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ABSTRACT

The recent years witnessed the rapid adoption of the Internet of Things (IoT) paradigm
across business and non-business realms alike. Usually, IoT-based systems are located
at a multi-hop distance apart from the Cloud datacenters. Consequently, relying on
Cloud-centric execution results in a performance penalty for the real-time IoT appli-
cations. To circumvent this, the Fog computing paradigm emanated as a widespread
computing technology to support the execution of the IoT applications. Fog computing
extends Cloud services to the vicinity of end devices, thereby enabling the applications
to be executed closer to the data sources. Thus, the Fog paradigm aids in reducing
the service delivery time and network congestion. Even though this new paradigm
opens a set of potential possibilities, it also introduces several additional challenges and
complexities arising from its heterogeneity and resource-constrained characteristics. In
order to harness the potential of Fog computing environments, it is imperative to adopt
efficient orchestration mechanisms that can manage the resources in the system.

Application management is an intrinsic component of resource orchestration sys-
tems. This involves identifying suitable options for the initial placement of the appli-
cations. The placement decisions have significant impacts on the overall performance
of the application. Placement schemes for Fog environments must take into considera-
tion the requirements and characteristics of the different entities in the Fog ecosystem,
including the Fog nodes, IoT applications and IoT devices. The category of mission
critical IoT applications makes reliable service delivery an essential requirement in Fog
environments. There is a resolute need for placement schemes that ensure reliable ser-
vice delivery. Accordingly, in this research, a placement policy that addresses the con-
flicting criteria of service reliability and monetary cost is proposed. The proposed Cost
and Reliability aware Eagle Whale optimizer (CREW) derives placement decisions that
maximize the reliability and minimize the cost. Realtime experiments substantiate that
the proposed approach succeeds in improving the performance of applications executed
in Fog computing environments.

User mobility is another particularity in Fog computing environments. Mobility of
the end users may result in an increase in the hop distance between the data source and
the Fog node. In order to ensure that this does not adversely impact service delivery,
application modules must be migrated across Fog nodes with the objective of maintain-
ing low hop distance values. Therefore, this research also presents a Mobility-aware
Autonomic Framework (MAMF) to perform migrations in the Fog environment. The
developed framework relies on predetermined user locations to take migration deci-
sions. Performance of the approach is evaluated using real-time mobility traces.

Keywords: Fog Computing, Service placement, Application module migration,
Reliability, Mobility support, Meta-heuristic optimization, Autonomic Computing
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CHAPTER 1

INTRODUCTION

Prevailing pervasive and ubiquitous computing technologies are directed towards mak-

ing the world totally connected. The constantly available, networked computing de-

vices empower end users by providing them access to a range of cost-effective and

high-performance services. These smart devices have the potential to interconnect dis-

tinct physical business worlds, and their usage in real time complex applications helps

to generate efficient, comfortable and simple technological solutions. The widespread

emergence of the Internet of Things (IoT) paradigm, has led to a proliferation of IoT

devices connected to the Internet in all the sectors encompassing the public and private

business spaces.

According to recent estimates, the number of devices connected to the Internet is

expected to be around 3.6 per capita by 2022 and around 71% of the global traffic will

be generated by wireless devices (Cisco 2018). The enormous number of connected IoT

devices generate huge volumes of heterogeneous data. However, the limited computing

and processing capabilities of the devices generating this data, deem them insufficient

for processing the large amount of data generated. To overcome such issues, these

devices at the network edge rely on the Cloud data centres. Data from the edge devices

is uploaded to the Cloud, where all the processing activities are carried out and the

results of the processing activities are sent back to the edge devices. Usage of the

Cloud provides efficient processing functionalities and unlimited storage for the large

1



1. Introduction

volume of heterogeneous data. However, the latencies involved in uploading the entire

data to the Cloud, and the bandwidth requirements are the downsides. This leads to a

degradation in the user experience.

Many efforts have been directed towards the integration of the Cloud and the IoT.

Nevertheless, there is a need to devise approaches that fulfil all the requirements of IoT

applications which include low latency, mobility support and location-aware processing

(Barcelo et al. 2016; Qiu et al. 2018). In an effort to provide better suitability for such

applications, researchers propounded to carry out processing activities nearer to the end

users, in the edge devices. In the Edge Computing paradigm, the edge devices are

augmented with data processing capabilities rather than holding the processing power

solely in a quasi-central Cloud. This facilitates preliminary processing to be carried

out in the edge resources, thereby reducing processing latencies. Nonetheless, the Edge

Computing paradigm also had several drawbacks such as resource contention issues,

security issues and limited support for scalability.

The limitations in Edge Computing and Cloud Computing for performing real-time

operations led researchers to propose a new computing model that can overcome these

issues, which is termed as Fog Computing. The Fog Computing distributed paradigm

leverages the computational capabilities of an additional infrastructure layer along with

the resources of the edge and cloud layers.

1.1 RELATED COMPUTING PARADIGMS

Fog computing and edge computing are the extensions of Cloud computing, and both

the paradigms appear to be similar because of their involvement in distribution of intelli-

gence at the edges of the network. Few widely used paradigms were developed by com-

bining the concepts of Cloud Computing and Edge Computing. Two such paradigms

that are most closely inter-related to Cloud and Edge Computing are Mobile Edge Com-

puting (MEC) and Mobile Cloud Computing (MCC). Mist computing is another more

recent form of lightweight computing. This section presents few related paradigms and

highlights how each paradigm lacked certain functionalities, which led to the instigation

of the Fog paradigm.

2



1.1. Related Computing Paradigms

1.1.1 Cloud Computing

Cloud is a dynamically scalable pool of resources that can be accessed over a net-

work. The increasing demands of connected edge devices led to their integration with

the Cloud. Several research efforts exploited the integration of the Cloud and IoT.

The offerings of the Cloud can be used to store and process Internet of Things (IoT)

data. Carrillo et al. (2015) proposed a Cloud-based smart city application ecosystem.

Smart systems are complex, dynamic and heterogeneous. Thus, Cloud computing is

used to transform and analyze the large sets of diverse data generated by these systems.

Abawajy and Hassan (2017) applied Cloud computing in the health-care sector for de-

veloping a health status monitoring system such that the integration of the capabilities

of the Cloud with IoT makes the system more flexible and scalable.

Even though many efforts have been directed towards the efficient integration of the

Cloud and IoT, the rapid explosion in the number of services and edge devices ensued

in the Cloud Computing being insufficient. The traditional Cloud, where data and pro-

cessing is done through few centralized servers, proved to be inadequate in satisfying all

the requirements of IoT applications. There are many IoT applications which require

low latency (Qiu et al. 2018), mobility support and location dependent information

such as traffic light system in smart transportation, smart grids (Qiu et al. 2017), smart

healthcare and emergency response. Using the existing network configurations and low

bandwidth, relying on the Cloud environment alone to carry out the analytics operations

is impractical.

1.1.2 Edge Computing

Edge computing involves processing the data at the periphery of the network (Shi et al.

2016). The Edge paradigm provides quicker response time, reduced traffic and reduced

network latencies. Several researchers attempted to integrate edge computing with IoT.

Jutila (2016) proposed an adaptive computing method deployed at the edges of an IoT

network for the optimization and control of traffic. Ahmed et al. (2017) discussed var-

ious scenarios where edge computing can be used for the efficient processing of data.

Real-time image processing, gaming, smart grids, smart transportation and big data

3



1. Introduction

real-time analytics are the few areas where edge computing can be applied for data

processing and for converting data into useful information. Sharma and Wang (2017)

proposed a novel framework which avails the advantages of both Cloud and edge com-

puting. Several shortcomings such as limited computing capabilities, constrained pro-

cessing resources, restrained analytical and networking capabilities of IoT devices make

them unsuitable for executing complex, processor or memory intensive data processing

applications.

1.1.3 Cloudlet

The concept of cloudlet was introduced for enhancing the resource availability for mo-

bile users. Though cloudlets originated as dedicated servers, it evolved to small dat-

acenters composed of several multicore computers. Cloudlets are also located at the

end of the network and provides services to the end users near the edge of the network.

Cloudlets are generally deployed in public spaces such as hospitals and shopping malls

at a one-hop distance from the end devices. Cloudlets may also be deployed in an ad-

hoc manner (Verbelen et al. 2012). It is placed in the middle layer of the three-level

hierarchy where the first layer is constituted of the mobile devices and the third layer

is the Cloud (Liu et al. 2016). Cloudlets provided the solution for latency issues in-

volved in relying on distant wide area networks and also reduced the cellular energy

consumption problems (Satyanarayanan et al. 2009). The usage of cloudlets also re-

duced bandwidth contention. Face recognition, augmented reality, crowd sourcing and

video analytics are few application areas where cloudlets can be employed for faster

processing of computational intensive tasks (Pang et al. 2015). The major limitations

of the Cloudlet paradigm resulted from limited coverage and issues related to perfor-

mance and security.

1.1.4 Mobile Edge Computing

Mobile Edge Computing (MEC) comprises of geo distant servers or virtual servers that

are capable of providing IT services and are located close to the mobile users. MEC

brings computation and storage resources to the edge of the mobile network to run the
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applications with high resource and strict delay requirements at the end devices. Edge

may refer to either the base stations themselves or data centres located close to the ra-

dio networks. MEC can either be connected or disconnected with the Cloud data center

(Sabella et al. 2016). MEC accelerates service delivery and application responsiveness

from the edge. MEC is based on a virtualized platform, with an approach complemen-

tary to Network Function Virtualization (NFV). This can reduce the round trip time and

provides a layer of abstraction between the core network and applications running in

the Cloud (Hu et al. 2015). MEC is used in many application areas for enhancing

the performance. Augmented Reality (AR), Intelligent video acceleration, connected

cars, health-care, smart grid, smart buildings, ocean monitoring, wireless sensor and

actuator networks are few application areas where MEC can be adopted. Holo, Wal-

laMe, Junaio, and Google goggles are few examples of AR-based applications. These

applications demand quick response coupled with high computation abilities and large

bandwidth requirements. MEC can be used to enhance the throughput of such applica-

tions by providing computation services at the edge of the network, rather than relying

on the core network (Abbas et al. 2018). MEC can also be applied in big data analytics

for quick extraction of meaningful information from the heterogeneous, unstructured

raw data (Alsheikh et al. 2016; Laurila et al. 2012). Nevertheless, MEC faces chal-

lenges like secure deployment of MEC, lack of proper interface for user interaction,

resource optimization and lack of proper billing mechanisms.

1.1.5 Mobile Cloud Computing

Mobile Cloud Computing (MCC) combines the concepts of Cloud computing, mobile

computing and wireless communication to enhance the Quality of Experience (QoE)

of mobile users and creates new business opportunities for both network operators and

Cloud service providers. Mobile computing allows application developers to develop

and host the applications in the Cloud, thus providing additional privileges to the de-

velopers. Developers are provided with the flexibility to develop applications that are

not bound to a specific operating system and are not restricted by the capacities of the

end devices. Computation offloading is carried out to transfer the complex processing
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activities from the resource constrained devices to the Cloud (Abolfazli et al. 2014).

Thus, this solution resolves battery draining issues of the resource-limited end devices.

Capabilities of the Cloud increase the overall flexibility of the application (Xia et al.

2014). Considering the implementation aspects, MCC raises few issues. Mobile clouds

make use of radio waves which have very limited bandwidth when compared to wired

networks. MCC demands high bandwidth for uploading all the computationally inten-

sive tasks into the cloud. The usage of wireless network for the transfer of data also

imposes additional security issues. Connectivity is another challenge faced by MCC.

Ensuring uninterrupted connectivity with external networks consumes more energy.

1.1.6 Mist Computing

Mist computing is a simple lightweight computing paradigm consisting of devices lo-

cated at the edge of the network. It consists of specialised and dedicated nodes such

as microcomputers and micro-controllers with limited computational resources. These

nodes are called mist nodes.

Mist pushes the capabilities further down to the sensors and actuators, thus increas-

ing the system autonomy (Preden et al. 2015). Edge computing offers fixed applica-

tion configurations, whereas mist computing supports dynamic and adjustable config-

urations. Mist computing layer may be a part of Fog computing but not essentially a

mandatory layer of Fog.

Hence, the existing paradigms are not equipped with the desirable characteristics to

support the deployment and execution of IoT applications, thereby substantiating the

need for a paradigm that better fulfills the requirements of IoT applications.

1.2 BACKGROUND

In this section, the rudiments of Fog Computing, such as characteristics of Fog environ-

ments, architecture of the Fog computing environment and the key entities of the Fog

computing layer, are presented.
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1.2.1 Purpose and scope of Fog Computing

IoT devices continuously generate streams of data, and often analysis must be very

rapid. Performing rapid analysis of the large volume of heterogeneous data requires a

computing model with the following properties:

• Minimum latency: Real-time applications that are time-critical are latency sen-

sitive. Requests to such applications have to be processed and analysed with

minimum time delay. Existing Cloud and Edge platforms incur significant delays

in transforming data into information (Pan and McElhannon 2018).

• Mobility aware processing: Applications that are location dependent requires lo-

cation information to be taken into consideration during decision-making. Thus,

location awareness must be incorporated into the system (Cisco 2015). End user

movement information must also be considered.

• Preserve bandwidth: IoT applications generally generate huge amounts of data

at regular time intervals. Uploading all the data through the interconnecting net-

works to the distant Cloud data centers for processing, incurs high overheads.

Thus, it is preferable to perform some processing activities closer to the data ori-

gin (Shang et al. 2016).

• Secure Data: The storage and transfer of the huge amount of collected data should

be performed in a secure manner (Touati and Challal 2016), in order to preserve

the privacy of the users.

• Reliable Operation: The IoT devices are generally integrated with mission-critical

systems, which may affect the society directly or indirectly. Thus, the processing

of data from IoT devices must be done in a reliable manner.

• Flexibility in choice of optimal processing node location: The location of the pro-

cessing node is determined considering various requirements such as the nature

of the operation to be performed and the allowable delay in response (Bonomi

et al. 2014).
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Traditional Cloud and Edge computing technologies do not meet all of these re-

quirements. This led to the emergence of a new computing model, the Fog computing

model, that can tackle these issues and efficiently handle all the scenarios.

1.2.2 Fog Computing Paradigm

In the recent years, multiple overlapping definitions have been formalized for Fog com-

puting. An overview of the common definitions and our view on the Fog paradigm is

described in this section.

Cisco views Fog computing as “an extension of the Cloud towards the edge of the

network”. Fog offers storage, network and computation facilities to the end users.

The geo-distributed nature of the Fog environment enables the fulfilment of the dy-

namic demands of the mobile client applications without incurring additional delays

(Bonomi et al. 2014). Vaquero and Rodero-Merino (2014) defined Fog computing as

“a paradigm where a huge number of heterogeneous virtual or physical devices com-

municate among themselves and collaboratively work together to process compute and

storage tasks without the intervention of a third party”.

Fog computing is a horizontal layer between the end devices and the Cloud com-

puting environment, which consists of virtual or physical resources. This layer supports

delay sensitive applications by providing computing, storage and network capabilities

in an ubiquitous, scalable, and distributed manner. The data is processed by geograph-

ically distributed devices at the edge of the network and these devices are called Fog

nodes.

1.2.2.1 Fog Nodes

Fog nodes or Fog servers are the dispensers of Fog Computing, that are placed at dif-

ferent levels between the Cloud and the edge of the network to enable efficient data

storage, processing and analysis of data while significantly reducing the latency by lim-

iting the amount of data transported to the Cloud. The OpenFog consortium defines a

Fog node as: “the physical and logical network element that implements Fog computing

services. It is analogous to a server in Cloud computing” (Cisco 2016).
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According to other definitions, the facilities or infrastructures that can provide re-

sources for services at the edge of the network are called Fog nodes (Yi et al. 2015a).

Fog paradigm need not follow a single node implementation, rather, it can include the

deployment of a wide variety of devices which possess computing, storage and net-

working capabilities. Routers, switches, gateways and Cisco unified computing sys-

tem servers are few possible candidates for Fog nodes (Cisco 2014). Fog nodes are

placed in different locations to provide horizontal expansion of functionalities over geo-

distributed locations.

Based on the functionalities, Fog nodes can be categorized into three:

• Fog nodes which directly upload the raw data without processing, to the Cloud.

• Fog nodes that perform pre-processing activities on the raw data, such as filtering.

• Fog nodes that possess capabilities to run distributed applications.

Fog nodes can also be classified based on their deployments according to the possessing

agency, size and access modes:

• Private Fog node: Fog nodes which are exclusively provisioned by a single orga-

nization comprising of one or many users of the organization.

• Community Fog node: Community Fog nodes are dedicated to a specific com-

munity of users who share similar concerns.

• Public Fog node: Public Fog nodes are open to all and it can be accessed by

anyone on a pay-per-use basis.

The location of the Fog nodes, the number of Fog nodes to be placed, the hierarchy

level, is all decided on a case-by-case basis. The research in this field is still at its

infancy stage, which is evident from the article by Marı́n-Tordera et al. (2017) where

an attempt is being made to reach a consensus on what can be a Fog node and how and

where it can be deployed.
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1.2.3 Fog Computing Characteristics

Even though Fog computing can be considered as an extension of Cloud computing

capabilities, it possesses various unique characteristics. Some of the characteristics are

listed in this subsection.

• Proximity to end user and low values for latency

Fog nodes are located close to the sources that generate data and thus it acquires

the data from the end devices, processes the requests and stores the results at the

edge of the network. Therefore, Fog nodes aid in reducing the amount of data

that has to be transferred through the network, thereby ensuring that the demands

of delay sensitive critical systems are met (Hu et al. 2017).

• Dense geographical distribution

Fog computing environments consist of a large number of geographically dis-

tributed heterogeneous nodes spanning multiple domains. The improved capabil-

ities of the smart devices provide opportunities for processing the data in closer

proximity to the end users, rather than having to send all the collected data to

the distant Cloud datacenters. This characteristic of Fog supports location-based

services and enables requests to be processed with reduced response times.

• Support for user mobility

The Fog computing environment provides services through geographically dis-

tributed Fog nodes. Fog nodes can be either stationary or non-stationary. They

may be deployed stationarily in coffee shops, bus stands or may be placed in

moving objects. Fog nodes can communicate directly with the mobile devices

and process the substantial amount of data generated by the devices to enable

mobile data analytics (Bittencourt et al. 2017). Streaming of the data from mov-

ing vehicles for creating a smart vehicular network, processing crowdsourcing

based applications and real-time gaming applications are few applications where

the mobility feature of Fog computing proves advantageous.
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• Heterogeneity and interoperability

Fog nodes can be placed across different layers between the Cloud and end de-

vices and can be deployed in a wide variety of environments. Fog node can be

any device which can provide services, ranging from base stations, access points,

edge gateways or routers to dedicated servers and virtual devices. Therefore,

Fog nodes exhibit heterogeneity (Aazam and Huh 2016). The network infras-

tructure used in the Fog environments is also diverse in its properties. It may

comprise of high-speed wired connections or low-speed wireless communication

links. Interoperability allows the different heterogeneous devices and networks

to communicate and collaborate with each other for providing the services. The

Fog computing elements must be able to interoperate and cooperate with the dif-

ferent providers to ensure seamless service delivery. Complex, distributed Fog

environments adopt policy-based schemes for the secure collaboration among the

resources for interoperability support (Dsouza et al. 2014).

• Low energy consumption

Pushing the data processing capabilities to the edge of the network rather than

relying on the distant Cloud datacenters alone, helps in reducing the energy con-

sumed by the network for the transmission of data, thereby resulting in significant

reductions in the overall energy consumption. Sarkar et al. (2015) carried out ex-

periments to compare the energy consumption in Fog and Cloud environments,

in scenarios where large number of connected devices demand real-time services.

Researchers observed that the Fog environment outperforms the Cloud in terms

of both energy-savings and Quality of Service (QoS).

These characteristics make the Fog paradigm distinct from the Cloud and Edge

computing paradigms. Table 1.1 presents a comparison of the Cloud, Edge and Fog

paradigms.
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Key Feature Edge Computing Fog Computing Cloud Computing
Application
Hosting

Limited application
hosting capability
and some end de-
vices do not have
ability to host.

Application hosting
capabilities inherent
in Fog nodes.

Cloud can accom-
modate wide variety
of applications.

Resource pooling Edge is limited to
the particular end
device.

Few number of
resources are pooled
together near the
edge of network.

Cloud consists of
wide variety of pool
of resources.

Processing capa-
bility

Edge devices may
provide no or limited
support for process-
ing.

Provides processing
capability for all real
time applications.

Unlimited process-
ing capability for all
applications.

Scalability Edge devices are not
scalable.

Fog paradigm sup-
ports scalability .

Cloud provides un-
limited scaling capa-
bilities.

Latency Processing takes
place at the source
itself, so latency is
negligible.

Latency values are
low since processing
is performed near to
the end devices.

Latency values are
very high, since the
processing is done in
remote data centers.

Modular Hard-
ware

Depends only on the
device on the edge.

Fog is a collection of
modular hardware.

Cloud is constructed
according to the
principles of modu-
lar hardware.

Permanent stor-
age

Edge devices do not
provide any perma-
nent storage facility.

Limited capability
for permanent stor-
age; ample support
for transient storage.

Provides unlimited
permanent storage.

Security Scope Single device End to End End to End
Virtualization Virtualization is not

supported.
Virtualization is sup-
ported; lightweight
virtualization offers
better support.

Different kinds of
virtualization are
supported.

Geographic Cov-
erage

Scope is limited to a
single end-device.

Fog devices have
wider scope of
geographic cover-
age, though limited
within its coverage
area.

Cloud servers have
global coverage.
User can access
services through
the network from
anywhere .

Table 1.1: Comparison between different processing environments
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1.2.4 Fog Computing Reference Architecture

Fog computing offers tremendous support for variegated application realms. Fog com-

puting performs better in terms of bandwidth efficiency, response time, security and

reliability when compared to existing Cloud-based systems. The widespread interest

in Fog computing gives rise to the need for an interoperable Fog computing architec-

ture. The OpenFog consortium heeded to the need and devised a reference architecture

(Cisco 2016). The OpenFog reference architecture consists of multiple stakeholder

views, as illustrated in Figure 1.1.

