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ABSTRACT 

Drilling is widely used in many engineering applications such as mining, geotechnical and 

petroleum industries. Drilling operations produce sound that can be used to estimate rock 

properties and specific energy. The conventional method of determining of rock properties 

and specific energy is expensive and time-consuming. In this study, a new technique was 

developed to estimate rock properties and specific energy (SE) using dominant frequencies 

and A-weighted equivalent sound pressure levels generated during diamond drilling 

operations. First, sound pressure level was recorded while performing rock drilling 

experiments on seven different types of rock samples using computer numerical control 

(CNC) drilling machine BMV 45 T20 and sound signals of these sound frequencies were 

analyzed using Fast Fourier transform (FFT). Using simple linear, multiple regression 

analysis and artificial neural networks, mathematical equations were developed for various 

rock properties, i.e. uniaxial compressive strength, Brazilian tensile strength, density, 

abrasivity, impact strength index using dominant frequencies of sound pressure levels. This 

study also reports the methods for prediction of SE, effect of physico-mechanical rock 

properties on SE and effect of operational variables on SE using A - weighted equivalent 

sound levels produced during diamond drilling operations. Initially SE was determined for all 

selected rock types and a correlation was developed between SE and physico-mechanical rock 

properties (PMRP) and operating variables. The developed prediction models were validated 

using determination coefficients (R
2
),  t-test, F-test and performance predictions i.e. values 

account for (VAF), root mean square error (RMSE) and mean absolute percentage error 

(MAPE). For SE, the R
2
 values obtained a range from 75.58 % to 78.76 %, RMSE values 

obtained a range from 0.074411 to 0.578601, VAF values obtained a range from 72.826808 to 

84.155813 and MAPE values obtained a range from 0.061218 to 2.321007 for selected rock 

samples and t and F values also obtained below the tabulated values (2.44). Concerning SE’s 

relation to PMRP, it was observed that SE increased with increasing uniaxial compressive 

strength, Brazilian tensile strength and dry density and decreased with increasing abrasivity. 

For PMRP, the R
2
 values obtained from 92.25 %, 90.99 %, 47.15 %, 93.39 %, corresponded 

to uniaxial compressive strength, Brazilian tensile strength, density and abrasivity. Similarly, 

regarding SE’s relation with operational variables, it was found that SE decreased with 
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increasing drill bit diameter, penetration rate and drill bit speed. The developed models can be 

used to predict rock properties and specific energy at early stage of planning and design. 

Keywords: rock properties, sound pressure level, Fast Fourier transform (FFT), sound signal, 

diamond drilling, dominant frequencies, excitation frequencies, and specific energy. 
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CHAPTER - 1 

                                      INTRODUCTION 

1.1 Background   

Drilling is an integral operation in mining, quarrying, construction and petroleum 

industry. It is also an essential activity in mineral exploration and blast hole design in 

opencast mines. In underground mines, drilling is widely used for a variety of tasks 

such as rock blasting, tunneling, and excavation. Drilling is invariably associated with 

noise production. Noise/acoustic has been widely used in other domains of 

engineering. However, its application in mining/geotechnical domain is limited. 

According to Vardhan et al. (2009), rock properties are crucial for an effective blast 

hole design and other construction projects. The lack of knowledge of rock properties 

has an adverse effect on the environment, when the energy is released during blasting. 

Usually, rock properties are not readily available at mining and construction sites. As 

a result, it is needed to send rock samples to a national laboratory, which is a time-

consuming process. An alternative way of determining rock properties is highly 

desirable. One of the possible approaches is to record noise signals while drilling and 

analyse these signals for the purpose of rock characterization. The objective of this 

study is to explore the possibility of using noise/sound generated during drilling to 

determine physico-mechanical properties of rocks, which will be of interest and useful 

to geotechnical and mining engineers. 

Minerals and their related products are the principal raw materials for the basic 

industry around the world. Diamond drilling plays a major role in mining and allied 

industries. Exploration is very essential to recognise the mineral presence in the 

bedrock and success of any mining company largely depends on the accuracy in 

exploration. In most of the exploration work, diamond drilling plays a major role and 

hence, every effort should be made so that the diamond drilling is efficient and cost-

effective. The specific energy (SE) is an important parameter to assess the efficiency 

in rock drilling. For practical purpose, SE is a useful parameter for estimating the 

energy requirement for a particular drilling operation, planning and design of 
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excavation projects. SE can be used to indicate drill bit condition, rock strength and 

rock hardness during drilling operation. SE in rock drilling depends on operational 

parameters, such as penetration rate, drill bit speed, drill bit diameter, torque, thrust 

and rock properties. A very good indication as to how well drill bit performs in a 

particular bit-rock combination has been given by specific energy. Any rock drilling 

operation creates sound/noise as a by-product. This noise/sound could be used to 

predict SE during drilling.  

1.2 Origin of the Research Work 

 

The concept of the determination of the rock properties and specific energy using 

frequency analysis, A-weighted sound level during diamond drilling operations and 

also developing prediction models using simple linear, multiple regression, and 

artificial neural network have not been reported. Considering this research gap, the 

research work was formulated. 

1.3 Definition of the Problem 

 

The rock properties and specific energy i.e., the energy required to excavate a unit 

volume of rock are not available at mining and construction sites. As a result, it is 

needed to send rock blocks or drill cores to a laboratory, which is time consuming. As 

an alternative method to determine rock properties could be the application of sound 

pressure level produced during core drilling. The thesis mainly focuses on the 

prediction of physico-mechanical rock properties using sound pressure levels 

generated at dominant frequencies, and the prediction of specific energy using A-

weighted sound level during drilling operations.  

1.4 Objectives of the Study 

 

The following are the objectives of the study 

1. Determination of rock properties such as uniaxial compressive strength, Brazilian 

tensile strength, density, abrasivity and Impact Strength Index (I.S.I). Influence of 

these properties on noise levels produced during diamond drilling. 

2. Determination of specific energy in diamond drilling and its influence on noise 

levels produced during drilling. 
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3. Prediction of rock properties using frequency analysis in diamond drilling and 

development of correlations between rock properties and dominant frequencies 

produced during drilling using simple and multiple regression models. 

4. Prediction of rock properties using frequency analysis in diamond drilling and 

development of correlations between rock properties and dominant frequencies 

produced during drilling using Artificial Neural Networks (ANN). 

5. Comparison of the models developed based on simple, multiple regression and 

ANN. 

 

1.5 Justification 

 

Using the developed prediction models, one can easily estimate the rock properties 

and specific energy by recording the sound pressure levels during diamond drilling, 

and substituting this value along with drill bit diameter, drill bit speed, and 

penetration rate. This technique, which is an indirect method to predict rock properties 

and specific energy can be used at early stage of design. Prediction of rock properties 

using frequency analysis and prediction of specific energy (required time to remove a 

unit volume of rock mass) using A- weighted equivalent sound level produced during 

the diamond drilling operations has not been reported anywhere by earlier 

investigators. Hence, the present research work can be taken in this direction.  

1.6 Structure of the Thesis 

 

This study focuses on the quantification of physico-mechanical rock properties and 

specific energy using sound pressure levels at dominant frequencies and A-weighted 

equivalent sound levels generated through diamond drilling operations. The focus is 

on the development of predictive models. The developed models can be utilized for 

quantification of rock properties and specific energy with an acceptable degree of 

accuracy in realistic applications. 

In this thesis, five chapters are presented in a logical order. Chapter 1 provides a 

general introduction about rock properties and specific energy along with problem 

identification, justification.  It also briefly describes various topics covered by the 

different chapters of this thesis. Chapter 2 presents the review of literature for 

quantification of the physico-mechanical rock properties and specific energy.   
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Chapter 3 describes the equipment used in the investigation, methodology of the 

present study, experimental set-up/procedure.  

Chapter 4 describes the prediction of rock properties using sound levels at dominant 

frequencies. The prediction models were developed by simple linear, multiple 

regression analysis, and artificial neural networks. This chapter presents specific 

energy prediction equations developed using multiple linear regression analysis, then 

correlations of this specific energy with rock properties and operating variables. 

Hence, the conclusions and the recommendations of further research work are 

discussed in Chapter 5.  
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CHAPTER - 2 

LITERATURE REVIEW 

2.1 Applications of Acoustic Emission in Geotechnical Engineering and Rock 

Drilling 

Initially, the acoustic applications were implemented by Obert (1941). Obert (1941), 

Obert and Duvall (1942) utilised acoustic frequencies for estimating rock burst in 

metal mines. It was found that different stress states in rock produces various acoustic 

noises. The authors used sub-audible noises for predicting the rock burst in 

underground metal mines.  

Hardy (1972) conducted an inclusive review of acoustic emissions in the area of rock 

mechanics. The authors conducted acoustic emission experiments related to mine 

design and the alleviation of rock burst in North America in the 1930s. It was 

concluded that the acoustic emission technique provides the behaviour of geologic 

rock materials‟ deformation and failure.  

Rafavich et al. (1984) conducted a detailed laboratory investigation on the 

characteristics of carbonate rock and acoustic properties with a vast range of 

lithology. The rock composition indicates that porosity is the most influencing factor 

for P-wave and S-wave velocity. The results are based on the property of rocks used 

for evaluation of lithology and porosity changes for seismic section from Williston 

basin (the USA and Canada).  

McNally (1990) studied the quantification of coal strength and elastic moduli in 

Queensland using sonic log techniques. The author developed mathematical 

relationships between geotechnical parameters and sonic log interval transit times.  

Zborovjan (2001), Zborovjan (2002), Zborovjan et al. (2003) investigated the 

identification of rock types based on the hidden Markov model for rock drilling 

operations. This model recognized the particular acoustic signature of every rock type 

being drilled. It was said that the maximum information contained appropriate signal 
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transfer, and the rock drilling acoustic signature could be found between 5000 hertz to 

8000 hertz.  

Miklusova et al. (2006) and Krepelka et al. (2007) investigated the rock strength 

characteristics and the feasibility of utilisation of optimum control parameters, such as 

thrust and speed, during drilling operations. It was discovered that the change in the 

audio signal depends on the drilling regime and the audio signal can be used for the 

control of rock disintegration process.  

Gradl et al. (2007) carried out the drill bit diagnosis using noise of a bit during drilling 

operations based on the acoustic data. It was revealed that the bit physical 

characteristics and bit diagnosis (broken teeth and bit balling) can be performed using 

the noise of a bit in real time projects based on the acoustic data.  

Later, Vardhan and Murthy (2007) and Vardhan et al. (2009) introduced a novel 

concept of quantification of physico-mechanical rock properties by utilising sound 

levels generated through drilling operations. Various types of rock samples were used 

to find the rock properties using a fabricated jackhammer drilling machine. It was 

concluded that this technique is effective for the quantification of rock properties.   

Kumar et al. (2011a, 2011b, 2011c, 2013a, 2013b) investigated in detail the 

quantification of rock properties (sedimentary, metamorphic and igneous) using sound 

levels produced in rock drilling operations. A set of mathematical equations were 

formulated for predicting the various rock properties with an admissible degree of 

accuracy.  

Shreedharan et al. (2014) probed on the identification of rock type based on acoustic 

fingerprinting.  

Karakus and Perez (2014) conducted laboratory experiments using impregnated 

diamond core drilling operations. The authors developed linear relationships between 

the acoustic emission signals and diamond drill bit wear. It was concluded that the 

developed linear relationships could predict the depth of the cut, weight on the drill 

bit, wear of the drill bit, and torque on the drill bit, using the time domain of the 

acoustical signal.   
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Kivade et al. (2015) used radial basis function & multilayer perception, two neural 

network methods, for predicting the geo-mechanical properties of various rocks using 

noise levels produced in percussive drilling operations.   

Delibalta et al. (2015) quantified the physico-mechanical rock properties using noise 

level. Laboratory experiments were conducted using an automatic rock cutting 

machine with 54 types of rock samples. It was concluded that increasing the density 

increases the sound level and increasing porosity decreases the sound level.   

Rostami et al. (2015), Qin et al. (2018), Xiao et al. (2018), and Flegner et al. (2019) 

investigated lithological rock recognition, based on the vibro-acoustic signal approach 

during rock drilling operations. The authors captured vibro-acoustic signals using 

vibration sensors and spectral wideband acoustic sensors. These captured signals were 

analysed in terms of time domain and time-frequency domain for analysing the rock 

characteristics. It was concluded that the spectral wideband acoustic sensors were 

providing better signals to the noise ratio than vibration sensors.   

Zhang et al. (2018a) introduced a new index for evaluating coal brittleness from 

fracture networks, using thee hydraulic fracturing process. The acoustical signals were 

captured during uniaxial compression and triaxial compression tests; these captured 

signals were correlated with coal brittleness. It was concluded that acoustical signals 

showed sudden changes when reaching the yield stress and peak strength, 

representing high brittleness.   

Zhang et al. (2018b) reported that the acoustic emission technique was employed to 

detect the initiation and evolution of micro cracks of rocks during the laboratory 

investigations.   

Li et al. (2018), Jai et al. (2018), and Feng et al. (2019) conducted a laboratory 

investigation on hydraulic fracturing, using layered shale rock samples using the 

acoustic emission technique. The result concluded that the characteristics of the 

injection pressure curve and acoustic emission response detected the hydraulic 

behaviour growth in layered shale.   
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Hu et al. (2019) conducted a laboratory experiment on the rock burst process of bore 

holes using the acoustic emission technique. It was concluded that sharp and high 

amplitude acoustical signals could be used for the quantification of the rock burst, 

while micro cracks and splitting dominated the failure process.   

He et al. (2019) investigated rock burst disasters in thick coal seams and steeply 

inclined coal seams. The authors used micro seismic and acoustic emission techniques 

as an early warning before the rock burst occurred during mining.   

Sheng et al. (2019) carried out a detailed study on water jet rock drilling efficiency in 

relation to acoustic emission. The authors correlated rock drilling efficiency to 

acoustical signals during drilling operations. It was concluded that the high frequency 

band reported a good correlation with the rate of penetration.  

2.2 Prediction of Specific Energy 

The concept of SE in rotary drilling for the first time was introduced by Teale (1965). 

He suggested that the work done per unit volume of broken rock relates the process to 

the physico-mechanical properties of rock, such as compressive strength of rock and 

density. Any rock drilling operation creates sound/noise as a by-product. This 

noise/sound could be used to predict SE during drilling. It may also be useful for 

determining the physico-mechanical properties of rocks during drilling, which will be 

of interest to geotechnical and mining engineers.   

 Some studies are reported on the determination of SE from rock cutting/drilling 

operation. SE has been successfully used in the diamond tool industry for optimising 

drilling and cutting parameters (Ersoy 2003, Ersoy and Atici 2004, 2007, 2009, Miller 

and Ball 1990, Seimer-Oisen and Blindheim 1970, Becker et al. 1984). Several 

researchers have indicated how well drill bit performs in a particular bit-rock 

combination on SE in rock drilling A very good indication as to has been given by 

studies done by (Chiang and Stamm 1998; Luis et al. 2004; Balci et al. 2004; Curry et 

al. 2005; Dupriest and Koederitz, 2005; Tiryaki and Dikmen 2006; Banks 2013; Luo 

et al. 2014). 
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Evans (1962, 1984) established a theoretical connection between conical bit-type 

cutters and the cutting force for wedge picks, which were directly associated to SE.  

Fowell and McFeat-Smith (1976) conducted laboratory investigational studies to 

correlate SE obtained by small-scale cutting tests to a few mechanical and index 

properties of rocks, such as compressive strength, Schmidt hammer rebound value, 

cone indenter index, cementation coefficient.  

Goktan (1991) developed the relationship between SE obtained from micro-scale 

laboratory rock-cutting tests. It was concluded that a reasonable relationship cannot be 

found between the brittleness index and SE.  

Pessier and Fear (1992) developed a new mathematical equation for the penetration 

rate based on the SE equation derived by Teale. They altered Teale‟s SE model by 

replacing an equation they derived; the new equation conveyed torque as a function of 

weight on the bit, bit diameter and bit-specific coefficient of sliding friction. The 

authors showed that under atmospheric drilling conditions, mean SE is nearly equal to 

the uniaxial compressive strength (UCS) of the rock being drilled.  

Redddish and Yasar (1996) investigated the rock strength index test based on SE of 

drilling. It was concluded that the rock strength index was more reliable than other 

index tests and the test results can be applied practically in the field.  

Chiang and Stamm (1998) developed a method to estimate the instantaneous specific 

rock energy using corrected down-the-hole (DTH) drill monitoring data. Accordingly, 

the authors were able to generate a specific rock energy profile for every hole drilled 

and thus map an entire drilling site for this index.  

Copur et al. (2001) conducted laboratory experiments on rock cutting operations with 

a conical cutter. In this study, eleven rock types and ores were selected for the 

determination of optimum SE during rock cutting operations. It was concluded that 

the developed prediction equations can be used to estimate the cut ability, optimum 

SE and production rate.  

Waughman et al. (2002) established a real-time monitoring of SE data in combination 

with sonic data and drilling data, which benefits in taking a decision, when to pull the 



10 
 

bit out of the hole. They outlined a guide on the application of SE monitoring 

technique to the field. The concept was proved to work in water based mud treated 

with anti-balling chemicals and synthetic based mud systems.  

Altindag (2003) correlated SE with rock brittleness in rock cutting. The relationship 

between the brittleness of rock and rock cutting efficiency was established using 

regression analysis. The high brittleness value (the ratio between compressive 

strength and tensile strength) indicates that the high SE is required for efficient rock 

cutting.  

Luis et al. (2004) investigated specific rock energy (SRE) using DTH drill monitoring 

data. They characterised the rock at a given drilling site and helpful in identifying the 

different rock formations. It was said that there were two important correlations 

between DTH hammer operational variables. The first correlation was observed 

between the frequency and penetration rate; with increasing penetration rate, the 

frequency dropped. The second correlation was observed between penetration and 

torque; as the torque increased, the penetration increased. It was concluded that the 

rock drilling impact hammer performance improved then by reducing the operational 

costs.  

Balci et al. (2004) established statistical relations between optimum SE and rock 

properties. The statistical analysis indicated that the optimum SE achieved in the 

laboratory from the full-scale rock cutting tests can be predicted reliably from UCS, 

Brazilian tensile strength (BTS), static and dynamic elastic moduli and Schmidt 

rebound values of the rocks. Finally, the strongest relations were established by using 

UCS and BTS.  

Curry et al. (2005) introduced a technique to characterise the difficulty of drilling a 

specific formation in its down-hole pressure environment, using the concept of SE. 

The authors developed an algorithm to evaluate the technical limit of SE from wire-

line sonic, lithology and pressure data. It was concluded that the technical limit of SE 

denotes the lowest SE that can be reasonably expected for a particular combination of 

rock properties and air pressures.  
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Dupriest and Koederitz (2005) conducted laboratory experiments to estimate the 

drilling efficiency of drill bits using mechanical specific energy (MSE). It was 

concluded that MSE can identify the efficiency of the drilling system, optimum 

operating parameters, cost justify changes and bit selection during real-time projects.  

Tiryaki and Dikmen (2006) examined the effects of textural and mineralogical 

properties of sand stones on SE, along with physico–mechanical properties. The 

relationship between SE and compositional, textural and engineering properties of 

sandstones were evaluated through bivariate correlation and linear regression analysis 

using SPSS 11 Software package. Finally, Poisson‟s ratio revealed the best correlation 

to SE and more reliable SE prediction tool in sandstone.   

Erosoy and Atici (2007) reported a study on ultrasonic technology technique in 

volcanic and carbonate rock cutting to measure P-S wave velocities. Cutting SE was 

defined as the energy required for excavating a unit volume of rock. It was a useful 

parameter in crushing, drilling, cutting, excavation and breaking. The effect of cutting 

SE and rock properties on P and S wave velocities were evaluated with simple linear 

regression analysis. It was concluded that this seismic technology can be widely used 

in the field and laboratory.  

Acaroglu et al. (2008) established a fuzzy logic model to estimate SE from tunnel 

boring machine (TBM). A model was proven to predict the SE requirement of 

constant cross-section disc cutters in rock cutting operations. It was found that the 

model predicts SE value as output parameter for given disc cutter, rock and cutting 

parameters. The model values exhibited that the fuzzy logic values are close to the 

experimental values.  

Atici and Ersoy (2009) developed a statistical relation among brittleness, destruction 

SE and both cuttability and drillability  using the optimum data obtained from the 

experimental work. The optimum data for the bits and saw blades were extracted for 

each series of drilling and cutting results and were analysed based on maximum 

penetration and cutting rates.  The results based on regression analysis indicated a 

strong exponential, linear and logarithmic relations between cutting SE of circular 

diamond saw blades and brittleness.  
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Aydin and Aydiner (2012) conducted laboratory investigations on the sawing of 

granites by circular diamond saw blades, depending on operational variables. The 

authors developed mathematical models for estimation of SE in the sawing process. 

The developed models were validated through statistical tests, such as t and F tests. 

Neves et al. (2012) investigated the geomechanical behaviour in rock cutting with 

diamond saw blades. The energy of elastic and plastic deformation was determined by 

uniaxial compression tests and the energy consumed per unit volume in the cutting 

process. Finally, the correlation between overall cutting SE and deformation specific 

energy was analysed.  

Engine et al. (2013) studied the efficiency of abrasive water jet cutting (AWJC) and 

circular sawing (CS). The relationship between SE values and rock properties was as 

discussed. It was concluded that shore hardness and abrasive resistance were found to 

be strongly related to SE.  

Yurdakul and Akdas (2012) conducted laboratory experiments for quantification of 

the cutting SE using operational parameters. The authors used seven types of cutters 

for six varied carbonate rocks.  The developed prediction models was recommended 

to predict SE in the petroleum and mining industry.  

Banks (2013) investigated minimising mechanical SE while drilling, using extreme 

seeking control; minimising mechanical SE requires continual monitoring as the drill 

bit wears. Extreme control was used by putting in a perturbation in the penetration per 

revolution to estimate the total local gradient of the mechanical SE. It was concluded 

that this control method is stable and hence can be used in bench marking different 

drill bits.  

Luo et al. (2014) investigated the reduction of drilling noise from roof bolting 

operations through proper control of drilling operation. Lower SE and higher SE were 

achieved at proper selection of high bit depth according to drill bit and strength of the 

rock. It was concluded that by reducing wasted energy and improving the efficiency, 

the heat, noise, fire dust and bit wear were reduced.  
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Shewalla et al. (2015) conducted a detailed study on rock cutting operation to measure 

the required load to fail the rock under confining stress. Their results show a non-

linear relation of SE with bore hole pressure.  

 Recent studies attempted to predict of rock properties using sound level produced 

during drilling operations (Vardhan and Murthy 2007; Vardhan et al. 2009; Kumar et 

al. 2011a, 2011b, 2011c, 2013a, 2013b, 2019a, 2019b; Kivade et al. 2012a, 2012b, 

2013, 2015; Delibalta et al. 2014, 2015; Shreedharan et al. 2014; Forouharmajd et al. 

2015; Brown 1981; Mellor and Hawkes 1971; Ulusay and Hudson 2007; Kahraman 

2013; Kalyan 2016; Masood 2015; Macias 2017).  These studies used sound pressure 

level and frequency of sound signals to develop empirical equations for prediction of 

rock properties.  

Based on the findings of the above studies, SE is a very important parameter in 

planning and designing of excavation projects, mining and petroleum industry and 

depends on rock properties. However, most of the previous investigators determined 

SE using conventional methods, but the prediction of SE using A-weighted equivalent 

sound pressure level from diamond core drilling operations has not been studied in 

detail.  Hence, the present investigation was taken up for prediction of SE using A-

weighted equivalent sound pressure level during diamond core drilling operations. 

2.3 Regression Techniques for Prediction of Rock Properties 

Regression analysis is a powerful tool to derive relationship between the several 

dependent and independent variables.  

Sachapazis (1990) conducted a laboratory experiment to quantify the deformation of 

the carbonate rock samples. The emprirical equations were developed for the physico-

mechanical properties of carbonate rocks such as UCS, tangent Young‟s modulus, 

Schmidt hammer rebound hardness using multiple regression analysis. It was 

concluded that the regression coefficient (R
2
) value higher corresponding the rock 

properties. 

Kim and Gao (1995) studied variations of rock mass mechanical properties and 

deformation module of rock mass using borehole jacking tests. The authors have 
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proposed “Monte Carlo” method to estimate the probability distributions of 

deformation modules, and compressive strength of rock mass. They concluded that 

the simulation results demonstrations reasonable representation of the probability 

distribution of the rock mass characteristics.  

Katz et al. (2000) developed empirical correlations between Schmidt hammer rebound 

hardness density, UCS, and Young‟s modulus.  The developed estimation equations 

can be used in the field and laboratory with following limitations such as (i) tested 

rock is well-cemented and apparently elastic (ii) rocks crack under the impacts not 

properly tested (iii) Hammer measurements should be accompanied on smooth 

surfaces (iv) loose blocks can be measured if the intact part of the block weighs a few 

tens of kilograms or more. Yasar and  

Erdogan (2004) conducted laboratory experiments for quantification of rock 

properties using hardness methods. In this investigation found that rock properties can 

be quantified using shore hardness, Schmidt hammer compared with the calculated 

value from various statistical equations. It was concluded that this method can be used 

for estimation of UCS, and unit value of weight.  

Faisal et al. (2007) performed a simple linear regression analysis between various 

types of hardness and intact rock properties. The obtained results show very strong 

correlations of regression coefficient value compared with similar investigations. It 

was concluded that Poisson‟s ratio decreased with an increase in rock strength.  

Kilic and Teymen (2008) determined physico-mechanical properties using non-

destructive and indirect methods.  For laboratory tests, nineteen different rock 

samples were collected from diffident locations. The mathematical equations were 

developed in the relation of UCS, point load index, sound velocity, Schmidt hardness, 

abrasion resistance, and indirect tensile strength. It was concluded that the UCS, wear 

resistance, and indirect tensile strength can be estimated by using nondestructive 

methods. 

Mahdiabadi and Khanlari (2019) developed correlations between UCS and modulus 

of elasticity. For this study, eighty calcareous mudstones core samples were used to 

develop prediction equations using multiple regression analysis, ANN, and adaptive 
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neuro-fuzzy ınference system. The developed models were validated using MPE, 

RMSE, and VAF. The results show that the fuzzy interface system was a powerful 

tool to estimate the modulus of elasticity and UCS compared with other statistical 

analysis tools. 

Kahraman et al. (2019) determined mean particle size in the relations of rock 

properties and mineralogical percentage. In this study, six granite samples were tested 

in the laboratory. The prediction equations were developed in the relation of rock 

properties results and mineralogical percentage to mean particle size. The results 

show that the multiple regression equation was given the highest coefficient 

correlation value than simple linear regression analysis. The multiple regression 

techniques can be used for prediction of practical size at the preliminary estimation of 

the project cost.  

2.4 Artificial Neural Network Techniques for Prediction of Rock Properties 

Estimating the rock properties using an approximate calculation (soft computing) is 

an alternative tool for researchers. Artificial Neural Network Techniques (ANN) are 

better than statistical analysis because empirical relationships derived from regression 

analysis,   estimates only the mean value; as a result, low experimental values are 

overvalued, high experimental values are miscalculated. The ANN does not force the 

predicted value to be a mean value, thus, accurately maintaining the existing 

difference between the measured data. 

ANN also investigates the self-organised interactions between variables. Many 

researchers reported on the modelling of the rock properties and its behaviour using 

neural networks (Ghabousi et al. 1991; Haykin et al. 1998; Singh et al. 2001; Singh et 

al. 2003; Bhatnagar and Khandelwal 2012; Salimia et al. 2015; Momeni et al. 2015; 

Tripathy et al. 2015; Madhubabu et al. 2016; Abdi et al. 2018; Rastegarnia et al. 

2018). ANN has the ability to significantly generate the suitable output from difficult 

or inexact information (data). It can detect the exact patterns from complex data 

which are neither predictable by the human brain nor by statistical analysis.  

Rumelhart et al. (1986) proved that the ANN model was perfect for classifying 

complex information for the demands of a new situation (Simpson, 1990). Another 
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advantage of ANN includes self-organisation, adaptive learning based on real time 

operations, self-organises redundant information coding and fault tolerance. Various 

networks can be retained even when the main network is impaired (Yilmaz & Sendir 

2002; Yilmaz & Yuksek 2008; Yilmaz 2010; Yilmaz & Kaynar 2011). 

Meulenkamp et al. (1999) examined the possibility of estimating unconfined 

compressive strength using ANN for the toughness of rocks with Equotip hardness 

tester based on rock toughness, dry density, and sizes of the grains.  

