIARM framework and

Section 5.2.2 details the functions of the proposed TIARM framework.

5.2.1 System Architecture

A containerized Cloud datacenter running the k8s Engine consists of multiple hetero-

geneous hosts with varying resource capacities. Each host can accommodate VMs re-

ferred to as ‘nodes’ in the remainder of this chapter. The VMs are characterized by the

number of virtual CPU cores (vCPU) and amount of memory resources (measured in

terms of GBs). VMs with the same type of resources are grouped into node pools. All

the VMs are interconnected to form a cluster.

Several microservice applications are submitted for deployment. In this work, the

applications are initially deployed by the k8s scheduler, which first filters and then

ranks the available nodes according to different priority functions. Each microservice

application consists of several interconnected containers. The containers are segregated

into multiple ‘pods’, which is the basic deployment unit in k8s clusters. The pods are

characterized by different requirements and may consist of one/more containers. In

order to filter out nodes that do not meet the requirements criteria, different pre-defined

predicate rules are applied. In the next step, the node with the highest score is designated

to run the pod. Though the scheduler does a fairly good job at initially deploying the

submitted applications, dynamic changes in the workload tend to result in sub-optimal

configurations. It is essential that rescheduling policies be applied periodically to ensure

optimized results by adapting the configurations in response to the fluctuations in the

workload.

Figure 5.2 depicts the system architecture of the proposed system. Users submit

93

5. Nature-Inspired Resource Management and Dynamic Rescheduling of
Microservices in Cloud Datacenters

Pod Pod

µs

µs

µs

µs

Pod Pod

µs

µs

µs

µs

Pod Pod

µs

µs

µs

µs

Flannel Networking

Physical Nodes

Service Management capabilities

...

Microservices Operational Phase

Developer

Microservice requests
from end-devices Results of microservice execution

sent back to user device

Scheduler

Infrastructure

Management

Capabilities

Rescheduling Unit

Routing*
Load Balancing*

Service Discovery*

3. Find new optimal mapping for descheduled containers

2. Deallocate/deschedule containers from current nodes

1. Invoke descheduler algorithm to identify containers to
be removed from candidate nodes

....

System Monitoring

Apply thresholding rules to identify

candidates for the rescheduling process

Configuration*

hnh2h1

.... µNlµN2µN1

Microservice N

Microservice A

µA1 µA2 µAi....

.... µBjµB2µB1

Microservice B

Figure 5.2: System Architecture

requests from end-devices. Requests to deploy microservice applications consisting

of different microservices (Microservice A to Microservice N) are submitted by appli-

cation developers. Each microservice can have mutiple instances (Eg: µA1, µA2, etc.).

According to the taxonomy presented in Chapter 2, the activities in a microservice-

based platform can be broadly categorized into developmental phase concerns and op-

erational phase concerns. Developmental phase concerns are outside the scope of this

research. Operational phase concerns can further be sub-categorised into service man-

94

5.2. TIARM- Throttling and Interaction-aware Anti-correlated Rescheduling for
Microservices

agement capabilities and infrastructure management capabilities. The infrastructure

management capabilities act as the intermediary between the microservice requests and

the underlying resources. This includes tasks directly involving operations on the in-

frastructure layer, such as scheduling, scaling and rescheduling. This chapter focusses

on the rescheduling of microservices which is represented by the boxes shaded in green

in Figure 5.2.

Once the scheduler has deployed the application on the various nodes, the system

monitor monitors the overall activities and invokes the rescheduler unit to trigger the

rescheduling process. The activities involved in the proposed framework are as follows:

1. The System Monitoring agent monitors the resource utilization and periodically

evaluates the CPU utilization to identify the Candidate Nodes that are either

over-utilized (CPU Utilization > Over − Load Threshold (OLT)) or under-

utilized (CPU Utilization < Under − Load Threshold (ULT)).

2. The rescheduling unit is invoked with the identified overloaded and underloaded

nodes along with their resource usage information. The rescheduling unit sends

commands to the descheduler to perform container selection and descheduling

operations.

3. The containers/pods to be de-allocated from each candidate node are identified

using a weighted linear combination of the CPU throttling level and interaction

factor, as discussed in Section 5.2.2.2. The selected containers are de-allocated

from the current nodes.

4. Resizing operations are performed for containers with high CPU throttling level

as discussed in Section 5.2.2.3.1.

5. The rescheduler module builds a globally optimal rescheduling plan using an

extended metaheuristic algorithm based on Multi-Verse Optimization (MVO), as

described in Section 5.2.2.3.2.

6. The rescheduling unit uses the binding process to notify the API server to actually

perform the transfer and re-allocation of the containers.

95

5. Nature-Inspired Resource Management and Dynamic Rescheduling of
Microservices in Cloud Datacenters

CPU, Memory
usage details

Application
DAG

k8s Master node

k8s Worker nodes

Descheduler

Rescheduler

k8s Monitoring

Database

Monitoring
Agent

Lower Threshold /
Upper Threshold
Alert

Candidate Nodes

CPU

Throttling Level

Pod1

Podn
Pod2

Evict List

W1

W2

∑

CPU

Throttling Level
Throttling high?

Resize

container

Y

Resizer

Feasible Nodes

Interaction Factor

Calculator

Downtime

Calculator

MOMVO-based

node selection

Module

Placement

on Nodes

Bind()

k8s cluster

Figure 5.3: Internal Details of the Rescheduling Unit in the proposed system
Microservices rescheduling is handled by this unit which invokes the descheduler, resizer and rescheduler. The unit takes the
monitored data, selected nodes and Application DAG as input. The unit invokes Bind() to place the migrating containers on the
new destination nodes in the cluster.

5.2.2 Functional Details of the TIARM Framework

Microservices rescheduling consists of the descheduling and rescheduling phases. In

the proposed system, the overall rescheduling activities are handled by the rescheduling

unit, which invokes the descheduler algorithm (as shown in Figure 5.3) to perform con-

tainer selection and descheduling. The control is then returned back to the rescheduling

unit which performs resizing operations and identifies new nodes to receive the migrat-

ing containers and places the containers on the identified nodes. The Rescheduling Unit

is invoked by the System Monitoring Agent as discussed in Section 5.2.2.1. Section

5.2.2.2 endetails the descheduler algorithm and Section 5.2.2.3 discusses the other op-

erations of the rescheduling unit. This work assumes the Application Directed Acyclic

Graph (DAG) to be available as input. Besides, all microservice application contain-

ers must specify CPU limits in their deployment files, which is the preferred way of

deploying containers on k8s platforms.

96

5.2. TIARM- Throttling and Interaction-aware Anti-correlated Rescheduling for
Microservices

5.2.2.1 System Monitoring Agent

The System Monitoring Agent augments the existing monitoring tools for k8s clusters,

as described in Algorithm 5.1. In the Monitoring Phase, the CPU utilizations of the

nodes are compared against static upper and lower thresholds to identify overloaded

(Node.OL is set to TRUE) and underloaded nodes (Node.UL is set to TRUE), re-

spectively. The thresholds were defined based on a set of preliminary experiments. The

identified nodes are appended to a list Candidate Nodes, which is forwarded to the

Rescheduling Unit.

Algorithm 5.1: Monitoring Phase
Output: List of Candidate Nodes

1 Candidate Nodes← []
2 Monitor CPU and memory resource usage of Nodes
3 Monitor CPU and memory resource usage of Pods
4 Monitor CPU throttling level for containers in Pods
5 UT ← Upper Threshold for resource usage of over utilized nodes
6 LT ← Lower Threshold for resource usage of under utilized nodes
7 if Node Resource usage ≥ UT then
8 Node.OL = TRUE
9 Append Node to Candidate Nodes

10 end
11 else if Node Resource usage ≤ LT then
12 Node.UL = TRUE
13 Append Node to Candidate Nodes
14 end
15 Forward Candidate Nodes
16 Forward Node resource usage vectors
17 Forward Pod resource usage vectors
18 Forward History of CPU throttling values for containers

5.2.2.2 Descheduling Phase

The Descheduling phase selects the containers/pods to be migrated from the overload-

ed/underloaded nodes. Microservices can be broadly classified into two: stateful and

stateless microservices. In k8s, stateful microservices are deployed as StatefulSets and

stateless microservices are generally deployed as Deployments or ReplicaSets. The mi-

gration of stateless microservices can be done trivially by spawning a new instance and

rerouting all traffic to the new instance. Descheduling and rescheduling activities are

97

5. Nature-Inspired Resource Management and Dynamic Rescheduling of
Microservices in Cloud Datacenters

performed only for the migration of stateful microservices. Microservice applications

contain multiple microservice units interacting with each other. Each microservice unit

is deployed on a container. The different containers forming part of an application tend

to interact with each other. The container selection policy used in the proposed system

prefers containers with least interactions with other containers on the current node. The

intuition is that highly interacting containers spend more time in communication when

placed across different nodes, thereby leading to a degradation in the observed response

times.

Interaction among application entities are captured in the form of Application DAG

where vertices (V) represent the microservice units and edges (E) represent an inter-

action among the corresponding microservice units. As shown in Figure 5.3, an in-

teraction factor calculator parses the DAG to compute the interaction factor for each

microservice running on the candidate nodes. The interaction factor between two mi-

croservice containers x and y is computed as provided in Equation 5.1.

I(x, y) =




1, if {x, y} ∈ E and x , y are running on the same node

0, otherwise
(5.1)

The relative amount of CPU throttled time(T) for each container is also considered

by the selection policy. Higher values of throttling are indicators of the containers being

deprived of the required CPU resources and lead to a negative impact on the response

time as inferred from Section 5.1. Such containers are selected for migration to new

destination nodes with more CPU resources. The CPU throttled time is calculated from

the cgroups values forwarded by the monitoring agent as provided in Equation 5.2.

T (x) =
number of throttled periods

number of periods
(5.2)

The Interaction factor values and CPU Throttling values independently character-

ize the priority of containers to be selected. The proposed Throttling and Interaction

factor-aware container selection algorithm (Algorithm 5.2) thus uses a combined met-

ric, Objective Value (O.V) which is a weighted sum of both the aforementioned values

and is defined for microservice x as :

98

5.2. TIARM- Throttling and Interaction-aware Anti-correlated Rescheduling for
Microservices

Algorithm 5.2: Descheduling Phase
Output: List of evicted Pods
Input : Candidate Nodes, Node resource usage vectors, Pod resource usage

vectors, History of CPU throttling values for containers, Application
DAG

1 Evict List = []
2 forall node ∈ Candidate Nodes do
3 Sorted Pods = []
4 forall pod running on node do
5 [w1, w2]← Weight vector
6 T [pod]← current CPU throttling value
7 I[pod]← Calculate interaction factor from DAG
8 O.V [pod]← (w1 ∗ T [pod]) + (w2 ∗ I[pod])
9 Append pods to Sorted Pods

10 end
11 Sort all pods in Sorted Pods based on their corresponding O.V values in

non-increasing order
12 forall pod ∈ Sorted Pods do
13 Add pod to Evict List
14 Update resource usage vector of node after deducting resource usage

vector of pod
15 if node.OL == TRUE and updated Node resource usage < UT or

node.UL == TRUE and updated Node resource usage == 0 then
16 break
17 end
18 end
19 end
20 Deschedule all pods in Evict List

O.V (x) = w1 ∗ T (x)− w2 ∗ I(x) (5.3)

where I(x) =
∑
I(x, y) ∀y 6= x on same node as x

The values of w1 and w2 are experimentally determined. All containers running on

the nodes in Candidate Nodes are sorted based on the O.V value (in non-increasing

order). The containers are iteratively selected and added to the Evict List, till enough

resources have been freed on the nodes. Further, the containers in the Evict List are

descheduled.

99

5. Nature-Inspired Resource Management and Dynamic Rescheduling of
Microservices in Cloud Datacenters

5.2.2.3 Rescheduling Phase

Once the containers have been descheduled, the next step is to identify suitable destina-

tions and transfer the containers to the destination nodes.

In this phase, first, the feasible nodes with residual resources suitable for running the

migrating containers are identified (refer Algorithm 5.3), following which the migrating

containers are sent to the resizer module. Then, the lists of feasible nodes and migrated

containers are forwarded to the Multi-Objective Multi-Verse Optimization (MOMVO)-

based Node Selection Module to generate an optimal mapping.

Algorithm 5.3: Rescheduling Phase
Input : Evict List, Candidate Nodes, Node resource usage vectors, Pod

resource usage vectors, Node details, Pod details
1 Feasible Nodes = []
2 min resource request =Minimum of resources requested by pods in

Evict List
3 forall node ∈ Nodes− Candidate Nodes do
4 if node.resource capacity − node.resource allocated >

min resource request then
5 Add node to Feasible Nodes
6 end
7 Allocation vector = Find suitable node(Evict List,Feasible Nodes);
8 Bind(Allocation vector);
9 end

5.2.2.3.1 Resizer During the deployment of microservice application containers,

CPU resource limits are specified. When the CPU usage exceeds the specified lim-

its, containers are throttled. Large throttling values imply that the CPU limits specified

are too low. To avoid the adverse effects of throttling on response time, the reloca-

tion of containers on to nodes with more CPU resources, must be accompanied by a

corresponding increase in the fractional CPU share. The Rescheduling Unit includes a

resizing sub-module (second block in Rescheduling unit in Figure 5.3) to perform this

action and raises the configured limits for migrating containers with throttling values

greater than a threshold, before proceeding to the Node Selection Module. Based on

profiling experiments, the threshold is set to 70%.

