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ABSTRACT

Cystoid Macular Edema (CME) is a retinal abnormality causing fluid accumulations in

the retina due to various retinal diseases. The early diagnosis of CME and its quan-

tification is vital for treatment planning. Optical Coherence Tomography (OCT) is a

non-invasive imaging technique used to visualize the human retina and the retinal ab-

normalities. The OCT images have corrupted with speckle noise due to the coherence

detection, which will degrade the quality of the OCT images. Also, the human retina is

a layered structure. The segmentation of retinal layers helps in diagnose various retinal

diseases and finding the locations of retinal pathologies. This thesis focused on the de-

velopment of automated methods for retinal OCT image analysis and tried to provide

deep learning-based solutions for each of the stages.

OCT is an imaging technique widely used for medical imaging. Noise in an OCT

image generally degrades its quality, thereby obscuring clinical features and making

the automated segmentation task suboptimal. Obtaining higher quality images requires

sophisticated equipment and technology, available only in selected research settings,

and is expensive to acquire. Developing effective denoising methods to improve the

quality of the images acquired on systems currently in use has the potential for vastly

improving image quality and automated quantitative analysis. Noise characteristics in

images acquired from machines of different makes and models may vary. Our experi-

ments show that any single state-of-the-art method for noise reduction fails to perform

equally well on images from various sources. Therefore, detailed analysis is required

to determine the exact noise type in images acquired using different OCT machines. In

the second chapter, we studied noise characteristics in the publicly available DUKE and

OPTIMA datasets to build a more efficient model for noise reduction. These datasets

have OCT images acquired using machines of different manufacturers. We further pro-
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pose a patch-wise training methodology to build a system to effectively denoise OCT

images. We have performed an extensive range of experiments to show that the pro-

posed method performs superior to other state-of-the-art methods.

Segmentation of retinal layers is a vital step in computerized processing and the

study of retinal OCT images. However, automatic segmentation of retinal layers is chal-

lenging due to the presence of noise, widely varying reflectivity of image components,

variations in morphology and alignment of layers in the presence of retinal diseases. In

the third chapter, we propose a Fully Convolutional Network (FCN) termed as DelNet

based on a deep ensemble learning approach to selectively segment retinal layers from

OCT scans. The proposed model is tested on a publicly available DUKE DME dataset.

Comparative analysis with other state-of-the-art methods on a benchmark dataset shows

that the performance of DelNet is superior to other methods.

In the fourth chapter, we propose attention assisted convolutional neural network-

based architecture to detect and quantify three types of retinal cysts namely the intra-

retinal cyst, sub-retinal cyst and pigmented epithelial detachment from the OCT images

of the human retina. The proposed architecture has an encoder-decoder structure with

an attention and a multi-scale module. The qualitative and quantitative performance of

the model is evaluated on the publicly available RETOUCH retinal OCT fluid detection

challenge data set. The proposed model outperforms the state-of-the-art methods in

terms of precision, recall, and dice coefficient. Furthermore, the proposed model is

computationally efficient due to its less number of model parameters.

Keywords: Retinal cysts; Image Segmentation; Retinal Layer Segmenta-

tion; Optical Coherence Tomography; Speckle Noise; Denoising;

Deep Learning; Ensemble Learning; Convolutional Neural Net-

works; Fully Convolutional Networks; Patch-wise Training; At-

tention module; Multi-scale features.

iv



  

 

                                                                                                      

    

     

   

  

                             

                     

                              

                       

                          

                         

                             

                           

      
       

                                

                               

                         

                       

v

TABLE  OF  CONTENTS

ACKNOWLEDGEMENTS  i

ABSTRACT  iii

LIST  OF  TABLES                                                                                           viii

LIST  OF  FIGURES   x

ABBREVIATIONS  xv

1  INTRODUCTION  1

1.1  Human  Eye  and  Retina  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  1

1.2  Retinal  Cyst  and  Cystoid  Macular  Edema  .  .  .  .  .  .  .  .  .  .  .  .  .  .  3

1.3  Diagnosis  of  CME  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  4

1.4  Optical  Coherence  Tomography  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  6

1.5  Motivation  and  Challenges  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  10

1.5.1  Problem  Statement  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  11

1.6  Major  Contributions  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  12

1.7  Organization  of  this  Thesis  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  13

2  A  CASCADED  CONVOLUTIONAL  NEURAL  NETWORK  ARCHITEC-
  TURE  FOR  DESPECKLING  OCT  IMAGES  15

2.1  Introduction  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  15

2.2  Methods  and  Data  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  19

2.2.1  Experimental  setup  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  20

2.2.2  Modelling  Speckle  Noise  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  21



2.2.3 GCDS Model . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2.4 Limitations of GCDS model . . . . . . . . . . . . . . . . . 24

2.2.5 Patch-wise training . . . . . . . . . . . . . . . . . . . . . . 26

2.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . 28

2.3.1 Experiments on Synthetic Eye Images . . . . . . . . . . . . 29

2.3.2 Experiments on real retinal OCT Images . . . . . . . . . . . 31

2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3 STACK GENERALIZED DEEP ENSEMBLE LEARNING FOR RETI-
NAL LAYER SEGMENTATION IN OPTICAL COHERENCE TOMOG-
RAPHY IMAGES 41

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2.1 Proposed DelNet Architecture . . . . . . . . . . . . . . . . 46

3.2.1.1 Base Model . . . . . . . . . . . . . . . . . . . . 49

3.2.2 Prediction Model . . . . . . . . . . . . . . . . . . . . . . . 49

3.2.3 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.2.3.1 Cost Function . . . . . . . . . . . . . . . . . . . 51

3.2.4 Data Set and Preparation . . . . . . . . . . . . . . . . . . . 52

3.2.4.1 Experimental Settings . . . . . . . . . . . . . . . 53

3.3 Experimental Results and Discussions . . . . . . . . . . . . . . . . 56

3.3.1 DelNet Manual Combining Algorithm (DelNet MC) . . . . 65

3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4 ATTENTION ASSISTED PATCH-WISE CNN FOR THE SEGMENTA-
TION OF FLUIDS FROM THE RETINAL OPTICAL COHERENCE
TOMOGRAPHY IMAGES 69

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.2  Methodology  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  72

4.2.1  Dataset  and  data  preprocessing  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  72

4.2.2  Network  Architecture  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  73

  Vi



4.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . 76

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5 CONCLUSIONS AND FUTURE SCOPE 83

REFERENCES 85

Vii



LIST OF TABLES

2.1 The details of the dataset used for this study with total number of B -
scans per volume (TNBPV). . . . . . . . . . . . . . . . . . . . . . 21

2.2 Consolidated results of the experiments performed on different OCT
datasets to find the characteristics of speckle present in OCT images. 23

2.3 Range of shape and scale parameters used to generate noisy training
samples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.4 The quantitative analysis of the performance of the proposed denoising
method with other state-of-the-art denoising methods on the synthetic
eye image and Duke image in terms of PSNR and SSIM. . . . . . . 31

2.5 The quantitative analysis of the performance of the proposed denoising
method with other state-of-the-art denoising methods on the synthetic
eye image by adding different prominent noise types present in the
OCT machines (Beta distribution: shape - 8, scale- 3; Exponential
distribution: alpha - 8; Logistic distribution: scale - 27, location -
6;Log-logistic distribution: shape - 13.5, scale - 95). . . . . . . . . . 31

2.6 The quantitative analysis of the performance of the proposed denoising
method with other state-of-the-art denoising methods on the Duke
dataset by adding different prominent noise types present in the
OCT machines (Beta distribution: shape - 8, scale - 3; Exponential
distribution: alpha - 8; Logistic distribution: scale - 27, location - 6;
Log-logistic distribution: shape - 13.5, scale - 95). . . . . . . . . . . 32

2.7 The quantitative analysis of the performance of the proposed denoising
method with other state-of-the-art denoising methods on the Duke
dataset by adding Exponential noise of varying noise levels ( alpha - 6,
alpha - 7, alpha - 8, alpha - 10, alpha - 12). . . . . . . . . . . . . . 32

2.8 Expert Evaluation on Retinal Layer Segmentation. . . . . . . . . . 33

3.1 The description of the DUKE DME dataset (Chiu et al., 2015) . . . 53

3.2 The details of the hyper-parameters used in all four base learners used
in the proposed DelNet model. . . . . . . . . . . . . . . . . . . . . 55

viii



3.3 The performance comparison using different number of base learners
(best results are highlighted using boldface). . . . . . . . . . . . . . 57

3.4 The individual performance of the base learners on test data (best
results are highlighted using boldface). . . . . . . . . . . . . . . . . 57

3.5 Performance of the proposed DelNet model on raw OCT images and
denoised OCT images measured in terms of precision, recall and F beta
(best results are highlighted using boldface). . . . . . . . . . . . . . 58

3.6 The performance evaluation of DelNet with respect to the ReLayNet,
DilatedReLayNet models and the conventional approaches in terms
of the mean Dice coefficient on expert 2 annotations (best results are
highlighted using boldface). . . . . . . . . . . . . . . . . . . . . . 59

3.7 The performance evaluation on normal retinal scans and retinal scans
with the pathology of DUKE DME dataset in terms of the mean
(standard deviation) Dice coefficient on expert 2 annotations (best
results are highlighted using boldface). . . . . . . . . . . . . . . . . 60

3.8 The performance evaluation on the retinal scans of DUKE DME dataset
in terms of the width of interval (on either side mean Dice) for different
confidence levels on expert 2 annotations. . . . . . . . . . . . . . . 61

3.9 Time Complexity analysis. . . . . . . . . . . . . . . . . . . . . . . 65

3.10 The values of Al,m used in each layer and models. . . . . . . . . . 67

3.11 The values of Beta (βl) used in each layer for optimal result. . . . . 67

4.1 RETOUCH dataset details. . . . . . . . . . . . . . . . . . . . . . . 73

4.2 Quantitative comparison of the proposed model with the SFU and
Patch-DeepLabv3+ in terms of complexity (number of parameters),
precision, recall and mean dice scores on the RETOUCH dataset. . . 78

4.3 Quantitative evaluation of the proposed model, SFU and Patch-
DeepLabv3+ over the three individual data splits in terms of dice
scores. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.4 Ablation study. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

ix



LIST OF FIGURES

1.1 Anatomy of the human eye. (Image Courtesy: (TheEye, 2021)) . . 1

1.2 Cross sectional view of the retina. (Image courtesy: (de Campos et al.,
2020)) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Different type of charts used in visual acuity test. . . . . . . . . . . 5

1.4 Amsler grid and slit lamp machine. . . . . . . . . . . . . . . . . . . 5

1.5 Color fundus photography and fundus fluorescein angiography scan of
a retina with CME. . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.6 Schematic of the Conventional OCT system based on a low time-
coherence Michelson interferometer. LCS = low time-coherence light
source; PC = personal computer. (Image courtesy: (Fercher et al.,
2003)) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.7 Cirrus optical coherence tomography scanner. . . . . . . . . . . . . 8

1.8 En face macular projection and its corresponding OCT B-Scan of a
retina. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.9 Optical coherence tomography scans of retina from two different
vendors: (a), (b) normal retina; (c), (d) retina with cystoid macular
edema. (White colored arrow shows cystic fluids). (a) and (c)
obtained from Spectralis imaging system, (b) and (d) obtained from
Cirrus imaging system. (Image courtesy: OPTIMA cyst challenge
dataset (OCSC, 2015)) . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1 Workflow of the proposed methodology. . . . . . . . . . . . . . . . 19

2.2 Experimental setup to capture images from the synthetic eye. . . . . 20

2.3 Architecture of the 10 layer GCDS model used in (Menon et al.,
2020a). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

x



25

26

27

35

36

37

38

39

         
           
              
               
                

           
                                  

               

        
                

                     

          
          
             
             
             

          
          
            
            
             
                          

          
          
            
            
             
                          

          
          
            
             
              

          
          
            
             
            
                          

2.4  OCT  denoising  using  the  conventional  GCDS  and  the  proposed
  modified  GCDS.  (a)  Sample  full-size  noisy  image  from  DUKE  dataset,
  (b)  Output  of  the  GCDS  model  when  the  patches  from  the  full  image
  are  given  as  input,  (c)  Output  of  the  GCDS  model  when  the  full  image
  is  given  as  input  (the  model  is  trained  on  resized  images  of  size  96  ×

192),  (d)  Image  denoised  by  proposed  model  trained  using  patch-wise
method.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .

2.5  Pipeline  of  the  proposed  patch-wise  training  method.  .  .  .  .  .  .  .  .

2.6  Full-sized  sample  training  image  and  the  corresponding  ground-truth
  image  of  size  384  ×  768  split  into  disjoint  patches  of  size  96  ×  192.

The  patches  are  then  passed  as  a  batch  to  the  model.  .  .  .  .  .  .  .  .  .

2.7  The  visual  analysis  of  the  performance  of  the  proposed  denoising
  method  with  other  state-of-the-art  denoising  methods  on  the  synthetic
  eye  dataset.  (a)  Noisy  synthetic  eye  image,  (b)  Ground  truth  image,  (c)
  CAD,  (d)  OBNLM,  (e)  TGV,  (f)  Wavelet,  (g)  KSVD,  (h)  DnCNN,  and
  (i)  Proposed  method.  All  images  are  displayed  in  the  range  0-255.  .

2.8  The  visual  analysis  of  the  performance  of  the  proposed  denoising
  method  with  other  state-of-the-art  denoising  methods  on  the  Cirrus
  data  from  the  OPTIMA  dataset.  (a)  Noisy  synthetic  eye  image,  (b)
  CAD,  (c)  OBNLM,  (d)  TGV,  (e)  Wavelet,  (f)  KSVD,  (g)  DnCNN,
  and  (h)  Proposed  method.  The  intensity  values  of  all  the  images  are
  displayed  in  the  range  of  0-255.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .

2.9  The  visual  analysis  of  the  performance  of  the  proposed  denoising
  method  with  other  state-of-the-art  denoising  methods  on  the  Spectralis
  data  from  the  OPTIMA  dataset.  (a)  Noisy  synthetic  eye  image,  (b)
  CAD,  (c)  OBNLM,  (d)  TGV,  (e)  Wavelet,  (f)  KSVD,  (g)  DnCNN,
  and  (h)  Proposed  method.  The  intensity  values  of  all  the  images  are
  displayed  in  the  range  of  0-255.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .

2.10  The  visual  analysis  of  the  performance  of  the  proposed  denoising
  method  with  other  state-of-the-art  denoising  methods  on  the  Duke
  dataset.  (a)  Noisy  image,  (b)  Ground  truth  image,  (c)  CAD,  (d)
  OBNLM,  (e)  TGV,  (f)  Wavelet,  (g)  KSVD,  (h)  DnCNN,  and  (i  )
  Proposed  method.  All  images  are  displayed  in  the  range  0-255.  .  .  .

2.11  The  qualitative  analysis  of  the  performance  of  the  proposed  denoising
  method  with  other  state-of-the-art  denoising  methods  (with  a  zoomed
  region)  on  Cirrus  (R1)  and  Spectralis  (R2)  vendor  data  of  OPTIMA
  dataset.  (a)  Noisy  input  image,  (b)  CAD,  (c)  OBNLM,  (d)  TGV,  (e)
  Wavelet,  (f)  KSVD,  (g)  DnCNN,  and  (h)  Proposed  method.  All  images
  are  displayed  in  the  range  0-255.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .

xi



40

47

50

51

53

54

55

56

59

62

2.12  The  qualitative  analysis  of  the  retinal  layer  segmentation  performed
  on  the  proposed  denoised  algorithm  with  respect  to  the  state-of-art
  denoising  algorithms  on  Spectralis  vendor  data  of  OPTIMA  dataset.
  (a)  Noisy  input  image,  (b)  CAD,  (c)  OBNLM,  (d)  TGV,  and  (e)
  Wavelet,  (f)  KSVD,  (g)  DnCNN,  (h)  Proposed  method.  All  images  are
  displayed  in  the  range  0-255.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .

3.1  The  Proposed  DelNet  architecture.  The  input  image  is  fed  to  the
  ensemble  model.  All  the  4  models  make  independent  predictions  on
  the  same  input  image  and  the  predictions  from  all  the  4  models  are
  processed  by  the  predictor  block.  The  color  codes  shows  the  layer  that
  a  particular  models  focuses.  The  colour  coding  of  the  retinal  layers  is
  depicted  in  Fig.  3.5.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .

3.2  The  architecture  of  the  base  model  used  in  all  the  4  rank  ensemble  mod-
  els  M1  to  M4.  The  base  model  follows  DilatedReLayNet  architecture
  (Reddy  et  al.,  2020)  trained  with  different  set  of  hyperparameters.  .

3.3  The  architecture  of  the  predictor  block,  which  is  used  to  fuse  the
  outputs  of  the  base-learners.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .

3.4  Vertically  slicing  of  the  input  OCT  B-scan  into  7  equal  parts.  .  .  .  .

3.5  The  segmentation  masks  (ground  truth)  are  also  sliced  vertically  in
  similar  manner  to  the  test  images.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .

3.6  The  training  and  validation  errors  of  the  4  models  used  in  the  proposed
  method.  (a)  Model  1,  (b)  Model  2,  (c)  Model  3,  (d)  Model  4.  .  .  .  .

3.7  The  training  and  validation  errors  of  the  prediction  block  used  in  the
  proposed  method.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .

