
A STUDY ON GRAPH LABELINGS AND GRAPH
SPECTRA

Thesis

Submitted in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

by

SAUMYA Y M

DEPARTMENT OF MATHEMATICAL AND COMPUTATIONAL SCIENCES

NATIONAL INSTITUTE OF TECHNOLOGY KARNATAKA,

SURATHKAL, MANGALORE - 575 025

SEPTEMBER 2022

Dedicated to

My family

DECLARATION
By the Ph.D. Research Scholar

Ihereby declare that the Research Thesis entitled A STUDY ON GRAPHLABEL-

INGS AND GRAPH SPECTRA which is being submitted to the National Institute

of Technology Karnataka, Surathkal in partial fulfillment of the requirements for the

award of the Degree of Doctor of Philosophy in Mathematical and Computational

Sciences is a bonafide report of the research work carried out by me. The material con-

tained in this Research Thesis has not been submitted to any University or Institulion

for the award of any degree.

(SAUMYA Y. M.)

Reg. No: 177030MA003

Department of Mathematical and Computational Sciences

Place: NITK, Surathkal.

Date: 12/09/2022

CERTIFICATE

This is to certify that the Research Thesis entitled A STUDY ON GRAPH LA

BELINGS AND GRAPH SPECTRA subrmitled by Ms. SAUMYA Y. M.. (Register

Number: 177030MA003) as the record of the research work carried out by her is ac-

cepted as the Research Thesis submission in partial fulfillment of the requirements for

the award of degree of Doctor of Philosophy

12j9/9 Dr. S. M. HEGDE

Research Supervisor

Chairman - DRPC

(Signature with Date and Seal)

Chairman
DUGCIDPGCI DRPC

Dept of Mathemalical and Computational Sciences
National Institute of Technology Kanataka, Surathkal

MANGALORE -575 025

ACKNOWLEDGEMENTS

First and foremost, I would like to express my deep and sincere gratitude to my

thesis advisor, Prof. S. M. Hegde, for his patience, motivation, and continuous support.

I am grateful to him for being my guide and giving me the freedom to explore what-

ever I liked. His understanding, encouragement, and personal guidance have helped me

immensely. I could not have imagined having a better advisor and mentor for my Ph.D

study.

I would like to thank Prof. Annappa, Department of Computer Science and En-

gineering, and Dr. Srinivasa Rao Kola, Department of MACS, National Institute of

Technology Karnataka, Surathkal, for their comments and suggestions as RPAC mem-

bers during my research work.

I would like to thank former heads of MACS department Prof. Santhosh George,

Prof. B. R. Shankar, Prof. S. S. Kamath, and the present head Dr. R. Madhusudhan,

for providing an independent working environment with all the computing facilities re-

quired to carry out the research work. Further, I would like to express my heart-filled

thanks to all the professors, faculty members, and office staff of the MACS department

for helping me at various stages of my Ph.D.

I would like to thank all my teachers who have taught during various stages of my

life. My journey began with the encouraging words of my colleagues, Ms. Usha Kiran

and Ms.Thanmayee. I cannot thank them enough for making me realize what I can

accomplish.

I would like to record special thanks to Dr. Vasudeva, Professor, NMAM Institute

of Technology, Nitte, for the valuable discussions during this research work.

I am happy to thank my friends Rashmi K, Priya Kamath, Febin I. P, Shashanka

Kulamarva, Chaitanya G. K, Mahesh Krishna, Kanagaraj K, Palanivel R, Sumukha S,

Sachin Naik, for their help and support in the journey of my doctoral studies.

I am grateful to my father Shri. P. Mahalinga Patali and my mother Smt. Yashoda

M, whose constant love and support kept me motivated and confident. My accomplish-

ments and success are because they believed in me. Deepest thanks to my brother Mr.

Sheethal Kumar Y. M, who kept me grounded, reminded me of what is important in

life, and was always supportive of my adventures.

I express my sincere gratitude to Shri. Ramakrishna Kamath and Smt. Rekha Ka-

math, for their support and continuous encouragement. I am deeply grateful to my

parents-in-law for their unfailing emotional support.

Finally, I would like to express my deep gratitude to my husband Mr. Vinay P and

my dear daughter Samanvi P and acknowledge with pleasure that without their affec-

tion, moral support, and care, it would never have been possible for me to pursue my

research. Finally, I thank and remember each and every person who helped me directly

or indirectly in carrying out this work.

Place: NITK, Surathkal SAUMYA Y. M.

Date: 12/09/2022

ABSTRACT

The thesis mainly involves the study of graph labelings and graph spectra with a focus on their

applications.

Labeled graphs provide a compact representation in which each element of an n-element set

S (the signature of the graph) is assigned to a vertex of a graph with n vertices. Edges between

vertices only exist when the sum or difference of their respective vertex numbers is one of the

elements of the signature. A graph defined by such a signature is a sum graph or difference

graph accordingly, and the labeling is called sum or difference labeling.

A graph G(V,E) is referred to as a sum graph if there is an injective labeling known as sum

labeling f from V (G) to a set of distinct positive integers S such that ab ∈ E(G) if and only if

there is a vertex w in V (G) such that f (w) = f (a)+ f (b)∈ S. Here w is called a working vertex.

A sum labeling f is called an exclusive sum labeling with respect to a subgraph H of G, if f is a

sum labeling of G, where H contains no working vertex. In this thesis, we obtain the exclusive

sum number of several graphs. A possible application of the exclusive sum labeled complete

k-partite graph in a relational database is given in this thesis. An autograph(difference graphs)

with a signature whose elements are positive integers and contains no repeated elements is

called a proper monograph. This thesis investigates the proper monograph labelings of several

graphs and obtains their maximum independence number from their signatures.

Graphs serve as models for multiprocessor interconnection networks. A link exists between

the graph spectra and the design of multiprocessor interconnection networks from the literature.

The graphs are termed as well-suited if the value of m∆ is small. Here m is the number of dis-

tinct eigenvalues and ∆ is the maximum vertex degree. This thesis defines two new graph

tightness values, t3(G) and t4(G), based on the literature’s four types of graph tightness values.

Further, we present several well-suited graphs for the design of the multiprocessor intercon-

nection networks. Load balancing attempts to improve the performance of a distributed system

by transferring some of the workloads of a congested node to other nodes for processing. This

thesis studies the dynamic load balancing approach and presents a modified algorithm for load

balancing in integer arithmetic. The proposed algorithm generates a balancing flow with a

minimum l2 norm.

Keywords: Exclusive sum labeling, proper monographs, idle vertices, maximum independent set,

graph tightness, multiprocessor interconnection networks, load balancing, l2-norm

i

ii

Table of Contents

Abstract of the Thesis . i

List of Figures . v

List of Tables . vii

1 INTRODUCTION 1

1.1 GRAPHS AND THEIR REPRESENTATIONS 1

1.2 GRAPH LABELINGS . 2

1.3 SUM LABELINGS AND EXCLUSIVE SUM LABELINGS 3

1.4 APPLICATIONS OF SUM LABELINGS 5

1.5 AUTOGRAPHS AND MONOGRAPHS 6

1.6 GRAPH SPECTRA . 8

1.7 APPLICATIONS OF GRAPH SPECTRA 9

1.8 ORGANIZATION OF THE THESIS 11

2 EXCLUSIVE SUM LABELINGS OF GRAPHS 13

2.1 EXCLUSIVE SUM NUMBER OF AN ODD CYCLE Cn 13

2.2 EXCLUSIVE SUM NUMBER OF Cn□K2 18

2.3 EXCLUSIVE SUM NUMBER OF Kn□K2 21

2.4 EXCLUSIVE SUM NUMBER OF kPn AND kCn 24

3 APPLICATIONS OF EXCLUSIVE SUM LABELING IN RELATIONAL

DATABASES 29

3.1 EXCLUSIVE SUM NUMBER OF COMPLETE k-PARTITE GRAPH

Kr1,r2,...,rk . 29

3.2 APPLICATION OF EXCLUSIVE SUM LABELINGS IN RELATIONAL

DATABASES . 31

iii

4 MAXIMUM INDEPENDENT SETS FROM THE SIGNATURES OF PROPER

MONOGRAPHS 35

4.1 PRELIMINARIES . 35

4.2 PROPER MONOGRAPH LABELINGS OF Cn AND Cn
⊙

K1 37

4.3 PROPER MONOGRAPH LABELINGS OF Cn WITH PATHS ATTACHED

TO ITS VERTICES . 42

4.4 PROPER MONOGRAPH LABELINGS OF Cn WITH

ATTACHED IRREDUCIBLE TREES 45

5 GRAPH MODELS FOR MULTIPROCESSOR INTERCONNECTION

NETWORKS 49

5.1 PRELIMINARIES . 49

5.2 NEW TIGHTNESS VALUES BASED ON THE CHROMATIC NUM-

BER . 52

5.3 GRAPHS SUITABLE FOR MINs . 56

6 DYNAMIC LOAD BALANCING OF INTEGER LOADS 77

6.1 PRELIMINARIES . 77

6.1.1 NOTATIONS . 78

6.2 EXISTING ALGORITHMS . 79

6.3 THE PROPOSED ALGORITHMS FOR LOAD BALANCING 80

6.4 TIME COMPLEXITY . 88

7 CONCLUSIONS AND FUTURE SCOPE 91

BIBLIOGRAPHY . 93

PUBLICATIONS . 99

iv

List of Figures

1.1 Sum graph labeling of K3∪K2. 3

1.2 Exclusive Sum graph labeling of K4∪K5. 4

1.3 The autograph of C4 from signature S = {1,2,2,4}. 7

1.4 The proper monograph of C4 from signature S = {1,2,4,5}. 7

2.1 Exclusive Sum labeling of Cycle C5 and Cycle C7 as given in (Miller

et al. (2005), Theorem 4.) . 14

2.2 Cycle Cn. 14

2.3 Exclusive Sum labeling of Cycle C5 and Cycle C7. 18

2.4 Cartesian product of Cn□K2. 18

2.5 Exclusive Sum labeling of C5□K2 and C6□K2, when k = 1,d = 4. . . . 21

2.6 Exclusive Sum labeling of K5□K2 when k = 1,d = 4. 24

2.7 Exclusive Sum labeling of kPn when k = 4, n = 5. 26

2.8 Exclusive Sum labeling of kCn when k = 3, n = 4. 28

3.1 Exclusive Sum labeling of K2,3,4. 32

3.2 The Student-Faculty Database, with the tables on the right representing

the relationships between the three tables STUDENT, FACULTY and

COURSE. 33

3.3 Exclusive Sum labeling of K2,3,4 used to model Student-Faculty Database. 34

4.1 Cycle C4 with labels assigned to v1,v2, and v3. 37

4.2 Cycle C8. 39

4.3 Cycle C9. 39

4.4 Cycle C8
⊙

K1. 41

4.5 Cycle C7
⊙

K1. 42

v

4.6 Cycle C8 with a path attached to two vertices of C8. 45

4.7 Cycle Cn with an irreducible tree attached to a vertex of Cn. 47

4.8 Cycle C8 with an irreducible tree attached to a working vertex v1 of C8. . 47

5.1 Line graph of Tensor product K3×K3. 59

5.2 Line graph of Tensor product K3×K2,2. 60

5.3 Line graph of Cartesian product K1,2□K1,3. 61

5.4 Line graph of Complete graph K5. 63

5.5 Line graph of Complete Bipartite graph K3,3. 64

5.6 Line graph of Crown graph K4,4− I. 65

5.7 Line graph of Complete Tripartite graph K2,2,2. 66

5.8 Line graph of Johnson graph J(4,2). 68

5.9 Line graph of Cartesian product K1,2□K3. 69

5.10 Line graph of Rook graph K3□K3. 70

5.11 Line graph of Total graph of complete bipartite graph K2,2. 72

5.12 Line graph of Total graph of complete graph K3. 73

5.13 Line graph of Johnson graph J(6,3). 75

6.1 Vertices arranged at their corresponding distances from vertex vn. 86

6.2 Petersen Graph G. 87

6.3 Matrix C obtained by deleting vertex 9. 87

6.4 Spanning tree G
′
from C. 87

vi

List of Tables

5.1 Notations . 57

5.2 Line graph of Tensor product Kn×Kp, for n > 2 and p > 2. 57

5.3 Tensor product Kn×Kp, for n > 2 and p > 2. 58

5.4 Line graph of Tensor product Kn×Kp,p, for n > 2. 59

5.5 Tensor product Kn×Kp,p, for n > 2. 59

5.6 Line graph of Cartesian product K1,n−1□K1,p−1. 60

5.7 Cartesian product K1,n−1□K1,p−1. 61

5.8 Line graph of Complete graph Kn. 62

5.9 Complete graph Kn. 62

5.10 Line graph of Complete Bipartite graph Kn,n. 63

5.11 Complete Bipartite graph Kn,n. 63

5.12 Line graph of Crown graph Kn,n− I. 64

5.13 Crown graph Kn,n− I. 64

5.14 Line graph of Complete Tripartite graph Kn,n,n. 65

5.15 Complete Tripartite graph Kn,n,n. 66

5.16 Line graph of Johnson graph J(n,2). 67

5.17 Johnson graph J(n,2). 67

5.18 Line graph of Cartesian product K1,n−1□Kp. 68

5.19 Cartesian product K1,n−1□Kp. 68

5.20 Line graph of Rook graph Kn□Kn. 69

5.21 Rook graph Kn□Kn. 70

5.22 Line graph of Total graph of complete bipartite graph Kn,n. 71

5.23 Total graph of complete bipartite graph Kn,n. 71

5.24 Line graph of Total graph of complete graph Kn. 72

5.25 Total graph of complete graph Kn. 72

vii

5.26 The Line graph of Johnson graph J(n,3). 74

5.27 Johnson graph J(n,3). 74

6.1 Graphs with l2-norm of ∥ f2∥2 and ∥ fnew∥2. 88

viii

CHAPTER 1

INTRODUCTION

Graphs have evolved as a powerful mathematical tool in many applications, from Eu-
ler’s solution to Konigsberg’s Seven-Bridge problem (Euler (1741)) to the modern-day
worldwide web. The definition of a graph is simple, but the theory that has grown up
around it is enormous. A few of the essential topics of interest in graph theory include
labeling, algebraic graph theory, coloring, domination, etc. Graph theory has immense
potential for applications in computer science, physics, chemistry, operation research,
and social networks, among others.

1.1 GRAPHS AND THEIR REPRESENTATIONS

A graph G consists of a set V of vertices (points, nodes) and a set E of edges (lines,
connections). Every edge e∈E is associated with ordered or unordered pair of elements
of V , i.e., there is a mapping from the set of edges E to a set of ordered or unordered
pairs of elements of V . The graph G with vertex set V and edge set E is written as
G = (V,E) or G(V,E).

If an edge e ∈ E is associated with an ordered pair (u,v) or an unordered pair (u,v),
where u,v ∈ V , then e is said to connect u and v and u,v are called endpoints of e. If
e = uv is an edge of G, we say that u and v are adjacent and that each vertex is incident
with e. The number of vertices in G is denoted as |V (G)| and is called the order of G.
Similarly, |E(G)| denotes the number of edges in G and is called the size of G. If G is
a (p,q) graph then G has p vertices and q edges.

Two or more edges joining the same pair of vertices are known as multiple edges,
and an edge with identical ends is called a loop. A graph with no loops and multiple
edges is called a simple graph. In a graph, if multiple edges are allowed but no loops,
then the graph is known as a multi graph. If there is a path between two vertices vi and

1

v j, they are said to be connected in G. If all pairs of vertices in a graph G are connected,
then G is called as a connected graph.

A subgraph G
′

of a graph G is a graph in which V (G
′
) ⊆V (G) and E(G

′
) ⊆ E(G)

and the assignment of vertices is same as in G. A spanning subgraph is a subgraph
containing all the vertices of G. A tree T is a connected acyclic graph. A set of trees of
G forms a forest. A spanning tree of G is a connected, acyclic, spanning subgraph of G.
The degree of a vertex v is the number of edges incident with v; it is denoted by deg(v).
The minimum degree among the vertices of G is denoted by δ (G) and the maximum
degree by ∆(G). If δ (G) = ∆(G) = r, then G is called a regular graph of degree r. If
r = n−1 then the graph is a complete graph. A vertex with degree 1 is called a pendant
vertex.

A bipartite graph is one whose vertex set can be partitioned into two subsets X and
Y , so that each edge has one end in X and the other end in Y . If every vertex of X

is joined with every vertex of Y then G is said to be complete bipartite graph and is
denoted by Km,n with |X |= m and |Y |= n. In particular a complete bipartite graph K1,n

is called a star. Every non-trivial tree is a bipartite graph.

For all standard notations and terminologies we refer (Harary (1969)) and (West
(1996)).

1.2 GRAPH LABELINGS

A graph labelling is a conditional assignment of real values or subsets of a set to the
vertices, or the edges, or both. There are an infinite number of ways to label a graph.
When conditions are imposed on specific parameters, such as vertices, edges, or both,
such problems become interesting. The very first types of graph labelings or valuations
(α ,β , γ , and ρ valuations) were introduced by Rosa (1966) as a tool to solve the famous
Ringel’s conjecture. The β -valuation is known by the popular term graceful labeling.
The graceful labeling of graphs has been extensively studied over the last few decades.
Several graceful labeling problems have proven to be challenging to solve, and inves-
tigators have come up with an alternative, related but weaker, labelings to gain insight
into those difficult problems.

Alternative graph labeling schemes have been investigated sporadically and often as
an adjunct to an investigation of a related graceful labeling scheme. In recent years, dif-
ferent labeling schemes have been developed and studied in their own right as legitimate
research topics unrelated to graceful labelings. Examples include sum and difference
labelings.

Over the last few decades, enormous papers have produced an astounding array of

2

graph labeling methods, which are still being enhanced due to many application-driven
concepts. An extensive literature on labeling problems is given by Gallian (2021). La-
beled graphs are becoming a more common type of mathematical model for a variety
of applications. These labelled graphs are used to solve a variety of coding theory
problems, such as the creation of good radar-type codes. They are also used to solve
ambiguities in X-ray crystallography, create a communication network addressing sys-
tem, and find the best circuit layouts. Bloom and Golomb (1977) have described the
applications of labeled graphs.

1.3 SUM LABELINGS AND EXCLUSIVE SUM LABELINGS

The concept of a sum graph was introduced by Harary (1990). A graph G(V,E) is
referred to as a sum graph if there is an injective labeling known as sum labeling f from
V (G) to a set of distinct positive integers S such that for a,b ∈V (G), ab ∈ E(G) if and
only if there is a vertex w in V (G) such that f (w) = f (a)+ f (b) ∈ S. Here w is called
a working vertex. An example of sum labeling is shown in Figure 1.1.

There can be no connected sum graph since an edge from the vertex with the largest
label would require an even larger vertex. A graph can be converted into a sum graph by
adding the isolated vertices whenever necessary. The sum number σ(H) of a connected
graph H is the least number of isolated vertices required for G = H∪Kσ(H) to be a sum
graph, where Kσ(H) is the complement of the complete graph, Kσ(H). Such a graph G

is said to be optimally labeled.

Figure 1.1 Sum graph labeling of K3∪K2.

In an analogous manner, Harary et al. (1991) defined a real sum graph by allowing
S to be any finite set of positive real numbers. Further, they also proved that every real

3

sum is a sum graph. Harary (1994) generalised sum graphs by allowing S to be any set
of integers, and termed them as integral sum graphs. Mod sum graphs were defined by
Boland et al. (1990) using addition modulo m, a positive integer. Here ρ(H) is called
the mod sum number of a connected graph H and is the least number of isolated vertices
required for G = H ∪Kρ(H) to be a mod sum graph, where Kρ(H) is the complement of
the complete graph, Kρ(H).

Miller et al. (2005) introduced the concept of exclusive sum labeling. A sum label-
ing f is called an exclusive sum labeling with respect to a subgraph H of G, if f is a
sum labeling of G, where H contains no working vertex. The smallest number r such
that there exists an exclusive sum labeling f , which realizes H ∪Kr as a sum graph is
called as the exclusive sum number ε(H). A labeling f is an optimal exclusive sum
labeling of a graph H if f is a sum labeling of H ∪Kε(H) and H contains no working
vertex. Figure 1.2 gives the exclusive sum labeling of K4 ∪K5. Every exclusive sum
graph is also a sum graph, but not the other way around. As a result, the exclusive sum
number always exceeds or equals the sum number.