Figure 1.1: Fog Reference Architecture (Cisco 2016).

The lowest level view in the architectural description is termed as the ‘node level’

view. It consists of two component levels. The first layer consists of sensors, actuators

and controllers that constitute devices connected to the Fog nodes. The end devices

may or may not be equipped with processing capabilities. The next layer is the protocol

abstraction layer. The protocol abstraction layer realizes the connections between the

end devices and Fog nodes. The abstraction layer supports interoperability by providing

an interface layer for effective communication between the multi-vendor end devices
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and Fog nodes.

The System architecture view encompasses one or more node views. This view

provides information for the system architects and platform manufacturers. The layer

provides specifications about the requirements for the hardware platform infrastructure

of Fog environments. The System architecture view also contains a hardware virtual-

ization layer. Hardware virtualization techniques allow multiple entities to be hosted on

the same hardware component. Fog platforms support hardware virtualization allowing

different users to share the infrastructure provided by the Fog nodes. Virtualization also

ensures an additional level of security by providing an extra layer of isolation for each

entity.

The Software architecture view consists of three layers. Node management and soft-

ware backplane manages the Fog nodes and communication between the other nodes.

This layer contains all the necessities to run a software. The application support layer

encapsulates a broad category of software which are commonly used by various IoT

applications.

1.2.5 Virtualization in Fog computing environments

‘Fog computing is a highly virtualized platform, typically, but not exclusively, located

at the edge of the network, that provides compute, storage and networking services be-

tween the end devices and the conventional Cloud Data Centers (Bonomi et al. 2012)’.

Similar to Cloud computing, virtualization is the backbone technology of Fog Comput-

ing. Virtualization is the technology which enables users to share a single entity among

a group of users. Virtualization materializes the task by creating separate customized

virtual environments of the system based on the requirements of each user. Based on

the position of the virtualization layer, virtualization can be of different types like Full

Virtualization, Paravirtualization and Operating System (OS) level virtualization.

There exists different kinds of virtualization techniques (Kniep 2014). One of the

popular techniques involves a hypervisor or Virtual Machine Manager (VMM). In this

technique, virtualization services are provided through Virtual Machines (VM). How-
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ever, this creates an additional overhead due to the running of a fully installed OS. As

a solution to this overead, the virtualization technique based on the OS level offers a

model called container virtualization, which gives near native performance (Kozhir-

bayev and Sinnott 2017).

1.2.5.1 Container Virtualization

Container virtualization or containerization was initiated by the UNIX operating system

in 1979 with their system called chroot. Then, in 2000, the Free BSD jail container tech-

nology evolved, which was similar to the chroot, but incorporated features for isolating

file systems, users and networking. Linux VServer was another jail mechanism that was

an initial implementation of virtual private servers. OpenVZ containers which used a

patched variant of the Linux kernel emerged in 2005. Each of the OpenVZ container

possessed isolated file systems. In 2007, the first complete implementation of Linux

container manager, the LXC was released (Felter et al. 2015). Later, containers were

considered as processes with extra isolation thereby helping in reducing the overheads

associated with VMs. Container virtualization allows systems to deploy and run appli-

cations without creating separate VMs for each user. Multiple isolated containers are

run on a single host by sharing a single kernel. The Linux features such as namespaces,

chroot and cgroups provides secure execution of containers in the same kernel. Since

containers do not use separate OS instances, it requires less CPU, memory and storage,

when compared to traditional virtualization. Thus, the same host can incorporate more

number of virtualized containers. The time required to create and deploy containers

is very less compared to the virtual machine manager based systems. Containers pos-

sess packaged, ready to deploy applications or parts of applications, and if necessary,

middleware and business logic to run those applications (Ciuffoletti 2015). Figure 1.2

and Figure 1.3 shows the two different virtualization architectures (Babu et al. 2014).

Being a lightweight virtualization technology, the container virtualization technique is

adopted in Fog computing environments to enable the deployment of multiple IoT ap-

plications.
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1.2.6 Fog Computing Environment

Fog computing is realised by annexing a resource-rich layer between the end devices

and Cloud computing layer. Figure 1.4 gives an overview of the Fog environment. It

consists of three layers. The bottom layer consists of various types of edge devices

located closest to the users. It may consist of various sensors, smart vehicles, mobile

phones, smart cameras and home appliances. These devices are distributed across geo-

graphically distant areas.

Their primary purpose is to acquire data from the environment and act based on

the instructions from the higher layers (Garcia Lopez et al. 2015). Some of the edge

devices possess the ability to process data and store data.

The Fog nodes are generally placed at a one-hop distance from the edge devices.

The streaming data collected by the edge devices are transferred to the Fog nodes, rather

than transporting the bulk volumes of data to the Cloud. This can lead to significant

reduction in delays and latencies. Time-critical real-time application requirements can

be handled in the Fog layer itself. The Fog nodes receiving this data, process the data

and take decisions which are then communicated to the edge devices.

Data that requires to be persistently stored for use in future analytical operations, is
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Figure 1.4: Fog Computing Environment

transported from the Fog node to the Cloud, which provides persistent storage mech-

anisms. The remaining operational and business-related information processing that is

not performed at the Fog level, is carried out in the Cloud. The Cloud layer consists of

high capacity servers for data processing and storage.

In order to harness the distributed nature of the Fog paradigm, IoT applications are

modelled as a collection of application modules or services. In this work, the terms

application component, application module and application service have been used in-

terchangeably and refer to a component that focusses on a single business capability.

These components interact among themselves (usually through a stateless server) in the

course of their request processing (Skarlat et al. 2017). Each module may be deployed

and executed independent of each other. The processing of data generated by the edge

devices is handled by the corresponding modules of the application deployed on the Fog

nodes in the Fog Layer. To ensure negligible performance overhead, the Fog Comput-

ing environments may opt for lightweight virtualization, where the application modules

are hosted in containers, rather than on virtual machines. The containers encapsulate
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the user data and application modules (Bellavista and Zanni 2017).

Dynamic, co-ordinated management systems are necessary to manage the whole

ecosystem of Fog and Cloud. Decisions regarding which requests are to be handled at

the Fog level and which requests are to be forwarded to the Cloud, are also taken by the

management system.

1.3 MOTIVATION

The limited capacities and heterogeneity of Fog devices demand efficient orchestration

mechanisms for the resource management in Fog computing environments. In addi-

tional to the orchestrational challenges that are present in the Cloud and Edge comput-

ing paradigms, Fog environment introduces few additional challenges on the orchestra-

tor, due to its unique features such as distributed large-scale structure, dynamic network,

mobility support, quick response and other specific QoS requirements. A Fog Orches-

trator should be capable of developing a centralised pool of resources from the scattered

dynamic heterogeneous nodes and the control layer in the orchestrator should be able

to scale, in order to incorporate the increasing number of Fog devices. The orchestra-

tor maps user requests into specific hardware configurations. The Orchestrator should

manage the overall workflow and make sure that the user gets all the services with the

desired QoS values.

Orchestration tasks involve different activities to efficiently manage the resources

of the Fog ecosystem. Orchestration in Fog environments thus include resource man-

agement tasks such as allocation, load balancing and workload execution management.

This research focusses on two major orchestrational challenges posed in the deployment

and runtime of Fog applications. In particular, this work delves into application module

placement/allocation and reallocation of the application modules through migration in

the Fog computing environment.

The placement activity involves the selection of the most suitable nodes for the

deployment of different services. Existing Fog service placement schemes consider

various QoS metrics such as response time (Mahmud et al. 2019a) , energy, efficient

utilisation of Fog resources and cost (Mahmud et al. 2019b). The placement solu-
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tions are either centralised or decentralised (Guerrero et al. 2019). However, there is

a dearth of research in Fog service placement schemes which considers both reliabil-

ity and monetary cost of execution. Reliable service delivery in Fog environments is

essential, but, nevertheless, very exigent. The failure of individual services renders the

entire application useless. The efforts for increasing the reliability of the system leads

to an increase the overall cost. The deployment should also ensure the delivery of the

services within a tolerable delay. Therefore, this research presents a placement policy

that takes into consideration the parameters of reliability, cost and deadline.

User devices connected to Fog nodes are often non-stationary. The location-awareness

attribute of Fog computing deems it necessary to provide uninterrupted services to the

users, irrespective of their locations. Migration of user application modules among the

Fog nodes is an efficient solution to tackle this issue. However, approaches that keep

migrating modules along the trail of the mobile user may result in several unwanted

migrations. Each migration action incurs an overhead on the system. This overhead

is due to resource constraints and network bandwidth constraints. Thus, migration is

opted only in situations where it is not possible to prolong the execution further. In

the event of no viable options to transfer the processing, the application may be of-

floaded to the Cloud to ensure uninterrupted service delivery. Even though many of the

Fog based applications are based on container virtualization, the existing research on

migration in Fog supports only VM based migrations and does not support container

migration (Lopes et al. 2017). They have not considered any user attributes (such as

user location, user mobility pattern, etc.) while taking migration decisions. This raises

the need for a migration framework which perceives the environment and relays infor-

mation about the environmental context to determine the migration decision. Hence,

in this research, an autonomic framework is developed to trigger migrations in the Fog

environment, based on the user mobility pattern.

1.4 ORGANIZATION OF THE THESIS

The remainder of the thesis is organized as illustrated in Figure 1.5. Chapter 2 provides

a taxonomy that covers the different aspects of existing research in the Fog computing
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Chapter 1
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Application module Placement in Fog

Chapter 4 Chapter 5

Chapter 6
Conclusions and Future
Directions
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Fog environment.
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Figure 1.5: Organization of the thesis

environment along with a compendious review of the research approaches in the Fog

computing domain, with special emphasis on the resource orchestration techniques.

The chapter also provides a list of research challenges in this domain which requires

attention from researchers. Chapter 3 describes the research problem, the focus of this

thesis, the methodologies adopted to solve the problem and the major contributions of

the thesis. Chapter 4 describes how application service modules can be placed in the

Fog computing environment, and describes our proposed application service placement

scheme for the selection of the most suitable nodes for the deployment of different
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services. The experimental analysis of the proposed scheme is performed to analyse

various performance metrics. Chapter 5 addresses the problem of migrating the con-

tainers corresponding to the user application modules, across the Fog nodes. The chap-

ter also provides a mathematical model representing the optimization problem in the

re-allocation phase. An experimental evaluation of our approach is also performed to

analyze the performance. Finally, Chapter 6 presents a summary of the research work

presented in this thesis and also includes some possible future research directions.
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CHAPTER 2

LITERATURE REVIEW

The Fog paradigm, as any distributed paradigm, has its set of inherent challenges. The

Fog environment necessitates the development of management platforms that effectu-

ates the orchestration of Fog entities. Owing to the plenitude of research efforts directed

towards these issues in a relatively young field, there is a need to organize the different

research works. Accordingly, this chapter provides a compendious review of the re-

search approaches in the Fog computing domain, with special emphasis on the resource

orchestration techniques. Based on exhaustive analysis of the literature, a taxonomy

that covers the different aspects of existing research in the Fog computing environment

is proposed. Further, the research gaps for investigation in the domain of resource or-

chestration in Fog computing environments are also identified.

2.1 FOG COMPUTING ASPECTS

Bonomi et al. (2012) provided an abstract view of the Fog Computing paradigm in 2012,

stressing on the need for the introduction of a new paradigm. However, the concepts of

Fog Computing was expatiated later by Cisco (2015) and since then, Fog Computing

has been the center of attention of the industry and academia alike. The research efforts

are mainly directed towards tackling various issues that hinder the realization of the

Fog Computing paradigm, which include orchestration or management issues, security-

related concerns and communication techniques. Researchers have also attempted to
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apply Fog Computing in different application realms.

A multi-level taxonomy that categorizes the research works according to the aspect

considered is presented in this section. The proposed taxonomy for categorizing the

existing research in the domain is provided in Figure 2.1.

According to the taxonomy, the research in the Fog domain can be broadly classified

into two. The first category includes the application domains where Fog computing

can be applied. The usage of Fog computing in these domains enhances the overall

performance and reduces the latency of the system. Research efforts that adopt Fog

computing in different application domains are categorized in Section 2.1.1. The second

category of works addresses the different issues in application runtime and management

of the Fog platform. Research works that fall under this category are discussed in

Section 2.1.2.

2.1.1 Application Domains

Fog computing extends Cloud computing facilities to the edge of the network and pro-

vides support to IoT applications that demand quick responses and mobility support.

In this section, we discuss various real time application domains where Fog comput-

ing is applied. Table 2.1 presents details of different research works that adopt Fog

Computing into different application domains.

• Internet of Things

Many IoT applications demand real-time analytics which implies that, the devices

must be able to react to events as they occur. The Fog computing paradigm can be

used as a solution to meet the processing needs of IoT applications. Along with

low latency values, the Fog also provides some advanced features like mobility

support and location awareness (Dastjerdi and Buyya 2016). Fog leverages one

or more devices at the edge to create a pool of resources by effective collaboration

and communication among them. Tang et al. (2017a) proposed a Fog computing

based big data analysis framework for smart cities. The proposed hierarchical

framework provides responses in real time by applying anaytics operations on
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Figure 2.1: Classification of works considering different aspects in Fog Computing
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Author Scope Major Focus
Tang et al. (2017a) Smart City Hierarchical Fog computing architecture

for big data analysis.
Yan and Su (2016) Smart grid Fog enabled data storage and processing

infrastructure for smart meter.
Mayer et al. (2017) Social sensing service Architecture for social sensing services

with Fog computing.
Masip-Bruin et al.
(2016)

Healthcare Proposed an architecture to support group
of patients, taking the advantage of mo-
bility support characteristics of Fog com-
puting.

Xu et al. (2016) Data analytics SDN based Fog computing for data ana-
lytics

Tang et al. (2017b) Video processing Cooperation model for video processing
among edge devices

Huang et al. (2017) Vehicular network Architecture for vehicular Fog comput-
ing.

Zhu et al. (2013) Content distribution
network

Fog based web optimization method.

Zhang et al. (2017a) Radio access network Fog radio access network architecture
Gu et al.Gu et al. (2017) Cyber physical system Cost efficient Fog supported medical cy-

ber physical system.
Do et al. (2015) Content delivery net-

work
Resource allocation and approaches for
reducing carbon foot print for streaming
services.

Shih et al. (2017) Mobile network Fog radio access network architecture for
low latency applications.

Dastjerdi and Buyya
(2016)

Internet of Things Fog computing architecture for Internet
of Things.

Table 2.1: Different usecases employing Fog Computing
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the data generated from millions of devices deployed across the city. Gia et al.

(2015) adopted Fog computing in the healthcare sector for real time monitoring

of human health using IoT devices. They applied Fog computing for enhancing

the throughput of Electrocardiogram (ECG) feature extraction.

• Vehicular Networks

Intelligent Transportation System (ITS) is one of the emerging technologies, which

applies advanced technologies to improve the safety, reliability and efficiency of

the transportation system. Major challenges involved in the implementation are

mobility of the vehicle node, different speeds of the nodes and real-time process-

ing requirements of the applications (Karagiannis et al. 2011). Vehicular Cloud

computing was one of the solutions to overcome the resource limitations of ITS

vehicular networks. However, bandwidth scarcity and connectivity are the ma-

jor challenges in realizing vehicular cloud (Mekki et al. 2017). Vehicular Fog

computing is the paradigm which combines Fog computing with vehicular net-

works. Vehicular Fog pushes the computing resources near to the edge of the

network thus reducing the problems due to bandwidth and connectivity (Xiao

and Zhu 2017). Vehicles serve as the infrastructure for vehicular communica-

tion (Hou et al. 2016). Huang et al. (2017) proposed an architecture consisting

of three layers, for vehicular Fog networks. The data generation layer performs

data gathering and preprocessing of the data. Then, the Fog layer performs data

fusion, preprocessing and takes area level decisions. The detailed analysis and

exploration of the data is done in the Cloud layer.

• Content Distribution Networks

Content Distribution/ Delivery Networks (CDN) consist of geographically dis-

tributed servers which are capable of delivering the web pages as information.

CDN uses edge caching approaches for speeding up the delivery of the web con-

tents. Geographically distributed content delivery servers cache the contents of

the web pages and when a request for the page arrives, CDN redirects the re-

quest to those servers which are geographically nearer than the distant webserver
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(Pathan and Buyya 2007). Fan et al. (2016) takes the advantage of Fog comput-

ing in content delivery networks. Fog nodes are used as content servers at the

edge of the network and all the client requests are first directed to the Fog nodes

and subsequently the information is retrieved from the distant web servers and

this information is cached for future usage (Zhu et al. 2013).

• Mobile Networks / Radio Access Networks

Radio Access Network (RAN) is the backbone of modern telecommunication

systems. It establishes radio connections between the different devices and other

network regions. The limited capacities of mobile networks and user demands

can be better satisfied by employing Cloud in mobile networks. This led to the

emergence of a new paradigm called Cloud Radio Access Network (CRAN) (Wu

et al. 2015). The major limitation of CRAN was the requirement of huge band-

width for connecting a mobile device with the Cloud resource pool. CRAN was

also not capable of handling unpredictable mobility of users and increasing num-

ber of base stations. Fog computing based Radio Access Networks (FRAN) came

to existence as a solution for all these. FRAN allows distributed processing and

provides computing capabilities at the edge devices rather than confining the pro-

cessing capabilities to the centralised servers (Peng et al. 2016). Shih et al.

(2017) applied FRAN for solving ultra-low latency applications. Tandon and

Simeone (2016) developed a framework to compute trade-offs between the fron-

thaul capacity and edge system resources.

2.1.2 Platform Management

Proper mechanisms for managing the run-time platform is a pre-requisite for the suc-

cessful execution of applications in the Fog computing environment. Platform manage-

ment intends to provide a secure ecosystem capable of mapping the application specific

requests to a pool of available hardware configurations, while ensuring the defined QoS

levels. Consequently, platform management in a Fog computing environment includes

tasks such as handling communication among Fog entities, orchestration and coordi-

nation, developing programming models and ensuring security and privacy. Several
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research approaches have been proposed to develop efficient solutions for each of these

tasks. The research approaches addressing each task are discussed in Sections 2.1.2.1,

2.1.2.2, 2.1.2.3 and 2.1.2.4, respectively.

2.1.2.1 Communication Models and Technologies

The Fog layer acts as an intermediary layer between the end devices and the Cloud.

Fog paradigm is founded on the inter-connections between the end devices, the Cloud

datacenters and the Fog nodes. Connectivity may be provided using wired or wireless

connection links. Various communication models and technologies are used to enable

communication between the Fog-edge and Fog -Cloud interfaces and for the effective

collaboration among the Fog nodes.

Communication Models Communication models specify the different entities in-

volved in communication and specifies the interaction between these entities. There

exists three types of communication and collaboration among the Fog nodes.

• Cluster Model Fog nodes can communicate among themselves by forming a

cluster. Cluster-based collaborations can harness the capabilities of the several

Fog nodes. Clusters can be formed with Fog nodes of same types or Fog nodes

which are located in adjacent geographic regions (Oueis et al. 2015). Since

Fog computing environments are dynamic in nature, dynamic clusters are more

efficient than static clusters.

• Peer-to-Peer Model The peer-to-peer network model is a decentralized model

consisting of nodes with equal capabilities. In the peer-to-peer model, each node

serves as both the client and the server. The Fog computing paradigm embraces

this model to enable collaboration among the Fog nodes. The collaboration

among the nodes may follow either a hierarchical order or a flat order.

• Master-slave Model

The master-slave network model can be used in Fog environments. In the master-

slave model, one node or process, designated as the master, controls the other
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nodes, called slaves. In the Fog environment, this model is realised by one master

Fog node controlling all other slave Fog nodes (Lee et al. 2016).

Communication Technologies Communication technologies refer to the technical

aspects of the connections. Apart from the common communication technologies such

as 3G, 4G, WLAN, Bluetooth and Zigbee, Fog computing also employs the recent

communication technologies. These technologies are discussed in this section.

• Software Defined Networks (SDN)

The distributed nature of the Fog environment manifests SDN as an apt technol-

ogy for the efficient traffic control and connectivity management of end devices

(Truong et al. 2015). The geo-distributed nature of the Fog environment requires

more than a single controller and OpenFlow switches are used for data exchange

between these controllers. In IoT applications that include time critical activities

which must be processed without any delays, an OpenFlow controller can assist

in distinguish emergency traffic from the delay-tolerable operations. Thus, it em-

powers the Fog system to handle critical activities with high priority (Tomovic

et al. 2017).

SDN can also be used as a solution for Fog orchestration issues. Dynamic man-

agement of services for the end devices can be done through these controllers.

The SDN controller can log the location information of the end devices based on

the mobility of the user. It can also be used for efficient hand-off mechanisms. For

example, in vehicular networks, Fog based on SDN can provide better services

with high throughput and minimal delay (Truong et al. 2015).

• Network Function Virtualization (NFV)

Network Function Virtualization applies virtualization based methods for design-

ing, deploying and managing network services. The network functions such as

Network Address Translation (NAT), intrusion detection, domain name services

and firewall mechanisms are provided by virtualized infrastructure (Mijumbi et al.

2016).
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Integration of NFV with Fog computing helps in better delivery of Fog services

(Yi et al. 2015a). The gateways, switches, firewalls and other networking com-

ponents can be virtualized and placed in the Fog nodes. Majority of the Fog

nodes work in energy constrained environments. Since NFV reduces the use of

dedicated hardware components, it leads to reduced power consumption, which

is a major requirement in Fog environments (van Lingen et al. 2017). NFV

also supports orchestration functionalities of geo-distributed heterogeneous Fog

environments (Hu et al. 2017).

• Fifth Generation (5G)

The fifth generation wireless communication systems offer many advantages over

the fourth generation systems. Their attractive features include low battery con-

sumption, multiple data transfer paths, better coverage and more secure means of

communication (Akpakwu et al. 2018).