3.8  Qualitative  comparison  of  the  proposed  DelNet  model  with  existing
  CNN  based  methods.  (a)  An  OCT  image  of  the  normal  retina,  (b)
  the  corresponding  labeled  image  of  expert  2  from  Duke  data  set,  (c)
  the  predicted  results  of  the  ReLayNet  model,  (d)  the  result  of  the
  DilatedReLayNet  model,  (e)  the  output  of  the  DelNet  model  with
  manual  combining,  (f)  the  output  of  the  proposed  DelNet  model.  .  .

3.9  Qualitative  comparison  of  the  proposed  DelNet  model  with  existing
  CNN  based  methods.  (a)  An  OCT  image  of  the  normal  retina.
  (b)  The  corresponding  labeled  image  of  expert  2  from  Duke  data
  set.  (c)  Retinal  layer  boundaries  of  ground  truth.  (d)  Retinal  layer
  boundaries  of  ReLayNet  predictions.  (e)  Retinal  layer  boundaries  of
  DilatedReLayNet  Prediction.  (f)  Retinal  layer  boundaries  of  DelNet
  Prediction.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .

xii



3.10 Qualitative Comparison of the proposed DelNet model with three sets
of images. Images (a), (d) and (g) are OCT image of the normal
retina, the retina having pathology and the retina with fovea region
respectively. Images (b), (e) and (h) shows the corresponding ground
truth images. The corresponding predictions are depicted in images (c),
(f) and (i). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.11 GradCAM visualizations on retinal layers of proposed DelNet architec-
ture compared with DilatedReLayNet model. R1: (a) Input, (b) ground
truth, (c) Prediction map from DilatedReLayNet and (d-k) GradCAM
visualization of filter gradient for all the eight retinal layers from the
predictor block of DilatedReLayNet Model. R2: (a) Input, (b) ground
truth, (c) Prediction map from the proposed model and (d-k) GradCAM
visualization of filter gradient for all the eight retinal layers of the
proposed Model. Also, (d-k) shows a heat map where the red indicates
higher value and blue indicates lower values. . . . . . . . . . . . . . 64

4.1 The visual quality differences of the OCT scans due to the presence
of speckle is depicted here. A retina with macular edema imaged with
three different OCT scanners namely: (a) Cirrus, (b) Spectralis, (c)
Topcon and (d), (e), and (f) are the annotations of the three fluid types
on 2D B-scans: IRF (red), SRF (green), PED (blue). . . . . . . . . 71

4.2 Block diagram of the proposed network. . . . . . . . . . . . . . . . 73

4.3 A detailed view of the modified DeepLabv3+ architecture with a
self-attention mechanism and ASPP module. . . . . . . . . . . . . . 74

4.4 (a) Block Diagram of the Attention Module, (b) The proposed network
architecture by incorporating relative distance of the data as an
additional information to aid the training of the model. . . . . . . . 75

4.5 Qualitative comparison of the proposed model with existing CNN
based methods on the cirrus data of the RETOUCH dataset. (a) shows
an OCT image of the cirrus scan with all three kinds of cysts (IRF,
SRF, and PED). (b) is the corresponding labeled image of experts
from RETOUCH data set, (c) indicate the predicted results of the SFU
model, (d) indicate the results of the patch-DeepLabv3+ model, and (e)
indicate the prediction of the proposed model. . . . . . . . . . . . . 79

xiii



Qualitative comparison of the proposed model with existing CNN4.6
based methods on the spectralis data of the RETOUCH dataset. (a)
shows an OCT image of the spectralis scan with all three kinds of cysts
(IRF, SRF, and PED). (b) is the corresponding labeled image of experts
from RETOUCH data set, (c) indicate the predicted results of the SFU
model, (d) indicate the results of the patch-DeepLabv3+ model, and (e)
indicate the prediction of the proposed model. . . . . . . . . . . . . 80

Qualitative comparison of the proposed model with existing CNN4.7
based methods on the topcon data of the RETOUCH dataset. (a) shows
an OCT image of the topcon scan with all three kinds of cysts (IRF,
SRF, and PED). (b) is the corresponding labeled image of experts
from RETOUCH data set, (c) indicate the predicted results of the SFU
model, (d) indicate the results of the patch-DeepLabv3+ model, and (e)
indicate the prediction of the proposed model. . . . . . . . . . . . . 81

xiv



ABBREVIATIONS

AG Amsler Grid test

ASPP Atrous Spatial Pyramid Pooling

CFP Color fundus photography

CME Cystoid Macular Edema

DME Diabetic Macular Edema

CNN Convolutional Neural Network

FA Fundus fluorescein angiography

FCN Fully Convolutional Network

GCL Ganglion Cell Layer

GCDS Gated Convolution Deconvolution Structure

Grad-CAM Gradient-weighted Class Activation Mapping

ILM Internal Limiting Membrane

IPL Inner Plexiform Layer

INL Inner Nuclear Layer

ILM Internal Limiting Membrane

IRF Intra-Retinal cyst

ML Maximum likelihood

MS Model Selector

NFL Nerve Fiber Layer

NLM Non local Means

OCT Optical Coherence Tomography

OPL Outer Plexiform Layer

ONL Outer Nuclear Layer

OLM Outer Limiting Membrane

xv



PED Pigmented Epithelial Detachment

PSNR Peak Signal to Noise Ratio

RPE Retinal Pigment Epithelium

SNR signal-to-noise ratio

SSIM Structural Similarity Index Metric

SRF Sub-Retinal cyst

TV Total Variation

VA Visual Acuity

xvi



CHAPTER 1

INTRODUCTION

1.1 Human Eye and Retina

Second, to the brain, the eyes are the most complex organ in human body. The eye con-

sists of complex mechanisms and pathways and with the help of several structures like

the cornea, retina, iris, pupils, optic nerves and the ciliary muscles. All these parts work

together to help the eye function properly and make our vision perfect. The anatomy of

the human eye is shown in Figure. 1.1.

The eye’s anatomical structures are arranged in three layers, namely outer fibrous

tunic, intermediate vascular tunic and the innermost retina. The outer protective fibrous

Figure 1.1: Anatomy of the human eye. (Image Courtesy: (TheEye, 2021))



tunic is composed of cornea and sclera. Cornea transmits and focuses lights into the

eye. Sclera is continuous with the cornea and forms the supporting wall of the eyeball.

The middle layer, or the vascular tunic, consists of choroid, ciliary body, pigmented

epithelium and iris. Iris is visible as the coloured part of the eye that functions like a

diaphragm and helps in regulating the amount of light that enters the eye. The anterior

chamber between the cornea and iris as well as the posterior chamber between the

lens and the iris is occupied by the aqueous humour, a fluid that nourishes the anterior

structures.

The lens is a transparent structure that focuses light rays onto the retina. Lens is

attached to the ciliary body by suspensory ligament, which transmit muscular forces for

changing the lens shape to focus on objects at various distances. The vitreous body is

a clear, jelly-like substance that fills the eye. The innermost layer or retina, gets oxy-

genation from choroidal blood vessels and retinal vessels. The retina is a multilayered

neural tissue that lines the back of the eye, senses light and creates electrical impulses

that travel through the optic nerve to the visual cortex, which is the part of the brain that

controls our senses of sight.

The retina is a thin layered tissue. It is situated near to the optic nerve. Retina

collects the light focused by the lens and converts the luminance into nerve impulse.

Nerve impulses are transmitted through the optic nerve to the visual cortex to establish

the vision. The layered structure of human retina (de Campos et al., 2020) is shown in

Figure. 1.2.

Retinal layers are organized into two distinct functional components namely neu-

rosensory retina and retinal pigment epithelium. Neurosensory layers of the retina con-

tains total 9 layers. Starting from the vitreous surface, they are the internal limiting

membrane (ILM), nerve fiber layer (NFL), ganglion cell layer (GCL), inner plexiform

layer (IPL), inner nuclear layer (INL), outer plexiform layer (OPL), outer nuclear layer

(ONL), outer limiting membrane (OLM) and the layer of photoreceptors. Retinal pig-

ment epithelium (RPE) is the outermost layer of the retina, this layer provides metabolic
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Figure 1.2: Cross sectional view of the retina. (Image courtesy: (de Campos et al.,
2020))

support to the nuerosensory layers of the retina and it absorbs incident scattered light.

1.2 Retinal Cyst and Cystoid Macular Edema

A retinal cyst is a fluid-filled space in the retina, and the presence of edema and cysts

increases the thickness of the involved retina. Retinal cysts have pathological signifi-

cance and are present in several eye disorders like age related macular degeneration, di-

abetic retinopathy, retinal vein occlusion, ocular inflammation, diabetic macular edema

(DME) etc.

Cystoid macular edema (CME) develops when excess fluid accumulates within the

macular retina. This is thought to occur following disruption of the blood retinal bar-

rier because of the aforementioned eye disorders. This fluid accumulation in retina
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reduces macular retinal function. Medical studies shows that visual acuity can be rea-

sonably correlated from the volume of retinal cystic fluids and their location in the

retina (Wilkins et al., 2012).

1.3 Diagnosis of CME

Primary symptoms of CME are decreased, blurry or wavy vision, faded colors, and

distortion near or at the center of vision. Ocular diseases can be characterized using

several techniques. Initial Visual Acuity (VA) test is used to measure central vision ac-

cording to the size of letters or symbols viewed on Snellen chart or E chart respectively.

Figure. 1.3 shows an example of Snellen and E chart.

Amsler Grid test (AG) is used to detect visual distortion caused in macular disorders.

Amlser Grid contains horizontal and vertical lines with a small dot at the center of the

grid and is shown in Figure. 1.4(a). Patient is asked to view the AG from each eye

separately. If the patient has macular pathology, he/she may notice distortion or they

may be unable to see some lines in the AG. Both VA and AG tests are psychophysical

tests and needs patient cooperation. For clinical anatomical evaluation of the macula,

ophthalmoscopy or slit lamp biomicroscopy test (with a 78 or 90 diopter aspheric lens)

is used. Figure. 1.4(b) shows slit lamp system.

Imaging techniques can also be used for the detection of cystic fluids in the retina.

Color fundus photography (CFP) is used for imaging of the macula. With stereoscopic

view of the retina using CFP, ophthalmologist can identify thickening of retina that is

caused due to intra-retinal fluid accumulation. Fundus fluorescein angiography (FA)

is widely available and used for dynamic evaluation of the retinal vasculature. In FA,

the amount of fluorescein leakage depends on the dysfunction of the retinal vascular

endothelium. Apart from being a significant diagnostic modality, Fundus Fluorescein

Angiography also improves the accuracy for planning the treatment of CME. Figure. 1.5

shows CFP and FA images of a retina with CME. Figure. 1.5(b) shows fluorescein leak-
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(a) Snellen chart (b) E chart

Figure 1.3: Different type of charts used in visual acuity test.

(a) (b)

Figure 1.4: Amsler grid and slit lamp machine.
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(a) (b)

Figure 1.5: Color fundus photography and fundus fluorescein angiography scan of a
retina with CME.

age into the cystoid spaces is distributed radially in retina forming the classic honey-

comb like structure appearance near fovea. Slit-lamp bio-microscopy, fundus photogra-

phy and FA techniques gives 2D en face view of the retina and are prone to differences

in subjective assessment to quantify and diagnose retinal pathology. OCT was intro-

duced in clinical practice for the purpose of high resolution cross-sectional imaging (as

opposed to en face) and for objective measurement of retinal structures.

1.4 Optical Coherence Tomography

OCT is a non-invasive imaging technique that uses low coherence light for resolving

internal structures of biological tissues and obtains cross-sectional, high-resolution im-

ages of the retina and can detect retinal thickness (Huang et al., 1991). It is a widely

used diagnostic technique for several ocular diseases.

Figure. 1.6 shows a schematic diagram of OCT Scanner. A low coherence light

source (LCS) (Eg:superluminescent light diode) emits light towards beam splitter (BS).
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Figure 1.6: Schematic of the Conventional OCT system based on a low time-
coherence Michelson interferometer. LCS = low time-coherence light source; PC =
personal computer. (Image courtesy: (Fercher et al., 2003))

Part of this beam is projected on to reference mirror (RM) and the rest to the sample

(SMP) to be scanned. Reflected light from both RM and SMP are combined at BS, cre-

ating interference patterns based on the interferometry concept. When the reflected light

beams from RM and SMP are in phase, this generates constructive inference. At other

times, it results in destructive inference. Photo detector receives combined reflected

light with interference pattern and forward the signal to a digital signal processor unit

(DSP). DSP unit uses Fourier transform to create a linear A-scan of the point scanned.

Several adjacent A scans along a linear path of scanning are combined to give a B-scan

image. An OCT scan typically consists of several B scan images taken over a fixed

area, with a fixed protocol. The B scans will be saved in a personal computer (PC).

Figure. 1.7 shows a commercially available OCT Scanner. OCT provides excellent
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Figure 1.7: Cirrus optical coherence tomography scanner.

visualization of several retinal structures like cysts, exudates and retinal layers. Fig-

ure. 1.8 shows OCT B-scan of the retina with en face macular projection. The dark

green line with arrow head shown on the en face macular image (left side of the figure)

corresponds to the projection line of the OCT B-scan shown on right side of the figure.

Figure. 1.9 shows OCT scans of the retina with normal and cystic fluids obtained using

Cirrus and Spectralis vendor OCT machines.

In principle, OCT works similar to ultrasound (US) imaging systems, based on in-

terferometric techniques. However, in practice, OCT make use of light beams in posi-

tion of sound profiles in US system (Wong et al., 2005; Pagliara et al., 2008). As in

US imaging, speckle noise hampers the quality of OCT and limits its clinical utility.

Speckle arises because of the coherence of optical waves (Schmitt et al., 1999) and de-

stroys the edges of the retinal layers and the cystic boundaries. Hence, despeckling of

OCT images is a significant preprocessing stage for the proper diagnosis of the retinal

disorders and its quantification.
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Figure 1.8: En face macular projection and its corresponding OCT B-Scan of a retina.

(a) (b)

(c) (d)

Figure 1.9: Optical coherence tomography scans of retina from two different vendors:
(a), (b) normal retina; (c), (d) retina with cystoid macular edema. (White colored ar-
row shows cystic fluids). (a) and (c) obtained from Spectralis imaging system, (b) and
(d) obtained from Cirrus imaging system. (Image courtesy: OPTIMA cyst challenge
dataset (OCSC, 2015))

.
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1.5 Motivation and Challenges

According to the Vision Loss Expert Group of the Global Burden of Disease Study, “the

leading global causes of blindness in those aged 50 years and older in 2020 were cataract

(152 million cases), followed by glaucoma (36 million cases), age-related macular de-

generation (18 million cases), and diabetic retinopathy (086 million cases)” (Steinmetz

et al., 2021). One of the key anatomical derangements caused by the aforementioned

diseases is CME. This is a common painless end result condition in which multiple cys-

tic fluid filled spaces form in the retina. Visual morbidity from CME is a major public

health problem globally. If detected early and treated effectively, most of this visual

impairment from CME can be prevented or cured.

Manually analyzing OCT data for the detection of cysts and measuring their volume

is time consuming and needs expertise, and currently is not performed routinely, leading

to qualitative assessment of the scan alone. Automated cyst segmentation and quantifi-

cation methods enable accurate quantification for faster diagnosis and treatment. The

development of automated cyst segmentation techniques for OCT scans pose several

challenges such as, speckle noise in the scans, poor signal-to-noise ratio (SNR), retinal

vessel shadows, scan intensity difference across the vendors, and the location of the cyst

based on the retinal layers.

Even though numerous methods have been proposed for denoising OCT images, the

methods failed to produce better texture preservation, edge preservation, and noise re-

moval. Another drawback is that the methods available in the literature are suitable only

for specific datasets. With the advent of deep neural network architectures such as deep

convolutional neural networks and stacked denoising autoencoders, promising results

in noise removal from natural images and medical images are available in the literature.

Also from the literature, it is evident that the deep convolutional neural networks, can

automate the object segmentation and image classification tasks accurately.
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1.5.1 Problem Statement

Noise in an OCT image degrades its quality, thereby obscuring clinical features and

making the automated segmentation task suboptimal. Developing effective denoising

methods to improve the quality of the images acquired on systems currently in use

is vital for automated quantitative analysis. Noise characteristics in images acquired

from machines of different makes and models may vary. Also, any single state-of-the-

art method for noise reduction fails to perform equally well on images from various

sources. Therefore, a detailed analysis is required to determine the exact noise type

in images acquired using different OCT machines and also, to propose a solution for

eliminating these noise types.

Segmentation of retinal layers is an essential step in computerized processing and

the study of retinal OCT images. Even though the automated retinal layer segmentation

algorithms are present in the literature, they haven’t considered the characteristics of the

retinal layers and hence, failed in achieving better segmentation accuracy. Therefore,

an automated retinal layer segmentation algorithm, which can understand the charac-

teristics of the retinal layers is vital for the accurate segmentation of the retinal layers.

The early diagnosis of CME and its quantification is requisite for treatment plan-

ning. The automated methods proposed for the segmentation of all the three kinds

of retinal cysts in the literature are computationally expensive. Hence, developing an

automated retinal cyst segmentation algorithm, which can segment all the three types

of retinal cysts and which is computationally less expensive is required for the early

diagnosis and treatment planning of CME.
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Research Objectives:

1. To study the data distribution in the OCT images.

2. To develop an automated despeckling technique such that it can provide better
edge-preservation and texture preservation in the OCT images.