Figure 1.2 Exclusive Sum graph labeling of K4∪K5.

Observation 1.3.1. (Miller et al. (2005)) For any graph G, ε(G)≥ σ(G).

For any sum graph or exclusive sum graph labeling, the following holds.

Observation 1.3.2. (Miller et al. (2005)) If F is a sum graph labeling of a graph G then

so is kF, where k is a positive integer.

The observation below gives the lower bound for exclusive sum number.

Observation 1.3.3. (Miller et al. (2005)) Let ∆ be the maximum degree of vertices in a

graph G. Then ε(G)≥ ∆(G).

4

The exclusive sum number is known for the following graphs:

i). Complete graphs. ε(Kn) = 2n−3, for n≥ 3 (Bergstrand et al. (1989)).

ii). Paths. ε(Pn) = 2, for n≥ 3 (Miller et al. (2005)).

iii). Cycles. ε(Cn) = 3, for n≥ 3 (Miller et al. (2005)).

iv). Complete Bipartite graph. ε(Km,n) = m+ n− 1, for m > 2, n > 2 (Miller et al.
(2005)).

v). Fan of order n+1. ε(Fn) = n, for n≥ 4 (Tuga and Miller (2005)).

vi). Friendship graph. ε(Fm) = 2m, for m≥ 2 (Tuga and Miller (2005)).

vii). Wheels. ε(Wn) = n, for n≥ 5 (Tuga and Miller (2005)).

viii). Caterpillar. ε(caterpillar G) = ∆(G) (Tuga et al. (2005)).

1.4 APPLICATIONS OF SUM LABELINGS

Sum graph labelings allow storing a full graph as a collection of non-negative integers
without having to record the edges explicitly. When sum graph labeling is used, all we
need to store is the set of vertices together with a few isolated nodes, if required. The
reason for this is that edges are implicitly specified in sum graphs.

When graph labeling is used to store a graph, the original component being stored
is referred to as the primary graph, and any vertices added during the graph labeling
process are referred to as isolates. There is no way to distinguish between the vertices
of the primary graph and the isolates when all vertices are represented as a single set;
they are all just vertices of the graph. The storage and manipulation of edges of a
primary graph is the focus of applications. Sutton and Miller (2000) have used sum
labeling of multipartite graphs to store links between individual rows from different
tables. According to Sutton (2000), a sum-labeled multipartite graph can be used to
represent a relational model in RDBMS. A relational database is wholly composed of
tables. A table is a list of information about items like students, clients, employees, etc.
Each table row contains information on a single occurrence of an item. The relationship
between two rows belonging to two separate tables is called links. The vertices of the
primary graph represent table rows, and the edges indicate links between these rows in
the graph model of a relational database. Isolates are an artifact of the linkage storage
mechanism and do not represent rows. It quickly became clear that within this domain,
the vertices can be thought of as being partitioned into two sets because the labels

5

assigned to the isolates can be stored separately from the labels assigned to the vertices
of the primary graph, which are stored in the table rows. Assume an edge exists between
a primary graph vertex and an isolate or between two isolates. Since one or both of the
vertices do not reflect a table row, this edge cannot possibly represent a valid link.

A single integer is necessary to store all the links for a particular row in a sum
labeling. The storage overhead of this system depends on the number of isolates that
will be needed to create a sum labeling. Some of the advantages of using sum labeling
in DBMS (These advantages are elaborately discussed in Ph.D. Thesis of Sutton (2000))
are Linkages as metadata, Referential Integrity, Recreating links, Flexibility, and Access
paths.

Slamet et al. (2006) demonstrated how to distribute secret information to a group of
people using sum graph labelings so that only approved subsets can recover the secret.
For storing geographic information, Arlinghaus et al. (1993)) used sum graphs as data
structures. The algebraic rule for assigning edges requires the sum graph to have at least
one isolated vertex. Hence, the sum graph finds application in situations that require
isolating one geographic location from others, such as facility location for toxic waste
sites, detention centers, or other similar societally obnoxious facilities.

1.5 AUTOGRAPHS AND MONOGRAPHS

The concept of autograph was introduced by Bloom et al. (1979). An autograph labeling
of G is a map f from set of vertices V to a set S of real numbers, with the property that
for the vertices a,b ∈ V , ab ∈ E if and only if there is a vertex c ∈ V such that the
difference of the vertex labels satisfy |f(a)− f(b)| = f(c). The set S is the signature of
G and is defined as S = {s ∈ R|s= f(v), ∀ v ∈V}.

If the autograph G has f as a mapping from vertex set V to a set of positive integers,
then G is called a proper autograph. If the signature elements assigned as labels to
the vertices of the autograph G contains only distinct elements, then G is a proper
monograph (Harary called it as difference graph). Figure 1.3 and Figure 1.4 gives the
autograph and proper monograph of C4.

Bloom et al. (1979) gave the following necessary conditions for proper autographs.

Proposition 1.5.1. (Bloom et al. (1979)) (1) The signature values s and 2s belong to

the nodes adjacent to each other.

(2) If a node is labeled as r+t, the signature values r and t belong to its adjacent nodes.

(3) There are no other types of adjacencies in proper autographs.

6

Figure 1.3 The autograph of C4 from signature S = {1,2,2,4}.

Figure 1.4 The proper monograph of C4 from signature S = {1,2,4,5}.

According to Bloom et al. (1979), the autograph G consists of two types of edges.
The edge of the first kind exists between nodes given values s and 2s. The edge of the
second kind exists between nodes with values r and r+ t. Further, it was observed that
a proper monograph does not have more than two edges of the first kind, i.e., at least
deg(u)−2 edges that are incident with the vertex u must be of the second kind.

Some observations and theorem from Sugeng and Ryan (2007), are given as follows:

Observation 1.5.2. (Sugeng and Ryan (2007)) Let α be a monograph labeling for a

graph G and k be a positive integer. Then kα is also a monograph labeling for G.

Observation 1.5.3. (Sugeng and Ryan (2007)) Let G be a monograph. Then mG, for

some positive integer m, is also a monograph.

7

Observation 1.5.4. (Sugeng and Ryan (2007)) A graph G is a monograph if and only

if each of its components is a monograph.

Bloom et al. (1979) constructed signatures of autographs such as complete graphs,
complete bipartite graphs, paths, and cycles. Gervacio and Panopio (1982) studied gen-
eralized Petersen graphs that are proper monographs. Sonntag (2003) investigated the
Difference labeling of Cacti. Sonntag (2004) later investigated the Difference label-
ing of digraphs. Sugeng and Ryan (2007) studied the properties of monographs and
discovered signatures for cycles, fan graphs, kite graphs, and necklaces. Hegde and
Vasudeva (2009) explored the construction of mod difference digraphs. Fontanil and
Panopio (2014) observed that the independent set and vertex covering of a graph could
be derived from the signatures of a proper monograph.

1.6 GRAPH SPECTRA

The theory of graph spectra (Spectral Graph Theory) can be considered an attempt to
utilize linear algebra, particularly the well-developed theory of matrices, as a tool to
study graph theory and its applications.

A graph can be linked to a matrix, or, to put it another way, a graph can be repre-
sented using matrices. Let G be a simple graph with the edge set E(G) = {e1,e2, ...,em}
and the vertex set V (G) = {v1,v2, ...,vn}. A(G) is the n× n matrix in which element
ai j is the number of edges in G with end vertices vi,v j. It’s worth noting that every
adjacency matrix is symmetric. A simple graph G’s adjacency matrix has entries 0 or
1, with 0s on the diagonal. The sum of the items in the rows for v in A(G) is the degree
of v.

The eigenvalues of A are the n roots of the characteristic polynomial PG(x) = det(xI−
A). The eigenvalues are independent of the labeling of the vertices of G because similar
matrices have the same characteristic polynomial. Since A is a symmetric matrix with
real entries, these eigenvalues are real and are denoted as λ1,λ2, ...,λn. Here m=m(G)

denotes the number of distinct eigenvalues of G. Unless and otherwise indicated, it
is assumed that the eigenvalues can be arranged as λ1 ≥ λ2 ≥ ... ≥ λn. The largest
eigenvalue λ1(G) is called the index of G. The eigenvalues of A are the real numbers λ

satisfying Ax = λx for some non-zero vector x ∈ Rn . Each such vector x is called an
eigenvector of the matrix A (or of the labelled graph G) corresponding to the eigenvalue
λ . The unique positive unit eigenvector corresponding to the index of a connected graph
G is called the principal eigenvector of G.

For a graph G with vertex set {1, ...,n}, let D be the diagonal matrix diag(d1, ...,dn),
where di denotes the degree of vertex i(i= 1, ...,n). The Laplacian matrix of a graph G is

8

the matrix L = D−A and the signless Laplacian is the matrix Q = D+A. LG(x) denotes
the characteristic polynomial of L of G. Matrix L is symmetric, positive semi-definite
and has n non-negative, real-valued eigenvalues: v1(G) ≥ v2(G) ≥ ... ≥ vn(G) = 0.
Note that vn = 0 since L j = 0, where j is the all-1 vector in Rn. Here QG(x) denotes the
characteristic polynomial of Q and is called the Q-polynomial of G. Q-spectrum and
Q-eigenvalues denotes the spectrum and the eigenvalues of Q respectively. We denote
the ith largest eigenvalue of Q by qi = qi(G). Since Q is a positive semi-definite matrix
the eigenvalues satisfy: q1(G)≥ q2(G)≥ ...≥ qn(G)≥ 0.

1.7 APPLICATIONS OF GRAPH SPECTRA

Graph spectra has several applications in Computer Science. Some of them are Data
mining, Complex networks and Internet, Pattern Recognition, Load balancing and Mul-
tiprocessor Interconnection Networks, Statistical Databases, Social Networks, and many
other areas. Cvetković and Simić (2011) gave a brief survey of Graph Spectra in Com-
puter Science.

A graph G can serve as a model for the Multiprocessor Interconnection Networks
(MINs) in which the vertices represent the processors, while the edges represent con-
nections between processors. The time to exchange data between different processing
units is one of the main communication overheads in multiprocessor systems. Inter-
connection networks with shorter paths between processors and the average number
of connections per processor are preferred. In order to minimize communication time
within multiprocessor networks, they must comply with two contradictory characteris-
tics: reduce the number of wires (diameter D) and maximize the rate of exchange of
data (maximum vertex degree ∆). The diameter D along with maximum vertex degree
∆ of the graph play an essential role in designing multiprocessor topologies.

Let δ and ∆ be the minimum and maximum degree, respectively, d be the average
vertex degree, λ1 be the largest eigenvalue, D be the diameter, and m be the number of
distinct eigenvalues. Elsässer et al. (2003) established a link between the graph spectra
and the design of multiprocessor topologies. The key conclusion was as follows: for a
given graph G, if m∆ is small, it was anticipated that the corresponding multiprocessor
topology would have excellent communication properties and was called well-suited.
Also, it was noted that there exists an optimal load balancing algorithm that completed
load balancing in m−1 computational steps. Further graphs having large m∆ have been
named ill-suited and hence they are found to be unsuitable for multiprocessor network
design.

From Cvetković et al. (1995), considering the inequalities, δ ≤ d ≤ λ1 ≤ ∆ and D≤

9

m− 1, Cvetković and Davidović (2008), defined four types of graph tightness values,
namely t1(G),stt(G),spt(G), and t2(G). Here the use of largest eigenvalue λ1(G) and
diameter D, instead of ∆ and m, was considered more suitable. Cvetković (1971) proved
that the index of the graph λ1(G) is equal to the dynamic mean value of the vertex
degrees. Since the dynamical mean value of the vertices takes into account not only
the immediate vertex neighbors but also the neighbors of the neighbors, Cvetković and
Davidović (2008) suggested that it was appropriate to use the largest eigenvalue (index).
Furthermore, they showed that the four tightness values are partially ordered by the
relation ‘≤’ as follows:

t2(G)≤ stt(G)≤ t1(G)

t2(G)≤ spt(G)≤ t1(G)

Later, they concluded that the graphs having small tightness values of t2(G) are more
suitable for designing multiprocessor interconnection networks.

According to Krueger and Finkel (1984), load balancing is concerned with dis-
tributing the workload among the processors of a distributed system to prevent some
processors from being idle when others have a substantial amount of workload. The
load balancing algorithm reduces the workload difference by performing local load ex-
change across processors. It is important to note that many communication exchanges
should not add considerably to the load balancing algorithm’s overhead.

There are two load balancing approaches: static and dynamic load balancing. As
in Eager et al. (1986), static algorithms assign tasks to the processors based on prede-
termined rules, and once assigned, the load does not alter. A task is either assigned
to the processor that received it or transferred to another processor; however, the de-
cision to transfer the task is made independently of the system state. In the dynamic
load-balancing approach as in Cybenko (1989); Barmon et al. (1991), the load dis-
tribution decisions are based on the current workload at each node in the distributed
system. Loads can move dynamically from an overloaded node to an underloaded node
to improve performance. We consider dynamic load balancing rather than the static ap-
proach because the former produces a better performance since it makes load balancing
decisions based on the system’s current state.

There are numerous dynamic load balancing algorithms, such as diffusion type al-
gorithms [Cybenko (1989),Boillat (1990), Song (1994)] and the dimension exchange
algorithm [Cybenko (1989), Xu and Lau (1992), Xu et al. (1995)]. The diffusion ap-
proach has gained a lot of attention from researchers over the last few decades in order
to address the load-balancing problem. Dimension exchange employs only pairwise

10

communication, iteratively balancing with one neighbor after the other. In contrast,
diffusion techniques assume that a node of the graph can send and receive messages
to/from all of its neighbors at the same time.

1.8 ORGANIZATION OF THE THESIS

Chapter 2 presents a modified construction of exclusive sum labeling for the odd cycle
Cn when n > 5. We also give the exclusive sum labeling of several graphs. In Chapter
3, we provide the exclusive sum number of the complete k-partite graph Kr1,r2,...,rk and
show their application to store and manipulate links in the relational database system.

In Chapter 4, we present the proper monograph labelings of several graphs and then
show that the signatures of these proper monographs give the maximum independent
sets of these graphs.

In Chapter 5, we present several graphs as models for multiprocessor interconnec-
tion networks for which the tightness values range from O(4

√
N) to O(

√
N), where N

is the order of the graph under consideration. Also, we define two new graph tightness
values; namely, the Third type mixed tightness t3(G) and the Second type of Structural
tightness t4(G) and show that these tightness types are more straightforward to calculate
than the others for the considered graphs.

Chapter 6 proposes an algorithm that results in a balancing flow with a lesser l2-
norm than the l2-norm of the balancing flow generated by the existing algorithm. Fur-
ther, we show that the load balancing by the proposed algorithm is done in O(n3) time.

In Chapter 7, we give a conclusion and scope for future research.

11

CHAPTER 2

EXCLUSIVE SUM LABELINGS OF
GRAPHS

Miller et al. (2005) gave the construction of exclusive sum labeling for odd cycles.
This chapter shows that the above construction failed to produce an exclusive sum la-
beling for odd cycle Cn when n = 5 and n = 7. We present a modified exclusive sum
labeling for cycles Cn of odd length n > 5. Also, we give exclusive sum labeling of the
Cartesian product of cycle Cn and K2, i.e., Cn□K2, Cartesian product of complete graph
Kn and K2, i.e., Kn□K2, the disjoint union of paths, the disjoint union of cycles.

2.1 EXCLUSIVE SUM NUMBER OF AN ODD CYCLE Cn

In the proof for the exclusive sum labeling of a cycle in (Miller et al. (2005), Theorem
4), the exclusive sum labeling of odd cycles C5 and C7 is obtained as shown in Figure
2.1. On observation, we found that the labeling defined here does not produce an ex-
clusive sum labeling. For the cycle, C5, the sum of the isolated vertex label(or working
vertex label) 8 and the non-working vertex label 3 produces another non-working vertex
label 11. Similarly, for the cycle, C7, the sum of the working vertex label 14 and the
non-working vertex label 3 produces another non-working vertex label 17. By observ-
ing, it is clear that the given labeling violates the definition of exclusive sum labeling in
both cases. In the following theorem, we provide the modified exclusive sum labeling
of an odd cycle.

Theorem 2.1.1. The exclusive sum number of an odd cycle Cn is ε(Cn)=3, for n > 5.

Proof. Let f (G) denote the set of the labels assigned to the vertices of the graph G.
Consider the cycle C5 with v1,v2, . . . ,v5 as its vertices. One can assign the vertices

13

�
�
�
�

��
��
��
��

�
�
�
�

��
��
��
��

����

����

��
��
��
��

��

5

43

2

1
v

v

v v

v

1

11

35

7

8

12

14

(a) Cycle C5.

�
�
�
�

����

�����
�
�
�

���� ����

����

�
�
�
�

��
��
��
��

�
�
�
�

��

v
6

v
5

v
4

v
3

v
2

v
1

7
v

13

11
9

5

17

1

3

14

18

20

(b) Cycle C7.

Figure 2.1 Exclusive Sum labeling of Cycle C5 and Cycle C7 as given in (Miller et al.
(2005), Theorem 4.)

of the C5 with labels as f (v1) = 1, f (v2) = 17, f (v3) = 7, f (v4) = 11 and f (v5) = 23
(resulting in three isolated vertices receiving the labels 18, 24 and 34).

Consider an odd cycle with n > 5. Let v1,v2, . . . ,vn be the vertices of the cycle and
denote the vertices vn−2 and vn−1 as x and y respectively as shown in the Figure 2.2. We

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

vn−1

x

y

v
2

3

v
1

nv

v
n−2

v
n−3

v

v
4

Figure 2.2 Cycle Cn.

first consider the path of length three whose vertices are vn,y,x,vn3 . Apart from these
vertices, we label the odd vertices beginning from v1 up to the last odd vertex available
with a difference of six between two consecutive labels in the sequence. We switch to
label the even vertices by adding a sum of four to the last odd vertex label. Similarly,
we label the even vertices with a difference of six. A sum of six is added to the label of
v2 to obtain the label of vn. Finally, we label the remaining vertices such that three edge

14

sums vn + y, x+ y, and vn−3 + x result in only three isolated vertices.

Then define the labeling f : V (G)→ N by

f (vi) =

3i−2, for odd i, 1≤ i≤ n−4

f (vn)−3i, for even i, 2≤ i≤ n−3
(2.1.1)

where f (vn) = 6n−19. The labels f (x) and f (y) are defined as

f (x)=


9n−33

2
, if n≡ 3(mod 4)

9n−27
2

, if n≡ 1(mod 4)
, f (y)=


3n−15

2
, if n≡ 3(mod 4)

3n−9
2

, if n≡ 1(mod 4)
(2.1.2)

The three working vertex labels are:
f (w1) = (f (vn)−5),

f (w2) = (f (vn)+1) and

f (w3) = (f (vn)+ f (y)).

(2.1.3)

To prove that there are no additional edges between the vertices, we consider the
following cases:

1. From (2.1.1) and (2.1.2), it follows that the labeling f assigns odd labels to the
non-working vertices (vertices of the cycle) and even labels to the working ver-
tices (isolated vertices). Hence, it is clear that two non-working vertex labels
cannot produce any other non-working vertex labels. Also, two working vertex
labels cannot produce any other non-working vertex labels.

2. From (2.1.3), one can observe that two working vertex labels will not produce
another working vertex label since we cannot have

(f (vn)−5) = (f (vn)+1)+(f (vn)+ f (y))

(f (vn)+1) = (f (vn)−5)+(f (vn)+ f (y))

(f (vn)+ f (y)) = (f (vn)−5)+(f (vn)+1)

3. The remaining possibility is the sum of labels of a non-working vertex and a
working vertex resulting in another non-working vertex label. Let f (vi), f (v j), f (vk)

∈ f (Cn) where 1≤ i, j,k ≤ n, be the labels assigned to the non-working vertices.
From (2.1.3), we have f (w1), f (w2), f (w3), as the working vertex labels. Let

15

1 ≤ i, j ≤ n, where i ̸= j. As we observe, f (vn) = 6n−19 is the largest label of
the cycle. Then for any non-working vertex label say f (vi), we have

f (vi) ̸=

 f (w2)+ f (v j) for 1≤ i, j ≤ n where f (w2) = f (vn)+1

f (w3)+ f (v j), for 1≤ i, j ≤ n where f (w3) = f (vn)+ f (y)

Suppose for some i, j ∈ {1,2, . . . ,n}, where i ̸= j and a working vertex label
f (w1) = f (vn)−5, we have

(f (vn)−5)+ f (v j) = f (vi)≤ f (vn) (2.1.4)

Then from (2.1.4) and the labeling defined in (2.1.1) and (2.1.2), one can observe
that f (v j)< 5 and can only be 1 or 3.