5G can be used for satisfying several requirements of the Fog computing environ-

ments. 5G systems offer more bandwidth resulting in high speed communication,

as compared to 4G (Amendola et al. 2016). It enhances the overall performance

throughput in the Fog environment and can provide low latency services (Singh

et al. 2016). 5G can also reduce resource limitation issues and provides high-

quality wireless communication in Fog computing environments (Vilalta et al.

2016).

• Blockchain

Blockchain technology can be used for the control of the distributed Fog com-

puting environment. The autonomous nature of the operating system and de-

centralised structure of the IoT, demands direct communication and interaction

between the entities. Blockchain can be used for secure interactions between the

entities and thus avoids the need for a central controller that effectively coordi-

nates these entities. Stanciu (2017) developed a blockchain based control system

for edge computing using the IEC 61499 standard. Hyperledger fabric was used

as the solution and smart contracts were used for the implementation of func-
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tional blocks. Sharma et al. (2018) developed a secure Fog architecture which

uses SDN and blockchain technologies. They developed a new protocol called

Proof-of-Service to mine blocks. Though blockchain technologies may be effec-

tively used for constructing reliable Fog networks, the possibilities have not been

fully explored in the existing literature.

Communication standards are adopted to provide interoperability, uniform design

and testing strategies and thus improve the overall quality of experience. In 2018, the

OpenFog consortium developed the IEEE1934 standard to handle the huge data gen-

erated by IoT and 5G. This provided a standard framework for developing Fog based

applications and business models and also ensured that the services and applications are

processed nearer to end devices. IEEE802.11p is another standard that is widely used

in Fog-based intelligent transportation systems.

Reliability is one of the key requirements of a real-time system. Wireless communi-

cation between the devices may impair the reliability of Fog networks leading to issues

such as radiated electro magnetic interference and deterioration in end to end packet

reliability. Therefore, more efforts may be directed to reduce the overhead resulting

from the communication techniques.

2.1.2.2 Orchestration and Coordination

Efficient execution in the Fog environment demands orchestration mechanisms capable

of coping with the dynamics of the workload. An orchestrator in the Fog environment

should be able to handle dynamic requirements of the applications. Wen et al. (2017)

explored the challenges involved in the design of an orchestrator in IoT based Fog

environments. The uncertainties in the working environment of IoT applications may

create some internal transformations and corresponding dynamic changes in workflow

components. Hence, a dynamic orchestrator which has the capability to cater services

is required.

Orchestration of the Fog components is a quintessential feature to ensure service

delivery. This section discusses the major issues in orchestration of Fog environments
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and highlights relevant research works directed towards each issue.

Allocation and Placement Fog provides decentralized processing power and dis-

tributed intelligence. The requirements of each application or components of an ap-

plication will be different. Some demand low latency response, other application focus

on low cost execution and others may possess high storage requirements. The existing

allocation and placement policies consider any one of these metrics or a combination

of few of the metrics. Based on the metric considered, the existing approaches can be

further classified as:

• QoS aware approaches:

Many allocation methods are based on the QoS parameters. QoS is a measure to

quantify the overall performance level of the system or service. Ni et al. (2017)

proposed a Priced Timed Petri Net (PTPN) based dynamic resource allocation

and scheduling strategy for Fog computing environments. He et al. (2018) devel-

oped QoS aware admission control, offloading and resource allocation schemes

to support data analytics services aimed at maximizing the analytics service util-

ities. The admission control function takes decisions based on the work models

developed from offline execution of benchmarks. Among the QoS metrics, two

metrics that have been commonly addressed by researchers in Fog computing, are

the bandwidth and latency requirements.

– Latency and Response time:

Critical real-time applications demand quick responses to incoming trans-

actions while satisfying the stringent bandwidth requirements. The time

taken to process a request largely depends on the location where it is pro-

cessed. Processing in Fog environments, can take place either at the end

devices, smart routers, gateways, dedicated Fog nodes or in the Cloud. La-

tency aware allocation policies consider latency as a metric to determine

where the application is placed. Gupta et al. (2017) developed a simula-

tor to evaluate resource management and scheduling policies applicable to
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the Fog environment with respect to their impacts on latency, energy con-

sumption and operational cost. Application modules are placed nearer to the

end devices as far as possible. However, in this approach, modules that are

dependent are placed at the same level without considering the timeliness

and complexity of modules separately. Bitam et al. (2017) proposed a bio-

inspired optimization approach called bees life algorithm for job scheduling

in Fog environments. Their approach distributes tasks among the Fog nodes

and finds an optimal trade-off between Central Processing Unit (CPU) exe-

cution time and the memory allocated.

– Bandwidth:

One of the major reasons behind the evolution of Fog computing paradigm

was the increased bandwidth requirement of end devices. QoS-based al-

location approaches are mainly focussed on reducing the bandwidth usage

of overall application. Yousefpour et al. (2018) proposed a dynamic appli-

cation module deployment scheme for the Fog environment, which satis-

fies QoS requirements. Application module placement guarantees that the

overall bandwidth consumption and latency will be minimal. Skarlat et al.

(2016) considered bandwidth as one of the major metrics to be reduced

while allocating an application or a set of applications for execution in the

Fog computing environment. Brogi and Forti (2017) proposed a model to

support QoS aware deployment of multicomponent IoT applications on the

Fog infrastructure. They considered latency and bandwidth as the only QoS

parameters. The component deployment problem was mathematically mod-

elled and a heuristic solution with two stages which included preprocessing

and backtracking was proposed.

• Cost of execution:

Cost aware allocation approaches emphasis on the objective of reducing the over-

all execution cost of the application without compromising on the performance

requirements. Cost aware approaches takes two forms based on the requirements

of the application: ‘minimize total cost such that the overall performance meets
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the target’ or ‘maximize the overall performance such that resource consumption

does not exceed a limit’. Jingtao et al. (2015) proposed an efficient method to

share resources in a Fog cluster for providing local access to services for mo-

bile users, in a cost-efficient manner. The Fog cluster is composed of many

function-specific servers. Their connected nature creates a topological abstrac-

tion called the connecting layer. The authors developed a method for transferring

data between the connected servers in a cost-efficient manner. Sarkar and Misra

(2016) aimed at evaluating service latencies and energy consumption of the Fog

paradigm applied to the IoT as compared to traditional Cloud scenarios. The pro-

posed model deals mainly with the behaviour of software already deployed over

the Fog infrastructure. There are frameworks which facilitate the distribution of

the execution of tasks among different edge devices in order to reduce the overall

cost of the execution. Dinh et al. (2017) proposed semi-definite relaxation based

approaches for distributing tasks from a single mobile device onto different ac-

cess points. In addition to the cost of execution, the VM capacity and service size

can also be considered as metrics for the efficient allocation of services. Alsaffar

et al. (2016) proposed a distributed allocation approach based on the collabora-

tion between the cloud and Fog and they have considered all the aforementioned

three parameters for obtaining an optimal allocation.

• Other Allocation approaches:

Apart from these approaches, few other approaches that consider other parame-

ters have been proposed for the allocation process in Fog Computing. Few re-

searchers applied game theory concepts for solving the allocation and resource

management issues in Fog computing (Zhang et al. 2017b,c). Deng et al. (2016)

proposed a framework for optimal workload allocation in the Fog computing en-

vironment. Minimal power consumption and service delay are the two major

constraints considered while formulating the primal problem. Different alloca-

tion policies have been proposed to efficiently deploy the application modules

35



2. Literature Review

in the hierarchical environment to ensure placement of the operations closer to

the user (Bittencourt et al. 2017). Kochar and Sarkar (2016) proposed an ap-

proach for two-level dynamic allocation of application modules with an aim of

maximizing resource utilization at the edge of the network.

Along with the resource requirements and availability of resources among the het-

erogeneous devices, orchestration mechanisms must also consider any dependencies

between the application modules. Power consumption plays an important role in the

edge devices. Thus, the module deployment policies should try to reduce the energy

consumption. Existing orchestration mechanisms for allocation may be enhanced to

consider these characteristics.

Migration Dynamic changes in the workflow components are generated in response

to internal transformations or abnormal system behaviour. This may result in the ini-

tial allocation being no longer optimal or even totally invalid. Therefore, dynamically

orchestrating task execution and resource reallocation is essential. For this, following

the initial allocation and placement, re-allocation decisions may be made. Migration

of application modules from one Fog node to another is used as a solution to realize

workflow redeployments. Migration process may be triggered either to meet the QoS

expectations, for maintenance purposes or for balancing the load (Saurez et al. 2016).

The process of migration imposes some costs on the Fog computing environment. One

of the important tasks of migration is to decide when a migration action is required.

This decision making problem can be formulated using Markov decision process and

a mathematical framework can be used to solve the problem (Wang et al. 2015). The

design of such decision-making frameworks in Fog must also consider the impact of

the mobility feature in the Fog computing environment on the decision making process

(Kattepur et al. 2016).

Since the Fog computing environment is resource-constrained, lightweight con-

tainer virtualization mechanisms such as Docker, Rkt and LXC are more suitable than

traditional hypervisor-based virtual machine approaches. Planning migration ahead of

time will ensure that QoS violations do not occur and also reduces the overall network

36



2.1. Fog computing aspects

utilization (Ottenwälder et al. 2013). Decisions to migrate must be made considering

the profits to both the provider and the users (Bittencourt et al. 2015).

Resource Estimation and Pricing Model The devices in the Fog environment vary

in their resource capabilities, architectures and platforms. Due to this heterogeneity, it is

not possible to accurately determine the quantity of resources required to process each

application request. The dynamic nature of the end devices in the Fog makes it difficult

to verify whether the end devices are efficiently utilizing the allocated resources. Thus,

resource estimation approaches, that can estimate the amount of resources, are required.

Similar to the pay-as-you-go model in Cloud, Fog environments can make use of billing

and pricing models which can accurately calculate the price for the Fog based services.

Probability-based estimation methods are efficient methods for calculating estimates

of the amount of resources required and can thus help in reducing the wastage of re-

sources and enhances the profit of the providers (Aazam et al. 2016). Aazam and Huh

(2015b) proposed a pricing model based on the prediction of required resources for

the completion of the application request and the actual amount of resources utilized.

Aazam and Huh (2015a) incorporated the concept of ‘relinquish probability’ for the ef-

fective prediction of the resource usage and also developed price calculation measures

for use in Fog computing.

There is much future scope for researchers to realize Fog computing as a business

model. Service providers should be able to offer wide variety of pricing schemes to

attract the customers and to fulfil the varying demands. A financial economic cost model

developed considering different Fog parameters would help the provider to generate

higher profit while ensuring that customers pay a fair price for the resources they use.

Deep learning techniques may be applied for developing efficient resource estimation

models.

Scaling The orchestrator determines whether the existing system can handle all the

specific requirements of an application. It should be able to automatically detect scal-

ability bottlenecks and solve such issues. Kapsalis et al. (2017) proposed a platform

for the efficient management of Fog resources and allocation of tasks across the dif-
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ferent layers of resources. They also introduced a workload balancer for selecting the

most appropriate host for allocating each task. The proposed approach is able to handle

large-scale applications with thousands of tasks and multiple hosts. Yangui et al. (2016)

proposed an architecture for the Platform-as-a-Service model, to allocate application

modules into an integrated Cloud-Fog environment. The orchestrator module manages

the flow of execution between the different application modules and the deployment

module decides where to deploy these application modules. Moreno-Vozmediano et al.

(2017) proposed a Hybrid Fog-Cloud (HFC) interconnection framework for carrying

out effective interactions between the geographically separated Cloud and Fog layers.

HFC agents provide scalability support by allowing enhancements on the number of

Fog/Cloud nodes corresponding to an increase in the resource demands.

Other Orchestration Approaches The dynamic nature of Fog environments raise

the need for load balancing of tasks. To ensure balanced loads, reallocation of appli-

cation components already allocated may be performed. Graph repartitioning can be

used to devise solutions in such scenarios (Alsaffar et al. 2016). Dinh et al. (2017)

developed a method for transferring data between connected servers in a cost-efficient

manner. They applied the Steiner tree concepts from graph theory for developing such

a caching method in Fog environment. A Graph G is composed, where the vertices rep-

resent the servers and the edges represent the connections between them. Steiner tree is

used to find the minimum cost of the subgraph which can be generated from graph G.

Dsouza et al. (2014) proposed a policy management module for supporting the resource

orchestration layer in the Fog environment. The module takes decisions based on the

information collected from all the components in the environment and also considers

the service request.

2.1.2.3 Programming Models / Frameworks

Developing applications for the Fog is a challenging task as it involves management

of dynamic heterogeneous resources from different levels of hierarchy. Programming

frameworks should provide the required libraries, interfaces and running environments

for the development of applications that can cope with these conditions. The program-
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ming framework should also be able to deal with on-demand computing instances.

Hong et al. (2013) proposed a programming model called MobileFog which can be

used for developing large scale applications for the IoT. MobileFog provides a simpli-

fied programming abstraction and also accommodates dynamic scaling of applications.

Santoro et al. (2017) proposed a framework called Foggy, for orchestrating workloads

in the IoT environment. Foggy runs applications while ensuring that all other func-

tional and non-functional requirements are satisfied. Saurez et al. (2016) proposed

Foglet-a programming infrastructure for the geo-distributed Fog computing environ-

ment. Foglet manages the execution of application components on the Fog nodes by

providing a high-level programming management model for distributed heterogeneous

nodes spread across a wide area. Distributed data flow programming models can also be

used for developing applications for the Fog environment. Giang et al. (2015) proposed

a distributed dataflow programming model which allows easy application development

and deployment considering both the available hardware resources and application re-

quirements.

2.1.2.4 Security and Privacy Issues in Fog environments

The characteristics of Fog computing unfolded new challenges in security and pri-

vacy. The existing security and privacy methods in Cloud computing are not capable

of handling the challenges caused by the mobility, heterogeneity and large-scale geo

distributed nature of the Fog environment (Li et al. 2017). This subsection discusses

the major concerns related to security and privacy in Fog computing environment.

Trust Fog is a distributed computing network in which each object may have to inter-

act with other unfamiliar objects. Thus, trust must be ensured in a Fog network for the

collaboration of nodes in the network. The heterogeneous nature of Fog nodes compli-

cates the trust context in Fog computing (Mukherjee et al. 2017). Trust allows the Fog

nodes and/or clients, to predict the expected behaviour of its peers and can thus aid the

decision making process. The following characteristics are the requirements of trust in

Fog computing environments:
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• Dynamic trust: The mobile nature of elements in the Fog computing environ-

ment results in changes to the topology of the Fog. The behaviour of the objects

may also vary with time. Thus, trust values must be calculated dynamically, at

defined intervals (Mukherjee et al. 2017).

• Subjective Trust: Depending on the characteristics of each object in the net-

work, the security requirements also vary. Thus, there is a need for different trust

policies and subjective trust in Fog computing environments. The trust will also

exhibit asymmetric properties.

• Context-dependent Trust: Context information plays an important role in the

trust values associated with Fog computing environments .

Authentication Fog nodes provide varied type of services to the end users and users

must be authenticated before accessing services (Stojmenovic and Wen 2014). Authen-

tication prevents unauthorized access to Fog nodes and/or For services. Since majority

of the Fog nodes are resource-constrained, common authentication mechanisms such as

Public Key Infrastructure (PKI) and certificate based mechanisms are not suitable for

the Fog (Alrawais et al. 2017). Recent advances in authentication such as biometric-

based authentication schemes may be applicable in Fog computing.

Network Security Wireless security issues form a major network security concern

in Fog environments (Yi et al. 2015b). Dictionary attacks, stolen verifier attacks,

bit flipping attacks and impersonation attacks are the few popular security issues in

wireless networks. There exists a lot of challenges for securing all communications in

the Fog environment (Khan et al. 2017). Minimizing the message overhead in the

resource-constrained environments pose additional challenges in securing the network.

Privacy The unauthorized access of information such as privacy-sensitive data, loca-

tion information and usage patterns are few privacy-related issues in the Fog environ-

ment. The distributed nature of Fog makes privacy-preservation even more challenging

(Khan et al. 2017). Few privacy issues are discussed in this subsection.
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• Location Privacy: The location of end devices will be always linked to the own-

ers to facilitate accessing services from the nearest Fog nodes . For example,

consider a scenario of vehicular networks where Fog paradigm is employed for

improving the throughput by temporarily storing the data and providing services

locally. The Fog nodes exchange location information to reflect the mobility of

the vehicle. Compromised Fog nodes can thus lead to the attacker obtaining infor-

mation about the location of the node. The attacker can also observe the mobility

pattern of the vehicle. Identity obfuscation can be used to deal with location

privacy issues in Fog environment (Stojmenovic and Wen 2014).

• Data Privacy: Data transmitted by the sensor devices to the Fog nodes includes

sensitive user-data. Compromised Fog nodes can lead to loss of data and security

impairments of the entire ecosystem (Guan et al. 2018). Homomorphic encryp-

tions can be used for preserving data privacy without much additional overheads.

• Usage Privacy: Since users are closely associated with the end devices and the

Fog nodes, attackers can easily obtain user behaviour patterns by gaining access

to the Fog devices. Hong et al. (2017) investigated the various cases of possible

information leakages by analysing the smart meter readings in power grid. They

found that by closely observing the smart meter, one can easily identify whether

homes are inhabited or not. Privacy preserving streaming algorithms can be used

for tackling such issues.

2.2 OUTCOME OF LITERATURE REVIEW

On conducting an exhaustive review of the existing literature, we have identified that

even though there exists various methods for the management of the Fog environment,

the research in this direction is considered to be premature and there exists significant

scope for future research. The research gaps that were identified as the outcome of this

literature survey and directed the research in this thesis, are as follows:

• Fog platform management, which includes the effective control and co-ordination

of the different entities in the Fog ecosystem, is a key concern in the domain of
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Fog computing. The scope of Fog platform management includes the orchestra-

tion and coordination of Fog resources. Though researchers have addressed few

orchestrational issues, there exists much scope for further research and optimiza-

tion.

• Multiple research efforts have been directed to solve the Fog Service Placement

problem. However, there are several conflicting issues that must be considered

while taking placement-related decisions, which have not been addressed in the

existing research.

• The distributed and heterogeneous features of Fog environments deem it imper-

ative to consider the reliability parameter in placement decisions to provide ser-

vices without interruptions. The existing research has not considered reliability

while taking service placement decisons (as inferred from Table 2.2). The efforts

for increasing the reliability of the system leads to an increase in the overall mon-

etary cost. Hence, there is a need for service placement policies that address the

two conflicting criteria.

• Fog environments are highly dynamic. In order to ensure low latencies, there may

arise the need to re-consider the location of the existing applications and migrate

them. The existing systems take such migration decisions after the request for an

application arrives. To better handle the dynamic nature, the decisions on when

migration should occur must be based on prediction mechanisms.

• Users of the Fog environment tend to have different mobility profiles. Migration

decisions in the Fog environment should thus consider the mobility of the user to

ensure close proximity of the Fog nodes to the users. There is a lack of research

on systems that can autonomically decide whether to perform the migration and

complete the process if required.

• A multitude of research works that consider migration in Fog environments con-

sidered application modules running in virtual machines. These techniques can-

not be directly adopted to container-based Fog environments. There is a dearth of
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research that targets the migration in containerized datacenters(as inferred from

Table 2.3).

Work Problem Ad-
dressed

Metrics
Considered

Solution Evaluation

Venticinque
and Amato
(2019)

Fog service
Placement Prob-
lem

Resource
utilisation,
Delay

Benchmarking,
evaluation and
Testing

BET

Mahmud et al.
(2019a)

Fog service
Placement Prob-
lem

Delay Latency aware
policy

Simulation

Skarlat et al.
(2017)

Fog service
Placement Prob-
lem

Resource
Utilisation,
Cloud cost

Genetic Algo-
rithm

Simulation

Brogi and
Forti (2017)

Application mod-
ule deployment

Delay,
Bandwidth

Heuristic Solu-
tion

Simulation

Table 2.2: Research works on Placement

Work Problem Ad-
dressed

Metrics
Considered

Solution Virtualization
level

Bi et al. (2018) Mobility Support Performance
of handover

Route optimiza-
tion algorithm

Virtual
Machine

Lopes et al.
(2017)

Migration of Vms Latency Distance based Virtual
Machine

Bittencourt
et al. (2015)

VM migration Cost Proposed Archi-
tecture

Virtual
Machine

Islam et al.
(2016)

Migration in
MCC

User mo-
bility,
increased/
decreased
load at
cloudlet

Genetic algo-
rithm based

Virtual
Machine

Table 2.3: Research works on Migration

2.3 SUMMARY

Fog computing is an emerging trend which has been the recipient of increasing inter-

est from industrialists and academia alike. In this chapter, a structured review of the

state-of-art in Fog computing is presented. The review specifically emphasised on the

platform management concerns and application domain aspects of Fog computing. The
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study presented in this chapter captures the applicability domains of Fog computing and

provides a comprehensive review of recent advancements in this area. Additionally, a

taxonomy to organise the state-of-the-art under different categories based on the dif-

ferent aspects of Fog computing, is also presented. The research gaps identified in the

context of Fog platform management are also highlighted.
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CHAPTER 3

PROBLEM DESCRIPTION

The Fog Computing paradigm was primarily introduced to accelerate the processing of

IoT applications. Data collected by the sensors and other devices at the edge will be

continuously streamed to the Fog Nodes, where a preliminary processing or a decision

regarding the processing will be made. The major decision to be made is regarding

the processing location. To ensure the characteristics of Fog such as low latency, lo-

cation awareness and mobility support, the processing should be delegated to the most

appropriate Fog node. The mobility support attribute of Fog computing implies that ir-

respective of the user locations, they are entitled to avail the Fog services. Considering

the heterogenous and dynamic nature of the Fog environment, efficient orchestration

systems are required to enable processing of the distributed IoT applications and ensure

seamless service delivery.

3.1 SCOPE AND FOCUS OF THE THESIS

The Fog ecosystem provides a platform for distributed processing of IoT applications.