3. To develop an automated algorithm for segmenting various layers of retina from
OCT scans of retina.

4. To develop an automated algorithm to segment the three types of retinal cysts
named as an intra-retinal cyst (IRF), sub-retinal cyst (SRF) and the pigmented
epithelial detachment (PED) from OCT images.

1.6 Major Contributions

The main focus of this thesis is to develop novel automated image analysis solutions for

the segmentation of retinal cyst from the retinal OCT scans. The main contributions of

this thesis can be summarized as follows:
• Speckle in OCT images generally degrades the quality of the OCT images and

makes the clinical diagnosis tedious. To improve the quality of the OCT images,
we have proposed an automated despeckling scheme called Gated Convolution
Deconvolution Structure (GCDS). We demonstrate experimentally that the distri-
bution of speckle in OCT images acquired with machines of different manufac-
turers are different. A single model or distribution is unable to account for the
behaviour of noise in OCT images acquired from different makes of the equip-
ment. Based on the aforementioned experiment, we designed a DenseNet based
architecture for identifying the type of noise in the input images. Also, we have
developed a novel patch-wise methodology to properly train the existing GCDS
model. This methodology enables the GCDS model to isolate and learn the noise
characteristic of the OCT image. The proposed method denoises the image while
maintaining the structural and chromatic integrity of the underlying ground truth.
Hence, we have used an array of GCDS architectures to despeckle the input im-
ages.

• Segmentation of retinal layers is a vital and important step in computerized pro-
cessing and the study of retinal OCT images. We have developed an ensemble ar-
chitecture for the effective segmentation of the most prominent retinal layers. The
proposed ensemble-based architecture helped the model to learn different layers
better when compared to the stand-alone single models. This is demonstrated
with the help of experiments on a standard benchmark dataset and also through
Gradient-weighted Class Activation Mapping (Grad-CAM), visualization.
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• Accurate estimation of the type of retinal cyst and its volume is vital for effec-
tive treatment planning of retinal abnormalities. We have proposed attention as-
sisted convolutional neural network-based architecture for detecting and quan-
tifying three types of retinal cysts such as the intra-retinal cyst, sub-retinal cyst
and pigmented epithelial detachment from the retinal OCT images. The proposed
model is computationally efficient due to its less number of model parameters.

1.7 Organization of this Thesis

This dissertation is organized into five chapters as follows.

Chapter 1 presents the motivation, clinical significance of retinal OCT image analysis

and its challenges, followed by the proposed approach to the problem and its contribu-

tions.

Chapter 2 discuss the statistical models of the speckle present in the OCT images ac-

quired from different OCT machines and presents a novel deep learning approach to

remove speckle from the OCT images using a cascaded patch-wise gated convolution

deconvolution structure.

Chapter 3 presents a fully convolutional network for selectively segment retinal layers

from the retinal OCT scans termed DelNet, based on deep ensemble learning.

Chapter 4 introduces attention assisted convolutional neural network-based architecture

for detecting and quantifying three types of retinal cysts, namely the intra-retinal cyst,

sub-retinal cyst and pigmented epithelial detachment using the OCT images of the hu-

man retina.

Chapter 5 concludes this thesis by providing a general summary of the presented re-

search work and its future scope.
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CHAPTER 2

A CASCADED CONVOLUTIONAL NEURAL

NETWORK ARCHITECTURE FOR DESPECKLING

OCT IMAGES

In this chapter, we have studied the noise characteristics in the publicly available DUKE

and OPTIMA datasets to build a more efficient model for noise reduction. These

datasets have OCT images acquired using machines of different manufacturers. We fur-

ther propose a patch-wise training methodology to build a system to effectively denoise

OCT images in this chapter 1. We have performed an extensive range of experiments to

show that the proposed method performs superior to other state-of-the-art-methods.

2.1 Introduction

Optical Coherence Tomography (OCT) is an imaging technology widely used for the

diagnosis of retinal disorders. OCT uses the principle of coherent detection to capture

the information present in the retina. The coherent detection also introduces multiplica-

tive noise called speckle in the acquired images. Speckle degrades the quality of images

1The work described in this Chapter has been published in: Anoop, B. N., Kaushik S. Kalmady,
Akhil Udathu, V. Siddharth, G. N. Girish, Abhishek R. Kothari, and Jeny Rajan, ”A cascaded convo-
lutional neural network architecture for despeckling OCT images.” Biomedical Signal Processing and
Control, 66 (2021): 102463.

Menon, Sandeep N., VB Vineeth Reddy, A. Yeshwanth, B. N. Anoop, and Jeny Rajan,”A novel deep
learning approach for the removal of speckle noise from optical coherence tomography images using
gated convolutiondeconvolution structure.” In Proceedings of 3rd International Conference on Com-
puter Vision and Image Processing, pp. 115-126. Springer, Singapore, 2020.

Anoop, B. N., G. N. Girish, P. V. Sudeep, and Jeny Rajan,”Despeckling Algorithms for Optical Co-
herence Tomography Images: A Review.” Advanced Classification Techniques for Healthcare Analysis
(2019): 286-310.



and makes visual as well as automated analysis of OCT images difficult. Despeckling

is used as a preprocessing step in many OCT image analysis tools. Despeckling im-

proves the signal-to-noise ratio of images and as a result, retinal structures and bound-

aries between the layers can be seen more clearly (Girish et al., 2018a). It also improves

visualization of pathological conditions like retinal edema, cystoid macular edema, pig-

ment epithelial detachment and other kinds of lesions (Gopinath and Sivaswamy, 2018;

Girish et al., 2019; Rao et al., 2019).

The statistics of noise present in OCT images has an important role in developing

despeckling algorithms. Different data distributions were suggested in the literature for

modeling speckle in OCT images. According to Schmitt (Schmitt et al., 1999), the

speckle in OCT follows a decaying exponential distribution. Bashkansky and Reintjes

(Bashkansky and Reintjes, 2000) suggested that speckle follows a Gaussian distribution.

Pircher et al. (Pircher et al., 2003) and Karamata et al. (Karamata et al., 2005) used

Rayleigh distribution to model the statistical behavior of the speckle. Sudeep et al.

(Sudeep et al., 2016) proposed a denoising method based on Gamma distribution for

the speckle reduction in OCT images.

In the last few years, several methods were published in the literature to remove

speckle from OCT images. Among them, Non local Means (NLM) based approaches

are popular (Aum et al., 2015; Yu et al., 2016; Tang et al., 2017; Cuartas-Vélez et al.,

2018; Girish et al., 2018b). The NLM method computes the true underlying intensity

by replacing every noisy pixel with the weighted average of the non-local neighboring

pixels. The weights are assigned based on the similarity of the patches (neighboring

pixels around the pixel of interest and the neighboring pixels around non-local pixel).

Since the noise is non-Gaussian, the bias in the mean also has to be taken care of.

Even though NLM based methods are relatively easy to implement, their performance

on non-Gaussian noisy images is suboptimal. These methods also have relatively high

computational complexity.

Thapa et al. (Thapa et al., 2015) proposed a weighted nuclear norm minimization
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method for denoising OCT images. An adaptive singular value shrinking method was

the proposed by Chen et al. (Chen et al., 2018a), where the authors applied adaptive sin-

gular value shrinking method for removing the speckle. Iterative bilateral filter (Sudeep

et al., 2016) has also been proposed to denoise OCT images. In (Sudeep et al., 2016),

the authors assumed that speckle follows Gamma distribution and maximum likelihood

(ML) method was employed to estimate the parameters of the Gamma model. These

parameters (shape and scale) are used to compute the unbiased image. Total Variation

(TV) minimization methods were proposed in (Gong et al., 2015; Duan et al., 2016)

for despeckling OCT images. Our own experiments and experimental results reported

in (Anoop et al., 2019) show that this filter introduces artifacts in the denoised OCT

images. Wang et al. (Wang et al., 2018) categorized OCT speckle into additive and

multiple portions and presented a two step iteration mechanism to suppress the noise.

Wavelet-based approaches have also been explored (Zaki et al., 2017; Kafieh et al.,

2019) to denoise OCT images. In this procedure, wavelet coefficients in the selected

sub-bands with magnitude greater than an arbitrary threshold are attenuated. Wavelet

thresholding fails if the coefficients are biased and leads to degradation of fine details

in high noise conditions. Jian et al. (Jian et al., 2010) proposed a 3D despeckling

approach to despeckle OCT images. They used the volumetric information and the

Curvelet transform for speckle attenuation. Xu et al. (Xu et al., 2013) proposed a

despeckling method based on shrinkage in the contourlet domain. Zhang et al. (Zhang

et al., 2017a) exploited the phase information of the complex OCT data to denoise

the Fourier domain OCT images. Other popular methods mentioned in the literature

for OCT despeckling include Principal Component Analysis (PCA) based despeckling

(Lv et al., 2018), dictionary-based denoising or K-SVD (Kafieh et al., 2014), Bayesian

denoising (Rajabi and Zirak, 2016), diffusion potential based despeckling (Paul et al.,

2018), ensemble framework of Multi-Layer Perceptron (MLP) (Adabi et al., 2016), and

spatially constrained Gaussian mixture model (Amini and Rabbani, 2017).

Recently, deep learning-based methods were also proposed for image denoising
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(Zhang et al., 2017b, 2018; Lefkimmiatis, 2018; Tian et al., 2020; Yuan et al., 2018;

Chen et al., 2017). The aforementioned methods were mainly proposed for images

corrupted with Gaussian noise. Very recently, a Fully Convolutional Neural Network

(FCNN) model called Gated Convolution Deconvolution Structure (GCDS) for de-

speckling OCT images was proposed by Sandeep et al. (Menon et al., 2020a). Though

effective, this model failed to perform uniformly on OCT images acquired with different

machines, especially when the resolution differed.

Most of the despeckling methods proposed in the literature were built on the as-

sumption that the probability density function (pdf) of the speckle in the OCT follows

some known family of distributions (e.g. Gamma or Rayleigh). If the pdf of the noise

is different from the assumptions made in the model, then its performance will be sub-

optimal. Additionally, most methods proposed in the literature were tested against data

acquired from a single machine and these methods may not perform well on images ac-

quired from machines of other manufacturers. Our experiments with images acquired

using machines of different vendors show that speckle data distributions vary signif-

icantly in these images. The aforementioned drawbacks of the existing methods are

addressed in this chapter. Major highlights of our work are:

1. We demonstrate experimentally that the distribution of speckle in OCT images
acquired with machines of different manufacturers are different. A single model
or distribution is unable to account for the behavior of noise in OCT images ac-
quired from different makes of the equipment.

2. We used an array of GCDS architectures to despeckle the input images. These
architectures take care of different data distributions.

3. Based on the aforementioned experiment, we designed a DenseNet (Huang et al.,
2017) based architecture for identifying the type of noise in the input images. This
architecture acts also as a switch to select the appropriate despeckling model.

4. We have developed a novel patch-wise methodology to properly train the existing
GCDS (Menon et al., 2020a) model. This methodology enables the GCDS model
to isolate and learn the noise characteristic of the OCT image. It denoises the
image while maintaining the structural and chromatic integrity of the underlying
ground truth.
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Figure 2.1: Workflow of the proposed methodology.

The chapter is structured as follows. The model, synthetic eye dataset, proposed

methodology and experiments are discussed in section 2.2. Experimental results are

presented in section 2.3, and finally the conclusions and remarks are drawn in sec-

tion 2.4.

2.2 Methods and Data

An overview of the proposed CNN based cascaded OCT image despeckling architecture

is shown in Figure 2.1. The architecture consists of two stages. The first stage is a

fully connected deep convolutional neural network called Model Selector (MS). The

second stage consists of an array of fully convolutional autoencoder models that have

each been trained exclusively for denoising specific types of noises. The details of

the experimental setup, data sets used for experiments, and a study of noise in the

OCT data acquired using different equipments are presented in this section. We also

provide a detailed description of the model selector, FCNN model used for denoising,

and the challenges faced as well as solutions for effectively training an FCNN model

for denoising.
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Figure 2.2: Experimental setup to capture images from the synthetic eye.

2.2.1 Experimental setup

In order to develop effective denoising models, we studied the noise characteristics in

OCT images using three datasets. These included the two publicly available DUKE

(Fang et al., 2013) and OPTIMA (OCSC, 2015) datasets, and one privately created

synthetic eye dataset. The details about the spatial dimensions and number of volumes

of images in each dataset is depicted in Table 2.1.

The synthetic images used for the experiments are obtained from an artificial eye

fixed onto the OCT acquisition system (Figure 2.2). The artificial training eye model

(Training Eye Zeiss Ref.64389, Carl Zeiss Meditec, Inc., Dublin, CA and RetiEye, Au-

rolab, Madurai, India) are plastic eyes with an anterior segment having optical power

close to the human eye and a fixed dilated entry pupil. Zeiss Cirrus 500 OCT ma-

chine was used for acquiring the images. The posterior part of these eyes is made

of a thin translucent plastic layer painted similar to that of the human retina. These

eyes are used primarily for practice of ophthalmoscopy and laser application by trainee

ophthalmologists. The eye was fixed to the OCT apparatus and 25 consecutive scans

(volumes) were taken for one position of the eye without altering the alignment. This

constituted a single dataset with complete elimination of artifacts from saccadic move-

ments that are universally present in the eyes of human subjects which give rise to

varying levels of motion artifacts despite eye tracking. The dimensions of each volume
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Table 2.1: The details of the dataset used for this study with total number of B - scans
per volume (TNBPV).

Vendor \Dataset OPTIMA(OCSC, 2015) Duke(Fang et al., 2013) Synthetic eye

Cirrus
No. of Vol.: 8
Size: 1024512
TNBPV: 128 - 200

-

No. of Vol.: 25
Size: 1024512
No. of GT: 128
TNBPV: 128

Spectralis
No. of Vol.: 8
Size: 496512
TNBPV: 7 - 49

- -

Nidek
No. of Vol.: 6
Size: 512512
TNBPV: 7 - 128

- -

Topcon
No. of Vol.: 8
Size: 885512
TNBPV: 128

- -

Bioptigen -

No. of Vol.: 18
Size: 450900
No. of GT: 18
TNBPV: 6

-

is 1024× 512× 128. We used these 25 scans to create a high SNR image by averaging

them.

2.2.2 Modelling Speckle Noise

We conducted experiments to study the noise characteristics and the distribution of

speckle in OCT images acquired with equipments of different manufacturers. This also

enabled us to verify experimentally, the claims laid out in earlier works regarding the

nature of speckle noise in OCT images. This experiment was motivated by a simi-
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lar study put forth by Vegas et al. (Vegas-Sanchez-Ferrero, 2010) to study the noise

characteristics in ultrasound images. Homogeneous background regions were cropped

from the images and the distribution of the intensity values were analyzed statistically.

We used 1500 samples (homogeneous patches) each from Duke dataset, four vendors

from OPTIMA dataset (1500 × 4) and 1500 samples from the synthetic eye dataset.

The distributions considered for evaluation were: (i) Gamma, (ii) Log-normal, (iii)

Rayleigh, (iv) Normal, (v) Beta, (vi) Log-Logistic (Fisk), (vii) Rice, (viii) Exponential,

(ix) Weibull-min, (x) Weibull-max and (xi) Logistic. These are the popular distributions

mentioned in the literature regarding speckle in OCT (Kirillin et al., 2014; Bashkansky

and Reintjes, 2000; Schmitt et al., 1999; Karamata et al., 2005; Vegas-Sanchez-Ferrero,

2010). However, some of these distributions are related.

For every input patch, the histogram of pixel intensities was computed and each of

the earlier mentioned distributions were fit and their respective χ2 statistic was com-

puted. For implementation we used python 3.7 and SciPy library’s Statistical functions

(SciPy.stats). For every noisy patch considered, SciPys stats.fit() method which uses the

Downhill Simplex algorithm for optimization was applied on the chosen distributions.

The distribution with the lowest χ2 statistic value was chosen as the best fit distribution

for the provided input patch. The χ2 test was used to determine the significance of dif-

ferences between the expected frequencies and the observed frequencies and was also

used to estimate goodness-of-fit measure (Vegas-Sanchez-Ferrero, 2010). The overall

results for all the patches were then consolidated. Table 2.2 summarizes the results of

the aforementioned experiment. Most prominent noise distributions exhibited in OCT

images of different manufacturers are listed.

The study on noise characteristics in OCT images shows its diverse nature and ven-

dor dependency. Most modern OCT scanning devices incorporate post-processing op-

erations either at the software or hardware level in an attempt to produce better images.

This post-processing operations may change the noise characteristics. This could be

one of the reasons for the observed variation. The obtained values also show that prior
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Table 2.2: Consolidated results of the experiments performed on different OCT
datasets to find the characteristics of speckle present in OCT images.

SI.No. Dataset and OCT machine used Data distribution

1 OPTIMA (Cirrus) Log-logistic

2 OPTIMA (Nidek) Exponential

3 OPTIMA (Topcon) Logistic

4 OPTIMA (Spectralis) Beta

5 Duke (Bioptigen) Beta

6 Synthetic Eye (Cirrus) Log-logistic

assumptions regarding the nature of speckle noise in OCT images cannot be considered

as standard for all OCT systems, and a detailed study would be required to determine

the system-specific true noise characteristics.

