
CLOUD SERVICE SELECTION AND
WORKFLOW SCHEDULING USING P SYSTEM

Thesis

Submitted in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

by

SANTHANAM RAGHAVAN

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

NATIONAL INSTITUTE OF TECHNOLOGY KARNATAKA

SURATHKAL, MANGALORE - 575025

JUNE, 2021

DECLARATION
By the Ph.D. Research Scholar

I hereby declare that the Research Thesis entitled CLOUD SERVICE SELECTION

AND WORKFLOW SCHEDULING USING P SYSTEM which is being submitted to

the National Institute of Technology Karnataka, Surathkal in partial fulfillment of the

requirements for the award of the Degree of Doctor of Philosophy in Computer Science

and Engineering is a bonafide report of the research work carried out by me. The material

contained in this Research Thesis has not been submitted to any University or Institution

for the award of any degree.

SANTHANAM RAGHAVAN

Reg. No. 155131 CS15FV12

Department of Computer Science and Engineering

Place: NITK, Surathkal.

Date: June 1, 2021

CERTIFICATE

This is to certify that the Research Thesis entitled CLOUD SERVICE SELECTION

AND WORKFLOW SCHEDULING USING P SYSTEM submitted by SANTHANAM

RAGHAVAN, (Reg. No. 155131 CS15FV12) as the record of the research work carried

out by him, is accepted as the Research Thesis submission in partial fulfillment of the

requirements for the award of degree of Doctor of Philosophy.

(Prof. K. Chandrasekaran)

Research Supervisor

Chairman - DRPC

(Signature with Date and Seal)

ACKNOWLEDGEMENT

First and foremost, I would thank and express my sincere gratitude to my Research Super-

visor, Prof. K. Chandrasekaran for believing in me and accepting me as his student. I will

always be indebted to his guidance, immeasurable help and support that he has offered me

throughout my stay at NITK. I have tremendously gained from his profound knowledge

and have learned a lot from him technically and otherwise, which I feel is to be practised

throughout my life. His remarkable perception of subjects and his hard work always moti-

vates me to work and learn. Without his support and blessings I wouldn’t have made it this

far and completed my thesis. I consider myself to be truly blessed to be associated with

him.

My sincere thanks to Dr. Mohit P. Tahiliani, Department of CSE, RPAC Member, for his

constructive comments that have helped me in improvising my work. I thank him for his

constant support technically and otherwise throughout my stay at NITK. I would like to

thank, Prof. N. S. V. Shet, Department of ECE, RPAC member, for comments that have

allowed me to enhance this work.

I extend my sincere thanks to the Head of the Department for his continuous support from

the department. My sincere thanks to Prof. Santhi Thilagam, Department of CSE, for

her support throughout my stay at NITK. I sincerely thank all the faculties of Department

of CSE, who have graciously helped me technically and otherwise. I extend my sincere

thanks to all the supporting staff who have provided all the support required for the work.

I specially thank all my friends and colleagues at NITK whose support and company has

made my stay memorable. A sincere thanks to all those who have supported me directly

or indirectly in this work.

Finally, a big thanks to my family for their patience and unconditional support.

Place: NITK, Surathkal

Date: June, 2021 Santhanam Raghavan

ABSTRACT

Cloud Computing is a decade old technology that has changed the landscape of the inter-

net based business model. This technology manifested itself unheralded, a decade ago and

has been growing since. It now stands with several inherent complex problems, as a result

of its expansion. Out of several issues being researched, service selection in cloud is one

of the prime issues which is getting primary attention. Service selection is a process of

selecting (ranking) services from a pool of available cloud services which is often based

on multiple Quality of Service (QoS) attributes. Our work is divided into two major com-

ponents. The first part of our work is solving the problem of cloud service selection. This

study proposes inherently parallel, robust models for service selection in cloud based on

a natural computing model called membrane computing. Membrane Computing, which

is realised using P Systems, is an inherently parallel model that is based on the concept

of animal cell interaction. There are several variants of P Systems and here Enzymatic

Numerical P System (ENPS) is used, based on its suitability to the problem being solved.

Multiple approaches have been proposed and the results are analysed. Additionally, two

new software tools required for ENPS execution are proposed. The second part involves

designing and implementing the algorithm for workflow scheduling in cloud. Workflow

is a group of tasks that are collectively aimed at doing a single work. Cloud workflows

consist of tasks to be mapped to Virtual Machines (VMs) that are part of the cloud. The

process of assigning limited number of VMs to the tasks in a particular manner to optimize

certain quality factor, is referred to as workflow scheduling in cloud. In this study the effort

is to minimise makespan, which is the net time taken by the workflow to get executed. The

ENPS model is used to obtain the sequence of the schedule, based on which the makespan

is calculated and compared with other standard methods.

Keywords: Cloud Computing, Cloud Service Selection, P System, Enzymatic Numerical

P System, Workflow Scheduling.

i

Contents

Abstract . i

List of Figures . v

List of Tables . x

List of Acronyms . xii

1 INTRODUCTION 1

1.1 Gaps Identified in Existing Literature . 4

1.2 Problem Statement and Objectives . 4

1.2.1 Objective 1: To Design Parallel Service Selection Mechanism based

on P System . 5

1.2.2 Research Objective 2: To Implement the Designed Parallel Service

Selection Mechanism for a Cloud 6

1.2.3 Research Objective 3: To Design and Develop a Parallel Workflow

Scheduling Mechanism using P System for Cloud 7

1.3 Research Methodology . 7

1.4 Thesis Contributions . 8

1.5 Thesis Structure . 9

2 LITERATURE REVIEW 11

2.1 Cloud Computing . 11

2.2 Service Selection in Cloud . 12

2.3 Membrane Computing . 19

2.3.1 Membrane-based Algorithms . 20

2.4 ENPS Structure . 23

2.5 A Review of Tools Available for Membrane Computing 25

2.5.1 P System tools that are specific to a particular application or type 27

iii

2.5.2 P System tools that are generic in nature 32

2.5.3 Analysis . 34

2.6 Workflow Scheduling Algorithm in Cloud 37

2.7 Summary . 43

3 P SYSTEM BASED SERVICE SELECTION MECHANISM 45

3.1 Introduction . 45

3.2 Enzymatic Numerical P System based Improved Analytical Hierarchy Pro-

cess (ENPS-IAHP) . 47

3.2.1 Improved Analytic Hierarchy Process (IAHP) 47

3.2.2 ENPS-IAHP Membrane Structure 50

3.2.3 Implementation and Results . 57

3.3 Enzymatic Numerical P System - Improved Preference Ranking Organiza-

tion Method for Enrichment Evaluation (ENPS-IPROMETHEE) 60

3.3.1 Sequential Equivalent . 61

3.3.2 ENPS-IPROMETHEE Membrane Structure 63

3.3.3 Case Studies for ENPS-IPROMETHEE with Implementation . . . 67

3.4 Summary . 75

4 TOOLS FOR ENZYMATIC NUMERICAL P SYSTEM 77

4.1 Multi-ENPS Simulator Support Tool with Automatic File Inter-conversion

and Multi-membrane Execution . 77

4.1.1 Introduction . 77

4.1.2 Design and Implementation the Tool 81

4.1.3 Conversion of files from PeP to XML format 82

4.1.4 Conversion of files from XML to PeP format 85

4.1.5 Usecases and correctness of the tool 90

4.1.6 Case Studies . 93

4.2 GPUPeP . 101

4.2.1 Introduction . 102

4.2.2 Design Goals . 103

4.2.3 Design and Implementation of the Tool 104

iv

4.2.4 Interaction with Simulator . 110

4.2.5 Case studies: Testing the Tool 113

4.3 Summary . 120

5 CLOUD SERVICE SELECTION USING P SYSTEM 121

5.1 Introduction . 121

5.1.1 Service Selection in Cloud . 123

5.1.2 Enzymatic Numerical P System (ENPS) 124

5.2 Logical Operations behind ENPS-ITOPSIS 125

5.3 Membrane Based Improved Technique for Order of Preference by Simi-

larity to Ideal Solution . 128

5.4 Implementation . 139

5.5 Results and Analysis . 143

5.5.1 Sensitivity Analysis . 144

5.5.2 Kendall Tau Distance Ratio . 146

5.5.3 Quantitative Analysis of Sensitivity 146

5.6 Summary . 147

6 CLOUD WORKFLOW SCHEDULING BASED ON P SYSTEM 149

6.1 Introduction . 149

6.2 Workflow Scheduling in Cloud using P System 151

6.3 Results and Analysis . 156

6.4 Summary . 159

7 CONCLUSION & FUTURE WORK 161

7.1 Thesis Summary . 161

7.2 Conclusion . 162

7.3 Future Work . 163

Bibliography . 164

List of Publications . 185

v

vi

List of Figures

2.1 Cloud Service Selection . 13

2.2 Membrane Structure . 19

2.3 Tools based on their language/framework 35

3.1 Membrane System for Sub-problem 1 52

3.2 Membrane System for Sub-problem 2 54

3.3 Membrane System for Sub-problem 2 - Parallelized Further 55

3.4 Membrane System for Sub-problem 3 56

3.5 Membrane System for Sub-problem 3 - Parallelized Further 57

3.6 IAHP and ENPS-IAHP for 3 attributes 58

3.7 IAHP and ENPS-IAHP for 5 attributes 58

3.8 IAHP and ENPS-IAHP for 7 attributes 59

3.9 IAHP and ENPS-IAHP for 9 attributes 59

3.10 Sequential Equivalent . 61

3.12 ENPS-IPROMETHEE Structure . 64

3.11 Skin Membrane . 64

3.13 Core Membrane (For a single attribute) 65

3.14 Final ranking . 71

3.15 Sensitivity analysis for material selection 72

3.16 Final ranking for green material selection 74

3.17 Sensitivity analysis for green building selection 75

4.1 Sample PeP File (Florea and Buiu, 2017, 2018) 78

4.2 XML File . 80

4.3 Tool Structure . 82

vii

4.4 File Conversion: PeP to XML . 83

4.5 File Conversion: XML to PeP . 85

4.6 Value Transfer: to PeP . 87

4.7 Output format PeP . 87

4.8 Value Transfer: XML to XML . 89

4.9 Output format XML . 90

4.10 Membrane System for Function 1 . 95

4.11 Membrane System for Function 2 . 95

4.12 Membrane System for Function 3 . 95

4.13 Membrane System for Function 1 - Problem 2 96

4.14 Membrane System for Function 1 - Problem 2 97

4.15 Seed Membrane 1 for Case Study 2 and 3 99

4.16 Seed Membrane 2 for Case study 2 and 3 (Complex Programs) 100

4.17 PeP file format (Florea and Buiu, 2017, 2018) 105

4.18 GPU Kernel level Operations . 109

4.19 Interaction diagram . 111

4.20 Normal 1000 Programs . 113

4.21 Normal 2000 Programs . 114

4.22 Normal 5000 Programs . 114

4.23 Normal 10000 Programs . 115

4.24 Multiwrite 250 Programs . 116

4.25 Multiwrite 500 Programs . 117

4.26 Multiwrite 1000 Programs . 117

4.27 Multiwrite 2000 Programs . 118

4.28 Multiwrite 3000 Programs . 118

5.1 ENPS-ITOPSIS Structure . 129

5.2 ENPS-ITOPSIS execution flow . 130

5.3 ENPS-MTOPSIS execution flow . 131

5.4 Membrane System for Step 1 . 132

5.5 Membrane System for Step 2 - Finding Minimum 134

viii

5.6 Membrane System for Step 2 - Finding Maximum 135

5.7 Membrane for Step 3 . 136

5.8 Membrane System for Step 4 . 137

5.9 Membrane System for Step 1 (Modified) - ENPS-MTOPSIS 138

5.10 Membrane System for Step 4 (Modified) -ENPS-MTOPSIS 139

5.11 Ranks of Services . 142

5.12 Sensitivity Analysis for ENPS-ITOPSIS 142

5.13 Sensitivity Analysis for ENPS-MTOPSIS 143

5.14 Sensitivity Analysis for IAHP . 145

5.15 Sensitivity Analysis for IPROMETHEE 145

5.16 Kendall Tau Distance Ratio Comparison 147

6.1 Basic Workflow Components (Bharathi et al., 2008) 150

6.2 Cloud Workflow Basic Structure . 151

6.3 P System based Workflow Model . 153

6.4 Membrane System for Sub-problem 1 153

6.5 Membrane System for Sub-problem 2 155

6.6 Workflow Scheduling for 5 Tasks . 156

6.7 Workflow Scheduling for 10 Tasks . 157

6.8 Workflow Scheduling for 15 Tasks . 157

6.9 Workflow Scheduling for 20 Tasks . 158

6.10 Workflow Scheduling for 25 Tasks . 158

ix

x

List of Tables

2.1 Tools for specific P Systems . 32

2.2 Generic tools for P Systems . 34

3.1 Standard Random Index (RI) values . 50

3.2 Details of the materials used (Farag, 2007) 68

3.3 Preference matrix for the attributes . 69

3.4 Attributes and their details (Farag, 2007) 70

3.5 Materials and their corresponding attribute values (Reproduced with per-

mission) (Farag, 2007) . 70

3.6 Materials and their corresponding attribute values (Zhang et al., 2017b) . 73

3.7 Materials and their corresponding attribute values (Zhang et al., 2017b) . 74

4.1 File Structure Mapping and Translation for given Example 83

4.2 Membranes equivalent values . 97

4.3 Results for Case study 2 . 101

4.4 Results for Case study 3 . 102

5.1 QoS Parameters and their details (Sun et al., 2019) 141

5.2 Sample service parameter values format 141

5.3 Weights considered for QoS Parameters 141

xi

xii

Acronyms and Abbreviations

ACO Ant Colony Optimization

AHP Analytic Hierarchy Process

ANP Analytic Network Processing

BaaRS Balanced and file Reuse-Replication Scheduling

BRS Best Resource Selection

BTS Balanced Time Scheduling

CAES Cost and Energy Aware Scheduler

CLIPS C Language Integrated Production System

CSMIC Cloud Service Measurement Index Consortium

CSV Comma Separated Values

CUDA Compute Unified Device Architecture

DSL Domain Specific Language

EFT- MER Earliest Finish Time - Maximum Effective Reduction

EFT-MER-EL
Earliest Finish Time - Maximum Effective Reduction Exploring Laxity

Time

EIPR Enhance IC-PCP with Replication

ENPS Enzymatic Numerical P System

xiii

ENPS-IAHP
Enzymatic Numerical P System based Improved Analytic Hierarchy

Process

ENPS-

IPROMETHEE

Enzymatic Numerical P System based Improved Preference Ranking

Organization Method for Enrichment Evaluation

ENPS-ITOPSIS
Enzymatic Numerical P System based Improved Technique of Order

Preference using Ideal Solution

ENPS-MTOPSIS
Enzymatic Numerical P System based Modified Technique of Order

Preference using Ideal Solution

EWSA Efficient Workflow Scheduling Algorithm

FAHP Fuzzy Analytic Hierarchy Process

FCFS First Come First Serve

FMPSO Fuzzy System and Modified PSO

FSV Flexible Selection of VMs

FWS Fault Tolerant Workflow Scheduling

GPU Graphic Processing Unit

GUI Graphical User Interface

HEFT Heterogeneous Earliest Finish Time

HPSO Hybrid Particle Swarm Optimization

HTML Hypertext Markup Language

IaaS Infrastructure as a Service

IAHP Improved Analytic Hierarchy Process

IC-PCP IaaS Cloud Partial Critical Paths

xiv

IOO Iterative Ordinal Optimization

IWD Intelligent Water Drop

IWD-DWS Intelligent Water Drop - Dynamic Workflow Scheduling

KTDR Kendall Tau Distance Ratio

L-ACO L-Ant Colony Optimization

MAUT Multi-Attribute Utility Theory

MCDM Multi-criteria Decision Making

MCT Minimum Completion Time

MeCoSim Membrane Computing Simulator

MoACS Multi-Objective Ant Colony System

MOHEFT Modified Heterogeneous Earliest Finish Time

MPI Message Passing Interface

MSLBL Minimising Schedule Length using Budget Level

MVC Model View Controller

NAHP Neutrosophic Analytic Hierarchy Process

NIST National Institute of Standards and Technology

NPS Numerical P System

NSGA Non-Dominated Sorted Genetic Algorithm

PaaS Platform as a Service

PBTS Partition Balancing Time Scheduling

PCA Peer Cloud Assisted

xv

PMCGPU Parallel Simulators for Membrane Computing on the GPU

PROMETHEE Preference Ranking Method for Enrichment Evaluation

PSO Particle Swarm Optimization

QoS Quality of Service

QuaRAM QoS Aware Cloud Application Management

RDPSO Revised Discrete Particle Swarm Optimization

RMI Remote Method Invocation

RRT Rapidly Exploring Random Tree

SaaS Software as a Service

SBML Systems Biology Markup Language

SimCM Simulador de Computacion con Membranes

SMI Service Measurement Index

SNUPS Simulator for Numerical P System

TCR Task Completion Rate

TOPSIS Technique of Order Preference using Ideal Solution

UDP User Datagram Protocol

VM Virtual Machine

VRTR VMs Reserve Time Rate

XML eXtensible Markup Language

xvi

Chapter 1

INTRODUCTION

Cloud Computing is one of the most used and also one of the most popular technolo-

gies that is available today. There are several components of cloud computing that are

being continuously enhanced and researched upon. Among these, two important topics

are Service Selection and Workflow Scheduling in Cloud. From time to time, there have

been several advancements in these areas. The thesis work deals with such advancement in

both the areas. The first work is around service selection in cloud where membrane-based

algorithms for service selection are proposed. The proposed methods are implemented and

results are analysed. Further two tools assisting the implementation are proposed. These

two tools are also stand alone contributions to the membrane computing community. The

next work, namely, Workflow Scheduling is considered and similarly, a membrane-based

workflow scheduling algorithm, based on membrane model, is proposed. It is also imple-

mented and the results are analysed.

Cloud computing is a convenient way to get an on-demand access to a shared pool of com-

puting resources. These resources are configurable. As a technology, this has become very

popular over the past decade. There are several definitions of cloud computing, and two

most accepted definitions are by National Institute of Standards and Technology (NIST),

USA and one business oriented definition given (Buyya et al., 2009). The NIST definition

states that, there are five properties which decide the reason for a technology being cloud

or not. There are five essential characteristics of cloud (Mell et al., 2011):

• On Demand Service

1

• Broad Network Access

• Resource Pooling

• Rapid Elasticity

• Measured Service

In simple terms it follows pay as you go model where the user has to pay only for what

is being calculated in standard units of time. In this era internet is considered as a utility

and it is perennial technology that is being used by many users all over the world. From

technological perspective and business perspective, cloud computing considers internet as

its base. The main motivation behind cloud computing is to allow users to use any type

of technology on lease basis so that anyone can use this with minimum requirements of a

browser and internet connection on the users side. Cloud computing primarily has three

important categories based on its service type, these are called as service models:

• Infrastructure as a Service (IaaS)

• Platform as a Service (PaaS)

• Software as a Service (SaaS)

IaaS model provides computing infrastructure to the user, usually as Virtual Machine

(VM). VMs of different sizes are considered and based on the users requirement these

are chosen by the user. Often these services are available according to some predefined,

fixed sizes, which depend on the need of the user (its application). The primary categories

include Nano, Micro, Memory intensive, Compute intensive etc.; and the user selects a

VM according to the application. The next category is PaaS, where ’platform’ is given as

a service. The platform here is any module that allows users to create application using

platforms, like Google App Engine. SaaS is a service model, where software is given

as a service to the users. Users can use an individual copy of the software on payment

basis (per unit time). An important property of these types of systems is multi-tenancy.

Multi-tenancy is a property by which multiple instances of an application with shared

resources are given as service to the user. The instances are independent functional units

2

with primarily hardware resources being shared and the sharing details are abstracted from

the user (Mell et al. (2011)).

This study concentrates on VMs which are given as part of IaaS cloud. The organiza-

tions offering the service are termed as Cloud Service Providers (CSPs), also specifically

referred to as IaaS provider. There are several CSPs all over the world. The number of

these providers goes beyond 100 and every cloud provider is considered to have a number

of varied services ranging from 4 - 20. Overall there are more than 1.5k services available,

to be chosen from. The choice of service selection usually takes place through a service

broker, who is an intermediate party, between the service user and provider. Though a

service broker performs many tasks, their primary job is to allow the users to select the

services. All the properties collectively allow quantification of service features, which

gives rise to the use of specific parameters for service evaluation. This is internally done

based on the parameters which are called Quality of Service (QoS) parameters. QoS pa-

rameters are the essential indicators primarily responsible for facilitating service selection.

Cloud Service Selection often involves ranking the given services, based on these QoS val-

ues. Thus, the service with the most optimal QoS values is considered as the best. There

are many methods for selecting the optimal solution for selection, these are analysed in

literature review and thereby research gaps are identified.

Workflow Scheduling in cloud is another part of the cloud computing technology where

tremendous research is going on. Workflows are a set of interdependent tasks that have

usually one entry point and one exit point. A workflow is aimed at doing a single big task

collectively divided by interdependent smaller tasks. The process of mapping these tasks

of workflow into different processing units (VMs) is called workflow scheduling in cloud.

There has been a lot of work in this area and these have been analysed in section 2.1.

The aim is to research whether any serial or parallel bio-inspired models are available

for solving these above mentioned problems and identify the gaps in the literature.

3

1.1 Gaps Identified in Existing Literature

After analysing the literature (in section 2). There are some research gaps that have been

identified as follows:

• There are no inherently parallel model based solutions available for cloud service

selection process

• There are no natural computing models used for this problem

• There has not been any significant applications of P System for cloud service selec-

tion

• There are many tools for Natural Computing but there exists no tool that supports

multi-membrane system execution and no user-friendly Python based parallel simu-

lator, which can be used for service selection is available

• There are no inherently parallel natural computing based models for workflows

scheduling in cloud

To effectively tackle these research gaps, Membrane Computing-based solutions and

tools are proposed for service selection in cloud and workflow scheduling in cloud.

1.2 Problem Statement and Objectives

The primary aim of this project is to Design and Develop Parallel methods for Cloud

Service Selection and Cloud Workflow Scheduling. The study is divided into two major

components. The first part of this work is to primarily solve the problem of cloud service

selection. In literature, there are several approaches that have been proposed for service

selection in cloud but there are only few service selection algorithms that are inherently

parallel. The aim of this work is to design a service selection algorithm for cloud, which is

efficient. To be specific there are several parameters that have to be considered for service

selection. These are generally QoS parameters that have a significant impact on the service

selection. Based on these parameter and using a suitable method, the services are being

selected.

4

The second part concentrates on solving the problem of Workflow Scheduling, that can

be termed as aggregate service execution. In simple terms, as an extension of the previ-

ous problem, it consists of several services which work in a group as an aggregate and

these aggregate services work in coordination with each other (Workflow). This approach

concentrates on scheduling these services with inter-dependencies. As the number of ser-

vices increases the scheduling problem can be far more complex than the service selection

problem. Thus, better mechanisms are required for both the problems.

There are three Research Objectives listed as follows:

Research Objective 1 (RO 1):

To Design a Parallel Service Selection Mechanism using P System

Research Objective 2 (RO 2):

To Implement the Designed Parallel Service Selection Mechanism for a Cloud

Research Objective 3 (RO 3):

To Design and Develop a Parallel Workflow Scheduling Mechanism using P System for

Cloud

1.2.1 Objective 1: To Design Parallel Service Selection Mechanism
based on P System

The objective is to develop a parallel service selection model. The service selection model

developed, is based on Membrane Computing. This is a unconventional and natural com-

puting model which is significantly different from conventional computing models. Mem-

brane Computing model is realised using P System. The conventional model is sequential

in nature whereas P System is maximally parallelizable model.

There are several variants of P System available. Primarily there are two classifications;

Symbol based P Systems and Numerical based P System. The symbol based P Systems in-

clude all the P System models that were proposed in the initial phases, when this paradigm

came into existence. This involves classical definition of P System, where different prob-

lems have been solved by using multi-sets as inputs and outputs. Later in 2006, a variant

5

of P System was proposed by Păun and Păun (2006) called as Numerical P System (NPS).

This is a different kind of variant which deals with numerical values instead of multi-sets

or strings in some cases. NPS structure retains the property of maximal parallelism and it

has been extensively popular for numerical problems. Another version of NPS is called as

Enzymatic Numerical P System (ENPS) and has been proposed by Pavel et al. (2012). It

is better than NPS as it offers additional control over the basic components of membrane.

In this study, ENPS is used for solving the Service Selection problem.

As part of the first objective, methods related to generic service selection are proposed.

The first method (ENPS-IAHP) is primarily proposed for weight calculation of the at-

tributes and the second method is for service selection (alternative selection) for a generic

Multi-Criteria Decision Making (MCDM) scenario (ENPS-IPROMETHEE).

1.2.2 Research Objective 2: To Implement the Designed Parallel Ser-
vice Selection Mechanism for a Cloud

The second objective is one of the primary contributions of this thesis. Here a couple of

method for service selection in cloud are proposed. These methods are based on amalga-

mation of MCDM method (particularly ITOPSIS) and ENPS. These methods are specif-

ically designed for cloud based services. Two robust methods for cloud service ranking

(selection) have been developed and implemented. The results are compared with stan-

dard methods and the proposed approach is found to be robust.

To realise the capability of the proposed ENPS approaches, tools that can completely

simulate the existing work are needed. Therefore, two useful tools are developed, that

have been discussed in the coming sections. These developed tools have later been used

for realizing the proposed methods. The first tool is for multi-membrane system execution;

as the problem which is dealt with involves multi-membrane systems and a generic tool is

required for executing the proposed models. The second tool (GPUPeP) is a GPU based

tool which simulates the exact ENPS model with complete parallelization using Graphical

Processing Units (GPUs).

6

1.2.3 Research Objective 3: To Design and Develop a Parallel Work-
flow Scheduling Mechanism using P System for Cloud

The third objective is to Design and Develop a Cloud based workflow scheduling algorithm

for efficient workflow scheduling considering reduced makespan. A workflow contains

many tasks which are dependent on each other. Scheduling workflows is a NP-Complete

problem, and there is no polynomial time algorithm to perform workflow scheduling accu-

rately. A method based on the amalgamation of a Heuristic technique and inherently paral-

lel membrane-based ENPS is proposed. The proposed model involves a multi-membrane

system that is used for generating the sequence of schedule and subsequently makespan is

calculated which is compared with standard approaches.

1.3 Research Methodology

A quantitative research methodology has been followed to analyze the results obtained

during this research work. In the initial stage, a critical review is conducted on the related

research works. The research methodology consists of five phases which are described as

follows:

Phase 1: This consists of critical review of all the approaches coming under the purview

of the project with a gap analysis at the end. A critical review has been done according

to specific areas of research and after analysing the related works, a review is written.

This phase is required, to know about the existing research works present in this area and

to further carry out an accurate gap analysis which facilitates proceeding in the correct

direction.

Phase 2: This phase involves the first part of design and implementation of the proposed

solution using membrane computing paradigm. Specifically, Numerical P System (NPS)

variant called as Enzymatic Numerical P System (ENPS) is used, as the model is suitable

for the problem that is intended to be solved. Initially, a method that allows calculation

of weight is considered (Analytic Hierarchy Process). Further, a tool is developed which

allows multiple membrane systems to be used together as a single entity.

Phase 3: This phase involves design and development of first service selection method.

7

An outranking based method named as ENPS-IPROMETHEE is developed. This is a

single membrane system based method. The method is designed and used with PeP,

Python-based tool for realizing ENPS. The proposed method allows combining the out-

put of ENPS-IAHP, if required or direct assignment of weight is allowed. After the

attribute weights and details of the alternatives are passed, the membrane based ENPS-

IPROMETHEE gives the output. The results are compared and analysed, by its structure

this method is inherently parallel and it proves to be sensitive in nature.

Phase 4: This phase involves design and implementation of robust membrane-based

method for cloud service selection. The work proposes ENPS-ITOPSIS, where the weight

and alternative corresponding weight attribute is considered as input and the output ob-

tained is ranklist of the given alternatives. As this method is an inherently parallel model,

GPU based tool called GPUPeP is developed to implement membrane system. The tool

only works for Enzymatic Numerical P System. The results show that the tool is better

than the existing tools available. This tool is used for simulating multi-membrane system

model called ENPS-ITOPSIS in a parallel manner.

Phase 5: A Workflow Scheduling method in cloud based on ENPS model is designed and

implemented. This workflow based ENPS mode primarily gives the sequence of sched-

ule based on which the the makespan is obtained. The results show that the proposed

membrane-based model is better than other few standard approaches.

1.4 Thesis Contributions

Few contributions of the thesis have been listed below:

• Membrane-based Weight Determination method: A membrane-based attribute

weight calculation method based on ENPS and IAHP is designed and developed.

• Membrane-based MCDM method: A membrane-based MCDM method is pro-

posed (ENPS-IPROMETHEE) for selecting best alternatives. The results show the

algorithm to be sensitive to weight changes.

• Multi-membrane System Execution Tool: A multi-membrane system execution

8

tool using Python has been developed. The tool is one of its kind, that allows to

combine several membrane systems. Additionally it allows inter-conversion of XML

based membrane system to PeP based membrane systems and vice-versa.

• Membrane-based Cloud Service Selection Method: ENPS based service selection

methods, for cloud based services is proposed. The proposed methods are specifi-

cally designed for cloud service selection and thus the results indicate it to be robust

when compared with standard methods.

• GPUPeP: GPU and Python based tool for ENPS: GPUPeP is a tool based on

Python and CUDA, that allows to simulate ENPS models. The results have been

analysed with different case studies and these tools prove to be significantly better

than the other contemporary tools.

• Membrane-based Workflow Scheduling in Cloud: Membrane-based workflow

scheduling for cloud is proposed. The method is based on ENPS where it is used

for generating the schedule, and based on which the makespan is calculated and it

is compared with other contemporary standard methods. The results show proposed

algorithm to be better.

1.5 Thesis Structure

The rest of the thesis is organized as follows:

• Chapter 2 presents an introduction and overview of recent works in the area of cloud

service selection, Membrane Computing Application, Membrane Computing Tools

available and related workflow scheduling algorithms

• Chapter 3 (RO 1 and RO 2) presents the membrane based weight calculation method

called ENPS-IAHP, further this may be used for the sensitive method ENPS- IPROMETHEE

that has been proposed in this chapter. Both the methods are elaborated and its re-

sults are analysed.

• Chapter 4 (RO 2) is completely devoted to the stand alone tools that have been de-

veloped as part of this work. The first tool is for executing multiple membrane

9

systems together additionally they allow file inter-conversion between two standard

ENPS description formats. The second tool is a simulator for ENPS and is based on

Python and uses GPUs at the back end.

• Chapter 5 (RO 1 and RO 2) elaborates on the proposed method of service selection

for cloud based services named ENPS-ITOPSIS. This is an inherently parallel robust

method. The results have also been analysed and compared in detail.

• Chapter 6 (RO 3) is about membrane-based method for workflow scheduling in

cloud. This method is ENPS based and generates proper sequence of the sched-

ule, based on which scheduling is done. The resultant makespan is compared with

the standard methods and the proposed method proves to be better than the others.

• Chapter 7 presents the thesis summary and conclusions of the research work. This

chapter also highlights some of possible future research works.

10

Chapter 2

LITERATURE REVIEW

This chapter presents a literature review on several important topics that are part of

the problem being solved. Cloud Service Methods, particularly Multi-criteria Decision

Making (MCDM) Models, for Cloud Service Selection are considered. Research Gaps are

identified. Diverse Applications of Membrane Computing Models, tools used for realizing

Membrane Computing Models and different suitable P System models available for solving

the current problem are discussed. Further, a discussion on methods available for cloud

workflow scheduling is presented.

2.1 Cloud Computing

As per the definition of National Institute of Standards and Technology (Mell et al., 2011),

cloud computing is a model which is available anytime and anywhere i.e., it can be used

any time; whenever needed, for accessing the resources (Hardware) and any part of the

world, provided that there is internet connection. This cloud model consists of essential

characteristics like on-demand self service, broad network access, resource pooling, rapid

elasticity and measured service (Mell et al., 2011). There are three basic service models,

namely Infrastructure as a Service (IaaS), Platform as a Service (PaaS) and Software as a

Service (SaaS). There are primarily four deployment models namely Private Cloud, Public

Cloud, Hybrid Cloud and Community Cloud.

IaaS is considered as the base for all the contributions made in the thesis, and it is

11

related to cloud infrastructure where a cloud service refers to Virtual Machines (VMs).

There are several technologies in cloud that are essential for a cloud to work, out of which

virtualization is one of the most important (Mell et al., 2011). Virtualization allows the

cloud to create several virtual machines on a single physical machine. The created VMs act

as different machines and perform the computation as separate physical machines would

do.

The primary contributions of the thesis include Cloud Service Selection approach

based on membrane model, tools assisting the implementation and workflow scheduling

using membrane model. Thus, the specific model that is proposed is obtained after a

thorough literature review. Reviewing of literature is done in a certain pattern; the first

component is about cloud service selection and the algorithms related to cloud service se-

lection. The second module of literature deals with the membrane computing models that

are available and also the membrane tools available as part of literature. Using this the best

tools are selected along with the best membrane models suitable for the problem. Further,

second logical part of the thesis involves workflow scheduling in cloud; in the literature,

workflow related scheduling algorithms with its classifications are discussed.

2.2 Service Selection in Cloud

Cloud Computing is a decade old technology which has changed the landscape of the

internet-based business model (Buyya et al., 2009). This technology surfaced unheralded,

a decade ago and has been growing since. It now stands with several inherent complex

problems, as a result of its expansion. Out of several issues being researched, service

selection is one of the prime issues which is getting special attention. Service selection

is a process of selecting one, from a pool of available services often based on multiple

Quality of Service (QoS) attributes. These QoS attributes have often tested the favorability

of the services to the user, based on the requirement and aim of the project. There are

three components of a normal cloud service selection model; the service consumers, the

broker and service providers (Sundareswaran et al., 2012). A service consumer is a user

who leases services from the service providers. The broker acts as an interface between the

service consumer and service provider. Brokers allows the consumers to access the service

12

providers. Several service providers are available and the broker handles communication

with a set of service providers. This is the most appropriate place for service selection

algorithm to be present as in 2.1.

Figure 2.1 Cloud Service Selection

Considerable work has been done in this area and each work has a specific advantage.

A Literature Review has been done and some important works are discussed in this sec-

tion. Almost all of the works, except a few, consider sequential model for designing the

algorithm whose complexity increases non-linearly for linear increase in the number of

services. Considering this trend, a parallel natural computing model, for service selection

in cloud is proposed.

There are several studies conducted in the area of cloud service selection. According

to Sun et al. (2014), there are primarily four classification methods for cloud computing;

MCDM based approaches, Optimization based approaches, Logic-based approaches and

other approaches. Out of the four approaches the most popular one is Multi-Criteria based

decision making approach. The paper by Sun et al. (2014) gives a detailed account of these

approaches. Further after 2014, there have been several works in the area of cloud service

selection, specifically using MCDM methods. Discussed further are some important works

13

for service selection in cloud and these primarily use MCDM methods.

Garg et al. (2011) have developed a framework for service selection for cloud comput-

ing. This is one of the first attempts to provide a framework for cloud service selection that

can assist the user to select the Cloud services. The framework uses Analytic Hierarchy

Process (AHP) as the base method for ranking the services in order, according the service

attribute values.

The service attributes are according to Service Measurement Index (SMI); though not

a method, SMI is an important work in this area of cloud service selection. It has been

proposed by Siegel and Perdue (2012) as Service Measurement Index, based on CSMIC

(Cloud Services Measurement Initiative Consortium) directives. It is an elaborate frame-

work, that gives the details of services, that can be measured and used by providing a

hierarchical structure of properly classified cloud service attributes. It is one of the few

attempts to standardize the criteria for cloud service selection and has been used as a stan-

dard in several works (Garg et al., 2011; Somu et al., 2017).

On similar lines, another method by Lang et al. (2018) tries to give a set of services that

can be used for service selection in cloud. They have several considerations like company

sizes, cloud service models, industries and a few others. The criteria is obtained after

applying a Delphi study over these QoS attributes.

Several other approaches use MCDM methods for service selection in cloud. Lee and

Seo (2016) have proposed a Hybrid MCDM model for cloud service selection, using the

combination of Balanced scorecard, Fuzzy Delphi method and Fuzzy Analytic Hierarchy

Process Method (FAHP). The applied methods are better than other methods for several

reasons, one of the primary reason being, reduction in vagueness because of human deci-

sions.

Kumar et al. (2017) have proposed a solution for service selection in cloud using a

MCDM approach interlaced with fuzzy approach. In this study, TOPSIS (Technique for

Order of Preference by Similarity to Ideal Solution) has specifically been used for Decision

Making here. The fuzzy approach aims at capturing the uncertain aspects of attributes in

14

order to give proper result. The proposed approach can be used for objective as well as

subjective attributes. The approach has finally been tested using cloudharmony dataset

(Read, 2014) and it is compared with other MCDM Methods.

Patiniotakis et al. (2015) propose a cloud service selection method for service brokers,

considering preferences, called as preference based cloud service recommendor system

(PuLSaR). It has used fuzzy set theory to handle vagueness of the service metrics and it is

designed to be used with linguistically expressive values.