Singh et al. (2001) established the necessary models to predict the physico-

mechanical behaviour of the rock mass. Statistical analysis (ANN) was performed to 

estimate the rock properties i.e., uniaxial compressive strength, point load strength 

index, and Brazilian tensile strength based on the texture and composition of the rock 

mass. Several researchers have also established ANN predictive models to evaluate 

the physico-mechanical properties of rock mass such as static modulus of elasticity 

(E), uniaxial compressive strength, density, shore scleroscope test hardness, shear 

strength, slack durability and point load strength index many other complex properties 

of rock mass (Sarkar et al. 2010; Dehghan 2010; Zorlu et al. 2008; Sonmez et al. 

2006; Tiryaki 2008a; Tiryaki 2008b; Tiryaki et al. 2011; Ocak & Seker 2012).  

Yilmaz & Kaynar (2011) developed prediction equations for rock mass from soft 

computing methods. The neuro-fuzzy and ANN techniques were used to predict the 

swell percentage of the soil. It was concluded that these soft computing techniques are 

useful for reducing the uncertainties in the geotechnical applications. 

However, some of studies reported the utility of the perceptible noises to estimate of 

the rock bursts in the metal mines and derived relationships between the 

geomechanical rock materials and acoustic emission for prediction of rock the rock 

properties (Obert 1941; Obert and Duvall 1942; Rafavich et al. 1984; Hardy 1972; 

McNally 1990; Milklusova et al. 2006; Krepelka and Futo 2007; Gradl et al. 2007; 

Zborovjan 2001; Zborovjan 2002; Zborovjan et al. 2003; Flegner et al. 2014; Flegner 

et al. 2019; Liu et al. 2019).  

Vardan and Murthy (2007) conducted a laboratory experiment to predict rock 

properties with equivalent noise levels generated by jackhammer percussive drilling. 
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After many researchers developed mathematical models for prediction of rock mass 

properties (Vardhan and Murthy 2007; Vardhan et al. 2007; Kumar et al. 2011a; 

Kumar et al. 2011b; Kumar et al. 2013a; Kumar et al. 2013b; Kumar et al. 2011c; 

Kivade et al. 2015; Shreedharan et al. 2014; Masood 2015; Delibalta et al. 2015; 

Kahraman et al. 2013; Alvarez et al. 1999; Finol et al. 2001; Gokceoglu 2002; Hu et 

al. 2019; Hassanpour et al. 2011; Teymen 2019; Krúpa et al. 2018; Omar et al. 2018; 

Aldeeky and Hattamleh 2018; Cao et al. 2010; Liao et al. 2018).  

The literature suggests that the ANN modelling approach is more advanced than the 

conventional statistical techniques (ex: regression). The use of neural networks 

reduces the potential inconsistency of correlations.  However, predictions of rock 

properties using ANN have not been used in the rock mechanics using dominant 

frequencies of acoustics. 

Most of the previous investigators utilised an equivalent sound level for predicting 

physico-mechanical rock properties while some of them used frequency analysis for 

rock identification/rock type. The audio signal processing from rock drilling 

operations has not been investigated in detail, although it was suggested to carry out 

work in this direction, as Kumar et al. (2011b). Hence, the objective of this 

investigation was to predict the physico-mechanical rock properties using dominant 

frequencies from rock drilling operations using frequency analysis with the help of 

audio signals. 
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CHAPTER - 3 

METHODOLOGY 

3.1 Equipment Used  

3.1.1 CNC drilling machine 

 

Figure 3.1: BMV 45 T20 CNC drilling machine  

A BMV 45 T20 CNC machine, which is highly automated (Fig.3.1) was used for all 

rock drilling experiments. The CNC machine had 450 mm x 900 mm table size, 6 bar 

optimum air pressure and was connected to a 415 V, 3 Phase and 50 Hertz power 

supply. The experiment chamber was covered completely with glass and fiber panels 

with dimensions of 6 m length, 5 m width and 9 m height.  

3.1.2 Data acquisition system 

 

(a)                     (b)                          (c) 

Figure 3.2: Data acquisition system 

The data acquisition system measures the sound pressure using a computer interface. 

It consists of a computer, a microphone and a data acquisition card hardware along 
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with a Labview software. It is an effective measuring instrument compared to the 

traditional measurement systems (Forouharmajd et al. 2015). The Labview software is 

a flexible software for the analysis of any measurement system. The microphone 

G.R.A.S. Type 40 PH and the data acquisition cards NIUSB – 9234 (from national 

instruments) as shown in Fig. 3.2 were used for measuring the sound pressure level in 

the diamond drilling operations. The microphone was highly sensitive for recording 

accurate sound pressure levels (audio signals) from the diamond drilling operations. 

The specifications of G.R.A.S. type 40 PH microphone and data acquisition card 

hardware NIUSB-9234. Are as follows: 

The microphone specifications:  

Frequency range = 10 Hz to 20 KHz 

Dynamic range = 32 dB (A)–135 dB 

Sensitivity = 50 mv/pa 

The data acquisition card NIUSB-9234 specifications:  

                                                 No. of channel = 4 analogue input channels 

                                                     ADC resolution = 24 bits 

                       Type of ADC = delta-sigma (with analogue prefiltering) 

3.1.3 Noise dosimeter  

 

Figure 3.3: Noise dosimeter (Spark 705+)  

The spark 705+ (Larson Davis, USA) RC personal noise dosimeter (Fig. 3.3) is one of 

the popular noise exposure measurement instruments.It has advanced features with an 
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ergonomic design. It consists of high visibility of graphical LCD display, which 

delivers back lighting, allowing high visibility in any environment. The instrument 

provides options in English for fast and easy setup and simple control during noise 

measurement. For multiple simultaneous dose calculations, ceiling and peak level 

displays and continuous data logging, the 705 RC computes compliance results for 

any standard – present or proposed – and with quick download using Blaze software. 

The instrument gives the noise dose brief reports and colour graphs for analysis. 

These reports can be downloaded directly from personal computer, using the Blaze 

software.  

3.1.4 Sound level calibrator 

 

Figure 3.4: Sound calibrator (CAL-150) 

The sound level calibrator (Larson Davis - CAL150) was used for microphone 

calibration purpose. It provides an output level range of 94.0 dB to 114.0 dB, with a 

switch selectable at a frequency range of 1 kHz. The sound level calibrator (Fig.3.4) is 

designed for laboratory and field use; its accuracy has been calibrated to a reference 

traceable to the National Institute of Standards and Technology.  

Specifications of the calibrator CAL 150: 

 Sound level calibrator CAL 150: Class 2 type 

 User selectable dual output levels: 94.0 dB and 114.0 dB 

 Output frequency range: 1 kHz 

 Internal batteries for portable operation opening for use with 1/2 microphones 
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3.1.5 Compression testing machine                                        

 

Figure 3.5: HEICO, Compression testing machine 

Uniaxial compressive strength (UCS) is the mechanical property of rocks. The 

compression-testing machine (Fig.3.5) was used to measure UCS of the prepared 

cylindrical core rock specimens as per the ISRM‟s suggested methods (Brown 1981). 

The maximum loading capacity of the compression-testing machine was 2,000 kN. 

3.1.6 Brazilian tensile strength testing machine 

 

Figure 3.6: Brazilian Tensile Strength Testing Machine 

The tensile strength of the prepared rock specimens was determined indirectly by the 

Brazilian tensile strength testing machine as per the ISRM‟s suggested methods 

(Brown 1981 and Mellor and Hawkes 1971).  The Brazilian tensile testing machine, 

as shown in Fig.3.6, has upper and lower jaws along with a guide pin.  A hydraulic 

jack (100 kN) is fixed in the middle of the jaws between the guide pin. This hydraulic 

jack consists of an oil reservoir, an integral pumping unit and an operating handle. On 
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the top of the machine, the pressure gauge (100 kN) is fixed to the jack for displaying 

the load on the specimen. 

3.1.7 Los Angeles abrasive testing machine 

 

Figure 3.7: Los Angeles abrasive machine 

The abrasion of the rock samples was determined as per ISRM suggested methods 

using Los Angeles abrasion testing machine (Fig.3.7). It has a hollow cylinder with 

both ends closed. The inside length and diameter of the cylinder is 508±5mm and 

711±5mm. The cast iron spheres are used for abrasion charge weighing between 390 

and 445 grams. 

3.1.8 Dynamometer 

 

 

                                     Figure 3.8: Drill tool dynamometer, Model-601C 

An IEICOS cutting tool dynamometer (model 601C-sensor type) was used to measure 

thrust and torque, during the drilling operation. The important specification of 

dynamometer is: Thrust is 5000 N, Torque is 200 Nm. The cutting tool dynamometer 

calibration chart as shown in Table 3.1. The dynamometer was fixed directly on the 
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drilling machine table using the slots provided. On the top of this dynamometer, the 

vice was fixed directly with the help of two long nuts and bolts as shown in Fig.3.8. 

The cutting tool dynamometer measured simultaneously two forces in mutually 

perpendicular directions: vertical thrust and rotating torque. The direction of 

force/thrust measurement was vertically downwards and torque was in a clockwise 

rotation direction.  

Table 3.1: Calibrations chart of cutting tool dynamometer 

Applied Load (kg) Thrust (N) Applied load (kg) Torque (N-m) 

0 0 0 0 

50 494 0.5 5 

100 1052 1 10 

150 1534 1.5 15 

200 2040 2 20 

250 2515 2.5 25 

300 2990 3 30 

350 3480 3.5 35 

400 3996 4 40 

450 4426 4.5 45 

500 4996 5 50 

 

3.1.9 Impact strength index testing machine 

 

Figure 3.9: Impact strength index testing equipment 

The impact strength index equipment consists of vertical steel cylinder of 44.5 mm 

internal diameter closed at upper end by a screw cap and fixed permanently at the 
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bottom. A steel plunger of 1.8 kg in mass and 4.3 cm diameter at the bottom fits 

loosely inside the hallow cylinder. A steel cap is provided through which a plunger 

handle moves to prevent the dust escaping from the steel cylinder. The steel cap 

prevents hammer from coming out of the cylinder. 

3.2 Experimental Procedure 

3.2.1 Rock samples used in the investigation  

The experiments were conducted using prepared cubical shaped rock blocks of 20 cm 

length x 20 cm width x 20 cm height (Kumar et al. 2011). A total of five different 

cubical-shaped rock blocks were used in these experiments. These blocks were 

collected from different construction sites in Andhra Pradesh and Karnataka. Table 

3.2 gives the location and rock block types collected. The collected cubical-shaped 

rock blocks were inspected for any macroscopic (visible) defects, fractures and joints 

before conducting the experiment. 

Table 3.2: Location and types of collected rock block  

Sl.no Location Rock type 

1 Veldurthy (Village) / Kurnool (District) 

Andhra Pradesh state, India 

Ochre 

2 Khammam (Village) /Kothagudem (District) 

Telangana State, India 

Bituminous coal 

3 Padubidri (Village) /Udupi (District) 

Karnataka state, India 

Laterite 

4 Bethamcherla (Village) / Kurnool (District) 

Andhra Pradesh state, India 

Pink limestone 

5 Bethamcherla (Village) / Kurnool (District) 

Andhra Pradesh state, India 

Black limestone 

6 Bethamcherla (Village) / Kurnool (District) 

Andhra Pradesh state, India 

Hematite 

7 Bethamcherla (Village) / Kurnool (District) 

Andhra Pradesh state, India 

Dolomite 
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3.3 Determination of Physico-Mechanical Properties of Rocks  

The rock properties were determined as per ISRM suggested methods, as listed in 

Table 3.3. 

Table 3.3: Rock properties 

S. 

No 

Name of rock 

sample 

Rock properties 

  UCS 

(MPa) 

BTS 

(MPa) 

Density 

(g /cm
3
) 

Abrasivity 

(%) 

Impact Strength 

Index (%) 

1 Ochre 14.77 1.02 2.38
 

70.84 50.00 

2 Bituminous coal 16.37 1.09 1.75
 

57.25 59.90 

3 Laterite 39.99 1.87 2.93 50.66 61.98 

4 Pink limestone 51.49 2.32 2.49
 

23.52 70.00 

5 Black limestone 53.01 2.66 2.62 18.29 68.00 

6 Hematite 120.25 7.54 3.60 16.29 70.50 

7 Dolomite 127.74 7.62 3.01 10.98 74.50 

 

3.3.1 Determination of uniaxial compressive strength  

The capacity of a rock to sustain the compressive load is known as the compressive 

strength of the rock. The uniaxial compressive strength (UCS) of rock specimen was 

determined as per the ISRM‟s suggested methods (Brown 1981). For this, NX size 

oven-dried cylindrical core specimens of 54 mm in diameter and a ratio of 2.5: 1 

length to diameter were prepared in the laboratory. The load was continuously applied 

until the failure occurred on the prepared rock core specimens, and the corresponding 

total applied load (kN) on the specimen was recorded. The uniaxial compressive 

strength was calculated by the maximum load applied on the specimen, until failure 

divided the cross-sectional area of the specimen. Five tests were carried out on each 

type of rock core specimen and the mean value of the uniaxial compressive strength 

of different rocks was considered for the analysis.  

3.3.2 Determination of Brazilian tensile strength  

The capacity of a rock to withstand the load that pulls apart is known as its tensile 

strength. Rock core specimens of 54 mm diameter (NX-size) and thickness 

approximately equal to specimen radius were prepared as per the ISRM‟s suggested 

methods (Brown 1981 and Mellor and Hawkes 1971). The cylindrical surfaces were 
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prepared to avoid irregularities around the thickness of the specimen using a polishing 

machine in laboratory, and the end faces were made flat within 0.25 mm and parallel 

to within 0.25
0
. The specimen was loaded onto the Brazilian tensile strength testing 

machine across its diameter. The load was applied continuously until the specimen 

failed, and the maximum load at failure (kN) was recorded. Ten tests were carried on 

each type of rock core specimen and the mean value of tensile strength was 

determined. The Brazilian tensile strength data was obtained by the following 

equation: 

 

  Brazilian tensile strength (σt) = 0.636 P/D t (MPa)           (3.1) 

                                           Where, P = the load at failure (N) 

                                                       D = the diameter of the test specimen (mm) 

                                 t= the thickness of the test specimen measured at the centre (mm) 

3.3.3 Determination of density 

Density is a measure of mass per unit volume and is represented by    . The SI unit of 

density is kg/m
3,

 and it is frequently expressed in g/cm
3
. The density of rocks often 

varies due to their porosity. The density of every rock core specimen was determined 

after the removal of moisture from it (Ulusay and Hudson 2007). The dry density data 

were obtained by the following equation: 

Density of rock (   = Mass of the specimen/Volume of the specimen (kg/m
3
)       (3.2)                                                                                                                       

Where, M = mass of the specimen (kg) 

                 V = Volume of the specimen (m
3
) 

3.3.4 Determination of abrasivity 

Los Angeles abrasion defined as the resistance to wear abrasion of rock aggregates. 

Initially, various types of rock aggregates were prepared as per ISRM standards (i.e., 

sieve passing through 25.4 mm hole size, retained on 19.0 mm hole size). The rock 

aggregates with 1250±25 g were placed in the Los Angeles abrasion testing machine 

and tightly locked. The cylindrical drum was permitted to rotate at 500 revolutions at 

a constant speed of 30-33 rpm. After discharge, the material was sieved on 1.7 mm 
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sieve. The rock aggregates coarser than 1.7 mm was washed substantially weighted to 

nearest gram to determine of Los Angeles abrasion percentage wear. 

     Wear (%)  
                            

               
                                                       (3.3) 

3.3.5 Determination of impact strength index 

Impact strength index (ISI) is an important property of a rock mass and it is used 

widely in geotechnical engineering. Initially, the rock samples collected from mines 

and sieved through 2.54 cm. The oversized material was broken to obtain maximum 

yield of fragments under 2.54 cm. The 0.95-0.32 cm fractions were then removed 

from broken material by hand sieving. A sample of 100 g was carefully weighted 

using weighing machine. The 100 g sample was poured into hallow cylinder, which 

was placed a level of floor. Keeping the cylinder study by feet, the plunger was raised 

to the fully extent and allowed to drop it freely 20 times. Finally the cap of plunger 

was removed and the sample was sieved through a 300 micron size sieve. The impact 

strength index was obtained by calculating the ratio of final weight to the initial 

weight. 

ISI (%)  
                                                                   

                                
          (3.4) 
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3.4 Experimental Set-Up 

 

Figure 3.10: Experimental set-up of BMVK 45 T20 CNC drilling machine 

Fig.3.10 shows the experimental set-up for carrying out drilling using the CNC 

machine on rock blocks and sound pressure level measurement. Fig.3.10 also shows a 

dynamometer and a dynamometer digital indicator, a noise dosimeter with a 

microphone and a dosimeter PC that were used for the purpose of determination of 

specific energy and A-Weighted sound levels. The rock blocks were held at a 

particular position firmly during drilling using a vice and two long nuts and bolts. In 

this investigation, drill bits of diameters 6, 10, 16, 18 and 20 mm (industrial diamond 

core drill bit) at speeds of 150, 200, 250, 300 and 350 rpm and penetration rates of 2, 

3, 4, 5and 6 mm/min were used for all the rock drilling operations. The CNC machine 

was set to drill 30 mm drill hole length throughout the experiments.  

The microphone of the data acquisition system (DAQ-NIUSB-9234) was held at a 

distance of 1.5 cm from the drill bit with the help of a magnetic holder. The DAQ 

microphone was connected to DAQ-NIUSB-9234 with 1-channel cable, which was in 

turn connected to a personal computer with windows operating system (64-bit) using 

the USB cable. The data recorded using the data acquisition system can be visually 

seen on the data acquisition personal computer (DAQ-PC).  
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3.5 Sound Pressure Level Measurement 

The sound pressure level was measured for all bit-rock combinations using the DAQ 

microphone by means of the Labview software. For all sound pressure level 

measurements, the microphone was set aside at a distance of 1.5 cm from the outer 

edge of the drill bit diameter, as shown in Fig.3.10. The audio signals during drilling 

was recorded by the microphone to the computer using the DAQ NIUSB-9234 (data 

acquisition module from national instrumentation) 24-bit ADC (Analog to digital 

converter), which allowed capturing 51,200 samples within one second. The 

resolution of the response was maintained at 1Hz by reading all the samples, which 

were obtained in one second. This module was connected to the system, and the data 

was obtained using serial communication. Fast Fourier transformation (FFT) was used 

to obtain the dominant frequencies with their amplitude of sound pressure level. 

Graphical programming language software (NI Labview) was used for signal analysis 

to capture accurate signals from the diamond core drilling operations. The audio 

signals during drilling were measured up to a drilling depth of 30 mm (required time 

to drill 30 mm depth hole is around 300 seconds). The sound pressure level data (dB) 

was obtained by the following equation: 

The sound pressure level (SPL) = 20 log10 (Pr.m.s/Pref) (dB)                      (3.5) 

Where, Pr.m.s = the Sound pressure measured in root mean square (r.m.s) 

             Pref = reference sound pressure (2x10
-5

 N m
-2

 or 20 µPa) 

 

3.6 Determination of the Dominant Frequencies of audio signals from rock 

drilling operations  

The drilling audio signals captured from rock drilling operations were analysed using 

fast Fourier transformations (FFT) .The acquired data from the microphone 

(Fig.3.11a) was put onto a fast Fourier analyser to convert the time domain signals to 

frequency domain signals. Append signals toolkit (Fig.3.11b) was also used to 

understand the time domain response of the whole signal, and FFT was conducted 

based on the peak amplitude observed from the time domain plots. The FFTs were 

obtained after filtering the raw data obtained from the experimental measurement. A 

Butterworth band pass filter (Fig.3.11b) was used to ensure that the FFT was free 
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from noisy signals with the help of the Labview software. The Labview block 

diagram code for sound signal measurement is shown in Fig.3.11a and Fig.3.11b. 

 

Figure 3.11a: Labview block diagram code utilised for acquiring the sound signal data 

from microphone 

 

 

Figure 3.11b: Labview block diagram code for sound signal analysis 
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3.7 Determination of A-weighted Equivalent Sound Pressure Levels  

Sound levels were measured for the rotation speeds of 150 rpm, 200 rpm, 250 rpm, 

300 rpm and 350 rpm and penetration rates of 2, 3, 4, 5 and 6 mm/ min on each rock 

block. For each combination of drill bit diameter, drill bit speed and penetration rate, 

a total of 125 sets of test conditions were arrived at for drill bit diameters of 6 mm, 10 

mm, 16 mm,18 mm and 20 mm. A-weighted equivalent continuous sound level (Leq) 

was recorded for all 125 different drill holes of 30 mm depth on each rock block. The 

data for seven rock types were used to develop the model for prediction of specific 

energy during diamond drilling operations. So in a total 875 (i.e. 125 X 7 = 875) Leq 

(Equivalent sound level) values were used to develop the multiple linear regression 

models. For all measurements, the sound level meter was kept at a distance of 1.5 cm 

from the periphery of the drill bit (Fig. 3.10). For a particular condition and for the 

same rock block, the sound level was determined five times in relatively rapid 

successions. The recorded equivalent sound levels were almost consistent. 

 

3.8 Determination of Specific Energy 

Specific energy (SE) is defined as the energy required for removing a unit volume of 

rock. For determination of SE, a cutting tool dynamometer was used to measure thrust 

and torque force during diamond core drilling operations. The dynamometer was 

fixed on the work table above which the vice was fixed. The cubic rock sample (20cm 

X 20cm X 20cm) was fixed firmly between the vice jaws. The experimental set up is 

shown in Fig. 3.10. During drilling operation, thrust and torque are recorded for all 

125 different drill holes of 30 mm depth on each rock block (combination of drill bit 

diameter, drill bit speed and penetration rate). SE was determined by the following 

equation:   

                           Specific energy (SP.E) = E /V       Nm/m
3
                                     (3.6) 

                                                 Where, E = Energy consumed (Nm) 

                                                              F = Force (N) 

                                      D = Depth of the cut (m) 

                                                              V = Volume of the rock brocken (m
3
) 
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3.8.1 Details of parametric variation for determination of specific energy 

Table 3.4: Details of parametric variation for determination of specific energy 

Parameters Variables 

Laboratory investigations 

(A) Drilling experiments  

(a) Bit parameters  

1) Bit type Diamond core drill bits 

2) Bit geometry Circular with industrial diamond 

3) Bit diameter 5 different diameters (6 mm,10 mm,16 

mm,18 mm, and 20 mm) 

(b) Operational Parameters  

1) Penetration rate Five magnitudes (2 mm/min, 3 mm/min, 4 

mm/min, 5 mm/min, and 6 mm/min) 

2) Drilling speed(RPM) Five magnitudes (150 rpm, 200 rpm, 250 

rpm,300 rpm, and 350 rpm) 

3) Depth of the hole 30 mm 

(c) Rock parameters  

1) Type Ochre, bituminous coal, laterite, pink 

limestone, black limestone, hematite, 

dolomite 

2) Rock properties considered Uniaxial compressive strength, Brazilian 

tensile strength, density, abrasivity, impact 

strength index 

(d) Measured parameters Noise levels, thrust, torque, specific energy 

(e) Drilling conditions Dry condition 

 

3.9 Analytical Techniques 

Simple and multiple linear regressions, multiple regression analysis and ANN are 

powerful tools for deriving mathematical relationships between the several dependent 

and independent variables. It provides information about independent variables and 

their uses to make much more powerful and accurate predictions of the dependent 

variables. The mathematical modelling for dominant frequencies, A-weighted 

equivalent sound levels produced during rock drilling, was carried out using SPSS 

Statistics 20, ANN, and Minitab17. 
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3.9.1 Modeling of physico-mechanical properties of rocks 

Rock properties prediction models were developed in three cases using DAQ 

microphone with the help of Labview software i.e. 

(i) At a constant drill bit diameter of 20 mm, a speed of 350 rpm, and a penetration 

rate 6 mm/min. The audio signals during drilling were measured up to a drilling 

depth of 30 mm (required time to drill 30 mm depth hole is 300 s corresponding 

to ochre, bituminous coal, laterite, pink limestone, and hematite respectively).   

(ii) At a few experimental combinations by varying drill bit diameters of (6, 10, 16, 

18 and 20 mm), speeds of (150, 200, 250, 300, and 350 rpm), penetration rates 

of (2, 3, 4, 5 and 6 mm/min). In this investigation, the drilling times of 40 s, 30 

s, 24 s, 20 s, and 17 s, correspond to ochre, bituminous coal, laterite, pink 

limestone, and hematite respectively.  

(iii) The audio signals produced during drilling were measured for 60 seconds for 

various drill bit diameters, penetration rates, and spindle speeds (i.e., 

combinations of the drill bit diameters of 6 mm, 10 mm, 16 mm, 18 mm, and 20 

mm at penetration rates of 2 mm/min, 3 mm/min, 4 mm/min,5 mm/min, and 6 

mm/min and speeds of 150 rpm, 200 rpm, 250 rpm, 300 rpm, and 350 rpm) 

correspond to ochre, bituminous coal, laterite, pink limestone, black limestone 

hematite and dolomite. Hence, for each rock type, a total of 125 test conditions 

were arrived at: For each rock = 125 test conditions, Total: seven (7) different 

rock types × 125 = 875 test conditions were used to predict rock properties. 

 

3.9.2 Development of simple linear regression models 

It is a statistical approach that permits to recapitulate and study relationships between 

two (dependent and independent) quantitative variables. The simple linear regression 

equation is generally expressed as: 

                                               Y = β0 + β1x1 + error                                            (3.7) 

Where Y denotes dependent variables, x1 indicate independent variables and β0, β1, 

indicate the regression coefficients in the model. Simple regression analysis was 

carried out to predict rock properties. The mathematical modeling for dominant 
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frequencies produced during rock drilling was carried out using SPSS Statistics 20. 

For development of prediction models, the independent variable considered as input 

parameters i.e., dominant frequencies (Hz). The dependent variable was UCS, BTS, 

and density.  

3.9.3 Development of multiple linear regression models 

Multiple linear regression analysis was carried out to predict specific energy (SE). A 

number of statistical parameters or terms are associated with the multiple linear 

regression analysis. Some of the most important ones include the coefficient of 

multiple determinations, confidence level, standard error, model error, significance 

level, t- distribution, F- distribution and errors (Field, 2009). Hence, a multiple linear 

regression model with k predictor variables X1, X2,...,Xk and a response Y  can be 

written as:  

                                         Y = β0 + β1x1 + β2x2 + ··· βkxk + error                      (3.8) 

Where Y denotes dependent variables, x1, x2, ··· xk indicate independent variables and 

β0, β1, β2··· βk indicate the regression coefficients in the model.  

The mathematical modeling for A-weighted equivalent sound pressure level produced 

during rock drilling was carried out using Minitab 2017. For development of 

prediction models, the independent variable considered as input parameters i.e., drill 

bit diameter (mm), spindle speed (rpm), penetration rate (mm/min) and A-weighted 

equivalent sound pressure level (dB), thrust (N), torque (Nm). The response (output) 

was SE.  

3.9.4 Development of multiple regression models 

Multiple regression analysis is one of the tools for estimating the relationship between 

the several dependent and independent variables. It provides information about the 

independent variables and their uses to make much more powerful and accurate 

predictions of the dependent variables. The mathematical modelling for dominant 

frequencies, produced during rock drilling, were carried out using Minitab17. 

Dominant frequencies produced during drilling depend on a number of parameters, 

such as drill bit diameter, spindle speed, and penetration rate. For the development of 
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the prediction models, four important operational parameters were used as the 

dependent variables (input parameters) – drill bit diameter (mm), spindle speed (rpm), 

penetration rate (mm/min), and dominant frequencies (Hz). The responses (output) 

were UCS, BTS, Los Angeles abrasion, and abrasivity. Hence, the detailed 

operational parameters represent a quadratic model. The quadratic model involves „n‟ 

independent variables, namely Xi, Xj…Xn, and the multiple regression equation is 

generally expressed as: 

                       ∑       
   ∑      

  ∑          
         

                     (3.9) 

Where, Y denotes dependent variables, Xi, Xj,…Xn indicate the independent variables, 

ai is the linear parametric effect of xi,and aij represents the quadratic effect, and the 

third and fourth terms represent the combination of both. The regression model 

includes linear, squared, and cross product terms. 

3.9.5 Development of artificial neural network models 

ANN is the biologically inspired computer programs designed to imitate the way in 

which the human brain processes information. ANN gathers its knowledge by 

detecting the patterns and relationships in data and learns or trained through 

experience. The artificial neurons were interconnected to input layer to output layer 

with the help of hidden layer and train the data efficiently. In this investigation 

multilayer perception neural network model was adopted. The network architecture 

panel details the particular network used to solve the problems with sigmoid 

activation function in the hidden and output layer. One hidden layer was used to 

predict the physico-mechanical properties of rocks in this investigation. The spindle 

speed, penetration rate, dominant frequencies and drill bit diameter were employed as 

input parameters while the output responses were UCS, BTS, density and abrasivity in 

this model. The hidden layer computes the weighted inputs and produces the net input 

which is then applied with sigmoid activation functions to produce the actual output. 

