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ABSTRACT

Many paralinguistic speech applications demand the extraction of information

about the speaker’s characteristics from as little speech data as possible. In this

work, we explore the estimation of the speaker’s multiple physical parameters from

the short duration of speech in monolingual (English) and multilingual settings. This

has applications in forensics as well as e−commerce. We explore different feature

streams derived from the speech spectrum at different resolutions. Short-term log-mel

spectrogram, formant features, and harmonic features are extracted for age and body

build estimation (height, weight, shoulder size, and waist size) of the speaker. The

statistics of these features accumulated over the speech utterance are used to learn a

support vector regression model for speaker age and body build estimation. The ex-

periments performed on the TIMIT dataset show that each of the individual features

can achieve results that outperform the default predictor (prediction of the mean of

test samples by blindly predicting the mean of training data without looking at the

features) in height and age estimation. Furthermore, the estimation errors from these

different feature streams are complementary, allowing the combination of estimates

from these feature streams to improve the results further. The combined system from

short audio snippets achieves a performance of 5.2 cm, and 4.8 cm in Mean Absolute

Error (MAE) for male and female, respectively, for height estimation. Similarly, in

age estimation, the MAE is 5.2 years and 5.6 years for male and female speakers.

We extend the same physical parameter estimation system to other body build pa-

rameters like shoulder width, waist size, weight, and height. We created two datasets

for the speaker profiling task in a multilingual and multi-accent setting. Speech data

is collected along with speaker parameter details (like height, age, shoulder size, waist

size, and weight). A pilot dataset Audio Forensic Dataset (AFDS) with 207 speakers

across 12 different native Indian languages has around 8 hours of native languages

speech and around 9 hours of English speech data. Later, a bigger dataset NITK-IISc

Multilingual Multi-accent Speaker Profiling (NISP) dataset has collected, and it has

345 speakers across five Indian languages as well as English. NISP dataset has around

25 hours of native languages speech data and 32 hours of English speech data. The

system can estimate all the physical parameters and showed better improvement than

the default predictor in the multilingual and multi-accent setting.

The duration analysis shows that the state-of-the-art results can be achieved using

short utterances(around 1− 2 seconds) of speech data. To the best of our knowledge,

i



this is the first attempt to use a common set of features for estimating the different

physical traits of a speaker from short utterances.

An integrated end-to-end deep neural network architecture is proposed for joint

prediction of all the physical parameters. A novel initialization scheme for deep neural

architecture is introduced, which avoids a large training dataset requirement. On the

TIMIT dataset, the system achieves an RMSE error of 6.85 and 6.29 cm for male

and female height prediction. In the case of age estimation, the RMSE errors are 7.60

and 8.63 years for male and female, respectively. Analysis of shorter durations of

speech reveals that the network only degrades around 3% at most with only 1 second

of the speech input. Also, the performance saturates around 3seconds in predicting

the height and age of a speaker using the TIMIT dataset. In the multilingual setting

using collected datasets, the predicted error metrics are less than the default predictor

except for female age prediction in both AFDS and NISP datasets. In male speakers,

the system performance is less than the default predictor in height estimation of the

NISP dataset.

Keywords : Speaker Profiling, Multilingual data, AFDS, NISP, Short duration,

Physical Parameters, Audio Forensics.
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Chapter 1

Introduction

Human speech data not only contains information about the textual message being

conveyed but also the characteristics of the speaker. While the former is typically used

in Automatic Speech Recognition (ASR), the latter information is effectively used in

speaker identification and speaker verification (Schuller et al. (2013)). The pictorial

idea of speaker profiling using speech data is shown in Figure 1.1. Advances in digital

speech processing now support application and deployment of a variety of speech

technologies for human/machine communication. The human speech data contain

information about the following questions.

Figure 1.1: Pictorial idea in identifying the speaker attributes from the speech data
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• Who – Speech data will help to identify ‘who’ the speaker is. Speech helps to

determine the gender (male/female) of a speaker and to determine the age group

of the person like a child, teenager, adult, senior citizen.

• How – Speech data will help in understanding the emotions of the speaker like

anger, happiness, sadness, anxiety,etc., along with physical stature, weight, etc.

of the speaker.

• Where – Speech data will help to identify the speaker, (region from where the

speaker belongs to) using the accent information.

• What – The speech data has linguistic information, which can be transcribed

into readable text, which is helpful in all automatic speech recognition applica-

tions.

• Which – The speech data has the linguistic content, which conveys the language

that is spoken.

The extraction of speaker characteristics (parameters) from the speech data could

further aid in speaker identification systems as well as in the speaker clustering and

diarization systems. Speaker profiling involves predicting speaker meta information

such as age, accent and parameters of body build like height, weight, shoulder size

and waist size. Speaker profiling is a challenging application area (Tanner and Tanner

(2004)). The main challenge in estimating any such information is the separation of

linguistic content and speaker traits.

There are many potential applications in identifying the physical parameters from

the speech data in developing the engineering systems for biometric applications

(Nolan (2005), Singh et al. (2016a), Poorjam et al. (2015)) as well as commercial

applications (Schuller et al. (2013)), forensics (Tanner and Tanner (2004)) etc.

The e−commerce applications like targeted advertisements on internet, caller-

agent pairing in call-centers, video games etc would need more details on age and

gender for attracting the specific group of people. The information about the users

language/accent, age and gender can be used to offer appropriate products and ser-

vices for the e−commerce applications. The knowledge about users characteristics

can help in personalizing video games. For instance the choice of music is significantly

different for a teenage boy from that of an adult or may be the case of a boy and a

girl (Poorjam et al. (2015), Schuller et al. (2013), Singh et al. (2016a)).
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Estimating the physical traits could supplement the voice forensic analysis in case

of forensic scenarios besides providing knowledge to improve the speaker identification

systems. Usually the forensic experts search for a list of suspects involved in these type

of criminal activities. In hoax and threatening calls, speaker clues can be extracted

from voice recordings. This is a manual and tedious time consuming task for the

forensic experts to trace out the accused from the entire list of suspects. In such a

scenarios, soft biometrics such as age, gender, accent, physical parameters etc., help

to narrow down the number of suspects (Nolan (2005), Tanner and Tanner (2004),

Singh et al. (2016a)).

There is no control over the amount of available speech data from the target speaker

in such cases. Therefore, such systems are required to provide accurate predictions

using a minimum amount of speech data. For example, DARPA RATS program tar-

geted development of speaker and language recognition technology with as short as 3

seconds of speech (Walker and Strassel (2012)). Thus, development of speaker profil-

ing methods in short duration audio is important. Most of the available resources for

physical parameter estimation are based on mono language (mostly English). Often,

in all the commercial, surveillance, forensic applications the available speech may not

be in English. Thus, there is a need to develop a multilingual physical parameter

estimation system from available short durations of speech data.

Motivated by the importance and need to estimate the speaker’s physical pa-

rameters from short speech duration in a multilingual setting, for the commercial,

surveillance, and forensic applications, we framed our thesis’s objective as follows.

1.1 Objectives of the Thesis

� To investigate physical characteristics of a person from multilingual multi-accent

speech data.

� Develop a system for reliable estimation of speaker characteristics from short

duration of speech.
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1.2 Contributions

The main focus of the thesis is to develop a common platform to estimate the physical

parameters (Age, height, shoulder size, waist size, and weight) from short duration

speech data. The main contributions of this thesis are summarized as follows:

� Exploration of different kinds of features that uncover the speech signal’s under-

lying spectral structure to estimate the physical parameters. The statistics of

Mel cepstral features, formants, and harmonics are extracted at the utterance

level. This common set of features do not depend on phone level transcriptions.

These features are able to achieve the state of the art results in height and age

estimation tasks using the TIMIT dataset. The system is also able to retain

similar performance even for short utterances(2s).

� Creation of two different multilingual and multi accent datasets – Audio Foren-

sics Dataset (AFDS–207 speakers), and NITK-IISc Multilingual Multi-accent

Speaker Profiling (NISP–345 speakers) from the native Indian speakers for esti-

mating the physical parameters (like age, height, shoulder size, waist size, and

weight) of a speaker.

� Extension of the physical parameter estimation to shoulder size, weight, waist

size, along with height and age estimation of a speaker in a multilingual con-

text. The multilingual system has minimal degradations as compared to the

monolingual case.

� Proposal of an integrated end-to-end deep neural network to estimate the phys-

ical parameter with a limited amount of training data. The DNN predicts,

a speaker’s height and age jointly with short length utterances (1–3s) on the

TIMIT dataset. The same end-to-end DNN architecture is used to predict

jointly the height, age, weight, shoulder size, and waist size of a speaker in

a multilingual setting with short duration utterances using AFDS and NISP

datasets.

� A block diagram illustrating the challenges in speaker profiling and proposed

methodology to address the challenges and the contributions made to the thesis

are shown in Figure 1.2.
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Figure 1.2: Diagram illustrating various contribution made in the thesis.

1.3 Outline

The rest of the thesis is organized as follows.

Chapter 2: Presents about prior work and background literature in physical param-

eter estimation using the speech data. This chapter is begins with the

Physiological cues in speech to estimate the physical parameters. The

chapter then reviews the speaker profiling literature. The chapter con-

cludes with current challenges and motivations for this thesis.

Chapter 3: Details the exploration of different kinds of features (MFCC, formants

and harmonics) that uncover the underlying spectral structure of the

speech signal at multiple levels. We look for features that does not

depend on the phoneme level transcriptions. Extensive experiments were

carried out on the standard TIMIT dataset to predict the height and

age of a speaker.

Chapter 4: Discusses about the two different multilingual and multi-accent speech

datasets created for multiple physical parameter estimation. The de-

tailed setup of data collection and the potential applications of the
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datasets are presented. The same approach discussed in chapter 3 is

extended for estimating the multiple physical parameters estimation

(height, shoulder size, waist size, weight and age) in a multilingual set-

ting.

Chapter 5: Introduces an integrated end-to-end DNN architecture for joint estima-

tion of multiple physical parameters using short duration speech data

(1-3s). A novel scheme of initialization which eliminates the requirement

of large amounts of training data is also discussed. This chapter details

the experiments performed on the TIMIT dataset as well as collected

multilingual and multi-accent datasets.

Chapter 6: Provides a general summary of the presented research work.
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Chapter 2

Literature Review

Speaker profiling involves prediction of speaker meta information such as age, accent

and parameters of body build like height, weight, shoulder size from the speech data.

The motivation for height estimation range from biological understanding of the

anatomy and its relationship to the speech properties to development of potential

engineering systems for biometric applications (Nolan (2005), Singh et al. (2016a),

Poorjam et al. (2015)). While the current performance may not be applicable directly

for developing robust solutions, the potential to augment speech based features as

additional information has shown to improve other biometric methodologies based on

finger printing (Jain et al. (2004)).

Researchers have focused on identifying a speaker’s age group (children, youth,

adult, and senior) from speech data rather than estimating the exact age. Most

of the commercial applications (like targeted advertisements, caller-agent pairing in

call-centers, etc) and forensic applications have focused in estimating the age of a

speaker. Estimating the physical parameters could help to narrow down on suspects

of hoax/threat calls, in forensic applications. (Nolan (2005), Singh et al. (2016a),

Schuller et al. (2013)). Estimating the physical parameters (height, age,etc.) have

shown the profound importance in speaker profiling applications and voice forensics

using the speech data.

Researchers explored different features like Mel frequency cepstral coefficients, Lin-

ear prediction cepstral coefficients, fundamental frequency, formants, prosodic fea-

tures, etc., are used for predicting physical parameters like height /age and other

speaker characteristics. The extracted features are given to regression schemes like

support vector regression, ANNs, Random forest, DNN models for predicting the
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physical parameter.

Speaker profiling is a challenging application area (Tanner and Tanner (2004)).

In many cases, there is no control over the amount of available speech data from the

target speaker. Therefore, such systems are required to provide accurate predictions

using a minimum amount of speech data. Thus, development of speaker profiling

methods in short duration audio is important.

The organization of the chapter is as follows, a brief insight about the literature

on the physiological cues present in speech is detailed in Section 2.1. The different

approaches in extracting the physical parameters like height, age, weight and other

characteristics are detailed as prior art in speaker profiling in Section 2.2. The limita-

tions and challenges which motivated to take up this work are briefed in Section 2.3.

Finally the summary of the literature is presented in Section 2.4.

2.1 Physiological cues in speech

Literature shows that the physical dimensions of the speech production system are

affected by the body build of a person. In general, a tall, well-built individual has

lengthy vocal tract and large vocal folds (Layer and Truddgill (1979)). The previous

studies on the predicted height and weight of a person and their correlations with the

acoustic features like fundamental frequency (F0), vocal tract length (VTL) have gen-

erated mixed results (Gonzalez (2003), Van Dommelen and Moxness (1995), Collins

(2000)). The correlation values of 0.53 (male) and 0.57 (female) are reported between

actual and perceived height values (Van Dommelen and Moxness (1995)). The previ-

ous studies have also reported that VTL estimated from the speech has only a weak

correlation with body height (Necioglu et al. (2000), Pisanski et al. (2014)). The only

exception is a study (Fitch and Giedd (1999)) involving people in the age group of

2.8 years to 25 years. This study reported the correlations between actual vocal tract

length and height using magnetic resonance imaging (MRI). It shows that there is a

strong correlation between vocal tract length and height of the speaker for the subjects

considered(0.88 for children, 0.83 for female and 0.86 for male). It is also worthwhile

noting that the sample size in this study for adult subjects (17 to 25 years) was quite

small (six female and 13 male). Fitch and Giedd (1999), study shows that at the age

of puberty, there is a substantial change in the vocal tract morphology. The gender

difference becomes more significant at peri and post-puberty age. The studies also

8



showed that formant frequencies are also closely related to vocal tract morphology,

which helps in giving an acoustic cue to body size (Fitch and Giedd (1999)).

One of the speech cues associated with the body size dimension of the speaker

is formant frequencies. They are weakly related to the body size dimensions such

as height and weight, and chest circumference (Rendall et al. (2005), Evans et al.

(2006), Greisbach (2007)). The voice characteristics of speech such as speech rate,

sound pressure level, fundamental frequency, etc. are affected by the speaker’s age

(Müller (2006), Schötz (2007), Schötz and Müller (2007)). Other speech characteristics

like harmonics Li et al. (2013), jitter (micro variations in fundamental frequency),

shimmer (micro-variations of amplitude in frequency) occurs from age-related glottis

deterioration (Müller and Burkhardt (2007), van Heerden et al. (2010)) of the speaker.

These features contain information about speaker age. F0 will remain stable until the

menopause (around 50 years) for female, when a drop happens, followed by either

rise, fall or no change. Male F0 will drop until around the middle age when a rise

follows until the old age (Schötz and Müller (2007)). With advancements in age, the

following changes are observed in both the genders. Speech rate decreases, sound

pressure levels (SPL) rate increases or remains relatively stable. F0 decreases till the

menopause (around 50years) and then remain the same after the menopause for female

speakers. In the case of males, F0 decreases slightly till 50 years and then increases

(Schötz and Müller (2007)). Jitter and shimmer remained relatively stable for both

male and female speakers. The shimmer is relatively remained stable for the female

speaker from a young age to old age whereas for male speakers, increased slightly till

the age group of 40 then decrease gradually till old age (Schötz and Müller (2007)).

Previous attempts by (Layer and Truddgill (1979), Van Dommelen and Moxness

(1995)) in predicting the weight of a speaker, found a significant correlation to exist

between weight and vocal fold traits like dimensions and mass. F0 is significantly

influenced by the obese and overweight people than normal persons. The obese and

overweight people have lower F0 values than the normal people (Souza and Santos

(2018)). A few studies show that the listeners are able to perceive the weight (correla-

tion of 0.724 for male and 0.627 for female speakers) and body build (Van Dommelen

and Moxness (1995), Lass and Brown (1978), Lass et al. (1982)). By considering the

listener’s judgment, the weight of a speaker was identified, and the obtained correla-

tion of 0.11, 0.14 and 0.09 for male, female and all speakers (Krauss et al. (2002)).

Another study reports the correlation between log VTL and log weight as 0.862, 0.875
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and 0.903 for children, females and males respectively (Fitch and Giedd (1999)). While

a weak correlation exists between the weight of the speaker and the formant structure

(Rendall et al. (2005), González (2004)), the speaking rate was found to be a useful

feature used by human listeners in weight attribute estimation (Van Dommelen and

Moxness (1995)).

2.2 Speaker Profiling Literature

While there is information about accent, height/age in the speech signal, the extraction

of these parameters is challenging, as these parameters are also affected by numerous

other factors such as the content being spoken, emotion and mood of the speaker,

gender of the speaker etc. These factors degrade the performance of the height and

age estimation methods.

2.2.1 Height Estimation

The height of a speaker can be estimated by standard sound specific features such as

formants, F0, sub-glottal resonances (SGR), short term spectral features and accu-

mulated statistical features of the speech features across the sentence as input to the

system.

The researchers had predicted the height of a speaker using the speech based fea-

tures by using the short term features – Mel Frequency Cepstral Coefficients (MFCC)

(Dusan (2005), Pellom and Hansen (1997)), Linear Prediction Coefficients(LPC)(Dusan

(2005)), formant frequencies (Dusan (2005), Williams and Hansen (2013), Hansen

et al. (2015)), sub-glottal resonances (Arsikere et al. (2012, 2013a)) and fundamental

frequency (Dusan (2005)). Short term features like (MFCC, LPC) and formants of

phone specific (vowels like /iy/,/ae/,/ey/,/ih/,/eh/ etc.) have shown a correlation of

around 0.75. Similarly, a correlation of 0.59 has been observed for F0 in estimating

the height (Dusan (2005)). In an alternate approach (Arsikere et al. (2011)), the sub-

glottal resonances are used for height estimation. SGRs are the resonance frequencies

of sub-glottal (below the glottis) input impedance measurements from the top of the

trachea. The SGRs are measured using the bark scale difference of the formants (Ar-

sikere et al. (2013a)). These resonances are shown to be correlated with the height

information, and a simple polynomial relation can then be employed to estimate the
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height. Using the SGRs, the overall mean absolute error (MAE) of 5.4 cm, root mean

square error (RMSE) of 6.8 cm at the sentence level and 5.3 cm, 6.6 cm of MAE and

RMSE respectively at speaker level on TIMIT data. However, this method requires a

dataset where both the speech and glottal resonances were recorded in a parallel set-

ting. Here the authors (Arsikere et al. (2013a)) have assumed that sub-glottal system

acoustic length is proportional to height, observed the correlation between sub-glottal

resonances and height by modeling system.