2.2.3 GCDS Model

For denoising OCT images, we used the recently proposed Gated Convolution Decon-

volution Structure (GCDS) (Menon et al., 2020a) model. The GCDS model consists of

two phases - an encoding phase and a decoding phase. The encoding phase consists of

5 convolution layers, that create a representation that encapsulates all fundamental fea-

tures but leaves out the noise. The decoding phase consists of 5 deconvolution layers,

which upsample the compressed image to restore the full image. Since the intermediate

representation does not contain noise information, the restored image obtained is noise

free. The model also contains skip connections between corresponding convolution

and deconvolution layers. These skip connections reduce the number of weights to be

trained in the neural network, which leads to quicker convergence of the model. They

also enable more effective upsampling (decoding). Each skip connection is associated

with a gating factor which determines the ratio of split of the information between the

next convolution layer and the corresponding deconvolution layer. Max pooling layers

with filter size 2 × 2 are added after each convolution and deconvolution. A 3 × 3 ker-
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Figure 2.3: Architecture of the 10 layer GCDS model used in (Menon et al., 2020a).

nel with ReLU activation function was used in all convolution and deconvolution layers.

The GCDS architecture proposed in (Menon et al., 2020a) is shown in Figure 2.3.

2.2.4 Limitations of GCDS model

While obtaining accurate noise characteristics allows us to generate a dataset that closely

resembles the actual images that the model has to denoise, the methodology followed

in (Menon et al., 2020a) presents a few drawbacks. The model assumes that noise in

all OCT scans follows Gamma distribution. The training samples were generated by

corrupting the 18 ground truth images (from DUKE dataset) with Gamma noise (of dif-

ference scale and shape parameters). The model is then trained using the resized version

(96× 192) of these artificially generated training samples. Even though a large number

of noisy images are constructed, the intended output still belong to the same pool of 18

images. This inadvertently creates a highly skewed dataset where the model, instead of

learning the intended task of denoising, will also learn the spatial and structural features

required to reconstruct those 18 images.
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The limitations of the GCDS model are demonstrated in Figure 2.4. Figure 2.4(a)

is the noisy image in full size and Figure 2.4(b) shows the output of the GCDS model

when the patches from the full image are given as input. Figure 2.4(c) shows the output

of the GCDS model when the full image is given as input. Note that the model is

trained on resized images of size 96 × 192. Resizing the image may also change the

noise characteristics (because of interpolation operations).

(a) (b)

(c) (d)

Figure 2.4: OCT denoising using the conventional GCDS and the proposed modi-
fied GCDS. (a) Sample full-size noisy image from DUKE dataset, (b) Output of the
GCDS model when the patches from the full image are given as input, (c) Output of
the GCDS model when the full image is given as input (the model is trained on resized
images of size 96 × 192), (d) Image denoised by proposed model trained using patch-
wise method.

For applications such as medical image denoising, where training data is scarce,

such overfitting of the model towards the available data is undesirable. We now present

a novel approach for training denoising models in a data scarce setup in order to achieve

state of the art denoising capabilities.
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Figure 2.5: Pipeline of the proposed patch-wise training method.

2.2.5 Patch-wise training

The entire pipeline of the proposed patch-wise training method is outlined in Figure 2.5.

The first step is to estimate the noise type and noise level in the target images we wish

to denoise. We then generate an artificial training set by corrupting the available ground

truth images with different levels of noise. The range of noise levels in the training set

is based on the observations that we made in the noise study mentioned earlier. Next,

we propose the patch-wise method of learning to mitigate the drawbacks mentioned in

the previous section. Instead of downsampling the original image of dimension M × N

to a lower dimension m × n, the original full-sized noisy image is divided into disjoint

smaller patches of dimension m × n. This is demonstrated in Figure 2.6. In a highly

data constrained setup, this allows to achieve the following advantages:

1. Since the model is fed with patches of the overall image as input, the training
samples now consist of a highly diverse set of images. This prevents the model
from overfitting to any particular type of spatial or structural feature. At the same
time, this also extends the size of the training data by a considerable factor, since
one image is now replaced with a batch of (M × N)/(m × n) patches.

2. The model is only shown disjoint patches from the OCT image. When we test the
model by providing an entire OCT image as input - which it has never seen in its
entirety, if the model is able to effectively denoise it, it is conclusive evidence of
the model’s generalized ability to denoise unseen images. This would prove that
earlier issues of overfitting to spatial and structural features in the training set is
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Figure 2.6: Full-sized sample training image and the corresponding ground-truth im-
age of size 384 × 768 split into disjoint patches of size 96 × 192. The patches are
then passed as a batch to the model.

mitigated. We observed that the model was able to do so, thereby confirming our
hypothesis.

The experimental output of patch-wise trained model is shown in Figure 2.4(d). The

model was tested on full size noisy image of dimension 450 × 900. It is important to

note that the model was trained only on patches from the full images. Hence, this ex-

periment also served as a good indicator of it’s generalising capacity. In our experiment

we used patches of size 64 × 64. The patch size 64 × 64 was selected after empirically

training the models with different patch sizes. For a fair comparison with conventional

GCDS model, this experiment was conducted on images corrupted with Gamma noise.

Since the images acquired with machines of different manufacturers containing dif-

ferent kinds of noise (or can be modeled better with different kinds of distributions),

we observed that a model trained on a single noise type is not able to discern the noise

characteristics and thereby unable to universally denoise the noisy OCT images from

multiple vendors. Hence, we created an array of GCDS architectures and trained them

with the most prominent noise types observed in Table 2.2 namely Beta, Logistic, Log-
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Logistic, and Exponential. Experiments with this array of GCDS architectures gave us

superior results compared to a single GCDS model. Since we had four trained GCDS

models for denoising, we needed a model selector to route the input image to the correct

model. For this purpose we developed a model selector.

The goal of the model selector is to automatically route the input image to the appro-

priately trained GCDS model. We used DenseNet 121 (Huang et al., 2017) architecture

for designing the model selector. It was trained to classify the input image into one of

the four aforementioned classes (Beta, Logistic, Log-Logistic and Exponential). The

model selector is trained on patches (of size 200 × 200) extracted from OCT images

in the OPTIMA dataset. The training set consists of 1600 samples (400 samples each

for Beta, Logistic, Log-Logistic, and Exponential) and the test set consists of 400 sam-

ples, by picking 100 samples each from four classes. The model selector achieved an

accuracy of nearly 100% on the test patches; it correctly classified the input images

from the OPTIMA dataset into one of the four noise models. The input to the trained

model selector is the full OCT image and the model selector determines the noise type

by selecting a 200 × 200 region from the bottom left side of the image. We observed

that for most of the images this region consists of only noise.

The model was trained for 25 epochs with a batch size of 8, Adam (Kingma and Ba,

2014) as the optimization method and categorical cross-entropy as the loss function. In

cases when an input image with a different noise type (other than the four noise types

considered by the model selector) is provided, it selects the noise type (from among the

four) that is closest match to the noise in the input image.

2.3 Results and Discussion

We used the datasets mentioned in Table 2.1 for evaluating the performance of the

proposed cascaded despeckling architecture and other state-of-the-art methods. The

proposed method was implemented in Keras with Tensorflow as the backend. All the
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Table 2.3: Range of shape and scale parameters used to generate noisy training sam-
ples.

shape scale loc alpha

Beta 1.62 - 21.62 2.29 - 6.29 - -

Logistic - 5 - 8 26.5 - 29.5 -

Log-logistic 13 - 16 90 - 110 - -

Exponential - - - 6 - 12

experiments were evaluated and performed on a 64-bit workstation with an Ubuntu

18.04 operating system, Intel Xeon(R) Gold 5120 CPU @ 2.20 GHz x 28, solid state

hard drive, 64 GB of RAM and NVIDIA Quadro P5000 GPU with 16 GB dedicated

memory. The other conventional despeckling algorithms used for the analysis were

implemented on the same machine using MATLAB R2019a.

The first stage of the proposed cascaded architecture is the model selector. The

four different GCDS models designed to learn different noise types were trained sep-

arately. Every model was trained with 2176 images (2,13,248 patches) and validated

on 544 images (53,312 patches). Various parameters of the noise model used to create

noisy samples are mentioned in Table 2.3. The models were trained for 50 epochs with

Structural dissimilarity metric (DSSIM)(Menon et al., 2020a) as the loss metric.

2.3.1 Experiments on Synthetic Eye Images

This section discusses the experiments that we conducted on the synthetic eye image

to validate the performance of the proposed method. We used two images for this ex-

periment. One image without averaging and the other one was created by averaging

25 acquisitions. The image created by averaging 25 acquisitions was considered the

ground truth. The image acquired without averaging was given as an input to the pro-

posed method and all other methods it was compared against. The outputs of these

methods were compared with the ground truth. The values of various parameters used
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while implementing other filters (against which we compared) are listed below.

1. Curvature Anisotropic Diffusion (CAD) (Zhang et al., 2015a): No. of Itera-
tions=5, Time step=0.0625 and Conductance=3.

2. Optimized Bayesian non-local means filter (OBNLM) (Coupé et al., 2009): Search
area size, M=5, Smoothing parameter, h=computed as the standard deviation of a
homogeneous region in the image.

3. Total Generalized Variation filter (TVG) (Duan et al., 2016): alpha=[10 30 5],
Theta=[5 5 5], No.0f iterations=1000.

4. Wavelet (Stankiewicz et al., 2017) : Maximum wavelet decomposition level=50,
Threshold=17, Wavelet basis function=’Haar’.

5. K-SVD (Kafieh et al., 2015b): Dictionary size = 256, No. of training iteration =
4000, No. of iteration = 20, blocksize = 8.

6. DnCNN (Zhang et al., 2017b): We used the trained DnCNN provided by Zhang
et al. in (Zhang et al., 2017b).

The results of this experiment are depicted in Figure 2.7 and Table 2.4. Visual anal-

ysis shows that the image despeckled with proposed method is closer to the averaged

image than the other methods against which it was compared. This is also evident from

the quantitative analysis given in Table 2.4. The values (PSNR and SSIM of denoised

Synthetic Eye) shown in the Table 2.4 are average of five experiments. We randomly

picked 5 volumes out of 25 volumes and denoised the same frame from the 5 volumes.

The mean and standard deviation of the five experiments can be studied from Table 2.4.

It can be observed that the Peak Signal to Noise Ratio (PSNR) and Structural Similarity

Index Metric (SSIM) of the image denoised with the proposed method is superior to

those of images denoised with other methods. To demonstrate how existing methods

behave on speckle noise with different distributions, we have also conducted additional

experiments on the synthetic eye image. We corrupted the averaged image with four

different noise types (the prominent noise types that we observed in real OCT images)

and denoised the noisy images using the methods that we considered for comparative

analysis. This experiment was also repeated for DUKE dataset. The results of these

experiments are given in Table 2.5 and Table 2.6. These experiments also demonstrate

the superiority of the proposed method over state-of-the-art methods.

30



Table 2.4: The quantitative analysis of the performance of the proposed denoising
method with other state-of-the-art denoising methods on the synthetic eye image and
Duke image in terms of PSNR and SSIM.

SI.No Method Synthetic EYE Duke dataset
PSNR SSIM PSNR SSIM

1. Noisy 26.57(0.3218) 0.67(0.0097) 17.78(0.0493) 0.10(0.0010)
2 Wavelet (Stankiewicz et al., 2017) 28.87(0.3720) 0.81(0.0076) 20.26(0.0704) 0.16(0.0013)
3 TGV (Duan et al., 2016) 28.22(0.1417) 0.83(0.0023) 22.63(0.2357) 0.66(0.0034)
4 OBNLM (Coupé et al., 2009) 27.94(0.0968) 0.81(0.0016) 22.58(0.1381) 0.64(0.0025)
5 CAD (Zhang et al., 2015a) 29.44(0.3734) 0.78(0.0076) 22.68(0.1480) 0.39(0.0014)
6 KSVD (Kafieh et al., 2015b) 30.67(0.3762) 0.89(0.0042) 20.11(0.0825) 0.17(0.0014)
7 DnCNN (Zhang et al., 2017b) 26.76(0.3289) 0.68(0.0097) 18.03(0.0518) 0.11(0.0011)
8 Proposed Method 31.01(0.2009) 0.91(0.0020) 23.97(0.1738) 0.66(0.0020)

Table 2.5: The quantitative analysis of the performance of the proposed denoising
method with other state-of-the-art denoising methods on the synthetic eye image by
adding different prominent noise types present in the OCT machines (Beta distri-
bution: shape - 8, scale- 3; Exponential distribution: alpha - 8; Logistic distribution:
scale - 27, location - 6;Log-logistic distribution: shape - 13.5, scale - 95).

Noise Type
Beta Exponential Logistic Log logisticSI. No Method

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
1 Noisy 11.27 0.33 26.06 0.89 16.59 0.62 21.82 0.72
2 Wavelet (Stankiewicz et al., 2017) 11.84 0.41 27.36 0.90 16.96 0.70 22.26 0.78
3 TGV (Duan et al., 2016) 12.01 0.48 26.40 0.81 16.87 0.64 22.14 0.73
4 OBNLM (Coupé et al., 2009) 11.52 0.47 28.48 0.84 16.93 0.69 22.15 0.80
5 CAD (Zhang et al., 2015a) 11.92 0.44 28.32 0.92 17.04 0.72 22.72 0.80
6 KSVD (Kafieh et al., 2015b) 11.96 0.45 27.02 0.84 16.95 0.66 22.36 0.75
7 DnCNN (Zhang et al., 2017b) 11.66 0.34 28.23 0.90 16.94 0.69 22.27 0.75
8 Proposed Method 28.39 0.92 33.64 0.94 30.88 0.93 29.77 0.93

2.3.2 Experiments on real retinal OCT Images

This section elaborates the experiments that we performed on real retinal OCT images.

For these experiments we used the images from DUKE and OPTIMA datasets. The per-

formance of the proposed method on the OPTIMA datasets and DUKE dataset is shown

in Figure 2.8, Figure 2.9 and Figure 2.10. Careful visual inspection on the frames in

Figure 2.8, Figure 2.9, Figure 2.10 and Figure 2.11 shows that the proposed method pre-

served structural details in the images better than other methods. Figure 2.8, Figure 2.9

and Figure 2.10 shows the experimental results on images acquired with four differ-

ent machines in OPTIMA dataset. Figure 2.10 shows the results on images in DUKE

31



Table 2.6: The quantitative analysis of the performance of the proposed denoising
method with other state-of-the-art denoising methods on the Duke dataset by adding
different prominent noise types present in the OCT machines (Beta distribution: shape
- 8, scale - 3; Exponential distribution: alpha - 8; Logistic distribution: scale - 27, lo-
cation - 6; Log-logistic distribution: shape - 13.5, scale - 95).

Noise Type
Beta Exponential Logistic Log logisticSI. No Method

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
1 Noisy 15.98 0.18 18.43 0.64 27.77 0.60 21.97 0.54
2 Wavelet (Stankiewicz et al., 2017) 16.55 0.29 18.55 0.73 29.63 0.73 22.38 0.68
3 TGV (Duan et al., 2016) 17.38 0.65 18.54 0.68 29.81 0.72 22.52 0.70
4 OBNLM (Coupé et al., 2009) 17.62 0.62 18.76 0.67 28.50 0.69 22.62 0.69
5 CAD (Zhang et al., 2015a) 17.14 0.52 18.48 0.74 29.97 0.78 22.64 0.74
6 KSVD (Kafieh et al., 2015b) 17.09 0.40 18.60 0.70 29.76 0.75 22.69 0.73
7 DnCNN (Zhang et al., 2017b) 16.11 0.20 18.47 0.66 28.28 0.62 22.11 0.57
8 Proposed Method 25.32 0.72 23.70 0.74 30.02 0.75 23.70 0.74

Table 2.7: The quantitative analysis of the performance of the proposed denoising
method with other state-of-the-art denoising methods on the Duke dataset by adding
Exponential noise of varying noise levels ( alpha - 6, alpha - 7, alpha - 8, alpha - 10,
alpha - 12).

Noise Type : Exponential
alpha - 6 alpha - 7 alpha - 8 alpha - 10 alpha - 12SI. No Method

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
1 Noisy 20.97 0.72 18.52 0.69 18.43 0.64 17.84 0.56 17.59 0.49
2 Wavelet (Stankiewicz et al., 2017) 21.56 0.79 18.58 0.75 18.55 0.73 17.99 0.68 17.82 0.63
3 TGV (Duan et al., 2016) 21.08 0.71 18.56 0.68 18.54 0.68 18.03 0.67 17.09 0.67
4 OBNLM (Coupé et al., 2009) 21.38 0.69 18.78 0.66 18.76 0.76 18.24 0.66 18.11 0.65
5 CAD (Zhang et al., 2015a) 21.09 0.79 18.55 0.75 18.48 0.74 17.93 0.71 17.75 0.68
6 KSVD (Kafieh et al., 2015b) 21.16 0.73 18.62 0.70 18.60 0.70 18.09 0.69 17.97 0.69
7 DnCNN (Zhang et al., 2017b) 21.04 0.74 18.56 0.70 18.47 0.66 17.88 0.58 17.65 0.52
8 Proposed Method 24.23 0.80 23.95 0.78 23.70 0.74 23.19 0.73 22.31 0.72

dataset. Figure 2.11 shows the zoomed view of the images for the coordinate region

marked in red in Figure 2.8 and Figure 2.9. We also performed quantitative analysis

on images in DUKE dataset since it had averaged images (average of 4 acquisitions).