This can be written as: 

                                                       ∑         
      

                                         (3.10) 

Whereas: a = neuron output, f = transfer function, wi = weight value, pi = input 

parameter, b = summed with bias.
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CHAPTER-4 

RESULTS AND DISCUSSION 

4.1 Effect of the Operating Variables on A-weighted Sound Pressure Level 

Figures 4.1a to 4.1c show the plots of A-weighted sound pressure levels against three 

different operational parameters, namely drill bit diameter, spindle speed and 

penetration rate. The plots show that the A-weighted sound pressure levels increase 

from 73 dB to 142 dB with an increase in the drill bit diameter, spindle speed, and 

penetration rate while drilling in rock samples of ochre, bituminous coal, laterite, pink 

limestone, black limestone, hematite and dolomite. This may be due to the significant 

increase in the uniaxial compressive strength of rocks and due to the increase in the 

drill bit diameter area which results in more friction at bit-rock interface. However, 

the trend of A-weight SPL with the compressive strength is inconsistent which might 

be due to influences of other rock properties such as abrasivity (Kivade et al. 2014), 

mineralogical compositions or petrographic features (grain size, grain bindings, and 

micro-cracking) in the rock samples (Macias, 2017).The average value of noise levels 

is shown in Table 4.A1 to 4.A3 in Appendix-A.  
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Figure 4.1a: Effect of drill bit diameter on A- weighted sound pressure level on 

various rock samples at 30 mm depth 
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Figure 4.1b: Effect of penetration rate on A- weighted sound pressure level on various 

rock samples at 30 mm depth 
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Figure 4.1c: Effect of drill bit speed on A- weighted sound pressure level on various 

rock samples at 30 mm depth 

4.2 Effect of the Operating Variables on Specific Energy 

The operating parameters have great interactions in combinations with the drill bit 

diameter, penetration rate, and drill bit speed. The effect of the drill bit diameter, 

penetration rate, and drill bit speed on specific energy in the diamond drilling 

operations is shown in Figures 4.2a to 4.2c. Specific energy was determined for 

various bit and rock combinations drill bit diameters of 6 mm to 20 mm and spindle 

speed of 150 rpm to 250 rpm, penetration rates of 2 mm/min to 6 mm/min. 

 Figure 4.2a shows that SE decreased from 30.381 Nm/m
3
 to 1.672 Nm/m

3
 with an 

increase in the drill bit diameters from 6 mm, 10 mm, 16 mm, 18 mm, and 20 mm, 
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corresponding to ochre, bituminous coal, laterite, pink limestone, black limestone, 

hematite and dolomite. This is due to the increase in the drill bit diameter area, 

which contributes a higher volume removal rate, with consequently a decrease of 

SE during the drilling operation at 30 mm depth; this may be attributed to greater 

friction effects on the circumference of a smaller drill bit in relation to the area 

extracted by it (Reddish and Yasar 1996).  

 Figure 4.2b shows that the SE decreased from 25.076 Nm/m
3
 to 1.502 Nm/m

3
 

with an increase in the penetration rate from 2 mm/min to 6 mm/min 

corresponding to selected rock types. This is due to the increase in the specific 

removal rate, i.e. where the material drilled in unit time (Reddish and Yasar, 

1996).  

 Figure 4.2c shows that the SE decreased from 16.417 Nm/m
3
 to 1.024 Nm/m

3
 

with an increase in the drill bit speed from 150 rpm to 350 rpm corresponding to 

the selected rock types. This is due to the increase in the specific removal rate, i.e. 

where the material is drilled in unit time (Reddish and Yasar, 1996). The average 

values of specific energy are shown in Table 4.A4 to 4.A6 in Appendix-A. 

 

 

Figure 4.2a: Effect of drill bit diameter on specific energy on various rock samples at 

30 mm depth 
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Figure 4.2b: Effect of penetration rate on specific energy on various rock samples at 

30 mm depth 
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Figure 4.2c: Effect of drill bit speeds on specific energy on various rock samples at 30 

mm depth 

4.3 Effect of Thrust on A - weighted Sound Pressure Level 

Figure 4.3a shows the plot of A-weighted sound pressure level against thrust which 

was varied by varying drill bit diameter. Figure 4.3b shows a similar plot of A-

weighted sound pressure level versus thrust, which was obtained by the penetration 

rate. A similar plot of A-weighted sound pressure level is shown in Figure 4.3c, where 

thrust was increased by increasing the drill bit speed. These figures show that A-

weighted sound pressure level increases from 71 dB to 142 dB when thrust was 

increases from 109.23 N to 1001.96 N while drilling in rock samples of ochre, 

bituminous coal, laterite, pink limestone, black limestone, hematite and dolomite. The 

average value of thrust which increases with the drill bit diameter, drill bit speed, and 

penetration rate is shown in Table 4.A7 to 4.A9 in Appendix-A. This may be due to 

the normal forces which maintain bit-rock contact frictional forces between diamond 

drill bit and rock sample. The relationships between the normal forces and tangential 

force are dependent on the contact friction at the bottom of the diamond drill bit (bit-
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rock contact). The reason for high thrust force and the friction between the cutting 

side and crushed zone becomes a resistant force in the penetration process for 

transferring the normal force to the crushed zone (He et al. 2020). An increase in the 

drill bit diameter increases the thrust during drilling operations. For this reason the 

thrust increases corresponding drill bit diameter, drill bit speed and penetration rate.  

 

Figure 4.3a: Effect of thrust on A-weighted sound pressure level at varying drill bit 

diameter on various rock samples at 30 mm depth 

 

Figure 4.3b: Effect of thrust on A-weighted sound pressure level at varying 

penetration rate on various rock samples at 30 mm depth 
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Figure 4.3c: Effect of thrust on A-weighted sound pressure level at varying drill bit 

speed on various rock samples at 30 mm depth 

4.4 Effect of Torque on A – weighted Sound Pressure Level 

Figures 4.3a to 4.3c show the plots of torque on A-weighted sound pressure levels 

with varying drill bit diameter, spindle speed and penetration rate. The plots show that 

torque and A-weighted sound pressure level increases from 2 Nm to 11.88 Nm, 71 dB 

to 142 dB with an increase in the drill bit diameter, spindle speed, and penetration rate 

while drilling in rock samples of ochre, bituminous coal, laterite, pink limestone, 

black limestone, hematite and dolomite. This may be due to the significant increase in 

the uniaxial compressive strength of rocks (hardness of the rock), The rock hardness 

is characterized by a high torque values for hard rock, and also observed that, low 

torque values for in the soft rocks (Sinkala 1990). Furthermore, the torque is applied 

mainly to move drill bit inserts to new surfaces (clark 1982; Lundberg 1971; Wijk 

1982). Hence, apart from that mineralogical compositions or petrographic features 

like grain size, grain bindings, and micro-cracking also might contribute substantially 

for increasing the torque. The average value of torque is shown in Table 4.A10 to 

4.A12 in Appendix-A. 
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Figure 4.4a: Effect of torque on A-weighted sound pressure level at varying drill bit 

diameter on various rock samples at 30 mm depth 

 

Figure 4.4b: Effect of torque on A-weighted sound pressure level at varying 

penetration rate on various rock samples at 30 mm depth 
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Figure 4.4c: Effect of torque on A-weighted sound pressure level at varying drill bit 

speed on various rock samples at 30 mm depth 

4.5 Effect of Rock Properties on A-weighted Sound Pressure Level 

Figures 4.5a to 4.5e show the plots of physico-mechanical rock properties on average 

values of A-weighted sound pressure level for various rock samples. From Figures 

4.5a, 4.5b, 4.5c and 4.5e it can be observed that, the A-weighted sound pressure level 

increases with rock properties such as uniaxial compressive strength, Brazilian tensile 

strength, density, and impact strength index. Generally A-weighted sound pressure 

level is higher obtained when drilling in hard rocks having higher uniaxial 

compressive strength and density (Vardhan et al. 2009; Kivade et al. 2013; Masood 

2015; Delibalta et al 2015) whereas from Fig. 4.5d it can be observed that A-weighted 

sound pressure level decreased with increasing the abrasivity. It may be the possible 

the percentage wear loss were observed in the rock samples.     
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Figure 4.5a: Uniaxial compressive strength on A-weighted sound pressure level on 

various rock samples at 30 mm depth 

 

Figure 4.5b: Brazilian tensile strength on A-weighted sound pressure level on various 

rock samples at 30 mm depth 
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Figure 4.5c: Density on A-weighted sound pressure level on various rock samples at 

30 mm depth 

 

Figure 4.5d: Abrasivity on A-weighted sound pressure level on various rock samples 

at 30 mm depth 
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Figure 4.5e: Impact strength index on A-weighted sound pressure level on various 

rock samples at 30 mm depth 

4.6 Development of Regression Models 

4.6.1 Development of rock properties predictive models at constant drill bit 

diameter, drill bit speed, and penetration rate 

 

The drilling audio signals were analysed using fast Fourier transformations (FFT) 

after capturing the audio signals from rock drilling operations. The acquired data from 

the microphone (Figure 3.11a) was put onto a fast Fourier analyser to convert the time 

domain signals to frequency domain signals. Append signals toolkit (Figure 3.11b) 

was also used to understand the time domain response of the whole signal, and FFT 

was conducted based on the peak amplitude observed from the time domain plots. The 

FFT‟s were obtained after filtering the raw data obtained from the experimental 

measurement. A Butterworth band pass filter (Figure 3.11b) was used to ensure that 

the FFT is free from noisy signals with the help of the Labview software. Hence, the 

sound measurement is accurate, and noisy signals are avoided. The Labview block 

diagram code for sound signal measurement is shown in Figure 3.11a and  Figure 

3.11b. 
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The time domain plots are shown in Figure 4.6, wherein the X-axis represents the 

time in seconds and the Y-axis the amplitude in Pascals. A total of 300 seconds (the 

required time to drill 30 mm depth hole for each of the five rock types) time domain 

data was selected for the analysis. The peak amplitude of FFT was selected for the 

analysis of 300-second time domain plots, i.e. 262
nd

 second FFT, 225
th

 second FFT, 

291
st
 second FFT, 65

th
 second FFT and 189

th
 second FFT were selected corresponding 

to (a) ochre, (b) bituminous coal, (c) laterite, (d) pink limestone and (e) hematite. This 

peak amplitude contains the maximum energy carried in the noise spectrum. All 

spectrogram algorithms were plotted using the Hanning function. The drilling audio 

recording sampling rate was 51.2 kHz per second. 

 
(a) 

 
(b) 

 
(c) 
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(d) 

 
(e) 

Figure 4.6: Time domain plots for various rock types i.e. (a) ochre, (b) bituminous 

coal, (c) laterite, (d) pink limestone and (e) hematite 

 Five dominant frequencies were extracted from the frequency domain of each 

selected rock, where the highest sound pressure level (dB) was determined, as shown 

in Figure 4.7a to Figure 4.7e. These frequencies known as dominant frequencies 

corresponding to every rock type are given in Table 4.13. The results given in Table 

4.13 are in line with Zborovjan et al. (2003), wherein it was said that the maximum 

information contained appropriate signal transfer. The rock drilling acoustic signature 

can be found between 5000 Hz to 8000 Hz.  

 
(a) 

 
(b) 
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(c) 

 
(d) 

 
(e) 

Figure 4.7: Selected five dominant frequencies between 5000 Hz and  8000 Hz from 

the FFT results i.e., (a) ochre, (b) bituminous coal, (c) laterite, (d) pink limestone and 

(e) hematite 

Table 4.13: Dominant frequencies for various rock types 

Rock type Frequency- F1 

(Hz) 

Frequency- F2 

(Hz) 

Frequency- F3 

(Hz) 

Frequency- F4 

(Hz) 

Frequency- F5 

(Hz) 

Ochre 5476 5938 6499 7494 7820 

Bituminous 

coal 
5981 6144 7620 7959 8001 

Laterite 5421 6123 6448 6686 7494 

Pink limestone 5045 5330 7832 7839 7876 

Hematite 6305 6310 6320 6327 6371 

 

4.6.2 Modeling of rock properties 

After the extraction of dominant frequency for each rock type, simple linear 

regression analysis was performed between the physico-mechanical rock properties 

and dominant frequencies using the SPSS statistics software. For the modelling of 

UCS, F5 frequency was significant compared to F1, F2, F3 and F4 frequencies. 

Similarly, in the case of BTS, F5 frequency was significant and, for density, F4 
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frequency was significant. A set of satisfactory mathematical equations (4.1) to (4.3) 

were obtained for the quantification of physico-mechanical rock properties, i.e. 

uniaxial compressive strength (UCS), Brazilian tensile strength (BTS) and density 

wherein the significant value (Table 4.14, Table 4.15 and Table 4.16) are less than 

0.005. The coefficients of predicting the model are shown from Table 4.14 to Table 

4.16, where the significant P-value was obtained as 0.021, 0.010 and 0.024 

corresponding to UCS, BTS and density, respectively.  

 

UCS = 501.886 - 0.060 x F5, R
2
 = 87.0 %  (4.1) 

 

BTS = 32.291 – 0.004 x F5, R
2
 = 92.1 %  (4.2) 

 

Density = 9.029 – 0.001 x F4, R
2 
= 85.5 %  (4.3) 

 

Table 4.14: The prediction model coefficients for predicting uniaxial compressive 

strength 

 

Model 

 

Unstandardized coefficients 

Standardized 

coefficients 

 

 

   t-value 

 

Significant      

value 

 

Linear 

 

 

 

(Constant) 

Frequency-F5 

B Std. Error Beta 

  

501.886 

-0.060 

101.333 

0.013 

- 

-0.933 

4.953 

-4.487 

0.016 

0.021 

Dependent variable: UCS 

 

Table 4.15: The prediction model coefficients for predicting Brazilian tensile strength 

 

Model 

 

Unstandardized coefficients 

 

Standardized 

coefficients 

 

 

   t-value 

 

Significant      

value 

 

Linear 

 

(Constant) 

Frequency-F5 

B Std. Error Beta   

32.291 

-0.004 

4.999 

0.001 

- 

-0.960 

6.459 

-5.924 

0.008 

0.010 

Dependent variable: BTS 
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Table 4.16: The prediction model coefficients for predicting density 

 

Model 

 

Unstandardized coefficients 

 

Standardized 

coefficients 

 

 

   t-value 

 

Significant      

value 

 

Linear 

 

(Constant) 

Frequency-F4 

B Std.Error Beta   

9.029 

-0.001 

1.525 

0.000 

- 

-0.925 

5.921 

-4.213 

0.010 

0.024 

Dependent variable: Density 

 

After the development of the prediction model, the data for ten rock types obtained 

through literature were used for validating the developed prediction model. The data 

on UCS in Table 4.A17 (Referer Appendix-A) and the Brazilian tensile strength in 

Table 4.A18 (Referer Appendix-A) are taken from Kalyan et al. (2006) and Masood 

(2015).  Similarly, Table 4.A19 (Referer Appendix-A) data on density are taken from 

Kahraman et al. (2013) and Kalyan et al. (2016). Tables 4.A17 to Table 4.A19 

(Referer Appendix-A) also give the predicted values corresponding to the measured 

values and the model error. It can be perceived that the constructed models predicted 

all physico-mechanical properties with less than 15.37% error. The comparison of 

multiple linear regression models with the corresponding validation model is shown 

in Figure.4.8. 
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Figure 4.8: Simple linear regression prediction model, and distribution of validation 

pointes corresponding UCS, BTS, and density 
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4.6.3 Excitation frequency (Hz) versus sound pressure level (SPL) for rock 

blocks  

The sound pressure level (dB) and the excitation frequency, one-third octave mid-

band frequency (Hz), are shown in Figures 4.9a - Figure.4.9e for various rock blocks. 

It was observed that the sound pressure level was higher up to the frequency of 5000 

Hz for rock blocks, namely ochre (Figure 4.9a), bituminous coal (Figure 4.9b), laterite 

(Figure 4.9c) and pink limestone (Figure 4.9d). However, for hematite block (Figure 

4.9e), the sound pressure level was higher beyond 5000 Hz centre frequency for 

hematite block. This may be due to the significantly greater uniaxial compressive 

strength of hematite compared to other rock blocks. The increase in the compressive 

strength and hence drillability depends on the mineralogical composition and the 

petrographic features (grain size, grain bindings, weathering and micro-cracking) of 

the rock Macias (2017) and, hence, increase in the sound level (Vardhan et al. 2009). 

 

Figure 4.9a: Sound pressure level vs. excitation frequency for ochre rock 

 

Figure 4.9b: Sound pressure level vs. excitation frequency for bituminous coal 
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Figure 4.9c: Sound pressure level vs. excitation frequency for laterite 

 

 

 

 

Figure 4.9d: Sound pressure level vs. excitation frequency for pink limestone 
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Figure 4.9e: Sound pressure level vs. excitation frequency for hematite 

4.7 Development of Rock Properties Predictive Models for varying combinations 

of Drill bit Diameters, Drill bit Speed, and Penetration rate 

4.7.1 Sound pressure level measurement 

In this investigation, case - (i) methodology was used to predict rock properties, but 

for each drilling condition, drilling time was different. For example, a drilling 

condition of (6, 150, 2) i.e., drill bit diameter = 6 mm, speed = 150 rpm, and 

penetration rate = 2 mm/ min) was used for ochre to drill for 40 s to obtain 

frequencies F1- F5, as listed in Table 4.20. Similarly, the cases of bituminous coal, 

laterite, pink limestone, and hematite used corresponding drilling conditions of (10, 

200, 3) to drill for 30 s, (16, 250, 4) to drill for 24 s, (18, 300, 5) to drill for 20 s, and 

(20, 350, 6) to drill for 17 s to obtain frequencies F1- F5. The standard deviation and 

uncertainty were within limits to for prediction of UCS, BTS and density using the 

dominant frequency of sound signals. The extracted dominant frequencies from 

frequency domain are shown in Table.4.20. 
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Table 4.20: Five dominant frequencies for selected rock samples 

Rock type Frequenc

y- F1 

(Hz) 

Frequenc

y- F2 

(Hz) 

Frequenc

y- F3 

(Hz) 

Frequenc

y- F4 

(Hz) 

Frequency- 

F5 (Hz) 

Ochre 5579 6900 6941 7994 8000 

Bituminous 

coal 
6002 7732 8507 8512 8522 

Laterite 5880 5998 6025 6999 7168 

Pink 

limestone 
5510 5991 6800 7910 7970 

Hematite 4000 4100 5641 6494 7650 

 

4.7.2 Modeling of rock properties 

After extraction of each rock dominant frequencies, simple linear regression analysis 

was performed between the physico-mechanical rock properties and dominant 

frequencies using SPSS statistics software. For the prediction model, rock properties 

were selected as a dependent variable and independent variable as frequency. All 

selected frequency F1 to F5 corresponding rock properties like UCS, BTS, and 

density were checked. For the modeling of UCS, F2 frequency was significant 

compared with F1, F3, F4, and F5 frequencies. Similar was the case with BTS, and 

density. A set of satisfactory mathematical equations (4.4) to (4.6) were derived for 

the quantification of rock properties, i.e. Uniaxial Compressive Strength (UCS), 

Brazilian Tensile Strength (BTS) and density where in the significant value (Table 

4.22) are less than 0.005 and the R
2
 value is 91.4 %, 93.5 %, and 96.0 % as shown in 

Table 4.21. The coefficients of predicting models are given in Table 4.23 to Table 

4.25. 

UCS = 235.349 - 0.030 x F2,   R
2
 = 91.4 %       (4.4)                 

 BTS = 20.392 - 0.003 x F1,    R
2
 = 93.5 %       (4.5)                 

Density = 8.877 - 0.001 x F4,  R
2 
= 96.0 %        (4.6)  
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Table 4.21 Model summary for the dependent variable 

Dependent 

variable 

R value R Square Adjusted R 

Square 

Standard earror 

of the estimate 

UCS 0.956 0.914 0.885 14.59412 

BTS 0.967 0.935 0.913 0.80226 

Density 0.980 0.960 0.946 0.15900 

 

Table 4.22 Analysis of variance (ANOVA) for the dependent variable 

Dependent 

variable 

Model Degree of 

freedom 

Sum of 

Squares 

Mean 

Square 

F-value Significant 

P-value 

 

UCS 

Regression 1 6760.480 6760.480 31.741 0.011 

Residual 3 638.965 212.988 - - 

Total 4 7399.445 - - - 

 

BTS 

Regression 1 27.719 27.719 43.068 0.007 

Residual 3 1.931 0.644 - - 

Total 4 29.650 - - - 

 

Density 

Regression 1 1.812 1.812 71.657 0.003 

Residual 3 0.076 0.025 - - 

Total 4 1.887 - - - 

 

Table 4.23 Coefficients of proposed model for predicted UCS 

 

Model 

 

Unstandardized 

coefficients 

Standardized 

coefficients 

 

 

   t-value 

 

Significant      

value 

 

Linear 

 

 

 

(Constant) 

Frequency-

F2 

B Std. 

Error 

Beta   

235.349 

-0.030 

33.788 

0.005 

 

-0.956 

6.965 

-5.634 

0.006 

0.011 

Dependent variable: UCS  
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Table 4.24 Coefficients of proposed model for predicted BTS 

 

Model 

Unstandardized 

coefficients 

Standardized 

coefficients 

 

 

t-value 

Significant      

value 

 

Linear 

 

(Constant) 

Frequency-

F1 

B Std.Error Beta   

20.392 

-0.003 

2.709 

0.000 

- 

-0.967 

7.526 

-6.563 

0.005 

0.007 

Dependent variable: BTS 

 

Table 4.25 Coefficients of proposed model for predicted density 

 

Model 

 

Unstandardized 

coefficients 

Standardized 

coefficients 

 

 

   t-value 

 

Significant      

value 

 

Linear 

 

 

(Constant) 

Frequency-

F4 

B Std. 

Error 

Beta   

8.880 

-0.001 

0.742 

0.000 

- 

-0.980 

11.972 

-8.465 

0.001 

0.003 

Dependent variable: density 

 

After the development of the prediction model, three rock types (marble, moon white 

granite, and basalt) were used for validating the developed prediction model. Table 

4.26 to Table 4.28 gives the predicted values corresponding to the measured values, 

and the model error. It can be seen that, the constructed models predicted all physico-

mechanical properties with less than 4.0 % error. The comparison of the simple linear 

regression model with the corresponding validation model is shown in Figure 4.10. 

 

 



60 
 

Table 4.26 Predicted values, measured values from prediction model and model error 

for uniaxial compressive strength (Three validation rock samples) 

Rock sample name Measured UCS (MPa) Predicted UCS (MPa) Error % 

Marble 24.05 24.059 3.7422 

Moon white granite 28.83 28.859 0.1005 

Basalt 54.13 54.149 0.0351 

 

Table 4.27 Predicted values, measured values from prediction model and model error 

for Brazilian tensile strength (Three validation rock samples) 

Rock sample name Measured BTS (MPa) Predicted BTS (MPa) Error % 

Marble 2.58 2.581 0.0387 

Moon white granite 2.98 2.982 0.0671 

Basalt 5.58 5.581 0.0179 

 

Table 4.28 Predicted values, measured values from prediction model and model error 

for density (Three validation rock samples) 

Rock sample name Measured density (g/cm
3
) Predicted density (g/cm

3
) Error % 

Marble 2.59 2.591 0.0386 

Moon white granite 2.64 2.641 0.0378 

Basalt 2.85 2.851 0.0350 
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Figure 4.10: Simple linear regression prediction model, and distribution of validation 

pointes corresponding UCS, BTS, and density 
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4.8 Development of Rock Properties Predictive Models for Combinations of the 

Drill bit Diameters, Drill bit Speed, and Penetration rate 

In this investigation case - (i) methodology was used to predict rock properties. The 

audio signals produced during drilling were measured for 60 seconds for various drill 

bit conditions, penetration rates, and spindle speeds for selected rock samples. For 

each test conditions, audio signals were measured for 60 seconds and this 60 seconds 

data was used for the frequency analysis. The 125 (i.e. combinations of drill bit 

diameters of 6 mm, 10 mm, 16 mm, 18 mm, and 20 mm at penetration rates of 2 

mm/min, 3 mm/min, 4 mm/min,5 mm/min, and 6 mm/min and speeds of 150 rpm, 

200 rpm, 250 rpm, 300 rpm, and 350 rpm, total test conditions: 125 × 7 rock types = 

875 test conditions were arrived) dominant frequencies were extracted from the 

frequency domain of each selected rock, where the highest sound pressure level (dB) 

was determined. These frequencies were called dominant frequencies corresponding 

to each rock block. Table 4.A29 shown in Appendix- A experimental results of 125 

dominant frequencies (Hz) for each rock sample. 

4.8.1 Modelling of rock properties using multiple regression analysis 

A multiple regression model was developed for UCS, BTS, density, and abrasivity 

considering 60 seconds of drilling, after the penetration of the drill bit into the rock 

mass, as shown in Equations 4.7 to 4.10. To evaluate the model, a backward 

elimination method was used as the test procedure. Analysis of variance was 

performed to observe the essential parameters carried out in the statistical model for 

UCS, BTS, density, and abrasivity, with significance of 95% confidence interval. 

Influence of the parametric level of the UCS, BTS, density, and abrasivity were 

compared using ANOVA with the Minitab17. Where the p-values equal or smaller 

than 0.005, were considered to be statistically significant, and the corresponding data 

was noted down, as shown in the regression Table 4.A30 (Appendix-A). 

Development of regression models: 

Regression equation for UCS: 

UCS = -10.5 - 13.035 DD - 0.0377 RPM + 0.02758 FR + 0.7698 DD*DD - 0.000002 

FR*FR+0.000006 RPM*FR                                                                                     (4.7) 
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Regression equation for BTS: 

BTS = 0.58 - 1.1561 DD - 0.00278 RPM + 0.001899 FR + 0.06017 DD*DD - 

0.000001 FR*FR+0.000003 RPM*FR                                                        (4.8) 

Regression equation for density: 

Density = 2.915 - 0.2413 DD - 0.00127 RPM + 0.000219 FR + 0.011513 DD*DD - 

0.000001 FR*FR+0.000005 DD*FR+0.000001 RPM*FR                          (4.9) 

Regression equation for abrasivity: 

Abrasivity = 112.6 - 4.651 DD - 0.00527 FR + 0.000001 FR*FR + 0.000088 DD*FR         

                                                                                                                     (4.10) 

Where, DD = diameter of the drill bit (mm), SS = spindle speed (rpm), PR = 

penetration rate (mm/min), FR = dominant frequency (Hz). 

4.8.2 Analysis of variance (ANOVA) 

Regression analysis was carried out to obtain second-order models for UCS, BTS, 

density, and abrasivity during diamond core drilling operations. This test helps find 

the input parameters that considerably affect the desired output response in the model. 

ANOVA is most the popular analysis tool for studying the significant parameters that 

influence the quality characteristics and identify the percentage contribution ratio of 

each process factor on the output response. 