A few other studies use the vowel regions (/aa/,/ae/,/ao/,/iy/) to predict the

height of a person by formant track regression (Hansen et al. (2015), Williams and

Hansen (2013)). This method obtained the MAE is reduced to 6.36cm for male and

6.8cm for female speakers by considering a subset of speakers and selected sentences

from TIMIT dataset. By fusing the formant track regression with height distribution

based classification, the MAE is 5.37cm and 5.49cm for male and female speakers

respectively. Later line spectral frequencies were added to the feature set resulting in

a lower MAE 4.93cm and 4.76cm for male and female speakers respectively. However,

these approaches require speech transcription and phone level alignment.

Another set of approaches that do not depend on the speech transcriptions use

accumulated statistics of the short term speech features as input. These features are

typically used on a regression scheme (Support Vector Regression (SVR), Artificial

Neural Networks (ANN), etc.) in predicting the height of a person. For example,

various statistics like mean, median, percentiles etc., are extracted from the short-

term spectral features for automatic height estimation (Mporas and Ganchev (2009),

Ganchev et al. (2010a)). Here a set of features are selected from a large pool of sta-

tistical features. A feature selection algorithm precedes the support vector regression

which provides the estimate of the height and obtains MAE of 5.3cm and RMSE of

6.8cm on TIMIT dataset. A similar approach uses i-vectors (dimension reduced ver-

sion of background Gaussian Mixture Model (GMM) statistics) followed by regression

schemes (SVR, ANN, etc.) to estimate the height of a speaker (Poorjam et al. (2015,

2014)).

In another approach, the height is divided into different bins and the height class

of the speaker is estimated (Pellom and Hansen (1997), Arsikere et al. (2013b)). For

example the MFCC features are modelled using a background GMM to estimate the

height class of a speaker (i.e., for a given utterance the height class is estimated). This

approach using the TIMIT dataset reports results with a RMSE of 6.4 cm and 5.7cm
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for male and female speakers respectively (Arsikere et al. (2013b)).

Singh et al. (2016b) reports that the MAE performance of the default predictor

(average value of that parameter over the training set) is often better than the results in

literature such as (Williams and Hansen (2013), Mporas and Ganchev (2009), Ganchev

et al. (2010a)). This study focuses on a bag of words representation instead of GMMs.

The short term spectral features at multiple temporal resolutions are used to form a

bag of words representation. For the TIMIT dataset, the MAE is 5.0 cm and RMSE

is of 6.7 cm for male speakers and for female speakers the MAE is 5.0 cm and 6.1 cm

RMSE. This study uses the short durations of speech data to estimate the height of

a speaker (Singh et al. (2016b)).

2.2.2 Age Estimation

The accumulated statistics of the prosodic features and short term features can be

used to estimate the age of the speaker. A popular approach is to use prosodic

features such as jitter / shimmer, harmonics to noise ratio, fundamental frequency

(Müller (2006), Müller and Burkhardt (2007), van Heerden et al. (2010)). These

feature statistics are used by machine learning models like Artificial Neural Networks

(ANN), Support Vector Machines (SVM), k-Nearest Neighbor (KNN) etc. to classify

the age group of a speaker. By considering both male and female genders the age

class accuracy is 94.61% using an ANN model in proprietary dataset (Müller (2006)).

There have also been attempts to combine information from various levels such as

short-term spectrum, prosodic features etc. These different feature sets are used to

find the statistics of a background GMM. This statistics are used as a feature in SVM

for the age classification task (Li et al. (2013), van Heerden et al. (2010)). With

Interspeech2010 Para linguistic challenge dataset, the unweighted accuracy was 52%

and weighted accuracy was 49.5% for the age classification problem (Li et al. (2013)).

However, these efforts do not estimate the age, but only classify the input speaker as

belonging to one of the age groups (e.g., kid, young adult, adult, etc.).

The statistical approaches adapted by researchers for age-group classification are

Gaussian Mixture Model (GMM) Universal Background Model (UBM) (Müller and

Burkhardt (2007), Metze et al. (2007), Bocklet et al. (2010)), support vector machines

(Spiegl et al. (2009), Bahari et al. (2012), Li et al. (2010)), ANN (Poorjam et al.

(2014)). These are followed by the statistical representation of short term features

like MFCC, LPC, Perceptual Linear Prediction (PLP) coefficients, Temporal Patterns
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(TRAPS) (Bocklet et al. (2010)) etc. In another approach, the age of a speaker

is estimated by using a bag of words representation in place of background GMM

from short-term cepstral features. In this work, short duration of speech data was

considered and obtained MAE of 5.5 years & RMSE of 7.8 years for male, and for

female speakers, MAE is 6.5 years & RMSE is 8.9 years on TIMIT dataset (Singh et al.

(2016b)). Using the UBM based approach, the short-term features are represented as

supervectors / i-vectors and these are used as input features to a classifier (Bahari

et al. (2012), Sadjadi et al. (2016), Shivakumar et al. (2014)). Using NIST SRE08

and SRE10 data, the fusion of different short term features and i-vectors results in

MAE of 4.7 years for male with correlation of 0.89, female MAE is 4.7 years with

correlation of 0.91 (Sadjadi et al. (2016)). A more recent approach using the deep

neural networks on the short utterances of telephone speech using long short term

memory (LSTM) recurrent neural networks (RNN) (Zazo et al. (2018)) MAE and and

correlation of male and female speakers are 8.72y, 0.37,and 7.95y, 0.54 respectively

when 3s of speech is considered. An end to end deep neural network architecture

using the x-vectors has also reported recently. Using only x-vectors on end to end

system the MAE, correlations for 5s chunks of speech data are 5.78y, 0.74 for male,

4.23y, 0.87 for female respectively (Ghahremani et al. (2018)). Table 2.1 shows the

summary of the prior works methods and features for height and age estimation tasks.

2.2.3 Body Build and other Characteristics Estimation

There are very few studies to estimate the other parameters like weight, shoulder size,

chest circumference, shoulder to hip ratio, smoking habits, etc.,

The body size parameters like weight, neck etc. are predicted using F0 and for-

mants of all the vowels. The correlation between F0 and first four formants with weight

is 0.3 for male speakers (Rendall et al. (2005)). Another study (Evans et al. (2006))

shows the correlations of average fundamental frequency with shoulder circumference

(r = −0.29), chest circumference (r = −0.28), shoulder-hip ratio (r = −0.49) and

weight with formants is (r = −0.43).

Using the i-vector frame work weight is estimated and obtained the correlation of

0.56 for male and 0.41 for female speakers. The smoking habits are also predicted by

using the i-vector framework with a log-likelihood ratio cost of 0.81 (Poorjam et al.

(2014)).
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Table 2.1: Summary of prior work in age and height estimation.

Reference Motivation Features Model

Literature summary on Age

Müller

(2006),

Müller and

Burkhardt

(2007), van

Heerden et al.

(2010), Metze

et al. (2007)

Target advertise-

ments

Pitch, jitter, shim-

mer, MFCC, LPC,

etc.

ANN / SVM /

GMM and

fusion

Sadjadi et al.

(2016), Ba-

hari et al.

(2012), Shiv-

akumar et al.

(2014)

Forensics, target ad-

vertisements

i-vectors SVM / SVR

Ghahremani

et al. (2018),

Zazo et al.

(2018)

Forensics, target

advertisements,

commercial applica-

tions

i-vectors/ x-vectors DNN

Li et al.

(2013), Bock-

let et al.

(2010), Li

et al. (2010)

Target advertise-

ments

MFCC, Prosodic

features, Formants,

Pitch, PLPs,

TRAPs

SVM/ GMM

.

Literature summary on Height

Poorjam et al.

(2015)

Forensics, biometric

applications

i-vectors LSSVR/ANN

Literature summary – Continued on next page
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Table 2.1 – Literature summary – Continued from previous page

Reference Motivation Features Model

Mporas and

Ganchev

(2009),

Ganchev

et al. (2010a)

Forensics, biometric

applications

OpenSmile SVR

Hansen et al.

(2015), Pel-

lom and

Hansen

(1997),

Williams

and Hansen

(2013)

Forensic, biometric

applications

LSF, Formants,

MFCC

Linear Re-

gression,

GMM

Arsikere et al.

(2012, 2013a,

2011, 2013b)

Relation between

SGR and height

SGR GMM, poly-

nomial re-

gression

Literature summary on Height and Age

Poorjam et al.

(2014)

Forensics, target ad-

vertisements

i-vectors LSSVR/ANN

Singh et al.

(2016b)

Forensics, target ad-

vertisements

Short term spectral

features

Random For-

est

2.3 Motivations & Challenges

While the past studies generate mixed results about the information present in speech

relating to speaker height, body dimensions and age, engineering applications to ex-

tract these physical traits from speech have shown practically useful results (for ex-

ample Hansen et al. (2015), Sadjadi et al. (2016)). However, in the existing literature,

most of the significant results have focused on the estimation of height and age from

long speech segments of few minutes (Sadjadi et al. (2016)) or by using hand labeled
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phoneme level features Hansen et al. (2015). The prior work on short duration speech

shows that dealing with utterances of 5sec. length is challenging yielding significantly

worse results making the systems inoperable for realistic applications Ghahremani

et al. (2018).

Majority of the speaker profiling works of the past concentrate on estimating only

two physical parameters age and/or height. The best results in height estimation are

obtained by using features that are phoneme specific (Hansen et al. (2015), Dusan

(2005), Williams and Hansen (2013)). This comes with the constraint on the system

to have accurate transcription of the speech utterances with phone level alignment.

The approaches involving SGR features Arsikere et al. (2012, 2013a, 2011, 2013b)

require a separate dataset to learn the relationship between speech formants and

the sub-glottal resonances. Other literature, often report the results on longer speech

utterances using NIST recordings (> 10s) (Poorjam et al. (2015), Sadjadi et al. (2016),

Ghahremani et al. (2018), Bahari et al. (2012), Shivakumar et al. (2014), Zazo et al.

(2018)) and does not address speaker profiling from short utterances. Even for the

i-vector based systems, the i-vectors may not be well estimated for short utterances

(Sadjadi et al. (2016), Bahari et al. (2012), Shivakumar et al. (2014)). Also often

gender specific speaker profiling results are not reported (Dusan (2005), Ganchev

et al. (2010a)) and it was later reported that the gender-wise results of these methods

are inferior to default predictor based on the mean of the training data performance

genderwise (Singh et al. (2016b)). So far the only work that addressed both height

and age estimation from short duration speech is Singh et al. (2016b). However, the

prior work on short duration speech shows that dealing with utterances of < 5sec. of

speech in physical parameter estimation is challenging.

To the best of our knowledge, existing literature does not address the following

and motivated to carry out this work,

1. The best height estimation system (Hansen et al. (2015)) uses the phoneme

level transcription, which is practically tough to obtain in the speaker profiling

applications.

2. The literature addresses height and/or age estimations. Other physical param-

eters like shoulder size and weight of a speaker are not explored.

3. Most of the works in the literature are monolingual (English) in estimating the

physical parameters (mostly, height and age estimations only).
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4. Many systems require at least utterances about 5-10s duration for physical pa-

rameter estimation. However, this may not be practical for forensic like scenar-

ios.

2.4 Summary

As a summary of the literature survey, anatomical studies showed that a tall, well-

built individual has lengthy vocal tract and large vocal folds, also from the scans of

MRI shown the correlation between the VTL and height of a speaker. Fundamental

frequency, formants, jitter, and shimmer affect the age of a speaker. Fundamental

frequency influences the obese and overweight people than average persons.

The literature has shown that most of the studies that are carried out in physi-

cal parameter estimation are using monolingual speech data (English). Features like

MFCC, LPC, Fundamental frequency, formants, SGR, short term spectral features, a

large set of OpenSmile features are used in height estimation. Using the phoneme spe-

cific formant tracking regressions achieves the best height estimation system. Features

based on SGRs need a separate measuring setup for sub-glottal resonances.

In the case of age estimation, most of the works carried out in the literature are

estimating the age group of a person. The accumulated statistics of the prosodic

features and short-term features can be used to estimate the speaker’s age. The

majority of the recent works in age estimation have used the large dataset of telephonic

speech recordings SRE08 and SRE10. The age estimations are carried out using the

utterance level representations using i-vectors and x-vectors. The recent works used

x-vectors for an end to end estimation of the age of a speaker. The LSTM and RNN

based DNN systems are also used to estimate the speaker’s age from speech data.

To the best of our knowledge, there are no works carried out in estimating the

multiple physical parameters in a multi-lingual setting using a common set of fea-

tures. Similarly, there are no prior attempts on a joint prediction of multiple physical

parameters.
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Chapter 3

Speaker Profiling Features

Different features have been explored for speaker profiling in the literature. Mel

frequency cepstral coefficients, Linear prediction cepstral coefficients, fundamental fre-

quency, formants, prosodic features, etc., are used for predicting physical parameters

like height /age and other speaker characteristics. However, there is no consensus for

the best feature, while most of the above features result in comparable performance

in estimating the physical parameters from the speech data.

In this chapter, we aim to come up with a common feature set for all the physical

parameter prediction systems. The proposed features are extracted at the utterance

level. These features do not require phone level transcriptions. We have explored

different kinds of features that uncover the underlying spectral structure of the speech

signal to estimate the physical parameters. The short-term mel spectrogram captures

the gross level spectral characteristics used in predicting height and age of a speaker

(Poorjam et al. (2015), Schuller et al. (2013), van Heerden et al. (2010)). The fun-

damental and formant frequencies contain information about physical parameters of

a speaker (Hansen et al. (2015), Arsikere et al. (2013a)). The narrowband spectral

harmonics capture the fine spectral structure on a coarse temporal scale. The log

harmonics have used in estimating the age and gender of a speaker (Li et al. (2013)).

Both frequency and amplitude of the spectral peaks have used as harmonic features

(to capture jitter and shimmer characteristics of speech).

All the experiments are performed on the TIMIT dataset to estimate physical

parameters using all these different types of features. The duration analysis has per-

formed to determine the minimum amount of speech duration needed to estimate the

physical parameters.
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Estimating the physical parameters from the short duration of the speech data

will help in many applications like targeted advertisements (predicting the age and

height of a person will enable to specific requirements of the customer), forensic appli-

cations (in narrow down the suspects of hoax/threatening calls from a large number

of suspects), speaker recognition, and speaker profiling tasks, etc.

The highlights of this chapter can be summarized as follows:

1. We have explored different features (MFCC, formants, harmonics) from speech

data that do not require the phoneme level transcriptions to predict the physical

parameters of a speaker.

2. We explored the multi-resolution features (short term spectrum –MFCC fea-

tures, wideband spectrum – formants, narrow band spectrum – harmonic fea-

tures) for physical parameter estimation system.

3. We proposed a common set of features (MFCC, formants and harmonics) for

estimating the different physical traits of a speaker. The estimation errors from

these different feature streams are complementary, which allows the combination

of estimates from these feature streams to improve the results further.

4. The duration analysis of the proposed scheme shows that the state of the art

results can be achieved using only around 1− 2 seconds of speech data.

5. To the best of our knowledge, this is the first attempt to use a common set of

features for estimating the different physical traits of a speaker from a short

duration of the speech.

The rest of the chapter is organized as follows. Section 3.1 details about the dataset

used in this chapter. Section 3.2 describe the block diagram of physical parameter

estimation system. Section 3.3 to Section 3.5 provides the details about the feature

extraction and also the representation these features at sentence level. The prediction

model and evaluation metrics are detailed in Section 3.6 and Section 3.7 respectively.

Section 3.8 details about the experiments conducted on the TIMIT dataset. The key

findings and the summary of the chapter are briefed in Section 3.9.

20



3.1 Dataset

The TIMIT dataset has 630 speakers (Garofolo et al. (1993)) and each speaker has

contributed ten recordings. Each utterance is considered as a separate input data

sample. TIMIT dataset has the details of the height and age of a speaker. The height

values in the dataset range from 145 cm to 204 cm and speakers’ ages range from 21

years to 76 years. Each input utterance has an average of 1 − 3 seconds of speech

data. The height and age details are considered for estimations in the experiments

conducted in this chapter. The statistics details of the height and age of the dataset

are given in Table 3.1. The statistics of height are shown in Figure 3.1 and age are

shown in Figure 3.2.

Table 3.1: Statistics of each parameter in the TIMIT dataset (Garofolo et al. (1993))

Physical Minimum Maximum Mean Standard
Characteristic Deviation

Male Speakers

Height (cm) 157.48 203.20 179.73 7.09
Age (y) 21 76 30.52 7.57

Female Speakers

Height (cm) 144.78 182.88 165.80 6.71
Age (y) 21 67 30.03 8.70

Male and Female Speakers

Height (cm) 144.78 203.20 175.50 9.47
Age (y) 21 76 30.37 7.98

3.2 System Overview

The Physical Parameter Estimation System flow is shown in the block diagram in

Figure.3.3. In the pre-process stage, we remove the silence from the speech data

using Voice Activity Detection (VAD) algorithm (Tan and Lindberg (2010)). We

analyze the speech signal at different resolutions in the spectral domain and explore

the possibility of predicting the speaker characteristics from the same set of features.