Efficient mechanisms to manage the run time platform is essential to ensure that ap-

plications execute successfully in the Fog environment. This thesis investigates the

orchestration challenges involved in enabling distributed processing in the Fog com-

puting environment. The objective of this thesis is to enhance the performance of Fog

environments by employing efficient orchestration mechanisms. The focus is on han-
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Facet Thesis Scope
Target systems Fog computing environments
Virtualization Container Virtualization
System resources Processing and memory resources
Application workload Real-time applications
Orchestration techniques Application module placement and Application module migration

Table 3.1: Scope and Focus of this Thesis

dling the deployment and runtime challenges of the modular IoT applications in the Fog

ecosystem (as illustrated in Table 3.1).

Figure 3.1: An orchestration framework for Fog computing Environment

The Fog environment includes a Fog Layer, which consists of Fog nodes. The Fog

layer interplays with the Cloud Computing Layer and the Edge Computing Layer. The

data generated from the sensor devices in the Edge Computing Layer, must be processed

in close proximity with the data source. The Fog layer has several responsibilities

which include coordinating and communicating with the edge devices, communicating

with the Cloud data centers and coordinating the several Fog nodes to process the data

received from the edge devices, in a secure, reliable and efficient manner.
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Figure 3.1 highlights the Fog platform ecosystem, where applications are deployed

in the Fog environment on Fog nodes. The Fog Layer includes units responsible for

orchestration and coordination, units for ensuring security and privacy, and units to

enable communication, which include communication models and technologies. The

orchestration and coordination unit performs the dynamic allocation and management

of applications. Our focus is on how different applications can be managed to ensure

efficient processing. In other words, this work focusses on the deployment and runtime

challenges of the Fog applications.

3.2 RESEARCH PROBLEM AND OBJECTIVES

The aim of this thesis is to tackle challenges related to resource orchestration mecha-

nisms applicable for Fog environments in which IoT applications are processed. Specif-

ically, this thesis explores the research problems of application module placement and

application module migration. Accordingly, the research problem is stated as follows:

”To design and develop dynamic decision making schemes for the optimal place-

ment and migration of application modules in the Fog computing environment”.

The first goal of this work is to develop an application module/service placement

strategy for selecting the most suitable nodes to deploy different services. The applica-

tion placement problem is an NP-hard problem (Urgaonkar et al. 2007). Application

placement strategies must be devised by carefully considering the characteristics of the

application services and the resources available, to ensure optimized performance of

the application. The placement decision must aim to improve the QoS. The highly

distributed and heterogeneous features of the Fog environment introduce more com-

plexities in the selection of the nodes to host the application services, when compared

to the centralised systems.

The second goal of this work is to design and develop a framework for the autonomic

mobility-driven migration of application modules. The heterogenous, dynamic nature

of the Fog environment and mobility of user devices demands efficient reallocation of

application modules. In order to ensure timely service delivery, it is essential to ensure

that the control of processing is relinquished to a Fog node which is closer to the access
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point to which the user device is currently connected. The migration of an application

module is a mutistage process which involves identifying when to initiate a migration,

identifying the modules to be migrated and determining the destination nodes for the

migrating modules.

This aim can be decomposed into 4 research objectives.

3.2.1 Research Objectives

1. To formulate a mathematical model that characterizes the performance metrics of

Fog environments.

2. To design and develop a QoS-aware decision-making strategy using the devel-

oped model for the placement of application modules in Fog environments.

3. To propose a machine intelligence based model to pre-determine the migration of

application modules in Fog.

4. To design and develop a mobility-driven autonomic approach for the migration

of application modules.

3.3 RESEARCH METHODOLOGY

Research paradigms in information system discipline can be categorized into two - be-

havioural science and design science (Hevner et al. 2004).

Design science involves the creation of solutions for various problems identified.

The research in this thesis is in alignment with the design science paradigm. The

methodology adopted in this thesis is as shown in Figure 3.2. The artifacts developed

from this thesis involves a set of models, algorithms and frameworks. Considering the

general guidelines on design science methodology, research activities were carried out

according to the following steps:

1. Conducting Research Literature Review and Defining Research Problem:

An exhaustive literature review on Fog computing was conducted and based on

the review, the research gaps were identified. The primary research problem and
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Conducting Research Literature Review
and Defining Research Problem

Performing exhaustive literature
review to identify research gaps,
research problem and objectives.

Solution invention and development

Evaluation and ValidationResearch Reflection

Research problem modelled as
optimization problem, conceptual
framework developed, meta-heuristic
algorithms developed.

Experiments on iFogsim and
testbed using benchmark
real time applications

Publication of contributions in the
form of technical papers

Figure 3.2: Overview of our Research Methodology

ensuing research objectives were formulated.

2. Solution invention and development: This phase involved designing solutions

for the research problem and objectives. The solution includes mathematical

models, conceptual frameworks and algorithms.

3. Evaluation and Validation: The evaluation and validation of the developed so-

lutions were carried out in this phase. The initial placement and migration ap-

proaches were evaluated using real time applcations on testbed and iFogsim sim-

ulator.

4. Research Reflection: This phase involved the activities carried out to illustrate

the impact of this research on the scientific community. In this regard, the out-

comes of research were communicated through publications in conference pro-

ceedings and International acclaimed journals.

3.4 RESEARCH CONTRIBUTIONS

The major contributions of this thesis can be mainly divided in to three (as shown in

Figure 3.3). This includes a systematic analysis of related works in the Fog domain,

a strategy for application module placement that considers different QoS parameters

and an autonomic framework which supports the migration of application modules to

provide mobility support in the Fog computing environment. The detailed contributions
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are as follows:

Orchestration and coordination in Fog platform

Application module Placement

Migration of Application Modules

Models to characterize
performance metrics.

QoS-aware placement of
application modules.

Machine Intelligence based model
to predetermine migration

Mobility-driven autonomic migration
of application modules

Comprehensive reliability
model to characterize the
reliability

Cost model to estimate the
cost of execution

CREW- placement approach
considering the conflicting objectives
of reliability and cost

Performance analysis by comparison
with well-known meta-heuristic based
approaches

DES based model to forecast
user location.

MAMF- Framework for the
autonomic mobility-driven migration

Mathematical model for re-allocation
and GA-based node selection

Performance analysis using
real-world mobility traces

Figure 3.3: Contributions of this Thesis

1. An extensive study on Fog Computing with special focus on Fog platform man-

agement concerns.

• A multi-level taxonomy that categorises the existing research on Fog Com-

puting, based on the aspect considered in each research work.

• A comprehensive review of the different research works that deal with dif-

ferent aspects of Fog Computing.
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2. A strategy for cost and reliability aware application module placement in Fog

computing environment.

• A comprehensive reliability model to characterize the reliability in Fog en-

vironments. The considers the different types of failures in the hierarchical

Fog environments.

• A cost model to estimate the costs for execution in different environments.

The cost model depends on application-specific characteristics and execu-

tion times evaluated by time estimation models.

• A novel placement approach, CREW, which considers the conflicting ob-

jectives of reliability and monetary cost of execution of the application.

• A performance analysis of the proposed approach and comparison with ex-

isting well known meta-heuristic algorithms such as NSGA-II and MOWOA.

3. A mobility aware autonomic approach for the migration of application modules

in fog computing environment.

• A Double Exponential Smoothing (DES) based model to forecast user loca-

tion.

• A conceptual framework for the autonomic mobility-driven migration of

application modules.

• A mathematical model representing the optimization problem in the re-

allocation phase and a Genetic Algorithm (GA) based approach to determine

the target node for the migrating application modules.

• Performance analysis of the proposed approach and comparison using real

world mobility traces.

The work presented in this thesis addresses the objectives listed in Section3.2. The

contributions drawn from the thesis corresponding to the different objectives are pro-

vided in Table 3.2. Due to the logical dependencies between the objectives, Research

Objective (RO) 1 and RO 2 have been jointly presented in Chapter 4. Similarly RO 3

and RO 4 have been presented in Chapter 5.
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CHAPTER 4

COST AND RELIABILITY AWARE EAGLE-WHALE
OPTIMIZER FOR SERVICE PLACEMENT IN FOG

Service placement strategies assign incoming application services to the appropriate

Fog nodes. The strategies must efficiently place the application services in a perfor-

mance optimized manner. The highly distributed and heterogeneous features of the

Fog environment introduce more complexities in the selection of the nodes to host the

application services, when compared to the centralised systems.

The service placement problem in Fog computing environment has been addressed

by multiple researchers. Research has been directed to propose several solutions based

on heuristic algorithms (Hong et al. 2016; Mahmud et al. 2019a), genetic algorithms

(Wen et al. 2017), Petri nets (Ni et al. 2017), graph theory (Lera et al. 2018) and

linear programming approaches(Velasquez et al. 2017; Zeng et al. 2016).

Brogi and Forti (2017) proposed a heuristic based QoS aware service placement

algorithm for IoT applications in the Fog computing environment. They have mainly

considered latency and bandwidth constraints for determining the placement. Develop-

ers are also required to provide component binding details. A detailed trade-off analysis

between power consumption and delay in Fog computing environments is presented by

Deng et al. (2016). They have not made any distinction in the type of resource requests,

rather they have only considered the workload request rates. Guerrero et al. (2019) pro-
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4. Cost and Reliability aware Eagle-Whale optimizer for Service Placement in Fog

posed a decentralised service placement policy which aims to place the services near to

the end users. Their heuristic algorithm is executed locally on each device and allows

the devices to take decisions regarding offloading and processing. Skarlat et al. (2017)

proposed a Fog colony based framework for Fog computing environments. They also

modelled a service placement scheme which aims to maximise the number of services

placed in Fog computing environment. They have not considered the monetary cost of

execution in the determination of placement decisions. Venticinque and Amato (2019)

proposed a service placement scheme which extends the research work by Skarlat et al.

(2017). They evaluated the performance in smart energy domains based on the BET

methodology (Benchmarking, Evaluation and Testing activities). Zhang et al. (2017b)

modeled the service placement problem as a Stackelberg game. They considered ap-

plication of Fog computing in a data service environment and a matching game is used

to obtain the mapping between providers and Fog nodes. Liu et al. (2017) proposed

an offloading decision model based on queuing theory. The proposed model consid-

ered energy consumption delay and cost while taking the offloading decisions. He et al.

(2018) proposed a resource allocation and offloading scheme for Fog computing envi-

ronment. Network bandwidth, latency, costs for computation and communication are

considered for taking decisions. They have considered only synthetic workloads. The

characteristics of real time applications were not considered.

Finding the most appropriate location for service placement is an NP-Hard problem.

Thus, there still exists much scope for further improvement. Most of the existing solu-

tions are focused on reducing the response time, energy, network usage and cost. Due to

the heterogeneous and distributed characteristics of Fog environments, its susceptibil-

ity to failure is high. To improve the user QoS, service reliability must be maintained.

Reliable service delivery ensures the delivery of essential services without interuption

and failure for the time of period under consideration (Sharma et al. 2016). To the best

of our knowledge, none of the previous studies have considered the reliability aspects

while taking placement decisions. The efforts for increasing the reliability of the sys-

tem generally leads to an increase the overall cost. Hence, there is a need for service

placement schemes that consider the conflicting objectives of maximizing reliability
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and minimizing cost.

In this chapter, we have proposed a service placement policy named Cost and Reli-

ability aware Eagle-Whale optimizer (CREW). The proposed approach derives an op-

timal placement mapping of application modules to the appropriate fog nodes with the

objectives of maximizing reliability and minimizing cost. CREW addresses these con-

flicting objectives and also ensures the delivery of services within the specified dead-

lines. CREW adopts multi-objective meta-heuristic based techniques to derive solutions

for the efficient placement of services in Fog computing environment. Two well known

meta-heuristic techniques, the Whale Optimization and Eagle strategy, are combined to

form a hybrid strategy that is applied to solve the placement problem. The services of

an application are distinguished based on relevance of the components in the overall

working of the application into mandatory and non-mandatory components. The appli-

cation fails when any of the mandatory component fails. CREW aims at enhancing the

application reliability by ensuring high reliability values for the mandatory components.

The remainder of this chapter is organised as follows: the architecture of the pro-

posed system is explained in Section 4.1. Section 4.2 presents the modelling and for-

mulation of the optimisation problem. The proposed solution is explained in Section

4.3. The Section 4.4 describes the experimental design details and results are provided

in Section 4.5. The chapter is concluded in Section 4.6.

4.1 SYSTEM ARCHITECTURE

The conceptual Fog computing model proposed by Industrial Internet Consortium (IIC)

consists of 3 layers namely the Cloud computing layer, Fog computing layer and the

end devices. Skarlat et al. (2017) proposed a Fog computing framework spanning these

three layers. In this research, we have also used and extended the same model as shown

in Figure 4.1 for our experimentation. The set of all devices in the system ( Di) is

divided into three different classes: the Cloud Devices (C), Fog Control nodes (FCN )

and Fog Cells (FC). The number of devices in D is represented by p. The set of all

the Fog nodes is represented as F and the number of Fog nodes in the environment is

denoted asN . The Fog environment is further divided into different Fog colonies, which
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Fog Cell Fog Cell Fog Cell

Fog Control Node Fog Control Node

Service Interface Cloud Layer

Fog LayerFog Colony

Fog Cell Fog Cell

Figure 4.1: Three tier Fog computing Environment

consists of Fog cells headed by a Fog control node. The Fog control node is responsible

for taking decisions regarding the deployment of services within the colonies and also

takes offloading decisions. Fog cells constitute the fog devices lowest in the hierarchy.

They have limited computational resources and are connected to the IoT devices i.e,

sensors, actuators and others. The communication links between Fog cells and Fog

Control nodes possess negligible communication delay whereas the link between the

Fog Control node and Cloud possesses a link delay di.

Figure 4.2 shows the architecture of the proposed system. The application deploy-

ment requests are submitted to the Fog Control node. A Fog node fj is characterised by

a vector favailj which includes the available number of CPU cores (f(cpu)capj ), amount

of memory available (f(mem)capj ), and available storage (f(storage)capj ). For simplic-

ity, but without loss of generality, we have considered only CPU and memory resources.

Applications conforming to the microservice architectural style are increasingly being

used in the IoT environment.

The microservice based applications consist of different self-contained stateless ser-
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Cloud Layer

Sensor Layer

System
Monitor

Placement
Algorithm

Fog Controller Fog Cell Fog Cell

Estimating Reliability
of the Application

Estimating waiting
time of each service

Estimating
communication
time of each servicesPredicting

Execution

Time

Estimating
Response
Time

Calculating
Execution
Cost

Figure 4.2: System architecture

vices which implement a single business capability. The different entities interact with

each other through lightweight communication protocols. A service in an application

X can be denoted as si. An application comprises of a set of M services running in the

Fog environment and the set of all services is represented as S. In this work, the terms

module and component have been used interchangeably to refer to a constituent service

of the application. The number of instances of a service depends on the user demands

and nature of service it provides. To simplify the definition of the problem, we consider

that each service has l number of instances. Services of an application are marked as ei-

ther mandatory or non-mandatory. man(Xm) is a binary variable that takes the value of

‘1’ if the mth service of an application X is mandatory and zero otherwise. Mandatory

components have higher priority and represent the minimal services that should always

be functional to ensure that the application is up. For example, in an e-commerce indus-

trial application, the recommendation module can be considered to be non-mandatory

whereas billing, cart etc. are mandatory services.The failure of mandatory components

leads to failure of the application. Each si is allocated to a suitable Fog node which

satisfies its resource requirements. The requirements of the ith service can be denoted

by a tuple < s(cpu)reqi , s(mem)reqi > , where s(cpu)reqi is the number of CPU cores
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Notations Description
D Set of all the devices in the System.
C Set of Cloud devices in the System.
FCN Fog Control Node
FC Fog Cell
p # devices in D.
F Set of all available Fog Nodes in the Fog environment
N # of Fog Nodes available in the system
di link delay between Fog Control node and Cloud
f(cpu)capj # of CPU cores available on the Fog Node, fj
f(mem)capj Amount of memory available on the Fog Node, fj
X Application
si Service of an Application X
M # services of an application
S Set of all services of an application
l # instances of a service type
s(cpu)reqi # of CPU cores requested by ith service
s(mem)reqi Amount of memory requested by the ith module

Table 4.1: Notations used in the System model

requested and s(mem)reqi , is the amount of memory requested by the ith module. A

summary of the notations used in this work is given in Table 4.1.

Service deployment activities are initiated on the arrival of each service request and

are controlled by the FCN . The sequence of activities involved in deployment/offload-

ing decisions are as given in Figure 4.2:

• System Monitor: The system monitor in the FCN monitors the resource avail-

able at each node, current resource usage statistics, request arrival rate and service

rate. The System monitor also keeps track of service resource requests, deadlines,

service resource usage and execution details.

• Predicting Execution Time: For each incoming service si, the execution time of

the service (ET (si)) is predicted using machine learning techniques. The overall

execution time of the application is calculated based on the sum of the execution

time of all the services of the application.

• Estimating waiting time of each service: Queuing models are used to esti-

mate the waiting time (WT (si)) of the service at different deployment levels/de-
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vices.The overall waiting time is then calculated based on the sum of the waiting

time of services.

• Estimating communication time of each service: The time involved for the

communication (Com(X)) which contributes to the overall response time is cal-

culated based on the communication model.

• Estimating response time: The response time of the application is estimated as

a function of the waiting time, execution Time and communication Time.

• Estimating reliability of the application: Applying the reliability model, the

reliability of the application (R(X)) is calculated for the different deployment

configurations.

• Calculating execution cost: The execution cost of the application (E(X)) in

different deployments is calculated based on the cost matrices.

• Placement algorithm: The placement algorithm determines the optimal place-

ment for the services based on application response time, cost and reliability fac-

tors.

In this work, the primary aim is to reduce the cost of service placement and maxi-

mize service reliability. The provider should also be able to provide service responses

within the tolerable delay. The following sections describe in detail the different com-

ponents involved in the proposed system.

4.1.1 Service Execution Time Prediction

Machine learning based models are used to predict the execution time of the services

for different placement configurations. The execution time of a service is largely de-

termined by the software features of the service (program) and the hardware profile of

the device on which it executes. The primary hardware features include the size of total

RAM and size of used RAM, which quantifies the amount of workload in the system

and the cache or buffer size which influences the performance of I/O operations in the

system. The values for these parameters are obtained using system commands like the
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Figure 4.3: Service Execution Time Prediction process - The machine learning based
prediction module takes the hardware profile features and the software profile features
as inputs to estimate the execution time. The ML model is trained using a dataset of
around 10k samples with input values and corresponding output values. The dataset
was generated using experimental data.

free command. The processing capability is derived from the floating-point operations

per second rating of the processor, rather than taking the CPU clock speed. This value

is obtained using the Whetstone benchmark (Bao et al. 2019). The computational time

complexity of the service module is calculated using the TPROF tool (Goldsmith et al.

2007). An overview of the prediction model is shown in Figure 4.3.

Based on the preliminary investigations conducted (details provided in Section 4.5.2),

it was observed that the Extreme Gradient Boosting technique (XGBOOST) model

(Chen and Guestrin 2016) is best suited for our system. In the proposed CREW system,

XGBOOST was employed to predict the execution time of the services (ET (si)).

The overall application execution time is calculated as the sum of the individual

service execution times (as provided in Equation 4.1)

Exe(X) =
M∗l∑
i=0

ET (si) (4.1)
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4.1.2 Waiting Time Model

The execution environment consists of D devices which include the Cloud server and

the set of Fog devices F . The application deployment requests are submitted to the Fog

Control Node as shown in Figure 4.4. The inter-arrival time of requests is represented

as a Poisson random variable with arrival rate λ. The service rate of the queue is expo-

nentially distributed with service rate, µ. Based on the available capacity of devices, the

traffic flow at the Fog cells can be represented by M/M/1 queues (single server), at the

Fog Control nodes asM/M/c queues (finite number of parallel servers) and at Cloud as

a M/M/∞ queue (large number of parallel servers) (Liu et al. 2017). All these three

queuing models perform scheduling according to the First Come First Serve (FCFS)

discipline. The waiting times at Fog Cells and Fog Control Nodes can be calculated

using the Equations 4.2 and 4.3 respectively (Gross 2008).

WT (sFCi ) =
1

(µi − λi)
− 1

µi
(4.2)

WT (sFCNi ) = Pq ∗
1

(cµi − λi)
(4.3)

where, Pq =
v

u+ v

v =
(cρ)c

c!(1− ρ)

u =
c−1∑
i=0

(cρ)i

i!

where c is the number of Fog Control Nodes, ρ is the utilisation of the node calculated

as ρ = µ/λ

Waiting time of the application WT (X) is calculated by adding the waiting time of

all the services which depends on where the services are placed. Since the Cloud pos-

sesses virtually unbounded resource capacity, the waiting time at the Cloud is taken as

zero.
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Figure 4.4: Model of the inter-connected queuing system in hierarchical Fog environ-
ments

4.1.3 Communication Time Estimation

Application response time includes the communication time required to transfer the

data between the devices in different levels. The communication link between two

nodes i and j is characterised by a constant propagation delay (dpd) and bandwidth

(bwi,j). The communication time between the fog cells and Fog control nodes within

the same network contributes negligible delay in comparison to the delay involved in

communication with the Cloud, which can be estimated as given in Equations 4.4 and

4.5.

Comi,j(si) = dpd +
s(data)reqi
bwi,j

(4.4)

Com(X) =
M∗l∑
i=0

Comi,j(si) (4.5)

where s(data)reqi refers to the amount of data required by the service si that must be

transferred through the considered link.

4.1.4 Response Time Estimation

The response time of an application is computed based on the summation of waiting

time, execution time and communication time for all the services comprising the appli-
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cation as given in Equation 4.6.

ReTime(X) = WT (X) + Exe(X) + Com(X) (4.6)

4.1.5 Reliability Model

Application reliability is defined as the ability of the system to ensure that the appli-

cation is up and running within a specified operating period, which implies ensuring

that at least the mandatory service components of the application run as expected for a

desired time duration i.e, atleast one instance of each mandatory component should be

up and running at all times. Few considerations are taken as follows:

• Let qk,m be the failure probability of kth instance of the service type m ∈ [1,M ].

