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ABSTRACT

The time complexity of many optimization problems falls under either exponential time

or factorial time. Finding an optimal solution for such optimization problems is of great

significance for scientific and engineering applications. Metaheuristic approaches have

vast influence while solving optimization problems that provide satisfactory solutions

in a reasonable amount of time. A metaheuristic is a guiding strategy to an underlying

heuristic approach to solve a specific optimization problem. The metaheuristic approach

helps determine an acceptable solution by applying constraints on the exploration space

of feasible solutions. However, metaheuristics consume large amounts of CPU time

while solving larger instances.

Parallel computation reduces overall execution time by executing independent tasks

simultaneously. Parallel computing enables faster convergence to solutions of large in-

stances of optimization problems. Challenges facing designers implementing parallel

strategies are - cost quality reduction in large problem instances, arriving at near-optimal

solutions for a subset of input instances (but not all), large search-space exploration to

reach a satisfactory solution. In this thesis work, efficient parallel metaheuristic models

are developed that resolve some of the issues mentioned above. Further, satisfactory

solutions are arrived at in a reasonable amount of time. The proposed parallel versions

of metaheuristics have been applied to three combinatorial optimization problems: trav-

eling salesman problem, minimum latency problem, and vehicle routing problem.

The Traveling Salesman Problem (TSP) is an NP-hard combinatorial optimization

problem. Metaheuristic methods are used to produce the satisfactory solution by lim-

iting the search-space exploration. Moreover, CPU implementations of metaheuristic

methods are too time-consuming for large input instances. The GPU-based Parallel Iter-

ative Hill Climbing (PIHC) approach is presented for solving large TSPLIB instances in

a reasonable time. Multiple GPU-based thread mapping strategies have been presented

to solve large-scale TSPLIB instances. The improved cost quality has been demon-

strated using the symmetric TSPLIB instances having up to 85,900 cities. The PIHC



GPU implementation gives up to 193× speedup over its sequential counterpart and up

to 979.96× speedup over a state-of-the-art GPU-based TSP solver. The PIHC gives a

cost quality with error rate 0.72% in the best case and 8.06% in the worst case. More-

over, two GPU-based parallel strategies have been developed for ant colony algorithm

to solve larger instances than existing approaches.

The Minimum Latency Problem (MLP) is an NP-Hard combinatorial optimization

problem. Metaheuristics use perturbation and randomization to arrive at a satisfactory

solution under time constraints. The proposed work uses Deterministic Local Search

Heuristic (DLSH) to identify a satisfactory solution without setting up metaheuristic

parameters. A move evaluation procedure is proposed for the swap approach which

computes a move in a constant time. A GPU-based Parallel Deterministic Local Search

Heuristic (PDLSH) is proposed to mitigate the execution time spent in the solution im-

provement phase. The PDLSH parallelizes the solution improvement phase and solves

MLP for larger instances than the state-of-the-art. The DLSH and PDLSH implemen-

tations are tested on the TRP and TSPLIB standard instances. DLSH reaches new best

solutions for five TSPLIB instances, namely eil51, berlin52, pr107, rat195, and pr226.

The proposed PDLSH achieves a speedup of up to 179.75 for the instances of size 10-

11849 nodes compared to its sequential counterpart.

The Vehicle Routing Problem (VRP) is an NP-hard, goods transportation scheduling

problem with vehicle capacity and transportation cost constraints. This work presents

GPU-based parallel strategies for the Local Search Heuristic (LSH) algorithm to solve

the large-scale Capacitated Vehicle Routing Problem (CVRP) instances. This work

employs a combination of five improvement heuristic approaches to improve the con-

structed feasible solution. It is noticed that a large amount of CPU time is spent in the

feasible solution improvement phase. Two GPU-based parallel strategies, namely, route

level and customer level parallel designs, have been developed to reduce the execution

time of solution improvement phase. The proposed parallel version of the LSH has been

tested on large-scale instances of up to 30000 customers. The customer level parallel

design offers speedup up to 147.19× compared to the corresponding sequential version.

From this thesis work, the proposed parallel version of IHC solves larger TSPLIB

ii



instances up to 85900 cities with a speedup of up to 193 times. Also, it reduces error

rates of local solutions, i.e., in the range of 0.72% - 8.06%. The limitation of existing

GPU-based MLP solver has been overcome in the proposed GPU-based parallel strat-

egy to solve instances above 1000 nodes. PDLSH significantly mitigates the overall

execution time while solving MLP, which achieves a speedup of 179× over its sequen-

tial counterpart for instances up to 11849 nodes. In the case of CVRP, two parallel

strategies, namely route-level and customer-level, are developed to reduce execution

time spent in the improvement phase. The customer-level parallel design reduces the

execution time significantly and generates the speedup up to 147× for the instances

having up to 30000 nodes.

Keywords: Traveling Salesman Problem (TSP), Parallel Iterative Hill Climbing (PIHC)

Algorithm, Minimum Latency Problem (MLP), Parallel Deterministic Local Search

Heuristic (PDLSH), Capacitated Vehicle Routing Problem (CVRP).
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set. Time is given in seconds. . . . . . . . . . . . . . . . . . . . . . . . 146

6.8 The cost and time analysis of LSH over Belgium (Arnold and Sörensen
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CHAPTER 1

INTRODUCTION

This thesis presents the GPU-based parallel models to the existing metaheuristic al-

gorithms to solve different combinatorial optimization problems in lesser time. Many

optimization problems deal with real-time applications. Providing faster solutions to

such applications is of great importance. This thesis aims to reduce the execution time

spent in the improvement phase of metaheuristic algorithms. This chapter briefly intro-

duces different combinatorial optimization problems, metaheuristic algorithm and their

limitations, and the need to apply parallelism. The problem statement of this thesis and

its objectives are also presented.

1.1 COMBINATORIAL OPTIMIZATION PROBLEM

The combinatorial optimization problem is a study of operations research and theoreti-

cal computer science, where the objective is to find an optimal solution from the finite

set of solutions. The combinatorial optimization problem plays a significant role in the

science, engineering, and industrial domain. Some of the combinatorial optimization

problems are the maximum clique problem (Bomze et al. 1999), minimum latency

problem (Blum et al. 1994), graph coloring (Jensen and Toft 2011), quadratic assign-

ment problem (Lawler 1963), traveling salesman problem (Lin 1965), and vehicle rout-

ing problem (Clarke and Wright 1964). There are several approaches available in the

exact methods to solve such problems. Some of these are, namely, brute-force, branch

and bound, branch and cut, and dynamic programming. The search-space involved in
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1. Introduction

finding an optimal solution is too large. The exact method has to explore either ex-

ponential or factorial order search-space to determine an optimal solution. Finding an

optimal solution for the large-scale problem is intractable, and hence in recent stud-

ies, metaheuristic algorithms are employed to find satisfactory solutions in a reasonable

amount of time.

The thesis work presents faster, and improved cost quality solutions for larger input

instances for three combinatorial optimization problems chosen based on their complex-

ity. These three combinatorial optimization problems are Traveling Salesman Problem

(TSP), Minimum Latency Problem (MLP), and Vehicle Routing Problem (VRP).

1.1.1 Traveling Salesman problem (TSP)

The Traveling Salesman Problem (TSP) (Gutin and Punnen 2002; Johnson and Mc-

geoch 1997) is an NP-hard (Garey and Johnson 1990), O(n!) combinatorial optimiza-

tion problem. The time complexity of TSP is the factorial time when solved using the

brute-force method and exponential time when solved using dynamic programming.

For its large number of science and engineering applications, time-efficient TSP solu-

tions are of great importance. Some practical applications are drilling of printed circuit

boards, overhauling gas turbine engines, X-ray crystallography, and vehicle routing

(Lenstra and Kan 1975; Matai et al. 2010).

The objective of TSP is to find the minimum cost route that passes through each

city exactly once returning to the originating city. In short, in the map of n cities, the

distance of a route π has to be minimized,

d(π) =
n−1∑
i=1

dπ(i),π(i+1) + dπ(n),π(1) (1.1)

where di,j is a distance between any two cities i and j, and π is the permutation from

(1, 2, ..., n) (Merz and Freisleben 2001).

According to graph theory, TSP is a simple weighted connected graph which has

cities as nodes, paths between cities as edges and distance between cities as weights on

edges and the goal of TSP is to find minimal Hamiltonian cycle from simple weighted

connected graph G = (V,A, d) where, V = set of cities to be visited, A= {(i, j)|(i, j) ∈

V × V } is set of paths between cities and d : A −→ Z is a function which assigns dis-
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tance di,j to every path between city (i, j). A Hamiltonian cycle in a simple connected

graph that visits each node exactly once and returns to the starting node (Angluin and

Valiant 1979).

1.1.2 Minimum Latency Problem (MLP)

The Minimum Latency Problem is an NP-Hard (Blum et al. 1994; Sahni and Gonzalez

1976; Sitters 2002) combinatorial optimization problem. The objective of MLP is to

find a Hamiltonian path that minimizes the overall waiting time of nodes. The formal

definition of MLP is, consider a simple, directed, weighted graph that has n vertices,

where n − 1 vertices act as service requesting nodes and one vertex act as service

providing node. Each service requesting node vi (1 ≤ i<n) has to wait until it is

served. This waiting period is also known as latency. The latency is a sum of distance

or time required to reach from the service providing node v0 to the service requesting

node vi.

MLP has several applications in real life, such as data retrieval in the computer

network, delivery services, disk head scheduling, and logistics services for emergency

reliefs, etc. (Campbell et al. 2008; Ezzine et al. 2010; Méndez-Dı́az et al. 2008).

1.1.3 Vehicle Routing Problem (VRP)

Vehicle Routing Problem (VRP) (Clarke and Wright 1964; Dantzig and Ramser 1959)

is an NP-hard, combinatorial optimization problem, with applications in the field of

goods and transportation. The objective of VRP is to schedule the number of vehicles

for goods transportation such that its transporting cost is reduced. VRP has several

variants based on its objective function, viz., Capacitated Vehicle Routing Problem

(CVRP), Heterogeneous Fleet VRP (HFVRP), Multi-Depot VRP (MDVRP), Pickup

and Delivery VRP (PDVRP) (Braekers et al. 2016; Eksioglu et al. 2009; Toth and

Vigo 2001).

In this thesis, CVRP is considered. CVRP is defined as: Given a simple, connected,

weighted, undirected graphG(V,E), where, V is set of vertices, i.e., V = {v0, v1, .., vn}

and E is set of edges i.e., E = {vi, vj} where (i < j < n), the objective is to find a
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set of routes R = {r1, r2, .., rm} for m vehicles such that, 1) each customer is visited

exactly once, and 2) total traveling distance is minimum.

1.2 METAHEURISTIC

The metaheuristic is a high-level method used as a guiding strategy to an underlying

heuristic approach to solve a specific optimization problem. It helps to find out an ac-

ceptable solution by putting limitations on the exploration of feasible solutions. Meta-

heuristic (Talbi 2009) is the approximation method that explores a subset of feasible

solutions putting a curb on the search-space exploration and derive satisfactory solu-

tions in a reasonable amount of time.

Metaheuristic methods start with a feasible initial solution and iteratively improve

on it to converge towards the global optimal solution until the termination criteria

are met. The termination criteria may include the number of iterations, an optimal

cost value, no improvement of solutions between iterations. Popular metaheuristic ap-

proaches are iterative local search, hill climbing, tabu search, simulated annealing, ant

colony optimization, and genetic algorithm (Monmarché et al. 1999). The selection of

a subset of feasible solutions depends on the initial solution.

These algorithms are further classified either into a single solution-based heuris-

tic algorithm or the population of a solutions-based heuristic algorithm (Talbi 2009).

The algorithm is called a single solution-based heuristic algorithm that initiates a single

initial solution and makes an iterative improvement on it until the termination con-

dition occurs. Hill climbing algorithm, iterated local search, tabu search act as sin-

gle solution-based improvement heuristic algorithm. A population of solutions-based

heuristic determines multiple initial solutions, subsequently improves it simultaneously,

and finally selects the best-improved solution out of it. Examples of these algorithms

are ant colony, random-restart, and genetic algorithm.

Once the initial solution is determined, a subset of feasible solutions is generated

repeatedly to improve the initiated solution. Some of the feasible solution generation

methods are 2-opt, 3-opt, k-opt, relocate, and swap (Muyldermans et al. 2005).
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1.2.1 Need of Metaheuristic

Optimization problems are solved using two broad types; viz., exact methods, and meta-

heuristic methods. In the worst-case, exact methods have to explore the entire search

space to determine the optimal solution. Metaheuristic methods give near-optimal solu-

tions by exploring limited search space in a reasonable amount of time (Talbi 2009). In

the worst-case, for n city TSP exact method, optimal solution is determined after explor-

ing (n−1)!
2

feasible solutions in case of brute-force approach, n2 × 2n feasible solutions

in case of dynamic programming. While the exact method always assures an optimal

solution, the CPU time is prohibitive for large n. Due to the factorial time complexity,

exact methods cannot be time-efficient approaches to solve large-scale combinatorial

optimization problems. Metaheuristic (Talbi 2009) is the approximation method that

explores a subset of feasible solutions by constraining the search space and derive sat-

isfactory solutions in a reasonable amount of time. Metaheuristic methods start with

a random initial solution and iteratively improve on it to converge to a near-optimal

solution.

1.3 PARALLEL COMPUTATION

The metaheuristic approach is the two-step approach. First, it determines the initial

solution of an optimization problem. Second, it improves the initial solution iteratively

by choosing the best-improved neighborhood solution until no further improvement is

possible. Since the metaheuristic approach improves initiated solution repeatedly, one

cannot accurately determine the number of iterations required to reach a locally opti-

mal solution before its execution. Therefore, neighborhood generation continues until

termination criteria are met. In metaheuristic approaches, it is observed that most of

the execution time is being spent in the second phase, i.e., neighborhood generation. It

is noticed from the experimental analysis that more than 90% execution time is spent

in the neighborhood generation phase. This execution time spent in the neighborhood

generation can be reduced, deploying neighborhood generation tasks over the paral-

lel computing platforms. The neighborhood generation phase is suitable for parallel

implementation since one solution’s generation does not depend on other solution’s
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generation. Growth in parallel computing has occurred in the following ways-

• Shared Memory Architecture: Advent of the multi-core processor allows us

to distribute tasks among multiple cores with the help of OpenMP and pthreads

programming paradigm.

• Distributed Computing: In addition to shared memory architecture, multiple

CPU systems/nodes are connected to get more computational power. On such

cluster, work distribution is being done using MPI programming paradigm on

different devices.

• GPU computing: Recent trend in parallel computing is to use the Graphics Pro-

cessing Unit (GPU) platform. GPU computing has emerged as a more powerful

parallel computing platform that offers thousands of dedicated cores to handle

several computational tasks simultaneously in SIMD fashion.

The GPU has been considered as the parallel implementation platform to design paral-

lel strategies for metaheuristic algorithms to solve various combinatorial optimization

problems.

1.3.1 GPU Computing

Graphics Processing Unit (GPU) computing has highly computational horsepower and

remarkably high memory bandwidth compared to CPU-based architectures. In GPU,

there are more transistors dedicated to data processing instead of data caching and flow

control. It is highly suitable for the computationally complex task and highly parallel

computations.

GPU exploits data, memory, and task-level parallelism in applications to improve

their performance significantly (Che et al. 2008; Ryoo et al. 2008). NVIDIA’s GPUs

are programmed using the Compute Unified Device Architecture (CUDA) toolkit to

deploy GPU-specific task over the GPU platform (NVIDIA). GPU computing is het-

erogeneous, involving the CPU and the GPU cooperating to execute serial and parallel

portions of the applications. The CPU (host) deploys data required for parallel compu-

tation in the GPU’s global memory through the PCIe bus. The GPU (device) performs
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computations on this data. The results are copied from the GPU’s global memory back

to the CPU’s memory on completion. GPU performs computations on the data using

many structured threads running on its several compute cores. High-performance GPU

implementations handle host-device data transfer efficiently, have effective thread map-

ping, and have optimal synchronization amongst the execution threads. GPUs have

been widely used to solve complex optimization problems in time-efficient manner.

1.4 MOTIVATION

• Time bound

Due to its time complexity, the exact method becomes prohibitive while solving

large-scale combinatorial optimization problems. This limitation can be elimi-

nated using an approximation method known as a metaheuristic algorithm that

gives a satisfactory solution in a reasonable amount of time.

• Speedup

Metaheuristic algorithm improves the initial solution using the neighborhood

generation methods. The generation of feasible neighborhood solutions and its

cost computation can be implemented in parallel, which results in a significant

speedup improvement over its sequential counterpart.

• Cost quality

Most existing metaheuristic algorithms have set up the initial solution arbitrarily.

If the initial solution is constructed using the construction heuristic approaches,

the resultant solution’s cost quality can be improved.

1.5 PROBLEM DESCRIPTION

The state-of-the-art metaheuristic algorithms that produce the best-known solutions for

combinatorial optimization problems spend inadmissible CPU time to obtain the local

solution for large-scale instances. In this thesis, the aim is to reduce the execution

time and solve large-scale instances compared to existing works. The efficient work

distribution parallel model helps to get a nonzero speedup over sequential counterpart.

Existing GPU-based metaheuristics solve limited size instances. Large-scale instances
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can be solved using optimized GPU data, effective threads, and block parameter tuning.

1.6 OBJECTIVES

• Propose the single solution-based parallel model to solve the optimization prob-

lem.

• Propose the population of solutions-based parallel model to solve the optimiza-

tion problem.

• Design an efficient parallel model that solves larger-size benchmarking instances.

1.7 THESIS CONTRIBUTIONS

In this research, several GPU-based parallel strategies have been designed to solve

large-scale combinatorial optimization problems in a reasonable amount of time.

1. Four GPU-based parallel strategies for the single solution-based heuristic, namely,

Iterative Hill Climbing Algorithm (IHC) to solve Traveling Salesman Problem are

presented (Yelmewad and Talawar 2019). The proposed approach outperforms

over the GPU-based state-of-the-art TSP solvers (Neil and Burtscher 2015; Rocki

and Suda 2013) in terms of speedup and solution quality. The effect of setting up

different types of the initial solution has been presented on the execution time and

solution quality (Talawar and Yelmewad 2017; Yelmewad and Talawar 2018).

2. Two parallel strategies, namely, task-level and data-level, have been applied for

the Ant Colony Optimization (ACO) to solve TSP. ACO is the population of

solutions-based metaheuristic where the population of solutions is being con-

structed following ants’ behavior (Yelmewad et al. 2019).

3. Deterministic Local Search Heuristic (DLSH) that assures the same solution for

the same instances irrespective of multiple trials for solving the Minimum La-

tency Problem (MLP) is designed. Further, the move evaluation procedure that

computes a move pair in O(1) order without using any preprocessed local data is

presented. A GPU-based parallel model for DLSH, which solves larger instances
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than existing parallel MLP solvers and achieves speedup up to 179.75 times is

also presented (Yelmewad and Talawar 2020).

4. Finally, two GPU-based parallel strategies have been designed for the hybrid of

five improvement heuristics to solve the Capacitated Vehicle Routing Problem

(CVRP). In the existing study, it is observed that parallel strategies have been

designed for only intra-route heuristics. Route level and customer level parallel

designs for the inter-route heuristics in addition to the intra-route heuristics are

designed (Yelmewad and Talawar 2020).

1.8 THESIS ORGANIZATION

The rest of thesis is organized as follows: Chapter 2 presents the survey of existing

works done for solving several combinatorial optimization problems using metaheuris-

tic algorithms. Chapter 3 presents the working of the Parallel Iterative Hill Climbing

(PIHC) algorithm to solve TSP. Chapter 4 discusses the parallel version of the Min-Max

Ant System (MMAS) to solve TSP. Chapter 5 presents the GPU-based Deterministic

Local Search Heuristic (DLSH) to solve the Minimum Latency Problem in lesser time.

Chapter 6 presents the parallel version of the local search algorithm to solve the Capac-

itated Vehicle Routing Problem (CVRP) on the GPU platform. Finally, the summary of

all the proposed techniques and future research directions are given in Chapter 7.
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CHAPTER 2

LITERATURE REVIEW

Nowadays, metaheuristic algorithms are widely used to solve several combinatorial

optimization problems to provide satisfactory solutions in less time than exact methods.

Recently published papers have been studied which solve either TSP, MLP, or CVRP

using metaheuristic algorithms. Twofold objectives are targeted to study existing works.

1) What is the maximum size of the instances solved? 2) Is there any parallel strategy

used to reduce the execution time? The brief observation of existing works is explained

in the following subsections for these three optimization problems separately.

2.1 TRAVELING SALESMAN PROBLEM (TSP)

Several existing metaheuristic algorithms have been studied which solve TSP. The

overview of this study is further classified based upon the hardware platform used for

the experimental analysis.

2.1.1 Single-core

Dorigo and Gambardella (1997) present result analysis of different metaheuristic algo-

rithms that include ant colony optimization, genetic algorithm, evolutionary algorithm,

and simulated annealing approaches to solving TSP. Author evaluates the performance

of these metaheuristic approaches using both symmetric and asymmetric TSPLIB in-

stances. Based on experimental results, researchers conclude that the ant colony system

produces the best quality solution. However, this approach spends inadmissible time to

generate good results for solving large instances.
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Baraglia et al. (2001) have applied a combination of genetic algorithm and local

search heuristic as the metaheuristic to solve the TSP. Author used the k-opt mechanism

to generate neighborhood solutions. This approach gives a better solution compared to

the genetic algorithm alone. The execution time of the above approaches increases

drastically as the input size increases.

2.1.2 Multi-core

Several parallel TSP implementations have been proposed to take advantage of multi-

core processor architecture. Randall and Lewis (2002) present the task distribution

strategy for ant colony optimization. Authors have analyzed their method’s performance

on TSPLIB instances ranging from 24-657 nodes and claims 3× speedup. However, the

parallel code only allows for one ant per processor.

Work Heuristic Instance Speedup Limitations

Stützle (1998b) Ant colony 198-1291 6.7 Consumes more CPU time.
Randall and Lewis (2002) Ant colony 24-657 3 Allows one per processor.
Craus and Rudeanu (2004) Ant colony 229 30 Cost quality is not considered.
Delisle et al. (2009) Ant colony 763-13509 5.5 Consumes more CPU time.

Table 2.1: Overview of multi-core based parallel TSP Solvers

Stützle (1998b) presents parallelization strategies for ant colony optimization for

multi-core processor architecture. In addition to this, the author has done a slight change

in the algorithm to reduce the pheromone matrix size using the min-max approach. The

efficiency of proposed algorithm has been shown using instances between 198 and 1291

nodes. Although work provides good cost quality, it cannot solve large instances due

to heavy memory workload. Craus and Rudeanu (2004), Delisle et al. (2009) have

presented a parallel strategy similar to the above work. Table 2.1 presents the overview

of multi-core based parallel TSP Solvers. However, these present works consume more

time while the instance size increases.

2.1.3 GPU Computing

Fujimoto and Tsutsui (2011) present a GPU-based parallel strategy of genetic algorithm

to solve TSP. The 2-opt move and crossover techniques have been used to generate

12
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neighborhood solutions. Author allows 60 number of blocks to execute 60 initial solu-

tions in parallel and find out the best-improved solution. Author has noted that 24.2×

speedup in best-case on instances of 120 - 493 range. The main limitation of proposed

approach is that it cannot solve instances which size is more than 1024. This is because

work restricts the number of threads on each block is equal to instance size. Hence, up

to 1024 threads are allowed on recent GPU architecture.

Zhao et al. (2011) present the hybrid of genetic algorithm and tabu search to solve

TSP on GPU. Author implements a parallel immune algorithm to solve small-scale TSP

instances and reports the speedup of 7.5 over the corresponding CPU implementation.

Author evaluates the effectiveness of proposed approach with real-time application in

the steel industry that arranges the cold rolling scheduling of a batch of steel coils.

However, only small-size instances have been considered in this work (150 - 318 cities).

The GPU part can be utilized more intensively.

O’Neil et al. (2011) present the iterative hill climbing approach along with a 2-opt

move to solve TSPLIB 100 city problem. The work arrives at the optimal cost for

four different variants of 100 cities, and for one instance i.e., kroE100 reaches a near-

optimal cost with 0.07% error. However, this implementation is only limited to 100 city

instance. Moreover, a large number of random restarts are required to get the optimal

solution.

Delévacq et al. (2012) present parallel GPU implementation of iterative local search

for TSP. Author has shown two parallel strategies to generate and compute the neigh-

borhood solution. The 3-opt move has been used for neighborhood generation. The

efficiency of proposed approach has been analyzed using TSPLIB instances ranging

from 100 - 3038 nodes. Author claims 6.02× speedup over its sequential part. How-

ever, the proposed parallel strategy is not scalable, cannot solve instances beyond 3038

due to shared memory limitations.

Delévacq et al. (2013) present a parallel ant colony optimization approach to solve

TSP. The ant colony approach’s objective is to initially set the population of solutions

and find the best out of it. Author uses three parallel strategies to identify efficient

13
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methods to solve TSP, which are thread level, block-level, and shared memory imple-

mentation. Moreover, a local search approach is applied to each ant solution to improve

resultant cost. Author claims that the parallel ant colony approach gives a speedup of

23.60 over corresponding sequential implementation. However, the limitation of this

implementation is more storage requirements to store the pheromone matrix, distance

matrix, and candidate list. This memory requirement makes the proposed approach pro-

hibitive while solving large input instances; therefore, reported experimental results up

to d2103 instances.

Cecilia et al. (2013) present the data parallelism scheme for tour construction and

pheromone update to solve TSP using ant colony optimization. The proposed parallel

model needs a pheromone matrix and distance matrix on GPU before beginning the

actual computation. The storage requirement makes the proposed approach inapplica-

ble while solving large input instances. The proposed work has been evaluated using

TSPLIB instances ranging from 198 - 2393 nodes and claims speedup of up to 20×

over sequential counterpart.

Rocki and Suda (2012) evaluate the impact of 2-opt and 3-opt neighborhood gener-

ation methods to solve TSP efficiently to get the near-optimal solution. The work also

constrains on minimizing memory utilization and efficient CPU-GPU data transfer. The

proposed approach improves neighborhoods’ local search time using the GPU 3 to 26

times compared to the parallel CPU code using 32 cores. Time analysis of different

TSP instances ranging from 100 to 4461 nodes reveals the potential of 2-opt and 3-opt

approaches. However, author does not report the solution quality.

Fosin et al. (2013) present the parallel local search implementation for 2-opt and

3-opt approaches for solving symmetric TSP instances. Author reports 27× speedup

over corresponding CPU implementation. The proposed approach has used Nearest

Neighborhood (NN) technique to determine the initial solution rather than choosing

randomly. However, author does not report the solution quality of TSPLIB instances.

Luong et al. (2013) have used the tabu search mechanism as a metaheuristic ap-

proach with the 2-opt move neighborhood generation method to solve TSP on GPU.

14



2.1. Traveling Salesman Problem (TSP)

Table 2.2: Characteristics of GPU-based methods. Each row represents existing work,
heuristic method used to solve TSP, neighborhood generation technique, instance size
considered, error rate, speedup over sequential part, limitation of existing work.

Work Heuristic
Neighbors
Generation Instances

Initial
Solution Cost quality Speedup Limitations

Fujimoto
and
Tsutsui
(2011)

Genetic
2-opt,
OX 120 - 493 random 0.5 % 24.2 Instance size >1024 can not be solved.

Zhao
et al.
(2011)

Genetic OX 130 - 318 random 6.9% 7.54 Consumes more GPU time with error rate 6.9%.

O’Neil
et al.
(2011)

IHC 2-opt 100 random 0.07% 62 Limited to 100 city.

Delévacq
et al.
(2012)

IHC 3-opt 100 - 3038 random NA 6.02 Limited by shared memory.

Delévacq
et al.
(2013)

ACO 3-opt 51 - 2103 random Optimal 23.60 Limited by shared memory.

Cecilia
et al.
(2013)

ACO 2-opt 198 - 2392 random Optimal 21.71 Requires large GPU memory.

Rocki
and Suda
(2012)

ILS
2-opt,
3-opt 100 - 4461 random NA 26 Limited by shared memory.

Luong
et al.
(2013)

Tabu
search 2-opt 101 - 5915 random NA 19.9 Cost quality has not exposed.

Rocki
and Suda
(2013)

ILS 2-opt 52 - 85900 MF 11.66% 300 Error rate grows when size increases.

Neil and
Burtscher
(2015)

IHC 2-opt 32767 random 12.99%
8 on
20 cores Large random restart is required.

Fosin
et al.
(2013)

ILS
2opt,
3opt 85900 40NN NA 27 Cost quality has not exposed.

Zhou
et al.
(2016)

ILS 2-opt 4461 random 3.7% 279 Shared memory limitation.

Robinson
et al.
(2018)

IHC 2-opt 33810 random NA 22.9 Large random restart is required.

Boqun
et al.
(2020)

GA
crossover,
mutation 31 - 195 random Optimal 200 Larger instances can be solved.

Author presents the texture memory approach to enhance the performance of general

GPU implementation. The author provides efficient approaches for CPU-GPU data

transfer optimization, thread control, neighborhood structure mapping to GPU threads,

and memory management. The proposed algorithm obtains up to 19.9× speedup com-

pared to the corresponding sequential part on instances ranging from 101 to 5915 nodes.

Here, the author uses four different GPU devices to analyze the scalability of their GPU
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implementation. Moreover, author also evaluates GPU computing against the cluster,

grid computing for combinatorial optimization problems. However, author does not

report the solution quality for TSPLIB instances.

Rocki and Suda (2013) present the local search approach along with a 2-opt move.

Author uses a problem division scheme to solve larger instances and reports 300× per-

formance acceleration over sequential counterpart. The researcher presents different

parallel strategies to enhance the performance of GPU computation. The proposed ap-

proach can solve large TSPLIB instances effectively. On the other side, the cost quality

reported in the experimental result can be improved.

Neil and Burtscher (2015) illustrate the random hill climbing approach with the

2-opt move to solve TSP on GPU. The work reduces memory latency in the GPU im-

plementation using the GPU memory hierarchy. The approach is 3× faster than existing

methods and 8× faster than OpenMP implementation on 20 CPU cores. This approach

solves large TSPLIB instances ranging from 105 - 33820 size. The resultant solution’s

cost quality can be improved by setting an initial solution using the Nearest Neighbor-

hood approach (NN) rather than randomly setting it up.

Zhou et al. (2016) shows the parallel iterated local search algorithm with the 2-opt

feasible solution generation method to solve TSP instances. The works’ contribution

is the efficient mapping between neighborhood solution and GPU threads, used the

roofline model to analyze the performance of existing GPU methods. Moreover, author

exhibits different distance calculation approaches such as the precalculated distance ap-

proach (LUT) and On-time distance calculation approach to find a fast TSP solving

method. The author claims 279× speedup over corresponding sequential implemen-

tation and demonstrates their approach’s performance with state-of-the-art methods.

However, the implementation evaluation is done on moderate-size TSPLIB input in-

stances ranging from 198-4461 nodes.

Robinson et al. (2018) have presented the GPU-based parallel model for the random-

restart hill climbing algorithm. Authors have provided an improved version of the 2-opt

move by allowing k multiple updates simultaneously to the current Hamiltonian path.
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This improved version of 2-opt results in higher speedup (i.e., 4.5× - 22.9×) compared

to the work (Neil and Burtscher 2015) for the instances in the range of 1400 - 33810.

However, the solution quality can be further improved using the construction heuristic

approach instead of using random initial solutions.

Boqun et al. (2020) present the GPU-based parallel model for Genetic Algorithm

(GA). Authors have evaluated the performance of proposed parallel GA usingTSPLIB

instances in the range of 31 - 195 nodes. In the best case, when population size is

considered 20000, proposed approach receives a speedup of 200 times compared to its

sequential version while solving an instance chn31.tsp.

2.1.4 Limitations

Table 2.2 presents the state-of-the-art in the GPU implementation of heuristic based TSP

solvers. Columns represent heuristic methods, neighborhood generation approaches,

TSPLIB input sizes, initial solution construction approaches, and limitation of each

existing TSP solvers. The error rate is calculated using Eqn. 2.1, where costfinal is the

cost obtained using the construction approach on TSPLIB instance and costopt is the

optimal cost of the TSPLIB instance.

Error rate =
costfinal − costopt

costopt
× 100 (2.1)

From Table 2.2, it is observed that many TSP solvers (Cecilia et al. 2013; Delévacq

et al. 2013; Fujimoto and Tsutsui 2011; O’Neil et al. 2011; Rocki and Suda 2012;

Zhao et al. 2011; Zhou et al. 2016) could not solve TSPLIB (Reinelt 1991) instances

of more than 5915 nodes. Although work (Neil and Burtscher 2015; Rocki and Suda

2013) solves the large size instances, the error rates are large up to 11.66%, 12.99%

respectively.

2.1.5 Contribution

In Chapter 3, a GPU-based parallel iterative hill climbing algorithm has been designed

to solve large-sized instances. The proposed GPU-based parallel approach has been

evaluated using TSPLIB instances of up to 85900 nodes. The proposed approach pro-

duces good quality solutions with error rates in the range of 0.72%-8.06% in a reason-

able amount of time. Moreover, Chapter 4 presents two GPU-based parallel strategies
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for the populations-based metaheuristic algorithm i.e., ant colony optimization to solve

larger TSPLIB instances.

2.2 MINIMUM LATENCY PROBLEM

Extensive work has been carried out for solving MLP in the past decade. Several meta-

heuristic approaches have been proposed to produce better solution quality. Twofold

objectives are targeted for studying existing work. First, identify the maximum size of

instance considered for solving MLP. Second, discover whether any parallel strategy is

applied to reduce the execution time of the metaheuristic algorithms using the parallel

implementation.

Salehipour et al. (2011) and Silva et al. (2012) proposed a metaheuristic to solve

MLP instances up to 1000 nodes. Ban and Duc (2014) propose the population-based

algorithm that is a combination of the Genetic Algorithm (GA) and Ant Colony (AC)

algorithm to solve MLP. In each subpopulation, AC is applied, followed by GA, to im-

prove the respective subpopulation. This hybrid approach helps to maintain diversity in

solution. The author shows the effectiveness of their approach using TRP and TSPLIB

instances. However, the size considered in the evaluation is smaller, i.e., up to 493

nodes. The execution time increases as instance size increases.

A combination of Tabu Search (TS) and Variable Neighbourhood Search (VNS) has

been proposed in (Ban and Nguyen 2017) to solve MLP. TS is used to avoid generating

the same solution. VNS is used to get out of trapping into local optima. The perfor-

mance of the proposed algorithm has been evaluated using random and TRP instances

up to 500 nodes. It produces a better solution quality on the TRP instances. However,

the algorithm’s running time can be reduced, and larger instances can be solved.