For quantitative analysis, we denoised the same frame from all four acquisitions and

computed the mean PSNR and standard deviation. The results are depicted in Table

2.4. To study how the denoising methods perform on images with different noise types,

we corrupted the averaged image with four prominent noise that we mentioned earlier.

The results of this experiment is shown in Table 2.6. Table 2.7 shows the experimental

results of the denoising methods on the Duke dataset with varying levels of Exponen-

tial noise. These experiments on the real OCT dataset also demonstrate the superior
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Table 2.8: Expert Evaluation on Retinal Layer Segmentation.

Method Score
Noisy Image 2.5

CAD 2.5
OBNLM 2.5

TGV 3
Wavelet 2
KSVD 3

DnCNN 2.5
Proposed Method 3

performance of the proposed method over other methods considered.

As a further stratagem for evaluation, we performed retinal layer segmentation

(Duan et al., 2017; Reddy et al., 2020; Anoop et al., 2020) using OCTSEG tool (Mayer

et al., 2011). Layer segmentation was performed on the noisy as well as the denoised

images and the results are shown in Fig. 2.12. We have obtained scoring from an expert

retinal surgeon on the quality of retinal layer segmentation and is given in Table. 2.8.

The ophthalmologist ranked the outputs from different methods on a scale of 1 to 5,

where 1 and 5 are used to indicate the worst and best results, respectively. All these

experiments on synthetic and real OCT scans shows that the proposed cascaded method

is a viable choice for despeckling OCT images.

2.4 Summary

A cascaded CNN based architecture to denoise OCT images is presented in this chapter.

The proposed model identifies the noise type in an input image and classifies it into

one of the four different noise types. It subsequently denoises the image effectively

using a GCDS array that has models catering to specific noise types. To the best of

our knowledge, a single model with composite architecture capable of dealing with

multiple noise types has not hitherto been reported in the literature. Models reported

in the literature are trained on one noise type alone and this makes them vulnerable to
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errors when input images have noise different from that assumed.

Another unique feature proposed in our work is the use of the synthetic eye to create

datasets for simulations and experiments. This dataset was useful in doing quantitative

evaluation of different OCT denoising methods. Other important contribution in this

chapter is a patch-wise training approach to improve the performance of the existing

GCDS model. This methodology prevents the model from learning the structural details

and also provides a way of dealing with limited ground truth data. Experiments on

synthetic and real OCT datasets show that the proposed method performs better than

other reported methods.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 2.7: The visual analysis of the performance of the proposed denoising method
with other state-of-the-art denoising methods on the synthetic eye dataset. (a) Noisy
synthetic eye image, (b) Ground truth image, (c) CAD, (d) OBNLM, (e) TGV, (f)
Wavelet, (g) KSVD, (h) DnCNN, and (i) Proposed method. All images are displayed
in the range 0-255.
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 2.8: The visual analysis of the performance of the proposed denoising method
with other state-of-the-art denoising methods on the Cirrus data from the OPTIMA
dataset. (a) Noisy synthetic eye image, (b) CAD, (c) OBNLM, (d) TGV, (e) Wavelet,
(f) KSVD, (g) DnCNN, and (h) Proposed method. The intensity values of all the im-
ages are displayed in the range of 0-255.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 2.9: The visual analysis of the performance of the proposed denoising method
with other state-of-the-art denoising methods on the Spectralis data from the OPTIMA
dataset. (a) Noisy synthetic eye image, (b) CAD, (c) OBNLM, (d) TGV, (e) Wavelet,
(f) KSVD, (g) DnCNN, and (h) Proposed method. The intensity values of all the im-
ages are displayed in the range of 0-255.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 2.10: The visual analysis of the performance of the proposed denoising method
with other state-of-the-art denoising methods on the Duke dataset. (a) Noisy image,
(b) Ground truth image, (c) CAD, (d) OBNLM, (e) TGV, (f) Wavelet, (g) KSVD, (h)
DnCNN, and (i ) Proposed method. All images are displayed in the range 0-255.
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Figure 2.11: The qualitative analysis of the performance of the proposed denoising
method with other state-of-the-art denoising methods (with a zoomed region) on Cir-
rus (R1) and Spectralis (R2) vendor data of OPTIMA dataset. (a) Noisy input image,
(b) CAD, (c) OBNLM, (d) TGV, (e) Wavelet, (f) KSVD, (g) DnCNN, and (h) Pro-
posed method. All images are displayed in the range 0-255.

39



(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 2.12: The qualitative analysis of the retinal layer segmentation performed on
the proposed denoised algorithm with respect to the state-of-art denoising algorithms
on Spectralis vendor data of OPTIMA dataset. (a) Noisy input image, (b) CAD, (c)
OBNLM, (d) TGV, and (e) Wavelet, (f) KSVD, (g) DnCNN, (h) Proposed method. All
images are displayed in the range 0-255.
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CHAPTER 3

STACK GENERALIZED DEEP ENSEMBLE

LEARNING FOR RETINAL LAYER

SEGMENTATION IN OPTICAL COHERENCE

TOMOGRAPHY IMAGES

A Fully Convolutional Network (FCN) termed as DelNet based on a deep ensemble

learning approach to selectively segment retinal layers from OCT scans is proposed

in this Chapter2. The proposed model is tested on a publicly available DUKE DME

dataset. Comparative analysis with other state-of-the-art methods on a benchmark

dataset shows that the performance of DelNet is superior to other methods.

3.1 Introduction

The retina is a thin multi-layered tissue at the back of the eye which converts photic

signals to electrical nerve impulses. Due to the retina’s important role in vision, retinal

diseases may cause temporary or permanent blindness. The retina has 10 anatomi-

cal layers that are seen on OCT images as alternating bands with hyper- and hypo-

reflectivity. Layers primarily composed of axons and their plexiform connections ap-

pear hyper-reflective. Layers with cell bodies and nuclei appear hypo-reflective. Major

retinal disorders cause fluid accumulation within and under the retina, whereas others
2The work described in this Chapter has been published in: Anoop, B. N., Rakesh Pavan, G. N.

Girish, Abhishek R. Kothari, and Jeny Rajan, “Stack generalized deep ensemble learning for retinal
layer segmentation in Optical Coherence Tomography images”, Biocybernetics and Biomedical Engi-
neering, 40, no. 4 (2020): 1343-1358.



cause loss of retinal tissue, extra tissue over or under the sensorineural retina (Girish

et al., 2016, 2018b).

OCT is one of the most popular non-invasive imaging procedures used in ophthal-

mology (Drexler et al., 2001). OCT devices allow cross-sectional viewing of retina

with localization of level of the lesion within the retina (Girish et al., 2018a). Most

OCT device software allows precise detection of retinal boundaries in normal or min-

imally distorted retina (Drexler et al., 2001). Their reliability suffers in images with

retinal disorders where moderate to severe retinal distortion is present. Layer bound-

aries in these cases are frequently identified incorrectly. Another major challenge while

segmenting retinal layers in OCT images is the presence of speckle noise (Anoop et al.,

2019; Duan et al., 2016). Speckle degrades the quality of OCT images and it may in-

fluence the performance of automated methods. Despeckling is required in this case

to enhance the quality of OCT images (Girish et al., 2018b). The role of OCT retinal

layer thickness measurements in identifying and predicting ocular and even systemic

disease (Glaucoma (Schuman et al., 1995), alzheimers diseases (Paquet et al., 2007)

and Multiple sclerosis (Gordon-Lipkin et al., 2007), has gained widespread attention.

Hence, there is a need to refine the performance of retinal layer segmentation algo-

rithms to enable better prediction and diagnoses of these diseases, and similar emerging

indications (Parkinsons (Inzelberg et al., 2004), ataxia (Michalik et al., 2004) and other

neurodegenerative disorders (Lamirel et al., 2010).

Several semi-automatic methods and automatic methods are proposed in the lit-

erature for retinal layer segmentation. In (Fernández et al., 2005), Fernandez et al.

showed that retinal layers can be automatically and/or interactively determined from

retinal OCT images by inferring the local characteristics of retinal layers. Yin et al. (Yin

et al.) proposed a user-guided segmentation method using likelihood estimation. Mayer

et al. (Mayer et al., 2008) proposed an algorithm based on fuzzy c-means approach for

the segmentation of the retinal layers. Experiments shows that the performance of this

method is influenced by outliers and it may settle in the local minima. Xiang et al. (Xi-
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ang et al., 2019) suggested a random forest classifier based segmentation algorithm for

the retinal layer segmentation. A live wire algorithm (the lowest cost path algorithm) is

employed in (Xiang et al., 2019) for the accurate prediction of the retinal layer bound-

aries. This algorithm uses a set of handcrafted features for the layer segmentation. Even

though this algorithm gave better accuracy in the custom dataset, similar performance

is not guaranteed in other datasets since the handcrafted features used is computed from

the custom data set that they used. Other drawbacks of this method are the number of

trees required for the optimal results, the interpretability and overfitting.

Garvin et al. (Garvin et al., 2008) studied the feasibility of graph theory and energy

minimization constraints (Li et al., 2005) and proposed an automated algorithm for the

segmentation of the five layers from retinal OCT images. They also suggested a modi-

fied version (Garvin et al., 2009) of this approach by employing feasibility constraints

and regional information. Lu et al. (Lu et al., 2010) and Yang et al. (Yang et al.,

2011) studied the feasibility of gradient-based approaches for retinal layer segmenta-

tion using an optimal graph search method. Duan et al. (Duan et al., 2018b) proposed

a generative retinal layer segmentation method based on group wise curve alignment.

Ghorbel et al. (Ghorbel et al., 2011) proposed a segmentation algorithm using the active

contour method and random Markov fields. Yazdanpanah et al. (Yazdanpanah et al.,

2011) proposed an active contour-based segmentation algorithm with shape constraint

and contextual weights. Duan et al. proposed a geodesic distance-based retinal layer

segmentation (Duan et al., 2017) and an advanced version of it by employing shape con-

straint to intensity-based Mumford-Shah variational functional algorithm (Duan et al.,

2018a) for the segmentation of nine retinal layers. The limitations of these algorithms

are its inability to segment the layers properly when the quality of the images are not

good or when the layer boundaries are not that visible in the images. The graph cut

optimization, kernel regression and machine learning technique such as Support Vector

Machines (SVM) are also used for the retinal layer segmentation (Chiu et al., 2010,

2015; Dufour et al., 2013; Ehnes et al., 2014; Shi et al., 2015; Vermeer et al., 2011;

Srinivasan et al., 2014).
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The aforementioned methods proposed for retinal layer segmentation are not end-

to-end models. Usually, heuristics and hand-crafted features are used. To address these

problems, recently convolutional neural network (CNN) based methods were proposed

to segment the retinal layers. In CNN, the handcrafted features are replaced with fea-

tures computed using convolution operations and also CNN based methods are the state-

of-the-art. In this category, Fang et al. (Fang et al., 2017) experimented a combination

of CNN and graph search methods for automatic segmentation of layer boundaries from

retinal OCT images. Hamwood et al. (Hamwood et al., 2018) also used a combination

of CNN and graph search based segmentation algorithm, and studied the effect of patch

sizes in training the model and the behavior of parameter variations in the CNN models

for the layer segmentation.

Roy et al. (Roy et al., 2017) proposed a fully convolutional neural network archi-

tecture termed as ReLayNet, for end-to-end segmentation of retinal layers. Kugelman

et al. (Kugelman et al., 2018) used a recurrent neural network as the feature extractor

and graph search for classification. Shah et al. (Shah et al., 2018) showed that a single

CNN based framework can be used to segment multiple surfaces simultaneously. Kiaee

et al. (Kiaee et al., 2018) developed a 3D fully convolutional encoder-decoder structure

for automated segmentation of retinal layers in OCT scans. Reddy et al. (Reddy et al.,

2020) proposed a CNN architecture named as DilatedReLayNet for the segmentation

of retinal layers by extending the approach proposed in (Roy et al., 2017) by replacing

normal convolution operations with dilated convolutions. One of the biggest challenges

in developing the CNN based method for retinal layer segmentation is the unavailability

of sufficient labeled data.

Apart from this, there are software packages like OCTExplorer (Li et al., 2005;

Garvin et al., 2009; Abràmoff et al., 2010; Quellec et al., 2010; Antony et al., 2011;

MeindertNiemeijer et al., 2012) and OCTSEG tool (Mayer), available for automated

segmentation of retinal layers from OCT images. OCTExplorer is developed by the

Retinal Image Analysis Lab (Iowa Institute for Biomedical Imaging, Iowa City, IA).
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This publicly available, standalone tool segments 10 layers of the retina from the volu-

metric OCT data by employing graph theory-based segmentation approach. It can also

read most formats of the volumetric OCT scans acquired with various OCT machines.

The OCTSEG is also a publically available retinal layer segmentation tool (created by

Markus Mayer). Six prominent retinal layers can be automatically segmented using

OCTSEG tool. Unlike the OCTExplorer, segmentation from 2D circular and linear

scans, as well as volume scans, are possible with OCTSEG tool.

Literature on the biopsy of the human retina reports 18 layers (Staurenghi et al.,

2014). Out of this only 11 layers can be distinguished by humans with naked eyes

(Kafieh et al., 2015a). There are algorithms proposed in the literature to segment 5 to

11 layers from retinal OCT images (Mayer). Among them, the methods that segment

more number of layers usually perform well on the normal retina and fail to perform

equally well on retinal images with pathologies. This is mainly because the pathologies

distort the structure of the layers present in the retina. Also, the clinical importance

of segmenting more numbers of layers are not studied well. Hence, in this study, we

considered segmenting only those layers which are clinically significant.

Our major contribution in this work is the development of an ensemble architecture

for the effective segmentation of most prominent retinal layers. The proposed ensemble

based architecture helped the model to learn different layers better when compared to

the stand-alone single models. This is demonstrated in this chapter with the help of

experiments on standard benchmark dataset and also through Gradient-weighted Class

Activation Mapping (Grad-CAM) (Selvaraju et al., 2017) visualization. Various exper-

iments are conducted to optimize the model and we evaluated the performance of the

model using standard evaluation metrics. Experiments were also conducted to study

how the model performs on normal retinal scans and subjects with pathologies. We

also studied the influence of despeckling in the retinal layer segmentation process by

repeating the experiments on the raw dataset as well as the denoised dataset.
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The following section (section 3.2) provides detailed description of the proposed

methodology (including information about the data set, overall pipeline, and experi-

mental settings). Section 3.3 discusses various experiments conducted for evaluating

the proposed method. Finally, Section 3.4 summarizes and concludes the chapter.

3.2 Methodology

The proposed CNN model is an ensemble learning based approach and contains four

base models followed by a predictor block. The objective of the proposed model is to

map the pixels in the given retinal OCT image I(x, y) to a particular label in the label

space Q={q}={1, ...., q} for q classes. The proposed model addressed the segmentation

task as q = 8 class classification problem which includes the tissue classes of 7 retinal

layers and a background class.

3.2.1 Proposed DelNet Architecture

The proposed DelNet architecture is an ensemble based stack generalization (Wolpert,

1992) of deep learning models (Xiao et al., 2018) for computerized segmentation of

retinal layers from OCT scans. In the literature, ensemble-based approaches have been

used in classification and regression tasks (Ren et al., 2016). The basic idea of ensemble

based model is to generate a set of weak base-learners and to combine their output

instead of trying to create one single optimal learner. Stack generalization (Mitchell

et al., 1986) refers to a special type of ensemble learning, where we use another model

(or convolutional block) to combine the outputs from the base-learners. Here we use a

predictor model to combine the learners feature map from the base models to compute

the output.

The main motivation behind using ensemble learning is due to the fact that the

characteristics of each layer is different from other layers in the retina (i.e, presence
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Figure 3.1: The Proposed DelNet architecture. The input image is fed to the ensem-
ble model. All the 4 models make independent predictions on the same input image
and the predictions from all the 4 models are processed by the predictor block. The
color codes shows the layer that a particular models focuses. The colour coding of the
retinal layers is depicted in Fig. 3.5.
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of hyper and hypo reflective layers, as well as variations in the spatial structure and

alignment of the layers) (Hee et al., 1995). This difference is very apparent between

the thicker and thinner layers, and using a fixed model for segmentation might not be

a good choice here because the model will only learn the features that are common to

all the layers and as a result the performance will be sub-optimal. Hence, we use a

set of four different models, each of which is fine tuned to meet the requirement of a

particular class of similar layers. By training each of these models separately on the

data and using another trained convolutional block to get a combined output, the model

can do a better prediction compared to a fixed model that learns all the layers together.

In the proposed DelNet architecture we used four base models and each of them is

fine tuned to meet the requirement of the layers that have common features. Every base

model predicts eight classes (7 layers + background) but with different levels of accu-

racy. The output of the base models is fed to the predictor block which finally classifies

each and every pixel in the image to one of the eight classes. The number of models to

use as base-learners is again a hyper-parameter, and based on our experimental analy-

sis we selected four base-learners. Using more than four models did not improved the

result and increases the computational complexity.

The overall learning pipeline is as follows: first train each of the base-learners in-

dividually on the dataset. The input is an image of dimension 216 × 64 and the output

is the prediction of dimension 216 × 64 × 8 against the one hot encoded ground truth

which is also of dimension 216× 64× 8. The eight output layers contains eight differ-

ent classes. The next step is to fix the base-learners and train the predictor block. The

predictor block takes input as the output of all four base-learners stacked on top of each

other (total dimension 216×64×32) and produce an output of dimension 216×64×8.