100

5.2. TIARM- Throttling and Interaction-aware Anti-correlated Rescheduling for
Microservices

5.2.2.3.2 MOMVO-based Node Selection Module The Node Selection Module

maps each migrating container {ms1,ms2, ...,msn} ∈ Evict List to potential nodes

{fn1, fn2, ..., fnm} ∈ Feasible Nodes. Each msi can be characterized by a resource

request vector of dim dimension, corresponding to different resources such as CPU,

memory, storage, bandwidth, etc. Each potential node is characterized by a resource

capacity vector of dimension dim. In this study, we have considered the CPU and

memory resources (dim = 2). This can be extended to consider any number of re-

sources. The output of this module is a mapping, which when applied, would result in

an improvement in the QoS metrics such as response time. Let zij denote the decision

variable, defined as in Equation 5.4.

zij =




1, if msi is allocated on node fnj

0, otherwise
(5.4)

A significant factor in this context is the time required for migrating the container from

the current node to destination node. This determines the amount of time that the service

will not be available to the users and is referred to as downtime. This value is dependent

on the transfer and start-up of the containers.

Microservice Application

Deployment Request

USER

k8s Control Plane

Pull Docker image from

registry

Kubelet registers node

with apiserver

Invoke Container

Runtime Interface (CRI)

Monitor health and status

of running containers

Invoke rescheduling unit

Docker Containers

(AUFS Storage)

Base Layer 1

Base Layer 2

Base Layer n

Container Layer

k8s worker nodes

Synchronize image layers

Transfer container (R/W) layer

Pre-download Images

k8s worker nodes

. . .

Scheduler handles request

. . .

8

2

3 4

5
67

1

Figure 5.4: Sequence of activities in the proposed rescheduling system
Steps 1-4 handle application deployment requests and initiates the different containers; Steps 5-8 are responsible for migrating the
containers across the worker nodes

The overall workflow of the proposed system is depicted in Figure 5.4. Applica-

tions are deployed by the k8s control plane on the worker nodes, each running kubelet

instances which communicates with the apiserver and initiates the pulling of container

101

5. Nature-Inspired Resource Management and Dynamic Rescheduling of
Microservices in Cloud Datacenters

images. Docker container images consist of different layers each corresponding to dif-

ferent steps in the Dockerfile. The running container adds an additional Read/Write

layer (aka container layer) which is the only layer that can be modified at runtime.

There are several researches on how live migration of containers can be performed us-

ing techniques such as Checkpoint and Restore in Userspace (CRIU) (Karhula et al.

2019; Puliafito et al. 2019). In this work, we consider the approach proposed by Ma

et al. (2018, 2017), where the base layers are pre-fetched directly at the destination

node (Step 6 in Figure 5.4), then diff operation is performed (Step 7) and finally the

container layer is relayed across the network (Step 8). This greatly reduces the time

required for migration. Though the migration technique has been proposed mainly for

edge environments, it is trivial to adopt the same in Cloud environments.

Thus, the downtime is computed using Equations 5.5, 5.6 and 5.7.

Downtime = Image pulling time + R/W layer transfer time +

container startup time
(5.5)

where,

Image pulling time =
Size of container image (in bytes)

Network bandwidth of Node (bytes/sec)
(5.6)

R/W layer transfer time =
Size of R/W layer (in bytes)

Network bandwidth of Node (bytes/sec)
(5.7)

The size of the R/W layer is measured using the ‘docker ps’ command and the

container startup time is calculated from the logs of the running container (at the pre-

vious node).

The performance of workloads often depend on other workloads running on the

same node. Workloads with positively correlated resource utilization running on the

same node offer more risks of over-utilization (Wang et al. 2019b). Coupling mi-

croservice containers with complementary resource demands can improve the resource

utilization of the node and thus improve QoS values (Shaw et al. 2018). So, anti-

correlation values of the resource vectors are also used to guide the node selection

process. Anti-correlation values are calculated as the additive inverse of the correlation

values calculated using the Pearson Correlation Coefficient.

102

5.2. TIARM- Throttling and Interaction-aware Anti-correlated Rescheduling for
Microservices

AntiCorrxy = −1 ∗
n
∑
xiyi −

∑
xi

∑
yi√

n
∑
x2i − (

∑
xi)

2
√
n
∑
y2i − (

∑
yi)

2
(5.8)

where xi and yi are the resource usage status of the container and node at each

sample point within the monitoring interval. The value of AntiCorrxy falls in the range

[+1,−1], where values greater than zero indicates that the resource vectors are comple-

mentary.

Thus, the objectives of the Node Selection module are as follows:

Objective 1: Minimize the downtime experienced, where downtime is calculated

as given in Equation 5.5.

Objective 2: Maximize the anti-correlation between the microservice container and

node resource vectors, where anti-correlation is defined in Equation 5.8.

In order to ensure that the solutions generated represent feasible solutions, Con-

straints 5.9, 5.10 and 5.11 are applied.

∀fnj ∈ Feasible Nodes,
n∑

i=1

zij ∗mscpui ≤ fncpuj (5.9)

n∑

i=1

zij ∗msmemi ≤ fnmemj (5.10)

∀msi ∈ Evict List,
m∑

j=1

zij = 1 (5.11)

The proposed system employs an extended Multi-Objective Multi-Verse Optimizer

(MOMVO) for the Node Selection Process. The Multi-Verse Optimization (MVO) al-

gorithm inspired by the concepts of cosmology was proposed by Mirjalili et al. (2016).

Since the problem involves multiple objectives, a multi-objective variant of MVO (Mir-

jalili et al. 2017) based on the concept of Pareto dominance is employed to generate the

Pareto optimal solutions. The pseudocode is presented in Section 5.2.2.3.2.1. The main

advantage of MVO-based algorithms over GA-based algorithms is that any solution can

advance the creation of new solutions and elitism is also preserved.

An overview of the MOMVO is provided in Figure 5.5. Different universes are

randomly generated, where each universe consists of as many objects as the number of

103

5. Nature-Inspired Resource Management and Dynamic Rescheduling of
Microservices in Cloud Datacenters

Universe 1 Universe 2 Universe 3 Universe pUniverse (p-1)

Inflation Rates 1 Inflation Rates 2 Inflation Rates 3 Inflation Rates (p-1) Inflation Rates p

...

...

Universes in Archive in iteration n

Exploitation process using WEP and TDR

IR based

Ranking
Leader Selection

Exhange of objects

through W-B hole tunnel

New

Universe
New

Universe

Figure 5.5: Overview of the exploration-exploitation steps in MOMVO

migrating containers. The value of each object gives the potential node that can run the

migrating container. Each universe is assigned two values for the inflation rate - one

corresponding to the summation of downtime values for each pod and one correspond-

ing to the sum of anti-correlation values for each pod. In order to adapt the stochastic

metaheuristic for the discrete solution space, the Smallest Position Value (SPV) rule

(Tasgetiren et al. 2004) was applied.

5.2.2.3.2.1 Description of MOMVO-based algorithm for Node Selection: MOMVO

is a stochastic algorithm based on the concept of Pareto dominance. In the Node Se-

lection phase, multiple conflicting objectives are considered. In such multi-objective

problems, rather than obtaining ‘best solutions’, solutions that provide the best-tradeoff

between the multiple objectives is considered. For a minimization problem, a solution

~x = x1, x2, ..., xk is superior to a solution ~y = y1, y2, ..., yk, if the following condition

holds:

∀i ∈ 1, 2, .., n : fi(~x) ≤ fi(~y) and ∃i ∈ 1, 2, .., n : fi(~x) < fi(~y) (5.12)

where n is the number of objectives for the problem.

The best solutions obtained by using the Pareto dominance comparator are called

Pareto optimal solutions and they constitute the Pareto optimal front.

104

5.2. TIARM- Throttling and Interaction-aware Anti-correlated Rescheduling for
Microservices

Algorithm 5.4: MOMVO-based Node Selection Algorithm
Input : Feasible Nodes, Evict List
Output: Mapping of each evicted pod to a feasible node, Allocation vector

1 function Find suitable node:
2 Create initial random universes
3 Sort universes based on Pareto dominance
4 Initialize WEP and TDR
5 while end criterion not satisfied do
6 for each universe i do
7 inflation rate 1[i] = downtime(i)
8 inflation rate 2[i] = AntiCorr(i)

9 end
10 for each universe i do
11 Update WEP and TDR
12 Black hole index = i
13 for each object j in universe do
14 Generate random number r1
15 if r1 < Normalized Inflation rates of universei) then
16 White hole index = Index of leader selected from archive
17 Replace object j with object from Leader universe
18 end
19 Generate random number r2
20 if r2 < WEP) then
21 Generate random numbers r3, r4
22 if r3 < 0.5 then
23 Update object j according to Equation 5.13
24 end
25 end
26 end
27 end
28 end
29 Return Allocation vector
30 end

MOMVO integrates an archive of a fixed capacity to preserve the best Pareto domi-

nated solutions obtained throughout the process. At each step, a leader is elected from

the archive, which is subjected to the exploration and exploitation steps.

The steps in MVO are inspired by the white-hole, black-hole and worm-hole con-

cepts in cosmology. During the white-hole propagation, objects from an inferior uni-

verse are replaced with the corresponding object in the best universe. To enable ex-

105

5. Nature-Inspired Resource Management and Dynamic Rescheduling of
Microservices in Cloud Datacenters

ploitation, wormhole tunnels are formed between each universe and the best universe.

The exploitation process is guided by two variables: Wormhole Existence Probability

(WEP) and Travelling Distance Ratio (TDR). The information is exchanged between

jth objects of ith universe and best universe X through wormhole tunnels as follows:

xji =








Xj + TDR ∗ ((ubj − lbj) ∗ r4 + lbj), if r3 < 0.5

Xj − TDR ∗ ((ubj − lbj) ∗ r4 + lbj), if r3 ≥ 0.5

, if r2 < WEP

xji , if r2 ≥ WEP

(5.13)

where r3, r4 are random numbers ∈ [0, 1], [lbj, ubj] defines the lower and upper bounds

of the jth object. The adapted MOMVO-based Node Selection algorithm is detailed in

Algorithm 5.4. Each universe in the algorithm denotes a potential mapping. Thus the

dimension of each universe is |Evict List| and the jth object value denotes the index

of a potential node from Feasible Node that can hold the jth pod.

5.3 EXPERIMENTAL DESIGN AND SETUP

The proposed TIARM system was evaluated by developing a proof-of-concept using

Golang and conducting experiments on the real-time GKE public Cloud platform. With

TIARM, users can set different values for threshold (generally for CPU utilization) to

dynamically trigger rescheduling operations.

Datacenter operators can interact with the k8s cluster using the kubectl CLI. Every

operation on the cluster is communicated to the API Server component which authorizes

any operations on the cluster and updates the persistent etcd store. All interactions with

the cluster by entities such as the scheduler, pass through the API Server (refer Figure

5.6). In the proof-of-concept implementation, the rescheduler was incorporated into the

scheduler pod and a descheduler pod was deployed to perform the container selection

and eviction.

The TIARM System Monitoring agent works in conjunction with the open-source

Prometheus monitoring tool to control the rescheduling activities.

106

5.3. Experimental Design and Setup

Scheduler

Custom
Rescheduler

Monitoring

Agent

Eviction Agent

Descheduler
Service

Prometheus

Service

Prometheus

Server

kubeletK8s Metrics Server K8s Cluster

K8s

apiserver

Descheduler Pod Prometheus Pod

Scheduler Pod

Figure 5.6: Communication between different entities in TIARM. All interactions to the cluster
are directed to the API Server. The shaded components represent the extensions introduced in TIARM.

Type vCPU Memory
f1-micro 0.2 vCPU 0.60 GB memory
g1-small 0.5 vCPU 1.70 GB memory
n1-standard-1 1 vCPU 3.75 GB memory
n1-standard-2 2 vCPU 7.5 GB memory
n2-standard-2 2 vCPU 8 GB memory
n1-standard-4 4 vCPU 15 GB memory
n2-standard-4 4vCPU 16GB memory

Table 5.1: Configuration of VM instances

The GKE offers diverse types of VM instances. Some configurations of VM in-

stances offered by the GCP are provided in Table 5.1. n1-standard-1 and n1-standard-2

instances were used in the experiments. K8s clusters consist of different node pools.

VMs in each node pool are homogeneous, but they can vary from pool to pool. Each

node VM instance runs the Container-Optimized Ubuntu OS image. Each VM instance

has a boot disk size of 100 GB. The k8s cluster master node runs Docker version 1.12.8-

gke.10.

The values of parameters used for the MOMVO parameters are provided in Table

5.2. The other parameters were assigned values as mentioned in the research by Mirjalili

et al. (2017).

107

5. Nature-Inspired Resource Management and Dynamic Rescheduling of
Microservices in Cloud Datacenters

Parameter Value
Number of Iterations 1000
Number of universes 50
Archive Size 200

Table 5.2: Parameter settings for MOMVO algorithm

5.3.1 Microservice Application Deployment

Three microservice web applications are deployed using containers to evaluate and val-

idate the performance of the TIARM system.