• A Fog node f can fail with the probability of qfj independent of other Fog nodes

and services running on it. When a Fog node fails, all the service instances on it

fails.

• An instance of a service fails either due to the failure of the Fog node on which

its deployed or due to the failure of the microservice itself.

• A service/component of an application fails when all the instance of that service

fails.

• An application fails when any of the mandatory components fails.

The unavailability of a service may be either due to the failure of the service or due to

the failure of the host node on which the service is deployed. The probability to failure

for kth instance of service type m is given in Equation 4.7.

Pr(failure of (k,m)) = qk,m + Pr(failure of Fognode running (k,m))

Pr(failure of (k,m)) = qk,m +
N∑
j=1

Xk,m
j ∗ qfj (4.7)
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The service reliability is calculated using Equation 4.8.

Pr(failure of service m) =
l∏

k=1

(qk,m +
N∑
j=1

Xk,m ∗ qfj) (4.8)

An application fails when any of the mandatory components fails. Thus, application

reliability is calculated using the Equation 4.9.

Pr(failure of application X) = =
M∑
m=1

l∏
k=1

(qk,m +
N∑
j=1

Xk,m ∗ qfj) ∗man(Xm)

(4.9)

The overall reliability is calculated using Equation 4.10.

R(X) = 1−
M∑
m=1

l∏
k=1

(qk,m +
N∑
j=1

Xk,m ∗ qfj) ∗man(Xm) (4.10)

4.1.6 Cost Model

The monetary cost of execution of an application depends on the execution time of the

services which constitutes the application and also on the node in which those services

are deployed. The service components can be deployed either on Cloud devices or on

any Fog device F . A non zero value for the binary variable Xk,m
dh

indicates that the kth

instance of service type m is deployed on the device dh. The cost of execution of an

application with M modules and each with l instances is given in Equation 4.11.

EC(X) =
M∑
m=1

l∑
k=1

(Xk,m
FC E

m
FCC

m
FC +Xk,m

FCNE
m
FCNC

m
FCN+

Xk,m
C Em

C C
m
C )

(4.11)

where Em
f = Execution time of service of type m on ‘f ’ and Cm

f = Cost of execution

on a device D per unit time.
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4.2 PROBLEM FORMULATION

In the previous section, the important metrics which are essentially considered while

taking decisions regarding the placement of services in the Fog computing environment

were discussed. The cost of execution and reliability of the application also depends on

where each of its service components are deployed. The binary decision variable of the

problem represents the deployment of kth instance of service type m on Fog node f .

The decision variable can be defined as Equation 4.12.

Xk,m
f =

1, If kth instance of service type m is deployed on Fog node ‘f’

0, Otherwise
(4.12)

where f can be either a Fog Cell (FC), a Fog control node (FCN ), or Cloud (C).

The two objectives of minimizing execution cost and maximizing reliability have been

considered as given in Equations 4.13 and 4.14.

Minimize(EC(X)) (4.13)

Maximize(R(X)) (4.14)

subject to,

∀f ∈ F,
N∑
i=1

Xk,m
f (cpu)reqi <= f(cpu)capj (4.15)

∀f ∈ F,
N∑
i=1

Xk,m
f (mem)reqi <= f(mem)capj (4.16)

Xk,m
FC +Xk,m

FCN +Xk,m
C = 1 (4.17)

WT (X) + Exe(X) + Com(X) ≤ D (4.18)

R(X) ≥ R (4.19)

C(X) ≤ C (4.20)

Xk,m
FC , X

k,m
FCN , X

k,m
C ∈ {0, 1} (4.21)
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Constraints 4.15 and 4.16 ensure that sufficient CPU and memory resources are

available on the Fog devices to satisfy the resource requirements of the hosted applica-

tions. Constraint 4.17 ensures that each service instance is deployed on one and only

one fog device. Constraints 4.18 - 4.20 guarantee that the response time, reliability and

cost are within the tolerable limits. Constraint 4.21 specifies that the decision variables

are binary variables and can take the values of either 0 or 1 only.

4.3 CREW-COST AND RELIABILITY-AWARE EAGLE-WHALE OPTIMIZER

The proposed CREW service placement policy finds an optimal mapping of microser-

vice modules of an application to the most suitable fog devices while maximizing the

service reliability and minimizing the cost of execution. Reliability and cost of ex-

ecution are two conflicting objectives. The mapping of services to the Fog devices

is a NP-hard problem. The novel Cost and Reliability aware Eagle-Whale optimizer

(CREW) for the efficient placement of services in Fog computing environment uses

multi-objective meta-heuristic based techniques to derive solutions for the placement

problem. CREW effectively combines two bio-inspired techniques, the Eagle Search

Strategy and Whale Optimization.

4.3.1 Whale optimisation Algorithm

Whale optimisation Algorithm (WOA) is a bio inspired meta-heuristic optimisation al-

gorithm (Mirjalili and Lewis 2016). WOA is based on the bubble net attacking strategy

of humpback whales. The positions of search agents are updated using one of the

three methods: Random search method, Shrinking encircling approach or Spiral feed-

ing method.

The humpback whales can locate the position of the prey and swim around the

prey simultaneously tracing the surface of a shrinking circle and a spiral path. Thus

exploitation is done in two ways. The equation for Shrinking Encircling is given as
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Algorithm 4.1: CREW Algorithm for FSSP

Input : Application A =< List of modules, List of mandatory components >
Input : Service Modules S =< s(cpu)reqi , s(mem)reqi >
Input : Set of Fog Nodes, F
Output: Mapping of each service module to a feasible node, Allocation vector

1 function CREW:
2 Generate initial whale (search agents) randomly

3 Evaluate fitness value for individual search agents

4 Identify non-dominated solution

5 Update the archive with regard to the obtained non-dominated solutions

6 while t < num iteration do
7 for each agent do
8 Determine probability, prob = 0.3 ∗

(
1− t

num iteration

)
9 Generate a second random number q

10 if q < prob then
11 Update position of current search agent by Xj = Xjmin + rand(Xjmax −Xjmin)

12 end
13 Evaluate fitness value for individual search agents

14 Identify non-dominated solution

15 Update the archive with regard to the obtained non-dominated solutions

16 if the archive becomes full then
17 Call the archive maintenance procedure for removing inferior agents

18 Add the non-dominated agent to the archive

19 end
20 Determine a random number rand

21 if Pe < rand then
22 Perform local search goto Line 27

23 else
24 Perform global search goto Line 40

25 end
26 end
27 for each search agent do
28 Assign updated values for a,A,C, l, p

29 if p < 0.5 then
30 if |A| < 1 then
31 update position of current search agent by ~D = | ~C · ~X(t)− ~X∗(t)|

32 ~X(t+ 1) = ~X(t)− ~A · ~D

33 end
34 end
35 else if p ≥ 0.5 then
36 ~X(t+ 1) = ~Debicos(2πl) + ~X∗(t)

37 ~D = ~X∗(t)− ~X(t)

38 end
39 end
40 Alter each search agent that goes beyond search space

41 Evaluate fitness value for individual search agents

42 Determine non-dominated solutions

43 Update the archive with regard to the obtained non-dominated solutions

44 end
45 if the archive becomes full then
46 Call the archive maintenance procedure for removing inferior agents

47 Add the non-dominated agent to the archive

48 end
49 Update t = t+ 1

50 Stop when termination condition reached

51 end
52 Obtain ~X∗ from the archive

53 Return ~X∗

54 end 67
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Equation 4.22:

~X(t+ 1) = ~X(t)− ~A. ~D (4.22)

~D = ~C ~X∗ − ~X(t)

~A = 2~a~r − ~X(t)

~C = 2.~r

~r is a random vector ∈ [0, 1]

~a is linearly decreased from 2 to 0

The spiral updating position follows a spiral path between the current position and

prey as given in Equation 4.23.

~X(t+ 1) = ~Debl.cos(2πl) + ~x ∗ t (4.23)

where l is a random number within range[−1, 1] and b ensures logarithmic shape.

The exploration of the algorithm is ensured by the Random search technique of the

whale which is decided by ~A, as given in Equation 4.24.

~X(t+ 1) = ~XRand(t)− ~A. ~D (4.24)

4.3.2 Eagle Strategy

Eagle strategy is an optimization approach which maintains the balance between the

exploration and exploitation Yang and Deb (2010). The eagle strategy performs ex-

ploitation process inspired by the hunting strategy of eagles. Initially, it searches for the

prey and after finding the prey it changes its chasing behaviour to mimic an attacking

behaviour. Eagle strategy uses a parameter Pe for establishing a balance between explo-

ration and exploitation and to prevent premature convergence. Eagle strategy considers

an agent for exploration based on the probability calculated Gavvala et al. (2019) as

given in Equation 4.25.

prob = 0.3 ∗ (1− iter

numiter

) (4.25)
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where iter is the current iteration number and numiter is the maximum number of

iterations. For each agent, a random number q ∈ [0, 1] is generated and compared with

prob. If the q value is less than prob, then the position of the whale is updated using the

Equation 4.26.

Xj = Xjmin + rand(Xjmax −Xjmin) (4.26)

rand ∈ [0, 1]

where Xjmin is the minimum and Xjmax is the maximum values of the currently active

agent.

The proposed approach, CREW, incorporates eagle strategy for the exploration pur-

pose. Combining eagle strategy with whale strategy, aids in the prevention of premature

convergence when the population is having low diversity and also improves the conver-

gence rate when the population diversity is very high. The detailed pseudocode of

proposed CREW approach is given in Algorithm 4.1.

The objective of CREW is to find a solution for the optimal mapping of service

modules to feasible nodes. The input of the algorithm contains the modules to be

mapped, their resource requirements, a list of mandatory components and the available

Fog nodes. The detailed service placement based on CREW is described as follows:

1. Problem Encoding & Initialisation

The position of the whale represents possible solutions to the optimization prob-

lem. The main objective of our system is to find an optimal mapping between

the services of application and most suitable nodes in an Fog computing environ-

ment. A whale position xj represents a vector withM ∗ l dimensions, whereM ∗ l

is the total number of services to be placed. Figure 4.5 illustrates an agent/whale

represented as an array, where the index of the array elements represents the ser-

vice and value of the array element gives the identifier of the node to which the

corresponding service is mapped. The values of the array falls within the range

of [1, p] where p is the number of available devices in the corresponding envi-

ronment. The agents are initialised randomly. Line 2 in Algorithm 4.1 randomly
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d1 d2 dp...
s1 s2 sMl

d3

s3

Figure 4.5: Encoding Scheme for the Service Placement Problem

initializes the whale agents to represent different points in the solution space.

2. Fitness function & Iteration Process

Our multi-objective optimization approach considers two objectives which are

contradictory. The fitness functions used areminimizing EC(X) whereEC(X)

is given by Equation 4.11 andmaximizing R(X) whereR(X) is given by Equa-

tion 4.10. Depending on the number of iterations, the solutions will perform ex-

ploration and exploitation processes. After each iteration, non-dominated sorting

method is used to update the best agent available in the solution space. The fit-

ness value of each whale in the current population is evaluated in lines 3 - 5 of

Algorithm 4.1.

3. Exploration based on Eagle Strategy

In our algorithm, each agent is changed according to a probability given in Equa-

tion 4.27.

prob = 0.3(1− iter

MAXiter

) (4.27)

A random number q is generated for the currently active whale within the range of

[0, 1] and compared with the value of prob (Gavvala et al. 2019). If the probabil-

ity is greater than the generated random number q, then another random number

is generated within the range [1,m ∗ l] to determine the position of the current

active whale that has to be modified. The modification is performed according

to Equation 4.26. After performing exploration operation, non-dominated sort is

carried out to update any changes to the present Pareto fronts. The lines 8 - 24

in Algorithm 4.1 follow the eagle strategy to perform exploration of the solution

space.

4. Exploitation based on Whale attacking Strategy

Exploitation is performed based on the equations used in the WOA algorithm. A
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random number p is used to decide whether shrinking encircling mechanism or

spiral updating is to be performed. The lines 27 - 37 in Algorithm 4.1 follow the

whale strategy to perform exploitation of the current solution space.

~X(t+ 1) =


~X(t)− ~A. ~D if p < 0.5

~Debl.cos(2πl) + ~x ∗ t ifp ≥ 0.5

After performing exploitation, non-dominated sort is again carried out and the

best solution is updated.

The inferior agents are removed from the archive and it will be replaced with non-

dominated agents. The exploration and exploitaion process is repeated in the algorithm

till the termination criteria is met. Then, the best solution is returned by the CREW

from the archive (Lines 40-53 in Algorithm 4.1).

4.4 EXPERIMENTAL DESIGN AND SETUP

In order to examine and observe the impact of the proposed CREW algorithm based

service placement policy, repeated experiments were conducted. The evaluation of the

proposal was carried out on a testbed and also simulated over the iFogSim (Gupta et al.

2017) simulator. The experimental setup used for evaluating the fog landscape consists

of Fog Control nodes which run on Intel i5 processor laptops with a speed of 3.07

GHz and 4 GB RAM. For the Fog cell devices, Raspberry Pi 3b+ is used with Hypriot

Operating System. For cloud resources, Google Cloud Platform (GCP) is used. The

fog landscape is implemented using Java 8 and Spring application framework. For

communication between different Fog devices, we use REST API and JSON messages.

The application deployment requests are received by the Fog Control node. Based on

the cost model, reliability model and estimated response time, CREW algorithm decides

where to place each services of the application.
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4.4.1 Workload applications considered

We considered two different categories of real time microservice-based applications

for evaluating the performance of the proposed CREW algorithm. The first category

consists of two E-commerce applications and the second category includes a healthcare

application. The two categories of applications are described in the subsequent sections.

4.4.1.1 E-commerce Industrial Applications

E-commerce industry is one of the fastest growing industries. According to recent es-

timates, by 2021 the global e-commerce industrial market sales is expected to reach up

to $5 trillion (Thiebaut 2019). IoT has brought tremendous changes in the e-commerce

industry by personalising experiences, automating the entire business process, simplify-

ing decision making and thus changing customer experience altogether. The integration

of IoT with e-commerce industry provides automated purchase, RFID based improved

supply chain and many more features. Nevertheless, it also demands real time process-

ing of data for better results. Fog computing can be integrated with such systems for

handling huge amount of data generated from these environments and providing quick

responses. Nowadays, e-commerce applications are mainly developed based on mi-

croservice architecture, which can better harness the potential of distributed Fog com-

puting environments.

We have considered two different real time microservice-based e-commerce appli-

cations for evaluating the proposed CREW algorithm, namely, Hipster shop and Teast-

ore. The Hipstershop is a 10-tier microservice based e-commerce application which has

almost all the functionalities demanded by an e-commerce industry. The application al-

lows the customer to browse items, add the items in to the cart and allows online users

to complete the purchase procedure. Figure 4.6 depicts the different interacting entities

of the Hipster Shop application. The details regarding memory, resource requirements

and the relevance field of each service (Mandatory/Not mandatory) is given in Table

4.2. The CPU resource is expressed in millicores and memory resource is expressed in

mebibytes.
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Ads

Frontend

Recommendation

Product catalog

Cart

Checkout
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Shipping

IoT Sensor i/p

Figure 4.6: Interactions between service components in Hipster Shop Application

Service CPU Mem Mandatory
Adservice 200 180 False
Cart 200 64 True
Checkout 100 64 True
Currency 100 64 False
Email 100 64 False
Frontend 100 64 True
Payment 100 64 True
Product 100 64 True
Recommend 100 220 False
Shipping 100 64 True

Table 4.2: Characteristics of Service Components of Hipster Shop Application
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IoT Sensor i/p

WebUI

Display

Auth

Registry

Recommendation

Image

Persistence

Figure 4.7: Interactions between service components in Tea Store Application

Service CPU Mem Mandatory
webui 200 80 False
registry 100 150 True
recommender 100 80 True
persistence 200 100 False
image 100 150 False
auth 100 80 True

Table 4.3: Characteristics of Service Components of Tea Store Application

Tea Store is an example for reference application which belongs to a different cate-

gory in the e-commerce industry. Tea store is a well known benchmarking application

used for evaluating various metrics by different researchers in the e-commerce industry

(Eismann et al. 2019). The different services in the Tea Store posses unique charac-

teristics. Figure 4.7 represents the architecture of the Tea Store and Table 4.3 gives the

characteristics of the Teastore application. The CPU resource is expressed in millicores

and memory resource is expressed in mebibytes.

4.4.1.2 Healthcare Application

In the current era, the healthcare sector leverages various IoT devices and sensor devices

for monitoring and collecting patient related information. Critical health related infor-

mation must be processed without much delays and cater to the safety requirements

while providing quality medical decisions regarding the patient health. Fog computing

enables these devices to perform critical analytics locally rather than depending on the

far away cloud servers.
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Figure 4.8: Interactions between service components in Smart-Health Application

Service CPU Mem Mandatory
Client 200 100 True
persistance 150 200 False
feature extractor 200 80 True
analyser 200 100 False

Table 4.4: Characteristics of Service Components of Smart-Health Application

We considered a microservice based smart healthcare application (Pallewatta et al.

2019) for evaluating the performance of the proposed approach. The application com-

ponents and their interactions are depicted in Figure 4.8. The Smart-Health application

consists of a wearable Electrocardiogram (ECG) monitoring sensor which monitors the

ECG of the patient continuously. The feature extractor module detects the anomalies

and gives notifications immediately. The ECG analyser module performs the complex

analysis operations and the persistence module takes the necessary actions for long

term storage of data. The details regarding memory, cpu resource requirements and the

relevance of each service are given in Table 4.4. The CPU resource is expressed in

millicores and memory resource is expressed in mebibytes. The various parameters and

their values used for characterisation of experiments are given in Table 4.5 .

4.4.2 Performance Metrics

The efficiency of the proposed CREW approach is measured and compared with NSGA-

II based Fog Service Placement Problem (FSPP) and Multi-Objective Whale Optimisa-

tion approach (MOWOA).

• Cost : The cost gives the the total monetary cost of execution of applications. The
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Element Parameter Units Value
Cloud Failure Prob 0.003

CPU- Cost $(per unit time) 4/core
Memory-Cost $(per unit time) 4/GB

FCN Failure Prob 0.005
CPU-Cost $ (per unit time) 4/core
Memory-Cost $(per unit time) 5/GB
Config1 # devices 2
Config2 # devices 4
Config3 # devices 6

FC Failure Prob 0.00002
CPU- Cost $(per unit time) 5/core
Memory-Cost $(per unit time) 6/GB
Config1 # devices 4
Config2 # devices 8
Config3 # devices 12

Table 4.5: Parameter values for different characteristics of Cloud and Fog devices

cost is calculated based on the Equation 4.11. The unit costs for the execution

environment considered in our experiments is given in Table 4.5 (Brogi A 2019).

• Reliability : We consider a reliable execution of the application to ensure that

atleast all the mandatory components of the application are up and running for a

period of time. The reliability is estimated based on the failure probability of the

services based on the Equation 4.10.

• Response Time: The response time of the service is estimated based on Equation

4.6 and compared with the provided delay constraints. Placement schemes should

make sure that the application will be able to provide responses to service requests

within the permissible delay.

4.5 EXPERIMENTAL RESULTS AND ANALYSIS

In this section, the proposed CREW approach is evaluated with the baseline placement

approaches.
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4.5.1 Performance comparison of various Placement Schemes

To measure the performance impact of the proposed CREW algorithm, the following

baseline approaches are considered.

• NSGA-II based Service Placement:

Nondominated Sorting Genetic Algorithm is a multi-objective meta-heuristic al-

gorithm which solves a multidimensional function and approximates the Pareto

Front and Pareto set (Deb et al. 2002). The Service Placement scheme in CREW

is replaced to use NSGA-II instead of eagle strategy based Multi-objective Whale

Optimisation. The NSGA-II determines the mapping between the services and

available devices in the Fog environment.

• MOWOA based Service Placement:

Whale optimisation algorithm is a recent meta-heuristic optimisation algorithm

based on the characteristics of Hump back whales, which promises faster conver-

gence in lesser number of iterations (Mirjalili and Lewis 2016). Multi-Objective

Whale Optimisation Algorithm (MOWOA) reaps all the advantages of whale al-

gorithm and also provides fast convergence of multi-objective functions to the

true Pareto fronts. This service placement scheme varies from CREW in the

meta-heuristic approach used.

• FFD-latency based Service Placement:

This service placement policy is based on the First Fit Decreasing approach

(Natesha and Guddeti 2018). The approach mainly focusses on reducing ap-

plication latency and efficient utilisation of the system resources.

The suitability of eagle strategy based Multi-Objective Whale algorithm in the CREW

approach is analysed by comparing with the Nondominated Sorting based Genetic Al-

gorithm (NSGA-II) and the Multi-Objective Whale Optimisation Algorithm (MOWOA).

The HyperVolume (HV) metric is a performance measure that reflects the area of region

in the search space dominated by the obtained set of solutions (Tan et al. 2018). It

is highly desirable to have larger values for the hypervolume indicator. The mean HV
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# of nodes CREW NSGA-II MOWOA
18 0.8178 0.7366 0.5135
20 0.79525 0.7944 0.6539
30 0.8396 0.7754 0.5667
40 0.7726 0.7724 0.6304
50 0.7253 0.6487 0.5516
60 0.7362 0.6297 0.5895

Table 4.6: Mean Hypervolume Values over 30 independent runs

values for all the three methods are given in Table 4.6 and it is observed that CREW

performs better than the NSGA-II and MOWOA based approaches in all the different

configurations.

4.5.1.1 Execution Cost

The cost of execution gives the monetary cost required to run the application in the

Fog-Cloud environment within the deadline. The service modules are distributed both

in Cloud and Fog nodes based on the tolerable delay with the objectives of minimising

the cost and maximizing the reliability. The execution cost of an application depends

on the execution time required to run each service of an application and the device on

which the service is running (Brogi A 2019).