The loss is computed against the ground truth (of dimension 216 × 64 × 8). Fig. 3.1

shows the proposed DelNet architecture. All modelsMi (1 ≤ i ≤ 4) have the same base

architecture (with different hyper parameters) followed by a predictor model. Out of the

four base learners, Model M1 will focus on the Inner Nuclear Layer (INL) and Outer
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Nuclear Layer - Inner Segments of Myeloids (ONL-ISM). Model M1 predicts these two

layers with high accuracy when compared to other base learners. Model M2 focuses on

three layers such as Background, Internal Limiting Membrane (ILM) and Nerve Fibre

Layer - Inner Plexiform Layer (NFL-IPL). Model M3 has tuned to segment the Outer

Plexiform Layer (OPL) and Inner Segment Ellipsoid (ISE). Model M4 focuses on the

Outer Segment - Retinal Pigmented Epithelium (OS-RPE) layer. The colour coding

of the retinal layers is depicted in Fig. 3.5. The base model and the predictor model

architecture are explained in the following subsections.

3.2.1.1 Base Model

The base model of the proposed DelNet architecture is depicted in Fig. 3.2. The base

model follows DilatedReLayNet architecture (Reddy et al., 2020), which follows an

encoder-decoder structure with dilated convolutions, skip connections, and classifica-

tion layer. In (Reddy et al., 2020), dilated convolution filters are used to enhance the

receptive field without increasing the parameters in the network. Skip connections are

used to traverse information faster through concatenation layers for better learning ca-

pabilities. The final classification layer - a softmax activation layer which produces the

probability score for each class. Even though all the base learners are based on Dilat-

edReLayNet architecture, the hyper parameters used in different ensemble models are

different. The hyper parameters for different base learners are fixed in such a way to

give maximum performance in segmenting the layers that each base learner is intended

for.

3.2.2 Prediction Model

The predictor block is a CNN model which combines all four base learners. This model

receives the output prediction map of four base models as input and produces a final

segmentation output. The predictor model contains four fully convolutional layers in
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Figure 3.2: The architecture of the base model used in all the 4 rank ensemble models
M1 to M4. The base model follows DilatedReLayNet architecture (Reddy et al., 2020)
trained with different set of hyperparameters.
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Figure 3.3: The architecture of the predictor block, which is used to fuse the outputs
of the base-learners.

which the initial layer input is a stacked version of four base layers (each of size 216×
64× 8 yielding 216× 64× 32). The predictor model architecture is shown in Fig. 3.3.

3.2.3 Training

3.2.3.1 Cost Function

The cost function considered in our model is a combination of multiclass weighted cross

entropy loss and Dice loss and is given below (Roy et al., 2017):

loss = λ1MCWCE + λ2DL+ λ3

∥∥∥W (.)
∥∥∥2
F

(3.1)

where loss is the training loss, MCWCE is the multiclass weighted cross entropy, DL

is the Dice loss and the quantity
∥∥∥W (.)

∥∥∥
F

is a regularisation term which represents the

Frobenius norm of the weights matrix. The λ parameters determine the trade-off be-

tween different components in the loss function. We used the multiclass weighted cross

entropy method suggested in Reddy et al. (Reddy et al., 2020). They used a weighting

scheme based on the median frequency method and was found effective in segmenting

the retinal layers. This weighing scheme assures that the minority class pixels carry
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a weight than the value of weights designated to any of the predominant classes. In-

terested readers can refer (Reddy et al., 2020) for more information. The motivation

behind using the combined loss function is to trade off between the advantages and

disadvantages of the respective loss functions.

The reason for including Dice loss component in the loss function is to maximize

the Dice coefficient. Dice coefficient performs better at class imbalanced problems and

segmentation of finer small structures in the image. But it leads to unstable optimization

and gradients blowing up and thus the training process convergence is delayed. On the

contrary, cross entropy is just a proxy loss which is easier to maximize using backprop-

agation. cross entropy loss function leads to better (faster and stable) convergence due

to smooth form and nicer gradients for multi-class problems. The gradients of cross

entropy is of the form Q− P , where Q is the softmax outputs and P is the target. The

class imbalance can be taken care of by simply assigning loss multipliers to each class,

such that the network is more sensitive to not ignore a particular class pixel which is

infrequent. The regularisation term
∥∥∥W (.)

∥∥∥
F

ensures that the network doesn’t over-fit

to the training sample and improves its ability to generalize better. More analysis of the

loss function and its parameter sensitivity can be found in papers (Wong et al., 2018;

Sudre et al., 2017; Zhu et al., 2019).

3.2.4 Data Set and Preparation

The experiments are conducted on the publicly available Duke DME SD-OCT dataset

(Chiu et al., 2015). A short description of the DUKE DME dataset is provided in the

Table 4.1. The dataset consists of OCT scans acquired from 10 subjects with DME.

Out of the 10 volumes, 110 images (11 B-scans per subject) were annotated for the

retinal layers by two expert ophthalmologists. Each image is having a resolution of

496×768. Out of these 110 images, 57 images are the B-scans of the normal retina and

the remaining 53 are the B-scans of retina having pathology.
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Table 3.1: The description of the DUKE DME dataset (Chiu et al., 2015)

No. of
Volume

No. of annotated
B-scans / Volume

Total No. of
B-Scans

with annotations

The dimensions
of each B-scans

Make of machine
employed for acquiring

the OCT scans

10 11 110 496 × 768
Spectralis SD-OCT

(Heidelberg Engineering Inc.,
Heidelberg, Germany)

Figure 3.4: Vertically slicing of the input OCT B-scan into 7 equal parts.

To avoid class imbalance problems (due to background), background cropping is

employed and the dataset now comprises 110 images of size 216 × 500. The number

of training images plays a vital role in training fully convolutional networks. Hence,

the images are vertically sliced as in Reddy et al. (Reddy et al., 2020) to increase the

number of samples to 770 images. Each image is now of size 216 × 64. The dataset

preparation process is depicted in Fig. 3.4 and Fig. 3.5. The eight classes of the retinal

layers considered in this work with the segmentation mask are shown in Fig. 3.5.

3.2.4.1 Experimental Settings

Thus the samples available for conducting experiments are 770 images. Out of these

770 images, 500 images were used for training and 40 images were used for validation
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Figure 3.5: The segmentation masks (ground truth) are also sliced vertically in similar
manner to the test images.

and the remaining 230 images were employed for testing. To improve the models ca-

pacity to generalize, the train, validation and test images were disseminated in an equal

way over the data. The values of λ1, λ2 and λ3 in the cost function are set as 1, 0.5

and 1 × 10−4 respectively (chosen experimentally, other combinations yielded inferior

results).

All model weights were initialized randomly and the optimization was carried out

using the Stochastic Gradient Descent (SGD) optimizer with Nesterov Momentum

(Zhang et al., 2015b). A learning rate reducer was used to monitor the learning of the

model which reduces the learning rate by a factor of 0.5 on the plateau where the loss

stops decreasing for more than 6 epochs is used. The minimum learning rate for training

the model is set as 5×10−6. The number of epochs and batch sizes for different models

were fixed based on the experimental analysis. The details of the hyper-parameters used

in all four base learners used in the proposed DelNet model is given in Table 3.2. The

training and validation errors of the 4 models used in the proposed method are shown in

Fig. 3.6. The training and validation errors of the prediction block used in the proposed

method is shown in Fig. 3.7. We implemented all the modules of the ReLayNet (Roy

et al., 2017), DilatedReLayNet (Reddy et al., 2020), DelNet architectures using Python
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Table 3.2: The details of the hyper-parameters used in all four base learners used in
the proposed DelNet model.

Model
No.of
epochs

Batch
size

Initial
learning rate Momentum

M1 75 32 0.005 0.9
M2 60 20 0.01 0.92
M3 57 20 0.005 0.9
M4 60 128 0.01 0.95

(a) (b)

(c) (d)

Figure 3.6: The training and validation errors of the 4 models used in the proposed
method. (a) Model 1, (b) Model 2, (c) Model 3, (d) Model 4.

3 with the help of Keras TensoFlow API (Chollet et al., 2015) on Intel Xeon CPU with

64GB RAM and Nvidia Tesla K40 GPU with 10 GB dedicated memory. The other

conventional layer segmentation algorithms used for the analysis are implemented on

a workstation with a 64-bit Ubuntu 18.04 OS, Intel Xeon(R) Gold 5120 CPU @ 2.20

GHz x 28, solid-state hard drive, 64 GB of RAM and NVIDIA Quadro P5000 GPU

with 16 GB dedicated memory using MATLAB R2019a.

From the loss curve graphs in Fig. 3.6 we can observe that the models converge at

different points and the loss follows different curve paths for different hyper-parameter

settings. This is a useful behaviour we exploit in ensemble learning by making use of
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Figure 3.7: The training and validation errors of the prediction block used in the pro-
posed method.

all the 4 base-learners which have learned different information and features from the

same training data.

3.3 Experimental Results and Discussions

In this section, we explain the set of experiments conducted to evaluate our method

and also validated its overall robustness and adaptability. The proposed algorithm was

tested on the publicly available Duke DME OCT Dataset (Chiu et al., 2015). The

performance of the proposed method is evaluated (on the test data) both qualitatively

and quantitatively. We have used the standard quality metrics such as Precision (Powers,

2011), Recall (Powers, 2011) and Dice coefficient (DC) (Dice, 1945) for quantitative

analysis. To justify the results, we have also presented Grad-CAM visualizations of the

model gradient maps.

To fix the number of base learners, we tried using different combinations of base

learners, and observed that 4 models produced the optimal results. The performance

using different number of base learners is summarised in Table 3.3. The individual

performance of all the 4 base learners is given Table 3.4.
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Table 3.3: The performance comparison using different number of base learners (best
results are highlighted using boldface).

No.of
Base Models

Layers
Background ILM NFL-IPL INL OPL ONL-ISM ISE OS-RPE

2 0.99 0.89 0.94 0.88 0.87 0.96 0.94 0.90
3 0.99 0.89 0.94 0.89 0.88 0.96 0.95 0.90
4 0.99 0.91 0.96 0.92 0.90 0.97 0.95 0.91
5 0.99 0.91 0.96 0.92 0.90 0.97 0.95 0.90
6 0.99 0.91 0.95 0.92 0.90 0.96 0.95 0.90

Table 3.4: The individual performance of the base learners on test data (best results
are highlighted using boldface).

Model
No.

Layers
Background ILM NFL-IPL INL OPL ONL-ISM ISE OS-RPE

M1 0.98 0.89 0.92 0.89 0.85 0.96 0.93 0.89
M2 0.99 0.90 0.95 0.87 0.84 0.93 0.93 0.88
M3 0.99 0.88 0.94 0.87 0.89 0.94 0.95 0.90
M4 0.98 0.87 0.92 0.88 0.88 0.94 0.94 0.91

OCT scans carry varying degrees of noise (Anoop et al., 2019; Sudeep et al., 2016)).

The presence of speckle noise in OCT degrades the quality of the acquired images and

may produce poor segmentation results. To see how the model performs on noisy and

denoised data, we trained and tested the model on both noisy and denoised data. For

denoising, we have used the model developed in Chapter 2. In the first experiment,

we directly fed the noisy images for training and testing and calculated the results and

metrics. In our second set of experiment, we fed the denoised images for training and

testing. The results are depicted in Table 3.5. It can be observed from the Table 3.5 that

by denoising the performance of segmentation can be improved. The experiments that

we discussed earlier (i.e. to fix the number of base learners) are also conducted on the

denoised images.

To evaluate the segmentation accuracy of the proposed model and other state-of-

the-art methods, the performance in terms of mean Dice coefficient is computed. The

comparison is mostly restricted to CNN based methods because it has been previously

established (Roy et al., 2017) that CNN based methods outperform all the traditional
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Table 3.5: Performance of the proposed DelNet model on raw OCT images and de-
noised OCT images measured in terms of precision, recall and F beta (best results are
highlighted using boldface).

Layers \Metric Precision Recall F beta
Noisy Denoised Noisy Denoised Noisy denoised

Background 0.99 0.99 0.98 0.98 0.99 0.99
ILM 0.92 0.88 0.82 0.97 0.87 0.92

NFL-IPL 0.89 0.96 0.91 0.95 0.91 0.96
INL 0.78 0.95 0.83 0.93 0.81 0.93
OPL 0.72 0.91 0.80 0.95 0.78 0.91

ONL-ISM 0.94 0.96 0.91 0.96 0.93 0.97
ISE 0.89 0.94 0.91 0.95 0.9 0.96

OS-RPE 0.81 0.88 0.92 0.95 0.87 0.92

segmentation algorithms. Table 3.6 shows the performance evaluation of the proposed

method with two CNN-based techniques named as ReLayNet (Roy et al., 2017), Di-

latedRelayNet (Reddy et al., 2020) and two traditional approaches such as CM-GDP

(Chiu et al., 2010; Roy et al., 2017), CM-KR Chiu et al. (2015); Roy et al. (2017), in

terms of the mean Dice coefficient on expert annotations. It can be observed from the

Table 3.6 that the performance of the proposed method is superior to other methods

considered. OPL layer was the most challenging retinal layer to segment and with the

proposed method we got a mean DC of 0.90 for the segmentation of this layer. We also

conducted experiments by dividing the test dataset into normal and cases with patholo-

gies. The results are reported in Table 3.7. It can be seen that the proposed method

outperforms other methods in segmenting layers from OCT scans of normal eye and

cases with pathologies.

Also, we have computed the width of the confidence interval using mean and stan-

dard deviation of the Dice coefficient on different confidence levels (50%, 75%, 90%,

95%). The obtained results are compared with the ReLayNet (Roy et al., 2017) and

DilatedReLayNet (Reddy et al., 2020) models (Table 3.7 and Table 3.8). We observed

that the DelNet showed a lower standard deviation and more consistent predictions. Ta-

ble 3.8 summarises the results of the width of the interval (on either side of the mean)

at different confidence levels for each layer.

Qualitative analysis of the proposed method with other methods considered is shown

in Figure 3.8. An OCT image of the normal retina is shown in Figure 3.8 (a). The cor-
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Table 3.6: The performance evaluation of DelNet with respect to the ReLayNet, Di-
latedReLayNet models and the conventional approaches in terms of the mean Dice
coefficient on expert 2 annotations (best results are highlighted using boldface).

Methods
Layers

Background ILM NFL-IPL INL OPL ONL-ISM ISE OS-RPE
CM-GDP (Chiu et al., 2010; Roy et al., 2017) NA 0.77 0.77 0.65 0.67 0.86 0.87 0.82
CM-KR (Chiu et al., 2015; Roy et al., 2017) NA 0.85 0.89 0.75 0.74 0.93 0.87 0.82
ReLayNet(Roy et al., 2017) 0.99 0.90 0.94 0.88 0.85 0.93 0.92 0.90
DilatedReLayNet (Reddy et al., 2020) 0.99 0.89 0.94 0.89 0.88 0.96 0.94 0.90
DelNet MC 0.99 0.91 0.95 0.91 0.90 0.96 0.95 0.90
DelNet 0.99 0.92 0.96 0.93 0.91 0.97 0.96 0.92

responding labelled image from the Duke data set is shown in Fig. 3.8 (b). Fig. 3.8

(c), Fig. 3.8 (d), Fig. 3.8 (e), Fig. 3.8 (f) show the prediction map of RelayNet, Dilat-

edReLayNet, DelNet with MC and the proposed DelNet architectures respectively. It

can be observed from the images that the proposed method outperforms other methods.

Comparing Fig. 3.8 (c), Fig. 3.8 (d), Fig. 3.8 (e), Fig. 3.8 (f) with respect to the ground

truth (Fig. 3.8 (b)), it is evident that there are misclassifications in the outer layer bound-

aries of Fig. 3.8 (c) and Fig. 3.8 (d). The thickness of the layers like ILM, NFL-IPL

plays a vital role in diagnosing diseases like glaucoma. Our proposed approach gave

better predictions and it is evident from Fig. 3.8 (e) and Fig. 3.8 (f).

(a) (b) (c)

(d) (e) (f)

Figure 3.8: Qualitative comparison of the proposed DelNet model with existing CNN
based methods. (a) An OCT image of the normal retina, (b) the corresponding labeled
image of expert 2 from Duke data set, (c) the predicted results of the ReLayNet model,
(d) the result of the DilatedReLayNet model, (e) the output of the DelNet model with
manual combining, (f) the output of the proposed DelNet model.

Fig. 3.9 shows the edge map of retinal layers generated with different methods. The
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(a) (b) (c)

(d) (e) (f)

Figure 3.9: Qualitative comparison of the proposed DelNet model with existing CNN
based methods. (a) An OCT image of the normal retina. (b) The corresponding la-
beled image of expert 2 from Duke data set. (c) Retinal layer boundaries of ground
truth. (d) Retinal layer boundaries of ReLayNet predictions. (e) Retinal layer bound-
aries of DilatedReLayNet Prediction. (f) Retinal layer boundaries of DelNet Predic-
tion.

edge maps clearly visualize the accuracy of correct segmentation with respect to the

ground truth. Here, the edges of the ground truth are provided in white colour, corre-

sponding predictions are depicted in red colour. Fig. 3.9 (d) and Fig. 3.9 (e) shows the

predictions of ReLayNet and DilatedReLayNet, it is clear that there are misclassifica-

tions in the retinal boundaries. But the predictions of the proposed method shown in

Fig. 3.9 (f) is very close to the ground truth. From the superimposed images (Fig. 3.9

(d), (e) and (f)), it can be seen that the layer boundary of the image generated using the

proposed method fits better with the ground truth. Fig. 3.10 shows how the proposed

model performs on images with pathology. Fig. 3.10 (a), Fig. 3.10 (b) and Fig. 3.10

(c) shows the OCT image of a normal retina, retina with pathology, image with fovea

region respectively. The corresponding ground truth and predictions are shown in the

second column and third column of Fig. 3.10. This experiment additionally shows

the robustness of the proposed method in segmenting retinal layers from images with

pathology.