Initially, ANOVA was performed between the input parameters i.e. drill bit diameter 

(mm), penetration rate (mm/min), spindle speed (rpm), dominant frequencies (DF) 

and rock properties (i.e., UCS, BTS, density, abrasivity). All the insignificant terms (p 

> 0.05) from the obtained model were removed, and the regression analysis was 

carried out again, this time with significant terms in the model. After performing the 

experimental analysis of the obtained data, presented in Table 4.31.Whereas the P-

value was found to be significantly good, at less than 0.005. 
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Table 4.31: Results of ANOVA for various rocks 

UCS 

 Source DF Seq.SS Adj SS Adj MS F-Value P-

Value 

 

 

 

 

 

 

 

Eq.4.7 

Regression 6 1308442 1308442 218074 682.00 0.000 

DD 1 1136383 69965 69965 2188.81 0.000 

RPM 1 0 146 146 0.46 0.050 

FR 1 359 2724 2724 8.52 0.004 

DD*DD 1 168212 166496 166496 520.70 0.000 

FR*FR 1 3327 3345 3345 10.46 0.001 

RPM*FR 1 160 160 160 0.50 0.005 

Error 868 277547 277547 320 - - 

Total 874 1585989 - - - - 

 BTS 

 

 

 

 

 

 

 

Eq.4.8 

Source DF Seq.SS Adj SS Adj MS F-Value P-

Value 

Regression 6 4899.61 4899.6 816.60 525.44 0.000 

DD 1 3854.94 550.35 550.35 354.12 0.000 

RPM 1 0.00 0.80 0.80 0.51 0.054 

FR 1 1.11 12.92 12.92 8.31 0.004 

DD*DD 1 1026.90 1017.06 1017.06 654.43 0.000 

FR*FR 1 15.78 15.88 15.88 10.22 0.001 

RPM*FR 1 0.87 0.87 0.87 0.56 0.055 

Error 868 1348.99 1348.99 1.55 - - 

Total 874 6248.60 - - - - 

Density 

 

 

 

 

 

 

 

 

Eq.4.9 

Source DF Seq.SS Adj SS Adj MS F-Value P-

Value 

Regression 7 230.625 230.625 32.9464 207.41 0.000 

DD 1 191.702 12.852 12.8521 80.91 0.000 

RPM 1 0.000 0.165 0.1655 1.04 0.008 

FR 1 0.355 0.166 0.1664 1.05 0.006 

DD*DD 1 37.353 37.167 37.1675 233.99 0.000 

FR*FR 1 0.488 0.479 0.4791 3.02 0.053 

DD*FR 1 0.549 0.556 0.5560 3.50 0.002 

RPM*FR 1 0.178 0.178 0.1784 1.12 0.007 

Error 867 137.718 137.718 0.1588 - - 

Total 874 368.343 - - - - 

 Abrasivity 

 

 

 

 

 

Eq.4.10 

Source DF Seq.SS Adj SS Adj MS F-Value P-

Value 

Regression 4 391573 391573 97893.3 2998.03 0.000 

DD 1 391228 11100 11099.8 339.94 0.000 

FR 1 88 100 100.3 3.07 0.080 

FR*FR 1 67 71 70.7 2.17 0.001 
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DD*FR 1 191 191 190.8 5.84 0.016 

Error 870 28408 28408 32.7 - - 

Total 874 419981 - - - - 
 

4.8.3 Validation of the derived models 

The statistical results of the UCS, BTS, density, and abrasivity models for various 

rock types are demonstrated in Figure 4.11. The correlation coefficients of these 

models i.e. the R
2 

values are 82.50%, 78.41%, 70.40%, and 93.24% for UCS, BTS, 

density, and abrasivity, respectively. Figure.4.8 shows the measured value versus 

predicted value, corresponding to the UCS, BTS, density, and abrasivity. The scatter 

plots show that the values obtained from the multiple regression models and the value 

measured from the experimental work, both are fairly close with less than 10% error. 

It can be said that the developed models are reasonably good. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

Figure 4.11: Measured UCS, BTS, density, and abrasivity vs. predicted UCS. BTS, 

density, and abrasivity 
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4.8.4 Performance prediction of derived models 

The prediction of performance is a better indicator for the developed prediction 

models to assess the coefficient of correlations between the predicted and measured 

results. The value adjustment factor (VAF) and the root mean square error (RMSE) 

were calculated for the predictive ability of the models, whereas, y and y1 and Ai and 

Pi are the measured and predicted values, as given in Equations (11) to (13). If VAF is 

equal to 100 and RMSE is equal to zero then the model is considered good. Similarly, 

the mean absolute percentage error (MAPE) demonstrates the accuracy fit value of the 

statistics (Kumar et al., 2011b). The performance indices of the developed regression 

model are shown in Table 4.32. 
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Table 4.32 Performance indices of the developed regression model 

Variable Performance Indices 

 RMSE VAF (%) MAPE 

UCS 0.102754 82.50008 0.027281 

BTS 1.241652 78.41137 0.028388 

Density 0.396727 79.40137 0.007817 

Abrasivity 0.697889 93.23596 0.00521 

 

4.9 Development of Artificial Neural Network Models 

In this analysis, the sound pressure levels recorded for duration of around 60 seconds 

of drilling was used to determine dominant frequencies using FFT analysis as 

followed by case-(iii).  

Experimental data of total  875 test conditions, were used to predict  physic-

mechanical rock properties during drilling operations through ANN. Out of these, 

70% data (612 test conditions) were used for the training set and the remaining 30% 

data (263 test conditions) were used to test the models. Figure 4.12 shows the multi-

layer perceptron (MLP) generalised structure of the ANN model. The spindle speed, 
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penetration rate, dominant frequencies and drill bit diameter were employed as input 

parameters in the model while the output responses were UCS, BTS, dry density and 

abrasivity. These input parameters are effective for constructing the ANN prediction 

model and cover the problem of the domain being investigated. 

 

Figure 4.12: Illustration of an artificial neural network model 

The multi-layer perceptron network was employed by Matlab 2015 ANN toolbox. 

Seven types of back-propagation training algorithms were used to train the data sets. 

These algorithms show the network accuracy and the performance (mean square 

error-mse) of the plots. The seven algorithms are trainscg (scaled conjugate gradient 

algorithm), traingda (gradient descent with adaptive learning back-propagation 

algorithm),trainrp (resilient back-propagation algorithm), traingdx(gradient descent 

with momentum and adaptive learning back-propagation algorithm,trainlm 

(levenberg-marquardt algorithm), trainbfg (BFGS quasi-newton back-propagation 

algorithm), traincgf (conjugate gradient back-propagation with fletcher-reeves updates 

algorithm). 

While training the algorithms, the number of neurons in the hidden layer was 

estimated using the trial and error method. It revealed that 6-35 neurons were used in 

a hidden layer with the tansig transfer function corresponding seven types of back-

propagation training algorithms. Primarily several trails were conducted to fix the 

number of neurons in the hidden layer for every type of algorithm. The minimum 
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RMSE value and the maximum VAF value was selected for the optimal number of 

neurons in the hidden layer. The seven types of back-propagation training algorithms 

performance and network architecture are shown in Table 4.33. This table clarifies 

that “resilient back-propagation algorithm (trainrp)” was the most significant (fewer 

epochs and the time take convergence is lesser) of the seven back-propagation 

training algorithms with 35 neurons and minimum number of epochs - 9 - for the 

prediction of physico-mechanical rock properties. This is the optimal number because 

of the low RMSE value with the highest value of regression (R) respectively. 

Table 4.33 Schematic representation of network architecture 

Sl.no Training 

algorithm 

Network 

architecture 

Number 

of epochs 

Time taken 

for 

convergence 

(sec) 

Neural 

network 

training 

regression 

Neural 

network 

testing 

regression 

1 Traingda 4:6:4 1000 152 sec 0.83296 0.89346 

2 Traingdx 4:10:4 130 120 sec 0.83755 0.88689 

3 Trainrp 4:35:4 09 32 sec 0.98428 0.98436 

4 Traincgf 4:10:4 132 145 sec 0.833423 0.890522 

5 trainglm 4:22:4 08 56 sec 0.83172 0.83299 

6 Trainbfg 4:27:4 18 100 sec 0.81411 0.83296 

7 Trainscg 4:15:4 37 60 sec 0.827874 0.901181 

 

The errors were calculated by comparing the data of the measured rock properties 

with the ANN predictions. The resilient back-propagation algorithm (trainrp) 

predicted rock properties (UCS, BTS, density, and abrasivity) with an error from 

2.31% to 10 %. The ANN models were checked by various performance indices, the 

performance indices show that VAF, RMSE, and MAPE are minimum for the 

network using trainrp (resilient back-propagation algorithm) corresponding the other 

types of the algorithms for both testing and training data. The performance indices of 

the developed neural network model training and testing as shown in Table 4.A34 in 

the Appendix-A. Hence, the trainrp (resilient back-propagation algorithm) algorithm 

could be efficiently used as a predictor to estimate the physico-mechanical properties 

of rocks based on the dominant frequency of acoustic signals during diamond drilling 

operations. 
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4.10 Prediction of Specific Energy  

A multiple linear regression model was developed for considering 30 mm depth of 

drilling time after penetration of drill bit into the rock mass as given by Eq. (4.14) to 

Eq. (4.20). To evaluate the model, analysis of variance was performed to observe the 

essential parameters carried out in the statistical model for SE with significance of 

95% confidence interval. Influence of the parametric level of the SE was compared, 

using analysis of variance (ANOVA) with Minitab 2017. Where the p-values are 

equal or smaller than 0.005, they were considered to be statistically significant; 

corresponding data are noted down as shown in the regression Table 4.B1(statistical 

analysis of significant regression models for various rocks) to Table 4.B2 (results of 

ANOVA for various rocks) as shown in Appendix-B. 

4.10.1 Modeling of specific energy using multiple linear regression analysis 

Regression equation for ochre:  

Specific energy (Nm/m
3
) = 11.20 - 0.8190 DD - 0.00077 SS - 0.042 PR + 0.1175 A-

SPL + 0.01421 Thrust - 2.45 Torque                                                                     (4.14)        

Contribution percentage (%):  DD = 54.05 %, SS = 5.90 %, PR= 5.65 %, A-SPL = 

3.57 %, Thrust = 18.72 %, Torque = 1.15 %, Error = 9.96 % 

Where, DD = diameter of the drill bit (mm), SS = spindle speed (rpm), PR = 

penetration rate (mm/min), A-SPL = A-weighted sound level (dB). 

Regression equation for coal:  

Specific energy (Nm/m
3
) = 5.60 - 0.4309 DD + 0.00849 SS + 0.129 PR - 0.0087 A-

SPL + 0.01735 Thrust - 0.433 Torque                                                                  (4.15) 

Contribution percentage (%): DD = 50.82 %, SS = 4.00 %, PR = 10.72 %, A-SPL = 

7.25 %, Thrust = 13.44 %, Torque = 5.77 %, Error = 8.00 %  

Regression equation for laterite: 

Specific energy (Nm/m
3
) = 13.82 - 0.5057 DD + 0.00607 SS - 0.240 PR - 0.1127 A-

SPL + 0.01599 Thrust + 0.640 Torque                                                                   (4.16) 
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Contribution percentage (%): DD = 44.68%, SS = 6.72 %, PR = 5.60 %, A-SPL = 

15.91 %, Thrust= 9.02 %, Torque = 4.06 %, Error = 14.01 %  

Regression equation for pink limestone: 

Specific energy (Nm/m
3
) = 22.91 - 1.523 DD - 0.00480 SS + 0.585 PR - 0.0139 A-

SPL + 0.01305 Thrust - 0.228 Torque                                                                    (4.17) 

Contribution percentage (%): DD = 66.68 %, SS = 0.72 %, PR = 5.60 %, A-SPL = 

5.00 %, Thrust = 9.02 %, Torque =2.07 %, Error=10.91 % 

Regression equation for black limestone: 

Specific energy (Nm/m
3
) = 14.84 - 1.030 DD + 0.00452 SS - 2.650 PR - 0.00060 A-

SPL + 0.02991 Thrust + 0.040 Torque                                                                   (4.18) 

Contribution percentage (%): DD =66.68 %, SS = 0.72 %, PR = 5.60 %, A-SPL = 

5.00 %, Thrust = 9.02 %, Torque = 2.07 %, Error = 10.91 % 

Regression equation for hematite: 

Specific energy (Nm/m
3
) = 25.01 - 1.7078 DD - 0.00423 S + 0.254 PR + 0.0151 A-

SPL + 0.00842 Thrust + 0.158 Torque                                                                   (4.19)  

Contribution percentage (%): DD = 58.00 %, SS =7.40 %, PR = 5.60 %, A-SPL = 

12.90 %, Thrust = 9.02 %, Torque =2.07 %, Error=5.01 % 

Regression equation for dolomite: 

Specific energy (Nm/m
3
) = 26.16 - 1.578 DD - 0.00756 SS - 1.086 PR - 0.00068 A-

SPL + 0.01578 Thrust + 0.132 Torque                                                                   (4.20) 

Contribution percentage (%): DD = 66.68 %, SS =0.72 %, PR = 5.60 %, A-SPL = 

5.00 %, Thrust = 9.02 %, Torque =2.07 %, Error = 10.91 % 

4.10.2 Analysis of variance (ANOVA) 

Regression analysis was carried out to obtain SE predictive models during diamond 

core drilling operations. This test helps to find out which input parameters 

considerably affect the desired output response in the model. ANOVA is the most 

popular analysis tool for studying the significant parameters that influence the quality 
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characteristics and identify the percentage contribution ratio of each process factors 

on output response. After performing the experimental analysis of the obtained data 

presented in Table 4.B2 (Appendix-B) was executed, whereas P-value was 

significantly good being less than 0.005. 

4.10.3 Performance prediction of derived models 

The prediction of performance is a better indicator for the developed prediction model 

to assess the coefficient of correlations between predicted and measured results. 

Values account for (VAF) and root mean square error (RMSE) were calculated for the 

predictive ability of the prediction models, whereas y and y
1
, Ai  and Pi are the 

measured and predicted values are as shown in the Equation (4.21) to Equation (4.23). 

If VAF is equal to 100 and RMSE is equal to zero, then the model will be good. 

Similarly mean absolute percentage error (MAPE) shows that accuracy fits value in 

the statistics (Kumar et al. 2011; Alvarez and Babuska, 1999; Finol et al. 2001; 

Gokceoglu, 2002; Yilmaz and Yuksek, 2008, 2009; Yilmaz and Oguzkaynar, 2011). 

The performance indices of the developed regression model are as shown in Table 

4.3. 
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Table 4.3 Performance indices of the developed regression models 

Rock type Performance indices 

 RMSE VAF (%) MAPE 

Ochre 0.074411 72.826808 2.321007 

Bituminous coal 0.137019 78.4179 1.302107 

Laterite 0.205786 84.155813 3.075358 

Pink limestone 0.578601 82.770851 0.061218 

Black limestone 0.194082 78.7624 0.330962 

Hematite 0.263618 78.0514 0.109818 

Dolomite 0.251525 77.246 0.206723 
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4.10.4 Validation of the specific energy models 

The predictive models were verified by considering the behaviour of determination 

coefficients (R
2
), the t-test and the F-test and performance prediction of VAF, RMSE 

and MAPE. The validation results demonstrate that, at the 95% confidence level, the 

computed t-values and computed F-values are greater than the tabulated t-value (2.44) 

and tabulated F-value (2.19), suggesting that the developed models are statistically 

valid. The figures (Figure 4.13 to Figure 4.19) indicate that the error appears to be at 

an acceptable degree of accuracy around below 18% from predicted value, confirming 

the accuracy of the models. 
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Figure 4.13: Specific energy error graph for ochre 
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Figure 4.14: Specific energy error graph for coal 
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Figure 4.15: Specific energy error graph for laterite 

20 40 60 80 100 120

-10

-5

0

5

10

15

20

E
rr

o
r

No.of observations

Pink limestone

 

Figure 4.16: Specific energy error graph for pink limestone 
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Figure 4.17: Specific energy error graph for black limestone 
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Figure 4.18: Specific energy error graph for hematite 
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Figure 4.19: Specific energy error graph for dolomite 

4.10.5 Effect of physico-mechanical rock properties on specific energy  

The relationships between physico-mechanical properties and SE were investigated 

on the basis of the statistical approach, such as exponential approach and the best 

relations established are represented in Figure 4.20a to 4.20e and presented in Table 
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4.4 which indicates that there exist strong correlations between SE and rock 

properties, except density. It may generally be possible to obtain higher SE values 

when drilling in the high density hard rocks; due to this reason there may appear 

moderate correlations between SE and density (Delgado et al. 2005; Xie and Tamaki, 

2007). The developed models having R
2
 value for all models are around 0.90 % 

except density, indicating a high degree of relationship between the physico-

mechanical properties of rocks and SE. From Figure 4.20a to 4.20e it is observed that 

the SE increased with increasing UCS, BTS, dry density, and impact strength index 

(Reddish and Yasar 1996; Coupur et al. 2001; Balci et al. 2014; Tiryaki et al. 2006), 

whereas, SE decreased with increasing abrasivity (Engin et al. 2013). The 

experimental 125 test conditions results of thrust, torque and A-SPL, for various 

(ochre, bituminous coal, laterite, pink limestone, black limestone, hematite, and 

dolomite) rock samples as shown Table 4.B5 to Table 4.B11 in the Appendix-B. 

Table 4.4 Correlations between specific energy and physico-mechanical properties 

Physico- mechanical rock 

properties 

Regression equation R
2
 - value 

UCS SE = 12.2e
0.003x

 R² = 92.25 

BTS SE = 0.7307e
0.0029x 

R² = 90.99 

Density  SE = 2.0467e
0.0006x

 R² = 47.15 

Abrasivity SE = 87.665e
-0.003x

 R² = 93.90 

Impact strength index SE = 52.91e
0.0005x

 R² = 82.88 

 

 

Figure 4.20a: Relationship between uniaxial compressive strength to specific energy 
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Figure 4.20b Relationship between Brazilian tensile strength to specific energy 

 

 

 

 

Figure 4.20c: Relationship between density to specific energy 

 

 

 

 

13.355 14.288 16.157 17.796 18.879

25.936

32.131

74.33 76.31

84.04
87.86

90.47

101.39

111.09

1.02 1.09 1.87 2.32 2.66 7.54 7.62

0

20

40

60

80

100

120

A
-W

e
ig

h
te

d
 S

o
u
n
d
 P

re
ss

u
re

 L
e
ve

l (
d
B

)

Brazilian Tensile Strength (MPa)

 Specific Energy (Nm/m
3

)

 A-Weighted Sound Pressure Level (dB)

13.355 14.288 16.157 17.796 18.879

25.936

32.131

74.33 76.31

84.04
87.86

90.47

101.39

111.09

2.38 1.75 2.93 2.49 2.62 3.6 3.01

0

20

40

60

80

100

120

A
-W

e
ig

h
te

d
 S

o
u

n
d

 P
re

s
s
u

re
 L

e
v
e
l 
(d

B
)

Density (g/cm3)

 Specific Energy (Nm/m
3

)

 A-Weighted Sound Pressure Level (dB)



77 
 

 

 

 

Figure 4.20d: Relationship between abrasivity to specific energy 

 

 

 

 

Figure 4.20e: Relationship between impact strength index to specific energy 
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CHAPTER-5 

CONCLUSIONS AND RECOMMENDATIONS 

5.1 Conclusions 

The following are the conclusions drawn from this research work: 

1 In relation of operating variables, it was observed that specific energy 

decreased from 30.381 Nm/m
3
 to 1.024 Nm/m

3
 with increasing drill bit 

diameter, penetration rate and drill bit speed. Similarly, in relation of A-

weighted SPL to operating variables it was observed that, A-weighted SPL 

increased from 71.36 dB to 142.724 dB with increasing drill bit diameter, 

penetration rate and drill bit speed. The trend of A-weight SPL with the 

compressive strength is inconsistent which might be due to influences of other 

rock properties such as abrasivity, mineralogical compositions or petrographic 

features. 

2 Thrust and A-weighted sound pressure level increases from 109.23 N to 

1001.96 N, 71 dB to 142 dB with an increase in the drill bit diameter, spindle 

speed, and penetration rate while drilling various rock samples. This may be 

due to the normal and tangential forces which maintain bit-rock contact 

frictional forces between diamond drill bit and rock sample. An increase in the 

drill bit diameter led to increase the thrust forces during diamond drilling 

operations.  

3 Torque and A-weighted sound pressure level increased from 2 Nm to 11.88 

Nm, 71 dB to 142 dB with an increase in the drill bit diameter, spindle speed, 

and penetration rate while drilling various rock samples. This may be due to 

the significant increase in the uniaxial compressive strength of rocks (hardness 

of the rock). The rock hardness is characterized by a high torque values for 

hard rock, and also observed that, low torque values for in the soft rocks.  

4 A-weighted sound pressure level increased corresponding to the rock 

properties such as UCS, BTS, density, and impact strength index. Higher A-

weighted sound pressure level may generally be obtained when drilling in hard 

rocks having higher UCS and density, which may increase A-weighted sound 
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pressure level. A-weighted sound pressure level decreased with increasing the 

abrasivity. It may be the possible the percentage wear loss were observed in 

the rock samples.  

5 Simple linear regression model was developed between the rock properties 

and the sound pressure levels (SPL) measured during diamond drilling. The 

prediction results show that the developed statistical model prediction has a 

coefficient of determination (R
2
- value) of 85.5% to 95% with an error from 

1.52 % to 10.37 %. 

6 Multiple regression models were developed between the rock properties and 

the sound pressure levels measured during diamond drilling. The prediction 

results show that the developed statistical model has moderate coefficients of 

determination i.e. R
2
- value of 78.41% to 93.20%, the RMSE value was 

around zero and the VAF value of 78.41% to 93.23%. 

7 The multi-layer perceptron (ANN) network was trained using seven types of 

back-propagation training algorithms i.e. trainscg, traingda, trainrp, traingdx, 

trainlm, trainbfg, traincgf. Their performances were compared in terms of 

VAF, RMSE and MAPE values. Trainrp (resilient back-propagation 

algorithm) showed better performance than all other algorithms in the 

prediction of the rock properties. 

8 A comparison of simple linear, multiple regression models and MLP model 

using “trinrp” algorithm revealed that, simple linear regression, MLP model 

gave better performance than multiple regression technique with lower MAPE 

and RMSE values and higher prediction accuracy (VAF value) for all the 

prediction variables. 

9 Multiple linear regression models were developed between the rock properties 

and specific energy using A-weighted equivalent sound level obtained during 

diamond drilling. The prediction results show that the developed statistical 

model has moderate coefficients of determination i.e. R
2
- value of 75.58% to 

78.76%, the RMSE value was around zero and the VAF value of 72.82% to 

84.15%.  It was also observed that specific energy increased with increasing 

UCS, BTS, dry density, and impact strength index, whereas the specific 

energy decreased with the increase of abrasivity.  
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5.2 Recommendations for Further Research 

1. In the present work, prediction of the rock properties using frequency analysis 

technique was used in the diamond drilling operation. It is suggested that the 

future investigation could be carried out using wavelet techniques for 

quantification of rock properties. 

2. In this investigation, the effect of mineralogical composition in rocks on specific 

energy and noise levels are not reported. It is suggested that further investigation 

can be carried out in this direction (mineralogical percentage/thin section 

analysis). 

3. In the present work, rock properties and specific energy were predicted using 

sound pressure levels generated during diamond drilling operations. The same 

technique can be implemented to predict multiple fracture propagation in rocks, 

shear strength of rock. 

4. This investigation was completely based on laboratory investigations. The same 

investigation can be conducted at the mining site for estimation of rock properties 

using dominant frequencies. 

5. In field or at drilling site, the drill bit generally goes deeper from the surface, 

make it difficult to acquire sound pressure levels.  To overcome this difficulty, 

specially designed core drill bits that can be possibly allow to insert 

microphone/sensors in the core drill bits for acquiring the sound pressure levels. 

6. The structure of rocks was not considered in the present research work for 

measuring noise level/sound levels. It is suggested that further investigation can 

be carried out in this direction. 

7. The texture, structure, size of minerals grains, and bonding between various 

minerals grains present in the rock will have influence on physico – mechanical 

properties of rock and hence on sound pressure levels. The same problem is 

suggested for future investigation. 

8. The presence of silicate will have influence on sound pressure level. It is 

suggested that further investigation can be carried out in this direction. 

 

 



82 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



83 
 

REFERENCES 

 

Abdi, Y., Garavand, A. T. and Sahamieh, R. Z. (2018). “Prediction of strength 

parameters of sedimentary rocks using artificial neural networks and regression 

analysis.” Arabian Journal of Geosciences, 11 (19), 587 - 592. 

 

Acaroglu, O., Ozdemir, L. and Asbury, B. (2008). “A fuzzy logic model to 

predict specific energy requirement for tunnel boring machine performance 

prediction.” Tunneling and Underground Space Technology, 23 (5), 600 - 608. 

 

Aldeeky, H. and Al Hattamleh, O. (2018). “Prediction of Engineering Properties 

of Basalt Rock in Jordan Using Ultrasonic Pulse Velocity Test.” Geotechnical 

and Geological Engineering, 36 (6), 3511 - 3525. 

 

Altindag, R. (2003). “Correlation of specific energy with rock brittleness 

concepts on rock cutting.” The Journal of the South Africa Institute of Mining 

and metallurgy, 103 (3), 163-171. 

 

Alvarez, G.M. and Babuska, R. (1999). “Fuzzy model for the prediction of 

unconfined compressive strength of the rock samples.” The Journal of Rock 

Mechanics Mining Sciences, 36 (3), 339 - 349. 

 

Atici, U. and Ersoy, A. (2009). “Correlation of specific energy of cutting saws 

and drilling bits with rock brittleness and destruction energy.” Journal of 

Materials Processing Technology, 209 (5), 2602 - 2612. 

 

Aydin, G., Karakurt, I. and Aydiner, K. (2012). “Development of predictive 

models for specific energy of diamond saw blades concerning operating 

variables.” JESTECH, 15(4), 155-161. 

 



84 
 

Aydin, G., Karakurt, I. and Aydiner, K. (2013). “Development of predictive 

models for the specific energy of circular diamond sawblades in the sawing of 

granitic rocks.” Rock Mechanics Rock Engineering, 46 (4), 767-783. 

 

Balci, C., Demircin, M.A., Copur, H. and Tuncdemir, H. (2004). “Estimation of 

optimum specific energy based on rock properties for assessment of roadheader 

performance.” The Journal of the South African Institute of Mining and 

Metallurgy, 104 (11), 633-641. 

 

Banks, S. (2013). “Minimizing the mechanical specific energy while drilling 

using extreme seeking control.” 11th International Conference on Vibration 

Problems, Lisbon, Portugal, September 2013, 9-12. 

 

Becker, H., Lemmes, F. and Schommer, M. (1984). “Testing of rock mechanics 

as a basis for improved cutting technology.” Gluckauf translation, 120 (8), 122-

124. 

 

Bhatnagar, A. and Khandelwal, M. (2012). “An intelligent approach to evaluate 

drilling performance.” Neural Computing and Applications, 21(4), 763-770. 

 

Brown, E.T. (1981). “Rock Characterization testing and monitoring.” 

International society for rock mechanics (ISRM) suggested methods, Pergamon, 

Oxford. 

 

Cao, Q. J., Wiercigroch, M., Pavlovskaia, E. and Yang, S. P. (2010). 

“Bifurcations and the penetrating rate analysis of a model for percussive 

drilling.” Acta Mechanica Sinica, 26 (3), 467-475. 

 

Chiang, L. and Stamm, E. (1998). “Design Optimization of Valveless DTH 

Pneumatic Hammers by a Weighted Pseudo-Gradient Search Method.” Journal 

of Mechanical Design, 120, 687-694. 

 



85 
 

Copur, H., Tuncdenir, H., Bilgin, N. and Dincer, T. (2001). “Specific Energy as a 

Criterion for Use of Rapid Excavation Systems in Turkish Mines.” Mining 

Technology, 110 (3), 149-157. 

 

Curry, D.,  Fear, M., Govzitch, A. and Aghazada, L. (2005). “Technical Limit 

Specific Energy-An Index to Facilitate Drilling Performance Evaluation.” paper 

SPE/IADC 92318 presented at the SPE/IADC Drilling Conference, Amsterdam, 

The Netherlands, 23-25 February. 

 

Clark, B.G. (1982). “Principles of rock drilling and bit wear.” Colorado School 

of Mines quarterly, 77(1), 1-12. 

 

Dehghan, S., Sattari, G. H., Chelgani, S. C. and Aliabadi, M. A. (2010). 

“Prediction of uniaxial compressive strength and modulus of elasticity for 

Travertine samples using regression and artificial neural networks.” Mining 

Science and Technology (China), 20(1), 41-46. 

 

Delgado, N. S. Rey, A.R., Rio, L.M.S., Sarriá, I.D., Calleja, L. and 

Argandona.V.G.R. (2005). "The influence of rock micro hardness on the saw 

ability of Pink Porrino granite (Spain)." International Journal of Rock Mechanics 

and Mining Sciences, 42 (1), 161-166. 

 

Delibalta, M.S., Kahraman, S. and Comakli, R. (2015). “The usability of noise 

level from rock cutting for the prediction of physico – mechanical properties of 

rocks.” World Scientific, 14(1), 1-12. 

 

Dupriest, F. E. and Koederitz, W. L. (2005). “Maximizing Drill Rate with Real-

Time Surveillance of Mechanical Specific Energy.” paper SPE/IADC 92194 

presented at the SPE/IADC Drilling Conference, Amsterdam, Netherlands. 

 



86 
 

Engin, I.C., Bayam, F. and Yasitli, N.E. (2013). “Experimental and statistical 

evaluation of cutting methods in relation to specific energy and rock properties.”  

Rock Mechanics and Rock Engineering, 46 (4), 755-766. 

 

Erosy,  A.  and  Atici, U.  (2007). “Correlation of P and S waves with cutting 

specific energy and dominant properties of volcanic and carbonate rocks.” Rock 

Mechanics and Rock Engineering, 40 (5), 491-504. 

 

Ersoy, A., Atici, U. (2004). “Performance characteristic of circular diamond saws 

in cutting different types of rocks.” Diamond and related Materials, 13 (1), 22-

37. 

Ersoy. A. (2003). “Automatic drilling control based on minimum drilling specific 

energy using PDC and WC bits.” Mining Technology, 112 (2), 86-96. 

   

Evans, I. (1962). “A theory of the basic mechanics of coal ploughing.”  

International Symposium on Mining Research, 2, 761–798. 