The HipsterShop 1 is a 10-tier e-commerce web application which enables users to

search items, put items into the cart and purchase the items. The HipsterShop appli-

cation involves multiple microservice components frontend to enable user login, cart-

service for managing and storing items in user carts, currencyservice to handle mone-

tary conversions, shippingservice to estimate item shipping costs and etc. HipsterShop

features a polyglot application with microservice components written in Go, Python,

NodeJS, Java and C#.

Descartes Teastore is a reference microservice application (Eismann et al. 2018)

that emulates an online store for selling tea and tea supplies. The application involves

five microservice components all of which communicate with a registry microservice.

Users are authorized by the Authentication Service. The WebService provides a UI and

displays details of different products fetched from the Image and Persistence microser-

vices. The application also includes a Recommender service to provide user recom-

mendations.

Istio BookInfo is a sample microservice application consisting of four individual

microservices 2. The application emulates a cataloging web application where users

can browse a database of books and related information along with their reviews. The

productpage microservice collects information from the details and reviews services

and displays them. Books rating information is provided by the ratings microservice.

The review microservice is maintained in different versions ranging from one to three.
1https://github.com/GoogleCloudPlatform/microservices-demo
2https://istio.io/docs/examples/bookinfo/

108

https://github.com/GoogleCloudPlatform/microservices-demo
https://istio.io/docs/examples/bookinfo/

5.4. Experimental Results and Analysis

5.3.2 Performance Metrics

The efficiency of the proposed system was evaluated by measuring two metrics: through-

put and response time.

1. Throughput: The throughput of a system quantifies the useful amount of work

done by the system. Microservice throughput is the number of service requests

processed by the microservice per unit time. The throughput of a microservice is

largely determined by several factors such as communication delays.

2. Response Time: The QoS of container orchestration systems for microservice-

based applications is generally quantified using the average response time. User-

perceived response time represents the time taken from the instant the user sends

the request to the instant when the user receives a response from the microservice.

The experiments were designed to address the following questions:

• How do the values of the overload and underload thresholds affect the perfor-

mance of the descheduling module?

• How do the weights in the weight vector affect the overall performance of the

proposed system? What are the desirable weights to be used in the calculation of

the objective value, O.V ?

• Is a correlation-based Node-Selection approach recommended over anti-correlation

based Node Selection approach?

• How does the proposed MOMVO-based re-scheduling approach perform when

compared to other baseline approaches? The proposed Node Selection approach

is compared with a heuristic and NSGA-II metaheuristic-based approaches.

• How does the proposed framework handle diverse microservice applications?

5.4 EXPERIMENTAL RESULTS AND ANALYSIS

Experimental data was generated for different workloads on real-time Cloud environ-

ments. The obtained results and detailed analysis is presented in this Section.

109

5. Nature-Inspired Resource Management and Dynamic Rescheduling of
Microservices in Cloud Datacenters

Target Parameter Value
Examine the impact of underload threshold ULT {20%, 30%, 40%}
Examine the impact of overload threshold OLT {70%, 80%, 90%}

Table 5.3: Experiment parameters

5.4.1 Impact of Upper and Lower threshold values

In order to examine and observe the impacts of the threshold values, different values

were set for the upper and lower threshold (Piraghaj et al. 2015) (as shown in Table

5.3) that control the nodes which are subjected to rescheduling activities. The relative

number of pods evicted were analyzed in each scenario.

 0

 1

 2

 3

 4

 5

70% 80% 90%

A
v
e

ra
g

e
 N

u
m

b
e
r

o
f

E
v
ic

te
d

 p
o

d
s

 Overload Thresholds

ULT - 20%

ULT - 30%

ULT - 40%

Figure 5.7: Performance Impacts of Underload Threshold (ULT) and Overload Thresh-
old (OLT)

From Figure 5.7, it was observed that increasing the underload threshold value in-

creases the probabilites of pods to be evicted. Higher values lead to more nodes being

identified as ‘underloaded’ and pods from all these nodes are evicted, leading to more

number of container migrations.

For higher overload threshold values, lesser number of nodes are subjected to the

rescheduling process. On the other hand, it was also observed that when the values

of the overload thresholds were high, more number of containers suffered from CPU

throttling on the nodes that were excluded from the rescheduling process. This led

to higher chances of QoS violations. The most efficient thresholds for TIARM are

{80%, 30%}.

110

5.4. Experimental Results and Analysis

5.4.2 Impact of weight vector in the weighted sum objective value

The descheduler in TIARM uses an objective value (Equation 5.3) that involves a

weight vector. For analyzing the impact of the weight vector, different combinations

of w1, w2 were tested, as shown in Table 5.4. Figure 5.8 summarizes the response time

and throughput obtained under different configurations. Figures 5.8a-5.8b depict the

Configuration w1 w2

W1:W2->3:7 0.3 0.7
W1:W2->4:6 0.4 0.6
W1:W2->5:5 0.5 0.5
W1:W2->6:4 0.6 0.4
W1:W2->7:3 0.7 0.3

Table 5.4: Different combinations of w1, w2 in Equation 5.3

111

5. Nature-Inspired Resource Management and Dynamic Rescheduling of
Microservices in Cloud Datacenters

 2
0

 2
5

 3
0

 3
5

 4
0

 4
5

 5
0

 5
5

 6
0

 6
5

 7
0

 0
 5

0
 1

0
0

 1
5
0

 2
0
0

 2
5
0

 3
0
0

 3
5
0

 4
0
0

 4
5
0

Throughput(ops)

T
im

e
(s

)

W
1
:W

2
->

3
:7

W
1
:W

2
->

4
:6

W
1
:W

2
->

5
:5

W
1
:W

2
->

6
:4

W
1
:W

2
->

7
:3

(a
)

 2
5

 3
0

 3
5

 4
0

 4
5

 5
0

 5
5

 6
0

 0
 5

0
 1

0
0

 1
5
0

 2
0
0

 2
5
0

 3
0
0

 3
5
0

 4
0
0

 4
5
0

Throughput(ops)

T
im

e
(s

)

W
1
:W

2
->

3
:7

W
1
:W

2
->

4
:6

W
1
:W

2
->

5
:5

W
1
:W

2
->

6
:4

W
1
:W

2
->

7
:3

(b
)

 0
.0

0
3
4

 0
.0

0
3
6

 0
.0

0
3
8

 0
.0

0
4

 0
.0

0
4
2

 0
.0

0
4
4

 0
.0

0
4
6

 0
.0

0
4
8

 0
.0

0
5

 0
.0

0
5
2

 0
 5

0
 1

0
0

 1
5
0

 2
0
0

 2
5
0

 3
0
0

 3
5
0

 4
0
0

 4
5
0

Response Time(s)

T
im

e
(s

)

W
1
:W

2
->

3
:7

W
1
:W

2
->

4
:6

W
1
:W

2
->

5
:5

W
1
:W

2
->

6
:4

W
1
:W

2
->

7
:3

(c
)

 0
.0

0
3
4

 0
.0

0
3
6

 0
.0

0
3
8

 0
.0

0
4

 0
.0

0
4
2

 0
.0

0
4
4

 0
.0

0
4
6

 0
.0

0
4
8

 0
.0

0
5

 0
.0

0
5
2

 0
 5

0
 1

0
0

 1
5
0

 2
0
0

 2
5
0

 3
0
0

 3
5
0

 4
0
0

 4
5
0

Response Time(s)

T
im

e
(s

)

W
1
:W

2
->

3
:7

W
1
:W

2
->

4
:6

W
1
:W

2
->

5
:5

W
1
:W

2
->

6
:4

W
1
:W

2
->

7
:3

(d
)

Fi
gu

re
5.

8:
C

om
pa

ri
so

n
of

th
ro

ug
hp

ut
an

d
re

sp
on

se
tim

e
fo

rv
ar

yi
ng

w
ei

gh
tv

ec
to

rv
al

ue
s

112

5.4. Experimental Results and Analysis

throughput values before and after rescheduling strategy is effected. For the values

of w1 = 0.3, the CPU throttling value increases after rescheduling. In all other cases the

throttling decreases, with the highest decrease observed when w1 = 0.7 and w2 = 0.3.

However, as interacting entities are spread across different nodes, more time is spent

in communication leading to an increase in the average response time as inferred from

Figures 5.8c and 5.8d. When w1 = 0.4 and w2 = 0.6, the throttling decreases, but

the changes in response time and throughput are relatively smaller. At w1 = 0.5 and

w2 = 0.5, the response time decreases by 10.7%, accompanied by a 9.21% increase

in the throughput, implying that both the throttling level and interaction factor values

contribute equally to the determination of the application response time.

5.4.3 Analysis of varying rescheduling strategies

To reveal the performance effectiveness of TIARM, three baseline algorithms were

adopted as follows:

• Bare Rescheduler (BR): This rescheduler neglects any rescheduling actions and

does not employ any container migrations. This can be considered to be equiva-

lent to a system with no rescheduling features.

• Throttling-based Random Rescheduler (TRR): This rescheduling system performs

container selection based on the CPU Throttling values and ignores the interaction-

factor values. Evicted pods are then placed on randomly selected node instances.

• Interaction-aware Random Rescheduler (IRR): IRR performs container selection

based on the Interaction-factor values without any regard for the CPU throttling

values. In the next phase, the evicted pods are placed on nodes selected at random

from the feasible set of nodes.

TRR and IRR are variants of TIARM that vary in the container selection and node

selection techniques applied. The rescheduling strategies were varied and compared

with the proposed TIARM strategy. Figures 5.9a and 5.9b provide the throughput and

response time respectively. An inference of primary importance is that applying any re-

scheduling strategy improves the performance attributes, when compared to a system

113

5. Nature-Inspired Resource Management and Dynamic Rescheduling of
Microservices in Cloud Datacenters

 25

 30

 35

 40

 45

 50

 55

 60

 65

 70

 75

 0 50 100 150 200 250 300 350 400 450

T
h
ro

u
g
h
p
u
t(

o
p
s
)

Time(s)

BR
TRR
IRR

TIARM

(a) Comparison of application throughput for varying reschedul-
ing strategies

 0.003

 0.0035

 0.004

 0.0045

 0.005

 0.0055

 0.006

 0 50 100 150 200 250 300 350 400 450

R
e
s
p
o
n
s
e
 T

im
e
(s

)

Time(s)

BR
TRR
IRR

TIARM

(b) Comparison of application response time for varying
rescheduling strategies

Figure 5.9: Performance comparison of BR, IRR, TRR and TIARM rescheduling strate-
gies

with no support for re-scheduling. It is observed that the TRR, IRR and TIARM policies

result in 3.3%, 8.5% and 10.7% decrease in the response time, respectively. However,

the IRR policy increases the throughput only by 5.7%, whereas the TIARM increases

the throughput by 9.2%.

5.4.4 Performance comparison of anti-correlated workloads and correlated work-
loads

TIARM designates migrating containers to nodes with resource utilization that are

highly anti-correlated to that of the containers. An alternative technique prefers nodes

that are highly co-related. To analyze and justify the use of anti-correlation, migrat-

ing containers were first placed on highly co-related nodes and then on anti-corelated

nodes, while observing the number of pods that go into ‘Pending’ State. This state of

k8s pods indicate that no suitable node was identified to run the container and thus waits

till the next node becomes available.

It is clearly observed from Figure 5.10, that directing pods to the nodes with highest

correlation starves the dominant resources available on the nodes, leading to more pods

stuck in the ‘Pending’ state. Placing pods on nodes that are anti-correlated ensures

that the resource needs of the pods are complementary to that of the nodes, thereby

increasing the resource utilization of the nodes in the system.

114

5.4. Experimental Results and Analysis

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

Hipster Shop Tea Store Book Info

R
e

la
ti
v
e

 n
u

m
b

e
r

o
f

p
o

d
s
 i
n

 P
e

n
d

in
g

 S
ta

te

Corr
AntiCorr0.57

0.40

0.33

0.14

0.20

0.00

Figure 5.10: Comparison of ‘Pending’ pods using the anti-correlated and co-related
strategy

5.4.5 Analysis of varying node selection strategies

Non-Dominated Sorting Algorithm (NSGA-II) (Deb et al. 2002) is a well-known meta-

heuristic for multi-objective optimization. The node selection strategy in TIARM was

varied to use NSGA-II (represented as NSGA2), instead of the MOMVO. Another node

selection strategy, AntiCorr, that tried to minimize only Anti-correlation was also im-

plemented and evaluated.

 30

 35

 40

 45

 50

 55

 60

 65

 70

 75

 0 50 100 150 200 250 300 350 400 450

T
h
ro

u
g
h
p
u
t(

o
p
s
)

Time(s)

AntiCorr
TIARM

NSGA2

 0.0026

 0.0028

 0.003

 0.0032

 0.0034

 0.0036

 0.0038

 0.004

 0.0042

 0.0044

 0.0046

 0 50 100 150 200 250 300 350 400 450

R
e
s
p
o
n
s
e
 T

im
e
(s

)

Time(s)

AntiCorr
TIARM

NSGA2

Figure 5.11: Analysis of different Node Selection Strategies

Figure 5.11 summarizes the performance results of the different node selection

strategies. The AntiCorr policy has an adverse effect, by decreasing the throughput

of the system. Both NSGA2 and MOMVO strategies improve the performance of the

system. The NSGA2 decreases the response time by 11% and increases the throughput

by 5.8%. Owing to the better diversity of solutions generated by the MOMVO, TIARM

115

5. Nature-Inspired Resource Management and Dynamic Rescheduling of
Microservices in Cloud Datacenters

 0

 200

 400

 600

 800

 1000

AntiCorr TIARM NSGA2

D
o
w

n
ti
m

e
 (

m
s
)

Figure 5.12: Downtime values for varying node selection Strategies

performs better, decreasing the response time by 13.9% and increasing the throughput

by 16.3%. The average values of downtime obtained using the dfferent Node Selection

strategies is illustrated in Figure 5.12. The variation of the objective function values

across the generations is depicted in Figure 5.13.