Grad-CAM (Selvaraju et al., 2017) help us to understand what the model is actually

learning. Grad-CAM is a class-discriminative localization technique and unlike CAM,
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.10: Qualitative Comparison of the proposed DelNet model with three sets of
images. Images (a), (d) and (g) are OCT image of the normal retina, the retina having
pathology and the retina with fovea region respectively. Images (b), (e) and (h) shows
the corresponding ground truth images. The corresponding predictions are depicted in
images (c), (f) and (i).

it uses the gradient information flowing into the last convolutional layer of the CNN

to understand each neuron for a decision of interest. As an additional demonstration

of the superiority of the proposed method, GradCAM visualization of the filter gra-

dient for all the eight retinal layers from the proposed DelNet architecture compared

with DilatedReLayNet model is depicted in Fig. 3.11. Here, Fig. 3.11 (R1), (a) rep-

resents the input image, (b) ground truth, (c) Prediction map from DilatedReLayNet,

and (d-k) GradCAM visualization of filter gradient for all the eight retinal layers from

the predictor block of DilatedReLayNet Model. Also, in Fig. 3.11 (R2), (a) indicates

the input image, (b) ground truth, (c) Prediction map from the proposed model, and

(d-k) GradCAM visualization of filter gradient for all the eight retinal layers of the

proposed Model. Also, (d-k) shows a heat map where the red indicates higher value

and blue indicates lower values. Comparing the Grad-CAM visualization of Dilate-

dReLayNet model depicted in Fig. 3.11 (R1) with the Grad-CAM visualization of the
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Figure 3.11: GradCAM visualizations on retinal layers of proposed DelNet architec-
ture compared with DilatedReLayNet model. R1: (a) Input, (b) ground truth, (c) Pre-
diction map from DilatedReLayNet and (d-k) GradCAM visualization of filter gradi-
ent for all the eight retinal layers from the predictor block of DilatedReLayNet Model.
R2: (a) Input, (b) ground truth, (c) Prediction map from the proposed model and (d-k)
GradCAM visualization of filter gradient for all the eight retinal layers of the proposed
Model. Also, (d-k) shows a heat map where the red indicates higher value and blue
indicates lower values.

DelNet (ensemble) model given in Fig. 3.11 (R2). This visualization clearly shows that

the proposed DelNet model learns the layers better than the single model. The better

performance of the proposed method is because of the ensemble approach. Different

base models are trained and fine tuned to learn certain layers properly. As a result this

approach performs better than the stand-alone single model.

The time complexity analysis of the proposed and other methods considered are

shown in Table 3.9. It has been reported in the literature that graph-based methods

are faster compared to other conventional retinal layer segmentation algorithms (Kafieh

et al., 2013). Also from our analysis, one of the graph-based approaches consider in

this comparison (Chiu et al., 2010) taking 9.7 seconds per image for yielding the result.

Hence, from Table 3.9 it is clear that the CNN-based methods are faster compared
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Table 3.9: Time Complexity analysis.
Method

Total train time
(seconds)

Avg. prediction time
per image (seconds)

CM-GDP (Chiu et al., 2010) - 9.74s
ReLayNet (Roy et al. (2017)) 1375s 0.032s
DilatedReLayNet (Reddy et al., 2020) 1441s 0.030s
M1 1596s 0.032s
M2 1501s 0.030s
M3 1472s 0.030s
M4 1527s 0.031s
DelNet (proposed method) 7082s 0.1524s

to the conventional approaches. As expected, it can be observed from the table that

the ensemble method takes more time (almost 5 times) to train and test compared to

other CNN-based methods. The memory requirements also will be more for ensemble

approaches. This is one drawback of the proposed approach.

3.3.1 DelNet Manual Combining Algorithm (DelNet MC)

In this experiment, we have tried a traditional ensemble approach which is established

in machine learning algorithms. Here, we replaced the predictor block with a layer-

by-layer manual combing algorithm, which used a weighted ensemble for each layer

(weighted mean of the base-learner outputs).

The developed step by step procedure using weighted ensemble for an optimal 8

class segmentation from the 4 model outputs obtained from the models Mi (1 ≤ i ≤ 4)

is described below:

Let Pm be the output prediction of model Mm (1 ≤ m ≤ 4). Clearly Pm has

dimensions 216× 64× 8, we see that Pm
i,j gives the 8 class softmax score vector for the

pixel i, j (1 ≤ i ≤ 216, 1 ≤ j ≤ 64).

The procedure follows a general algorithm to obtain segmentation mask for each

layer l (1 ≤ l ≤ 8) one by one in the following order : OPL, INL, ILM, OS-RPE, ISE,

NFL-IPL, ONL-ISM and finally the Background. We first define a quantity G as the
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weighted mean of P :

G =

∑4
m=1Al,mP

m∑4
m=1Al,m

(3.2)

where the weights tensor A is a scalar, it’s also a hyper-parameter which is intuitively

chosen for an optimal performance. The values of Al,m for 1 ≤ l ≤ 8 and 1 ≤ m ≤ 4

are given in Table 3.10.

We see that G has dimensions 216 × 64 × 8, and Gl
i,j gives the softmax

score/probability for the pixel i, j (1 ≤ i ≤ 216, 1 ≤ j ≤ 64) belonging to layer l

(1 ≤ l ≤ 8). Now for each layer 1 ≤ l ≤ 8, and each previously unlabelled pixel i, j

(1 ≤ i ≤ 216, 1 ≤ j ≤ 64), we label pixel i, j as layer l only if it satisfies the following

condition:

Gl
i,j > βl

Here, βl (1 ≤ l ≤ 8) are scalars (and hyper-parameters) chosen carefully to produce

optimal results. The optimal value of β is given in Table 3.11.

For the remaining unlabelled pixels, we first define G as the arithmetic mean of P :

G =

∑4
m=1 P

m

4
(3.3)

and then label each unlabelled pixel to the class corresponding to the maximum softmax

score for that pixel in Gu (the normal way of classification). Even though the manual

combining algorithm is an option for combining the base learners, our experiments

shows that the CNN based predictor block is superior in terms of performance. This is
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Table 3.10: The values of Al,m used in each layer and models.
Layer (l) OPL INL ILM OS-RPE ISE NFL-IPL ONL-ISM Background
Al,1 0.08 0.10 0.10 0.80 0.80 0.02 0.02 0.02
Al,2 0.02 0.02 0.02 0.02 0.02 0.80 0.80 0.80
Al,3 0.10 0.80 0.80 0.10 0.10 0.10 0.10 0.10
Al,4 0.80 0.08 0.08 0.08 0.08 0.08 0.08 0.08

Table 3.11: The values of Beta (βl) used in each layer for optimal result.
Layer OPL INL ILM OS-RPE ISE NFL-IPL ONL-ISM Background
Beta (βl) 0.75 0.75 0.80 0.85 0.85 0.90 0.90 0.95

evident from Fig. 3.8.

Algorithm 1: DelNet Manual Combining Algorithm (DelNet MC).
Result: Gives the class label for each pixel i, j in the image.

for 1 ≤ i ≤ 216 and 1 ≤ j ≤ 64 do
labeli,j = 0;

end

for 1 ≤ l ≤ 8 do

G =
4∑

m=1

Al,mP
m;

for 1 ≤ i ≤ 216 and 1 ≤ j ≤ 64 do

if labeli,j = 0 and Gl
i,j ≥ βl then

labeli,j = l;

end

end

end

G = 0.25×
4∑

m=1

Pm;

for 1 ≤ i ≤ 216 and 1 ≤ j ≤ 64 do

if labeli,j = 0 then
labeli,j = argmax

1≤l≤8
{Gi,j};

end

end
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3.4 Summary

This chapter proposes an automated method for segmenting retinal layers from OCT

images using a deep ensemble learning based technique. To create the ensemble based

architecture, we used 4 base models which follows DilatedReLayNet architecture and

a predictor block. Experimental results on a standard benchmark dataset shows that

the proposed architecture improved the segmentation accuracy when compared to the

stand-alone single DilatedReLayNet model and other state-of-the-art methods.

To demonstrate the robustness of the proposed method we conducted experiments

on retinal scans with pathology and compared it with the performance of the model

on normal eye scans. The results show that there is not much difference in the per-

formance of the model in both cases. Also, the statistical hypothesis testing showed

lower standard deviation and more consistent predictions for the proposed model. The

Grad-CAM visualization of the proposed model also shows that the model is learning

different layers much better than the single DilatedReLayNet model.

Since the proposed model follows an ensemble approach, the training and testing

time is more when compared to the stand-alone single model. Also the memory re-

quirements for training the model is high. This is a drawback of the proposed model.

However, the test time is still less than 0.25 seconds (on our experimental settings).
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CHAPTER 4

ATTENTION ASSISTED PATCH-WISE CNN FOR

THE SEGMENTATION OF FLUIDS FROM THE

RETINAL OPTICAL COHERENCE TOMOGRAPHY

IMAGES

An attention assisted convolutional neural network-based architecture to detect and

quantify three types of retinal cysts namely the intra-retinal cyst, sub-retinal cyst and

pigmented epithelial detachment from the OCT images of the human retina is proposed

in this chapter 3. The proposed architecture has an encoder-decoder structure with an

attention and a multi-scale module. The qualitative and quantitative performance of

the model is evaluated on the publicly available RETOUCH retinal OCT fluid detec-

tion challenge data set. The proposed model outperforms the state-of-the-art methods

in terms of precision, recall, and dice coefficient. Furthermore, the proposed model is

computationally efficient due to its less number of model parameters.

4.1 Introduction

Eyes provide a gateway to the outward world due to their ability to perceive light and

process it into visual information. Eyes receive reflected light from the environment

which is converted to neural electrochemical signals. These are then transmitted to the

brain and processed in the visual cortex. The retina is responsible for the conversion
3The work described in this Chapter has been published in:Anoop, B. N., Saswat Parida, Ajith B, G

N Girish, Abhishek R. Kothari, Muthu Subash Kavitha, and Jeny Rajan, “Attention Assisted Patch-wise
CNN for the Segmentation of Fluids from the Retinal Optical Coherence Tomography Images.” Inter-
national Conference on Pattern Recognition and Machine Intelligence. Springer, 2021. (Submitted).



of optical signals to electrochemical signals, and its central part, called the macula, is

responsible for fine visual discrimination. Due to this vital role, abnormalities in the

macula can lead to serious visual impairment.

Macular edema is a painless disorder caused by the collection of fluid from leak-

ing retinal capillaries in the retina (Roy et al., 2017; Anoop et al., 2020). The fluid

may be present in the retina (Reddy et al., 2020) (intraretinal cysts, IRC), under the

retina (subretinal fluid, SRF) or under the retinal pigment epithelium (Pigment epithe-

lial detachment, PED). This causes loss of vision proportionate to its degree and extent.

This condition occurs in several retinal disease such as age-related macular degenera-

tion (AMD), retinal vein occlusion (RVO) and diabetic macular edema (DME). These

three conditions affect a large number of people in the middle and older age groups, and

together, constitute majority of the cases of vision loss due to retinal disease.

OCT is a quick and non-invasive imaging modality commonly used to investigate

and characterize retinal disorders. The quality of OCT output volumes from different

instruments varies due to the presence of speckle and other artefacts (Menon et al.,

2020b; Anoop et al., 2021) ( Fig. 4.1). This poses a challenge in identification, in-

terpretation and reproducibility of morphological features of disease, like intraretinal

cysts, subretinal fluid, etc. Also, manual segmentation and subsequent quantification

of these features on OCT images is tedious and has significant inter-observer variabil-

ity. It has been a focus of effort for the medical imaging community in recent years

to develop automated methods for retinal OCT fluid segmentation and quantification

which could augment the clinical characterization and quantification, thereby resulting

in better decision making.

Several methods have been proposed in the literature to automate the segmentation

of either IRC (Girish et al., 2018b, 2019), SRF (Rao et al., 2019) or PED (Wu et al.,

2017) individually. However, methods proposed for segmenting all three retinal fluid

components simultaneously are rare in the literature. Limitations in the algorithms pro-

posed and unavailability of quality annotated ground truth datasets have been major
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(a) (b) (c)

(d) (e) (f)

Figure 4.1: The visual quality differences of the OCT scans due to the presence of
speckle is depicted here. A retina with macular edema imaged with three different
OCT scanners namely: (a) Cirrus, (b) Spectralis, (c) Topcon and (d), (e), and (f) are
the annotations of the three fluid types on 2D B-scans: IRF (red), SRF (green), PED
(blue).

impediments in the development of such a comprehensive algorithm. The RETOUCH

challenge (Bogunović et al., 2019) (April 2017) was aimed at creating a benchmark that

could be used to evaluate future algorithms for detection and segmentation of all three

fluid components across different retinal disorders and OCT vendors. The algorithm

presented by Lu et al. (Lu et al., 2017) performed superior to others in this challenge.

They used U-net architecture as the segmentation network with an additional channel to

provide relative- information in the form of a distance map and reported better perfor-

mance for the model. Subsequently, Alsaih et al (Alsaih et al., 2020) proposed an en-

semble based deep learning approach for end-to-end segmentation of retinal cysts from

OCT images by employing the well-known segmentation architecture, DeepLabv3+.

The authors demonstrated the effectiveness of patch-wise training approach for the seg-

mentation of retinal cysts. Ten different models were trained for a specific task and

predicted the best results using majority voting. Though the method gave good results,

the complexity of the model was its major drawback. In this chapter, we propose an

attention assisted CNN model that addresses some of the issues of existing methods.

The main contributions in this chapter are as follows-
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• Proposed a modified DeepLabv3+ architecture by adjusting the field of view of
the convolutional kernels in the initial two stages of the encoder part, which can
extract more predominant features.

• Unlike the conventional DeepLabv3+, we have employed a modified atrous spa-
tial pyramid pooling (ASPP) module with weight sharing concept. The dilation
rates of the ASPP module is fixed experimentally.

• We have employed a self attention-based mechanism in the skip connections,
which helped the model learn more reliable features.

• Employed relative layer information of the retinal layers as an additional feature
for the segmentation of retinal cyst.

• The proposed approach uses fewer network parameters compared to the state-of-
the-art techniques.

The rest of the chapter is structured as follows, Section 4.2 describes the proposed

method which includes the data set, pre-processing, and model architecture. Section

4.3 discusses the results and comparative analysis with existing methods. Finally, con-

clusions and remarks are drawn in section 4.4.

4.2 Methodology

4.2.1 Dataset and data preprocessing

The RETOUCH retinal OCT fluid challenge (Bogunović et al., 2019) dataset is used

to analyze the performance of the proposed method. RETOUCH challenge dataset

consists of OCT scans having all the three kinds of retinal cysts such as IRF, SRF

and PED acquired from three different OCT machines namely Cirrus, Spectralis, and

Topcon. The dataset contains 112 volumes of OCT scans, out of which 70 volumes are

kept for training and the remaining 42 volumes are reserved for the testing. Since the

test set was not available we split the training set of the RETOUCH dataset into train,

validation, and test set. Details of the RETOUCH dataset is given in Table 4.1.
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Table 4.1: RETOUCH dataset details.
Vendor (Dimension) No. of volumes for Training No. of volumes for Testing

Cirrus (512 x 1024 x 128) 24 14
Spectralis (512 x 496 x 49) 24 14
Topcon (512 x 885 x 128) 22 14

Figure 4.2: Block diagram of the proposed network.

OCT images are generally corrupted with speckle (Anoop et al., 2019). The level

and distribution of the noise depends on the equipment used to acquire the images. We

have used the model developed in Chapter 2 for denoising the OCT images. Contrast

Limited Adaptive Histogram Equalization (CLAHE) (Zuiderveld, 1994) is employed

over the denoised image to increase the intensity difference between cystic and non-

cystic regions. The contrast enhancement helped the deep learning model to extract

more relevant features compared to the raw images.

4.2.2 Network Architecture

The architecture of the proposed method is depicted in Fig. 4.2. The proposed approach

mainly consists of an encoder-decoder structure and is improvement over the popular

DeepLabv3+ architecture (Fig. 4.3). We added a multi-scale module and an attention

module (Fig. 4.4(a)) to the DeepLabv3+ architecture to improve the performance. The

multi-scale module extracts features of different scales and the attention module provide

attention to relevant features from the encoder side during the decoding stage. The

combined effect of the multi-scale module and attention module with relative distance

approach(Fig. 4.4(b)) yielded an improved performance.
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Figure 4.3: A detailed view of the modified DeepLabv3+ architecture with a self-
attention mechanism and ASPP module.

The proposed architecture is shown in Fig 4.3. The model is designed to take an

input OCT image of size 256 × 512 and generate a probability map of the same size.