Abdel-Basset et al. (2018) propose a framework for evaluating cloud computing ser-

vices. Here Neutrosophic Analytic Hierarchy Process (NAHP) is used for service selec-

tion. NAHP allows calculation of weights given the user preferences, it also allows consis-

tency check, to check the proper assignment of weight calculation, thereby assuring correct

assignment of weights. Neutrosophy reduces vagueness involved in criteria. Nawaz et al.

(2018) propose a markov chain based MCDM approach cloud service selection. Markov

chain is used to capture and model uncertainty in the changes and Best Worst selection is

used for checking through changing user selection. The results proved to be more consis-

tent than other AHP based approaches.

Sun et al. (2016) have proposed a hybrid fuzzy framework for cloud service selection

called Cloud-Fuser. A hybrid algorithm based on Fuzzy ontology, Fuzzy TOPSIS and

Fuzzy AHP are considered. One of the points of novelty includes usage of fuzzy ontology

which is applied for service matching. The proposed method is compared with eight other

TOPSIS variants and the proposed approach performs better than other approaches. Kaveri

et al. (2017) use entropy based fuzzy method for MCDM service ranking approach. The

work proposes a method called as E-FPROMETHEE, this method is an integration of

fuzzy method and PROMETHEE method. Cloudharmony based dataset has been used

for the case-study. The dataset has been tested for trustworthiness, untrustworthiness and

uncertainty.

Yadav and Goraya (2018) proposed a two way ranking based service mapping for

cloud. The two way evaluation of service consumers as well as service providers, is consid-

ered. The authors use AHP for calculating the rank in both the cases and then try mapping

15

both the rankings. Sensitivity analysis is made to check the robustness of the proposed

algorithm. The authors implement the proposed work using Cloudsim (Calheiros et al.,

2011) and the execution time of the service mapping algorithm proves to be better.

Al-Faifi et al. (2019) propose a hybrid approach for cloud service selection. The hybrid

approach is on MCDM algorithm. Three methods for doing so, namely, DAMETAL, K-

Means and Analytic Network Processing (ANP). A realtime dataset collected over a year

from Saudi Financial Department (Al-Faifi et al., 2018) is used. Ma et al. (2016) propose a

trust based cloud service selection method; a MCDM algorithm, which is time-aware and

is based on interval neutrosophic set, with the method named as Cloud Service Interval

Neutrosophic Set.

Soltani et al. (2018) propose a QuaRAM (QoS Aware Cloud Application Management)

service recommender system; it is a case based reasoning hybrid system. This uses case

based reasoning with MCDM algorithm, specifically TOPSIS for service selection. They

also propose a Virtual Machine (VM) consolidation method after analysing resource uti-

lization. Further, feedback is monitored and reinforcement learning is used for improving

the system.

Ur Rehman et al. (2014) propose a parallel service selection for cloud, based on QoS

history. The authors use a customized parallel multi-criteria based decision making algo-

rithm. This is one of the first attempts which uses parallel service selection in cloud.

There are few methods which don’t use MCDM Methods. The one developed by Somu

et al. (2018) uses an optimization technique, Bio-inspired method, called as Binary fruit

fly algorithm. They have developed a trust-centric optimal ranking approach. Unlike other

algorithms this is a optimization technique used for cloud service selection. There are

two important concepts namely; hypergraph and fruit fly optimization algorithm, which,

when combined together, give a proper result. The algorithm proves to give an optimal

trustworthy service selection with notable precision and stability. There are also other

similar applications of Bio-Inspired methods in cloud service selection and cloud.

Ghosh et al. (2014) propose a framework for easier cloud service selection. This frame-

16

work is based on an overall perceived interaction risk which also establishes a relationship

between them, trustworthiness and competence of service. Finally a risk model based on

the three factors mentioned above is proposed.

Somu et al. (2017) propose a Hyper-Graph based Computational Model (HGCM) for

cloud service selection. HGCM uses an hyper-graph based technique namely; Minimum

distance-Helly Property for service provider evaluation. Here the SMI model has been

used for evaluation.

Askarnejad et al. (2018) have proposed a cloud service selection algorithm for peer-

assisted environment, which is network and application aware. The method proposed,

Peer Cloud Assisted (PCA), allows service selection in a hybrid cloud environment. The

method uses greedy algorithms, B+ trees and Set theory as its ingredients to obtain proper

results for cloud services.

Based on the literature review of service selection, it is found that,

• Very few instances of parallel cloud service selection are available

• There are almost no natural computing models used for this problem

• MCDM methods have been extensively used for cloud service selection

• There have been many MCDM methods that have been used, out of which AHP and

TOPSIS seems to be more prevalent methods that have been used.

The aim is to propose a parallel, robust model for solving service selection problem

(ranking the services). To create a parallelized model, we aim to choose an inherently

parallel model that can be combined with MCDM properties to obtain a new, wholly par-

allel and robust approach specific to this problem. MCDM based models are chosen as the

base solution because of its structure and proved competence in the area of cloud service

selection.

After studying the service selection problem for cloud and the related literature, it is

observed that the process of service selection can be parallelized. Thus, a suitable parallel

17

model can be applied to this process. Among the methods mentioned in the literature, it

is found that certain MCDM methods which are predominantly used for service selection

(AHP, TOPSIS), can be parallelized and are usually robust in nature. Parallelization can be

done by applying a universal model. According to the requirement, there are several inher-

ently parallel computing models available like Molecular Computing (DNA Computing,

Membrane Computing, Peptide Computing), Amorphous Computing, Quantum Comput-

ing etc. (Kari and Rozenberg, 2008). Primarily the Computing based paradigms have been

considered for our solution as, unlike the other serial technology-based parallel models,

these models are computing paradigms that are inherently parallel.

Among the reviewed models, particularly membrane computing is chosen because it is

an inherently parallel model, simple architecture, many variants with most of them being

Turing universal, has several applications noted as per the literature and one of the impor-

tant reasons is the structural suitability with the problem being solved. Thus, Membrane-

based parallel methods are proposed for cloud service selection. In recent years there have

been several direct applications of membrane computing as membrane algorithms.

A membrane computing model realised as P System is considered. Membrane Com-

puting is a natural computing paradigm whose idea has been conceived by Gheorghe Paun

in 1998 (Dassow and Păun, 1999). In his seminal paper in 2000, he has given the details of

Membrane Computing (Păun, 2000). P System is inspired by the nature, in particular, by

a living cell. This is a natural computing paradigm, where complete conventional model

is being restructured as a membrane. A membrane model has a hierarchical structure of

membranes, where the internal components are disjoint. The outer membrane is called

as skin membrane and all the other membranes are contained inside it. There can be any

number of membranes present inside the skin and all these membranes can communicate

with each other, i.e. they can pass information between them. This structure inherently

supports parallelism, based on which the whole design works. Unlike other parallel mod-

els which have a limited scope or constrained scope of application, P System has a wider

range of application owing to being a computational paradigm. Further, description about

the model is given in Păun (2000); Paun et al. (2010). There are numerous variants of

P Systems available (Paun et al., 2010). Each variant has a different structure and is de-

18

signed for a different purpose. One such specific variant called Enzymatic Numerical P

System (ENPS) is used for the chosen problem of Multi- criteria Decision Making (for

cloud service selection).

2.3 Membrane Computing

Membrane Computing is a natural computing based paradigm which has been proposed by

Gheorghe Paun (Păun, 2000). The device used for realising membrane computing is called

P System. The first model has been proposed in 1998 and further elaborated in 2000. The

basic structure of membrane is as given in figure 2.2. Unlike the conventional paradigm

where the base is a sequential, here the base is completely parallel.

Figure 2.2 Membrane Structure

The important structural elements are as follows:

Membranes: Membranes are defined compartments defined inside which there are

re-writable rules. There are two important types of membranes called as Skin Membranes

and Other membranes (Child Membranes). Skin Membrane is the outermost membrane

with one mandatory skin membrane. The membranes have a hierarchical structure, with

19

the outermost membrane (skin membrane) being upper most in the hierarchy. A skin

membrane can have any number of child membranes.

Rules: Every membrane consists of several rules which are called as evolution rules.

These rules are multi-set based re-writable rules. The base model uses multi-sets and there

are other subsequent models that use strings and numerical values as the basic unit of op-

eration. Primarily however, only multi-sets are used for evolution rules. Each P System

works in a different manner, the only thing in common being parallelism. There are sev-

eral membrane-based algorithms which throw light on various applications of membrane

computing.

2.3.1 Membrane-based Algorithms

Membrane computing paradigm can be effectively applied to multiple problems, as mem-

brane algorithms. There are several applications of membrane-based algorithms and every

variant of the P System (Membrane Computing) has this property, which is usually the pri-

mary reason for going with membrane algorithms. Membrane-based algorithms are either

loosely or strictly based on the membrane computing paradigm.

Several works have been carried out using membrane algorithms; one of the firsts

is image thresholding (Peng et al., 2012, 2013). As an advanced application, Wang et al.

(2012) have also proposed a P System based image segmentation technique based on image

thresholding. Later Huang and Wang (2006) developed membrane-based optimization

algorithms for single-objective optimization.

Clustering is an important area that has been looked into by P System researchers.

There have been several works in this area. The first of its kind is by Peng et al. (2014),

where a simple and effective clustering algorithm using membrane computing has been

designed. Similarly, there have been several other works that have come with this particular

application, where a membrane-based structure is primarily used to enhance the efficiency

of clustering approaches (Peng et al., 2015, 2016, 2017; Hu et al., 2017).

Another promising series of applications of membrane algorithms is for evolutionary

computing, called as evolutionary membrane algorithms, which have been discussed in

20

detail in a paper by Zhang et al. (2014b). Apart from this, there is another application of

membrane computing for swarm-based optimization techniques. In specific, there have

been few works on enhancing Particle Swarm Optimization (PSO), by using membrane-

based algorithms. New Membrane-based PSO approaches give improved results and are

compared with other approaches, that prove to be better (Singh et al., 2014; Wang et al.,

2015).

Another important application of the membrane-based algorithms has been the sudoku

solver. In 2010 Díaz-Pernil et al. (2010) proposed a membrane-based algorithm for solving

the sudoku problem. Several other researchers have further considered this problem. The

latest work by Singh and Deep (2016) is one of the efficient methods of solving the sudoku

problem, where the approach solves easy and medium problems with considerable ease,

giving good efficiency, compared to other similar sudoku solvers. The applications of the

membrane-based algorithms, as discussed in this section, shows its power, and in general,

allows analyzing its suitability to different problems. It is inferred that these kinds of

algorithms are suitable for complex problems, where parallelism can be infused.

To choose an appropriate membrane computing variant, apart from its applications,

several membrane computing variants’ structure and properties have been analyzed. There

are few primary classifications based on the structure; namely, Cell-based P System, Tissue-

based P System and Neural P System (Paun et al., 2010). Among these, the most struc-

turally and functionally suitable to the problem is Cell-based P System. Cell-based P Sys-

tems have a cell (Animal cell) like structure. All the membranes are placed inside a skin

membrane in the hierarchical order, consisting of parent membranes and child membranes.

Within the Cell like membrane system there are few variants like Active membranes with

division rules, Active membranes with creation rules, Transition P systems, Symport/An-

tiport P systems, Stochastic P systems, Probabilistic P systems and Numerical P System

etc. (Paun et al., 2010; García-Quismondo et al., 2009).

The variants of cell like P System can be further classified into two categories, Symbol

based P Systems and Numerical based P System. Most of these variants that have been

built upon this definition are based on multi-sets and strings. Though almost all of these

21

models are universal in nature, but finding a solution for a generic sequential problem with

this setup is a difficult task. The difficulty is not attributed to the use of multi-sets or the

membrane structure but its translation to solve the problem, which are primarily based on

numbers. Thus a P System Model that allows numbers to be used directly can be beneficial.

Considering this, in 2006, Gheorghe Paun et al. have proposed a number based Numer-

ical P Systems inspired by Economics (Păun and Păun, 2006). This is a different kind of

variant that deals with numerical values, instead of multi-sets. NPS structure has retained

the property of maximal parallelism, and it has become extensively popular for mathe-

matical problems. This model is found to be suitable for this research. However, there

is a problem with this model; that of uncontrollable programs and a single program per

membrane. Here, programs are the basic rules (instructions) in the membranes that are

responsible for computation.

Subsequently, this problem has been solved by Pavel et al. (2010), where they have in-

troduced the use of multiple programs for a single membrane and provide a variable, called

an enzyme to control the execution of programs. This is called as Enzymatic Numerical

P System. Further, to support the hypothesis, some work specifically use ENPS to solve

the problem. The first work to apply ENPS to a problem is by Pavel et al. (2012), who

have used it for robot localization problem. This is the first practical application of ENPS.

Earlier, ENPS has been used explicitly for the Pole balancing problem by Llorente Rivera

and Gutiérrez Naranjo (2015). Further, ENPS has been found to be useful in its appli-

cation for robot controllers (Zhang et al., 2017a), where it has been used for the design

and implementation of robot controllers. Later, a robot path planning algorithm, based

on Rapidly-exploring Random Trees (RRT), using ENPS has been proposed by Pérez-

Hurtado et al. (2018). An ENPS simulator specific to this problem has been designed to

generate ENPS based RRT trees for path exploration; thus, eventually, path planning is

done. Further, an enhanced method for the said approach is used for RRT and RRT* algo-

rithm (Pérez-Hurtado et al.). This latest work is one of the best works in this area, which

in addition to the model, proposes a new specific simulator for the RRT algorithm using

Membrane Computing. Another addition to this is the work by Wang et al., who uses this

for a multi-behavior co-ordination controller design for the robot. This work is inspired by

22

the previous works in this area (robots).

If we carefully look at these works, these signify two things; all the works support

parallelism, and these involve real values (numbers) for operation. Thus, researchers have

successfully used ENPS, and in many cases have designed it with a specific simulator for

the problem. Taking a cue from these works, which strictly implement ENPS for some

significant real-time problems, this research proposes a similar ENPS based solution for

our problem.

2.4 ENPS Structure

An important model for numerical based P System is Numerical P System (NPS) (Păun and

Păun, 2006; Pavel et al., 2010). NPS is an off shoot of P System that has been envisioned

by Păun (2000). This model has the same membrane structure but the rules used inside

each membrane are called as programs and they use numerical values.

Further, there is a variant of Numerical P System and it is called as Enzymatic Nu-

merical P System (ENPS). The ENPS has one more variable added to the usual Numerical

P System which is called as Enzyme. The basic advantage of using ENPS over classical

Numerical P System is as follows (Pavel et al., 2010):

• More than one production function per membrane.

• Control over the execution of the rules in each membrane using the enzymes.

The structure of NPS is defined as follows:

∏ = (m,H,µ,(Var1,Pr1,Var1(0)), . . . ,(Varm,Prm,Varm(0))) (2.1)

- H is an alphabet with m symbols (used as labels of membranes),

- m is the number of membranes used in the system, m ≥ 1,

- µ is the membrane structure with m membranes.

- Var1 to Varm are the set of variables that are available.

23

- Var1(0) to Varm(0) denotes the initial value of first to last variable, in sequence, that

have been defined.

- Pr1 to Prm denote the programs that are available in the whole membrane system.

There are two types of programs available for ENPS, one is normal program, as in NPS

given in equation 2.2) (Pavel et al., 2010; Pavel and Buiu, 2012; Leporati et al., 2013),

for a given region i, xl,i, ..,xki,i be some variables from Vari and

let Fl,i(xl,i, ...,xki,i) of a given program Pl,i ∈ Pri and cl,1, ..,cl,n be considered as positive

integers. Leporati et al. (2013)

The programs that have been defined here consist of two parts: a production function

and a re-partition protocol. The production function is like a normal function that uses

variables that have been defined (in that membrane). These production functions are simi-

lar to normal functions, which calculate and give certain output. The only condition being

that the variables used here should be defined within the region of the specific membrane

under which these production functions are also defined.

The next part is called a re-partition protocol; this re-partition protocol consists of

variables that can store the values sent by the production function. This, inadvertently, is

like passing the values of the functions to the variables that may or may not be inside the

available same region. The re-partition protocol may consist of certain values that may be

defined within other membrane regions, but these variables have to be a part of the main

membrane system i.e., must be defined in any of the other membranes.

The re-partition protocol consists of two parts again; one is the distribution fraction

(weight) part, which assigns equal division of weights to the corresponding variables. Here

each variable in re-partition protocol is assigned Z≥1. The value passed on to the produc-

tion function is divided according to the value assigned to the variable proportionately.

Fl,i(xl,i, ...,xki,i) → cl,1 | v1 + cl,2 | v2 + . . .+ cl,ni | vni (2.2)

and the next program, mentioned in 2.3 is for ENPS,

Fl,i(xl,i, ...,xki,i) |e j,i → cl,1 | v1 + cl,2 | v2 + . . .+ cl,ni | vni (2.3)

24

All the programs that have been defined in equation 2.2 and equation 2.3 are based on

cycles or steps i.e. execution at time t. After each iteration or step (time unit t), the values

used in production function are deemed to be consumed, and the values are reset to 0 for

the next iteration (t +1); and the variable which is not used in production function retains

its original value available.

The primary condition to operate using enzymes is that the value of at least one as-

signed variable must always be lesser than the enzyme. In other words, the value of the

enzyme (e j,i) has to be greater than the smallest variable available in the production func-

tion for the program to be true.

If the value of the enzyme that is being applied is lesser than the smallest variable

available, then the condition may prove to be false, and the production function tends to

be inactive. The production functions can be indirectly selected or controlled using the

values of the enzymes. As mentioned earlier, based on the value of the enzyme and the

variable, the function can be active or inactive. This lets the enzymes be used with the NPS

structure, which may allow solving many problems that need the production function to be

selected. Thus it depends on the developer to develop a system that can utilize the power

of enzymes and apply ENPS.

Further, to choose a proper tool to implement the membrane this study has analysed

membrane based tools in detail.

2.5 A Review of Tools Available for Membrane Computing

There are several applications of Membrane Computing. P Systems, the device used to

realise membranes are characterized by high parallelizability. It is bio-inspired computing

paradigm which has a lot of applications because of its inherent structure. It is inspired

by structure and functioning of a living cell. As the concept is based on the living cell, it

is also being seen as a tool to be used to emulate or describe biological processes, which

is one of the important applications of P Systems; this may even revolutionize the way

biological processes are studied.

To realize the power of membrane computing it is necessary to develop the tools that

25

will emulate/ simulate biological processes. There is also a need to have P System tools

that allows the simulation of P System to test / realize its computational properties and

mathematical properties. Both types of the tools are necessary. The number of tools for

the latter is more compared to the former. Initially, there were several tools developed with

the sole purpose of demonstrating the power of P Systems for solving computational and

Mathematical problem and then gradually tools that are being used for several applications

of membrane computing, have been developed.

These tools, apart from testing the P Systems, also allow the user to use P System to

visualize and understand the way P Systems work; thereby giving more clarity to the user

on certain fine issues of P Systems. Most of the systems are born out of research and

are created for immediate necessities / requirement for the researchers. As the membrane

computing paradigm has evolved theoretically, there are several methods and mechanisms

to experience the practical implication of membrane computing. These often come as

simulators.

The simulators or simulation tools can primarily be classified into two, the tools that

concentrate more on biological aspects of membrane computing and help use the mem-

brane computing paradigm for simulating biological processes; and, the set of tools/ sim-

ulators that have been developed for using the membrane computing paradigm for solving

problems related to Mathematics and Computer Science. All the simulators in these two

areas have been discussed in this paper.

There are several tools and softwares that have been developed by different researchers

working on membrane computing. A list of these softwares has been given in the website

that has been maintained for P Systems (RGNC, 2016). There are several initial studies

made on tools for membrane computing. There are also a few surveys that have been done

before (Paun et al., 2010; Martínez-del Amor et al., 2014; Ciobanu et al., 2006). Though

a list also has been maintained (RGNC, 2016), this work is an attempt to classify all the

available tools according to their topic, so that there is a systematic literature review of the

tools that are available for P Systems. Apart from these, there is also some detail about all

the simulators, giving a brief idea about the purpose, language and other properties of the

26

simulator.

As discussed, Membrane Computing is a vast topic. There are many researchers in

this area working and expanding it from all directions. As the research progresses and

development progresses, different types of tools are required for different areas. Thus,

keeping this in view, several tools have been developed regularly according to the need of

the researchers.

The tool classification is based on eventual application of P Systems i.e. computational/

general application or specific application. In this section, simulators/ tools that have been

developed for P Systems are classified. The P System/ application specific tools have been

listed separately and the general tools have been listed separately.

2.5.1 P System tools that are specific to a particular application or
type

This section discusses the details about the tools / simulators that are specific to a type of

P System or specific kind of application. Specific tools refer to the tools:

• That are designed only for a particular type of P System (Transition P Systems (Păun

and Rozenberg, 2002), Numerical P Systems (Paun, 2012) etc.)

• That have a very specific type of application (eg. Generating trees (J Plant (Rivero-

Gil et al., 2011)))

In this section all the tools that come under the above area are considered. The initial

trend of simulators designing has been for a specific type of P Systems. It all started from

designing the simplest transition P System; later there have been several system which

have been designed for specific kinds of P Systems. On the whole, most number of the

simulator are only for specific kinds of P Systems as in table 2.5.1.

Tool/ Software Name of the devel-
opers

Base tool
/Frame-
work
/Language

Purpose/ Ap-
plication

Membrane Computing in
Prolog (Malita, 2000)

Mihaela Malita Prolog
Transition P
System

27

On a LISP Implementation of
a Class of P Systems (Suzuki
and Tanaka, 2000)

Yasuhiro Suzuki,
Hiroshi Tanaka

LISP
Transition P
System

Membrane Software A P Sys-
tem Simulator (Ciobanu and
Paraschiv, 2002; G. Ciobanu,
D. Paraschiv, 2001)

G. Ciobanu, D.
Paraschiv

Visual C++
Two Variants
of P Systems

A CLIPS Simulator for
Recognizer P Systems
with Active Membranes
(Pérez Jiménez and
Romero Campero, 2004)

Mario de Jesus Perez
Jimenez and Fran-
cisco Jose Romero
Campero

CLIPS

For Rec-
ognizer P
Systems
with Active
Membranes

A MzScheme implementa-
tion of transition P systems
(Noval et al., 2002)

Delia Noval Balbon-
tín, Mario J. Perez
Jimenez, and Fer-
nando Sancho Ca-
parrini

MzScheme
Transition P
System

A Software Simulation of
Transition P Systems in
Haskell (Arroyo et al., 2002)

Fernando Arroyo, et
al.

Haskell
Transition P
System

Distributed Simulator for
Transition P Systems (Sy-
ropoulos et al., 2003)

Apostolos Syropou-
los, et al.

Java (with
standard
UDP
Protocol)

Distributed in
Nature, Works
for Transition
P System

Sevilla Carpets (Ciobanu
et al., 2003; Orellana Martín
et al., 2014)

G.Ciobanu, Gh.Paun
and Gh.Stefanescu

Python

Comparing
solutions for
subset sum
problem

SubLP-Studio v0.1 (RGNC,
2016)

Alexandros Geor-
giou

Java
For L System
and P System

A Prolog Simulator for De-
terministic P Systems with
Active Membranes (Cordón-
Franco et al., 2004)

Andres Cordon-
Franco, et al.

Prolog
Deterministic
P

P Systems Running on
a Cluster of Computers
(Ciobanu and Wenyuan,
2003)

Gabriel Ciobanu ,
Guo Wenyuan

C ++, MPI Generic

28

Modelling biological pro-
cesses by using a proba-
bilistic P system software
(Ardelean and Cavaliere,
2003)

Ioan I. Ardelean,
Matteo Cavaliere

-
For Biological
processes

SimCM (Nepomu-
ceno Chamorro, 2004)

M. Isabel Nepomu-
ceno Chamorro

Java
Transition P
System

A simulator and an evolu-
tion program for conformon-
P systems (Frisco and Gib-
son, 2005)

Pierluigi Frisco,
Ranulf T. Gibson

Java
Conformon P
System

A Simulator for confluent P
systems (Gutiérrez Naranjo
et al., 2005)

Gutierrez Naranjo,
Miguel Angel,
Mario de Jesus
Perez Jimenez, and
Agustín Riscos
Nunez

Prolog
For more than
one type of P
System

Simulation Software for
Membrane Approximation
Algorithm (Nishida, 2006)

T. Nishida -

Specifically
designed for
membrane
approximation
algorithm

Vibrio Fischeri (RGNC,
2016)

P. Cazzaniga, D.
Pescini

C
For Biological
Process

Dynamical Probabilistic P
Systems (Pescini et al., 2006)

P. Cazzaniga, D.
Pescini

MPI and C
Probabilistic P
System

Tissue Simulator: A Graphi-
cal Tool for Tissue P Systems
(Borrego-Ropero et al., 2007)

Rafael Bor-
rego–Ropero,
Daniel Dıaz-Pernil,
and Mario J. Perez-
Jimenez

Java and C#

Specifically
designed
for Tissue P
Systems

DasPsimulator (Das and
Renz, 2006)

D. K. Das and T.
Renz

Java

P System
Simulation
with Active
Membranes
for Transition
P Systems

29

A Tool for Using the SBML
Format to Represent P Sys-
tems which Model Biological
Reaction Networks (Nepo-
muceno Chamorro et al.,
2005)

Isabel Nepomu-
ceno, Juan Antonio
Nepomuceno, Fran-
cisco Jose Romero
Campero

CLIPS
To represent
Biological
processes

A Software Tool for Dealing
with Spiking Neural P Sys-
tems (Ramírez Martínez and
Gutiérrez Naranjo, 2007)

Daniel Ramirez-
Martinez, Miguel A.
Gutierrez-Naranjo

Xbase++
and SWI –
Prolog

Spiking Neu-
ral P System

MetaPlab: a virtual labo-
ratory for modeling biologi-
cal systems by MP systems
(Castellini and Manca, 2008)

Alberto Castellini
and Vincenzo
Manca

Java Bio-Systems

Simulation of P Systems with
Active Membranes on CUDA
(Cecilia et al., 2010b)

Jose M Cecilia., et al

C and
C++ pro-
gramming
language
along with
CUDA
Extensions

P Systems
with Active
Membranes

A P-Lingua based simula-
tor for tissue P systems
(Martínez-del Amor et al.,
2010)

Miguel A. Martinez-
del-Amor et al.

P-Lingua

Specifically
designed
Tissue P-
Systems

Parallel Simulation of Proba-
bilistic P Systems on Multi-
core Platforms (Martínez del
Amor et al., 2012)

Martínez del Amor,
Miguel Angel et al.

OpenMP,
P-lingua,
MeCoSim

Probabilistic P
Systems espe-
cially for mod-
eling Ecosys-
tem

Simulating a P system based
efficient solution to SAT by
using GPUs (Cecilia et al.,
2010a)

Cecilia Jose M. et al. CUDA
Solution for
SAT

SNUPS (Buiu et al., 2011)
Octavian Arsene,
Catalin Buiu and
Nirvana Popescu

Java
Numerical
Membrane
Computing

A P–Lingua based Simulator
for Spiking Neural P Systems
(Macías-Ramos et al., 2011)

Macías–Ramos,
Luis F., et al.

P-Lingua
Spiking Neu-
ral Networks

30

JPlant (Rivero-Gil et al.,
2011)

Elena Rivero-Gil, et
al.

Java
Generating
Graphics

A Spiking Neural P system
simulator based on CUDA
(Cabarle et al., 2011b)

Francis Cabarle,
Henry Adorna,
and Miguel A.
Martinez-del-Amor.

CUDA C
Python

Spiking Neu-
ral P System

An improved GPU simulator
for spiking neural P systems
(Cabarle et al., 2011c)

Francis Cabarle,
Henry Adorna,
and Miguel A.
Martinez-del-Amor.

CUDA C
Python

Spiking Neu-
ral P System

A Java-Based P-Lingua Sim-
ulator for Enzymatic Nu-
merical P Systems (ENPS)
(Garcıa-Quismondo, 2013)

M García-
Quismondo et
al.

Java,
P-Lingua

Biological
Process

DCBA: Simulating Popula-
tion Dynamics P Systems
with Proportional Object Dis-
tribution (Martínez-del Amor
et al., 2012)

M.A. Martínez-del-
Amo

CUDA, P-
Lingua

Population
Dynamics
P Systems
Environment
Ecology

A GPU Simulator for Enzy-
matic Numerical P Systems
(ENPS) models in CUDA
(García Quismondo et al.,
2012b)

M García-
Quismondo et
al.

Java,
P-Lingua

Biological
Process

A GPU Simulation for
Evolution-Communication P
Systems with Energy Having
no Antiport Rules (Bangalan
et al., 2013)

Zylynn F Bangalan
CUDA C,
P-lingua

Evolution-
Commu-
nication P
Systems

Simulating a Family of Tissue
P Systems Solving SAT on
the GPU (Martínez del Amor
et al., 2013)

M A Martínez del
Amor et al.

CUDA
Tissue P Sys-
tem

Accelerated simulation of
membrane computing to
solve the n-queens problem
on multi-core (Maroosi and
Muniyandi, 2013)

Maroosi Ali and
Ravie Chandren
Muniyandi.

Visual C++
N Queens
Problem

31

A C++ Simulator for PGSP
Systems (García-Quismondo
et al., 2014)

M García-
Quismondo et
al.

C++
PGSP, Biolog-
ical Process

A P-lingua based for Tissue
P System with cell separation
(Perez-Hurtado et al., 2014)

Ignacio Perez-
Hurtado, et al

P-Lingua
Tissue P Sys-
tem

Simulating Spiking Neural P
systems without delays using
GPUs (Cabarle et al., 2011a)

Francis Cabarle,
Henry Adorna,
and Miguel A.
Martinez-del-Amor.

CUDA ,
Pyhon

Spiking Neu-
ral P System

Antibiotic Resistance Evolu-
tion Simulator (ARES) (Cam-
pos et al., 2015)

Marcelino Campos ,
et al.

Java,
P-Lingua

Biological
Processes

P-Lingua Based Simulator for
P Systems with Symport/An-
tiport Rules (Macías-Ramos
et al., 2015)

Luis F Macías-
Ramos., et al.

P-Lingua Generic

Lulu - A software simulator
for P colonies (Florea and
Buiu, 2015, 2016)

Andrei George Flo-
rea, Catalin Buiu

Python P Colonies

Enhancing the Simulation of
Membrane System on the
GPU for the N-Queens Prob-
lem (Ravie and Ali, 2015)

Ravie Chandren and
Maroosi Ali.

Visual C++
N Queens
Problem

PeP (Florea and Buiu, 2017,
2018)

Andrei George Flo-
rea, Catalin Buiu

Python ENPS

Table 2.1 Tools for specific P Systems

2.5.2 P System tools that are generic in nature

There are a few tools which simulate the P System and allow the users to understand

the working of P System. These system are not designed for specific type of P System.

This does not mean that all the P System types can be realized using these tools, however it

supports more than one or basic simulation of membrane computing. This set of simulators

not only includes the simulators used for computational purposes but also includes the

32

tools that are used for biological application. Thus, these tools are not too specific about

the types of P system they can be used for.

Though there are a few in the list, the one which can really be called as generic tool

is P-Lingua (Díaz Pernil et al., 2008). This is one of the best framework that allows the

users to create any kind of simulator according to their need. This simulator is based on

Java. Using P-Lingua there has been a tool developed, which is called MeCoSim (Pérez-

Hurtado et al., 2010). This tool gives a user, a wide range option and allows the users

to solve and simulate several kinds of computational problems; it also allows the users to

use it for biological processes. Based on P-Lingua, several simulators have been designed.

According to RGNC, there is PMGGPU project by Research Group in Natural Computing,

University of Seville. This project uses primarily P-Lingua to design simulators using

Graphics Processing Unit (GPU); primarily designed with CUDA, these simulators use

GPU for realizing different kinds of P Systems. The generic tools are listed in table 2.5.2.

Tool/ Software Name of the de-
velopers

Base tool
/Frame-
work
/Language

Purpose/ Ap-
plication

Web-PS: Web based simu-
lator for Membrane Com-
puting (Bonchiş et al.,
2005)

Cosmin Bonchi,
Cornel Izba,
Dana Petcu,
Gabriel Ciobanu

Embedded
C, CLIPS

Web Based
Simulator

SL_P Simulator (Gheo-
rghe, 2010)

M Gheorghe et.
al

Scilab
Biological
Processes

C_PSimulator (Gheorghe,
2010)

M Gheorghe et.
al

C
Biological
Processes

PSim (Bianco et al., 2007) Luca Bianco et al. Java Bio-Systems

Cyto-Sim: Biological
compartment simulator
(Sedwards and Mazza,
2007)

S Sedwards et al. J# Bio-Systems

33

P-Lingua 4.0: a program-
ming language for Mem-
brane (Díaz Pernil et al.,
2008)

Daniel Díaz
Pernil et al.

P-Lingua
Core

Generic P Sys-
tem

MeCoSim: Membrame
Computing Simulator
(Pérez-Hurtado et al.,
2010)

Ignacio Perez-
Hurtado, et
al.

P-lingua Generic

Infobiotics Workbench
(Blakes et al., 2011)

Jonathan Blakes
et al.

Jmcss-
SBML,
Standalone
software

Generic Tool
for Biological
aspects of
membrane
computing

Improved implementation
of simulation for mem-
brane computing on the
graphic processing unit
(Maroosi et al., 2013)

Maroosi Ali et al.
CUDA,
C++

General

MeCoGUI: A Simple,
Java-Based Graphic User
Interface for P-Lingua
(Garcia-Quismondo)

M García-
Quismondo et
al.

Java,
P-Lingua

Generic

Table 2.2 Generic tools for P Systems

2.5.3 Analysis

This section quantitatively analyses the tools. Though the number of tools developed for

computational aspect of Membrane computing is more, there have been considerable de-

velopment for biological processes off late. Though the number of tools that have been

developed for biological processes are less, there has been a considerable amount of re-

search going on in this area.

There is an increase in computational simulation in the later years because of the de-

velopment in P-lingua. As a language / framework, one of the most used language / frame-

work is P-lingua. After its development there has been consistent work in this area and

34

Prolog Python Java C C++ Visual C++ P-Lingua
Languages

0

2

4

6

8

10

12

Co
un
t o

f t
oo
ls

Membrane Computing Tools based on Languages
Counts

Figure 2.3 Tools based on their language/framework

several tools have been created using this framework (Figure 2.3). Though this framework

is developed by using Java, P-lingua based tool has not been included for classification

under Java so as to know specifically the number of tools that exclusively use P-lingua and

the tools which exclusive use only Java (Not Part of P-lingua).

From the tables in the previous sections (Table 2.5.1 and Table 2.5.2) it is seen that,

there is a rise in P-lingua in recent years, such that no other language or framework is

preferred, except C++ for sequential simulation and Python (Florea and Buiu, 2015). In

many places CUDA with C is used but it is mainly being used with P-lingua.

From the review of the tools, related to membranes, it is perceived that for ENPS there

are only few tools available. There has been significant works, though less in number, that

deal with the simulation of NPS (specifically ENPS). Pavel et al. (2010) have introduced

the ENPS, the membrane computing model for which this paper also proposes a Java based

Simulator called SNUPS (Pavel et al., 2010; Buiu et al., 2011), a software implementation

of ENPS. It is the first tool developed for ENPS. It is a desktop application with two major

35

components: A GUI and a computation model. SNUPS, as a batch application, takes the

input of the membrane model as an XML file and gives output in GUI. The computation

engine of the simulator uses multi-threading in Java.

Another tool named Sim P has been developed by Brandusa Pavel (2011). This is again

a Java-based tool for ENPS execution. This tool has first been used for robot localization

problem. This tool is a significant contribution, for two important reasons: This is one of

the first tools that is used for a practical real world problem (i.e. Robot localization (Pavel

and Buiu, 2012; Pavel et al., 2012)) and the core structure of SimP is used by another

Java-based tool for ENPS (Garcıa-Quismondo, 2013). Following this, a Java-based tool

has been developed (Garcıa-Quismondo, 2013). This tool is one of the best Java-based

implementations of ENPS. The tool requires the input (membrane structure) to be given in

XML format.

After this is the era where an attempt has been made to exploit parallelism in the model.

Quismondo et al. (García Quismondo et al., 2012a; García-Quismondo et al., 2013) have

proposed a GPU based simulator for ENPS. The simulator is written in CUDA C. This

simulator aims to provide a significant acceleration of execution times, as compared to the

then state-of-the-art sequential ENPS simulators. The paper provides a detailed account of

the structural and functional design of the simulator. This is an important development in

the area of simulation and modelling for ENPS, as it uses GPU for the first time. This is

significant work, as membrane computing is a parallel paradigm (structure) and simulating

this in an environment that supports parallelism is the most appropriate thing to do. This

tool supports XML based input for membrane structure. With this tool, the authors have

also developed a sequential counterpart to facilitate the tool users to analyze a designed

membrane in both sequential and parallel manner. Further, in another work, the authors

elaborate on the use of the GPU based tool for large scale problems (García Quismondo

et al., 2012a). There is also work that use GPU’s for simulation (Cabarle et al., 2019;

Maroosi et al., 2014), which are for different variants of P Systems (not ENPS) and dif-

ferent applications. Further there is a work that elaborates on the existing simulators for

membrane computing, which use GPU’s for simulation (Martínez-del Amor et al., 2015).