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 0 5 10 15 20 25 30 35 40 45 50

D
o
w

n
ti
m

e
(m

s
)

Generation

Min
Mean

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 0 5 10 15 20 25 30 35 40 45 50

A
n
ti
C

o
rr

e
la

ti
o
n

Generation

Max

Mean

Figure 5.13: Values of the two objective functions across different generations for
MOMVO

5.4.6 Efficient Resource Management for various microservice applications

In order to analyze the efficiency of the TIARM system, different real-world microser-

vice applications, discussed in Section 5.3.1 were deployed and subjected to reschedul-

ing. Figure 5.14 illustrates the performance of the system where HipsterShop microser-

vice application is deployed. Figures 5.15 and 5.16 depicts the scenario where TIARM

re-schedules different components of the Istio BookInfo and Descartes Teastore mi-

croservice applications respectively. In all scenarios, TIARM reduces the response time

while slightly enhancing the application throughput.

116

5.4. Experimental Results and Analysis

0.000 0.001 0.002 0.003 0.004 0.005 0.006

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Response time (ms)

C
D

F

Before TIARM

After TIARM

0 20 40 60 80

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Throughput (ops)

C
D

F

Before TIARM

After TIARM

Figure 5.14: CDF of Throughput and Response Time for HipsterShop microservice
application

0.000 0.002 0.004 0.006 0.008 0.010

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Response time (ms)

C
D

F

Before TIARM

After TIARM

0 1 2 3 4 5

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Throughput (ops)

C
D

F

Before TIARM

After TIARM

Figure 5.15: CDF of Throughput and Response Time for BookInfo microservice appli-
cation

0.000 0.001 0.002 0.003 0.004 0.005

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Response Time (ms)

C
D

F

Before TIARM

After TIARM

(a)

0 5 10 15 20

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Throughput (ops)

C
D

F

Before TIARM

After TIARM

(b)

Figure 5.16: CDF of Throughput and Response Time for TeaStore microservice appli-
cation

The different experimental results are summarized in Figures 5.17a and 5.17b. Fig-

ure 5.17a compares the different re-scheduling strategies against the TIARM and Figure

5.17b presents the TIARM performance when different microservice applications are

117

5. Nature-Inspired Resource Management and Dynamic Rescheduling of
Microservices in Cloud Datacenters

(a) Throughput and Response Time Comparison for different
rescheduling strategies

(b) Throughput and Response Time Comparison for different mi-
croservice applications using TIARM

Figure 5.17: Summary of Performance Analysis

considered. It is inferred that significantly better performance is obtained in the case of

TIARM.

5.5 SUMMARY

The inherently dynamic microservice ecosystems entail adaptations at runtime. One

technique that can be employed for this is microservice re-scheduling. Existing works

target re-scheduling in hypervisor-based systems, while ignoring the influence of con-

figuration parameters of container-based microservices. In an effort to address these

challenges, in this chapter, a novel microservice re-scheduling framework, TIARM, is

presented. TIARM proactively performs re-scheduling activities whilst ensuring timely

service responses. Based on periodic monitoring of the performance attributes, the

framework schedules container migrations. Considering the exponentially large solu-

tion space, a metaheuristic approach based on Multi Verse Optimization is developed

to generate the near-optimal mapping of microservices to the datacenter resources. Ex-

perimental results indicate that our framework provides superior performance with a

reduction of upto 13.97% in the average response time, when compared to systems

with no support for re-scheduling.

118

CHAPTER 6

CONCLUSIONS AND FUTURE SCOPE

Distributed Cloud environments are now resorting to Cloud applications composed of

heterogeneous microservices. This transition to microservices introduces a wide range

of infrastructural orchestration challenges. In this research work, two orchestration

challenges, namely microservice allocation and microservice re-scheduling have been

addressed.

A robust interaction-aware deployment strategy, called IntMA, to deploy the mi-

croservice application modules in a balanced manner is presented in this research. The

deployment strategy ensures that interactions between the physical nodes are kept to

the minimum, thereby ensuring that the inter-node communication latencies do not ad-

versely impact the user response time and throughput. Instead of considering the de-

pendencies, the run-time interaction pattern is captured to identify the frequently inter-

acting entities. The microservice components which frequently interact with each other

are considered for possible deployment on the same node. The NP-hard microservice

allocation problem is also modeled as a binary QPP. The effectiveness of the proposed

approach is evaluated on the Google Cloud Platform, using different microservice ref-

erence applications. Experimental results indicate that the proposed approach improves

the response time and throughput of the microservice-based systems.

The dynamism of microservice ecosystems necessitates runtime adaptations and mi-

croservices re-scheduling to avoid performance degradation. In this research work, the

relationship between the container configuration metrics and application performance

119

6. Conclusions and Future Scope

is investigated. Based on this relationship, a re-scheduling framework, TIARM, that en-

compasses policies for the different phases, namely host node identification, container

selection and destination node selection, is presented. The framework incorporates

a component that performs periodic monitoring and triggers re-scheduling activities

based on threshold-based rules. The de-scheduling phase first selects the containers for

migration based on a Multi-Criteria Decision Making (MCDM) method and terminates

them on the current node. The re- scheduling phase includes an initial stage where the

containers are resized according to their previous resource usage status and re-deployed

onto nodes selected by the MOMVO-based selection strategy. Extensive experiments

were conducted to examine the practical feasibility of the proposed framework in real

Cloud environments. The results indicate that adopting the re-scheduling approach suc-

ceeds in reducing the average response time by upto 13.9%.

6.1 FUTURE RESEARCH DIRECTIONS

In this section, an insight into the promising pathways for future research in resource

orchestration of containerized environments is provided.

6.1.1 Augmenting with autonomic capabilities

In order to ensure dynamic resource provisioning that can handle unprecedented fluc-

tuations in Cloud environments, resource orchestration frameworks must be augmented

with autonomic capabilities. Techniques based on the MAPE control loop (Martin et al.

2020) may be integrated in resource orchestration frameworks to facilitate adaptive con-

trol over the managed resources. Autonomic loops can also be used to realise autoscal-

ing and elasticity in containerized environments.

6.1.2 Exploring the impact of resource heterogeneity

Cloud computing environments generally offer diverse resources that vary in their at-

tributes. The resources may differ at the infrastructure and/or the platform level. In

order to ensure resource usage efficiency, the multiplicities and heterogeneities of re-

sources in the Cloud environments must be considered. Additional resources such as

network and storage, must be considered to devise resource orchestration strategies that

120

6.1. Future Research Directions

are more comprehensive. For instance, the diversity in container engines supported by

the nodes may restrict the potential nodes that are available for the re-scheduling phase.

6.1.3 Incorporating Machine Learning Techniques

The allocation and re-scheduling strategies may be enhanced by adopting machine

learning techniques. For instance, microservice requests may be clustered using clus-

tering algorithms to determine sets of requests to be placed on similar sets of nodes.

Additionally, the use of machine learning algorithms to capture the microservice inter-

action pattern and the impacts of container configuration parameters on the QoS values

must also be investigated.

6.1.4 Investigating additional optimization goals

Resource orchestration frameworks may further be optimized for energy-efficiency and

other additional QoS parameters. Some of the possible optimization goals are as fol-

lows:

6.1.4.1 Energy efficiency

Resource orchestration strategies may be devised to optimize the energy efficiency of

multi-container systems. Various techniques such as the brownout paradigm (Xu and

Buyya 2019) can be adopted to improve the energy efficiency. The brownout approach

involves temporarily disabling the optional components of a system thus ensuring that

the system is responsive under varying workload conditions. The overall activities of a

brownout-based system are controlled by a control knob called the dimmer. Further, the

integration of resource allocation strategies with energy-aware features must be studied.

6.1.4.2 Cost models

Cloud resource pricing is an important concern for Cloud providers. Transparent cost

models enable providers to estimate the actual cost of the Cloud resources (Sharma et al.

2014). Cost models must be able to quantify the monetary value of execution. In this

context, the efficiency of finance-based models inspired by the option pricing theory

must be investigated. Cloud pricing strategies devised must satisfy customer service

requirements while also ensuring profit gains for the providers.

121

6. Conclusions and Future Scope

6.1.4.3 Security features

A limitation of the container-based virtualization systems is the reduction in the level

of security of the system (Fernandez and Brito 2019). To overcome this, resource or-

chestration mechanisms may be integrated with additional mechanisms such as crypto-

graphic algorithms and access control mechanisms. Other mechanisms may include en-

crypting the image layer and securing the communications in the network (Casalicchio

and Iannucci 2020). Software Guard Extensions (SGX) enabled containers (Vaucher

et al. 2018) may also be employed to enhance the level of security in Cloud environ-

ments.

6.1.5 Integration with Serverless Computing and other emerging distributed com-
puting environments

The features of microservice architectures deem it suitable for developing IoT applica-

tions. The micoservice IoT based applications may be deployed in lightweight environ-

ments such as the Fog and Edge. Resource orchestration strategies must be customized

to better suit the needs of the distributed environment in which the microservices are

deployed. Serverless computing paradigms such as Function as a Service (FaaS), also

deploy applications designed as microservices. To better harness the benefits of FaaS

platforms, advanced resource orchestration strategies that can overcome the perfomance

isolation challenges must be developed.

6.1.6 Integration with Blockchain technology

Blockchain systems employ consensus mechanisms to ensure access control and secu-

rity. Containerized environments may leverage the facilities of blockchain systems to

enhance the level of security. Smart contracts may also be implemented as microser-

vices that interact with each other through API gateways (Tonelli et al. 2019, 2018).

The blockchain may also be used to support decentralized resource orchestration in

microservice environments. For instance, Xu et al. (2017) adopted the blockchain to

perform resource management in Cloud environments. Each block maintains details

of the resources allocated to each user. This approach may be further extended and

adapted to tackle the complexities of microservice-based systems.

122

Appendices

123

Appendix A

RESOURCE USAGE ANALYSIS FOR WORKLOAD
MICROSERVICE APPLICATIONS DEPLOYED
USING DIFFERENT SCHEDULING POLICIES

In order to study the impact of the different scheduling policies on the Cloud data cen-

ter resource utilization level, the CPU and memory usage of the different workload

microservice applications were studied.

Sock Shop application and Istio BookInfo application are memory-intensive appli-

cations. So, we analyzed the memory utilization across nodes for the three different

deployment policies. Figures A.1a, A.1b and A.1c give the memory usage per-node for

the default scheduler, IntRR scheduler and the IntMA scheduler, respectively. It is ob-

served that the memory load is better balanced when the application is deployed using

IntMA. For the large microservice application, IntRR also improves the overall average

memory utilization. For the Istio BookInfo application, the memory usage across nodes

is given in Figures A.2a, A.2b and A.2c corresponding to the the default scheduler, In-

tRR scheduler and the IntMA scheduler, respectively. The IntMA scheduler exhibits

similar trends by attaining a better balanced distribution of the memory load, thereby

improving the average memory utilization. Hipster Shop application is a CPU-intensive

application. Hence, we analyzed the CPU usage across the nodes for the default, IntRR

and IntMA scheduler in Figures A.3a, A.3b and A.3c respectively. The CPU load is

more equally distributed across the nodes in the IntMA and IntRR scheduler cases.