The kernel size of the encoder varies from 7× 7 to 3× 3. The first and second stages of

the encoder use 7× 7 and 5× 5 kernels respectively which can extract more prominent

features from the initial stages compared to the kernel of size 3×3. Batch normalization

and ReLU activation are used after each convolution. The decoder has a fixed kernel

size of 3× 3. The encoder and decoder are connected with skip connections that enable

to pass the features extracted by the encoder to the decoder in the same stage. The skip

connection is passed through the attention module that provides attention to certain

feature maps thereby the total performance can be increased. The multi-scale module

is attached to extract the multi-scale features from the high dimensional space. It can

extract features without the need of deep layer network.

The attention module in the proposed model uses the self-attention (Oktay et al.,

2018) approach to extract both spatial and channel information, that gave importance

to the most relevant features to do the classification of the target task. A channel-wise

1× 1× 1 convolution is carried out on both the inputs followed by a sigmoid activation

function and it is used to normalize the attention coefficients. The attention coefficients
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(a)

(b)

Figure 4.4: (a) Block Diagram of the Attention Module, (b) The proposed network
architecture by incorporating relative distance of the data as an additional information
to aid the training of the model.

give importance to the relevant features that passes from the encoder to the decoder.

Fig. 4.4(a) describes the attention module used in the proposed architecture. The at-

tention module assist the decoder to extract the prominent feature from the symmetric

scale encoder.

The multi-scale (ASPP) module is used to extract different scale features from the

high dimensional level. In (Chen et al., 2018b), the spatial pyramid pooling is utilized

to extract multi-scale features from the high dimensional features. A kernel for different

scales in the spatial pyramid pooling module to extract certain common features of dif-

ferent scales are proposed in (Huang et al., 2019). In our experiment, we have observed

that the network is not picking up a common feature with a common kernel of four dif-

ferent dilation rates in the spatial pyramid pooling module. In the proposed multi-scale

module the features are processed from particular dilation rates (dilation rates - 6 and

12) with more convolutional filters.

We also included additional information regarding the location of the cyst to im-
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prove the segmentation. To do this, we incorporated relative layer distance information

as a feature, which helps in distinguishing the type of cysts based on its location (differ-

ent types of cysts present between different retinal layers). Relative distance describes

the ratio between the pixel distance from the top layer to the distance from the top and

bottom layers. If the value is 1, then it indicates the pixel is in the bottom layer and

0 indicates the pixel is in the top layer. Furthermore, the value increases from 0 to 1

as we move from top to bottom. We used the U-Net architecture to extract features

from relative distance map which is further used along with the output of the modified

DeepLabv3+ model to predict the output.

4.3 Results and Discussion

To avoid any possible bias towards the test set, we did three-fold cross-validation. The

mean outcome of all three experiments are shown in Table 4.2 and Table 4.4. Each

split consists of separate train validation and test sets. From the total 70 volumes in

the RETOUCH training set, 22 volumes are used for testing, 6 volumes are used for

validation and the remaining volumes are utilized for training the model. Patch-wise

training is adopted for the proposed model. We experimentally fixed the optimal patch

size as 128×128 with 0.72 percentage overlap. All model weights were initialized with
′he normal′ initializer and the optimization was carried out using the Adam optimizer

with a learning rate of 0.0003. The model is trained for 200 epochs, with a batch sizes of

8, and the objective function used to train the proposed model is the categorical cross-

entropy loss. All experiments were performed on an NVIDIA DGX station with 64-bit

Ubuntu operating system, NVIDIA Tesla V100 GPU with 32 GB dedicated memory

and implemented in Keras with Tensorflow as backend.

The performance of the proposed approach is evaluated both qualitatively and quan-

titatively. The performance of the proposed architecture is compared with the state-of-

the-art methods such as SFU (Lu et al., 2017) and patch-DeepLabv3+ (Alsaih et al.,
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2020). In Alsaih et al. (2020) an ensemble approach is also proposed. Since it is dif-

ficult to implement the ensemble approach we were not able to compare with it. The

performance comparisons are based on the well-known evaluation metrics such as pre-

cision, recall, and mean dice scores. The quantitative analysis of the proposed model

on the RETOUCH dataset is given in Table 4.2. It can be observed that the proposed

method outperformed other methods in terms of precision, recall, and the mean Dice

coefficient. A vendor-wise and cyst-wise analysis of the proposed method compared

to the other state-of-the-art methods is listed in Table 4.3. It can be noticed that the

proposed method outperforms the other recently proposed methods.

Qualitative comparison of the proposed model over the state-of-the-arts are depicted

in Figure 4.5, Figure 4.6, and Figure 4.7. Figure 4.5(a) is one of the input image from

cirrus vendor, Figure 4.6(a) is one of the input image from spectralis vendor, and Fig-

ure 4.7(a) is one of the input image from topcon vendor, used for testing. Figure 4.5(b),

Figure 4.6(b), and Figure. 4.7(b) are the Ground Truth image marked by the expert

ophthalmologist. Figure 4.5(c), Figure 4.5(d), and Figure 4.5(e) are the predicted im-

ages from the SFU (Lu et al., 2017) model, the patch-DeepLabv3+ (Alsaih et al., 2020)

model, and the proposed model respectively on an image from the cirrus vendor. Fig-

ure 4.6(c), Figure 4.6(d), and Figure 4.6(e) are the predicted images from the SFU (Lu

et al., 2017) model, the patch-DeepLabv3+ (Alsaih et al., 2020) model, and the pro-

posed model respectively on an image from the spectralis vendor. Figure 4.7(c), Fig-

ure 4.7(d), and Figure 4.7(e) are the predicted images from the SFU (Lu et al., 2017)

model, the patch-DeepLabv3+ (Alsaih et al., 2020) model, and the proposed model re-

spectively on an image from the topcon vendor. From all these images (Figure 4.5,

Figure 4.6, and Figure 4.7), it is clear that the predictions of the proposed model shows

fewer false positives compared to the other two. These results additionally highlight

the efficacy of the proposed method in segmenting retinal cysts from the retinal OCT

images.

The comparison of the complexity of the proposed model in terms of the number of
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Table 4.2: Quantitative comparison of the proposed model with the SFU and Patch-
DeepLabv3+ in terms of complexity (number of parameters), precision, recall and
mean dice scores on the RETOUCH dataset.

Method
Total no. of
parameters

Vendor
IRF SRF PED

Precision Recall Dice Pricision Recall Dice Precision Recall Dice

SFU (Lu et al., 2017) 18,511,491
Cirrus 74.43 65.67 63.71 75.65 68.35 68.46 59.67 60.75 56.33

Spectralis 71.23 65.34 67.32 79.45 82.58 79.57 69.17 60.32 62.82
Topcon 77.92 57.87 64.12 67.43 54.95 59.43 65.21 67.34 58.39

Patch-
DeepLabv3+

2,599,363
Cirrus 69.95 56.03 58.38 79.93 58.35 64.49 57.91 48.18 48.68

Spectralis 68.10 55.31 58.52 83.63 75.45 77.68 68.53 57.40 59.80
Topcon 75.70 50.10 58.87 64.93 42.92 50.03 71.44 56.36 59.48

Proposed 9,105,391
Cirrus 74.83 62.92 63.89 80.20 64.98 68.53 63.59 54.36 55.30

spectralis 77.63 65.83 69.78 84.98 79.96 81.68 68.73 66.65 66.92
Topcon 76.59 53.80 60.89 67.56 49.89 56.79 71.93 66.75 66.93

Table 4.3: Quantitative evaluation of the proposed model, SFU and Patch-
DeepLabv3+ over the three individual data splits in terms of dice scores.

Model
Split-1 (Dice) Split-2 (Dice) Split-3 (Dice)

IRF SRF PED IRF SRF PED IRF SRF PED
SFU (Lu et al., 2017) 71.58 72.72 63.60 70.40 72.53 49.59 52.32 70.70 61.00

Patch-
DeepLabv3+ 59.53 54.67 69.53 63.17 71.64 47.95 51.13 66.03 50.20

Proposed 70.58 62.69 74.61 70.12 74.03 53.30 53.95 69.99 61.54

parameters with respect to the SFU and Patch-DeepLabv3+ is presented in Table 4.2.

Compared to the SFU (Lu et al., 2017) model the proposed model used almost 50% of

fewer parameters. Also, we have conducted an ablation study to evaluate the perfor-

mance of the proposed system by removing patch-wise training, relative layer informa-

tion, attention module and multi-resolution module to understand the contribution of

each of the components to the proposed architecture. The results of the ablation study

is given in Table 4.4.

To obtain the optimal architecture, three sets of experiments have been conducted.

The first set of experiments were to fix the depth and width of the model.The second

set of experiments was based on the dilation rates of the multi-scale module. We tried

with different dilation rates (3, 4, 5, 6,12, 18 and 24) and 6 and 12 gave us maximum

performance. The third set of experiments is conducted by varying the filter size. we

observed that the usage of filter size 7 × 7 and 5 × 5 at the initial stage of encoders

helps to increase the performance of the architecture compared to the architecture with

a fixed filter size of 3× 3.
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(a) (b)

(c) (d) (e)

Figure 4.5: Qualitative comparison of the proposed model with existing CNN based
methods on the cirrus data of the RETOUCH dataset. (a) shows an OCT image of the
cirrus scan with all three kinds of cysts (IRF, SRF, and PED). (b) is the corresponding
labeled image of experts from RETOUCH data set, (c) indicate the predicted results
of the SFU model, (d) indicate the results of the patch-DeepLabv3+ model, and (e)
indicate the prediction of the proposed model.

4.4 Summary

In this chapter, we proposed a CNN based model for segmenting three prominent types

of retinal cyst from OCT images. The proposed model uses the attention modules to

provide importance to certain features, which improved the performance of the model.

The proposed model also comes up with the observations regarding extracting multi-

scale features that can improve its performance. The overlapped patch-wise training

and the relative layer information helped the model to learn the features of the retinal

Table 4.4: Ablation study.
Method Vendor

IRF SRF PED
Precision Recall Dice Pricision Recall Dice Precision Recall Dice

DeepLabv3+
Cirrus 65.34 50.35 53.56 68.79 43.50 47.33 58.69 34.36 38.84

Spectralis 61.52 51.34 53.97 80.78 66.53 69.49 71.93 43.52 49.99
Topcon 72.94 47.45 54.23 44.24 39.34 36.96 83.34 39.90 50.23

Patch-
DeepLabv3+

Cirrus 69.95 56.03 58.38 79.93 58.35 64.49 57.91 48.18 48.68
Spectralis 68.10 55.31 58.52 83.63 75.45 77.68 68.53 57.40 59.80
Topcon 75.70 50.10 58.87 64.93 42.92 50.03 71.44 56.36 59.48

Proposed
Cirrus 74.37 62.85 63.75 79.99 64.90 68.23 63.07 54.06 54.97

spectralis 77.03 65.12 69.36 84.44 79.76 81.16 68.50 66.31 66.09
Topcon 76.29 53.30 60.69 67.16 49.71 56.39 71.64 66.49 66.68
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(a) (b)

(c) (d) (e)

Figure 4.6: Qualitative comparison of the proposed model with existing CNN based
methods on the spectralis data of the RETOUCH dataset. (a) shows an OCT image of
the spectralis scan with all three kinds of cysts (IRF, SRF, and PED). (b) is the corre-
sponding labeled image of experts from RETOUCH data set, (c) indicate the predicted
results of the SFU model, (d) indicate the results of the patch-DeepLabv3+ model, and
(e) indicate the prediction of the proposed model.

cysts much better. The less number of false positives prediction of our model shows

its higher ability in predicting retinal cysts compared to the other competitive methods

used in this study.
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(a) (b)

(c) (d) (e)

Figure 4.7: Qualitative comparison of the proposed model with existing CNN based
methods on the topcon data of the RETOUCH dataset. (a) shows an OCT image of the
topcon scan with all three kinds of cysts (IRF, SRF, and PED). (b) is the corresponding
labeled image of experts from RETOUCH data set, (c) indicate the predicted results
of the SFU model, (d) indicate the results of the patch-DeepLabv3+ model, and (e)
indicate the prediction of the proposed model.
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CHAPTER 5

CONCLUSIONS AND FUTURE SCOPE

This thesis discusses the steps and challenges for developing automated methods based

on deep learning techniques for the analysis of OCT images such as despeckling, retinal

layer segmentation and retinal cyst segmentation. OCT is an imaging technique mainly

used to analyse the abnormalities present in the human retina. The presence of speckle

in the OCT images hampers its visual quality and leads to an inaccurate clinical diag-

nosis. The initial part of this thesis studied the statistical characteristics of the noise

present in the OCT images and proposed a method to improve the quality of the OCT

images by eliminating the speckle. The proposed model identifies the noise type in an

input image and classifies it into one of the four different noise types. It subsequently

denoises the image effectively using a GCDS array that has models catering to specific

noise types. Another unique feature proposed in our work is the use of the synthetic eye

to create datasets for simulations and experiments. This dataset was useful in doing the

quantitative evaluation of different OCT denoising methods. Another vital contribution

in this chapter was the patch-wise training approach, which helped to attain an improved

performance of the existing GCDS model. This methodology prevents the model from

learning the structural details and also provides a way of dealing with limited ground

truth data. The experimental results on synthetic and real OCT image datasets showed

that the proposed method performed better than other reported methods.

Apart from this, an automated retinal layer segmentation algorithm based on en-

semble learning, proposed for the selective segmentation of retinal layers. To create the

ensemble-based architecture, we used 4 base models which follows DilatedReLayNet

architecture and a predictor block. To demonstrate the robustness of the proposed

method we conducted experiments on retinal scans with pathology and compared it



with the performance of the model on normal eye scans. The results show that there is

not much difference in the performance of the model in both cases. Also, the statistical

hypothesis testing showed lower standard deviation and more consistent predictions for

the proposed model. The Grad-CAM visualization of the proposed model also shows

that the model is learning different layers much better than the single DilatedReLayNet

model.

Also, we proposed a CNN based model for segmenting three types of the retinal

cyst from OCT images. The proposed algorithms can help clinicians with the early

detection and quantification of abnormalities in the human retina. The proposed model

uses the attention modules to provide importance to certain features, which improved

the performance of the model. The proposed model also comes up with observations

regarding extracting multiscale features that can improve its performance. The over-

lapped patch-wise training and the relative layer information helped the model to learn

the features of the retinal cysts much better. The less number of false positives predic-

tion of our model shows its higher ability in predicting retinal cysts compared to the

other competitive methods used in this study.

The CNN despeckling methods proposed in this thesis are based on the noise types.

We trained separate models for different kinds of noises. One drawback of this approach

is the introduction of bias in the denoised images, when the noise doesnt belong to

the four categories that we considered. One solution to this problem is to develop a

noise independent denoising model that can take care of any type of noise. Future

works should focus on developing such models. The retinal layer segmentation and

cyst segmentation techniques proposed in this thesis can segment the retinal layers and

cysts in OCT scan up to their true boundary. However, proposed CNN methods may

fail to delineate the cysts accurately when the quality of the scans is poor. Hence, future

work may be directed towards developing end to end models that incorporate the noise

information and edge enhancement.
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Abràmoff, M. D., M. K. Garvin, and M. Sonka (2010). Retinal imaging and image
analysis. IEEE reviews in biomedical engineering, 3, 169–208. 44

Adabi, S., S. Conforto, A. Clayton, A. G. Podoleanu, A. Hojjat, and M. R. Avanaki,
An intelligent speckle reduction algorithm for optical coherence tomography images. In
2016 4th International Conference on Photonics, Optics and Laser Technology (PHO-
TOPTICS). IEEE, 2016. 17

Alsaih, K., M. Yusoff, T. Tang, I. Faye, and F. MÚriaudeau (2020). Deep learning
architectures analysis for age-related macular degeneration segmentation on optical co-
herence tomography scans. Computer Methods and Programs in Biomedicine, 105566.
71, 76, 77

Amini, Z. and H. Rabbani (2017). Optical coherence tomography image denoising
using gaussianization transform. Journal of Biomedical Optics, 22(8), 086011. 17

Anoop, B., G. Girish, P. Sudeep, and J. Rajan, Despeckling algorithms for optical
coherence tomography images: A review. In Advanced Classification Techniques for
Healthcare Analysis. IGI Global, 2019, 286–310. 17, 42, 57, 73

Anoop, B., K. S. Kalmady, A. Udathu, V. Siddharth, G. Girish, A. R. Kothari, and
J. Rajan (2021). A cascaded convolutional neural network architecture for despeckling
oct images. Biomedical Signal Processing and Control, 66, 102463. 70

Anoop, B., R. Pavan, G. Girish, A. R. Kothari, and J. Rajan (2020). Stack gener-
alized deep ensemble learning for retinal layer segmentation in optical coherence to-
mography images. Biocybernetics and Biomedical Engineering, 40(4), 1343–1358. 33,
70

Antony, B., M. D. Abramoff, L. Tang, W. D. Ramdas, J. R. Vingerling, N. M.
Jansonius, K. Lee, Y. H. Kwon, M. Sonka, and M. K. Garvin (2011). Automated
3-d method for the correction of axial artifacts in spectral-domain optical coherence
tomography images. Biomedical optics express, 2(8), 2403–2416. 44

Aum, J., J.-h. Kim, and J. Jeong (2015). Effective speckle noise suppression in op-
tical coherence tomography images using nonlocal means denoising filter with double
gaussian anisotropic kernels. Applied Optics, 54(13), D43–D50. 16

Bashkansky, M. and J. Reintjes (2000). Statistics and reduction of speckle in optical
coherence tomography. Optics Letters, 25(8), 545–547. 16, 22

85
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