 

Evans, I. (1984).” Basic mechanics of the point-attack pick”. Colliery Guardian, 

232 (5), 111-113. 

 

Faisal, S. I., Cording, E. J. and Al-Hattamleh, O. H. (2007). “Estimation of rock 

engineering properties using hardness tests.” Engineering Geology, 90 (3-4), 

138-147. 

 

Feng, X. T., Young, R. P., Reyes-Montes, J. M., Aydan, Ö., Ishida, T., Liu, J. P. 

and Liu, H. J. (2019). “ISRM Suggested method for in situ acoustic emission 

monitoring of the fracturing process in rock masses.” Rock Mechanics and Rock 

Engineering, 52 (5), 1395 - 1414. 

 

Field, A. (2009). “Discovering statistics using SPSS.” SAGE Publication Ltd., 

London, 821. 

 



87 
 

Finol, J., Guo, Y.K. and Jing, X.D. (2001). “A rule based fuzzy model for the 

prediction of petro physical rock parameters.” J.Pet.Sci.Eng, 29 (2), 97-113. 

 

Flegner, P., Kacur, J., Durdan, M. and Laciak, M. (2019). “Evaluating noise 

sources in a working environment when disintegrating rocks by rotary 

drilling.” Polish Journal of Environmental Studies, 28 (5), 1-10. 

 

Flegner, P., Kačur, J., Durdán, M., Laciak, M. (2019). “Processing a measured 

vibroacoustic signal for rock type recognition in rotary drilling technology.” 

Measurement, 134, 451-467. 

 

Flegner, P., Kačur, J., Durdán, M., Leššo, I., Laciak, M. (2014). Measurement 

and processing of vibro-acoustic signal from the process of rock disintegration by 

rotary drilling.” Measurement, 56, 178-193. 

 

Forouharmajd, F., Mohammadi, Z., Ahmadvand, M. and Forouharmajd, F. 

(2015). “Sound pressure level tools design used in occupational health by means 

of labview software.” International Journal of Environmental Health 

Engineering, 4 (1), 1-6. 

 

Fowell, R.J. and Mcfeat-Smith, I. (1976). “Factors influencing the cutting 

performance of a selective tunnelling machine. In: Jones JM, editor. Proceedings 

of the First International Symposium on Tunnelling ‟76. London: IMM, 301–309. 

 

Ghaboussi, J., Garrett Jr, J. H. and Wu, X. (1991). “Knowledge-based modeling 

of material behavior with neural networks.” Journal of engineering 

mechanics, 117 (1), 132-153. 

 

Gokceoglu, C. (2002). “A fuzzy triangular chart to predict the uniaxial 

compressive strength of the Ankara agglomerates from their petrographic 

composition,” Eng.Geol, 66 (1), 39-51. 

 



88 
 

 

Goktan, R.M. (1991). “ Brittleness and micro-scale rock cutting efficiency.” 

Mining Science and Technology, 13 (3), 237–241. 

 

Gradl, C., Eusteslll, A.W. and Thonhauser, G. (2007). “An analysis of noise 

characteristics of drill bits.” Journal of Energy Resources Technology, ASME, 

134 (1), 1-6. 

 

Hardy, H.R. (1972). “Application of acoustic emission technique to rock 

mechanics research.” Acoustic Emission, ASTM STP 505, American Society for 

Testing and Materials: 41-83. 

 

Hassanpour, J., Rostami, J., Zhao, J. (2011). “A new hard rock TBM 

performance prediction model for project planning.” Tunnelling and 

Underground Space Technology, 26 (5), 595-603. 

 

Haykin, S. (1998). “Neural Networks: A Comprehensive Foundation, Prentice 

Hall PTR.” Upper Saddle River, NJ, USA. 

 

He, S., Song, D., Li, Z., He, X., Chen, J., Li, D. and Tian, X. (2019). “Precursor 

of spatio-temporal evolution law of MS and AE activities for rock burst warning 

in steeply inclined and extremely thick coal seams under caving mining 

conditions.” Rock Mechanics and Rock Engineering, 52 (7), 2415-2435. 

 

He, M., Li, N., Zhu, J. and Chen, Y. (2020). “Advanced prediction for field 

strength parameters of rock using drilling operational data from impregnated 

diamond bit.” Journal of Petroleum Science and Engineering, 187, 106847, 1-11. 

 

Hu, X., Su, G., Chen, G., Mei, S., Feng, X., Mei, G. and Huang, X. (2019). 

“Experiment on rock burst process of borehole and its acoustic emission 

characteristics.” Rock Mechanics and Rock Engineering, 52 (3), 783-802. 

 



89 
 

 

Javier, M. (2017). “Optimal operational TBM parameters for efficient hardrock 

tunnel boring on the basis of rock boreability and on-site testing.” International 

Conference on Tunnel boring machines in difficult Grounds (TBM DiGS).” 

Wuhan: 16-18 November 2017. 

 

Jia, S. Q., Wong, R. C. K., Eaton, D. W. and Eyre, T. S. (2018). “Investigating 

fracture growth and source mechanisms in shale using acoustic emission 

technique.” In 52
nd

 US Rock Mechanics/Geomechanics Symposium, American 

Rock Mechanics Association, August. 

 

Kahraman, S., Delibalta, M.S. and Comakli, R. (2013). “ Noise level 

measurement test to predict the abrasion resistance of rock aggregates.” 

Fluctuation and Noise Letters, 12 (4), 1350001-1350021. 

 

Kahraman, S., Ucurum, M., Yogurtcuoglu, E. and Fener, M. (2019). “Evaluating 

the grinding process of granites using the physic - mechanical and mineralogical 

properties.” Journal of Metals, Materials and Minerals, 29(2), 51-57. 

 

Kalyan, B. (2016). “Experimental investigations on assessment and prediction of 

specific energy in rock indentation tests.” Un published Ph.D thesis, NITK 

Surathkal. 

 

Kalyan, B., Murthy, Ch.S.N.  and  Choudhary, R.P. (2016).“Development of 

predictive models for the specific energy in indentation of rocks.”  Recent 

Advances in Rock Engineering (RARE), Atlantis Press, 530–535. 

 

Karakus, M. and Perez, S. (2014).  “Acoustic emission analysis for rock–bit 

interactions in impregnated diamond core drilling.” International Journal of Rock 

Mechanics and Mining Sciences, 68, 36-43. 

 



90 
 

Katz, O., Reches, Z. and Roegiers, J. C. (2000). “Evaluation of mechanical rock 

properties using a Schmidt Hammer.” International Journal of rock mechanics 

and mining sciences, 37 (4), 723-728. 

 

Kılıç, A. and Teymen, A. (2008). “Determination of mechanical properties of 

rocks using simple methods.” Bulletin of Engineering Geology and the 

Environment, 67 (2), 237-244. 

 

Kim, K. and Gao, H. (1995). “Probabilistic approaches to estimating variation in 

the mechanical properties of rock masses.” International journal of rock 

mechanics and mining sciences & geomechanics abstracts, 32 (2), 111-120. 

 

Kivade, S.B., Murthy,  Ch.S.N.  and  Vardhan, H. (2015). “ANN models for 

prediction of sound and penetration rate in percussive drilling.” Journals of 

Institution of Engineers, India, series D, 96 (2), 93 - 103. 

 

Kivade, S.B., Murthy, Ch.S.N. and Vardhan, H. (2012a). “Prediction of 

penetration rate and sound level produced during percussive drilling using 

regression and artificial neural networks.” International Journal of Earth Science 

and Engineering, 5 (6), 1639-1644. 

 

Kivade, S.B., Murthy, Ch.S.N. and Vardhan, H. (2013) “Laboratory 

investigations on percussive drilling.” The Journal of Institute of Engineers, 94 

(2), 81-87. 

 

Kivade, S.B., Murthy, Ch.S.N. and Vardhan, H. (2012b). “The use of 

dimensional analysis and optimization of pneumatic drilling operations and 

operating parameters.” The Journal of Institute of Engineers, 93 (1), 31-36. 

 

Krepelka, F. and Futo, J. (2007). “Acoustics aspects of technology process in the 

rock disintegration.” Acta montanistica slovaca, 12 (1), 25-28. 

 



91 
 

Krúpa, V., Kruľáková, M., Lazarová, E., Labaš, M., Feriančiková, K. and  

Ivaničová, L. (2018). “Measurement, modeling and prediction of penetration 

depth in rotary drilling of rocks.” Measurement, 117, 165-175. 

 

Kumar, B.R., Vardhan, H. and Govindaraj, M. (2011a). “A new approach for 

estimation of rock properties of metamorphic rocks.” The International Journal 

of Mining and Mineral Engineering, 3(2), 109-123. 

 

Kumar, B.R., Vardhan, H. and Govindaraj, M. (2011b). “Prediction of uniaxial 

compressive strength, tensile strength, and porosity of sedimentary rocks using 

sound level produced during rotary drilling.” Rock Mechanics and Rock 

Engineering, 44 (5), 613-620. 

 

Kumar, B.R., Vardhan, H. and Govindaraj, M. (2011c). “Sound level produced 

during rock drilling Vis-à-vis rock properties.” Engineering Geology, 123 (4), 

333-337. 

 

Kumar, B.R., Vardhan, H., Govindaraj, M. and Saraswathi, P.S. (2013a). 

“Artificial neural network model for Prediction of rock properties from sound 

levels produced during drilling.” An International Journal of Geomechanics and 

Geoengineering, 8 (1), 53-61. 

 

Kumar, B.R., Vardhan, H., Govindaraj, M. and Vijay, M. (2013b). “Regression 

analysis and ANN models to predict rock properties from sound levels produced 

during drilling.” Intrnational Journal of Rock mechanics and Mining Sciences, 

58, 61-72. 

 

Li, N., Zhang, S., Zou, Y., Ma, X., Zhang, Z., Li, S. and Sun, Y. (2018). 

“Acoustic emission response of laboratory hydraulic fracturing in layered 

shale.” Rock Mechanics and Rock Engineering, 51 (11), 3395-3406. 

 



92 
 

Liao, M., Liu, Y., Chávez, J. P., Chong, A. S. and Wiercigroch, M. (2018). 

“Dynamics of vibro-impact drilling with linear and nonlinear rock models.” 

International Journal of Mechanical Sciences, 146, 200-210. 

 

Liu, S., Li, X., Li, Z., Chen, P., Yang, X. and Liu, Y. (2019). “Energy 

distribution and fractal characterization of acoustic emission (AE) during coal 

deformation and fracturing.” Measurement, 136, 122-131. 

 

Luis,E., Izquierdo. and Chiang, L. (2004). “ A methodology for estimation of the 

specific rock energy index using corrected down-the-hole drill monitoring data.” 

Mining Technology, 113 (4), 225 - 236. 

 

Luo, Y., Collins, C., Qi, B. and Li, M.M. (2014). “Experimental studies on 

controlling drilling parameters to reduce roof bolt-hole drilling noise.” The 

Journal of Mining Engineering, 66 (5), 54 - 61. 

 

Lundberg, B. (1971). “Some basic problems in percussive rock destruction.” 

Ph.D. Thesis. Chalmers University Technology, Gothenburg,  Sweden. 

 

Mahdiabadi, N. and Khanlari, G. (2019). “Prediction of Uniaxial Compressive 

Strength and Modulus of Elasticity in Calcareous Mudstones Using Neural 

Networks, Fuzzy Systems, and Regression Analysis.” Periodica Polytechnica 

Civil Engineering, 63 (1), 104 - 114. 

 

Madhubabu, N., Singh, P. K., Kainthola, A., Mahanta, B., Tripathy, A. and 

Singh, T. N. (2016). “Prediction of compressive strength and elastic modulus of 

carbonate rocks.” Measurement, 88, 202-213. 

 

Masood. (2015). “Estimation of sound level produced during drilling of igneous 

rock samples using a portable drill set-up.” Global challenges policy frame work 

& sustainable development for mining of mineral and fossil energy resources 

(GCPF), Procedia Earth and Planetary Science, 11, 469–482. 



93 
 

 

McNally, G.H. (1990). “The prediction of geotechnical rock properties from 

sonic and neutron logs.” Australian Society of Exploration Geophysics (ASEG), 

21 (1/2), 65-71. 

 

Meireles, M. R., Almeida, P. E. and Simões, M. G. (2003). “A comprehensive 

review for industrial applicability of artificial neural networks.” IEEE 

transactions on industrial electronics, 50 (3), 585-601. 

 

Mellor, M. and Hawkes, I. (1971). “Measurement of tensile strength by diametral 

compression of discs and annuli.” Engineering Geology, 5 (3), 173-225. 

 

Meulenkamp, F. and Grima, M. A. (1999). “Application of neural networks for 

the prediction of the unconfined compressive strength (UCS) from Equotip 

hardness.” International Journal of rock mechanics and mining sciences, 36 (1), 

29-39. 

 

Miklusova, V., Usalova, L., Ivanicova, L. and Krepelka, F. (2006). “Acoustic 

signals - new feature in monitoring of rock disintegration process.” Contribution 

to Geophysics Geodesy, 36, 125-133. 

 

Miller, D. and Ball, A. (1990). “An instrumented laboratory machine for the 

evaluation of drill bit performance.” Journal of the south African Institute of 

Mining and metallurgy, 90 (10), 283-288. 

 

Momeni, E., Armaghani, D. J., Hajihassani, M. and Amin, M. F. M. (2015). 

“Prediction of uniaxial compressive strength of rock samples using hybrid 

particle swarm optimization-based artificial neural networks.” Measurement, 60, 

50-63. 

 



94 
 

Yurdakul, M. and Akdas, H. (2012). “Prediction of Specific Cutting Energy for 

Large Diameter Circular Saws during Natural Stone Cutting.” International 

Journal of Rock Mechanics and Mining Science, 53, 38-44. 

 

Neves, F.P., costaesilva, M. and Navarro torres, V.F. (2012). “Evaluation of 

elastic deformation energy in stone cutting of Portuguese marbles with a 

diamond saw.” The Journal of the African Institute of Mining and Metallurgy, 

112 (3), 413-417. 

 

Obert, L. (1941). “Use of sub audible noises for prediction of rock bursts - Part I. 

U.S.” Bureau of Mines, R.I.3555. 

 

Obert, L. and Duvall W.I. (1942). “Use of sub audibility noise for prediction of 

rock bursts - Part II.U.S.” Bureau of Mines, R.I.3654. 

 

Ocak, I. and Seker, S. E. (2012). “Estimation of elastic modulus of intact rocks 

by artificial neural network.” Rock mechanics and rock engineering, 45 (6), 

1047-1054. 

 

Omar, H., Ahmad, J., Nahazanan, H., Mohammed, T. A. and Yusoff, Z. M. 

(2018). “Measurement and simulation of diametrical and axial indirect tensile 

tests for weak rocks.” Measurement, 127, 299-307. 

 

Pessier, R.C. and Fear, M.J. (1992). “Quantifying Common Drilling Problems 

With Mechanical Specific Energy and a Bit-Specific Coefficient of Sliding 

Friction.” paper SPE 24584 presented at the 1992 SPE 67th Annual Technical 

Conference and Exhibition, Washington, DC. 

 

Qin, M., Wang, K., Pan, K., Sun, T. and Liu, Z. (2018). “Analysis of signal 

characteristics from rock drilling based on vibration and acoustic sensor 

approaches.” Applied Acoustics, 140, 275-282. 

 



95 
 

Rafavich, F., Kendall, C.H. and Todd, T.P. (1984). “The relation between 

acoustic properties and the petrographic character of carbonate rocks.” 

Geophysics, 49 (10), 1622-1636. 

 

Rastegarnia, A., Teshnizi, E. S., Hosseini, S., Shamsi, H. and Etemadifar, M. 

(2018). “Estimation of punch strength index and static properties of sedimentary 

rocks using neural networks in south west of Iran.” Measurement, 128, 464-478. 

 

Reddish, D.J. and Yasar, E. (1996). “A new portable rock strength index test 

based on specifi energy.” International Journal of Rock Mechanics Mining 

Science &Geo mechanics, 33 (5), 543-548. 

 

Rostami, J., Kahraman, S., Naeimipour, A. and Collins, C. (2015). “Rock 

characterization while drilling and application of roof bolter drilling data for 

evaluation of ground conditions.” Journal of Rock Mechanics and Geotechnical 

Engineering, 7 (3), 273-281. 

 

Rumelhart, D. E. and McClelland, J. L. (1986). “PDP Research Group. Parallel 

distributed processing.” Exploration in the microstructure of cognition, 1, 3 - 44. 

 

Salimia, A., Moormanna, C., Singhb, T. N. and Jainc, P. (2015). TBM 

performance prediction in rock tunneling using various artificial intelligence 

algorithms.” In Proceeding 11th Iranian and 2nd Regional Conference Tunnels 

and the Future, Stuttgart, Germany. 

 

Sarkar, K., Tiwary, A. and Singh, T. N. (2010). “Estimation of strength 

parameters of rock using artificial neural networks.” Bulletin of engineering 

geology and the environment, 69 (4), 599 - 606. 

 

Sachpazis, C. I. (1990). “Correlating schmidt hardness with compressive strength 

and young‟s modulus of carbonate rocks.” Bulletin of the International 

Association of Engineering Geology, 42 (1), 75 - 83. 



96 
 

 

Selmer-Olsen, R. and Blindheim, D.T. (1970). “On the drillability of rocks by 

percussive drilling.” In proceeding of second congress of the international 

society for rock mechanics, Belgrade, 65-70. 

 

Sheng, M., Tian, S., Zhang, B. and Ge, H. (2019). “Frequency analysis of multi-

sources acoustic emission from high-velocity waterjet rock drilling and its 

indicator to drilling efficiency.” International Journal of Rock Mechanics and 

Mining Sciences, 115, 137-144. 

 

Shewalla, M. and Smith, J. (2015) “Measurement of specific energy during 

drilling of rocks.” The Journal of EJGE, 20 (16), 123 - 129. 

 

Shreedharan, S., Hegde, C., Sharma, S. and Vardhan, H. (2014). “Acoustic finger 

printing for rock identification during drilling.” International Journal of Mining 

and Mineral Engineering, 5(2), 89-105. 

 

Simpson, P.K. (1990). “Artificial neural systems: foundations, paradigms, 

applications, and implementations.” Pergamon. 

 

Singh, T. N., Kanchan, R., Verma, A. K. and Singh, S. (2003). “An intelligent 

approach for prediction of triaxial properties using unconfined uniaxial 

strength.” Min Eng. J. 5 (4), 12-16. 

 

Sinkala, T. (1991). “Relating drilling parameters at the bit-rock interface: 

theoretical and field studies.” Mining Science and Technology, 12, 67-77. 

 

Singh, V. K., Singh, D. and Singh, T. N. (2001). “Prediction of strength 

properties of some schistose rocks from petrographic properties using artificial 

neural networks.” International Journal of Rock Mechanics and Mining 

Sciences, 38 (2), 269 - 284. 

 



97 
 

Sonmez, H., Gokceoglu, C., Nefeslioglu, H. A. and Kayabasi, A. (2006). 

“Estimation of rock modulus: for intact rocks with an artificial neural network 

and for rock masses with a new empirical equation.” International Journal of 

Rock Mechanics and Mining Sciences, 43 (2), 224 - 235. 

 

Teale, R. (1965). “The concept of specific energy in rock drilling.” International 

Journal of Rock Mining Sciences, 2 (1), 57 - 73. 

 

Teymen, A. (2019). “Estimation of Los Angeles abrasion resistance of igneous 

rocks from mechanical aggregate properties.” Bulletin of Engineering Geology 

and the Environment, 78 (2), 837 - 846. 

 

Tiryaki, B. (2008a). “Application of artificial neural networks for predicting the 

cuttability of rocks by drag tools.” Tunneling and Underground Space 

Technology, 23 (3), 273 -280. 

 

Tiryaki, B. (2008b). “Predicting intact rock strength for mechanical excavation 

using multivariate statistics, artificial neural networks, and regression 

trees.” Engineering Geology, 99 (1-2), 51 - 60. 

 

Tiryaki, B. and Dikmen, A. (2006). “Effects of rock properties on specific cutting 

energy in linear cutting of sandstones by picks.” Rock Mech. Rock Engineering.” 

39 (2), 89 - 120. 

 

Tiryaki, B., Ayhan, M. and Hekimoglu, O. Z. (2001). “A new computer program 

for cutting head design of roadheaders and drum shearers.” In 17th International 

Mining Congress and Exhibition of Turkey–IMCET, 655 - 662. 

 

Tripathy, A., Singh, T. N. and Kundu, J. (2015). “Prediction of abrasiveness 

index of some Indian rocks using soft computing methods.” Measurement, 68, 

302 - 309. 

 



98 
 

Ulusay, R. and Hudson, J.A. (2007). “The complete ISRM suggested methods for 

rock characterization testing and monitoring 1947-2006.” Compilation arranged 

by the ISRM Turkish national group, Ankara, Turkey: 628, ISBN: 978-975-

93675-4-4. 

 

Vardhan, H. and Murthy, Ch.S.N. (2007). “An experimental investigation of jack 

hammer drill noise with special emphasis on drilling in rocks of different 

compressive strength.” Noise Control Engineering Journal, 55 (3), 282 - 293. 

 

Vardhan, H., Adhikari G.R. and Govindaraj M. (2009). “Estimating rock 

properties using sound levels produced during drilling.” International Journal of 

Rock Mechanics & Mining Sciences, 46 (3), 604 - 612. 

 

Waughman, R.J., Kenner, J.V. and Moore, R.A. (2002). “Real-Time Specific 

Energy Monitoring Reveals Drilling Inefficiency and Enhances the 

Understanding of When to Pull Worn PDC Bits.” paper IADC/SPE 74520 

presented at the IADC/SPE Drilling Conference, Dallas, Texas, and 26 - 28 

February. 

 

Wijk, G. (1982). “Indexation effects on mechanical rock destruction efficiency. 

SveDeFo Rep. DS 1982; 2, Stockholim. 

 

Xiao, Y., Hurich, C., Molgaard, J. and Butt, S. D. (2018). “Investigation of active 

vibration drilling using acoustic emission and cutting size analysis.” Journal of 

Rock Mechanics and Geotechnical Engineering, 10 (2), 390-401. 

 

Xie, J. and Tamaki, J. (2007). "Parameterization of micro-hardness distribution in 

granite related to abrasive machining performance." Journal of Materials 

Processing Technology, 186 (1-3), 253 - 258. 

 

Yaşar, E. and Erdoğan, Y. (2004). “Estimation of rock physicomechanical 

properties using hardness methods.” Engineering Geology, 71 (3-4), 281 - 288. 



99 
 

 

Yilmaz, I. (2009). “Prediction of the strength and elasticity modulus of gypsum 

using multiple regression, ANN, and ANFIS models.” Int. J. Rock Mech. Min. 

Sci. 46, 803-810. 

 

Yilmaz, I. (2010). “Comparison of landslide susceptibility mapping 

methodologies for Koyulhisar, Turkey: conditional probability, logistic 

regression, artificial neural networks, and support vector 

machine.” Environmental Earth Sciences, 61 (4), 821-836. 

 

Yilmaz, I. and Oguz Kaynar. (2011). “Multiple regression, ANN (RBF, MLP), 

and ANFIS models for prediction of swell potential of clayey soils.” Expert 

systems with application, 38 (5), 5958 - 5966. 

 

Yilmaz, I. and Yuksek, A.G. (2008). “Technical note an example of artificial 

neural network (ANN) application for indirect estimation of rock parameters.” 

Rock Mech Rock.Engg. 41 (5), 781-795. 

 

Yilmaz, I. and Yuksek, A.G. (2009). “Prediction of the strength and elasticity 

modulus of gypsum using multiple regression, ANN, ANFIS models and their 

comparison.” Int.J.Rock Mech.Min.Sci. 46 (4), 803 - 810. 

 

Yilmaz, I. and Kaynar, O. (2011). “Multiple regression, ANN (RBF, MLP) and 

ANFIS models for prediction of swell potential of clayey soils.” Expert systems 

with applications, 38 (5), 5958 - 5966. 

 

Yılmaz, I. and Sendır, H. (2002). “Correlation of Schmidt hardness with 

unconfined compressive strength and Young's modulus in gypsum from Sivas 

(Turkey).” Engineering Geology, 66 (3-4), 211 - 219. 

 



100 
 

Yılmaz, I. and Yuksek, A. G. (2008). “An example of artificial neural network 

(ANN) application for indirect estimation of rock parameters.” Rock Mechanics 

and Rock Engineering, 41 (5), 781 - 795. 

 

Zborovjan, M. (2001). “Identification of minerals during drilling process via 

acoustic signal.” Metallurgy and Foundry, Krakow, Poland, 26 (4), 367 - 374. 

 

Zborovjan, M. (2002). “Identification of Minerals from Sound during Drilling.” 

Semestral Project, TU-Kosice, Poland. 

 

Zborovjan, M., Lesso, I. and Dorcak, L. (2003). “Acoustic identification of rocks 

during drilling process.” Acta Montanistica Slovaca, 8 (4), 191-193. 

 

Zhang, J., Ai, C., Li, Y. W., Che, M. G., Gao, R. and Zeng, J. (2018a). “Energy-

based brittleness index and acoustic emission characteristics of anisotropic coal 

under triaxial stress condition.” Rock Mechanics and Rock Engineering, 51 (11), 

3343 - 3360. 

 

Zhang, R., Ai, T., Ren, L. and Li, G. (2018b). “Failure characterization of three 

typical coal-bearing formation rocks using acoustic emission monitoring and X-

ray computed tomography techniques.” Rock Mechanics and Rock Engineering, 

52 (6), 1945 - 1958. 

 

Zorlu, K., Gokceoglu, C., Ocakoglu, F., Nefeslioglu, H. A. and Acikalin, S. 

(2008). “Prediction of uniaxial compressive strength of sandstones using 

petrography-based models.” Engineering Geology, 96 (3-4), 141 - 158. 