125

A. Resource Usage Analysis for Workload Microservice Applications deployed using
different Scheduling policies

 2
x
1
0

8

 4
x
1
0

8

 6
x
1
0

8

 8
x
1
0

8

 1
x
1
0

9

 1
.2

x
1
0

9

 1
.4

x
1
0

9

 1
.6

x
1
0

9

0
5

1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

5
0

5
5

Bytes

ti
m

e
(m

in
u
te

s
)

M
e
m

o
ry

 U
ti
liz

a
ti
o
n

N
o
d
e
 1

N
o
d
e
 2

N
o
d
e
 3

(a
)D

ef
au

lt

 7
x
1
0

8

 7
.5

x
1
0

8

 8
x
1
0

8

 8
.5

x
1
0

8

 9
x
1
0

8

 9
.5

x
1
0

8

 1
x
1
0

9

 1
.0

5
x
1
0

9

0
5

1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

5
0

5
5

Bytes

ti
m

e
(m

in
u
te

s
)

M
e
m

o
ry

 U
ti
liz

a
ti
o
n

N
o
d
e
 1

N
o
d
e
 2

N
o
d
e
 3

(b
)I

nt
R

R

 4
x
1
0

8

 5
x
1
0

8

 6
x
1
0

8

 7
x
1
0

8

 8
x
1
0

8

 9
x
1
0

8

 1
x
1
0

9

 1
.1

x
1
0

9

 1
.2

x
1
0

9

 1
.3

x
1
0

9

0
5

1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

5
0

5
5

Bytes

ti
m

e
(m

in
u
te

s
)

M
e
m

o
ry

 U
ti
liz

a
ti
o
n

N
o
d
e
 1

N
o
d
e
 2

N
o
d
e
 3

(c
)I

nt
M

A

Fi
gu

re
A

.1
:M

em
or

y
us

ag
e

va
lu

es
fo

rS
oc

k
Sh

op
m

ic
ro

se
rv

ic
e

ap
pl

ic
at

io
n

 4
.5

x
1
0

8

 5
x
1
0

8

 5
.5

x
1
0

8

 6
x
1
0

8

 6
.5

x
1
0

8

 7
x
1
0

8

 7
.5

x
1
0

8

 8
x
1
0

8

 8
.5

x
1
0

8

 9
x
1
0

8

0
1

2
3

4
5

6
7

8
9

1
0

1
1

Bytes

ti
m

e
(m

in
u
te

s
)

M
e
m

o
ry

 U
ti
liz

a
ti
o
n

N
o
d
e
 1

N
o
d
e
 2

N
o
d
e
 3

(a
)D

ef
au

lt

 2
x
1
0

8

 3
x
1
0

8

 4
x
1
0

8

 5
x
1
0

8

 6
x
1
0

8

 7
x
1
0

8

 8
x
1
0

8

0
1

2
3

4
5

6
7

8
9

1
0

1
1

Bytes

ti
m

e
(m

in
u
te

s
)

M
e
m

o
ry

 U
ti
liz

a
ti
o
n

N
o
d
e
 1

N
o
d
e
 2

N
o
d
e
 3

(b
)I

nt
R

R

 5
.5

x
1
0

8

 6
x
1
0

8

 6
.5

x
1
0

8

 7
x
1
0

8

 7
.5

x
1
0

8

 8
x
1
0

8

 8
.5

x
1
0

8

0
1

2
3

4
5

6
7

8
9

1
0

1
1

Bytes

ti
m

e
(m

in
u
te

s
)

M
e
m

o
ry

 U
ti
liz

a
ti
o
n

N
o
d
e
 1

N
o
d
e
 2

N
o
d
e
 3

(c
)I

nt
M

A

Fi
gu

re
A

.2
:M

em
or

y
us

ag
e

va
lu

es
fo

rI
st

io
B

oo
k

In
fo

m
ic

ro
se

rv
ic

e
ap

pl
ic

at
io

n

126

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

0 5 10 15 20 25 30 35 40 45 50 55

c
o
re

s

time(minutes)

CPU Utilization

Node 1
Node 2
Node 3

(a) Default

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

0 5 10 15 20 25 30 35 40 45 50 55

c
o
re

s

time(minutes)

CPU Utilization

Node 1
Node 2
Node 3

(b) IntRR

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

0 5 10 15 20 25 30 35 40 45 50 55

c
o
re

s

time(minutes)

CPU Utilization

Node 1
Node 2
Node 3

(c) IntMA

Figure A.3: CPU usage values for Hipster Shop microservice application

Thus, it is concluded that adopting the proposed scheduling algorithm does not im-

pose much additional overheads in terms of resource usage on the various nodes in the

Cloud environment.

127

BIBLIOGRAPHY

Abeysinghe, A. (2016). “Scope versus size: a pragmatic approach to microservice

architecture.” Technical report, Solutions Architecture, WSO2.

Adhikari, M. and Srirama, S. N. (2019). “Multi-objective accelerated particle swarm

optimization with a container-based scheduling for internet-of-things in cloud envi-

ronment.” Journal of Network and Computer Applications, 137, 35–61.

Almeida, W. H. C., de Aguiar Monteiro, L., Hazin, R. R., de Lima, A. C. and Ferraz,

F. S. (2017). “Survey on microservice architecture-security, privacy and standardiza-

tion on cloud computing environment.” ICSEA 2017, 210.

Amaral, M., Polo, J., Carrera, D., Mohomed, I., Unuvar, M. and Steinder, M. (2015).

“Performance evaluation of microservices architectures using containers.” In Net-

work Computing and Applications (NCA), 2015 IEEE 14th International Symposium

on, IEEE, 27–34.

Asik, T. and Selcuk, Y. E. (2017). “Policy enforcement upon software based on mi-

croservice architecture.” In Software Engineering Research, Management and Appli-

cations (SERA), 2017 IEEE 15th International Conference on, IEEE, 283–287.

Bakshi, K. (2017). “Microservices-based software architecture and approaches.” In

Aerospace Conference, 2017 IEEE, IEEE, 1–8.

Balalaie, A., Heydarnoori, A. and Jamshidi, P. (2014). “On micro-services architec-

ture.” International Journal of Open Information Technologies, 2(9), 24–27.

Baylov, K. and Dimov, A. (2017). “Reference architecture for self-adaptive microser-

129

BIBLIOGRAPHY

vice systems.” In International Symposium on Intelligent and Distributed Computing,

Springer, 297–303.

Beloglazov, A. and Buyya, R. (2012). “Optimal online deterministic algorithms and

adaptive heuristics for energy and performance efficient dynamic consolidation of

virtual machines in cloud data centers.” Concurrency and Computation: Practice

and Experience, 24(13), 1397–1420.

Bermejo, B., Juiz, C. and Guerrero, C. (2019). “Virtualization and consolidation: a

systematic review of the past 10 years of research on energy and performance.” The

Journal of Supercomputing, 75(2), 808–836.

Bittencourt, L. F., Goldman, A., Madeira, E. R., da Fonseca, N. L. and Sakellariou,

R. (2018). “Scheduling in distributed systems: A cloud computing perspective.”

Computer science review, 30, 31–54.

Bogner, J., Wagner, S. and Zimmermann, A. (2017). “Automatically measuring the

maintainability of service-and microservice-based systems: a literature review.” In

Proceedings of the 27th International Workshop on Software Measurement and 12th

International Conference on Software Process and Product Measurement, ACM,

107–115.

Bogner, J., Zimmermann, A. and Wagner, S. (2018). “Analyzing the relevance of soa

patterns for microservice-based systems.” In Proceedings of the 10th Central Euro-

pean Workshop on Services and their Composition (ZEUS’18). CEUR-WS. org.

Bonér, J., Farley, D., Kuhn, R. and Thompson, M. (2014). “The reactive manifesto.”

https://www.reactivemanifesto.org/ (15 May, 2020).

Buyya, R., Rodriguez, M. A., Toosi, A. N. and Park, J. (2018). “Cost-efficient orchestra-

tion of containers in clouds: A vision, architectural elements, and future directions.”

Journal of Physics: Conference Series, 1108(1), 012001.

Buzachis, A., Galletta, A., Celesti, A., Carnevale, L. and Villari, M. (2019). “Towards

osmotic computing: a blue-green strategy for the fast re-deployment of microser-

130

https://www.reactivemanifesto.org/

BIBLIOGRAPHY

vices.” In 2019 IEEE Symposium on Computers and Communications (ISCC), IEEE,

1–6.

Caprara, A. (2008). “Constrained 0–1 quadratic programming: Basic approaches and

extensions.” European Journal of Operational Research, 187(3), 1494–1503.

Carnevale, L., Galletta, A., Celesti, A., Fazio, M., Paone, M., Bramanti, P. and Vil-

lari, M. (2017). “Big data HIS of the IRCCS-ME future: The osmotic computing

infrastructure.” In Cloud Infrastructures, Services, and IoT Systems for Smart Cities,

Springer, 199–207.

Casalicchio, E. and Iannucci, S. (2020). “The state-of-the-art in container technologies:

Application, orchestration and security.” Concurrency and Computation: Practice

and Experience, e5668.

Cito, J., Leitner, P., Fritz, T. and Gall, H. C. (2015). “The making of cloud applications:

An empirical study on software development for the cloud.” In Proceedings of the

2015 10th Joint Meeting on Foundations of Software Engineering, ACM, 393–403.

de Camargo, A., Salvadori, I., Mello, R. d. S. and Siqueira, F. (2016). “An architec-

ture to automate performance tests on microservices.” In Proceedings of the 18th In-

ternational Conference on Information Integration and Web-based Applications and

Services, ACM, 422–429.

de Santana, C. J. L., de Mello Alencar, B. and Prazeres, C. V. S. (2019). “Reactive mi-

croservices for the internet of things: a case study in fog computing.” In Proceedings

of the 34th ACM/SIGAPP Symposium on Applied Computing, 1243–1251.

Deb, K., Pratap, A., Agarwal, S. and Meyarivan, T. (2002). “A fast and elitist multiob-

jective genetic algorithm: Nsga-ii.” IEEE transactions on evolutionary computation,

6(2), 182–197.

Derakhshanmanesh, M. and Grieger, M. (2016). “Model-integrating microservices: A

vision paper.” In Software Engineering (Workshops), 142–147.

131

BIBLIOGRAPHY

Di Francesco, P. (2017). “Architecting microservices.” In Software Architecture Work-

shops (ICSAW), 2017 IEEE International Conference on, IEEE, 224–229.

Diepenbrock, A., Rademacher, F. and Sachweh, S. (2017). “An ontology-based ap-

proach for domain-driven design of microservice architectures.” INFORMATIK 2017.

Docker, I. (2020). “Docker: Empowering app development for developers.” https:

//www.docker.com/ (1 May, 2020).

Dragoni, N., Giallorenzo, S., Lafuente, A. L., Mazzara, M., Montesi, F., Mustafin, R.

and Safina, L. (2017). “Microservices: yesterday, today, and tomorrow.” Present and

ulterior software engineering, 195–216.

Düllmann, T. F. (2017). “Performance anomaly detection in microservice architectures

under continuous change.” Master’s thesis, University of Stuttgart.

Düllmann, T. F. and van Hoorn, A. (2017). “Model-driven generation of microservice

architectures for benchmarking performance and resilience engineering approaches.”

In Proceedings of the 8th ACM/SPEC on International Conference on Performance

Engineering Companion, ACM, 171–172.

Eismann, S., Kistowski, J., Grohmann, J., Bauer, A., Schmitt, N., Herbst, N. and

Kounev, S. (2018). “Teastore: A micro-service reference application for cloud re-

searchers.” In 2018 IEEE/ACM International Conference on Utility and Cloud Com-

puting Companion (UCC Companion), IEEE, 11–12.

Esposito, C., Castiglione, A. and Choo, K.-K. R. (2016). “Challenges in delivering

software in the cloud as microservices.” IEEE Cloud Computing, 3(5), 10–14.

Evans, E. (2004). Domain-driven design: tackling complexity in the heart of software,

Addison-Wesley Professional.

Familiar, B. (2015). Microservices, IoT and Azure: Leveraging DevOps and Microser-

vice Architecture to deliver SaaS Solutions, Apress.

Fano, A. and Gershman, A. (2002). “The future of business services in the age of

ubiquitous computing.” Communications of the ACM, 45(12), 83–87.

132

https://www.docker.com/
https://www.docker.com/

BIBLIOGRAPHY

Fazio, M., Celesti, A., Ranjan, R., Liu, C., Chen, L. and Villari, M. (2016). “Open issues

in scheduling microservices in the cloud.” IEEE Cloud Computing, 3(5), 81–88.

Fernandez, G. P. and Brito, A. (2019). “Secure container orchestration in the cloud:

policies and implementation.” In Proceedings of the 34th ACM/SIGAPP Symposium

on Applied Computing, 138–145.

Fernández Villamor, J. I., Iglesias Fernandez, C. A. and Garijo Ayestaran, M. (2010).

“Microservices: lightweight service descriptions for rest architectural style.” In 2nd

International Conference on Agents and Artificial Intelligence, ICAART 2010, IN-

STICC, Institute for Systems and Technologies of Information, Control and Commu-

nication.

Filip, I.-D., Pop, F., Serbanescu, C. and Choi, C. (2018). “Microservices scheduling

model over heterogeneous cloud-edge environments as support for iot applications.”

IEEE Internet of Things Journal, 5(4), 2672–2681.

Florio, L. (2015). “Decentralized self-adaptation in large-scale distributed systems.” In

Proceedings of the 2015 10th Joint Meeting on Foundations of Software Engineering,

ACM, 1022–1025.

Fritzsch, J., Bogner, J., Wagner, S. and Zimmermann, A. (2019). “Microservices migra-

tion in industry: intentions, strategies, and challenges.” In 2019 IEEE International

Conference on Software Maintenance and Evolution (ICSME), IEEE, 481–490.

Gabbrielli, M., Giallorenzo, S., Guidi, C., Mauro, J. and Montesi, F. (2016). “Self-

reconfiguring microservices.” In Theory and Practice of Formal Methods, Springer,

194–210.

Gadea, C., Trifan, M., Ionescu, D. and Ionescu, B. (2016). “A reference architecture

for real-time microservice api consumption.” In Proceedings of the 3rd Workshop on

CrossCloud Infrastructures & Platforms, ACM, 1–6.

Geisriegler, M., Kolodiy, M., Stani, S. and Singer, R. (2017). “Actor based business pro-

cess modeling and execution: A reference implementation based on ontology models

133

BIBLIOGRAPHY

and microservices.” In Software Engineering and Advanced Applications (SEAA),

2017 43rd Euromicro Conference on, IEEE, 359–362.