(a) If f (v j) = 1, then

f (vi) = (f (vn)−5)+1 = f (vn)−4 = 6n−23 (2.1.5)

(b) If f (v j) = 3, then

f (vi) = (f (vn)−5)+3 = f (vn)−2 = 6n−21 (2.1.6)

Now we verify that the labels 6n− 23 and 6n− 21 cannot be the labels of the
vertices of the cycle.

• From (2.1.1) and (2.1.5), it follows that

3i−2 = 6n−23 =⇒ i = 2n−7.

(a) if i = 1, then 1 = 2n− 7 which results in n = 4 contradicting the fact
that n is odd.

(b) if i = n− 4, then n− 4 = 2n− 7 which results in n = 3, contradicting
the fact that n > 5.

• Consider (2.1.1) and (2.1.5). It follows that 6n−23= f (vn)−3i =⇒ 3i= 4,
which contradicts the fact that i is an integer.

Now from (2.1.2) and (2.1.5), we consider the following cases:

• if 6n−23 =
9n−33

2
, then n =

13
3

16

• if 6n−23 =
9n−27

2
, then n =

19
3

• if 6n−23 =
3n−15

2
, then n =

31
9

• if 6n−23 =
3n−9

2
, then n =

55
9

On observation, the above four cases also contradict the fact that n is an integer.
Hence, it is clear that none of the vertices of the cycle are assigned with the label
6n−23 .

Similarly, we now verify that none of the vertices of the cycle is assigned with
the label 6n−21 .

• From (2.1.1) and (2.1.6), we have 3i−2 = 6n−21 =⇒ 3i = 6n−19 which
contradicts the fact that i is an integer.

• From (2.1.1) and (2.1.6), we have f (vn)−3i = 6n−21 =⇒ 3i = 2, which
contradicts the fact that i is an integer.

Now from (2.1.2) and (2.1.6), we consider the following cases:

• if 6n−21 =
9n−33

2
, then n = 3

• if 6n−21 =
9n−27

2
, then n = 5

• if 6n−21 =
3n−15

2
, then n = 3

• if 6n−21 =
3n−9

2
, then n =

33
9

The above four cases contradict the fact that n > 5 and n is an integer, and it is
clear that the label 6n−21 is also not assigned to any of the vertices of the cycle.
Hence, we conclude that no extra edges are induced between the working vertices
or between the non-working and working vertices. Therefore the exclusive sum
number for an odd cycle is ε(Cn) = 3, for n > 5.

Figure 2.3 illustrates the exclusive sum labeling of C5 and C7 obtained from Theo-
rem 2.1.1.

17

��
��
��
��
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

����

����

����

��
��
��
��

1

v
4

17

7

1
v

5
v

11

23

v
3

2
v

24

18

34

(a) Cycle C5.

�
�
�
�

�
�
�
�

����

��
��
��
��

�
�
�
�

�
�
�
�

��
��
��
��

��

��

��

v
1

v
2

v
3

v
4 v

5

v
6

v
7

23

1

17

7

11

18

3

15 24

26

(b) Cycle C7.

Figure 2.3 Exclusive Sum labeling of Cycle C5 and Cycle C7.

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��

�
�
�
�

��

��

��
��
��
��

��
��
��
��

�
�
�
�

����

����

����

����

u
1

u
2

u
3

u
n−1

u
n

v
1

v
2

v
3

v
n−1

v
n

Figure 2.4 Cartesian product of Cn□K2.

2.2 EXCLUSIVE SUM NUMBER OF Cn□K2

Consider the Cartesian product of cycle Cn with the complete graph K2. The vertices of
the two cycles are u1,u2, ...,un and v1,v2, ...,vn as shown in Figure 2.4.

There are two possible ways of labeling Cn□K2 :

• Case 1: Label the vertices of Cn□K2 such that ui + ui+1 = vi + vi+1 for 1 ≤ i ≤
n−1. Then, the sum ui+vi will result in n different isolated (or working) vertices.

• Case 2: Label the vertices in the path from v1,u1,u2,v2,v3,u3,u4, ...,vn−2,un−2,

un−1,vn−1 when n is odd, or the path from v1,u1,u2,v2,v3,u3,u4, ...,un−2,vn−2,

vn−1,un−1 when n is even. It is known that ε(Pn) = 2. Hence the above labeling
will produce two distinct sums. Also, the vertex sums v1 + v2 = u2 +u3 = v3 + v4

18

= ... = vn−2+vn−1, when n is odd or v1+v2 = u2+u3 = v3+v4 = ... = un−2+un−1,
when n is even, results in a single distinct sum. Hence, a total of three isolated
vertices will be required. But the graph Cn□K2 still consists of the following
as adjacent vertices: (v1,vn), (u1,un), (un,vn), (un−1,un) and (vn−1,vn), which
implies that more than three isolated vertices are required. The following theorem
gives the exclusive sum number of the graph Cn□K2, for n≥ 4.

Theorem 2.2.1. The exclusive sum number ε(Cn□K2) = 5, for n≥ 4.

Proof. Let k ≥ 1 and odd, d ≥ 4 and even, where k < d and are co-prime. The labeling
f : V (G)→ N is defined as follows:

f (ui) =

k+(2i−2)d, for odd i, i < n

k+(4n−2i−4)d, for even i, i < n
(2.2.1)

f (vi) =

k+(2i−2)d, for even i, i < n

k+(4n−2i−4)d, for odd i, i < n
(2.2.2)

f (un) =

k+(3n−5)d, if n is even

k+(3n−6)d, if n is odd
(2.2.3)

f (vn) =

k+(n−3)d, if n is even

k+(n−2)d, if n is odd
(2.2.4)

The working vertices receive the labels as follows: 2k + (4n− 4)d, 2k + (4n− 6)d,
2k +(4n− 8)d, 2k +(3n− 6)d, and 2k +(5n− 8)d when n is odd. When n is even,
their labels are 2k + (4n− 4)d, 2k + (4n− 6)d, 2k + (4n− 8)d, 2k + (3n− 5)d, and
2k+(5n−9)d. Now consider the following:

1. Let A be the set of labels assigned to the vertices of the first cycle.

A = { ai = f (ui), for 1≤ i≤ n}

2. Let B be the set of labels assigned to the vertices of the second cycle.

B = { bi = f (vi), for 1≤ i≤ n}

3. Let C =V (mK1), where m = ε(Cn□K2), be the set of labels assigned to the work-

19

ing vertices w1,w2, . . . ,wm

C = { ci = f (wi), for 1≤ i≤ m}

We know that (A∪B)∩C = /0. Since the set A and B contains odd labels, and the set
C contains even labels, one can easily verify that there are no additional edges between
the vertices by considering the following:

(i) ai +a j ̸= ak, for any ai,a j,ak ∈ A

(ii) bi +b j ̸= bk, for any bi,b j,bk ∈ B

(iii) ai + ci ̸= c j, for any ai ∈ A, ci,c j ∈C

(iv) bi + ci ̸= c j, for any bi ∈ B, ci,c j ∈C

From (2.2.1), (2.2.2),(2.2.3) and (2.2.4), we have

ai ≡ k(mod d), ∀ i ∈ {1,2, . . . ,n} and ai ∈ A,

bi ≡ k(mod d), ∀ i ∈ {1,2, . . . ,n} and bi ∈ B,

ci ≡ 2k(mod d), ∀ i ∈ {1,2, . . . ,m} and ci ∈C,

and since k < d and k, d are relatively prime, it is easy to verify the following:

(v) {ai +a j} ⊆C, {bi +b j} ⊆C and {ai +bi} ⊆C

(vi) ai + c j ̸= ak, for any ai,ak ∈ A, c j ∈C

(vii) bi + c j ̸= bk, for any bi,bk ∈ B, c j ∈C

(viii) ai + c j ̸= bk, for any ai ∈ A, c j ∈C, and bk ∈ B

(ix) bi + c j ̸= ak, for any bi ∈ B, c j ∈C, and ak ∈ A

(x) ci + c j ̸= ck, for any ci,c j,ck ∈C

We now arrange the labels as an arithmetic sequence with the common difference d
′
=

|(ai−bi+1)| for 1≤ i≤ n−2 as follows: when n is odd

a1 < b2 < a3 < b4 < ... < an−2 < bn−1 < an−1 < bn−2 < ... < a4 < b3 < a2 < b1 (2.2.5)

when n is even

a1 < b2 < a3 < b4 < ... < bn−2 < an−1 < bn−1 < an−2 < ... < a4 < b3 < a2 < b1 (2.2.6)

20

We now prove that ε(Cn□K2)= 5. Since ∆(Cn□K2)= 3, let us assume that ε(Cn□K2)≥
3. Let c1,c2 and c3 be the three isolated vertices. Now from (2.2.5) and (2.2.6), we have

(i) ai +bi = c1, for 1≤ i≤ n−1

(ii) ai +ai+1 = bi+1 +bi+2 = c2, for 1≤ i≤ n−3

(iii) bi +bi+1 = ai+1 +ai+2 = c3, for 1≤ i≤ n−3

(iv) ai +ai+1 = an +bn = c2 or bi +bi+1 = an +bn = c3 for 1≤ i≤ n−3

The remaining adjacent vertices are (a1,an),(an−1,an),(bn−1,bn),(b1,bn). From the
labeling we have a1 + an ̸= an−1 + an and b1 + bn ̸= bn−1 + bn. Further a1 + an =

bn−1 + bn and b1 + bn = an−1 + an, resulting in two more distinct sums. This implies
that three isolated vertices are not sufficient, thus contradicting our assumption. Hence,
we conclude that, a total of five isolated vertices are required. Therefore, the exclusive
sum number of ε(Cn□K2) = 5.

Figure 2.5 illustrates the exclusive sum labeling of C5□K2 and C6□K2 when k =

1,d = 4.

�
�
�
�

�
�
�
�

��

�
�
�
�

�
�
�
�

����

��
��
��
��

����

��
��
��
��

����

�
�
�
�

��

�
�
�
�

�
�
�
�

��

17

33

37

49

1 57

9

41

25

13 70

66

58

50

38

(a) C5□K2.

��

�
�
�
�

��

�
�
�
�

��

��

��

�
�
�
�

��

�
�
�
�

��

��

�
�
�
�

�
�
�
�

�
�
�
�

��

��86

82

74

66

54

41

13

9

1

17

65

49

33

53

57

25

73

(b) C6□K2.

Figure 2.5 Exclusive Sum labeling of C5□K2 and C6□K2, when k = 1,d = 4.

2.3 EXCLUSIVE SUM NUMBER OF Kn□K2

The following theorem gives the exclusive sum number of the graph Kn□K2, for n≥ 3.

Theorem 2.3.1. The exclusive sum number for ε(Kn□K2) = (2n−1), for n≥ 3.

21

Proof. Consider the Cartesian product of complete graph Kn with K2. The vertices of
the two complete graphs are u1,u2, ...,un and v1,v2, ...,vn respectively. Let k ≥ 1 and
odd, d ≥ 4 and even, where k < d and are co-prime. The labeling f : V (G)→ N is
defined as follows:

f (ui) = k+2(i−1)d, for 1≤ i≤ n (2.3.1)

and
f (vi) = k+(2(n− i)+1)d, for 1≤ i≤ n (2.3.2)

The working vertices receive the labels as: 2k+2d, 2k+4d, 2k+6d,..., 2k+2(2n−2)d
and 2k+(2n−1)d. Now consider the following:

1. Let A be the set of labels assigned to the vertices of the first complete graph.

A = { ai = f (ui), for 1≤ i≤ n}

2. Let B be the set of labels assigned to the vertices of the second complete graph.

B = { bi = f (vi), for 1≤ i≤ n}

3. Let C =V (mK1), where m = ε(Kn□K2), be the set of labels assigned to the work-
ing vertices w1,w2, . . . ,wm

C = { ci = f (wi), for 1≤ i≤ m}

We know that (A∪B)∩C = /0. Since the set A and B contains odd labels, and the set
C contains even labels, one can verify that there are no additional edges between the
vertices by considering the following:

(i) ai +a j ̸= ak, for any ai,a j,ak ∈ A

(ii) bi +b j ̸= bk, for any bi,b j,bk ∈ B

(iii) ai + ci ̸= c j, for any ai ∈ A, ci,c j ∈C

(iv) bi + ci ̸= c j, for any bi ∈ B, ci,c j ∈C

From (2.3.1), (2.3.2), we have

ai ≡ k(mod d), ∀ i ∈ {1,2, . . . ,n} and ai ∈ A,

bi ≡ k(mod d), ∀ i ∈ {1,2, . . . ,n} and bi ∈ B,

ci ≡ 2k(mod d), ∀ i ∈ {1,2, . . . ,m} and ci ∈C,

22

and since k < d and k, d are relatively prime, one can verify the following:

(v) {ai +a j} ⊆C, {bi +b j} ⊆C and {ai +bi} ⊆C

(vi) ai + c j ̸= ak, for any ai,ak ∈ A, c j ∈C

(vii) bi + c j ̸= bk, for any bi,bk ∈ B, c j ∈C

(viii) ai + c j ̸= bk, for any ai ∈ A, c j ∈C, and bk ∈ B

(ix) bi + c j ̸= ak, for any bi ∈ B, c j ∈C, and ak ∈ A

(x) ci + c j ̸= ck, for any ci,c j,ck ∈C

We now arrange the labels as an arithmetic sequence with the common difference d
′
=

|(ai−bn−i+1)| as follows:

a1 < bn < a2 < bn−1 < ... < an−1 < b2 < an < b1 (2.3.3)

From (2.3.3), the following can be verified:

(i) In the graph Kn□K2, smallest label is adjacent to (n− 1) other labels and the
largest label is also adjacent to (n− 1) other labels. Therefore, there will be at
least (n−1)+(n−1) = 2n−2 distinct sums, resulting in a total of 2n−2 isolated
vertices.

(ii) It can be observed from (2.3.3), that the following sums are equal,

a1 +b1 = a2 +b2 = · · ·= an−1 +bn−1 = an +bn

which results in another working vertex. Hence the Cartesian product Kn□K2 has
the total number of working vertices given by (2n−2)+1 = (2n−1).

Therefore, we conclude that, the exclusive sum number of ε(Kn□K2)≤ (2n−1)

Figure 2.6 illustrates the exclusive sum labeling of K5□K2.

23

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��

�
�
�
�

�
�
�
�

�
�
�
�

����

��

��

�
�
�
�

�
�
�
�

��

��

�
�
�
�

��

��

��
��
��
��

33 5

1325

17 21

299

37
10

26

34

42

50

58

66

38

18

1

Figure 2.6 Exclusive Sum labeling of K5□K2 when k = 1,d = 4.

From the above labeling f , it follows that the exclusive sum number for the disjoint
union of two copies of the complete graph Kn is ε(Kn∪Kn)≤ (2n−2), for n≥ 3.

2.4 EXCLUSIVE SUM NUMBER OF kPn AND kCn

In this section we consider the exclusive sum labeling of kPn and kCn. Consider the
disjoint union of k copies of path Pn, denoted by kPn.

Theorem 2.4.1. The exclusive sum number for disjoint union of k copies of paths is

ε(kPn) = 2, for n≥ 4.

Proof. Let v j
1,v

j
2, . . . ,v

j
n be the vertices of jth copy of the graph Pn in kPn. The labeling

f : V (G)→ N is defined as follows:

Let m = 2nk and j ∈ {1,2, . . . ,k}.

When n is odd,

f (v j
i) =



4 j−3, for i = 1

m+ f (v j
i−2), for odd i, 3≤ i≤ n

m+ f (v j
i+2), for even i, 2≤ i≤ n−3

m−8(j−1)+ f (v j
n), for i = n−1

(2.4.1)

When n is even,

f (v j
i) =



4 j−3, for i = 1

m+ f (v j
i−2), for odd i, 3≤ i≤ n−1

m+ f (v j
i+2), for even i, 2≤ i≤ n−2

m−8(j−1)+ f (v j
n−1), for i = n

(2.4.2)

24

The labeling function f assigns distinct labels to the vertices of every copy of Pn in kPn

in such a way that, the two working vertex labels f (w1) and f (w2) for j ∈ {1,2, . . . ,k}
are given by the following

f (w1) = f (v j
1)+ f (v j

2), and

f (w2) = f (v j
2)+ f (v j

3)

We consider the following:

1. Let A be the set of labels assigned to the non-working vertices of kPn.

A = { a j
i = f (v j

i), for 1≤ i≤ n, 1≤ j ≤ k}

2. Let C =V (2K1) be the set of labels assigned to the working vertices w1,w2

C = { ci = f (wi), for 1≤ i≤ 2}

We know that A∩C = /0. The set A consists of odd labels which are congruent to
the following

a j
i ≡


1 (mod m), for j = 1 and 1≤ i≤ n

4 j−3 (mod m), for j ∈ {2, . . . ,k}, and odd i, 1≤ i≤ n

m−4 j+5 (mod m), for j ∈ {2, . . . ,k}, and even i, 1≤ i≤ n.

(2.4.3)

and the set C consists of even labels which are congruent to the following

ci ≡ 2 (mod m), for 1≤ i≤ 2 (2.4.4)

Since the set A contains odd labels, and the set C contains even labels, one can eas-
ily verify that there are no additional edges between the vertices by considering the
following:

(i) a j
x +a j

y ̸= a j
z , for any a j

x,a
j
y,a

j
z ∈ A

(ii) a j
x + ci ̸= c j, for any a j

x ∈ A, ci,c j ∈C

(iii) ci + c j ̸= a j
x, for any ci,c j ∈C, a j

x ∈ A

(iv) From (2.4.4), we have ci + c j ̸= ck, because for any ci,c j,ck ∈C,

ci + c j ≡ 4 (mod m) (2.4.5)

25

results in the label that is not an element of set C.

(v) From (2.4.3) and (2.4.4), it is clear that a j
x + ci ̸= a j

y, because for any for any
a j

x,a
j
y ∈ A, j ∈ {1,2, . . . ,k} and ci ∈C,

a j
x + ci ≡


3 (mod m),

4 j−1(mod m),

m−4 j+7(mod m)

(2.4.6)

and (2.4.6) generates labels that are not members of the set A, i.e., any of the non-
working vertices in the graph do not receive these labels. Therefore, we conclude that
there are no edges between the working vertex labels and non-working vertex labels
and hence, the exclusive sum labeling for ε(kPn) = 2.

��
��
��
��

����

��
��
��
��

����

��
��
��
��

����

��
��
��
��

��
��
��
��

��
��
��
��

����

��
��
��
��

��
��
��
��

��
��
��
��

����

����

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
����

161

1

121

41

5

157

45

117

85

9

153

49

113

89

13

149

53

109

93

162

20281

Figure 2.7 Exclusive Sum labeling of kPn when k = 4, n = 5.

Figure 2.7 illustrates the exclusive sum labeling of kPn when k = 4 and n = 5. Con-
sider the disjoint union of k copies of even cycles, denoted by kCn.

Theorem 2.4.2. The exclusive sum number for disjoint union of k copies of cycles Cn,

where n≥ 4 and even, is ε(kCn) = 3.