21



Min Max Mean
0

20

40

60

80

100

120

140

160

180

200

H
e
ig

h
t 
(c

m
)

Statistics of TIMIT dataset −− Height

 

 

Female

Male

Figure 3.1: Statistics of TIMIT dataset – Height

Min Max Mean
0

10

20

30

40

50

60

70

80

A
g
e
 (

Y
)

Statistics of TIMIT dataset −− Age

 

 

Female

Male

Figure 3.2: Statistics of TIMIT dataset – Age

From the literature, it is noted that formants, fundamental frequency, harmonics,

and short term cepstral features contain information pertaining to physical parameter

estimation. We extract a different set of features which uncover the underlying spectral

structure of the from the speech signal. The short-term mel spectral features capture

the gross level spectral characteristics. The formant frequencies represent the resonant

frequencies in the speech signal. The narrowband spectral harmonics captures the

fine spectral structures on a coarse temporal scale. Utterance level statistics of these
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features is represented as a single vector for every speech file separately. These features

do not require phone level transcriptions. Finally, these are fed as input to the Support

Vector Regression (SVR) to predict the speaker’s desired physical parameters.

Training
data

Testing
data
Testing

Feature

Extraction

Extraction

Feature

Feature

Feature

Representation

Representation

SVR
Traning

SVR
Prediction

Estimated
Physical
ParameterProcessing

Pre-
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Pre-

Figure 3.3: Block diagram of physical parameter estimation system

3.3 Spectral Features Extraction

We have explored different short term spectral features Mel Frequency Cepstral Co-

efficients and Mel Filter Bank features. In order to normalize the linguistic effect, the

extracted frame level features are represented as super-vectors which are similar to

i − vectors in speaker verification and speaker identification task (Reynolds (2002),

Campbell et al. (2006)).

3.3.1 Cepstral Features

The Mel Frequency Cepstral Coefficients (MFCC) features are the most commonly

representations used in speaker recognition. The MFCC features are have some in-

formation relating to the vocal tract length (Müller and Burkhardt (2007), Dusan

(2005)). In the past, the MFCC features and their statistics have been employed fol-

lowed by the regression scheme for height and age estimation (Li et al. (2013), Mporas

and Ganchev (2009), Ganchev et al. (2010a), Poorjam et al. (2014)).

In our work, we extract mel frequency cepstral coefficients and mel filter bank

features from the speech signal. 20 mel frequency cepstral coefficients (using a window

length of 25 ms with a shift of 10 ms) are extracted along with delta and double delta

features (yielding 60 MFCC features). We also use the logarithm of the mel spectral

energy in short-term windows (25ms with a shift of 10ms) of the speech signal. The
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mel filter bank features are the short energy features computed prior to the Discrete

Cosine Transform (DCT) in the MFCC feature computation. We extract 40 mel

filter bank features. The short spectral features contain the phonetic information as

well as the speaker information. However, these features are modified significantly

by speech content in terms of phoneme variability. We adopt an approach similar

to supervector (Reynolds (2002)), which can summarize the gross spectral changes

in order to normalize the effect of phonetic information in the short-term spectral

representation.

3.3.2 Sentence Level Representation

To find the sentence level representations, we use the statistics of the background

model components. In order to form a background UBM model, a Gaussian Mixture

Model (GMM) is estimated from short-term spectral features. Let xi and yi be input

MFCC feature (i.e, xi ∈ R60) and mel-filter bank feature (i.e, yi ∈ R40) corresponding

to frame i respectively. Let X = {x1,x2, ...,xT} represents the input MFCC feature

vectors and Y = {y1,y2, ...,yT} represent mel filter bank features for an input ut-

terance with T frames. The diagonal covariance GMM -UBM is trained on MFCC

features. The GMM probability density is :

fUBM(x) =
M∑
j=1

wjN(x;µj ,Cj) (3.1)

where x, denotes input feature vector (MFCC) and µj,Cj represent the mean and the

diagonal covariance matrix of the jth GMM component with weight wj respectively.

The frame level first order statistics for a given frame i and each GMM component j

is computed as:

f ji = yip(j|xi), (3.2)

where the a-posteriori probabilities of a GMM component j is given by:

p(j|xi) =
wjN(xi,µj,Cj)∑M
j=1wjN(xi,µj,Cj)

. (3.3)

We then concatenate all f ji for all GMM components to obtain a super vector Fi =

[f 1
i , f

2
i , . . . , f

j
i , . . . , f

M
i ] which represents the utterance. The first order statistics for a
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given utterance is:

F =
1

T

T∑
i=1

Fi (3.4)

Intuitively, if each GMM component j corresponds to a different sound class, the

average of f ij over the frames i would represent the short-term spectral average of

frames that belong to that sound class. Therefore the size of the first order statistics

per utterance is j × length of feature vector ( here j = 256 components and length

of mel filter bank feature is 40, i.e, 256× 40 = 10240 ). These statistical features are

fed to support vector regression to estimate the physical parameter.

3.4 Fundamental Frequency and Formant Features

The fundamental and formant frequencies represent the fundamental and resonant fre-

quencies in the speech signal. These features have shown to be influenced by speaker’s

height and age (Krauss et al. (2002), Li et al. (2013)). We compute these features as

follows.

We compute the fundamental frequency from a wideband analysis of speech signal

(temporal window size of 20ms with a shift of 10ms). The estimation is performed

with the PEFAC algorithm (Gonzalez and Brookes (2014)) which combines noise

rejection and normalization while ensuring temporal continuity in the estimates us-

ing dynamic programming. For physical parameter estimation, we use the statistics

(mean, standard deviation and percentiles) of the time varying fundamental frequency

computed over the given speech recording.

The formant frequencies are estimated by picking the peaks of an auto regressive

(AR) model of the power spectrum. The peaks of the wide-band (window length of

20ms with a shift of 10ms) spectrum can approximately represent the formant struc-

ture. We use an AR model of order 18 to extract peak locations results in nine peak

locations. The first four peak locations are used to capture formant frequencies (de-

noted as F1, F2, F3 and F4). The wide-band spectrogram of speech for a vowel regions

and the corresponding formant frequency trajectories are depicted in Figure.3.4.

The first four formant frequencies (F1, F2, F3, F4) are extracted from the speech sig-

nal. We analyze the correlation between the fundamental frequency (F0) and the other

formant frequencies with the height values. The studies have shown F0 is inversely

proportional to height of a speaker (indicating that the speakers with more height
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Figure 3.4: Spectrogram for vowel /AE/ and corresponding formants
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Figure 3.5: Scatter plot of fundamental and formant frequency estimates with the
speaker height for TIMIT training set. Value in the brackets shows the correlation (r)
between formants and corresponding physical parameter (height) for male and female
speakers. The best fit line is also shown for both male and female speakers separately.

26



values have low fundamental frequency and vice-versa for speakers with lesser height

values) (Van Dommelen and Moxness (1995), Evans et al. (2006), Greisbach (2007)).

The fundamental frequency (F0), has a weak correlation with height (r = −0.12)

for female speakers. Similarly, for male speakers F2 showed a weak correlation with

height value (r = −0.17). The correlations of male height vs F0 (r = −0.06) and

female height vs F2 (r = −0.01) are relatively insignificant. Literature has reported

weak correlations between body build of the speaker and different functions of for-

mant frequencies such as dispersion (Fitch (1997)), average formant position (Puts

et al. (2012)), formant spacing (Reby and McComb (2003)), difference between F0

and formants (Rendall et al. (2005)). For example, we find the correlations between

difference of F0 and formants (F1−F0, F2−F0, F3−F0, F4−F0 ), Figure.3.5 depicts

some of the results for the training portion of TIMIT dataset. It is observed that,

F2 − F0 and F4 − F0 have weak positive correlation for male speakers (r = 0.18 and

r = 0.13 respectively) and weak correlations for female speakers with height values

(Rendall et al. (2005)).

3.4.1 Sentence Level Representation

Speaker identification systems have used mean value of pitch, range of pitch etc.,

as utterance level features (Peskin et al. (2003)). In this work, we use a similar

approach where each sentence is represented using statistics of the log fundamental

frequency and log formant frequencies across the utterance. We use percentiles of log-

peak locations in the short-term spectrum of speech (computed over time). The peak

locations in the spectrum include the fundamental frequency and formant frequencies.

In addition to the percentiles, the statistics of peak locations (in log-frequency scale)

like the mean and standard deviation are used to estimate the physical parameters

like height/age. These statistics can implicitly capture the average value, range and

variance of fundamental frequency and formants.

3.5 Harmonic Features

The long-term features like jitter (micro variations in the fundamental frequency),

shimmer (micro variations in the amplitude) carry the cues related to speaker char-

acteristics (van Heerden et al. (2010)). In addition to the conventional mel frequency

spectrum and formants, we also experimented with the use of harmonic structure of
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the speech signal. The harmonics are formed as a result of vocal fold vibration dur-

ing voiced speech. We investigated in both amplitude and frequency locations of the

long-term features in order to estimate the physical parameters from the speech data.

It was empirically observed that the height influences the harmonics. Figure.3.6

shows the narrowband spectrogram portion of the same TIMIT (sa2 – Don’t ask me

to carry an oily rag like that) utterance spoken by tall (height value of 175 cm) and

short (height value of 152 cm) female speakers (left panel). We also highlight the

magnitude response of a single speech frame on the right panel. We can see that for

the same vowel /oy/ (from the word oily), the taller person has smaller harmonics

and vice-versa. The linguistic content for the chosen speech frame has been verified

to be the same. The distance between two successive harmonics is also listed. As

seen here, the harmonics are more closer for the taller speaker. It was empirically
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Figure 3.6: Illustration of relation between harmonic frequencies and speaker height.
These plots are computed for same underlying sa2 speech utterance for two female
speakers with height of 152 cm (top panel) and 175 cm (bottom panel). The left panel
is the narrowband spectrogram and the right panel is the magnitude spectrum of the
frame highlighted in the left. The distance between the harmonic frequency estimates
is listed in the right panel. The taller person has smaller harmonics as compared to a
short person.

observed that the height influences the harmonics. The taller person has smaller

harmonics and vice-versa. It is also noted that the harmonics appear along with a

jitter (not exactly the multiple of a fundamental frequency). While this would mean

that the peak locations are not truly harmonic, we continue to refer to the peaks in

the narrowband spectrum as harmonic frequencies. It has been shown that variations

in frequency (jitter) and amplitude (shimmer) contain useful information about age
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Figure 3.7: Spectrogram for vowel /AE/ and corresponding trajectories of first 10
peaks locations in a narrow-band spectrogram estimated using an AR model.

as well (Müller and Burkhardt (2007)).

The harmonic frequencies are estimated as the peak locations of a higher order AR

model. The logarithm of the frequency and amplitude of spectral peaks are computed

at each frame. We use the similar approach which we used in Section 3.4.1 to represent

the entire utterance as a sentence level feature. Each sentence is represented by

the percentiles of log frequency and log amplitude values of spectral peaks over the

utterance. The percentiles of harmonic frequencies represents the mean range and

jitter in the harmonics. Similarly, the statistics on amplitude can contain shimmer in

addition to average and range values. The collection of these statistics is referred to

as “harmonic features” in this work. Figure.3.7 shows a short term spectrogram of

the speech along with estimated harmonics.

The scatter plot for first harmonic frequency percentiles (25 and 50) on TIMIT

training data are shown in Figure.3.8 for both male and female speakers. It is observed

that there is a weak negative correlation in case of height and age for percentiles 25

and 50 for both male and female speakers. We also observe that the log magnitude

statistics (percentiles) of the first two harmonic frequencies show a weak negative

correlation with both age and height for both male and female speakers. These statis-

tical harmonic features are used as input for support vector regression algorithm. The
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Figure 3.8: Scatter plot of Harmonic percentiles (25 and 50) vs physical parameter
(height and age) for male and female speakers of TIMIT training data. Correlation (r)
value between harmonic percentile and physical parameters (height and Age) is given
in brackets for male and female speakers. The best fit line is also shown for both male
and female speakers separately.

frequency location features capture jitter features and amplitude features captures

shimmer features.

3.6 Support Vector Regression

Different linear and non-linear regression models have been experimented with in the

context of physical parameter prediction (Dusan (2005), Ganchev et al. (2010b), Ar-

sikere et al. (2014)). In this work, support vector regression (Smola and Schölkopf

(2004)) is used as the model for predicting the target of each physical parameter

values given the statistically represented features explained previous sections. Let

us denote the set of pair of input features along with target values as {(y1,t1),

(y2,t2), . . . (ym,tm)}. The function f(y) = wTy + b corresponds to the linear SVR to
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learn and performs the following optimization:

min
1

2
wTw subject to

|wTyi + b− ti| < ε
(3.5)

where, b is the bias term and the “fit” function is controlled by the parameter ε. The

maximum deviation from the target values is ε. The optimization of the SVR objective

function can be solely carried out in terms of the dot product of the data points among

themselves. The SVR optimization function aims to reduce the deviation from the

target values by the parameter ε.

3.7 Evaluation Metrics

The common metric used by researchers in measuring the error are Root Mean Square

Error, Mean Absolute Error and Correlation. We use the same metric to measure the

error in all our experiments.

Root Mean Square Error (RMSE):

RMSE is the most commonly measuring metric used to measure the difference

between predicted values by a model and actual targets values observed. This is given

by the following equation:

RMSE =

√∑N
i=1(xtar,i − xpred,i)2

N
(3.6)

where xtar are the target values and xpred are the predicted values of each utterance i.

Mean Absolute Error (MAE):

MAE measures how far the predicted values are away from the observed target

values. This is given by the following equation:

MAE =
1

N

N∑
i=1

|xtar,i − xpred,i| (3.7)

where xtar are the target values and xpred are the predicted values of each utterance i.
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3.8 Experiments and Results

All the experiments in this chapter are performed on the TIMIT dataset. The standard

Train and Test splits of the dataset are used for the experiments performed to estimate

the height and age of a speaker. We have 462 speakers ( 326 male and 136 female

speakers) for the training set and 168 speakers for the test set (56 female and 112

male speakers). The training and validation splits have 4610 utterances, including

3260 utterances from male speakers and 1360 utterances from female speakers. The

test split has 1120 utterances from male speakers and 560 utterances from the female

speakers. We experimented with a different feature set like Mel filter bank first-order

statistics, formants, and harmonics to predict the physical parameters. Finally, we

combine the individual feature predictions to get a better estimate.

3.8.1 Target Mean Predictor

Target Mean Predictor (TMP) is the prediction of mean of test samples by blindly

predicting the mean of training data without looking at the features. It gives the best

estimate in the absence of speech information. Here for our case we took the mean of

each physical trait of training speech samples without looking into speech information

and predicted the error of each sample of the test speech samples using this mean.

The TMP values of height and age are tabulated in Table 3.2.

Table 3.2: The MAE and RMSE values of target mean predictor on TIMIT dataset.

Male Female All

MAE RMSE MAE RMSE MAE RMSE

Height 5.3 7.0 5.2 6.5 7.4 9.0
Age 5.7 8.1 6.4 9.2 5.9 8.4

3.8.2 Individual Feature Results

In order to understand the effect of each feature separately, we evaluated the individual

performance of the features. All hyper parameters of the system (e.g., kernel choice

for SVR) and the order of the models were fixed based on the validation dataset

performance.
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We first perform a speech activity detection (Tan and Lindberg (2010)) and then

extract the speech features. In order to extract the first order statistics (Fstats), we

first train a 256 component GMM with 60 dimension MFCC features (xi). The Fstats

are computed with 40 dimensional mel filter bank features (yi) using the Eq. 3.4. This

gives 40 ∗ 256 = 10240 dimensional vector. The Fstats are fed to a support vector

regression model to predict the physical parameters. A linear kernel is used for the

support vector regression.

Fundamental frequency and formant features are extracted by picking the resonant

frequencies of an all-pole model. A 18th order (fixed based on validation set) model is

used with a 20ms length window with 10ms shift. The 5th, 25th, 50th, 75th and 95th

percentile values across the entire utterance are employed as features. A linear kernel

is used in the SVR.

A similar approach was followed in case of harmonic features. Thirty harmonics

were extracted from an 80 order all-pole model, computed over a longer time window

(length 60ms and shift 10ms). The same set of percentiles are computed and used

as input to a SVR with a third degree polynomial kernel (the order, window size

and kernel are fixed based on the validation dataset). We separately evaluate the

performance of harmonic frequencies, amplitudes as well as both together.

For comparison purposes, we also compute the Training data Mean Predictor

(TMP). This just corresponds to providing the sample mean of the training data

targets (physical parameters) as the estimate for any input, i.e., without using any

evidence from the test speech. Figure.3.9 illustrates the performance of each feature as

well as the TMP. In addition to the Fstats, and formants features, the figure also illus-

trates the effect of estimated harmonic frequency locations (F-loc) and corresponding

amplitudes (Amp) as well as their combination (‘harmonic’ features). Both formants

and Fstats have shown minimal improvement over TMP for both the genders in esti-

mating the height of a speaker. The harmonic features show improvements only for

female height and age estimation. In both these cases, the combination of harmonic

features performs better than using either frequency locations or amplitudes. The

performance improvement over TMP MAE is of 2.71% when Fstats are used for pre-

dicting height of male speakers. Similarly, for female speakers the improvement in

MAE is of 4.01%, 3.23% , and 3.13% when formants, Fstats and harmonics are used

respectively. For in predicting the age, all the features have shown a better perfor-

mance when compared with TMP MAE for both the genders. For the male speakers,
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Figure 3.9: Mean absolute error comparison with target mean predictor (TMP) and
prediction of different systems using first order statistics (Fstats), formants (Fmnts),
harmonic frequency locations (F-loc), amplitude (Amp) and harmonic features (har-
monic frequency locations & amplitude features together: harm) for height (left side)
and age (right side) estimation using the TIMIT dataset.

the improvement in MAE is of 6.8%, 3.82% and 7.7% for formants, harmonics and Fs-

tats respectively. Similarly, for female speakers the improvement in MAE is of 7.71%

10.85% and 7.38% when formants, harmonics and Fstats respectively.