George, F. (2013). “Microservice architecture: A personal journey of discov-

ery.” http://www.baselinemag.com/enterprise-apps/walmart-

embraces-microservices-to-get-more-agile.html (15 May, 2020).

Github, I. (2020). “Sample cloud-native application with 10 microservices

showcasing kubernetes, istio, grpc and opencensus.” https://github.com/

GoogleCloudPlatform/microservices-demo (1 May, 2020).

Goldschmidt, T., Hauck-Stattelmann, S., Malakuti, S. and Grüner, S. (2018).

“Container-based architecture for flexible industrial control applications.” Journal

of Systems Architecture, 84, 28–36.

Gonzalez, N. M., de Brito Carvalho, T. C. M. and Miers, C. C. (2017). “Cloud resource

management: towards efficient execution of large-scale scientific applications and

workflows on complex infrastructures.” Journal of Cloud Computing, 6(1), 13.

Google, I. (2020). “Google cloud platform: Cloud computing services.” https://

cloud.google.com/ (1 May, 2020).

Grafana, A. (2020). “Grafana-the open platform for analytics and monitoring.” https:

//grafana.com/ (1 May, 2020).

Granchelli, G., Cardarelli, M., Di Francesco, P., Malavolta, I., Iovino, L. and Di Salle,

A. (2017a). “Microart: A software architecture recovery tool for maintaining

microservice-based systems.” In Software Architecture Workshops (ICSAW), 2017

IEEE International Conference on, IEEE, 298–302.

Granchelli, G., Cardarelli, M., Di Francesco, P., Malavolta, I., Iovino, L. and Di Salle,

A. (2017b). “Towards recovering the software architecture of microservice-based

systems.” In Software Architecture Workshops (ICSAW), 2017 IEEE International

Conference on, IEEE, 46–53.

134

http://www.baselinemag.com/enterprise-apps/walmart-embraces-microservices-to-get-more-agile.html
http://www.baselinemag.com/enterprise-apps/walmart-embraces-microservices-to-get-more-agile.html
https://github.com/GoogleCloudPlatform/microservices-demo
https://github.com/GoogleCloudPlatform/microservices-demo
https://cloud.google.com/
https://cloud.google.com/
https://grafana.com/
https://grafana.com/

BIBLIOGRAPHY

Guerrero, C., Lera, I. and Juiz, C. (2018a). “Genetic algorithm for multi-objective op-

timization of container allocation in cloud architecture.” Journal of Grid Computing,

16(1), 113–135.

Guerrero, C., Lera, I. and Juiz, C. (2018b). “Resource optimization of container orches-

tration: a case study in multi-cloud microservices-based applications.” The Journal

of Supercomputing, 74(7), 2956–2983.

Harms, H., Rogowski, C. and Lo Iacono, L. (2017). “Guidelines for adopting frontend

architectures and patterns in microservices-based systems.” In Proceedings of the

2017 11th Joint Meeting on Foundations of Software Engineering, ACM, 902–907.

Haselböck, S. and Weinreich, R. (2017). “Decision guidance models for microservice

monitoring.” In Software Architecture Workshops (ICSAW), 2017 IEEE International

Conference on, IEEE, 54–61.

Hassan, S., Ali, N. and Bahsoon, R. (2017). “Microservice ambients: An architec-

tural meta-modelling approach for microservice granularity.” In Software Architec-

ture (ICSA), 2017 IEEE International Conference on, IEEE, 1–10.

Hassan, S., Bahsoon, R. and Kazman, R. (2020). “Microservice transition and its gran-

ularity problem: A systematic mapping study.” Software: Practice and Experience,

50(9), 1651–1681.

Hedengren, J. D., Shishavan, R. A., Powell, K. M. and Edgar, T. F. (2014). “Nonlinear

modeling, estimation and predictive control in apmonitor.” Computers & Chemical

Engineering, 70, 133–148.

Heinrich, R., van Hoorn, A., Knoche, H., Li, F., Lwakatare, L. E., Pahl, C., Schulte,

S. and Wettinger, J. (2017). “Performance engineering for microservices: Research

challenges and directions.” In Proceedings of the 8th ACM/SPEC on International

Conference on Performance Engineering Companion, ACM, 223–226.

Henry, A. and Ridene, Y. (2020). “Assessing your microservice migration.” In Mi-

croservices, Springer, 73–107.

135

BIBLIOGRAPHY

Heorhiadi, V., Rajagopalan, S., Jamjoom, H., Reiter, M. K. and Sekar, V. (2016).

“Gremlin: systematic resilience testing of microservices.” In Distributed Computing

Systems (ICDCS), 2016 IEEE 36th International Conference on, IEEE, 57–66.

Hevner, A. R., March, S. T., Park, J. and Ram, S. (2004). “Design science in information

systems research.” MIS quarterly, 75–105.

Heyman, J., Byström, C., Hamrén, J. and Heyman, H. (2020). “An open source load

testing tool..” https://locust.io/ (1 May, 2020).

Hilman, M. H., Rodriguez, M. A. and Buyya, R. (2020). “Multiple workflows schedul-

ing in multi-tenant distributed systems: A taxonomy and future directions.” ACM

Computing Surveys (CSUR), 53(1), 1–39.

HoseinyFarahabady, M., Lee, Y. C., Zomaya, A. Y. and Tari, Z. (2017). “A qos-aware

resource allocation controller for function as a service (faas) platform.” In Interna-

tional Conference on Service-Oriented Computing, Springer, 241–255.

Istio, A. (2020). “Bookinfo application.” https://istio.io/docs/

examples/bookinfo/ (1 May, 2020).

JaegerTracing (2020). “Jaeger: open source, end-to-end distributed tracing.” https:

//www.jaegertracing.io/ (1 May, 2020).

Kaewkasi, C. and Chuenmuneewong, K. (2017). “Improvement of container schedul-

ing for docker using ant colony optimization.” In Knowledge and Smart Technology

(KST), 2017 9th International Conference on, IEEE, 254–259.

Kampars, J. and Pinka, K. (2017). “Auto-scaling and adjustment platform for cloud-

based systems.” In Proceedings of the 11th International Scientific and Practical

Conference. Volume II, volume 52, 57.

Kang, D.-K., Choi, G.-B., Kim, S.-H., Hwang, I.-S. and Youn, C.-H. (2016a).

“Workload-aware resource management for energy efficient heterogeneous docker

containers.” In Region 10 Conference (TENCON), 2016 IEEE, IEEE, 2428–2431.

136

https://locust.io/
https://istio.io/docs/examples/bookinfo/
https://istio.io/docs/examples/bookinfo/
https://www.jaegertracing.io/
https://www.jaegertracing.io/

BIBLIOGRAPHY

Kang, H., Le, M. and Tao, S. (2016b). “Container and microservice driven design for

cloud infrastructure devops.” In Cloud Engineering (IC2E), 2016 IEEE International

Conference on, IEEE, 202–211.

Karhula, P., Janak, J. and Schulzrinne, H. (2019). “Checkpointing and migration of iot

edge functions.” In Proceedings of the 2nd International Workshop on Edge Systems,

Analytics and Networking, ACM, 60–65.

Karwowski, W., Rusek, M., Dwornicki, G. and Orłowski, A. (2017). “Swarm based sys-

tem for management of containerized microservices in a cloud consisting of hetero-

geneous servers.” In International Conference on Information Systems Architecture

and Technology, Springer, 262–271.

Katie, C. (2019). “Gartner projects cloud services industry to grow exponentially

through 2022.” https://www.gartner.com/en/newsroom/press-

releases/2019-04-02-gartner-forecasts-worldwide-public-

cloud-revenue-to-g (15 May, 2020).

Katuwal, K. (2016). “Microservices: A flexible architecture for the digital age version

1.0.” In American Journal of Computer Science and Engineering, Open Science, 20–

24.

Khan, A. (2017). “Key characteristics of a container orchestration platform to enable a

modern application.” IEEE Cloud Computing, 4(5), 42–48.

Khan, M. A., Paplinski, A., Khan, A. M., Murshed, M. and Buyya, R. (2018). “Dy-

namic virtual machine consolidation algorithms for energy-efficient cloud resource

management: a review.” In Sustainable Cloud and Energy Services, Springer, 135–

165.

Khazaei, H., Barna, C., Beigi-Mohammadi, N. and Litoiu, M. (2016). “Efficiency anal-

ysis of provisioning microservices.” In Cloud Computing Technology and Science

(CloudCom), 2016 IEEE International Conference on, IEEE, 261–268.

137

https://www.gartner.com/en/newsroom/press-releases/2019-04-02-gartner-forecasts-worldwide-public-cloud-revenue-to-g
https://www.gartner.com/en/newsroom/press-releases/2019-04-02-gartner-forecasts-worldwide-public-cloud-revenue-to-g
https://www.gartner.com/en/newsroom/press-releases/2019-04-02-gartner-forecasts-worldwide-public-cloud-revenue-to-g

BIBLIOGRAPHY

Kiss, T., Kacsuk, P., Kovacs, J., Rakoczi, B., Hajnal, A., Farkas, A., Gesmier, G. and

Terstyanszky, G. (2017). “Micado-microservice-based cloud application-level dy-

namic orchestrator.” Future Generation Computer Systems, 1–10.

Kleehaus, M., Uludag, O., Schäfer, P. and Matthes, F. (2018). “MICROLYZE: A

framework for recovering the software architecture in microservice-based environ-

ments.” In 30th International Conference on Advanced Information Systems Engi-

neering (CAISE Forum), Tallin, Estonia.

Klock, S., Van Der Werf, J. M. E., Guelen, J. P. and Jansen, S. (2017). “Workload-

based clustering of coherent feature sets in microservice architectures.” In Software

Architecture (ICSA), 2017 IEEE International Conference on, IEEE, 11–20.

Kratzke, N. and Quint, P.-C. (2017). “Understanding cloud-native applications after

10 years of cloud computing-a systematic mapping study.” Journal of Systems and

Software, 126, 1–16.

Krauter, K., Buyya, R. and Maheswaran, M. (2002). “A taxonomy and survey of grid

resource management systems for distributed computing.” Software: Practice and

Experience, 32(2), 135–164.

Kubernetes, A. (2020a). “Kubernetes: Production-grade container orchestration.”

https://kubernetes.io/ (1 May, 2020a).

Kubernetes, A. (2020b). “Pod lifecycle.” https://kubernetes.io/docs/

concepts/workloads/pods/pod-lifecycle/ (1 May, 2020b).

Kukade, P. P. and Kale, G. (2015). “Auto-scaling of micro-services using containeriza-

tion.” International Journal of Science and Research (IJSR), 4(9), 1960–1963.

Lange, P. D., Nicolaescu, P., Derntl, M., Jarke, M. and Klamma, R. (2016). “Com-

munity application editor: collaborative near real-time modeling and composition of

microservice-based web applications.” In Lecture Notes in Informatics- Modellierung

2016-Workshopband, Gesellschaft für Informatik eV, 123–127.

138

https://kubernetes.io/
https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle/
https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle/

BIBLIOGRAPHY

Lera, I., Guerrero, C. and Juiz, C. (2018). “Availability-aware service placement policy

in fog computing based on graph partitions.” IEEE Internet of Things Journal, 6(2),

3641–3651.

Lewis, J. (2012). “Micro services - java, the unix way.” http://2012.33degree.

org/talk/show/67 (15 May, 2020).

Lin, M., Xi, J., Bai, W. and Wu, J. (2019). “Ant colony algorithm for multi-objective

optimization of container-based microservice scheduling in cloud.” IEEE Access, 7,

83088–83100.

Long, K. B., Yang, H. and Kim, Y. (2017). “Icn-based service discovery mechanism

for microservice architecture.” In Ubiquitous and Future Networks (ICUFN), 2017

Ninth International Conference on, IEEE, 773–775.

López, M. R. and Spillner, J. (2017). “Towards quantifiable boundaries for elastic hori-

zontal scaling of microservices.” In Companion Proceedings of the10th International

Conference on Utility and Cloud Computing, ACM, 35–40.

Ma, L., Yi, S., Carter, N. and Li, Q. (2018). “Efficient live migration of edge services

leveraging container layered storage.” IEEE Transactions on Mobile Computing.

Ma, L., Yi, S. and Li, Q. (2017). “Efficient service handoff across edge servers via

docker container migration.” In Proceedings of the Second ACM/IEEE Symposium

on Edge Computing, ACM, 11.

MacKenzie, C. M., Laskey, K., McCabe, F., Brown, P. F., Metz, R. and Hamilton, B. A.

(2006). “Reference model for service oriented architecture 1.0.” OASIS standard, 12,

18.

Mahdhi, T. and Mezni, H. (2018). “A prediction-based vm consolidation approach in

iaas cloud data centers.” Journal of Systems and Software, 146, 263–285.

Martin, J. P., Kandasamy, A. and Chandrasekaran, K. (2020). “Mobility aware auto-

nomic approach for the migration of application modules in fog computing environ-

ment.” Journal of Ambient Intelligence and Humanized Computing, 1–20.

139

http://2012.33degree.org/talk/show/67
http://2012.33degree.org/talk/show/67

BIBLIOGRAPHY

Mayer, B. and Weinreich, R. (2017). “A dashboard for microservice monitoring and

management.” In Software Architecture Workshops (ICSAW), 2017 IEEE Interna-

tional Conference on, IEEE, 66–69.