Proof. Let v j
1,v

j
2, . . . ,v

j
n be the vertices of jth copy of the graph Cn in kCn. Let m = 2nk

and j ∈ {1,2, . . . ,k} and the labeling f : V (G)→ N is defined as follows:

f (v j
i) =



4 j−1, for i = 1

m+ f (v j
i−2), for odd i, 3≤ i≤ n−1

m+ f (v j
i+2), for even i, 2≤ i≤ n−2

m−8 j+4+ f (v j
n−1), for i = n

(2.4.7)

26

The labeling function f assigns distinct labels to the vertices of every copy of Cn

in kCn in such a way that, the three working vertex labels f (w1), f (w2) and f (w3) for
j ∈ {1,2, . . . ,k} are given by the following:

f (w1) = f (v j
1)+ f (v j

n),

f (w2) = f (v j
1)+ f (v j

2) and

f (w3) = f (v j
2)+ f (v j

3)

We consider the following:

1. Let A represent the set of labels assigned to the vertices of kCn.

A = { a j
i = f (v j

i), for 1≤ i≤ n, 1≤ j ≤ k}

2. Let C =V (3K1) be the set of labels assigned to the working vertices w1,w2,w3

C = { ci = f (wi), for 1≤ i≤ 3}

We know that A∩C = /0. The set A consists of odd labels which are congruent to the
following

a j
i ≡

4 j−1 (mod m), for j ∈ {1, . . . ,k}, and odd i, 1≤ i≤ n

m−4 j+3 (mod m), for j ∈ {1, . . . ,k}, and even i, 1≤ i≤ n
(2.4.8)

and the set C consists of even labels which are congruent to the following

ci ≡ 2 (mod m), for 1≤ i≤ 3 (2.4.9)

Since the set A contains odd labels, and the set C includes even labels, one can eas-
ily verify that there are no additional edges between the vertices by considering the
following:

(i) a j
x +a j

y ̸= a j
z , for any a j

x,a
j
y,a

j
z ∈ A

(ii) a j
x + ci ̸= c j, for any a j

x ∈ A, ci,c j ∈C

(iii) ci + c j ̸= a j
x, for any ci,c j ∈C, a j

x ∈ A

(iv) From (2.4.9), we have ci + c j ̸= ck, because for any ci,c j,ck ∈C,

ci + c j ≡ 4 (mod m) (2.4.10)

27

results in a label that is not an element of set C.

(v) From (2.4.8) and (2.4.9), it is clear that a j
x + ci ̸= a j

y, because for any for any
a j

x,a
j
y ∈ A, j ∈ {1,2, . . . ,k} and ci ∈C,

a j
x + ci ≡

4 j+1(mod m),

m−4 j+5(mod m)
(2.4.11)

and (2.4.11) generates labels that are not members of the set A, i.e., any of the non-
working vertices in the graph do not receive these labels. Therefore, we conclude that
there are no edges between the working vertex labels and non-working vertex labels
and hence, the exclusive sum labeling for ε(kCn) = 3

����

����

����

����

���� �
�
�
�

�
�
�
�

��

��

��

�
�
�
�

�
�
�
�

�
�
�
�

������
��
��
��

47

27

71

7

67

31

43

11

63

35

39

74

50

98

3

Figure 2.8 Exclusive Sum labeling of kCn when k = 3, n = 4.

Figure 2.8 illustrates the exclusive sum labeling of kCn when k = 3 and n = 4.

28

CHAPTER 3

APPLICATIONS OF EXCLUSIVE SUM
LABELING IN RELATIONAL DATABASES

In this chapter we present the exclusive sum labeling complete k-partite graph Kr1,r2,

. . . ,rk. Sutton (2000) proposed that the sum labeled multipartite graphs could serve as a
model for storing links in a relational database. We show that the exclusive sum label-
ing of complete k-partite graph Kr1,r2,...,rk , can be used to model links in the relational
database.

The theorem below provides an exclusive sum labeling for the complete k-partite
graph Kr1,r2,...,rk , where r1,r2, . . . ,rk is the sequence of the sizes of each set in the k

partition and r1 < r2 < · · ·< rk with n = r1+r2+ ...+rk. The vertex set V is partitioned
into k independent sets V1,V2, . . . ,Vk, where Vi = {vi1,vi2, . . . ,viri}, 1≤ i≤ k, such that
vixv jy ∈ E for all i, j ∈ {1,2, ...,k}, i ̸= j and x ∈ {1,2, ...,ri}, y ∈ {1,2, ...,r j} and
|Vi| ≠ |Vj|. The idea of exclusive sum labeling of the complete k-partite graph can be
used to store and manipulate the links inside the relational database.

3.1 EXCLUSIVE SUM NUMBER OF COMPLETE k-PARTITE
GRAPH Kr1,r2,...,rk

Theorem 3.1.1. The exclusive sum number for the complete k-partite graph Kr1,r2,...,rk ,
where r1 < r2 < · · ·< rk and n = r1 + r2 + ...+ rk is ε(Kr1,r2,...,rk) =

(2n−k)(k−1)
2 .

Proof. Let f be any exclusive sum labeling of a complete k-partite graph Kr1,r2,...,rk ,
where r1 < r2 < · · · < rk and n = r1 + r2 + ...+ rk. Let V1,V2, . . . ,Vk, where |Vi| = ri

where 1≤ i≤ k be the vertex sets. Suppose that the labels of Vi = {vi1,vi2, . . . ,viri}, for
1≤ i≤ k are arranged into an ascending sequence, so that vi1 < vi2, for 1≤ i≤ k. Then
one can observe for any two Vi and Vj, i, j ∈ {1,2, . . . ,k} each of the following sums is

29

distinct.

vi1 + v j1 < vi2 + v j1 < vi3 + v j1 < ... < viri + v j1 < viri + v j2 < ... < viri + v jr j

Since there are exactly i+ j−1 distinct sums, it follows that for any two vertex sets, a
total of i+ j− 1 distinct sums are produced and we have

(k
2

)
such pairs of vertex sets

resulting in (2n−k)(k−1)
2 distinct sums. Hence it follows that atleast (2n−k)(k−1)

2 isolated
vertices are required to label the graph exclusively, i.e. ε(Kr1,r2,...,rk)≥

(2n−k)(k−1)
2 .

Let M = 3k+1, |Vi|= ri, for all i∈ {1,2, ...,k} The labeling f : V (G)→N is defined
as follows:

f (vix) = (|Vi−1|2 + x)M+2(3i−1)+1, where 1≤ i≤ k, 1≤ x≤ ri, |V0|= 0 (3.1.1)

Let A = A1∪A2∪ ...∪Ak be the set of labels of all the non-working vertices. Here Ai is
the set of labels assigned to the non-working vertices of the ith partite set Vi as

Ai = {aix = f (vix), where 1≤ i≤ k,1≤ x≤ ri} and |Vi|= |Ai|

The labels in any set Ai, where Ai ∈ A are congruent to the following:

aix ≡ 2(3i−1)+1 (mod M) (3.1.2)

and it is clear that for any i, j∈{1,2, ...,k}, i ̸= j, Ai∩A j = /0. The working vertex labels
represented by the set W = {w1,w2, ...,wm}, m = ε(Kr1,r2,...,rk) are given as follows: For
l ∈ {1,2, ...,m},

W = {wl = aix +a jy, for i, j ∈ {1,2, ...,k}, i ̸= j, x ∈ {1,2, ...,ri}, y ∈ {1,2, ...,r j}}

and labels in W are congruent to the following:

wl ≡ 2(3i−1)+2(3 j−1)+2 (mod M) (3.1.3)

The labels from any set Ai of the bipartite set Vi where i ∈ {1,2, ...,k} is of the form:

aix = ai1 +M(x−1), for 1≤ i≤ k, 2≤ x≤ ri.

The labels from any two sets say Ai, A j where i < j, i, j ∈ {1,2, ...,k} can be arranged

30

as an arithmetic sequence with the common difference M as follows:

ai1 < ai2 < ai3... < airi < a j1 < a j2 < a j3 < ... < a jr j = ai1 < (ai1 +M)< ...

< (ai1 +(ri−1)M)< a j1 < (a j1 +M)< ... < (a j1 +(r j−1)M)
(3.1.4)

From (3.1.4), the smallest vertex label say ai1 ∈ Ai is adjacent to all the vertex labels in
A j, resulting in |Vj| distinct sums. Also the remaining (ri−1) vertex labels in Ai on be-
ing adjacent to the largest vertex label in A j, produces |Vi|−1 distinct sums. Therefore
any two vertex sets Vi ,Vj where i < j, i, j ∈ {1,2, ...,k}, results in |Vj|+ |Vi|−1 distinct
sums. On solving for

(k
2

)
such pairs of vertex sets, the labeling results in the number of

working vertices |W | given as follows:

|W |= n(k−1)−
(

k
2

)
=

(2n− k)(k−1)
2

, where n = r1 + r2 + ...+ rk

From (3.1.2) and (3.1.3) it can be observed that the set A = A1∪A2∪ ...∪Ak consists
of odd labels and the set W consists of even labels only. Let S = A∪W and A∩W = /0.
Now one can verify that there are no new edges between two non-working vertices
belonging to the same partite set, or between the non-working vertices and the working
vertices or between two working vertices by considering the following:

(i) aix +aiy ̸= S, for any aix,aiy ∈ Ai

(ii) aix +wl ̸= S, for any aix ∈ Ai, wl ∈W

(iii) wl +wp ̸= S, for any wl,wp ∈W

Thus, we know that the above labeling is an exclusive sum labeling of Kr1,r2,...,rk . Hence
ε(Kr1,r2,...,rk)≤

(2n−k)(k−1)
2 . Therefore, ε(Kr1,r2,...,rk) =

(2n−k)(k−1)
2 , where n = r1 + r2 +

...+ rk.

Figure 3.1 illustrates the exclusive sum labeling of K2,3,4.

3.2 APPLICATION OF EXCLUSIVE SUM LABELINGS IN RE-
LATIONAL DATABASES

A relational database is entirely comprised of tables. A table is a collection (or, more
formally, a set) of information about similar ’things,’ such as students, faculties, and
courses. A table can only hold information about one sort of thing at a time, therefore
all information about faculties is stored in a faculty table, all information about students

31

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��

�
�
�

�
�
�

�
�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��

��
��
�� ��

��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������

��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������

��������������������������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������

����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������

31

59

299

327

355

383

203

175

147

178

206

234

262

330

358

386

414

442

446

474

530

558

586

502

Figure 3.1 Exclusive Sum labeling of K2,3,4.

is stored in an student table, and so on. Each row in a table contains data on a single
instance of a thing. In a Student table, each separate row contains information about
a specific student. More than one student’s information is never kept in a single row.
There is no duplication and the rows are not ordered since the rows of a table are data
instances in a set. The relationship between two rows belonging to two separate tables
is called links. The term linkage refers to the link stored in the database. Each database
would need some mechanism to save every single link as data inside the database. Dur-
ing query processing, these saved links(linkage) are used to recreate the links in the
database. Within the database, the operations such as insertion, deletion, and updating
of each link must remain valid.

Consider the example of the Student-Faculty database that stores the information
about the Student, Faculty, and the Courses given in Figure 3.2. The STUDENT-
FACULTY Linkage table and the FACULTY-COURSE Linkage table highlight the re-
lationship between the STUDENT, FACULTY, and COURSE tables. Sutton (2000)
proposed that sum labeled multipartite graphs could serve as a model for storing the
links in a relational database. A partite set represents each table, and a vertex within the
partite set represents each row in that table. The edges in the graph reflect the connec-
tions(links) between the rows of individual tables. Isolates are present as an artifact of
the process for storing linkages. The idea is to have one more positive integer in every
table row. This additional integer refers to the label given to the vertex that belongs to
the partite set representing the table. The storage overhead of this system is the number
of isolated vertices(working vertices) created during the sum labeling of the multipartite

32

Figure 3.2 The Student-Faculty Database, with the tables on the right representing the
relationships between the three tables STUDENT, FACULTY and COURSE.

graph.

When a multipartite graph Hm,n models the relational database as stated by Sutton
(2000), the vertices are partitioned into n sets each of fixed-size m, imposing a fixed
number of rows in each table in the database. Practically, this may not be the case, as
the number of rows in a table can vary. Therefore, it is more appropriate to consider the
complete k-partite graph where each partition size can differ. In this case, each partition
size varies, allowing the number of rows in the tables to vary. If the multipartite graph
Hm,n modeled the database, then the partition size will have to be fixed to the largest
number of rows among the tables. As this would result in some unused vertex labels, it

33

is more appropriate to use the complete k-partite graph to model the relational database.
The complete 3-partite graph K2,3,4 in Figure 3.3 shows the relationship between

the three tables in the database. The FACULTY table maps to the partite set of size two,
the STUDENT maps to the partite set of size three, and the COURSE table maps to the
partite set of size four. As given in the linkage tables, only those edges that represent
the relationships are highlighted here. The links generate the isolates or the working
vertex labels, as provided in Figure 3.3.

Figure 3.3 Exclusive Sum labeling of K2,3,4 used to model Student-Faculty Database.

From Theorem 3.1.1, the number of isolated vertices required to obtain an exclu-
sively sum labeled complete k-partite graph, Kr1,r2,...,rk =

(2n−k)(k−1)
2 . Therefore, all the

links that occur in the database can be stored by an exclusive sum labeled complete
k-partite graph, Kr1,r2,...,rk , with (2n−k)(k−1)

2 number of isolated vertices.

34

CHAPTER 4

MAXIMUM INDEPENDENT SETS FROM
THE SIGNATURES OF PROPER
MONOGRAPHS

Since the introduction of autographs, several authors have investigated which graphs
are autographs. Fontanil and Panopio (2014) observed that the independent set and ver-
tex covering of a graph could be derived from the signatures of a proper monograph.
Further, it was observed by Fontanil and Panopio (2014) that not all proper mono-
graphs could have their maximum independent sets derived from the sets of idle ver-
tices. Hence, in this chapter, we give the proper monograph labelings of several graphs
for which the set of idle vertices gives the corresponding maximum independent set of
the graphs. We present the proper monograph labelings of classes of graphs such as
cycles, Cn

⊙
K1, cycles with paths attached to one or more vertices, and cycles with an

irreducible tree attached to one or more vertices. We show that the signatures of these
proper monographs determine the maximum independent sets of these graphs.

4.1 PRELIMINARIES

Several definitions and theorems that will be used in the remainder of this chapter are
given in this section. Consider G to be a graph with V = {v1,v2, . . . ,vn} vertices and E =

{[vi,v j]| for some vi,v j ∈V} edges. Let S = {s1,s2, . . . ,sn} be the set of signature values
assigned to the vertices of autograph G. Here si is the label given to vertex vi, for i =

1,2, ...,n. Note that the vertices are represented by their corresponding signature values.
For G to be an autograph with labels assigned from S, it must satisfy the following: for
any si,s j ∈ S, if si is adjacent to s j, then: |si− s j| ∈ S and the corresponding vertices vi

and v j are neighbors in G.

35

Definition 4.1.1. The corona product of two graphs G1 and G2, denoted by G1
⊙

G2,

is obtained by taking one copy of G1 along with |V (G1)| copies of G2 and adding

edges to make the ith vertex of G1 adjacent to every vertex of the ith copy of G2, where

1 ≤ i ≤ |V (G1)|. The corona product Cn
⊙

K1 is obtained by attaching one pendant

vertex to every vertex of Cn.

Some of the terminologies from Bloom et al. (1979) are given here. A node of
degree one in a tree T is called an endnode. The nodes with a degree at least 3 in a tree
T are called branchnodes. The nodes with degree 2 are termed limb nodes. Consider
a k-length sequence of consecutive adjacent nodes u0,u1,u2, . . . ,uk. The sequence is
called a limb if the adjacent nodes in the sequence satisfy the following: deg(u0) ≥ 3,
deg(u1) = deg(u2) = ...= deg(uk−1) = 2, and deg(uk) = 1.

According to (Theorem 1, Bloom et al. (1979)), every tree T is a proper monograph.
The theorem was proved using the following lemmas describing the class of irreducible
trees. If no node is adjacent to more than one node of degree 1, then the tree is termed
as an irreducible tree.

Lemma 4.1.2. (Bloom et al. (1979)) A limb of a tree T that is irreducible has length

greater than one.

Lemma 4.1.3. (Bloom et al. (1979)) If a tree T is an irreducible tree, then it is a

monograph.

If the elements of the set I are pairwise non-adjacent vertices of graph G, then set I

is called an independent set of G. The set I is maximal if it is not contained as a proper
subset by another independent set. The notion of idle and working vertices was adapted
to determine the vertex coverings and the independent sets in a proper monograph by
Fontanil and Panopio (2014).

Definition 4.1.4. (Fontanil and Panopio (2014)) Consider G(S) as an autograph G with

signature S. A vertex s∈G(S) is termed as a working vertex if the following is satisfied:

there exists si,s j ∈ S, such that |si− s j|= s. If |si− s j| ̸= s for si,s j ∈ S, then s is an idle

vertex.

Fontanil and Panopio (2014) investigated the relations between the idle vertices and
the independent sets of a proper monograph in the following theorem.

Theorem 4.1.5. (Fontanil and Panopio (2014)) In an autograph G whose signature is

given by the set of positive elements S, the independent set is given by the set of positive

idle vertices of G(S).

36

If the set of vertices I ⊂ V gives the independent set of G, then the set of vertices
V
′
=V \ I gives the vertex covering of G.

Corollary 4.1.6. (Fontanil and Panopio (2014)) In an autograph G whose signature

is given by the set of positive elements S, the set of vertex cover is given by the set of

working vertices of G(S).

Furthermore, it was observed that the property stating that the maximally indepen-
dent sets are bijectively mapped onto the set of idle vertices does not hold for all proper
monographs. In the next section, we present the proper monograph labelings of graphs
for which the maximum independent sets can be determined from their signatures.

4.2 PROPER MONOGRAPH LABELINGS OF Cn AND Cn
⊙

K1

This section presents the proper monograph labelings of cycles Cn, when n > 5, and
Cn

⊙
K1 when n > 5 and n is odd. Also, we show that the signatures of these proper

monographs determine the maximum independent sets of these graphs.

Theorem 4.2.1. For the cycles C3, C4 and C5, the proper monograph labeling results in

only one idle vertex.

Proof. Consider the cycle C3 with v1,v2, and v3 as its vertices. Label the vertices as
s,2s, and 3s, respectively. The vertex with label 3s is the idle vertex from the above
labeling. Suppose the vertices are given the labels s, t, and s + t for s, t > 1, then
the labeling is not proper monograph labeling because there is no vertex with label
|s− t|. Hence, the labeling must be s,2s, and 3s. Now consider the cycle C4. Let
v1,v2,v3, and v4 be its vertices, as shown in Figure 4.1. The vertex v4 is left out without

Figure 4.1 Cycle C4 with labels assigned to v1,v2, and v3.

37

proper labeling. Now label the vertices v1,v2,v3, and v4 with labels s,2s,4s, and 5s,
respectively. The vertex v4 with label 5s becomes the idle vertex. Hence, in cycle
C4, there is only one idle vertex. Similarly, one can verify that the proper monograph
labeling of C5 with labels s,2s,4s,5s, and 9s assigned to its vertices results in one idle
vertex.

The following theorem gives the proper monograph labelings of Cn, n > 5.

Theorem 4.2.2. The set of idle vertices resulting from the proper monograph labeling

of cycle Cn, n > 5 gives the maximum independent set of Cn, whose cardinality is ⌊n
2⌋.

Proof. Let v1,v2, . . . ,vn be the vertices of Cn. The proper monograph labeling f of Cn,
n > 5 is defined as follows: When n > 5 and is odd,

f (vi) =



5
(i+1)

2 +1, for i = 1,3,5, ...,n−2

5
(i)
2 +5

(i+2)
2 +2, for i = 2,4,6, ...,n−3

2[5
(n−1)

2 +1], for i = n−1

2[5
(n−1)

2 +1]+6, for i = n

(4.2.1)

When n > 5 and is even,

f (vi) =



5
(i+1)

2 +1, for i = 1,3,5, ...,n−1

5
(i)
2 +5

(i+2)
2 +2, for i = 2,4,6, ...,n−2

7+5
(i)
2 , if i = n

(4.2.2)

There are no edges between the non-adjacent vertices of graph Cn. Let u, v ∈V (Cn) be
the non-adjacent vertices. The difference | f (u)− f (v)| of the labels results in labels of
the form 5

u
2 − 5

v+1
2 , 5

u
2 + 5

u+2
2 − 5

v
2 − 5

v+1
2 , which are not the labels of any vertices in

set Cn when n is even. Similarly, one can verify the above when n is odd.