36

There is, in recent times, significant work in the area of ENPS implementation by

Pérez-Hurtado et al. The authors propose ENPS based model for Rapidly Exploring Ran-

dom Tree (RRT) and its variant RRT*, which are used for robotic path planning. The pro-

posed solutions are emulated (using parallelism). There are two implementations based

on CUDA and OPENMP, where a speedup upto 24x is achieved, against the best multi-

threading configuration and a speedup of upto 6x is achieved against sequential implemen-

tation, respectively (Pérez-Hurtado et al.).

Until now, all the tools discussed till now for ENPS are either based on C/C++ or Java

and using of them use XML based structure for representing membranes. In 2017, Florea

and Buiu (2017, 2018) have developed a Python-based open source simulator for ENPS

called PeP Simulator. There are certain features of the tool that makes it different from

others. First being its development in Python. Second is its ease of use (no installation

other than Python is required). The third is an easy way of giving input i.e. the input

is given as a pep file, which is a membrane representation in a human-readable format.

This tool is easy to use, but has a drawback that it supports only sequential execution and

doesn’t support real-time parallel execution.

This study has lead to the development of a simulator to maintain the ease of use of

PeP simulator with efficient parallel execution, by preserving the actual parallel paradigm

of ENPS. It uses the same input format and interface as defined by Florea et al. (Florea and

Buiu, 2017, 2018) to maintain compatibility between the serial system and the developed

parallel system. GPU’s are used with CUDA in C, to enable parallelism and to achieve

greater speed up. This work has been elaborated in the upcoming chapters.

2.6 Workflow Scheduling Algorithm in Cloud

Workflows are an integral part of cloud ecosystem. Out of several important processes

associated with workflows, scheduling tends to be an important one. A proper scheduling

approach is an important component of a good workflow management system, as it ensures

optimal utilization of resources. Many researchers have proposed several heuristic and

meta-heuristic algorithms for scheduling cloud workflows. Often the objectives considered

37

are makespan, cost or energy.

There are several techniques (Heuristics and Meta-Heuristics) that have been used.

Heuristics is a class of techniques where, according to the nature of the problem, several

specific techniques are applied to solve the problem more efficiently and quickly (Wu et al.,

2014; Rodriguez and Buyya, 2014; Arabnejad et al., 2018). Usually, these techniques are

used for problems where exhaustive solutions are a time consuming process (Many real

world problems). The other class of solutions, called meta-heuristic approaches which

is similar to heuristic for having optimal solutions that aims to solve the problem in an

non-exhaustive and often in a probabilistic manner. There is a primary difference between

heuristics and meta-heuristics, the former being problem specific and the latter not being

so. Meta-heuristic approaches are primarily used where there is no exhaustive solution

possible and there is a need of approach that can approximately solve the problem with

the most optimal value. The problem of workflow scheduling considered in this study, is

a similar problem where obtaining exhaustive solutions is not possible. There are several

meta-heuristic approaches for solving this, out of which many are bio-inspired approaches.

The final objective of the work is to propose a workflow scheduler, based on membrane

computing paradigm. Workflow scheduling is a NP−Complete problem. There are many

heuristic and meta-heuristic algorithms that have been proposed for this problem in liter-

ature (Pandey et al., 2010; Wu et al., 2014; Zhu et al., 2015; Kumar and Sharma, 2018).

Usually, heuristics find out solution faster than meta-heuristic where as the latter con-

sumes more time due to exploration of solution space. The advantage of meta-heuristic,

over heuristic is its generality, thereby, allowing us to apply the algorithm to be applied

anywhere, wherever it is suitable. There have been many works in this area and these

works have been discussed as follows:

Calheiros and Buyya (2013) have proposed Enhanced IC-PCP with Replication (EIPR)

algorithm which completes user tasks within given deadline in public cloud. Deadline con-

straint in smaller budget is the primary concern of this algorithm. They divided this prob-

lem into two sub-problems: of provisioning and scheduling where provisioning deals with

finding optimal number of virtual machines whereas scheduling problem deals with map-

38

ping the order of allocation of tasks to virtual machines. The authors have used Cloudsim

as a simulator. EIPR gives better results as compared to IC-PCP algorithm.

Zhang et al. (2014a) have proposed a new method, Iterative Ordinal Optimization

(IOO) method. The proposed method is used to get best overhead analysis such as time and

space complexity in workflow scheduling by using iterative approach. IOO method proves

to be better than the algorithms compared. Another work related to workflow scheduling

is presented by Rodriguez and Buyya (2014) using a meta-heuristic algorithm, Particle

Swarm Optimization (PSO) is used for resource provisioning and task scheduling on sci-

entific workflows on IaaS, thereby minimizing execution time and meeting deadline con-

straint. They have used cloudsim as a simulator. This algorithm has been compared with

several other algorithms, namely, IC-PCP, PSO, and SCS and has proved to be better than

them.

Another work related to workflow scheduling is presented by Wu et al. (2014) who

have proposed a heuristic algorithm named Critical Greedy Algorithm. This algorithms

main goal is to reduce the workflow’s end to end delay under financial constraint. This

has been implemented in cloudsim. Zhu et al. (2015) have proposed an Evolutionary

Multi-objective workflow scheduling algorithm which optimizes both cost and makespan

on IaaS. This algorithm gives better results when compared with SPEA2, MODE, NSPSO

and Modified Heterogeneous Earliest Finish Time (MOHEFT).

Li et al. (2015) have developed a Cost and Energy Aware Scheduler (CEAS) algo-

rithm to minimize the execution cost and reduce energy consumption, by meeting deadline

constraint. CEAS is a sequence of four algorithms which are VM selection algorithm,

sequence tasks merging algorithm, parallel tasks merging algorithm and VM reuse algo-

rithm. The experiment is conducted by using cloudsim. This final algorithm is compared

with HEFT, MOHEFT, EES and EHEFT algorithms for energy efficiency and proves to be

better than them.

Rimal and Maier (2016) have proposed a novel approach for cloud based workflow

scheduling in compute intensive workflow applications. The main objective of the algo-

rithm is to minimize the makespan, cost of execution of workflows and utilize idle re-

39

sources. The proposed algorithm is compared with First Come First Serve (FCFS), Easy

Backfilling and Minimum Completion Time (MCT) algorithms to evaluate performances.

Simulation has been done on Cloudsim simulator and the proposed algorithm proves to

be better than others. Chen et al. (2017a) have proposed a novel scheduling approach Se-

lective Tasks Duplication (SOLID). SOLID−R, Earliest Finish Time - Maximum Effective

Reduction (EFT−MER) and EFT-MER with Exploring Laxity Time (EFT−MER−EL) al-

gorithms are compared for the performance evaluation of the proposed approach. Yao et al.

(2017) proposed a novel algorithm ICFWS (Fault Tolerant Workflow Scheduling). This al-

gorithm is evaluated on workflowsim toolkit. ICFWS is compared with Task Completion

Rate (TCR) and VMs Reserve Time Rate (VRTR) and both the algorithms.

Wu et al. (2017) have proposed a meta-heuristic algorithm L-Ant Colony Optimization

(L-ACO). The main objective of the algorithm is to minimize execution cost of work-

flow by meeting deadline constraint. L-ACO algorithm gives better performance when

compared to the IC-PCP, PSO and PROLIS. Chen et al. (2017a) worked on a method for

workflow scheduling called as Multi-Objective Ant Colony System (MOACS) approach

for cloud workflow scheduling. In this paper MOACS approach is compared with HEFT,

Modified HEFT, EMS-C, NSGA - II. MOACS gives best performance when it compares

to these five algorithms. Arabnejad et al. (2018) proposed a heuristic algorithm which is

budget and deadline aware and works for IaaS clouds.

Verma and Kaushal (2017) have proposed a non-dominance sort based Hybrid Par-

ticle Swarm optimization (HPSO). The main objectives of this algorithm are makespan

and cost under deadline and budget constraints. For this study cloudsim has been used.

This algorithm performs better than MOPSO, FDPSO, NSGA -II algorithms. Pandey et al.

(2010) have proposed a PSO based Heuristic Algorithm. This algorithm shows that it is

three times better than Best Resource Selection (BRS). The main parameter of this algo-

rithm is only Execution Time. This is one of the significant works in the area of workflow

scheduling in cloud.

Wu et al. (2010) have proposed Revised Discrete Particle Swarm Optimization (RDPSO)

Algorithm which schedules workflow applications that considers data computation costs

40

and transfer costs. This algorithm performs better than standard PSO and BRS algorithms.

Tasks are executed on amazon compute cloud. Adhikari and Amgoth (2019) have pro-

posed intelligent water drop based workflow scheduling in IaaS cloud. The main objective

of this algorithm is to minimize the execution time of a workflow and improve utilization

of VM with the given budget and deadline constraint. This algorithm is better than SCS,

IC-PCP, Intelligent Water Drop (IWD), PTS and Intelligent Water Drop based Dynamic

Workflow Scheduling (IWD-DWS).

Liang et al. (2014) have proposed a meta-heuristic algorithm Artificial Bee Colony for

Workflow Scheduling. The main objective of this algorithm is to minimize the makespan

and the implementation succeeds in doing so. Casas et al. (2018) proposed GA-ETI algo-

rithm. The main objective of this algorithm is to reduce the makespan. GA-ETI gives bet-

ter performance when compared to HEFT, provenance, FSV (Flexible Selection of VMs)

algorithms.

Nasonov et al. (2014) have proposed a hybrid algorithm which combines both HEFT

and genetic algorithm. The main objective is to improve the makespan of workflow, which

the algorithm achieves. Mansouri et al. (2019) have proposed hybrid task scheduling

strategy Fuzzy System and Modified PSO (FMPSO). The results have been evaluated in

cloudsim toolkit. The main objective was to improve makespan, improvement ratio, im-

balance degree, efficiency, and total execution time when compared to other approaches.

Elaziz et al. (2019) have proposed a task scheduling algorithm named hybrid moth

search and differential evaluation. The main objective of this approach is to improve the

makespan. This MSDE algorithm has been simulated in cloudsim environment. There is

also work by Mao and Humphrey (2011), who have proposed an auto scaling approach.

The main objective is to reduce the cost and meet the deadlines.

Kumar and Sharma (2018) have proposed a PSO-COGENT algorithm. The main ob-

jective is not only to optimize the execution cost and time but also to reduce energy con-

sumption by considering deadline as a constraint and improve the throughput when com-

pared to Honeybee, PSO and Min-Min algorithms. Maciej (2012) have proposed static

and dynamic strategies for both task scheduling and resource provisioning. This paper

41

discusses efficient management of ensembles under budget and deadline parameters.

Adhikari and Amgoth (2016) have proposed an algorithm named Efficient Workflow

Scheduling Algorithm (EWSA). The objective of this algorithm is to dynamically estimate

the execution time of all tasks. This algorithm creates minimum number of virtual ma-

chines to complete the entire execution within deadline. Su et al. (2013) have proposed

cost efficient task scheduling algorithm using two heuristic strategies. The main objective

is to reduce the makespan. This algorithm performs better than SLR, MCR algorithms.

Chen et al. (2017b) have proposed an efficient algorithm named Minimizing Schedule

Length using Budget Level (MSLBL). The main objective of this algorithm is minimizing

the schedule length of application by satisfying budget constraint. It gives better perfor-

mance when compared to the state of art HBCS algorithm.

Abrishami et al. (2013) have proposed a PCP algorithm for cloud environment, with

two algorithms for scheduling. In the first phase, the algorithm which is called IC-PCP

and in the second phase the algorithm is called IC-PCPD2. IC-PCP outperforms IC-LOSS

in all cases. However, IC-PCPD2 is better than IC-LOSS in Montage and Epigenomics

workflow. Abrishami and Naghibzadeh (2012) proposed QoS based workflow scheduling

PCP. The main objective of this algorithm is to minimize the cost of workflow execution,

while meeting budget constraint.

Byun et al. (2011) have proposed Partitioned Balanced Time Scheduling (PBTS) Algo-

rithm. The main objective of this algorithm is to minimize the financial cost and maximize

the utilization component of the resources. In this paper PBTS is compared with theoretical

optimal solver and Balanced Time Scheduling (BTS). Casas et al. (2017) have proposed a

Balanced and file Reuse-Replication Scheduling (BaaRS) algorithm. The main objective

of this algorithm is the execution time and monetary cost of running scientific workflow.

This algorithm is implemented in VMware-ESXi-based (Version 5.5) private cloud and it

outperforms provenance algorithm.

There is an important method for the heterogeneous machines that is one of the first

heuristic method for workflow scheduling (Topcuoglu et al., 2002). The parameter consid-

ered for optimization is makespan of the workflow. The heuristic method proposed is one

42

of the best heuristics for workflow scheduling over heterogeneous components and it has

given better results than other standard methods of that time and can be considered as one

of the best methods till date. This methods logic is in the present study is considered to de-

velop an approach that uses strict membrane computing structure for workflow scheduling

in cloud.

Apart of these works there is an important work which has come in late 2014, where,

for the first time Membrane computing model was used for Workflow Scheduling in Cloud

(Ahmed et al., 2014). The developed model though based on membrane computing is quite

different from the model that is proposed in this thesis. Ahmed et al. (2014) proposed a

membrane inspired model that imbibes the structure of P System but it doesn’t follow all

the membrane-based execution rules. It is a workflow scheduling approach uses only the

hierarchical structure of membrane instead of using P System as a computing paradigm by

following it strict rules.

It can be inferred from the literature review that there have been many works which

use heuristic approaches for solving the problem of workflow scheduling. Further anal-

ysis on the works reveal that among several categories of algorithm the Bio-inspired ap-

proaches tend to be effective in dealing with workflow based scheduling algorithms, if

used appropriately. Getting a cue from the above literature and after a detailed analysis

of several heuristic and meta-heuristic approaches, primarily bio-inspired approaches; the

present work proceed towards selecting membrane-based algorithm to be used for work-

flow scheduling in cloud. Further the behaviour of the used algorithm and its suitability

for the proposed problem is analysed before proceeding with implementation in chapter 6.

2.7 Summary

An extensive study related to four important components of the work; Service Selection

in cloud, Membrane computing applications and Numerical P System, Tools for Mem-

brane Computing and Workflow Scheduling methods in cloud, is done. In addition to the

works in the area, this section elaborates on the background information that is required

to proceed further. All these four components are important and the study of each com-

43

ponent leads to specific research gap which is filled by using our contribution. Thus, the

two wide fields of cloud and membrane computing are related and after a detailed study of

these components the problem statement is defined which gives one of the best solution for

cloud service selection and workflow scheduling through membrane computing paradigm.

Further, new tools are developed, which fill the gaps that have been identified based on

survey of tools available for membrane computing.

44

Chapter 3

P SYSTEM BASED SERVICE SELECTION
MECHANISM

Service selection is a process of selecting the best service (or items), given a set of services

available. The selection process involves ranking of services. This chapter elaborates on

two important service selection approaches based on amalgamation of Multi-criteria De-

cision Making (MCDM) and Enzymatic Numerical P System (ENPS). The two approaches

that have been proposed are ENPS-IAHP and ENPS-IPROMETHEE. Both the approaches

are suitable for service selection, but each has a specific purpose. The first approach is

designed specifically to calculate weight, given the user preferences. The second method

is used for service selection in general (services considered as items/alternatives). The

proposed method is analysed and the obtained results show IPROMETHEE to be sensitive

in nature.

3.1 Introduction

Service selection is the process of ranking a given set of services based on attribute (fea-

ture) values. These attributes are the features with certain weights assigned for each value.

In general, the most common method used for solving this kind of problem is called Multi-

Criteria Decision Making (MCDM). The services in this particular case are not necessarily

cloud based services, but are some collection of items/alternatives, which have attributes

associated with it, and which can be selected quantitatively.

45

In the study, MCDM structure is considered as a base for the model being proposed.

The aim is to propose a parallel model for solving service selection problem (ranking the

services). An inherently parallel model that can be combined with MCDM properties, to

obtain a new, wholly parallel approach specific to this problem is chosen. MCDM model

is considered as the base solution for its structure and proved competence in the area of

cloud service selection. Based on the structure of service selection problem (MCDM),

membrane computing based models are found to be suitable, to solve this problem with

properties like; simple inherent parallel structure, Turing Universality, multiple variants,

variety of applications and its developing software support.

Gheorghe Paun has introduced membrane computing in his seminal paper (Păun, 2000).

The devices used to realize Membrane computing are called as P Systems. Membranes are

inspired by nature; in particular, by a living cell. A membrane model (cell like) has a hierar-

chical structure of membranes, where the internal components are disjoint, as in figure 2.2.

The outer layer is called as skin membrane and all the other membranes are contained in it.

There can be any number of membranes present inside the skin and all these membranes

can communicate with each other, i.e. they can pass information among themselves. This

structure inherently supports parallelism, based on which the whole design works. Un-

like other parallel models that have a limited scope or constrained scope of application,

P System has a wider range of applications due to it being a computational paradigm.

Further description is given in the latter part of the work. There are numerous variants

of P Systems available (Paun et al., 2010). Each variant has a different structure and is

designed for a different purpose. One such specific variant called Enzymatic Numerical

P System (ENPS) is used for the chosen problem of Multi-criteria Decision Making (for

cloud service selection); the reason for selection of this ENPS and its structure is discussed

in literature, section 2.1.

46

3.2 Enzymatic Numerical P System based Improved Analytical Hier-

archy Process (ENPS-IAHP)

As part of this the concept of parallelizing an enhancement of Analytic Hierarchy Process

(AHP) is proposed. AHP has first been developed by L Saaty et al. in 1982 (Saaty, 1983,

1988). It is used in the domain of decision making. It is a simple method which facilitates

the user to decide about the selection among the choices (items) available. Each and every

choice consists of several attributes 1−n. Each and every attribute has weight to be given

according to the choices (items) to be selected. AHP allows the user to calculate the

weights of the attributes by knowing the dominance of each attribute over the other. Thus,

by using these dominance values the AHP method formalizes the weights, checks for its

consistency and proceeds with calculation of ranks of the choices. This has very wide

applications as mentioned by Vaidya and Kumar (2006). The improved version of AHP

called as Improved Analytic Hierarchy Process (Rao, 2007) is used here and its steps are

elaborated.

3.2.1 Improved Analytic Hierarchy Process (IAHP)

IAHP model, as the name suggests, is an improvement over the existing AHP model. The

first step is to identify the attributes that are to be used for the considered problem. After

all the values associated with attributes are finalized, based on any data or by the users

experience, the user may proceed with the method.

This problem is divided into three sub-problems which are described as follows:

Sub-problem 1: Calculating the weights using the comparison matrix

The comparison matrix (Preference matrix) is a matrix in which each attribute is rated

against each other attribute for its importance. The size of the matrix is equal to nxn,

where n is the number of attributes that are considered. There are nine allowed values that

can be entered in the matrix, m are the attributes in the row and n are the attributes in the

column. This matrix is labelled as A1. Further, the reciprocal of the values is entered by

reversing the position of rows (position i) and column (position j) of the matrix.

47

1. If an attribute in position i (row) is extremely important than the attribute j (column),

then the value entered is 9 in (i,j) position.

2. If an attribute in position i (row) is highly important than the attribute j (column),

then the value entered is 7 in (i,j) position.

3. If an attribute in position i (row) is important than the attribute j (column), then the

value entered is 5 in (i,j) position.

4. If an attribute in position i (row) is somewhat important than the attribute j (column),

then the value entered is 3 in (i,j) position.

5. If an attribute in position i (row) has same preference as of attribute j (column), then

the value entered is 1 in (i,j) position.

A1MXM =



r11 r12 . . . r1M

r21 r22 . . . r2M

r31 r32 . . . r3M

.
.

rM1 rM2 . . . rMM


Find the relative normalized weight of each attribute by calculating the geometric mean

of the ith row.

GM j = [
l

∏
j=1

Ki j]
1/M (3.1)

In the above sub-problem all the values of a single row are multiplied and are raised to

the power of (1/M) where M is the number of columns (attributes). Further, the geometric

48

means of rows in the comparison matrix are normalized.

w j = GM j/
l

∑
j=1

GM j (3.2)

The geometric mean method of AHP is used because it is easy to use. w j represents the

final weight.

Sub-Problem 2: Consistency of weights

After obtaining the weights the next major operation is to check the consistency of the

obtained weight. There are several steps to be followed:

Calculate A2 vector. A2 is assigned as vector with value [w1,w2 · · · ,wn]
T and further A3

matrix is calculated by multiplying A1 and A2.

As a next step, A4 is calculated, which is equal to A3/A2.

Followed by that Eigen Value (λmax) is calculated.

λmax = Average of Matrix A4 (Rao, 2007).

The penultimate step involves calculating CI, Index CI = (λmax - M)/ (M-1).

The smaller the value of CI, the smaller is the deviation from consistency.

Select the Random Index (RI) value from the number of attributes used in the decision

making. The RI values are given in the table 3.1 (Rao, 2007).

Finally, Consistency Ratio (CR) is calculated value: CR = CI/RI. If the CR value is

less than 0.1 then the values that are obtained as weight are correct, otherwise the values

need to be re-checked. The consistency in CR value indirectly denotes that the relative

importance matrix is proper. This Improved AHP method is characterized by numerical

calculation which predominantly uses real values. One more characteristics of this method

is that, this method involves several rules based on the number of items that have been

selected. This methods though cannot be considered completely independent as each and

every sub-problem is dependent on each other. However, each sub-problem within itself

can be efficiently parallelised. As the number of items increases, for each sub-problem the

parallelization proves to be more effective.

49

Attributes 1 2 3 4 5 6 7 8 9 10

RI 0 0 0.52 0.89 1.11 1.25 1.35 1.4 1.45 1.49

Table 3.1 Standard Random Index (RI) values

3.2.2 ENPS-IAHP Membrane Structure

IAHP can be solved using numerical P Systems, specifically ENPS. The IAHP is divided

into three sub-problems and these three sub-problems are inter related. Each and every

consecutive sub-problem is dependent on the previous sub-problem as the final result of

the former is used by the current sub-problem. The sub-problems are:

• Computing Weights

• Verifying the consistency of weights

• Obtaining Ranks of the items

The process is started by computing weights in IAHP, using the given preference ma-

trix. Out of the above sub-problems, the sub-problem 2 is directly dependent on the first

sub-problem. The second sub-problem checks the consistency of the value obtained during

the first sub-problem. Only if the values obtained are consistent according the rules then it

is advisable to proceed further, for it is not advisable to proceed further as mathematically

there can be a lot of deviation in the values chosen by the user. A high deviation means

that the whole assignment process is wrong and the user has assigned the values that have

been inconsistent; the user has to change the preference matrix, so that preference matrix is

logically consistent. Once the user has verified that the values are consistent then the user

can proceed with the sub-problem 3. So, if the user is inconsistent in giving the preference

matrix and it is found that in sub-problem 2 then the process of sub-problem 1 has to be

computed again. The solution for sub-problems for ENPS-IAHP are as follows:

Membrane System for Sub-problem - 1

The sub-problem 1 membrane system consists of two membranes, the membrane 1 and

membrane 2 (as in figure 3.1). The membrane (M1) and (M2) consists of several rules. As

50

per the conditions of ENP System, each membrane can have more than one rule. All the

programs can be controlled by the enzymes. The presence of enzyme allows more than

one rule to be executed simultaneously based on the values of the enzyme. These enzyme

control the execution and flow of the program. Hence using these enzymes, it is possible

to control the selectively execute the rules (programs).

The membrane 1 (as in figure 3.1) reprsents the first step of IAHP. The programs are

numbered as Pri,where i ≥ 1. The primary way to determine the size of the Improved

AHP problem is by the number of attributes that have been compared. Consider number

of attributes that are being compared in IAHP as n. The number of programs in this are

dependent on the value of n. The figure 3.1 shows membrane system.

The first membrane calculates the geometric mean of each row of preference matrix

that is available. The variables x1,1, . . . ,zn,1 are assigned values of the preference matrix

in row-wise manner. This convention has been followed through out this membrane as

well as other membrane systems. Accordingly, the resultant values are stored in set of

variables. The next membrane receives calculated values from membrane one and then

does normalization of the received values followed by calculation the weights.

Role of Enzymes:

The enzyme plays an important role in this membrane system. The enzyme e1 is used

to accommodate more than one active productions, whereas enzyme e2 is used to control

the flow of the program. The second membrane uses e2, therefore the programs in the

second membrane gets executed only after cycle step 1. In the first step of the cycle all the

programs related to the first membrane are executed, as 3 out of 4 programs are controlled

by enzyme e1 and the initial value of this enzyme is assigned to l (Any value which is

always strictly greater than the smallest variable must work). The fourth program available

in the membrane is not controlled by any enzyme and it always remains active. Thus, this

enzyme is executed devoid of any restrictions.

The second membrane consists of three programs which are controlled by enzyme e2,

and the initial value of the enzyme is assigned to 0. Thus these programs do not execute

51

in the first step of the cycle. This has been done as the values of the variables that have

been used in the production functions are dependent on the repartition protocols of the first

membrane and this execution of membrane 2 is meaningless until and unless membrane 1

has been executed. Thus, program Pr4,1 controls the execution of the second membrane

and only when this active membrane is executed, atleast once, the other membrane pro-

grams can get executed.

Sub− problem1 − M1

x1,1[value], . . . ,xn,1[value]
. . .
. . .

z1,1[value], . . . ,zn,1[value], e1[l]

Pr1 : 2× [(x1,1×·· ·× xn,1]
1/n 〈e1→〉 1 | x1,2 +1 | xn+1,2
. . .
. . .

Prn : 2× [(z1,1×·· ·× zn,1)]
1/n 〈e1→〉 1 | xn,2 +1 | xn+1,2

l → 1 | e2

Sub− problem1 − M2

x1,2[0], · · · ,x2n+1,2[0], e2[0]

Pr1,1 : x1,2÷ xn+1,2 〈e2→〉 1 | xn+2,2
· · ·
· · ·

Prn,1 : xn,2÷ xn+1,2 〈e2→〉 1 | x2n+1,2

Figure 3.1 Membrane System for Sub-problem 1

Membrane System for Sub-problem - 2

The Sub-problem 2 consist of two membranes (as in figure 3.2). The purpose of this

membrane system is to check whether the weights, that have been obtained after the first

sub-problem are consistent or not. On the whole, this membrane system consists of 4n+

4 programs out of which 4n+ 1 programs are available in the membrane M1 and other

programs are available in membrane M2. There are total five enzymes which control the

flow of execution, enzyme e1 and e2 are used in M1 while e3, e4 and e5 are used in M2. The

variables x1,1, . . . ,zn,1 contain the values of the preference matrix in row-wise manner and

52

accordingly, the required variables for operation have been used and assigned.

The first n membranes are used to calculate the matrix A3 which is obtained my mul-

tiplying the comparison matrix and the transpose of vector consisting of the weight calcu-

lated in the sub-problem 1. Further, 2n programs are used for retaining the value of weights

and the results obtained in the previous calculation. Mathematically the process involves

dividing the result by matrix A2, this process is done by using the next n programs. The

membrane M2 receives the required values (Vector A4) from membrane M1 and further

computes average of the Eigen vector. The next two programs in sequential steps calcu-

late the Consistency Ratio (CR), which must be less than 0.1 for the sub-problem 1 to be

correct.

Role of Enzymes:

There are five enzymes being used. Each enzyme is assigned to a certain set of programs

for controlling its execution. The enzyme e1 is assigned to a total of 3n programs and these

3n programs are always executed as enzymes remain active from the step 1 of the cycle.

The enzyme e2 is assigned to n programs which always execute after step 1 in the cycle.

Similarly e3, e4, and e5 are assigned to a program each and execute as step 3, step 4 and

step 5 respectively.

Finally the Consistency Ratio (CR) is obtained, which determines whether the process

needs to be proceeded further. If (CR < 0.1) then the comparison matrix, assigned by the

user, is proper and control can proceed to the third sub-problem otherwise it is not advis-

able to proceed without changing the comparison matrix and re-doing the sub-problem 1

and sub-problem 2.

53

Sub− problem2 − M1

x1,1[value], . . . ,xn,1[value]
. . .
. . .

z1,1[value], . . . ,zn,1[value]
k1,1[value], . . . ,kn,1[value]
w1,1[value], . . . ,wn,1[value]

e1[l], e2[0]

Pr1,1 : x1,1×w1,1 + . . .+ xn,1×wn,1 〈e1→〉 1 | k1,1

· · ·
· · ·

Prn,1 : z1,1×w1,1 + . . .+ zn,1×wn,1 〈e1→〉 1 | kn,1

Prn+1,1 : k1,1÷w1,1 〈e2→〉 1 | x1,2
· · ·
· · ·

Pr2n,1 : kn,1÷wn,1 〈e2→〉 1 | xn,2

Pr2n+1,1 : k1,1 〈e1→〉 1 | k1,1
· · ·

Pr3n,1 : kn,1 〈e1→〉 1 | kn,1

Pr3n+1,1 : w1,1 〈e1→〉 1 | w1,1
· · ·

Pr4n,1 : wn,1 〈e1→〉 1 | wn,1
Pr4n+1,1 : 4× l → 1 | e2 +1 | e3 +1 | e4 +1 | e5

Sub− problem2 − M2

x1,2[0], · · · ,xn+3,2[0], xn+4,2[value],
e3[−l], e4[−2l], e5[−3l]

Pr1,2 : (x1,2 + · · ·+ xn,2)÷n 〈e3→〉 1 | xn+1,2
Pr2,2 : (xn+1,2−m)÷ (m−1)) 〈e4→〉 1 | xn+2,2

Pr3,2 : xn+2,2÷ xn+4,2 〈e5→〉 1 | xn+3,2

Figure 3.2 Membrane System for Sub-problem 2

54

Sub− problem2 − M1

x1,1[value], . . . ,xn,1[value]
. . .
. . .

z1,1[value], . . . ,zn,1[value]
k1,1[value], . . . ,kn,1[value]

w1,1[value], . . . ,wn,1[value], e1[l], e2[0]
Pr1,1 : x1,1×w1,1 〈e1→〉 1 | k1,1

· · ·
· · ·

Prn,1 : xn,1×wn,1 〈e1→〉 1 | k1,1
· · ·
· · ·

Pr(n−1)n+1,1 : z1,1×w1,1 〈e1→〉 1 | kn,1
· · ·
· · ·

Prn2,1 : zn,1×wn,1 〈e1→〉 1 | kn,1

Prn2+1,1 : k1,1÷w1,1 〈e2→〉 1 | x1,2
· · ·
· · ·

Prn2+n,1 : kn,1÷wn,1 〈e2→〉 1 | xn,2

Prn2+n+1,1 : k1,1 〈e1→〉 1 | k1,1
· · ·

Prn2+2n,1 : kn,1 〈e1→〉 1 | kn,1

Prn2+2n+1,1 : w1,1 〈e1→〉 1 | w1,1
· · ·

Prn2+3n,1 : wn,1 〈e1→〉 1 | wn,1
Prn2+3n+1,1 : 4× l → 1 | e2 +1 | e3 +1 | e4 +1 | e5

Figure 3.3 Membrane System for Sub-problem 2 - Parallelized Further

Further Parallelization of Sub-problem 2 Membrane 1

The above mentioned method consists comparatively less number of rules. This sub-

problem can be parallelized further, where the program Pr1,1 to Prn,1 can be divided, as in

figure 3.3. By doing this, the number of program increase by a factor n, for each existing

program. Thus in this case maximal parallelism is achieved but with a comparatively high

number of parallel tasks, where the parallelization is of order O(n2) but the execution will

reduces to O(1).

55

Membrane System for Sub-problem - 3

The third sub-problem is the final step in getting the rank values. This consists of a sin-

gle membrane. This membrane has n programs and each program consists of operations

calculate the weighted sum of the values given by the users for each item. The variables

x1,1, . . . ,zn,1 are assigned the normalized values of the attributes corresponding to each

item given by the user. It starts from item 1 (row-wise), for each item till the nth (nth row)

item. The variables w1,1, . . . ,wn,1 represents the set of weights that have been calculated

in sub-problem 1. The variables r1,1, . . . ,rn,1 represents the final values whose descending

order determines the rank i.e. higher the value, the higher is the rank of the corresponding

item.

Role of Enzyme:

This has only a single enzyme that controls the execution. The value of the enzyme must

be sufficiently large so that all the programs execute.

Sub− problem3 − M1

x1,1[value], · · · ,xn,1[value]
· · ·
· · ·

z1,1[value], · · · ,zn,1[value]
w1,1[value], · · · ,wn,1[value]

r1,1[0], · · · , rn,1[0], e1[l]

Pr1,1 : x1,1×w1,1 + · · ·+ xn,1×wn,1 〈e1→〉 1 | r1,1
· · ·
· · ·

Prn,1 : z1,1×w1,1 + · · ·+ zn,1×wn,1 〈e1→〉 1 | rn,1

Figure 3.4 Membrane System for Sub-problem 3

Further Parallelization of Sub-problem 3

Same as in the case in sub-problem 2, the above mentioned method consists of com-

paratively less number of programs. This sub-problem can be parallelized further where

the program Pr1,1 to Prn,1 can be divided as in figure 3.5. By doing so, the number rules

increase by factor n for each program. Thus, maximal parallelism is achieved, with a com-

56

paratively high number of parallel tasks, where the parallelization is of order O(n2) but the

execution reduces to order O(1).

Sub− problem3 − M1

x1,1[value], · · · ,xn,1[value]
· · ·
· · ·

z1,1[value], · · · ,zn,1[value]
w1,1[value], · · · ,wn,1[value], f in1,1[0], · · · , f inm,1[0]e1[l] . . .e2n[]

Pr1,1 : x1,1÷max1,1×w1,1 〈e1→〉 1 | f in1,1· · ·
Prn,1 : xn,1÷maxn,1×wn,1 〈en→〉 1 | f in1,1· · ·

· · ·
Pr(n−1)n+1,1 : z1,1÷max1,1×w1,1 〈e1→〉 1 | f inm,1· · ·

· · ·
Prn∗m+1,1 : zn,1÷maxn,1×wn,1 〈e1→〉 1 | f inm,1

Pr1,1 : min1,1÷ x1,1×w1,1 〈e1→〉 1 | f in1,1· · ·
Prn,1 : maxn,1÷ xn,1×wn,1 〈en→〉 1 | f in1,1

· · ·
· · ·

Pr(n−1)n+1,1 : min1,1÷ z1,1×w1,1 〈e1→〉 1 | f inm,1
· · ·

Prn∗m+1,1 : minn,1÷ zn,1×wn,1 〈e1→〉 1 | f inm,1

Figure 3.5 Membrane System for Sub-problem 3 - Parallelized Further

3.2.3 Implementation and Results

The ENPS-IAHP has been implemented and analysed for increasing number of attributes

against execution time. Implementation of the method is necessary to establish a working

proof for the proposed model based on ENPS. For this purpose, a simulation tool named

PeP (Enzymatic) Numerical P System simulator designed by Florea and Buiu (2017) has

been used. Another tool also for this is a Java based simulator (based on P-Lingua) de-

veloped by Manuel Garcia Quismondo in 2011 (García Quismondo et al., 2012a; García-

Quismondo et al., 2009). Nine alternatives have been ranked for 3,5,7,9 attributes for

Normal and ENP System, to obtain the corresponding ranks (Figures 3.6 3.7, 3.8, 3.9).

This shows that the results are same as the results obtained by Normal Sequential IAHP.

The ENPS-IAHP model is primarily proposed for consistent weight calculation, in

case, if weights are not directly provided. Further, the chapter proposes ENPS-based

57

Figure 3.6 IAHP and ENPS-IAHP for 3 attributes

Figure 3.7 IAHP and ENPS-IAHP for 5 attributes

58

Figure 3.8 IAHP and ENPS-IAHP for 7 attributes

Figure 3.9 IAHP and ENPS-IAHP for 9 attributes

59

MCDM method called as ENPS-IPROMETHEE.

3.3 Enzymatic Numerical P System - Improved Preference Rank-

ing Organization Method for Enrichment Evaluation (ENPS-

IPROMETHEE)

ENPS-IPROMETHEE, the proposed membrane based model has a sequential equivalent,

elaborated in this study for a better understanding of the process. Membrane computing

can be used to solve several problems, whose solutions are often realized using mem-

brane algorithms, which are strictly or loosely based on membrane computing paradigm.

A membrane based algorithm designed, is strictly based on ENPS, a variant of Numerical

P System. The aim is to design a parallel MCDM approach. Decision making is a ubiqui-

tous process that prevails in many important domains such as Engineering, Economics and

Management. Decision making itself is a vast domain and has several important sets of

approaches. MCDM methods is one such set of methods which is used when deciding the

best outcome, given several choices with multiple attribute for each choice. These MCDM

methods can be classified into several categories based on the procedure followed; Out-

ranking based methods, AHP/ANP based approaches, MAUT based approaches, Simple

additive weighing based approaches etc. (Sun et al., 2014).

There are several outranking based methods available and Preference Ranking Orga-

nization Method for Enrichment Evaluation (PROMETHEE) is one of the important ap-

proaches. It has been developed by Brans (1982) and later an improved version called

as Improved PROMETHEE has been developed by Rao (2007). IPROMETHEE is used

for ranking a set of alternatives, given the values corresponding to each attribute (prop-

erty), with the weight of the attribute. Ranking involves listing best solution in order.