In short, for both the male and female speakers, all the features have shown better

performance compared with TMP MAE in age estimation, and Fstats and formants

showed better MAE in height estimation. Harmonics shows better MAE in female

speakers’ height estimation but not in the male speaker’s height estimation.

3.8.3 Feature Combination Results

Since the features contain diverse information about the speech data, we investigate

the level of system complementarity in terms of generating uncorrelated errors. In

our analysis, we found that the different feature sets produce different height and age

estimation errors for a large number of validation speakers. With this knowledge, we

attempt a simple averaging of the individual regression outputs to improve the final

height and age estimates. We have made three different sets of feature combinations
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Table 3.3: Comparison of the proposed feature combinations – Comb -1 (Fstats +
formant + frequency locations), Comb -2 (Fstats + formant + amplitude), Comb -3
(Fstats + formant + harmonic features (amplitude + frequency locations)) with state-
of-the-art results on TIMIT dataset.

Height (cm) Estimation

Male Female All

MAE RMSE MAE RMSE MAE RMSE

TMP 5.3 7.0 5.2 6.5 7.4 9.0
Ganchev et al. (2010a) - - - - 5.3 6.8
Arsikere et al. (2013a) 5.6 6.9 5.0 6.4 5.4 6.8

Singh et al. (2016b) 5.0 6.7 5.0 6.1 - -
Comb-1 5.2 6.8 5.0 6.3 5.2 6.8
Comb-2 5.2 6.9 4.8 6.2 5.2 6.7
Comb-3 5.2 6.8 4.8 6.1 5.2 6.7

Age(y) Estimation

Male Female All

MAE RMSE MAE RMSE MAE RMSE
TMP 5.7 8.1 6.4 9.2 5.9 8.4

Singh et al. (2016b) 5.5 7.8 6.5 8.9 - -
Comb-1 5.3 8.2 5.8 9.2 5.5 8.7
Comb-2 5.3 8.2 5.6 8.8 5.4 8.6
Comb-3 5.2 8.1 5.6 8.7 5.4 8.5

of Fstats and formant features with either harmonic frequency location (Comb -1) or

amplitude (Comb -2) or harmonic features (both frequency and amplitude features:

Comb -3). Table 3.3 reports the results along with the recent baseline(Singh et al.

(2016b)).

The relative improvement of height prediction MAE for Comb-3 w.r.t TMP is

1.89% and 8.33% for male and female speakers respectively. Similarly, the relative

improvement of age prediction MAE is 8.77%, and 14.29% for male and female speak-

ers respectively. In case of RMSE, the relative improvement in height prediction of

Comb-3 w.r.t to TMP is 2.94% and 6.15% for male and female speakers respectively.

Similarly, for age prediction there is an 5.75% relative improvement for female speakers

and no improvement for the male speakers.
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We performed a paired t-test comparing the absolute errors from proposed system

(Comb -3) and the default predictor (TMP) in a gender-wise manner. For both the

tasks of height and age estimation, the proposed system is significantly different from

the TMP (p < 0.05) across both the gender cases.

140 150 160 170 180 190

#
 S

p
k
rs

0

10

20

30

40

50
Female Train Height Speakers

150 160 170 180 190
#
 S

p
k
rs

0

2

4

6

8

10
Female Test Height Speakers

Height (cm)

150 160 170 180 190 200

#
 S

p
k
rs

0

20

40

60

80

100
Male Train Height Speakers

Height (cm)

160 170 180 190 200 210

#
 S

p
k
rs

0

10

20

30

40

50
Male Test Height Speakers

Figure 3.10: Speaker Height – Training data (Left) and Test data (Right)

In case of height estimation, we also compare with three other baselines. The error

metrics MAE and RMSE of the proposed systems as well as the baseline results are

presented in Table 3.3. In case of female speakers both MAE and RMSE performances

of Comb -3 are better than the baseline for height estimation. In order to gain further

insight into the proposed height estimation system, we analyze the performance of

height and age estimation of the data in different subgroups of Comb -3.

Table 3.4 lists various subgroups along with the height estimation performance and

number of training speakers in each subgroup. It can be seen that large errors occur

for speakers in the sub groups which are at the two extreme height values (row 3 & 6

for male speakers and 2 & 5 for female speakers) in Table 3.4. This may be due to the

small amount of training data available for these groups. The gender specific histogram

of speaker heights for both training and testing datasets are depicted in Figure.3.10.

We also observe that there is a mismatch in train and test height histograms. Such

mismatches could have also resulted large error in extreme values of height.

In case of age estimation, the only work that has reported results on short segments
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Figure 3.11: Speaker Age – Training data (Left) and Test data (Right)

Table 3.4: Height (h) estimation errors (MAE and RMSE in centimeters(cm)) across
different height subgroups using TIMIT test data

Male Female

Sl. # Train # Train
No. Range Spkrs MAE RMSE Spkrs MAE RMSE

1. 145 ≤ h < 150 0 - - 2 - -
2. 150 ≤ h < 160 2 - - 20 9.3 9.6
3. 160 ≤ h < 170 15 11.9 12.2 75 2.5 3.0
4. 170 ≤ h < 180 137 4.7 5.7 35 6.4 7.1
5. 180 ≤ h < 190 140 2.9 3.7 3 14.9 14.9
6. 190 ≤ h < 203 32 12.5 13.1 0 - -

in TIMIT is by Singh et al. (2016b). Comparison of this baseline with our results and

TMP is presented in Table 3.3. Note that in case of female speakers the baseline had

a higher MAE as compared to TMP. The proposed systems outperforms the baseline

results and TMP in terms of MAE for male and female speakers. However, RMSE

value is at par with TMP in case of Comb -3 male speakers and better than state of the

art in female speakers in all the feature combinations. We analyzed the performance

of Comb -3 for age estimation system by dividing the data into different subgroups as
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Table 3.5: Age (a) estimation error (MAE and RMSE in years) across different age
subgroups using TIMIT test data

Male Female

Sl. # Train # Train
No. Range Spkrs MAE RMSE Spkrs MAE RMSE

1. 20 ≤ a < 25 67 4.6 4.8 47 2.7 3.0
2. 25 ≤ a < 30 132 1.8 2.1 46 2.0 2.4
3. 30 ≤ a < 35 66 2.9 3.4 14 4.7 5.2
4. 35 ≤ a < 40 28 7.8 8.1 9 8.8 8.9
5. 40 ≤ a < 45 13 13.0 13.1 9 13.0 13.1
6. 45 ≤ a < 55 16 22.2 22.4 7 24.9 25.0
7. 55 ≤ a < 65 3 35.5 35.5 3 21.9 21.9
8. 65 ≤ a < 76 1 - - 0 35.0 35.1

shown in Table 3.5. The RMSE is high over the TMP is due the presence of last three

age groups (from 45 years to 75 years) in both the genders (refer Table 3.5). All these

age groups have very few training speakers. Therefore, the RMSE error in these three

groups are large (greater than 22y) and is dominates the overall RMSE performance.

The histogram of gender specific speaker age in both training and testing datasets are

depicted in Figure.3.11. It can be seen that there are very few number of speakers

above 45 years in training.

3.8.4 Duration Analysis

In order to analyse the minimum amount of speech required for the task, we try to

evaluate the performance of the system at different utterance durations. We initially

use the standard TIMIT database and evaluated the system for different time lengths

of input speech ranging from 0.25s to full length. The mean absolute errors for these

different lengths of speech were compared with TMP with height and age of a speaker

and shown in Figure.3.12.

We performed a genderwise paired t-test comparing the absolute errors from pro-

posed system (Comb -3) and the default predictor (TMP) for different durations of

speech data. We find that (with criterion of p < 0.05) the proposed approach results

in significant improvements in age estimation for all durations considered (starting
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from 0.5sec.) for both the genders and the relative improvement in MAE is 3.15% for

males and 15.84% for female speakers. In the case of height estimation, the proposed

approach results in significant improvements starting from 1.5 sec. duration of audio

segments and the relative improvement in MAE for male speakers is 2.87% and for

female speakers is 5.58%. Also, as the duration of the available speech increases, the

MAE reduces as expected. Subsequently, when sufficient amount of speech data is

available, the mean absolute error get saturated.

It can be noted that even with roughly 1s of speech data, when both male and

females speakers are considered, the model is able to obtain prediction error MAE

of 5.27cm at par with Ganchev et al. (2010a) in speaker height prediction. As the

available speech duration increases, this prediction error saturates around 5.2 cm when

both genders are considered. Similarly for age prediction when both male and female

speakers are considered together, the minimum duration of speech required to get the

state-of-the-art prediction error is 0.5s (i.e, 5.5 years MAE ). Even with around 3s

speech available, the prediction error is marginally better (5.41 years). Gender wise

results on duration analysis are also shown in Figure.3.12. About, 2s of speech data

is required to get a performance comparable to the full length data.
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Figure 3.12: MAE vs duration of utterance, for physical parameters’ (Height, Age)
estimation from TIMIT database. The horizontal dashed line represent target mean
predictor (TMP) benchmark.
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3.9 Summary

In this chapter we have explored three different sets of multi-resolution features –

Mel spectrum first-order statistics, statistics of formants, and harmonics for speaker

profiling task.

All the features showed a performance improvement over the training mean predic-

tor in age estimation. Whereas, formants and Fstats showed an improvement in the

height of both male and female speakers over TMP. In the case of height estimation,

male speakers showed an improvement of 2.71% in MAE, and for female speakers, the

improvement in MAE is of 4.01%, 3.23%, and 3.13% when formants, Fstats, harmon-

ics have used respectively. In the case of age estimation, the improvement in MAE

w.rt TMP for male speakers is 6.8%, 3.82%, and 7.7% for formants, harmonics, and

Fstats, respectively. Similarly, for female speakers, the improvement in MAE is 7.77%,

10.85%, and 7.38% when formants, harmonics, and Fstats, respectively.

Furthermore, these individual features are shown to be complementary, and a

simple averaging improves the performance by achieving an MAE of 5.2 cm for male

and all (male and female) and 4.8 cm for female speakers in height estimation. For

age estimation, the MAE is 5.2 years, 5.6 years, and 5.4 years for males, females, and

all speakers using the TIMIT dataset.

The duration analysis reveals that the prediction error of each physical parameter

of a speaker is less than the training data mean predictor with as little speech as

0.5s. Also, with around 1 − 2 seconds of data, the MAE obtained is as good as the

state-of-the-art results, which were achieved using the full duration of the audio signal

(> 10s).
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Chapter 4

Estimation of Multiple Physical

Parameters

Existing speech corpora have limited information about speaker metadata. Most of

them have either physical characteristics or accent information, but often not about

both. For example, the most common dataset TIMIT (Garofolo et al. (1993)) has

only age, height, and gender information about the speakers. There is no information

about other physical parameters or about the accent. The popular Speaker Recogni-

tion Evaluation (SRE) challenge datasets (NIST-SRE, Martin and Greenberg (2009,

2010)) have the information about smoking habits and native country. They don’t

have linguistic information. Other datasets such as 2010 Interspeech Paralinguis-

tic Challenge(ComParE) dataset (Schuller et al. (2013)), Fisher English Corpus (Cieri

et al. (2004)), SpeechDat II dataset (GermanSpeechDat (II)) provides only the gender

and age group information of the speaker. The CMU Kids(Maxine Eskenazi) dataset

only contains the grade information of the kids. None of these datasets provide any

details about physical parameters beyond height and age. The only exception to this

is the Copycat corpus (Lehman and Singh (2016)) that has details of height, weight,

and age, but the speakers are limited to children. Similarly, there are also datasets

that provide the accent information of the speakers, such as Accents of British Isles

(ABI-1) corpus (DArcy et al. (2004)) and the CSLU-Foreign Accent English (FAE)

(Lander) datasets. There is a need for a dataset with richer metadata in this context,

including the linguistic content for speaker profiling systems.

Another limitation of current datasets is that most of the available datasets are

monolingual (English). On the other hand, multilingual data available (for example,
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the Babel dataset (Harper (2013))) do not have detailed speaker profiling information.

We describe our efforts in collecting multilingual, multi-accent datasets from dif-

ferent Indian languages across different states of India. In this regard, to perform the

speaker profiling task in a multilingual environment, we have collected two different

datasets. They are called;

1. Audio Forensic Dataset (AFDS).

2. NITK-IISc Multilingual Multi-accent Speaker Profiling (NISP) dataset.

The first dataset (AFDS) is collected for a pilot study in speaker profiling. It contains

207 speakers across 12 different native Indian languages1 along with English. The

average number of speakers per native language is 17 (maximum number of speakers

is Hindi(68), and minimum is for Urdu(1)). The number of utterances per speaker are

four for each recorded language.

Later, a bigger dataset NISP dataset with 345 speakers is collected from five In-

dian languages2 as well as English. NISP dataset has around 60 speakers per native

language (Hindi has 103 speakers). The number of utterances per speaker are around

40-50 for each recorded language.

The highlights of the chapter are summarized as follows

1. Two different multi-lingual and multi accent datasets in Indian languages have

collected.

2. Extended the physical parameter estimation system to other physical parameters

like shoulder size, waist size, and weight along with age, and height of a speaker

from the speech data.

3. Single set of multi-resolution features are used for estimating the all the physical

parameters.

4. Estimated the physical parameter estimation system accuracy on multi-lingual

setting for both the collected datasets.

5. Performed the duration analysis on the multi-lingual setting of physical param-

eter estimation system to know the least amount of speech data required to

estimate the physical parameter of the speaker.

1Bengali, Gujarati, Hindi, Kannada, Malayalam, Manipuri, Marathi, Oriya, Tamil, Telugu, Urdu
2Hindi, Kannada, Malayalam, Tamil and Telugu
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6. Performed the rigours analysis on the effect of language in estimating the multi-

ple physical parameters when the model is trained with multiple languages and

multiple accents.

The rest of the chapter is organized as follows. Section 4.1 details about the design

of the datasets, metadata collection, recording environments, and protocol of speech

data. The statistics of the collected datasets AFDS and NISP datasets are described in

Section 4.2 and Section 4.3 respectively. Section 4.4 explains the potential applications

of the collected datasets. Section 4.5 and Section 4.6 details about the experiments

performed on the AFDS and NISP datasets. They describe the experiments conducted

in the datasets and results. Different experiments are performed to assess the effect

of duration and multilingual setting in speaker profiling. Finally, a summary of the

chapter is briefed in Section 4.7.

4.1 Design of Datasets
We have collected two multilingual datasets for the physical parameters estimation

task to perform the speaker profiling task in a multilingual environment from the short

duration of speech data.

4.1.1 Metadata

The speakers who participated in contributing speech data for these databases con-

sisted of students, academic staff, and faculty members of different educational insti-

tutions across southern India. Informed consent is obtained from the speakers to use

the data for academic and research activities. The linguistic, regional, and physical

traits are collected from each speaker, along with the speech data. The metadata

information collected in these datasets is the following.

1. Linguistic Information

(a) Native language (L1) of the speaker and whether the speaker can read

text from L1.
(b) Medium of Instruction. ( noted if the speaker would have studied in local

state language medium other than English medium).
(c) Second language (L2) - Most commonly spoken language other than L1.
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2. Regional Information

(a) The geographic location of the native place (or the place where the sub-

ject has lived dominantly).

(b) Current place of residence. (speakers’ present residing district and state).

3. Physical Characteristics Information

(a) Gender of the speaker (Male / Female).

(b) Age in years

(c) Height − without wearing sandals / shoes, measured in centimeter using

a wall-mounted measuring tape.

(d) Shoulder size−measured at the widest point of shoulders between acromion

bone with the individual’s arms at their side in centimeters using body

measuring tape.

(e) Waist size − measured as circumference above the hip in centimeters

using the body measurement tape.

(f) Weight − in kilograms using a standard digital weighing machine.

4.1.2 Speech Recording Environment

The audio recordings were collected in the environments like a normal classroom/seminar

hall in each of the educational institution. All necessary precautions are taken care

to avoid ambient noise and reverberations.

4.1.3 Speech Data and Recording Protocol

Both the datasets has different recording protocols and speech data. All the volunteers

are asked to read the given text in their Native language (L1) as well as English at

two different instances. Each dataset has no overlap among the speakers as well as

provided text.

4.1.3.1 AFDS Recording Protocol

AFDS has twelve different native languages speech data (refer to Table 4.3) along with

English. A continuous contextual text is provided to speakers from the daily news

articles in both the native language and English, text is saved in UTF-8 format. Each
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volunteer is asked to read aloud sentences in both English and native Indian languages

one after the other for each session, depending on the speaker’s first language.

The recordings were made using a head-phone microphone (Logitech H110 stereo

headset) at a 16 kHz sampling rate. All the speech recordings are made using Audacity

software. All the entire dataset’s speech recording is collected using the same head-

phone microphone to avoid any channel variations across recordings. All speakers

contributed roughly 2 minutes of data in 3 sessions each lasting 40 seconds.

4.1.3.2 NISP dataset Recording Protocol

The speech data was collected using a high-quality microphone (with Scarlett solo

studio, CM25 a large-diaphragm condenser microphone). The data was sampled at

44.1 kHz with a bit-rate of 16 bits per sample. In order to avoid any channel variations

across recordings, all the speech samples were collected using the same microphone

device for this dataset creation.

The text data used in the reading task for the speakers were presented in the

L1 language (refer to Table 4.5) as well as in English in two different sessions. The

text provided to speakers was taken from the daily news articles as unique sentences

without any contextual continuity from one sentence to another in both native and

English texts. This setting was made to avoid any prosodic continuity in the reading

task. Separately, a continuous short story section was given to the speakers in both

the L1 and English languages to have contextual continuity effects in the reading

task. Along with these sentences, we had also used five common sentences for every

speaker. This includes two TIMIT sa1 and sa2 sentences and three general news

article sentences in English language (to perform speaker profiling in text-dependent

manner). Similarly two common sentences were also made in the native language

text. Overall, each subject provided 20-25 unique sentences in L1 and English, 20-

25 contextual sentences in L1 and English, 5 common sentences for English, and 2

sentences from L1. Each speaker was instructed to read aloud in a clear voice with a

close-talking microphone.