Avci and Avci (2017) solves an extension of MLP, i.e., Traveling Repairman Prob-

lem with Profits (TRPP). In TRPP, there is no rule to visit all nodes. The author uses

GRASP to construct an initial solution and ILS for the solution improvement. The pro-

posed metaheuristic produces the best solutions for 46 TRPP instances. The maximum

size considered in this evaluation has 500 nodes. For a 500-size instance, the proposed

algorithm takes time in minutes, which can be reduced using a parallel implementation.
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Rios et al. (2018) develop GPU-based metaheuristic using GRASP and ILS to solve

MLP. The author proposes a new neighborhood exploration technique called multi-

improvement. The designed parallel algorithm obtains up to 13.7× speedup over se-

quential counterpart for instances of size up to 1000 nodes. The existing GPU-based

parallel strategy limits to solve instances up to 1024 nodes. The new GPU-based paral-

lel strategy can be designed to solve instances larger than 1024 nodes.

Pereira Araujo et al. (2018) propose a dataflow implementation for Distributed VND

(DVND) to solve MLP. A GPU-based parallel strategy is also proposed for DVND steps

to run simultaneously. The effectiveness of the proposed strategy has been presented

using TSPLIB and TRP instances. However, this parallel design does not solve in-

stances of more than 1024 nodes. This can be overcome. Araujo et al. (2020) apply

GPU computing in the dataflow framework for neighborhood search. The proposed ap-

proach improves the Sucuri library implementation using Multiple Output Gate (MOG)

nodes. DVND is used to solve MLP over GPU platform. However, the proposed paral-

lel strategy is limited to 1024 nodes. An instance larger than 1024 nodes can be solved.

Santana et al. (2020) have used data mining techniques with GRASP to solve MLP.

The proposed algorithm finds new best solutions for 32 instances. The maximum size

instance considered in the experiment has 1379 nodes. Lu et al. (2019) propose a

population-based Hybrid Evolutionary Search Algorithm (HESA) to solve the MLP

variant. Hybrid evolutionary search has used two crossover operators for crossover

selection and solution recombination. The proposed approach produces the new best

solution for 39 TRPP instances. However, the evaluation is done on the instance size

up to 500 nodes.

2.2.1 Limitations

Table 2.3 presents an overview of existing work that uses metaheuristic algorithms to

solve MLP. The first row represents the author name, data set used, metaheuristic used to

solve, whether parallelism is applied, advantages, and limitations of each work. The lit-

erature study observed that the maximum instance size is considered up to 1379 nodes.

The existing GPU-based parallel models cannot solve larger instances of more than
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1024 nodes due to its parallel design strategy limitations. New parallel implementation

can be designed to metaheuristic algorithms to reduce the time spent in the solution

improvement phase and solve the very large-scale instances.

2.2.2 Contribution

In Chapter 5, Deterministic Local Search Heuristic (DLSH) is used to solve MLP. A

GPU-based parallel strategy has been proposed to reduce execution time spent in the

solution improvement. The DLSH and parallel DLSH have been evaluated using 187

instances from TRP and TSPLIB data sets, which size in the range of 10-11849 nodes.

The proposed parallel approach receives a speedup of up to 179.75 times compared to

DLSH, better than the existing state-of-the-art parallel implementations.

2.3 VEHICLE ROUTING PROBLEM

The existing works have been studied which use metaheuristics approaches while solv-

ing VRP. This study is classified according to its implementation nature, i.e., sequential

and parallel approaches for metaheuristic algorithms.

2.3.1 Sequential Approach

The Vehicle Routing Problem (VRP) was formulated by Dantzig and Ramser (1959) in

the context of scheduling gasoline delivery trucks from source depots to the service sta-

tions. Clarke and Wright (1964) provided the first heuristic algorithm to solve CVRP.

The Clarke and Wright heuristic is basically used to solve a VRP variant where single

depot and unfixed vehicles are used. A survey of VRP variants is presented in (Braek-

ers et al. 2016; Eksioglu et al. 2009; Toth and Vigo 2001). Various heuristic and

metaheuristic algorithms to solve the variants of VRP are presented in (Cordeau et al.

2002; Laporte et al. 2000; Pisinger and Ropke 2007).

Bullnheimer et al. (1999) have presented the Ant System (AS) algorithm for CVRP.

They have presented AS’s performance analysis on the Christofides’ 14 benchmarking

instances of size 50-150 customers (Christofides et al. 1979). AS constructs n feasible

solutions and improves it repeatedly. These algorithms provide reasonable solutions but

need to explore large search-space to converge to a good solution. The Particle Swarm
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Optimization (PSO) has been used to solve CVRP in (Ai and Kachitvichyanukul 2009;

Chen et al. 2006). Chen et al. (2006) uses a hybrid of local search and global search

in the PSO to improve the solution and solves CVRP instances up to 135 customers. Ai

and Kachitvichyanukul (2009) provides two solution representations and its decoding

methods to solve CVRP instances up to 200 customers. Population-based heuristic al-

gorithms like AS and PSO initialize multiple feasible solutions and apply improvements

over them repeatedly.

Baker and Ayechew (2003) present the Genetic Algorithm (GA) to solve VRP. They

have designed a hybrid of GA with neighborhood search methods that provide competi-

tive results with simulated annealing and tabu search algorithms. This idea of hybridiza-

tion is also used in (Prins 2004) for VRPs. Alba and Dorronsoro (2004) have proposed

a GA that enhances the exploration and population diversity of the search-space.

Simulated Annealing (SA) is a heuristic algorithm with emulated thermodynamics

concepts where heating and cooling are applied to the material to enhance crystals.

SA is also used to solve VRP variants (Wei et al. 2018; Yu et al. 2017). Yu et al.

(2017) proposes the Hybrid VRP (HVRP), i.e., an extension of Green VRP (GVRP),

and applied SA to solve it. Wei et al. (2018) have considered two-dimensional loading

constraints with CVRP.

Tabu search (TS) algorithm is designed to avoid visiting the same feasible solu-

tions repeatedly. Initially, Taillard (1993) have proposed TS to solve CVRP. They have

designed benchmark instances for CVRP to test the efficiency of their proposed algo-

rithm. Later, Barbarosoglu and Ozgur (1999); Gendreau et al. (1994); Osman (1993);

Rego and Roucairol (1996); Rochat and Taillard (1995); Toth and Vigo (2003) have pro-

vided a different variations to TS for improving solution quality to solve VRP variants.

Gendreau et al. (2004) proposed TS for the VRP with two-dimensional load constraints.

Li et al. (2005) has built twelve benchmark instances of size 500 - 1200 customers.

Kytöjoki et al. (2007) proposed a set of twenty very large-scale instances up to the size

of 20000 customers. They have designed the Variable Neighborhood Search (VNS)

heuristic to solve such a larger data set. Uchoa et al. (2017) have introduced a balanced
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and comprehensive set of 100 instances of size 100 - 1000 customers considering the

characteristics that exist in real applications. Arnold and Sörensen (2019) have devel-

oped a set of larger instances which has customers up to 30000. These instances have

been built considering the real-time scenario of parcel distribution in Belgium. Local

search heuristic is used to solve these instances.

The limitation of sequential approach is that when large-scale instances are solved,

existing metaheuristic algorithms spend huge CPU time to reach its local optima. Since

metaheuristic uses neighborhood generation methods to improve the solution quality,

these neighborhood methods can be implemented in parallel to reduce the execution

time. The existing parallel models available for solving CVRP are overviewed in the

next subsection.

2.3.2 Parallel Approach

Jin et al. (2014) have implemented TS in parallel to solve CVRP. Multiple TS threads

work in parallel to solve CVRP. Some of the threads are responsible for solution inten-

sification while the others are responsible for the solution diversification. These threads

communicate with each other through a common solution pool. The efficiency of pro-

posed parallel TS approach is shown using the Golden et al. (1998) and Li et al. (2005)

data sets. Schulz (2013) has provided a GPU-based parallel strategy for the local search

to solve Distance constrained VRP (DVRP). In particular, parallel strategies are de-

signed for the 2-opt and 3-opt heuristics. These parallel designs’ efficiency has been

evaluated on the ten CVRP and DVRP instances of sizes 57 - 2401. Boschetti et al.

(2017) have used the GPU platform to implement q-route and ng-route relaxations.

The dynamic programming uses q-route and ng-route relaxations for computing their

bounding components. A parallel version achieves the speedup up to 40 times over

the sequential counterpart. Abdelatti and Sodhi (2020) have proposed the GPU-based

parallel design for Genetic Algorithm (GA) to solve CVRP instances of size up to 76

customers.
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Table 2.4: Details of existing parallel implementations available for VRP variants.

Articles VRP variants Method Parallel Approach Instance Size

Jin et al. (2014) CVRP Tabu Search Multicore-based 240 - 1200
Schulz (2013) CVRP, DVRP Local Search GPU-based 57 - 2401
Boschetti et al. (2017) CVRP Dynamic Programming GPU-based 34 - 2000
Abdelatti and Sodhi (2020) CVRP Genetic Algorithm GPU-based 16-76

2.3.3 Limitations

Table 2.4 shows the overview of the existing parallel models available for VRP variants.

The first row represents the name of article that uses a parallel model, which variant of

VRP is solved, whether heuristic is considered, what kind of parallel approach is used,

and what is the range of instances, respectively. The performance of parallel approaches

have been evaluated on smaller size instances i.e., up to 2401, in the existing works

Boschetti et al. (2017); Jin et al. (2014); Schulz (2013). Real-time applications have

to serve thousands of customers. Therefore solving such instances consumes much

CPU times for heuristic algorithms (Typically in minutes to several hours). Kytöjoki

et al. (2007) has been provided a larger size instances which can be considered for

evaluating the performance of parallel strategies. In Schulz (2013), author provides the

GPU-based parallel strategies only for intra-route improvement heuristics, i.e., 2-opt

and 3-opt heuristics.

2.3.4 Contribution

Chapter 6 presents two GPU-based parallel strategies for intra-heuristics and inter-

heuristics algorithm to solve large-scale CVRP. Implementing local search heuristics

in parallel will yield better CVRP performance. Proposed work identifies hotspots in

the local search heuristic implementation and parallelizes to achieve better performance

for the same solution quality. Proposed work provides parallel strategies for three intra-

route and two inter-route improvement heuristics approaches. The performance of pro-

posed work has been evaluated on instances up to 30000 nodes.

2.4 RESEARCH GAPS

There are various places in heuristic approaches that need to be improved.
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• Instance Size: The literature study shows that the efficiency of existing parallel

strategies are evaluated using the smaller-size instances. In the case of MLP,

the maximum size is considered up to 1379 nodes, whereas 2401 nodes are con-

sidered for CVRP. Real-time applications need to deals the large amount of cus-

tomers. Therefore, designing scalable parallel strategies to handle large-scale

instances has great importance.

• Initial Solution Construction: Construction of an initial solution is the first step

in the optimization problem using metaheuristic methods. Initial route are either

chosen sequentially or generating randomly. Setting up initial route using NN

approach always assures a good quality solution at initialization stage itself rather

than generating randomly or in sequence of city order. The upper bound on initial

solution is within≤ 0.5× (log2n+ 1) (Rosenkrantz et al. 1974). In random and

sequenced initial route, it is difficult to determine upper bound on initial solution

and involves more number of iterations to get locally optimal solution than NN

approach.

• Memory Limitations in Population based Metaheuristic: The existing population

of solutions-based approaches requires large GPU memory to store distance ma-

trix and pheromone matrix, therefore cannot solve large input instances. This can

be tackled using on-the-fly distance calculation approach instead of using precal-

culated distance matrix.

2.5 SUMMARY

In this chapter, different metaheuristic algorithms have been presented which are used to

solve combinatorial optimization problems. The existing literature study is categorized

based on the combinatorial optimization problems. The limitation of existing works

is presented in the respective section of optimization problems. Three combinatorial

optimization problems have been considered as the case study for designing the parallel

metaheuristic model to solve large-scale instances.

In the next chapters, efficient parallel models have been provided for metaheuris-

tic algorithms while solving three optimization problems, namely Traveling Salesman
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Problem (TSP), Minimum Latency Problem (MLP), and Capacitated Vehicle Routing

Problem (CVRP). This thesis target to solve large-scale benchmarking instances than

the existing works and reduce the execution time spent in the solution improvement

phase.
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CHAPTER 3

PARALLEL ITERATIVE HILL CLIMBING
ALGORITHM TO SOLVE TSP ON GPU

In this chapter, four CUDA thread mapping strategies have been demonstrated to solve

TSP on the GPU platform using the iterative hill climbing algorithm. Moreover, dif-

ferent initial solution construction approaches and impact of various data transfer tech-

niques from the CPU to the GPU have been demonstrated. Performance evaluation of

GPU implementation of PIHC is examined using TSPLIB instances up to 85900 cities

and the performance is compared with state-of-the-art GPU-based TSP solvers (Source

code link: http://bit.ly/thesisSourceCodes).

3.1 INTRODUCTION

The Traveling Salesman Problem (TSP) (Gutin and Punnen 2002; Johnson and Mc-

geoch 1997) is an NP-hard (Garey and Johnson 1990), O(n!) combinatorial optimiza-

tion problem. In the worst case, the time complexity of TSP is factorial time when

solved using the brute-force method and exponential time when solved using the dy-

namic programming (Cormen et al. 2009). For its large number of applications in

science and engineering, time efficient TSP solutions are of great importance.

The objective of TSP is to find the minimal cost cycle that passes through each city

exactly once and returns to the originating city. In short, in a map of n cities, distance
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of path π has to be minimized,

d(π) =
n−1∑
i=1

dπ(i),π(i+1) + dπ(n),π(1) (3.1)

where di,j is a distance between any two cities i and j, and π is a permutation of

(1, 2, ..., n) (Merz and Freisleben 2001).

According to graph theory, the input to TSP is a simple, weighted, connected graph

which has cities as nodes, paths between cities as edges and distance between cities

as weights on the edges. The goal of TSP is to find a minimal weighted Hamiltonian

cycle from the simple, weighted, connected graph G = (V,A, d) where, V = set of

cities to be visited, A= {(i, j)|(i, j) ∈ V × V } is the set of paths between cities and

d : A −→ R is a function which assigns distance di,j to every path between cities i and

j. A Hamiltonian cycle in a simple connected graph that visits each node exactly once

and returns to the starting node (Cormen et al. 2009).

3.1.1 Exact and Heuristic Approaches

Optimization problems are solved using two broad approaches; viz., exact methods

and heuristic methods. Generally, exact methods determine the optimal solution by

exploring the entire search-space of the problem. Some examples of exact methods are

brute-force algorithm, branch and bound, dynamic programming approaches. Heuristic

methods give near-optimal solutions by exploring a limited search-space in a reasonable

amount of time (Talbi 2009). For n city TSP, an optimal solution is determined after

exploring (n−1)!
2

different feasible solutions when the brute-force and the branch and

bound are used (Cormen et al. 2009). When dynamic programming is used, an optimal

solution is determined after exploration of n2 × 2n feasible solutions in the worst-case

(Cormen et al. 2009). While the exact method always assures an optimal solution, the

CPU time is prohibitive for large n. Due to the large search-space exploration, exact

methods cannot be time-efficient approaches to solve the large TSP instances.

Heuristic algorithms explore a subset of feasible solutions by constraining the search-

space and derive the satisfactory solutions in a reasonable amount of time. Heuristic

methods start with the feasible solution and iteratively improve on it to converge to a

28



3.2. Parallel Iterative Hill Climbing Algorithm

near-optimal solution until the termination criteria is met (Talbi 2009). The termination

criteria may include the number of iterations, an optimal cost value, no improvement

of solutions between iterations. Popular heuristic approaches are iterative hill climbing,

tabu search, simulated annealing, ant colony optimization, and genetic algorithm.

In this chapter, iterative hill climbing approach has been used as the base algorithm

and GPU-based parallel strategies have been designed for 2-opt move. Note that a new

heuristic algorithm is not presented to solve TSP. The CUDA-based thread mapping

strategies have been applied to existing 2-opt move to reduce neighborhood generation

time. Iterative hill climbing approach first sets the initial solution and later improves

it iteratively till no further improvement is possible. Although heuristic methods to

solve TSP are faster than the exact methods, the execution time increases as input size

increases. For large input sizes, GPU implementation of TSP have been shown to com-

plete in a reasonable amount of time (Zhao et al. 2011).

In this chapter, a GPU-based parallel iterative hill climbing algorithm has been de-

signed to solve large size instances. The presented GPU-based parallel approach is used

to evaluate TSPLIB instances of up to 85900 cities. The approach produces good quality

solutions with error rates in the range of 0.72%-8.06% in a reasonable amount of time.

Section 3.2 presents the PIHC heuristic algorithm in detail. Performance evaluation of

the proposed approach has been demonstrated in Section 3.3.

3.2 PARALLEL ITERATIVE HILL CLIMBING ALGORITHM

This section presents the iterative hill climbing algorithm in detail, different ways to

setup initial solutions, neighborhood generation techniques, different thread mapping

strategies, and the optimized data to be considered on GPU platform.

Algorithm 3.1 presents a generic work-flow of the iterative hill climbing algorithm.

Stepwise mechanism of the algorithm is follow. Determine the initial solution, also

called the candidate solution, s. Once the initial solution is determined, its associating

cost, f(s), is calculated. Next, generate the neighborhood solutions, N(s) of the initial

solution using swapping techniques like 2-opt move. ∀s′ ∈ N(s), f(s
′
) is calculated

using the distance calculation method, where s′ is neighborhood solution and f(s
′
) is
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corresponding cost of s′ . Cost of each f(s
′
) is compared with the initial cost f(s). The

best improved f(s
′
) on the f(s) is considered as a local optimal cost. To move towards

the global optimal solution, this algorithm must be called repeatedly. For each call, the

locally found optimal solution s′ acts as the initial solution s in the next iteration.

Algorithm 3.1: Generic Iterative Hill Climbing Algorithm
1 s← InitialSolution()
2 f(s)← calculateDistance(s)
3 while termination criteria not met do
4 N(s)← GenerateNeighborhood(s)

5 for ∀s′ ∈ N(s) do
6 f(s

′
)← calculateDistance(s

′
)

7 if f(s
′
) < f(s) then

8 f(s)=f(s
′
)

9 end
10 end
11 end

This process continues until a termination criteria is met. Termination criteria could

be, the number of iterations, further improvement not possible or optimal solution

reached, etc. For each call of the hill climbing procedure, cost quality of the solu-

tion will potentially improve and move towards the global optimal. The important steps

of this algorithm are the initial solution construction and generation of neighborhood

solutions that are elaborated in following sections.

3.2.1 Initial Solution Construction

The initial solution construction is the first step in the IHC algorithm. Any feasible

solution is chosen as the initial solution either in sequenced order of cities or arbitrarily

or constructed using the construction heuristics. Various initial solution construction

approaches are discussed below.

3.2.1.1 Sequenced

This is a fundamental way to construct the initial solution where the feasible solution

is made up of cities in sequence Eg. 1, 2, 3, . . ., n, 1. In the worst-case, the sequenced

initial solution gives maximal weighted Hamiltonian cycle since distance between cities
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is not considered while building the initial solution.

3.2.1.2 Random

Starting from the source node, the initial solution is constructed by choosing a random

neighbor for each current node until a feasible solution is constructed. Most of the

GPU-based TSP implementations use the randomly constructed initial solution. Both

the sequenced and random methods do not consider the distances while identifying the

neighbors.

3.2.1.3 Nearest Neighborhood (NN)

Nearest Neighborhood (NN) is a construction heuristic approach where a feasible solu-

tion is constructed instead of selecting a random feasible solution. The stepwise details

of constructing the initial solution are presented in Algorithm 3.2. The mechanism of

algorithm has been explained as follow. First, a random city is chosen as a source node.

Next, a closest unvisited node of previously visited node is identified repeatedly until

all cities are visited. The last hop returns to the source city to form a Hamiltonian cycle.

Algorithm 3.2: Generic Nearest Neighborhood Algorithm
Result: Returns constructed route as an initial solution

1 route← ∅
2 select any random node i
3 route← add node i
4 while all nodes not visited do
5 j ← a neighbor of i that has minimal cost
6 route← append j
7 i← j

8 end
9 return route

Since symmetric TSPLIB instances have been considered in this work, for a n city

problem, NN needsO(n2) time to construct the initial solution. The upper bound on the

cost of the initial solution construction technique can be determined. Assume costopt

is the optimal cost and costroute is cost of the constructed initial solution. The upper

bound on the cost of initial solution is costroute
costopt

≤ 0.5 × (log2n + 0.5) (Rosenkrantz

et al. 1974). The NN mechanism identifies the initial solution that is typically closer to
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the optimal compared to the random and sequenced initial solutions. Compared to the

sequenced and random approaches, NN needs fewer steps up to 17.20× and 19.16×

respectively to reach a better local optimal solution. Experimental results shows that

for TSPLIB instances of 200 - 18512 cities the error rate ranges are - 6.07% to 15.9%

for sequenced mechanism, 7.49% - 14.26% for random, and 0.72% - 6.73% for NN.

3.2.1.4 Nearest Insertion (NI)

Nearest Insertion (NI) is a variant of the NN approach which constructs a Hamiltonian

cycle by joining the nodes to a subtour. Algorithm 3.3 shows the stepwise details of

Algorithm 3.3: Generic Nearest Insertion Algorithm
Result: Returns constructed route as a initial solution

1 i← select any random node as source node
2 j ← find closest node of i
3 tour ← i, j, i
4 while all nodes not visited do
5 k ← find a closest unvisited neighbor to the tour
6 edgei,j ←min(ci,k + cj,k − ci,j)
7 tour ← add k to tour between i, j
8 end
9 return tour

the NI approach. An arbitrary node, i, is chosen as the starting node. Next, choose

a minimal weighted unvisited neighbor j of the node i. Now, construct a subtour i −

j − i. Next, find an unvisited closest node, k, to any node from the subtour. Once k is

determined, find an edge, (i, j), from the subtour such that the difference is minimized,

i.e., diff = ci,k + cj,k − ci,j . Add node k into the subtour in between the edge (i, j).

Repeat these steps until a subtour becomes a Hamiltonian cycle. The time complexity

of constructing the initial solution isO(n2) (Rosenkrantz et al. 1974). The upper bound

on the cost of initial solution is costtour
costopt

≤ 2.

3.2.1.5 Greedy Algorithm

Algorithm 3.4 shows the greedy algorithm to construct a Hamiltonian cycle. The mech-

anism of greedy algorithm has been elaborated as follows. Pick an arbitrary node as

a starting node. Lines (3-6): choose an unvisited minimal weighted neighbor, j, to
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the tour repeatedly until it forms a Hamiltonian cycle. Note that NN chooses a closest

unvisited node of a recently added node of the tour, whereas, greedy approach selects

a closest unvisited node to any nodes of the tour whose degree is less than two. The

time complexity of greedy algorithm is O(n2logn) (Johnson and Mcgeoch 1997). The

upper bound on the cost of initial solution is costtour
costopt

≤ (0.5)(log2n+ 1).

Algorithm 3.4: Generic Greedy Algorithm
1 i← an arbitrary source node
2 tour ← add i
3 while all nodes not visited do
4 j ← find a closest unvisited neighbor to the tour
5 tour ← add j
6 end
7 return tour

3.2.1.6 Minimum Spanning Tree (MST)

MST is a construction heuristic algorithm and its steps are presented in Algorithm 3.5.

First, construct the minimum spanning tree, MST , for a given input. Next, find a

node, start, from MST which has degree one. Start traversing MST from a node

start, doubling every edge. This will form the Eulerian cycle, eultour. Now convert

the Eulerian cycle into the Hamiltonian cycle, hamtour. To form a Hamiltonian cycle,

start visiting the nodes from start, add unvisited nodes to the hamtour. If a visited node

is found, skip it and move to the next node. Repeat these until a Hamiltonian cycle is

formed. The time complexity of MST algorithm isO(n2) (Johnson and Mcgeoch 1997)

and the upper bound on the cost of the constructed Hamiltonian cycle is costtour
costopt

≤ 2.

Algorithm 3.5: Generic Minimum Spanning Tree Algorithm
1 MST ← construct the minimum spanning tree
2 start← one degree node of MST
3 eultour ← doubles the edges of MST
4 hamtour ← add start
5 while all nodes not visited do
6 hamtour ← Traverse eultour from start and add node i ∈ eultour exactly

once
7 end
8 return hamtour
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3.2.1.7 Christofides’ Algorithm

Christofides’ algorithm is a variant of the MST algorithm. The stepwise details of

Christofides’ algorithm are shown in Algorithm 3.6. First, construct a MST graph.

Next, find out the odd degree nodes. Now calculate the minimum weight perfect match-

ing for the odd degree nodes. Add these edges of the minimum weight perfect matching

to the MST graph. The newly added edges may result in double the edges of MST, form-

ing cycles in the MST. Now construct Eulerian cycle from the MST. Finally, convert an

Eulerian cycle into a Hamiltonian cycle. The time complexity of Christofides’ algorithm

isO(n3) (Christofides 1976). The cost upper bound of the constructed Hamiltonian cy-

cle is costtour
costopt

≤ 1.5.

Algorithm 3.6: Christofides’ Algorithm
1 MST ← construct the minimum spanning tree
2 odd set← find odd degree nodes of MST
3 edges← calculate the minimum weight perfect matching for odd set nodes
4 MST ← add edges
5 eultour ← doubles the edges of MST
6 while all nodes not visited do
7 hamtour ← Traverse eultour and add unvisited node i
8 end
9 return hamtour

3.2.1.8 Clarke-Wright Algorithm

Clarke-Wright algorithm is popularly used for vehicle routing problem (Clarke and

Wright 1964). The mechanism of Clarke-Wright is shown in Algorithm 3.7 and its

stepwise details follow. First, select an arbitrary node, k, as a central node. Now, for

each i, j pair, calculate the saving, si,j ← ci,k + cj,k − ci,j , where, i 6= j, i 6= k, and

j 6= k. Now sort the savings in descending order. Add k as a source to the tour. Traverse

the savings from the highest saving to the lowest, add nodes i, j to the tour if they are

not visited. Repeat visiting the savings until a Hamiltonian is constructed. The time

complexity of Clarke-Wright algorithm is O(n2logn) (Johnson and Mcgeoch 1997).

The cost upper bound of the constructed Hamiltonian cycle is costtour
costopt

≤ log2n.

The performance analysis of these initial solution construction techniques have been
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Algorithm 3.7: Generic Clarke-Wright Algorithm
1 k ← select an arbitrary node as a center
2 si,j ← ci,k + cj,k − ci,j ∀i, j where i 6= j, i 6= k, j 6= k
3 Arrange si,j in descending order ∀i, j
4 tour ← add k
5 while a Hamiltonian cycle is not formed do
6 tour ← add unvisited highest saving node pairs i, j
7 end
8 return tour

presented in more detail in Section 3.3.1.

3.2.2 2-opt Neighborhood Generation

Using the initial solution, candidate feasible solutions are generated from its permu-

tations. In this work, 2-opt move is used to generate neighborhood solutions of the

initiated solution. The n-city TSP problem has (n − 1)! different feasible solutions.

2-opt move reduces the search-space to be explored to an order of O(n2). In the 2-opt

move, neighborhood solutions are generated by removing two edges from the initiated

solution and reconnecting the newly created 2 sub-routes such that it forms a feasible

solution. The stepwise mechanism of 2-opt move method follows.

• Consider a pair of cities, i and j.

• Remove the edge between city i and city i + 1; remove the edge between city j

and city j + 1.

• Connect an edge between cities i and j; connect another edge between cities i+1

and j + 1.

Figure 3.1 illustrates the 2-opt move mechanism between cities i and j. Figure 3.1

(a) is the original graph before applying the 2-opt move and Figure 3.1 (b) is the newly

generated neighbor after applying the 2-opt move. The 2-opt neighborhood generation

mechanism is performed on all possible pairs of the cities on the initial solution. There-

fore, number of neighborhood solutions generated with 2-opt move is n×(n−1)
2

, where n

is the total cities. The time complexity of 2-opt neighborhood generation mechanism is

O(n2).
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(a) Before 2-opt move (b) After 2-opt move

Figure 3.1: The 2-opt neighborhood generation mechanism

The 3-opt move method can also be used for neighborhood generation. It signifi-

cantly slows down the searching process because in 3-opt, three edges are swapped at a

time to generate a new feasible solution. The 3-opt mechanism explores n×(n−1)×(n−2)
6

feasible solutions. Neighborhood can be generated either at CPU or GPU.

3.2.2.1 Neighborhood Generation at CPU and its Cost Computation at GPU

In this approach, the neighborhood solutions are generated at the CPU, and the cost

calculation of each neighborhood solution is computed at the GPU. For this case, when

the cost calculation is done on the fly without using any pre-calculated distances, input

coordinates are needed to organize in the neighborhood solution’s order for each neigh-

borhood solution. In this approach, n×(n−1)
2

copies of coordinates need to be sent on the

GPU. However, this approach is very basic and not feasible in practice which results in

the communication overhead.

3.2.2.2 Neighborhood Generation and its Cost Computation at GPU

In this approach, the initial solution is sent to the GPU along with its cost. Each thread is

involved in generating its corresponding neighborhood solution and its cost calculation.

This approach has negligible data transfer time and result in fair work distribution for all

threads. Further, this approach reduces computational time significantly. This approach

is used in this work.

3.2.3 Optimized Data for TSP

Optimizing the CPU-GPU data transfer time is critical in all GPU implementations.

TSPLIB instances are used as input to the TSP problem. These instances are defined
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in the form of X, Y coordinates. The distances between cities have to be calculated,

stored, reused during the execution of the TSP solver. Following three variations of

data structures are used to solve TSP on GPU.

Table 3.1: GPU global memory requirement of the Distance Matrix (DM), Triangu-
lar Distance Matrix (TDM), X,Y coordinate (COORD) data structures for TSPLIB in-
stances

Instance DM TDM COORD

kroA200 157.03 KB 78.52 KB 1.56 KB
pcb442 764.87 KB 382.43 KB 3.45 KB
vm1084 4.49 MB 2.24 MB 8.28 KB
u1432 7.83 MB 3.91 MB 11.18 KB
u2319 20.52 MB 10.26 MB 23.73 KB
pcb3038 35.22 MB 17.61 MB 23.73 KB
fnl4461 75.93 MB 37.97 MB 34.85 KB
rl5934 134.35 MB 67.17 MB 46.35 KB
rl11849 535.62 MB 267.81MB 92.57 KB
d15112 871.23 MB 435.61 MB 118.06 KB
d18512 1.28 GB 653.67 MB 144.62 KB
pla33810 4.26 GB 2.13 GB 264.14 KB
pla85900 27.48 GB 13.74 GB 671.09 KB
Average 2.66 GB 1.33 GB 111.04 KB

1. Distance Matrix (DM): The distances are stored inN×N 2D matrix. This matrix

has to be sent over the GPU. This method occupies n×n×4 bytes GPU memory

and it needs the initial solution as well that occupies n × 4 bytes GPU memory.

Overall it allocates (n2 + n) × 4 bytes GPU memory. In GPU implementation,

single precision floating point data is used to store city distances, thereby holding

4 bytes per distance.

2. Triangular Distance Matrix (TDM): As symmetric TSPLIB instances are used,

there is no need to use the entire distance matrix. Instead, either upper triangular

or lower triangular matrix can be used. TDM occupies n×(n−1)
2
× 4 bytes GPU

memory, overall it requires (n+ (n×(n−1)
2

))× 4 bytes along with initial solution.

3. X, Y coordinate (COORD): The location of each city is represented in x, y coor-

dinate form. The initial solution is represented by arranging the coordinates in the
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initial solution order. Therefore, the initial solution need not be sent to the GPU.

In this approach, distances are computed on-the-fly, thereby eliminating the pre-

calculated distance matrix. Therefore, COORD needs lesser memory compared

to the DM and the TDM approaches, i.e., (2× n)× 4 bytes.

Amongst the above data structures, COORD is the least bandwidth and least mem-

ory consuming representation. Table 3.1 reports the global memory consumption of

various TSPLIB input instances using DM, TDM, COORD respectively. It is observed

that COORD saves a significant amount of GPU memory when instance size increases.

For pla85900 instance, COORD reserves 671.09 KB whereas both DM, TDM require

27.48 GB and 13.74 GB respectively. Such volume of data result in prohibitive data

transfer time, memory access time in the GPU and requires large computation time.

The COORD representation is used in this work to overcome the above disadvantages.

Although COORD uses the least global memory for input instances, it needs to spend

additional time calculating distances between two cities every time. The DM and TDM

approaches calculate distance between any two cities once and allow using precalcu-

lated distances whenever needed, whereas the COORD has to calculate a distance be-

tween two cities on every request.

3.2.4 Distance Calculation Method

Generally, TSPLIB instances are used as standard benchmark input to identify the effec-

tiveness of a specified heuristic approach to solve TSP. Most of the TSPLIB instances

have 2D edge weight assignment type in form of x, y coordinates. Therefore, Euclidean

distance formula has been used to calculate the distance of the solution. Consider the

x, y coordinates of two cities, (x1, y1) and (x2, y2), then the Euclidean distance is:

d((x1, y1), (x2, y2)) =
√

(x1 − x2)2 + (y1 − y2)2 (3.2)

3.2.5 Thread Mapping Strategies

In this work, four thread mapping strategies have been studied and evaluated for the

2-opt move. These strategies are explained below.
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0 1 2 3 4
Thread 0 x x x x
Thread 1 x x x
Thread 2 x x
Thread 3 x

Table 3.2: Threads per Row (TPR) mapping strategy for a 5 cities graph. The columns
represent cities from the graph. Thread 0 generates and evaluates neighbors using pairs
(0,1), (0,2), (0,3), and (0,4). Thread 1 generates and evaluates neighbors using pairs
(1,2), (1,3), and (1,4), and so on.

3.2.5.1 Threads per Row (TPR)

In this strategy, each row is mapped to one CUDA thread. Table 3.2 shows the pictorial

representation of threads per row mapping strategy where the indexes of marked blocks

are used by respective threads to generate neighbors. Thread id is used as the first city i

and the second city, j, is selected from i+ 1 to n− 1 to generate neighbors of the initial

solution. In this strategy, the first thread generates n − 1 neighbors, second thread

generates n − 2, and so on. The entire 2-opt move search-space, n×(n−1)
2

is covered

using n − 1 threads. This leads to an unequal thread work distribution. Moreover, at

each thread, neighbors associated with threads are generated and computed in a serial

manner.

blocks =

⌈
n− 1

1024

⌉
(3.3)

This strategy needs n − 1 threads and the blocks are calculated using Eqn. 3.3,

where 1024 is the maximum threads per CUDA block. Algorithm 3.8 presents the

pseudo code of the 2-opt move using the TPR strategy. Lines (1-3): for each thread,

minchange is initialized to zero, cost of the initial solution is assigned, and global id is

generated. Lines (4-13): each thread finds cost of every neighbor associated with it and

chooses a minimal cost, mincost; generates a 1D index of the mincost neighbor using

i and j values and stores 1D value in a variable locId. The f function calculates the

Euclidean distance between two nodes (Line 7). Lines (14-16): finally, a minimum cost

of neighbor and its 1D index is chosen from minimum cost neighbors of all threads.