Even though the Fog devices are located near to the end devices, their sophisticated

nature and capacity limitations add to the monetary cost to run the applications. We

have evaluated the performance of the proposed CREW approach with two different

applications having different characteristics (as presented in Section 4.4.1.1). Figures

4.9a, 4.9b and 4.9c show the results of the different meta-heuristic based placement

policies.

78



4.5. Experimental Results and Analysis

 0 5

 1
0

 1
5

 2
0

 2
5

C
o

n
fi

g
-1

C
o

n
fi

g
-2

C
o

n
fi

g
-3

Monetary Cost per unit time($)

 C
o

n
fi

g
u

ra
ti

o
n

 D
e
ta

il
s

N
S

G
A

II
M

O
W

O
A

C
R

E
W

F
F

D
-L

a
te

n
c
y

(a
)H

ip
st

er
Sh

op
A

pp
lic

at
io

n

 2
.5 3

 3
.5 4

 4
.5 5

C
o

n
fi

g
-1

C
o

n
fi

g
-2

C
o

n
fi

g
-3

Monetary Cost per unit time($)

 C
o

n
fi

g
u

ra
ti

o
n

 D
e
ta

il
s

N
S

G
A

II
M

O
W

O
A

C
R

E
W

F
F

D
-L

a
te

n
c
y

(b
)T

ea
St

or
e

A
pp

lic
at

io
n

 0 1 2 3 4 5

C
o

n
fi

g
-1

C
o

n
fi

g
-2

C
o

n
fi

g
-3

Monetary Cost per unit time($)

C
o

n
fi

g
u

ra
ti

o
n

 D
e
ta

il
s

N
S

G
A

II
M

O
W

O
A

C
R

E
W

F
F

D
-L

a
te

n
c
y

(c
)S

m
ar

t-
H

ea
lth

A
pp

lic
at

io
n

Fi
gu

re
4.

9:
C

om
pa

ri
so

n
of

M
on

et
ar

y
C

os
ts

of
E

xe
cu

tio
n

w
ith

va
ry

in
g

pl
ac

em
en

ts
ch

em
es

79



4. Cost and Reliability aware Eagle-Whale optimizer for Service Placement in Fog

The proposed CREW algorithm finds the mapping with lesser execution costs for

all the three different applications. We have also evaluated our approach with different

topologies varying in the number of FCN and FC nodes. The details regarding the

different configurations considered are given in Table 4.5. From Figures 4.9a and 4.9b

for the TeaStore and Hipster application, it is observed that placing services using the

proposed CREW strategy results in an average reduction of 5% and 3% respectively,

in the execution cost, when compared to the MOWOA. For highly delay-sensitive IoT

applications, if more number of Fog nodes are available, our algorithm will place more

services near the end devices in order to ensure timely service response delivery.

4.5.1.2 Reliability

The reliability of a system offered to the deployed application is its ability to ensure

that atleast the mandatory microservices run without failures for the considered period

of time.

The minimisation of cost and maximisation of reliability are conflicting objectives.

The reliability offered to the two different e-commerce applications (discussed in Sec-

tion 4.4.1.1), were evaluated based on the reliability model presented in Section 4.1.5.

The reliability of the application is calculated based on the failure probability of the ser-

vices of the application as given in Equation 4.10. The values of the failure probabilities

of various devices (Birke et al. 2014) are given in Table 4.5.
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4. Cost and Reliability aware Eagle-Whale optimizer for Service Placement in Fog

The application service instance failure rates ( qk,m) can be estimated from the Cloud

application traces. For simplicity, but without loss of generality we have taken the val-

ues as 0.003, 0.0025 and 0.002 for the Hipster Shop, Teastore and Smart-Health appli-

cations respectively (Birke et al. 2014). From Figures 4.10a, 4.10b and 4.10c, it is

observed that the MOWOA gives high reliability in scenarios with less number of Fog

devices. It is however observed that the placement strategy generated by MOWOA for

Config-1 with an increased reliability is inferior with respect to the execution costs in-

curred. The proposed approach CREW determines a superior placement strategy whose

cost cannot be reduced further without affecting the reliability. As the number of Fog

devices increases, the limitations in the exploration capabilities of the MOWOA re-

stricts the placement strategy to generate local optimal solutions rather than the global

optimum.

4.5.1.3 Response Time

Response time gives the total time taken from the instant at which the user submits

the request till the time user receives the response. We measured response time in

milliseconds. Each application is assigned with a tolerable delay within which the user

expects a response. Our proposed approach ensures the delivery of the services within

the tolerable delay. The response time of each application is calculated based on the

sum of execution time, waiting time and communication time using the Equation 4.6.

Figures 4.11a , 4.11b and 4.11c give the response times of Hipster Shop, Tea Store and

Smart-Health. Even though the proposed approach CREW gives a higher response time

for the Configuration 1 of Hipster Shop application compared to the other approaches, it

ensures timely service response. When the number of Fog devices are increased, there

is a drastic reduction in the response time of both applications due to the increased

availability of the Fog devices for placement of services. The response time of Hipster

Shop is higher in all the configurations compared to that of Tea Store and Smart-Health

applications because of the higher number of service modules in the application.
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4. Cost and Reliability aware Eagle-Whale optimizer for Service Placement in Fog

Model Parameters Value
C 1000

SVR gamma 0.1
kernel rbf
bootstarp TRUE
criterion mse
max depth None
max features auto

Random forest max leaf nodes None
min impurity decrease 0
min impurity split None
min samples leaf 1
min samples split 2
min weight fraction leaf 0
n estimators 10
n jobs None
oob score FALSE
random state None
verbose 0
warm start FALSE
colsample bytree 0.9
eta 0.05

XGBOOST max depth 9
num boost round 100
subsample 1

Table 4.7: Parameter settings for ML-based prediction techniques

4.5.2 Performance Comparison of various Machine Learning Techniques for ex-

ecution time prediction

Three regression models using XGBoost, Random Forest and Support Vector Machine

regressors (SVR) were built and evaluated for the prediction of execution time. The

hardware characteristics of the Fog computing environment and software characteristics

of the applications are inputs to the regressors. We have fine tuned the parameters

by repetitively conducting training experiments. The parameter values used for the

experimentation is given in Table 4.7.

The accuracy of the predicted values is calculated based on the difference between

the actual values and predicted values. The accuracy of the different models were eval-

uated based on metrics such as the Root Mean Square Error (RMSE), Mean Absolute

Error (MAE) and R-squared Error. The obtained values are given in Table 4.8. It is

highly desirable to achieve lower values for RMSE, MAE and higher values for R-

squared Error. Based on the conducted investigations, the XGBOOST model is best

suited for our system. The Random Forest regressor takes more time for the learning

process, thus making it unsuitable for real time predictions.

84



4.5. Experimental Results and Analysis

Metric SVR Random Forest XGBOOST
RMSE 0.0005113 0.0007326 0.0007024
MAE 4.08127E-05 5.54E-05 3.73E-05
R2 Error 0.009334 0.030903 0.1092956

Table 4.8: Comparison of prediction accuracy values for varying ML-based service
execution time prediction techniques

(a) Monetary Cost (b) Reliability

Figure 4.12: Performance analysis in large search space with varying placement
schemes

4.5.3 Performance Analysis in Large Search Spaces

To evaluate the performance of the Fog service placement algorithms in scenarios with

higher number of devices and services, we considered a simulation scenario in iFogSim

with 100 services with varying number of Fog nodes. Figure 4.12a shows the Mon-

etary cost of execution of services of the different placement policies. The analysis

shows that the performance of NSGA-II and MOWOA deteriorates with the increase in

problem size. The proposed CREW based placement maintains the performance even

with increased problem sizes. The reliability values obtained using different placement

strategies are given in Figure 4.12b. With expansion in the problem sizes, MOWOA

gives an unstable performance which is primarily due to the inefficient exploration ca-

pabilities of the MOWOA. The proposed CREW based placement scheme takes better

placement decisions compared to all the other placement schemes, even for large num-

ber of Fog nodes and Fog services.
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4.6 SUMMARY

The proposed Fog Service Placement Scheme, CREW captures the two conflicting ob-

jectives of minimising the cost and maximising the reliability while taking decisions

regarding the placement. In CREW, the FSPP was formulated as a multi-objective op-

timisation problem with these conflicting objectives and solved using an eagle strategy

based Multi-objective Whale Optimisation Algorithm. The framework includes a mon-

itor which monitors the resource requirements, usages and available capacities. The

Monitor forwards the required information to the subsequent components. The Execu-

tion time predictor predicts the execution time of each incoming services based on their

software and hardware profiles. The waiting time estimator estimates the waiting time

of each services at different levels in the hierarchical Fog environment. The response

time estimator calculates the overall response time of application based on the execution

time, waiting time and communication time. Reliability and cost calculators calculate

the execution costs and reliabilities. Eagle Strategy based MOWOA finds the place-

ment mapping based on the execution cost, reliability and response time. Extensive

experiments are conducted on the Fog testbed and simulation environments to validate

the practical feasibility of the proposed approach. A detailed comparison with popu-

lar multi-objective algorithms such as NSGA-II and MOWOA establishes the superior

performance of the proposed approach.
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CHAPTER 5

MOBILITY AWARE AUTONOMIC APPROACH FOR
THE MIGRATION OF APPLICATION MODULES IN

FOG COMPUTING ENVIRONMENT

The user devices sense the environment data and generate streams of data to be pro-

cessed by the application modules. Each request for processing is received by the Fog

node to determine the most apt course of action. The user devices submitting these

requirements may not be stationary. This implies that the access points that the devices

use to communicate with the Fog nodes, may change. This results in an increase in the

hop counts, which adversely impacts the deadline constraints and delay requirements.

To guarantee prompt service delivery, the processing must be transferred to a Fog

node which is nearer to the user access point. This process involves transferring of data

and the application context encased in the containers. In container-based systems, this

can be realized by migrating the containers corresponding to the user, to a Fog node

situated closer to the end device.

Researchers have propounded different solutions for providing mobility support in

distributed environments. Bi et al. (2018) proposed a Fog computing architecture to

support mobility. Their architecture decouples mobility control and data forwarding

using Software Defined Networks (SDN). Islam et al. (2016) proposed a VM migration

model for the Mobile Cloud Computing (MCC) environment. Their approach consid-
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ered not only the user mobility but also the load in the cloudlet. Machen et al. (2018)

developed a framework to support user mobility in Mobile Edge Computing (MEC) en-

vironments. In order to provide the service without interruption for mobile users, they

have used migration of services across MECs. Bittencourt et al. (2017) emphasise the

need for mobility aware scheduling in Fog computing environments. They accentuated

the important metrics to be considered by a Fog scheduler while taking decisions in a

mobility supported environment.

This chapter mainly addresses the problem of migrating the containers correspond-

ing to the user application modules, across the Fog nodes. The migration of containers

is done in an autonomic manner, by adopting the autonomic control loop. Nevertheless,

naively migrating containers along the path of the mobile user may lead to unwanted

migration actions. This causes an increase in the system overhead, resulting from the

high resource and network bandwidth requirements of each migration process. Thus,

migration may be opted only in situations where utmost necessary. In the event of no

viable options to transfer the processing, the application may be offloaded to the Cloud

to ensure uninterrupted service delivery.

The remainder of this chapter is organized as follows: Section 5.1 presents the moti-

vation behind the research, Section 5.2 presents the model formulated for the elements

of the Fog environment, Section 5.3 describes the developed framework, Section 5.4

describes the experiments conducted, Sections 5.5 and 5.6 present the details of the

experimental results and Section 5.7 concludes the chapter.

5.1 MOTIVATION

There is a dearth of research that considers the mobility support feature in Fog en-

vironments. The research community has not considered the migration of containers

running the applications to support the mobility of users. There is a need for research

approaches for efficient migration of containers in Fog environments. Though a few

approaches discuss the migration of VMs, the same techniques are not directly appli-

cable in the context of container virtualization 1. Designing approaches for migration

1https://www.virtuozzo.com/connect/details/blog/view/live-migration-in-virtuozzo-7.html
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include challenges in identifying the situations when migrations are required and also

identifying the subset of containers and Fog nodes to be considered for the migration

process.

5.2 SYSTEM MODEL

This section details the formulated model of the different elements of Fog environments.

The decentralized deployment model of Fog varies according to the scenario in which

it is posited. In this work, a hierarchical structure is considered. The data from the IoT

devices are received by the Fog nodes, rather than transporting the bulk volume of data

to the Cloud. The Fog nodes receiving this data, process the data and take decisions

which are communicated to the edge devices. The data required for future analysis and

those which cannot be processed by Fog layer is transported to the Cloud. The IoT

devices are considered to exhibit mobility. When the users or mobile devices change

their location with respect to time, data and processing related information must also

be transferred in a timely manner, to avoid intermittent delays or interruptions in the

service. A hybrid approach is proposed in this chapter, for the migration of application

modules in the Fog environment based on autonomic computing and genetic algorithm.

We have considered lightweight virtualization technology, which can be leveraged

in the form of containers for deploying the application modules and user data. Con-

tainers are placed on the Fog nodes and the mobile users are connected to these nodes

for accessing the services. To provide lower latency values and better Quality of Ex-

perience (QoE), containers must be migrated to the Fog nodes which are closer to the

current position of the user. Determining the instant at which migration actions must be

initiated and identifying a suitable location for the module in action are the two major

issues in the context of migration in Fog environments.

The system under consideration has been portrayed in Figure 5.1. User devices

connected to the Fog form a layer represented as the ‘Sensor Layer’. The Fog layer

basically acts as the arbitrator between the Sensor and Cloud layers. The Fog layer

consists of different Fog nodes, that provide Fog services. Fog nodes may be gateways,

routers, switches or dedicated physical servers. The data collected by the sensors in
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5. Mobility aware autonomic approach for the migration of application modules in Fog
Computing Environment

Cloud Layer

Fog Layer

Sensor Layer

Figure 5.1: Problem Scenario

the Sensor layer is sent to the Fog nodes. We consider a scenario in which the Fog

environment is used to provide low latency services for users whose locations vary with

respect to time. The Fog environment considered in this work, consists of a set of

Fog nodes F = {fn1, fn2, ..., fnN}, where the number of Fog nodes in the environ-

ment is denoted as N . The characteristics of a Fog node fnj can be defined as a tuple

< fn(cpu)capj , fn(mem)capj , fn(bw)capj > where fn(cpu)capj represents the number of

CPU cores available on the jth Fog node and fn(mem)capj is the amount of memory

available and fn(bw)capj is the bandwidth available, respectively. The mobile users ac-

cess the services from the application modules which are deployed as containers on

various Fog nodes or in the Cloud. An application module i can be denoted as appi.

There may exist a set of M modules running in the Fog environment and the set of all

application modules is represented as AM . Each appi is allocated to a suitable Fog

node which satisfies the resource requirements of the corresponding module. The re-

quirements of the ith module can be denoted by a tuple < app(cpu)reqi , app(mem)reqi ,

app(bw)reqi >, where app(cpu)reqi is the number of cores of CPU requested by the mod-

ule and app(mem)reqi , app(bw)reqi are the amount of memory and bandwidth resources

requested by the ith module, respectively. The elements in the Fog system and their

representations have been summarized in Table 5.1.
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5.2.1 Optimization Model

The migration of application modules to destination Fog nodes from the currently allo-

cated set of Fog nodes involves 3 steps:

1. Identifying when a migration action is to be initiated

2. Identifying which application modules are to be migrated

3. Determining destination nodes for each of the migrating modules

The first and second steps are considered in the subsequent sections. The third

step of determining destination Fog nodes is considered as a sub-class of re-allocation

problems. The re-allocation problem can be formulated as an optimization problem as

discussed in this section. The system comprises of a number of application modules,

M to be migrated and a set of Fog nodes F as possible destinations. The mapping of

application modules to these Fog nodes can be formulated as a (0/1) Integer Linear

Programming (ILP) Problem. The objective of this problem is to minimize the overall

Time To Completion (TTC) of the migrating modules. Time to Completion is defined

as the time taken by a migrating application module to complete the processing of an

incoming request at the destination Fog node. The TTCi of the ith migrating module

includes two components. The first component is the time required to migrate the appli-

cation module (MTappij ) from the current Fog node k to the designated destination Fog

node j (at a distance Dkj from the current user location). The migration time denotes

the time taken to transfer the associated memory contents across the available network

bandwidth. This time is calculated as given in Equation 5.1. The second component

4appij evaluates the time taken to process a request submitted to the application module

at the destination node. In other words 4appij is the time required to process/service a

request by the module ‘i’ on the Fog node ‘j’.
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TTCi = (MTappij ∗Dkj) +4appij

MTappij = Migration time for appi to migrate to fnj

=
Memory size required by appi

bandwidth of fnj

(5.1)

The decision variable of the problem denotes the Fog node to which the application

module appi can migrated. The binary decision variable can be defined as in Equation

5.2.

xij =

1, if application module ‘i’ can be migrated to Fog node ‘j’

0, otherwise
(5.2)

Minimize
M∑
i=0

N∑
j=0

xijTTCi

subject to,

∀fnj ∈ F,
N∑
i=1

xijapp(cpu)reqi <= fn(cpu)capj (5.3)

∀fnj ∈ F,
N∑
i=1

xijapp(mem)reqi <= fn(mem)capj (5.4)

∀fnj ∈ F,
N∑
i=1

xijapp(bw)reqi <= fn(bw)capj (5.5)

∀appi ∈ AM, ∀fnj ∈ F, xijdistanceij < 600 (5.6)

∀appi ∈ AM, ∀fnj ∈ F, xijTTCi ≤ δi (5.7)

∀appi ∈ AM,

N∑
j=0

xij = 1 (5.8)

The optimization problem tries to reduce the time to completion of migrating modules

and thus reduces the latency experienced by users for processing the requests. Equa-

93



5. Mobility aware autonomic approach for the migration of application modules in Fog
Computing Environment

tions 5.3, 5.4 and 5.5 represent the constraints on processing, memory and bandwidth

resources. The sum of the resource requests by all the application modules on a Fog

node should not exceed the total resource capacity of the Fog node. Equation 5.6 at-

tempts to reduce unwanted migrations by permitting a migration only if it falls com-

pletely within the range of the target Fog node. Equation 5.7 ensures that the delay

constraints are not affected due to the migration process. Equation 5.8 makes sure that

every application module is placed on one and only one Fog node.

5.2.2 Model Example

Consider a Fog computing environment with two Fog nodes and three mobile devices

which needs to be migrated. The location co-ordinates of the Fog nodes are as follows:

fn1 is at< 100, 100 > and fn2 is at< 1500, 100 >. The resource capacities of each of

the Fog nodes are < 3, 8, 10000 > and < 4, 8, 10000 > respectively. The current loca-

tions of the mobile users are marked by the co-ordinates < 100, 600 >,< 900, 100 >

and < 177, 400 > and resource requirements of their corresponding containers are

< 1, 2, 800 >,< 2, 5, 600 > and < 2, 3, 400 >. Identification of the suitable desti-

nation for migration can be formulated as a (0/1) Integer Programming Problem. The

objective function formed is given in Equation 5.9.

Minimize 1.33x11 + 3.23x12 + 4.67x21+

3.5x22 + 5.55x31 + 1.58x32

(5.9)
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subject to,

x11 + 2x21 + 2x31 ≤ 3

x12 + 2x22 + 2x32 ≤ 4

2x11 + 5x21 + 3x31 ≤ 8

2x12 + 5x22 + 3x32 ≤ 8

800x11 + 600x21 + 400x31 ≤ 1000

800x12 + 600x22 + 400x32 ≤ 8

x11 + x12 = 1

x21 + x22 = 1

x31 + x32 = 1

x11distance11 < 600, x12distance12 < 600,

x21distance21 < 600, x22distance22 < 600,

x31distance31 < 600, x32distance32 < 600

δ1 < 2.5, δ2 < 4.1, δ3 < 3.2

The optimization problem can be solved using any integer linear programming

solvers. The solution using IBM CPLEX engine is given in Table 5.2. IBM CPLEX is

considered as the top performing open source solver in terms of speed and capability

(Gearhart et al. 2013). Classical optimization techniques provide accurate results for

small problem spaces. However, with increase in the number of Fog nodes and applica-

Parameter Optimization Value
Objective value 6.41

x11 1
x12 0
x21 0
x22 1
x31 0
x32 1

Table 5.2: Mathematical Model Solution
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tion modules, this may not be feasible. The subsequent sections discuss meta-heuristic

techniques that can be used to obtain near-optimal solutions in such cases.

5.3 PROPOSED CONCEPTUAL FRAMEWORK

The proposed approach adopts autonomic computing paradigm for the effective or-

chestration of the Fog computing environment. Fog computing environments face chal-

lenges to provide support for applications demanding mobility support. The mobile

nature of the users and the heterogeneous nature of the resources available, raises the

need for migration of application modules from one Fog device to the other. Migra-

tion of application modules minimizes the latency experienced by the users in motion

thereby ensuring that the delay requirements of the applications are met. Autonomic

systems can easily adopt themselves to fluctuations in the environment and this feature

serves as a promising concept for the management of various distributed infrastructures.

The proposed approach uses the MAPE (Jacob et al. 2004)(Ghobaei-Arani et al. 2016)

autonomic control loop for the management of migrating application modules and their

mapping to Fog nodes in the Fog environment. In the MAPE loop, M represents Moni-

tor, A stands for Analyser, P stands for Planner and E is for Executor.

A framework called MAMF-Mobility aware Autonomic Migration Framework, is

proposed, for the autonomic orchestration of mobility aware migration of application

modules in the Fog computing environment. As depicted in Figure 5.2, the MAMF

considers the three layers namely the Cloud layer, Fog layer and sensor layer. Sensor

layer consists of end devices which may or may not be in motion. The Sensor layer

generates the requests to be processed. It must be noted that the devices in this layer

generally do not have any kind of processing abilities. These requests are forwarded to

those nodes in the higher layers, which possess sufficient infrastructure and computing

resources to process the data. The nodes may be either from the Fog computing layer or

the Cloud computing layer. The Fog layer falls between the Sensor layer and the Cloud

layer. The Fog layer receives the processing requests from the Sensor layer. The first

phase of the processing of requests is carried out at the Fog node, rather than merely

relaying the requests as received, to the Cloud. The Fog layer processes majority of
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the requests and sends the results back to the Sensor layer. The requests which are

delay tolerant and cannot be processed at the Fog layer due to lack of resources, are

forwarded to the Cloud layer. In the proposed MAMF, the autonomic algorithm based

on the MAPE autonomic loop runs in the Fog layer.