 

 

 

 

 



101 
 

APPENDIX-A 

Table 4.A1: A-weighted sound pressure level of ochre, bituminous coal, laterite, pink 

limestone, black limestone, hematite, and dolomite for different drill bit diameter 

 A-weighted sound pressure level (dB) 

Drill bit 

diameter 

(mm) 

Ochre Bituminous 

coal 

Laterite Pink  

limestone 

Black 

limestone 

Hematite Dolomite 

6 75.548 75.036 81.120 77.544 73.972 82.908 82.864 

10 77.20 78.372 83.884 77.736 77.768 84.68 86.08 

16 79.088 79.552 86.452 83.964 111.908 85.824 116.43 

18 84.188 82.108 87.256 90.868 116.028 89.008 124.5 

20 85.648 86.524 89.608 94.212 117.712 107.572 135.908 

 

Table 4.A2: A-weighted sound pressure level of ochre, bituminous coal, laterite, pink 

limestone, black limestone, hematite, and dolomite for different penetration rate 

 A-weighted sound pressure level (dB) 

Penetration rate 

(mm/min) 

Ochre Bituminous 

coal 

Laterite Pink  

limestone 

Black 

limestone 

Hematite Dolomite 

2 71.336 75.972 81.148 80.004 81.412 88.996 87.204 

3 73.764 77.552 84.184 84.496 86.632 89.46 88.8 

4 74.896 79.888 84.336 86.808 107.956 90.896 91.368 

5 76.68 81.564 85.24 89.948 114.052 92.672 125.564 

6 79.996 83.616 87.292 85.068 113.336 101.968 132.548 

 

Table 4.A3: A-weighted sound pressure level of ochre, bituminous coal, laterite, pink 

limestone, black limestone, hematite, and dolomite for different drill bit speed 

 A-weighted sound pressure level (dB) 

Drill bit speed 

(rpm) 

Ochre Bituminous 

coal 

Laterite Pink  

limestone 

Black 

limestone 

Hematite Dolomite 

150 71.888 71.36 79.204 79.496 109.936 85.512 88.984 

200 73.932 72.8 80.64 83.452 112.376 89.932 89.432 

250 74.404 75.996 82.812 84.228 121.332 97.084 120.212 

300 74.924 78.688 85.256 86.912 122.44 100.564 126.132 

350 79.924 81.748 87.288 93.236 131.304 123.910 142.724 
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Table 4.A4: Specific energy of ochre, bituminous coal, laterite, pink limestone, black 

limestone, hematite, and dolomite for different drill bit diameter 

 Specific energy (Nm/m
3
) 

Drill bit 

diameter (mm) 

Ochre Bituminous 

coal 

Laterite Pink  

limestone 

Black 

limestone 

Hematite Dolomite 

6 10.527 10.360 12.043 28.229 30.213 29.354 30.381 

10 7.1281 9.543 8.137 18.572 18.042 13.490 17.829 

16 5.251 7.112 5.636 12.785 12.826 12.838 13.061 

18 3.199 5.886 4.680 9.662 6.040 8.853 12.452 

20 1.672 2.540 2.289 4.732 3.273 3.115 5.931 

 

Table 4.A5: Specific energy of ochre, bituminous coal, laterite, pink limestone, black 

limestone, hematite, and dolomite for different penetration rate 

 Specific energy (Nm/m
3
) 

Penetration rate 

(mm/min) 

Ochre Bituminous 

coal 

Laterite Pink  

limestone 

Black 

limestone 

Hematite Dolomite 

2 6.929 9.084 15.864 21.174 19.296 15.594 25.076 

3 4.703 7.029 12.677 16.431 11.376 13.465 18.644 

4 3.614 5.434 7.595 11.692 8.675 10.314 13.200 

5 2.029 2.819 5.562 8.128 5.063 8.284 8.729 

6 1.502 2.075 4.088 6.554 3.984 7.993 5.006 

 

Table 4.A6: Specific energy of ochre, bituminous coal, laterite, pink limestone, black 

limestone, hematite, and dolomite for different drill bit speed 

 Specific energy (Nm/m
3
) 

Drill bit speed 

(rpm) 

Ochre Bituminous 

coal 

Laterite Pink  

limestone 

Black 

limestone 

Hematite Dolomite 

150 6.859 8.187 14.001 17.476 10.256 12.456 16.417 

200 4.472 7.227 11.677 10.364 9.261 11.008 11.155 

250 3.300 6.532 9.562 9.187 8.293 10.044 9.271 

300 2.123 3.228 9.595 8.157 8.428 9.998 9.459 

350 1.024 2.267 5.088 7.796 8.156 7.145 9.353 
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Table 4.A7: Thrust for different drill bit diameters while drilling ochre, bituminous coal, 

laterite, pink limestone, black limestone, hematite, and dolomite samples 

 Thrust (N) 

Drill bit 

diameter 

(mm) 

Ochre Bituminous 

coal 

Laterite Pink  

limestone 

Black 

limestone 

Hematite Dolomite 

6 213.64 173.92 340.52 528.16 514.24 629.96 729 

10 305.68 218.32 464.56 673.24 601.6 702.44 754.92 

16 401.68 323.64 494.24 710 768.36 871.84 815.56 

18 455.28 355.52 585.52 757.48 799.12 926.16 824.12 

20 511.36 573.84 631.48 804.2 950.16 994.52 906.88 

 

Table 4.A8: Thrust for different penetration rates while drilling ochre, bituminous coal, 

laterite, pink limestone, black limestone, hematite, and dolomite samples 

 Thrust (N) 

Penetration rate 

(mm/min) 

Ochre Bituminous 

coal 

Laterite Pink  

limestone 

Black 

limestone 

Hematite Dolomite 

2 237.61 191.68 313.84 568.92 213.2 485.24 320.2 

3 286.24 221.28 372.64 674.88 381.12 694.4 569.6 

4 329.92 251.32 432.26 758.04 569.92 767.6 640.08 

5 406.64 343.28 570.24 793.72 753.08 827.12 792.88 

6 499.24 587.68 677.24 897.52 1001.96 940.56 897.72 

 

Table 4.A9: Thrust for different drill bit speeds while drilling ochre, bituminous coal, laterite, 

pink limestone, black limestone, hematite, and dolomite samples 

 Thrust (N) 

Drill bit speed 

(rpm) 

Ochre Bituminous 

coal 

Laterite Pink  

limestone 

Black 

limestone 

Hematite Dolomite 

150 109.23 264.16 352.2 511.96 666.4 744.24 568.4 

200 216.04 364.16 380.76 612.96 699.4 818.28 794.88 

250 293.04 558.92 399.32 691.96 755.12 844.96 892.44 

300 532.64 603.72 462.72 898.52 863.8 887.2 917.64 

350 589.92 794.32 781.32 997.68 970.76 992.2 947.12 

 

 

 

 



104 
 

Table 4.A10: Torque for different drill bit diameters of ochre, bituminous coal, laterite, pink 

limestone, black limestone, hematite, and dolomite samples 

 Torque (Nm) 

Drill bit 

diameter 

(mm) 

Ochre Bituminou

s 

coal 

Laterite Pink  

limestone 

Black 

limestone 

Hematite Dolomite 

6 2 3.6 3.6 3.72 4.12 6.92 7.64 

10 3 4.8 4.24 5.8 5.2 7.64 7.99 

16 4 5.8 4.88 5.98 6.92 8.04 8.92 

18 4.5 6 4.52 6.64 7.96 8.68 9.4 

20 5 7.2 6.84 7.2 8.88 9.96 9.72 

 

Table 4.A11: Torque for different penetration rates while drilling ochre, bituminous coal, 

laterite, pink limestone, black limestone, hematite, and dolomite samples 

 Torque (Nm) 

Penetration rate 

(mm/min) 

Ochre Bituminous 

coal 

Laterite Pink  

limestone 

Black 

limestone 

Hematite Dolomite 

2 3.04 4.72 3.84 4.72 3.2 7.2 4.96 

3 4.01 5 4.72 5.08 4.56 7.6 5.72 

4 4.44 5.9 6.64 6.84 5.56 8.2 6.52 

5 5.04 6.2 7.04 7.52 6.92 8.8 8.28 

6 6.19 7.02 7.84 8.68 7.44 9.36 9.6 

 

Table 4.A12: Torque for different drill bit speeds while drilling of ochre, bituminous coal, 

laterite, pink limestone, black limestone, hematite, and dolomite samples 

 Torque (Nm) 

Drill bit speed 

(rpm) 

Ochre Bituminous 

coal 

Laterite Pink  

limestone 

Black 

limestone 

Hematite Dolomite 

150 2.6 4.52 2.12 5.52 5 4.23 5.12 

200 3.4 5.52 2.78 6.76 6.96 6.04 5.96 

250 3.9 5.92 4.92 6.94 7.8 6.36 7.84 

300 4.4 6.48 5.96 8.18 9.52 7.08 8.28 

350 6.4 6.95 6.8 8.57 10.4 9.76 11.88 
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Table 4.A17: Predicted values, measured values, and model error from the prediction model 

for uniaxial compressive strength (ten rock samples for validation) 

Sl.no Rock sample name UCS (MPa)* Predicted UCS (MPa) Error % 

1 Marble 24.52 24.526 0.0244 

2 Moon white granite 28.83 28.846 0.0555 

3 Basalt 54.13 54.166 0.0665 

4 Black galaxy granite 56.977 56.108 1.5251 

5 Granite grey 46.23 44.246 4.2915 

6 Felsite mysore 47.60 42.626 10.4984 

7 Syenite 48.1 44.106 8.3035 

8 Diorite porphyry 57.9 50.946 12.0103 

9 Granite karnataka 77.9 65.926 15.3709 

10 Gabbro madduru 102.6 100.646 1.9044 

 

* The data on UCS presented in Table 4.A17 have been taken from Kalyan et al., (2016) & 

Masood (2015) for the purpose of model validation. 
 

Table 4.A18: Predicted values, measured values, and model error from the prediction model 

for Brazilian tensile strength (ten rock samples for validation) 

Sl.no Rock sample name BTS (MPa)* Predicted BTS (MPa) Error % 

1 Marble 2.58 2.583 0.2325 

2 Moon white granite 2.98 2.983 0.1006 

3 Basalt 5.58 5.583 0.0537 

4 Black galaxy granite 5.831 5.236 10.2040 

5 Granite grey 5.23 5.101 2.4856 

6 Felsite mysore 5.60 5.603 0.0535 

7 Syenite 5.95 5.651 5.0252 

8 Diorite porphyry 6.95 6.351 8.6187 

9 Granite karnataka 9.30 9.204 1.0322 

10 Gabbro madduru 12.3 11.303 8.1056 

* The data on Brazilian tensile strength presented in Table 4.A18 have been taken from 

Kalyan et al., (2016) & Masood (2015) for the purpose of model validation. 
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Table 4.A19: Predicted values, measured values, and model error from the prediction model 

for density (ten rock samples for validation) 

Sl.no Rock sample name Density (gm/cm
3
)* Predicted density (gm/cm

3
) Error % 

1 Marble 2.59 2.59 0.0000 

2 Moon white granite 2.64 2.64 0.0000 

3 Basalt 2.85 2.85 0.0000 

4 Marble(kulahya 

yesili) 

2.67 2.64 1.1235 

5 Marble (afyon sekeri) 2.62 2.80 6.8702 

6 Serpentinite 2.73 2.63 3.6630 

7 Amphibole schist 2.69 2.30 14.4981 

8 Quartzitc 2.72 2.70 0.7353 

9 Micaschist 2.75 2.69 3.6363 

10 Travertine (limra) 2.35 2.01 14.4680 

 

* Table 4.A19 data on density have been taken from Kahraman et al., (2013) & Kalyan et al., 

(2016) for the purpose of validation of the developed model
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Table 4.A29: Experimental results of 125 dominant frequencies (Hz) for each rock sample 

Test 

conditions 

Drill bit 

diameter 

(mm) 

Penetration 

rate 

(mm/min) 

Drill bit 

Speed 

(rpm) 

Ochre Bituminous 

Coal 

Laterite Pink 

limestone 

Black 

limestone 

Ironstone Dolomite 

1 6 2 150 5047 7360 6238 8000 5127 7313 7911 

2 6 2 200 6024 8000 6000 7500 8000 7845 5401 

3 6 2 250 5024 6520 6258 7412 6347 7680 5874 

4 6 2 300 7014 7251 6741 8000 7541 7845 7004 

5 6 2 350 5092 7529 6852 5214 7935 7999 6458 

6 6 3 150 6000 5241 7000 6894 6012 7890 5252 

7 6 3 200 5791 7899 5012 7553 5154 6201 7000 

8 6 3 250 8000 6894 7285 5213 7899 7589 7676 

9 6 3 300 7922 7836 7341 5000 6000 7845 8000 

10 6 3 350 7500 7856 7417 6471 7985 7001 5250 

11 6 4 150 8000 8000 7108 8000 5246 7685 7714 

12 6 4 200 7771 5478 8000 5445 6999 7000 7685 
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13 6 4 250 5214 6998 7561 7456 5892 6993 7000 

14 6 4 300 6999 6548 8001 7534 6007 8000 7891 

15 6 4 350 8000 7993 7985 7641 7262 6457 7245 

16 6 5 150 6247 7854 8000 7648 7856 7000 7658 

17 6 5 200 5693 7841 7532 8000 7977 7498 7999 

18 6 5 250 7958 5001 7214 7412 8000 7741 5879 

19 6 5 300 8000 6641 8000 8000 5213 7769 6457 

20 6 5 350 7142 8642 8001 5798 7845 8000 5281 

21 6 6 150 5190 5731 5169 6000 5213 6589 6447 

22 6 6 200 5999 6521 5214 7417 7008 7894 8001 

23 6 6 250 5097 7854 5000 7888 7104 7733 7451 

24 6 6 300 5896 5411 5891 8001 5998 8000 7481 

25 6 6 350 7982 8000 5899 7885 5276 7450 8000 

26 10 2 150 8000 8000 5201 7905 5782 6793 7704 

27 10 2 200 7862 6987 8000 6451 5841 6000 4751 

28 10 2 250 6807 8000 6208 6001 6089 6854 6652 

29 10 2 300 7891 7541 6985 5214 6974 5689 8002 
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30 10 2 350 5240 7629 5525 7789 7943 6735 6975 

31 10 3 150 7856 6471 8000 6008 7048 6214 8000 

32 10 3 200 8000 5412 6259 6471 6998 5648 5481 

33 10 3 250 7894 7814 6009 7401 6854 7474 5278 

34 10 3 300 8000 7992 6785 5158 5047 5234 5894 

35 10 3 350 6899 5689 6456 6320 7852 5000 8000 

36 10 4 150 5446 5155 7031 7000 6689 7458 5417 

37 10 4 200 8000 7451 7008 7412 8000 5234 6000 

38 10 4 250 8000 6560 7496 7652 7548 7000 7412 

39 10 4 300 7900 8000 8000 7810 8000 7897 7869 

40 10 4 350 5408 6014 5689 7691 5214 5200 7568 

41 10 5 150 6897 6475 6841 7891 7994 5940 7914 

42 10 5 200 5286 5412 6001 7941 6568 6000 7365 

43 10 5 250 8001 8974 8007 8001 6389 5412 7856 

44 10 5 300 5031 7986 5687 6990 5133 6692 6874 

45 10 5 350 6589 5641 6003 8000 8000 8000 8000 

46 10 6 150 8000 6531 6999 7121 7854 5285 6987 
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47 10 6 200 7894 7894 7074 7235 5489 5867 7000 

48 10 6 250 5442 7891 8000 7452 5989 7000 7104 

49 10 6 300 7214 6457 6741 7861 6000 7984 7689 

50 10 6 350 8000 6812 7187 6002 7977 7614 7467 

51 16 2 150 6899 5481 5257 5474 5899 5006 7900 

52 16 2 200 7086 8546 5332 6000 8000 7689 7842 

53 16 2 250 7952 8000 5623 5789 7451 7771 7800 

54 16 2 300 8000 7541 5404 6014 7823 8000 6987 

55 16 2 350 8000 5017 5051 6741 6458 7568 6589 

56 16 3 150 6948 6587 8000 6589 6004 7999 6325 

57 16 3 200 7856 8000 5813 6984 8000 7025 6985 

58 16 3 250 6852 6891 5974 7000 6241 7001 6999 

59 16 3 300 7992 5142 5009 7456 5182 6541 7458 

60 16 3 350 8005 8012 5278 8000 8000 6741 7986 

61 16 4 150 7899 5004 5382 6201 6503 8000 7327 

62 16 4 200 5269 7412 6007 5641 7856 7892 7958 

63 16 4 250 6589 7059 6102 5894 6247 6845 7800 
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64 16 4 300 7009 7999 8000 5987 8000 8000 8000 

65 16 4 350 8000 5033 5014 5999 8001 7965 6589 

66 16 5 150 8001 6548 8000 6000 7923 7999 8001 

67 16 5 200 7896 6888 5137 6741 6748 7356 6510 

68 16 5 250 7021 7415 6897 6589 6999 7769 5001 

69 16 5 300 5016 5430 5700 6475 7548 7665 6897 

70 16 5 350 7693 6851 7845 6859 7654 7412 6000 

71 16 6 150 7864 5147 6997 6999 7931 5983 5268 

72 16 6 200 7894 8000 7986 7478 6992 5007 5000 

73 16 6 250 8000 8214 5056 8000 6097 6928 6974 

74 16 6 300 7999 8000 7771 5471 6000 6348 5000 

75 16 6 350 5009 5144 5023 5497 5496 7009 5864 

76 18 2 150 8000 5142 5186 6485 5007 5128 5870 

77 18 2 200 5698 5647 7496 5684 8000 5012 5010 

78 18 2 250 6891 6584 5065 7814 7897 6598 5478 

79 18 2 300 5645 7814 8000 8201 5689 6002 8000 

80 18 2 350 5000 5632 7921 6580 7855 6354 6570 
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81 18 3 150 7894 6582 7354 8009 6999 5031 6915 

82 18 3 200 8000 5892 5053 6254 5623 6573 6748 

83 18 3 250 6258 6354 7962 8001 6349 5209 6352 

84 18 3 300 5024 5253 6090 7881 6798 5312 5684 

85 18 3 350 7999 7414 7847 5641 5289 5796 5989 

86 18 4 150 7589 5096 5641 7458 6788 5647 6000 

87 18 4 200 5296 7896 5647 8560 7096 5858 6589 

88 18 4 250 5649 5869 5131 8000 7900 5974 5601 

89 18 4 300 7859 8000 5789 7451 8000 5674 5748 

90 18 4 350 8000 5265 7898 7548 6201 6231 8000 

91 18 5 150 6895 6987 8000 7992 6784 8000 5874 

92 18 5 200 8000 8000 5163 8000 5556 7149 8000 

93 18 5 250 7771 5899 5647 6547 8000 8000 5847 

94 18 5 300 5202 5058 5060 7012 6899 5947 6947 

95 18 5 350 6989 8000 5200 7999 7585 8000 5472 

96 18 6 150 5255 5085 5002 5069 7931 6778 6514 

97 18 6 200 7895 7899 5874 6301 6428 7008 6871 
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98 18 6 250 7458 8000 5050 6000 5789 7587 6412 

99 18 6 300 8000 6008 5389 6197 5647 7566 8000 

100 18 6 350 6997 5139 5104 6783 5142 7441 6893 

101 20 2 150 8000 5341 7106 6314 5082 5040 6898 

102 20 2 200 5269 6958 7000 7412 7412 5104 8000 

103 20 2 250 5826 5994 6999 7631 6932 6289 7845 

104 20 2 300 6845 8524 8000 7014 7124 5794 8000 

105 20 2 350 7175 7200 6826 5418 5124 5014 5647 

106 20 3 150 7000 5264 8000 8001 6000 6060 8000 

107 20 3 200 6999 6891 6911 6521 5834 5121 6588 

108 20 3 250 8001 5233 7000 6978 5667 6000 7450 

109 20 3 300 7122 5833 6777 5555 7946 6589 6695 

110 20 3 350 7849 7000 6948 6147 8000 6001 6541 

111 20 4 150 8000 5516 6944 8000 5696 7000 8000 

112 20 4 200 6524 7589 7000 4321 6890 8520 7450 

113 20 4 250 5248 6999 6604 6589 6589 7442 6989 

114 20 4 300 5896 7414 8001 5820 7899 7410 5898 
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115 20 4 350 7170 7796 6623 7410 8000 8000 7004 

116 20 5 150 6000 5246 5117 6004 6977 7532 7878 

117 20 5 200 6478 6845 6675 8001 5989 7854 7965 

118 20 5 250 8000 6852 7321 5628 5748 7698 5681 

119 20 5 300 7415 5781 6581 8521 6589 5705 5555 

120 20 5 350 6475 6999 7648 8001 8000 8000 6235 

121 20 6 150 7047 5361 5174 5646 7845 6740 7415 

122 20 6 200 8000 7895 6765 8741 5801 5246 6000 

123 20 6 250 5781 8000 5702 8000 7452 8000 5014 

124 20 6 300 8000 7584 7999 6547 8000 7869 6021 

125 20 6 350 7274 5109 6760 5049 5106 7546 6416 
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Table 4.A30: Statistical analysis of significant regression models for various rocks 

 

Model 

 

Variable 

Coefficient Standar

d error 

t-

value 

Tabulate

d t-value 

F-value Tabulate

d F- ratio 

Regression 

coefficient 

(%) 

Adjusted 

coefficient 

(%) 

 

 

 

 

Eq.4.7 

Constant -10.5 33.5 -0.31 ±1.962 682.00 2.11 82.50 82.38 

Drill bit diameter(DD) -13.035 0.881 -14.79      

Spindle speed (RPM) -0.0377 0.0558 -1.97      

Frequency (FR) 0.02758 0.00945 2.92      

(Drill bit diameter(DD))
2 

0.7698 0.0337 22.82      

(Spindle speed (RPM))
2 

-0.000002 0.00000

1 

-3.23      

Spindle speed (RPM) X Frequency 

(FR) 
0.000006 0.00000

8 

1.97      

 

 

 

 

Eq.4.8 

Constant 0.58 2.33 0.25 ±1.962 525.44 2.11 78.41 78.26 

Drill bit diameter(DD) -1.1561 0.0614 -18.82      

Spindle speed (RPM) -0.00278 0.00389 -2.72      

Frequency (FR) 0.001899 0.00065

9 

2.88      

(Drill bit diameter(DD))
2
 0.06017 0.00235 25.58      

Frequency (FR )X Frequency (FR) 0.000001 0.00001 -3.20      

Spindle speed (RPM) X Frequency 

(FR)
 

0.000003 0.00000

1 

2.75      

 

 

 

 

Eq.4.9 

Constant 2.915 0.792 3.68 ±1.962 207.41 2.02 79.60 79.40 

Drill bit diameter(DD) -0.2413 0.0268 -9.00      

Spindle speed (RPM) -0.00127 0.00214 -2.02      

Frequency (FR) 0.000219 0.00021

4 

2.02      

(Drill bit diameter(DD))
2
 0.011513 0.00075

3 

15.30      
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Frequency (FR )X Frequency (FR) -0.000001 0.00000

1 

-2.74      

Drill bit diameter(DD)X Frequency 

(FR)
 

0.000005 0.00000

3 

2.87      

Spindle speed (RPM) X Frequency 

(FR) 

0.000001 0.00000

1 

2.06      

 

 

 

 

Eq. 

4.10 

Constant 112.6 10.3 10.89 ±1.962 2998.0

3 

2.38 93.24 93.20 

Drill bit diameter (DD) -4.651 0.252 -18.44      

Frequency (FR) -0.00527 0.00301 -2.75      

Frequency (FR )X Frequency (FR) 0.000001 0.00000

1 

2.47      

Drill bit diameter(DD)X Frequency 

(FR) 

0.000088 0.00003

6 

2.42      
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Table 4.A34: Performance indices of the developed neural network modal 

 

Training 

algorithm 

  UCS (MPa) BTS (MPa) Density (g 

/cm
3
) 

Abrasivity (%) 

 

 

traingda 

Training 

data 

VAF 82.73011919 80.238933984 81.11070661 99.95644366 

RMSE 7.806433051 4.027396127 7.000104859 1.036522898 

MAPE 2.19407125 1.099440651 4.012350518 5.000414938 

Testing data VAF 55.18285446 94.45273769 86.6234868 95.751775557 

RMSE 1.997041275 0.191729451 3.001608684 5.041979844 

MAPE 8.112505711 3.167915252 1.040449494 9.049022669 

 

 

traingdx 

Training 

data 

VAF 83.5068 81.7399 83.3423 82.1114 

RMSE 12.823917103 1.028272378 6.510811943 0.813435796 

MAPE 4.21538223 8.148332275 10.026517719 1.050031676 

Testing data VAF 87.0976 96.3555 57.4421 89.0522 

RMSE 3.020769165 0.148808037 18.00012 10.02487075 

MAPE 4.000634637 2.101155805 22.004793462 5.025599418 

 

 

trainrp 

Training 

data 

VAF 99.88889755 97.68637706 99.81301744 99.87040879 

RMSE 0.028310352 1.000170242 0.00013771 1.000840687 

MAPE 3.00774799 0.000674671 1.003452443 1.001654485 

Testing data VAF 96.86481391 99.99156503 96.57112216 99.81102796 

RMSE 0.008283036 0.000813739 1.000000901 0.000483 

MAPE 1.00063162 1.001236596 0.00181521 2.000732 

 

 

 

Traincgf 

Training 

data 

VAF 76.238499 71.7399 83.3423 79.1114 

RMSE 4.702801045 13.050046146 10.000289569 4.813435796 

MAPE 3.217090299 1.246549631 12.017704183 6.050031676 

Testing data VAF 77.17056667 72.06015487 83.92502657 89.0522 

RMSE 3.0207812 0.018594398 0.002048956 0.02487075 
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MAPE 0.230339687 0.028256917 0.0050759 0.025599418 

 

 

 

 

trainIm 

Training 

data 

VAF 86.02089842 54.79274421 86.37983456 93.40571249 

RMSE 0.802043697 9.1869805 1.000103344 0.084261834 

MAPE 1.02677 13.003504 0.01726592 0.016563846 

Testing data VAF 58.39283447 95.63181537 71.2401145 34.13616985 

RMSE 17.997041275 0.001616904 3.001874088 12.000967 

MAPE 13.112505711 1.002457123 7.038525868 17.001605784 

 

 

 

Trainbfg 

Training 

data 

VAF 33.52369816 31.05047235 45.93808119 93.40571249 

RMSE 11.913672065 4.064632733 2.000103344 6.084261834 

MAPE 11.02677 13.003504 14.01726592 11.016563846 

Testing data VAF 58.39283447 95.63181537 71.2401145 34.13616985 

RMSE 1.997041275 7.001616904 2.001874088 1.000967 

MAPE 14.112505711 0.002457123 5.038525868 21.001605784 

 

 

 

Trainscg 

Training 

data 

VAF 79.23924131 50.19366184 45.93808119 50.2449819 

RMSE 3.097830767 0.000413505 5.000103344 0.984767563 

MAPE 1.026774369 3.003503965 1.01726592 12.028289112 

Testing data VAF 56.91087517 80.10522611 71.2401145 69.66136819 

RMSE 1.997041275 3.028186518 7.001874088 9.000967 

MAPE 12.112505711 1.042833552 14.038525868 10.025323349 
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APPENDIX-B 

Table 4.B1: Statistical analysis of significant regression models for various rocks 

 

Rock 

type 

 

Independent variable 

Coefficient Standard 

error 

t-value Tabulated 

t-value 

F-value Tabulated 

F- ratio 

Regression 

coefficient 

(%) 

Adjusted 

coefficient 

(%) 

 

 

 

 

Ochre 

Constant 11.20 7.58 1.48 2.447 66.03 2.19  

 

 

 

77.05 % 

 

 

 

 

75.88 % 

Drill bit diameter(DD) -0.8190 0.0951 -8.61 2.447 74.11 2.19 

Spindle speed (SS) -0.00077 0.00317 -2.24 2.447 3.06 2.19 

Penetration rate (PR) -0.042 0.149 -2.28 2.447 3.08 2.19 

A-weighted sound pressure level 

(dB)
 

0.1175 0.0596 1.97 2.447 3.89 2.19 

Thrust (N)
 

0.01421 0.00150 9.46 2.447 89.46 2.19 

Torque (Nm) -2.45 1.01 -2.43 2.447 5.94 2.19 

 

 

 

 

Bitumino

us coal 

Constant 5.60 2.32 2.41 2.447 71.46 2.19  

 

 

 

78.24 % 

 

 

 

 

77.32 % 

Drill bit diameter(DD) -0.4309 0.0480 -8.98 2.447 80.67 2.19 

Spindle speed (SS) 0.00849 0.00318 2.67 2.447 7.13 2.19 

Penetration rate (PR) 0.129 0.151 3.85 2.447 3.73 2.19 

A-weighted sound pressure level 

(dB)
 

-0.0087 0.0311 -3.28 2.447 3.08 2.19 

Thrust (N)
 

0.01735 0.00201 8.63 2.447 74.45 2.19 

Torque (Nm) -0.433 0..159 -2.72 2.447 7.42 2.19 

 

 

 

 

Laterite 

Constant 13.82 5.87 2.36 2.447 16.47 2.19  

 

 

 

75.58 % 

 

 

 

 

76.81 % 

Drill bit diameter(DD) -0.5057 0.0845 -5.98 2.447 35.82 2.19 

Spindle speed (SS) 0.00607 0.00750 2.81 2.447 2.66 2.19 

Penetration rate (PR) -0.240 0.314 -2.76 2.447 2.58 2.19 

A-weighted sound pressure level 

(dB)
 

-0.1127 0.0715 -1.58 2.447 2.48 2.19 

Thrust (N)
 

0.01599 0.00378 4.22 2.447 17.85 2.19 
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Torque (Nm) 0.640 0.364 1.76 2.447 3.09 2.19 

 

 

 

 

Pink 

limestone 

Constant 22.91 5.03 4.55 2.447 66.16 2.19  

 

 

 

77.09 % 

 

 

 

 

75.92 % 

Drill bit diameter(DD) -1.523 0.104 -14.65 2.447 214.75 2.19 

Spindle speed (SS) -0.00480 0.00696 -2.69 2.447 2.48 2.19 

Penetration rate (PR) 0.585 0.345 1.69 2.447 2.87 2.19 

A-weighted sound pressure level 

(dB)
 

-0.0139 0.0476 -3.29 2.447 0.09 2.19 

Thrust (N)
 

0.01305 0.00191 6.82 2.447 46.56 2.19 

Torque (Nm) -0.228 0.374 -3.61 2.447 3.37 2.19 

 

 

 

 

Black 

limestone 

Constant 14.84 3.25 4.57 2.447 72.94 2.19   

Drill bit diameter(DD) -1.030 0.149 -6.91 2.447 47.69 2.19  

 

 

 

 

78.76 % 

 

 

 

 

 

77.68 % 

Spindle speed (SS) 0.00452 0.00808 2.56 2.447 2.31 2.19 

Penetration rate (PR) -2.650 0.770 -3.44 2.447 11.84 2.19 

A-weighted sound pressure level 

(dB)
 

-0.00060 0.00490 -2.12 2.447 2.01 2.19 

Thrust (N)
 

0.02991 0.00382 7.82 2.447 61.22 2.19 

Torque (Nm) 0.040 0.411 3.10 2.447 3.01 2.19 

 

 

 

 

 

Hematite 

Constant 25.01 4.84 5.20 2.447 69.94 2.19  

 

 

 

 

 

78.05 % 

 

 

 

 

 

 