When n is even, the labeling results in all the even indexed vertices vi of Cn for
i = {2,4,6, ...,n}, as idle vertices. When n is odd, the labeling results in the even
indexed vertices vi of Cn for i = {2,4,6, ...,n− 3}, and i = n, as idle vertices. The

38

vertices in the idle vertex set are the vertices that belong to the maximum independent
set. The proper monograph labelings of cycles C8 and C9 are given in Figure 4.2 and
Figure 4.3. For the graphs shown in Figure 4.2 and Figure 4.3, the cardinality of the

Figure 4.2 Cycle C8. Figure 4.3 Cycle C9.

maximum independent set is ⌊n
2⌋ = 4. There are four vertices in the set of idle vertices,

giving the maximum independent set. In Figure 4.2, the set of vertices with labels
I = {32,152,632,752} forms the maximum independent set of C8. In Figure 4.3, the
set of vertices with labels I = {32,152,752,1258} forms the maximum independent set
of C9.

The following theorem gives the proper monograph labelings of Cn
⊙

K1, n > 5 and
n is even.

Theorem 4.2.3. The set of idle vertices resulting from the proper monograph labeling

of Cn
⊙

K1, n > 5 and n is even gives the maximum independent set of Cn
⊙

K1, whose

cardinality is n.

Proof. Let v1,v2, . . . ,vn be the vertices of Cn. Let vout
1 ,vout

2 , . . . ,vout
n be the K1 vertices

attached to the vertices of Cn. Here vout
i is the vertex Ki attached to vertex vi of Cn.

The proper monograph labeling f of Cn
⊙

K1, n > 5 and n is even is defined as follows:

39

When n > 5 and is even,

f (vi) =



5
(i+1)

2 +1, for i = 1,3,5, ...,n−1

5
(i)
2 +5

(i+2)
2 +2, for i = 2,4,6, ...,n−2

7+5
(i)
2 , if i = n

(4.2.3)

The vertices vout
1 ,vout

2 , . . . ,vout
n are labeled as follows:

f (vout
i) =



2[5
(i+1)

2 +1], for i = 1,3,5, ...,n−1

1
2
[5

(i)
2 +5

(i+2)
2 +2], for i = 2,4,6, ...,n−2

1
2
[7+5

(i)
2], if i = n

(4.2.4)

From Theorem 4.2.2, it is observed that there are no edges between the non-adjacent
vertices of graph Cn. There are no edges between the vertices of graph Cn and K1, when
i ̸= j for vi ∈Cn and vout

j ∈ {set of K1’s} that are attached to Cn. Suppose a vertex vi ∈Cn

is adjacent to a vertex vout
j where i ̸= j. Then we have the following:

| f (vi)− f (vout
j)|=



|5
(i+1)

2 +1− 1
2
[5

(j)
2 +5

(j+2)
2 +2]|, for i = 1,3,5, ...,n−1

and j = 2,4,6, ...,n−2

|5
(i)
2 +5

(i+2)
2 +2−2[5

(j+1)
2 +1]|, for i = 2,4,6, ...,n−2

and j = 1,3,5, ...,n−1

|7+5
(i)
2 −2[5

(j+1)
2 +1]|, if i = n and j = 1,3,5, ...,n−1

|7+5
(i)
2 − 1

2
[5

(j)
2 +5

(j+2)
2 +2]|, for i = n and

for j = 1,3,5, ...,n−2
(4.2.5)

The labels in (4.2.5) are not assigned to any of the vertices of Cn
⊙

K1. Hence there

40

are no edges between the vertices of graph Cn and K1, when i ̸= j for vi ∈ Cn and
vout

j ∈ {set of K1’s} that are attached to Cn. When n is even, the labeling results in
all the even indexed vertices vi of Cn for i = {2,4,6, ...,n} and the odd indexed ver-
tices vout

j ∈ {set of K1’s} that are attached to Cn for j = {1,3,5, ...,n−1} as the set of
idle vertices whose cardinality is n. The vertices in the idle vertex set are the vertices
that belong to the maximum independent set. The proper monograph labeling of cy-
cle C8

⊙
K1 is given in Figure 4.4. For the graph shown in Figure 4.4, the cardinality

Figure 4.4 Cycle C8
⊙

K1.

of the maximum independent set is n = 8. There are eight vertices in the set of idle
vertices, giving the maximum independent set. In Figure 4.4, the set of vertices with
labels I = {12,32,52,152,252,632,752,1252} forms the maximum independent set of
C8

⊙
K1.

Remark 4.2.4. The proper monograph labeling of Cn
⊙

K1 fails to produce the max-

imum independent sets when n > 5 and n is odd. Consider an example of C7
⊙

K1.

The proper monograph labeling is assigned as in Figure 4.5. The idle vertices are

{2a,a+b,2b,b+ c,4c,a+2c}. The vertices labeled as c at vn−2 (vertex v5 in C7) and
c
2 at vout

n−2 (K1 attached to v5) are working vertices. The vertex vout
n−2 should be idle, but

41

it cannot be assigned a label that makes it an idle vertex. Hence the labeling fails to

produce the maximum independent sets for C7
⊙

K1. Similarly, the proper monograph

labeling of Cn
⊙

K1 fails to produce the maximum independent sets when n > 5 and n

is odd.

Figure 4.5 Cycle C7
⊙

K1.

4.3 PROPER MONOGRAPH LABELINGS OF Cn WITH PATHS
ATTACHED TO ITS VERTICES

In this section, we present the proper monograph labelings of cycles with paths attached
to one or more vertices and show that the signatures of these proper monographs deter-
mine the maximum independent sets of these graphs.

The following theorem gives the proper monograph labelings of cycle Cn, n > 5
with paths attached to one or more vertices of Cn.

Theorem 4.3.1. The set of idle vertices resulting from the proper monograph labeling

of cycle Cn, n > 5 with paths attached to one or more vertices of Cn gives the maximum

independent set of the resulting graph.

42

Proof. Let v1,v2, . . . ,vn be the vertices of Cn. Let um,i,k
j denote the jth vertex of the kth

path Pm attached to the ith vertex of Cn. Theorem 4.2.2 gives the proper monograph la-
beling f of Cn, n > 5. The vertices of the path attached to the cycle vertices are labeled
as follows: Consider Cn, n > 5 and one or more paths are attached to even indexed
vertices i = 2,4,6, ...,n, when n is even, or i = 2,4,6, ...,n− 3,n, when n is odd. The
proper monograph labeling f is given as follows: For the sake of simplicity, represent
X = [(2ik−1)5] and Y = ⌊n

2⌋+mk.

f (um,i,k
j) =



f (vi)
2 , if j = 1

XY+ j+1 +1, for j = 3,5, ...,m−1; m is even

and j = 3,5, ...,m; m is odd

f (vi)
2 +XY+ j+2 +2, for j = 2; m is odd

and j = 2; m is even

XY+ j +XY+ j+2 +2, for j = 4,6, ...,m−1; m is odd

and j = 4,6, ...,m−2; m is even

2[XY+ j +1], if j = m, m is even

(4.3.1)

Now consider Cn, n > 5 and one or more paths are attached to odd indexed vertices
i = 1,3,5, ...,n− 1, when n is even, or i = 1,3,5, ...,n− 2,n− 1, when n is odd. The
proper monograph labeling f is given as follows:

43

f (um,i,k
j) =



f (vi)+XY+ j+2 +1, if j = 1

XY+ j+1 +1, for j = 2,4,6, ...,m; m is even

and j = 2,4,6, ...,m−1; m is odd

XY+ j +XY+ j+2 +2, for j = 3,5,7, ...,m−1; m is odd

and j = 3,5,7, ...,m−1; m is even

2[XY+ j +1], if j = m, m is odd

(4.3.2)

From Theorem 4.2.2, there are no edges between the non-adjacent vertices of graph Cn.
Also, there are no edges between non-adjacent vertices of graph Cn and Pm. Suppose
there is an additional edge between a vertex i ∈Cn, n is even and vertex j ∈ Pm. Then,
| f (i)− f (j)| is given as follows when i ∈V (Cn), for j ∈ Pm and j = 3,5, ...,m−1; m is
even and j = 3,5, ...,m; m is odd:

| f (i)− f (j)|=



|5 i+1
2 +1−XY+ j+1−1|

|5
(i)
2 +5

(i+2)
2 +2−XY+ j+1−1|

|7+5
(i)
2 −XY+ j+1−1|

(4.3.3)

The labels in (4.3.3) are not assigned to any of the vertices of the resulting graph. Sim-
ilarly, one can verify the above for the remaining vertex labels of Cn as in (4.2.1) and
(4.2.2) with the labels assigned to vertices of Pm as in (4.3.1) and (4.3.2). Hence,
there are no additional edges between the vertices of Cn and Pm. The vertices in the
idle vertex set are the vertices that belong to the maximum independent set. The
proper monograph labeling of cycle C8 with a path attached to two vertices of C8 is
given in Figure 4.6. For the graph shown in Figure 4.6, the cardinality of the max-
imum independent set is 8. There are eight vertices in the set of idle vertices, giv-
ing the maximum independent set. In Figure 4.6, the set of vertices with labels I =

{32,152,632,752, [6+510 +1], [510 +1], [76+3512 +1],2[3512 +1]} forms the maxi-
mum independent set of cycle C8 with a path attached to two vertices of C8.

44

Figure 4.6 Cycle C8 with a path attached to two vertices of C8.

Remark 4.3.2. In a cycle Cn, n > 5, only a single path can be attached to its idle vertex

that belongs to the maximum independent set of vertices I. Let ui ∈ Pm, vi ∈ Cn, and

vi ∈ I. Since vi ∈ I, there can only be one vertex label that is derived from vi. The

label vi
2 is assigned to ui. Suppose ui ∈ Pm1 and u j ∈ Pm2 , where Pm1 and Pm2 are the

paths attached to the idle vertex vi ∈Cn. Then ui has to be labeled as vi
2 and u j labeled

as 2(vi). This labeling results in vi /∈ I. Hence, only one path can be attached to an

idle vertex vi ∈ Cn such that vi ∈ I. For the cycle Cn, n > 5, the vertices that form

the maximum independent set can have only one path attached, whereas the working

vertices in Cn can have any number of paths attached to them.

4.4 PROPER MONOGRAPH LABELINGS OF Cn WITH
ATTACHED IRREDUCIBLE TREES

This section presents the proper monograph labelings of cycles with an irreducible tree
attached to one or more vertices. We show that the signatures of these proper mono-
graphs determine the maximum independent sets of these graphs.

The irreducible trees are also assumed to satisfy the following two conditions:

45

• The length of the limb should be greater than one.

• The branchnodes must occur at an even distance from the vertex of the cycle to
which the tree is connected.

The following theorem gives the proper monograph labeling of cycle Cn, n > 5 with an
irreducible tree attached to one or more vertices

Theorem 4.4.1. The set of idle vertices resulting from the proper monograph labeling

of cycle Cn, n > 5 with an irreducible tree attached to one or more vertices of Cn gives

the maximum independent set of the resulting graph.

Proof. Let v1,v2, . . . ,vn be the vertices of Cn. Theorem 4.2.2 gives the proper mono-
graph labeling f of Cn, n > 5. Let ul,i

j denote the jth vertex of the irreducible tree T

whose root is attached to the ith vertex of Cn where vi /∈ I. Here l is the level of vertex
j. The total number of vertices in level l is kl as shown in Figure 4.7.

The proper monograph labeling f is given as follows: For the sake of simplicity,
represent X = [(2(i+1)−1)5] and Y = ⌊n

2⌋. For the non-pendant vertices at the levels
l = 3,5, ...,L, we consider the parent vertex p and the child vertex c to which vertex j

is attached, i.e., ul,i
j is adjacent to ul−1,i

p and ul+1,i
c . If ul,i

j is not a pendant vertex(end
vertex), then

f (ul,i
j) =



XY+(k1+k2+...+kl−1)+ j +1, for j = 1,2, ...,kl; l = 2,4, ...,L;

and i = 1,3,5, ...,n−1; n is even;

and i = 1,3,5, ...,n−2; and i = n−1; n is odd;

f (vi)+XY+k1+ j +1, if l = 1;

XY+(k1+k2+...+kl−1)+p +XY+(k1+k2+...+kl−1)+c +2,

for j = 1,2, ...,kl; l = 3,5, ...,L;

p is the parent vertex index and

c is the child vertex index
(4.4.1)

If ul,i
j is a pendant vertex(end vertex) and is adjacent to ul−1,i

p , then

f (ul,i
j) =

{
2[XY+(k1+k2+...+kl−2)+p +1], if j is end/pendant vertex (4.4.2)

46

Figure 4.7 Cycle Cn with an irreducible tree attached to a vertex of Cn.

Thus, f gives the proper monograph labeling that results in a set of idle vertices.

Figure 4.8 Cycle C8 with an irreducible tree attached to a working vertex v1 of C8.

47

There are no additional edges between the vertices of Cn and T , and it can be verified
as in Theorem 4.3.1. The idle vertices in the graph give the maximum independent set
I of G. The proper monograph labeling of C8 with an irreducible tree attached to a
working vertex v1 of C8 is shown in Figure 4.8. The proper monograph labeling of C8

results in 4 idle vertices, and the tree attached to v1 results in 12 idle vertices. Hence,
the resulting graph has 16 vertices in the maximum independent set I.

48

CHAPTER 5

GRAPH MODELS FOR
MULTIPROCESSOR INTERCONNECTION
NETWORKS

In this chapter, a few interesting graphs are considered, demonstrating that they
could be suitable models for MINs. It is noted that determining the chromatic number
for these and similar graphs is easy. This allows the introduction of two additional
tightness values, t3(G) and t4(G), which could be calculated efficiently. Keeping in
mind the emphasis on λ1, from Wilf (1967) we consider the inequality χ(G) ≤ 1+
λ1(G) and define t3(G) and t4(G) based on the chromatic number of the graph. The
new tightness values can also be partially ordered using the ‘≤’ relation. Also, we
show that graphs with small values of t3(G) and t4(G) are well suited for the design of
multiprocessor interconnection networks.

5.1 PRELIMINARIES

Several definitions and theorems that will be used in the remainder of this chapter are
given in this section. Harary and Norman (1960) used the term line graph for the very
first time. However, these concepts were studied by Whitney (1932) and Krausz (1943).

Definition 5.1.1. (Harary and Norman (1960)) The line graph L(G) of a graph G has

E(G) as its vertex set, and two vertices are adjacent in L(G) if and only if they are

adjacent as edges in G.

A proper vertex (edge) coloring of a graph G is an assignment of colors to the ver-
tices (edges) of G, so that adjacent vertices (edges) are uniquely colored. A proper
vertex (edge) coloring that uses colors from a set of k colors is a k-vertex (edge) color-
ing.

49

Definition 5.1.2. (Chartrand and Zhang (2009)) The minimum positive integer k for

which G is k-vertex colorable is called the chromatic number of G and is denoted by

χ(G). The chromatic index (or edge chromatic number) χ
′
(G) of a graph G is the

minimum positive integer k for which G is k-edge colorable. Furthermore, χ
′
(G) =

χ(L(G)) for every non empty graph G.

According to Vizing (1965), the definition of Class one and Class two graphs are
given below:

Definition 5.1.3. (Vizing (1965)) Let ∆(G) be the maximum vertex degree of the graph

G. Graphs that have χ
′
(G) = ∆(G) are called Class one graphs. Graphs with χ

′
(G) =

∆(G)+1 are called Class two graphs.

The concept of total graphs was introduced by Behzad (1970).

Definition 5.1.4. (Behzad (1970)) The total graph T (G) of a graph G is that graph

whose vertex set is V (G)∪E(G), and in which two vertices are adjacent if and only if

they are adjacent or incident in G.

Let G = (V (G),E(G)) and H = (V (H),E(H)) be two graphs. For the construction
of new well-suited graphs, the following graph operations are considered.

Definition 5.1.5. (Hammack et al. (2011)) The Cartesian product G□H of graphs G

and H has vertex set V (G□H)=V (G)×V (H), and edge set E(G□H)= {(u1,v1)(u2,v2)

|u1u2 ∈ E(G) and v1 = v2 , or u1 = u2 and v1v2 ∈ E(H)} .

Definition 5.1.6. (Hammack et al. (2011)) The Tensor product (direct product) G×H

of graphs G and H has vertex set V (G×H) =V (G)×V (H), and edge set E(G×H) =

{(u1,v1)(u2,v2)|u1u2 ∈ E(G) and v1v2 ∈ E(H)}.

Definition 5.1.7. (Brouwer et al. (1989)) Let X be a finite set. The Johnson graph of

the e-sets in X has vertex set
(X

e

)
, the collection of e-subsets of X. Two vertices γ , δ are

adjacent whenever γ ∩ δ has cardinality e− 1. When X is some unspecified n-set, the

graph is denoted as
(n

e

)
or J(n,e).

Definition 5.1.8. (Brouwer et al. (1989)) The Rook’s graph is defined as the Cartesian

product of two complete graphs Kn and Km, expressed as Kn□Km. It is also called as

m×n grid.

Definition 5.1.9. (Brouwer et al. (1989)) The n-crown graph is defined as the comple-

ment of the 2×n grid, i.e., it is isomorphic to the complement of Rook’s graph K2□Kn.

50

The following are the definitions of four types of graph tightness introduced by
Cvetković and Davidović (2008).

Definition 5.1.10. (Cvetković and Davidović (2008)) First type mixed tightness t1(G)

of a graph G is defined as the product of the number of distinct eigenvalues m and the

maximum vertex degree ∆ of G, i.e., t1(G) =m∆.

Definition 5.1.11. (Cvetković and Davidović (2008)) Structural tightness stt(G) is the

product (D+1)∆, where D is diameter and ∆ is the maximum vertex degree of a graph

G, i.e., stt(G) = (D+1)∆.

Definition 5.1.12. Cvetković and Davidović (2008) Spectral tightness spt(G) is the

product of the number of distinct eigenvalues m and the largest eigenvalue λ1 of a

graph G, i.e., spt(G) =mλ1.

Definition 5.1.13. Cvetković and Davidović (2008) Second type mixed tightness t2(G)

is defined as a product of the diameter D of G and the largest eigenvalue λ1, i.e., t2(G)=

(D+1)λ1.

In the analysis of a graph’s tightness, the following theorem from Cvetković and
Davidović (2008) seems to be of fundamental importance .

Theorem 5.1.14. (Cvetković and Davidović (2008)) For any kind of tightness, the num-

ber of connected graphs with a bounded tightness is finite.

The following theorem gives the eigenvalues of G×H:

Theorem 5.1.15. (Cvetković (1971)) The eigenvalues of G×H are just the pairwise

products of the eigenvalues of G and H.

The following theorem gives the eigenvalues of G□H:

Theorem 5.1.16. (Cvetković (1971)) The eigenvalues of G□H are just the pairwise

sums of the eigenvalues of G and H.

The following result gives an explicit formula for the eigenvalues of L(G) in terms
of the eigenvalues of a regular graph G.

Corollary 5.1.17. (Brouwer and Haemers (2011)) If G is a regular graph of degree r,

with n vertices and m(= nr
2) edges, and eigenvalues θi for i = 1,2, ...,n, then line graph

L(G) is (2r− 2)-regular with eigenvalues (θi + r− 2) for i = 1, ...,n, and −2 with the

multiplicity (m−n).

51

The following result gives an explicit formula for the eigenvalues of L(G) in terms
of the signless Laplace eigenvalues of a non-regular graph G.

Proposition 5.1.18. (Brouwer and Haemers (2011)) Let G be a graph on n vertices,

having m edges, and let q1 ≥ q2 ≥ ... ≥ qn be the signless Laplace eigenvalues of G,

then the eigenvalues of Line graph of G are θi = qi−2 for i = 1,2, ...,n, and θi =−2 if

n < i≤ m.

Theorem 5.1.19. (Chartrand and Zhang (2009)) (Konig’s Theorem) If G is a non empty

bipartite graph, then χ
′
(G) = ∆(G).