The audio recording setup is made by using publicly available software, namely

“Speech Recorder 3” and with Focusrite Scarlett solo studio audio recording device by

connecting it to a laptop. This audio recorder device has gain controller to adjust

3Speech Recorder software is freely available in the following address, https://www.bas.uni-
muenchen.de/forschung/Bas/software/speechrecorder/
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the gain and amplitude of the speech signal while recording. The software enables a

graphical user interface (GUI) to display each sentence on the speaker’s screen. It is

monitored and controlled by a controller on another display. The participant is asked

to read out the text aloud, displayed on the monitor in a comfortable sitting posture.

The controller also verified the content, which is being read, in order to avoid any

reading errors made by the speaker.

The statistics of collected datasets are detailed in the following sections.

4.2 Characteristics of Audio Forensics Dataset

We have collected this multilingual and multi-accent dataset from volunteers (stu-

dents) of the National Institute of Technology Karnataka-Surathkal (NITK) to ad-

dress the speaker profiling task’s challenges. The volunteers are from different parts

of the country. There are a total of 207 speakers includes 161 male and 46 female

speakers. All the speakers fall in the age group of 18 to 35 years. Each speaker has

contributed at least 120 seconds, and utmost 150 seconds of speech data in three ses-

sions; each session lasts 40seconds. The set of speakers in the dataset is linguistically

diverse, consisting of 12 different native tongues. The distribution of male and female

speakers across India is shown in Table 4.1 and the same is displayed in Figure 4.1.

From the speakers’ entire distribution, 142 speakers (99 males and 43 females) are

recorded in the seminar hall, and the remaining 65 speakers (62 males and 3 females)

are recorded in the class room. The statistics of collected physical traits are tabulated

in Table 4.2.

The distribution of speakers across the different native languages as well as gender-

wise distribution, is shown in Table 4.3. English∗ in the table, indicates that these

speakers can not read their native language; hence, only English speeches have recorded.

For the rest of the speakers both native and English language speeches have recorded.

The total number of utterances in this dataset are 1,489, out of which 1,161 are male

speaker utterances, and 328 are female speaker utterances. The total number of native

language utterances are 728 and there are 761 English utterances in the dataset. This

dataset has a total of 7.92 hours of native language speech data and 8.43 hours of

English speech data. The total number of utterances per language and total speech

data duration of each recorded language are given in Table 4.4.
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Figure 4.1: Native geographic region of the speakers in the AFDS dataset.

4.3 Characteristics of NITK-IISc Speaker Profiling

Dataset

We attempt to overcome some of the available datasets’ limitations by collecting mul-

tilingual, multi-accent datasets from five Indian native languages. This dataset is

called NITK-IISc Multilingual Multi-accent Speaker Profiling4 (NISP) dataset.

This dataset has collected from the volunteers of different colleges of south In-

dia, namely, Sree Vidyanikethan Engineering College, Tirupathi, Andhra Pradesh for

Native language – Telugu, KSR College of Engineering, Tiruchengode, Tamilnadu,

and NITK for Native language – Tamil, College of Engineering Thalassery, Kerala

and NITK for Native language – Malayalam, NITK for Native language – Kannada,

Indian Institute of Sciences (IISc), and NITK for Native Language – Hindi.

4This dataset is made publicly available in the following address,
https://github.com/iiscleap/NISP-Dataset. This dataset is freely available for academic and
research purposes with standard license agreements.

47



Table 4.1: Statewise distribution of male and female speakers in AFDS dataset

Sl.No State Male Female Total

1 Andhra Pradesh 28 5 33

2 Bihar 6 – 6

3 Chattisgarh 2 – 2

4 Delhi 2 1 3

5 Goa 1 – 1

6 Gujarat 3 – 3

7 Haryana – 1 1

8 Himachal Pradesh 1 – 1

9 Jammu & Kashmir 1 – 1

10 Jharkhand 3 – 3

11 Karnataka 18 7 25

12 Kerala 11 10 21

13 Madhya Pradesh 7 5 12

14 Maharastra 15 2 17

15 Manipur 3 – 3

16 Odisha 2 – 2

17 Punjab 1 – 1

18 Rajasthan 16 1 17

19 Tamil Nadu 8 3 11

20 Telangana 16 1 17

21 Uttar Pradesh 8 3 11

22 West Bengal 7 6 13

23 Puducherry 1 – 1

24 Nepal 1 – 1

TOTAL 161 46 207

The NISP dataset has 345 speakers, which includes 219 male and 126 female

speakers. The dataset has five native Indian languages (namely Hindi, Kannada,

Malayalam, Tamil and Telugu), as well as Indian, accented English. Each speaker

provided around 4-5 minutes of speech data in each language. The distribution of

speakers across the different native languages as well as gender-wise distribution, is
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Table 4.2: Statistics of each parameter in the AFDS dataset (Kalluri et al. (2016))

Physical Minimum Maximum Mean Standard
Characteristic Deviation

Male Speakers

Height (cm) 156 188 171.0 6.7
Shoulder width (cm) 40 53 45.0 2.5
Waist size (cm) 68 112 86.0 7.6
Weight (kg) 45 107 67.9 11.1
Age (y) 18 37 23.32 3.10

Female Speakers

Height (cm) 147 169 157.6 5.1
Shoulder width (cm) 30 45 38.4 2.6
Waist size (cm) 64 97 80.4 7.0
Weight (kg) 39 77 52.7 6.9
Age (y) 18 30 23.50 2.44

Male and Female Speakers

Height (cm) 147 188 168.0 8.5
Shoulder width (cm) 30 53 43.5 3.7
Waist size (cm) 64 112 84.7 7.8
Weight (kg) 39 107 64.5 12.1
Age (y) 18 37 23.36 2.96

shown in Table 4.5. The total number of utterances in this dataset are 28, 268, out of

which 17, 844 are male speaker utterances, and 10, 424 are female speaker utterances.

The total number of native language utterances are 13, 577 and there are 14, 691

English utterances in the dataset. This dataset has a total of 24.83 hours of native

language speech data and 32.03 hours of English speech data.

The total duration of speech in hours and the total number of utterances corre-

sponding to each native language along with English speech are shown in Fig 4.3. The

gender-wise statistics of each physical parameters are given in Table 4.6. The total

number of speakers from each region per accent is shown in Fig 4.2.
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Table 4.3: Distribution of native languages’, male and female speakers of AFDS

Sl.No language Male Female total

1 Only English∗ 6 4 10

2 Hindi 56 12 68

3 Kannada 16 5 21

4 Malayalam 9 9 18

5 Manipuri 3 0 3

6 Marati 14 2 16

7 Tamil 9 2 11

8 Telugu 39 6 45

9 Bengali 4 6 10

10 Gujarathi 2 0 2

11 Odiya 2 0 2

12 Urdu 1 0 1

Total Speakers 161 46 207

Table 4.4: Speech duration in minutes (Dur) and number of utterances (Utt) for each
language in AFDS

Male Female Total

Sl.No Language Dur # Utt Dur # Utt Dur # Utt

1 English 395.8 590 109.9 171 505.7 761

2 Hindi 138.3 220 28.7 48 167.1 268

3 Kannada 38.3 51 12.1 17 50.3 68

4 Malayalam 21 27 20.2 29 41.3 56

5 Marathi 33.6 53 4.5 8 38.1 61

6 Tamil 22.3 35 4.8 8 27.1 43

7 Telugu 92.8 137 14.6 23 107.3 160

8 Bengali 9.5 16 14.6 24 24.1 40

9 Gujarati 5 8 0 0 5 8

10 Oriya 4.7 7 0 0 4.7 7

11 Urdu 2.9 5 0 0 2.9 5

12 Manipuri 7.2 12 0 0 7.2 12

Total 771.3 1161 209.4 328 980.7 1489
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Table 4.5: Distribution of native languages’, male and female speakers of NISP dataset

Sl.No. Native Language Males Females Total

1. Hindi 76 27 103

2. Kannada 33 27 60

3. Malayalam 35 25 60

4. Telugu 35 22 57

5. Tamil 40 25 65

Total Speakers 219 126 345

Figure 4.2: Native geographic region of the speakers in the NISP dataset.

4.4 Potential Applications

Both the datasets NISP and AFDS datasets provide a wide range of various applica-

tions depending on the task requirement. These datasets provides the ability to explore

profiling applications in text dependent or independent fashion, accent/language iden-

tification experiments, speaker recognition as well as multilingual speech recognition
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Figure 4.3: Number of utterances and speech duration of each language (both native
language and English speech data) in the NISP dataset

experiments.

4.4.1 Accent & Language Identification

Identifying the accent and L1 of the speaker is an important cue in the voice forensic

applications as well as in smart speaker and dialog systems. The NISP dataset enables

research to explore accent related effects on speech. This database allows both L1

identification from L2 as well as language identification based on the 5 L1 languages.

4.4.2 Speaker Recognition

The NISP dataset, while being much smaller in scale, can be used to fine-tune the

large neural network models with more multi-accent and multilingual variabilities. We

hypothesize that this can improve the robustness of speaker recognition systems. In
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Table 4.6: Statistics of each parameter in the NISP dataset

Physical Minimum Maximum Mean Standard
Characteristic Deviation

Male Speakers

Height (cm) 151.0 191.0 171.6 6.7
Shoulder width (cm) 32.0 55.0 44.7 3.2
Weight (kg) 43.4 116.5 69.4 11.9
Age (y) 18.0 47.5 24.4 5.6

Female Speakers

Height (cm) 143.0 180.0 158.9 6.8
Shoulder width (cm) 30.0 53.0 39.7 3.4
Weight (kg) 34.1 86.2 56.5 10.5
Age (y) 18.3 46.5 25.1 6.1

Male and Female Speakers

Height (cm) 143.0 191.0 166.9 9.1
Shoulder width (cm) 30.0 55.0 42.9 4.0
Weight (kg) 34.1 116.5 64.7 13.0
Age (y) 18.0 47.5 24.7 5.8

addition, multilingual speaker verification with mismatched languages in enrollment

and test data can be useful for bench-marking speaker verification systems.

4.4.3 Speech Recognition

This dataset has potentially rich text information in both English and all the native

languages (Hindi, Kannada, Malayalam, Tamil and Telugu). All these transcription,

after manual verification, are recorded in UTF-8 format.

4.5 Experimental Results on AFDS

Multiple physical parameters are estimated in a multilingual setting on AFDS using

the same approach described in Chapter 3. The utterance level statistics are computed

for each of the speakers.
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In order to compute the first-order statistics on both AFDS and NISP datasets,

20 MFCCs along with deltas and double deltas are extracted with a window size of

25ms with a shift of 10ms, together constitutes 60 features. And also, 40 filter bank

features (window size of 25ms with a shift of 10ms) are extracted separately. The

GMM UBM learned from training data of TIMIT dataset is used, as the number of

training speakers are less in these datasets (whereas TIMIT dataset has 630 speakers).

The first-order statistics are computed on both AFDS and NISP datasets using the

Eq.3.4 (refer to Section 3.3.2 in Chapter 3). The statistics are computed for formants,

harmonic features over the entire utterance (explained in Section 3.4, Section 3.5 in

Chapter 3) along with first-order statistics of the dataset are fed to the support vector

regression (detailed in Section 3.6 in Chapter 3) separately for each physical parameter

estimation.

For the evaluation purpose, the dataset is split into training and testing splits.

Training data has 137 speakers consisting of 104 males and 33 female speakers. The

training split has 951 utterances includes both English and native languages. Whereas

for test split has 70 speakers with 57 males and 13 female speakers. The test split has

538 utterances consists of both English and native languages. Both the training and

testing splits are linguistically diverse and proportional. The statistics of train and

test splits are given in Table 4.7. The standard error metrics Mean Absolute Error

(MAE) and Root Mean Square Error (RMSE), are used to measure the actual and

predicted targets’ errors. The target mean predictor (TMP) is used to compare the

error performance of the system.

4.5.1 Individual Feature Results

The statistics computed from formants, frequency locations, amplitude, harmonics

and first order statistics from Mel filter bank features, are fed to SVR to train for

each physical parameter. The SVR is trained in a multilingual setting on all different

native languages data of the AFDS and tested as well.

The mean absolute error of each feature is compared with the target mean predictor

of each physical parameter (height, shoulder size, waist size, weight and age) is shown

in Figure.4.4. The Fstats, and formants shows better MAE performance for all the

physical parameters when male speakers and both gender speakers are considered, but

not with female speakers.

The Fstats have showed an improvement in MAE when compared with TMP for

height,shoulder size, waist size, weight and age is 25%, 29.5%, 1.8%, 15.1%, and 3.9%
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Table 4.7: Statistics of Train and Test splits of each physical parameter in the AFDS
when both gender speakers are considered.

Physical Min Max Mean Standard
Characteristic Deviation

Train Speakers

Height (cm) 147 188 167.4 8.6
Shoulder width (cm) 30 53 43.4 3.9
Waist size (cm) 64 112 84.9 8.0
Weight (kg) 39.4 106.9 64.4 12.8
Age (y) 18 31 23.18 2.91

Test Speakers

Height (cm) 149 188 169.1 8.1
Shoulder width (cm) 36 50 43.7 3.4
Waist size (cm) 65 105 84.3 7.4
Weight (kg) 46 93.8 64.54 10.7
Age (y) 18 37 23.67 3.04

respectively when both gender speakers are considered. Similarly, in case of formants

the MAE improvement with TMP when both gender speakers are considered is 23.8%,

25.2%, 5.6%, 15.9% and 3.7% for height, shoulder size, waist size, weight, and age

respectively. The harmonic features shows an improvement of 22% better than TMP

MAE for height, shoulder size estimation, and 10% improvement in weight estimation

when both gender speakers are considered.

In the case of male speakers, Fstats and formants there is an improvement over

TMP MAE is around 5% and 8% respectively for all the parameters. The harmonic

features are performing better with height and age estimation by 8.4% and 5.8%

respectively when compared with TMP MAE. Whereas for female speakers, weight

and height estimations shows an improvement around 2% over TMP MAE when Fstats

are considered. Formants have better performance of around 3% in waist and weight

estimations. Harmonics are not performing better than TMP MAE in any of the

physical parameters.

56



4.5.2 Feature Combination Results

As mentioned in Section 3.8.3, the simple average of these features are performing

better with TMP for each physical parameter.

Simple averaging is performed on the predicted test targets obtained from Fstats,

formant, and harmonics features. The comparison of combination results with training

data mean predictor are listed in Table 4.8. All the results use the same train and

test split described in Section 4.5. The performance metrics both MAE and RMSE on

Comb -3 are better than the TMP when both gender speakers and male speakers are

considered except in waist estimation. In the waist estimation Comb -2 is performing

better than TMP. In case of female physical parameter estimation, each parameter

shows better performance with different combinations of features. Comb -3 performs

better with weight and age estimation, whereas Comb -1 and Comb-2 perform better

with shoulder and waist estimation, respectively. Any of the feature combinations

didn’t perform well in the height estimation of a female speaker.

We hypothesize that female speakers’ training data (33 speakers) is insufficient to

train the model. To verify this, we have added the training data of TIMIT female

speakers along with AFDS female training data to the train the SVR model and

tested on the AFDS female data to estimate the speaker’s height. This showed an

improvement in the MAE from 5.4 cm to 4.6 cm for female speakers. However, we

cannot do the same for other physical parameters as the TIMIT dataset has only

height and age information.

4.5.3 Duration Analysis

To analyze the minimum amount of speech required for estimating the physical pa-

rameter in a multilingual setting, we evaluate the system’s performance at different

utterance durations.

We extend the same duration analysis (please refer Section 3.8.4) on all the physical

parameters5 of AFDS. The system performance is evaluated for different lengths of

speech files ranging from 0.25s to full duration(around 40s). We observed that mean

absolute errors of each physical parameter for different durations’ of the speech signal

is less than the TMP for both gender speakers and male speakers except in shoulder

size estimation. In male speakers’ shoulder estimation by using 0.5s speech data, the

prediction error (MAE) is less than the MAE of TMP. From this, it is evident that the

5 Height, Age, Shoulder width, Waist size, and Weight
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Table 4.8: Comparison of the proposed feature combinations – Comb -1 (Fstats +
formant + frequency locations), Comb -2 (Fstats + formant + amplitude), Comb -3
(Fstats + formant + harmonic features (amplitude + frequency locations)) with TMP
of AFDS.

Multiple Physical parameter Estimation – All (Male + Female)

TMP Comb-1 Comb-2 Comb-3

MAE RMSE MAE RMSE MAE RMSE MAE RMSE

Height(cm) 6.8 8.2 5.1 6.3 5.0 6.1 5.0 6.1
Shoulder(cm) 2.8 3.4 2.0 2.4 2.0 2.4 1.9 2.4

Waist(cm) 5.6 7.3 5.3 6.9 5.4 6.9 5.5 7.0
Weight(kg) 8.3 10.6 6.9 9.0 7.0 8.9 6.9 8.8

Age (y) 2.1 3.1 2.1 3.0 2.0 2.9 2.0 2.9

Multiple Physical parameter Estimation – Male

TMP Comb -1 Comb -2 Comb-3

MAE RMSE MAE RMSE MAE RMSE MAE RMSE

Height(cm) 6.4 6.9 5.1 6.3 5.1 6.2 5.0 6.1
Shoulder(cm) 2.1 2.5 2.0 2.4 2.0 2.4 2.0 2.4

Waist(cm) 5.8 7.3 5.4 7.0 5.6 7.1 5.5 7.1
Weight(kg) 7.8 9.6 7.3 9.2 7.4 9.2 7.4 9.1

Age (y) 2.5 3.4 2.3 3.3 2.2 3.1 2.2 3.1

Multiple Physical parameter Estimation – Female

TMP Comb -1 Comb -2 Comb-3

MAE RMSE MAE RMSE MAE RMSE MAE RMSE

Height(cm) 5.1 5.9 5.6 6.3 5.3 6.2 5.4 6.3
Shoulder(cm) 2.4 2.9 2.4 2.9 2.5 3.1 2.4 3.0

Waist(cm) 5.1 7.2 5.0 7.1 4.9 6.5 4.9 6.6
Weight(kg) 5.9 8.4 5.6 8.2 5.7 8.3 5.5 8.1

Age(y) 0.8 1.0 0.9 1.1 1.0 1.2 0.7 0.9
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system is reliably able to predict the physical parameters from 0.5s duration of the

speech signal with prediction error less than the training data mean. The duration of

speech at which the prediction error saturates is around 2s when both genders’ data

is considered together. When there is 2s of speech data for both gender speakers,

the mean absolute error for height is 5.1cm, shoulder width is 1.9cm, waist size is

5.4cm, weight is 6.9 kg and for age is 2 years. Whereas when the available speech

data is 40s, we have 5.0 cm, 1.9cm, 5.5cm, 6.9kg and 2y for height, shoulder width,

waist size, weight , and age respectively when both gender speakers are considered.