However, in the GPU implementation precautions have to be taken care. Race con-

dition which occurs while selecting the mincost and its associated 1D. The mincost
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Algorithm 3.8: Pseudo code for GPU based 2-opt using TPR
1 minchange← 0
2 mincost← initcost
3 i← threadIdx.x+ blockIdx.x ∗ blockDim.x
4 for j=i+1; j < n; j++ do
5 cost = initcost
6 change = 0
7 change = f(i, j) + f(i+ 1, j + 1)− f(i, i+ 1)− f(j, j + 1)
8 cost = cost+ change
9 if cost <mincost then

10 mincost=cost
11 locId = i× (n− 1) + (j − 1)− i×(i+1)

2

12 end
13 end
14 if mincost <initcost then
15 atomicMin(cost id,mincost << 32|locId)
16 end

must be communicated with all threads across all blocks. To handle race condition,

atomicMin function is used. To make mincost available with all threads, it is stored

in the global memory. Alternatively, if shared memory is used to store mincost. The

minimum across all blocks is needed to be computed and stored in the global memory

where each thread can access the latest value. Generally, this strategy is useful to deal

with 2D matrix operations.

3.2.5.2 Threads per Row Equal Distribution (TPRED)

This is a variation of the threads per row mapping strategy that equally distributes neigh-

borhood generation work among threads. At each thread,
⌊
n
2

⌋
neighbors are generated.

Since distances between pairs (i, j) and (j, i) are identical,
⌊
n
2

⌋
neighbors are equally

distributed among threads. Thread id i is used as first city and second city j is se-

lected by increasing i by 1 until j covers all neighbors of the thread. j is calculated as,

j = (i + 1) mod n. If instance size, n, is even, threads having ids from n
2

to n − 1,

have repeated neighbors on the n
2
−1 column index. Table 3.3 shows an example of this

thread mapping strategy for 5 city graph. This strategy needs n threads and blocks are
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3.2. Parallel Iterative Hill Climbing Algorithm

Thread id ↓ j→
0 1 2
1 2 3
2 3 4
3 4 0
4 0 1

Table 3.3: Threads per Row mapping with Equal work Distribution (TPRED) for a 5
cities graph. Here, n=5 and j=(i+1) mod n. The j columns indicate neighbors associated
with each thread. Thread 0 evaluates pairs (0,1), and (0,2). Thread 1 evaluates pairs
(1,2), and(1,3) and so on.

calculated using Eqn. 3.4.

blocks =
⌈ n

1024

⌉
(3.4)

The pseudo code representation of TPRED is similar to TPR. There is slight change

needed for TPRED in Algorithm 3.8 at line 4. The for loop has to be iterated from k =

0 to
⌊
n
2

⌋
− 1. Inside the loop, the j is calculated as, j = (i+ k + 1)%n for each thread

i. This strategy is used to deal with the upper triangular and lower triangular matrix

operations in order to distribute work equally to threads.

3.2.5.3 Threads per Row and Column (TPRC)

T
hr

ea
d

0

T
hr

ea
d

1

T
hr

ea
d

2

T
hr

ea
d

3

T
hr

ea
d

4

Thread 0 x x x x
Thread 1 x x x
Thread 2 x x
Thread 3 x
Thread 4

Table 3.4: Threads per Row and Column (TPRC) mapping for 5 cities graph. Thread
pairs, where row id < column id, are used to generate and evaluate neighbors.

In this strategy, threads are mapped to both columns and rows which is presented in

Table 3.4. The 2-opt move generates n(n−1)
2

elements which is equal to the number of

elements in the triangular matrix excluding the diagonal elements. 2×n C2 threads are

involved in computation and the rest are in the idle state. Since maximum threads per
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3. Parallel Iterative Hill Climbing Algorithm to Solve TSP on GPU

block is 1024, 32×32 threads are used per block. The total blocks required is calculated

using Eqn. 3.5.

blocks =
⌈ n

32

⌉
(3.5)

Algorithm 3.9 presents the pseudo code representation of the TPRC strategy. Lines

(1-4): for each thread, minchange is initialized to zero, cost of the initial solution is

assigned, and global id is generated. Lines (5-13): a thread pair is chosen which has the

minimum cost and 1D index. At the CPU, these results are used to determine if further

improvement is possible. Generally, this strategy is useful for square matrix operations

where operation has to be performed on each element simultaneously.

Algorithm 3.9: Pseudo code for GPU based 2-opt using TPRC
1 cost← initcost
2 minchange← 0
3 i← threadIdx.x+ blockIdx.x ∗ blockDim.x
4 j ← threadIdx.y + blockIdx.y ∗ blockDim.y
5 if i <j && j <n then
6 change = f(i, j) + f(i+ 1, j + 1)− f(i, i+ 1)− f(j, j + 1)
7 cost = cost+ change
8 if change <minchange then
9 globDist = cost

10 globId= i× (n− 1) + (j − 1)− i×(i+1)
2

11 minchange = change
12 end
13 end

3.2.5.4 Threads per Neighborhood (TPN)

In TPR and TPRED, each thread strategy generates multiple neighbors. In TPRC, n2−

2×n C2 threads are idle. A more efficient thread mapping strategy maps the generation

of a single neighborhood solution and its cost computation to one thread. For this

Threads per Neighbor strategy, each thread needs 2 cities to apply the 2-opt move. This

is done using Eqn. 3.6 and 3.7 (Luong et al. 2013).

i = n− 2− b
√

8× (N(s)− id− 1) + 1− 1

2
c (3.6)

j = id− i× (n− 1) +
i× (i+ 1)

2
+ 1 (3.7)
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blocks =

⌈
n(n−1)

2

1024

⌉
(3.8)

Thread id Pair Thread id Pair

0 (0, 1) n-1 (1, 2)
1 (0, 2) n (1, 3)
... ... ... ...

n-2 (0, n-1) nc2 − 1 (n-2, n-1)

Table 3.5: Threads per Neighbor (TPN) mapping for n cities where n > 3. Each thread
generates one neighbor. Each thread uses equations 3.6 and 3.7 to determine swapping
cities.

Therefore, n(n−1)
2

threads are required to generate all neighbors of the initial solu-

tion. Thread blocks required for computation are calculated using Eqn. 3.8. Global id

of each thread is used to generate swapping edges. For example, Thread 0 will deal

with pair (0,1) cities, Thread 1 will deal with pair (0, 2) cities and so on. Table 3.5

shows mapping strategy of Eqn. 3.6 and 3.7 to the thread. Algorithm 3.10 presents

Algorithm 3.10: Pseudo code for GPU based 2-opt using TPN
1 cost← initcost

2 soln← n×(n−1)
2

3 minchange← 0
4 globalIdx← threadIdx.x+ blockIdx.x ∗ blockDim.x
5 if globalIdx <soln then

6 i = n− 2−
⌊√

8×(soln−globalIdx−1)+1−1
2

⌋
7 j = globalIdx− i× (n− 1) + i×(i+1)

2
+ 1

8 change = f(i, j) + f(i+ 1, j + 1)− f(i, i+ 1)− f(j, j + 1)
9 cost = cost+ change

10 if change <minchange then
11 globDist=cost
12 globId=globalIdx
13 minchange=change
14 end
15 end

the neighborhood generation and its cost computation using the 2-opt move. Stepwise
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3. Parallel Iterative Hill Climbing Algorithm to Solve TSP on GPU

details of the algorithm follow. Lines (1-2): Cost of initial solution, number of possible

solutions with n is given to each thread. Line (4): Unique id for each thread is gener-

ated. Lines (6-7): The linear to 2D index conversion formula is used to generate i, j

index to apply 2-opt move. Lines (8-9): Each thread checks the cost of removing pair of

edges (i, i+1), (j, j+1) and adding pair of edges (i, j), (i+1, j+1) to choose the best

feasible solution. Lines (10-14): The best improved cost, globDist and its globalIdx,

are stored in GPU’s global memory. The best improved solution that is obtained by

Algorithm 3.10, is checked at the CPU side to decide the next 2-opt call. If the best

improved solution is better than the initial solution, then the best improved solution will

act as a new initial solution for next 2-opt call.

In general, Eqn. 3.6 and 3.7 are useful when operations on the 2-opt move, upper

triangular, lower triangular, and symmetric matrix have to be computed in parallel and

each element has to be distributed per thread. The number of index pairs required

in each of these matrix types is nC2 excluding diagonal elements. These equations

allow nC2 different threads to function over each matrix block in parallel. For the

lower triangular matrix operations, Eqn. 3.6 & 3.7 are used with i and j swapped.

When operations have to be done on symmetric matrix index pairs, either upper or

lower triangular matrix is considered. Performance evaluation of these thread mapping

strategies has been demonstrated in Section 3.3.3.

3.2.5.5 Usage of built-in functions

In TPN strategy, floorf and sqrtf are used to write the corresponding CUDA code for

3.6 & 3.7. Listing 1 show the CUDA code of corresponding equations.

Listing 3.1: CUDA code for equations 3.6 & 3.7
i = n-2-floorf((sqrtf(8*(sol-id-1)+1)-1)/2);
j = id-i*(n-1)+(i*(i+1)/2)+1;

Maximum instance size considered in work (Luong et al. 2013) is up to rl5934. When

instance size goes above rl5934, these equations do not work correctly. This issue

occurs while rounding a numerical value in Eqn. 3.6 for sqrtf function. To illustrate,

consider the d15112 instance. The number of neighborhood solutions possible with
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d15112 instance is 114178716. For global id 0, the expected values of i, j indexes are

0 and 1 respectively. The calculation of i is shown below, Eqn. 3.6 becomes:

i = 15112− 2−

⌊√
8× (114178716− 0− 1) + 1− 1

2

⌋

= 15112− 2−
⌊

30223

2

⌋
sqrtf rounds a value to 30223

= 15112− 2− 15111

i = −1

Since sqrtf rounds the value of its output to 30223, a wrong i is generated. To

overcome the lack of precision, a double precision floating point dsqrt rn function

is used. The dsqrt rn function generates a more precise result than sqrtf . The

dsqrt rn function returns a value 30222.999868 and the final result of i is the ex-

pected zero. There are four rounding modes available with sqrt function in CUDA.

These are namely ru (rounds up, which act as ceiling function), rd (rounds down, which

act as floor function), rz (rounds to zero, which truncate fractional digits), and rn (rounds

to nearest even). The rn mode gives the expected index of 2-opt move.

3.3 RESULT ANALYSIS

The proposed GPU based Parallel Iterative Hill Climbing algorithm has been evaluated

over a GPU Tesla K40m using CUDA programming interface with CUDA 8 version.

The GPU has compute capability 3.5, 15 streaming multiprocessors and each multipro-

cessor has 192 cores running at 745 MHz, global memory is 12 GB, the shared memory

available with each block is 48 KB with 65536 registers available at each block. The

time analysis of sequential counterpart has been carried out on a 64 bit system which

has 8 cores running at 3.6 GHz. The optimal solutions/best-known solutions of TSPLIB

instances are known, therefore the symmetric TSPLIB (Reinelt 1991) instances have

been considered to determine the effectiveness of PIHC TSP solver in terms of speedup

and cost.

This section presents the time and cost analysis of initial solution construction meth-

ods, time analysis of different thread mapping strategies, the optimized data structures,

time and cost comparison with the state-of-the-art GPU-based TSP implementations
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3. Parallel Iterative Hill Climbing Algorithm to Solve TSP on GPU

and time analysis with state-of-the-art CPU-based TSP implementations.

3.3.1 Initial Solution Construction Result Analysis

Initial solution construction is a crucial step in the PIHC method. TPN thread mapping

strategy has been used for this analysis. Termination criteria of each approach is to im-

prove until further improvement is not possible. The performance analysis of different

initial setup approaches have been divided into two categories. First, the performance

analysis of different construction heuristic approaches have been compared. Second,

the sequenced and random approaches have been compared with faster construction

heuristic approach.

3.3.1.1 Performance Analysis of Construction Heuristic Approaches

Construction heuristic approaches are used to construct a feasible solution of a given

problem. In this work, multiple construction heuristics have been evaluated for use with

PIHC for constructing the initial solution, namely, Nearest Neighborhood (NN), Nearest

Insertion (NI), Greedy algorithm, Minimum Spanning Tree (MST), Christofides’ algo-

rithm, and Clarke-Wright algorithm. Cost of the initial solution for different TSPLIB

instances and time required to construct it using different construction heuristic ap-

proaches have been presented in Table 3.6. Table 3.7 shows the local optimal solution

found using different construction heuristic approaches, number of steps required to

reach it, and the error rate for each TSPLIB instance for each construction approaches.

The NN approach constructs the initial solution faster than NI, greedy, MST, and

Christofides’ algorithm on an average. The error rate present in the cost of constructed

initial solution are (best case - worst case): 15% - 41.46%, 13.40% - 33.35%, 15.10% -

41.46%, 20.68% - 53.44%, and 27.81% - 44.64% for NN, NI, greedy, MST, Christofides’

algorithm respectively for instances ranging from 105 to 15112 cities. The error rate of

initial solution is calculated using Eqn 3.9.

error =
initial − optimal

optimal
∗ 100 (3.9)
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3.3. Result Analysis

The time requirement for constructing the initial solution, NN is up to 6813.33×,

6707.39×, 4553.84×, 2.10× faster compared to the NI, Christofides’ algorithm, MST,

and greedy algorithm respectively. This is because, the constraints involved in con-

structing the initial solution makes other approaches slower.

In the NI approach, generation of the initial solution starts with a subtour. There are

two conditions for adding an unvisited node to a subtour. First, an unvisited node must

be minimum to any one node of a subtour. Second, an edge i, j has to choose from a

subtour such that the cost of adding unvisited node between i and j must be minimized.

For first condition, an algorithm spends O(nv) time for finding the unvisited closest

nodes, where, v is total nodes present in the subtour. For the second condition, it spends

O(e) time to choose an edge where a closest unvisited node can be added, where, e, is

total edges in the subtour. Though NI generates a better cost initial solution (error rates:

13.40% - 33.35%), these constrains make NI a slower approach.

Generation of the initial solution using the MST approach involves three major

steps. First, a minimum spanning tree has to be generated. For constructing MST,

Prim’s algorithm is used. Second, an Eulerian cycle is generated which spends O(n)

time. Third, an Eulerian cycle is converted into a Hamiltonian cycle that spends O(n)

time additionally. Overall, constructing a initial solution using the MST spends the

larger time than NN and greedy algorithm.

Christofides’ algorithm is a variant of the MST approach. Christofides’ algorithm

uses the minimum weight perfect matching for odd degree nodes to improve the cost

quality further. There are two additional overheads in Christofides’ algorithm in addi-

tion to the MST approach. First, after MST is generated, an odd degree set of nodes to

be determined. Second, edges are added to the MST using the minimum perfect weight

matching. These constraints make Christofides’ algorithm slower. Note that for finding

the minimum perfect weight matching edges, the blossom V algorithm (Kolmogorov

2009) is used and its tool is available at link: http://pub.ist.ac.at/˜vnk/

software.html.

Clarke-Wright algorithm has been evaluated on the small size of TSPLIB instances
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Figure 3.2: Time analysis of the initial solution construction approaches.

ranging from 105 - 1432. It is observed that Clarke-wright algorithm spends signifi-

cantly larger time to construct the initial solution than other approaches. The error rates

in the constructed solution are also larger, i.e., in the range of 124.35% - 2042.36%,

which is worse than other heuristic approaches. The time requirement of constructing

the initial solution of Clarke-wright algorithm is compared with NN, NI, greedy, MST,

and Christofides’ approaches and it is shown in Figure 3.2. The most time consum-

ing part of Clarke-Wright algorithm is calculating the savings for nC2 node pairs and

arranging these node pairs in the descending order of their savings.

The Greedy algorithm constructs the initial solution using the Prim’s algorithm.

However, in TSP, each city is visited exactly once, one node cannot have more than two

neighbors in the feasible solution. Therefore, constructing the feasible solution using

Prims’ algorithm is similar to the NN approach except one difference. In NN, a closest

unvisited node of the recently visited node is chosen, whereas, in greedy approach, a

closest node is chosen for either a recently visited node or first node of the constructing

tour. If closest unvisited node is neighbor to the first node of the tour, it is added before

the first node otherwise it is added at the last. Therefore the performance of greedy

algorithm is similar to the NN approach. Finding a closest unvisited neighbor from two

places, add time overhead slightly in the computation. Therefore, NN is up to 2.10×
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3.3. Result Analysis

Table 3.8: Analysis of execution time spent in the solution construction phase and im-
provement phase separately. Abbreviation used- C%: Percentage of time spent in the
solution construction out of total execution time, I %: Percentage of time spent in the
solution improvement out of total execution time.

Instance
NN NI Greedy MST

Christofides’
Algorithm

C % I % C % I % C % I % C % I % C % I %

lin105 0.05 99.95 0.31 99.69 0.02 99.98 0.26 99.74 2.50 97.50
d198 0.09 99.91 6.67 93.33 0.08 99.92 2.94 97.06 5.41 94.59
kroA200 0.09 99.91 6.67 93.33 0.11 99.89 2.86 97.14 5.41 94.59
lin318 0.17 99.83 27.27 72.73 0.20 99.80 10.81 89.19 15.91 84.09
pcb442 0.32 99.68 44.44 55.56 0.28 99.72 29.17 70.83 40.68 59.32
d493 0.39 99.61 53.41 46.59 0.27 99.73 33.33 66.67 47.89 52.11
rat575 0.60 99.40 65.59 34.41 0.34 99.66 45.16 54.84 57.47 42.53
d657 0.65 99.35 75.00 25.00 0.45 99.55 58.02 41.98 65.05 34.95
rat783 0.85 99.15 81.64 18.36 0.65 99.35 64.55 35.45 75.00 25.00
vm1084 1.74 98.26 94.89 5.11 1.40 98.60 82.89 17.11 89.97 10.03
d1291 2.21 97.79 95.80 4.20 1.58 98.42 88.22 11.78 93.05 6.95
rl1304 2.70 97.30 95.47 4.53 1.75 98.25 89.92 10.08 93.56 6.44
u1432 7.14 92.86 97.35 2.65 2.08 97.92 90.09 9.91 94.08 5.92
pcb3038 12.64 87.36 99.27 0.73 6.45 93.55 97.48 2.52 98.53 1.47
fnl4461 11.23 88.77 99.66 0.34 11.45 88.55 98.48 1.52 99.17 0.83
rl5934 12.13 87.87 99.75 0.25 18.63 81.37 99.27 0.73 99.57 0.43
pla7397 7.85 92.15 99.71 0.29 13.89 86.11 98.96 1.04 99.36 0.64
rl11849 6.80 93.20 99.86 0.14 12.59 87.41 99.36 0.64 99.59 0.41
usa13509 3.62 96.38 99.41 0.59 6.92 93.08 98.90 1.10 99.30 0.70
d15112 3.50 96.50 99.56 0.44 7.12 92.88 99.00 1.00 99.34 0.66
Average 3.74 96.26 72.09 27.91 4.31 95.69 64.48 35.52 69.04 30.96

faster over the greedy approach.

These constructed initial solutions using the different approaches have been further

evaluated to identify the error rates in their local optimal solutions, which is presented

in Table 3.7. Table shows the local optimal solution, total steps required to reach it, and

the error rate present in it for each construction heuristic approach on TSPLIB instances.

The error rates in the final cost for NN, NI, greedy, MST, and Christofides’ approaches

are (best case - worst case): 0.72% - 8.06%, 3.03% - 15.99%, 1.43% - 7.98%, 2.42% -

7.61%, and 1.62% - 8.90% respectively.

Table 3.8 shows the separate portion of execution time spent in both construction

and improvement phases when different construction heuristic approaches are used

to solve TSPLIB instances. NN spends 3.74% time in the solution construction and
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3. Parallel Iterative Hill Climbing Algorithm to Solve TSP on GPU

96.26% time in the solution improvement phase. From Table 3.7, it is observed that

NN produces better final solutions than remaining five approaches, therefore NN can

be made a more time efficient approach by reducing the time spent in the solution im-

provement phase. It is observed that NN spends 96.26% on an average in the solution

improvement phase. With the help of parallel models to improvement phase, the time

portion of solution improvement can be reduced further.

From Figure 3.2 and Table 3.7, it is observed that NN and greedy approaches are

faster and produces a good quality solutions. Although the MST and Christofides’

algorithm construct the good solutions, they are slower than the NN and greedy ap-

proaches. NI constructs the better initial solution but result in a slower approach than

the NN, greedy, MST and Christofides’ approaches. Clarke-Wright algorithm are both

the slower and worse in constructing the initial solution. Since NN is faster and pro-

duces a good cost, NN is used it in the rest of the result analysis as the initial solution

construction approach.

3.3.1.2 Time Analysis of NN with Sequenced and Random Approaches

Figure 3.3 presents the total execution time of the NN, sequenced, random implemen-

tations. Each input instance is executed once for the three initial solution construction

approaches. Results for the TSPLIB instances from 200 to 18512 cities are shown.

For moderate size of TSP instances up to u2319, all three mechanisms spend similar

time to find the near-optimal solution. As the input size increases above the u2319 in-

stance, the total execution time of both the sequenced and random approaches increases

significantly.

For the d18512 instance, the total execution time required using sequenced, ran-

dom, NN are 873.67 s, 1258.91 s, and 76.60 s respectively. The NN as initial solution

construction strategy makes PIHC GPU implementation 11.40× faster compared to the

GPU implementation of sequenced, 16.43× faster compared to the random approach.

This happens because NN gives a good quality solution at the initial phase. PIHC needs

lesser number of steps to reach the local optimal solution compared to the sequenced

and random approaches. For the d18512 instance, NN needs 8.5×, 11.19× fewer steps

52



3.3. Result Analysis

 0

 200

 400

 600

 800

 1000

 1200

 1400

kroA200 u2319 rl5934 rl11849 d15112 d18512

T
o
ta

l 
E

x
e
c
u
ti
o
n
 T

im
e
(s

e
c
o
n
d
s
)

TSPLIB Instance Size

SEQ
RAND

NN

Figure 3.3: Total PIHC execution time of sequenced, random, NN initial solution con-
struction mechanism for TSPLIB instances

compared to the sequenced and random approaches respectively. It is observed that the

NN approach tends to yield a shorter initial tour, which is why it requires fewer 2-opt

steps on average before reaching the local optimal, thus making PIHC tool faster than

other tools, even if the tool uses the same 2-opt move implementation.

The time complexity of 2-opt move is O(k × n2), where, k is the number of steps

required to reach the local optimal solution. Since random and sequenced approach

requires larger steps to reach their local optimal solutions that result in larger execu-

tion time requirement. For example, consider an instance d1512 for which sequenced,

random, and NN need 21762, 22189, and 2040 steps (i.e., k) respectively. NN spends

lesser time i.e., 42.79 seconds, sequenced approach which is the second best lesser steps

required approach, spends 652.03 seconds, and the random approach spends 684.63 sec-

onds which needs a higher steps than the NN and sequenced approaches respectively.

Therefore, it makes sense to compute NN rather than using this time to run more 2-opt

steps.

Figure 3.4 shows the throughput analysis of NN, sequenced, and random initial

solution construction approaches. Throughput is the ratio between the total neigh-

borhood solutions explored to reach a local optimal solution and the total execution

time. NN has lesser throughput compared to other two approaches until the u2319 in-
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Figure 3.4: Throughput analysis of sequenced, random, NN initial solution construction
mechanism for TSPLIB instances

stance. This is because, as far as total execution time is concerned, all three approaches

spend similar time to reach their local optimal solution. When total steps required to

reach their local optimal is concerned, the random and sequenced approaches require

larger steps than NN. Eventually, the random and sequenced approaches result in higher

throughput compared to NN for instances up to u2319 cities. For inputs pcb3038 and

larger, the throughput of NN improves significantly than the random and sequenced

approaches because NN needs fewer steps to reach its local optimal in lesser time. Ran-

dom and sequenced approaches need larger steps to reach their local optimal solution

and spend significantly more time than NN. This results in throughput improvement for

NN while solving larger instances. For example, at the d15112 instance, sequenced,

random, and NN require 21762, 22189, 2040 steps and 652.03, 684.63, 42.79 seconds

respectively to reach their local optimal. Throughput of sequenced, random, and NN

becomes 3810801983.95 (i.e., 21762
652.03

∗15112 C2), 3700555817.48 (i.e., 22189
684.63

∗15112 C2),

and 5443434929.66 (i.e., 2040
42.79
∗15112 C2) respectively. Note that throughput calculation

shows the number of neighborhood solutions calculated per second.
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3.3.1.3 Cost Analysis of NN with Sequenced and Random Approaches

The cost quality achieved using the NN, sequenced and random initial solution con-

struction approaches are given in Table 3.9. This cost quality is evaluated with a single

run of each input instance with each construction mechanism. The starting node of each

construction technique is fixed, therefore it is run once. The error rate is calculated us-

ing Eqn. 3.10, where costfinal is the cost obtained using the construction approach on

TSPLIB instance and costopt is the optimal cost of the TSPLIB instance.

Error rate =
costfinal − costopt

costopt
× 100 (3.10)

Choosing the NN as an initial solution construction mechanism saves search-space

exploration time and result in a better cost quality solution. The worst-case cost of

the initial solution using NN is within 1.08× optimal cost, whereas, for sequenced and

random are 93.82× optimal cost, 94.12× optimal cost respectively. In the best-case,

NN constructs the initial solution which cost is within 1.01× optimal cost (i.e., for

kroA200 instance). In terms of cost quality, the error rate of NN ranges from 0.72%

(best-case) and 6.73% (worst-case). The best quality solution found with sequenced,

random approach have 6.02%, 7.49% error rate respectively whereas worst case cost

quality have 15.90%, 14.26% error rate respectively.

The nearest neighborhood initial solution construction mechanism takes care to

choose the minimal weighted neighboring city while constructing the initial solution,

unlike sequenced and random mechanism. From the presented time and cost analysis,

NN construction mechanism creates an initial solution which is closer to the optimal

solution than the random and sequenced approaches for 200 - 18512 instances.

3.3.2 Optimized Data for TSP

In this section, the effect of three data structures, DM, TDM, COORD on the execution

time of the PIHC algorithm have been evaluated. NN is used for the initial solution

construction for this experiment. Figure 3.5 presents the total execution time of the

PIHC algorithm using Distance Matrix (DM), Triangular Distance Matrix (TDM), X,

Y coordinate (COORD) as data structures. TSPLIB input instances of size ranging from

3038 - 33810 cities is used for this analysis.
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Figure 3.5: Total execution time of the PIHC algorithm using Distance Matrix(DM),
Triangular Distance Matrix(DM), X,Y coordinate(COORD) as data structures

From Figure 3.5, for moderate input size instances up to rl5934, the data structures

do not affect the final execution time significantly. When input size increases, the TDM

implementation consumes more time than the DM and COORD. TDM reserves lesser

memory than DM and needs more execution time. TDM stores the distances of the

cities in the upper triangular matrix form which is converted into a 1D array to be sent

to the GPU. In the GPU, the distance between any two cities i and j is accessed using

an index of TDM matrix and the index is calculated using the following equation:

index = i× (n− 1) + j − 1− i× (i+ 1)

2
(3.11)

From Eqn. 3.11, the distance calculation involves 3 subtractions, 2 multiplications,

2 additions and 1 division operations. This results in an overall increase in the compu-

tational time to access one element from the TDM. Accessing elements from the matrix

makes the TDM approach more time consuming than DM and COORD. In the case

of DM, the entire distance matrix is sent over the GPU resulting in large data transfer

delay.

For instances larger than 33810, the DM and TDM approaches were infeasible on

the Tesla K40m GPU. With pla85900 instance, both DM and TDM approach cannot

be solved on Tesla K40m since it needs 27.48 GB and 13.74 GB memory respectively.

The K40m has a 12 GB global memory. From these experiments, it is concluded that
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COORD approach outperforms DM and TDM approaches in the memory space con-

sumption and execution time.

3.3.3 Performance Analysis of Thread Mapping Strategies

Section 3.2.5 introduces the TPR, TPRED, TPRC, and TPN thread mapping strategies

applied in this work. Time analysis of the thread mapping strategies are reported in

Table 3.10. Note that changing thread mapping strategy does not affect the local optimal

solution of the input instances. Therefore, the time analysis of these thread mapping

strategies has been presented in Table 3.10 for TSPLIB instances ranging from 198 to

85900 size. Average total execution time of each instance has been collected after ten

trials for each mapping strategy.

Up to rl11849, TPRC performs better than other three mapping strategies. This is

because, a pair of threads has been mapped to every neighbor generation and its cost

computation. In TPR, the work of neighborhood generation and its cost calculation are

distributed unequally. For n size input, first thread has to deal with n-1 neighbors com-

putation, second thread has to deal with n-2 neighbors computation, and so on. In short,

each thread works in parallel and at each thread, the associated neighbor computations

are done in serial fashion. TPRED is a variant of TPR where the work of neighborhood

generations are equally distributed among the threads. However, each thread has to deal

with more than one neighbors computation and hence, spend more time compared to

the TPRC strategy. Therefore, TPRED performs better than TPR. In TPN, one neigh-

bor generation and its computation is mapped per thread. Since the computations of
nC2 neighbors of the 2-opt move are performed by nC2 unique threads simultaneously,

TPN perform better than the TPR, and TPRED approaches up to rl11849 instance. But

compared to TPRC, TPN is slightly worse. This is because, TPRC uses two threads

per neighborhood computation, whereas, TPN uses one thread per neighborhood com-

putation. In addition to this, TPN has additional arithmetic computation overhead, i.e.,

each thread has to perform 18 arithmetic operations (Eqn. 6 and 7 involve 18 arithmetic

operations) to get the ids of cities to be swapped. Hence, TPRC outperforms than TPN.
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Table 3.10: Time analysis of thread mapping strategies- Threads per Row (TPR),
Threads per Row equal Distribution (TPRED), Threads per Row and Column (TPRC),
and Threads per Neighbor (TPN). Time is given in seconds which is average of ten
trials.

Instance TPR TPRED TPRC TPN

d198 0.33 0.33 0.32 0.32
kroA200 0.33 0.32 0.32 0.32
lin318 0.35 0.34 0.32 0.32
pcb442 0.35 0.34 0.32 0.32
d493 0.38 0.37 0.32 0.33
rat575 0.41 0.38 0.33 0.32
d657 0.42 0.39 0.33 0.33
rat783 0.48 0.44 0.34 0.34
vm1084 0.55 0.50 0.35 0.34
d1291 0.51 0.48 0.33 0.33
rl1304 0.59 0.54 0.34 0.35
u1432 0.71 0.62 0.36 0.36
u2319 1.17 0.96 0.33 0.45
pcb3038 2.34 1.83 0.69 0.69
fnl4461 4.72 3.59 1.45 1.48
rl5934 4.75 3.64 1.83 1.86
pla7397 7.00 5.31 3.30 3.29
rl11849 20.20 15.10 13.36 13.74
usa13509 44.02 32.77 33.23 33.98
d15112 49.82 37.04 41.52 42.79
d18512 90.60 103.86 73.82 76.60
sw24978 177.20 205.28 200.83 210.21
pla33810 192.28 279.18 240.13 250.32
pla85900 2703.48 3393.34 3818.19 4323.17
Average 137.62 170.29 184.69 206.77

However, on the other side, it is observed that initiating the large number of threads

result in slowing down the computation. This is because, when large numbers of threads

involve in the computation, the more complex synchronization is required to get the

accurate results. Another reason for slowing down the GPU computation is the thread

control divergence. In CUDA, control divergence happens when some threads of a

warp execute one set of instructions and other remaining threads execute another set of

instructions which result in control divergence in the corresponding warp. When large

number of threads are involved in computation, there exist a large number of warp,
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where, warp is a group of 32 threads. From Table 3.10, it is observed that though TPN

and TPRC performs better than the TPR and TPRED until rl11849 instance, later it

start slowing down the computation due to the synchronization and control divergence

issues. Instances above d15112 cities, TPR mapping performs better than the other

three. In TPRED, thread control divergence increases while choosing i, j pair. The

indexes (i, j) are chosen such that resulting neighbor has the least cost. The (i, j) are

used in Eqn. 3.11. If i is greater than j, values of i, j have to be shuffled in Eqn. 3.11 to

extract the correct indexes at the host. In TPRC and TPN, atomicMin function has to

choose a minimal cost neighbor from 2×nC2, nC2 threads respectively whereas in TPR

and TPRED, a minimal cost neighbor is chosen from n threads. For d15112, in TPRC

and TPN the atomicMin function chooses a minimum cost neighbor from 228357432,

114178716 threads respectively. The function call overhead in TPR, TPRED is lesser

as the minimum cost neighbor is chosen among 15112 threads.

3.3.4 Performance Analysis with GPU based state-of-the-art TSP Solvers

In this section, PIHC implementation has been compared with two well-known state-of-

the-art GPU-based TSP solvers namely TSP2.2 (Neil and Burtscher 2015) and LOGO

(Rocki and Suda 2013). TSPLIB (Reinelt 1991) instances ranging from 198 to 85900

cities have been considered whose optimal costs are known in the TSPLIB testbed.

The cost quality of LOGO TSP is reported in (Rocki and Suda 2013). To obtain the

cost quality of TSP2.2 (http://cs.txstate.edu/˜burtscher/research/

TSP_GPU/index.html ) solver, each instance has been run ten times for each restart

value using the flags -O3 -arch=sm 35 -use fast math and its cost and time are recorded.

Seven different restart values have been considered to observe the change in the cost

and execution time requirement. Restart value indicates the number of different initial

solutions are considered while solving TSPLIB instances. Each restart gets its own local

cost. Eventually, the minimum out of all restarts’ local solutions is chosen and returned

as the final cost. Table 3.11 shows the detailed performance analysis of TSP2.2 for

different TSPLIB instances with different restarts.
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3.3.4.1 Cost Analysis

Table 3.11 shows that the cost quality of TSP2.2 improves when restarts increase. The

cost quality have been analyzed using multiple restarts: 10, 50, 100, 200, 300, 400, and

500. When larger restarts are considered, TSP2.2 slightly improves the final cost for

small size TSPLIB instances but not better than PIHC. Figure 3.6 shows that the error
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Figure 3.6: Analysis of error rate in the final cost of the PIHC and TSP2.2 with 400,500
restarts.

rate comparison of TSP2.2 and proposed PIHC where error rate of the TSP2.2 has been

calculated using the average final cost of 400 and 500 restarts. TSP2.2 produces better

solution than PIHC for instances lin318 and rl1304. For these instances, error rates of

the PIHC are 5.33% and 8.06% and the TSP2.2 with 500 restarts are 4.30% and 7.21%

respectively. However for instances above rl1304, TSP2.2 produces large error rate. At

d15112, error rates of the PIHC and TSP2.2 with 500 restarts are 4.91% and 10.52%

respectively. For large size instances (i.e., above pla7397), despite large restarts such

as 300, 400, and 500 which explores huge amount of search-space and spends more

time, the final cost does not improve significantly compared to 10, 50, and 100 restarts.

Moreover, while solving large instance, TSP2.2 produces large gap rate in the final cost

compared to both LOGO and PIHC approaches.

Table 3.12 presents the cost quality analysis of the LOGO and TSP2.2 with the

PIHC algorithm. The PIHC algorithm gives the best quality solutions for TSPLIB input
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instance compared to the LOGO and TSP2.2. The error ranges (best case - worst case)

for PIHC, LOGO, TSP2.2 are : 0.72% - 5.44%, 4.71% - 11.66%, 1.99% - 11.79%

respectively. For TSP2.2, the error rate has been calculated using the average final cost

of the best performing restarts. The TSP2.2 implementation for pla85900 instance did

not finish.