76..94 % 

Drill bit diameter(DD) -1.7078 0.0998 -17.12 2.447 293.04 2.19 

Spindle speed (SS) -0.00423 0.00692 -3.61 2.447 3.37 2.19 

Penetration rate (PR) 0.254 0.353 3.72 2.447 3.52 2.19 

A-weighted sound pressure level 

(dB)
 

0.0151 0.0430 2.35 2.447 3.12 2.19 

Thrust (N)
 

0.00842 0.00208 4.05 2.447 16.37 2.19 

Torque (Nm) 0.158 0257 4.61 2.447 2.38 2.19 

 Constant 26.16 3.03 8.64 2.447 66.76 2.19   
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Dolomite 

Drill bit diameter(DD) -1.578 0.105 -15.01 2.447 225.39 2.19  

 

 

 

77.25 % 

 

 

 

 

76.09 % 

Spindle speed (SS) -0.00756 0.00742 -1.02 2.447 1.04 2.19 

Penetration rate (PR) -1.086 0.505 -2.15 2.447 4.63 2.19 

A-weighted sound pressure level 

(dB)
 

-0.00068 0.00649 -5.10 2.447 3.01 2.19 

Thrust (N)
 

0.01578 0.00232 6.80 2.447 46.19 2.19 

Torque (Nm) 0.132 0.273 5.49 2.447 2.24 2.19 
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Table 4.B2: Results of ANOVA for various rocks 

Ochre 

 Source DF Seq.SS Adj SS Adj MS F-Value P-Value 

 

 

 

 

 

 

 

Eq.1 

Regression 6 2118.74 2118.74 353.124 66.03 0.000 

Drill bit 

diameter(DD) 

1 1486.26 396.34 396.343 74.11 

 

0.000 

Spindle speed (SS) 1 24.82 0.31 0.313 0.06 0.009 

Penetration rate 

(PR) 

1 17.98 0.43 0.426 0.08 0.038 

A-weighted sound 

pressure level (dB)
 

1 43.23 20.80 20.797 3.89 0.051 

Thrust (N)
 

1 514.85 478.40 478.403 89.46 0.000 

Torque (Nm) 1 31.61 31.61 31.606 5.91 0.017 

Error 118 631.06 631.06 5.348 -  

Total 124 2749.81 - - -  

 Bituminous coal 

 

 

 

 

 

 

 

Eq.2 

Source DF Seq.SS Adj SS Adj MS F-Value P-Value 

Regression 6 1778.63 1778.63 296.438 71.46 0.000 

Drill bit 

diameter(DD) 

1 1424.94 334.66 334.663 80.67 0.000 

Spindle speed (SS) 1 0.06 29.58 29.585 7.13 0.009 

Penetration rate 

(PR) 

1 17.72 3.01 3.012 0.73 0.012 

A-weighted sound 

pressure level (dB)
 

1 0.25 0.32 0.323 0.08 0.006 

Thrust (N)
 

1 304.87 308.85 308.851 74.45 0.000 

Torque (Nm) 1 30.79 30.79 30.790 7.42 0.007 

Error 118 489.51 489.51 4.148 - - 

Total 124 2268.14 - - - - 

Laterite 
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Eq.3 

Source DF Seq.SS Adj SS Adj MS F-Value P-Value 

Regression 6 2336.36 2336.36 389.39 16.47 0..000 

Drill bit 

diameter(DD) 

1 1094.68 846.73 846.73 35.82 0.000 

Spindle speed (SS) 1 110.03 15.49 15.49 0.66 0.004 

Penetration rate 

(PR) 

1 250.49 13.75 13.75 0.58 0.047 

A-weighted sound 

pressure level (dB)
 

1 111.20 58.67 58.67 2.48 0.001 

Thrust (N)
 

1 1045.86 421.86 421.86 17.85 0.000 

Torque (Nm) 1 73.10 73..10 73.10 3.09 0..031 

Error 118 2789.34 23.64 23.64 - - 

Total 124 5125.71 - - - - 

 Pink limestone 

 

 

 

 

 

Eq.4 

Source DF Seq.SS Adj SS Adj MS F-Value P-Value 

Regression 6 11588.7 11588.7 1931.45 66.16 0.000 

Drill bit 

diameter(DD) 

1 10023.7 6269.5 6269.54 214.75 0.000 

Spindle speed (SS) 1 107.8 13.9 13.87 0.48 0.049 

Penetration rate 

(PR) 

1 90.6 83.8 83.84 2.87 0.003 

A-weighted sound 

pressure level (dB)
 

1 0.2 2.5 2.48 0.09 0.001 

Thrust (N)
 

1 1355.5 1359.4 1359.38 46.56 0.000 

Torque (Nm) 1 10.9 10.9 10.90 0.37 0.005 

Error 118 3444.9 3444.9 29.19 - - 

Total 124 15033.7 - - - - 

 Black limestone 

 

 

Source DF Seq.SS Adj SS Adj MS F-Value P-Value 

Regression 6 16740.5 16740.5 2790.09 72.94 0.000 
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Eq.5 

Drill bit 

diameter(DD) 

1 11712.4 1824.29 1824.29 47.69 0.000 

Spindle speed (SS) 1 63.4 11.95 11.95 0.31 0.005 

Penetration rate 

(PR) 

1 2093.5 453.10 453.10 11.84 0.001 

A-weighted sound 

pressure level (dB)
 

1 13.5 0.57 0.57 0.01 0.093 

Thrust (N)
 

1 2857.4 2341.72 2341.72 61.22 0.000 

Torque (Nm) 1 0..4 0.37 0.37 0.01 0.022 

Error 118 4513.9 38.25 38.25 - - 

Total 124 21254.5 - - - - 

 Hematite 

 

 

 

 

 

 

Eq.6 

Source DF Seq.SS Adj SS Adj MS F-Value P-Value 

Regression 6 12255.3 12255.3 2042.56 69.94 0.000 

Drill bit 

diameter(DD) 

1 11398.6 8558.3 8558.32 293.04 0.000 

Spindle speed (SS) 1 53.6 10.9 10.93 0..37 0.005 

Penetration rate 

(PR) 

1 0.1 15.09 15.05 0.52 0.014 

A-weighted sound 

pressure level (dB)
 

1 40.4 3.6 3.61 0.12 00017 

Thrust (N)
 

1 751.5 478.2 478.20 16.37 0.000 

Torque (Nm) 1 11.0 11.0 11.02 0.38 0.005 

Error 118 3446.3 3446.3 29.21 - - 

Total 124 15701.6 - - - - 

 Dolomite 

 

 

 

 

 

Source DF Seq.SS Adj SS Adj MS F-Value P-Value 

Regression 6 13659.4 13659.4 2276.57 66.76 0.000 

Drill bit 

diameter(DD) 

1 11201.1 7685.6 7685.57 225.39 0.000 

Spindle speed (SS) 1 84.8 35.4 35.40 1.04 0.031 
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Eq.7 

Penetration rate 

(PR) 

1 378.4 157.9 157.88 4.63 0.033 

A-weighted sound 

pressure level (dB)
 

1 13.2 0.4 0.37 0.01 0.017 

Thrust (N)
 

1 1973.9 1575.1 1575.1 46.19 0.000 

Torque (Nm) 1 8.0 8.0 8.0 0.24 0.006 

Error 118 4023.6 4023.6 4023.6 - - 

Total 124 17683.0 - - - - 
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Table 4.B5: Experimental 125 test conditions results of thrust, torque and A-SPL, for ochre rock sample 

Sl. No DD (mm) SS (rpm) PR (mm/min)  Thrust (N) Torque(Nm)  A-SPL(dB) 

Specific Energy 

(Nm/m3) 

1 6 150 2 736 4 82.6 11.88391957 

2 6 200 2 400 4 80.1 14.1475233 

3 6 250 2 236 4 78.7 8.347038747 

4 6 300 2 500 4 75.1 17.68440412 

5 6 350 2 270 4 74.6 9.549578227 

6 10 150 2 187 4 68.2 2.381028171 

7 10 200 2 200 4 70.5 2.546554194 

8 10 250 2 196 4 73.9 2.49562311 

9 10 300 2 210 4 72.4 2.673881904 

10 10 350 2 191 4 73.9 2.431959255 

11 16 150 2 220 4 75.6 1.094222505 

12 16 200 2 300 3 73.7 1.492121598 

13 16 250 2 245 3 82.1 1.218565972 

14 16 300 2 230 3 83.7 1.143959892 

15 16 350 2 200 3 82.1 0.994747732 

16 18 150 2 256 3 75.2 1.006046101 

17 18 200 2 500 3 74.8 1.964933792 

18 18 250 2 136 3 76.8 0.534461991 

19 18 300 2 200 3 74.8 0.785973517 

20 18 350 2 589 3 75.4 2.314692006 

21 20 150 2 200 3 78.9 0.636638548 

22 20 200 2 278 3 74.5 0.884927582 

23 20 250 2 300 3 74.8 0.954957823 
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24 20 300 2 219 3 77.8 0.697119211 

25 20 350 2 157 3 78.2 0.499761261 

26 6 150 3 450 4 72.2 15.91596371 

27 6 200 3 213 4 79.3 7.533556157 

28 6 250 3 300 4 74.5 10.61064247 

29 6 300 3 198 4 70.4 7.003024033 

30 6 350 3 200 4 72.4 7.07376165 

31 10 150 3 250 4 71.4 3.183192742 

32 10 200 3 162 4 72.5 2.062708897 

33 10 250 3 200 4 73.4 2.546554194 

34 10 300 3 140 4 72.6 1.782587936 

35 10 350 3 300 4 73.4 3.819831291 

36 16 150 3 320 4 75.8 1.591596371 

37 16 200 3 256 3 72.8 1.273277097 

38 16 250 3 230 3 71.4 1.143959892 

39 16 300 3 120 3 76.3 0.596848639 

40 16 350 3 150 3 74.2 0.746060799 

41 18 150 3 456 3 72.8 1.792019618 

42 18 200 3 358 3 72 1.406892595 

43 18 250 3 245 3 75.8 0.962817558 

44 18 300 3 101 3 72.1 0.396916626 

45 18 350 3 256 3 78.4 1.006046101 

46 20 150 3 200 3 73.5 0.636638548 

47 20 200 3 308 3 71.4 0.980423365 

48 20 250 3 208 3 78.5 0.66210409 

49 20 300 3 118 3 72.5 0.375616744 

50 20 350 3 201 3 74.5 0.639821741 
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51 6 150 4 176 4 70.3 6.224910252 

52 6 200 4 158 4 71 5.588271703 

53 6 250 4 184 4 69.3 6.507860718 

54 6 300 4 321 4 76.1 11.35338745 

55 6 350 4 531 4 76.3 18.78083718 

56 10 150 4 956 4 71.3 12.17252905 

57 10 200 4 500 4 75.1 6.366385485 

58 10 250 4 645 4 73.9 8.212637275 

59 10 300 4 325 4 72.1 4.138150565 

60 10 350 4 125 4 74 1.591596371 

61 16 150 4 200 4 70.2 0.994747732 

62 16 200 4 350 3 71.4 1.740808531 

63 16 250 4 218 3 74.7 1.084275028 

64 16 300 4 300 3 75.2 1.492121598 

65 16 350 4 104 3 75.6 0.517268821 

66 18 150 4 378 3 78 1.485489946 

67 18 200 4 400 3 78.9 1.571947033 

68 18 250 4 610 3 69.8 2.397219226 

69 18 300 4 400 3 72.5 1.571947033 

70 18 350 4 120 3 73.4 0.47158411 

71 20 150 4 179 3 73.6 0.569791501 

72 20 200 4 440 3 78.9 1.400604807 

73 20 250 4 200 3 76.3 0.636638548 

74 20 300 4 317 3 74.1 1.009072099 

75 20 350 4 111 3 75.4 0.353334394 

76 6 150 5 500 4 75.4 17.68440412 

77 6 200 5 427 4 68.5 15.10248112 
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78 6 250 5 500 4 70.1 17.68440412 

79 6 300 5 179 4 72 6.331016676 

80 6 350 5 256 4 70.4 9.054414911 

81 10 150 5 100 4 76.4 1.273277097 

82 10 200 5 140 4 68.3 1.782587936 

83 10 250 5 187 4 72.1 2.381028171 

84 10 300 5 196 4 74 2.49562311 

85 10 350 5 150 4 72.2 1.909915645 

86 16 150 5 536 4 74.4 2.665923922 

87 16 200 5 456 3 75.8 2.268024829 

88 16 250 5 200 3 74.9 0.994747732 

89 16 300 5 120 3 73.2 0.596848639 

90 16 350 5 482 3 69.2 2.397342034 

91 18 150 5 200 3 73.1 0.785973517 

92 18 200 5 356 3 72.5 1.39903286 

93 18 250 5 341 3 71.2 1.340084846 

94 18 300 5 136 3 70.4 0.534461991 

95 18 350 5 200 3 73.6 0.785973517 

96 20 150 5 307 3 74.5 0.977240172 

97 20 200 5 217 3 73.4 0.690752825 

98 20 250 5 200 3 74.5 0.636638548 

99 20 300 5 130 3 74 0.413815057 

100 20 350 5 125 3 72.9 0.397899093 

101 6 150 6 202 4 91.9 7.144499266 

102 6 200 6 300 4 85.7 10.61064247 

103 6 250 6 159 4 79.3 5.623640511 

104 6 300 6 245 4 82.4 8.665358021 
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105 6 350 6 200 4 70.1 7.07376165 

106 10 150 6 169 4 68.7 2.151838294 

107 10 200 6 150 4 71.8 1.909915645 

108 10 250 6 130 4 70.9 1.655260226 

109 10 300 6 200 4 70.4 2.546554194 

110 10 350 6 133 4 71.6 1.693458539 

111 16 150 6 215 4 75 1.069353812 

112 16 200 6 159 3 74.5 0.790824447 

113 16 250 6 256 3 75.8 1.273277097 

114 16 300 6 300 3 76.1 1.492121598 

115 16 350 6 125 3 73.5 0.621717332 

116 18 150 6 132 3 78.4 0.518742521 

117 18 200 6 159 3 75.4 0.624848946 

118 18 250 6 500 3 74.9 1.964933792 

119 18 300 6 471 3 73.5 1.850967632 

120 18 350 6 132 3 71 0.518742521 

121 20 150 6 200 3 74.8 0.636638548 

122 20 200 6 214 3 73 0.681203247 

123 20 250 6 200 3 72.5 0.636638548 

124 20 300 6 140 3 71.9 0.445646984 

125 20 350 6 115 3 71.8 0.366067165 
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Table 4.B6: Experimental 125 test conditions results of thrust, torque and A-SPL, for bituminous coal 

Sl. No DD (mm) SS (rpm) PR (mm/min)  Thrust (N) Torque(Nm)  A-SPL(dB) 

Specific Energy 

(Nm/m3) 

1 6 150 2 135 4 69.4 4.774789113 

2 6 200 2 200 4 70.4 7.07376165 

3 6 250 2 235 4 70 8.311669938 

4 6 300 2 100 4 77.2 3.536880825 

5 6 350 2 105 4 77.8 3.713724866 

6 10 150 2 80 4 77.6 1.018621678 

7 10 200 2 175 4 70.2 2.22823492 

8 10 250 2 252 4 96.2 3.208658284 

9 10 300 2 231 3 93.5 2.941270094 

10 10 350 2 220 3 97.3 2.801209613 

11 16 150 2 149 3 70.6 0.74108706 

12 16 200 2 200 3 70.1 0.994747732 

13 16 250 2 258 3 69.7 1.283224574 

14 16 300 2 134 3 70.4 0.66648098 

15 16 350 2 127 3 85.1 0.63166481 

16 18 150 2 396 6 70.9 1.556227563 

17 18 200 2 342 6 71 1.344014713 

18 18 250 2 300 6 75.3 1.178960275 

19 18 300 2 189 6 69.5 0.742744973 

20 18 350 2 99 6 76.4 0.389056891 

21 20 150 2 210 7 73.1 0.668470476 

22 20 200 2 200 7 69.1 0.636638548 

23 20 250 2 198 7 74.5 0.630272163 
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24 20 300 2 130 7 76.2 0.413815057 

25 20 350 2 127 7 77.8 0.404265478 

26 6 150 3 503 4 69.2 17.79051055 

27 6 200 3 407 4 70.5 14.39510496 

28 6 250 3 394 4 87 13.93531045 

29 6 300 3 370 4 90.1 13.08645905 

30 6 350 3 300 4 92.8 10.61064247 

31 10 150 3 359 6 67.5 4.571064778 

32 10 200 3 381 6 74.8 4.851185739 

33 10 250 3 304 6 78.4 3.870762375 

34 10 300 3 326 6 91.5 4.150883336 

35 10 350 3 300 6 92.4 3.819831291 

36 16 150 3 285 4 79.9 1.417515518 

37 16 200 3 300 4 70.2 1.492121598 

38 16 250 3 247 4 70 1.228513449 

39 16 300 3 132 4 75.9 0.656533503 

40 16 350 3 140 4 76.1 0.696323412 

41 18 150 3 308 6 74.7 1.210399216 

42 18 200 3 225 6 77 0.884220206 

43 18 250 3 198 6 85.8 0.778113781 

44 18 300 3 49 6 84.2 0.192563512 

45 18 350 3 100 6 87.7 0.392986758 

46 20 150 3 242 5 69.8 0.770332644 

47 20 200 3 156 5 70.4 0.496578068 

48 20 250 3 100 5 74.5 0.318319274 

49 20 300 3 54 5 75.9 0.171892408 

50 20 350 3 102 5 77.5 0.32468566 
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51 6 150 4 147 3 66.3 5.199214812 

52 6 200 4 150 3 68.2 5.305321237 

53 6 250 4 246 3 77 8.700726829 

54 6 300 4 300 3 78.4 10.61064247 

55 6 350 4 375 3 78.5 13.26330309 

56 10 150 4 482 6 77.4 6.137195607 

57 10 200 4 305 6 74.9 3.883495146 

58 10 250 4 104 6 76.5 1.324208181 

59 10 300 4 120 6 75.8 1.527932516 

60 10 350 4 150 6 76.7 1.909915645 

61 16 150 4 197 4 70.2 0.979826516 

62 16 200 4 200 4 72 0.994747732 

63 16 250 4 186 4 70 0.925115391 

64 16 300 4 175 4 77.4 0.870404265 

65 16 350 4 187 4 78.8 0.930089129 

66 18 150 4 315 6 68.6 1.237908289 

67 18 200 4 300 6 73.5 1.178960275 

68 18 250 4 325 6 84.1 1.277206965 

69 18 300 4 241 6 80.1 0.947098088 

70 18 350 4 112 6 91.8 0.440145169 

71 20 150 4 236 8 72.1 0.751233487 

72 20 200 4 278 8 73 0.884927582 

73 20 250 4 187 8 73.2 0.595257043 

74 20 300 4 147 8 80.2 0.467929333 

75 20 350 4 43 8 82.5 0.136877288 

76 6 150 5 256 3 66.9 9.054414911 

77 6 200 5 341 3 70.5 12.06076361 
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78 6 250 5 475 3 73.5 16.80018392 

79 6 300 5 500 3 76.4 17.68440412 

80 6 350 5 521 3 77.8 18.4271491 

81 10 150 5 300 7 68.4 3.819831291 

82 10 200 5 289 7 70.5 3.67977081 

83 10 250 5 220 7 74.8 2.801209613 

84 10 300 5 223 7 76.2 2.839407926 

85 10 350 5 207 7 78.7 2.635683591 

86 16 150 5 186 7 65.4 0.925115391 

87 16 200 5 145 7 70.7 0.721192106 

88 16 250 5 200 7 71.1 0.994747732 

89 16 300 5 215 7 79.1 1.069353812 

90 16 350 5 200 7 77.7 0.994747732 

91 18 150 5 296 6 86.4 1.163240805 

92 18 200 5 300 6 96.4 1.178960275 

93 18 250 5 289 6 74.5 1.135731732 

94 18 300 5 90 6 81.1 0.353688082 

95 18 350 5 104 6 86.7 0.408706229 

96 20 150 5 200 8 85.6 0.636638548 

97 20 200 5 145 8 82.1 0.461562948 

98 20 250 5 115 8 83.7 0.366067165 

99 20 300 5 76 8 78 0.241922648 

100 20 350 5 189 8 86.9 0.283304154 

101 6 150 6 161 4 68.6 5.694378128 

102 6 200 6 170 4 70.4 6.012697402 

103 6 250 6 257 4 75 9.08978372 

104 6 300 6 304 4 80.1 10.75211771 
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105 6 350 6 371 4 73.9 13.12182786 

106 10 150 6 447 7 75.6 5.691548623 

107 10 200 6 481 7 72.1 6.124462836 

108 10 250 6 448 7 70.4 5.704281394 

109 10 300 6 309 7 74.7 3.93442623 

110 10 350 6 245 7 77.2 3.119528887 

111 16 150 6 397 6 73.5 1.974574248 

112 16 200 6 370 6 68.7 1.840283304 

113 16 250 6 386 6 70 1.919863123 

114 16 300 6 305 6 77 1.516990291 

115 16 350 6 270 6 79.2 1.342909438 

116 18 150 6 255 6 67.5 1.002116234 

117 18 200 6 300 6 68.5 1.178960275 

118 18 250 6 249 6 70.5 0.978537028 

119 18 300 6 184 6 72.5 0.723095635 

120 18 350 6 72 6 78 0.282950466 

121 20 150 6 286 8 73.8 0.910393124 

122 20 200 6 244 8 74.8 0.776699029 

123 20 250 6 300 8 74.2 0.954957823 

124 20 300 6 189 8 75.8 0.601623428 

125 20 350 6 192 8 78.4 0.611173007 
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Table 4.B7: Experimental 125 test conditions results of thrust, torque and A-SPL, for laterite rock type 

Sl. No DD (mm) SS (rpm) PR (mm/min)  Thrust (N) Torque(Nm)  A-SPL(dB) 

Specific Energy 

(Nm/m3) 

1 6 150 2 610 4 91.7 21.57497303 

2 6 200 2 420 3 89 14.85489946 

3 6 250 2 350 4 89 12.37908289 

4 6 300 2 300 4 90 10.61064247 

5 6 350 2 295 3 91.8 10.43379843 

6 10 150 2 520 4 88.4 6.621040904 

7 10 200 2 480 5 87.9 6.111730065 

8 10 250 2 475 5 88 6.04806621 

9 10 300 2 470 5 89.3 5.984402356 

10 10 350 2 462 5 90.1 5.882540188 

11 16 150 2 480 3 76.6 2.387394557 

12 16 200 2 430 3 92.6 2.138707624 

13 16 250 2 150 2 83 0.746060799 

14 16 300 2 320 4 80 1.591596371 

15 16 350 2 295 2 82.9 1.467252905 

16 18 150 2 529 4 81.2 2.078899951 

17 18 200 2 520 4 82 2.043531143 

18 18 250 2 346 4 82.6 1.359734184 

19 18 300 2 300 4 84.6 1.178960275 

20 18 350 2 180 4 86.8 0.707376165 

21 20 150 2 205 4 76.2 0.652554512 

22 20 200 2 235 4 77.3 0.748050294 

23 20 250 2 372 4 88.4 1.1841477 
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24 20 300 2 300 4 80 0.954957823 

25 20 350 2 272 4 79.3 0.865828426 

26 6 150 3 458 4 86.9 16.19891418 

27 6 200 3 450 5 87.2 15.91596371 

28 6 250 3 402 4 87 14.21826092 

29 6 300 3 400 4 86.5 14.1475233 

30 6 350 3 358 4 87.2 12.66203335 

31 10 150 3 305 4 72.6 3.883495146 

32 10 200 3 300 4 86 3.819831291 

33 10 250 3 312 4 86.3 3.972624542 

34 10 300 3 309 4 82 3.93442623 

35 10 350 3 202 4 89.3 2.572019736 

36 16 150 3 250 3 78.7 1.243434665 

37 16 200 3 176 2 76.5 0.875378004 

38 16 250 3 256 2 76 1.273277097 

39 16 300 3 200 2 80 0.994747732 

40 16 350 3 102 2 83.3 0.507321343 

41 18 150 3 589 4 82 2.314692006 

42 18 200 3 627 4 84.1 2.464026975 

43 18 250 3 345 4 84.7 1.355804316 

44 18 300 3 295 4 85.3 1.159310937 

45 18 350 3 290 4 86.4 1.139661599 

46 20 150 3 302 4 87.1 0.961324208 

47 20 200 3 230 5 89.8 0.732134331 

48 20 250 3 229 4 86.3 0.728951138 

49 20 300 3 237 4 86.4 0.75441668 

50 20 350 3 222 4 87 0.706668789 
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51 6 150 4 147 3 73.2 5.199214812 

52 6 200 4 200 4 74.2 7.07376165 

53 6 250 4 189 3 73 6.684704759 

54 6 300 4 250 4 74.6 8.842202062 

55 6 350 4 276 4 75.1 9.761791076 

56 10 150 4 402 5 76.9 14.21826092 

57 10 200 4 398 4 77.8 14.07678568 

58 10 250 4 302 4 85 10.68138009 

59 10 300 4 300 4 87.5 10.61064247 

60 10 350 4 250 5 88.9 8.842202062 

61 16 150 4 700 9 76.7 24.75816577 

62 16 200 4 630 9 80.3 22.2823492 

63 16 250 4 440 6 82.9 15.56227563 

64 16 300 4 500 7 85.2 17.68440412 

65 16 350 4 549 7 87.1 19.41747573 

66 18 150 4 976 8 76.9 34.51995685 

67 18 200 4 658 8 77.2 23.27267583 

68 18 250 4 447 4 89.7 15.80985729 

69 18 300 4 307 4 90.1 10.85822413 

70 18 350 4 129 4 79.8 4.562576264 

71 20 150 4 159 2 77.4 5.623640511 

72 20 200 4 189 2 78 6.684704759 

73 20 250 4 201 2 79.8 7.109130458 

74 20 300 4 307 2 80.2 10.85822413 

75 20 350 4 350 2 80.9 12.37908289 

76 6 150 5 401 4 82 14.18289211 

77 6 200 5 346 4 83.5 12.23760765 
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78 6 250 5 258 4 88 9.125152528 

79 6 300 5 320 3 87.2 11.31801864 

80 6 350 5 202 4 92.6 7.144499266 

81 10 150 5 525 4 74.2 6.684704759 

82 10 200 5 315 5 74.1 4.010822855 

83 10 250 5 200 5 76 2.546554194 

84 10 300 5 254 5 78 3.234123826 

85 10 350 5 198 5 99.6 2.521088652 

86 16 150 5 782 5 83.2 3.889463632 

87 16 200 5 812 5 83.4 4.038675792 

88 16 250 5 500 6 85 2.48686933 

89 16 300 5 325 6 87.6 1.616465064 

90 16 350 5 300 6 89 1.492121598 

91 18 150 5 583 5 80.7 2.291112801 

92 18 200 5 300 4 81.5 1.178960275 

93 18 250 5 295 4 90.2 1.159310937 

94 18 300 5 226 3 100 0.888150074 

95 18 350 5 205 4 99.9 0.805622855 

96 20 150 5 270 2 75.7 0.85946204 

97 20 200 5 120 2 77.4 0.381983129 

98 20 250 5 225 2 84 0.716218367 

99 20 300 5 176 2 88.7 0.560241923 

100 20 350 5 171 2 89.5 0.544325959 

101 6 150 6 397 0 68.1 14.04141687 

102 6 200 6 305 4 60.5 10.78748652 

103 6 250 6 387 4 68.9 13.68772879 

104 6 300 6 392 3 68 13.86457283 



140 
 

105 6 350 6 400 3 69.8 14.1475233 

106 10 150 6 578 4 70.9 7.35954162 

107 10 200 6 489 4 74.1 6.226325004 

108 10 250 6 420 4 76 5.347763807 

109 10 300 6 300 4 98.6 3.819831291 

110 10 350 6 348 0 99.6 4.431004297 

111 16 150 6 715 7 84.7 3.556223142 

112 16 200 6 653 6 80.2 3.247851345 

113 16 250 6 583 6 76.6 2.899689639 

114 16 300 6 505 6 84.5 2.511738023 

115 16 350 6 453 6 85.3 2.253103613 

116 18 150 6 218 5 80.5 0.856711133 

117 18 200 6 250 5 81.5 0.982466896 

118 18 250 6 324 5 79.4 1.273277097 

119 18 300 6 305 5 90.3 1.198609613 

120 18 350 6 394 5 94 1.548367828 

121 20 150 6 204 2 77.6 0.649371319 

122 20 200 6 236 2 79.9 0.751233487 

123 20 250 6 225 2 84.5 0.716218367 

124 20 300 6 220 2 86.8 0.700302403 

125 20 350 6 130 2 87 0.413815057 
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Table 4.B8: Experimental 125 test conditions results of thrust, torque and A-SPL, for pink limestone 