IPROMETHEE involves pair wise comparison between all the values in a certain order,

with the help of preference function. This results in some intermediate values and are used

for net flow calculations based on which final ranks are obtained. For Membrane-based

design the ENPS model is used as the base for the approach. The ENPS model primarily

uses numerical value based variables and this allows the performance of numerical calcu-

60

Figure 3.10 Sequential Equivalent

lations pertaining to this method. The details of the Membrane System for the proposed

work have been elaborated in the following sections.

3.3.1 Sequential Equivalent

The sequential structure is followed as in figure 3.10. Structurally and in several compu-

tational aspects this method is different from IPROMETHEE and it is completely parallel

method unlike IPROMETHEE, which is sequential (Rao, 2007). There are three primary

steps involved for ranking through the proposed (ENPS-IPROMETHEE) method. Given

all the numerical attributes, i.e. the alternatives and attributes with their corresponding

weight values, here the following steps are followed. The individual formula for each step

are as used in standard IPROMETHEE (Rao, 2007). The first step involves considering

each attribute separately and performing pair wise comparison as in the equation 3.3.

Pairwise comparison involves comparing of every single value (alternative) of a par-

61

ticular attribute with the other alternatives attribute. In this study, it particularly involves

working according to the preference function as defined in equation 3.3. The results of

comparison of two pairwise value completely depends on preference function. K j denotes

a non-decreasing function, which is over difference d calculated between values ’a1’ and

’a2’, with ’a2’ as base value. There are several different functions for calculating the values

of K j Rao (2007). It is at the discretion of the decision maker to use a suitable preference

function according to the problem. The ’usual’ function is considered, whose definition is

as given in equation 3.4. The ’usual’ preference function gives n∗n values, each of which

is binary in nature i.e. each value is either 0 or 1. The comparison results in a set of n∗n

values.

The next step considers differentiating between beneficial attributes and non-beneficial

attribute and also infusing weights into each of the resultant value, accordingly. For the

beneficial attributes the higher the attribute value the better is the impact, while it is reverse

for the non-beneficial attribute i.e. the lower the value the better is the impact. The step

of differentiating beneficial attribute from non-beneficial attributes is done in this step

unlike IPROMETHEE (Rao, 2007) where, preference function itself take cares of it with

few additional conditions. The values of the attributes obtained after the first step can

be considering as beneficial attribute. To convert the result according to non-beneficial

attribute, theoretically a transpose of the resultant n∗n matrix is taken. This results in the

same value as in for a non-beneficial attribute.

Pj,a1,a2 = K j[b j(a1)−b j(a2)] (3.3)

where 0≤ Pj,a1,a2 ≤ 1

K j(d j) =

1 if d j > 0

0 else d j ≤ 0
(3.4)

Ia1,a2 =
M

∑
j=1

w jPj,a1,a2 (3.5)

62

θ
+(a) = ∑

x∈A
IXa (3.6)

θ
−(a) = ∑

x∈A
IaX (3.7)

θ(a) = θ
+(a)−θ

−(a) (3.8)

The reason behind changing the sequence and method is purely based on structural

properties of ENPS system whose benefit can be understood in the next section, which

elaborates on the exact algorithm of ENPS-IPROMETHEE. Based on beneficial and non-

beneficial values the resultant value obtained are multiplied with the corresponding weights

of the attributes and the final set of values for each attribute with considered weight, is

obtained. The resultant value I (as shown in equation 3.5) is the intensity which later is

used for determining the domination of function.

The next step consists of combining all the values (n∗n) into single n∗n matrix. There

is no separate step needed for doing this, as the ENPS structure allows passing of the values

directly to the concerned variable and it automatically adds all the passed values, without

explicitly having production function doing it; the next section elaborates on this. Once

this is done the final step is taken up where net flow is calculated. The outflow (leaving

flow) (θ+(a)) measures the dominance of value over the other values (as in equation 3.6).

The inflow (θ−(a)) measures the collective dominance of other values over the considered

value (Rao, 2007). The difference between this outflow and the inflow gives the net flow

(θ(a)). This net flow is obtained for each alternative as in equation 3.8. This when sorted

in descending order gives the ranks of the alternatives. The next section gives details of

ENPS-IPROMETHEE with the actual strict ENPS structure.

3.3.2 ENPS-IPROMETHEE Membrane Structure

ENPS-IPROMETHEE is a single membrane system solution i.e. the problem involves only

one membrane system where there is a single skin membrane with several membranes

contained in it (in figure 3.12). The problem is divided into three primary components;

calculation of outranking values, differentiating beneficial and non-beneficial attributes

63

Figure 3.12 ENPS-IPROMETHEE Structure

and infusing weights for each attribute with combining the calculated values, and finally

calculating the net flow to get the ranks.

Skin−Membrane

x11,1[0], . . . ,xn1,1[0]
· · ·

x12,1[0], . . . ,xnn,1[0]
i1,1[0], . . . , in,1[0],e1,1[0], e2,1[0]

Pr1,1 : (x11,1 + . . .+ xn1,1)− (x11,1 + . . .+ x1n,1) 〈e2,1→〉 1 | i1,1
· · ·

Prn,1 : (x12,1 + . . .+ xn1,1)− (x21,1 + . . .+ x2n,1) 〈e2,1→〉 1 | in,1
Prn+1,1 : 1 〈e1,1→〉 1 | e2,1

Figure 3.11 Skin Membrane

Cycles:

Each cycle is a step where all the programs are executed together, once, parallely. In the

first cycle the outranking values are calculated according to the ’usual’ function and the

corresponding resultant values are passed on to be used in the next cycle. The next cycle

involves infusion of weights to the attributes and further differentiation between benefi-

cial and non-beneficial attributes, thereby accordingly changing the values. The resultant

values are finally passed, and are to be used in the next cycle where the inflow and out-

flow is calculated and their difference is obtained. Thus, on the whole, only three cycles

are followed for any number of attributes and any number of alternatives. Theoretically,

64

considering parallelism, the time complexity can be O(5) i.e. cO(1), a constant.

Child−Membrane− k

x1,k[0], . . . ,xn,k[0],
x11,k[0], . . . ,xn1,k[0],

· · ·
x1n,k[0], . . . ,xnn,k[0],

i1,k[0], . . . , in,k[0],
x1,k[0], . . . ,xn,k[0],e1,k[0], . . . ,en,k[0],e11,k,e12,k

Pr1,k : (x1,k/x1,k) 〈e1,k→〉 1 | x11,1
· · ·

Prn,k : (x1,k/x1,k) 〈en,k→〉 1 | xn1,k
· · ·
· · ·

Prn2−n+1,k : (xn,k/xn,k) 〈e1,k→〉 1 | x1n,k
· · ·

Prn2,k : (xn,k/xn,k) 〈en,k→〉 1 | xnn,k
Prn2+1,k : (x11,k ∗w1,k) 〈e11,k→〉 1 | x11,1

· · ·
Prn+n,k : (xn1,k ∗w1,k) 〈e11,k→〉 1 | x1n,1

· · ·
· · ·

Pr2n2−n+1,k : (x1n,1 ∗w1,k) 〈e11,k→〉 1 | xn1,k
· · ·

Pr2n2,k : (xnn,k ∗w1,k) 〈e11,k→〉 1 | xnn,1
Pr2n2+1,k : (x11,k ∗w1,k) 〈e12,k→〉 1 | x11,1

· · ·
Pr2n2+n,k : (xn1,k ∗w1,k) 〈e12,k→〉 1 | x1n,1

· · ·
· · ·

Pr3n2−n+1,k : (x1n,k ∗w1,k) 〈e12,k→〉 1 | xn1,1
· · ·

Pr3n2,k : (xnn,k ∗w1,k) 〈e12,k→〉 1 | xnn,1
Pr3n2+1,k : (x11,k ∗ e1,k ∗ . . .∗ en,k) 〈e1,k→〉 1 | e1,k + . . .+1 | en,k

Pr3n2+2,k : (e11,k−2∗ e11,k) 〈e1,k→〉 1 | e11,k
Pr3n2+3,k : (e12,k−2∗ e12,k) 〈e1,k→〉 1 | e12,k

Figure 3.13 Core Membrane (For a single attribute)

Membranes

As in figure 3.12 there are two important partitions, according to rules; skin membrane

and child membranes, present inside the skin membrane. The child membrane can be of

any number, depending on the number of attributes, in this case. Each created membrane

65

caters for one attribute and the calculations pertaining to each attribute are carried out in

each of them.

Child membrane:

The child membrane corresponding to kth attribute is shown in figure 3.13. In total there

are 3n2 +3 programs for each membrane, where n is the number of alternatives. The first

n2 programs from 1 to n2 are used to assign the comparison values obtained according to

the preference function given. ’Usual’ preference function is considered here. This first

set is controlled by using n enzymes (equal to the number of alternatives). Based on the

type of attributes, the execution of programs are controlled.

The next 2∗n2 programs are considered for weight calculations according to the bene-

ficial or non-beneficial attributes. The first set (n2) of programs are for beneficial attributes

and the next set of programs are for non-beneficial attributes. The programs from n2+1 to

2n2 are executed only if the attributes are non-beneficial and the programs from 2n2 +1 to

3n2 are executed only if the attribute is beneficial. The separate operations for beneficial

and non-beneficial attributes is controlled by two enzymes, e11,1 and e12,1. These two en-

zymes are separate for each membrane and they are assigned accordingly before the start

of execution, so that, while the membranes are executed the calculation is automatically

done according to the values assigned. While these calculations are done normally at the

side of the production function, the property of membrane computing allows the calculated

values to be passed directly to the variables in other membranes in a parallel manner. The

values, after they have been processed, are passed on to the variables of skin membranes.

The set of operations are replicated for each attributes and all of them are executed in an

all-parallel manner.

Skin membrane:

A set of operations happen at the skin membrane, as shown in figure 3.11. The outranking

values with weights passed to the skin membrane by all the other membranes, combine

because of the ENPS property of gathering. In the next step, the net flow is calculated. The

66

programs 1 to n are used for this purpose, as the final attribute value are already present

before this step. A single production function adds up the inflow and subtracts total outflow

from the added value. The final values based on which the ranks are obtained, are stored

from i1,1 to in,1. The execution of these programs is controlled by two enzymes e1,1 and

e2,1 in the third cycle. Finally, the values available in variables from i1 to in give ranks

when sorted in descending order.

3.3.3 Case Studies for ENPS-IPROMETHEE with Implementation

There are two required values for calculating the ranks of a given data. The weights of the

values, and the actual values of the attributes corresponding to each alternative. In order

to ascertain the working of the purposed model, two case studies are done. These case

studies use existing standard datasets for evaluating the proposed method. Two datasets

are considered (for each case study). The first being a dataset of materials with seven

attributes that are to be selected for a cryogenic tank, originally given by Farag (2007). The

properties of the material has been given i.e. their category of whether they are beneficial

or non-beneficial has been mentioned. This is one of the most commonly used dataset for

showing effectiveness of a MCDM algorithm. Further in the second case study, a dataset

for selection of green material for sustainability is used. It has been initially used by Zhang

et al. (2017b). The number of attributes are more than the previous dataset (case study 1)

that come up to 14 and it has five materials.

For implementing the designed model a Python based ENPS simulator, PeP 3.0, com-

pletely based on Python developed by Florea and Buiu (2018) is used. Further, as a GPU

alternative for PeP, GPUPeP has been developed and used. The final model designed, re-

quires an automatic file generator working over PeP and GPUPeP simulator which can run

the ENPS-IPROMETHEE model (directly over these tools) to obtain the results. The gen-

erator TP-Generator is developed, based on Python 3.0 and is tailored with the simulators

to give the final ranks of the items, given the weights and values of the attributes. Fur-

ther, AHP has also been used for finalizing the weights, in case, the user has only relative

importance of the attributes, other than the actual weight.

67

Material
Number

Material

Material 1 Al 2024-T6

Material 2 Al 5052-O

Material 3 SS 301-FH

Material 4 SS310-3AH

Material 5 Ti-6Al-4 V

Material 6 Inconel 718

Material 7 70Cu-30Zn

Table 3.2 Details of the materials used (Farag, 2007)

Case Study I: Material Selection for Cryogenic Tank

The demonstration of the accuracy of the approach, ENPS-IPROMETHEE is done through

a standard material selection problem. The material selection problem is a process in

which a suitable material is selected, based on several properties (attributes) of the ma-

terial. Each and every attribute has its own importance which can be shown by having

assigned weights. The data used is given in Farag (2007), which is for material selection

for cryogenic tank.

This data is considered because of its variety (range) which is apt for testing a general

MCDM problem. It has been used by several researchers, like Dehghan-Manshadi et al.

(2007) and Rao (2007), for testing several decision making approaches like Improved Ana-

lytic Hierarchy Process (IAHP), Improved Technique of Order Preference Similarity to the

Ideal Solution (ITOPSIS), IPROMETHEE etc. This table is used in order to demonstrate

the approach of this research. The data being used, consists of about seven materials and

seven attributes. All the seven attributes have weight that has been calculated using part

of IAHP. Preference is assigned for each attribute, in comparison to other attribute, based

on the general perception. The proposed P System based ENPS-IPROMETHEE method

is used for ranking the alternatives.

The details of the attributes are given in table 3.4 with the weights. Weights are calcu-

68

T YS YM D TE TC SH

T 1 2 6 1.2 1.5 6 6

YS 0.5 1 3 0.5 0.75 3 3

YM 0.166 0.333 1 0.2 0.25 1 1

D 0.833 2 5 1 1.33 5 5

TE 0.667 1.33 4 0.75 1 4 4

TC 0.166 0.33 1 0.2 0.25 1 1

SH 0.166 0.33 1 0.2 0.25 1 1

Table 3.3 Preference matrix for the attributes

lated using the AHP which inturn uses a preference matrix for doing so. The preference

matrix is usually filled by the users who have a general perception about the attributes.

Though according to standard IAHP Rao (2007), whole numbers ranging from 1-9 are

considered, for preference matrix. In this work, real numbers are considered to denote the

relation among the attribute to avoid greater discordance between the weights. In addi-

tion to that, this consideration increases the precision if the user is very clear with his/her

perception.

This is two dimensional matrix, where the preference of every attribute is plotted

against each other as shown in table 3.3 and then IAHP (Rao, 2007) method is used for

calculating weights through the given preference matrix. The weights obtained have been

considered as presented in table 3.5. After the weights are obtained a consistency check

is supposed to be made (which is a part of IAHP itself) (Rao, 2007). If the user data is

found to be consistent then the weights are properly assigned, otherwise the IAHP process

is repeated all over again till consistent weights are obtained.

After the weights are obtained, it is passed on with the other values of alternatives

and attributes, through the membrane generator (P System Generator) which generates the

required membrane according to the format. The resultant membranes are executed using

PeP and GPUPeP (GPU based membrane execution simulator).

The rank of the materials for ENPS-IPROMETHEE is as follows:

69

Material
Selection
Attributes

Unit/ Remark Beneficial/
Non-
Beneficial

Weight

Toughness in-
dex (TI)

based on UTS, Yield
Strength (YS) and
Ductility (e) at -196
◦C = (UTS + YS)e/2

Beneficial 0.285

Yield Strength
(YS)

MPa Beneficial 0.138

Young’s Mod-
ulus (YM)

GPa Beneficial 0.047

Density (D) g/cm3 Non-
Beneficial

0.246

Thermal
Expansion
(TE)

10−6/◦C Non-
Beneficial

0.188

Thermal Con-
ductivity (TC)

cal/cm2 /cm/◦C/s Non-
Beneficial

0.047

Specific Heat
(SH)

cal/g/◦C Non-
Beneficial

0.047

Table 3.4 Attributes and their details (Farag, 2007)

Materials TI YS YM D TE TC SH

Material 1 75.5 420 74.2 2.8 21.4 0.37 0.16

Material 2 95 91 70 2.68 22.1 0.33 0.16

Material 3 770 1365 189 7.9 16.9 0.04 0.08

Material 4 187 1120 210 7.9 14.4 0.03 0.08

Material 5 179 875 112 4.43 9.4 0.016 0.09

Material 6 239 1190 217 8.51 11.5 0.31 0.07

Material 7 273 200 112 8.53 19.9 0.29 0.06

Table 3.5 Materials and their corresponding attribute values (Reproduced with permission)
(Farag, 2007)

70

Al 2024-T6 Al 5052-O SS 301-FH SS310-3AH Ti-6Al-4 V Inconel 71870Cu-30Zn
Materials

0

1

2

3

4

5

6

7

Ra
nk

Rank of Materials
IAHP
ITOPSIS
ENPS-PROMETHEE

Figure 3.14 Final ranking

SS 301-FH→ Inconel 718→Ti-6Al-4V→ SS310-3AH→ 70Cu-30Zn→Al 5052-O→

Al 2024-T6.

Results and Analysis

Figure 3.14 shows the comparison of ENPS-IPROMETHEE method with IAHP and

ITOPSIS method. After implementation the results obtained are analysed for sensitivity.

Sensitivity Analysis:

Sensitivity analysis is a process of studying the behaviour (results) of the algorithm by

interchanging the existing weights for the attributes. When weights are interchanged the

algorithm may give different results for every change in weight. This change in ranks is

plotted and analysed. Thus sensitivity of the algorithm to change is analysed. In this work,

20 cases of interchanged weights are considered and corresponding ranks are obtained.

These ranks are plotted against the corresponding weight interchange values (Figure 3.15).

The results show that there are changes is the ranks obtained as the weights change. But

the best rank obtained is for material three in all the cases except three cases. The rank

changes are plotted in the graph. Thus, as expected, in this case, ENPS-IPROMETHEE is

71

w1
-w
2

w1
-w
3

w1
-w
4

w1
-w
5

w1
-w
6

w1
-w
6

w2
-w
3

w2
-w
4

w2
-w
5

w2
-w
6

w2
-w
7

w3
-w
4

w3
-w
5

w3
-w
6

w3
-w
7

w4
-w
5

w4
-w
6

w4
-w
7

w5
-w
6

w5
-w
7

w6
-w
7

Interchanged Weights

1

2

3

4

5

6

7

Ra
nk
s

Al 2024-T6
Al 5052-O

SS 301-FH
SS310-3AH

Ti-6Al-4 V
Inconel 718

70Cu-30Zn

Figure 3.15 Sensitivity analysis for material selection

moderately sensitive to the change in weights.

Case Study II - Green Material Selection for Sustainability

To demonstrate the sensitivity of ENPS-IPROMETHEE, with more attributes, another

dataset of a material selection is considered, specifically to select a green material for

sustainable development (Zhang et al., 2017b). This dataset has originally been used by

Zhang et al. (2017b) for getting the best green material for sustainability. There are, in

total, 14 attributes based on which five materials are ranked the details are shown in table

3.7. As per the procedure, the proposed ENPS-IPROMETHEE model is applied, followed

by a comparison of the results with IAHP and ITOPSIS method. Further Sensitivity anal-

ysis is done over the results.

The weights given by Zhang et al. (2017b) have directly been used for analysing the

present approach, depicted in table 3.6. The table 3.7 represents the actual data considered.

The proposed method is applied and implemented and the rank is obtained over the given

72

Attribute
Number

Attribute Name Beneficial
/ Non-
Beneficial

Weight

C1 Initial cost Non-
Beneficial

0.052

C2 Maintenance cost Non-
Beneficial

0.061

C3 Disposal cost Non-
Beneficial

0.067

C4 Tax contribution Beneficial 0.052

C5 Energy saving Beneficial 0.086

C6 Potential for recycling
and reuse

Beneficial 0.112

C7 Raw material extraction Beneficial 0.054

C8 Usage of water Non-
Beneficial

0.092

C9 Density Non-
Beneficial

0.083

C10 CO2 Emission Beneficial 0.053

C11 Rigidity Non-
Beneficial

0.076

C12 Tensile strength Beneficial 0.069

C13 Elongation at break Beneficial 0.074

C14 Tensile modulus Non-
Beneficial

0.069

Table 3.6 Materials and their corresponding attribute values (Zhang et al., 2017b)

73

Material C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14

AL-REM 2 2 3 3 3 3 4 3 3 2.72 50 169 8 25

ABS-INC 2 3 2 3 2 3 3 2 2 1.34 100 90 2 7.9

ABS-LND 3 2 3 2 2 4 2 4 3 1.34 100 90 2 7.9

PU-INC 3 3 2 3 4 2 3 4 3 1.15 60 27 10 4.5

PU-LND 4 4 2 4 4 3 3 3 4 1.15 60 27 10 4.5

Table 3.7 Materials and their corresponding attribute values (Zhang et al., 2017b)

AL-REM ABS-INC ABS-LND PU-INC Pu-LND
Materials

0

1

2

3

4

5

Ra
nk

Rank of Materials
IAHP
ITOPSIS
ENPS-PROMETHEE

Figure 3.16 Final ranking for green material selection

values as shown below.

AL-REM→ ABS-INC→ PU-LND→ PU-INC→ ABS-LND

Results and Analysis

The results are compared with IAHP and ITOPSIS as shown in figure 3.16. Sensitivity

analysis is done to ascertain the sensitivity of the proposed method.

Sensitivity Analysis:

The sensitivity analysis gives results as shown in figure 3.17. There are a total of 14

74

w1
-w

2
w1

-w
4

w1
-w

6
w1

-w
8

w1
-w

10
w1

-w
12

w1
-w

14
w2

-w
4

w2
-w

6
w2

-w
8

w2
-w

10
w2

-w
12

w2
-w

14
w3

-w
4

w3
-w

6
w3

-w
8

w3
-w

10
w3

-w
12

w3
-w

14
w4

-w
6

w4
-w

8
w4

-w
10

w4
-w

12
w4

-w
14

w5
-w

6
w5

-w
8

w5
-w

10
w5

-w
12

w5
-w

14
w6

-w
8

w6
-w

10
w6

-w
12

w6
-w

14
w7

-w
8

w7
-w

10
w7

-w
12

w7
-w

14
w8

-w
10

w8
-w

12
w8

-w
14

w9
-w

10
w9

-w
12

w9
-w

14
w1

0-
w1

2
w1

0-
w4

w1
1-

w1
2

w1
1-

w1
4

w1
2-

w1
4

Interchanged Weights

1

2

3

4

5
Ra

nk
s

AL-REM ABS-INC ABS-LND PU-INC PU-LND

Figure 3.17 Sensitivity analysis for green building selection

attributes, considering all the possible combinations of weight changes can lead to too

many inter-changes (91 times). Instead of considering all the changes, total of 48 swaps

are considered. The results are indicated in figure 3.17. Out of 48 cases there are only four

cases where there has been a change, which can be attributed to several reasons including

increase in attributes or reduction in difference of weights. Thus the overall method is

moderately sensitive for this particular dataset.

3.4 Summary

There are two primary contributions of this chapter. One is a weight calculation method

based on Enzymatic Numerical P System (ENPS) and Improved Analytic Hierarchy Pro-

cess (IAHP). This method named ENPS-IAHP is used to calculate the weight given the

user preference matrix consisting of preference of one attribute over all other. This can

also be used for ranking a set of items but it is primarily proposed for weight calculation.

The second contribution is a ranking method for service (item) selection . This method

75

again is structurally based on ENPS and is inspired by IPROMETHEE (Rao, 2007). This

method is implemented and results are analysed which show it to be moderately sensitive

to weight changes.

76

Chapter 4

TOOLS FOR ENZYMATIC NUMERICAL P
SYSTEM

There are two important tools developed as part of the project and this chapter elaborates

on them. Both the developed tools are for Enzymatic Numerical P System (ENPS). The

first tool is Multi-ENPS tool that allows execution of multiple membrane systems and ad-

ditionally supports two simulators (Python-based and Java-based). The second tool is a

GPU-based simulator for ENPS model named GPUPeP. Finally, both the tools are tested

and results show the tools to be working as intended.

4.1 Multi-ENPS Simulator Support Tool with Automatic File Inter-

conversion and Multi-membrane Execution

Though there are several tools available (as discussed in section 2.1), there is no tool which

supports automatic multiple membrane execution and a tool which allows interchangeable

execution between the ENPS simulators. This tool aims to solve both these problems of

multiple membrane execution with value passing and interchangeable execution of tools

thus enabling interoperability between them.

4.1.1 Introduction

There are several simulators developed to simulate ENPS. The input format for the tools

are primarily XML or PeP (Python-based customized format). The first tool proposed

here helps inter-conversion between PeP and XML file formats and also allows to execute

77

Figure 4.1 Sample PeP File (Florea and Buiu, 2017, 2018)

multiple membranes using either of the tool (Java-based or Python-based) with automated

dependent variable transfer. The primary simulator used for PeP file as input, is PeP sim-

ulator and for XML it is JavaENPS (Garcıa-Quismondo, 2013).

PeP file format

The basic template of an ENPS as a PeP file is as shown in figure 4.1.

where:

− num_ps : the name of the P system

− H: a list of membrane names

− structure : describes the structure of the system.

− m1 = { . . . } : the definition of membrane m1. Note the name of the membrane is the

same as the one defined in H

− var = {. . .} : a comma separated list of P objects that are part of this membrane

− pr = {. . .}: the definition of a program.

− The pr keyword is the same for all programs.

− The right arrow ->is used to separate the production function (left-side) from

the distribution function (repartition protocol) (right-side)

78

− var0= (. . .) : a comma separated list of initial P object values, specified in the same

order as that used for var

− comments start with #

− code blocks are delimited using { } and are used for, num_ps,H,m1,var and Pr and

lists of numeric constants are delimited using () and are used mainly for var0

− E = {. . . } : a comma separated list of P objects that are the enzymes of this mem-

brane

− E0 = (. . .) : a comma separated list of initial enzyme P object values, specified in

the same order as that used for E

XML File format

The basic template of an ENPS, represented as an XML file is as shown in figure 4.2:

where:membraneSystem: this tag contains the entire structure of ENPS membrane: Each

membrane tag contains all the relevant attributes and programs of that membrane in the

form of various sub-tags, namely, region, and children.

− The region tag contains the characteristics pertaining to that particular membrane.

− The children tag contains the characteristics of the membranes nested inside that

membrane, that is, the children of that membrane.

region : This tag gives definition to a membrane. It contains the programs and variables of

a membrane. The constituent members of the region tag are:

− memory: It contains multiple variable tags under it. The variable tags are of two

types:

– Tags with attributes input and output set to true : These tags collectively repre-

sent the list of non-enzyme variables of the membrane. The initial value of the

individual variables are stored in the initialValue attribute.

79

Figure 4.2 XML File

80

– Tags with attribute stop set to true: These tags represent the enzyme variables

of the membrane. The value ascertaining the execution of program is stored

under the tag initialValue

− ruleList: It contains all the programs of a given membrane. Each program is present

under a rule tag.

− children : This tag contains all the children membranes of the membrane considered

as given by the ENPS structure. Each child is stored under a membrane tag.

rule : Each program in an ENPS model is present under and represented by a rule tag.

Each rule tag has two (or three) constituents:

− repartitionProtocol : This tag encloses the repartition protocol and the proportion

of distribution of the production to variables. It has children repartitionVariable

tags. Each repartitionVariable tag encloses the variable name and has the attribute

contribution which defines its proportion in the production.

− productionFunction : This tag encloses the production function part of the program

and uses Mathematical Markup Language (MathML) ,to represent it.

− enzyme : This tag encloses the enzyme which determines the execution of the pro-

gram.

4.1.2 Design and Implementation the Tool

The tool developed contains four functional parts as shown in figure 4.3 with all four mod-

ules of the tool, their inputs and outputs. The following section contains the explanation

of each part along with details of implementation, and diagrams to help understand the

components.

Table 4.1 shows mapping between the two formats based on the given examples (figure

4.1 and figure 4.2). Both the examples show the same membrane structure in different

formats. The steps are roughly mapped according to converters’ execution steps. The

difference in process of conversion is because of having two different file structures in

81

different file formats. Hence, though the sequence of steps is similar, different technologies

and approaches are used to handle them. The details of both the converters are given in the

following sub-sections.

Figure 4.3 Tool Structure

4.1.3 Conversion of files from PeP to XML format

The components of this module are explained as follows:

Analyze input PeP file:The input file is obtained as a command line input and it can be run

using the command

Python3 peptoxml.py filename.pep

The developed module analyzes it by processing it line by line. A file named ‘out-

82

Step No. Component PeP File
(Line No.)

XML File
(Line No.)

1 Membrane Structure 3, 5, 8 and 17 1-3 and 47-50

2 Variable and Enzyme 9, 10. 15, 16 4-11

3 Production Function 1 12 12, 13, 19-28, 30

4 Re-partition Protocol 1 12 14-18

5 Enzyme (PF 1) 12 29

6 Production Function 2 13 31, 35-43 and 45

7 Re-partition Protocol 2 13 32-34

8 Enzyme (PF 2) 13 44

Table 4.1 File Structure Mapping and Translation for given Example

Figure 4.4 File Conversion: PeP to XML

83

put.xml’ is created to store output.

Establish membrane structure:

The ’structure’ statement in the file is read and using a stack, the membrane structure is

established in the XML file (output.xml) without including internal details of the mem-

branes.

Membrane Convert:

This module is used to convert each individual part of a membrane into its corresponding

XML file counterpart (Step 1 in table 4.1). There are several steps for doing it which are

elaborated below:

− Convert variable list to XML: The variable and variable value list are read and the

corresponding variable tags are created in the ‘memory’ region of the ‘output.xml’

file. (Step 2 in table 4.1)

− Convert production functions to MathML: The production function part of each of

the programs present in the membrane is read and converted into MathML, Math-

ematical Markup Language, an application of XML for describing mathematical

notations and capturing both its structure and content (Step 3 in table 4.1). Each

program is stored under a rule tag.

− Convert the re-partition protocol: The re-partition protocol is converted to a suitable

form to insert re-partition variable tags in the output file with the respective contri-

bution attribute which describes the proportion of the distribution of the production

assigned to the variable (Step 4 in table 4.1).

− Add enzyme (if any): If an enzyme is present as a part of any production function,

the representative tags are added to the respective rule in the output file. (Step 5 in

table 4.1)

− Recursively perform MembraneConvert to children membranes: The child mem-

branes of the membrane considered are again given to the MembraneConvert mod-

ule to reflect respective changes and additions in the output file. The final output is

84

Figure 4.5 File Conversion: XML to PeP

in ‘output.xml’

4.1.4 Conversion of files from XML to PeP format

In figure 4.5 the process of conversion from XML to PeP file is presented with the individ-

ual components explained as follows:

The file can be run by using

Python3 xmltopep.py filename.xml

Read the XML file (Tree): First the whole XML tree is read tag by tag using ’Element

tree’ Python library iterating over all the elements. The root of the element is obtained

after parsing the whole document and getiterator method is called on the root of the tree.

This is to make sure that all the elements are read in the file.

Establish Structure: Get ’membranes’, ’regions’ and ’children’ tag are the elements that

are stored sequentially as they are read . This is mainly to know the structure of the XML

document (Step 1 in table 4.1). The tags are stored in a stack, and are popped out one by

one; based on sequence of these elements the structure of the whole membrane is created.

85

Get variable names and their initial values: This includes both the variables used in the

production functions along with the enzymes and their values, if any. (Step 2 in table 4.1)

Get Production function and Convert into Expression: The MathML part which forms the

production function is read and converted into a proper expression (notation) (Step 3 in

table 4.1).

Append Re-partition variables and their initial values: Repartition variables and their

contribution values are appended to the production functions. The variable names are

obtained from the tag ’text’ and from the attributes their contribution values are known,

which are finally appended to the production functions after making a string out of them.

(Step 4 and 5 in table 4.1)

Combine all the strings: The strings obtained in the different steps above are merged

accordingly and are put into a single file.

Transfer of Values between files of format PeP and execution

An essential feature of Membrane computing is the interaction between membranes in

membrane systems. Similar to this the developed tool helps in bring is communication

between two PeP files, i.e., not just membranes within a membrane system, but between

two different membrane systems. This feature of the tool works on two input PeP files.

The values (of some selected variables) obtained on the execution of one of the PeP files is

stored and transferred to the other PeP file. The sample output of PeP simulator is shown

in figure 4.7. This file is then executed for a certain number of cycles and the final output

is displayed.

There are several modules which have been explained as follows: Read and display

files in current directory:

The file can be run using the command

Python3 transferValuesPep.py

After upon opening, the current directory is searched for the files of the format PeP

86

Figure 4.6 Value Transfer: to PeP

Figure 4.7 Output format PeP

87

and a list of files to choose from is displayed. Each file has a number next to it to help in

selection of a specific file.

Allow first and second file choice: The first and second file choices are requested and

correspond to the respective number associated with the required file in the aforementioned

numbered list. Invalid inputs, such as character or string inputs, as well as numbers not

corresponding to any of the files displayed are alerted and the user is asked to re-enter

his/her choice. Upon entering valid inputs, the names of the files chosen are displayed.

Find common variables list: Upon obtaining two valid inputs for file choices, the script

reads the two PeP files and establishes a list of variables common to both files. If the two

files have no variables in common, a relevant error message is displayed and the execu-

tion of the script is aborted. Upon obtaining a non-empty set of common variables, the

execution is continued.

Allow variable choice: A numbered list of common variables between both the files is

displayed and the user is asked to enter his choices. The choices correspond to the number

associated with each variable. If a variable already chosen is chosen again, a relevant alert

is displayed. An invalid choice such as a character or a string is alerted and the user is

pushed to enter a choice again. The final list is decided as the user enters a number greater

than the number of common variables between the files. The list of common variables

selected is displayed.

Get number of cycles and execute first file: The number of cycles (a positive integer) is

requested to be input. If the input format not proper, the user is prompted to enter it again.

Upon receiving integer input, the condition that it is a valid number of cycles is checked,

and if not, the user is prompted to enter a new number of cycles. The phrase ‘valid count’

is displayed on receiving an integer representing a valid number of cycles. The ‘pep.py’

simulator file is used for the execution of the files.

Extract and transfer values to the second file: After successful execution of the first PeP

file, the output obtained is parsed and the output values for the required chosen variables

are stored. Then a copy of the second file is created and these values are transferred to the

88

Figure 4.8 Value Transfer: XML to XML

new PeP file (the copy).

Execute the second file and output final result: The number of cycles (a positive integer)

is requested to be input. If the input is not of the proper format, the user is prompted to

enter it again. The new file with transferred variable values is used as an input to the PeP

simulator file. Upon receiving integer inpu1t, the condition that it has a valid number of

cycles is checked, and if not, the user is prompted to enter a new number of cycles. The

phrase ‘valid count’ is displayed on receiving an integer representing a valid number of

cycles. The same ‘pep.py’ file is used for the execution. Upon successful execution, the

final output is displayed.

Transfer of Values between XML files and execution

The process of transferring variable values between two XML files is very similar to the

process of its PeP file counterpart, the only difference being the usage of the ENPSJava.jar

file for the simulation of the file. The steps involved in the process are as in the figure 4.8.

The sample output file of ENPSJava (García Quismondo et al., 2012a) (based on XML

file) is shown in figure 4.9. The following file can be executed for this module.

Python3 transferValuesXml.py

89

Figure 4.9 Output format XML

Limitations and Dependencies

− The PeP to XML converter can convert PeP files with each production function hav-

ing less than or equal to a 100 variables.

− The software dependencies required for the tool to work are:

– Python 3.0

– The ElementTree XML API

– Pep.py simulator file and jar version of ENPSJava simulator file in the working

directory of the transferValuesPep and the transferValuesXml files respectively.

– Sympy (Symbolic Python) library

4.1.5 Usecases and correctness of the tool

Achieving Function goals and Design goals

The functional goals and design goals that have been proposed are achieved by the tool.

These are elaborated below:

Functional Goals

Conversion of PeP to XML files: The tool does a proper conversion of the files, in which

human intervention is required.

Conversion of XML to PeP files: The tool does an errorless conversion of files from XML

90

to PeP format without human intervention, independent of any external parameters.

Value transfer between two PeP files after execution: Errorless, fault-tolerant transfer of

values between two PeP files and seamless execution and results are displayed.

Value transfer between two XML files after execution: Errorless, fault-tolerant transfer of

values between two XML files and seamless execution and results are displayed.

Design Goals

Clear Programming Model: Python is used as the base and the tool is developed using a

modular approach, which is easy to understand.

Usability: Command line interface is used as it is found to be best for a limited user

interaction. The user gets clear instructions wherever required.

Usage of existing or easily available open source software: As mentioned earlier Python

is used for creating the tool. The other two P System simulators ENPSJava (Garcıa-

Quismondo, 2013) and PeP (Florea and Buiu, 2018) are both opensource.

Scalability: The tool is scalable to bigger files. Case studies shows that the file conversion

and multiple execution can be performed for membranes even with more than 10000

programs.

Robustness: There are several checks provided in the tool to ensure that bad data, improper

options and several other unintended mistakes by the user are considered and handled

properly. In most of the cases the user is notified about the error and is allowed to re-enter

it (in the immediate previous step) without as in moving again control back to the first step.

Usecases for the tool

There are primarily three usecases of the tool.