Mazzara, M., Khanda, K., Mustafin, R., Rivera, V., Safina, L. and Sillitti, A. (2016).

“Microservices science and engineering.” In International Conference in Software

Engineering for Defence Applications, Springer, 11–20.

Meinke, K. and Nycander, P. (2015). “Learning-based testing of distributed microser-

vice architectures: Correctness and fault injection.” In International Conference on

Software Engineering and Formal Methods, Springer, 3–10.

Messina, A., Rizzo, R., Storniolo, P. and Urso, A. (2016). “A simplified database

pattern for the microservice architecture.” In The Eighth International Conference on

Advances in Databases, Knowledge, and Data Applications (DBKDA), 35–40.

Meyer, B. (1988). Object-oriented software construction, volume 2, Prentice hall, New

York.

Mirjalili, S., Jangir, P., Mirjalili, S. Z., Saremi, S. and Trivedi, I. N. (2017). “Op-

timization of problems with multiple objectives using the multi-verse optimization

algorithm.” Knowledge-Based Systems, 134, 50–71.

Mirjalili, S., Mirjalili, S. M. and Hatamlou, A. (2016). “Multi-verse optimizer: a nature-

inspired algorithm for global optimization.” Neural Computing and Applications,

27(2), 495–513.

Montesi, F. and Weber, J. (2016). “Circuit breakers, discovery, and api gateways in

microservices.” arXiv preprint arXiv:1609.05830.

Nadareishvili, I., Mitra, R., McLarty, M. and Amundsen, M. (2016). Microservice

Architecture: Aligning Principles, Practices, and Culture, O’Reilly Media, Inc.

Naily, M. A., Setyautami, M. R. A., Muschevici, R. and Azurat, A. (2017). “A frame-

work for modelling variable microservices as software product lines.” In Interna-

tional Conference on Software Engineering and Formal Methods, Springer, 246–261.

140

BIBLIOGRAPHY

Nardelli, M., Nastic, S., Dustdar, S., Villari, M. and Ranjan, R. (2017). “Osmotic flow:

Osmotic computing+ iot workflow.” IEEE Cloud Computing, 4(2), 68–75.

Netaji, V. K. and Bhole, G. (2019). “Optimal container resource allocation in cloud

architecture: A new hybrid model.” Journal of King Saud University-Computer and

Information Sciences.

Netto, H. V., Lung, L. C., Correia, M., Luiz, A. F. and de Souza, L. M. S. (2017).

“State machine replication in containers managed by kubernetes.” Journal of Systems

Architecture, 73, 53–59.

Newman, S. (2015). Building microservices: designing fine-grained systems, O’Reilly

Media, Inc.

O’Connor, R. V., Elger, P. and Clarke, P. M. (2017). “Continuous software engineering-

a microservices architecture perspective.” Journal of Software: Evolution and Pro-

cess, 29(11).

Pallewatta, S., Kostakos, V. and Buyya, R. (2019). “Microservices-based iot application

placement within heterogeneous and resource constrained fog computing environ-

ments.” In Proceedings of the 12th IEEE/ACM International Conference on Utility

and Cloud Computing, 71–81.

Papazoglou, M. P. (2003). “Service-oriented computing: Concepts, characteristics and

directions.” In Web Information Systems Engineering, 2003. WISE 2003. Proceedings

of the Fourth International Conference on, IEEE, 3–12.

Peinl, R. and Holzschuher, F. (2015). “The docker ecosystem needs consolidation..” In

CLOSER, 535–542.

Peinl, R., Holzschuher, F. and Pfitzer, F. (2016). “Docker cluster management for the

cloud-survey results and own solution.” Journal of Grid Computing, 14(2), 265–282.

Petrasch, R. (2017). “Model-based engineering for microservice architectures using en-

terprise integration patterns for inter-service communication.” In Computer Science

141

BIBLIOGRAPHY

and Software Engineering (JCSSE), 2017 14th International Joint Conference on,

IEEE, 1–4.

Piraghaj, S. F., Dastjerdi, A. V., Calheiros, R. N. and Buyya, R. (2015). “A framework

and algorithm for energy efficient container consolidation in cloud data centers.” In

2015 IEEE International Conference on Data Science and Data Intensive Systems,

IEEE, 368–375.

Pozdniakova, O. and Mazeika, D. (2017). “Systematic literature review of the cloud-

ready software architecture.” Baltic Journal of Modern Computing, 5(1), 124.

Prometheus, A. (2020). “Prometheus-monitoring system & time series database.”

https://prometheus.io/ (1 May, 2020).

Puliafito, C., Vallati, C., Mingozzi, E., Merlino, G., Longo, F. and Puliafito, A. (2019).

“Container migration in the fog: A performance evaluation.” Sensors, 19(7), 1488.

Rademacher, F., Sachweh, S. and Zündorf, A. (2017). “Differences between model-

driven development of service-oriented and microservice architecture.” In Software

Architecture Workshops (ICSAW), 2017 IEEE International Conference on, IEEE,

38–45.

Rajagopalan, S. and Jamjoom, H. (2015). “App-bisect: Autonomous healing for

microservice-based apps.” In Proceedings of the 7th USENIX Conference on Hot

Topics in Cloud Computing, USENIX Association, 16–16.

Rajagopalan, S., Nagpurkar, P., Eilam, T., Jamjoom, H., Lev-Ran, E., Bortnikov, V. and

Budinsky, F. (2016). “Opportunities & challenges in adopting microservice architec-

ture for enterprise workloads.” In Technical Session Presentation, USENIX Associa-

tion.

Rattihalli, G. (2018). “Exploring potential for resource request right-sizing via esti-

mation and container migration in apache mesos.” In 2018 IEEE/ACM International

Conference on Utility and Cloud Computing Companion (UCC Companion), IEEE,

59–64.

142

https://prometheus.io/

BIBLIOGRAPHY

Research and Markets (2018). “$1.8 billion cloud microservices market - global

forecast to 2023.” https://www.prnewswire.com/news-releases/1-

8-billion-cloud-microservices-market---global-forecast-

to-2023--300665538.html (15 May, 2020).

Richardson, C. (2017). “Microservice patterns.” microservices.io/

patterns/index.html (1 May, 2020).

Rodriguez, M. and Buyya, R. (2020). “Container orchestration with cost-efficient au-

toscaling in cloud computing environments.” In Handbook of Research on Multime-

dia Cyber Security, IGI Global, 190–213.

Rodriguez, M. A. and Buyya, R. (2018). “Containers orchestration with cost-efficient

autoscaling in cloud computing environments.” arXiv preprint arXiv:1812.00300.

Rodriguez, M. A. and Buyya, R. (2019). “Container-based cluster orchestration sys-

tems: A taxonomy and future directions.” Software: Practice and Experience, 49(5),

698–719.

Rosenberg, D., Boehm, B., Wang, B. and Qi, K. (2017). “Rapid, evolutionary, reliable,

scalable system and software development: the resilient agile process.” In Proceed-

ings of the 2017 International Conference on Software and System Process, ACM,

60–69.

Rotter, C., Illés, J., Nyı́ri, G., Farkas, L., Csatári, G. and Huszty, G. (2017). “Tele-

com strategies for service discovery in microservice environments.” In Innovations

in Clouds, Internet and Networks (ICIN), 2017 20th Conference on, IEEE, 214–218.

Rusek, M., Dwornicki, G. and Orłowski, A. (2016). “A decentralized system for load

balancing of containerized microservices in the cloud.” In International Conference

on Systems Science, Springer, 142–152.

Salah, T., Zemerly, M. J., Yeun, C. Y., Al-Qutayri, M. and Al-Hammadi, Y. (2016).

“The evolution of distributed systems towards microservices architecture.” In Internet

Technology and Secured Transactions (ICITST), 2016 11th International Conference

for, IEEE, 318–325.

143

https://www.prnewswire.com/news-releases/1-8-billion-cloud-microservices-market---global-forecast-to-2023--300665538.html
https://www.prnewswire.com/news-releases/1-8-billion-cloud-microservices-market---global-forecast-to-2023--300665538.html
https://www.prnewswire.com/news-releases/1-8-billion-cloud-microservices-market---global-forecast-to-2023--300665538.html
microservices.io/patterns/index.html
microservices.io/patterns/index.html

BIBLIOGRAPHY

Savchenko, D. and Radchenko, G. (2015). “Microservices validation: Methodology

and implementation.” In CEUR Workshop Proceedings. Vol. 1513: Proceedings of

the 1st Ural Workshop on Parallel, Distributed, and Cloud Computing for Young

Scientists (Ural-PDC 2015).-Yekaterinburg, 2015., 235–240.

Savchenko, D. I., Radchenko, G. I. and Taipale, O. (2015). “Microservices valida-

tion: Mjolnirr platform case study.” In Information and Communication Technology,

Electronics and Microelectronics (MIPRO), 2015 38th International Convention on,

IEEE, 235–240.

Schermann, G., Schöni, D., Leitner, P. and Gall, H. C. (2016). “Bifrost: Supporting

continuous deployment with automated enactment of multi-phase live testing strate-

gies.” In Proceedings of the 17th International Middleware Conference, ACM, 12.

Selimi, M., Cerdà-Alabern, L., Sánchez-Artigas, M., Freitag, F. and Veiga, L. (2017).

“Practical service placement approach for microservices architecture.” In Proceed-

ings of the 17th IEEE/ACM International Symposium on Cluster, Cloud and Grid

Computing, IEEE Press, 401–410.

Sharma, B., Thulasiram, R. K., Thulasiraman, P. and Buyya, R. (2014). “Clabacus:

a risk-adjusted cloud resources pricing model using financial option theory.” IEEE

Transactions on Cloud Computing, 3(3), 332–344.

Sharma, V., Srinivasan, K., Jayakody, D. N. K., Rana, O. and Kumar, R.

(2017). “Managing service-heterogeneity using osmotic computing.” arXiv preprint

arXiv:1704.04213.

Sharma, Y., Si, W., Sun, D. and Javadi, B. (2019). “Failure-aware energy-efficient vm

consolidation in cloud computing systems.” Future Generation Computer Systems,

94, 620–633.

Shaw, R., Howley, E. and Barrett, E. (2018). “A predictive anti-correlated virtual ma-

chine placement algorithm for green cloud computing.” In 2018 IEEE/ACM 11th

International Conference on Utility and Cloud Computing (UCC), IEEE, 267–276.

144

BIBLIOGRAPHY

Sousa, G., Rudametkin, W. and Duchien, L. (2016). “Automated setup of multi-cloud

environments for microservices applications.” In Cloud Computing (CLOUD), 2016

IEEE 9th International Conference on, IEEE, 327–334.

Štefanič, P., Cigale, M., Jones, A. C., Knight, L., Taylor, I., Istrate, C., Suciu, G.,

Ulisses, A., Stankovski, V., Taherizadeh, S. et al. (2019). “Switch workbench: A

novel approach for the development and deployment of time-critical microservice-

based cloud-native applications.” Future Generation Computer Systems, 99, 197–

212.

Stroustrup, B. (1994). The design and evolution of C++, Pearson Education India.

Stubbs, J., Moreira, W. and Dooley, R. (2015). “Distributed systems of microservices

using docker and serfnode.” In Science Gateways (IWSG), 2015 7th International

Workshop on, IEEE, 34–39.

Sundar, A. (2017). “An insight into microservices testing strategies.” Technical report,

Infosys.

Tai, S. (2016). “Continuous, trustless, and fair: Changing priorities in services comput-

ing.” In European Conference on Service-Oriented and Cloud Computing, Springer,

205–210.

Tao, Y., Wang, X., Xu, X. and Chen, Y. (2017). “Dynamic resource allocation algorithm

for container-based service computing.” In 2017 IEEE 13th International Symposium

on Autonomous Decentralized System (ISADS), IEEE, 61–67.

Tasgetiren, M. F., Sevkli, M., Liang, Y.-C. and Gencyilmaz, G. (2004). “Particle

swarm optimization algorithm for single machine total weighted tardiness problem.”

In Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.

04TH8753), volume 2, IEEE, 1412–1419.

Tellago, B. (2016). “Microservices architecture in the enterprise : A research study and

reference architecture.” Technical report, Tellago Incorporation.

145

BIBLIOGRAPHY

Thalheim, J., Rodrigues, A., Akkus, I. E., Bhatotia, P., Chen, R., Viswanath, B., Jiao,

L. and Fetzer, C. (2017). “Sieve: actionable insights from monitored metrics in dis-

tributed systems.” In Proceedings of the 18th ACM/IFIP/USENIX Middleware Con-

ference, ACM, 14–27.

Thomas, D., Sagar, K. and Vincent, C. (2019). “Make no mistake, the cloud con-

tinues to accelerate (etr research).” https://etr.plus/articles/cloud-

continues-to-accelerate (15 May, 2020).

Tizzei, L. P., Nery, M., Segura, V. C. and Cerqueira, R. F. (2017). “Using microser-

vices and software product line engineering to support reuse of evolving multi-tenant

saas.” In Proceedings of the 21st International Systems and Software Product Line

Conference-Volume A, ACM, 205–214.