A factor of a graph refers to its spanning subgraph. A sequence of pairwise edge-
disjoint subgraphs G1,G2, . . . ,Gn whose union is G is called a decomposition of G, and
is represented as G =

⋃n
1 Gi. If Gi is r-regular spanning subgraph of G, then every Gi is

called an r-factor, and G is called r-factorable graph. A graph M is a matching if each
vertex has a degree of 0 or 1. Thus, the edge set of a 1-factor in a graph G is a perfect
matching in G. So, a graph G has a 1-factor if and only if G has a perfect matching.

Theorem 5.1.20. (Chartrand and Zhang (2009)) A regular graph G is of Class one if

and only if G is 1-factorable.

Corollary 5.1.21. (Chartrand and Zhang (2009)) Every regular graph of odd order is

of Class two.

Theorem 5.1.22. (Mahamoodian (1981)) If χ
′
(G) = ∆(G), then χ

′
(G□H) = ∆(G+

H) = ∆(G)+∆(H)

Theorem 5.1.23. (Jaradat (2005)) Let G and H be two graphs such that χ
′
(H) =∆(H).

Then χ
′
(G×H) = ∆(G×H) = ∆(G)∆(H)

5.2 NEW TIGHTNESS VALUES BASED ON THE CHROMATIC
NUMBER

Cvetković and Davidović (2008) showed that the tightness values t1(G),stt(G),spt(G),

and, t2(G) are partially ordered by the relation ‘≤’ as follows:

t2(G)≤ stt(G)≤ t1(G)

t2(G)≤ spt(G)≤ t1(G)

Later, they concluded that the graphs with small tightness values of t2(G) are more
suitable for the design of multiprocessor interconnection networks.

52

All the graphs presented in this chapter are line graphs of regular graphs, bipartite
graphs, or products of these graphs. It is a well known fact that the index of r-regular
graph is equal to the vertex degree r, while the complete bipartite graph Kp,q has spec-
trum ± √pq, and 0 whose multiplicity is p+q−2. As a result, we can determine the
eigenvalues of the graphs based on whether the graph is regular or bipartite, as men-
tioned below.

To get the eigenvalues of a Line graph, one must first compute the spectrum of the
original graph, knowing whether it is a regular or bipartite graph. The spectrum of the
resulting Line graph is then computed using the Corollary 5.1.17 and the Proposition
5.1.18. The eigenvalues of the graphs generated from graph operations, such as Tensor
product and Cartesian product are computed using the Theorem 5.1.15 and the Theo-
rem 5.1.16. However, by determining whether the graph is a Class one or Class two
graph, using the results from the preliminaries section, the chromatic index of these
graphs is easily obtained without any complicated calculations. Since, it is known that
χ
′
(G) = χ(Line Graph(G)) from Chartrand and Zhang (2009) for any non-empty graph

G, determining the edge chromatic number of the graphs presented here is all that is re-
quired.

Considering the Line graph of Tensor product Kn×Kp, we show that computing the
chromatic number is more straightforward than computing the largest eigenvalue for
this graph. The largest eigenvalue λ1 is computed as follows:
The complete graph Kn is an (n−1) regular graph and the characteristic polynomial is
P(Kn,x) = (x−n+1)(x+1)n−1. From the polynomial, it is clear that the eigenvalues
of Kn are (n−1) and −1 with the multiplicities 1 and n−1. From Theorem 5.1.15, it is
known that the eigenvalues of Kn×Kp are (n−1)(p−1),(n−1)(−1)p−1, (−1)n−1(p−
1), and (−1)n−1(−1)p−1. From Corollary 5.1.17, the eigenvalues of the line graph of
Tensor product of Kn×Kp are calculated as follows:

λ1 = np−n− p+1+np−n− p+1−2 = 2np−2(n+ p)

λ2 = (n−1)(−1)+np−n− p+1−2 = np−2n− p

λ3 = (−1)(p−1)+np−n− p+1−2 = np−2p−n

λ4 = (−1)(−1)+np−n− p+1−2 = np−n− p

and λ5 =−2

Therefore λ1 = 2np−2(n+ p).

The chromatic number of the Line graph of Kn×Kp can be quickly computed as
follows: the first step is to figure out whether the graph is a Class one or Class two
graph; Theorem 5.1.20, Corollary 5.1.21, and Theorem 5.1.23 are then used to compute
the chromatic index of the graph. Here, the chromatic index is np−n− p+2 when the

53

number of vertices in the original graph is odd, and np−n− p+1 when the number of
vertices in the original graph is even. The observation that one could quickly determine
the chromatic number for the graphs presented as examples in this chapter leads to the
introduction of two additional tightness values, t3(G) and t4(G), which can be partially
ordered by the relation ‘≤’. The basis for the present investigation is the following
result from Wilf (1967).

Theorem 5.2.1. (Wilf (1967)) If χ is the chromatic number and λ1 is the largest eigen-

value, then

χ ≤ 1+λ1 (5.2.1)

with equality if and only if G is a complete graph or an odd circuit.

The maximum and minimum vertex degree of graph G is denoted by ∆ = ∆(G) and
δ = δ (G)), respectively. The average vertex degree of G is represented as d = d(G).
From Cvetković et al. (1995), we have

δ ≤ d ≤ λ1 ≤ ∆ and (5.2.2)

D≤m−1, where D is the diameter. (5.2.3)

Rewrite (5.2.1) as

χ−1≤ λ1 (5.2.4)

Recalling Definition 5.1.12, which states spt(G) = mλ1 and from (5.2.4), the new
tightness value called the Third type mixed tightness t3(G) can be defined as follows:

Definition 5.2.2. Third type mixed tightness t3(G) is the product of the number of

distinct eigenvalues m and (χ−1), where χ is the chromatic number of a graph G, i.e.,

t3(G) = m(χ−1).

Considering Definition 5.1.13, which states t2(G) = (D+1)λ1 and equation(5.2.4),
the new tightness value called the Second type of Structural tightness t4(G) can be
defined as follows:

Definition 5.2.3. Second type of Structural tightness t4(G) is the product (D+1)(χ−
1), where D is diameter and χ is the chromatic number of a graph G.

54

From Definition 5.2.2, Definition 5.2.3, equations (5.2.2), (5.2.3), and (5.2.4), the
new tightness values can be partially ordered as follows:

t3(G)≤ spt(G)≤ t1(G)

t4(G)≤ t2(G)≤ stt(G)≤ t1(G)

t4(G)≤ t2(G)≤ spt(G)≤ t1(G), and

t4(G)≤ t3(G)

Hence, from the above inequalities, it is clear that the graphs with small values of t3(G)

and t4(G) are well suited for the design of the multiprocessor interconnections topolo-
gies. It has been proved that the number of connected graphs with bounded tightness is
finite for the four types of tightness values defined in (Theorem 5.1.14, Cvetković and
Davidović (2008)). The following theorem proves that this criterion also applies to the
two new tightness values defined in this chapter.

Theorem 5.2.4. The number of connected graphs with the bounded Third type mixed

tightness t3(G) and Second type of Structural tightness t4(G) is finite.

Proof. The following inequality holds for the number of vertices n in a graph G:

n≤ 1+∆+∆(∆−1)+∆(∆−1)2 · · ·+∆(∆−1)D−1 (5.2.5)

As in the proof of (Theorem 5.1.14, Cvetković and Davidović (2008)) we assume that
t(G) ≤ a, for a given positive integer a, where t(G) represents the two new tightness
values t3(G) and t4(G). We now prove that for the new tightness values, both the di-
ameter D and maximum vertex degree ∆ are bounded by a number denoted as b. Ac-
cording to Brooks (1941), it is known that χ(G)≤ 1+∆(G), and from Cvetković et al.
(1995), we have D≤m−1 for the diameter D. Here, m is the number of distinct eigen-
values, and χ(G) is the chromatic number of G. Note that ∆ ≤ a and D ≤ a− 1, as
shown in the proof of (Theorem 5.1.14, Cvetković and Davidović (2008)). Now for
t3(G) =m(χ−1), t3(G)≤ a implies

m(χ−1)≤ a⇒ m≤ a and (χ−1)≤ a, which implies

D≤ a−1, ∆≤ a, and we assign b = a;

and for t4(G) = (D+1)(χ−1), when t4(G)≤ a, the following holds :

(D+1)(χ−1)≤ a⇒ D+1≤ a and (χ−1)≤ a,

which implies D≤ a−1,∆≤ a, and we assign b = a;

55

Based on the relationship in (5.2.5), and assuming that both D and ∆ are bound by the
number b, we have the following:

n≤ 1+∆+∆
2 +∆

3 · · ·+∆
D ≤ 1+∆+∆

2 +∆
3 · · ·+∆

b

≤ 1+b+b2 +b3 · · ·+bb

Hence, we prove that a connected graph with the given number of vertices n and a
bounded tightness is also bounded. Therefore, we conclude that the number of con-
nected graphs with the bounded tightness t3(G) and t4(G) is finite.

5.3 GRAPHS SUITABLE FOR MINs

One can find examples of well-suited MINs resulting from some graph operations with
tightness values as O(

√
N) or O(N) in Cvetković et al. (2016). In this section, we

present examples of graphs resulting from several graph operations. Graph operations
include line graphs of graph products, such as the Cartesian product and the Tensor
product of graphs. Also, we consider the line graphs of Johnson graphs, Rook graphs,
and Crown graphs. The resulting graphs are considered as well-suited interconnection
network models since their tightness values range from O(4

√
N) to O(

√
N), where N is

the number of vertices of the graph that is considered.

Obtaining the chromatic number of an arbitrary graph is NP-Hard, but one can get
the chromatic number for the well-known graphs using SageMath a free and open-
source software by Stein (2007). The graphs presented here are line graphs of some
regular or bipartite graphs or products of these graphs. For every non-empty graph G,
χ ′(G) = χ(L(G)), according to Definition 5.1.2. As a result, obtaining the chromatic
index of the graphs provided here is sufficient. We can determine the edge chromatic
index of these graphs using the results in the Preliminaries section. The computations
in this section are performed using SageMath.

The set of connected graphs having at least two vertices is represented as Gc, and
t(G) ∈ {t1(G), stt(G),spt(G), t2(G), t3(G), t4(G)}. Now consider the following nota-
tions:

SO(
√

N) = {G : G ∈ Gc, t(G) = O(
√

N)}

SO(3√N) = {G : G ∈ Gc, t(G) = O(
3
√

N)}

SO(4√N) = {G : G ∈ Gc, t(G) = O(
4
√

N)}

56

Some of the notations used in the examples are given below in Table 5.1. Throughout
the examples, we consider the order of the original graph and its regularity. The graph
parameters such as D, ∆, m, λ1, and NOG are computed. Since χ

′
(G) = χ(L(G)), the

graph’s chromatic number is derived from the edge chromatic index obtained for such
graphs using the theorems stated in Section 5.1

Table 5.1 Notations

N Number of vertices in the newly constructed graph
D Diameter
m Number of distinct eigenvalues of G.
∆ Maximum degree
λ1 Largest eigenvalue of G

NOG Number of vertices in the original graph

Example 5.3.1. The set SO(
√

N) contains the following graphs:

5.3.1.1 Line graph of Tensor product Kn×Kp.

5.3.1.2 Line graph of Tensor product Kn×Kp,p.

5.3.1.3 Line graph of Cartesian product K1,n−1□K1,p−1.

5.3.1.4 Line graph of Complete graph Kn.

5.3.1.5 Line graph of Complete Bipartite graph Kn,n.

5.3.1.6 Line graph of Crown graph Kn,n− I.

5.3.1.7 Line graph of Complete Tripartite graph Kn,n,n.

5.3.1.1 Line graph of Tensor product Kn×Kp: Consider G1 = L(Kn×Kp) = Line
graph of Tensor product Kn×Kp, for n > 2 and p > 2. All relevant parameters of G1

are summarized in Table 5.2.

Table 5.2 Line graph of Tensor product Kn×Kp, for n > 2 and p > 2.

N D m ∆ λ1

n2 p2−n2 p−np2+np
2 ≤ 3 ≤ 5 2np−2(n+ p) 2np−2(n+ p)

57

Table 5.3 presents some properties of the Tensor product Kn×Kp, for n > 2:

Table 5.3 Tensor product Kn×Kp, for n > 2 and p > 2.

NOG ∆ Is Regular?

n∗ p np−n− p+1 Yes

The chromatic number of the Line graph of Tensor product Kn×Kp is calculated
as follows: if the number of vertices NOG is odd, then from Corollary 5.1.21 it is clear
that the edge chromatic number (chromatic index) of Kn×Kp is np− n− p+ 2; if the
number of vertices NOG is even, then from Theorem 5.1.20 the edge chromatic number
(chromatic index) of Kn×Kp is np−n− p+1. Also, from Definition 5.1.2, χ

′
(Kn×Kp)

= χ(L(Kn×Kp)). If n = p, then the tightness values are given as follows:

t1(G1)≤ 5(2n2−2(n+n))≤ 10n2−10(2n) = O(
√

N);
stt(G1)≤ 4(2n2−2(n+n))≤ 8n2−8(2n) = O(

√
N);

spt(G1)≤ 5(2n2−2(n+n))≤ 10n2−10(2n) = O(
√

N);
t2(G1)≤ 4(2n2−2(n+n))≤ 8n2−8(2n) = O(

√
N).

If n = p, the new tightness values t3(G1) and t4(G1) are also given as follows:

t3(G1) =m(χ−1)≤ 5(n2−2n) = O(
√

N); if no. of vertices is even
t3(G1) =m(χ−1)≤ 5(n2−2n+1) = O(

√
N); if no. of vertices is odd

t4(G1) = (D+1)(χ−1)≤ 4(n2−2n) = O(
√

N); if no. of vertices is even
t4(G1) = (D+1)(χ−1)≤ 4(n2−2n+1) = O(

√
N); if no. of vertices is odd

The tightness values t1, stt, spt, t2, t3, and t4 are bounded by O(
√

N), and hence G1 can
be used as a model for MINs. The Line graph of Tensor product K3×K3 is given in
Figure 5.1.

58

Figure 5.1 Line graph of Tensor product K3×K3.

5.3.1.2 Line graph of Tensor product Kn×Kp,p: Consider G2 = L(Kn×Kp,p) =
Line graph of Tensor product Kn×Kp,p, for n > 2. All relevant parameters of G2 are
summarized in Table 5.4.

Table 5.4 Line graph of Tensor product Kn×Kp,p, for n > 2.

N D m ∆ λ1

n2 p2−np2 ≤ 3 ≤ 5 2np−2p−2 2np−2p−2

Table 5.5 presents some properties of the Tensor product Kn×Kp,p, for n > 2:

Table 5.5 Tensor product Kn×Kp,p, for n > 2.

NOG ∆ Is Regular?

2∗n∗ p np− p Yes

The chromatic number of the Line graph of Tensor product Kn×Kp,p is calculated
as follows: from Theorem 5.1.23, it can be observed that the edge chromatic number
(chromatic index) of Kn×Kp,p is np− p. Also, from Definition 5.1.2, the edge chro-

59

matic number χ
′
(Kn×Kp,p) = χ(L(Kn×Kp,p)). If n = p, then the tightness values are

given as follows:

t1(G2)≤ 5(2n2−2n−2) = O(
√

N);
stt(G2)≤ 4(2n2−2n−2) = O(

√
N);

spt(G2)≤ 5(2n2−2n−2) = O(
√

N);
t2(G2)≤ 4(2n2−2n−2) = O(

√
N).

If n = p, the new tightness values t3(G2) and t4(G2) are also given as follows:

t3(G2) =m(χ−1)≤ 5(n2−n−1)≤ 5n2−5n−5 = O(
√

N);
t4(G2) = (D+1)(χ−1)≤ 4(n2−n−1)≤ 4n2−4n−4 = O(

√
N).

The tightness values t1, stt, spt, t2, t3, and t4 are bounded by O(
√

N), and hence G2 can
be used as a model for MINs. The Line graph of Tensor product K3×K2,2 is given in
Figure 5.2.

Figure 5.2 Line graph of Tensor product K3×K2,2.

5.3.1.3 Line graph of Cartesian product K1,n−1□K1,p−1: Consider G3 = L(K1,n−1□K1,p−1)

= Line graph of Cartesian product K1,n−1□K1,p−1. Table 5.6 summarizes all the relevant
parameters of G3 .

Table 5.6 Line graph of Cartesian product K1,n−1□K1,p−1.

N D m ∆ λ1

2np−n− p ≤ 3 ≤ 8 2p+n−4 n+ p−2

60

The properties of Cartesian product K1,n−1□K1,p−1 are given in Table 5.7.

Table 5.7 Cartesian product K1,n−1□K1,p−1.

NOG ∆ Is Regular?

n∗ p n+ p−2 No

The chromatic number of the Line graph of Cartesian product K1,n−1□K1,p−1 is
calculated as follows: from Theorem 5.1.22 the edge chromatic number (chromatic
index) of K1,n−1□K1,p−1 is n+ p−2. Also, from Definition 5.1.2, the edge chromatic
number χ

′
(K1,n−1□K1,p−1) = χ(L(K1,n−1□K1,p−1)). If n = p, then the tightness values

are given as follows:

t1(G3)≤ 8(2n+n−4)≤ 8(3n−4) = O(
√

N);
stt(G3)≤ 4(2n+n−4)≤ 8(3n−4) = O(

√
N);

spt(G3)≤ 8(n+n−2)≤ 8(2n−2) = O(
√

N);
t2(G3)≤ 4(n+n−2)≤ 4(2n−2) = O(

√
N).

If n = p, the new tightness values t3(G3) and t4(G3) are also given as follows:

t3(G3) =m(χ−1)≤ 8(2n−3) = O(
√

N);
t4(G3) = (D+1)(χ−1)≤ 4(2n−3) = O(

√
N).

The tightness values t1, stt, spt, t2, t3, and t4 are bounded by O(
√

N), and hence G3

can be used as a model for MINs. Figure 5.3 gives the Line graph of Cartesian product
K1,2□K1,3.

Figure 5.3 Line graph of Cartesian product K1,2□K1,3.

61

5.3.1.4 Line graph of Complete graph Kn: Consider G4 = L(Kn) = Line graph of
Complete graph of Kn, for n > 2. Table 5.8 summarizes all the relevant properties of G4

.

Table 5.8 Line graph of Complete graph Kn.

N D m ∆ λ1

n2−n
2 ≤ 2 ≤ 3 2(n−2) 2(n−2)

The properties of the Complete graph Kn are given in Table 5.9.

Table 5.9 Complete graph Kn.

NOG ∆ Is Regular?

n n−1 Yes

The chromatic number of the Line graph of Complete graph Kn is calculated as
follows: from Theorem 5.1.20 and Corollary 5.1.21, if NOG is odd, the edge chromatic
number (chromatic index) of Kn is n, and n− 1 if NOG is even. Also, from Definition
5.1.2, the edge chromatic number χ

′
(Kn) = χ(L(Kn)). The tightness values are given as

follows: :

t1(G4)≤ 3×2(n−2)≤ 6(n−2) = O(
√

N);
stt(G4)≤ 3×2(n−2)≤ 6(n−2) = O(

√
N);

spt(G4)≤ 3×2(n−2)≤ 6(n−2) = O(
√

N);
t2(G4)≤ 3×2(n−2)≤ 6(n−2) = O(

√
N).

The new tightness values t3(G4) and t4(G4) are also given as follows:

t3(G4) =m(χ−1)≤ 3(n−2)≤ 3n−6 = O(
√

N); if n is even
t3(G4) =m(χ−1)≤ 3(n−1)≤ 3n−3 = O(

√
N); if n is odd

t4(G4) = (D+1)(χ−1)≤ 3(n−2)≤ 3n−6 = O(
√

N); if n is even
t4(G4) = (D+1)(χ−1)≤ 3(n−1)≤ 3n−3 = O(

√
N); if n is odd

The tightness values t1, stt, spt, t2, t3, and t4 are bounded by O(
√

N), and hence G4 can
be used as a model for MINs. The Line graph of Complete graph K5 is given in Figure
5.4.

62

Figure 5.4 Line graph of Complete graph K5.

5.3.1.5 Line graph of Complete Bipartite graph Kn,n: Consider G5 = L(Kn,n) =
Line graph of Complete Bipartite graph Kn,n. Table 5.10 summarizes all the relevant
properties of G5 .

Table 5.10 Line graph of Complete Bipartite graph Kn,n.