Converting XML files into PeP files

The conversion of XML file into PeP files is useful and has many applications. In this

case several legacy files that have been used for several types of application are XML files,

91

given as input and these have been primarily used with ENPSJava and other similar tools

which supports that file system. Some works, like the XML file representing the robot

localization problem, which have never been represented in the PeP format before, can

now be converted to PeP format, improving readability and further can be executed in PeP

simulator for further analysis. One of the significant advantage of this converter is that it

allows converting the old, important membrane structures (XML format) into the latest file

format and allows it to be used with the newer simulator. Further the XML based files are

comparatively bigger than the PeP counterpart. As the number of programs increase the

file size, XML files also increases tremendously, whereas, there is a minimal increase in

the file size for PeP. Hence, converting the files and using PeP simulator is advantageous.

Converting PeP files into XML files:

PeP file can be converted to XML to execute in the Java based simulator. This allows to test

newer membrane systems defined using PeP based format in Java based simulator, while,

allowing to test the efficiency of the proposed method in multiple simulators, without any

extra effort. PeP files are readable and closely relate to the actual structure of membrane

hence even when a membrane structure has to be tested using Java simulator, this converter

can be used for designing membrane structure using PeP and then executing in Java based

simulator.

Interaction between Multiple Membranes

This tool allows connecting membrane systems without manually copying the data from

membrane system into the other membrane system, after execution. This further allows

using a chain of membrane systems with serial dependence to be connected by passing

data between them, in order, without any manual copying and automatic execution of all

the membrane systems in the same order. This is designed for both the file formats and

hence can be used for both the simulators. An important use case is for solving bigger

problems which involve different steps (hence designed as different membrane systems).

These membrane systems can be connected together to get the final output.

92

Checking the correctness of the converters

The converters are designed such that it takes care of a few semantic discrepancies on the

side of the user, specifically in the case of giving PeP file as input. As the PeP simulator

supports, the converter also takes care of extra spaces in starting and end of line, extra

single spaces over the braces, variables and enzymes. Thus small mistakes from the users

side cannot effect the converter.

Once a PeP file is converted into XML file, the converted file is reconverted back into

PeP. The structure of the converted file is checked with the original file. If it is same then

the converter works correctly. Also the files can be executed using Java ENPS simulator. If

the reconverted file gives the same results as supposedly given by the original PeP file then

both the converters are proper. Similarly this can be checked in another way where a given

XML file is converted into a PeP file and then converted back to XML file. This XML

file is tested and the results, are matched with the original files results for its correctness.

These tests have been followed in case studies. This ascertains the functional correctness

of the converter.

4.1.6 Case Studies

This section considers different scenarios and cases for the tool that demonstrate the cor-

rectness of the tool. This has been divided into three subsection which have been elabo-

rated as follows:

Case Study 1: Automatic Transfer of values (XML to XML and PeP to PeP)

To demonstrate the value transfer (data passing) property of the tool, a set of functions

is considered. Each function can perform a set of tasks, in this case it is defined as a

mathematical equation. Consider any mathematical function which can perform certain

set of operations. Each function can be considered as a membrane system (consisting

of one or more membranes), which can perform certain operation that is feasible by P

System. The tool allows the membranes (functions) to pass the values to other membranes

(functions). The tool provides the user with the list of values that can be transferred and the

93

user can select the values to pass. The tool automatically passes the values after execution

of the first and before the execution of the second membrane.

Consider the following simple equation:

L(x,y,z) = (ax +bx + cx +dx)/ey ∗ f z (4.1)

where, a,b,c,d,e and f are constants and x,y and z are variables

The whole expression is divided into three functions, F(x), G(y) and H(z) and the

equation is written as in equation 4.5. The membrane structure of each function is as

follows:

F(x) = (ax +bx + cx +dx) (4.2)

G(F(x),y) = F(x)/ey (4.3)

H(G(F(x),y),z) = G(y)∗ f z (4.4)

The equation is written as:

L(x,y,z) = H(G(F(x),y),z) (4.5)

Each and every function is converted into membrane structure.

The equivalent membrane structure for F(x) is as in figure 4.10, G(y) is shown figure

4.11 and H(z) is figure 4.12.

94

F(x)−M1

x1,1[0], x2,1[b], x3,1[c], x4,1[d], x5,1[a], x6,1[b], x7,1[c], x8,1[d], x9,1[a]

e1,1[200000]

Pr1,1 : x5,1 + x1,1− x1,1 〈e1,1→〉 1 | x5,1

Pr2,1 : 2∗ x9,1 ∗ x5,1 〈e1,1→〉 1 | x9,1 +1 | x1,1

Pr3,1 : x6,1 〈e1,1→〉 1 | x6,1

Pr4,1 : 2∗ x2,1 ∗ x6,1 〈e1,1→〉 1 | x2,1 +1 | x1,1

Pr5,1 : x7,1 〈e1,1→〉 1 | x7,1

Pr6,1 : 2∗ x3,1 ∗ x7,1 〈e1,1→〉 1 | x3,1 +1 | x1,1

Pr7,1 : x8,1 〈e1,1→〉 1 | x8,1

Pr8,1 : 2∗ x4,1 ∗ x8,1 〈e1,1→〉 1 | x4,1 +1 | x1,1

Figure 4.10 Membrane System for Function 1

G(y)−M2

x1,1[value], x2,1[e], e1,1[200000],e2,1[0]

Pr1,1 : x1,1/x2,1 〈e2,1→〉 1 | x1,1

Pr2,1 : x2,1 〈e1,1→〉 1 | x2,1

Figure 4.11 Membrane System for Function 2

H(z)−M3

x1,1[value], x2,1[f], e1,1[200000]

Pr5,1 : x1,1 ∗ x2,1 〈e1,1→〉 1 | x1,1

Pr6,1 : x2,1 〈e1,1→〉 1 | x2,1

Figure 4.12 Membrane System for Function 3

This shows a simple case where a single value is passed from one membrane to another

membrane structure. As mentioned, three membranes are considered, each membrane has

an operation (function) to be performed. The first membrane calculates the final value of

equation 4.2 using the corresponding membrane as depicted in figure 4.10. The final value

from a set of variables of membrane 1 (figure 4.10) is passed. Similarly a value from set

95

of variables of membrane 2 (figure 4.11), evaluating equation 4.3 is passed to membrane 3

(figure 4.12) which finally calculates equation 4.4. The membrane structures are executed

with constant values (a,b,c,d,e and f) given inside the membrane (as variables) and the

variables (x,y and z) given as cycles for each membrane respectively.

The next example deals with a set of membranes where more than one value is passed

to another membrane. Considering equation 4.6 the membrane details are given in figure

4 and 5. Here two values of x1,1 (final series value after addition) and x2,1 (the factorial

value) are passed. Finally these two values are used in the next (dependent) membrane.

Similar to this, several complex problems also can be solved, where each membrane

can compute a set of operations and share the data among themselves. The set of inputs

considered for both; variables are passed in PeP file and variables are passed in XML file.

Table 4.2 gives the results of all the sample cases tested, using the equation; the actual

value and values are obtained after executing in both the simulators with different set of

inputs.

L(x,y) = (((
x

∑
i=1

ni)/x!)1/y) (4.6)

L(x,y)−M1

x1,1[0], x2,1[1], x3,1[n], x4,1[1], x5,1[n], e1,1[200000]

Pr1,1 : x3,1 ∗ x5,1 〈e1,1→〉 1 | x5,1

Pr2,1 : x5,1 + x1,1 〈e1,1→〉 1 | x1,1

Pr3,1 : x3,1 〈e1,1→〉 1 | x3,1

Pr4,1 : x4,1 +1 〈e1,1→〉 1 | x4,1

Pr5,1 : x4,1 ∗ x2,1 〈e1,1→〉 1 | x2,1

Figure 4.13 Membrane System for Function 1 - Problem 2

96

L(x,y)−M2

x1,1[value1], x2,1[value2], x3,1[0], x4,1[y],e1,1[200000],e2,1[0]

Pr1,1 : x1,1/x2,1 〈e1,1→〉 1 | x3,1

Pr2,1 : x1/x4,1
3,1 〈e2,1→〉 1 | x1,1

Pr3,1 : e1,1 + e2,1 〈e1,1→〉 1 | e2,1

Pr4,1 : e2,1 〈e1,1→〉 1 | e1,1

Figure 4.14 Membrane System for Function 1 - Problem 2

Equation Inputs Output
(PeP)

Output
(XML)

Actual
Value

L(x,y,z) =
(ax +bx + cx +dx)

/ey ∗ f z

a b c d e f x y z

1 2 3 4 3 4 3 4 5

12 16 2 5 4 6 4 8 4

2 4 8 16 4 4 3 3 3

10 20 32 16 4 8 2 4 4

L(x,y,z)

1264.19

1718.74

4680

28480

L(x,y,z)

1264.19

1718.74

4680

28480

L(x,y,z)

1264.19

1718.74

4680

28480

L(x,y) =
(((∑x

i=1 ni)/x!)1/z)

n x y

2 8 4

5 9 2

8 6 5

12 3 3

L(x,y)

0.335361

2.593811

3.340716

6.796884

L(x,y)

0.335361

2.593811

3.340716

6.796884

L(x,y)

0.335361

2.593811

3.340716

6.796884

Table 4.2 Membranes equivalent values

Case Study 2: Convert PeP to XML

For testing the correctness and capability of the converter, two different set of cases have

been considered.

Case 1: Correctness of Converter

To check the correctness of the converter, three membranes, as in figure 4.10, 4.11 and

4.12, are considered separately. These three membranes represent equation 4.2, 4.3 and

4.4, respectively. The final value for all the equations for a given set of constants is known

97

(can be manually calculated) and the converter works correctly if both the files (PeP and

XML) give the same value. Table 4.3 shows the final values of the PeP file and XML file

for a set of input values. In all the cases the output is as intended.

Case 2: Large File Conversion

This case study is to check the capability of the system to support larger membranes i.e.

whether the converter is able to convert larger or bigger files (many normal and dense

programs) efficiently without any error. For checking this, two files were considered. The

first file is a simple membrane with nearly 10000 programs. The seed file for the membrane

is as shown in figure 5.7. A seed membrane is a simple membrane which gives an abstract

structure that can be turned into a bigger membrane by replicating the operation (programs

and membranes) performed by the seed membrane. The resultant PeP file is successfully

converted to XML file. This file is then executed using the ENPSJava Simulator. The

output for both the files are the same. Similarly the next file is a more complex file, with

multiple membranes, which has nearly 3000 programs considered for conversion. The

tool successfully converts the file into the XML format. This resultant file has the same

structure and is executed without any error. The seed membrane is as shown in figure 4.16.

The outputs show that the tool is able to convert the PeP and XML file properly.

Further, the given files, for both the case studies, are reconverted into the other format

after conversion and is checked again i.e. the resultant XML file is converted back to PeP

and then is executed with PeP simulator and as expected it gives the same output for all the

cases. This ascertains that both the converters work properly, as any discrepancy in either

of the converters can lead to a wrong result or a deviation in the result.

98

x1,1[1], x2,1[1], x3,1[1], x4,1[1], y1,1[1], y2,1[7], y3,1[1], y4,1[7], y1,1[200000]

Pr1,1 : x1,1 +1 〈e1,1→〉 1 | x1,1

Pr2,1 : x2,1 +1 〈e1,1→〉 1 | x2,1

Pr3,1 : x3,1 +1 〈e1,1→〉 1 | x3,1

Pr4,1 : x4,1 +1 〈e1,1→〉 1 | x4,1

Pr5,1 : y1,1 +1 〈e1,1→〉 1 | y1,1

Pr6,1 : y2,1 +1 〈e1,1→〉 1 | y2,1

Pr7,1 : y3,1 +1 〈e1,1→〉 1 | y3,1

Pr8,1 : y4,1 +1 〈e1,1→〉 1 | y4,1

Figure 4.15 Seed Membrane 1 for Case Study 2 and 3

Case Study 3: Convert XML to PeP

This case study tests the capability of the system, to convert the XML based files to PeP

files. Again, there are two cases, Normal file conversion and larger file conversion.

Case 1: Correctness of the Converter

In this case, two membranes, as shown in figure 4.10 and figure 4.12, are considered.

These figures are equivalent to the corresponding equations 4.2 and 4.4, respectively.

These membranes initially in XML format are converted into PeP and are executed with

PeP simulator. The results show that the tool converts the files properly as the expected

results are obtained (table 4.4).

Further, the resultant files are converted back to XML files. These reconverted files

are executed using ENPSJava (Garcıa-Quismondo, 2013) giving the same results for all

the cases, ascertaining that both the converters are working properly.

99

x1,1[1], x2,1[1], x3,1[3], x4,1[3], x5,1, [0.6]x6,1[0.7]

y1,1[0.2], y2,1[0.3], y3,1[0.5], y4,1[5], y5,1[0.8], y6,1[0.9]

z1,1[3], z2,1[4], z3,1[5], z4,1[3], z5,1[0.5], z6,1[0.7]

a1,1[2], a2,1[0.5], a3,1[6], a4,1[0.3], a5,1[0.8], a6,1[3]

b1,1[2], b2,1[3], b3,1[0.7], b4,1[0.9], b5,1[0.8], b6,1[0.9]

c1,1[3], c2,1[2], c3,1[4], c4,1[0.5], c5,1[7], c6,1[0.9]

f1,1[0], f2,1[0], f3,1[0], f4,1[0], f5,1[0], f6,1[0], e1,1[200000]

Pr1,1 : 7∗ (x1,1 ∗ x2,1 ∗ x3,1/x4,1 ∗ x5,1 ∗ x6,1)
1/0.166 〈e1,1→〉 1 | f1,1

+1|x1,1 +1|x2,1 +1|x3,1 +1|x4,1 +1|x5,1 +1|x6,1

Pr2,1 : 7∗ (y1,1 ∗ y2,1 ∗ y3,1/y4,1 ∗ y5,1 ∗ y6,1)
1/0.166 〈e1,1→〉 1 | f2,1

+1|y1,1 +1|y2,1 +1|y3,1 +1|y4,1 +1|y5,1 +1|y6,1

Pr2,1 : 7∗ (z1,1 ∗ z2,1 ∗ z3,1/z4,1 ∗ z5,1 ∗ z6,1)
1/0.166 〈e1,1→〉 1 | f3,1

+1|z1,1 +1|z2,1 +1|z3,1 +1|z4,1 +1|z5,1 +1|z6,1

Pr4,1 : 7∗ (a1,1 ∗a2,1 ∗a3,1/a4,1 ∗a5,1 ∗a6,1)
1/0.166 〈e1,1→〉 1 | f4,1

+1|a1,1 +1|a2,1 +1|a3,1 +1|a4,1 +1|a5,1 +1|a6,1

Pr5,1 : 7∗ (b1,1 ∗b2,1 ∗b3,1/b4,1 ∗b5,1 ∗b6,1)
1/0.166 〈e1,1→〉 1 | f5,1

+1|b1,1 +1|b2,1 +1|b3,1 +1|b4,1 +1|b5,1 +1|b6,1

Pr6,1 : 7∗ (c1,1 ∗ c2,1 ∗ c3,1/c4,1 ∗ c5,1 ∗ c6,1)
1/0.166 〈e1,1→〉 1 | f6,1

+1|c1,1 +1|c2,1 +1|c3,1 +1|c4,1 +1|c5,1 +1|c6,1

Pr7,1 : x3,1 ∗0.0015 〈e1,1→〉 1 | x3,1

Pr8,1 : y3,1 ∗0.0015 〈e1,1→〉 1 | y3,1

Pr9,1 : z3,1 ∗0.0015 〈e1,1→〉 1 | z3,1

Pr10,1 : a3,1 ∗0.0015 〈e1,1→〉 1 | a3,1

Pr11,1 : b4,1 〈e1,1→〉 1 | b4,1

Pr12,1 : c3,1 ∗0.0015 〈e1,1→〉 1 | c3,1

Figure 4.16 Seed Membrane 2 for Case study 2 and 3 (Complex Programs)

Case 2: Large file conversion

Here the capability of the system to execute large files is tested. In this case, two types

of files are considered; a file (membrane) consisting of simple programs, upto 10000 in

numbers (multiple membranes). Another one is a membrane system consisting of 3000

100

complex programs with multiple membranes. Complex programs are given, so as to check

the capability of the converter to convert dense programs. The number of programs consid-

ered in this study are just enough to demonstrate large files, the tool based on its structure

and structure that can support much more number of programs without possible errors.

Both of these cases tend to work as intended.

Equation Inputs Output
(PeP)

Output
(XML)

F(x) =
(ax +bx + cx +dx)

a b c d x

1 2 3 4 3

12 16 2 5 6

2 4 8 16 4

10 20 32 16 5

F(x)

100

19778889

69904

37903008

F(x)

100

19778889

69904

37903008

H(z) = n∗ f z

n f z

5 3 4

10 4 8

7 8 5

16 5 7

H(z)

405

655360

229376

1250000

H(z)

405

655360

229376

1250000

Table 4.3 Results for Case study 2

4.2 GPUPeP

ENPS is a class of P System in which membranes operate on numerical values. To realize

the power of ENPS there are a few simulators developed. Each and every simulator has

some advantages as well as some disadvantages. For this research a GPU based simula-

tor using Python as a user interaction language is developed. This tool is a completely

parallel variant, compatible with a Python-based sequential simulator (PeP), which is the

first Python based work for ENPS. The developed simulator uses CUDA to interact with

GPU and it gives the desired speed up, while processing the membranes. There are two

important case studies which show the performance of the developed tool to be far better

than the other serial simulators.

101

Equation Inputs Output
(XML)

Output
(PeP)

F(x) =
(ax +bx + cx +dx)

a b c d x

2 1 4 3 5

5 2 12 8 4

4 8 2 4 8

25 4 32 16 5

F(x)

1300

25473

16908544

44369657

F(x)

1300

25473

16908544

44369657

H(z) = n∗ f z

n f z

2 5 6

5 6 7

8 3 12

3 4 5

H(z)

31250

1399680

4251528

3072

H(z)

31250

1399680

4251528

3072

Table 4.4 Results for Case study 3

4.2.1 Introduction

The concept of membrane computing has been introduced by Gheorghe Paun (Dassow

and Păun, 1999) and further details has been given in his seminal paper in 2000 (Păun,

2000). Membrane computing, a branch of natural computing, is a computing paradigm

inspired by the structure of a living cell. P Systems are the computing devices that are

used to realize membrane computing models. There are several types of P System models

designed, based on the structure of the cells. There are primarily three structural models,

Tissue-like P System, Cell-like P system and Neuron based P System. This study deals

with cell-like P Systems. This membrane model consists of multiple membranes placed in

a hierarchical structure, with a single membrane collectively bounding all the membranes.

Any number of membranes can be placed inside the cell membrane, with the property of

possible communication between one another i.e. they can pass information to each other.

The P System structure is an inherently parallel structure, and this property gives an undue

advantage to the model over other models. It is a computing paradigm, unlike other similar

nature-inspired models, which are usually methods and approaches for specific purposes

(Martínez-Puras and Pacheco, 2016; Mohammadi et al., 2018; Eusuff et al., 2006). P

102

System is one of the widely used unconventional computing models.

P System has several variants, with every variant having its own application and prop-

erties, except parallelism and multi-membrane structure, which is common for all the vari-

ants of cell-like P System. This work concentrates on the Numerical P System (NPS), a

variant of P System. A variant of the Numerical P systems framework called Enzymatic

Numerical P systems (ENPS) is considered here. ENPS is Numerical based model that

has several applications. To realize its power, several simulation tools have been devel-

oped (García Quismondo et al., 2012a; Martínez-del Amor et al., 2015; Florea and Buiu,

2017). Similarly, this work aims at developing a GPU based Python simulator (GPUPeP)1

for ENPS. This is the second work in Python (as interface) for ENPS after Florea et al.

(Florea and Buiu, 2018), who designed a sequential Python tool for ENPS and the same

membrane structure is used as input, so as to maintain compatibility between serial and

parallel tools.

4.2.2 Design Goals

Following is a list of design goals for the GPUPeP simulator:

Clear Programming Model: A clear programming model refers to the use of a program-

ming model with a proper definition and standard structure accepted by the programming

community around the world. This primarily deals with the simulator’s programming

model, which must be clear, usable, and extensible.

The developed simulator uses Python to get the values from the file. The same proce-

dure by Florea and Buiu (2018) is followed in this study for reading and storing the input

(objects), for the initial phase. The input file format used here is the same as that given by

Florea et al. (Florea and Buiu, 2017, 2018), as it closely resembles the formal structure of

ENPS System. These features have been retained to have compatibility between these two

tools, which can later be combined as a single entity for sequential and parallel execution

if required. The CUDA simulator uses the Python object representing the ENPS model for

parallel simulation for execution. CUDA is again a well-defined framework and one of the

1The tool is available on request from the authors

103

efficient ways to use NVIDIA GPUs (Nvidia, 2019).

Performance: The GPUPeP simulator’s core is written in CUDA C. CUDA is NVIDIA’s

parallel computing platform and an application programming interface, that gives a signif-

icant increase in performance by enabling the programmer to harness the power of GPUs.

The case studies show that for ENPS models, with a large number of programs (approx.

10000) and a large number of steps (approx. 10000), the speed-up obtained is nearly 770x

compared to the sequential simulator.

Ease of Understanding: The user interfaces part of the simulator is written in Python

(specifically, for reading and storing the membrane structure). Every ENPS model is con-

verted to Python object, which can easily be operated upon (Florea and Buiu, 2018). GPU-

PeP uses these Python objects and passes the required data to CUDA C and runs the parallel

simulation.

Simple Interface: The simulator is running on a terminal. The input to the simulator is

a pep file, which is a simple representation of the ENPS model (Florea and Buiu, 2018).

The input flags given by the user sets the output of the simulator.

Single Input Format: The GPUPeP simulator expects the ENPS model in a certain format

as input. The Python simulator converts the pep file into Python object, which is then

converted into the relevant format as required by the CUDA C program.

4.2.3 Design and Implementation of the Tool

The research community has indicated the requirement for an easy to use parallel ENPS

simulator. The existing parallel simulators are either based on C or Java. Most of them

require their input to be in XML format. Thus, a decision to develop upon the Python-

based simulator for the ENPS, that takes input in pep format (which replicates the exact

structure of a membrane, making it more appealing to the users) has been taken. This

model of input has been proposed and used first by Florea and Buiu (2018, 2017), which is

an easily comprehensible object-based structure. The file extension ’.pep’ is used to refer

to input files for simulator in the presented study also. This is considered as a standard

104

Figure 4.17 PeP file format (Florea and Buiu, 2017, 2018)

format for input. Though a similar user-friendly format may have been created for this

tool, it is found that creating a new one would again restrict the interoperability of the tool.

Using pep allows the users to use both the tools interchangeably for testing. Figure 4.17

shows a sample structure of the input file (Florea and Buiu, 2018, 2017):

A brief explanation of the input format:

− H: contains the list of membranes in the ENPS

− structure: stores info on how the membranes are present in ENPS. Suppose there

were two separate membranes m1 and m2, it would be [m0 [m1]m1 [m2]m2]m0

where, m0 is the skin membrane under which the individual membranes are con-

tained and if only m1 was inside m0, it is [m0 [m1]m1]m0. Note that one membrane

cannot be both inside and outside another membrane

− m1 (1 here refers to the first membrane, which is according to general naming con-

vention (mx)): contains all the information regarding that membrane. It is the wrap-

per of a number of data structures such as the variables, programs, enzymes, etc.

105

which belong to that membrane.

− var: contains a list of the variables that belong to the membrane. The variables are

named in the form x_a_b where ‘x’ represents the variable name, ‘a’ represents the

membrane number and ‘b’ represents the variable number in that membrane. This is

a convention, the variable name can be any string.

− E: contains a list of enzyme variables belonging to that membrane in the same format

as that of the variables

− pr: represents a program that belongs to the membrane. It usually consists of a

production function, an enzymatic check, and a distribution function along with their

proportions in a mathematical format

− var0: contains the values of the variables belonging to the same membrane in the

same order as mentioned in ‘var’

− E0: contains the values of the enzyme variables belonging to the same membrane

and in the same order as mentioned in ‘E’

Python’s Regex package is used to convert into Pyhon Classes, the input in the spec-

ified format in the ’.pep’ files. Separate functions are defined to convert the parsed infix

production function into its corresponding postfix expressions, which are then evaluated

with the given values and distributed among the variables in the distribution functions.

Distribution rules are followed while doing so.

Once the pep file is read and stored in the proper format, the control moves to CUDA

program, which is the primary contribution of this work. As mentioned, the Python part of

the simulator parses the pep file and converts the given ENPS model into Python objects

(Florea and Buiu, 2017). The CUDA simulator is written in CUDA C. The Python objects

are parsed into an appropriate format and given as input to the CUDA simulator. The

transfer of information from the Python simulator to CUDA simulator is via a file. The

PeP parser (Florea and Buiu, 2018) has been reused in this study for reading the pep file

primarily because of its effectiveness in perfectly reading the pep structure perfectly.

106

CUDA Programming

A brief description of CUDA programming is given (Cook, 2012). In CUDA, the device

refers to GPU, while the host refers to CPU. The host and device have a master-slave

relationship. The host can manage memory in host and device and make calls to the kernel.

Many GPU threads execute these kernels in parallel. The main program is executed in the

host and thus, the user input is transferred from host to the device by the host.

Given the heterogeneous nature of the CUDA programming model (Cook, 2012), a typical

sequence of operations for a CUDA C program is:

1. Initialization of host data.

2. Transfer of data from the host to the device.

3. Execute one or more kernels.

4. Transfer computed results back from host to device.

5. De-allocation of allocated memory in host and device.

All of these steps have been followed in the present work

The computations done by the CUDA simulator can be broadly classified into the following

three stages:

− Evaluate the program’s production function, with the values of the membrane, at the

start of that step.

− Evaluate the variables in the production function, against the enzyme variable, for

that program and proceed if all the variables are less than the enzyme.

− Calculate the distribution fraction for each variable in the distribution function, using

the distribution proportions and distribute the produced value accordingly.

A CUDA kernel is defined in the CUDA simulator for parallel simulation of the ENPS

model. The computations done inside the CUDA kernel is as follows:

107

• Parse production function into postfix expression:

– Production functions of all programs are parsed and converted into a postfix

expression.

– This is a one-time process done for faster evaluation of all production functions

in each step.

• Parse distribution function into an operable data structure

– Distribution function passed as a string is parsed and converted into an operable

data structure (C struct).

– The proportions in the repartition protocol are normalized.

– Normalisation is not necessary but is done to avoid recalculating the amount to

be distributed amongst variables in the distribution function.

• Simulate the membrane

– Simulate the programs as per the number of cycles given

– Calculate the production function of each program.

– For each program, set its activation. If the program is inactive, then ignore the

result of the computation is ignored in its production function.

– Set values of consumed variables (variables in active production functions) to

zero.

– For active programs, distribute the values of the production function to vari-

ables in distribution function according to repartition protocol. The previ-

ously mentioned data structure is used for this. This step is done atomically

in CUDA.

The kernel spawns a single block. Each program is mapped to a thread. If there are

more than 1024 programs, they are evenly distributed among threads. The entire simulation

of the ENPS programs happens within a single kernel. This approach has been chosen

108

Figure 4.18 GPU Kernel level Operations

over launching several small kernels that do specific parts of the simulation. The latter

approach may have given significant kernel launch overhead (when summed across each

kernel launch).

The data layout consists of 11 components namely, following is a brief explanation of data

in each line:

- Number of programs

- Number of membranes

- Production function

- Delimiters for production function

- Distribution function

- Delimiters for distribution function

- Values of variables

- Delimiters for variables

- Values of enzymes in each program

109

- Number of cycles of simulation

- Names of variables corresponding to membrane names

As mentioned, there is another tool (García Quismondo et al., 2012a), which is one of the

first tools for ENPS using GPU’s. There are two primary differences between the current

tool and tool by García Quismondo et al. (2012a), when CUDA architecture is compared.

García Quismondo et al. (2012a) uses an expression tree to evaluate production function,

whereas this study converts it to postfix expression and evaluate. Unlike the single kernel,

several small kernels are defined to handle a specific part of the simulation.

Apart from these differences related to CUDA design, the parser design is in Python,

and data layout is different as opposed to C/C++ in (García Quismondo et al., 2012a).

4.2.4 Interaction with Simulator

The simulator uses the same command and membrane structure as given by Florea et al.

(Florea and Buiu, 2018). (To maintain compatibility with this Python tool).

The parallel simulator is run by invoking special command as mentioned below (the

same file works in the sequential mode as in the above-mentioned tool (Florea and Buiu,

2018), without the parallel option mentioned below):

$. / gpupep . py <PEP_INPUT_FILE> [o p t i o n s]

• -n NR: stop the simulation after NR execution steps

• --parallel: switch to parallel execution mode

Running either of the following commands displays the set of options mentioned above

(and more):

$. / gpupep . py −−{ help }

$. / gpupep . py

All user interaction with the simulator can be represented with an interaction diagram

(Lopes et al., 2018) (See Figure 4.19).

110

Figure 4.19 Interaction diagram

111

Following is a brief description of various elements in the diagram:

1. Opening point: A filled black circle represents the Opening Point. This indicates

where the user starts interacting with the simulator.

2. Scene: A rounded rectangle represents a scene. In a scene, the user decides how the

conversation flows between her and the system. The top section contains the topic

of the scene and represents the user’s goal.

3. Signs: represent the information involved in the utterances issued by the user (i.e.,

user input) and by the designer’s deputy (i.e., system output) during the dialogues.

‘u’ for the user and ‘d’ for the designer. For example ./gpupep.py in “Viewing

options for running gpupep.py scene”.

4. Dialogues: It indicates a conversation about a topic. For example, “display invalid

input file” dialogue in “Invalid input file” scene.

5. Structures of dialogue: The dialogues can be a composition of dialogues. In these

cases, the dialogues are combined by operators like SEQ, XOR, OR or AND.

• Dialogues within SEQ operator must be exchanged in the same sequence.

• Dialogues within XOR operator are mutually exclusive to one another.

• Dialogues within OR operator can be exchanges amongst themselves.

• Dialogues within AND operator must all be exchanged, but not necessarily in

the same sequence.

6. Transition utterance: Represents the user or the system giving up their turn of

interaction for the other. It is represented by an arrow in the diagram, labeled with a

user utterance indicator (u:) or designer utterance indicator (d:). It is represented by

an arrow labeled by u: (user utterance) or d: (designer utterance).

7. Ubiquitous access: Indicates that the user can change the topic of conversation at

any point during the simulation. It is represented through a gray rounded rectangle.

112

For example, the user can press “Ctrl + C”, to terminate the program anytime.

8. Closing point: Indicates an end of interaction. A filled black circle within a circle

with no padding represents the Closing Point in Figure 2.

4.2.5 Case studies: Testing the Tool

The performance of the tool under different conditions is analyzed in this section. The tool

harnesses GPUs’ inherent capabilities and is based on CUDA, thus the tool’s performance

depends on these technologies. The improvement in GPUs over time will directly affect

the performance of the tool. The use of GPU and an appropriate design of the tool ensures

that the tool performs much better than its sequential counterparts. The performance gain

is several times more than the other sequential tools present. This section is further divided

into two, where the tool’s performance for different test data is analyzed.

10
0

10
1

10
2

10
3

10
4

Number of Cycles

10
1

10
2

10
3

10
4

10
5

Ex
ec

ut
io

n
Ti

m
e

(m
illi

se
co

nd
s)

2.276 2.675
6.503

44.746

325.772

11.448

119.947

1246.969

12240.258

122798.635

3.166
9.776

57.469

448.057

3663.626

Normal1000Programs

Parallel Python (GPUPeP)
Sequetial Python (PeP)
Sequential Java (ENPSJava)

Figure 4.20 Normal 1000 Programs

GPUPeP comes in two variants, float and double. In float variant, the final variable

values are in a single precision floating point whereas, in double variant, they are in double

113

10
0

10
1

10
2

10
3

10
4

Number of Cycles

10
1

10
2

10
3

10
4

10
5

Ex
ec

ut
io

n
Ti

m
e

(m
illi

se
co

nd
s)

5.210 6.113
13.269

86.951

476.648

22.545

237.087

2394.867

23937.123

241617.913

4.460

19.039

105.980

894.529

6464.903

Normal2000Programs

Parallel Python (GPUPeP)
Sequetial Python (PeP)
Sequential Java (ENPSJava)

Figure 4.21 Normal 2000 Programs

10
0

10
1

10
2

10
3

10
4

Number of Cycles

10
1

10
2

10
3

10
4

10
5

10
6

Ex
ec

ut
io

n
Ti

m
e

(m
illi

se
co

nd
s)

18.470 20.488
39.035

201.965

915.008

56.904

604.018

6069.866

60867.014

612174.356

7.710

40.862

245.176

2058.898

14552.316

Normal5000Programs

Parallel Python (GPUPeP)
Sequetial Python (PeP)
Sequential Java (ENPSJava)

Figure 4.22 Normal 5000 Programs

114

10
0

10
1

10
2

10
3

10
4

Number of Cycles

10
1

10
2

10
3

10
4

10
5

10
6

Ex
ec

ut
io

n
Ti

m
e

(m
illi

se
co

nd
s)

60.794 61.268
97.878

319.070

1659.433

142.413

1261.659

12493.302

125294.558

1289849.036

13.914

84.873

511.188

3893.963

26368.960

Normal10000Programs

Parallel Python (GPUPeP)
Sequetial Python (PeP)
Sequential Java (ENPSJava)

Figure 4.23 Normal 10000 Programs

precision. The float variant is faster than the variant double, with a trade-off loss in preci-

sion. Also, the double variant can only run on NVIDIA GPUs with compute capability ≥

6.0 as atomicAdd(), a predefined function. For floating-point based double-precision num-

bers, it is not available on devices with compute capability lower than 6.0 (Nvidia, 2019).

The results, are for float variants. Two variants are given to facilitate the user to choose,

according to their needs.

Case study I

The first case study consists of a simple membrane which tests the ability of the system

to handle large membranes of over 10000 programs. This also examines the efficiency

of the tool with regard to parallelism using seed membranes (García Quismondo et al.,

2012a). A seed membrane is a simple membrane that gives an abstract structure which

can be transformed into a bigger membrane by replicating the operation (programs and

membranes) performed by the seed membrane. The membrane, as shown in figure 5.7, is

replicated and is accordingly analyzed further.

115

10
0

10
1

10
2

10
3

10
4

Number of Cycles

10
1

10
2

10
3

10
4

10
5

Ex
ec

ut
io

n
Ti

m
e

(m
illi

se
co

nd
s)

2.366
5.181

9.229

49.391

337.476

8.245

91.175

928.193

9347.006

92705.519

1.786
6.352

40.866

314.922

2740.656

Multiwrite250Programs

Parallel Python (GPUPeP)
Sequetial Python (PeP)
Sequential Java (ENPSJava)

Figure 4.24 Multiwrite 250 Programs

There are four different sizes of programs considered (1000, 2000, 5000, 10000) to

study the efficiency of a normal membrane system. These are executed in three different

simulators (GPUPeP, PeP and ENPSJava). GPUPeP is executed on NVIDIA Tesla T4

GPU and ENPSJava is run on Intel(R) Xeon(R) Silver 4114 CPU @ 2.20GHz. PeP has

initially been executed on the Xeon CPU, but has obtained far better simulation times,

running it on Intel(R) Core i7-4790 CPU @3.60 GHz, therefore, the results are better and

comparable to the latter. All the three execution times are compared. To avoid environment

related discrepancy, each membrane structure is executed 10 times and an average of all

the executions on each simulator for each membrane structure, is considered.

From figures 4.20, 4.21, 4.22, 4.23, it is to be noted that GPUPeP is initially slower

than both PeP and ENPSJava for 1 cycle in Normal 10000 Programs. Same is the case

with other samples for 1000, 2000 and 5000 programs. However, as the number of cycles

increases, GPUPeP catches up and has an average speedup of 770x and 15.8x, against PeP

and ENPSJava respectively for 10000 cycles (for different cases).