Cloud Layer

Sensor Layer

Resource
Monitor

User Monitor

User Location
Analyzer

Genetic Algorithm

Deallocation
Allocation

Application Module Application Module Application Module

MAPE Loop

Fog Layer

Monitor

Analyzer

Planner

Execute

Figure 5.2: MAMF framework based on control MAPE loop

A model for smart vehicle system was considered, which uses Fog computing en-

vironment for hosting services. Each vehicle poses as a client availing services from

the Fog nodes and Fog nodes providing the services are deployed across the roads. The

communication protocol used for communication between the mobile clients and the

Fog nodes is IEEE802.11p. The protocol is an enhanced version of the IEEE802.11,

permitting wireless access in vehicular environments (Gozálvez et al. 2012). This

protocol supports communication for transmission frequencies in the band range of

5.85GHZ to 5.9GHZ. Each Fog node/server controls and co-ordinates the mobile users

located within its coverage area. The actual coverage area for each Fog server depends

on several factors such as geographical conditions, propagation conditions and terrain
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types. The Friis transmission Equation (Friis 1946) may be applied to calculate the

power received by the mobile user and for calculating the coverage area of each Fog

server. The Friis equation is provided in Equation 5.10.

Pr =
PtGtGrλ

2

(4πR)2
(5.10)

where

Pr= Power at receiver

Pt=Output power of transmitting antenna

Gt=Gain of transmitting antenna

Gr=Gain of receiving antenna

λ=Wavelength

R=Distance between antennas

The use of an omnidirectional antenna is assumed, implying that Gt = 1 and the

antenna is assumed to have 100% aperture efficiency, Gr = 1. The value of Pt is taken

as 1w.

Considering the minimum power requirements and transmission range of IEEE802.11p,

the lower and upper thresholds for migration was fixed at −70dbm and −75dbm which

corresponds to 600m and 1000m respectively.

5.3.1 MAPE Control Loop

MAMF follows the MAPE control loop concept and provides mobility support through

the efficient orchestration of application modules. The MAPE loop running in the Fog

layer consists of four phases, namely Monitor, Analyze, Plan and Execute. The op-

erations in each phase is discussed in this section. The overview of the MAPE loop

is excerpted in Algorithm 5.1. Initially, the system boots the required number of Fog

nodes. For each user request arriving, the MAPE control loop is executed at specified

time intervals ∆t. The loop includes a check to determine whether migration of appli-

cation modules must be initiated or not. If migrations are to be initiated, the MAMF
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proceeds to identify suitable destination Fog nodes for migrating application modules.

Algorithm 5.1: MAMF-Mobility aware Autonomic Migration Framework algo-
rithm

Initialization: Boot required number of Fog nodes
1 Begin
2 while user requests arrive for application modules deployed on Fog nodes do
3 for every time interval ∆t do
4 Monitor
5 Analyze
6 Plan
7 Execute
8 end
9 end

10 End

5.3.1.1 Monitoring Phase

In an autonomic environment, the monitoring phase is responsible for sensing the man-

aged process and its operation context (refer Algorithm 5.2). In this phase, the location

history of the users submitting requests for the application module appi is monitored by

the user monitor (line 1) and the status of resource is monitored by the resource moni-

tor (line 2). The knowledge base collects the information from the monitoring base and

stores it for use by the subsequent phases.

Algorithm 5.2: Pseudo code for Monitoring Phase

1 Begin
/* Monitor the time-based location history of the user

and store the positions of the mobile user in the
Knowledge base */

2 Monitor {X1, X2, ...Xt}
/* Monitor CPU,Memory,Bandwidth Utilization */

3 Monitor (Resource utilization values)
4 End
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5.3.1.2 Analyse Phase

The Analyse phase is devoted to process the data collected by the monitor. The Anal-

yser module (refer Algorithm 5.3) reads the time-based location history of mobile de-

vices from the knowledge database till time t, that is {X1, X2, ...Xt} and forecasts the

location at time Xt+1 using the Double Exponential Smoothing method (DES).

5.3.1.3 Planning Phase

The planning phase decides the actions to be taken to achieve the goals of the MAMF

(refer Algorithm 5.4). The Planning phase uses the forecasted location from the Analyse

phase and calculates the distance between the user submitting request for application

module, appi and the Fog node, fnj in which it is deployed. Equation 5.11 is used

to analyse whether migration is required or not. Considering the minimum power re-

quirements and transmission ranges of the IEEE802.11p protocol, the lower and upper

thresholds for migration were fixed at 600m and 1000m. The lower threshold indicates

when the MAMF starts the check for a suitable Fog node for the migration of the ap-

plication module. If a suitable Fog node is identified with lower value of TTC than

the current Fog node on which the module is deployed, then appi is migrated to the

identified Fog node. Otherwise, the module continues to be deployed on the same node.

The upper threshold indicates the maximum limit above which it is no longer feasible

to continue the execution of the module on the same Fog node, since the location of the

user submitting the request falls outside the coverage area. This implies that a migration

of the application module is inevitable. Thus, our framework checks for a suitable Fog

Algorithm 5.3: Pseudo code for Analyse Phase

1 Begin
Input : Time based Location history of a particular mobile device till time t
Output: Forecasted location of the mobile device at t+ 1

2 Read the values of (X1, Y1), (X2, Y2),...,(Xt, Yt)
3 Forecasted value(Xt+1, Yt+1)= Location at t+ 1 is forecasted using Double

Exponential Smoothing method
4 Return Forecasted value(Xt+1, Yt+1)
5 End
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node to migrate to. If no such Fog nodes satisfying the requirements of the application

module can be found, then the module is deployed to the Cloud, thereby ensuring that

no service interruptions occur in future.

distanceij =



< 600, No migration

600− 1000, Check migration, if suitable Target Candidate then migrate

> 1000, Check migration, if suitable Target Candidate then migrate,

else, send to Cloud
(5.11)

Check migration in lines 7, 15 of Algorithm 5.4 is a procedure that collects all the

application modules requesting for migration at the current time instant. It then invokes

Algorithm 5.4: Pseudo code for Planning Phase

1 Begin
Input : Location at t+ 1, (Xt+1, Yt+1)
Output: Migration decision

2 Calculate the Cartesian distance, distanceij between the current position of user
submitting request for application module i and the jth Fog node in which the
particular module is deployed

3 if distanceij < 600 then
4 do nothing
5 end
6 else if (distanceij > 600)and(distanceij < 1000) then
7 Target Candidate= Check Migration(appi)
8 if (distancei(Target Candidate) < distancei(CurrentNode) then
9 Migrate to Target Candidate

10 else
11 Do nothing
12 end
13 end
14 else
15 Target Candidate= Check Migration(appi)
16 if Target Candidate 6= NULL then
17 Migrate to Target Candidate
18 else
19 Migrate to Cloud
20 end
21 end
22 End
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the GA procedure (refer Algorithm 5.6) to check for suitable destinations and returns

the results to the invoking procedure. Genetic algorithm is used to identify the target

candidate Fog nodes for the migration process.

5.3.1.4 Execution Phase

The Execution phase provides mechanisms to enact the plan provided by the Planner

module. The action plan developed in the Plan phase is enacted in the Execution phase

(refer Algorithm 5.5). If the migration destination is a Fog node, then the application

module is deallocated from the current Fog node and re-allocated to the destination Fog

node. If Cloud is obtained as the possible destination, then, the application module must

be deallocated from the current Fog node and sent to the Cloud.

Algorithm 5.5: Pseudo code for Execute Phase
1 Begin

Input: Migration Destination
2 if Migration destination is a Fog node then
3 Deallocate from current node
4 Allocate to destination Fog node
5 end
6 if Migration destination is Cloud then
7 Deallocate from current node
8 Send to Cloud
9 else

10 Do Nothing
11 end
12 End

5.3.2 Genetic Algorithm

Genetic Algorithm (GA) is a classical meta-heuristic approach for solving optimization

problems. GA can be effectively used to provide near-optimal solutions for NP-hard

problems (Mitchell 1998)(Guerrero et al. 2018). To ensure better results using GA,

choosing suitable genetic operators is paramount. Algorithm 5.6 discusses the adapted

genetic algorithm used by the MAMF to identify a suitable Fog node to which the

application module can be migrated. The parameter values chosen are provided in the
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Figure 5.3: Chromosome representation example for a system with four fog nodes and
six application components

algorithm. The parameter values were fixed after performing several trials with different

values.

5.3.2.1 Chromosome Representation

In GA, the set of possible solutions are encapsulated in the population and each individ-

ual solution in the population is called a ‘chromosome’. The chromosome is encoded to

represent the set of possible re-allocations as shown in Figure 5.3. The representation of

possible re-allocations is an array where the indices of the array elements corresponds to

the identifiers of the application modules to be migrated and the element values are the

identifiers of Fog nodes to which the application modules can be migrated. The length

of the chromosome corresponds to the number of modules which are to be migrated.

Algorithm 5.6: Genetic Algorithm

1 procedure GA
2 population size← 300
3 generation number ← 700
4 mutation probability ← 0.25
5 crossover probability ← 0.90
6 Pt ← Generate random population(population size)
7 fitness← Calculate fitness(Pt)
8 Assign iteration← 1
9 while (iteration < generation number) and convergence not attained do

10 Apply Roulette wheel selection technique to select two individuals from Pt
11 Perform crossover operation with crossover probability
12 Perform mutation with mutation probability
13 Calculate the fitness of each newly generated individual
14 Replace least fit in population Pt with new individuals
15 Update iteration← iteration+ 1

16 end
17 Return the best solution (individual)
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5.3.2.2 Crossover and mutation operator

In GA, the solutions from one population are transformed to generate the next popula-

tion in each iteration. As the number of generations advance, the chromosomes in the

generation draw closer to the near-optimal solution. GA progresses through the biologi-

cal evolution concepts of crossover and mutation, where the better or stronger solutions

are selected for reproduction and the weaker ones are eliminated.

Crossover provides structured yet randomized exchange of genetic materials among

the solutions. Crossover combines two solutions to generate new solutions. The crossover

operator is fuelled by the idea that the combination of two good solutions give rise to

better offsprings. The combination can be interpreted based on the chromosome repre-

sentation as taking pieces/portions from good solutions to generate new solutions. In

the MAMF, the uniform crossover operator is used. Uniform crossover exchanges in-

dividual bits of the parents rather than dividing the array into separate segments. The

bits in the new offspring are determined by swapping the bits from its parents, and the

order in which they are swapped is indicated by a random real number u ∈ {0, 1}.

The Uniform crossover operator selects two parents and generates two children from

the parents such that the random number u, decides whether the ith gene of the child is

inherited from the first parent or the second parent.

The mutation operator is used to maintain diversity among the populations across

the generations and is applied on an individual-by-individual basis. The purpose of the

mutation is to avoid the local minima thereby improving the chances of obtaining better

results. Random resetting was used as the mutation operator. Here, a random Fog node

from a set of possible Fog nodes is selected to replace one of the Fog nodes in the

solution.

5.3.2.3 Fitness function, selection operator

In GA, fitness functions are identified to quantify the quality of the solutions represented

as chromosomes. Generally, fitness functions are directly derived from the objective

function. Fitness functions play a vital role in ensuring the convergence of the GA. It
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assigns a score to every solution and enables one to identify the best solutions in each of

the generations. The score of fitness function indicates how close the obtained solution

is to the desired solution.

The MAMF employs TTCi as the GA fitness function. It represents the time to

completion of the application module, appi in the event of migration to a particular

destination Fog node, fnj . For the ith application module migrating to fnj , the TTCi

is computed as provided in Equation 5.1.

5.3.2.4 Stopping Criteria

The genetic algorithm is said to have converged if there is no much improvement in

the solutions generated from one generation to the other. In the proposed MAMF, the

genetic algorithm is stopped when successive iterations no longer produce better values

for the fitness function.

5.4 EXPERIMENTAL EVALUATION

The experiments in our evaluation were designed to analyze the performance of the

MAMF in various scenarios. The Fog simulation toolkit called iFogSim (Gupta et al.

2017) was used to simulate the Fog environment and Cloud resources. A real time

mobility dataset was used in order to mimic the real time movement of users.

5.4.1 Evaluation Environment

The evaluation of our framework was done by considering a city with smart vehicle

system which uses the Fog computing environment for accessing services. The simula-

tion was done in the iFogsim simulator. iFogsim allows the modelling and simulation

of Fog computing environments and creates an evaluation platform to demonstrate the

capabilities of various resource management policies. Though the toolkit provides the

necessary features to model the environment depicted in Section 5.2, few modifications

were required. iFogSim extensions were developed to support the deployment of ap-

plication modules in lightweight virtualization entities called containers. Migration of

application modules hosted in containers, was enabled to support user mobility. Lo-
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Configuration number Number of Modules Number of Fog nodes
Config 1 4 2
Config 2 6 3
Config 3 8 4
Config 4 10 5
Config 5 20 10
Config 6 30 15
Config 7 50 25

Table 5.3: Experimental details

cation co-ordinates were added for the mobile devices to enable recording of the user

location. The application modules are initially deployed according to the Edgeward

Placement policy (Gupta et al. 2017) in all the considered scenarios.

5.4.2 Simulation Parameter Settings

The performance of the MAMF was evaluated in the Fog computing environment tak-

ing various combinations of application modules and Fog nodes. The details of the

configurations are provided in Table 5.3.

5.4.3 Mobility Trace Description

In order to validate efficiency of our MAMF approach, a real-time mobility dataset was

used. The vehicular dataset was populated by the General Departmental Council of

Val de Marne situated in Creteil town, in France (Lèbre et al. 2015). The General

Departmental Council is the regional agency that handles the control and co-ordination

of the transportation system in France. The dataset contains the traces of the vehicle

flows in the city for a period of two morning peak hours and two evening peak hours.

The traces for different types of vehicles were considered in our experiments.

5.4.4 Baseline Approach

As there are no known policies for the migration of container based application modules

in Fog computing environments, it is difficult to find a baseline approach to compare

and evaluate the relative performance of the proposed framework. When the user moves
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away from the coverage of a Fog node, in order to provide effective user mobility sup-

port, the application modules must be migrated from the present Fog node to another

Fog node, closer to the current position of the user and thus provide better coverage for

the user along with his/her movement. Selection of a suitable target node for the appli-

cation module when a number of Fog nodes are available is challenging. An interesting

baseline is introduced which selects the destination Fog node as the one with the min-

imum distance among the various Fog nodes that can provide coverage for the current

Algorithm 5.7: Pseudo code for SDP
1 Begin

Input : Location at t, (Xt, Yt)
Output: Migration destination

2 Calculate the Cartesian distance, distanceij between the current position of user
submitting request for application module i and the jth Fog node in which
particular module deployed

3 Find all the Fog nodes which are nearer to current user position and assign them
in to a set S.

4 Sort the set S in ascending order with respect to the current user position
5 if distanceij < 600 then
6 do nothing
7 end
8 else if (distanceij > 600)and(distanceij < 1000) then
9 Consider each nodes from S, check whether the node can satisfy resource

requirements of (appi) if so assign it as Target Candidate
10 if (distancei(Target Candidate) < distancei(CurrentNode) then
11 Migrate to Target Candidate
12 else
13 Do nothing
14 end
15 end
16 else
17 Consider each nodes from S, check whether the node can satisfy resource

requirements of (appi) if so assign it as Target Candidate
18 if Target Candidate 6= NULL then
19 Migrate to Target Candidate
20 else
21 Migrate to Cloud
22 end
23 end
24 End
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location of the user. The baseline method is called Shortest Distance Policy (denoted as

SDP in the remainder of the chapter).

A migration strategy involves three activities: identification of when containers are

to be migrated, selecting the containers to be migrated and re-allocating the migrating

containers to appropriate Fog nodes. For the SDP migration strategy, containers are

migrated when the users travel beyond the coverage area of the Fog nodes to which they

are connected. The coverage area bounds are calculated using Equation 5.10 and also

considering the minimum power requirements and transmission range of IEEE802.11p.

Container migrations are initiated when the distance between the user position and the

Fog node falls between 600m and 1000m.

The SDP assumes that the user is within complete coverage of the Fog node when

distanceij between the current position of user submitting request for application mod-

ule i and the jth Fog node in which particular module deployed is less than 600m. When

distanceij is in between 600m and 1000m, the probability for the user to travel beyond

the coverage region in the next time step is higher. Thus, SDP checks for a suitable mi-

gration destination by calculating the distance between the current user location and the

different Fog nodes with sufficient resources available to host the application module.

The Fog node closest to the user location is returned as the migration target node. When

the distanceij is greater than 1000m since the user is already beyond the coverage area,

SDP tries to find a suitable destination Fog node. If none of the suitable destinations

are obtained then the module will be migrated to cloud. The SDP Algorithm is given in

Algorithm 5.7.

5.4.5 Evaluation metrics

In order to assess the performance of the proposed MAMF, we have used several met-

rics. The first metric is the Time to Completion (TTC). Along with this metric, we have

also considered the widely used evaluation metrics from the simulation environment

(Gupta et al. 2017).

1. TTCi : The TTC is the Time To Completion of a migrating application module.
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When the distance between the user submitting the request for application and the

Fog node on which the application is running, exceeds a bound then the proposed

framework, MAMF starts to check for a suitable destination to which the module

can be migrated. In order to choose one among the possible destination Fog

nodes satisfying the resource requirements, we introduced the metric TTCi . It

is calculated as the sum of time required for the migration of application module,

appi to the destination Fog node, fnj and the time required to process a request to

the application module on the destination fnj . The TTCi is calculated as given

in Equation 5.1.

2. Network Usage: This metric indicates the overall network usage of the applica-

tion modules. As the number of devices connected to the application increases,

the overall network usage increases. Uncontrolled use of the network may lead

to congestions in the network which results in performance degradation of the

applications.

3. Average Loop Delay: The processing of a user request may involve processing

by a series of application modules or a loop of application modules. Users receive

the response only after the complete execution of the loop of modules. A lag in

any connection in this loop will impact the response time experienced by user.

Thus, proper monitoring of average loop delay is essential to avoid the violations

in user Service Level Agreements (SLAs).

4. Average Tuple Execution Delay: It is the average over the time taken to com-

plete the execution of user requests in a particular Fog computing environment.

Requests to a Fog application module contain values according to a defined data

format. Each request can be thus be considered as a tuple of values, to be pro-

cessed. Increased delays in processing the request may cause violations of the

delay requirements. Thus, in a Fog computing environment average tuple exe-

cution delay can be considered as a measure to assess the conformance level of

quality oriented services.

5. Monetary Cost of Execution in Cloud: In the hierarchical Fog computing en-
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vironment, Fog nodes receive and pre-process data from the end devices rather

than transporting the entire data in to the cloud. Thus, Fog reduces the need for

increased bandwidth and also helps in reducing the congestion in the network.

The data which cannot be processed by the Fog or demands long term storage

are sent to the Cloud. An efficient orchestration framework for the Fog should

balance between the effective utilization of Fog infrastructure and optimum us-

age of Cloud. The monetary cost of execution includes the cost required for the

execution of application modules in the Cloud.

5.5 RESULTS

The performance of the proposed framework was evaluated using real world mobility

traces based on the metrics described in Section 5.4.5. The values of these metrics were

collected by averaging across several runs. We compare the proposed MAMF approach

with the baseline SDP and also with the commonly used Void migration (VoMig) ap-

proach which does not offer migration support for container based application modules.

5.5.1 Network Usage

Figure 5.4 shows the overall network usage of all the application modules. The mobility

of the user may cause an increase in the distance between the user and the Fog node in

which the application is deployed. When the user travels beyond the coverage of Fog

node, the service may be interrupted. The traditional approach VoMig, offloads the

application module to the Cloud for avoiding service denial. This causes tremendous

increase in the network usage, which increases with the number of modules migrating

to the Cloud.

The baseline SDP approach migrates the application module to a Fog node among

the set of available Fog nodes which is at the shortest distance from the current user

location. The proposed framework, MAMF tries to find a suitable destination Fog node

to which the application module can be migrated and the module will be offloaded to

the Cloud only if a suitable destination which meets the requirements is not obtained.

The migration of modules within the Fog layer does not create significant impacts on
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the network usage. Thus, MAMF reduces the overall network usage in the Fog envi-

ronment.
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Figure 5.4: Network Usage

5.5.2 Average Loop Delay

In Fog environments, users are in motion. Once the user has travelled across the bound-

aries of the coverage area of the Fog node where the application is currently running,

one can experience an increased delay in the execution completion time. This can be

attributed to the increase in the number of hops that a request has to travel to arrive at

the Fog node hosting the application. A single user request may consist of execution of

a sequence of such application modules. Figure 5.5 shows the average loop delay in the

various Fog computing configurations considered. The application loop delay includes

the total time taken for a request to be processed by all the modules that form a loop

in the application. It is observed that in the VoMig approach which does not offer mi-

gration support, more number of nodes are offloaded to the Cloud than necessary. This

creates some additional communication latencies as communications with the Fog are

significantly faster than communication with the distant Cloud servers. The SDP ap-

proach which supports migration based on only shortest distance tremendously reduces

the amount of data uploaded to the Cloud. Our proposed approach MAMF outperforms
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both the other approaches by choosing the most appropriate migration destination based

on a number of parameters.
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Figure 5.5: Average Loop Delay

5.5.3 Average Tuple Execution Delay

IoT datastreams emitted from the end devices are in the form of sequence of values,

which is referred to as a tuple. Figure 5.6 shows the average execution delay of the

request tuples. The distance between the user and the Fog node imposes some addi-

tional communication delay on the response time for each request. Enabling migration

reduces the execution delay drastically in SDP. The proposed MAMF further reduces

this delay by migrating the application module to a suitable Fog node which is not only

located nearer to the user but also capable of efficient execution of the requests and

sending quick responses to the user.