N D m ∆ λ1

n2 2 3 2(n−1) 2(n−1)

The properties of the Complete Bipartite graph Kn,n are given in Table 5.11.

Table 5.11 Complete Bipartite graph Kn,n.

NOG ∆ Is Regular?

2∗n n Yes

The chromatic number of the Line graph of Complete Bipartite graph Kn,n is cal-
culated as follows: from Theorem 5.1.19, the edge chromatic number (chromatic in-
dex) of Kn,n is n. Also, from Definition 5.1.2, the edge chromatic number χ

′
(Kn,n) =

χ(L(Kn,n)). The tightness values are given as follows:

t1(G5) = 3×2(n−1) = 6(n−1) = O(
√

N);
stt(G5) = 3×2(n−1) = 6(n−1) = O(

√
N);

spt(G5) = 3×2(n−1) = 6(n−1) = O(
√

N);
t2(G5) = 3×2(n−1) = 6(n−1) = O(

√
N).

63

The new tightness values t3(G5) and t4(G5) are also given as follows:

t3(G5) =m(χ−1) = 3(n−1) = 3n−3 = O(
√

N);
t4(G5) = (D+1)(χ−1) = 3(n−1) = 3n−3 = O(

√
N).

The tightness values t1, stt, spt, t2, t3, and t4 are bounded by O(
√

N), and hence G5

can be used as a model for MINs. The Line graph of Complete Bipartite graph K3,3 is
shown in Figure 5.5.

Figure 5.5 Line graph of Complete Bipartite graph K3,3.

5.3.1.6 Line graph of Crown graph Kn,n− I: Consider G6 = Kn,n− I = Line graph
of Crown graph Kn,n− I. Table 5.12 summarizes all the relevant properties of G6 .

Table 5.12 Line graph of Crown graph Kn,n− I.

N D m ∆ λ1

n2−n 3 4 2(n−2) 2(n−2)

The properties of the Crown graph Kn,n− I are given in Table 5.13.

Table 5.13 Crown graph Kn,n− I.

NOG ∆ Is Regular?

2∗n n−1 Yes

The chromatic number of the Line graph of Crown graph Kn,n− I is calculated as
shown below. The Crown graph Kn,n− I is a (n− 1)-regular bipartite graph with the
number of vertices is given as 2n. It can be observed that the edge chromatic number

64

(chromatic index) of Kn,n− I is n− 1 (from Theorem 5.1.19). Also, from Definition
5.1.2 the edge chromatic number χ

′
(Kn,n− I) = χ(L(Kn,n− I)). The tightness values

are given as follows:

t1(G6) = 4×2(n−2) = 8n−8 = O(
√

N);
stt(G6) = 4×2(n−2) = 8n−8 = O(

√
N);

spt(G6) = 4×2(n−2) = 8n−8 = O(
√

N);
t2(G6) = 4×2(n−2) = 8n−8 = O(

√
N).

The new tightness values t3(G6) and t4(G6) are also given as follows:

t3(G6) =m(χ−1) = 4(n−2) = 4n−8 = O(
√

N);
t4(G6) = (D+1)(χ−1) = 4(n−2) = 4n−8 = O(

√
N).

The tightness values t1, stt, spt, t2, t3, and t4 are bounded by O(
√

N), and hence G6 can
be used as a model for MINs. In Figure 5.6 the Line graph of Crown graph K4,4− I is
shown.

Figure 5.6 Line graph of Crown graph K4,4− I.

5.3.1.7 Line graph of Complete Tripartite graph Kn,n,n: Consider G7 = L(Kn,n,n)

= Line graph of Complete Tripartite graph Kn,n,n. Table 5.14 summarizes all the relevant
properties of G7.

Table 5.14 Line graph of Complete Tripartite graph Kn,n,n.

N D m ∆ λ1

3n2 2 4 4n−2 4n−2

The properties of the Complete Tripartite graph Kn,n,n are given in Table 5.15.

65

Table 5.15 Complete Tripartite graph Kn,n,n.

NOG ∆ Is Regular?

3∗n 2∗n Yes

The chromatic number of the Line graph of Complete Tripartite graph Kn,n,n is cal-
culated as shown below. It can be observed that the edge chromatic number (chromatic
index) of Complete Tripartite graph Kn,n,n is 2n+ 1 if the number of vertices is odd
(from Corollary 5.1.21), and 2n if number of vertices is even (from Theorem 5.1.20).
Also, from Definition 5.1.2 the edge chromatic number χ

′
(Kn,n,n) = χ(L(Kn,n,n)). The

tightness values are given as follows:

t1(G7) = 4× (4n−2) = 16n−8 = O(
√

N);
stt(G7) = 3× (4n−2) = 12n−6 = O(

√
N);

spt(G7) = 4× (4n−2) = 16n−8 = O(
√

N);
t2(G7) = 3× (4n−2) = 12n−6 = O(

√
N).

The new tightness values t3(G7) and t4(G7) are also given as follows:

t3(G7) =m(χ−1) = 4(2n−1) = 8n−4 = O(
√

N); if n is even
t3(G7) =m(χ−1) = 4(2n) = 8n = O(

√
N); if n is odd

t4(G7) = (D+1)(χ−1) = 3(2n−1) = 6n−3 = O(
√

N); if n is even
t4(G7) = (D+1)(χ−1) = 3(2n) = 6n = O(

√
N); if n is odd

The tightness values t1, stt, spt, t2, t3, and t4 are bounded by O(
√

N), and hence G7 can
be used as a model for MINs. The Line graph of Complete Tripartite graph K2,2,2 is
given in Figure 5.7.

Figure 5.7 Line graph of Complete Tripartite graph K2,2,2.

Example 5.3.2. The set SO(3√N) contains the following graphs:

66

5.3.2.1 Line graph of Johnson graph J(n,2).

5.3.2.2 Line graph of Cartesian product K1,n−1□Kp.

5.3.2.3 Line graph of Rook graph Kn□Kn.

5.3.2.4 Line graph of Total graph of complete bipartite graph Kn,n.

5.3.2.5 Line graph of Total graph of complete graph Kn.

5.3.2.1 Line graph of Johnson graph J(n,2): Consider G1 = L(J(n,2)) = Line
graph of Johnson graph J(n,2), for n > 3. The graph parameters of G1 are given in
Table 5.16.

Table 5.16 Line graph of Johnson graph J(n,2).

N D m ∆ λ1

n3−3n2+2n
2 ≤ 3 ≤ 4 4n−10 4n−10

The properties of Johnson graph J(n,2) are given in Table 5.17.

Table 5.17 Johnson graph J(n,2).

NOG ∆ Is Regular?(n
2

)
2(n−2) Yes

It can be observed that the edge chromatic number (chromatic index) of J(n,2) is
2(n− 2)+ 1 if the number of vertices is odd (from Corollary 5.1.21), and 2(n− 2) if
number of vertices is even (from Theorem 5.1.20). Also, from Definition 5.1.2 the
edge chromatic number χ

′
(J(n,2)) = χ(L(J(n,2))). The tightness values are given as

follows:

t1(G1)≤ 4(4n−10)≤ 16n−40 = O(3
√

N);
stt(G1)≤ 4(4n−10)≤ 16n−40 = O(3

√
N);

spt(G1)≤ 4(4n−10)≤ 16n−40 = O(3
√

N);
t2(G1)≤ 4(4n−10)≤ 16n−40 = O(3

√
N).

The new tightness values t3(G1) and t4(G1) are also given as follows:

67

t3(G1) =m(χ−1)≤ 4(2n−5)≤ 8n−20 = O(3
√

N); if no. of vertices is even
t3(G1) =m(χ−1)≤ 4(2n−4)≤ 8n−16 = O(3

√
N); if no. of vertices is odd

t4(G1) = (D+1)(χ−1)≤ 4(2n−5)≤ 8n−20 = O(3
√

N); if no. of vertices is even
t4(G1) = (D+1)(χ−1)≤ 4(2n−4)≤ 8n−16 = O(3

√
N); if no. of vertices is odd

The tightness values t1, stt, spt, t2, t3, and t4 are bounded by O(3
√

N), and hence G1 can
be used as a model for MINs. The Line graph of Johnson graph J(4,2) is provided in
Figure 5.8.

Figure 5.8 Line graph of Johnson graph J(4,2).

5.3.2.2 Line graph of Cartesian product K1,n−1□Kp: Consider G2 = L(K1,n−1□Kp)

= Line graph of Cartesian product K1,n−1□Kp. The graph parameters of G2 are given in
Table 5.18.

Table 5.18 Line graph of Cartesian product K1,n−1□Kp.

N D m ∆ λ1

np2+np−2p
2 ≤ 4 ≤ 7 2n+2p−6 n+2p−4

The properties of Cartesian product K1,n−1□Kp are given in Table 5.19.

Table 5.19 Cartesian product K1,n−1□Kp.

NOG ∆ Is Regular?

n∗ p n+ p−2 No

68

The chromatic number of the Line graph of Cartesian product K1,n−1□Kp is calcu-
lated as follows: from Theorem 5.1.22, the edge chromatic number (chromatic index)
of K1,n−1□Kp is n+ p− 2. Also, from Definition 5.1.2, the edge chromatic number
χ
′
(K1,n−1□Kp) = χ(L(K1,n−1□Kp)). If n = p, then the tightness values are given as

follows:

t1(G2)≤ 7(2n+2n−6)≤ 7(4n−6) = O(3
√

N);
stt(G2)≤ 5(2n+2n−6)≤ 5(4n−6) = O(3

√
N);

spt(G2)≤ 7(n+2n−4)≤ 7(3n−4) = O(3
√

N);
t2(G2)≤ 5(n+2n−4)≤ 5(3n−4) = O(3

√
N).

If n = p, the new tightness values t3(G2) and t4(G2) are also given as follows:

t3(G2) =m(χ−1)≤ 7(n+n−3)≤ 7(2n−3) = O(3
√

N);
t4(G2) = (D+1)(χ−1)≤ 5(n+n−3)≤ 5(2n−3) = O(3

√
N)

The tightness values t1, stt, spt, t2, t3, and t4 are bounded by O(3
√

N), and hence G2

can be used as a model for MINs. In Figure 5.9, the Line graph of Cartesian product
K1,2□K3 is shown.

Figure 5.9 Line graph of Cartesian product K1,2□K3.

5.3.2.3 Line graph of Rook graph Kn□Kn: Consider G3 = L(Kn□Kn) = Line
graph of Rook graph Kn□Kn, for (n > 2). The graph parameters of G3 are given in
Table 5.20.

Table 5.20 Line graph of Rook graph Kn□Kn.

N D m ∆ λ1

n3−n2 3 4 4n−6 4n−6

69

The properties of Rook graph Kn□Kn are given in Table 5.21.

Table 5.21 Rook graph Kn□Kn.

NOG ∆ Is Regular?

n2 2∗n−2 Yes

The chromatic number of the Line graph of Rook graph Kn□Kn is calculated as
follows: it can be observed that the edge chromatic number (chromatic index) of Kn□Kn

is 2n−1 if the number of vertices is odd (from Corollary 5.1.21), and 2n−2 if number of
vertices is even (from Theorem 5.1.20). Also, from Definition 5.1.2 the edge chromatic
number χ

′
(Kn□Kn) = χ(L(Kn□Kn)). The tightness values are given as follows:

t1(G3) = 4(4n−6) = 16n−24 = O(3
√

N);
stt(G3) = 4(4n−6) = 16n−24 = O(3

√
N);

spt(G3) = 4(4n−6) = 16n−24 = O(3
√

N);
t2(G3) = 4(4n−6) = 16n−24 = O(3

√
N).

The new tightness values t3(G3) and t4(G3) are also given as follows:

t3(G3) =m(χ−1) = 4(2n−3) = 8n−12 = O(3
√

N); if n is even
t3(G3) =m(χ−1) = 4(2n−2) = 8n−8 = O(3

√
N); if n is odd

t4(G3) = (D+1)(χ−1) = 4(2n−3) = 8n−12 = O(3
√

N); if n is even
t4(G3) = (D+1)(χ−1) = 4(2n−2) = 8n−8 = O(3

√
N); if n is odd

The tightness values t1, stt, spt, t2, t3, and t4 are bounded by O(3
√

N), and hence G3 can
be used as a model for MINs. The Line graph of Rook graph K3□K3 is shown in Figure
5.10.

Figure 5.10 Line graph of Rook graph K3□K3.

70

5.3.2.4 Line graph of Total graph of complete bipartite graph Kn,n: Consider G4

= L(T (Kn,n)) = Line graph of Total graph of complete bipartite graph Kn,n. The graph
parameters of G4 are given in Table 5.22.

Table 5.22 Line graph of Total graph of complete bipartite graph Kn,n.

N D m ∆ λ1

n3 +2n2 ≤ 3 ≤ 7 4n−2 4n−2

The properties of Total graph of complete bipartite graph Kn,n are given in Table
5.23.

Table 5.23 Total graph of complete bipartite graph Kn,n.

NOG ∆ Is Regular?

n2 +2n 2∗n Yes

The chromatic number of the Line graph of Total graph of complete bipartite graph
Kn,n is calculated as follows: it can be observed that the edge chromatic number (chro-
matic index) of Total graph of complete bipartite graph Kn,n is 2n+ 1 if the number
of vertices is odd (from Corollary 5.1.21), and 2n if number of vertices is even (from
Theorem 5.1.20). Also, from Definition 5.1.2 the edge chromatic number χ

′
(T (Kn,n))

= χ(L(T (Kn,n))). The tightness values are given as follows:

t1(G4)≤ 7(4n−2)≤ 28n−14 = O(3
√

N);
stt(G4)≤ 4(4n−2)≤ 16n−8 = O(3

√
N);

spt(G4)≤ 7(4n−2)≤ 28n−14 = O(3
√

N);
t2(G4)≤ 4(4n−2)≤ 16n−8 = O(3

√
N).

The new tightness values t3(G4) and t4(G4) are also given as follows:

t3(G4) =m(χ−1)≤ 7(2n−1)≤ 14n−7 = O(3
√

N); if n is even
t3(G4) =m(χ−1)≤ 7(2n)≤ 14n = O(3

√
N); if n is odd

t4(G4) = (D+1)(χ−1)≤ 4(2n−1)≤ 8n−4 = O(3
√

N); if n is even
t4(G4) = (D+1)(χ−1)≤ 4(2n)≤ 8n = O(3

√
N); if n is odd

71

The tightness values t1, stt, spt, t2, t3, and t4 are bounded by O(3
√

N), and hence G4

can be used as a model for MINs. The Line graph of Total graph of complete bipartite
graph K2,2 is given in Figure 5.11.

Figure 5.11 Line graph of Total graph of complete bipartite graph K2,2.

5.3.2.5 Line graph of Total graph of complete graph Kn: Consider G5 = L(T (Kn))

= Line graph of Total graph of complete graph Kn. The graph parameters of G5 are given
in Table 5.24.

Table 5.24 Line graph of Total graph of complete graph Kn.

N D m ∆ λ1

n3−n
2 ≤ 2 ≤ 4 4n−6 4n−6

The properties of Total graph of complete graph Kn are given in Table 5.25.

Table 5.25 Total graph of complete graph Kn.

NOG ∆ Is Regular?

n2+n
2 2n−2 Yes

The chromatic number of the Line graph of Total graph of complete graph Kn is
calculated as follows: it can be observed that the edge chromatic number (chromatic
index) of Total graph of complete graph Kn is 2n− 1 if the number of vertices is odd

72

(from Corollary 5.1.21), and 2n−2 if number of vertices is even (from Theorem 5.1.20).
Also, from Definition 5.1.2 the edge chromatic number χ

′
(T (Kn)) = χ(L(T (Kn))). The

tightness values are given as follows:

t1(G5)≤ 4(4n−6)≤ 16n−24 = O(3
√

N);
stt(G5)≤ 3(4n−6)≤ 12n−18 = O(3

√
N);

spt(G5)≤ 4(4n−6)≤ 16n−24 = O(3
√

N);
t2(G5)≤ 3(4n−6)≤ 12n−18 = O(3

√
N).

The new tightness values t3(G5) and t4(G5) are also given as follows:

t3(G5) =m(χ−1)≤ 4(2n−3)≤ 8n−12 = O(3
√

N); if n is even
t3(G5) =m(χ−1)≤ 4(2n−2)≤ 8n−8 = O(3

√
N); if n is odd

t4(G5) = (D+1)(χ−1)≤ 3(2n−3)≤ 6n−9 = O(3
√

N); if n is even
t4(G5) = (D+1)(χ−1)≤ 3(2n−2)≤ 6n−6 = O(3

√
N); if n is odd

The tightness values t1, stt, spt, t2, t3, and t4 are bounded by O(3
√

N), and hence G5

can be used as a model for MINs. Figure 5.12 shows the Line graph of Total graph of
complete graph K3.

Figure 5.12 Line graph of Total graph of complete graph K3.

Example 5.3.3. The Line graph of Johnson graph J(n,3) belongs to the set SO(4√N)

Consider G1 = L(J(n,3)) = Line graph of Johnson graph J(n,3), for n > 5. The
graph parameters of G1 are given in Table 5.26.

73

Table 5.26 The Line graph of Johnson graph J(n,3).

N D m ∆ λ1

n4−6n3+11n2−6n
4 ≤ 4 ≤ 5 6n−20 6n−20

The properties of Johnson graph J(n,3) are given in Table 5.27.

Table 5.27 Johnson graph J(n,3).

NOG ∆ Is Regular?(n
3

)
3(n−3) Yes

The chromatic number of the Line graph of Johnson graph J(n,3) is calculated as
follows: it can be observed that the edge chromatic number (chromatic index) of J(n,3)
is 3(n− 3)+ 1 if the number of vertices is odd (from Corollary 5.1.21), and 3(n− 3)
if number of vertices is even(from Theorem 5.1.20). Also, from Definition 5.1.2 the
edge chromatic number χ

′
(J(n,3)) = χ(L(J(n,3))). The tightness values are given as

follows:

t1(G1)≤ 5(6n−20)≤ 30n−100 = O(4
√

N);
stt(G1)≤ 5(6n−20)≤ 30n−100 = O(4

√
N);

spt(G1)≤ 5(6n−20)≤ 30n−100 = O(4
√

N);
t2(G1)≤ 5(6n−20)≤ 30n−100 = O(4

√
N).

The new tightness values t3(G1) and t4(G1) are also given as follows:

t3(G1) =m(χ−1)≤ 5(3n−10) = O(4
√

N); if no. of vertices is even
t3(G1) =m(χ−1)≤ 5(3n−9) = O(4

√
N); if no. of vertices is odd

t4(G1) = (D+1)(χ−1)≤ 5(3n−10) = O(4
√

N); if no. of vertices is even
t4(G1) = (D+1)(χ−1)≤ 5(3n−9) = O(4

√
N); if no. of vertices is odd

74

Figure 5.13 Line graph of Johnson graph J(6,3).

The tightness values t1, stt, spt, t2, t3, and t4 are bounded by O(4
√

N), and hence G1

can be used as a model for MINs. The Line graph of Johnson graph J(6,3) is shown in
Figure 5.13.

75

CHAPTER 6

DYNAMIC LOAD BALANCING OF
INTEGER LOADS

This chapter presents a load balancing algorithm as a modified approach to the ex-
isting load balancing algorithm in Stevanović (2014). The proposed algorithm results in
a balancing flow with a lesser l2-norm than the l2-norm of the balancing flow generated
by the existing algorithm. Further, we show that the load balancing by the proposed
algorithm is done in O(n3) time.

6.1 PRELIMINARIES

Given a connected graph G = (V,E), the processor network is represented as follows:
The processors are represented by the graph’s nodes, while the edges represent the com-
munication channels. Each node vi ∈ V is given a unit size token wi, an independent
task. The standard approach for dynamic load balancing is to split the balancing pro-
cess into two steps as in Hu et al. (1998). The first step generates a balancing flow
that specifies the exact amounts of load to be exchanged between a processor and its
neighboring processors; the second step performs the actual load movement. The fol-
lowing assumptions from Diekmann et al. (1999) are considered in this chapter: The
loads(tokens) are non-negative integers and each processor(node) has the same process-
ing capacity. There is no load generated or absorbed throughout the balancing process.
Non-adjacent nodes cannot communicate with each other. Any amount of tokens can
be moved from a node to its neighboring nodes in each step. The goal is to devise an
algorithm for moving loads across edges so that the load on each node is approximately
equal.