116

10
0

10
1

10
2

10
3

10
4

Number of Cycles

10
1

10
2

10
3

10
4

10
5

Ex
ec

ut
io

n
Ti

m
e

(m
illi

se
co

nd
s)

3.763
9.408

15.297

73.629

408.027

16.494

190.462

1900.918

19248.904

191327.150

2.662

11.143

75.560

629.918

4971.063

Multiwrite500Programs

Parallel Python (GPUPeP)
Sequetial Python (PeP)
Sequential Java (ENPSJava)

Figure 4.25 Multiwrite 500 Programs

10
0

10
1

10
2

10
3

10
4

Number of Cycles

10
1

10
2

10
3

10
4

10
5

Ex
ec

ut
io

n
Ti

m
e

(m
illi

se
co

nd
s)

8.622
19.371

30.178

134.053

547.978

32.290

364.440

3682.201

37011.637

369372.952

4.065

19.388

138.056

1200.990

8418.910

Multiwrite1000Programs

Parallel Python (GPUPeP)
Sequetial Python (PeP)
Sequential Java (ENPSJava)

Figure 4.26 Multiwrite 1000 Programs

117

10
0

10
1

10
2

10
3

10
4

Number of Cycles

10
1

10
2

10
3

10
4

10
5

10
6

Ex
ec

ut
io

n
Ti

m
e

(m
illi

se
co

nd
s)

45.582 48.723
68.439

244.352

1037.585

65.790

727.040

7368.844

73323.283

742812.417

6.257

40.503

264.454

2278.650

15350.389

Multiwrite2000Programs

Parallel Python (GPUPeP)
Sequetial Python (PeP)
Sequential Java (ENPSJava)

Figure 4.27 Multiwrite 2000 Programs

10
0

10
1

10
2

10
3

10
4

Number of Cycles

10
1

10
2

10
3

10
4

10
5

10
6

Ex
ec

ut
io

n
Ti

m
e

(m
illi

se
co

nd
s)

82.308 87.208
118.708

311.952

1478.819

97.280

1102.925

11090.978

111241.222

1118025.692

7.940

44.254

298.976

2928.299

22231.082

Multiwrite3000Programs

Parallel Python (GPUPeP)
Sequetial Python (PeP)
Sequential Java (ENPSJava)

Figure 4.28 Multiwrite 3000 Programs

118

A CUDA kernel does the parallel simulation in GPUPeP. When the number of cycles

to simulate is small (1 and 10), very less work is done inside the kernel. Thus, most of the

time is spent on launching the CUDA kernel and, therefore, is relatively slow compared

to PeP and ENPSJava. When the number of cycles to simulate is high (more than 10),

sufficient time is spent in the CUDA kernel for parallel simulation. So, the computation

time masks the initial kernel launch overhead. Therefore, GPUPeP has significant speed

up against serial PeP and ENPSJava (CPU based). From the graphs, it can be observed

that the membrane (Figure 4.22) with 5000 programs is the most efficient one, with an

average execution time than the ENPSJava, by at least 15.9 times for 10000 cycles and

770x for PeP. The others are also at least 8 times better for 10000 cycles. Similarly, for

10000 programs, the GPUPeP is 770 times better than PeP for the best case.

The possible reason for this is the efficiency of the proposed architecture with the

capabilities of the CUDA framework, to utilize the inherently powerful GPUs. Further, the

reason for getting the speedup to nearly 770x, as compared to PeP, is primarily because of

the design of PeP (Florea and Buiu, 2017, 2018). PeP, designed by Florea et al. (Florea and

Buiu, 2017, 2018), is one of the first Python-based sequential simulator designed to give

accurate results for any ENPS membrane input. Whereas, simulation efficiency doesn’t

seem to be a primary goal of PeP, as everything is executed sequentially in it. Thus, PeP

gives accurate results, but takes considerable time when the input is in the range of several

thousands of programs and cycles. Thus, GPUPeP gives a high computational speedup

against PeP for these types of large executions.

Case study II

In this subsection, the system’s performance is analyzed when a highly re-writable parallel

membrane structure is given. Further, the capability of the system to run a large membrane

structure is studied. For testing, a simple membrane seed structure is defined. The seed

membrane structure consists of three membranes (with one shown as in Figure 4.16). The

other two membranes have the same set of programs. The programs shown in the mem-

branes are replicated multiple times to over 3000 programs (1000 for each membrane), to

test the GPU’s worst case effectiveness. To study the effect of a highly re-writable mem-

119

brane system, there are five different sizes of membranes considered, 250, 500, 1000, 2000,

3000 as in Figure 4.24, 4.25, 4.26, 4.27 and 4.28 respectively. These are executed in three

different simulators (GPUPeP, PeP and ENPSJava). Here again, each membrane structure

is executed 10 times and an average of all the executions on each simulator, for each mem-

brane structure is considered. Initially, in multi-writable programs, GPUPeP is relatively

slow due to kernel launch overhead. However, as the number of cycles increases, the GPU-

PeP has a better performance. Even in the worst case (Multi-write 3000 and Multi-write

1000), it has an average speedup of 750x and 15.3x against PeP and ENPSJava, respec-

tively. Other cases are at least 8.1x better (250 programs provide very little scope for

parallelism). Every other case is at least 11 times better.

4.3 Summary

Two Python-based tool for ENPS are developed for this study. The first tool is Multi-

membrane system execution tool which supports two standard simulators (PeP and ENPS-

Java). The tool also supports file inter-conversion between two standard formats (.pep and

.xml). This has been further tested and the results are analysed. Similarly, another tool

named GPUPeP is developed, which is GPU based ENPS simulator. This simulator is

found to be one of the best and ascertains that it is compared with two other standard sim-

ulators and the speedup results are obtained. The tools are used for specific application as

per the requirements. The results show the tools to be performing perfectly according to

the requirements, both forming an important asset.

120

Chapter 5

CLOUD SERVICE SELECTION USING P
SYSTEM

Cloud service selection is a process of selecting the best service from a set of available

cloud services. As the number of cloud services are increasing day by day there is a

need for a service selection algorithm that can rank these services efficiently. This study

proposes service selection mechanism based on a parallel computing paradigm variant

ENPS coupled with a MCDM structure. There are two approaches that have been proposed

here. As cloud services are involved our primary aim is to develop at a robust algorithm

based.

5.1 Introduction

Service Selection in Cloud is one of the prime areas of research, within the ambit of cloud

computing, that has gained quite a wide attention in the recent past. Service selection

algorithm primarily involves selecting the best service from a set of available services

based on Quality of Service (QoS) attributes. The QoS attributes are the parameters which

allow the users to ascertain the actual quality of the service, usually quantitatively. Over

the years there have been several methods designed for service selection in cloud, and

primarily they are sequential in nature.

These QoS attributes would often test the favorability of the services to the user, based

on the requirement and aim of the project. There are three components of a normal cloud

121

service selection model, the service consumers, the broker, and service providers (Sun-

dareswaran et al., 2012; Liu et al., 2011) (as in figure 2.1). A service consumer is a user

who leases services from the service providers. The broker acts as an interface between

the service consumer and the service provider. Brokers allow consumers to access service

providers. There are several service providers available; the broker handles communica-

tion with a set of service providers with several other value-added services (Liu et al., 2011;

Equinix, 2019). An essential job of the broker is to facilitate service selection in cloud by

allowing the user to select from the available set of services. It usually ranks services for

selection. This is the most appropriate place for the service selection algorithm (ranking)

to be present. As in the figure 2.1, the service selection algorithm is placed inside the bro-

ker. For example, Equinix (Equinix, 2019) a cloud service broker, is known to have more

than 400 cloud service providers as its clients (Lin et al., 2016) and within these cloud

service providers each might have more than atleast 4 services to offer. Thus a customer

is allowed to select from approximately 1600 services (ranking 1600) which is quite a lot

of services. Thus a effective approach which can run efficiently for several thousands of

services as choices has to be designed.

Therefore an effective approach which can run efficiently for several thousands of ser-

vices as choices has to be designed. In this scenario, there is always a possibility of small

changes in the weights and values. Thus the proposed model should be able to bear the

changes in the weight, i.e. the proposed model should be robust models which can bear

slight changes in the weight and no effect in output are useful.

Considerable work has been done in this area, and each of the work has a specific

advantage. A Literature Review has been done and it is found that almost all of the works,

except few, consider a sequential model for designing the algorithm whose complexity

increases non-linearly for a linear increase in the number of services available for selection.

Thus, a robust parallel model for service selection in cloud is proposed. There are several

methods to solve the problem of service selection in cloud, classified into several categories

as Optimization-based approaches, Multi-criteria Decision Making (MCDM), Logic-based

approach and other miscellaneous approaches (Sun et al., 2014). Out of these one of the

most widely used is MCDM approaches. MCDM models are specifically designed for

122

ranking a set of items given the values of the attributes of the items and weights of the

attributes.

Gheorghe Paun has introduced membrane Computing in his seminal paper in 2000

(Păun, 2000). The devices used to realize Membrane computing are called as P Systems.

P System is inspired by nature, in particular, by a living cell. A membrane model has a

hierarchical structure of membranes where the internal components are disjoint figure 2.2.

The outer layer is called as skin membrane and all the other membranes are contained

inside it. There can be any number of membranes present inside the skin and all these

membranes can communicate with each other, i.e. they can pass information between

them. This structure inherently supports parallelism, based on which the whole design

works. Unlike other parallel models that have a limited scope or constrained scope of

application, P System has a wider range of applications due to its being a computational

paradigm. There are numerous variants of P Systems available (Paun et al., 2010). Each

variant has a different structure and is designed for a different purpose. One such specific

variant called Enzymatic Numerical P System (ENPS) is used for the chosen problem of

Multi-criteria Decision Making (for cloud service selection). The primary contribution of

the chapter as follows:

• A moderately sensitive, inherently parallel membrane-based MCDM approach for

cloud service selection

• Another robust, inherently parallel membrane-based MCDM approach for cloud ser-

vice selection

• An automated generator which allows an easy generation of these membrane mod-

ules

5.1.1 Service Selection in Cloud

There are several works in the area of cloud service selection. According to Sun et al. (Sun

et al., 2014) there are primarily four classifications methods for cloud computing, MCDM-

based approaches, Optimization-based approaches, Logic-based and other approaches. Of

123

the four approaches, the most popular one is Multi-Criteria based decision making. After

2014, there have been several works in the area of cloud service selection, specifically

using MCDM methods. Some important and latest methods that have some relation to

the proposed approach are discussed, primarily MCDM approaches. As parallelism and

robustness, every method has some aim to be achieved through their proposed model and

that has been discussed.

Many inherently parallel paradigms are available, like Molecular computing (DNA

Computing, Membrane Computing, Peptide Computing), Amorphous Computing, Quan-

tum Computing, to name a few (Kari and Rozenberg, 2008). Based on the structure of

service selection problem (MCDM) and the mentioned models, we find membrane models

to be suitable to solve this problem because of their properties like; simple inherent parallel

structure, Turing Universality, multiple variants, variety of applications and its developing

software support. In recent years there has been several direct application of membrane

computing as membrane algorithms and there have been several variants of P system with

Enzymatic Numeric P System being one.

5.1.2 Enzymatic Numerical P System (ENPS)

A primary structural variant of P System is a cell-like P system. The structure of a mem-

brane system is as in figure 2.2. It consists of individual membranes placed in a hierarchi-

cal model (Păun, 2000) with the outermost membrane called a skin membrane. The skin

membrane is a mandatory requirement for a membrane system. Inside the skin membrane,

there can be nil to any number of child membranes. Every membrane has certain rules-

based instructions called program (though name programs are specific to ENPS, we are

generalizing it as it is analogous to multi-set rules defined for general P System). These

programs are the basic building blocks that are responsible for realizing computing through

membranes. All the child membranes have programs and the skin membrane may or may

not have programs. The programs can pass information from one membrane to any other

membrane directly.

An important property of P System is parallelism, which is exhibited in two ways;

124

Membrane level parallelism and Program level parallelism (Paun et al., 2010). Membrane

level parallelism refers to the property where existing membranes execute in a parallel

manner while its programs are sequential and Program level parallelism refers to the prop-

erty where programs execute in parallel while the membranes execute sequentially. Here,

both the modes work together and every program of every membrane executes parallelly.

Based on the properties of the problem ENPS is used as solution. The details of ENPS

structure are elaborated in section 2.4. Further, the exact solution of service selection

(ranking) in cloud based on ENPS and MCDM is elaborated as follows.

5.2 Logical Operations behind ENPS-ITOPSIS

The proposed model (ENPS-ITOPSIS) involves certain logical operations that are made

into membrane-based structures. The operations are discussed in sequence, so that, con-

ceptually the service selection operation is understood more easily. Albeit, there is no

step-wise mapping of the logic to the proposed approach, but all the operations are used in

the method. These are based on the Technique for Order Preference by Similarity to Ideal

Solution (TOPSIS) method (Hwang and Yoon, 1981; Rao, 2007), which has been devel-

oped by Hwang and Yoon (Hwang and Yoon, 1981) and further extended by Rao (Rao,

2007) as Improved TOPSIS and Deng et al. (Deng et al., 2000) as Modified TOPSIS.

The proposed ranking method is used, when a set of alternatives with attributes is given

as input with weights. The cloud QoS attribute values are given for each alternative with

the attributes corresponding weights given as input. The method is based on the concept

that, the chosen alternative is nearest to the ideal solution and has to be the farthest to the

negative ideal solution. The distance used is the Euclidean distance. An ideal solution is

a hypothetical alternative, for which all the attributes are at their maximum i.e., the best

value for each attribute. Similarly, a negative ideal solution is a value that corresponds to

the alternative, which has the minimum values for the attributes i.e., the worst value for the

attributes. There are primarily a set of operations executed in a sequence, that is elaborated

and described as follows to get the final ranking:

The first step is to evaluate the given set of attributes and alternatives. These sets of

125

attributes and alternatives are given in the form of a matrix (Decision Table) where the

columns represent the attributes, and the rows represent the alternatives. Each cell, in the

decision table, is denoted as mi j, where it represents the values of ith alternative and jth

attribute. The values are real values (R), which are in accordance to the type of attributes

considered.

The given decision table consists of values according to the attribute ranges, as avail-

able in the raw form. This decision table has to be normalized so that it can be used for the

next steps. The normalized decision is calculated using the formula given in equation 5.1

Ri j = mi j / [
M

∑
j=1

M2
i j]

0.5 (5.1)

After the normalized values have been calculated, the weights of the attributes are

required to proceed further. The weights are directly available, or according to Rao (Rao,

2007), IAHP can be considered for calculating the weights, provided the user gives a

matrix with user preferences i.e., the order of preference for each attribute, against other

attributes.

The weights are represented by wi (for i = 1,2, . . . ,m), such that, the sum of all the

weights is 1 i.e. ∑
m
j=1 w j = 1. If the user directly gives the weight, the decision-maker

can proceed with the next step, else the user can give the preference matrix. It consists of

the relative importance of attributes and it is assigned, based on the user’s experience and

knowledge. The decision-maker, based on the values given by the user in the preference

matrix, can use IAHP (Rao, 2007) for calculating the actual weight.

The weighted normalized matrix Vi j is calculated. This is done by multiplying each el-

ement of the matrix Ri j with their corresponding weights of the attributes w j. The resultant

matrix is vi j which is expressed in equation 5.2:

126

Vi j = w j×Ri j (5.2)

The ideal best solution and ideal worst solution are then calculated. The formula for

this is given in equation 5.3, 5.4 (Rao, 2007) :

V+ = (Vi j/ j),(Vi j/ j
′
) f or i = 1,2, . . . ,n. (5.3)

V− = (Vi j/ j
′
),(Vi j/ j) f or i = 1,2, . . . ,n. (5.4)

Here there are two kinds of attributes, beneficial attributes, and non-beneficial at-

tributes.

For the beneficial attributes, the higher the attribute value, the better the impact and

conversely, for the non-beneficial attribute, the lower the value, the better the impact. (The

maximum and minimum values are calculated accordingly). The beneficial attribute has

the numerically highest value and that is considered for V+, similarly, numerically lowest

value is considered for V−. This is reversed in the case of the non-beneficial attribute,

as the numerically lowest value is considered for V+ and a numerically higher value is

considered for V−.

The next step is to obtain separation measures. The positive ideal separation measure

is the Euclidean distance between the ideal solution (equation 5.6) and an alternative. The

negative separation measure is the euclidean distance between the negative ideal solution

and alternatives (equation 5.5). To get the rank, the value of the final separation measure,

for each alternative, is sorted in descending order (in equation 5.7) (Rao, 2007).

127

S+i = [
M

∑
j=1

(Vi j−V+
j)2]0.5 (5.5)

S−i = [
M

∑
j=1

(Vi j−V−j)2]0.5 (5.6)

Pi = S−i ÷ (S−i +S+i) (5.7)

5.3 Membrane Based Improved Technique for Order of Preference

by Similarity to Ideal Solution

As mentioned in figure 2.1, the membrane-based approach is placed under cloud service

selection module. Here, cloud service selection refers to the method where, given the

details about services, a ranking of services is generated as output and the best one is

selected by the user. This even applies for the proposed membrane-based technique, this

applies. The details related to the services, like QoS Parameters and their corresponding

weights (either calculated or already available), are considered as input. The proposed

method takes this input and gives the ranks as output, as shown in figure 5.2.

Membrane-based algorithms proposed here, strictly follow the membrane structure and

the rules associated with the model. The whole process of ranking involves the collection

of four membrane systems (membranes), that execute as per the membrane computing

protocol in a certain sequence (as given in figure 5.1). This entire structure, collectively as

a single entity is the proposed algorithm; the input to this membrane module (algorithm)

is the services detail (QoS Parameters and their weights) and the output is the rank of the

services. Details about each of the membrane systems, mentioned in figure 5.1, are given

with subsequent discussions, later in this section. These membrane systems refer to a

single membrane or collection of membranes which execute and generate output, based on

128

Figure 5.1 ENPS-ITOPSIS Structure

the input passed to it, after executing for a number of cycles that have been specified. Thus,

the whole process of ranking involves four membrane systems, each performing different

tasks. Subsequently these have been elaborately discussed.

There are two variants of the models that have been proposed in the work. Both the

variants consist of four membrane systems, and have the same logical flow between the

membranes, as given in figure 5.1. The only difference between these models is the rules

in membrane 1 and membrane 4, which are elaborated later in this section. The first

model ENPS-ITOPSIS is discussed in detail, later pointing out the small changes that

are made, to get the other variant called ENPS-MTOPSIS. Both the variants work in a

broker environment, specifically in the service selection module, where details related to

the services, like QoS values for attributes and weights are given as inputs to the Membrane

module (algorithm).

129

The first and primary membrane-based algorithm proposed in this study is Enzymatic

Numerical P System - Improved Technique for Order of Preference by Similarity to Ideal

Solution (ENPS-ITOPSIS). It consists of four steps, as described in figure 5.2. The execu-

tion model is given in figure 5.1 The operations performed in ENPS-ITOPSIS are similar

as in ITOPSIS (Rao, 2007), but the base and methodology are totally different. These are

performed to suit the membrane structure, which is inherently parallel and has a membrane

computing structure. The first step of the method is to normalize the given data into the

proper format.

Figure 5.2 ENPS-ITOPSIS execution flow

Step 1- Membrane System 1- Normalization:

The first step (figure 5.1 denotes Membrane1 and its logical operation denotes the first

step in figure 5.2) involves normalization of the values, as shown in membrane 1 (figure

5.3). Here the normalization process using ENPS model, as in figure 5.3, is discussed in

130

detail.

Figure 5.3 ENPS-MTOPSIS execution flow

As discussed in the definition of ENPS, each membrane has programs (understood as

statements) with the enzymes (understood as controllers) which execute parallelly, for a

certain number of cycles, to give the result. The same rules of ENPS are followed (as in

section 3) and the normalization process is again broken into several steps that have been

elaborated as follows:

The first step of normalization involves taking the square root of the sum of squares of

each alternative. This is performed by the whole set of programs from Pr1,1 to Prn,1, for n

alternatives, and this is controlled by a single enzyme. All the programs are active in the

current cycle and execute parallelly.

131

The next set of programs are from Prn+1 to Prnm+n,1 which are used to retain the values

of the alternatives (for m attributes) for the next cycle. These values are to be retained, so

as to be used in the next cycle, for the final step of normalization. The retained values are

divided by the values calculated in the previous cycle (k1,1 to kn,1). In the current cycle, the

weights are multiplied and the weighted normalized values are obtained. These weighted

normalized values obtained are passed on to the next membrane system.

Membrane−System1 − M1

x1,1[value], . . . ,xn,1[value]z1,1[value], . . . ,zn,1[value]

k1,1[value], . . . ,kn,1[value]

m1,1[value], ,mn,1[value] · · · p1,1[value], . . . , pn,1[value]

w1,1[value], . . . ,wn,1[value], e1[l], e2[0]

Pr1,1 : [x2
1,1 + . . .+ z2

1,1]
0.5 〈e1→〉 1 | k1,1

· · ·
Prn,1 : [x2

n,1 + . . .+ z2
n,1]

0.5 〈e1→〉 1 | kn,1

Prn+1,1 : x1,1 〈e1→〉 1 | x1,1
· · ·

Prn+m,1 : z1,1 〈e1→〉 1 | z1,1
· · ·

Prnm−m+n,1 : xn,1 〈e1→〉 1 | xn,1
· · ·

Prnm+n,1 : zn,1 〈e1→〉 1 | zn,1

Prnm+n+1,1 : x1,1÷ k1,1×w1,1 〈e2→〉 1 | m1,1
· · ·

Prnm+n+m,1 : z1,1÷ k1,1×w1,1 〈e2→〉 1 | mm,1

· · ·
· · ·

Pr2nm+n−m,1 : xn,1÷ kn,1×wn,1 〈e2→〉 1 | o1,1

· · ·
Pr2nm+n,1 : zn,1÷ kn,1×wn,1 〈e2→〉 1 | om,1

Pr2nm+n+1,1 : l → 1 | e2

Figure 5.4 Membrane System for Step 1

132

Step 2-Membrane System 2- Maximum and Minimum Value Calculation:

This is the second logical step, as in figure 5.2). This step involves the calculation of

minimum and maximum values for each set of attributes (for all alternatives). Each set of

attributes is divided and sent to the membrane; as mentioned in figure 5.1. This membrane

calculates the minimum values. For any number of alternatives, the membrane executes

only for three cycles. The membrane structure involves several enzymes for controlling

the programs. The first cycle involves assigning values to the enzymes, which eventually

control programs in the second cycle. All of these enzymes are selectively active, based

on the values of the variables in the program. In cycle one, the set of enzyme control two

programs each. The first one is for passing the minimum value and the other is for keeping

track of the occurrence of each value. A track is kept of the occurrence of each value, in

order to avoid error of duplicate values being present. The third enzyme is used to get

the final minimum value after dividing the cumulative value obtained, with the number of

occurrences.

The calculation of maximum value is similar to the calculation of minimum values,

with a few differences, as in figure 5.5. The first set for cycle one involves the distribu-

tion of values to the enzyme, after subtracting the current values from a sufficiently high

number. The next step involves all the programs, which are activated and the correspond-

ing program calculates the needed cumulative value, while keeping track of the number of

occurrences of each value. After the current cycle, these values are again subtracted from

the larger number and then divided by the number of occurrences. This results in giving

the maximum value in the given list.

133

Membrane−System2 − M1(Minimum)

k1,1[value], . . . km,1[value], km+1[0]
e1[0], . . . , em[0], em+1,1[value],em+2,1[−l]

Pr1,1 : 2× k1,1 〈em+1,1→〉 1 | e1,1 +1 | km+1,1
· · ·
· · ·

Prm,1 : 2× km,1 〈em+1→〉 1 | em,1 +1 | km+1,1

Prm+1,1 :−1× k1,1 + k1,2×0+ · · ·+ km,1×0〈e1,1→〉1 | km+1,1
Prm+2,1 : k1,1×0+ k1,2×−1+ · · ·+ km,1×0〈e2,1→〉1 | km+1,1

· · ·
· · ·Pr2m,1 : k1,1×0+ · · ·+ km−1,1×0+ km,1×−1

〈em,1→〉1 | km+1,1

Pr2m+1,1 : k1,1×0+ · · ·+ kn−1,1×0+ km,1×0+ km+2,1÷ km+2,1×−1

〈e1,1→〉1 | km+3,1

· · ·
· · ·Pr3m,1 : k1,1×0+ · · ·+ kn−1,1×0+ km,1×0+ km+2,1÷ km+2,1×−1

〈em,1→〉1 | km+3,1

Pr3m+1,1 : l 〈em+1,1→〉1 | em+2,1
Pr3m+2,1 : km+1,1÷ km+3,1 〈em+2→〉1 | km+1,1

Pr3m+3,1 : km+2,1 〈em+1→〉1 | km+2,1

Figure 5.5 Membrane System for Step 2 - Finding Minimum

Step 3 - Membrane System 3 - Replacing Non-Beneficial Attributes:

This the third logical step as given in figure 5.2. Once the maximum and minimum values

for each attribute (for all alternatives) are obtained, the values are interchanged according

to their category. There are two primary categories of attributes; beneficial attributes and

non-beneficial attributes. For beneficial attributes, the higher the value, the better is the

solution. For non-beneficial, the lower the value, the better is the solution. This is an

important portion of the approach, where the proper distinction between these two kinds

of attributes is made, based on which the method is able to assign the correct ranking.

The current membrane does this job of interchanging the values parallelly. There are n

enzymes to control 2n programs, where n is the number of attributes. The enzymes are as-

signed binary values, either 0 or 1. The value 0 indicates the corresponding attribute to be

non-beneficial and attribute 1 indicates the values to be beneficial. The enzyme value as-

134

sures that only the non-beneficial values interchange. Thus, accordingly, the minimum and

maximum values are interchanged and the final list obtained, consists of an ideal solution

and negative ideal solution.

Membrane−System2 − M1(Maximum)

k1,1[value], . . . ,km,1[value], km+1,1[0], km+2,1[0],km+3[0]

e1,1[0], . . . , em,1[0], em+1,1[0], em+2,1[−l], em+3,1[2l−1], n1[value]

Pr1,1 : 2× [n1− k1,1] 〈em+1→〉 1 | e1 +1 | km+1,1

· · ·
· · ·

Prm,1 : 2× [n1− km,1] 〈em+1,1→〉 1 | em,1 +1 | km+1,1

Prm+1,1 : e1,1×−1+ e1,2×0+ · · ·+ em,1×0〈e1,1→〉1 | km+1,1

Prm+2,1 : e1,1×0+ e1,2×−1+ · · ·+ em,1×0〈e2,1→〉1 | km+1,1
· · ·
· · ·

Pr2m,1 : e1,1×0+ · · ·+ em−1,1×0+ em,1×−1〈em,1→〉1 | km+1,1

Pr2m+1,1 : e1,1×0+ e1,2×0+ · · ·+ em,1×0+ km+2,1÷ km+2,1×−1〈e1,1→〉1 | km+3,1

· · ·
· · ·

Pr3m,1 : e1,1×0+ · · ·+ em−1,1×0+ em,1×0+

km+2,1÷ km+2×−1〈em,1→〉1 | km+3,1

Pr3m+1,1 : em+1,1− em+1,1 〈em+1,1→〉1 | em+1,1

Pr3m+2,1 : ((km+3,1 ∗ km+2,1)− km+1,1)/km+3,1 〈em+2,1→〉1 | km+1,1

Pr3m+3,1 : l 〈em+3,1→〉1 | em+2,1

Pr3m+4,1 : km+2,1 〈em+3,1→〉1 | km+2,1

Figure 5.6 Membrane System for Step 2 - Finding Maximum

Step 4 - Membrane System 4 - Final Distance Calculation:

The final logical portion is executed. With the interchanged value, the control proceeds

towards the next membrane, the final membrane, where the distance between each attribute

value of an alternative and the ideal solution is obtained. The designed membrane are as

135

mentioned in the figure 5.7. Enzyme e1 controls the first set of programs, which is used to

find the Euclidean distance between each of the value and its corresponding maximum and

minimum value. The corresponding programs range from Pr1,1 to Prm,1, for calculating

the distance between max value and actual value. From Prm+1,1 to Pr2m,1 the distance

between the actual value and the minimum value is calculated. The rest of the programs

are used for final distance calculation, except for Pr3m+1,1, which is for enzyme control.

Membrane−System3 −Membrane1

min1,1[value], min2,1[value], · · · , minn,1[1],

max1,1[value], max2,1[value], · · · , maxn,1[value],

e1,1[0 | 1], e2,1[0 | 1] · · · ,en,1[0 | 1]

Pr1,1 : min1,1 〈e1,1→〉 1 | max1,1

Pr2,1 : min2,1 〈e2,1→〉 1 | max2,1

· · ·
Prn,1 : minn,1 +1 〈en,1→〉 1 | maxn,1

Prn+1,1 : max1,1 〈e1,1→〉 1 | min1,1

Prn+2,1 : max2,1 〈e2,1→〉 1 | min2,1

· · ·
Pr2n,1 : maxn,1 +1 〈en,1→〉 1 | minn,1

Figure 5.7 Membrane for Step 3

The next enzyme controls the next cycle of execution, where the difference between

the negative ideal solution and the ideal solution is calculated. These sets of programs

are completely controlled by the enzyme e2. Finally, the calculated distance is stored in

a sequence of values from d1,1 · · ·dn,1, where the values 1 · · ·n are corresponding to the

values of the alternatives. Finally, these distance values are sorted to obtain the ranks, and

the best among them is selected.

136

Membrane−System4 − M1

x1,1[value], . . . ,xn,1[value]z1,1[value], . . . ,zn,1[value]
min1,1[value], . . . ,minn,1[value], max1,1[value], . . . ,maxn,1[value]

l1,1[value], . . . , ln,1[value], h1,1[value], . . . ,hn,1[value]
d1,1[value], . . . ,dn,1[value],e1[l], e2[0]

Pr1,1 : [[x1,1−max1,1]
2 + . . .+[xn,1−maxn,1]

2]0.5 〈e1→〉 1 | l1,1
· · ·
· · ·

Prm,1 : [[z1,1−max1,1]
2 + . . .+[zn,1−maxn,1]

2]0.5 〈e1→〉 1 | lm,1

Prm+1,1 : [[x1,1−min1,1]
2 + . . .+[xn,1−minn,1]

2]0.5 〈e1→〉 1 | h1,1
· · ·
· · ·

Pr2m,1 : [[z1,1−min1,1]
2 + . . .+[zn,1−minn,1]

2]0.5 〈e1→〉 1 | hm,1
Pr2m+1,1 : h1,1− l1,1 〈e2→〉 1 | d1,1

· · ·
· · ·

Pr3m,1 : hm,1− lm,1 〈e2→〉 1 | dn,1
Pr3m+1,1 : l → 1 | e2

Figure 5.8 Membrane System for Step 4

ENPS-MTOPSIS:

Though a simple change, there is a considerable effect in the results obtained for same

input. Adding weight just before the distance (Step 4), tends to be more practical in few

cases, thereby giving more better results related to robustness.

137

Sub− problem1 − M1(Modi f ied)

x1,1[value], . . . ,xn,1[value]z1,1[value], . . . ,zn,1[value]
k1,1[value], . . . ,kn,1[value], e1[l], e2[0]

m1,1[value], ,mn,1[value] · · · p1,1[value], . . . , pn,1[value]

Pr1,1 : [x2
1,1 + . . .+ z2

1,1]
0.5 〈e1→〉 1 | k1,1

· · ·
Prn,1 : [x2

n,1 + . . .+ z2
n,1]

0.5 〈e1→〉 1 | kn,1
Prn+1,1 : x1,1 〈e1→〉 1 | x1,1

· · ·
Prn+m,1 : z1,1 〈e1→〉 1 | z1,1

· · ·
Prnm−m+n,1 : xn,1 〈e1→〉 1 | xn,1

· · ·
Prnm+n,1 : zn,1 〈e1→〉 1 | zn,1

Prnm+n+1,1 : x1,1÷ k1,1 〈e2→〉 1 | m1,1
· · ·

Prnm+n+m,1 : z1,1÷ k1,1 〈e2→〉 1 | mm,1
· · ·
· · ·

Pr2nm+n−m,1 : xn,1÷ kn,1 〈e2→〉 1 | o1,1
· · ·

Pr2nm+n,1 : zn,1÷ kn,1×wn,1 〈e2→〉 1 | om,1
Pr2nm+n+1,1 : l → 1 | e2

Figure 5.9 Membrane System for Step 1 (Modified) - ENPS-MTOPSIS

Conceptually, each membrane system, in all the four steps (for both ENPS-ITOPSIS and

ENPS-MTOPSIS), execute a maximum for 3 cycles for any input. As the model is max-

imally parallel, each cycle has a complexity of O(1) and as the number of cycles doesn’t

increase beyond a constant (3), the complexity of each membrane execution is c O(1). Four

steps are sequential because of the problem in hand, this also is constant and hence, the

complexity is still c O(1). This is far better than any other sequential approach, which has

a complexity of O(n2) for these problems.

138

Sub− problem4 − M1(Modi f ied)

x1,1[value], . . . ,xn,1[value]z1,1[value], . . . ,zn,1[value]
min1,1[value], . . . ,minn,1[value], max1,1[value], . . . ,maxn,1[value]

l1,1[value], . . . , ln,1[value], h1,1[value], . . . ,hn,1[value]
d1,1[value], . . . ,dn,1[value], w1,1[value], . . . ,wn,1[value], e1[l], e2[0]

Pr1,1 : [[x1,1−max1,1]
2×w1,1 + . . .+[xn,1−maxn,1]

2×wn,1]
0.5

〈e1→〉 1 | l1,1· · ·
· · ·

Prm,1 : [[z1,1−max1,1]
2×w1,1 + . . .+[zn,1−maxn,1]

2×wn,1]
0.5 〈e1→〉 1 | lm,1

Prm+1,1 : [[x1,1−min1,1]
2×w1,1 + . . .+[xn,1−minn,1]

2wn,1]
0.5

〈e1→〉 1 | h1,1

· · ·
· · ·

Pr2m,1 : [[z1,1−min1,1]
2×w1,1 + . . .+[zn,1−minn,1]

2×wn,1]
0.5 〈e1→〉 1 | hm,1

Pr2m+1,1 : h1,1− l1,1 〈e2→〉 1 | d1,1
· · ·
· · ·

Pr3m,1 : hm,1− lm,1 〈e2→〉 1 | dn,1
Pr3m+1,1 : l → 1 | e2

Figure 5.10 Membrane System for Step 4 (Modified) -ENPS-MTOPSIS

5.4 Implementation

The proposed solutions are membrane-based MCDM models, for cloud service selection;

there are two important points to be considered: implementing a strict ENPS model and

applying it to a cloud service model. To ensure it uses strict ENPS as its base structure,

the designed ENPS model is implemented using a python based simulator, PeP 3.0, devel-

oped by Florea et al. (Florea and Buiu, 2018). This simulator, simulates a whole ENPS

membrane structure with proper output, with a membrane structure given as input. As only

membrane models can be given as input, the researched model requires an automatic file

generator, working over the PeP simulator, which can run the ENPS-MTOPSIS model, (di-

rectly over the simulator) to obtain the results. Hence, a generator named TP-generator is

developed, using python. It is tailored with the PeP simulator to give the final ranks of the

items, when given the weights and values of the attributes. The complete implementation

139

consists of four components; all of them designed to exactly map into the logical model

being developed, as in figure 5.1. This generator generates all the membranes, given the

alternatives and attribute data with the weights. Further, a GPU based simulator called

GPUPeP (similar to PeP) is also used to take advantage of parallelism. As this approach

is for cloud service selection, a real-time dataset collected by Sun et al. (Sun et al., 2019)

is considered. It consists of attribute related details about the cloud services and is passed

to the proposed membrane systems (ENPS-ITOPSIS and ENPS-MTOPSIS). The exact

details about the dataset are as follows.

Dataset:

The details of the attributes are given in table 5.1. The dataset is taken from the work of

Sun et al. (Sun et al., 2019) who have collected the datasets by continuous observation

of several cloud services. In this work 15 services (s1− s15) are considered with eight

attributes (as given in table 5.1). The service names and values have not been shown to

maintain privacy in this case. However, a sample of how each service data looks like is

given in table 5.2. There are two required values for calculating the ranks of a given data

(for service selection); the weights of the values, and the actual values of the attributes

corresponding to each alternative (made public by (Sun et al., 2019)). This work does

not take weights from the dataset (as different weights can be assigned) but are calculated

based on the knowledge about the attributes and their properties.

The weight calculation part is a pre-processing step and is not part of the proposed

model. If weights are proper as per the user, the selector may directly proceed towards the

proposed solution, where cloud service QoS values for alternatives, with weights, is passed

to the membrane algorithm. This process of weight calculation is done if no satisfactory

weights are available according to the user. Thus, the initial portion of IAHP proposed by

(Rao, 2007; Saaty, 1983) is used for calculating weights. The final weights used are as in

table 5.3. These weights with the data, as in the dataset (Sun et al., 2019), are used for the

cloud service selection process (ranking), using ENPS-ITOPSIS and ENPS-MTOPSIS.