The primary reason for the better quality results of the PIHC compared to the LOGO

and TSP2.2 is the nearest neighborhood initial solution construction technique. NN

provides an initial solution whose cost is within 0.5 ×(log2n + 0.5)× optimal cost for

each input instance. Starting from such an initial solution, the search space for the

hill climbing algorithm is reduced and a higher quality solution is obtained within a

reasonable execution time. The TSP2.2 uses random tour to set the initial solution

whereas LOGO uses Multiple Fragment (Bentley 1990) heuristic.
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Figure 3.7: Time analysis of the PIHC with different restarts of TSP2.2 TSP solver.

3.3.4.2 Time Analysis

Since TSP2.2 source code is available, it was run on the same GPU as the PIHC and the

execution times are recorded. The full execution time from the start to the end of the re-

spective implementations (includes the CPU and GPU time) have been presented. Table

3.11 shows the execution time of each TSPLIB instances with seven different restart val-

ues. As restart value increases TSP2.2 produces slightly better solutions but consumes
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Table 3.11: Cost and time analysis of TSP2.2 solver for TSPLIB instances with different
restart values.

Instance Restarts
Time (seconds) Cost

Optimal Error(%)
min avg max min avg max

d198 10 0.02 0.02 0.02 16329 16329 16329 15780 3.48
50 0.02 0.02 0.02 16111 16120.2 16157 2.16
100 0.02 0.02 0.02 16087 16087 16087 1.95
200 0.02 0.02 0.02 16037 16077.5 16087 1.89
300 0.04 0.04 0.04 16087 16087 16087 1.95
400 0.05 0.05 0.05 16037 16053.1 16057 1.73
500 0.07 0.07 0.07 16037 16055 16057 1.74

u2319 10 14.86 14.88 14.89 250744 250744 250744 234256 7.04
50 16.31 16.57 16.76 249506 250313.9 250977 6.85
100 18.26 18.30 18.35 249349 249875.6 250389 6.67
200 26.55 26.63 26.69 248787 249864.2 250260 6.66
300 49.11 51.32 54.44 249374 249636.1 249921 6.57
400 58.23 58.55 59.68 248826 249442.3 249978 6.48
500 74.42 75.08 75.75 249098 249548.7 249850 6.53

fnl4461 10 119.88 119.95 120.03 203508 203508 203508 182566 11.47
50 130.64 131.27 131.98 201370 202309.4 202703 10.81
100 153.39 153.64 153.95 201858 202349 202761 10.84
200 218.96 219.37 219.93 201683 201987.9 202300 10.64
300 428.59 440.91 464.96 201238 201854.5 202372 10.57
400 482.47 490.55 504.00 201559 201913.2 202170 10.60
500 603.78 615.78 631.01 201084 201707.2 202223 10.48

rl5934 10 310.36 310.49 310.67 629665 629665 629665 556045 13.24
50 340.72 342.47 344.80 621004 624782.5 627613 12.36
100 395.59 397.09 398.46 620133 623253.2 625428 12.09
200 574.50 575.81 577.57 621165 622530.7 624491 11.96
300 1054.28 1090.93 1116.61 618505 621037.1 622983 11.69
400 1247.36 1265.19 1296.95 618474 620639.5 622128 11.62
500 1572.02 1608.14 1649.50 616026 620101 622030 11.52

rl11849 10 2459.28 2462.92 2467.60 1049048 1049048 1049048 923288 13.62
50 2695.73 2703.89 2710.16 1035667 1041906.6 1045682 12.85
100 3216.63 3229.43 3239.21 1038077 1041043.2 1044384 12.75
200 4607.25 4616.82 4627.37 1034308 1039835.3 1043415 12.62
300 8768.20 9090.31 9285.22 1037953 1039315.875 1040871 12.57
400 9004.00 9948.72 10419.49 1036804 1039941 1041716 12.63
500 12526.62 13467.54 14336.32 1037877 1040104.9 1042506 12.65

d15112 10 4911.54 4914.43 4919.89 1742811 1742811 1742811 1573084 10.79
50 5378.59 5393.36 5408.23 1734645 1739606.9 1741944 10.59
100 6226.06 6246.93 6276.38 1737920 1740109.7 1742137 10.62
200 9254.35 9269.21 9282.23 1737168 1739583.3 1741142 10.58
300 16803.20 17328.97 17718.21 1737103 1738153.75 1738854 10.49
400 18074.74 20200.82 21126.87 1737261 1738755.9 1741520 10.53
500 25285.88 26356.86 28859.90 1736388 1738466.2 1740073 10.51
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Table 3.12: Cost quality comparison of the PIHC algorithm with the state-of-the-art
TSP solvers on various TSPLIB instances. Values in the parentheses are deviations
from the optimal cost.

Instance LOGO TSP2.2 PIHC Optimal

kroA200 31685 (7.78%) 29953 (1.99%) 29579 (0.72%) 29368
rat783 9658 (9.67%) 9572.4 (8.70%) 9002 (2.23%) 8806
vm1084 267210 (11.66%) 253767.9 (6.05%) 250998 (4.89%) 239297
pcb3038 147690 (7.25%) 152865 (11.02%) 145190 (5.44%) 137694
fnl4461 194746 (6.67%) 201707.2 (10.48%) 189881 (4.01%) 182566
rl5934 582958 (4.84%) 620101 (11.52%) 581802 (4.63%) 556045
d15112 1652806 (5.06%) 1738466.2 (10.51%) 1650340 (4.91%) 1573084
d18512 675638 (4.71%) 716925 (11.11%) 671000 (3.99%) 645238
pla33810 69763154 (5.21%) 73840715 (11.79%) 69481379 (5.20%) 66048945
pla85900 149708033 (5.14%) - 148437636 (4.25%) 142382641

more GPU time. Up to the rat575 instance, PIHC consumes more GPU time compared

to the TSP2.2 TSP solver. For small size instances, PIHC suffers significant commu-

nication time overhead (i.e., host to device and device to host data transfer time). As

instance sizes increase, communication overhead reduce significantly. Communication

time requirement of TSPLIB instances are shown in Table 3.13. PIHC attains remark-

ably good speedup compared to TSP2.2 with seven different restarts which is shown in

Figure 3.7. Compared to 10, 50, 100, 200, 300, 400, and 500 restarts, PIHC gives the

speedup in the range of 0.06× - 179.21×, 0.06× - 196.75×, 0.06× - 234.99×, 0.08×

- 335.94×, 0.14× - 661.45×, 0.16× - 723.91×, and 0.20× - 979.96× respectively for

the instances of sizes 198 - 33810. The reason behind higher speedup is that PIHC

initiates single initial solution which is constructed using the NN approach whereas,

TSP2.2 initiates multiple initial solutions randomly. From Table 3.9, it is observed that

NN approach builds a shorter initial solution than the random, therefore it require fewer

steps to reach a local optimal solution, thus it makes PIHC faster, even if TSP2.2 use the

2-opt move implementation. Note that the average execution time of ten trials have been

considered for each instances up to d15112 cities and for each restart value. Instances

above d15112 sizes have been executed once with 100 restarts and their execution time

are recorded.
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3.3.5 Performance Analysis with CPU based state-of-the-art TSP Solvers

Concorde (David Applegate) and LKH (Helsgaun 2000) are the best CPU-based TSP

solvers. Concorde provides the exact solution TSP whereas LKH is a heuristic algo-

rithm which is known to provide the optimal solution of TSP instances. Concorde uses

the branch and bound and linear programming techniques to solve TSP instances. Since

concorde and LKH provides optimal solutions, PIHC cannot be compared with these

approaches in terms of solution quality. PIHC provides the local optimal solution which

has error rate in the range of 0.72%-8.06% for the instances of size 198 - 85900 cities.
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Figure 3.8: Execution Time analysis with the best CPU-based TSP Solvers

Figure 3.8 shows the total execution time requirement for different TSPLIB in-

stances ranging from 100 - 5934 cities. LKH have been run ten times and the average

execution time of each instance has been considered. Execution time of concorde for

instances ranging from 100 - 2392 have been collected from the link: http://www.

math.uwaterloo.ca/tsp/concorde/benchmarks/bench.html. For in-

stances above 2393 to 5934, execution time is recorded by a single run for each instance.

Up to 200 cities, PIHC suffers communication overhead. When size increase above 200,

PIHC provides a solution in the lesser time. For each instance above 200 size, PIHC

spends significantly lesser time than Concorde. For instance fnl4461, Concorde needs

20135.05 seconds to reach an optimal solution whereas PIHC needs 1.48 seconds to

reach a local optimal which has 4.01% error rate. For rl5934 instance, LKH needs
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327.89 seconds to reach an optimal solution whereas PIHC produces a solution in 1.83

seconds and which has a error rate 4.63%.

3.3.6 Detailed Performance Analysis of the PIHC Approach

Table 3.13 reports a detailed time analysis of Parallel Iterative Hill Climbing algorithm

to solve TSP. The nvprof (NVIDIA) profiler is used to obtain the isolated times from the

overall execution time. For this analysis, the best performing thread mapping strategies

have been considered. Execution times slightly vary from the times presented in Table

3.10 due to the additional profiling overhead. The values reported for the PIHC are: host

to device and device to host data transfer time, GPU kernel execution time, and total

execution time in seconds (columns 2 - 5) respectively. The sequential implementation

execution time in seconds is reported in column 6. The speedup of the PIHC compared

to its sequential implementation is reported in column 7. The cost quality results are

presented in columns 8 - 11. The cost of initial solution using NN, the cost of the PIHC

local optimal solution and the optimal are shown.

PIHC is a single solution-based iterative hill climbing algorithm that repeatedly

improves the initial solution until it reaches the local optimal solution. If the local

optimal solution is suboptimal, the improvement process halts at the suboptimal value.

This is because, the initial solution is constructed using the nearest neighborhood with

fixed source node that result in the same initial solution irrespective of multiple trials.

In addition to a single initial solution based PIHC, n initial solution can be con-

structed using NN and later improved repeatedly at each initial solution. When no

further improvement is possible, the best improved solution is selected among n local

optimal solutions. This n initial solution based PIHC produce better solution compared

to a single initial solution based PIHC but the same best solution is produced irrespec-

tive of multiple trials and spends n× more execution time approximately. A solution to

get rid of trapping into the local optimal solution is to use the random restart.
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3. Parallel Iterative Hill Climbing Algorithm to Solve TSP on GPU

3.4 SUMMARY

In this chapter, a GPU-based parallel iterative hill climbing (PIHC) algorithm have been

presented to solve the symmetric TSPLIB instances up to 85900 cities in a reasonable

amount of time with a good quality cost. Six construction heuristic approaches and four

CUDA thread mapping strategies have been demonstrated for 2-opt move to solve TSP

on the GPU.

It is observed that NN and greedy are the faster approaches to construct a good cost

initial solution. Although NI, MST, and Christofides’ approaches construct a better cost

solution but result in slower approaches. The Clarke-Wright algorithm is slower and

worse in constructing an initial solution compared to other approaches.

Four CUDA thread mapping strategies, Threads per Row (TPR), Threads per Row

Equal Distribution (TPRED), Threads per Row and Column (TPRC), and Threads per

Neighbor (TPN) have been designed and experimented. For moderate size instances up

to 18512 cities, TPRC and TPN are the best mapping strategies which operates on each

neighbor simultaneously. When instance size goes above 18512, TPR performs better

than other three approaches. Both TPN and TPRC suffers large function call overhead.

Though TPRED spends lesser time than TPR for instances up to 15112, it suffers thread

control divergence afterwards.

Proposed approach is evaluated and compared with LOGO and TSP2.2 GPU based

state-of-the-art TSP solvers and it is observed that PIHC approach accounts the good

quality results with error rate 0.72% in the best case and 8.06% in the worst case.

The proposed PIHC implementation produce the speedup up to 979.66× over the GPU

based TSP2.2 implementation with 500 restarts. Overall, PIHC receives 68.34× on

average and 193× in the best case over its corresponding sequential implementation.
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CHAPTER 4

MIN-MAX ANT SYSTEM ON GPU FOR LARGE TSP
INSTANCES

In this chapter, two GPU-based parallel strategies have been demonstrated, namely task-

level and data-level strategies for Min-Max Ant System (MMAS), to solve TSPLIB

instances over the GPU platform. Contributions of this chapter includes:

• Solve larger size instances up to 33810 cities in a reasonable amount of time.

• Receive a speedup up to 60× over sequential counterpart.

• Produce the satisfactory solutions with error rates in the range of 0.52% - 4.97%.

4.1 INTRODUCTION

Finding an optimal solution of the TSP problem becomes intractable while solving

larger instances due to its time-bound, which is exponential time or factorial time (Cor-

men et al. 2009). Therefore, approximation algorithms and heuristic algorithms have

been designed to find good solutions in an acceptable amount of time (Gutin and Punnen

2002; Johnson and Mcgeoch 1997). This work focus on the heuristic-based algorithm,

Ant Colony Optimization (ACO), to solve the TSP problem (Dorigo and Gambardella

1997).

In the ACO algorithm, n ants construct feasible solutions. Later, it improves it, and

finally, the best-improved solution is chosen (Further details are presented in Section

4.3). The sequential implementation of this approach consumes much CPU time for
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4. Min-Max Ant System on GPU for Large TSP Instances

larger size instances. The most time-consuming part of ACO is constructing a feasible

solution and improving it for each ant. Each ant constructs its feasible solution inde-

pendently with others, and hence, this part can be implemented in parallel. Papers have

shown (Cecilia et al. 2013; Delévacq et al. 2013) that parallel implementation of ACO

reduces the total execution time effectively.

This work aims to reduce the execution time of the sequential implementation using

the parallel processing power of the Graphic Processing Unit.

4.2 BACKGROUND

In this section, different existing sequential and parallel implementation works of the

ACO algorithm have been presented briefly.

4.2.1 Sequential Implementation

Dorigo and Gambardella (1997) firstly proposed the Ant Colony Optimization (ACO)

algorithm. Authors have used ACO to solve TSP problem for instances of size 1577

cities. Their algorithm outperforms over the existing nature-inspired algorithm, such as

simulated annealing and evolutionary algorithm. Moreover, applying local search after

ACO finishes results in good solutions. Stützle and Hoos (2000) has presented a variant

of the ACO algorithm, named, Min-Max Ant System (MMAS). Author has provided

the solution to the limitation of Dorigo and Gambardella (1997)’s work, which occurs

while solving larger instances. MMAS has used a greedier search approach to avoid

redundant exploration of search-space.

4.2.2 Parallel Implementation

The advent of multi-core CPU allows programmers to distribute computational work

over multiple cores independently. Stützle (1998b) proposed the first multi-core parallel

strategy, which implements multiple ant colonies on various processors. It avoids the

communication overhead. This does not improve the iteration time, but it requires fewer

iterations. It is thus reducing the time to converge the solution. Zhou et al. (2018)

present a SIMD based CPU implementation that takes advantage of vector extensions

of CPUs. They claimed up to 57.8× speedup in AS and up to 8.7× speedups in MMAS
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4.3. Ant Colony Optimization

with 3-opt local search for instances up to 4461 cities.

Nowadays Graphics Processing Unit (GPU) is available for general-purpose compu-

tations (Che et al. 2008). Earlier, GPU was dedicated only to the graphics acceleration

purpose. Li et al. (2009) proposed a fine grain model for GPU acceleration. The par-

allel strategy used in this work is that one ant is mapped per thread block. Thus, this

parallel strategy utilizes the GPU resources better and getting significant speedups over

its counterpart.

Skinderowicz (2016) proposed a parallel approach for ACO on GPUs. They have

implemented a warp level element selection technique which reduces the number of

block synchronization. They provides a better implementation of the roulette wheel

selection algorithm. They have claimed up to 24.29× speedup for up to 2392 cities.

Cecilia et al. (2013) proposed an I-Roulette method to implement the roulette wheel se-

lection algorithm for the fine-grain approach. Moreover, author provides an improved

pheromone depositing phase using the scatter to gather based design. Their work re-

ceives speedup up to 20× for the instances up to 2392 cities. Audrey Delévacq et al.

present the GPU implementation for the MMAS. Four GPU parallel strategies have

been presented for the MMAS algorithm. 23.60× speedup is received for the TSPLIB

instances up to 2103 cities.

The above-described papers presented the efficiency of their parallel strategies for

ACO over smaller TSPLIB instances, i.e., up to 2392 cities. Here, a GPU based parallel

design has been presented for the ACO algorithm to solve larger TSPLIB instances up

to 33810 cities. This chapter presents a parallel variant of the Ant Colony Optimization

(PACO) algorithm called Min-Max Ant System (Stützle and Hoos 2000) to solve TSP

over the GPU platform.

4.3 ANT COLONY OPTIMIZATION

Ant colony optimization is inspired by the real ant colony (Dorigo and Gambardella

1997) and the way they search their food. When an ant finds a path to food, it deposits a

substance called pheromone on the path. Other ants can sense this pheromone trail and

follow it. The pheromone evaporates with time. Other ants also deposit pheromones
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4. Min-Max Ant System on GPU for Large TSP Instances

on the path they choose. Thus the best path gets high pheromone reinforcement. This

concept is emulated in the ACO approach. It is a meta-heuristic approach that forms a

solution using previous experience or knowledge. Each ant holds information, like its

tour(list of cities), list of visited cities, and tour length. Each ant knows the distance

between all the cities and the pheromone value associated with each path. For the

purpose of this demonstration, a variation of the ant system called MIN-MAX ANT

System (MMAS) is used. Each phase of ACO is described below:

4.3.1 Tour Construction

Each ant is placed on a randomly chosen city. Based on the pheromone information and

the distance between the cities, the ant calculates the probability of visiting the next city

with Eqn. 4.1.

pkij =

{ [τij ]
α.[ηij ]

β∑
l∈Nk

i
[τil(t)]

α[ηil]
β

j∈Nk
i

0 otherwise

(4.1)

Where i is the current city, pkij is the probability of choosing the next city, j. τij is the

pheromone value between cities i and j. ηij is the heuristic information, which is 1/d,

where d is the distance between cities i and j. N is the feasible set of neighbors (i.e.,

cities ant k has not visited yet). α and β controls the effect of pheromone trail and

heuristic information on the probability.

4.3.2 Pheromone Update

After ants have constructed the solution, they update the pheromone value using Eqn.

4.2.

τ(t+ 1) = ρτij(t) +
m∑
k=1

∆τ kij(t) (4.2)

where ρ is called pheromone trail persistence which emulates trail evaporation. ∆τ kij(t)

is defined as in Eqn. 4.3.{1/Lk(t) if arc(i,j) is used by ant k in iteration t

0 otherwise

(4.3)

The MMAS algorithm uses Eqn. 4.4 for the pheromone update instead of Eqn. 4.2.

τ(t+ 1) = ρτij(t) + ∆τ bestij (4.4)
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4.4. Methodology

where ∆τ bestij is 1/f(sbest) which is the inverse of either global best solution or

iteration best solution. In MMAS, only the best ant updates the pheromone matrix.

Also, to avoid stagnation, the pheromone values are restricted between τmin and τmax

which are defined in equations Eqns. 4.5 and 4.6 respectively.

τmax =
1

1− ρ
1

f(sgb)
(4.5)

τmin =
τmax(1− pdec)

(avg − 1)p(dec)
(4.6)

where sgb is the global best solution. pdec = n
√
pbest in this work the value of pbest is set

to 0.005 and avg = n/2 as described in Stützle and Hoos (2000) and so τmin = τmax/2n

where n is the number of cities. The pheromone matrix is initialized with τmax as in

Stützle and Hoos (2000). The MMAS algorithm can be further improved using the local

search algorithm (Stützle 1998a).

4.4 METHODOLOGY

The general flow of a parallel approach is given in Figure 4.1. The stepwise details

have been elaborated as follows. First, the initial solution is constructed at the CPU

side. The nearest neighborhood (NN) algorithm is used to construct the initial solution.

The NN starts from a random city, also known as a source city. Later, it selects the

next unvisited closest city of the current city. This procedure is repeated until all cities

are visited. Then the cost of this tour is used to initialize variables, t max and t min

using Eqn. 4.5. Next, the pheromone matrix is allocated, and it is initialized to t max.

The total matrix is then calculated using Eqn. 4.1. Next, the total matrix is copied to

GPU. In this implementation, the unified memory model is used, which handles copying

tasks. Then the tour construction phase begins on GPU using one of the two parallel

approaches described below. After the tour construction phase is completed, the best

ant is chosen on the CPU side. Then the pheromone values are evaporated. This is done

on the GPU side to reduce execution time. Later, the pheromone is deposited on the

tour of the best ant. This is done on CPU as it takes O(n) iterations. The total matrix is

calculated again since this is a matrix operation which is taken place on the GPU. This

procedure is repeated until a specified number of iterations.
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4. Min-Max Ant System on GPU for Large TSP Instances

Figure 4.1: Parallel work-flow model for work distribution between CPU and GPU of
ACO algorithm.
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4.4. Methodology

Two parallel strategies have been designed for the ACO algorithm which are ex-

plained below:

4.4.1 Task-level Parallel Approach

In this parallel approach, each tour is constructed by a separate thread. So the number

of threads to be launched is equal to the number of ants. The step-wise detail of this

approach is presented in Algorithm 4.1. Each thread has to go through the entire list of

cities to find the city with maximum value. Here, the maximum value is the probability

rate of city j from a current city i. Overall, this procedure takes O(n) time. After

finding the city with maximum total info, it marks the corresponding city as the next

city to be visited. This limits the number of threads that can be launched per block.

This whole process runs for n number of times until all cities are visited. Note that the

number of ants is equal to total cities available per instance. The number of threads and

blocks needed is given in Eqns. 4.7 and 4.8 respectively.

threads = ants (4.7)

blocks =
ants− 1

threadsPerBlock
+ 1 (4.8)

Since the number of ants (threads) is equal to total threads, the degree of parallelization

is shallow. This leads to very low GPU optimization.

4.4.2 Data-level Parallel approach

This method tries to mitigate problems that arise in the first method by increasing the

degree of parallelization. This method constructs one tour per block instead—threads

within the block, work to parallelize the tour construction phase. The flow of this ap-

proach is presented in Algorithm 4.2. In this approach, one city is handled by one

thread. First, the visited vector is reset. Then, one thread of the blocks initializes the

tour by assigning the initial city. This city is selected randomly. Then each thread reads

the total value corresponding to one city to find the next city. Next, a block-wide re-

duce operation is performed to find the maximum value of total from the unvisited cities

and its thread id(which represents the city index). The number of blocks and threads
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4. Min-Max Ant System on GPU for Large TSP Instances

Algorithm 4.1: Task Parallel Approach
Result: Feasible solution is created for each ant

1 Each thread act as an ant
2 max total← 0
3 next city ← 0
4 step← 1
5 while step < n do
6 i← 0
7 while i < n do
8 if visited[i] == 0 then
9 if max total < total[i] then

10 max total = total[i]
11 next city = i

12 end
13 end
14 end
15 tour[step] = next city
16 visited[next city] = 1
17 step+ +

18 end

required for this approach is calculated using Eqns. 4.9 and 4.10 respectively.

blocks = ants (4.9)

threads =

1024, if cities ≥ 1024

cities, otherwise
(4.10)

Checking whether a city is visited is a decision problem that leads to thread di-

vergence. To mitigate this problem, the visited cities are assigned a value zero, and

unvisited cities are assigned the value 1. Then, the corresponding value from the vis-

ited vector is multiplied with the total info. If the city is already visited, the total value

corresponding to that city becomes zero (which is the minimum possible total value),

resulting in zero probability of the city being selected. But if the city is unvisited, then

the total remains the same. Each thread performs this multiplication.

Since the data to be operated is stored in threads’ local memory, its access speed

is much faster. This operation takes O(log2n) time. This will significantly reduce the

execution time. After this operation, the city with a maximum total value is assigned as
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4.4. Methodology

the next city. The above step is repeated until all cities are visited(n times) to complete

the tour construction phase. If the number of cities is larger than the maximum number

of threads in a block, each thread has to handle multiple cities. This further increases

GPU occupancy.

Thus this approach is better than the previous approach as it utilizes the GPU prop-

erly and solves the thread divergence problem. It also reduces the time as it parallelizes

the tour construction phase. It is thus reducing the time complexity.

Algorithm 4.2: Data Parallel Approach
Result: Feasible solution is created for each ant

1 while step < n do
2 p = selProb[threadIdx.x]
3 v = ants[blockIdx.x].visited[threadIdx.x]
4 result = p ∗ v
5 nextBest = reduce(result)
6 tour[step] = nextBest
7 visited[nextBest] = 0
8 step+ +

9 end

Figure 4.2: Data Parallel Approach

Then a block-wide reduce operation is performed to find the maximum value among

the threads. The city corresponding to the thread with maximum probability is selected

as the next city. In this approach, only one city’s worth of data is required by a thread to

be stored in its local memory, which facilitates fast data access. The reduce operation
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4. Min-Max Ant System on GPU for Large TSP Instances

can be done in parallel. To compute tours having more cities than the block dimension,

one thread needs to process multiple cities. This also increases utilization and leads

to better overall efficiency. In this implementation, the maximum block dimension is

1024, and each thread can handle at most 35 cities. Thus the implementation can handle

TSP instances up to 35840 cities. This approach is shown in Figure 4.2.

4.4.3 2-opt

The solution quality obtained by the MMAS alone can be greatly improved by applying

local search on the final cost of MMAS. A parallel approach is implemented for the 2-

opt. The 2-opt is applied after tour construction. The threads are needed to be mapped

to the pair of cities. Thread per row equal distribution strategy is used to achieve this.

The number of pairs to be examined is given by Equation 4.11, Equation 4.12 gives

the number of threads required, and Equation 4.13 tells the number of CUDA blocks

required.

solutions =
n ∗ (n− 1)

2
(4.11)

threads =

1024, if cities ≥ 1024

cities, otherwise
(4.12)

blocks = (cities− 1)/threads+ 1 (4.13)

Since the number of solutions are greater than number of threads. Each thread need to

process more than one pair in loop. The number of pair each threads need to process is

given in Equation 4.14.

item per thread =
solutions

threads
(4.14)

After calculating the above values, threads are mapped to two cities having city index

as threadIdx.x and the value j = (threadIdx.x + j + 1) where j varies form 0 to

item per thread. This parallel strategy reduces the time to calculate the 2-opt route.

4.5 RESULT ANALYSIS

The performance of GPU-based parallel ACO algorithm has been evaluated using TSPLIB

instances up to 33810 cities. The GPU device, which is used to execute a parallel ver-
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4.5. Result Analysis

sion, has the following specifications. A GPU device has a NVIDIA Tesla P100 GPU

card with a compute capability version 6.0, 16 GB of the global memory, 56 Streaming

Multiprocessors (SMs), where each SM has 64 cores operating at 1.33 GHz. Average

execution time is collected, running each instance using 1000 iterations.

4.5.1 Data versus Task-based Parallel Approach

Two parallel strategies named, data level and task level parallelism have been evaluated

on the TSPLIB instances of ranges 100−33810 cities. The runtime requirement of both

approaches is presented in Table 4.1. Data-level and task-level strategies are up to 60×,

22× faster over the sequential approach for the instances up to 7397 cities. As instance

size increases, the data-level approach outperforms over task-level parallel approach.

Instance
Average time

(ms)
for serial version

Average Time
(ms)

For data parallel

Average Time
(ms)

For task based
KroA100 6 3.96 4.03
d198 38 14.45 19.849
lin318 152 34.11 55.22
pcb442 438 63.15 112.281
d493 621 78.76 148.406
rat575 926 110.5 215.019
d657 1426 140.284 281.693
rat783 3131 204.259 574.782
vm1084 7145 447.183 1329.97
d1291 9461 652.24 2068.33
rl1304 11475 664.44 1987.15
u1432 13733 799.44 2219.84
u2319 62053 2223.59 7436.67
pcb3038 119140 3925.48 123383.7
fnl4461 536427 8851.46 29886.7
rl5934 1034504 16391.5 51477.9
pla7397 1626091 55672.3 75451.5
usa13509 - 44589 347244
d15112 - 60524.3 784392
pla33810 - 240172 3763810
Average 21778.1203 259604.952

Table 4.1: Time analysis of sequential, data-level, and task-level parallel approaches.
Time is presented in milliseconds. The average execution time of the instances for 1000
iteration.
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Figure 4.3: Speedup analysis of data-level and task-level approaches over sequential
counterpart.

Figure 4.3 shows the speedup analysis of both parallel approaches over sequential

counterpart. Data level approach is 3.37× faster in the best-case and 1.02× faster in

the worst-case. In a task-level approach, each thread has to do O(n2) work. Thus, this

method is quite slow. Each ant requires storing the whole thread data and the visited

vector to handle the whole tour. From Table 4.1, it is noticed that the task-level approach

is slower. This is due to poor work division as each thread constructs one whole tour.

Hence, this leads to less GPU utilization.

4.5.2 Sequential versus Parallel

The sequential implementation of the ACO is compared with its parallel counterpart to

identify the speedup. The detailed time analysis of sequential and parallel approach is

presented in Table 4.1. Figure 4.3 shows the speedups obtained in parallel approaches

versus serial approach. It can be seen that the speedup is lesser (about 10×) for smaller

sized instances. This is because of the memory transfer overhead, and GPU is not

fully utilized. As instances grows, the speedup increases up to 60× over sequential

counterpart. Speedup comparison is shown for the instances up to 7397 cities. The

reason is that for larger instances running the serial approach was time-consuming.
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4.5. Result Analysis

4.5.3 Solution Quality

In terms of solution quality, the performance of ACO has been analyzed over TSPLIB

instances ranging from 100 - 33810. The cost quality received for each instance has

been presented in Table 4.2. Table 4.2 contains instance name, its optimal cost, the

local optimal solution where ACO stops, error rate concerning optimal cost, local cost

when 2-opt is considered, and the error rate after applying 2-opt.

Instance
Optimal

Cost

Local Cost
(without
2-opt)

Error
Rate

Local Cost
(With
2-opt)

Error
Rate

Time (seconds)
(With
2-opt)

KroA100 21282 23188 8.95 21394 0.52 0.11
d198 15780 17395 10.23 15873 0.58 0.29
lin318 42029 47969 14.13 43503 3.5 0.77
pcb442 50778 56144 10.53 51483 1.38 1.54
d493 35002 38836 10.95 35579 1.64 2.02
rat575 6773 7707 13.79 6859 1.27 2.67
d657 48912 55826 14.13 51168 4.61 3.33
rat783 8806 10207 15.90 8962 1.77 5.06
vm1084 239297 278158 16.23 248436 3.81 9.61
d1291 50801 55248 8.75 51450 1.27 10.30
rl1304 252948 280100 10.73 258307 2.11 12.38
u1432 152970 180817 18.20 157205 2.65 13.15
u2319 234256 268694 14.70 238264 1.71 36.35
pcb3038 137694 164955 19.79 143766 4.4 58.12
fnl4461 182566 217632 19.20 189327 3.7 150.72
rl5934 556045 665676 19.7 573930 3.2 225.18
pla7397 23260728 27231392 17.07 24259925 4.2 337.03
usa13509 19982859 24958865 24.90 20976170 4.97 1445.10
d15112 1573084 1887879 20.01 1635492 3.96 1953.99
pla33810 66048945 77008662 16.69 68774275 4.12 17426.63
Average 15.23 2.77 1084.72

Table 4.2: Comparison of solution quality with and without 2-opt. One iteration of
execution time is given in seconds.

When 2-opt is not considered, the final cost of ACO has a 8.75% error rate in the

best-case and 20.01% in the worst-case. To reduce these error-rates further, 2-opt is

applied. The 2-opt local search improves the ACO’s cost quality significantly. With

2-opt, it has a 0.52% error in the best-case and 4.97% error in the worst-case. From

Table 4.2, it is observed that applying the local search algorithm in addition to the ACO
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algorithm improves local solution significantly. Note that the time presented in Table

4.1 is collected without considering the 2-opt local search.

4.5.4 Comparison with Previous Works

The GPU-based thread mapping strategies presented in (Delévacq et al. 2013; Skinderow-

icz 2016) are similar with implementation level differences. Delévacq et al. (2013) have

presented ant-level and colony-level thread mapping strategies for the tour construction

phase. Once a feasible solution is constructed per ant, the 3-opt move is applied to

improve the solution quality further. Skinderowicz (2016) have presented three GPU-

based parallel models to Ant Colony System (ACS). Authors have implemented the

warp-level element selection technique, which reduces the number of block synchro-

nization. In both (Delévacq et al. 2013; Skinderowicz 2016) implementations, three

2D matrices need to be transferred on the GPU for the tour construction. These three

matrices are distance matrix, pheromone matrix, and n routes of n ants. The work

presented in this chapter uses only two 2D matrices, which are: a probability matrix

and n routes of n ants. The probability matrix stores the probability rates between any

two cities i and j, and the rate is calculated using Equation 4.1. This probability ma-

trix helps us to avoid transferring distance and pheromone matrices over the GPU. This

memory-efficient approach helps to solve large-scale instances over the GPU platform.

4.6 SUMMARY

This chapter presents a GPU-based parallel approach for Ant Colony Optimization

(ACO) algorithm to solve the TSP problem. This work aims to solve larger size TSPLIB

instances over the GPU platform. ACO algorithm constructs n ants and later improves

it to converge towards the near-optimal solution. The most time-consuming part of the

ACO algorithm is to construct n ants and repeatedly improve it until no further im-

provement is possible. Constructing n ants are independent of each other. Therefore,

this part of the ACO algorithm can be implemented in parallel to reduce total runtime.

Two GPU-based parallel strategies have been implemented, namely data-level and

task-level parallel approaches for the ACO algorithm. Task-level parallel approach

maps one ant per thread whereas, in a data-level approach, one ant is mapped per thread
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block. The task-level approach is up to 22× faster over the sequential approach. In a

data-level approach, multiple threads construct each ant’s solution. Therefore, data level

approach outperforms over the task-level approach, i.e., 1.02 to 3.37 times faster than

the task-level approach for instances up to 33810 cities. When data-level approach is

compared with a sequential counterpart, up to 60× speedup is observed for the instances

in the range of 100 − 33810 cities. When solution quality is concerned, ACO with 2-

opt produces good quality solutions with error rates in the range of 0.52%− 4.97% for

instances up to 33810 cities.
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CHAPTER 5

PARALLEL DETERMINISTIC LOCAL SEARCH
HEURISTIC FOR MINIMUM LATENCY PROBLEM

This chapter focuses on a deterministic local search heuristic algorithm that provides

the same local solution for a given MLP instance irrespective of multiple runs. Existing

metaheuristic algorithms for MLP use randomness in setting up the initial solution, and

perturbation to escape local minima. A heuristic usually does not produce the same lo-

cal cost for an MLP instance on successive runs. Adding randomness and perturbation

does help to explore a wide range of feasible solutions and results in a better solution.