The variation of MAE with respect to utterance duration for both genders, male

and female speakers are shown in Figure.4.5. For male speakers, the MAE saturates

around 2s, like the above mentioned case (both genders). The change in MAE when

full duration (40s) and 2s considered is 0.1cm in height, and there is no change in MAE

for other physical parameters like shoulder size, waist size, weight and age estimation.

As mentioned above in previous section, as the number of training female speakers is

less, the prediction error in multilingual setting using Comb-3 set of features does not

help much in duration analysis.

4.5.4 Effect of Language

To understand language’s effect, we perform the physical parameter estimation in the

multilingual setting by splitting the English utterances and native language utterances

into train and test splits. There are 489 English utterances out of which 119 female

speaker utterances and 370 male speakers utterances for training split. There are

272 English utterances for test split, in that 52 are female utterances, and 220 are

male utterances. Similarly, 462 native language utterances in that 105 are female

speaker utterances and 357 male speaker utterances for train split. There are 266

native language utterances for test split, out of which 52 are female utterances, and

214 are male native language utterances.

The Comb–3 scheme has the least error in speaker profiling. Thus this scheme is

used to evaluate the robustness of the system to the language. Hence, the system is

trained and evaluated with two different subsets of the data

1. Native language utterances.

2. English utterances.
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The support vector regression model is trained using one of the subsets at a time for

each physical parameter estimation. The system is then evaluated using the matched

as well as mismatched subset.

1. Matched Condition:

Case-1: The SVR models are trained using the English utterances only, and is

evaluated separately on the English utterances.

Case-2: The SVR models are trained using the native languages and the system

is evaluated with the native languages utterances only.

2. Mismatched Condition:

Case-1: The SVR models are trained using the English utterances only, and is

evaluated separately on the native languages utterances.

Case-2: The SVR models are trained using the native languages and the system

is evaluated with the English utterances only.
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Figure 4.6: Gender wise MAE comparison of matched and mismatched conditions in
height estimation using Comb-3 set of features on AFDS

We reported the system performance using Comb–3 features set for the matched

and mismatched cases. We presented the system degradation from the perspective of

mismatched cases for each physical parameter.

Height Estimation: When the system is evaluated on mismatched condition

case-1, the maximum system performance degradation is of 3% in male speakers with
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the Comb-3 set of features in height prediction. In contrast, there is no performance

degradation with the Comb-3 set of features for female and both gender speakers.

Similarly, when a model is evaluated on mismatched condition case-2, the system

can estimate the height of male speakers as well as both gender speakers without

degrading the system performance by using Comb-3 set of features. In the case of

female speakers, Comb-3 set of features deteriorates the system performance by 2.5%.

The gender-wise height MAE of matched and mismatched conditions for Comb-3 set

of features are shown in Figure 4.6.
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Figure 4.7: Gender wise MAE comparison of matched and mismatched conditions in
shoulder size estimation using Comb-3 set of features on AFDS

Shoulder size Estimation: When the system is evaluated on mismatched condi-

tion case-1, the maximum system performance degradation when both gender speakers

are considered is 3.5% with Comb-3 set of features. In male speakers, the Comb-3

set of features degrades the shoulder estimation system by 3% and 6.5% for female

speakers.

Similarly, when the system is evaluated on mismatched condition case-2 while

predicting a speaker’s shoulder size, the system can predict for both gender speakers

as well as male speakers without degrading the performance by Comb-3 set of features.

Whereas, when female speakers are considered Comb-3 set of features degrade the

system by 2.2%. The gender-wise shoulder size MAE of matched and mismatched

conditions for Comb-3 set of features are shown in Figure 4.7.

Waist size Estimation: When the system is evaluated in mismatched condition
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Figure 4.8: Gender wise MAE comparison of matched and mismatched conditions in
waist size estimation using Comb-3 set of features on AFDS

case-1, while predicting the male and female speaker’s waist, the maximum system

performance degradation is 1% with Comb-3 set of features. In contrast, there is no

degradation in system performance when both gender speakers are considered.

Similarly, when the system is evaluated in mismatched condition case-2, the system

shows the degradation of 3% with the Comb-3 set of features for female speakers. At

the same time, it is 2% for male speakers and both gender speakers. The gender-wise

waist size MAE of matched and mismatched conditions for Comb-3 set of features are

shown in Figure 4.8.

Weight Estimation: When the system is evaluated in mismatched condition

case-1, while predicting a speaker’s weight, the system degrades the system perfor-

mance by 1% for both genders and female speakers with Comb-3 set of features. At

the same time, it is 2% for male speakers with the Comb-3 set of features.

Similarly, when the system is evaluated in mismatched condition case-2, the system

shows the degradation of maximum of 1% with Comb-3 set features for all the speakers.

The gender-wise weight MAE of matched and mismatched conditions for Comb-3 set

of features are shown in Figure 4.9.

Age Estimation: When the system is evaluated in mismatched condition case-1,

the maximum performance degradation while predicting the age is 3% and 4% for

both genders and male speakers, respectively, with the Comb-3 set of features. At the

same time, there is no performance degradation in female speakers.

Similarly, when the system is evaluated in mismatched condition case-2, the system
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Figure 4.9: Gender wise MAE comparison of matched and mismatched conditions in
weight estimation using Comb-3 set of features on AFDS
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Figure 4.10: Gender wise MAE comparison of matched and mismatched conditions in
age estimation using Comb-3 set of features on AFDS

shows the degradation of 1.2% with Comb-3 set of features when both gender speakers

are considered. At the same time, the Comb-3 set of features can predict the age

of male and female speakers with the same trained model without degrading the

performance. The gender-wise age MAE of matched and mismatched conditions for

Comb-3 set of features are shown in Figure 4.10.

In summary, the maximum degradation for male speakers in case of age estimation

is 4%, for height and shoulder it is 3%, and for waist and weight estimation it is

2%. The maximum performance degradation for female speakers in case of shoulder
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estimation is 6.5%, height is 2.5%, waist size is 3% and for weight estimation it is 1%.

Similarly when both gender speakers are considered, the performance degradation is

of 3% for age, 3.5% shoulder size, 2% for waist size and 1% for weight estimation, and

no degradation in height estimation.

4.6 Experimental Results on NISP dataset

Multiple physical parameters are estimated in a multilingual setting on the NISP

dataset using the same approach to estimate height and age using the TIMIT dataset.

For evaluation purposes, the dataset is divided into train and test splits without

overlapping any speakers. The training split has 210 speakers in which 134 male and

76 female speakers. The train split has 17161 utterances, out of which 10911 utterances

are from male speakers, and 6250 utterances are from female speakers. The test split

has 135 speakers out of which 85 speakers are male and 50 are female speakers. This

test split has 11107 utterances, which includes 6933 male speaker utterances and 4174

female speaker utterances. The statistics of train and test splits of the dataset are

given in Table 4.9. As mentioned before, the standard error metrics mean absolute

error and root mean square error are used to measure the errors from the actual and

predicted targets.

Table 4.9: Statistics of Train and Test splits of each physical parameter in the NISP
dataset when both genders are considered.

Physical Min Max Mean Standard
Characteristic Deviation

Train Speakers

Height (cm) 143 191 167.1 9.5
Shoulder width (cm) 32 55 42.9 4.2
Weight (kg) 36.9 116.5 65.4 14.0
Age (y) 18 47.5 24.8 6.0

Test Speakers

Height (cm) 146.5 182.5 166.7 8.5
Shoulder width (cm) 30.0 53.0 42.9 3.7
Weight (kg) 34.1 93.8 63.5 11.3
Age (y) 18.3 43.6 24.4 5.5
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4.6.1 Individual Feature Results

We evaluate the system using the each of the features separately. The MAE of each

feature is shown in Fig 4.11. This is compared with the default approach – target

mean predictor (predicting the target of each physical parameter using the mean of

training data of each parameter).

Male Female Both
0

2

4

6

M
A

E
 (

C
m

)

Height prediction 

TMP

Fstat

Fmnts

F-loc

Amp

Harm

Male Female Both
0

1

2

3

M
A

E
(C

m
)

Shoulder prediction 

Male Female Both
0

2

4

6

8

10

M
A

E
 (

K
g

)

Weight prediction 

Male Female Both
0

1

2

3

4

5

M
A

E
 (

y
)

Age prediction 

Figure 4.11: Gender wise MAE of each feature (Fstat, Formants (Fmnts), frequency
locations (F-loc), Amplitude (Amp) and Harmonic features (amplitude + frequency
locations – Harm )) compared with Training data Mean Predictor (TMP) of the NISP
dataset

The below figure shows a clear improvement in the MAE in all the physical param-

eters for both gender speakers except in height when harmonics frequency locations

are considered. In height estimation, the maximum improvement in MAE is 4.7%,

1.8%, and 4.2% over TMP when both gender speakers, male and female speakers,

are considered respectively. In the case of shoulder estimation, all features show a

minimum improvement of 22.1% over TMP in MAE when both gender speakers are

considered but not with male and female speakers. In weight estimation, MAE im-

provement is 4.7%, 11.3%, and 19.5% over TMP when male, female, and both gender

speakers are considered, respectively. In the case of age estimation, all the features

showed an improvement of MAE over TMP. The improvement in MAE is 13%, 9%,

and 10.2% for male, female, and both gender speakers are considered in estimating a

speaker’s age.

However, the degradation of MAE over TMP in estimating male speakers height
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and shoulder is maximum of 2% and 7.4%, respectively. In female speakers, none

of the features showed improvement over TMP and there is a degradation of MAE

over TMP is of 2% minimum and a maximum of 9% in estimating shoulder size of a

speaker.

4.6.2 Feature Combination Results

We combined the predicted targets from three different Support Vector Regression

outputs to improve the final physical parameter estimates. We have made three dif-

ferent sets of feature combinations of Fstats and formant features with either harmonic

frequency location (Comb–1) or amplitude (Comb–2) or harmonic features (both fre-

quency and amplitude features Comb–3). These results are tabulated in comparison

with default predictor (TMP) in Table 4.10. This simple average of these features’

regressed predicted targets has improved the predicted error metrics over the individ-

ual error metrics. The MAE and RMSE of both gender speakers improved relatively

by about 22 − 29% in body build parameter estimation (height, shoulder width and

weight) tasks using the Comb–3 set of features. Similarly, in age estimation, we

observe a relative improvement of 14% improvement in MAE. There is a relative im-

provement over the TMP with three feature combination (comb–3) in all the physical

parameters except in RMSE of female speakers’ shoulder size and male speakers’ age.

4.6.3 Duration Analysis

To analyze the minimum amount of speech required for estimating the physical pa-

rameter in a multilingual setting on the collected NISP dataset. The same train and

test splits of the NISP dataset are also considered for the duration analysis (please

refer Section 4.6).

We evaluate the performance of the system at different utterance durations. Comb-

3 set features are used to perform the duration analysis on collected physical param-

eters6 using the NISP dataset. The system performance is evaluated for different

lengths of speech files ranging from 0.25s to full duration(around 40s) with an average

duration of 10s.

We observed that each physical parameter’s mean absolute errors for different du-

rations’ of speech utterance are less than the TMP MAE for all the speakers except

6Height, age, shoulder width, and weight of a speaker
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Table 4.10: Comparison of the proposed feature combinations – Comb -1 (Fstats +
formant + frequency locations), Comb -2 (Fstats + formant + amplitude), Comb -3
(Fstats + formant + harmonic features (amplitude + frequency locations)) with TMP
of NISP dataset.

Height (cm) Estimation

Male Female All

MAE RMSE MAE RMSE MAE RMSE

TMP 5.22 6.17 5.30 6.93 7.14 8.47
Comb–1 5.20 6.07 5.42 6.77 5.21 6.23
Comb–2 5.12 6.10 5.35 6.74 5.07 6.13
Comb–3 5.16 6.14 5.32 6.70 5.12 6.17

Shoulder (cm) Estimation

TMP 1.98 2.58 2.44 3.52 2.99 3.73
Comb–1 1.95 2.50 2.53 3.64 2.16 2.90
Comb–2 1.96 2.51 2.48 3.56 2.15 2.89
Comb–3 1.95 2.51 2.50 3.59 2.14 2.89

Weight(kg) Estimation

TMP 7.74 9.57 7.88 9.76 9.08 11.35
Comb–1 7.33 9.03 7.15 8.98 7.27 8.99
Comb–2 7.11 8.80 6.89 8.70 7.13 8.85
Comb–3 7.10 8.84 6.89 8.68 7.11 8.85

Age(y) Estimation

TMP 4.40 5.60 4.39 5.57 4.42 5.54
Comb–1 3.79 5.67 4.09 6.05 3.96 5.86
Comb–2 3.80 5.64 4.06 5.99 3.92 5.81
Comb–3 3.80 5.65 3.98 5.95 3.90 5.80
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in female speakers’ height and shoulder size. The Figure 4.12 shows the MAE perfor-

mance of each physical parameter versus the target mean predictor. From the plot it

is very clear that the physical parameter can be estimated with a minimum of 0.25s

of speech data expect height and shoulder size of female speakers. The prediction

error gets saturated at 2s of speech data when both gender speakers’ speech data is

considered. At the same time, it is saturating at 5s of speech data in case of male

speakers all physical parameters and age and weight estimation in female speakers.

We hypothesis that the number of speakers for female speakers is less, and the

variability in actual targets is also less. Most of the predicted targets are skewed

towards the mean of the physical parameter of female speakers.

4.6.4 Effect of Language

In order to understand the effect of language in the physical parameter estimation

system using NISP dataset, the SVR model is trained separately with native lan-

guage utterances and English utterances. The physical parameter estimation system

is trained and tested in matched and mismatched conditions of the training and test-

ing utterances. The details of matched and mismatched conditions are detailed in

Section 4.5.4.

There are 8245 native language utterances in the train split, out of which 5236

are male speaker utterances, and 3009 are female speaker utterances. There are 5775

native utterances for test split, out of which 3587 are male and 2188 female speaker

utterances.

Similarly, 8916 English utterances for train split, out of which 5675 are male, and

3241 are female speaker utterances. For test split, 5332 English utterances, out of

which 3346 are male utterances, and 1986 are female utterances.

Height Estimation: When the system is trained on English utterances and tested

on native language utterances (mismatched condition case-1) in predicting a speaker’s

height, the maximum system performance degradation is about 3% with the Comb-3

set of features for all the speakers.

Similarly, when the system is trained on native language utterances and tested

on English utterances (mismatched condition case-2), the Comb-3 set of features do

not degrade the system’s performance for all the speakers. The system can predict a

speaker’s height reliably from English utterances, even though it is trained on mul-

tiple languages for male, female, and both gender speakers. The gender-wise height
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Figure 4.13: Gender wise MAE comparison of matched and mismatched conditions in
height estimation using Comb-3 set of features on NISP dataset

MAE of matched and mismatched conditions for Comb-3 set of features are shown in

Figure 4.13.
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Figure 4.14: Gender wise MAE comparison of matched and mismatched conditions in
shoulder estimation using Comb-3 set of features on NISP dataset

Shoulder size Estimation: When the system is evaluated for mismatched con-

dition case-1, while predicting a speaker’s shoulder size, the maximum system per-

formance degradation is about 10% with Comb-3 set of features when male speakers

utterances are considered. In the case of both gender speakers, Comb-3 set of features
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degrade the system performance by 9%. The trained model can predict the female

speaker’s shoulder size without degrading the system’s performance.

Similarly, when it is evaluated on mismatched condition case-2, the system de-

grades the performance by 6% for female speakers when the Comb-3 set of features

are considered. There is no performance degradation for male speakers as well as

both gender speakers with Comb-3 set of features. The gender-wise shoulder size

MAE of matched and mismatched conditions for Comb-3 set of features are shown in

Figure 4.14.
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Figure 4.15: Gender wise MAE comparison of matched and mismatched conditions in
weight estimation using Comb-3 set of features on NISP dataset

Weight Estimation When the system is evaluated on mismatched condition case-

1, while predicting a speaker’s weight, Comb-3 set of features degrades the system by

1% for males and 6% when both gender speakers are considered. In female speakers,

without degrading the system performance, the weight of a speaker can be predicted.

Similarly, when a model trained on native language utterances and tested on En-

glish utterances (mismatched condition case-2), the performance degradation is about

6.6% and 0.5% with Comb-3 set of features when female and male speakers are con-

sidered respectively. Whereas, there is no degradation when both gender speakers are

considered. The gender-wise weight MAE of matched and mismatched conditions for

the Comb-3 set of features are shown in Figure 4.15.

Age Estimation: When the system is evaluated on mismatched condition case-1,

while predicting the age of a speaker, the system degrades male speakers’ performance
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Figure 4.16: Gender wise MAE comparison of matched and mismatched conditions in
age estimation using Comb-3 set of features on NISP dataset

by 5.5% when Comb-3 set of features is considered. In the case of both gender speakers

and female speakers, Comb-3 set of features can predict a female speaker’s age without

degrading the system performance.