5.5.4 Execution cost in Cloud

The service requests which cannot be processed in the Fog are ultimately transferred to

the Cloud. An efficient orchestrator for Fog environments must try to reduce the amount

of data transfer to the Cloud and thus try to reduce the execution cost in Cloud. Figure

5.7 shows the comparison of cost of execution in Cloud for all the three approaches.
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The proposed MAMF makes effective utilization of Fog environment through the timely

migration of application modules to support user mobility, rather than transporting all

the data to the Cloud as in the case of VoMig. The MAMF offloads modules to the

Cloud, only when there are absolutely no possibilities of hosting the application module

in the Fog.

The SDP approach also tries to migrate the application module to the nearest avail-

able Fog node, thus reducing the data transfer to the Cloud. But since it determines

the destination based only on the distance without regard for the processing rate, new

requests arriving at the destination node after the migration may suffer from longer

processing delays.

5.6 DISCUSSION

In this section, we present the inferences and analysis results based on the experiments

conducted.

5.6.1 Location value at time (t+ 1)

In order to forecast the location at time X(t+1) from the history of location values upto

time t, a time series forecasting method called Double Exponential Smoothing (DES)

was used. Several methods such as Moving average (MA), Exponential Smoothing

(ES), Double Exponential Smoothing (DES), AutoRegressive Integrated Moving Aver-

age (ARIMA) and AutoRegressive (AR) model, were compared. The different methods

were evaluated using the metrics given in the subsequent section. The comparison re-

sults are shown in Figure 5.8. It is noted that ARIMA and DES techniques fare better

when compared to all the other approaches, and among these two, DES performs ex-

ceptionally well. Thus, in MAMF, DES is used to calculate the location value at time

(t+ 1).
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5.6.1.1 Evaluation criteria

The accuracy of the forecasted location values was evaluated based on several metrics,

namely Mean Absolute Percentage Error (MAPE), Mean Absolute Error (MAE) and

Root Mean Squared Error (RMSE).

• Mean Absolute Error:

MAE is defined as the mean of the absolute errors. It is one of the simplest

measures of accuracy. The absolute value is measured as the difference between

the forecasted value and the expected value (Shcherbakov et al. 2013).

• Mean Absolute Percentage Error:

MAPE gives the accuracy of the forecasted values (Makridakis et al. 1982). The

accuracy is expressed as percentage, and it is defined in Equation 5.12.

MAPE =
1

n

n∑
t=1

∣∣∣∣At − FtAt

∣∣∣∣ (5.12)

where At indicates the actual value, Ft indicates the forecasted value and n is the

number of observations based on which the predictions are made. A lower MAPE

value indicates better accuracy.

• Root Mean Squared Error:

RMSE (Chai and Draxler 2014) is a common measure to quantify the difference

between two values. It is defined in Equation 5.13.

RMSE =

√∑n
i=1 (Ŷi − Yi)

2

n
(5.13)

where ŷi indicates the forecasted value, yi indicates the actual output and n is the

number of observations used for prediction.

5.6.2 Evaluation of GA

This section presents the performance analysis of the GA module in the MAMF.
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5.6.2.1 Evolution of Objective Function

The optimal value of the objective function is obtained at the termination of the opti-

mization algorithm. The number of generations required for the GA to converge to an

optimum was fixed after several trials. The convergence of the objective function with

varying number of generations is plotted in Figure 5.9. It is evident that stabilization of

the objective function is achieved in different generations for different configurations

of the Fog computing environment. For all the four configurations, convergence was

attained before the 400th generation. It is observed that the configuration 1 shows an

early convergence, which may be due to the small size of search space. Convergence in

configuration 4 occurs later, that is only after 300 generations which indicates that the

increase in the number of Fog nodes and application modules to migrate increases the

search space thus, requiring more number of generations to converge.

Figure 5.10 shows the evolution of population across varying generations. Initially,

the individuals were in random positions. It is observed that, after 200 generations,
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(a) Generation 100 (b) Generation 200

(c) Generation 300 (d) Generation 400

(e) Generation 500 (f) Generation 700

Figure 5.10: Evolution of Time to Completion with Distance across Generations
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the individuals are shifted from random positions to the corresponding solution space.

After 300 generations, the individuals do not undergo much changes. The distance pa-

rameter is directly proportional to the Time to completion. Through all the generations,

it is observed that the distance keeps varying till the population converges to the final

solution. The distance decreases with an increase in the number of generations. All

the solutions are concentrated mostly at the same values of distance and TTC from the

300th generation onwards.

Figure 5.11 shows the variation of TTC of the application modules against their

delays in the four different configurations. The red line indicates the tolerable delay of

each of the application modules for processing the user request. TTC is the response

time of a migrated application module, which includes the time to migrate and also the

time to process a request in the destination Fog node. Fog computing environments with

heterogeneous Fog nodes and application modules are considered. All the configura-

tions completed the processing of requests within the tolerable delay. Thus, through the

migration of application modules, MAMF ensures that the Fog computing environment

fulfils the delay requirements of the users. When the total amount of resources available

in the Fog layer is not sufficient to satisfy the requirements of the users, the processing

will be transferred to the Cloud. The requests are immediately executed in the Cloud

because of unlimited capacity of resources in the Cloud. However, it imposes additional

overheads in the form of communication delay (between the user and the Cloud) due to

the distance and execution cost. This may lead to violation of delay requirements of the

user.
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Parameter Solution
based on ILP

Solution based on
Meta-heuristic

x11 1 1
x12 0 0
x21 0 0
x22 1 1
x31 0 0
x32 1 1

Table 5.4: Comparison of Solutions

5.6.3 Integer Linear Programming & Heuristic Approach

In order to identify a suitable destination Fog node for the migrating application mod-

ule, we have proposed approaches based on ILP and meta-heuristics. A real time exam-

ple scenario was modelled as an optimization problem and the mapping of application

modules to suitable Fog nodes was solved using (0/1) ILP, in Section 5.2.2. The same

problem scenario is also solved using the well known meta-heuristic approach, Genetic

Algorithm and the results are shown in Table 5.4.

It is observed that the heuristic-based approach approximates the ILP very well by

providing the same results for the considered scenario. When the problem size in-

creases, that is when the Fog environment consists of large number of Fog nodes and

application modules, it is challenging to model the scenario using the exact technique.

Therefore, in MAMF the meta-heuristic approach based on genetic algorithm is used.

5.7 SUMMARY

In order to ensure uninterrupted services to the Fog users irrespective of their mobility

patterns, techniques such as application module migration may be employed. In this

chapter, a mobility aware autonomic migration framework based on a combination of

autonomic computing and genetic algorithm, has been proposed. MAMF ensures that

the QoS requirements of the end users are satisfied, through the migration of container

based application modules which works based on the concepts of control MAPE loop.

The approach can be used to predetermine the migration of application modules and

thus reduce the service down time. An ILP model was developed to find the destination
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Fog nodes for the migrating modules. The performance of the proposed approach was

evaluated under real world mobility traces using different metrics using the iFogsim

toolkit. Results show that the average delay of execution, network usage, execution

delay per tuple and the cost of execution can be significantly reduced by using the

proposed approach.
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CHAPTER 6

CONCLUSIONS AND FUTURE SCOPE

The fog computing paradigm has emanated as a widespread computing technology to

support the execution of the IoT applications. The distributed and heterogeneous fea-

tures of Fog environments deem it imperative to devise efficient orchestration mecha-

nisms. In this work, we presented dynamic decision making schemes for the optimal

placement and migration of application modules in the Fog computing environment.

We proposed a service placement policy which addresses the conflicting criteria of

service reliability and monetary cost. A multi-objective optimisation problem is for-

mulated and a novel placement policy, CREW, is proposed to provide placement deci-

sions ensuring timely service responses. Considering the exponentially large solution

space, CREW adopts eagle strategy based Multi-Objective Whale Optimisation for tak-

ing placement decisions. We have considered real time microservice applications for

validating our approaches, and CREW has been experimentally shown to outperform

the existing popular multi-objective meta-heuristics such as NSGA-II and MOWOA

based placement strategies.

The dynamic changes in the Fog computing environment and the mobile nature of

users induces additional challenges and renders the initial placement infeasible. To

handle these problems and challenges faced by Fog computing environments and to

provide mobility support, a mobility aware autonomic migration framework (MAMF)
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is proposed. MAMF performs the migration of application modules in the Fog com-

puting environment while satisfying the QoS requirements. The hybrid framework is

based on a combination of autonomic computing and genetic algorithm. The proposed

approach improves user experience by reducing the delays occurring in service delivery

due to user mobility. The framework uses pre-determined values of user location for

the next time instant, to initiate the migration process. The rellocation problem was

also formulated as a integer programming problem. The MAMF framework was devel-

oped and evaluated using iFogsim simulator and experimental results indicate that the

approach offers an improvement in terms of network usage, execution cost and request

execution delay, over the existing approaches.

6.1 FUTURE SCOPE

Research efforts towards orchestrational issues in the domain of Fog computing is still

immature and there exists several channels for future research.

• Enhancing the security and trust by integrating blockchain: The heteroge-

nous distributed nature of Fog computing demands decentralised trust and secu-

rity mechanisms. The integration of blockchain with Fog computing environ-

ments can be used as an effective solution for this. However, this integration

imposes several additional overheads on the resource constrained Fog computing

environments. Orchestration mechanisms must be further modified to incorporate

the requirements of blockchain and to effectively harness its advantages.

• Dynamic Consolidation and Scaling: The requirements from IoE devices to

Fog environment vary over time. Thus, a resource orchestrator must be aug-

mented with capabilities to handle the unprecedented fluctuations in the environ-

ment. Two mechanisms that can aid this process are dynamic consolidation and

autoscaling. Dynamic consolidation involves re-configuration of the applications

running in the Fog environments. The applications may be re-distributed across

the Fog nodes to resolve degradations in the performance of the intial configura-

tion. Autoscaling is performed to handle variations in the workload. In response
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to an increase/decrease in the workload, the number of application instances may

be modified.

• Energy aware resource orchestration: The low power characteristics of IoT de-

vices reckon the design of orchestrational mechanisms that can reduce the overall

energy consumption. For this, resource orchestration mechanisms must include

energy as one of the decision parameters. Techniques such as energy profiling

may be incorporated in orchestrational solutions. The concept of brownout which

includes switching off the non-mandatory components can also be applied in Fog

environments to enhance the energy efficiency (Klein et al. 2014).

• Application-domain specific orchestration: The applications from different

sectors such as healthcare, agriculture, industries and transport, rely on Fog com-

puting for real time processing of data. Requirements of applications from differ-

ent sectors will vary and demand customised management. Orchestration mecha-

nisms must leverage domain-specific knowledge while taking orchestrational de-

cisions.
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Zhu, J. (2017). “Do we all really know what a fog node is? current trends towards an

open definition.” Computer Communications, 109, 117–130.

Masip-Bruin, X., Marı́n-Tordera, E., Alonso, A. and Garcia, J. (2016). “Fog-to-cloud

computing (f2c): The key technology enabler for dependable e-health services de-

ployment.” Ad Hoc Networking Workshop (Med-Hoc-Net), 2016 Mediterranean,

IEEE, 1–5.

Mayer, R., Gupta, H., Saurez, E. and Ramachandran, U. (2017). “The fog makes sense:

Enabling social sensing services with limited internet connectivity.” Proceedings of

the 2nd International Workshop on Social Sensing, ACM, 61–66.

Mekki, T., Jabri, I., Rachedi, A. and ben Jemaa, M. (2017). “Vehicular cloud networks:

Challenges, architectures, and future directions.” Vehicular Communications, 9, 268–

280.

Mijumbi, R., Serrat, J., Gorricho, J.-L., Bouten, N., De Turck, F. and Boutaba, R.

(2016). “Network function virtualization: State-of-the-art and research challenges.”

IEEE Communications Surveys & Tutorials, 18(1), 236–262.

Mirjalili, S. and Lewis, A. (2016). “The whale optimization algorithm.” Advances in

engineering software, 95, 51–67.

Mitchell, M. (1998). An introduction to genetic algorithms, MIT press.

137



BIBLIOGRAPHY

Moreno-Vozmediano, R., Montero, R. S., Huedo, E. and Llorente, I. M. (2017). “Cross-

site virtual network in cloud and fog computing.” IEEE Cloud Computing, 4(2), 46–

53.

Mukherjee, M., Matam, R., Shu, L., Maglaras, L., Ferrag, M. A., Choudhury, N. and

Kumar, V. (2017). “Security and privacy in fog computing: Challenges.” IEEE Ac-

cess, 5, 19293–19304.

Natesha, B. and Guddeti, R. M. R. (2018). “Heuristic-based iot application modules

placement in the fog-cloud computing environment.” In 2018 IEEE/ACM Interna-

tional Conference on Utility and Cloud Computing Companion (UCC Companion),

IEEE, 24–25.

Ni, L., Zhang, J., Jiang, C., Yan, C. and Yu, K. (2017). “Resource allocation strategy

in fog computing based on priced timed petri nets.” IEEE Internet of Things Journal,

4(5), 1216–1228.
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for stochastic optimization.” In Nature Inspired Cooperative Strategies for Optimiza-

tion (NICSO 2010), Springer, 101–111.

143



BIBLIOGRAPHY

Yangui, S., Ravindran, P., Bibani, O., Glitho, R. H., Hadj-Alouane, N. B., Morrow,

M. J. and Polakos, P. A. (2016). “A platform as-a-service for hybrid cloud/fog envi-

ronments.” Local and Metropolitan Area Networks (LANMAN), 2016 IEEE Interna-

tional Symposium on, IEEE, 1–7.

Yi, S., Li, C. and Li, Q. (2015a). “A survey of fog computing: concepts, applications

and issues.” Proceedings of the 2015 Workshop on Mobile Big Data, ACM, 37–42.

Yi, S., Qin, Z. and Li, Q. (2015b). “Security and privacy issues of fog computing: A sur-

vey.” International Conference on Wireless Algorithms, Systems, and Applications,

Springer, 685–695.

Yousefpour, A., Patil, A., Ishigaki, G., Kim, I., Wang, X., Cankaya, H. C., Zhang, Q.,

Xie, W. and Jue, J. P. (2018). “Qos-aware dynamic fog service provisioning.” arXiv

preprint arXiv:1802.00800.

Zeng, D., Gu, L., Guo, S., Cheng, Z. and Yu, S. (2016). “Joint optimization of task

scheduling and image placement in fog computing supported software-defined em-

bedded system.” IEEE Transactions on Computers, 65(12), 3702–3712.

Zhang, H., Qiu, Y., Chu, X., Long, K. and Leung, V. (2017a). “Fog radio access

networks: management, interference mitigation and resource optimization.” arXiv

preprint arXiv:1707.06892.

Zhang, H., Xiao, Y., Bu, S., Niyato, D., Yu, F. R. and Han, Z. (2017b). “Comput-

ing resource allocation in three-tier iot fog networks: A joint optimization approach

combining stackelberg game and matching.” IEEE Internet of Things Journal, 4(5),

1204–1215.

Zhang, H., Zhang, Y., Gu, Y., Niyato, D. and Han, Z. (2017c). “A hierarchical

game framework for resource management in fog computing.” IEEE Communica-

tions Magazine, 55(8), 52–57.

Zhu, J., Chan, D. S., Prabhu, M. S., Natarajan, P., Hu, H. and Bonomi, F. (2013). “Im-

proving web sites performance using edge servers in fog computing architecture.”

144



BIBLIOGRAPHY

Service Oriented System Engineering (SOSE), 2013 IEEE 7th International Sympo-

sium on, IEEE, 320–323.

145





RESEARCH OUTCOMES

PUBLICATIONS

Journal Papers

1. Martin, J. P. , A. Kandasamy & K. Chandrasekaran (2018). Exploring the support

for high performance applications in the container runtime environment. Springer

Human-centric Computing and Information Sciences, 2018, 8(1), 1-15. (DOI:

https://doi.org/10.1186/s13673-017-0124-3,

URL: https://link.springer.com/article/10.1186/s13673-017-

0124-3) [SCI Indexed]

2. Martin, J. P. , A. Kandasamy , K. Chandrasekaran & C. T. Joseph. (2019).

Elucidating the challenges for the praxis of fog computing: An aspect-based

study. Wiley International Journal of Communication Systems, 2019, 32(7),

1-28. (DOI: https://doi.org/10.1002/dac.3926, URL: https://

onlinelibrary.wiley.com/doi/epdf/10.1002/dac.3926) [SCI In-

dexed]

3. Martin, J. P. , A. Kandasamy & K. Chandrasekaran (2019). Mobility aware auto-

nomic approach for the migration of application modules in fog computing envi-

ronment. Springer Journal of Ambient Intelligence and Humanized Computing,

2020, 1-20 (DOI: https://doi.org/10.1007/s12652-020-01854-

x, URL: https://link.springer.com/article/10.1007/s12652-

020-01854-x) [SCI Indexed]

4. Martin, J. P. , A. Kandasamy & K. Chandrasekaran. CREW: Cost and Reliability

aware Eagle-Whale optimizer for Service Placement in Fog. Wiley Software:

147

 https://doi.org/10.1186/s13673-017-0124-3
https://link.springer.com / article/10.1186/s13673-017-0124-3
https://link.springer.com / article/10.1186/s13673-017-0124-3
 https://doi.org/10.1002/dac.3926
https://onlinelibrary.wiley.com/doi/epdf/10.1002/dac.3926
https://onlinelibrary.wiley.com/doi/epdf/10.1002/dac.3926
https://doi.org/10.1007/s12652-020-01854-x
https://doi.org/10.1007/s12652-020-01854-x
https://link.springer.com/article/10.1007/s12652-020-01854-x
https://link.springer.com/article/10.1007/s12652-020-01854-x


BIBLIOGRAPHY

Practice and Experience, 2020. (”Accepted” )(DOI: https://doi.org/10.

1002/spe.2896, )[SCI Indexed]

Conference Papers

1. Martin, J. P. , A. Kandasamy & K. Chandrasekaran (2019). Unraveling the chal-

lenges for the application of fog computing in different realms: A multifaceted

study. Integrated Intelligent Computing, Communication and Security, vol. 771,

pp. 481-492. Springer, Singapore. (DOI: https://doi.org/10.1007/

978-981-10-8797-4_49, URL: https://link.springer.com/chapter/

10.1007/978-981-10-8797-4_49)

148

https://doi.org/10.1002/spe.2896
https://doi.org/10.1002/spe.2896
https://doi.org/10.1007/978-981-10-8797-4_49
https://doi.org/10.1007/978-981-10-8797-4_49
https://link.springer.com/chapter/10.1007/978-981-10-8797-4_49
https://link.springer.com/chapter/10.1007/978-981-10-8797-4_49


BIODATA

Name : John Paul Martin

Email : johnpm12@gmail.com

Date of Birth : 12th January 1990

Permanent address : John Paul Martin,

S/o Martin P John,

Pottakka House,

Azhakam, Kodakara Post, Thrissur District,

Kerala-680684

Educational Qualifications :

Degree Year Institution / University

B.Tech.(CSE) 2011 University of Calicut, Kerala.

M.Tech.(CSE) 2014 Mahatma Gandhi University, Kerala.


	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Related Computing Paradigms
	Cloud Computing
	Edge Computing
	Cloudlet
	Mobile Edge Computing
	Mobile Cloud Computing
	Mist Computing

	Background
	Purpose and scope of Fog Computing
	Fog Computing Paradigm
	Fog Nodes

	Fog Computing Characteristics
	Fog Computing Reference Architecture
	Virtualization in Fog computing environments
	Container Virtualization

	Fog Computing Environment

	Motivation
	Organization of the Thesis

	Literature Review
	Fog computing aspects
	Application Domains
	Platform Management
	Communication Models and Technologies
	Orchestration and Coordination
	Programming Models / Frameworks
	Security and Privacy Issues in Fog environments


	Outcome of Literature Review
	Summary

	Problem Description
	Scope and Focus of the thesis 
	Research Problem and Objectives
	Research Objectives

	Research Methodology
	Research Contributions

	Cost and Reliability aware Eagle-Whale optimizer for Service Placement in Fog
	 System Architecture
	Service Execution Time Prediction
	Waiting Time Model 
	Communication Time Estimation
	Response Time Estimation
	Reliability Model
	Cost Model

	Problem Formulation
	CREW-Cost and Reliability-aware Eagle-Whale Optimizer
	Whale optimisation Algorithm
	Eagle Strategy

	Experimental Design and Setup
	Workload applications considered
	E-commerce Industrial Applications
	Healthcare Application

	Performance Metrics

	Experimental Results and Analysis
	Performance comparison of various Placement Schemes 
	Execution Cost
	Reliability
	Response Time

	Performance Comparison of various Machine Learning Techniques for execution time prediction
	Performance Analysis in Large Search Spaces

	Summary

	Mobility aware autonomic approach for the migration of application modules in Fog Computing Environment
	Motivation
	System Model
	Optimization Model
	 Model Example

	Proposed Conceptual Framework
	MAPE Control Loop
	Monitoring Phase
	Analyse Phase
	Planning Phase
	Execution Phase

	Genetic Algorithm
	Chromosome Representation
	Crossover and mutation operator
	Fitness function, selection operator
	Stopping Criteria


	Experimental Evaluation
	Evaluation Environment
	Simulation Parameter Settings
	Mobility Trace Description
	Baseline Approach
	Evaluation metrics

	Results
	Network Usage
	Average Loop Delay
	Average Tuple Execution Delay
	Execution cost in Cloud

	Discussion
	Location value at time (t+1)
	Evaluation criteria

	Evaluation of GA
	Evolution of Objective Function

	Integer Linear Programming & Heuristic Approach

	Summary

	Conclusions and Future Scope
	Future Scope

	Bibliography
	Research Outcomes