However, the aim of this study is to determine the closeness of local optimal solution of

the deterministic heuristic algorithm with a solution obtained using the greedy random-

ized metaheuristic algorithms. A parallel deterministic local search heuristic algorithm

for the GPU to reduce the neighborhood computation time is also presented. The con-

tribution of this chapter includes:

• Provide the Deterministic Local Search Heuristic (DLSH) that assures the same

solution for the same instances irrespective of multiple trials.

• Propose the move evaluation procedure to the swap neighborhood that computes

a move pair in constant time without using any preprocessed local data.

• Demonstrates the performance analysis of heuristic algorithm over the wide range

of instances, i.e., 10-11849 nodes.

85



5. Parallel Deterministic Local Search Heuristic for Minimum Latency Problem

• Presents a GPU-based parallel model for DLSH, which solves larger instances

than existing parallel MLP solvers.

• Proposed parallel model achieves the speedup up to 179.75 times for the in-

stances up to size 7397. (Proposed source code is available at http://bit.

ly/thesisSourceCodes).

5.1 INTRODUCTION

The Minimum Latency Problem is an NP-Hard (Blum et al. 1994; Sahni and Gonzalez

1976; Sitters 2002) combinatorial optimization problem. The objective of MLP is to

find a Hamiltonian path that minimizes the overall waiting time of nodes. The formal

definition of MLP is, consider a simple, directed, weighted graph that has n vertices,

where, n − 1 vertices act as service requesting nodes and one vertex act as service

providing node. Each service requesting node vi (1 ≤ i<n) has to wait until it is

served. This waiting period is also known as latency. The latency is a sum of distance

or time required to reach from the service providing node v0 to the service requesting

node vi. Objective of MLP is to determine a Hamiltonian path l(p) that has minimum

latency ( Eqn. 5.1). Note that vertex v0 is considered as a service providing node, also

called depot node.

l(p) =
n∑
i=1

l(vi) where l(vi) =
i∑

j=1

D(vj−1, vj) (5.1)

MLP is also known with other names, namely, Cumulative Traveling Salesman

Problem (Bianco et al. 1993), Delivery Man Problem (Fischetti et al. 1993), School

Bus Driver Problem (Chaudhuri et al. 2003), and Traveling Repairman problem (Tsit-

siklis 1992). MLP has several applications in real life, such as data retrieval in the

computer network, delivery services, disk head scheduling, and logistics services for

emergency reliefs etc. (Campbell et al. 2008; Ezzine et al. 2010; Méndez-Dı́az et al.

2008). MLP and TSP, though related, differ in their main objectives. MLP focuses on

reducing the average waiting time of all the nodes (customers), whereas TSP focuses on

reducing the total traveling distance. The optimal solution of TSP may not be optimal

for MLP. MLP is customer-centric, and TSP is distributor centric. Moreover, in TSP,

generating feasible solutions from initial solution and calculating its cost is straightfor-
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ward, a change in affected subsequence has to be considered (Yelmewad and Talawar

2018; Yelmewad and Talawar 2019). In MLP, the latency of each node has to be recal-

culated after a small modification in the base solution. Therefore, MLP involves more

computations per route cost calculation than TSP.

5.1.1 Exact Methods

There are various exact algorithms available to solve MLP that assures an optimal so-

lution (Blum et al. 1994; Garcı́a et al. 2002; Ha Bang et al. 2013; Lucena 1990;

Wu et al. 2004). Lucena (1990) presents the branch and bound algorithm using the

lower bound scheme. The lower bound scheme divides lower bound into multiple com-

ponents and subsequently optimize each component. Blum et al. (1994) proposes two

exact methods, namely, dynamic programming, and unweighted trees and depth-first

search algorithms. Wu (2000) proposes the dynamic programming approach to solve

MLP. Wu et al. (2004) proposes another exact method, namely, branch and bound al-

gorithm for solving MLP. The branch and bound is a more efficient approach than the

dynamic programming which consumes less CPU time. For an MLP of 25 vertices,

the fastest approach of the branch and bound algorithm consumes 100 seconds, outper-

forming over the CPLEX (Salehipour et al. 2011). Solving MLP for medium to large

instances for exact solutions take an inordinately large time. Therefore, approximation

and heuristic algorithms are built to provide near-optimal solutions in lesser time.

5.1.2 Approximation and Metaheuristic Methods

Several approximation algorithms have been proposed to solve MLP (Archer and Blasiak

2010; Arora and Karakostas 2003; Blum et al. 1994; Fakcharoenphol et al. 2007;

Goemans and Kleinberg 1998). Approximation algorithms solve NP-Hard optimiza-

tion problems aiming to provide near-optimal solutions with minimum gap rate. An

approximation algorithm assures an upper or lower bound on the constructed feasible

solution. The closeness of the approximation algorithm with an optimal solution is

determined using the approximation factor. Blum et al. (1994) propose the first approx-

imation algorithm for MLP. This algorithm had an approximation factor of 144 over the

optimal solution. Archer and Blasiak (2010) provide an approximate approach which
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obtains the best approximation factor, i.e., 3.03 in case of edge-weighted tree, the best

approximation factor. When the general metric space is considered, Chaudhuri et al.

(2003) provide a solution which is within 3.59 times.

A metaheuristic is another approximation method where the cost bound on the ob-

tained solution is not assured (Talbi 2009). Metaheuristic algorithms begin with an

arbitrary or constructed initial solution. The initial solution is continuously improved

using local search mechanisms. A few metaheuristic algorithms have been proposed to

solve MLP (Dewilde et al. 2013; Ribeiro and Laporte 2012; Salehipour et al. 2011;

Silva et al. 2012). Ngueveu et al. (2010) present a memetic algorithm for the cumu-

lative capacitated vehicle routing problem. They have presented the move evaluation

method which provides the cost of the newly generated solution in constant time, O(1),

for the particular neighborhood structure where the orientation of the base solution is

not changed. Salehipour et al. (2011) propose two combinations of metaheuristic algo-

rithms, first, Greedy Adaptive Search Procedure (GRASP) with Variable Neighborhood

Descent (VND), and second, GRASP with Variable Neighborhood Search (VNS). They

build eight sets of MLP instances of size 10, 20, 50, 100, 150, 200, 500, and 1000. Each

instance size set has another twenty randomly generated instances. Silva et al. (2012)

proposes a metaheuristic, which is a combination of GRASP, ILS, and RVND. They

have presented a generic move evaluation method to calculate the cost of the solution

after applying the move inO(1) time. This time bound is achieved using a preprocessed

data structure for the base solution.

Dewilde et al. (2013) propose the tabu search approach for the MLP with profit.

All these metaheuristic approaches use iterative local search to improve the solution

quality. A large fraction of execution time is spent in exploring different neighborhood

structures. This neighborhood exploration time can be reduced by distributing tasks on

multi-core processors or many-core co-processors.

5.1.3 MLP on the Graphics Processing Unit

The proposed sequential version of DLSH consumes 39 days to reach a local solution

for a TSPLIB instance rl11849. In the metaheuristic method, more than 90% execution
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time on an average is being spent in the solution improvement phase. The parallel

implementation reduces the execution time significantly when the instructions involved

in the computation have less dependency. Most of the steps present in the neighborhood

generation techniques are independent. These neighborhood generation steps can be

implemented in parallel. For this work, the parallel computation has been done using

the GPU platform. Afif et al. (2020) and Kim et al. (2020) have shown the effectiveness

of the GPU platform for the general-purpose computation.

Programmable massively parallel processors, such as Graphics Processing Unit (GPU)

(Alawneh et al. 2020; Carvalho et al. 2020; Geng et al. 2020) can be employed in

various stages of the MLP execution to arrive at near-optimal solutions in a reasonable

amount of time. The existing GPU-based parallel strategy limits to solve instances up

to 1024 nodes. In this chapter, a GPU-based parallel strategy have been proposed to

address the large-scale instances in lesser time.

5.2 DETERMINISTIC LOCAL SEARCH HEURISTIC (DLSH)

Algorithm 5.1 presents the stepwise details of Deterministic Local Search Heuristic

(DLSH) algorithm. First (line 1), the initial solution is constructed using the nearest

neighborhood approach. The first node in a feasible solution is fixed to node 0. Later

NN starts adding the closest unvisited neighbors of a recently visited node until a feasi-

ble solution is constructed. Once the solution is constructed, its cost is calculated (line

2). Equation 5.2 is used for the cost calculation (Silva et al. 2012), where, n is a sum

of total clients and one depot node, D(Pi, Pj) returns an Euclidean distance between

nodes Pi and Pj , and P is a Hamiltonian path.

f(s) =
n−1∑
j=1

(n− j)×D(Pj−1, Pj) (5.2)

Local search is applied to the initial solution using two neighborhood mechanisms,

namely, swap and 2-opt move (lines 3-8). If any improved solution is found in any of

neighborhood approaches, the neighborhood approaches are applied repeatedly on the

improved solution until no further improvement is possible. The order considered for

the neighborhood evaluation is, swap move followed by the 2-opt move. This order
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Algorithm 5.1: Generic Deterministic Local Search Heuristic
Result: Returns the local optimal solution

1 s← initial solution
2 f(s)← cost calculation
3 while s is improved do
4 s′ ← swap(s)
5 s′ ← 2− opt(s′)
6 if s′ < s then
7 s← s′

8 else
9 return s as local optimal

10 end
11 end

is fixed on the complexity of neighborhood move computation. Neither perturbation,

multiple initial solutions, nor randomization have been applied for the DLSH approach.

There is no diversification in DLHS to get out of the local optimal solution. Instead,

DLHS converges towards the local optimal. Therefore, a term heuristic is used instead

of metaheuristic for this local search algorithm (Talbi 2009). Since there is no random-

ization exist in the DLHS, it always generates the same solution for an input instance.

Two neighborhood generation approaches have been considered, namely swap move

and two-opt move. This is because when any move is applied on the base solution,

either it changes the orientation of the base solution or just respective vertex pair of the

move is exchanged without changing the orientation. These neighborhood evaluation

approaches are explained in the following subsections in detail.

5.2.1 Swap Move

In the swap move, a pair of vertices (i, j) is swapped without changing the orientation

of the base solution. Figure 5.1 shows the pictorial representation of the neighborhood

generation mechanism. Figure 5.1 (A) shows the original path, and 5.1 (B) shows

the path after swapping is applied on the vertex pair (i, j). Total feasible solutions

possible with swap approach are n(n−1)
2

, where, n is total nodes in the Hamiltonian

path, excluding the depot node. When a move is applied, the latency of ith onward

nodes are changed. Therefore for each move, the total latency of the solution is to be
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calculated. This cost calculation process consumes O(n) time for each move.

Figure 5.1: Neighborhood Generation Mechanism

5.2.1.1 Move Evaluation

Silva et al. (2012) has proposed the move evaluation procedure, which consumes a

constant time, i.e., O(1). They have achieved the move evaluation in constant time

using the local data structure. Local data structures are preprocessed before applying

move operations. This local data structure contains three matrices, namely duration

(T ), cost (C), and the delay cost (W ) for the base solution. The computation of these

matrices is additional overhead for this move evaluation procedure.

In this work, another move evaluation procedure is proposed for the swap move

eliminating additional preprocessing of local data. A study has been carried out to

investigate the number of edges affected during the swap move evaluation. A study

reveals that at most four edges are affected in the initial solution while evaluating a

vertex (i, j) pair. Consider an instance of size n, having i and j vertices, where 1 ≤ i <

j < n. Three equations have been modeled to evaluate a pair in constant time based

upon the number of edges affected.

1) One edge is affected when vertex i = n− 2 and vertex j = n− 1:

When a swap move is applied on the vertex pair (i, j), where vertices i and j are

adjacent and vertex j lies at n−1 position in the base solution, only one edge is affected

in the base solution. Therefore, one edge, i.e. (i − 1, i), is removed from the base
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solution and one edge, i.e. (i − 1, j), is added back to form a new solution. Figure 5.2

shows a pictorial mechanism of a swap move when applied on the vertex (i, j) pair. In

Figure 5.2 (a), the dotted line shows an edge that is removed, and a new edge is added

back to the base solution, as shown in Figure 5.2 (b), to form a new feasible solution.

For this type of vertex pair, the change is calculated using Eqn. 5.3.

Figure 5.2: An edge affected in swap move when i = j − 1 & j = n− 1

change = (n− i)×D(Pi−1, Pj)− (n− i)×D(Pi−1, Pi) (5.3)

2) Two edges are affected when vertex i = j − 1 and vertex j < n− 1:

When two vertices i and j are adjacent and vertex j is placed at a position < n− 1,

two edges are affected in a base solution. Figure 5.3 shows a pictorial mechanism of a

swap move when vertex i = j − 1 and vertex j < n − 1. When a swap is applied on

such vertex pair, two edges are are removed, namely (i − 1, i) and (j, j + 1), and two

edges, namely (i− 1, j) and (i, j + 1), are added back to form a feasible solution. Eqn.

5.4 is used to calculate impact of such swapping.

Figure 5.3: Edges affected in swap move when i = j − 1 & j < n− 1

change = ((n− i)×D(Pi−1, Pj) + (n− i− 2)×D(Pi, Pj+1))

−((n− i)×D(Pi−1, Pi) + (n− i− 2)×D(Pj, Pj+1)) (5.4)

3) Four edges are affected when i 6= j − 1 and j < n:
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When vertices i and j are not adjacent and j is placed at a position < n, four edges

are affected in the base solution. Figure 5.4 presents the affected edges on the solution.

These affected edges are (i− 1, i), (i, i+ 1), (j − 1, j), and (j, j + 1). Four new edges

are added in following form: (i− 1, j), (j, i+ 1), (j − 1, i), and (i, j + 1). The impact

Figure 5.4: Edges affected in swap move when i 6= j − 1 and j < n.

of applying a swap move on such vertex pair is calculated using Eqn. 5.5.

change = ((n− i)×D(Pi−1, Pj) + (n− i− 1)×D(Pj, Pi+1)

+(n− j)×D(Pj−1, Pi) + (n− j − 1)×D(Pi, Pj+1))

−((n− i)×D(Pi−1, Pi) + (n− i− 1)×D(Pi, Pi+1)

+(n− j)×D(Pj−1, Pj) + (n− j − 1)×D(Pj, Pj+1)) (5.5)

One of three equations is used while calculating a swap move based on the vertex posi-

tion. The change is a difference of adding edges and removing edges. If the change is

negative, the corresponding swapping pair (i, j) generates a better solution than the base

solution. This change is calculated on-the-fly using X, Y coordinates of the correspond-

ing instance. Since each move effect is computed in O(1) time for n(n−1)
2

neighbors,

the time complexity of swap move becomes O(n2).

5.2.2 Two-opt Move

In the two-opt move, two edges of the base solution are swapped. Total solutions pos-

sible with this move is n(n−1)
2

, where n is the total clients size excluding depot node.

Figure 5.1 (C) shows the pictorial representation of the two-opt move. The order used

to remove two edges are (i, i + 1) and (j, j + 1) respectively, and added back in order

(i, j) and (i+ 1, j + 1). The orientation of the base solution changes after applying this

neighborhood move. The subsequence from i + 1 to j is reverted and added back to
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the solution. Here, the variable number of edges are affected for each move, and hence

Eqns. 5.3-5.5 cannot be applied for the two-opt move.

5.2.2.1 Move Evaluation

A constant time move evaluation procedure presented in Silva et al. (2012) can be used

for the two-opt move. The procedure requires preprocessing of a local data structure

of size 4n2. In a GPU based MLP implementation, using the local data structure, the

communication time between the CPU and the GPU overshadows the computation time

(Rios et al. 2018). Therefore, the total latency for each move is calculated in linear

time, instead of using preprocessed data. The time complexity of two-opt move isO(n3)

since each move needs O(n) time, and there are O(n2) vertex pairs to be evaluated.

When a move is applied, the base solution cannot be changed. The original base

solution has to be retained until all the moves are evaluated. A separate array of size

n will be needed to store intermediate solution generated after each move. The overall

space required to store these intermediate solutions is n× n(n−1)
2

. This is avoided in our

approach by calculating the latency of each solution using Eqn. 5.2 on the fly.

Figure 5.5: Subsequences of the solution after edge removal in two-opt move

The total latency of the generated solution is calculated as follows. Assume a Hamil-

tonian path of size n. When two-opt is applied on the vertex pair (i, j), the path is

separated into three subsequences. Figure 5.5 presents all three possible subsequences

of the path when i 6= j − 1. When two-opt move is applied on the vertex pair (i, j),

where i = j − 1, it will be equivalent to the swap move. Therefore, in two-opt, the

value of j is considered from i + 2 index. First subsequence s1 will be from index 0

to i, s2 is from i + 1 to j, and s3 is from the index j + 1 to n − 1. A new solution is

formed by joining s1, a reverted sequence of s2, and s3. The latencies of subsequences

are calculated using Algorithm 5.2 to get the total latency of move (i, j). Lines (2-4)
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Algorithm 5.2: Move Evaluation Procedure for Two-opt Move
Result: Returns f(s′) for the move pair (i, j)

1 d1, d2, d3← 0
2 for x = 0, y = 1; y ≤ i; x++, y++ do
3 d1 += (n - y) * D(P[x], P[y]);
4 end
5 for x = i, y = j, z = i; y < i; x = y, y −−, z++ do
6 d2 += (n - z - 1) * D(P[x], P[y]);
7 end
8 for y = j + 1, x = i + 1; y < n; x = y, y++ do
9 d3 += (n - 1) * D(P[x], P[y]);

10 end
11 f(s’) = d1 + d2 + d3

presents the latency calculation for the subsequence s1. f(s1) is calculated by summing

the product of (n− y) and D(Px, Py) until x<i, where, x = 0 and y = 1 initially, later

incremented by 1 until x<i. Function D(Px, Py) returns an Euclidean distance between

nodes xth and yth of P . For f(s2) calculation, x and y are initialized with value of i, j

respectively (lines 5-7). Because j is a first node in reverted s2 and has to connect with

a last node of s1, i.e., i, to join subsequences s1 and s2 together. Now sum of product of

(n− z − 1) and (Px, Py) is computed until z<i. After first iteration, x is assigned with

a current value of y, and y is decremented. For the third subsequence f(s3) calculation,

the last node of s2, i.e., i+1 is initialized to x and y start with first node of s3, i.e., j+1

(line 8-10). Now, f(s3) is calculated until y<n (line 9). Next, value of y is assigned to

x before y increments. Finally, all three f(s1), f(s2), and f(s3) are summed up to get

total latency of a solution on-the-fly without using a separate array (line 11).

5.3 PARALLEL DETERMINISTIC LOCAL SEARCH HEURISTIC

The most time-consuming part of the DLSH is the solution improvement phase. The

experimental analysis has been performed to segregate time spent in the initial solu-

tion construction and solution improvement using TSPLIB instances of size 1000-2392

nodes. Figure 5.6 shows the time portion spent in the solution construction and its im-

provement. Out of total execution time, more than 99% of the time is spent in the solu-

tion improvement phase. DLSH spends less than a few seconds time to build a feasible

solution, whereas minutes to hours is needed to get a local optimal. The initial solution
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is improved using neighborhood generation methods, such as swap and two-opt, which

have O(n2) and O(n3) time complexity, respectively. These methods are called repeat-

edly until the local optimal solution is obtained. The overall time complexity of these

methods becomes i × (n2 + n3), where i is total calls of the neighborhood methods.

Therefore, this work aimed to reduce the time spent in the neighborhood generation

methods using a parallel implementation.
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Figure 5.6: Execution time portion analysis in the initial solution construction and im-
provement.

Parallel DLSH (PDLSH) leverages the GPU’s massively parallel processors to exe-

cute parallel tasks for the DLSH algorithm. The move evaluations with their indepen-

dent tasks are a good candidate to execute in parallel. Rios et al. (2018) have imple-

mented MLP over GPU with maximum speedup up to 13.7 times. For the current work,

each move evaluation is assigned to a single thread as in (Rios et al. 2018). However,

the proposed work overcomes a limitation of the strategy used in the previous work.

While evaluating the vertex pair (i, j), the previous work assigns CUDA block id as i

and the thread ids inside the block as j. This limits the number of j vertices that can be

evaluated with i to the maximum threads allowed in a block (1024, typically). This lim-

itation can be overcome by assigning more evaluations per thread or eliminating node j

dependency on the maximum threads per block limit.

Parallel DLSH employs one move evaluation per thread strategy overcoming the
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maximum threads per block limit. n(n − 1)/2 threads are used across multiple blocks

for n(n−1)/2 moves possible with n size instance. Vertex pair (i, j) is generated using

the global id of thread using Eqns. 5.6, 5.7 (Luong et al. 2013).

i = n− 2−
⌊
(
√

8 ∗ (N(s)− id− 1) + 1− 1)/2
⌋

(5.6)

j = id− i ∗ (n− 1) + (i ∗ (i+ 1)/2) + 1 (5.7)

Thread id 0 1 ... n− 2 n− 1 n ... nC2 − 1
(i, j) pair (0, 1) (0, 2) ... (0, n− 1) (1, 2) (1, 3) ... (n− 2, n− 1)

Table 5.1: Thread per vertex pair mapping details for neighborhood evaluation methods.

Table 5.1 presents the thread mapping strategy for the corresponding move evalu-

ation pair. The first row indicates global thread ids, and the second row indicates the

corresponding vertex pair to be evaluated by the thread. In this strategy, first, n − 2

threads do not compute move evaluation since the first node 0 has to remain at its orig-

inal place in the solution.

There are two versions of PDLSH have been designed based on the reduction type.

These two versions are presented in Algorithms 5.3 and 5.6. The common steps of both

algorithms are illustrated below. The initial solution is created using Nearest Neighbor-

hood (NN) approach, f(s) is computed using Eqn. 5.2, and N(s) indicates the total

moves possible with swap and two-opt methods (lines 1-4). Next, GPU memory is al-

located, and data is transferred to the GPU, which is required for the GPU computation

(line 5). Total threads and blocks required for neighborhood computation are deter-

mined (lines 6-12). The remaining steps of algorithms are explained based on their

reduction type in the following subsections.

5.3.1 Reduction using Built-in Function

In Algorithm 5.3, the swap and two-opt kernels are called repeatedly until a current

solution is trapped in the local optima (lines 13-42). A 64-bit variable ltcy id is used to

hold the thread id and total latency of the corresponding threads together. At the CPU

side, f(s) is bound into the most significant 32 bit (line 14). A kernel swap is called
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Algorithm 5.3: Parallel Deterministic Local Search Heuristic using Built-in
Function

Result: Returns the local optimal solution
1 s← initial solution
2 s

′′ ← s
3 f(s)← cost calculation
4 N(s)← n(n− 1)/2
5 GPU ← allocate and copy ltcy id, s x, y coords
6 if N(s) < 256 then
7 thrds← N(s)
8 blks← 1

9 else
10 thrds← 256
11 blks← (N(s)− 1)/256 + 1

12 end
13 while s is improved do
14 ltcy id← (((long)f(s) + 1) << 32)− 1
15 swap <<< blks, thrds >>> (s, x, y, ltcy id)
16 f(s′)← dst tid >> 32
17 while f(s′)<f(s) do
18 f(s)← f(s′)
19 id = ltcy id&((1ull << 32)− 1)

20 x = n− 2−
⌊
(
√
8 ∗ (N(s)− id− 1) + 1− 1)/2

⌋
21 y = id− x ∗ (n− 1) + (x ∗ (x+ 1)/2) + 1
22 s← move(x, y)
23 ltcy id← (((long)f(s) + 1) << 32)− 1
24 swap <<< blks, thrds >>> (s, x, y, ltcy id)
25 f(s′)← dst tid >> 32

26 end
27 two− opt <<< blks, thrds >>> (s, x, y, ltcy id)
28 f(s′)← dst tid >> 32
29 while f(s′)<f(s) do
30 s← s′

31 id = ltcy id&((1ull << 32)− 1)

32 x = n− 2−
⌊
(
√
8 ∗ (N(s)− id− 1) + 1− 1)/2

⌋
33 y = id− x ∗ (n− 1) + (x ∗ (x+ 1)/2) + 1
34 s← move(x, y)
35 ltcy id← (((long)f(s) + 1) << 32)− 1
36 two− opt <<< blks, thrds >>> (s, x, y, ltcy id)
37 f(s′)← dst tid >> 32

38 end
39 if f(s) < f(s

′′
) then

40 s
′′ ← s

41 end
42 end
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Algorithm 5.4: Swap Kernel Pseudocode for Built-in Function
Result: Returns ltcy id to CPU

1 id← threadIdx.x+ blockIdx.x ∗ blockDim.x
2 if id < N(s) then
3 i = n− 2− b8 ∗ (N(s)− id− 1) + 1)− 1)/2c
4 j = id− i ∗ (n− 1) + (i ∗ (i+ 1)/2) + 1
5 if i 6= 0 then
6 change← change(i, j) using Eqns. 5.3-5.5
7 if change<0 then
8 cost+ = change
9 atomicMin(ltcy id, cost << 32|id)

10 end
11 end
12 end

(line 15). Algorithm 5.4 presents the kernel pseudocode for the swap neighborhood

approach. A global identification id is assigned to each thread (line 1). Threads with

id<N(s) are involved in move evaluation (lines 2-12). The built-in atomicMin is used

to find the best-improved solution cost across threads having negative change value

(lines 7-10). The atomicMin binds the best improved solution cost and its correspond-

ing thread id in the ltcy id variable (line 9).

Returning to Algorithm 5.3, latency f(s′) is extracted from ltcy id (line 16). If

f(s′)<f(s), the swap kernel is called (lines 17-26). Thread id of the best found solution

is extracted from the lower 32 bits (line 19). The best improved vertex pair (x, y)

is extracted from id using 1D to 2D conversion equations (lines 20-21). The move

between (x, y) pair is applied on the base solution s (line 22). The updated f(s) is

added back in ltcy id variable and kernel swap is called recursively (lines 23-25). The

two-opt kernel (lines 27-38) and the swap kernel (lines 14-26) differs in their working.

The two-opt is illustrated in pseudocode, in Algorithm 5.5. nC2 threads are involved

in move evaluation and latency of each move is calculated using Algorithm 5.2 (lines

1-11). A thread which gets the minimum latency is chosen, and its id and cost are

combined in the ltcy id variable using atomicMin (lines 7-10). Finally, Algorithm

5.3 returns the local optimal when further improvement is not possible. CUDA atomic

function supports operation on 64-bit numbers for devices having compute capability
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Algorithm 5.5: Two-opt Kernel Pseudocode for Built-in Function
Result: Returns ltcy id to CPU

1 id← threadIdx.x+ blockIdx.x ∗ blockDim.x
2 if id < N(s) then
3 i = n− 2− b8 ∗ (N(s)− id− 1) + 1)− 1)/2c
4 j = id− i ∗ (n− 1) + (i ∗ (i+ 1)/2) + 1
5 if i 6= 0 && i 6= j − 1 then
6 f(s′)← calculate latency for move(i, j) using Algo. 5.2
7 if f(s′)<f(s) then
8 atomicMin(ltcy id, f(s′) << 32|id)
9 end

10 end
11 end

3.5 and above. The atomicMin function is used such that when a 32-bit minimum

value is chosen from threads at the same time, a 32-bit thread id of corresponding

thread which has minimum value is combined into a 64-bit global memory variable.

Therefore, it will be easier to identify which vertex pair (i, j) through the thread id, and

has the best-improved solution f(s) without any race condition. However, the strategy

of combining two 32-bit numbers into one 64-bit will fail when either the thread id or

the f(s) does not fit into 32-bits.

5.3.2 Reduction using Vector

Algorithm 5.6 is an alternative to the Algorithm 5.3, where the best-improved solution

and its associated vertex pair (i, j) are chosen manually. To do this, a separate triple

min data vector is required to hold three elements, namely cost, i, and j for each

thread, involved in the move evaluation. Once the neighborhood kernel finishes its

execution, a separate function is used to find the best-improved solution s′, i, and j

from the triple and written into the first position min data vector. The swap kernel for

this reduction approach is similar to the Algorithm 5.4 except that each thread will write

their cost, i, and j values to the min data instead of line 9 in Algorithm 5.4. Similarly,

threads will update min data instead of line 8 in Algorithm 5.5 in case of reduction

using vector. Reduction on the vector can be done in two ways, which are explained

below.
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Algorithm 5.6: Parallel Deterministic Local Search Heuristic using Vector
Result: Returns the local optimal solution

1 s← initial solution
2 s

′′ ← s
3 f(s)← cost calculation
4 N(s)← n(n− 1)/2
5 GPU ← allocate and copy min data, s x, y coords
6 if N(s) < 256 then
7 thrds← N(s)
8 blks← 1

9 else
10 thrds← 256
11 blks← (N(s)− 1)/256 + 1

12 end
13 kernel to initialize min data
14 while s is improved do
15 swap <<< blks, thrds >>> (s, x, y,min data)
16 find min <<< blks, thrds >>> (min data)
17 f(s′)← min data[0].ltcy
18 while f(s′)<f(s) do
19 f(s)← f(s′)
20 x = min data[0].i
21 y = min data[0].j
22 s← move(x, y)
23 swap <<< blks, thrds >>> (s, x, y,min data)
24 find min <<< blks, thrds >>> (min data)
25 f(s′)← min data[0].ltcy

26 end
27 two− opt <<< blks, thrds >>> (s, x, y,min data)
28 find min <<< blks, thrds >>> (min data)
29 f(s′)← min data[0].ltcy
30 while f(s′)<f(s) do
31 f(s)← f(s′)
32 x = min data[0].i
33 y = min data[0].j
34 s← move(x, y)
35 two− opt <<< blks, thrds >>> (s, x, y,min data)
36 find min <<< blks, thrds >>> (min data)
37 f(s′)← min data[0].ltcy

38 end
39 if f(s) < f(s

′′
) then

40 s
′′ ← s

41 end
42 end
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Figure 5.7: Pictorial representation of one-pass reduction.

5.3.2.1 One-pass Reduction

An additional data structure is needed to allocate memory on the GPU device for manual

reduction. For one-pass reduction, a triple vector of nC2 size is used to hold the result

of each thread in each kernel call. This vector is allocated in global memory. The

workflow of one-pass reduction is presented in Figure 5.7.

5.3.2.2 Two-pass Reduction

The two-pass reduction is designed to reduce the global memory allocations required

in the one-pass method. The pictorial workflow of two-pass reduction is presented in

Figure 5.8. All threads within a block write their move evaluation results in the shared

memory. When threads finishes move evaluation, the best-improved solution within

each block is determined. Subsequently, the details of best-improved solution of each

block, i.e., a vertex pair (i, j) and its cost, is written to the global memory. Next,

device-wide reduction is applied to find the best-improved solution from the global

memory. For that a separate kernel function is required. A kernel function that is built

to find a minimum is called log2n times, where n will be the total blocks used for the

neighborhood kernel computation. In this technique, a triple vector of size block width

is created in the shared memory to hold cost, i, and j values of each thread within

a block. The triple values of each block are then written to the triple vector of size

total blocks in the global memory.

The difference between both the one-pass and two-pass reductions is in the memory
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Figure 5.8: Pictorial representation of two-pass reduction.

space allocation. The two-pass method allocates 3 × n memory space in the global

memory, where n is total blocks, and 3 × block width in the shared memory, where

block width is total threads in a single block. The one-pass reduction approach allo-

cates 3×n C2 memory space in the global memory.

The atomic operation can be used within and across the block. When an atomic

operation is applied within a block, it consumes lesser time than the atomic operation

is applied across the block. This is because when an atomic operation is applied within

a block, the atomic function creates the serialization at the block level. Only threads

within the same CUDA block compete for accessing the same shared memory loca-

tion. Moreover, the shared memory has the least latency. When an atomic operation

is applied across the block, the atomic function creates serialization at the device level.

Several threads across multiple blocks compete for accessing the same global memory

location. The global memory is visible to all threads across all blocks, and it is high

latency memory in the GPU memory hierarchy.
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5.4 RESULTS ANALYSIS

The performance analysis of DLSH and PDLSH have been tested using the wide variety

of TRP (Salehipour et al. 2011) and TSPLIB (Reinelt 1991) instances. Seven sets of

TRP instances of size 10, 20, 50, 100, 150, 200, and 500 nodes are used. Each TRP set

has 20 randomly generated instances. For time analysis, each instance has been run ten

times, and the average execution time is recorded. Moreover, TSPLIB instances have

been used to observe the functioning of PDLSH while solving larger instances, i.e., up

to 11849 nodes. Note that results are recorded using instances up to 11849 nodes. If

any larger instance which has more than 11849 nodes, it can be solved using PDLSH.

The hardware specification details used for DLSH and PDLSH analysis is shown in

Table 5.2. The sequential implementation of DLSH was run on the Intel Core i7, which

Table 5.2: Implementation details for DLSH and PDLSH with hardware specifications.
The DLSH and PDLSH column shows the platform used for corresponding implemen-
tation.

Description DLSH PDLSH

Language C CUDA
CPU / GPU Core i7-4790 Tesla K40m
Architecture Haswell Kepler
Streaming Multiprocessor NA 15
Cores 8 2880
Frequency 3.6 GHz 0.75 GHz
Global Memory 16 GB 12 GB
Shared Memory NA 48 KB

has eight cores running at 3.6 GHz, and a RAM of size 16 GB. The sequential DLSH

is coded in C language, and parallel DLSH has been coded in the CUDA framework

(version: CUDA 10.1). The specifications of GPU which is used for executing the par-

allel code are followed. A Tesla K40m GPU card is used, which has compute capability

version 3.5, the global memory of size 12 GB, 15 Streaming Multiprocessors (SMs),

and each SM has 192 cores running at 745 MHz. The performance analysis of DLSH

and PDLSH is explained in the following subsections.

104



5.4. Results Analysis

5.4.1 Deterministic Local Search Heuristic (DLSH)

The solution quality obtained with DLSH is presented in Tables 5.3-5.6. Table 5.3

presents the solution obtained on the TRP instances of size 10, 20 and 50 nodes. The

first column represents 20 instances for each size. Columns 2-6 represent the initial

solution (i.e., obtained using NN), local optimal solution, number of times a pair of

neighborhood methods (i.e., swap and two-opt) is called, optimal solution, and the gap

rate from an optimal solution, respectively, for TRP size 10. Columns 7-11 and 12-

16 represents the same information as columns 2-6 for 20 and 50 size instances. The

optimal solutions for TRP sets of size 10, 20, and 50 are known (Silva et al. 2012).

The gap percentage is used to compute the farness of local solution from the optimal

solution. The gap rate is calculated as (Local −Opt)/Opt ∗ 100.

From Table 5.3, it is noticed that DLSH builds an optimal solution for 11 instances

for 10-size set. Out of 11 optimal solutions, eight solutions are reached in the solution

construction phase itself. For the remaining three optimal solutions, the neighborhood

generation pair is called at least twice in order to reach global optimal solutions. For a

10-size data set, nine instances trap in the local optima. The gap rate observed in these

nine instances is in the range of 0.20−8.38%. DLSH obtains optimal solutions for four

instances, namely R12, R16, R17, and R20, respectively, for a 20-size data set. DLSH

provides near-optimal solutions for the other 16 instances, which has a gap rate of up

to 11.67%. DLSH could not converge to an optimal solution in a 50-size data set. The

local solutions found in the 50-size data set has a 2.02% gap rate in the best-case and

13.48% in the worst-case.