Similarly, when a model trained on native language utterances and tested on En-

glish utterances (mismatched condition case-2), Comb-3 set of features degrades the

system performance by 10% for females, 0.5% for males, and 3.5% when both gender

speakers are considered. The gender-wise weight MAE of matched and mismatched

conditions for Comb-3 set of features are shown in Figure 4.16.

In short, the maximum degradation in the system performance in the mismatched

conditions of male speakers in height estimation is 3%, shoulder is 10%, weight is 1%

and age of a speaker is 5.5%. In female speakers, the degradation of the performance is

3% for height, 6% for shoulder, 6.6% for weight and 10% for age estimation. Similarly,

in the case of both genders, the degradation in the system performance is 3% in height,

9% in shoulder size, 5% in weight and 3.5% in age estimation.

4.7 Summary

As a summary of this chapter, we have addressed the physical parameter estimation

system in a multilingual setting. Two different datasets, AFDS and NISP multilingual

and multi-accent datasets have been collected for the speaker’s physical parameter
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estimation. These datasets have 207 and 345 distinct speakers, respectively. AFDS

has 1489 utterances, each of 40s length, whereas the NISP dataset has 28268 utterances

with an average length of 10s. AFDS has 8.4 hours of English speech data and 7.91

hours of native language speech data; overall, AFDS has 16.3 hours of speech data.

In the case of NISP dataset, there are 24.83 hours of native language speech data and

32.03 hours of English speech data, as the overall NISP dataset has 56.86 hours of

speech data. AFDS has physical parameters details like height, age, shoulder size,

waist size, and weight of a speaker are estimated from AFDS, whereas the NISP

dataset has height, age, shoulder size, and weight of a speaker.

Different sets of multi-resolution features have explored (such as Mel filter bank

features, formants, frequency locations, amplitude, and harmonic features) in estimat-

ing a speaker’s multiple physical parameters in the multilingual setting.

Comb–3 set of features shows a significant improvement in physical parameter

MAE over TMP MAE on AFDS when both gender speakers are considered by 26%

in height, 32% in shoulder size, 17% in weight, and 5% in age estimation of a speaker.

In the case of male speakers, there is an improvement of 5% MAE compared with

TMP MAE for shoulder size, waist size and weight of a speaker, whereas it is 22%

in height estimation and 12 % in age estimation. Comb–3 set of features showed an

improvement in weight and age estimations for female speakers.

The duration analysis was performed using Comb–3 set of features for estimating

the physical parameter in a multilingual setting. The prediction error gets saturated

at 2s of speech data for male speakers, and both gender speakers are considered.

The effect of language is also studied on AFDS by training the model with matched

and mismatched conditions of speech utterances. The system degrades utmost by 4%

for males, 6.5% for females, and 3.5% when both gender speakers are considered across

all physical parameters with Comb-3 set of features in mismatched conditions.

Similarly, Comb–3 set of features shows a significant improvement over TMP in

NISP dataset too, when both genders are considered in height, shoulder size, weight,

and age estimations. There is an improvement of 28% in height, 21% in shoulder size,

and 12% in weight and age estimation of a speaker over TMP MAE when both gender

speakers are considered.

The duration analysis is also performed in NISP dataset using Comb–3 set of

features in a multilingual setting. It is observed that with a minimum of 0.25s of

speech data, all the physical parameters can be predicted except the female speaker’s
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height and shoulder size. The prediction error gets saturated at 2s of speech data

when both gender speakers speech utterances are considered and it is at 5s for male

speakers. Similarly, in understanding the effect of language, when the model is trained

either with only one language (English) or with multiple languages (5 languages), the

utmost degradation of the prediction is about 10% for all the physical parameters

when both gender speakers are considered.

The collected datasets have potential speaker profiling, accent- language identifi-

cation, speaker recognition, and speech recognition.
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Chapter 5

End to End Physical Parameter

Estimation System

This chapter aims to jointly predict all the physical parameters of a speaker using

a single system from short-duration (1 − 3s) speech inputs. We propose a DNN

architecture to jointly predict speaker parameters like age,height, shoulder size, waist

size, and weight from speech data. We explore a novel scheme to initialize the network

using a conventional system based on support vector regression trained with GMM-

UBM super-vector features. This initialization eliminates the need for large amounts

of data for the deep neural network training. To the best of our knowledge, this is the

first attempt to develop an end-to-end model that predicts the multiple parameters

of a speaker jointly. We evaluate the system on collected multilingual and multi-

accent AFDS, and NISP datasets for predicting the age and body build parameters

like height, shoulder size, waist size, and weight of a speaker.

The highlights of this chapter can be summarized as follows:

1. We propose a unified DNN architecture to predict both age and body build

parameters like height, shoulder size, waist size and weight of a speaker for

short durations of speech.

2. A novel initialization scheme for the deep neural architecture is introduced, that

avoids the requirement for a large training dataset.

3. We evaluate the system in predicting the height and age of a speaker on standard

TIMIT dataset where the mean duration of speech segments is around 2.5s.
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4. We also evaluate the system on collected multi-lingual and multi-accent AFDS

and NISP datasets in predicting the age as well as body build parameters like

height, shoulder size, waist size and weight of a speaker.

The rest of this chapter is organized as follows. The Section 5.1, details about the

baseline system, statistical representation of features and support vector regression

model to estimate the physical parameter of a speaker. Section 5.2 details the proposed

deep neural network architecture for physical parameter estimation. The experimental

results on TIMIT dataset in predicting height and age of a speaker are detailed in

Section 5.3 along with initialization schemes and error analysis. Extending the joint

prediction of multiple physical parameter estimations on the collected multilingual

and multi accent datasets are detailed in Section 5.4. Finally, Section 5.5 reports the

key findings and summary of the chapter.

5.1 Baseline system

We use the system from Chapter 3 Section 3.3.2 as the baseline. Our baseline system

is trained with linear support vector regression model using first order statistics com-

puted from a GMM model. We train a GMM-UBM with diagonal covariance using

cepstral features of the train data. For a given the sequence of input feature vectors

{x1,x2, ...,xT}, the density function of GMM is given by,

p(x) =
M∑
k=1

wkN(x,µk,Ck), (5.1)

where x = {x1,x2, ...,xT},µk denote the input feature vector and mean respectively

and Ck represents diagonal covariance matrix of the kth GMM component with weight

wk. The frame level first order statistics (defined as fji for a given frame i is computed

as,

f ji = xip(j|xi), (5.2)

where the a-posterior probabilities p(j|xi) are computed by the Bayesian rule, given

as follows,

p(j|xi) =
wjN(xi,µj,Cj)∑M
k=1wkN(xi,µk,Ck)

. (5.3)

78



We concatenate all mixture component specific stats f ji to form a frame level super

vector Fi. We perform the mean across time to get first order statistics F (referred

as Fstats) across the entire speech utterance.

F =
1

T

T∑
i=1

Fi (5.4)

The vector F (called Fstats) is used as the feature representation for the regression

system (Babu and Vijayasenan (2017)). Separate SVR models are trained to predict

the physical parameters. As the dimension of the input features is high, we used a

linear SVR. The prediction model of the linear SVR for an input frame xi is given by,

Hi =
ns∑
i=1

vT
i F + b = wTF + b (5.5)

where ns is the number of support vectors v, b is the bias, and w =
∑ns

i=1 vi. The

prediction output Hi indicates the physical parameter estimate for the current feature

vector xi. The average prediction (averaged over the frames 1...T ) is used as the

estimate of physical parameter for the utterance. The SVR models are trained and

evaluated separately for male and female speakers.

5.2 Deep Neural Network Architecture for Joint

Prediction of Physical Parameters

The proposed deep neural architecture for joint prediction of age and body build

parameters (height, shoulder size, waist size and weight) of a speaker is inspired from

our baseline algorithm. The block diagram of the proposed DNN model is shown in

Figure. 5.1.

The model has three parts. The first part (Layers L1, L2, L3) corresponds to

GMM posterior computation (Eq: 5.3). The second part (Layers L4, L5, L6) performs

statistics computation (Eq: 5.4) and the final part (Layer L7) represents the SVR

regression (Eq: 5.5). The first part is a fully connected multilayer perceptron shared

among all the input speech frames. The second part performs frame wise first order

statistics computation and computes the mean along time to get the statistics across

the entire speech utterance. The trainable parameters of the network are in Part 1, 3.
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Typically, deep neural network (DNN) architectures require a lot of training data

to learn the parameters. Further, the model has to be efficient to perform regression

on very short duration variable length speech segments. We exploited our baseline

system for an innovative approach for the initialization of the neural network.

Since we envisage the first part of the network to predict the GMM posteriors, we

initialize these layers from a smaller network trained to predict the GMM posteriors of

the baseline system. A three layer fully connected network is trained separately for this

purpose. The network targets for training are obtained as the GMM-UBM frame level

posteriors. The network has ReLU non linearities in the hidden layers and softmax at

the output layer. The network parameters are learned over the entire training data.

The second part of the network exactly replicates the operations performed in Eq. 5.2

and Eq. 5.4 where the posteriors p(j|xi) are obtained using the neural network (first

part of the network). The third part of the network is about predicting the speaker

parameters from the first order statistics. The network is trained with sum of mean

square error in age and age and body build parameters (height, shoulder size, waist

size and weight) prediction. We initialize this layer from the baseline linear SVR. The

weights corresponds to age, height, weight, shoulder size, and waist size of speaker’s

targets are initialized from the respective SVR models. Following the initialization,

the network is trained using back propagation with a mean square error loss. We learn

separate models for male and female speakers.

5.3 Experiments and Results on TIMIT Dataset

We perform our experiments on the TIMIT dataset. The standard train-test split

is used in all experiments. We consider male and female speakers separately. The

details of the dataset are explained in Chapter 3, Section 3.1. There is no overlapping

of recordings of speakers in train and test splits. The duration of the recordings ranges

from 1− 6s with an average of about 2.5s.

5.3.1 Baseline GMM-UBM-SVR System

We extract 20 Mel Frequency Cepstral Coefficients (MFCC) along with the delta and

double delta features (feature dimension 60) from windowed speech. We perform a

voice activity detection and cepstral mean and variance normalization for the input
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Table 5.1: RMSE values of baseline height and age estimation algorithms

Physical parameter
Singh et al. (2016b) Default predictor

MALE FEMALE MALE FEMALE

Height(cm) 6.70 6.10 7.01 6.51
Age(y) 7.80 8.90 8.07 9.15

Physical parameter
GMM-UBM-SVR DNN-postr-SVR

MALE FEMALE MALE FEMALE

Height(cm) 6.93 6.30 6.93 6.29
Age(y) 8.22 9.50 8.23 9.50

MFCC coefficients. A 256 component diagonal GMM-UBM is learned from the com-

bined training data of male and female speakers. The first order statistics for each

speech utterance is computed as described in Section 5.1. A separate SVR for age

and height for male as well as female speakers are learned from Fstats of the training

data. We call this method GMM-UBM-SVR. Table 5.1 details the results of this algo-

rithm as well as comparison with a state of the art algorithm on the same task (Singh

et al. (2016b)). The table also lists the results of the default predictor that predicts

the training mean value for all test samples. It can be noted that the age prediction

algorithm of Singh et al. (2016b) is only marginally better than the default predictor.

5.3.2 DNN Model Initialization

As detailed in Section 5.2, the first part (Layers L 1 to L 3) is the equivalent of GMM

posterior extraction from input MFCC features in the baseline system. Initially, this

part is separately trained using the posteriors of GMM-UBM as the target values. The

GMM posteriors are computed using Eq. 5.3. The first part network has 2 hidden

layers with 256, and 512 hidden neurons and 256 output neurons (corresponding to 256

component GMM). Both hidden layers have a dropout (0.3) and batch normalization

operations. The network is trained using back-propagation to minimize the cross-

entropy objective function on the TIMIT training data. The training data contains

both male and female speakers. This initialization is common for both male and

female models.
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Table 5.2: RMSE values from DNN model for segment wise and complete duration
prediction

Physical parameter
DNN-var-pred DNN-seg-pred

MALE FEMALE MALE FEMALE

Height(cm) 6.85 6.29 6.87 6.30
Age(y) 7.60 8.63 7.61 8.65

In order to check the sanity of the trained network, we use the trained DNN

posteriors to compute the first order statistics and learn an SVR to predict speaker

parameters. We denote the system as DNN-postr-SVR. Table 5.1 presents the corre-

sponding results. It can be seen that the DNN posteriors are attaining very similar

performance measures as the GMM-UBM.

The fully connected layer in the third part of the network is initialized from indi-

vidual linear support vector regression algorithms. The male (female) neural network

model is initialized from the male (female) SVR weights for height and age prediction.

5.3.3 DNN Learning

While the network supports variable length inputs for training, we trained it using

fixed length speech inputs. We use the Keras toolkit (Chollet et al. (2015)) for model

learning. We have windowed the input speech into 1 second segments with 0.1-second

shift. These short segments along with the corresponding target values are used as

the training input for the neural network. The mean square error in height and age is

used as the objective function. About 10% of the training data is kept as validation

data. The validation performance is used as the training stopping criterion.

The trained network is used for height and age prediction of the test utterances.

Note that the test utterances are variable length in nature. This scheme was denoted

as DNN-var-pred. Table 5.2 reports the Deep neural network results. It can be seen

that the RMSE error of age prediction has improved in both the cases over the DNN-

postr-SVR system. The RMSE improvement in case of age prediction is around 0.6

years and 0.9 years for male and female speakers respectively. This is achieved without

degrading the RMSE for height prediction.
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As a sanity check, we have trained the model without any initialization to the

DNN, the error performance is worse than the default predictor (refer Table 5.1).

Since the neural network is trained on 1s segments, we also tried to predict the physical

parameters using windowed 1-second segments with 0.1-second shift from the variable

length speech utterance. The predictions are then averaged to compute the final

prediction. The result of this scheme (denoted by DNN-seg-pred) is listed in Table 5.2.

The final RMSE values are within ±0.05 of the DNN-var-pred scheme. Thus, even

though the network was trained on 1-second length segments, it is able to generalize

to variable length speech utterances.

5.3.4 Effect of utterance length

To analyze how shorter segments degrade the performance, we evaluated the GMM-

UBM-SVR and DNN-var-pred systems with trimmed speech segments from the test

data. We trim the input speech segments to different durations from 1 − 4 seconds.

The variation of RMSE of height prediction with respect to test speech duration is

shown in Figure. 5.2. Even with 1 second duration, the degradation in the DNN
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Figure 5.2: RMSE of height prediction using different lengths of speech data of both
male and female speakers

system performance is 1.7% for male speakers and 3.2% for female speakers. The

GMM-UBM-SVR system has an RMSE that is around 0.1cm more than the DNN

system for 1s speech input. When the duration increases, the DNN system RMSE
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error improves as expected and reaches a saturation around 3s. The GMM-UBM-

SVR system (Babu and Vijayasenan (2017)) has a higher RMSE error consistently

compared to the proposed joint model.
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Figure 5.3: RMSE of age prediction using different lengths of speech data of both
male and female speakers

The corresponding variations for age prediction is shown in Figure. 5.3. With

only 1s speech available for prediction, the DNN model degrades only by 1.2% and

0.3% for male and female speakers. The RMSE of the GMM-UBM-SVR system is

consistently more than the DNN system by 0.6 years for male speakers and 1 year for

female speakers. Again the performance measure saturates around 3 seconds for the

DNN system.

5.3.5 Error Analysis

In order to understand the errors, RMSE for height/age prediction is computed across

different bins in the target values. Table 5.3 lists the results. In the training data, the

height distribution is somewhat Gaussian shaped with lesser training data available

for height values far away from the mean. In the results (Table 5.3), it can be noted

that the height prediction RMSE is very high for the two extreme bins where the

number of speakers are less as compared to the centre bins. However, in the case

of age, the training data has a more uniform distribution, and it can be observed

from Table 5.3 that the RMSE values do not change as much as in the case of height
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prediction. We hypothesize that height prediction can be further improved with a

more uniform training data distribution.

Table 5.3: RMSE values of test speakers for different bins

Height (cm)

Range
MALE FEMALE

# Train spkrs Test # Train spkrs Test

h < 150 − − 2 −
150 < h < 160 2 − 20 10.84
160 < h < 170 15 12.49 75 2.92
170 < h < 180 137 5.76 35 7.17
180 < h < 190 140 3.64 3 14.80
190 < h 32 12.98 − −

Age (years)

Range
MALE FEMALE

# Train spkrs Test # Train spkrs Test

a < 25 67 7.54 47 6.70
25 < a < 30 132 6.21 46 5.11
30 < a < 35 66 6.88 14 5.95
35 < a < 40 28 6.65 9 7.45
40 < a < 45 13 9.67 9 3.80
45 < a 20 5.98 10 8.74

5.4 Experiments and Results Using AFDS & NISP

Datasets

The physical parameter estimation is extended to shoulder size, waist size, weight

along with the height and age of a speaker using the proposed DNN architecture. This

DNN architecture jointly predicts all the physical parameters of the collected AFDS

and NISP datasets. The same training and test splits of AFDS and NISP datasets

(refer Section 4.5, Section 4.6 respectively) are used for the following experiments.

All the experiments on AFDS and NSIP datasets are performed separately on the

proposed DNN architecture.
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As explained in Section 5.3.2, the first part of the DNN is initialized separately

by training the model with the posteriors of GMM-UBM as target values. The first

layer of the network is initialized with means of TIMIT UBM. The model is trained

on training splits of both AFDS and NISP datasets. Due to less variability in the

speakers, we adapted the TIMIT UBM means as well as speakers from AFDS and

NISP datasets training splits to train the first part of the DNN.

The first order statistics of each utterance are computed at part-2 stage of the DNN

model for both AFDS and NISP datasets. The frame level posteriors are computed

by using sixty MFCC features (20 MFCC features along with 20 delta and 20 double

deltas) for both datasets at L4 layer of the DNN. The utterance level Fstats are

computed by taking the average of all the frames over the time at L5 layer and

flatten at layer L6. This results in obtaining the first order statistics of dimension

60× 256 = 15360.