140

Name Attribute - QoS
Parameter

Unit Beneficial/
Non-Beneficial

C1 Availability Percentage Beneficial

C2 Throughput Invokes /
Sec

Beneficial

C3 Successability Percentage Beneficial

C4 Reliability Percentage Beneficial

C5 Latency milliseconds Non-Beneficial

C6 Response Time milliseconds Non-Beneficial

C7 Response Time of
Customer services

milliseconds Non-Beneficial

C8 Cost US Dollar Non-Beneficial

Table 5.1 QoS Parameters and their details (Sun et al., 2019)

Services C1 C2 C3 C4 C5 C6 C7 C8

Service 1 94 2.1 98 73 30.84 124.17 112.508 39.0861

Service 2 56 5 58 73 104.975 408.21 17 5.8709

Table 5.2 Sample service parameter values format

Attributes Weight

C1 0.1935

C2 0.09536

C3 0.116

C4 0.08775

C5 0.10796

C6 0.12861

C7 0.07223

C8 0.1935

Table 5.3 Weights considered for QoS Parameters

141

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15
Services

0

2

4

6

8

10

12

14

Ra
nk

Cloud Service Ranking
ENPS-ITOPSIS
ENPS-MTOPSIS
IAHP
IPROMETHEE

Figure 5.11 Ranks of Services

w1
-w

2
w1

-w
3

w1
-w

4
w1

-w
5

w1
-w

6
w1

-w
7

w1
-w

8
w2

-w
3

w2
-w

4
w2

-w
5

w2
-w

6
w2

-w
7

w2
-w

8
w3

-w
4

w3
-w

5
w3

-w
6

w3
-w

7
w3

-w
8

w4
-w

5
w4

-w
6

w4
-w

7
w4

-w
8

w5
-w

6
w5

-w
7

w5
-w

8
w6

-w
7

w6
-w

8
w7

-w
8

Interchanged Weights

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Ra
nk

s

s1
s2

s3
s4

s5
s6

s7
s8

s9
s10

s11 s12 s13 s14 s15

Figure 5.12 Sensitivity Analysis for ENPS-ITOPSIS

142

w1
-w

2
w1

-w
3

w1
-w

4
w1

-w
5

w1
-w

6
w1

-w
7

w1
-w

8
w2

-w
3

w2
-w

4
w2

-w
5

w2
-w

6
w2

-w
7

w2
-w

8
w3

-w
4

w3
-w

5
w3

-w
6

w3
-w

7
w3

-w
8

w4
-w

5
w4

-w
6

w4
-w

7
w4

-w
8

w5
-w

6
w5

-w
7

w5
-w

8
w6

-w
7

w6
-w

8
w7

-w
8

Interchanged Weights

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Ra
nk

s

s1
s2

s3
s4

s5
s6

s7
s8

s9
s10

s11 s12 s13 s14 s15

Figure 5.13 Sensitivity Analysis for ENPS-MTOPSIS

5.5 Results and Analysis

As per the data given in the previous section, the corresponding algorithm is executed,

after passing the weights and the data of the cloud services, to the membrane system.

Accordingly, ranks are obtained for the 15 services (s1− s15) that have been considered

with the sample, as given in table 5.2. The ranks obtained for both the approaches (ENPS-

ITOPSIS and ENPS-MTOPSIS) are plotted against two popular algorithms, namely IAHP

and IPROMETHEE, as in figure 5.11, where the x-axis represent the cloud services and

y-axis represent the ranks.

There are two main methods used here for ascertaining the robustness of the proposed

models: Sensitivity Analysis and Kendall Tau Distance Rank (KTDR). Determining the

robustness is the primary aim of the methods, as the ENPS structure ensures that they are

maximally parallel. KTDR independently does not give any useful information about sen-

sitivity, but it is a means to measure the results obtained as part of sensitivity analysis,

quantitatively. Thus, the first step involves getting the sensitivity details (weight inter-

143

changed ranks) with the next step being the use of KTDR, to determine the sensitivity

quantitatively.

5.5.1 Sensitivity Analysis

A sensitivity analysis is done on the data of all the considered services (s1− s15) to ascer-

tain the robustness of the proposed approaches. The weights are interchanged pairwise, to

check the effect of the change on the resultant ranks. As the weights are interchanged, the

ranks are recalculated. If the ranks change for majority of the cases, then the method is said

to be sensitive; otherwise, it is said to be robust. There are eight attributes (w1. . . w8) con-

sidered in this problem. When pairwise interchange of weights is done, there are overall

28 possibilities (8C2 =
8!

6!2!), and all of them are considered.

ENPS-ITOPSIS:

The results obtained for sensitivity analysis for ENPS-ITOPSIS are shown in figure 5.12,

where the x-axis shows the weight interchange and y-axis has the ranks. The results show

that on several occasions, when weights are interchanged, the ranks also gets affected.

An important point observed is that the service with rank one remains almost the same

(the least affected), all through the 28 interchanges, with change only in 6 cases, though

there are several changes for other services. This can be perceived as moderately sensitive

behavior to the changes, though further this is quantitatively proved.

ENPS-MTOPSIS:

The results obtained for sensitivity analysis of ENPS-MTOPSIS are shown in figure 5.13.

There are a total of 28 cases of weight swapping considered here. This is similar to the

changes considered for ENPS-ITOPSIS method. There is considerably less difference in

the reaction, in response to any swap in weights for ENPS-MTOPSIS. Compared to ENPS-

ITOPSIS, the change is far less. The changes drastically reduce, and the extreme positions

of ranks are almost stable in this case.

Further, the sensitivity of IAHP (as shown in figure 5.14) and IPROMETHEE (as

shown in figure 5.15) is also plotted, to have an idea about their robustness, which is

144

w1
2

w1
3

w1
4

w1
5

w1
6

w1
7

w1
8

w2
3

w2
4

w2
5

w2
6

w2
7

w2
8

w3
4

w3
5

w3
6

w3
7

w3
8

w4
5

w4
6

w4
7

w4
8

w5
6

w5
7

w5
8

w6
7

w6
8

w7
8

Interchanged Weights

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Ra
nk

s

s1
s2

s3
s4

s5
s6

s7
s8

s9
s10

s11 s12 s13 s14 s15

Figure 5.14 Sensitivity Analysis for IAHP

w1
2

w1
3

w1
4

w1
5

w1
6

w1
7

w1
8

w2
3

w2
4

w2
5

w2
6

w2
7

w2
8

w3
4

w3
5

w3
6

w3
7

w3
8

w4
5

w4
6

w4
7

w4
8

w5
6

w5
7

w5
8

w6
7

w6
8

w7
8

Interchanged Weights

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Ra
nk

s

s1
s2

s3
s4

s5
s6

s7
s8

s9
s10

s11 s12 s13 s14 s15

Figure 5.15 Sensitivity Analysis for IPROMETHEE

145

later quantitatively compared in the next section.

5.5.2 Kendall Tau Distance Ratio

Kendall Tau distance has been proposed by Maurice Kendall (Kendall, 1948). Kendall Tau

Distance Ratio (KTDR) is a statistical method used for comparing two ranked lists. It is

calculated according to the formula, as given in the equations 5.8, 5.9 and 5.10.

K(i, j)(L1,L2) = {(L1(i)< L1(j)∨L2(i)> L2(j)∧L1(i)> L1(j)∨L2(i)< L2(j)) (5.8)

K(L1,L2) = ∑
(i, j)∈P

K(i, j)(L1,L2) (5.9)

Kkdtr = K(L1,L2)/(n∗ (n−1)) (5.10)

where,

n is the length of the array being compared, which is same for both the arrays.

P is the set of un-ordered pairs

K(i, j)(L1,L2) = 0 if L1 and L2 are of same order

K(i, j)(L1,L2) = 1 if L1 and L2 are of different order

When two ranked lists are compared, the more the KTDR value, the more is the change

in the list and the low value indicates less change.

5.5.3 Quantitative Analysis of Sensitivity

The obtained ranks, after interchanging the weights, are considered and Kendall distance

Ratio is calculated between the base rank and the other modified ranks obtained for a

single method. Thus, a set of KTDR values for each technique ENPS-ITOPSIS, ENPS-

146

+�
�+
�

+�
�+
�

+�
�+
�

+�
�+
�

+�
�+
	

+�
�+

+�
�+
�

+�
�+
�

+�
�+
�

+�
�+
�

+�
�+
	

+�
�+

+�
�+
�

+�
�+
�

+�
�+
�

+�
�+
	

+�
�+

+�
�+
�

+�
�+
�

+�
�+
	

+�
�+

+�
�+
�

+�
�+
	

+�
�+

+�
�+
�

+	
�+

+	
�+
�

+

�+
�

�#(�&� �#����+�!� ('

���

���

���

���

���

���

��	
��

�
��
�(
!$

�)�#(!(�(!*����#'!(!*!(,�
$"%�&!'$#

������������
������������
����
����������

Figure 5.16 Kendall Tau Distance Ratio Comparison

MTOPSIS, IPROMETHEE and IAHP is obtained, as given in figure 5.16, where x-axis

is the weight interchange and y axis is the KTDR. Therefore, to put it quantitatively and

more precisely, the average KTDR of ENPS-MTOPSIS is 0.168452381, ENPS-ITOPSIS

is 0.206547619, IAHP is 0.195238095 and IPROMETHEE is 0.313988095 As per the

values and graphs, it is perceived that among the two methods proposed in this work,

ENPS-MTOPSIS is the most robust, with the least average KTDR value, among the four

methods compared. The ENPS-ITOPSIS method is not as robust as ENPS-MTOPSIS, but

it is better than IPROMETHEE. Thus, it can be said that ENPS-ITOPSIS is a moderately

sensitive model.

5.6 Summary

Proper Service selection in cloud has long been a challenging problem. There are several

methods developed for solving this particular problem. Out of the approaches that have

been developed, almost all of them are serial in nature and many of them are sensitive.

Here a couple of robust and parallel Bio-inspired membrane-based algorithms for service

147

selection in cloud are proposed. Membrane computing is an inherently parallel computing

paradigm based on a living cell. A membrane algorithm has the capability to be maximally

parallel. Here a Multi-criteria Decision Making technique Improved Technique of Order

Preference Similarity to the Ideal Solution (ITOPSIS) based membrane algorithms named

ENPS-ITOPSIS and it is variant ENPS-MTOPSIS are proposed and implemented. The

results are obtained and are analyzed with several statistical techniques and are compared

with two standard methods. The results show that ENPS-MTOPSIS is more robust than the

others and ENPS-ITOPSIS is better than one of the methods. Thus one method is robust

and the other one is moderately sensitive and both of the them are inherently parallel.

148

Chapter 6

CLOUD WORKFLOW SCHEDULING BASED
ON P SYSTEM

The third objective deals with workflow scheduling in cloud. The objective is to create a

workflow scheduling algorithm for cloud, thus a parallel workflow scheduling algorithm

using membrane computing paradigm is developed. Membrane computing paradigm is

realized using Enzymatic Numerical P System (ENPS). The scheduling aspect is realised

using Heterogeneous Earliest Finish Time algorithm logic. The proposed algorithm has

been implemented using GPUPeP (Simulator for ENPS) and Python. Workflow Scheduling

dataset of different number of tasks and workflow structure is used.

6.1 Introduction

Workflows are a set of interdependent tasks that have usually one entry point and one

exit point. A workflow is aimed at doing a single big task collectively divided by inter-

dependent smaller tasks. A simple workflow structure is given in figure 6.2. Workflow

Scheduling in general is a method of mapping tasks to computational resources satisfy-

ing the objective functions imposed by users. A workflow contains many tasks which are

dependent on each other. It is a NP-Complete problem, and there is no polynomial time

algorithm to accurately perform workflow scheduling.

Cloud Workflow Scheduling is a process of assigning the limited stock of Virtual Ma-

chines (VMs) to the tasks of the workflows satisfying certain criteria. In this case the

149

criteria is minimizing the makespan. Makespan is the time taken between starting and

completion of the first task of the workflow and last task of the workflow respectively. It is

one of the main objective of workflow scheduling.

Figure 6.1 Basic Workflow Components (Bharathi et al., 2008)

A simple structure given by Bharathi et al. (2008) is considered to elaborate on the

structure of workflows. In figure 6.2, circles represent job or task and parallelogram repre-

sents the data (Pegasus, 2019). These kind of similar structure, can be found in most of the

workflows. Process is the first and simple structure as in the figure 6.2, which takes input

and produces output. The second structure is pipeline, which processes data in a sequential

manner (Bharathi et al., 2008). It is a repetition of process structure with multiple data and

jobs arranged sequentially. Third structure is data distribution, which is used to partition

the data into multiple portions so that other jobs at next level consumes the partitioned

data and executes in parallel. But, partitioning data is most time consuming operation in

the workflow.

Data aggregation is one of the basic operations in a workflow as shown in figure 6.2.

Data aggregation reduces the parallelism of tasks. Sometimes the data is required to be

distributed, in this case aggregation proves to be potential bottleneck which may hinder

parallelism. Figure 6.2 represents simple workflow in cloud as a directed acyclic graph. In

cloud computing, IaaS offers a suitable option for workflow administration with computa-

150

Figure 6.2 Cloud Workflow Basic Structure

tional components. In particular, they give access to VMs of various kinds. These VMs can

be used on-request, they can be rented whenever they are required and terminated when

they are not. As a rule, clients are charged just for what they utilize, as a rule in addition to

charging period characterized by the supplier. This flexibility makes environment of IaaS

perfect for the execution of logical workflows. There are several approaches that have been

used for workflow scheduling in cloud which are discussed in the literature review (section

2.1), where it is inferred that, there are very less parallel methods for workflow scheduling.

Thus, an inherently parallel membrane computing model based on a heuristic approach is

proposed for workflow scheduling in cloud.

6.2 Workflow Scheduling in Cloud using P System

Workflow Scheduling in Cloud is a complex process and thus a parallel, P System based

model proposed. As per the literature (Section 2.1), there are several P System variants to

151

choose. As the workflows involve numerical value comparison, Enzymatic Numerical P

System (ENPS) is deemed suitable for model. For sequential scheduling logic, Heteroge-

neous Earliest Finish Time (HEFT) is considered as the base (Topcuoglu et al., 2002).

The P System based method developed in this work primarily involves generating an

order with which the tasks are scheduled on heterogeneous components. This process is

being done for a cloud based workflow and thus the heterogeneous components are VMs

that are of different sizes. To generate rank, two important data about the workflow is

required:

• The execution time of each task on the available VM

• The communication cost between each and every VM which transfers control to

other VM in the current workflow

It is represented by using an adjacency matrix. The whole process is logically similar to

HEFT algorithm proposed by Topcuoglu et al. (2002), but it is structurally and methodi-

cally different.

There are primarily two sequential steps that are involved in scheduling a workflow.

The logical equivalent of the method is as given in figure 6.3.

• Creating a sequence of tasks based for scheduling

• Scheduling it and calculating the makespan of the actual schedule generated.

The first part of the process involves sequence calculation and the second part is map-

ping the sequences generated. The first component of the sequence calculation, which is

strictly based on ENPS and consists of two independent membrane systems. These inde-

pendent membrane systems are executed in sequence as is figure 5.6. A membrane gener-

ator is developed, which is used to automatically generate membrane system as as part of

solution. The membrane systems for sequence calculation is considered and elaborated.

152

Figure 6.3 P System based Workflow Model

Sub− problem1 − M1

a1,1[value], . . . ,an,1[value]
. . .
. . .

z1,1[value], . . . ,zn,1[value],enz1,1

Pr1,1 : a1,1 + . . .+an,1 〈enz1,1→〉 1 | a1,1
. . .

Prn,1 : a1,1 + . . .+ zn,1 〈enz1,1→〉 1 | an,1

Figure 6.4 Membrane System for Sub-problem 1

Membrane System 1:

The first membrane system consists of a single membrane which is designed to calcu-

late the average of the processes available. This average calculated is sent to the next

membrane system2 where it is used for finding the values based on which the sequence is

153

scheduled. The second membrane system is the most important and complex, it involves

several programs and is elaborated as follows.

Membrane System 2:

There are several steps for calculating the scheduling sequence. This membrane system is

a single membrane system and for any number of tasks the structure remains the same. The

first step is to calculate the rank-up function recursively but there is no provision to perform

recursion using ENPS. Thus, the whole process is replicated without using recursion. The

whole process of execution involves calculating the values in the reverse order of the nodes

present i.e. the adjacent matrix is accessed in reverse order from the last row. The enzyme n

controls the maximum value operation which involves 10 important programs. Maximum

value calculation is a three step process (as in chapter 5).

There are total of a 4n2 +6n programs where, n refers to number of tasks considered.

There are a total of a 3n cycles (steps) used for this process. The total number of enzymes

are n2+2n. The sequential equivalent requires implementation of recursion, which can not

be directly used in this case. Rather, in this study the positive use of adjacency matrix is

considered as the recursion is realised. The execution starts by activating the last enzyme

and subsequently they execute in reverse order. Initially, enzyme number 2n is activated.

This activates n programs which do pre-processing, related to finding maximum value

among the children of current node. After pre-processing, the next step involves calculat-

ing the actual maximum value. This process involves n programs with the resultant being

passed on to the next programs. The next most important step involves 2n programs, but

it is also a one step cycle. Two objectives are simultaneously achieved, one is updation of

the adjacency matrix values and the next is getting the final values of each task. These set

of tasks values are calculated at the end of execution of all programs (k1,1tokn−1andwn,1)

as the final set of values required.

154

Sub− problem2 − M1

a1,1[value], . . . ,an,1[value]
. . .
. . .

z1,1[value], . . . ,zn,1[value]
k1,1[value], . . . ,kn,1[value],w1,1[value], . . . ,wn,1[value]

min1,1[value],zero1,1[value], f inal1,1[value],enz1,1[value], . . . ,enz2n,1[value]
e11,1[value], . . . ,e1n,1[value]

. . .

. . .
en1,1[0], . . . ,enn,1[0]

Pr1,1 : 2× (max1,1−a1,1) 〈enz2,1→〉 1 | e12,1 +1 | k1,1
· · ·

Prn,1 : 2× (max1,1−an,1) 〈enz2,1→〉 1 | enzn,1 +1 | k1,1
Prn+1,1 : a1,1× enz2,1 〈enz2,1→〉 1 | enz2,1

Prn+2,1 : max1,1 〈enz2,1→〉 1 | max1,1
Prn+3,1 : e12,1 ∗0+ e13,1 ∗0+ e14,1 ∗0− e11,1 〈enz2,1→〉 1 | k1,1

Prn+4,1 : e11,1 ∗0− e12,1 + . . .+ e14,1 ∗0 〈enz2,1→〉 1 | k1,1
· · ·

Pr2n+2,1 : e11,1 ∗0+ e12,1 ∗0+ . . .− e1n,1 〈enz2,1→〉 1 | k1,1
Pr2n+3,1 : a1,1 ∗ (e11,1 + . . .+ e1n,1) 〈enz2,1→〉 1 | e11,1 + . . .+1 | e1n,1

Pr2n+4,1 : a1,1 +20000 〈e11,1→〉 1 | enz1,1
Pr2n+5,1 : (max1,1− k1,1 +w1,1)∗ f inal1,1/ f inal1,1 〈e11,1→〉 1 | 1 | k1,1

Pr2n+2,1 : (max1,1− k1,1 +w1,1 +a1,1)∗ f inal1,1/ f inal1,1 〈e11,1→〉 1 | a1,1
Pr2n+7,1 : (max1,1− k2,1 +w1,1)∗b1,1/b1,1 〈e11,1→〉 1 | 1 | k1,1

Pr2n+8,1 : (max1,1− k1,1 +w1,1 +b1,1)∗b1,1/b1,1 〈e11,1→〉 1 | b1,1

· · ·
Pr4n+3,1 : (max1,1− k1,1 +w1,1)∗ z1,1/z1,1 〈e11,1→〉 1 | k1,1

Pr4n+4,1 : (max1,1− k1,1 +w1,1 + z1,1)∗ z1,1/z1,1 〈e11,1→〉 1 | z1,1
Pr4n+5,1 : (max1,1 〈e11,1→〉 1 | max1,1

· · ·
· · ·

Pr4n2+2n−4,1 : 2× (max1,1− z1,1) 〈enzn,1→〉 1 | en1,1 +1 | kn,1
· · ·

Pr4n2+3n−5,1 : 2× (max1,1− zn,1) 〈enzn,1→〉 1 | enn,1 +1 | kn,1
Pr4n2+3n−4,1 : a1,1× enzn,1 〈enzn,1→〉 1 | enzn,1 +1 | kn,1

Pr4n+3n−3,1 : max1,1 〈enzn,1→〉 1 | max1,1
Pr4n+3n−2,1 : en2,1 ∗0+ en3,1 ∗0+ . . .+ enn,1 ∗0− en1,1 〈en1,1→〉 1 | kn,1

Pr4n+3n−1,1 : e11,1 ∗0− e12,1 + . . .+ e1n,1 ∗0 〈en2,1→〉 1 | k1,1
· · ·

Pr4n2+4n−3,1 : en1,1 ∗0+ en2,1 ∗0+ . . .− enn,1 〈enn,1→〉 1 | k1,1
Pr4n2+4n−2,1 : a1,1 ∗ (en1,1 + . . .+ enn,1) 〈en1,1→〉 1 | en1,1 + . . .+1 | enn,1

Pr4n2+4n−1,1 : a1,1 +20000 〈en1,1→〉 1 | enzn,1
Pr4n2+4n,1 : (max1,1− kn,1 +wn,1)∗an,1/an,1 〈enzn−1,1→〉 1 | 1 | kn,1

Pr4n2+4n+1,1 : (max1,1− kn,1 +wn,1 +an,1)∗an,1/an,1 〈enzn−1,1→〉 1 | an,1
Pr4n2+4n+2,1 : (max1,1− kn,1 +wn,1)∗bn,1/bn,1 〈enzn−1,1→〉 1 | 1 | kn,1

Pr4n2+4n+3,1 : (max1,1− kn,1 +wn,1 +bn,1)∗bn,1/bn,1 〈enzn−1,1→〉 1 | bn,1· · ·
Pr4n2+6n−2,1 : (max1,1− kn,1 +wn,1)∗ zn,1/zn,1 〈enzn−1,1→〉 1 | k1,1

Pr4n2+6n−1,1 : (max1,1− kn,1 +wn,1 +bn,1)∗ zn,1/zn,1 〈enzn−1,1→〉 1 | bn,1
Pr4n2+6n,1 : (max1,1 〈enzn−1,1→〉 1 | max1,4n2+6n

Figure 6.5 Membrane System for Sub-problem 2

155

After the first part is executed, the control is transferred to the second part where the

schedule sequence generated is mapped and the final makespan is obtained. The final

makespan is the parameter that is considered in the work, based on which further compar-

ison with other algorithms are done.

6.3 Results and Analysis

For implementing membrane based model ENPS-based simulator (GPUPeP) is used as the

base. A membrane generator is developed for generating the the main membrane-system

for workflow sequence generator. This generator is developed using Python 3.0 and can

generate the membrane system for any number of tasks.

After the sequence of execution is calculated, the makespan is obtained with the trailing

method. The proposed methods has been compared with two other standard methods,

namely, Min-min and Max-min, for scheduling workflow based task. These have been

chosen to compare with because these are some of the accepted standard methods.

WF1 WF2 WF3 WF4 WF5
Workflows

0

10

20

30

40

50

60

70

80

M
ak
es
pa
n

Workflows with 5 nodes
Min-Min
Max-Min
Mem-based Algorithm

Figure 6.6 Workflow Scheduling for 5 Tasks

156

WF1 WF2 WF3 WF4 WF5
Workflows

0

25

50

75

100

125

150

175

200

M
ak

es
pa

n
Workflows with 10 nodes

Min-Min
Max-Min
Mem-based Algorithm

Figure 6.7 Workflow Scheduling for 10 Tasks

WF1 WF2 WF3 WF4 WF5
Workflows

0

50

100

150

200

250

M
ak

es
pa

n

Workflows with 15 nodes
Min-Min
Max-Min
Mem-based Algorithm

Figure 6.8 Workflow Scheduling for 15 Tasks

157

WF1 WF2 WF3 WF4 WF5
Workflows

0

50

100

150

200

250

300

M
ak

es
pa

n

Workflows with 20 nodes
Min-Min
Max-Min
Mem-based Algorithm

Figure 6.9 Workflow Scheduling for 20 Tasks

WF1 WF2 WF3 WF4 WF5
Workflows

0

50

100

150

200

250

300

350

M
ak

es
pa

n

Workflows with 25 nodes
Min-Min
Max-Min
Mem-based Algorithm

Figure 6.10 Workflow Scheduling for 25 Tasks

158

Five type of workflows are compared and considered; Five cases each for, five tasks,

ten tasks, 15 tasks, 20 tasks and 25 tasks. For each workflow type, five sample workflows

of different structures are considered. Figure 6.6 shows results of five different workflows

with different graph and different virtual machine configurations are considered with five

tasks. The results show that the proposed model is better than other methods on two

occasions and it gives same makespan value for the considered cases. This is because the

input considered is not so complex and doesn’t involve much parallelism (task parallelism).

Thus, all the algorithms give similar sequence for few cases.

For next comparison, five different workflows of size 10 are considered. In all the cases

the proposed algorithms tends to be better. This can be attributed to the consideration of

finish time of algorithm. Similarly when 15 tasks are considered the proposed algorithm

fares better than the others compared with as in figure 6.8. Thus few of the cases are

significantly better than the others and similar is the case for 20 tasks (figure 6.9).

When 25 tasks are considered to be scheduled for a workflow there are many cases for

which the proposed method is better than the other algorithms as in (figure 6.10). Based on

the results it can be inferred that the algorithm performs better when the number of tasks

increase. Though the improvement is not only based on the number of tasks, it is one of

the factor which judges the effectiveness of the algorithm. The backbone of the work is

the membrane model, which theoretically has very less time complexity.

6.4 Summary

The proposed algorithm is for scheduling workflows in cloud. The membrane-based al-

gorithm is particularly designed based on ENPS and an efficient heuristic-based solution.

Thus, the developed algorithm is ENPS structure-based heuristic algorithm for workflow

scheduling in cloud. The proposed multi-membrane system module is designed to be par-

allel. As part of the study, a workflow membrane generator is also created to automatically

create the membranes that represent the workflows. The membranes generated are tested

and the results obtained are compared with other standard workflow scheduling methods.

Based on the results, the proposed algorithm is found to be better.

159

160

Chapter 7

CONCLUSION & FUTURE WORK

The rapid increase in the number of services has increased the complexity of cloud service

selection operation, and related to that, there are two primary contribution of this thesis.

The first are a couple of cloud service selection algorithms based on P System. The pro-

posed approaches are collectively based on ENPS and MCDM structure. These methods

are tested and the results show success as intended, primarily in terms of sensitivity. In

addition to this, there are two more approaches using ENPS that have been proposed, one

of them is based on outranking method. These works are based on ENPS and are not

necessarily designed for cloud based services, but are considered as general MCDM meth-

ods. Additionally, two tools which assist the implementation part have been developed.

Another important contribution is a workflow based scheduling algorithm based on ENPS

and an efficient workflow scheduling heuristic. The proposed approach is tested with sev-

eral workflows and the results obtained show it to be better than standard methods in terms

of makespan.

7.1 Thesis Summary

The thesis begins with an introduction to cloud computing and a formal introduction to

service selection for cloud services and workflow scheduling in cloud. It is followed by

elaborating literature review and the required background information about important do-

mains and technologies that are used for this thesis. The next chapter deals with service

selection, where services are not necessarily cloud services and can be any alternative with

161

features and associated weights. Two algorithms are proposed (using MCDM and ENPS)

and they are tested and the results are obtained. The next chapter is related to tools that

have been developed as part of implementation to enhance the results that are primarily

aimed at contributing to the ENPS. The next chapter is an important one where a couple

of algorithms for cloud service selection are proposed. Both the solutions are established

on MCDM based model and are inherently parallel. The results are obtained and are com-

pared with standard algorithms. Chapter 6 deals with workflows in cloud. Particularly,

a workflow scheduling problem is solved here. A heuristic-based approach using ENPS

is used. The aim here is to reduce the makespan. The proposed approach is tested with

several workflows and the results obtained are compared with standard approaches. The

results show it to be better than the compared approaches. Chapter 7 presents the summary

and conclusion of the research work. This chapter also introduces some possible future

expansions to this work.

7.2 Conclusion

Cloud Service Selection is an important process in cloud. As the number of cloud service

providers have increased, the process of selecting the best service is becoming complex

and there is a need for methods that handle this complexity better. This study proposes

an inherently parallel model for service selection in cloud. The proposed model is based

on inherently parallel, natural computing paradigm, with Multi-criteria Decision Making

as the base. There are two approaches (ENPS-ITOPSIS and ENPS-MTOPSIS) specifi-

cally designed for cloud service selection, which are based on Enzymatic Numerical P

System (ENPS). These are tested and the results have been elaborated which ascertain

the robustness and parallelism of the methods. Further two more methods are proposed

(ENPS-IAHP and ENPS-IPROMETHEE), these can be used as general MCDM methods

for general service selection (item selection) problem. The implementation subsequently

has lead to designing two important tools for bolstering the implementation. A GPU-based

simulator and a multi-membrane system executor are designed, which are used as facili-

tators for implementing service selection algorithms. Another important contribution of

this thesis is an approach for workflow scheduling in cloud. This is one of the complex

162

problems that have been considered. This problem is solved, using heuristic and ENPS.

The approach is tested on several workflows and the results are compared with two stan-

dard approaches. The proposed method is inherently parallel and found to be better than

other approaches in terms of makespan. Thus, all the proposed approaches are inherently

parallel and are better in some aspect according to the considered problem.

7.3 Future Work

A couple of future extensions are envisioned and identified during the course of this re-

search work.

• As future work, an enhancement can be made in the area of service selection in

cloud; a mechanism which is better than the current MCDM mechanism can be

considered as the base. Another work that can be considered here is using any other

membrane-based approach for service selection in cloud i.e. a different combination

of sequential approach and membrane model.

• Further, a specific type of membrane-based model for NP-Complete problem can be

designed, which can be a generic solution for all the similar problems as workflow

scheduling.

163

164

Bibliography

Abdel-Basset, M., Mohamed, M., and Chang, V. (2018). NMCDA: A framework for

evaluating cloud computing services. Future Generation Computer Systems, 86, 12–29.

Abrishami, S. and Naghibzadeh, M. (2012). Deadline-constrained workflow scheduling in

Software as a Service cloud. Scientia Iranica, 19(3), 680–689.

Abrishami, S., Naghibzadeh, M., and Epema, D. H. (2013). Deadline-constrained work-

flow scheduling algorithms for infrastructure as a service clouds. Future Generation

Computer Systems, 29(1), 158–169.

Adhikari, M. and Amgoth, T. (2016). Efficient algorithm for workflow scheduling in cloud

computing environment. In 2016 Ninth International Conference on Contemporary

Computing (IC3), 1–6. IEEE.

Adhikari, M. and Amgoth, T. (2019). An intelligent water drops-based workflow schedul-

ing for IaaS cloud. Applied Soft Computing, 77, 547–566.

Ahmed, T., Verma, R., Bakshi, M., and Srivastava, A. (2014). Membrane Computing

Inspired Approach for Executing Scientific Workflow in the Cloud. In International

Conference on Membrane Computing, 51–65. Springer.

Al-Faifi, A., Song, B., Hassan, M. M., Alamri, A., and Gumaei, A. (2019). A hybrid multi-

criteria decision method for cloud service selection from Smart data. Future Generation

Computer Systems, 93, 43–57.

Al-Faifi, A. M., Song, B., Hassan, M. M., Alamri, A., and Gumaei, A. (2018). Data on

performance prediction for cloud service selection. Data in brief, 20, 1039–1043.

165

Arabnejad, V., Bubendorfer, K., and Ng, B. (2018). Budget and deadline aware e-science

workflow scheduling in clouds. IEEE Transactions on Parallel and Distributed Systems,

30(1), 29–44.

Ardelean, I. I. and Cavaliere, M. (2003). Modelling biological processes by using a prob-

abilistic P System software. Natural Computing, 2(2), 173–197.

Arroyo, F., Luengo, C., Baranda, A. V., and de Mingo, L. (2002). A software simulation

of transition P Systems in Haskell. In Workshop on Membrane Computing, 19–32.

Springer.

Askarnejad, S., Malekimajd, M., and Movaghar, A. (2018). Network and Application-

Aware Cloud Service Selection in Peer-Assisted Environments. IEEE Transactions on

Cloud Computing.

Bangalan, Z. F., Soriano, K. A. N., Juayong, R. A. B., Cabarle, F. G. C., Adorna, H. N., and

Martínez del Amor, M. Á. (2013). A GPU simulation for evolution-communication P

Systems with energy having no antiport rules. Proceedings of the Eleventh Brainstorm-

ing Week on Membrane Computing, 25-50. Sevilla, ETS de Ingeniería Informática, 4-8

de Febrero, 2013,.

Bharathi, S., Chervenak, A., Deelman, E., Mehta, G., Su, M.-H., and Vahi, K. (2008).

Characterization of scientific workflows. In 2008 third workshop on workflows in sup-

port of large-scale science, 1–10. IEEE.

Bianco, L., Manca, V., Marchetti, L., and Petterlini, M. (2007). Psim: a simulator for

biomolecular dynamics based on P Systems. In 2007 IEEE Congress on Evolutionary

Computation, 883–887. IEEE.

Blakes, J., Twycross, J., Romero, F. J., Krasnogor, N., et al. (2011). The Infobiotics Work-

bench: an integrated in silico modelling platform for Systems and Synthetic Biology.

Bioinformatics, 27(23), 3323–3324.

Bonchiş, C., Ciobanu, G., Izbaşa, C., and Petcu, D. (2005). A Web-based P Systems

simulator and its parallelization. In International Conference on Unconventional Com-

putation, 58–69. Springer.

166

Borrego-Ropero, R., Dıaz-Pernil, D., and Pérez-Jiménez, M. J. (2007). Tissue simulator:

A graphical tool for tissue P Systems. In Proceedings of the international workshop

automata for cellular and molecular computing. Satellite of the 16th international sym-

posium on fundamentals of computational theory. MTA SZTAKI, Budapest, Hungary,

23–34.

Brandusa Pavel, A. (2011). Membrane controllers for cognitive robots. Department of Au-

tomatic Control and System Engineering, Politehnica University of Bucharest, Romania,

Master’s Thesis.

Brans, J.-P. (1982). L’ingénierie de la décision: l’élaboration d’instruments d’aide a la

décision. Université Laval, Faculté des sciences de l’administration.

Buiu, C., Arsene, O., Cipu, C., and Patrascu, M. (2011). A Software tool for Modeling

and Simulation of Numerical P Systems. BioSystems, 103(3), 442–447.

Buyya, R., Yeo, C. S., Venugopal, S., Broberg, J., and Brandic, I. (2009). Cloud computing

and emerging IT platforms: Vision, hype, and reality for delivering computing as the 5th

utility. Future Generation computer Systems, 25(6), 599–616.

Byun, E.-K., Kee, Y.-S., Kim, J.-S., and Maeng, S. (2011). Cost optimized provisioning

of elastic resources for application workflows. Future Generation Computer Systems,

27(8), 1011–1026.

Cabarle, F., Adorna, H., and Martinez-del Amor, M. A. (2011a). Simulating spiking neu-

ral p systems without delays using gpus. International Journal of Natural Computing

Research (IJNCR), 2(2), 19–31.

Cabarle, F. G. C., Adorna, H., and Martínez, M. A. (2011b). A Spiking Neural P System

simulator based on CUDA. In International Conference on Membrane Computing, 87–

103. Springer.

Cabarle, F. G. C., Adorna, H., and Martinez-del Amor, M. A. (2011c). An improved

GPU simulator for spiking neural P Systems. In Sixth International Conference on

Bio-Inspired Computing: Theories and Applications (BIC-TA), 2011, 262–267. IEEE.

167

Cabarle, F. G. C., de la Cruz, R. T. A., Cailipan, D. P. P., Zhang, D., Liu, X., and Zeng,

X. (2019). On solutions and representations of spiking neural P Systems with rules on

synapses. Information Sciences, 501, 30–49.

Calheiros, R. N. and Buyya, R. (2013). Meeting deadlines of scientific workflows in public

clouds with tasks replication. IEEE Transactions on Parallel and Distributed Systems,

25(7), 1787–1796.

Calheiros, R. N., Ranjan, R., Beloglazov, A., De Rose, C. A., and Buyya, R. (2011).

CloudSim: a toolkit for modeling and simulation of cloud computing environments and

evaluation of resource provisioning algorithms. Software: Practice and experience,

41(1), 23–50.

Campos, M., Llorens, C., Sempere, J. M., Futami, R., Rodriguez, I., Carrasco, P., Capilla,

R., Latorre, A., Coque, T. M., Moya, A., et al. (2015). A membrane computing simula-

tor of trans-hierarchical Antibiotic Resistance Evolution dynamics in nested ecological

compartments (ARES). Biology direct, 10(1), 1.

Casas, I., Taheri, J., Ranjan, R., Wang, L., and Zomaya, A. Y. (2017). A balanced scheduler

with data reuse and replication for scientific workflows in cloud computing Systems.

Future Generation Computer Systems, 74, 168–178.

Casas, I., Taheri, J., Ranjan, R., Wang, L., and Zomaya, A. Y. (2018). GA-ETI: An en-

hanced genetic algorithm for the scheduling of scientific workflows in cloud environ-

ments. Journal of computational science, 26, 318–331.

Castellini, A. and Manca, V. (2008). MetaPlab: a computational framework for metabolic

P Systems. In International Workshop on Membrane Computing, 157–168. Springer.

Cecilia, J. M., García, J. M., Guerrero, G. D., Martínez-del Amor, M. A., Pérez-Hurtado,

I., and Pérez-Jiménez, M. J. (2010a). Simulating a P System based efficient solution to

SAT by using GPUs. The Journal of Logic and Algebraic Programming, 79(6), 317–

325.

168

Cecilia, J. M., García, J. M., Guerrero, G. D., Martínez-del Amor, M. A., Pérez-Hurtado,

I., and Pérez-Jiménez, M. J. (2010b). Simulation of P Systems with active membranes

on CUDA. Briefings in Bioinformatics, 11(3), 313–322.

Chen, H., Zhu, X., Qiu, D., Liu, L., and Du, Z. (2017a). Scheduling for workflows with

security-sensitive intermediate data by selective tasks duplication in clouds. IEEE Trans-

actions on Parallel and distributed Systems, 28(9), 2674–2688.

Chen, W., Xie, G., Li, R., Bai, Y., Fan, C., and Li, K. (2017b). Efficient task scheduling

for budget constrained parallel applications on heterogeneous cloud computing Systems.