From these results, it can be inferred that an optimal solution may not be reached

as instance size increases. This is because, DLSH explores a limited search-space and

stops exploring the feasible solutions when traps into a local optima. The number of

feasible solutions explored in the DLSH search-space are: i × (j ×n C2 + k ×n C2),

where n is instance size, i represents number of times a neighborhood pair (i.e., swap

and two-opt) is called, j and k indicates the number of times swap and two-opt is

called respectively for each i call. For example, consider an instance R1 from a 50-

size data set. DLSH produces a local solution (i.e., 13842) after exploring 39200 (i.e.,
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2×(6×50C2+10×50C2) = 39200) feasible solutions with a gap rate of 13.48%. Exact

methods have to explore either O(2n) or O(n!) search-space to determine an optimal

solution for the same instance. Therefore, metaheuristic algorithms are used to find

a near-optimal solution in lesser time. As far as execution time is concerned, DLSH

spends a negligible time (i.e., few milliseconds ) to get local solutions for these 10, 20,

and 50 size data sets.

Table 5.3: Solution quality analysis for TRP instances of size 10, 20, and 50 using
DLSH. Abbreviations used- I: Instance name, C: Calls;

I
10 20 50

Init Local C Opt Gap % Init Local C Opt Gap % Init Local C Opt Gap %

R1 1328 1328 1 1303 1.92 3356 3181 2 3175 0.19 15530 13842 2 12198 13.48
R2 1520 1520 1 1517 0.20 3305 3290 2 3248 1.29 13693 13046 2 11621 12.26
R3 1233 1233 1 1233 0.00 4244 3621 2 3570 1.43 15058 13238 2 12139 9.05
R4 1395 1395 1 1386 0.65 3416 3331 2 2983 11.67 14656 13605 2 13071 4.09
R5 1060 1060 1 978 8.38 3521 3322 2 3248 2.28 12955 12713 2 12126 4.84
R6 1477 1477 1 1477 0.00 3479 3461 2 3328 4.00 13638 13325 2 12684 5.05
R7 1221 1169 2 1163 0.52 2910 2910 1 2809 3.60 14123 11725 2 11176 4.91
R8 1234 1234 1 1234 0.00 3741 3627 2 3461 4.80 13281 13171 2 12910 2.02
R9 1402 1402 1 1402 0.00 3654 3626 2 3475 4.35 14141 13739 2 13149 4.49
R10 1410 1394 2 1388 0.43 3582 3582 1 3359 6.64 14291 13164 2 12892 2.11
R11 1405 1405 1 1405 0.00 3253 3136 2 2916 7.54 13849 13574 2 12103 12.15
R12 1164 1150 2 1150 0.00 4227 3314 2 3314 0.00 11256 11058 2 10633 4.00
R13 1561 1561 1 1531 1.96 3698 3560 2 3412 4.34 13386 12747 2 12115 5.22
R14 1442 1219 2 1219 0.00 3935 3450 2 3297 4.64 14160 13586 2 13117 3.58
R15 1129 1129 1 1087 3.86 3369 2871 2 2862 0.31 13394 12522 2 11986 4.47
R16 1315 1315 1 1264 4.03 3909 3433 2 3433 0.00 13596 13285 2 12138 9.45
R17 1058 1058 1 1058 0.00 3175 2913 2 2913 0.00 14172 13126 2 12176 7.80
R18 1083 1083 1 1083 0.00 3288 3262 2 3124 4.42 14435 13953 2 13357 4.46
R19 1482 1394 2 1394 0.00 4441 3659 3 3299 10.91 12398 12316 2 11430 7.75
R20 951 951 1 951 0.00 3140 2796 2 2796 0.00 12745 12612 2 11935 5.67
Min 0 0 2.02
Avg 1.10 3.62 6.34
Max 8.38 11.67 13.48

Table 5.4 presents the solution quality and execution time analysis for 20 instances

of each 100, 150, and 200 size data set. There is no known optimal solutions are avail-

able for instance size ≥ 100. Therefore, an improvement percentage (i.e., local gap %)

is calculated from the initial solution to the local optima as (Local− Init)/Init ∗ 100.

In the best-case, the improvement rates observed in DLSH are −14.57%, −12.64%,

and −12.06% for 100, 150, and 200 size data sets, respectively. There is one constraint

applied in the DLSH. The constraint is to maintain the deterministic solution irrespec-

tive of multiple runs for the same instance. This makes DLSH improve the solution

until there is no further improvement is possible and hence DLSH stops when the local
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Table 5.4: Solution quality and execution time details for TRP instances of size 100,
150, and 200 using DLSH. Time is given in seconds. Abbreviations used- I: Instance
name, C: Calls, LG: Local Gap;

I
100 150 200

Init Local C LG % Time Init Local C LG % Time Init Local C LG % Time

R1 34726 34255 2 -1.36 0.025 61256 57800 2 -5.64 0.175 109130 98480 2 -9.76 0.680
R2 38189 34977 2 -8.41 0.069 73855 66598 3 -9.83 0.294 111697 98230 3 -12.06 1.176
R3 37642 33404 2 -11.26 0.055 67767 64205 2 -5.26 0.212 113545 103959 3 -8.44 0.544
R4 40316 35631 2 -11.62 0.087 68260 59631 2 -12.64 0.211 104810 101155 2 -3.49 0.362
R5 36017 35050 2 -2.68 0.016 68538 61524 2 -10.23 0.191 102359 94078 3 -8.09 0.626
R6 36298 35805 3 -1.36 0.019 66783 64108 2 -4.01 0.120 113768 102947 2 -9.51 0.559
R7 39236 37570 2 -4.25 0.030 68003 62507 3 -8.08 0.263 103359 96995 2 -6.16 0.470
R8 38749 33103 2 -14.57 0.053 68802 64799 2 -5.82 0.193 100896 94898 2 -5.94 0.510
R9 41262 36354 2 -11.89 0.055 69749 64354 2 -7.73 0.151 106238 96319 2 -9.34 0.969
R10 37860 32545 2 -14.04 0.048 69934 64508 2 -7.76 0.162 105386 97113 2 -7.85 0.728
R11 38962 37077 2 -4.84 0.038 71069 66766 2 -6.05 0.118 101519 97026 2 -4.43 0.646
R12 35032 33670 2 -3.89 0.039 62843 59766 2 -4.90 0.189 106774 99578 2 -6.74 0.822
R13 38406 35416 2 -7.79 0.022 72133 66538 2 -7.76 0.200 99401 92648 2 -6.79 0.527
R14 34517 32601 2 -5.55 0.022 70496 65155 2 -7.58 0.100 110028 100741 2 -8.44 0.580
R15 37769 35559 2 -5.85 0.032 67276 63180 2 -6.09 0.166 105445 97719 2 -7.33 0.623
R16 39860 37642 2 -5.56 0.029 65796 65181 2 -0.93 0.067 103499 95245 2 -7.97 0.710
R17 40749 39763 2 -2.42 0.029 66970 62379 2 -6.86 0.279 105663 93552 2 -11.46 0.589
R18 38839 35862 2 -7.66 0.053 71622 68349 2 -4.57 0.116 104599 98375 2 -5.95 0.395
R19 39752 37178 2 -6.48 0.020 72316 67204 2 -7.07 0.077 107054 103036 2 -3.75 0.339
R20 39346 35128 2 -10.72 0.049 73719 68334 2 -7.30 0.336 95935 92868 2 -3.20 0.337

Table 5.5: Solution quality and execution time details for TRP instances of size 500
using DLSH. Time is given in seconds.

I
500

Init Local C LG % Time

R1 2256050 2045627 3 -9.33 26.14
R2 2238193 2062200 3 -7.86 15.24
R3 2227313 2035358 3 -8.62 18.16
R4 2119535 2002354 2 -5.53 14.75
R5 2253349 2013264 2 -10.65 35.88
R6 2109395 1970414 2 -6.59 9.08
R7 2185996 2044015 2 -6.50 18.88
R8 2149991 2005965 3 -6.70 18.58
R9 2074414 1867533 2 -9.97 16.94
R10 2045557 1935231 2 -5.39 11.38
R11 2226155 1993875 3 -10.43 13.96
R12 2091972 1943465 2 -7.10 13.58
R13 2246410 2038807 2 -9.24 13.98
R14 2104882 1980946 2 -5.89 19.21
R15 2067337 1930097 3 -6.64 14.65
R16 2072183 1999019 2 -3.53 9.97
R17 2072851 1969347 2 -4.99 14.53
R18 2136634 2059754 2 -3.60 18.61
R19 2081332 1960612 3 -5.80 16.85
R20 2191334 2000517 2 -8.71 12.44
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Table 5.6: Solution quality and execution time details for TSPLIB instances using
DLSH. Time is given in seconds.

Instance Init Local C LG % Time

berlin52 144761 139316 2 -3.76 0.004
st70 21844 20278 2 -7.17 0.020
rat99 61575 60074 2 -2.44 0.056
kroA100 1176490 996163 2 -15.33 0.067
kroB100 1159631 1011943 2 -12.74 0.086
kroD100 1081377 986717 2 -8.75 0.062
kroE100 1074901 1025899 2 -4.56 0.037
lin105 692956 645135 2 -6.90 0.070
pr107 2078587 1983521 2 -4.57 0.031
ch130 376931 356674 2 -5.37 0.117
ch150 483528 465248 3 -3.78 0.137
kroA150 2269515 1891421 3 -16.66 0.224
kroB150 1954630 1870029 2 -4.33 0.164
rat195 221834 211049 2 -4.86 0.242
d198 1312478 1209289 2 -7.86 0.616
ts225 14139523 13649963 2 -3.46 0.647
pr226 11124323 7181227 3 -35.45 2.188
a280 395607 367765 2 -7.04 1.511
pr299 7546036 7204856 2 -4.52 1.139
lin318 7022116 6117163 3 -12.89 4.146
pr439 21760303 19084000 2 -12.30 7.900
pcb442 10765404 10657722 2 -1.00 4.441
d493 9675285 7700153 3 -20.41 27.984
att532 25085998 19160615 3 -23.62 30.771
ali535 372174 309613 2 -16.81 31.733
rat575 2052289 1947078 2 -5.13 26.340
d657 16547216 15379075 3 -7.06 55.597
rat783 3711989 3470429 2 -6.51 62.613
dsj1000 9819816218 8646553613 3 -11.95 347.642
vm1084 129225071 105275207 3 -18.53 200.898
rl1304 178715703 162008652 2 -9.35 742.259
u1432 118600489 111871593 3 -5.67 1305.046
d1655 53432497 49464859 2 -7.43 1377.627
u2319 287165931 276381186 3 -3.76 6882.538
pr2392 501222898 464856059 3 -7.26 8352.751
pcb3038 228422815 209522527 3 -8.27 20904.295
fnl4461 429244345 406179078 3 -5.37 89308.930
rl5934 1721991412 1633486986 3 -5.14 155700.828
pla7397 105277496147 70428563340 4 -33.10 729210.250
rl11849 5937577967 5448313366 3 -8.24 3356448
Average -9.73 109276.00

optima is found. DLSH spends a less than second time for executing an instance of 100,

150, and 200 size sets.

Table 5.5 shows a 500-size data set that consumes 9-36 CPU seconds to reach local
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optima for a single instance. The improvement rate observed for this data set is in the

range of −3.53 to −10.65%. Although instance size is the same, i.e., 500 nodes, every

instance spends unequal execution time. This happens due to 500 nodes are placed on

different positions in each instance. Therefore, the number of feasible solutions ex-

plored and time consumed in each instance is purely independent and cannot be related.

From Table 5.5, it is noticed that the execution time increases as instance size increases.

These execution times required for exploring the feasible solutions can be reduced.

DLSH has been evaluated on the wide range of TSPLIB instances to identify the

execution time required for very-large instances, i.e., up to 11849 nodes. The solution

quality and execution time required for these TSPLIB instances are presented in Table

5.6. DLSH has a−35.44% improvement rate in the best-case for pr226 instance. DLSH

reaches a−1.00% improvement in the worst-case for a pcb442 instance. From Table 5.6,

it is noticed that the size and improvement rate cannot be correlated. The second-best

improvement rate is found for a pla7397 instance, which has a −33.10% improvement

rate. When the execution time is concerned, the size and execution time requirement

can be correlated. DLSH produces a local optima in a few milliseconds for smaller

instances up to 200 nodes. For medium-size instances, i.e., > 200 and < 1000 nodes,

linear growth is observed in the execution time. When instance size goes beyond 1000

nodes, DLSH significantly consumes a lot of CPU time to obtain a local optima. For

example, DLSH spends 729210.25 seconds to solve a pla7397 instance, i.e., eight days

approximately. For a rl11849 instance, DLSH spends approximately 39 days to get

local optima. The time required for such large instances is inadmissible, which needs

a consistent power supply. Therefore, a GPU-based parallel strategy is proposed to

reduce the execution time for solving such large-scale instances.

5.4.1.1 Comparison with State-of-the-art MLP Solvers

DLSH has been compared with the state-of-the-art metaheuristic MLP solvers to eval-

uate the solution quality. Table 5.7 present the solution quality comparison of DLSH

with Salehipour et al. (2011) using TSPLIB instances. The first row indicates an in-

stance name, Salehipour local solution, DLSH local solution, and gap rate observed in
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DLSH solution from Salehipour local solution, respectively. Salehipour et al. (2011)

presents the local solutions for TSPLIB instances of size up to 532 nodes. Salehipour

metaheuristic produces better local solutions than DLSH. This is because Salehipour

metaheuristic uses five neighborhood generation methods, namely swap, swap-adjacent,

two-opt, or-opt, and remove-insert, to explore feasible solutions for finding better local

optima. In the other side, DLSH uses two neighborhood generation methods. There

is a high possibility of getting a better solution when a large search-space is explored.

Although DLSH explores limited search-space, it finds a new best solutions for two

instances, namely rat195 and pr226. These two solutions indicate that a better solu-

tion may be obtained with limited search-space exploration as well. For other TSPLIB

instances, DLSH has a gap rate in the range of 0.002-10.12% compared to Salehipour

metaheuristic.

Table 5.7: DLSH solution quality comparison with Salehipour et al. (2011) for TSPLIB
instances.

Instance Salehipour DLSH Gap %

st70 19553 20278 3.708
rat99 56994 60074 5.404
kroD100 976830 986717 1.012
lin105 585823 645135 10.125
pr107 1983475 1983521 0.002
rat195 213371 211049 -1.088
pr226 7226554 7181227 -0.627
lin318 5876537 6117163 4.095
pr439 18567170 19084000 2.784
att532 18448435 19160615 3.860

DLSH is compared with another two state-of-the-art MLP solvers, namely Abeledo

et al. (2013) and Silva et al. (2012), where TSPLIB instances are used for performance

evaluation. TSPLIB instances with edge type EUC 2D are considered for comparison.

Table 5.8 presents the solution quality received using DLSH, Abeledo et al. (2013), and

Silva et al. (2012) for TSPLIB instances of size 51-107 nodes. DLSH obtains new best

solutions for five instances, eil51, berlin52, st70, eil76, and pr107. For the remaining

ten instances, DLSH has a gap rate in the range of 0.88-6.83%.

Salehipour et al. (2011) have developed MLP benchmarking data sets, which are
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Table 5.8: DLSH solution quality comparison with Abeledo et al. (2013) and Silva et al.
(2012) for TSPLIB instances.

Instance DLSH
Abeledo Silva

Sol Gap % Sol Gap %

eil51 9908 10178 -2.65 10178 -2.65
berlin52 139316 143721 -3.06 143721 -3.06
st70 20278 20557 -1.36 20557 -1.36
eil76 17914 17976 -0.34 17976 -0.34
pr76 3485539 3455242 0.88 3455242 0.88
rat99 60074 58288 3.06 57986 3.60
kroA100 996163 983128 1.33 983128 1.33
kroB100 1011943 986008 2.63 986008 2.63
kroC100 1002165 961324 4.25 961324 4.25
kroD100 986717 976965 1.00 976965 1.00
kroE100 1025899 971266 5.62 971266 5.62
rd100 359559 340047 5.74 340047 5.74
eil101 27816 27519 1.08 27513 1.10
lin105 645135 603910 6.83 603910 6.83
pr107 1983521 2026626 -2.13 2026626 -2.13

also known as TRP instances. The solution quality of DLSH is further compared

with Salehipour et al. (2011) using TRP instances. Table 5.9 presents DLSH solu-

tion, GILS-RVND (Silva et al. 2012) solution, and the gap rate (i.e., (DLSH −

GILS RV ND)/GILS RV ND ∗ 100) for 20 different instances of 100, 200, and 500

size data sets. It is observed that GILS-RVND outperforms over the DLSH. DLSH has

0.52%, 4.57%, and 7.71% gap rates in the best-case, whereas 16.27%, 12.40%, and

13.52% in the worst-case for 100, 200, and 500 instance sets, respectively compared to

the GILS-RVND approach. GILS-RVND obtains a better solution quality since a large

search-space is explored in the GILS-RVND approach.

There are five neighborhood generation methods, namely swap, two-opt, or-opt1,

or-opt2, and or-opt3, are used in the GILS-RVND. The initial solution is constructed

ten times.These five neighborhood methods are applied to improve the solution after

each initial solution is constructed. If any neighborhood method finds an improve-

ment, these five methods are repeatedly applied. If improvement is not observed in

these five methods, the perturbation technique is applied at least min(100, n) times

111



5. Parallel Deterministic Local Search Heuristic for Minimum Latency Problem

Table 5.9: Solution quality comparison with Silva et al. (2012) for TRP instances of
size 100, 200, and 500.

Instance 100 200 500

DLSH GILS-RVND Gap % DLSH GILS-RVND Gap % DLSH GILS-RVND Gap %

R1 34255 32779 4.50 98480 88787 10.92 2045627 1841386 11.09
R2 34977 33435 4.61 98230 91977 6.80 2062200 1816568 13.52
R3 33404 32390 3.13 103959 92568 12.31 2035358 1833044 11.04
R4 35631 34733 2.59 101155 93174 8.57 2002354 1809266 10.67
R5 35050 32598 7.52 94078 88737 6.02 2013264 1823975 10.38
R6 35805 34159 4.82 102947 91589 12.40 1970414 1786620 10.29
R7 37570 33375 12.57 96995 92754 4.57 2044015 1847999 10.61
R8 33103 31780 4.16 94898 89048 6.57 2005965 1820846 10.17
R9 36354 34167 6.40 96319 86326 11.58 1867533 1733819 7.71
R10 32545 31605 2.97 97113 91552 6.07 1935231 1762741 9.79
R11 37077 34188 8.45 97026 92655 4.72 1993875 1797881 10.90
R12 33670 32146 4.74 99578 91457 8.88 1943465 1774452 9.52
R13 35416 32604 8.62 92648 86155 7.54 2038807 1873699 8.81
R14 32601 32433 0.52 100741 91882 9.64 1980946 1799171 10.10
R15 35559 32574 9.16 97719 88912 9.91 1930097 1791145 7.76
R16 37642 33566 12.14 95245 89311 6.64 1999019 1810188 10.43
R17 39763 34198 16.27 93552 89089 5.01 1969347 1825748 7.87
R18 35862 31929 12.32 98375 93619 5.08 2059754 1826263 12.79
R19 37178 33463 11.10 103036 93369 10.35 1960612 1779248 10.19
R20 35128 33632 4.45 92868 86292 7.62 2000517 1820813 9.87

Min 0.52 4.57 7.71
Max 16.27 12.40 13.52
Average 7.05 8.06 10.18

to get out of trapping into local optima. In mathematical term, GILS-RVND explores

10 ∗min(100, n) ∗ i ∗ (nC2 +n C2 + (n − 1) + (n − 2) + (n − 3)) feasible solutions

to obtain its local optima. The terms nC2, nC2, n − 1, n − 2 and n − 3 indicates total

feasible solutions possible with swap, two-opt, or-opt1, or-opt2, and or-opt3, respec-

tively. Unlike the GILS-RVND, DLSH starts with a single initial solution, and later two

neighborhood approaches are repeatedly called until no further improvement is possi-

ble. DLSH explores i ∗ (j ∗n C2 + k ∗n C2) feasible solutions to produce local solution.

Therefore, there will be a high possibility of getting a better solution in GILS-RVND.

5.4.2 Parallel Deterministic Local Search Heuristic (PDLSH)

The execution time of PDLSH has been collected for TRP and TSPLIB instances of size

up to 11849 nodes. The execution time comprises the total time required for reading

X, Y coordinates of an instance, its initial solution setup, and the improvement phase.

This section presents the time analysis of both DLSH and PDLSH versions. Moreover,

the impact of applying different optimization techniques to PDLSH is also presented.
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The solution quality analysis of PDLSH is not presented since PDLSH obtains the same

local optima as DLSH.

Table 5.10: Speedup analysis of PDLSH over DLSH for TRP instances of size 100, 200
and 500. Time is given in seconds.

Instance
100 200 500

DLSH PDLSH Speedup DLSH PDLSH Speedup DLSH PDLSH Speedup

R1 0.025 0.05 0.50 0.680 0.07 9.71 26.14 0.39 67.02
R2 0.069 0.05 1.38 1.176 0.08 14.70 15.24 0.25 60.96
R3 0.055 0.05 1.09 0.544 0.07 7.77 18.16 0.3 60.55
R4 0.087 0.06 1.45 0.362 0.07 5.17 14.75 0.25 59.02
R5 0.016 0.05 0.33 0.626 0.08 7.82 35.88 0.48 74.75
R6 0.019 0.05 0.39 0.559 0.07 7.99 9.08 0.18 50.44
R7 0.030 0.09 0.34 0.470 0.07 6.72 18.88 0.3 62.94
R8 0.053 0.07 0.75 0.510 0.06 8.50 18.58 0.3 61.94
R9 0.055 0.06 0.91 0.969 0.09 10.77 16.94 0.27 62.73
R10 0.048 0.06 0.80 0.728 0.06 12.14 11.38 0.2 56.92
R11 0.038 0.06 0.63 0.646 0.07 9.23 13.96 0.25 55.85
R12 0.039 0.06 0.65 0.822 0.08 10.28 13.58 0.24 56.59
R13 0.022 0.06 0.36 0.527 0.08 6.59 13.98 0.25 55.90
R14 0.022 0.04 0.55 0.580 0.08 7.25 19.21 0.31 61.98
R15 0.032 0.05 0.64 0.623 0.08 7.78 14.65 0.26 56.33
R16 0.029 0.05 0.57 0.710 0.08 8.87 9.97 0.2 49.84
R17 0.029 0.06 0.48 0.589 0.08 7.36 14.53 0.24 60.56
R18 0.053 0.05 1.06 0.395 0.07 5.65 18.61 0.3 62.04
R19 0.020 0.04 0.51 0.339 0.06 5.65 16.85 0.27 62.39
R20 0.049 0.06 0.82 0.337 0.07 4.81 12.44 0.21 59.25
Average 0.71 8.24 59.90

5.4.2.1 DLSH vs. PDLSH

From Section 5.4.1, it is observed that DLSH spends a few milliseconds to solve in-

stances of less than 100 nodes. Therefore, TRP instances ≥ 100 are considered for

comparative analysis. Table 5.10 presents a comparison between the execution time of

DLSH and PDLSH for TRP instances. In Table 5.10, columns 2-4 represents DLSH ex-

ecution time, PDLSH execution time, and speedup factor for 100-size data set, whereas

columns 5-7 and 8-10 presents the same information for 200 and 500-size data sets,

respectively. The speedup is calculated dividing the sequential execution time by the

parallel execution time of the corresponding instance. PDLSH spends more time in

execution than DLSH for a 100-size data set. This happens due to the communica-

tion time overhead. For smaller instances, communication time overshadows the actual
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Table 5.11: Speedup analysis of PDLSH over DLSH for TSPLIB instances. Time is
given in seconds.

Instance DLSH PDLSH Speedup

berlin52 0.004 0.046 0.08
st70 0.020 0.046 0.43

rat99 0.056 0.049 1.14
kroA100 0.067 0.052 1.28
kroB100 0.086 0.051 1.69
kroD100 0.062 0.051 1.21
kroE100 0.037 0.05 0.74

lin105 0.070 0.052 1.35
pr107 0.031 0.053 0.59
ch130 0.117 0.053 2.21
ch150 0.137 0.053 2.58

kroA150 0.224 0.057 3.93
kroB150 0.164 0.056 2.92

rat195 0.242 0.055 4.41
d198 0.616 0.062 9.94
ts225 0.647 0.061 10.61
pr226 2.188 0.094 23.28
a280 1.511 0.073 20.70

pr299 1.139 0.071 16.05
lin318 4.146 0.114 36.37
pr439 7.900 0.136 58.08

pcb442 4.441 0.101 43.97
d493 27.984 0.345 81.11

att532 30.771 0.382 80.55
ali535 31.733 0.412 77.02
rat575 26.340 0.308 85.52

d657 55.597 0.569 97.71
rat783 62.613 0.558 112.21

dsj1000 347.642 1.934 179.75
vm1084 200.898 2.00 100.45

rl1304 742.259 6.83 108.74
u1432 1305.046 9.46 138.00
d1655 1377.627 10.85 126.92
u2319 6882.538 46.08 149.35

pr2392 8352.751 53.94 154.85
pcb3038 20904.295 142.03 147.18
fnl4461 89308.930 826.95 108.00

rl5934 155700.828 1282.93 121.36
pla7397 729210.25 5605.88 130.08
rl11849 3356448 36272.12 92.53

min 0.08
max 179.75

average 57.50
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computation time. The communication time means a time required for transferring data

from CPU to GPU and vice-versa. This indicates that the smaller size instances are not

suitable to run over the GPU platform. For a 200-size data set, PDLSH start showing

its influence. PDLSH is five times faster compared to DLSH for R4 instance in the

worst-case. In the best-case, PDLSH is 14.70 times faster for an R2 instance. PDLSH

receives speedup in the range of 49.84-74.75× for a 500-size data set. From Table 5.10,

it is noticed that PDLSH outperforms when the instance size increase.

Table 5.11 presents the execution time comparison between PDLSH and DLSH for

TSPLIB instances of size 52-11849 nodes. Up to pr107, PDLSH suffers communica-

tion time overhead. PDLSH has obtained speedups of up to 179.75× over correspond-

ing sequential DLSH. This highest speedup factor is recorded while running TSPLIB

instance dsj1000 where DLSH consumes 347.644 seconds, and PDLSH gives the same

result in 1.934 seconds. On average, PDLSH obtains 57.50 speedups for 39 instances

of size 52-11849 nodes. DLSH spends CPU times in days for solving instances namely

fnl4461, rl5934, pla7397, and rl11849 instances. The most execution times are re-

quired for pla7397 and rl11849 instances, which are 8 and 39 days approximately.

These same instances are solved using PDLSH in hours. PDLSH consumes 1.55 and

10.07 hours to solve pla7397 and rl11849 instances, respectively.

PDLSH could achieve a significant time reduction due to the proposed parallel strat-

egy. The proposed parallel strategy allows a large number of threads to participate in

neighborhood generation techniques. PDLSH maps one thread per neighborhood evalu-

ation. The swap and two-opt moves evaluate nC2 neighborhood moves per call. For ex-

ample, consider an instance rl11849. PDLSH allows 70193476 threads across 274194

CUDA blocks to evaluates neighborhood moves simultaneously for each swap and two-

opt call. Since a large amount of threads compute neighborhood moves simultaneously,

PDLSH obtains a local optimum in 10.07 hours compared to 39 days of DLSH time.

5.4.2.2 Reduction Methods

Table 5.12 presents the time analysis of reduction methods. The large-scale TSPLIB

instances of size 1084-5934 nodes have been considered for this analysis. For instances
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up to pcb3038 nodes, the built-in reduction method needs a slightly lesser time than

others. This is because the vector method first needs to write the triple values of threads

into the shared memory or global memory. Later, a separate minimum finding kernel

is called log2n times. In each kernel call, these data from the GPU memory are read

multiple times until a minimum triple value is determined. These multiple kernel calls

from the CPU result in a slight increase in the execution time for the vector method.

In the built-in method, each thread reads the 64-bit value written in the global memory,

compares it with its triple values, and writes to the same address.

Table 5.12: Execution times of built-in library API and vector reduction methods. Time
is given in seconds.

Instance vm1084 rl1304 u1432 d1655 u2319 pr2392 pcb3038 fnl4461 rl5934
Built-in 1.91 6.65 8.47 10.34 42.27 48.03 132.92 833.64 1289.46
Vector 2.00 6.83 9.46 10.85 46.08 53.94 142.03 826.95 1282.93

However, once the instance size goes beyond pcb3038 size, the vector reduction

method performs better. This is because atomicMin function is applied on all threads

across all the blocks to find the minimum latency and the corresponding thread id. When

threads write to the same memory address at the same time, atomicMin function runs

serially. The atomicMin function consumes O(n) time to find minimum triple values,

where n is total threads used in the computation. The vector reduction method needs

O(log2n) time to find the minimum triple values, where n will be either total threads or

total blocks, dependent on the reduction types. For one pass reduction, n will be total

threads, and for two-pass reduction, n is total blocks required for solving a particular

instance.

The disadvantage of the built-in reduction method is that when the value of either

thread id or latency of corresponding vertex pair (i, j) does not fit in the unsigned 32-

bit number, this reduction approach will fail. This is because the atomicMin function

supports reduction on either 32-bit or 64-bit numbers. Here, two unsigned 32-bit num-

bers are bound into a single 64-bit number and write it into the global memory while

choosing a minimum using atomicMin function to avoid the race condition. The range

of unsigned 32-bit number is 0 to 4294967295. For example, the initial solution of

pla7397 is 70428563340, which cannot fit in the unsigned 32-bit number and hence the
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binding of thread id and latency in atomicMin function will fail. Therefore, results for

pla7397 and rl11849 instances are not provided in Table 5.12.

5.4.2.3 Vector Reduction Types

The claim from (Rios et al. 2018) is tested that the serial version of choosing the

minimum triple values is faster than a reduction kernel on the vector data. Two strategies

have been used for a reduction on the GPU: one-pass and two-pass reduction. Table 5.13

presents the execution time required for TSPLIB instances for each of these reductions.

Up to the rl1304 instance, the single-thread approach consumes less time than the GPU

Table 5.13: Execution times of vector reduction types: one-pass, two-pass, and single
thread. Time is given in seconds.

Instance
GPU CPU

Two-pass One-pass Single-thread

vm1084 2.00 2.02 1.95
rl1304 6.83 6.83 6.78
u1432 9.46 8.72 9.40
d1655 10.85 10.49 10.83
u2319 46.08 42.43 46.04

pr2392 53.94 48.40 53.89
pcb3038 142.03 132.94 141.99
fnl4461 826.95 834.84 826.98
rl5934 1282.93 1287.47 1283.24

pla7397 5605.88 5542.17 5607.94
rl11849 35457.14 35771.00 35465.29
Average 3949.46 3971.57 3950.39

reduction kernels. When larger instances are considered, i.e., fnl4461 − rl11849, two

pass reduction performs slightly better than the single-thread reduction. For these larger

instances, two-pass has time improvements in milliseconds to a few seconds over the

single-threaded approach. The one-pass method performs better than the other two

methods for medium-size TSP instances (i.e., u1432 − pcb3028). The difference of

execution time between the single-thread and two-pass approaches is in range of−0.057

to 8.15 seconds. The single-thread and one-pass have a gap between −305.71 to 65.77

seconds. This is because, although one-pass and two-pass perform the reduction in

parallel, the reduction kernel is called log2n times, CPU to GPU and vice-versa data
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transfer is also happened log2n times. The actual computation time is dominated by

the communication time in the one-pass and two-pass reductions that result in poor

improvement in the execution time in both one-pass and two-pass reduction compared

to the single-thread approach.

5.4.3 Solution Quality Precision

MLP solutions have been given in integers in the past work. The latency between

two nodes in MLP is calculated using the 2D Euclidean distance formula. Euclidean

distance formula uses the square-root to get the distance between two points. If an in-

teger variable is considered to hold the distance between two points, precision is lost

as square-root returns a floating-point number. The performance analysis of calculat-

ing latency using integer and floating-point methods has been evaluated on TRP and

TSPLIB instances. The results are presented in Tables 5.14-5.16.

Table 5.14 presents the precision calculation results on TSPLIB instances. The dif-

ference rate indicates the closeness of the floating-point solution with its corresponding

integer solution. The difference rate is calculated using Eqn. 5.8.
floating local− integer local

integer local
∗ 100 (5.8)

If the difference rate is greater than 0, it shows the integer calculation loses accuracy

while calculating the latency. If rate < 0, indicates floating-point calculation obtains

the better solution than the integer method. If rate ≈ 0, it shows that both calculation

methods provide similar solutions. The floating-point calculation provides better solu-

tions for seven instances out of 39 TSPLIB instances. It is observed that the integer

calculation loses accuracy for the remaining 32 instances. Table 5.15 show the preci-

sion calculation analysis for TRP instances of 10, 20, 50 size data sets. There is only

a single occurrence of a better solution using the floating-point calculation in each 10

and 50 data sets. The floating-point calculation obtains an improved solution for an in-

put R4 from 10-size and R1 from 50-size data sets compared to the integer method. In

Table 5.16, floating-point calculation provides an improved solution for one and two in-

stances in 100 and 500-size data sets, respectively. In a 100-size data set, floating-point

calculation improves the local solution by−1.48 rate for the instance R16. In a 500-size
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data set, the local solutions of two inputs, namely R2 and R14, are improved using the

floating-point method, which has improved rates of −0.88 and −0.61, respectively.

From Tables 5.14-5.16, it is conferred that integer calculation loses accuracy while

calculating the latencies of solutions for most instances. For this analysis, 159 instances

have been considered. Out of 159, the floating-point calculations yield better solutions

for nine instances. There are two reasons for building different solutions for the same

instance. 1) The next closest unvisited node is chosen more precisely in the floating-

point calculation while constructing the initial solution using the NN method. 2) The

fractional part is skipped while summing up the latency of a solution in the integer

calculation method. Therefore DLSH constructs a different initial solution that leads to

different local optima in each calculation method. The floating-point method is always

a better choice, which avoids losing fractional differences.
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Table 5.14: DLSH solution precision analysis using integer and floating-point calcula-
tion methods. TSPLIB instances are used for this evaluation. Difference is calculated
using Eqn. 5.8.