Toffetti, G., Brunner, S., Blöchlinger, M., Dudouet, F. and Edmonds, A. (2015). “An

architecture for self-managing microservices.” In Proceedings of the 1st International

Workshop on Automated Incident Management in Cloud, ACM, 19–24.

Tonelli, R., Lunesu, M. I., Pinna, A., Taibi, D. and Marchesi, M. (2019). “Implementing

a microservices system with blockchain smart contracts.” In 2019 IEEE International

Workshop on Blockchain Oriented Software Engineering (IWBOSE), IEEE, 22–31.

Tonelli, R., Pinna, A., Baralla, G. and Ibba, S. (2018). “Ethereum smart contracts as

blockchain-oriented microservices.” In Proceedings of the 19th International Con-

ference on Agile Software Development: Companion, 1–2.

Torkura, K. A., Sukmana, M. I., Cheng, F. and Meinel, C. (2017). “Leveraging cloud

native design patterns for security-as-a-service applications.” In Smart Cloud (Smart-

Cloud), 2017 IEEE International Conference on, IEEE, 90–97.

Tsai, W.-T. (2005). “Service-oriented system engineering: a new paradigm.” In IEEE

International Workshop on Service-Oriented System Engineering (SOSE’05)., IEEE,

3–8.

Ulander, D. (2017). “Software architectural metrics for the scania internet of things

platform: From a microservice perspective.” Master’s thesis, Uppsala Universitet.

146

https://etr.plus/articles/cloud-continues-to-accelerate
https://etr.plus/articles/cloud-continues-to-accelerate

BIBLIOGRAPHY

Van Eyk, E., Grohmann, J., Eismann, S., Bauer, A., Versluis, L., Toader, L., Schmitt,

N., Herbst, N., Abad, C. and Iosup, A. (2019). “The SPEC-RG reference architecture

for FaaS: From microservices and containers to serverless platforms.” IEEE Internet

Computing.

Van Eyk, E., Toader, L., Talluri, S., Versluis, L., Uă, A. and Iosup, A. (2018). “Server-

less is more: From paas to present cloud computing.” IEEE Internet Computing,

22(5), 8–17.

Vaucher, S., Pires, R., Felber, P., Pasin, M., Schiavoni, V. and Fetzer, C. (2018). “Sgx-

aware container orchestration for heterogeneous clusters.” In 2018 IEEE 38th Inter-

national Conference on Distributed Computing Systems (ICDCS), IEEE, 730–741.

Versteden, A. and Pauwels, E. (2016). “State-of-the-art web applications using mi-

croservices and linked data.” In 4th Workshop on Services and Applications over

Linked APIs and Data(SALAD).

Villari, M., Celesti, A. and Fazio, M. (2017). “Towards osmotic computing: Looking

at basic principles and technologies.” In Conference on Complex, Intelligent, and

Software Intensive Systems, Springer, 906–915.

Villari, M., Fazio, M., Dustdar, S., Rana, O. and Ranjan, R. (2016). “Osmotic com-

puting: A new paradigm for edge/cloud integration.” IEEE Cloud Computing, 3(6),

76–83.

Vinoski, S. (1997). “CORBA: integrating diverse applications within distributed het-

erogeneous environments.” IEEE Communications magazine, 35(2), 46–55.

Vizard, M. (2015). “Walmart embraces microservices to get more agile.”

http://www.baselinemag.com/enterprise-apps/walmart-

embraces-microservices-to-get-more-agile.html (15 May,

2020).

Wan, X., Guan, X., Wang, T., Bai, G. and Choi, B.-Y. (2018). “Application deployment

using microservice and docker containers: Framework and optimization.” Journal of

Network and Computer Applications, 119, 97–109.

147

http://www.baselinemag.com/enterprise-apps/walmart-embraces-microservices-to-get-more-agile.html
http://www.baselinemag.com/enterprise-apps/walmart-embraces-microservices-to-get-more-agile.html

BIBLIOGRAPHY

Wang, J. V., Cheng, C.-T. and Tse, C. K. (2019a). “A thermal-aware vm consolidation

mechanism with outage avoidance.” Software: Practice and Experience, 49(5), 906–

920.

Wang, J. V., Ganganath, N., Cheng, C.-T. and Chi, K. T. (2019b). “Bio-inspired heuris-

tics for vm consolidation in cloud data centers.” IEEE Systems Journal.

Weaveworks, I. (2017). “Socks shop: Microservices demo.” microservices-

demo.github.io/ (1 May, 2020).

Wen, Z., Lin, T., Yang, R., Ji, S., Romanovsky, A., Lin, C., Xu, J. et al. (2019). “Ga-par:

Dependable microservice orchestration framework for geo-distributed clouds.” IEEE

Transactions on Parallel and Distributed Systems.

Witanto, J. N., Lim, H. and Atiquzzaman, M. (2018). “Adaptive selection of dynamic

vm consolidation algorithm using neural network for cloud resource management.”

Future Generation Computer Systems, 87, 35–42.

Wizenty, P., Sorgalla, J., Rademacher, F. and Sachweh, S. (2017). “Magma: build

management-based generation of microservice infrastructures.” In Proceedings of

the 11th European Conference on Software Architecture: Companion Proceedings,

ACM, 61–65.

Wu, A. (2017). “Taking the cloud-native approach with microservices.” Technical re-

port.

Xu, C., Wang, K. and Guo, M. (2017). “Intelligent resource management in blockchain-

based cloud datacenters.” IEEE Cloud Computing, 4(6), 50–59.

Xu, M. and Buyya, R. (2019). “Brownoutcon: A software system based on brownout

and containers for energy-efficient cloud computing.” Journal of Systems and Soft-

ware, 155, 91–103.

Xu, M., Toosi, A. N. and Buyya, R. (2018). “ibrownout: An integrated approach for

managing energy and brownout in container-based clouds.” IEEE Transactions on

Sustainable Computing, 4(1), 53–66.

148

microservices-demo.github.io/
microservices-demo.github.io/

BIBLIOGRAPHY

Yousefpour, A., Fung, C., Nguyen, T., Kadiyala, K., Jalali, F., Niakanlahiji, A., Kong,

J. and Jue, J. P. (2019). “All one needs to know about fog computing and related edge

computing paradigms: A complete survey.” Journal of Systems Architecture.

Zdun, U., Navarro, E. and Leymann, F. (2017). “Ensuring and assessing architecture

conformance to microservice decomposition patterns.” In International Conference

on Service-Oriented Computing, Springer, 411–429.

Zhang, Y., Xu, K., Wang, H., Li, Q., Li, T. and Cao, X. (2018). “Going fast and fair:

Latency optimization for cloud-based service chains.” IEEE Netw, 32(2), 138–143.

Zheng, T., Zheng, X., Zhang, Y., Deng, Y., Dong, E., Zhang, R. and Liu, X. (2019).

“SmartVM: a sla-aware microservice deployment framework.” World Wide Web,

22(1), 275–293.

Zhong, Z. and Buyya, R. (2020). “A cost-efficient container orchestration strategy

in kubernetes-based cloud computing infrastructures with heterogeneous resources.”

ACM Transactions on Internet Technology (TOIT), 20(2), 1–24.

Zimmermann, O. (2016). “Microservices tenets: agile approach to service development

and deployment.” Computer Science-Research and Development, 32(3), 301–310.

Zúñiga-Prieto, M., Insfran, E., Abrahão, S. and Cano-Genoves, C. (2017). “Automa-

tion of the incremental integration of microservices architectures.” In Complexity in

Information Systems Development, Springer, 51–68.

149

RESEARCH OUTCOMES

PUBLICATIONS
Journal Papers

1. Joseph, C. T. & Chandrasekaran, K. (2019). Straddling the crevasse: A review of

microservice software architecture foundations and recent advancements. Wiley

Software Practice and Experience, 49(10), 1448-1484. (DOI: https://doi.

org/10.1002/spe.2729, URL: https://onlinelibrary.wiley.com/

doi/abs/10.1002/spe.2729) [SCI Indexed]

2. Joseph, C. T. & Chandrasekaran, K. (2020). IntMA: Dynamic Interaction-Aware

Resource Allocation for Containerized Microservices. Elsevier Journal of Sys-

tems Architecture. (DOI: https://doi.org/10.1016/j.sysarc.2020.

101785, URL: https://www.sciencedirect.com/science/article/

pii/S1383762120300758?via%3Dihub) [SCI Indexed]

3. Joseph, C. T. & Chandrasekaran, K. (2021). Nature-Inspired Resource Manage-

ment and Dynamic Rescheduling of Microservices in Cloud Datacenters, Wi-

ley Concurrency and computation: practice and experience (Accepted) [SCI In-

dexed].

Conference Papers

1. Joseph, C. T. & Chandrasekaran, K. (2019). A Probe into the Technological En-

ablers of Microservice Architectures. Integrated Intelligent Computing, Commu-

nication and Security, vol. 771, 493-506. Springer, Singapore. (DOI: https://

doi.org/10.1007/978-981-10-8797-4_50, URL: https://link.

springer.com/chapter/10.1007/978-981-10-8797-4_50)

151

https://doi.org/10.1002/spe.2729
https://doi.org/10.1002/spe.2729
https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.2729
https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.2729
https://doi.org/10.1016/j.sysarc.2020.101785
https://doi.org/10.1016/j.sysarc.2020.101785
https://www.sciencedirect.com/science/article/pii/S1383762120300758?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S1383762120300758?via%3Dihub
https://doi.org/10.1007/978-981-10-8797-4_50
https://doi.org/10.1007/978-981-10-8797-4_50
https://link.springer.com/chapter/10.1007/978-981-10-8797-4_50
https://link.springer.com/chapter/10.1007/978-981-10-8797-4_50

BIODATA

Name:

Date of Birth:

Gender:

Marital Status:

Father’s Name:

Mother’s Name:

Address:

E-mail:

Mobile:

Qualification:

Areas of Interest:

Christina Terese Joseph

3rd July, 1990

Female

Married

K. S. Joseph

Shirley Joseph

Pottakka House,
Azhakam, Kodakara P.O..
Thrissur, Kerala,
PIN: 680684.

xtina1232@gmail.com

9497482293

B.Tech in Computer Science and Engineering
(Rajagiri School of Engineering and Technology, Kerala)

M.Tech in Computer Science and Engineering
(Rajagiri School of Engineering and Technology, Kerala)

Distributed Computing, Cloud Computing, Resource Management in
Distributed Systems

152

	List of Figures
	List of Tables
	List of Algorithms
	List of Abbreviations
	Introduction
	 Evolution of Microservices Software Architecture (MSA)
	Service Oriented Computing (SOC)
	Service Oriented Architecture (SOA)
	Inception of the Microservices Software Architecture (MSA)

	Fundamental Concepts of Microservice Architecture (MSA)
	Internal structure of Microservices
	Domain-Driven Design
	Circuit Breaker Pattern
	12-factor app

	Container Virtualization and Container Technologies
	Container Management Platforms
	Microservice Orchestration
	Motivation
	Distributed Computing Paradigms employing MSA
	Organization of the Thesis

	Literature Review
	Taxonomy based on different aspects of Microservice Architectures
	Developmental Phase Concerns
	Operational Phase Concerns
	Infrastructural Management Capabilities
	Service Management Capabilities

	Research Gaps
	Summary

	Problem Description
	Scope and Focus of the Thesis
	Research Problem and Objectives
	Research Challenges
	Research Methodology
	Research Contributions

	IntMA: Dynamic Interaction-Aware Resource Allocation for Containerized Microservices in Cloud environments
	Motivation
	Formal Description of the System model
	Proposed Methodology
	Proposed Framework
	Interaction graph generation
	Interaction factor
	Optimization Model
	Model Example
	Proposed Algorithms

	Experimental Evaluation
	Evaluation Environment
	Workload Microservice Applications
	Sock Shop Application
	Istio BookInfo App
	Hipster Shop

	Performance metrics

	Results
	Evaluation of the metrics

	Discussion
	Scheduling Duration
	QPP and Heuristic approach
	Statistical Analysis
	Threats to Validity

	Summary

	Nature-Inspired Resource Management and Dynamic Rescheduling of Microservices in Cloud Datacenters
	CPU requests, limits and Throttling
	TIARM- Throttling and Interaction-aware Anti-correlated Rescheduling for Microservices
	System Architecture
	Functional Details of the TIARM Framework
	System Monitoring Agent
	Descheduling Phase
	Rescheduling Phase
	Resizer
	MOMVO-based Node Selection Module

	Experimental Design and Setup
	Microservice Application Deployment
	Performance Metrics

	Experimental Results and Analysis
	Impact of Upper and Lower threshold values
	Impact of weight vector in the weighted sum objective value
	Analysis of varying rescheduling strategies
	Performance comparison of anti-correlated workloads and correlated workloads
	Analysis of varying node selection strategies
	Efficient Resource Management for various microservice applications

	Summary

	Conclusions and Future Scope
	Future Research Directions
	Augmenting with autonomic capabilities
	Exploring the impact of resource heterogeneity
	Incorporating Machine Learning Techniques
	Investigating additional optimization goals
	Energy efficiency
	Cost models
	Security features

	Integration with Serverless Computing and other emerging distributed computing environments
	Integration with Blockchain technology

	Appendices
	Resource Usage Analysis for Workload Microservice Applications deployed using different Scheduling policies
	Bibliography
	Research Outcomes