Future Generation Computer Systems, 74, 1–11.

Ciobanu, G. and Paraschiv, D. (2002). P System software simulator. Fundamenta Infor-

maticae, 49(1-3), 61–66.

Ciobanu, G., Păun, G., and Pérez-Jiménez, M. J. (2006). Applications of membrane com-

puting, 17. Springer.

Ciobanu, G., Paun, G., and Stefanescu, G. (2003). Sevilla carpets associated with P Sys-

tems. In Proceedings of the Brainstorming Week on Membrane Computing, Tarragona,

Spain, 135–140.

Ciobanu, G. and Wenyuan, G. (2003). P Systems running on a cluster of computers. In

International Workshop on Membrane Computing, 123–139. Springer.

Cook, S. (2012). CUDA programming: a developer’s guide to parallel computing with

GPUs. Newnes.

Cordón-Franco, A., Gutiérrez-Naranjo, M. A., Pérez-Jiménez, M. J., and Sancho-

Caparrini, F. (2004). A PROLOG simulator for deterministic P Systems with active

membranes. New Generation Computing, 22(4), 349–363.

Das, D. K. and Renz, T. (2006). A Simulation Model for P Systems with Active Mem-

branes. In 2006 IEEE Conference on Emerging Technologies-Nanoelectronics, 338–

340. IEEE.

169

Dassow, J. and Păun, G. (1999). On the power of membrane computing. Journal of

Universal Computer Science, 5(2), 33–49.

Dehghan-Manshadi, B., Mahmudi, H., Abedian, A., and Mahmudi, R. (2007). A novel

method for materials selection in mechanical design: Combination of non-linear nor-

malization and a modified digital logic method. Materials & Design, 28(1), 8–15.

Deng, H., Yeh, C.-H., and Willis, R. J. (2000). Inter-company comparison using modified

TOPSIS with objective weights. Computers & Operations Research, 27(10), 963–973.

Díaz-Pernil, D., Fernández-Mírquez, C. M., García-Quismondo, M., Gutiérrez-Naranjo,

M. A., and Martínez-del Amor, M. A. (2010). Solving Sudoku with Membrane Com-

puting. In 2010 IEEE fifth international conference on bio-inspired computing: theories

and applications (BIC-TA), 610–615. IEEE.

Díaz Pernil, D., Pérez Hurtado de Mendoza, I., Pérez Jiménez, M. d. J., and Riscos Núñez,

A. (2008). P-lingua: A programming language for membrane computing. Proceedings

of the Sixth Brainstorming Week on Membrane Computing, 135-155. Sevilla, ETS de

Ingeniería Informática, 4-8 de Febrero, 2008.

Elaziz, M. A., Xiong, S., Jayasena, K., and Li, L. (2019). Task scheduling in cloud comput-

ing based on hybrid moth search algorithm and differential evolution. Knowledge-Based

Systems, 169, 39–52.

Equinix (Accessed July, 2019). Link: https://www.equinix.com/interconnection-

services/cloud-exchange-fabric/.

Eusuff, M., Lansey, K., and Pasha, F. (2006). Shuffled Frog-leaping algorithm: A Memetic

meta-heuristic for discrete optimization. Engineering optimization, 38(2), 129–154.

Farag, M. M. (2007). Materials and process selection for engineering design. CRC Press.

Florea, A. G. and Buiu, C. (2015). Lulu-A software Simulator for P colonies. Use case

scenarios and demonstration videos.

Florea, A. G. and Buiu, C. (2016). Development of a Software Simulator for P colonies–

Applications in Robotics. International Journal of Unconventional Computing, 12.

170

Florea, A. G. and Buiu, C. (2017). Modelling multi-robot interactions using a generic

controller based on numerical P Systems and ROS. In 2017 9th International Conference

on Electronics, Computers and Artificial Intelligence (ECAI), 1–6. IEEE.

Florea, A. G. and Buiu, C. (2018). PeP (Enzymatic) Numerical P System simulator. http:

//membranecomputing.net/pep/index.html. [Online; Accessed 30-July-2018].

Frisco, P. and Gibson, R. T. (2005). A Simulator and an Evolution Program for Conformon-

P Systems. In SYNASC, 7, 26–27.

G. Ciobanu, D. Paraschiv (2001). Membrane software. A P System simulator. Tech-

nical report, Pre-proceeedings Workshop on Membrane Computing, Curtea de Arges,

Romania, August 2001, Technical Report 17/01 of Research Group on Mathematical

Linguistics, Rovira i Virgili University, Tarragona, Spain.

Garcia-Quismondo, M. MeCoGUI. Link:https://www.p-lingua.org/wiki/index.

php/MeCoGUI.

Garcıa-Quismondo, M. (2013). A Java-Based P-Lingua Simulator for Enzymatic Nu-

merical P Systems. https://www.cs.us.es/blogs/mgarcia/research/software_

tools/java_simulator_enps/. [Online; Accessed 23-July-2017].

García Quismondo, M., Brandusa Pavel, A., and Pérez Jiménez, M. d. J. (2012a). Simulat-

ing large-scale ENPS models by means of GPU. Proceedings of the Tenth Brainstorming

Week on Membrane Computing, 137-152. Sevilla, ETS de Ingeniería Informática, 30 de

Enero-3 de Febrero, 2012.

García Quismondo, M., Brandusa Pavel, A., Pérez Jiménez, M. d. J., et al. (2012b). Simu-

lating Large-Scale ENPS Models by Means of GPU.

García-Quismondo, M., Gutiérrez-Escudero, R., Pérez-Hurtado, I., Pérez-Jiménez, M. J.,

and Riscos-Núñez, A. (2009). An overview of P-Lingua 2.0. In International Workshop

on Membrane Computing, 264–288. Springer.

171

http://membranecomputing.net/pep/index.html
http://membranecomputing.net/pep/index.html
Link:https://www.p-lingua.org/wiki/index.php/MeCoGUI
Link:https://www.p-lingua.org/wiki/index.php/MeCoGUI
https://www.cs.us.es/blogs/mgarcia/research/software_tools/java_simulator_enps/
https://www.cs.us.es/blogs/mgarcia/research/software_tools/java_simulator_enps/

García-Quismondo, M., Macías-Ramos, L. F., and Pérez-Jiménez, M. J. (2013). Imple-

menting Enzymatic Numerical P Systems for AI applications by means of Graphic Pro-

cessing Units. In Beyond Artificial Intelligence, 137–159. Springer.

García-Quismondo, M., Martínez-del Amor, M. A., and Pérez-Jiménez, M. J. (2014).

Probabilistic Guarded P Systems, a new formal modelling framework. In International

Conference on Membrane Computing, 194–214. Springer.

Garg, S. K., Versteeg, S., and Buyya, R. (2011). SMICloud: A framework for comparing

and ranking cloud services. In 2011 Fourth IEEE International Conference on Utility

and Cloud Computing, 210–218. IEEE.

Gheorghe, M. (2010). System Modeling Framework. Link:

http://www.dcs.shef.ac.uk/people/M.Gheorghe/PSimulatorWeb/Tools.htm.

Ghosh, N., Ghosh, S. K., and Das, S. K. (2014). SelCSP: A framework to facilitate selec-

tion of cloud service providers. IEEE transactions on cloud computing, 3(1), 66–79.

Gutiérrez Naranjo, M. Á., Pérez Jiménez, M. d. J., and Riscos Núñez, A. (2005). A

simulator for confluent P systems. Proceedings of the Third Brainstorming Week on

Membrane Computing, 169-184. Sevilla, ETS de Ingeniería Informática, 31 de Enero-4

de Febrero, 2005,.

Hu, J., Chen, G., Peng, H., Wang, J., Huang, X., and Luo, X. (2017). A kNN classifier op-

timized by P Systems. In 2017 13th International Conference on Natural Computation,

Fuzzy Systems and Knowledge Discovery (ICNC-FSKD), 432–437. IEEE.

Huang, L. and Wang, N. (2006). An optimization algorithm inspired by membrane com-

puting. In International Conference on Natural Computation, 49–52. Springer.

Hwang, C.-L. and Yoon, K. (1981). Multiple Attribute Decision Making, 186 of Lecture

Notes in Economics and Mathematical Systems. Springer, Berlin, Heidelberg.

Kari, L. and Rozenberg, G. (2008). The many facets of natural computing. Communica-

tions of the ACM, 51(10), 72–83.

172

Kaveri, B. A., Gireesha, O., Somu, N., Raman, M. G., and Sriram, V. S. (2017). E-

FPROMETHEE: An Entropy based Fuzzy multi criteria decision making service rank-

ing approach for cloud service selection. In International Conference on Intelligent

Information Technologies, 224–238. Springer.

Kendall, M. G. (1948). Rank correlation methods. Griffin.

Kumar, M. and Sharma, S. (2018). PSO-COGENT: Cost and energy efficient scheduling

in cloud environment with deadline constraint. Sustainable Computing: Informatics and

Systems, 19, 147–164.

Kumar, R. R., Mishra, S., and Kumar, C. (2017). Prioritizing the solution of cloud service

selection using integrated MCDM methods under Fuzzy environment. The Journal of

Supercomputing, 73(11), 4652–4682.

Lang, M., Wiesche, M., and Krcmar, H. (2018). Criteria for Selecting Cloud Service

Providers: A Delphi Study of Quality-of-Service Attributes. Information & Manage-

ment, 55(6), 746–758.

Lee, S. and Seo, K.-K. (2016). A hybrid multi-criteria decision-making model for a cloud

service selection problem using BSC, fuzzy Delphi method and fuzzy AHP. Wireless

Personal Communications, 86(1), 57–75.

Leporati, A., Porreca, A. E., Zandron, C., and Mauri, G. (2013). Improving universal-

ity results on parallel Enzymatic Numerical P Systems. Proceedings of the Eleventh

Brainstorming Week on Membrane Computing, 177-200. Sevilla, ETS de Ingeniería In-

formática, 4-8 de Febrero, 2013.

Li, Z., Ge, J., Hu, H., Song, W., Hu, H., and Luo, B. (2015). Cost and energy aware

scheduling algorithm for scientific workflows with deadline constraint in clouds. IEEE

Transactions on Services Computing, 11(4), 713–726.

Liang, Y.-C., Chen, A. H.-L., and Nien, Y.-H. (2014). Artificial Bee Colony for work-

flow scheduling. In 2014 IEEE congress on evolutionary computation (CEC), 558–564.

IEEE.

173

Lin, D., Squicciarini, A. C., Dondapati, V. N., and Sundareswaran, S. (2016). A cloud bro-

kerage architecture for efficient cloud service selection. IEEE Transactions on Services

Computing, 12(1), 144–157.

Liu, F., Tong, J., Mao, J., Bohn, R., Messina, J., Badger, L., and Leaf, D. (2011). NIST

Cloud Computing Reference Architecture. NIST Special Publication, 500, 292.

Llorente Rivera, D. and Gutiérrez Naranjo, M. Á. (2015). The Pole Balancing Problem

with Enzymatic Numerical P Systems. In Proceedings of the Thirteenth Brainstorming

Week on Membrane Computing, 195-206. Sevilla, ETS de Ingeniería Informática, 2-6

de Febrero, 2015. Fénix Editora.

Lopes, A., Valentim, N., Moraes, B., Zilse, R., and Conte, T. (2018). Applying user-

centered techniques to analyze and design a mobile application. Journal of Software

Engineering Research and Development, 6(1), 1–23.

Ma, H., Hu, Z., Li, K., and Zhang, H. (2016). Toward trustworthy cloud service selec-

tion: A time-aware approach using interval neutrosophic set. Journal of Parallel and

Distributed Computing, 96, 75–94.

Macías-Ramos, L. F., Pérez-Hurtado, I., García-Quismondo, M., Valencia-Cabrera, L.,

Pérez-Jiménez, M. J., and Riscos-Núñez, A. (2011). A P–Lingua based simulator for

spiking neural P Systems. In International Conference on Membrane Computing, 257–

281. Springer.

Macías-Ramos, L. F., Valencia-Cabrera, L., Song, B., Song, T., Pan, L., and Pérez-

Jiménez, M. J. (2015). A P_Lingua Based Simulator for P Systems with Symport/An-

tiport Rules. Fundamenta Informaticae, 139(2), 211–227.

Maciej, M. (2012). Cost-and deadline-constrained provisioning for scientific workflow

ensembles in IaaS clouds. In Proceedings of the International Conference on High

Performance Computing, Networking, Storage and Analysis. IEEE Computer Society

Press.

Malita, M. (2000). Membrane computing in PROLOG. In Pre-Proceedings of The Work-

shop on Multiset Processing (WMP-CdeA 2000), page 8.

174

Mansouri, N., Zade, B. M. H., and Javidi, M. M. (2019). Hybrid Task Scheduling Strat-

egy for Cloud Computing by Modified Particle Swarm Optimization and Fuzzy Theory.

Computers & Industrial Engineering, 130, 597–633.

Mao, M. and Humphrey, M. (2011). Auto-scaling to minimize cost and meet application

deadlines in cloud workflows. In SC’11: Proceedings of 2011 International Conference

for High Performance Computing, Networking, Storage and Analysis, 1–12. IEEE.

Maroosi, A. and Muniyandi, R. C. (2013). Accelerated simulation of membrane computing

to solve the n-queens problem on multi-core. In International Conference on Swarm,

Evolutionary, and Memetic Computing, 257–267. Springer.

Maroosi, A., Muniyandi, R. C., Sundararajan, E., and Zin, A. M. (2014). Parallel and

distributed computing models on a graphics processing unit to accelerate simulation of

membrane Systems. Simulation Modelling Practice and Theory, 47, 60–78.

Maroosi, A., Muniyandi, R. C., Sundararajan, E. A., and Zin, A. M. (2013). Improved

implementation of simulation for membrane computing on the graphic processing unit.

Procedia Technology, 11, 184–190.

Martínez-del Amor, M. A., García-Quismondo, M., Macías-Ramos, L. F., Valencia-

Cabrera, L., Riscos-Núñez, A., and Pérez-Jiménez, M. J. (2015). Simulating P Systems

on GPU devices: a survey. Fundamenta Informaticae, 136(3), 269–284.

Martínez del Amor, M. Á., Karlin, I., Jensen, R. E., Pérez Jiménez, M. d. J., Elster, A. C.,

et al. (2012). Parallel simulation of probabilistic P Systems on multicore platforms. Pro-

ceedings of the Tenth Brainstorming Week on Membrane Computing,(2) 17-26. Sevilla,

ETS de Ingeniería Informática, 30 de Enero-3 de Febrero, 2012.

Martínez-del Amor, M. A., Macías-Ramos, L. F., Valencia-Cabrera, L., Riscos-Núñez, A.,

and Pérez-Jiménez, M. J. (2014). Accelerated simulation of P Systems on the GPU: a

survey. In Bio-Inspired Computing-Theories and Applications, 308–312. Springer.

Martínez del Amor, M. Á., Pérez Carrasco, J., Pérez Jiménez, M. d. J., et al. (2013).

Simulating a Family of Tissue P Systems Solving SAT on the GPU. Proceedings of

175

the Eleventh Brainstorming Week on Membrane Computing, 201-220. Sevilla, ETS de

Ingeniería Informática, 4-8 de Febrero, 2013,.

Martínez-del Amor, M. A., Pérez-Hurtado, I., García-Quismondo, M., Macías-Ramos,

L. F., Valencia-Cabrera, L., Romero-Jiménez, Á., Graciani, C., Riscos-Núñez, A.,

Colomer, M. A., and Pérez-Jiménez, M. J. (2012). DCBA: Simulating population dy-

namics P Systems with proportional object distribution. In International Conference on

Membrane Computing, 257–276. Springer.

Martínez-del Amor, M. A., Pérez-Hurtado, I., Pérez-Jiménez, M. J., and Riscos-Núñez, A.

(2010). A P-Lingua based simulator for tissue P Systems. The Journal of Logic and

Algebraic Programming, 79(6), 374–382.

Martínez-Puras, A. and Pacheco, J. (2016). MOAMP-Tabu search and NSGA-II for a real

Bi-objective scheduling-routing problem. Knowledge-Based Systems, 112, 92–104.

Mell, P., Grance, T., et al. (2011). The NIST definition of cloud computing.

Mohammadi, A., Asadi, H., Mohamed, S., Nelson, K., and Nahavandi, S. (2018). Op-

timizing model predictive control horizons using genetic algorithm for motion cueing

algorithm. Expert Systems with Applications, 92, 73–81.

Nasonov, D., Butakov, N., Balakhontseva, M., Knyazkov, K., and Boukhanovsky, A. V.

(2014). Hybrid evolutionary workflow scheduling algorithm for dynamic heterogeneous

distributed computational environment. In International Joint Conference SOCO’14-

CISIS’14-ICEUTE’14, 83–92. Springer.

Nawaz, F., Asadabadi, M. R., Janjua, N. K., Hussain, O. K., Chang, E., and Saberi, M.

(2018). An MCDM method for cloud service selection using a Markov chain and the

best-worst method. Knowledge-Based Systems, 159, 120–131.

Nepomuceno Chamorro, I. d. l. Á. (2004). A Java simulator for basic transition P sys-

tems. Proceedings of the Second Brainstorming Week on Membrane Computing, 309-

315. Sevilla, ETS de Ingeniería Informática, 2-7 de Febrero, 2004.

176

Nepomuceno Chamorro, I. d. l. Á., Nepomuceno Chamorro, J. A., Romero Campero, F. J.,

et al. (2005). A tool for using the SBML format to represent P Systems which model

biological reaction networks.

Nishida, T. Y. (2006). Membrane algorithms: approximate algorithms for NP-complete

optimization problems. In Applications of membrane computing, 303–314. Springer.

Noval, D. B., Jiménez, M. J. P., and Caparrini, F. S. (2002). A MzScheme implementation

of transition P Systems. In Workshop on Membrane Computing, 58–73. Springer.

Nvidia (2019). CUDA C++ Programming Guide. https://docs.nvidia.com/cuda/

cuda-c-programming-guide/index.html. [Online; Accessed 30-April-2019].

Orellana Martín, D., Graciani Díaz, C., Martínez del Amor, M. Á., Riscos Núñez, A.,

Valencia Cabrera, L., et al. (2014). Revisiting Sevilla Carpets: A New Tool for the P-

Lingua Era. Proceedings of the Twelfth Brainstorming Week on Membrane Computing,

281-292. Sevilla, ETS de Ingeniería Informática, 3-7 de Febrero, 2014,.

Pandey, S., Wu, L., Guru, S. M., and Buyya, R. (2010). A particle swarm optimization-

based heuristic for scheduling workflow applications in cloud computing environments.

In 2010 24th IEEE international conference on advanced information networking and

applications, 400–407. IEEE.

Patiniotakis, I., Verginadis, Y., and Mentzas, G. (2015). PuLSaR: Preference-based Cloud

Service Selection for cloud service brokers. Journal of Internet Services and Applica-

tions, 6(1), 26.

Păun, G. (2000). Computing with membranes. Journal of Computer and System Sciences,

61(1), 108–143.

Paun, G. (2012). Membrane computing: An Introduction. Springer Science & Business

Media.

Păun, G. and Păun, R. (2006). Membrane computing and economics: Numerical P Sys-

tems. Fundamenta Informaticae, 73(1, 2), 213–227.

177

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

Păun, G. and Rozenberg, G. (2002). A guide to Membrane Computing. Theoretical Com-

puter Science, 287(1), 73–100.

Paun, G., Rozenberg, G., and Salomaa, A. (2010). The Oxford Handbook of Membrane

Computing. IOS Press.

Pavel, A. B., Arsene, O., and Buiu, C. (2010). Enzymatic Numerical P Systems-A new

class of membrane computing Systems. In Bio-Inspired Computing: Theories and Ap-

plications (BIC-TA), 2010 IEEE Fifth International Conference on, 1331–1336. IEEE.

Pavel, A. B. and Buiu, C. (2012). Using Enzymatic Numerical P Systems for modeling

mobile robot controllers. Natural Computing, 11(3), 387–393.

Pavel, A. B., Vasile, C. I., and Dumitrache, I. (2012). Robot localization implemented with

Enzymatic Numerical P Systems. In Conference on Biomimetic and Biohybrid Systems,

204–215. Springer.

Pegasus (2019). Pegasus - Workflow Gallery. http://arxiv.org/abs/1707.07435.

[Online] Last accessed: 20-10-2019.

Peng, H., Jiang, Y., Wang, J., and Pérez-Jiménez, M. (2015). Membrane clustering algo-

rithm with hybrid evolutionary mechanisms. Journal Software, 26(5), 1001–1012.

Peng, H., Jin, J., and Wang, J. (2016). Parallel Implementation of Membrane Computing-

Inspired Clustering Algorithm on Graphics Processing Unit. Journal of Computational

and Theoretical Nanoscience, 13(6), 3673–3680.

Peng, H., Shao, J., Li, B., Wang, J., Pérez Jiménez, M. d. J., Jiang, Y., and Yang, Y. (2012).

Image thresholding with cell-like P Systems. Proceedings of the Tenth Brainstorming

Week on Membrane Computing,(2) 75-88. Sevilla, ETS de Ingeniería Informática, 30 de

Enero-3 de Febrero, 2012,.

Peng, H., Shi, P., Wang, J., Riscos-Núñez, A., and Pérez-Jiménez, M. J. (2017). Multiob-

jective fuzzy clustering approach based on tissue-like membrane Systems. Knowledge-

Based Systems, 125, 74–82.

178

http://arxiv.org/abs/1707.07435

Peng, H., Wang, J., Pérez-Jiménez, M. J., and Shi, P. (2013). A novel image thresholding

method based on membrane computing and fuzzy entropy. Journal of Intelligent &

Fuzzy Systems, 24(2), 229–237.

Peng, H., Zhang, J., Jiang, Y., Huang, X., and Wang, J. (2014). DE-MC: A membrane

clustering algorithm based on differential evolution mechanism. Romanian Journal In-

formation Science and Technology, 17(1), 76–88.

Pérez-Hurtado, I., Martínez-del Amor, M. Á., Zhang, G., Neri, F., and Pérez-Jiménez,

M. J. A membrane parallel rapidly-exploring random tree algorithm for robotic motion

planning. Integrated Computer-Aided Engineering, (Preprint), 1–18.

Pérez-Hurtado, I., Pérez-Jiménez, M. J., Zhang, G., and Orellana-Martín, D. (2018). Robot

path planning using rapidly-exploring random trees: A membrane computing approach.

In 2018 7th International Conference on Computers Communications and Control (IC-

CCC), 37–46. IEEE.

Perez-Hurtado, I., Valencia-Cabrera, L., Chacon, J. M., Riscos-Nunez, A., and Perez-

Jimenez, M. J. (2014). A P–Lingua based Simulator for Tissue P Systems with Cell

Separation. Sceince and Technology, 17(1), 89–102.

Pérez-Hurtado, I., Valencia-Cabrera, L., Pérez-Jiménez, M. J., Colomer, M. A., and

Riscos-Núñez, A. (2010). MeCoSim: A general purpose software tool for simulating

biological phenomena by means of P Systems. In 2010 IEEE Fifth International Confer-

ence on Bio-Inspired Computing: Theories and Applications (BIC-TA), 637–643. IEEE.

Pérez Jiménez, M. d. J. and Romero Campero, F. J. (2004). A CLIPS simulator for rec-

ognizer P Systems with active membranes. Proceedings of the Second Brainstorming

Week on Membrane Computing, 387-413. Sevilla, ETS de Ingeniería Informática, 2-7

de Febrero, 2004.

Pescini, D., Besozzi, D., Mauri, G., and Zandron, C. (2006). Dynamical probabilistic P

Systems. International Journal of Foundations of Computer Science, 17(01), 183–204.

179

Ramírez Martínez, D. and Gutiérrez Naranjo, M. Á. (2007). A software tool for dealing

with spiking neural P systems. Proceedings of the Fifth Brainstorming Week on Mem-

brane Computing, 299-313. Sevilla, ETS de Ingeniería Informática, 29 de Enero-2 de

Febrero, 2007.

Rao, R. V. (2007). Decision making in the manufacturing environment: using graph theory

and fuzzy multiple attribute decision making methods. Springer Science & Business

Media.

Ravie, C. and Ali, M. (2015). Enhancing the Simulation of Membrane System on the GPU

for the N-Queens Problem. Chinese Journal of Electronics, 24(4), 740–743.

Read, J. (2014). CloudHarmony. com. Cloud Server Performance Benchmarking.

RGNC. PMCGPU. Link:http://www.p-lingua.org/wiki/index.php/PMCGPU.

RGNC (2016). Software - The P Systems Page. Link:http://ppage.pSystems.eu/

index.php/Software.

Rimal, B. P. and Maier, M. (2016). Workflow scheduling in multi-tenant cloud computing

environments. IEEE Transactions on parallel and distributed Systems, 28(1), 290–304.

Rivero-Gil, E., Gutiérrez-Naranjo, M. A., Romero-Jiménez, Á., and Riscos-Núñez, A.

(2011). A software tool for generating graphics by means of P Systems. Natural Com-

puting, 10(2), 879–890.

Rodriguez, M. A. and Buyya, R. (2014). Deadline based resource provisioningand

scheduling algorithm for scientific workflows on clouds. IEEE transactions on cloud

computing, 2(2), 222–235.

Saaty, T. (1983). Decision making for leaders : the Analytic Hierarchy Process for deci-

sions in a complex world. The Engineering Economist, 29(1), 74–75.

Saaty, T. L. (1988). What is the Analytic Hierarchy Process? In Mathematical models for

decision support, 109–121. Springer.

180

Link:http://www.p-lingua.org/wiki/index.php/PMCGPU
Link:http://ppage.pSystems.eu/index.php/Software
Link:http://ppage.pSystems.eu/index.php/Software

Sedwards, S. and Mazza, T. (2007). Cyto-Sim: a formal language model and stochastic

simulator of membrane-enclosed biochemical processes. Bioinformatics, 23(20), 2800–

2802.

Siegel, J. and Perdue, J. (2012). Cloud services measures for global use: the Service

Measurement Index (SMI). In 2012 Annual SRII Global Conference, 411–415. IEEE.

Singh, G. and Deep, K. (2016). A new membrane algorithm using the rules of Particle

Swarm Optimization incorporated within the framework of cell-like P-Systems to solve

Sudoku. Applied Soft Computing, 45, 27–39.

Singh, G., Deep, K., and Nagar, A. K. (2014). Cell-like P-Systems based on rules of

Particle Swarm Optimization. Applied Mathematics and Computation, 246, 546–560.

Soltani, S., Martin, P., and Elgazzar, K. (2018). A hybrid approach to automatic IaaS

service selection. Journal of Cloud Computing, 7(1), 12.

Somu, N., Kirthivasan, K., and Sriram, V. S. (2017). A rough set-based hypergraph trust

measure parameter selection technique for cloud service selection. The Journal of Su-

percomputing, 73(10), 4535–4559.

Somu, N., MR, G. R., Kirthivasan, K., and VS, S. S. (2018). A trust-centric optimal service

ranking approach for cloud service selection. Future Generation Computer Systems, 86,

234–252.

Su, S., Li, J., Huang, Q., Huang, X., Shuang, K., and Wang, J. (2013). Cost-efficient

task scheduling for executing large programs in the cloud. Parallel Computing, 39(4-5),

177–188.

Sun, L., Dong, H., Hussain, F. K., Hussain, O. K., and Chang, E. (2014). Cloud ser-

vice selection: State-of-the-art and future research directions. Journal of Network and

Computer Applications, 45, 134–150.

Sun, L., Dong, H., Hussain, O. K., Hussain, F. K., and Liu, A. X. (2019). A framework of

cloud service selection with criteria interactions. Future Generation Computer Systems,

94, 749–764.

181

Sun, L., Ma, J., Zhang, Y., Dong, H., and Hussain, F. K. (2016). Cloud-FuSeR: Fuzzy

ontology and MCDM based cloud service selection. Future Generation Computer Sys-

tems, 57, 42–55.

Sundareswaran, S., Squicciarini, A., and Lin, D. (2012). A brokerage-based approach

for cloud service selection. In 2012 IEEE Fifth International Conference on Cloud

Computing, 558–565. IEEE.

Suzuki, Y. and Tanaka, H. (2000). On a LISP implementation of a class of P Systems.

Romanian Journal of Information Science and Technology, 3(2), 173–186.

Syropoulos, A., Mamatas, E. G., Allilomes, P. C., and Sotiriades, K. T. (2003). A dis-

tributed simulation of transition P Systems. In International Workshop on Membrane

Computing, 357–368. Springer.

Topcuoglu, H., Hariri, S., and Wu, M.-y. (2002). Performance-effective and low-

complexity task scheduling for heterogeneous computing. IEEE transactions on parallel

and distributed Systems, 13(3), 260–274.

Ur Rehman, Z., Hussain, O. K., and Hussain, F. K. (2014). Parallel cloud service selection

and ranking based on QoS history. International Journal of Parallel Programming,

42(5), 820–852.

Vaidya, O. S. and Kumar, S. (2006). Analytic hierarchy process: An overview of applica-

tions. European Journal of Operational Research, 169(1), 1–29.

Verma, A. and Kaushal, S. (2017). A hybrid multi-objective Particle Swarm Optimization

for scientific workflow scheduling. Parallel Computing, 62, 1–19.

Wang, H., Peng, H., Shao, J., and Wang, T. (2012). A thresholding method based on P

Systems for image segmentation. ICIC Express Letters, 6(1), 221–227.

Wang, X., Zhang, G., Gou, X., Paul, P., Neri, F., Rong, H., Yang, Q., and Zhang, H.

Multi-behaviors coordination controller design with enzymatic numerical P Systems for

robots. Integrated Computer-Aided Engineering, (Preprint), 1–22.

182

Wang, X., Zhang, G., Zhao, J., Rong, H., Ipate, F., and Lefticaru, R. (2015). A modified

membrane-inspired algorithm based on particle swarm optimization for mobile robot

path planning. International Journal of Computers Communications & Control, 10(5),

732–745.

Wu, C. Q., Lin, X., Yu, D., Xu, W., and Li, L. (2014). End-to-end delay minimization

for scientific workflows in clouds under budget constraint. IEEE Transactions on Cloud

Computing, 3(2), 169–181.

Wu, Q., Ishikawa, F., Zhu, Q., Xia, Y., and Wen, J. (2017). Deadline-constrained cost opti-

mization approaches for workflow scheduling in clouds. IEEE Transactions on Parallel

and Distributed Systems, 28(12), 3401–3412.

Wu, Z., Ni, Z., Gu, L., and Liu, X. (2010). A revised discrete particle swarm optimization

for cloud workflow scheduling. In 2010 International Conference on Computational

Intelligence and Security, 184–188. IEEE.

Yadav, N. and Goraya, M. S. (2018). Two-way ranking based service mapping in cloud

environment. Future Generation Computer Systems, 81, 53–66.

Yao, G., Ding, Y., and Hao, K. (2017). Using imbalance characteristic for fault-tolerant

workflow scheduling in cloud Systems. IEEE Transactions on Parallel and Distributed

Systems, 28(12), 3671–3683.

Zhang, F., Cao, J., Hwang, K., Li, K., and Khan, S. U. (2014a). Adaptive workflow

scheduling on cloud computing platforms with iterativeordinal optimization. IEEE

Transactions on Cloud Computing, 3(2), 156–168.

Zhang, G., Gheorghe, M., Pan, L., and Perez-Jimenez, M. J. (2014b). Evolutionary mem-

brane computing: a comprehensive survey and new results. Information Sciences, 279,

528–551.

Zhang, G., Pérez-Jiménez, M. J., and Gheorghe, M. (2017a). Robot Control with

Membrane Systems. In Real-life Applications with Membrane Computing, 213–258.

Springer.

183

Zhang, H., Peng, Y., Tian, G., Wang, D., and Xie, P. (2017b). Green material selection for

sustainability: A hybrid MCDM approach. PLOS ONE, 12(5), e0177578.

Zhu, Z., Zhang, G., Li, M., and Liu, X. (2015). Evolutionary multi-objective workflow

scheduling in cloud. IEEE Transactions on parallel and distributed Systems, 27(5),

1344–1357.

184

LIST OF PUBLICATIONS/ CONFERENCE
PAPERS

Journal Publications

[1] S. Raghavan, Shanthanu S. Rai, M. P. Rohit, and K. Chandrasekaran. "GPUPeP:

Parallel Enzymatic Numerical P System simulator with a Python-based interface.

"Biosystems, Elsevier (2020): 104186. [SCI] [IF: 1.8].

[2] S. Raghavan, Yashas Gangadhar, Varun Pattar, and K. Chandrasekaran. "Multi-

ENPS simulator support tool with automatic file inter-conversion and multi-

membrane execution.". Biosystems, Elsevier 189 (2020): 104067. [SCI] [IF: 1.8].

[3] S. Raghavan and K. Chandrasekaran (2021). "Membrane-based Models for Service

Selection in Cloud", Information Sciences, Elsevier, 558, 103-123. [SCIE] [IF: 5.9].

[4] S. Raghavan and K. Chandrasekaran. “ENPS-IPROMETHEE: Enzymatic Numeri-

cal P System based Improved Preference Ranking Organization Method for Enrich-

ment Evaluation”. (Communicated)

[5] S. Raghavan and K. Chandrasekaran. “Enzymatic Numerical P System based Work-

flow Scheduling in Cloud”. (Communicated)

185

Conference Proceedings

[1] S. Raghavan, K Chandrasekaran,” Enzymatic Numerical P System for Improved

Analytic Hierarchy Process”, 6th Asian Conference on Membrane Computing 2017

(ACMC 2017), Chengdu, China, 2017.

[2] S. Raghavan, and K. Chandrasekaran. "Tools and simulators for membrane

computing-a literature review."International Conference on Bio-Inspired Comput-

ing: Theories and Applications, pp. 249-277. Springer, Singapore, 2016.

[3] S. Raghavan, and K. Chandrasekaran. "Analysis of emerging workflow scheduling

algorithms in cloud." International Conference on Applied and Theoretical Comput-

ing and Communication Technology (iCATccT), pp. 81-87. IEEE, 2015.

186

BIO-DATA

Name : Santhanam Raghavan

Email Id : raghavan.sm2005@gmail.com

Date of Birth : 24-11-1990

Address : G8, Anand Square Apartments,

30/36, Govindan Road,

West Mambalam,

Chennai - 600033.

Educational Qualifications:

Degree Year of Passing University

B.Tech. 2012 SASTRA University, Thanjavur.

M.Tech 2015 National Institute of Technology Karnataka Surathkal.

187

	Abstract
	List of Figures
	List of Tables
	List of Acronyms
	INTRODUCTION
	Gaps Identified in Existing Literature
	Problem Statement and Objectives
	Objective 1: To Design Parallel Service Selection Mechanism based on P System
	Research Objective 2: To Implement the Designed Parallel Service Selection Mechanism for a Cloud
	Research Objective 3: To Design and Develop a Parallel Workflow Scheduling Mechanism using P System for Cloud

	Research Methodology
	Thesis Contributions
	Thesis Structure

	LITERATURE REVIEW
	Cloud Computing
	Service Selection in Cloud
	Membrane Computing
	Membrane-based Algorithms

	ENPS Structure
	A Review of Tools Available for Membrane Computing
	P System tools that are specific to a particular application or type
	P System tools that are generic in nature
	Analysis

	Workflow Scheduling Algorithm in Cloud
	Summary

	P SYSTEM BASED SERVICE SELECTION MECHANISM
	Introduction
	Enzymatic Numerical P System based Improved Analytical Hierarchy Process (ENPS-IAHP)
	Improved Analytic Hierarchy Process (IAHP)
	ENPS-IAHP Membrane Structure
	Implementation and Results

	Enzymatic Numerical P System - Improved Preference Ranking Organization Method for Enrichment Evaluation (ENPS-IPROMETHEE)
	Sequential Equivalent
	ENPS-IPROMETHEE Membrane Structure
	Case Studies for ENPS-IPROMETHEE with Implementation

	Summary

	TOOLS FOR ENZYMATIC NUMERICAL P SYSTEM
	Multi-ENPS Simulator Support Tool with Automatic File Inter-conversion and Multi-membrane Execution
	Introduction
	Design and Implementation the Tool
	Conversion of files from PeP to XML format
	Conversion of files from XML to PeP format
	Usecases and correctness of the tool
	Case Studies

	GPUPeP
	Introduction
	Design Goals
	Design and Implementation of the Tool
	Interaction with Simulator
	Case studies: Testing the Tool

	Summary

	CLOUD SERVICE SELECTION USING P SYSTEM
	Introduction
	Service Selection in Cloud
	Enzymatic Numerical P System (ENPS)

	Logical Operations behind ENPS-ITOPSIS
	Membrane Based Improved Technique for Order of Preference by Similarity to Ideal Solution
	Implementation
	Results and Analysis
	Sensitivity Analysis
	Kendall Tau Distance Ratio
	Quantitative Analysis of Sensitivity

	Summary

	CLOUD WORKFLOW SCHEDULING BASED ON P SYSTEM
	Introduction
	Workflow Scheduling in Cloud using P System
	Results and Analysis
	Summary

	CONCLUSION & FUTURE WORK
	Thesis Summary
	Conclusion
	Future Work
	Bibliography
	List of Publications