Instance
Integer Floating-point

Difference
Init Local C Init Local C

berlin52 144761 139316 2 145263.41 139788.27 2 0.34
st70 21844 20278 2 24802.08 22004.93 2 8.52
rat99 61575 60074 2 62253.55 60128.07 2 0.09
kroA100 1176490 996163 2 1169959.25 995705.25 2 -0.05
kroB100 1159631 1011943 2 1159714.13 1010408 2 -0.15
kroD100 1081377 986717 2 1083653.38 988907.25 2 0.22
kroE100 1074901 1025899 2 1080603.88 1027854.19 2 0.19
lin105 692956 645135 2 693880.38 646193.38 2 0.16
pr107 2078587 1983521 2 2079422.25 1984768.38 2 0.06
ch130 376931 356674 2 381157.41 360942.19 2 1.20
ch150 483528 465248 3 493104 485919.62 2 4.44
kroA150 2269515 1891421 3 2263668.5 1937367.25 3 2.43
kroB150 1954630 1870029 2 1959116.38 1874999.62 2 0.27
rat195 221834 211049 2 225705.23 218795.45 2 3.67
d198 1312478 1209289 2 1295058.75 1274517.5 2 5.39
ts225 14139523 13649963 2 14139545 13650161 2 0.00
pr226 11124323 7181227 3 11126393 7165387 3 -0.22
a280 395607 367765 2 398456.22 370254.12 2 0.68
pr299 7546036 7204856 2 7555756 7213945.5 2 0.13
lin318 7022116 6117163 3 7032892.5 6128251 3 0.18
pr439 21760303 19084000 2 21775316 19097888 2 0.07
pcb442 10765404 10657722 2 10774320 10666490 2 0.08
d493 9675285 7700153 3 9122479 7338664.5 3 -4.69
att532 25085998 19160615 3 25143350 20016770 2 4.47
ali535 372174 309613 2 448284.34 380797.44 3 22.99
rat575 2052289 1947078 2 2160181.75 1951499.62 2 0.23
d657 16547216 15379075 3 16361273 15349201 3 -0.19
rat783 3711989 3470429 2 3832228.75 3490663.75 3 0.58
dsj1000 9819816218 8646553613 3 9820071936 8646803456 3 0.00
vm1084 129225071 105275207 3 129752360 105125344 3 -0.14
rl1304 178715703 162008652 2 178821328 162103600 2 0.06
u1432 118600489 111871593 3 118634352 111973496 3 0.09
d1655 53432497 49464859 2 54952276 50416184 3 1.92
u2319 287165931 276381186 3 287211456 276434144 3 0.02
pr2392 501222898 464856059 3 501816320 465431136 3 0.12
pcb3038 228422815 209522527 3 227252048 214473408 3 2.36
fnl4461 429244345 406179078 3 444218496 408697984 3 0.62
rl5934 1721991412 1633486986 3 1718665216 1627402752 3 -0.37
pla7397 105277496147 70428563340 4 105280004096 70480502784 5 0.07
Average 1.43
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5.4. Results Analysis
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5. Parallel Deterministic Local Search Heuristic for Minimum Latency Problem
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5.4. Results Analysis

5.4.4 Discussions

In existing metaheuristic algorithms, the initial solution is constructed using Iterated

Local Search (ILS) or Guided Local Search (GLS). ILS and GLS use the randomiza-

tion technique while setting up the initial solution. It means that for the same instance,

the different initial solution is constructed at each run. In this work, the Deterministic

Local Search Heuristic (DLSH) constructs the same initial for the same instance irre-

spective of multiple runs. In DLSH, the initial solution is constructed using the Nearest

Neighbourhood (NN) approach.

The swap method needs the preprocessing of data structure to evaluate a neighbor-

hood move in constant time. In this work, a constant time evaluation method is proposed

for the swap method, which does not require data preprocessing. The latency between

nodes is calculated on-the-fly using X, Y coordinates of a corresponding instance. This

saves allocating additional memory required for data preprocessing.

The GPU-based parallel strategy is proposed for DLSH called as PDLSH. The ex-

isting GPU-based parallel strategy limits solving instances beyond 1024 nodes. This

limitation is overcome in the proposed strategy, which solves larger instances > 1024

nodes. The effectiveness of PDLSH has been examined on large-scale instances up to

11849 nodes. PDLSH provides the same local solution in 10.07 hours, where DLSH

spends 39 days to obtain it. The PDLSH receives a speedup of up to 179.75 times for

instances up to 11849 nodes compared to corresponding DLSH implementation.

For PDLSH, two reduction methods, namely built-in and vector, are applied to de-

termine the best-improved solution for providing synchronized results. The built-in

method is useful while solving instances up to 4461 nodes, whereas the vector method

is found useful for solving instances> 3038 nodes. The built-in method has limitations,

which fails when either thread id or latency does not fit in a 32-bit number.

The precise latency calculation method is presented. The impact of calculating la-

tency using integer and floating-point methods are demonstrated over TRP and TSPLIB

instances. The floating-point method helps to calculate latency more accurately, whereas

the integer method loses the fractional part while summing up Euclidean distance be-
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tween two nodes.

The disadvantage of DLSH is its solution quality. DLSH does not reach the best-

known-solution compared to the state-of-the-art MLP solvers. It has gap rates in the

range of 0.52-16.27%, 4.57-12.40%, and 7.71-13.52% for TRP instances of 100, 200,

and 500 size data sets, compared to the GILS-RVND metaheuristic. GILS-RVND uses

five neighborhood generation methods, whereas DLSH uses a two generation method.

Moreover, GILS-RVND applies perturbation min(n, 100) times to avoid trapping in

local optimal. In the future, perturbation technique and additional neighborhood gener-

ation methods can be applied to the DLSH for obtaining a better solution quality.

5.5 SUMMARY

The Deterministic Local Search Heuristic (DLSH) that always reaches the same local

solution on multiple trials, as presented. Metaheuristics often use perturbation and ran-

domization. Perturbation is used to escape from the local optima. Randomization helps

to explore diversified solutions. DLSH does not use metaheuristic parameters such as

perturbation and randomization. DLSH constructs the initial solution using the Nearest

Neighborhood (NN) approach.

The swap and two-opt methods evaluate several moves to determine the best-improved

move. The state-of-the-art move evaluation procedure evaluates a move in O(1) time

using the preprocessed local data. Current work proposes the move evaluation proce-

dure for the swap method, which computes a move in O(1) time that does not need

any preprocessed data. A linear time move evaluation procedure is used for the two-opt

move calculating the move effect on-the-fly without storing intermediate solutions.

The most time-consuming part of the DLSH is its solution improvement phase. The

swap and two-opt methods consume O(n2) and O(n3) time, respectively, for a sin-

gle call. These neighborhood methods are called many times to improve the solution.

PDLSH strategy maps one thread per move evaluation. The parallel strategy of PDLSH

does not depend on the maximum threads per block limit and hence solves larger in-

stances than existing works. When all threads evaluate their moves, the next important

job (i.e., reduction) is to choose the best-improved vertex pair and its associated la-
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tency. Two reduction methods have been presented, namely built-in and vector. The

built-in method consumes less execution time for the instances less than 4461 sizes,

whereas the vector method performs better for the larger instances with sizes above

3038. However, the built-in method fails when either of the thread id or the latency of

the associated thread does not fit in the unsigned 32-bit number. Because atomicMin

binds the thread id and its latency into an unsigned 64-bit number to choose the best-

improved solution. Vector reduction method overcomes the issue associated with the

built-in method. PDLSH achieves a speedup up to 179.75 for TRP and TSPLIB in-

stances of sizes 10 - 7397.
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CHAPTER 6

PARALLEL VERSION OF LOCAL SEARCH
HEURISTIC ALGORITHM TO SOLVE

CAPACITATED VEHICLE ROUTING PROBLEM

The purpose of this chapter is to identify independent, time-consuming portions of the

heuristic algorithms in order to reduce the total runtime of the heuristic algorithms using

data level, and thread level parallelism. Note that this chapter does not propose any new

heuristic algorithm to find a better solution quality. Instead, we focus on finding GPU-

based parallel approaches for the heuristic algorithms to solve larger CVRP instance in

a reasonable amount of time. Contributions of this chapter includes:

• GPU-based parallel implementation for the intra-route and inter-route improve-

ment heuristics.

• Solve the large-scale benchmarking instances up to 30000 customers.

• The proposed customer level parallel implementation achieves a speedup of up to

147.19× over its sequential counterpart.

6.1 INTRODUCTION

6.1.1 Capacitated Vehicle Routing Problem

The Vehicle Routing Problem (VRP) (Clarke and Wright 1964; Dantzig and Ramser

1959) is an NP-hard, combinatorial optimization problem, with applications in the field

of goods and transportation. The objective of VRP is to schedule the number of vehi-
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cles for goods transportation such that its transporting cost is reduced. VRP has sev-

eral variants based on its objective function, viz., Capacitated Vehicle Routing Problem

(CVRP), Heterogeneous Fleet VRP (HFVRP), Multi-Depot VRP (MDVRP), Pickup

and Delivery VRP (PDVRP) (Braekers et al. 2016; Eksioglu et al. 2009; Toth and

Vigo 2001).

CVRP is considered in this work. CVRP is defined as: Given a simple, connected,

weighted, undirected graphG(V,E), where, V is set of vertices, i.e., V = {v0, v1, .., vn}

and E is set of edges i.e., E = {vi, vj} where (i < j < n), the objective is to find a

set of routes R = {r1, r2, .., rm} for m vehicles such that, 1) each customer is visited

exactly once, and 2) total traveling distance is minimum.

The constrains considered for CVRP are given in Equations 6.1 to 6.5. Vertex v0,

the depot is the starting point for all vehicles. Each vehicle completes its journey and

returns to v0. All vehicles have uniform capacityQ. Each customer vi (i = 1, 2, .., n−1)

has a corresponding demand di to be met by a vehicle. A vehicle, mi, services one or

more customers on its route, ri, such that its own capacity does not exceed Q.

Length(R) = min
m∑
i=1

ri (6.1)

subject to,

R = r1 ∪ r2 ∪ · · · ∪ rm = {v0, v1, v2, . . . vn−1} (6.2)

r1 ∩ r2 ∩ · · · ∩ rm = {v0} (6.3)

capacity(ri) ≤ Q where 1 ≤ i ≤ m (6.4)

n−1∑
i=1

di ≤ Q ∗m (6.5)

Exact methods such as brute-force approach, branch and bound, and dynamic pro-

gramming have been used to find an optimal solution of VRP problems (Laporte and

Nobert 1987). Although exact methods assure an optimal solution, it becomes in-

tractable while solving larger size instances. Exact methods explore the entire search-

space, an O(n!) or O(2n) operation, to determine optimal solutions (Cormen et al.
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2009). Real world applications have several thousands of consumers to serve making

exact methods infeasible.

6.1.2 Heuristic Algorithm

The CVRP is an intractable problem due to the execution time requirements of the ex-

act methods. Heuristic algorithms search a subset of the search space for a satisfactory

solution in a reasonable amount of time (Campos and Mota 2000; Laporte et al. 2000;

Pisinger and Ropke 2007). There are two important phases in the heuristic algorithm,

solution setup and solution improvement. In the solution setup phase, a feasible solution

is determined. A feasible solution is either fixed arbitrarily or constructed using con-

struction heuristic methods. In the solution improvement phase, the initiated solution is

continuously improved until there is no further progress. Because CVRP has m routes

in its feasible solution, a solution can improve within a route or between two routes dur-

ing the solution improvement phase. As a result, two types of improvement heuristics

are used in the solution improvement phase: intra-route and inter-route improvement

heuristics.

Campos and Mota (2000) design two heuristic approaches for solving CVRP. The

proposed heuristic uses Tabu Search (TS) to improve the feasible solution and shows the

effectiveness of proposed heuristic algorithm using TSPLIB (Reinelt 1991), Christofides

et al. (1979), and Fisher (1994) instances of size up to 135 nodes. Laporte et al. (2000)

present the survey of heuristic algorithms used for VRP and provide the computational

analysis of various heuristic algorithms that solve different VRP variants. Pisinger and

Ropke (2007) present a unified heuristic algorithm called Adaptive Large Neighbor-

hood Search (ALNS), which solve five variants of VRP, namely CVRP, MDVRP, site-

dependent VRP, VRP with time windows, and open VRP. Altabeeb et al. (2021) present

a cooperative hybrid firefly algorithm (CHFA) with multiple solutions to solve CVRP.

The proposed CHFA helps to get out of trapping into local solution and overcome the

limitation of the single swarm firefly algorithm. Authors have demonstrated the efficacy

of the proposed heuristic on small-scale instances, i.e., up to 200 customers, in previ-

ous works. The majority of the time spent by these heuristic algorithms is spent in the

improvement phase. Because neighbourhood solutions are generated repeatedly during
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the improvement phase until the termination criteria are met. Furthermore, the proposed

heuristic efficiency is tested on smaller size instances (i.e., typically up to 200 nodes).

Because real-time applications must deal with thousands of nodes to determine a better

feasible solution, the heuristic algorithm should now solve large-scale instances.

Máximo and Nascimento (2021) present a hybrid of iterated local search and path

relinking to solve CVRP. The proposed hybrid version of heuristic is tested on CVRP

instances of size up to 1000 nodes. Kytöjoki et al. (2007) have designed the large-scale

instances for CVRP that has sized up to 20000 nodes. Moreover, the author devel-

oped a heuristic algorithm called Variable Neighborhood Search (VNS) to solve these

large-scale instances. Recently, Arnold and Sörensen (2019) created very large-scale

instances considering a real-world problem that contains up to 30000 nodes and pro-

vides a heuristic approach for solving it. Both in (Arnold and Sörensen 2019; Kytöjoki

et al. 2007), have used several improvement heuristic approaches to improve the con-

structed solutions. The time spent in the solution improvement phase can be reduced

by applying GPU-based parallel computation (Carvalho et al. 2020).

6.1.3 Motivation

The most time-consuming part of heuristic algorithm is its solution improvement phase.

The solution improvement phase is a critical step in the heuristic algorithm that attempts

to move the constructed solution closer to the global optimal solution. Therefore, a

study has been carried out to identify what portion of execution time is being spent in

the solution improvement phase. Figure 6.1 shows the execution time analysis of both

heuristic phases over the Belgium (Arnold and Sörensen 2019) instances. From Figure

6.1, it can be determined that more than 99% of the time out of total execution time is

being spent in the solution improvement phase.

Our motivation for this work is to reduce the amount of time spent in the solution

improvement phase when dealing with large-scale instances. This large portion of ex-

ecution time can be reduced using parallel computation because the steps involved in

the solution improvement phase are independent. In the solution improvement phase,

the improvement heuristic generates several neighborhood solutions repeatedly. The
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Figure 6.1: Phase-wise execution time analysis on Belgium Arnold and Sörensen (2019)
data set.

generation of one neighborhood solution does not depend on the others. These inde-

pendent neighborhood generations are key components required for using the parallel

platform. The GPU-based parallel computation has already shown the effectiveness in

reducing the execution time (Yelmewad and Talawar 2019). The parallel computation

for heuristic algorithms are applied in (Jin et al. 2014; Schulz 2013) and solve in-

stances up to 2401 nodes. The GPU-accelerated heuristic (Abdelatti and Sodhi 2020)

solves CVRP instances of up to 76 nodes. Moreover, we aim to develop a parallel

heuristic algorithm that solves large-scale instances than the existing parallel version of

heuristic algorithms.

Section 6.2 explains the mechanism of heuristic algorithms to solve CVRP. Section

6.3 presents the detailed illustration of GPU-based parallel approaches for heuristic

algorithms. Section 6.4 presents performance evaluation of parallel approaches.

6.2 LOCAL SEARCH HEURISTICS

The Local Search Heuristic (LSH) is a heuristic approach that initiates a feasible solu-

tion and explores its neighboring solutions. The initialization of a feasible solution is

done in one of two ways: a) randomly. b) using the construction heuristic approaches

(Yelmewad and Talawar 2019). The neighborhood solutions are generated to improve
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the initial solution further. The neighborhood solutions are generated using 2-opt, 3-opt,

or-opt, relocate and swapping techniques.

Algorithm 6.1: Generic Local Search Heuristic Algorithm
Result: Local optimal solution

1 s← create a feasible solution.
2 f(s)← find cost of s;
3 while s is improved do
4 Apply swap;
5 Apply relocate;
6 if s is improved then
7 Apply 2-opt;
8 Apply or-opt;
9 Apply 3-opt;

10 s← initialize the best improved solution.
11 else
12 return current s as local optimal solution.
13 end
14 end

Algorithm 6.1 presents the local search heuristic considered for solving CVRP in

this work. Five heuristic approaches, namely, 2-opt, or-opt, 3-opt, relocate, and swap

are used. These heuristics are further classified, intra-route and inter-route heuristics.

The methods 2-opt, 3-opt, and or-opt are the intra-route improvement heuristics, and

relocate and swap methods are the inter-route improvement heuristics. The feasible so-

lution is created using Nearest Neighborhood (NN) approach, and its cost is calculated

(lines 1-2). Later, the inter-route improvement heuristics are applied to the constructed

solution (lines 4-5). The swap heuristic is applied first, followed by the relocate. If any

improved solution is found in any of the inter-route heuristics, the intra-route heuris-

tics are used repeatedly until no further improvement is possible (lines 6-11). The loop

(lines 3-14) is repeated until there is no further improvement possible.

The solution construction phase and its improvement methods are elaborated in the

following subsections.
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6.2.1 Solution Construction

Algorithm 6.2 presents the stepwise details of the initial solution construction phase.

The list, farList, contains the list of customers, which is arranged in the descending

Algorithm 6.2: Feasible Solution Construction Procedure
Result: Creates a feasible solution

1 farList← create a descending order customers’ list.
2 count← 0;
3 for r = 0; r < m; r++ do
4 cust← choose first unvisited customer from farList;
5 rSource[r]← cust;
6 visit[cust]← 1;
7 cap[r]+ = demands[cust];
8 curCust← cust;
9 count+ +;

10 while cap[r] ≤ Q do
11 cust← finds the closest unvisited customer of curCust;
12 if cap[r] + demands[cust] ≤ Q then
13 custOrder[curCust]← cust;
14 visit[cust]← 1;
15 cap[r]+ = demands[cust];
16 curCust← cust;
17 count+ +;

18 else
19 break;
20 end
21 end
22 end
23 if count < n then
24 m+ +;
25 goto back;

26 end

order of their distances with the depot (line 1). For m routes, the first customer is

chosen from the farList list (line 4). One route is constructed at a time. A strategy is

used in which the farthest unvisited customer is assigned as the first node for each route

(i.e., a list rSource holds the first node of each route; line 5). The list rSource and

custOrder records the feasible solution, where rSource keeps track of the first node of

each route and custOrder maintains the sequence of remaining customers on each route

(Kytöjoki et al. 2007). The lists visit and cap maintains the list of customers visited
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and currently filled capacity of each vehicle, respectively (lines 6-7). The variables

curCust and count keeps track of the current node of the present route, and the total

customers visited until r routes, respectively. Once the first customer is visited, the next

node of the route r is chosen using the NN method (lines 10-21). The criteria which are

used to choose the next node for route r are given below.

• Next node should be the closest customer of the current customer on route r.

• The nearest customer should not be visited previously by any of m routes.

• The demands of the next node should fit into the capacity of the route r (i.e.,

cap[r] + demands[cust] ≤ Q).

If these criteria are satisfied, an unvisited customer is added to the current route r.

If an unvisited customer does not meet any of these conditions, the job of assigning

customers to the current route is terminated (line 19). The remaining unvisited nodes

will be assigned to the next routes. If a feasible solution is not constructed by the loop

(lines 3-22), the vehicle count, m, is incremented (lines 23-26). The initialm value tells

the minimum number of vehicles required to satisfies the demands of n customers.

6.2.2 Solution Improvement

The inter-route and intra-route heuristics are applied once the feasible solution is con-

structed. Figure 6.2 presents the order in which five improvement heuristics are applied.

First, the constructed solution is passed to the swap heuristic. The swap heuristic gen-

erates neighboring solutions and tries to find the best-improved solution. Either the

improved or the constructed solution is passed to the relocate heuristic. The relocate

heuristic uses its neighbor generation technique for solution exploration. If an improve-

ment is observed in any of inter-route heuristics, three intra-route heuristics are applied

subsequently in the following sequence: 2-opt, or-opt, and 3-opt. If an improved so-

lution is found, both intra-route and inter-route heuristics are considered for the next

initial solution. The same neighbor generation procedure is repeated until there is no

further progress possible. The generation of neighborhood solution techniques for each

heuristic is explained below.
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Figure 6.2: Solution improvement flowchart

6.2.2.1 2-opt Heuristic

In the 2-opt method, two edges of the same route are exchanged to generate a new

route. This exchanging of edges is only considered if it has resulted in an improved

route. Figure 6.3 shows the neighborhood generation in the 2-opt heuristic.

(a) Original route (b) After 2-opt on the nodes i, j

Figure 6.3: Pictorial representation of 2-opt neighborhood generation technique.
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6.2.2.2 or-opt Heuristic

In or-opt heuristic, l consecutive customers are relocated in the same route r. A chain

of one, two, and three customers have been considered for the relocate heuristic. Figure

6.4 shows the mechanism of or-opt heuristic in a pictorial form when the value of l is

1, 2, and 3 consecutive customers. In Figure 6.4 (a), a variable i indicates the starting

position of l consecutive customers and j indicates a neighbor where l is relocated.

Figure 6.4: Pictorial representation of or-opt neighborhood generation technique.

6.2.2.3 3-opt Heuristic

The 3-opt is a variant of the 2-opt in which three edges are exchanged. Figure 6.5 shows

the neighborhood generation in the 3-opt heuristic. The order of removing three edges

for the nodes i, j, and k are (i, i + 1), (j, j + 1), and k, k + 1, respectively. The order

used for adding back three edges are (i, k), (i+1, j+1), and (j, k+1), respectively. For

a route r, total possible new routes generated using the 3-opt heuristic is n(n−1)(n−2)
6

.

(a) Original route (b) After 3-opt on the nodes i, j, k

Figure 6.5: Pictorial representation of 3-opt neighborhood generation technique.
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6.2.2.4 Swap Heuristic

In the swap heuristic, a customer from one route is swapped with a customer from

another route. This heuristic allows exchanging of two customers from different routes

to find its suitable place. If customer a is in route r, a can be swapped with a customer

b from the routes r+ 1 to m− 1. The total customers in b’s route should be greater than

one. This swapping is only be done if the demands of both customers can be met by the

capacity of routes.

6.2.2.5 Relocate Heuristic

The relocate heuristic moves a customer from one route to another. This moving of cus-

tomers will be done when two constraints are satisfied. 1) Improve the initial solution.

2) Demand of the moving customer does not exceed the capacity of the route where it

is moved.

6.3 PARALLEL LOCAL SEARCH

LSH requires a significant amount of time for the execution of larger input instances. It

is observed that the solution improvement phase consumes hours of time on an average

for improving the feasible solution for Kytöjoki data set (Kytöjoki et al. 2007). In this

work, five heuristics are applied for solution improvement. Improvement heuristics are

employed after the feasible solution is constructed. In this work, parallel strategies are

applied after the feasible solution is constructed.

This work parallelizes the improvement phase in two ways: at the route level, and

the customer level. The route level parallel approach improves m routes in parallel

using local improvement heuristics. A customer level approach assigns a customer per

thread. Each customer finds its best place onm routes in parallel using the improvement

heuristics. The mechanism of these strategies are elaborated in the following subsec-

tions.

6.3.1 Route Level Parallel Design

In this parallel strategy, one route is mapped to a thread. The total number of threads

created is equal to m, the number of vehicles of each CVRP instance. Total blocks
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required is calculated using Eqn. 6.6 where, threadsPerBlock is the number of threads

to be used per block (1024 threads are the maximum threads allowed per block on Tesla

P100 GPU card).

blocks =
m− 1

threadsPerBlock
+ 1 (6.6)

Figure 6.6: Route level parallel design for improvement heuristics.

Figure 6.6 shows the generic workflow of the route level parallel design. Note that

this parallel strategy is applied inside each improvement heuristic. There is no change

in the order of applying improvement heuristics. In the intra-route heuristics, each

thread generates potential neighboring routes from the current route and selects the

best-improved route. No race conditions occur in intra-route heuristics as each thread

works independently on different routes. During inter-route heuristics, each thread finds

the best swapping or relocation in routes maintained by other threads. This work avoids

race conditions using the following strategy.

• For each inter-route heuristic, a separate data structure is maintained to hold each

thread’s best solution.

• An additional function is necessary to find the best solution from all threads’

individual best solutions.

Table 6.1 shows a separate data structure of O(m) size is created in the global memory

to hold each thread’s best solution for the inter-route heuristic. For the swap heuristic,
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Table 6.1: Members of heuristic data structures used to hold each thread’s best solution
details.

Heuristic Data Structure Members

swap swap data 2 customers from different routes, 2 route ids,
2 change effects for 2 routes, 1 total change effect

relocate relocate data
1 customer, 1 neighbor, 2 route ids,
2 change effects for 2 routes, 1 total change effect

seven members are needed in the data structure, swap data. These seven members

are two routes’ id where swapping is to be done. Next two members are customer

ids which is to be swapped, two scalar variable that holds the changing effect of both

routes, and a seventh member will hold the actual change value in the final generating

solution. A seven-member data structure, relocate data, is also used for the relocate

heuristic. The role of the first four members is changed in the relocate heuristic. Now

the first member will represent a route from which the customer is removed. The second

member represents the route where the customer is to be relocated. Next, two members,

i.e., customers id, one will act as a neighboring node where the second customer will be

relocated, and second will be a customer id, which is to be relocated. Once all threads

write its best solution to the data structure, a separate function is used to find the best-

improved solution. This minimum finding function can be implemented at either the

CPU or the GPU side. If it is done at the CPU side, it takes O(m) time. Instead, it can

be done in log2m steps over the GPU.

However, this parallel strategy does not produce a noticeable improvement in the

execution time. The performance analysis of this strategy is presented in Section 6.4.2.

6.3.2 Customer Level Parallel Design

The customer level parallel design allows every thread to act as a customer. In this

strategy, the total threads used for neighborhood generation is equal to the instance

size, n. The number of blocks created is calculated using Eqn 6.7.

blocks =
n− 1

threadsPerBlock
+ 1 (6.7)
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The job of threads changes according to the improvement heuristics. The mechanism

of customer level parallel design for intra-route and inter-route heuristics are explained

in the following subsections.

6.3.2.1 Intra-route Heuristics

Each thread deals with a set of customers that are allocated on the same route. Algo-

rithm 6.3 presents the pseudocode for the intra-route heuristics. There are three separate

kernels used for the 2-opt, or-opt, and 3-opt heuristics. Algorithm 6.3 present an abstract

pseudocode view of a parallel version for all three heuristics together. Each thread gets

its associating global id (line 1). If thread id is in between 1 and m, associated threads

participates in neighborhood generation computation. Id i = 0 represents a depot id; it

cannot be moved or relocated. Thus threads whose id is greater than zero are allowed

for the solution improvement (lines 2-15). The first step of each thread (i.e., a customer)

is to identify on which route it has been allocated (line 3). The previous and next cus-

tomers of i are determined i.e., i − 1 and i + 1, respectively (lines 4-5). Next, thread i

visits all the customers of the same route to determine the best-improved solution (lines

6-14).

The change calculation equation determines whether a respective pair (i, j) or tuple

(i, j, k) can improve the solution (lines 7-9). If change is negative, the pair can generate

an improved solution over the existing solution. Each intra-route heuristic has a separate

change calculation equation. For 2-opt, or-opt, and 3-opt, equations on lines 7, 8, and

9 are used, respectively. If an improvement is found, thread writes solution details

in the respective data structure at the ith position in the global memory (lines 10-13).

There are three data structures created for each intra-route heuristic, Table 6.2. Upon

improvement, the thread collects the best improved customer pair (i, j) for 2-opt, chunk

size l and customer pair (i, j) for or-opt, and a tuple (i, j, k) for the 3-opt heuristics

respectively. When all threads finish execution, a separate minimum finding kernel

is used to select the best solution among n solutions available in the respective data

structure.
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Algorithm 6.3: Pseudocode for generating and finding the best solution per
thread for intra-route heuristics.

Result: Generates and find the best solution per thread
1 i← threadIdx.x+ blockIdx.x ∗ blockDim.x;
2 if i > 0 && i < n then
3 r ← identify where i is allocated.
4 i+ 1← identify a next neighbor of i;
5 i− 1← identify a previous neighbor of i;
6 while all members of r is not visited do
7 change← d(i, j) + d(i+ 1, j + 1)− d(i, i+ 1)− d(j, j + 1);

// this change calculation is used for 2-opt
8 change← d(i, j) + d(i+ l, j + 1) + d(i− 1, i+ l + 1)− d(i− 1, i)−

d(i+ l, i+ l + 1)− d(j, j + 1);
// this change calculation is used for or-opt

9 change←
d(i, k)+d(i+1, j+1)+d(j, k+1)−d(i, i+1)−d(j, j+1)−d(k, k+1);
// this change calculation is used for 3-opt

10 if change < minChange then
11 minData← writes current solution details.
12 minChange← change;
13 end
14 end
15 end

Table 6.2: Members of heuristic data structures used to hold each thread’s best solution
details.

Heuristic Data Structure Members

2-opt twoOptData 2 customers, route id, change effects
3-opt threeOptData 3 customers, route id, change effects
or-opt orOptData x, y, chunk size, route id, change effects
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Algorithm 6.4: Pseudocode for generating and finding the best solution per
thread for inter-route heuristics.

Result: Generates and find the best solution per thread
1 i← threadIdx.x+ blockIdx.x ∗ blockDim.x;
2 if i > 0 && i < n then
3 r1← identify where i is allocated.
4 i+ 1← identify a next neighbor of i;
5 i− 1← identify a previous neighbor of i;
6 for r2 = r1+1; r2 < m; r2++ do
7 while All members of r2 is not visited do
8 change1← d(i− 1, j) + d(j, i+ 1)− d(i− 1, i)− d(i, i+ 1);
9 change2← d(j − 1, i) + d(i, j + 1)− d(j − 1, j)− d(j, j + 1);

10 change← change1 + change2;
// this change calculation is used for swap

11 change1← d(i− 1, i+ 1)− d(i− 1, i)− d(i, i+ 1);
12 change2← d(j − 1, i) + d(i, j + 1)− d(j − 1, j)− d(j, j + 1);
13 change← change1 + change2;

// this change calculation is used for
relocate

14 if change < minchange then
15 minData← writes current solution details.
16 minchange← change;
17 end
18 end
19 end
20 end

6.3.2.2 Inter-route Heuristics

The parallel version of inter-route heuristic is a variant of the intra-route heuristic, where

each thread explores customers of other routes (Algorithm 6.4). The first five steps of

an algorithm are the same as the intra-route heuristic (lines 1-5). Once each thread

receives its neighboring customers’ detail, it starts exploring all customers on the routes

r + 1 to m independently in pursuit of an improved solution (lines 6-19). A separate

change calculation equation is used for the swap and relocate heuristics. The steps 8-10

are used to get a change affect on routes r1 and r2 if customers i and j are exchanged.

A variable change1 tells the impact of removing a customer i from route r1 and adding

a customer j to a route r1. A variable change2 indicates an effect on the route r2 if j

is removed and i is added back to the route r2.
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The steps 11-13 are used to get an impact of applying the relocate on customer

i from route r1 to r2. A variable change1 indicates a resultant cost of a route r1

after removing a customer i. Variable change2 has the same meaning in the swap

heuristic. If a change is negative, thread writes the current solution details in the data

structure swap data or relocate data, which is located in the global memory. After the

kernel finishes its execution, a minimum finding kernel is applied to the data structure to

determine the best solution. The performance analysis of the route level and customer

level parallel designs have been presented in the following section.

6.4 RESULTS AND DISCUSSIONS

The performance analysis of the parallel version for local search heuristic has been

presented in this section. A wide variety of benchmark instances, i.e., up to 30000 cus-

tomers, have been used to evaluate the performance of the proposed GPU-based parallel

designs. Table 6.3 shows the computational platform details which are used for collect-

ing results of both sequential and parallel implementations. Sequential implementation

of the LSH was tested on the Intel Core i7, which has eight cores operating at a 3.6

GHz frequency and a 16 GB RAM. The sequential version is coded in C language, and

its corresponding parallel version has been coded using the CUDA paradigm (version:

CUDA 10.1). The GPU device, which is used to execute a parallel version, has the

following specifications. A GPU device has a NVIDIA Tesla P100 GPU card with a

compute capability version 6.0, 16 GB of the global memory, 56 Streaming Multipro-

cessors (SMs), where each SM has 64 cores operating at 1.33 GHz. The cost and time

of constructing a feasible solution and improving the solution have been collected. The

empirical performance analysis of the sequential version and corresponding parallel

version of LSH have been explained in the following subsections.

6.4.1 Result Analysis of Sequential Version over Different CVRP Benchmark In-
stance Sets

The experimental analysis has been carried out on the following CVRP data sets: M set

of Christofides instances (Christofides et al. 1979), Golden et al. (1998) instances, Li

et al. (2005) instances, Kytöjoki et al. (2007) instances, Uchoa et al. (2017) instances,
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Table 6.3: The hardware and software details used for the sequential and parallel im-
plementation of the local search heuristic.

Description Sequential Parallel

Language C CUDA
CPU / GPU Core i7-4790 Tesla P100
Architecture Haswell Pascal
Streaming Multiprocessor NA 56
Cores 8 3584
Frequency 3.6 GHz 1.33 GHz
RAM / Global Memory 16 GB 16 GB
Shared Memory NA 48 KB

and Belgium (Arnold and Sörensen 2019) instance set. Tables 6.4, 6.5, 6.6, 6.7, and 6.8

presents results for five benchmark instance suites. For these tables, the first row rep-

resents instance name, cost of the constructed solution, the time required to construct

a solution, a local optimal solution where solution improvement phase terminates, a

best-known-solution for the corresponding instance, and total time spent in the solu-

tion improvement phase, respectively. There are five, twenty, twelve, twenty, and ten

instances available in M, Golden, Li, Kytöjoki, and Belgium sets, respectively.

Table 6.4: The cost and time analysis of LSH on M set instances (Christofides et al.
1979). Time is given in seconds. Abbreviation used- N: Total customers, K: Minimum
number of vehicles required to solve corresponding instance, SC: Solution Construc-
tion; BKS: Best Known Solution; SI: Solution Improvement.

Instance N K Initial cost SC Time Final cost BKS SI Time

M-n101-k10.vrp 101 10 1404.35 0.00036 1118.83 820 0.0110
M-n121-k7.vrp 121 7 1888.68 0.00046 1325.8 1034 0.0138
M-n151-k12.vrp 151 12 1740.52 0.00075 1401.91 1053 0.0313
M-n200-k16.vrp 200 16 2167.54 0.00134 1638.36 1274 0.1201
M-n200-k17.vrp 200 17 2167.54 0.00133 1638.36 1275 0.1200

Table 6.4 presents the solution and time analysis for the M data set instances. These

instances are small in size, i.e., up to 200 customers. Solving such instances using an

LSH algorithm spends time in milliseconds. When solution quality is concerned, LSH

is 1.36 times away from the BKS in the worst-case and 1.28× away in the best-case

scenario.
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Table 6.5: The cost and time analysis over Golden et al. (1998) instance set. Time is
given in seconds.