For the sanity check the computed first order statistics from the DNN (without

training the DNN) are fed to SVR for predicting each physical parameter separately

for both the datasets. We denote this system as DNN-postr-SVR. The error metrics

of each physical parameter using DNN-postr-SVR on AFDS and NISP datasets are

tabulated in Table 5.4 and Table 5.5 respectively. It is observed that DNN posteriors

are attaining the similar performance measure as our baseline GMM-UBM-SVR.

The DNN part-3, has a fully connected layer with five outputs (height, shoulder

size, waist size, weight, and age) for AFDS and four outputs (height, shoulder size,

weight, and age) for NISP dataset. This fully connected layer of the network is

initialized with weights of the individual linear support vector regression algorithms.

The male (female) neural network model is initialized from the male (female) SVR

weights of each physical parameter (height, shoulder size, waist size, weight, and age)

prediction.

The neural network is fully trained on 1-second segments of multilingual and multi

accent speech data separately with male and female utterances of AFDS and NISP

datasets’ training data with respective targets. The physical parameters are jointly

predicted for both datasets separately. The trained models are tested with the variable

lengths of test data to predict the physical parameters (height, shoulder size, waist

size, weight, and age) of the speaker. We denote this system as DNN-var-Pred. The

error metrics of the predicted targets of AFDS are tabulated in Table 5.4. As a sanity

check of the trained network, the RMSE values are compared with the RMSE values
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Table 5.4: Comparison of RMSE values of physical parameters with estimation algo-
rithms on AFDS dataset

Physical Parameter TMP GMM-UBM-SVR DNN-postr-SVR DNN-var-pred

Male Speakers

Height (cm) 6.91 6.54 6.57 6.37
Shoulder size (cm) 2.49 2.41 2.40 2.46
Waist size (cm) 7.34 7.16 7.15 7.07
Weight (kg) 9.59 9.33 9.33 9.17
Age (y) 3.41 3.32 3.34 3.33

Overall 14.54 14.07 14.08 13.85

Female Speakers

Height (cm) 5.94 5.78 5.78 5.97
Shoulder size (cm) 2.93 3.05 3.06 2.92
Waist size (cm) 7.19 7.12 7.08 6.88
Weight (kg) 8.42 8.37 8.36 8.06
Age (y) 1.03 1.05 1.02 1.21

Overall 12.94 12.83 12.8 12.57

of target mean predictor, as well as baseline RMSE values. Similarly, for NISP dataset

the RMSE values are given in Table 5.5.

The proposed DNN architecture can predict the physical parameters jointly with

an improvement over the TMP of each parameter in AFDS except age and height

in female speakers. The DNN-var-Pred experiment shows the RMSE improvement

of 7.8% over TMP in height, 3.7% in waist size, 4.4% in weight, 1.2% in shoulder

size and 2.4% improvement in age of Male speakers in AFDS. Whereas for female

speakers, there is an improvement of 4.3% in waist and weight and very minimal

improvement in shoulder size estimation. There is no performance progress in height

and age prediction. The system has degraded more in age estimation, as the majority

of the female speakers are falling in mean age group and less number of speakers as

well. The overall system performance of the DNN has improved by 4.86% for male

speakers and 2.9% for female speakers when compared with TMP.

Similarly, in the case of male speakers of NISP dataset, there is an improvement

of shoulder size, weight and age of the speakers by 1%, 6% and 2% respectively. And

in the case of female speakers, the improvement in height is 2.6% and 10% in weight

estimations over the TMP. TMP values are less than the predicted RMSE values for
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Table 5.5: Comparison of RMSE values of physical parameters with estimation algo-
rithms on NISP dataset

Physical Parameter TMP GMM-UBM-SVR DNN-postr-SVR DNN-var-pred

Male Speakers

Height (cm) 6.17 6.21 6.24 6.38
Shoulder size (cm) 2.58 2.67 2.57 2.56
Weight (kg) 9.57 9.38 8.92 9.02
Age (y) 5.60 5.69 5.65 5.50

Overall 12.95 12.89 12.53 12.60

Female Speakers

Height (cm) 6.93 7.02 6.79 6.75
Shoulder size (cm) 3.52 3.61 3.67 3.54
Weight (kg) 9.76 10.51 8.93 8.77
Age (y) 5.57 6.16 6.15 5.97

Overall 13.66 14.52 13.31 13.06

females shoulder size and age estimations. The overall performance improvement of

the DNN is 2.7% and 4.5% for male and female speakers respectively when compared

with the TMP.

5.5 Summary

In this work, we have proposed a deep neural network architecture to jointly predict

speaker physical parameters from short-duration speech segments of all the three

datasets (TIMIT, AFDS and NISP datasets). The neural network is initialized in

a novel way using a conventional feature extraction (GMM-UBM super-vectors) and

regression (SVR) scheme to avoid the requirement of a large amount of data. The

network is trained with mean square error criterion and the joint model is able to

improve the RMSE predictions.

The system is able to improve the RMSE of age prediction by more than 0.6 years,

without degrading the RMSE for height prediction on TIMIT dataset. Analysis of

shorter durations of speech reveals that the network only degrades around 3% at

most with only 1 second of the speech input. Also, the performance saturates around

3seconds. The age prediction RMSE is lower than what is reported in literature
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(Singh et al. (2016b)) that used stand-alone age prediction. The system performance

is similar to full length speech data even with 3 seconds of speech for height and age

estimation tasks.

The DNN system is able to jointly predict the all the physical parameters (height,

age, shoulder size, waist size and weight) in a multilingual and multi accent setting.

There is a consistent improvement in all physical parameter estimations in both the

genders of AFDS except female speakers’ height and age. The overall improvement

of the system is by 2.9% and 4.8% for female and male speakers when compared with

TMP. In the NISP dataset, the male the proposed system performed well for shoulder

size, weight and age estimations in male speakers, and height and weight estimations

in female speakers. The overall system performance has improved by 4.5% in female

speakers and 2.7% in male speakers when compared with TMP.

In summary, the chapter’s main contribution is the development of a joint model

(DNN) for multiple physical parameters prediction, which is initialized in a novel way

that enables the model to perform well on short duration speech utterances.
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Chapter 6

Conclusions

The thesis’s objective was to estimate the multiple physical parameters with short

duration of speech data with out phone level transcriptions. This thesis also addresses

for the physical parameter estimation in a multilingual and multi-accent setting.

The short-term Mel cepstral features, formants, and harmonics features are ex-

plored to estimate the physical parameters. These features are extracted at the ut-

terance level that does not require phone level transcriptions. This common set of

features are used in predicting the height and age of a speaker from the speech data.

The combination of individual predicted targets using these features has improved

the performance of physical parameter estimation system. The physical parameter

estimation system is trained and tested on the standard monolingual TIMIT speech

database (English) with a common feature set. It can predict the speaker’s height

and age with a minimum of 2 seconds of speech data, resulting in the state of the art

results.

The proposed common set of features are extended to predict the multiple physical

parameters (height, age, shoulder size, waist size, and weight) in a multilingual and

multi-accent setting. Two multilingual and multi-accent speech datasets (AFDS and

NISP datasets) have been created and the physical parameter details, linguistic, and

geographical details are collected. The prediction error is also gets saturated at 2

seconds of speech when both the male and female speakers are considered in the

multilingual and multi-accent setting. The prediction system is evaluated in matched

and mismatched conditions to know how the system will degrade when the system

is trained and tested on multiple languages. The analysis shown that, the system

degrades utmost of 4% in males and 6.5% in female speakers of AFDS and utmost

91



degradation of 10% in case of NISP dataset for the male and female speakers. This is

the first attempt to predict the all (height, age, shoulder size, waist size, and weight)

the physical parameters with the same common set of features.

A Deep neural network architecture is proposed for joint prediction of all the

physical parameters in monolingual and multilingual settings using TIMIT, AFDS,

and NISP datasets. The novel initialization scheme is proposed by using the conven-

tional feature extraction (GMM-UBM super-vectors) and regression (SVR) scheme to

avoid the requirement of a large amount of data. The network is trained with a mean

square error criterion, and the joint model is able to improve the RMSE predictions.

Analysis of shorter durations of speech reveals that the network only degrades around

3% at most with only 1 second of the speech input. Also, the performance satu-

rates around 3seconds in predicting the height and age of a speaker using the TIMIT

dataset. In the case of a multilingual setting using collected datasets, the predicted

error metrics are less than the default predictor except in female age predictor in both

AFDS and NISP datasets. In case of male speakers, the system performance is less

than the default predictor in height estimation, and shoulder size and age estimations

in female speakers of the NISP dataset.

Future Directions

The physical parameter system can be extended to language identification as well

as accent detection which could help further more accurate identification of a speaker

in case of forensic applications.

Integrating this physical parameter system along with language and accent in

the end to end approach could be a potential advantage to the speaker profiling

applications where the amount of available data is less.
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and S. Narayanan (2013). Paralinguistics in speech and languagestate-of-the-art

and the challenge. Computer Speech & Language, 27(1), 4–39.

Shivakumar, P. G., M. Li, V. Dhandhania, and S. S. Narayanan, Simplified and

supervised i-vector modeling for speaker age regression. In 2014 IEEE International

Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2014.

Singh, R., J. Keshet, and E. Hovy, Profiling hoax callers. In 2016 IEEE Sympo-

sium on Technologies for Homeland Security (HST). IEEE, 2016a.

Singh, R., B. Raj, and J. Baker, Short-term analysis for estimating physical pa-

rameters of speakers. In 2016 4th International Conference on Biometrics and

Forensics (IWBF). IEEE, 2016b.

Smola, A. J. and B. Schölkopf (2004). A tutorial on support vector regression.

Statistics and computing , 14(3), 199–222.

Souza, L. B. R. D. and M. M. D. Santos (2018). Body mass index and acoustic

voice parameters: is there a relationship? Brazilian journal of otorhinolaryngology ,

84(4), 410–415.

Spiegl, W., G. Stemmer, E. Lasarcyk, V. Kolhatkar, A. Cassidy, B. Potard,

S. Shum, Y. C. Song, P. Xu, P. Beyerlein, et al., Analyzing features for

automatic age estimation on cross-sectional data. In Tenth Annual Conference

of the International Speech Communication Association. 2009.

99



Tan, Z.-H. and B. Lindberg (2010). Low-complexity variable frame rate analysis

for speech recognition and voice activity detection. IEEE Journal of Selected Topics

in Signal Processing , 4(5), 798–807.

Tanner, D. C. and M. E. Tanner, Forensic aspects of speech patterns: voice prints,

speaker profiling, lie and intoxication detection. Lawyers & Judges Publishing Com-

pany, 2004.

Van Dommelen, W. A. and B. H. Moxness (1995). Acoustic parameters in

speaker height and weight identification: sex-specific behaviour. Language and

speech, 38(3), 267–287.

van Heerden, C., E. Barnard, M. Davel, C. van der Walt, E. van Dyk,

M. Feld, and C. Müller, Combining regression and classification methods for im-

proving automatic speaker age recognition. In 2010 IEEE International Conference

on Acoustics, Speech and Signal Processing . IEEE, 2010.

Walker, K. and S. Strassel, The rats radio traffic collection system. In Odyssey .

2012.

Williams, K. A. and J. H. Hansen, Speaker height estimation combining gmm and

linear regression subsystems. In 2013 IEEE International Conference on Acoustics,

Speech and Signal Processing . IEEE, 2013.

Zazo, R., P. S. Nidadavolu, N. Chen, J. Gonzalez-Rodriguez, and N. Dehak

(2018). Age estimation in short speech utterances based on lstm recurrent neural

networks. IEEE Access , 6, 22524–22530.

100



Publications Based on the Thesis

Journals :

1. Shareef Babu Kalluri, Deepu Vijayasenan, Sriram Ganapathy. “Automatic

Speaker Profiling from Short Duration Speech Data”. Speech Commu-

nications, vol.121, pg.16-28, May 2020. (Elsevier)

DOI : 10.1016/j.specom.2020.03.008

Conferences :

1. Kalluri, Shareef Babu , Deepu Vijayasenan, Sriram Ganapathy, Ragesh Ra-

jan M, Prashant Krishnan, “NISP: A Multi-lingual Multi-accent Dataset

for Speaker Profiling”,in the proceedings of the 46th IEEE International Con-

ference on Acoustics, Speech and Signal Processing (ICASSP). Toronto, On-

tario, Canada, IEEE, 2021.

DOI: 10.1109/ICASSP39728.2021.9414349

2. Kalluri, Shareef Babu , Deepu Vijayasenan, Sriram Ganapathy “A Deep

Neural Network based End to End Model for Joint Height and Age Estimation

from Short Duration Speech” in the proceedings of 44th IEEE International

Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2019.

DOI: 10.1109/ICASSP.2019.8683397

3. Babu, Kalluri Shareef, and Deepu Vijayasenan. “Robust Features for Auto-

matic Estimation of Physical Parameters from Speech”, in the proceedings of

TENCON 2017-2017 IEEE Region 10 Conference , IEEE, 2017.

DOI: 10.1109/TENCON.2017.8228097

4. Kalluri, Shareef Babu, Ashwin Vijayakumar, Deepu Vijayasenan, and Rita

Singh. “Estimating multiple physical parameters from speech data.” in the pro-

ceedings of IEEE 26th International Workshop on Machine Learning for Signal

101

https://www.sciencedirect.com/science/article/pii/S0167639319301074
https://ieeexplore.ieee.org/document/9414349
https://ieeexplore.ieee.org/document/8683397
https://ieeexplore.ieee.org/document/8228097


Processing (MLSP). IEEE, 2016.

DOI: 10.1109/MLSP.2016.7738873

5. Vijayasenan, Deepu, Shareef Babu Kalluri, K. Sreekanth, and Ansal Issac.

“Study of Wireless Channel Effects on Audio Forensics” in the proceedings of

22nd Annual International Conference on Advanced Computing and Communi-

cation (ADCOM), pp. 33-37. IEEE, 2016.

DOI: 10.1109/ADCOM.2016.15

Other publications :

1. Kotra Venkata Sai Ritwik, Kalluri, Shareef Babu, Deepu Vijayasenan,“COVID-

19 Detection from Spectral features on the DiCOVA Dataset”, in the proceedings

of Interspeech 2021, Brno, Czech Republic.

2. Kotra Venkata Sai Ritwik, Kalluri, Shareef Babu, Deepu Vijayasenan,“COVID-

19 Patient Detection from Telephone Quality Speech Data”, arXiv preprint

arXiv:2011.04299 (2020).

102

https://ieeexplore.ieee.org/document/7738873
https://ieeexplore.ieee.org/document/8385600
https://arxiv.org/abs/2011.04299
https://arxiv.org/abs/2011.04299


Bio-data

NAME : Kalluri Shareef Babu

CONTACT DETAILS

Address : S/o K Babji, #7/29,Cross Roads ,

Kalikiri, Kalikiri (P&M),

Chittoor Dist., Andhra Pradesh–517234

T : 9620789927

B : shareefbabu1@gmail.com

EDUCATIONAL QUALIFICATIONS

Doctor of Philosophy (Ph.D)

National Institute of Technology Karnataka, Surathkal Dec 2013–Dec 2020

Master of Technology (M.Tech)

Jawaharlal Nehru Technological University (JNTU)- Anantapur,

Andhra Pradesh. 2011-2013

Branch : Digital Electronics and Communication Systems

Bachelor of Technology (B.Tech)

Jawaharlal Nehru Technological University (JNTU)- Anantapur,

Andhra Pradesh., 2007-2011

Branch : Electronics and Communication Engineering

Research Interests

Speech Signal Processing, Speaker profiling, Pattern Recognition, Machine Learn-

ing and Deep learning.

I Joined as Post Doctoral Fellow at IUI-Lab, SEIKEI University, Japan.

103


	Abstract
	List of figures
	List of tables
	Abbreviations
	Introduction
	Objectives of the Thesis
	Contributions
	Outline

	Literature Review
	Physiological cues in speech
	Speaker Profiling Literature
	Height Estimation
	Age Estimation
	Body Build and other Characteristics Estimation

	Motivations & Challenges 
	Summary

	Speaker Profiling Features 
	Dataset
	System Overview 
	 Spectral Features Extraction
	 Cepstral Features
	Sentence Level Representation

	Fundamental Frequency and Formant Features
	Sentence Level Representation

	Harmonic Features
	Support Vector Regression
	Evaluation Metrics
	Experiments and Results 
	Target Mean Predictor
	Individual Feature Results
	Feature Combination Results
	Duration Analysis 

	Summary

	Estimation of Multiple Physical Parameters
	Design of Datasets
	Metadata
	Speech Recording Environment
	Speech Data and Recording Protocol
	AFDS Recording Protocol
	NISP dataset Recording Protocol


	Characteristics of Audio Forensics Dataset
	Characteristics of NITK-IISc Speaker Profiling Dataset
	Potential Applications
	Accent & Language Identification
	Speaker Recognition
	Speech Recognition

	Experimental Results on AFDS
	 Individual Feature Results
	Feature Combination Results
	Duration Analysis 
	Effect of Language

	Experimental Results on NISP dataset
	Individual Feature Results 
	Feature Combination Results
	Duration Analysis
	Effect of Language

	Summary

	End to End Physical Parameter Estimation System
	Baseline system
	Deep Neural Network Architecture for Joint Prediction of Physical Parameters
	Experiments and Results on TIMIT Dataset
	Baseline GMM-UBM-SVR System
	DNN Model Initialization
	DNN Learning
	Effect of utterance length
	Error Analysis

	Experiments and Results Using AFDS & NISP Datasets
	Summary

	Conclusions
	Bibliography
	Publications Based on the Thesis


{"type":"Document","isBackSide":false,"languages":["en-us"],"usedOnDeviceOCR":true}


{"type":"Document","isBackSide":false,"languages":["en-us"],"usedOnDeviceOCR":true}