Sl. No DD (mm) SS (rpm) PR (mm/min)  Thrust (N) Torque(Nm)  A-SPL(dB) 

Specific Energy 

(Nm/m3) 

1 6 150 2 520 6 72.3 18.39178029 

2 6 200 2 452 5 74.5 15.98670133 

3 6 250 2 500 5 75.4 17.68440412 

4 6 300 2 415 4 86.3 14.67805542 

5 6 350 2 600 5 76 21.22128495 

6 10 150 2 800 4 74.5 10.18621678 

7 10 200 2 752 5 75.4 9.575043769 

8 10 250 2 775 5 72.8 9.867897501 

9 10 300 2 600 5 90.8 7.639662582 

10 10 350 2 307 5 74.5 3.908960688 

11 16 150 2 552 6 75.4 2.74550374 

12 16 200 2 641 6 95.3 3.188166481 

13 16 250 2 649 6 84.5 3.22795639 

14 16 300 2 485 6 78.5 2.41226325 

15 16 350 2 669 6 80 3.327431163 

16 18 150 2 315 4 96.3 1.237908289 

17 18 200 2 700 4 96.8 2.750907308 

18 18 250 2 1035 4 110.1 4.067412949 

19 18 300 2 452 4 78.9 1.776300148 

20 18 350 2 577 4 107.5 2.267533595 

21 20 150 2 536 3 96.1 1.70619131 

22 20 200 2 600 3 74.5 1.909915645 

23 20 250 2 741 3 79.4 2.358745822 
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24 20 300 2 200 6 86.4 0.636638548 

25 20 350 2 350 4 87.9 1.11411746 

26 6 150 3 1200 6 84.5 42.4425699 

27 6 200 3 685 7 78.5 24.22763365 

28 6 250 3 745 7 80 26.34976214 

29 6 300 3 926 6 73.9 32.75151644 

30 6 350 3 500 5 78.9 17.68440412 

31 10 150 3 685 4 107.5 8.721948114 

32 10 200 3 752 7 73.2 9.575043769 

33 10 250 3 956 7 86.4 12.17252905 

34 10 300 3 509 9 75.3 6.480980423 

35 10 350 3 625 6 74.5 7.957981856 

36 16 150 3 893 6 75.4 4.441548623 

37 16 200 3 779 6 77.5 3.874542416 

38 16 250 3 456 6 86.4 2.268024829 

39 16 300 3 556 6 87.5 2.765398695 

40 16 350 3 852 4 74.5 4.237625338 

41 18 150 3 931 6 75.4 3.65870672 

42 18 200 3 1369 6 106.2 5.379988721 

43 18 250 3 904 6 87.9 3.552600295 

44 18 300 3 1024 6 108.6 4.024184405 

45 18 350 3 562 6 86.3 2.208585582 

46 20 150 3 963 6 76 3.065414611 

47 20 200 3 523 6 74.5 1.664809804 

48 20 250 3 630 6 75.4 2.005411428 

49 20 300 3 715 4 83.6 2.275982811 

50 20 350 3 632 8 74.5 2.011777813 



143 
 

51 6 150 4 745 6 107.5 26.34976214 

52 6 200 4 926 6 96.1 32.75151644 

53 6 250 4 500 6 74.5 17.68440412 

54 6 300 4 685 6 79.4 24.22763365 

55 6 350 4 752 6 86.4 26.5973438 

56 10 150 4 956 6 75.3 12.17252905 

57 10 200 4 509 6 74.5 6.480980423 

58 10 250 4 625 6 74.1 7.957981856 

59 10 300 4 752 4 74.5 9.575043769 

60 10 350 4 884 8 77.7 11.25576954 

61 16 150 4 875 6 80 4.352021327 

62 16 200 4 456 6 74.5 2.268024829 

63 16 250 4 756 6 78.6 3.760146427 

64 16 300 4 500 6 74.5 2.48686933 

65 16 350 4 486 4 84.1 2.417236989 

66 18 150 4 562 10 91.4 2.208585582 

67 18 200 4 586 8 74.5 2.302902404 

68 18 250 4 287 5 102.9 1.127871996 

69 18 300 4 389 7 74.5 1.52871849 

70 18 350 4 295 3 104.9 1.159310937 

71 20 150 4 258 5 91.8 0.821263728 

72 20 200 4 356 5 80 1.133216616 

73 20 250 4 227 5 73.9 0.722584753 

74 20 300 4 300 5 78.9 0.954957823 

75 20 350 4 284 5 85.7 0.904026739 

76 6 150 5 1125 8 68.1 39.78990928 

77 6 200 5 1286 6 60.5 45.48428741 
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78 6 250 5 1000 6 68.9 35.36880825 

79 6 300 5 968 6 68 34.23700638 

80 6 350 5 1002 6 69.8 35.43954586 

81 10 150 5 789 4 70.9 10.04615629 

82 10 200 5 989 10 76.7 12.59271049 

83 10 250 5 745 8 80 9.485914372 

84 10 300 5 765 5 79.5 9.740569792 

85 10 350 5 800 7 84.1 10.18621678 

86 16 150 5 563 3 91.4 2.800214866 

87 16 200 5 500 5 77.4 2.48686933 

88 16 250 5 365 5 80 1.815414611 

89 16 300 5 218 5 97.3 1.084275028 

90 16 350 5 756 5 77.7 3.760146427 

91 18 150 5 286 5 80 1.123942129 

92 18 200 5 1475 4 74.5 5.796554685 

93 18 250 5 856 5 103.5 3.363966651 

94 18 300 5 762 7 103.2 2.994559098 

95 18 350 5 456 3 77.7 1.792019618 

96 20 150 5 636 5 80 2.024510584 

97 20 200 5 219 5 74.5 0.697119211 

98 20 250 5 963 5 93.6 3.065414611 

99 20 300 5 756 5 93.4 2.406493713 

100 20 350 5 563 5 68 1.792137514 

101 6 150 6 1456 5 81.3 51.49698481 

102 6 200 6 896 5 69.8 31.69045219 

103 6 250 6 712 5 70.9 25.18259147 

104 6 300 6 693 5 76.7 24.51058412 
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105 6 350 6 665 5 80.4 23.52025748 

106 10 150 6 393 4 78.2 5.003978991 

107 10 200 6 520 5 69.8 6.621040904 

108 10 250 6 500 7 70.9 6.366385485 

109 10 300 6 636 3 76.7 8.098042336 

110 10 350 6 207 5 75.6 2.635683591 

111 16 150 6 470 5 88.3 2.33765717 

112 16 200 6 532 5 103.2 2.646028967 

113 16 250 6 279 5 92.5 1.387673086 

114 16 300 6 456 5 84.1 2.268024829 

115 16 350 6 256 8 100.5 1.273277097 

116 18 150 6 900 9 77.1 3.536880825 

117 18 200 6 563 7 69.8 2.212515449 

118 18 250 6 500 6 105.8 1.964933792 

119 18 300 6 745 6 84.1 2.927751349 

120 18 350 6 406 6 93.8 1.595526239 

121 20 150 6 390 6 92.7 1.24144517 

122 20 200 6 258 6 84.1 0.821263728 

123 20 250 6 593 6 97.3 1.887633296 

124 20 300 6 456 6 103.2 1.45153589 

125 20 350 6 1456 7 99.9 4.634728633 
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Table 4.B9: Experimental 125 test conditions results of thrust, torque and A-SPL, for black limestone 

Sl. No DD (mm) SS (rpm) PR (mm/min)  Thrust (N) Torque(Nm)  A-SPL(dB) 

Specific Energy 

(Nm/m3) 

1 6 150 2 400 2 77.5 14.1475233 

2 6 200 2 487 3 72.5 17.22460962 

3 6 250 2 314 1 70.3 11.10580579 

4 6 300 2 312 3 71.5 11.03506817 

5 6 350 2 452 3 70.7 15.98670133 

6 10 150 2 300 2 73 3.819831291 

7 10 200 2 200 2 78.1 2.546554194 

8 10 250 2 215 2 81.5 2.737545758 

9 10 300 2 300 3 83.2 3.819831291 

10 10 350 2 225 4 82.2 2.864873468 

11 16 150 2 276 2 86.4 1.37275187 

12 16 200 2 200 4 88.2 0.994747732 

13 16 250 2 386 3 86.4 1.919863123 

14 16 300 2 245 3 85.4 1.218565972 

15 16 350 2 275 4 83.9 1.367778131 

16 18 150 2 234 3 85.5 0.919589014 

17 18 200 2 200 4 84.2 0.785973517 

18 18 250 2 215 4 87.2 0.84492153 

19 18 300 2 256 2 84.5 1.006046101 

20 18 350 2 126 4 85 0.495163315 

21 20 150 2 243 4 80.3 0.773515836 

22 20 200 2 200 5 80.4 0.636638548 

23 20 250 2 189 5 85.7 0.601623428 
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24 20 300 2 200 3 85.9 0.636638548 

25 20 350 2 235 5 85.8 0.748050294 

26 6 150 3 545 4 80.1 19.2760005 

27 6 200 3 430 3 79.1 15.20858755 

28 6 250 3 450 3 80 15.91596371 

29 6 300 3 400 3 72 14.1475233 

30 6 350 3 415 3 73 14.67805542 

31 10 150 3 486 5 75.3 6.188126691 

32 10 200 3 400 2 76.8 5.093108388 

33 10 250 3 451 4 75.4 5.742479707 

34 10 300 3 435 3 78.7 5.538755372 

35 10 350 3 312 4 78.1 3.972624542 

36 16 150 3 451 3 79.5 2.243156136 

37 16 200 3 255 4 87.6 1.268303358 

38 16 250 3 300 3 82.5 1.492121598 

39 16 300 3 340 3 83.6 1.691071144 

40 16 350 3 295 4 80.2 1.467252905 

41 18 150 3 300 2 84.5 1.178960275 

42 18 200 3 355 4 75.7 1.395102992 

43 18 250 3 412 4 80.4 1.619105444 

44 18 300 3 400 2 80.9 1.571947033 

45 18 350 3 300 4 85.2 1.178960275 

46 20 150 3 451 4 84.2 1.435619927 

47 20 200 3 400 4 84.4 1.273277097 

48 20 250 3 356 5 84.2 1.133216616 

49 20 300 3 300 5 86.2 0.954957823 

50 20 350 3 289 4 88.2 0.919942703 
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51 6 150 4 981 5 69.4 34.69680089 

52 6 200 4 800 4 68.2 28.2950466 

53 6 250 4 745 5 70.5 26.34976214 

54 6 300 4 800 6 77.8 28.2950466 

55 6 350 4 804 3 76 28.43652183 

56 10 150 4 787 5 75.7 10.02069075 

57 10 200 4 547 4 74.5 6.96482572 

58 10 250 4 700 4 80.1 8.912939678 

59 10 300 4 741 2 82.4 9.434983288 

60 10 350 4 547 5 81.8 6.96482572 

61 16 150 4 566 6 77.4 2.815136081 

62 16 200 4 700 4 77.4 3.481617062 

63 16 250 4 654 4 79.6 3.252825084 

64 16 300 4 475 5 80.7 2.362525863 

65 16 350 4 517 8 61.2 2.571422887 

66 18 150 4 478 3 805 1.878476705 

67 18 200 4 689 4 85.7 2.707678765 

68 18 250 4 201 4 81.4 0.789903384 

69 18 300 4 475 4 84.2 1.866687102 

70 18 350 4 378 5 84.2 1.485489946 

71 20 150 4 353 6 81.8 1.123667038 

72 20 200 4 389 4 88.1 1.238261977 

73 20 250 4 314 4 78.3 0.999522521 

74 20 300 4 300 5 89.5 0.954957823 

75 20 350 4 307 5 88 0.977240172 

76 6 150 5 1356 7 77.2 47.96010398 

77 6 200 5 1324 7 70.5 46.82830212 
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78 6 250 5 1000 7 70.9 35.36880825 

79 6 300 5 923 7 70.5 32.64541001 

80 6 350 5 900 5 75.2 31.83192742 

81 10 150 5 815 7 78.2 10.37720834 

82 10 200 5 715 6 73.8 9.103931243 

83 10 250 5 500 6 77 6.366385485 

84 10 300 5 978 6 77 12.45265001 

85 10 350 5 1000 7 76.2 12.73277097 

86 16 150 5 568 8 82.5 2.825083559 

87 16 200 5 986 7 94.5 4.904106319 

88 16 250 5 700 6 94.2 3.481617062 

89 16 300 5 681 4 83.4 3.387116027 

90 16 350 5 789 5 824 3.924279803 

91 18 150 5 1132 4 96.1 4.448610104 

92 18 200 5 600 6 86.4 2.35792055 

93 18 250 5 512 6 96.8 2.012092203 

94 18 300 5 500 6 98.7 1.964933792 

95 18 350 5 499 6 101.6 1.961003924 

96 20 150 5 500 5 100.1 1.591596371 

97 20 200 5 501 5 84.9 1.594779564 

98 20 250 5 459 5 86.4 1.461085469 

99 20 300 5 489 5 87.3 1.556581251 

100 20 350 5 400 5 87.9 1.273277097 

101 6 150 6 1745 8 71.7 61.71857039 

102 6 200 6 1542 7 77.2 54.53870232 

103 6 250 6 1500 8 74.5 53.05321237 

104 6 300 6 1501 10 75.6 53.08858118 
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105 6 350 6 1230 11 77.4 43.50363415 

106 10 150 6 1200 8 76.8 15.27932516 

107 10 200 6 1000 9 78.4 12.73277097 

108 10 250 6 989 7 74.2 12.59271049 

109 10 300 6 999 6 77.5 12.7200382 

110 10 350 6 948 7 78.3 12.07066688 

111 16 150 6 1000 9 76.3 4.97373866 

112 16 200 6 900 4 78.4 4.476364794 

113 16 250 6 915 8 78.1 4.550970874 

114 16 300 6 745 7 86.2 3.705435302 

115 16 350 6 990 5 80.1 4.924001273 

116 18 150 6 804 9 89.3 3.159613537 

117 18 200 6 1000 10 89.4 3.929867583 

118 18 250 6 756 5 89.7 2.970979893 

119 18 300 6 700 4 89.4 2.750907308 

120 18 350 6 1456 15 89.7 5.721887201 

121 20 150 6 689 4 84.6 2.193219799 

122 20 200 6 615 8 875 1.957663537 

123 20 250 6 645 7 88 2.053159319 

124 20 300 6 600 6 88.9 1.909915645 

125 20 350 6 580 4 88.7 1.846251791 
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Table 4.B10: Experimental 125 test conditions results of thrust, torque and A-SPL, for hematite 

Sl. No DD (mm) SS (rpm) PR (mm/min)  Thrust (N) Torque(Nm)  A-SPL(dB) 

Specific Energy 

(Nm/m3) 

1 6 150 2 1200 13 109.7 42.4425699 

2 6 200 2 986 6 100.7 34.87364493 

3 6 250 2 700 5 73.4 24.75816577 

4 6 300 2 647 5 82.1 22.88361894 

5 6 350 2 1000 10 76.3 35.36880825 

6 10 150 2 1624 14 76.2 20.67802005 

7 10 200 2 586 5 75.4 7.461403788 

8 10 250 2 865 6 85.9 11.01384689 

9 10 300 2 520 5 89.3 6.621040904 

10 10 350 2 638 7 79.7 8.123507878 

11 16 150 2 750 8 83.6 3.730303995 

12 16 200 2 745 8 100 3.705435302 

13 16 250 2 863 8 99.7 4.292336463 

14 16 300 2 596 4 100.1 2.964348241 

15 16 350 2 589 4 93.6 2.929532071 

16 18 150 2 925 10 104.5 3.635127514 

17 18 200 2 700 6 100.7 2.750907308 

18 18 250 2 652 5 84.2 2.562273664 

19 18 300 2 777 9 96.3 3.053507112 

20 18 350 2 569 6 92.5 2.236094655 

21 20 150 2 952 10 81.7 3.030399491 

22 20 200 2 825 7 89.7 2.626134012 

23 20 250 2 693 7 93.6 2.20595257 
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24 20 300 2 500 6 80.7 1.591596371 

25 20 350 2 729 6 75.3 2.320547509 

26 6 150 3 650 6 96.3 22.98972536 

27 6 200 3 900 8 100.8 31.83192742 

28 6 250 3 1000 10 82.3 35.36880825 

29 6 300 3 456 5 79.3 16.12817656 

30 6 350 3 896 7 77.5 31.69045219 

31 10 150 3 1000 13 86.3 12.73277097 

32 10 200 3 1140 13 79.3 14.5153589 

33 10 250 3 1520 14 69.2 19.35381187 

34 10 300 3 963 6 66.8 12.26165844 

35 10 350 3 856 6 75.2 10.89925195 

36 16 150 3 923 6 71.5 4.590760783 

37 16 200 3 685 5 81.7 3.407010982 

38 16 250 3 836 8 67.5 4.15804552 

39 16 300 3 1000 9 85.3 4.97373866 

40 16 350 3 1012 10 86.3 5.033423524 

41 18 150 3 1000 10 96.3 3.929867583 

42 18 200 3 2578 5 107.7 10.13119863 

43 18 250 3 639 5 86.3 2.511185386 

44 18 300 3 563 5 100.7 2.212515449 

45 18 350 3 759 5 89.6 2.982769496 

46 20 150 3 856 5 96.4 2.724812987 

47 20 200 3 1000 10 90.3 3.183192742 

48 20 250 3 563 5 100 1.792137514 

49 20 300 3 756 6 112.2 2.406493713 

50 20 350 3 963 8 101.7 3.065414611 
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51 6 150 4 962 6 85.3 34.02479353 

52 6 200 4 562 5 86.3 19.87727024 

53 6 250 4 520 5 90.3 18.39178029 

54 6 300 4 100 5 75.2 3.536880825 

55 6 350 4 856 5 71.5 30.27569986 

56 10 150 4 756 5 81.7 9.625974853 

57 10 200 4 963 6 67.5 12.26165844 

58 10 250 4 1001 7 116.9 12.74550374 

59 10 300 4 963 5 75.2 12.26165844 

60 10 350 4 600 5 71.5 7.639662582 

61 16 150 4 752 5 81.7 3.740251472 

62 16 200 4 689 5 67.5 3.426905937 

63 16 250 4 1025 8 100.3 5.098082126 

64 16 300 4 860 6 75.2 4.277415247 

65 16 350 4 700 6 71.5 3.481617062 

66 18 150 4 500 4 81.7 1.964933792 

67 18 200 4 630 4 67.5 2.475816577 

68 18 250 4 530 4 100.1 2.082829819 

69 18 300 4 500 4 100.8 1.964933792 

70 18 350 4 589 4 82.3 2.314692006 

71 20 150 4 507 4 79.3 1.61387872 

72 20 200 4 601 6 76.3 1.913098838 

73 20 250 4 528 6 103 1.680725768 

74 20 300 4 496 6 77.5 1.5788636 

75 20 350 4 500 6 86.3 1.591596371 

76 6 150 5 1121 6 90.3 39.64843405 

77 6 200 5 1000 8 75.2 35.36880825 
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78 6 250 5 1252 6 71.5 44.28174793 

79 6 300 5 689 7 81.7 24.36910888 

80 6 350 5 1025 9 67.5 36.25302845 

81 10 150 5 860 6 116.9 10.95018303 

82 10 200 5 700 5 71.5 8.912939678 

83 10 250 5 500 5 81.7 6.366385485 

84 10 300 5 657 8 87.3 8.365430527 

85 10 350 5 520 6 71.5 6.621040904 

86 16 150 5 630 6 71.5 3.133455356 

87 16 200 5 523 4 81.7 2.601265319 

88 16 250 5 623 4 87.3 3.098639185 

89 16 300 5 1178 10 103.7 5.859064141 

90 16 350 5 860 4 71.5 4.277415247 

91 18 150 5 700 4 81.7 2.750907308 

92 18 200 5 500 4 87.3 1.964933792 

93 18 250 5 630 5 71.5 2.475816577 

94 18 300 5 400 6 81.7 1.571947033 

95 18 350 5 860 7 87.3 3.379686121 

96 20 150 5 600 5 71.5 1.909915645 

97 20 200 5 520 5 81.7 1.655260226 

98 20 250 5 630 5 87.3 2.005411428 

99 20 300 5 700 5 104.3 2.22823492 

100 20 350 5 500 5 81.7 1.591596371 

101 6 150 6 963 9 71.5 34.06016234 

102 6 200 6 756 6 81.7 26.73881904 

103 6 250 6 643 5 93.1 22.7421437 

104 6 300 6 865 5 71.5 30.59401913 
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105 6 350 6 1000 11 81.7 35.36880825 

106 10 150 6 1240 6 87.3 15.788636 

107 10 200 6 789 6 71.5 10.04615629 

108 10 250 6 1200 12 81.7 15.27932516 

109 10 300 6 1500 10 87.3 19.09915645 

110 10 350 6 600 10 89.2 7.639662582 

111 16 150 6 635 4 81.7 3.158324049 

112 16 200 6 765 4 87.3 3.804910075 

113 16 250 6 562 4 91.5 2.795241127 

114 16 300 6 863 5 96.7 4.292336463 

115 16 350 6 632 6 107.2 3.143402833 

116 18 150 6 500 6 81.7 1.964933792 

117 18 200 6 657 6 87.3 2.581923002 

118 18 250 6 520 4 71.5 2.043531143 

119 18 300 6 630 4 81.7 2.475816577 

120 18 350 6 846 10 102.3 3.324667975 

121 20 150 6 500 4 71.5 1.591596371 

122 20 200 6 657 4 81.7 2.091357632 

123 20 250 6 630 6 87.3 2.005411428 

124 20 300 6 751 6 71.5 2.390577749 

125 20 350 6 656 6 106.8 2.088174439 
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Table 4.B11: Experimental 125 test conditions results of thrust, torque and A-SPL, for dolomite 

Sl. No DD (mm) SS (rpm) PR (mm/min)  Thrust (N) Torque(Nm)  A-SPL(dB) 

Specific Energy 

(Nm/m3) 

1 6 150 2 397 9 87.2 14.04141687 

2 6 200 2 721 4 85.1 25.50091075 

3 6 250 2 612 7 82.7 21.64571065 

4 6 300 2 600 7 86.7 21.22128495 

5 6 350 2 220 6 83.4 7.781137815 

6 10 150 2 358 5 78.8 4.558332007 

7 10 200 2 500 6 85.1 6.366385485 

8 10 250 2 256 7 86 3.259589368 

9 10 300 2 217 2 81.2 2.7630113 

10 10 350 2 147 2 82.6 1.871717332 

11 16 150 2 156 4 78.9 0.775903231 

12 16 200 2 200 5 72.1 0.994747732 

13 16 250 2 562 5 83.1 2.795241127 

14 16 300 2 241 4 85 1.198671017 

15 16 350 2 108 4 86 0.537163775 

16 18 150 2 876 4 94.4 3.442564003 

17 18 200 2 214 6 88.4 0.840991663 

18 18 250 2 189 5 89.2 0.742744973 

19 18 300 2 174 5 92 0.683796959 

20 18 350 2 200 4 95.6 0.785973517 

21 20 150 2 167 4 92.5 0.531593188 

22 20 200 2 201 5 97.2 0.639821741 

23 20 250 2 189 4 96.3 0.601623428 
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24 20 300 2 175 5 94.1 0.55705873 

25 20 350 2 325 5 96.5 1.034537641 

26 6 150 3 986 3 82.7 34.87364493 

27 6 200 3 1000 2 86.9 35.36880825 

28 6 250 3 956 2 85.7 33.81258069 

29 6 300 3 812 4 75 28.7194723 

30 6 350 3 560 5 72.7 19.80653262 

31 10 150 3 486 5 81.8 6.188126691 

32 10 200 3 500 4 86.4 6.366385485 

33 10 250 3 900 4 80 11.45949387 

34 10 300 3 541 4 80.2 6.888429094 

35 10 350 3 397 6 81.9 5.054910075 

36 16 150 3 415 5 88 2.064101544 

37 16 200 3 600 5 79.1 2.984243196 

38 16 250 3 845 4 87.4 4.202809168 

39 16 300 3 665 5 95.6 3.307536209 

40 16 350 3 475 4 98.7 2.362525863 

41 18 150 3 582 5 100 2.287182933 

42 18 200 3 330 5 95.5 1.296856302 

43 18 250 3 641 3 99.4 2.519045121 

44 18 300 3 290 7 96.6 1.139661599 

45 18 350 3 452 5 96.7 1.776300148 

46 20 150 3 374 7 89.7 1.190514086 

47 20 200 3 250 4 94.9 0.795798186 

48 20 250 3 500 8 93.4 1.591596371 

49 20 300 3 386 6 95.7 1.228712399 

50 20 350 3 297 6 96 0.945408244 
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51 6 150 4 1000 9 89.2 35.36880825 

52 6 200 4 1201 12 86.2 42.47793871 

53 6 250 4 1576 10 83.2 55.7412418 

54 6 300 4 956 5 87.2 33.81258069 

55 6 350 4 678 9 75.3 23.98005199 

56 10 150 4 758 8 82.1 9.651440395 

57 10 200 4 601 8 87.4 7.652395353 

58 10 250 4 754 7 93.1 9.600509311 

59 10 300 4 756 7 98.4 9.625974853 

60 10 350 4 825 5 97.5 10.50453605 

61 16 150 4 690 7 97 3.431879675 

62 16 200 4 685 5 86 3.407010982 

63 16 250 4 600 6 84.7 2.984243196 

64 16 300 4 745 6 82.4 3.705435302 

65 16 350 4 766 5 82.6 3.809883813 

66 18 150 4 515 4 95.3 2.023881805 

67 18 200 4 584 5 100 2.295042669 

68 18 250 4 712 5 102.1 2.798065719 

69 18 300 4 623 3 101.1 2.448307504 

70 18 350 4 700 7 100.8 2.750907308 

71 20 150 4 622 5 95.6 1.979945886 

72 20 200 4 500 7 92.3 1.591596371 

73 20 250 4 658 4 98.1 2.094540824 

74 20 300 4 501 8 85.6 1.594779564 

75 20 350 4 496 6 101 1.5788636 

76 6 150 5 1200 13 86.3 42.4425699 

77 6 200 5 1145 12 80 40.49728544 
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78 6 250 5 1150 9 79.4 40.67412949 

79 6 300 5 900 10 75.4 31.83192742 

80 6 350 5 578 10 86.3 20.44317117 

81 10 150 5 325 5 80.4 4.138150565 

82 10 200 5 1200 10 77.1 15.27932516 

83 10 250 5 745 6 85.3 9.485914372 

84 10 300 5 600 10 90.3 7.639662582 

85 10 350 5 640 8 84.2 8.14897342 

86 16 150 5 499 9 96.3 2.481895591 

87 16 200 5 779 9 84.1 3.874542416 

88 16 250 5 589 5 1002 2.929532071 

89 16 300 5 703 5 93.5 3.496538278 

90 16 350 5 1000 11 100.8 4.97373866 

91 18 150 5 900 8 96.5 3.536880825 

92 18 200 5 1185 12 99.7 4.656893086 

93 18 250 5 751 6 82.1 2.951330555 

94 18 300 5 345 5 96.4 1.355804316 

95 18 350 5 896 8 100.8 3.521161354 

96 20 150 5 658 8 96.5 2.094540824 

97 20 200 5 700 7 97.5 2.22823492 

98 20 250 5 641 6 98.7 2.040426548 

99 20 300 5 895 9 86.2 2.848957504 

100 20 350 5 798 6 83.3 2.540187808 

101 6 150 6 1124 12 74 39.75454047 

102 6 200 6 800 9 85 28.2950466 

103 6 250 6 778 8 75 27.51693282 

104 6 300 6 625 6 85 22.10550516 
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105 6 350 6 900 8 96 31.83192742 

106 10 150 6 508 7 75 6.468247652 

107 10 200 6 745 7 100 9.485914372 

108 10 250 6 523 5 95.6 6.659239217 

109 10 300 6 965 9 100.1 12.28712399 

110 10 350 6 1126 13 81.5 14.33710011 

111 16 150 6 692 5 93.5 3.441827153 

112 16 200 6 785 6 100 3.904384848 

113 16 250 6 693 7 112 3.446800891 

114 16 300 6 1000 9 96.7 4.97373866 

115 16 350 6 896 8 89.5 4.456469839 

116 18 150 6 1298 14 100.4 5.100968123 

117 18 200 6 1201 13 96.3 4.719770967 

118 18 250 6 639 6 92.4 2.511185386 

119 18 300 6 758 7 100.7 2.978839628 

120 18 350 6 548 8 98.4 2.153567436 

121 20 150 6 1124 13 92.5 3.577908642 

122 20 200 6 745 6 93.5 2.371478593 

123 20 250 6 852 7 86.4 2.712080216 

124 20 300 6 968 9 94.2 3.081330575 

125 20 350 6 2150 13 100 6.843864396 
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