Instance N K Initial cost SC Time Final cost BKS SI Time

Golden 1.vrp 241 10 7687.3 0.0017 6670.62 5627.54 0.07
Golden 2.vrp 321 10 11994.33 0.0030 10014.21 8447.92 0.26
Golden 3.vrp 401 10 16247.29 0.0048 13645.36 11036.22 0.35
Golden 4.vrp 481 12 22293.6 0.0068 18584.15 13624.52 0.56
Golden 5.vrp 201 5 11804.83 0.0007 8939.28 6460.98 0.04
Golden 6.vrp 281 8 14305.56 0.0013 11679.71 8412.8 0.13
Golden 7.vrp 361 9 16223.67 0.0039 13504.84 10181.75 0.23
Golden 8.vrp 441 11 16540.95 0.0057 14294.06 11663.55 0.30
Golden 9.vrp 256 14 1075.35 0.0018 783.34 585.43 0.25
Golden 10.vrp 324 16 1305.28 0.0032 987.98 741.56 0.54
Golden 11.vrp 400 18 1666.67 0.0049 1245.2 918.45 1.33
Golden 12.vrp 484 19 2067.48 0.0072 1544.93 1107.19 1.63
Golden 13.vrp 253 27 1412.09 0.0010 1087.03 859.11 0.33
Golden 14.vrp 321 30 1867.05 0.0027 1382.57 1081.31 0.72
Golden 15.vrp 397 34 2357.36 0.0041 1742.36 1345.23 0.98
Golden 16.vrp 481 38 2833.35 0.0035 2043.87 1622.69 2.02
Golden 17.vrp 241 22 1155.04 0.0018 901.82 707.79 0.17
Golden 18.vrp 301 28 1664.74 0.0028 1176.9 997.52 0.57
Golden 19.vrp 361 33 2394.8 0.0039 1681.35 1366.86 0.88
Golden 20.vrp 421 41 3350.68 0.0053 2228.23 1820.09 1.31
Average 0.0035 0.63
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Figure 6.7: Execution time analysis of LSH spent in the solution construction and im-
provement phases for Golden and Li data sets.

When instance size grows, LSH also starts spending more time in the solution im-

provement phase. From Tables 6.5 and 6.6, it is noticed that LSH starts gradually
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Table 6.6: The cost and time analysis using twelve instances of Li et al. (2005). Time
is given in seconds.

Instance N K Initial cost SC Time Final cost BKS SI Time

Li 21.vrp 561 10 27533.96 0.0081 22877.34 16212.74 0.78
Li 22.vrp 601 14 19435.62 0.0053 16860.79 14597.18 0.59
Li 23.vrp 641 10 33537.45 0.0060 26287.64 18801.12 1.20
Li 24.vrp 721 10 39948.51 0.0134 31312.44 21389.33 2.99
Li 25.vrp 761 17 23069.62 0.0169 19206.98 16902.16 1.54
Li 26.vrp 801 10 45574.75 0.0164 36016.48 23971.74 1.53
Li 27.vrp 841 19 23331.72 0.0103 19943.63 17488.74 1.60
Li 28.vrp 881 10 52823.72 0.0115 40817.43 26565.92 3.07
Li 29.vrp 961 10 58545.52 0.0151 45258.54 29154.34 3.21
Li 30.vrp 1041 10 63386.64 0.0159 49803.48 31742.51 2.04
Li 31.vrp 1121 10 70615.77 0.0186 54682.97 34330.84 2.75
Li 32.vrp 1201 10 75904.4 0.0338 58459.62 36919.24 6.28
Average 0.0143 2.30

Table 6.7: The cost and time analysis of LSH over Kytöjoki et al. (2007) instance set.
Time is given in seconds.

Instance N K Initial cost SC Time Final cost BKS SI Time

33.vrp 2401 10 169711.59 0.166 122634.02 75754.55 37.72
34.vrp 3601 10 262921.38 0.296 187110.06 114579.08 123.49
35.vrp 6001 10 460197.28 0.902 315759 192228.14 757.08
36.vrp 7201 10 542640.12 0.925 360941.94 231052.66 1504.20
37.vrp 8401 10 635326.56 1.761 413496.81 269877.19 1840.28
38.vrp 9601 10 723210.88 2.406 444206.12 308702.91 3008.22
39.vrp 10801 10 817841.38 1.967 502171 347537 3591.77
40.vrp 12001 10 903524.06 2.358 567184.19 386350.78 10702.50
41.vrp 13201 10 1008933 2.540 617296.25 425175.31 8115.99
42.vrp 14401 10 1106824.62 5.670 668950.69 463999.84 13234.90
43.vrp 16801 10 1260851 6.123 733591.75 541648.88 75085.16
44.vrp 20001 10 1517404.5 6.345 892366.31 645180.94 39346.01
E.vrp 9517 17 6905641.5 2.395 6077346 4757566.36 1221.84
M.vrp 10218 17 4572542.5 2.974 3670555.75 3170932.21 1800.14
R12.vrp 12001 812 1020104.75 5.416 792441.38 680832.79 55710.43
R3.vrp 3001 204 289439.69 0.144 218700.17 186219.59 736.40
R6.vrp 6001 406 535301.69 1.003 414486.25 352701.73 6673.78
R9.vrp 9001 609 775353.75 2.223 603867.44 517443.4 22376.54
S.vrp 8455 15 6429944 2.043 4320665.5 3333695.83 1471.28
W.vrp 7799 16 8235416.5 0.872 5955757 4559986.36 1474.01
Average 2.426 12440.59
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Table 6.8: The cost and time analysis of LSH over Belgium (Arnold and Sörensen
2019) instance set. Time is given in seconds.

Instance N K Initial cost SC Time Final cost BKS SI Time

L1.vrp 3001 203 380510.19 0.234 246467.48 194381 685.19
L2.vrp 4001 46 204400.17 0.230 144827.23 113484 315.55
A1.vrp 6001 343 868495.31 0.535 598249.88 481338 3329.28
A2.vrp 7001 120 578501.94 0.744 399403.72 296055 2440.42
G1.vrp 10001 485 934140.19 2.568 614145.19 473568 17940.77
G2.vrp 11001 110 434350.31 2.388 331532.44 264512 4217.82
B1.vrp 15001 512 1055067.62 3.654 645495.25 507103 53010.61
B2.vrp 16001 182 673065.81 4.091 458719.41 355779 22647.48
F1.vrp 20001 684 13826885 6.289 9362481 7295447 158141.80
F2.vrp 30001 256 10103465 14.909 6192097 4504416 206708.16
Average 3.564 46943.71

spending more time in the solution improvement phase because the size of instances in

Golden and Li sets are up to 481 and 1201 nodes, respectively. Figure 6.7 (a) shows that

LSH spends at least 97.62% time and at most 99.82% time in the solution improvement

phase, whereas Figure 6.7 (b) shows LSH spends 98.91% -99.62% portion of time in

the solution improvement phase while solving Li et al. instances. These customer sizes

are small in amount. When size goes beyond 1200 nodes, LSH significantly spends

ample amount of CPU time in the solution improvement phase.

The real-time application requires thousands of customers to be satisfied. Kytöjoki

et al. (2007) instance set contains instances of size between 3001-20001 nodes. Table

6.7 presents the instance wise solution quality and execution time analysis which is

spent in the solution construction and solution improvement phases for Kytöjoki et al.

(2007) instance set. In Table 6.7, the time required for the solution improvement phase

is in hours. For instance, 43.vrp, the solution improvement phase spends 20.85 hours

to get its local optimal solution. On average, it spends 1.20 hours CPU time for 20

instances. Figure 6.8 (a) shows LSH consumes 99.56%-99.99% of time in the solution

improvement phase for Kytöjoki et al. (2007) instance set.

Arnold and Sörensen (2019) have proposed the large-scale data set that contains up

to 30000 customers, considering the real-time scenario. As customer size grows, the ex-

ecution time also increases significantly. Table 6.8 shows that the solution improvement
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Figure 6.8: Execution time analysis of LSH spent in the solution construction and im-
provement phases for Kytöjoki et al. (2007) and Belgium (Arnold and Sörensen 2019)
data sets.

phase spends 13.03 hours on an average for ten instances of size up to 30000 customers.

An instance of 30000 customers (i.e., F2.vrp) needs 2.39 days to trap into the local op-

timal solution. From figure 6.8 (b), it is noticed that LSH spends 99.92%-99.99% of

time in the solution improvement phase. This observation tells that computing the solu-

tion for larger CVRP problems is a time-consuming process; hence finding the parallel

version is important. Two GPU-based parallel strategies have been designed to mitigate

execution time, which is being spent in the solution improvement phase. The following

subsections explain the performance analysis of proposed GPU-based parallel strate-

gies, namely route level and customer level designs.

6.4.2 Route Level Parallel Design

The route level parallel design is the natural way to apply parallelization in the solution

improvement phase. In route level parallel design, each thread works separately on its

associated route simultaneously in the one improvement heuristic at a time. Table 6.9

shows the cost and time analysis of this parallel strategy on Li et al. (2005) data set.

It is noticed that this strategy does not reduce execution time. Instead, it worsens the

speedup. Compared to the sequential approach, this parallel strategy is 1.81× slower

in the best-case, 5.77× in the worst-case, and 3.39× on an average, which is shown in

Figure 6.9.

The reasons for this worse performance are followed. In this strategy, the number
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Table 6.9: The performance analysis of route level parallel design over Li et al. (2005)
instances. Time is given in seconds. Abbreviation used- PSI: Parallel version of Solu-
tion Improvement.

Instance N K Initial cost SC Time Final cost BKS SI Time PSI Time

Li 21.vrp 561 10 27533.96 0.0081 22877.34 16212.74 0.78 2.708867
Li 22.vrp 601 14 19435.62 0.0053 16860.79 14597.18 0.59 1.793499
Li 23.vrp 641 10 33537.45 0.0060 26287.64 18801.12 1.20 4.10188
Li 24.vrp 721 10 39948.51 0.0134 31312.44 21389.33 2.99 7.810976
Li 25.vrp 761 17 23069.62 0.0169 19206.98 16902.16 1.54 2.787952
Li 26.vrp 801 10 45574.75 0.0164 36016.48 23971.74 1.53 5.109024
Li 27.vrp 841 19 23331.72 0.0103 19943.63 17488.74 1.60 4.919494
Li 28.vrp 881 10 52823.72 0.0115 40817.43 26565.92 3.07 8.568896
Li 29.vrp 961 10 58545.52 0.0151 45258.54 29154.34 3.21 12.251009
Li 30.vrp 1041 10 63386.64 0.0159 49803.48 31742.51 2.04 11.79972
Li 31.vrp 1121 10 70615.77 0.0186 54682.97 34330.84 2.75 12.434641
Li 32.vrp 1201 10 75904.4 0.0338 58459.62 36919.24 6.28 19.343243
Average 0.014275 2.298333 7.802433
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Figure 6.9: Time comparison of route level parallel design with sequential version on
Li et al. (2005) data set.

of threads used is equal to the number of vehicles allowed per instance. The maximum

and minimum number of vehicles permitted to use in the Li data set are 19 and 10,

respectively. It means the maximum number of threads used in this parallel strategy

are 19. In CUDA, a bunch of 32 threads, known as warp, is mapped to the Stream-

ing Multiprocessor (SM). If a warp does not suffer control divergence, all 32 threads

perform their computations simultaneously on the same instruction. In this parallel
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Table 6.10: The performance of route level parallel design over X (Uchoa et al. 2017)
data set. Speedup is a ratio between sequential and parallel version of SI time.

Instance N K Initial Cost SC Time Final Cost PSI Time SI Time Speedup

X-n219-k73.vrp 219 13 154908.61 0.0011 118750.68 0.16 0.38 2.34
X-n266-k58.vrp 266 58 124439.59 0.0016 82355.02 0.71 0.84 1.18
X-n317-k53.vrp 317 53 116344.2 0.0023 81323.53 1.23 2.56 2.07
X-n336-k84.vrp 336 84 227384.73 0.0026 157520.09 1.36 1.51 1.11
X-n376-k94.vrp 376 94 203926.78 0.0029 151054.22 0.75 2.88 3.82
X-n384-k52.vrp 384 52 105075.69 0.0031 74123.53 1.86 2.47 1.33
X-n420-k130.vrp 420 130 157091.25 0.0040 122377.92 1.60 2.22 1.39
X-n429-k61.vrp 429 61 100465.99 0.0044 74340.88 1.98 2.92 1.48
X-n469-k138.vrp 469 138 331598.12 0.0047 243563.02 1.60 4.42 2.77
X-n480-k70.vrp 480 70 131992.22 0.0051 99666.37 3.03 5.17 1.71
X-n548-k50.vrp 548 50 130800.34 0.0055 100258.44 4.49 6.32 1.41
X-n586-k159.vrp 586 159 285243.81 0.0071 204905.28 2.64 6.00 2.27
X-n599-k92.vrp 599 92 171988.58 0.0077 120882.88 4.11 7.67 1.87
X-n655-k131.vrp 655 131 134284.16 0.0099 108906.77 3.07 13.51 4.40
X-n733-k159.vrp 733 159 205729.66 0.0116 152020.62 5.65 6.86 1.22
X-n749-k98.vrp 749 98 124846.94 0.0113 90490.3 9.18 11.34 1.24
X-n819-k171.vrp 819 171 211374.03 0.0123 173226.84 5.01 15.38 3.07
X-n837-k142.vrp 837 142 286703.12 0.0157 210848.55 9.97 23.84 2.39
X-n856-k95.vrp 856 95 125451.69 0.0151 97690.31 8.52 20.97 2.46
X-n916-k207.vrp 916 207 489238.47 0.0165 362133.62 9.23 32.83 3.56
X-n957-k87.vrp 957 87 138820.48 0.0186 99555.78 13.60 34.56 2.54

min 1.11
max 4.40
avg 2.17

strategy, only one warp is involved in the computation since 19 threads are required at

the most. Another reason is that the neighborhood generation and its cost computation

are performed sequentially on each route by an associated thread.

An investigation has been carried out to identify the number of vehicles resulting in

positive speedup. It is observed that the route level parallel design offers a slight benefit

when the number of vehicles used are more than 50 and the total number of customers

are more than 200. Note that there are hardly some benchmarking instances available

where the vehicle count constraint per instance is more than 50. Table 6.10 shows the

results of route level parallel design, where it produces speedup gain over the Uchoa

et al. (2017) data set. Two conditions have been considered to selects the instances for

this experiment. 1) An instance should have more than 200 customers. 2) The minimum

number of vehicles are allowed to use should be more than 50. The speedup achieved
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with this parallel strategy is 1.11× faster in the worst-case, 4.40× in the best-case, and

2.17× on an average as compared to the sequential version for the same data set.

From these result analyses, it is noticed that this parallel strategy under-utilizes GPU

compute capability since a lesser number of threads are involved in the actual computa-

tion. Moreover, the neighborhood generation and its cost computation are performed in

a serial manner at each thread. Therefore, it is necessary to find a parallel strategy such

that a large number of threads perform computation. A customer level parallel strategy

has been designed, which improves the work distribution. The performance analysis of

customer level parallel design is presented in the following subsection.

6.4.3 Customer Level Parallel Design

The customer level parallel strategy is designed to overcome issues associated with

route level parallel design. In this strategy, each customer acts as a thread. This

strategy allows a larger number of threads to involve in the computation. Table 6.11

shows the execution time spent in the sequential and parallel versions for the M data

set (Christofides et al. 1979). It is noticed that the parallel version spent more time

compared to its sequential counterpart for smaller instances, i.e., up to 120 customers.

There are two main reasons for this slower performance. First, for smaller instances,

the computational time is dominated by the communication time. The communication

time is the time required for transferring data, which is required for performing the

computation over the GPU, from the CPU to the GPU, and vice-versa. Second, lesser

threads are involved in the computation for smaller instances, which under-utilizes the

GPU’s compute capability.

As instance size grows, customer level parallel design reveals its noticeable perfor-

mance. Tables 6.12 and 6.13 shows the instance wise time comparison between the

sequential and parallel version of the solution improvement phase for Golden and Li

instances. For these medium-scale instances, i.e., up to 1200 customers, this proposed

parallel strategy reduces execution time significantly. The customer level parallel de-

sign achieves 1.12×, 3.89×, and 7.56× speedup in the worst-case, average case, and

best-case, respectively, for the Golden data set. Compared with the Li data set, this
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Table 6.11: The execution time analysis of customer level parallel design with sequen-
tial counterpart on M (Christofides et al. 1979) data set.

Instance N K SI Time PSI Time Speedup

M-n101-k10.vrp 101 10 0.011 0.029 0.39
M-n121-k7.vrp 121 7 0.014 0.025 0.55
M-n151-k12.vrp 151 12 0.031 0.031 1.00
M-n200-k16.vrp 200 16 0.120 0.079 1.53
M-n200-k17.vrp 200 17 0.120 0.074 1.62

min 0.39
max 1.62
avg 1.02
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Figure 6.10: Comparison of time spent in sequential and parallel versions of solution
improvement phase using Golden and Li data sets.
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Table 6.12: The execution time analysis of customer level parallel design with sequen-
tial counterpart on Golden et al. (1998) instance set.

Instance N K SI Time PSI Time Speedup

Golden 1.vrp 241 10 0.073 0.044 1.65
Golden 2.vrp 321 10 0.264 0.059 4.47
Golden 3.vrp 401 10 0.350 0.070 4.98
Golden 4.vrp 481 12 0.562 0.123 4.57
Golden 5.vrp 201 5 0.039 0.035 1.12
Golden 6.vrp 281 8 0.130 0.073 1.78
Golden 7.vrp 361 9 0.225 0.066 3.44
Golden 8.vrp 441 11 0.302 0.077 3.93
Golden 9.vrp 256 14 0.252 0.140 1.81
Golden 10.vrp 324 16 0.540 0.148 3.64
Golden 11.vrp 400 18 1.326 0.246 5.40
Golden 12.vrp 484 19 1.633 0.396 4.12
Golden 13.vrp 253 27 0.331 0.100 3.32
Golden 14.vrp 321 30 0.724 0.166 4.37
Golden 15.vrp 397 34 0.980 0.229 4.27
Golden 16.vrp 481 38 2.016 0.267 7.56
Golden 17.vrp 241 22 0.173 0.083 2.07
Golden 18.vrp 301 28 0.571 0.141 4.06
Golden 19.vrp 361 33 0.879 0.182 4.84
Golden 20.vrp 421 41 1.306 0.205 6.38

min 1.12
max 7.56
avg 3.89

parallel design achieves 3.80×, 6.92×, and 10.37× in the worst-case, average case, and

best-case, respectively. Figure 6.10 shows the time portion analysis of total execution

time spent in solution construction, sequential solution improvement, and parallel so-

lution improvement for all instances of Golden and Li data sets. Figure 6.10 (a) shows

that SI spends at least 97.62% time and at most 99.82% time in the solution improve-

ment phase, which is reduced down to 93.10%-99.00% using PSI, whereas Figure 6.10

(b) shows SI spends 98.91%-99.62% portion of time, which is now reduced to 91.41%-

96.98% using PSI.

When this parallel design’s performance is evaluated on the large-scale data sets,

namely Kytöjoki et al. (2007) and Belgium (Arnold and Sörensen 2019), it is noticed
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Table 6.13: The execution time analysis of customer level parallel design with sequen-
tial counterpart on Li et al. (2005) data set.

Instance N K SI Time PSI Time Speedup

Li 21.vrp 561 10 0.78 0.13 6.12
Li 22.vrp 601 14 0.59 0.16 3.80
Li 23.vrp 641 10 1.20 0.19 6.24
Li 24.vrp 721 10 2.99 0.29 10.37
Li 25.vrp 761 17 1.54 0.18 8.60
Li 26.vrp 801 10 1.53 0.35 4.37
Li 27.vrp 841 19 1.60 0.25 6.44
Li 28.vrp 881 10 3.07 0.37 8.34
Li 29.vrp 961 10 3.21 0.43 7.54
Li 30.vrp 1041 10 2.04 0.31 6.48
Li 31.vrp 1121 10 2.75 0.49 5.62
Li 32.vrp 1201 10 6.28 0.68 9.16

min 3.80
max 10.37
avg 6.92
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Figure 6.11: Comparison of time spent in sequential and parallel versions of solution
improvement phase using Kytöjoki and Belgium data sets.

that the customer level parallel design obtains higher speedup. Tables 6.14 and 6.15

shows the significant reduction in the execution time of solution improvement phase

using parallel version. The parallel version achieves 12.31×, 47.54×, and 109.00×

speedup in the worst-case, average case, and best-case, respectively compared to its

sequential counterpart for Kytöjoki data set. Compared with Belgium instances, this

parallel design obtains 29.91×, 83.52×, and 147.20× speedup in the worst-case, aver-
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Table 6.14: The execution time analysis of customer level parallel design with sequen-
tial counterpart on Kytöjoki et al. (2007) data set.

Instance N K SI Time PSI Time Speedup

33.vrp 2401 10 37.72 2.81 13.43
34.vrp 3601 10 123.49 8.88 13.90
35.vrp 6001 10 757.08 28.68 26.40
36.vrp 7201 10 1504.20 65.44 22.98
37.vrp 8401 10 1840.28 103.62 17.76
38.vrp 9601 10 3008.22 174.07 17.28
39.vrp 10801 10 3591.77 291.78 12.31
40.vrp 12001 10 10702.50 275.95 38.78
41.vrp 13201 10 8115.99 364.93 22.24
42.vrp 14401 10 13234.90 426.95 31.00
43.vrp 16801 10 75085.16 1207.23 62.20
44.vrp 20001 10 39346.01 1302.29 30.21
E.vrp 9517 17 1221.84 17.39 70.25
M.vrp 10218 17 1800.14 19.80 90.91
R12.vrp 12001 812 55710.43 511.09 109.00
R3.vrp 3001 204 736.40 18.97 38.81
R6.vrp 6001 406 6673.78 89.24 74.79
R9.vrp 9001 609 22376.54 240.00 93.23
S.vrp 8455 15 1471.28 14.67 100.31
W.vrp 7799 16 1474.01 22.67 65.02

min 12.31
max 109.00
avg 47.54

age case, and best-case, respectively. The maximum speedup is recorded for Belgium

instance, F2.vrp, which is 147.20× faster. Figure 6.11 shows a comparative time anal-

ysis of time spent in sequential and parallel versions of the solution improvement phase

using Kytöjoki and Belgium data sets. Figure 6.11 (a) shows that SI spends 99.56%-

99.99% time in the solution improvement phase, whereas its parallel counterpart spends

86.94%-99.51%. Figure 6.11 (b) shows SI spends 99.92%-99.99% portion of time,

whereas PSI spends 95.86%-99.46%. For example, LSH spends 2.39 days of execution

time to reach its local solution for a F2.vrp instance. In contrast, PLSH solves the same

instance in 23.65 minutes with customer-level parallel design.

The primary reason for this speedup is that this parallel strategy allows many threads
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Table 6.15: The execution time analysis of customer level parallel design with sequen-
tial counterpart on Belgium (Arnold and Sörensen 2019) data set.

Instance N K SI Time PSI Time Speedup

L1.vrp 3001 203 685.19 22.91 29.91
L2.vrp 4001 46 315.55 7.91 39.90
A1.vrp 6001 343 3329.28 67.83 49.08
A2.vrp 7001 120 2440.42 37.71 64.72
G1.vrp 10001 485 17940.77 249.66 71.86
G2.vrp 11001 110 4217.82 55.30 76.28
B1.vrp 15001 512 53010.61 493.77 107.36
B2.vrp 16001 182 22647.48 198.61 114.03
F1.vrp 20001 684 158141.80 1172.46 134.88
F2.vrp 30001 256 206708.16 1404.30 147.20

min 29.91
max 147.20
avg 83.52

to participate in the actual computation. For example, consider an instance F2.vrp.

Since each customer act as a thread, the number of threads involved in the computation

are 30000. For each CUDA block, we have setup to use at most 128 threads. There-

fore, a total of 30000 threads across 235 blocks are involved in computation, resulting

in a higher speedup. Table 6.15 shows that the customer-level parallel design obtains

a speedup gain in the linear order as the customer size increases. This strategy is also

compared with the route level design. Table 6.16 shows the execution time comparison

of customer level parallel design with sequential counterpart and the route level parallel

approach over the X data set. Compared to the sequential version, this parallel design is

1.99× faster in the worst-case, 9.83× on an average, and 22.97× in the best-case. The

speedup achieved in the best-case, average, and the worst-case is 9.03×, 4.69×, and

1.99×, respectively, compared to the route level parallel design. From these result anal-

ysis, it can be determined that the more threads involve in computation independently,

the better speedup it will produce.
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Table 6.16: The performance of route level parallel design over Uchoa et al. (2017)
data set. Abbreviations used- SI: Solution Improvement; RSI: Route level Solution
Improvement; CSI: Customer level Solution Improvement; S1: Speedup ratio between
SI and CSI; S2: Speedup ratio between RSI and CSI.

Instance N K SI Time RSI Time CSI Time S1 S2

X-n219-k73.vrp 219 13 0.38 0.16 0.08 4.66 1.99
X-n266-k58.vrp 266 58 0.84 0.71 0.23 3.70 3.14
X-n317-k53.vrp 317 53 2.56 1.23 0.29 8.73 4.21
X-n336-k84.vrp 336 84 1.51 1.36 0.36 4.23 3.82
X-n376-k94.vrp 376 94 2.88 0.75 0.26 11.05 2.89
X-n384-k52.vrp 384 52 2.47 1.86 0.34 7.27 5.47
X-n420-k130.vrp 420 130 2.22 1.60 0.51 4.35 3.13
X-n429-k61.vrp 429 61 2.92 1.98 0.36 8.09 5.48
X-n469-k138.vrp 469 138 4.42 1.60 0.53 8.30 3.00
X-n480-k70.vrp 480 70 5.17 3.03 0.52 9.86 5.77
X-n548-k50.vrp 548 50 6.32 4.49 0.63 10.05 7.14
X-n586-k159.vrp 586 159 6.00 2.64 0.86 6.99 3.08
X-n599-k92.vrp 599 92 7.67 4.11 0.83 9.20 4.93
X-n655-k131.vrp 655 131 13.51 3.07 0.72 18.67 4.25
X-n733-k159.vrp 733 159 6.86 5.65 1.22 5.64 4.64
X-n749-k98.vrp 749 98 11.34 9.18 1.35 8.38 6.78
X-n819-k171.vrp 819 171 15.38 5.01 1.41 10.91 3.55
X-n837-k142.vrp 837 142 23.84 9.97 1.89 12.61 5.27
X-n856-k95.vrp 856 95 20.97 8.52 1.15 18.16 7.37
X-n916-k207.vrp 916 207 32.83 9.23 2.62 12.53 3.52
X-n957-k87.vrp 957 87 34.56 13.60 1.50 22.97 9.03

min 1.99 1.99
max 22.97 9.03
avg 9.83 4.69

6.4.4 Solution Quality

As far as solution quality is concerned, the local search heuristic used in this chapter

does not offer better solutions compared to the existing state-of-the-art metaheuristics

algorithms (Kytöjoki et al. 2007; Li et al. 2005; Uchoa et al. 2017). LHS stops

exploring neighborhood solutions when it traps into a local optima. The perturbation

and randomization are not incorporated, as in metaheuristics algorithms. The focus

of this work is to find data and thread level parallelism in improvement heuristics. The
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lower bound observed in the final solutions are 1.28×, 1.18×, 1.14×, 1.16×, and 1.24×

far compared to the best-known solutions of M, Golden, Li, Kytöjoki, and Belgium data

sets, respectively. The upper bound on final solutions are within 1.31×, 1.40×, 1.59×,

1.64×, and 1.38× far compared to the best-known solutions of M, Golden, Li, Kytöjoki,

and Belgium data sets, respectively. The LSH can be replaced with the well-known

metaheuristics such as variable neighborhood search heuristic (VNSH) (Kytöjoki et al.

2007), iterated local search based metaheuristic algorithm (ILS-SP) (Subramanian et al.

2013), and unified hybrid genetic search (UHGS) (Vidal et al. 2012, 2014), in order to

reduce the gap rates present in the final solutions. Finding the independent portion and

designing the parallel strategies for such metaheuristics is a future work.

6.5 SUMMARY

In this chapter, two GPU-based parallel strategies have been designed for the local

search heuristic to solve the Capacitated Vehicle Routing Problem (CVRP) to reduce

the execution time.

The improvement heuristic is applied after the feasible solution is created in order

to improve the solution quality. In the solution improvement phase, five improvement

heuristic approaches have been applied in which three are intra-route heuristics, and

two are inter-route heuristics. The three intra-route heuristics are 2-opt, or-opt, and 3-

opt. Two inter-route heuristics are swap and relocate. Experiment shows that more than

90% of time is spent in solution improvement phase. The execution time requirement is

in hours and days for Belgium instances which sizes in range of 3000-30000 customers.

The execution time of solution improvement phase can be reduced using the data and

thread level parallelisms since there exists less dependency in its computation.

Two GPU-based parallel strategies have been designed for the improvement heuris-

tic phase. The first is the route level, and another is the customer level strategy. In

the route level parallel strategy, one thread per route is mapped to improve routes si-

multaneously in each heuristic. The route level strategy is found in underutilizing GPU

computability. This happens due to the number of vehicles allowed to use per CVRP in-

stance is short in size. Therefore another parallel strategy is designed, namely customer
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level parallel design, in which each customer can act as a thread. The performance of

this strategy is performed on a wide variety of data sets ranging from 101 to 30000 cus-

tomers. The average speedup achieved with the customer level parallel design is 3.89×,

6.92×, 47.52×, and 83.52× for Golden, Li, Kytöjoki, and Belgium data sets, respec-

tively over its sequential counterpart. The maximum speedup is achieved up to 147.19

times faster with respect to sequential version. This maximum speedup recorded is for

Belgium F2.vrp instance.
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CHAPTER 7

CONCLUSIONS AND FUTURE SCOPE

This thesis presents the GPU-based parallel models to the existing metaheuristic al-

gorithms to solve different combinatorial optimization problems in lesser time. Many

optimization problems deal with real-time applications. Providing faster solutions to

such applications is of great importance. This thesis aims to reduce the execution time

spends in the improvement phase of metaheuristic algorithms. This thesis presents

cost quality and speedup improved implementations of Combinatorial Optimization NP

hard problems, viz., Travelling Salesman Problem (TSP), Minimum Latency Problem

(MLP), and Capacitated Vehicle Routing Problem (CVRP), on the GPU.

The first part of the thesis work presents four GPU-based parallel strategies for the

single solution-based metaheuristic, namely, Iterative Hill Climbing (IHC) algorithm

to solve large-size Traveling Salesman Problem (TSP) instances. The Parallel IHC

(PIHC) approach is evaluated and compared with LOGO and TSP2.2 GPU based state-

of-the-art TSP solvers and it is observed that PIHC approach obtains results with error

rate in the range of 0.72% (best case) - 8.06% (worst case). The PIHC produces a

speedup of up to 979.66 over the GPU based TSP2.2 implementation. Overall, PIHC

receives 68.34× on average and 193× in the best case over its corresponding sequential

implementation. PIHC is the single solution-based heuristic designed to solve TSP

instances. Subsequent chapter in the thesis work is the design of parallel strategies for

the population of solutions-based heuristic.

The next contribution is the GPU-based parallel approach for Ant Colony Opti-
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mization (ACO) algorithm to solve large-scale TSP. The compute and time intensive

section of the ACO algorithm is the construction of ants and the iterative improvement

till convergence. Two GPU-based parallel strategies, namely, data-level and task-level

parallel approaches for the ACO algorithm have been implemented. Task-level parallel

approach maps one ant per thread whereas in data-level approach one ant is mapped

per thread block. Task-level approach is up to 22 faster over the sequential approach.

In data-level approach, multiple threads construct each ant’s solution. Therefore, data

level approach outperforms the task-level approach by 1.02 to 3.37 times for instances

up to 33810 cities. When data-level approach is compared with sequential counterpart,

up to 60 speedup is observed for the instances in the range of 100 - 33810 cities. When

solution quality is concerned, ACO with 2-opt produces good quality solutions which

has error rates in the range 0.52% - 4.97% for instances up to 33810 cities.

In the next piece of work, a Deterministic Local Search Heuristic (DLSH) that al-

ways reaches the same local solution on multiple trials is presented. The state-of-the-art

evaluates a move in O(1) time using the preprocessed local data. The thesis presents the

move evaluation procedure for the swap method, which computes a move in O(1) time

without the need for any preprocessed data. DLSH obtains optimal solutions for 15 out

of 40 instances. For TRP instances of size 50, gap rates are in the range of 2.02-13.48%.

DLSH is compared with the state-of-the-art MLP solvers. DLSH has gap rates in the

range of 0.52-16.27%, 4.57-12.40%, and 7.71-13.52% for the TRP instance sets of sizes

100, 200, and 500 compared to the solutions of GILS-RVND. However, DLSH reaches

the new best solutions for the five TSPLIB instances, namely eil51, berlin52, pr107,

rat195, and pr226. The GPU-based parallel DLSH (PDLSH) is proposed to compute

neighborhood methods on the GPU. PDLSH achieves a speedup up to 179.75 for TRP

and TSPLIB instances of sizes 10-7397.

In the last contribution of the thesis, two GPU-based parallel strategies for the im-

provement heuristic phase are presented. The first is the route level, and the second is

the customer level strategy. In the route level parallel strategy, one thread per route is

mapped to improve routes simultaneously in each heuristic. The route level strategy

is found in underutilizing GPU computability. This happens due to the number of ve-
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hicles allowed to use per CVRP instance is short in size. Therefore another parallel

strategy is designed, namely customer level parallel design, in which each customer

can act as a thread. The performance of this strategy is performed on a wide variety

of data sets ranging from 101 to 30000 customers. The average speedup achieved with

the customer level parallel design is 3.89×, 6.92×, 47.52×, and 83.52× for Golden, Li,

Kytöjoki, and Belgium data sets, respectively over its sequential counterpart. The max-

imum speedup is achieved up to 147.19 times faster with respect to sequential version.

This maximum speedup recorded is for Belgium F2.vrp instance.

From this thesis, it can be inferred that the execution time portion requires in the im-

provement phase of the metaheuristic algorithms have been significantly reduced with

the help of an efficient GPU-based parallel model. Sequential metaheuristic spends an

inadmissible time solving the combinatorial optimization problem, where instance size

is more than 10000 nodes. When existing metaheuristic algorithms are studied consid-

ering TSP, MLP, and CVRP, it is found that more than 90% of execution time is being

spent in the solution improvement phase. Therefore, reducing the time portion spent in

the solution improvement phase is of great importance. The GPU-based parallel mod-

els presented in the thesis have shown the efficacy to reduce the solution improvement

phase time portion. Setting up initial solution using the nearest neighborhood is better

than random approach that results in improved solution quality. Therefore, GPU-based

parallel models can be used for solving various combinatorial optimization problems

efficiently.

FUTURE SCOPE

The metaheuristic features, such as, randomization and perturbation, have not been con-

sidered in metaheuristics used in this thesis. The solution quality is further improved

considering these mentioned features. In chapter 5, as an extension, a GPU-based par-

allel model can be designed for the metaheuristics, such as Variable Neighborhood

Descent (VND), Variable Neighborhood Search (VNS), Generalized Random Adaptive

Search Procedure (GRASP), and Iterative Local Search (ILS) metaheuristics. In chap-

ter 6, parallelization can be applied to the best-performing metaheuristics approaches,
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which produce the best-known solutions for the benchmarking instances. The local

search heuristic algorithm used in this chapter does not offer better solution quality

compared to the state-of-the-art metaheuristic algorithms.
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