An integral graph is defined by Harary and Schwenk (1974) as a graph whose graph
spectrum consists entirely of integers. Cvetković et al. (2010) presented a dynamic load
balancing algorithm and claimed that their algorithm would work in integer arithmetic

77

only if the network of processors was represented as an integral graph. Stevanović
(2014) observed that the algorithm in Cvetković et al. (2010) produced balancing flows
with non-integer values, hindering the emphasis on integer arithmetic. A set of bal-
ancing flows transferring a unit load from a selected vertex to every other vertices of
the graph was necessary to manage all integer load distributions. As a result, Algo-

rithm 2 that executes in integer arithmetic was proposed by Stevanović (2014) for load
balancing in any given network. But when compared to Hu et al. (1998)’s algorithm,
Algorithm 2 from Stevanović (2014) gave sub optimal balancing flows in terms of l2-
norm. This chapter presents an algorithm as a modified approach to Algorithm 2 from
Stevanović (2014). The resulting balancing flow has the l2-norm less than the l2-norm
of the balancing flow generated by Algorithm 2 in Stevanović (2014). The proposed
algorithm assigns the loads to the nodes so that the balancing flow computed has a min-
imum l2-norm. The algorithm is presented in two parts: The first algorithm does the
parameter computation and the second algorithm then uses these parameters to find the
balancing flow.

6.1.1 NOTATIONS

In this chapter, we follow the notations that are used in Stevanović (2014). Let G =

(V,E) be a directed graph, which is weakly connected, with the vertices in V represent-
ing processors and E edges representing the links. Here, |V | = n and |E| = m. The
vector w ∈ Zn represents the vector of load values, where the load at processor i ∈ V

is denoted as wi. The vector w := 1
n(∑

n
i=1)(1, ...,1) represents the average load. Let

N be an n×m vertex-edge incidence matrix of G. For the two nodes incident to the
corresponding edge, each column has exactly two non-zero entries, ‘1’ and ‘−1’ with
the remaining entries as 0.

Consider the flow x ∈ ZE on the graph edges. The flow direction is determined by
the signs of the entries in x and the directions in N, i.e., xe > 0 indicates a flow along
the edge e’s direction, where e ∈ E, xe < 0 indicates flow along the opposite direction.
The balancing flow is defined as the flow x on the edges of E, represented as f ∈ ZE

and satisfying equation given below:

N f = w−w (6.1.1)

The difference between a node’s initial load and the mean load value is the flow balance
at that node, i.e., the load is globally balanced after sending exactly fe tokens through
every edge e ∈ E, as expressed in (6.1.1). The balancing flow with the smallest l2-norm

78

∥ f∥2 = (∑m
i=1 f 2

i)
1/2 is computed among all the balancing flows satisfying (6.1.1).

6.2 EXISTING ALGORITHMS

Cvetković et al. (2010) proposed an algorithm for dynamic load balancing of the net-
work of processors. The proposed algorithm used the eigenvectors of the graph that
modeled the network. They claimed that the algorithm works in integer arithmetic only
if the network of processors was represented as an integral graph. The algorithm in
Cvetković et al. (2010) was analyzed by Stevanović (2014) as Algorithm1’ and is de-
scribed as follows: Consider the adjacency matrix for a regular integral graph G. The
integral eigenvectors (excluding the all-one vector j) of the adjacency matrix of G are
stored in an n× (n−1) matrix B. The entries of eigenvectors are assigned as weights to
the graph’s vertices. The balancing flow is then computed. The edges that transmit the
loads from every source (a vertex with positive weight) to a sink (a vertex with negative
weight) are considered. The flow is considered as ‘1’ if it is traversing along the direc-
tion of the underlying edge. The flow is ‘-1’ if it is traversing against the direction of
the underlying edge. The flow across the other edges is considered as zero. For every
eigenvector, the flow is computed, and the entries are stored in the m× (n− 1) matrix
F .

Now delete the last row from the matrices B and N, and denote them by B∗ and
N∗, respectively. The uniform load distribution is known to be given by the zero vector
for every column of B. In addition, the flow vectors in F help to balance the loads in
B’s columns. Hence, −B = NF, and −B∗ = N∗F as seen in (Stevanović (2014), eq.2).
The vector w represents the loads assigned to the processors. The vector of uniform
load distribution is represented by w. The sum of the components of the vector (w−w)

is zero because the sums of components of w and w are equal. Now delete the last
element from (w−w) and denote it as (w−w)∗. From Algorithm 1’, the balancing flow
is obtained as f =−FB−1

∗ (w−w)∗.

Dragan Stevanović observed that since matrix B−1
∗ is involved in calculating the

balancing flow, Algorithm1’ failed to execute in integer arithmetic even for the integral
graphs. It was concluded that for the integer loads, Algorithm1’, produced the bal-
ancing flow in terms of integers if and only if it satisfied FB−1

∗ ∈ Zm×(n−1) as seen in
(Stevanović (2014), eq.3). From (Stevanović (2014), eq.4), it is observed that

N∗C =−N∗FB−1
∗ = B∗B−1

∗ = I (6.2.1)

Considering the necessary and sufficient condition from (Stevanović (2014), eq.3), Dra-

79

gan Stevanović restated Algorithm 1’ as Algorithm 2. It states that for w and w, the flow
vector that balances the load is obtained as f =C(w−w)∗, if matrix C ∈ Zm×(n−1) sat-
isfies (6.2.1). It is clear that the resulting balancing flow depends only on C = FB−1

∗
that must satisfy (6.2.1). Dragan Stevanović stated that for every connected graph G,
Algorithm 2 executes in integer arithmetic due to (Stevanović (2014), Claim 1). It states
that there exists a matrix C ∈ Zm×(n−1) satisfying (6.2.1) for every directed graph that
is weakly connected.

The matrix C is obtained as shown here: Consider G to be a weakly connected
directed graph with the vertex v corresponding to the matrix N’s last row. Consider the
underlying undirected graph of G. A path pi from v to i exists for every i ∈ V \ {v}
because G is weakly connected. The matrix C is computed by finding a path from v to
the other vertices in the underlying undirected graph. The directed graph indicates if
the path traverses the edge in the same direction or the opposite direction. Let ci be an
m-dimensional vector with (−1,0,1) entries for i ∈V \{v} defined as:

(ci)k =


0, if path pi does not traverse along edge k

1, if path pi traverses in the same direction as edge k

−1, if path pi traverses in the opposite direction of edge k

To construct matrix C, for each i ∈V \{v}, we set the ith column of C to vector ci.

Let ∥ fA∥2 and ∥ fB∥2 represent the balancing flow generated by Algorithm 2 from
Stevanović (2014) and Hu et al. (1998). For the Petersen graph with the loads consid-
ered in Stevanović (2014), the l2-norm is obtained as follows: ∥ fA∥2 = 41.95≈ 42 and
∥ fB∥2 = 28. The l2-norm of the balancing flow resulting from Algorithm 2 is much more
than the l2-norm of the balancing flow resulting from Hu et al. (1998)’s algorithm. In
this chapter we modify the existing algorithm such that the balancing flow generated
has its l2-norm less than the l2-norm of the balancing flow produced by the existing
algorithm.

6.3 THE PROPOSED ALGORITHMS FOR LOAD BALANCING

In this section, we present a brief description of the proposed algorithms to find the
balancing flow along with the pseudo-codes of the algorithm in SageMath. We modify
the existing algorithm such that the resulting balancing flow has a lesser l2-norm. We
achieve this by finding the spanning tree that acts as a backbone of the network. Next,
we compute the order in which the loads are to be assigned such that the resulting
balancing flow uses fewer network edges and has a lesser l2-norm. The algorithm is

80

implemented in SageMath. The algorithm is presented in two parts: Algorithm 3.1
computes the parameters needed to find the balancing flow. Algorithm 3.2 calculates
the balancing flow using the parameters computed by Algorithm 3.1. The l2-norm of
the resulting balancing flow is much lesser than the l2-norm of the balancing flow from
Algorithm 2 in Stevanović (2014). The rows of matrix C represent the edges of G,
and columns represent the nodes of G. Algorithm 3.1 involves the construction of the
spanning tree G

′
of G from the m× (n− 1) matrix C. The following theorem proves

that the tree resulting from matrix C is a spanning tree.

Theorem 6.3.1. The graph constructed by considering the non-zero rows of matrix C

is a spanning tree G
′
of G.

Proof. Consider an m× (n−1) matrix C, whose rows and columns represent the edges
and vertices, respectively. The entries in C are obtained by deleting vn and finding its
path to every other vertex by considering the underlying undirected graph of G. Since
G is a connected graph, there exists a path from vn to every remaining vertex in G.
The non-zero rows in C represent the edges through which the path traverses from vn

to the remaining vertices. Let K = V −{vn} be the set of remaining vertices of G. We
have to find the path from vn to every vertex in K. Since |K| = n− 1; we obtain n− 1
unique paths from vn to the remaining vertices of G. The incidence matrix N is an n×m

matrix, whose columns represent the edges of G. The matrix N′ is obtained by retaining
those columns in N for which the rows in C contain non-zero entries and deleting the
remaining columns. The matrix N′ gives the vertex-edge incidence connection of G′

and has n− 1 non-zero columns in it. Thus the resulting graph G′ has n− 1 edges,
which is the spanning tree of G.

Algorithm 3.1 computes the distance of every vertex from vn in graph G
′
, for which

the diameter of graph G is required. The following theorem gives the diameter of graph
G.

Theorem 6.3.2. The sum of the columns of matrix C with maximum non-zero entries is

the diameter of graph G.

Proof. The entries of matrix C represents the path from vertex vn to every other vertex
by considering the underlying undirected graph of G. The ith column in C gives the
path from vertex vn to vertex i, where i ∈V . Since G is a weakly connected graph, there
exists at least one vertex, say v in V \ {vn}, which is at the farthest distance from vn.
The path from vn to v will have the most number of edges in it because v is the farthest
vertex from vn. Hence column v of matrix C will have the most number of non-zero
entries, which gives the diameter of G when summed up.

81

We present the algorithms as follows: Algorithm 3.1, named Parameter Computing
Algorithm , constructs the spanning tree G

′
and the required parameters from G′. The

parameters that are calculated and stored are: distance of every vertex from vn stored in
list DL, index of the vertices in increasing order of their distances from vn stored in list
IL, all the vertices adjacent to vn stored in the list NL, and degree of all vertices of the
spanning tree G

′
stored in list DegL.

Since the rows of matrix C represent the edges of G, the spanning tree G
′

is con-
structed by considering only the non-zero rows of the matrix C. The incidence ma-
trix N is updated by deleting those columns(edges) from N for which all the corre-
sponding row entries in C are zero. The incidence matrix now has entries only for
those rows(edges) in C that have non-zero entries in it. The SageMath built-in function
from_incidence_matrix(G′,N), where G

′
is a spanning tree and N is an incidence ma-

trix, is used to construct the spanning tree. The spanning tree G
′
gives a picture of how

vn is connected to the remaining vertices.

The spanning tree G
′

is constructed from matrix C in steps 1-6. The degree of all
the vertices of G′ are stored in the list DegL. The distance of all vertices to vn in G

′

is computed from C and stored in the list DL as shown in step 8. Through steps 9-18,
the index of vertices based on the increasing order of the distances from vn are found
and stored in IL. The neighbors of vn are obtained using a SageMath built-in function
G′.neighbors(vn) and stored in the list NL. The Algorithm returns the four parameters
DL, IL, NL, and DegL.

Algorithm 3.2 first assigns the largest load to the vertex vn and stores the load in
wpendant . The adjacent nodes of vn that are pendant vertices are assigned with the loads
and stored in the list wpendant as shown in steps 7-14. The remaining loads are assigned
to the remaining non-pendant adjacent vertices and stored in the list wnew, as shown in
steps 16-24. If vertex vn does not have any pendant neighbors, then the adjacent non-
pendant vertices of vn are assigned loads in the increasing order of the indices. The
loads are assigned to vn’s neighbors in the following order: the first adjacent vertex
(with the lowest index) is assigned a load that is less than the load assigned to vn but
greater than the remaining loads. This is shown in steps 25-29. The assignment of loads
to the remaining neighbors of vn is done in steps 30-37. The remaining non-adjacent
vertices are then assigned with the loads based on their indices in steps 40-42. Finally,
the loads in wnew gives the order in which they are to be assigned such that the resulting
balancing flow fnew has a minimum l2-norm. The difference between the average and
the initial loads are computed and stored in wdi f f as in steps 43-44. The balancing flow
fnew is computed as the product of C×wdi f f in step 45. The l2-norm of fnew is then

82

computed using the built-in SageMath function norm().

Algorithm 3.1: Parameter Computing Algorithm
Input : An m× (n−1) matrix C obtained by deleting vertex vn, Incidence

matrix N of G.

Output: DL, IL, NL, and DegL.

1 Ctemp←C.apply_map(lambda x : x∗ x) /* applying the function to each element of C */

2 S← sum(Ctemp.columns()) /* S← temporary list */

3 for i← 0 to len(S) do /* Construct G
′ by considering only non-zero row entries in C */

4 if S[i] == 0 then

5 delete the ith column from N

6 f rom_incidence_matrix(G
′
,N) /* SageMath built-in function to obtain G′ */

7 DegL← G′.degree() /* degree of all vertices of G′ */

8 DL← sum(Ctemp) /* DL← distance from vertex vn to all other vertices */

9 for i← 0 to n−1 do /* Store the index of the vertices that are adjacent to vn */

10 if DL[vi] == 1 then /* vertex vi is at distance 1 from vn */

11 IL← store the index i

12 D = max(DL) /* D is the diameter */

13 while (D >= 2) do /* Store the index of the vertices not adjacent to vn in list IL */

14 for i← 0 to n−1 do

15 if DL[vi] == D then /* vertex vi is at distance D from vn */

16 IL← store the index i

17 D← D−1

18 NL← G′.neighbors(vn) /* Find neighbors of vertex vn using SageMath built-in function */

19 return DL, IL,NL, and DegL

Algorithm 3.2 is named as Balancing Flow Algorithm. It uses the following param-
eters: matrix C, parameters DL, IL, NL, and DegL computed by Parameter Computing
Algorithm, the loads w sorted in non-decreasing order, the average load w. The loads
are assigned to the nodes such that the balancing flow has a minimum l2 -norm.

83

Algorithm 3.2: Balancing Flow algorithm
Input : An m× (n−1) matrix C obtained by deleting vertex vn, loads w in

non-decreasing order, average load w, DL,IL,NL, and DegL.

Output: The balancing flow fnew.

1 wnew← [] /* The list of loads assigned to the nodes of G */

2 wpendant ← [] /* The list of loads assigned to the pendant nodes of G′ and also to vn */

3 LengthNL ← len(NL)

4 wNL ← w[0 : LengthNL] /* wNL []←The list of loads to be assigned to the neighbors of vn */

5 f lag← 0

6 j← LengthNL−1

7 wpendant [vn]← max(w) /* Assign the the largest load in w to vn */

8 foreach vi in NL do

9 if DegL[vi] == 1 and DL[vi] == 1 then /* vi is pendant vertex and at distance D == 1 */

10 wpendant [vi]← wNL [j]

11 NL.remove(vi) /* delete the neighbor assigned with load */

12 wNL .remove(wNL [j]) /* delete the load assigned */

13 f lag← 1

14 j← j−1

15 LengthNL ← len(NL)

16 if f lag == 1 then

17 j← 0

18 while vi is in NL do /* assign the loads to the remaining vertices adjacent to vn */

19 if DegL[vi] ! = 1 and DL[vi] == 1 then /* vi is not pendant and is at distance D == 1

*/

20 wnew[vi]← wNL [j]

21 vi← next neighbor in NL

22 j← j+1

23 else

24 vi← next neighbor in NL

84

25 if (f lag == 0) then /* If no pendant vertices, assign loads to vertices adjacent to vn */

26 vi← least indexed neighbor in NL

27 if DegL[vi] ! = 1 and DL[vi] == 1 then /* vi is not pendant and is at distance D == 1 */

28 wnew[vi]← w[LengthNL−1] /* load assigned to least indexed adjacent vertex of vn */

29 vi← next neighbor in NL

30 j← 0

31 while vk in NL\ {vi} do /* assign loads to remaining vertices adjacent to vn */

32 if DegL[vk] ! = 1 and DL[vk] == 1 then

33 wnew[vk]← w[j]

34 vk← next neighbor in NL \{vi}
35 j← j+1

36 else

37 vk← next neighbor in NL \{vi}

38 wnew = wnew +wpendant

39 i← 0

40 foreach vertex vk in V \{NL} do /* assign the loads to the remaining non-adjacent vertices */

41 wnew[IL[vk]]← w[i]

42 i← i+1

43 foreach vi in V \{vn} do /* store the values of (w−wnew)∗ */

44 wdi f f [vi] = w−wnew[vi]

45 Compute fnew =C ∗wdi f f /* Compute the balancing flow */

46 Compute l2-norm /* Compute the l2-norm of fnew using the SageMath built-in function norm() */

47 return fnew

Theorem 6.3.3. The balancing flow generated by the Balancing Flow Algorithm pro-

duces an optimal l2-norm.

Proof. The balancing flow is computed as fnew = C ∗wdi f f , with C, w - loads in non-
decreasing order and other parameters as inputs. In order to produce a balancing flow
with an optimal l2-norm, the algorithm must yield fnew as a column vector with very
few non-zero entries. This is possible only if the linear combination of the entries of
C and wdi f f produces zero. In this algorithm, we choose the order in which loads are
assigned to nodes so that when the row entries of C are multiplied by the entries of
wdi f f , the resulting column vector contains the majority of zero entries.

85

Consider the graph G with V = {v1,v2, ...,vn} and E edges. The matrix C is obtained
by deleting vn and finding a path from vn to every other vertex in G. This results in a
spanning tree G

′
whose root is vertex vn. G

′
acts as a backbone of the network and the

loads are balanced among the nodes through the edges of G
′
. In G

′
, arrange the vertices

at distance D = 1,D = 2, etc., as shown in the Figure 6.1. Reassign the vertex labels
so that the vertices at distance D = 1 have labels from v1,v2, ... etc., then relabel the
vertices at distance D = 2 and so on.

Figure 6.1 Vertices arranged at their corresponding distances from vertex vn.

Initially, the largest load is assigned to vertex vn. The next step is to assign the loads
in non-decreasing order, starting with the smallest, to vn’s neighbors. The remaining
loads are assigned to the vertices in decreasing order of distance from vertex vn. Loads
are assigned to vertices at distance D = diameter(G), followed by the vertices at D−
1,D−2, and so on, up to vertices at distance D = 2.

We now have the loads assigned to the nodes, and subtracting the average load
from the assigned loads yields a set of at least n

2 positive and n
2 negative load values as

column wdi f f . The matrix C has n− 1 non-zero rows, with every such row consisting
of (−1,0,1) entries. The linear combination of the row entries in C and the entries
in wdi f f (set of positive and negative balance values) yields a column vector fnew with
the majority of the entries as zero, resulting in fewer network edges used for the load
balancing. As a result, the balancing flow produced has an optimal l2-norm.

Example: Consider the Petersen graph as shown in Figure 6.2 with the edge labels.
The edge labels represent the edges. The initial loads are w = [20,22,10,33,57,49,
13,30,35,31]T and the average load is w = 30, as in Stevanović (2014). The loads in w

are sorted in non-decreasing order. The matrix C obtained by deleting vertex 9 is given
in Figure 6.3.

86

1
3

4

5

6

7

8

9

2

10

11

13 15

12
14

0

1

2 3

4

5

6

7 8

9

Figure 6.2 Petersen Graph G.
Figure 6.3 Matrix C obtained by delet-
ing vertex 9.

2 5

7

8
10

11

13

14

15

0

1

2

3
4

5

6

7

8

9

Figure 6.4 Spanning tree G
′
from C.

The Parameter Computing Algorithm computes the following: The spanning tree G
′

obtained from C is shown in Figure 6.4. The list of distances DL from vertex vn = 9 is
computed as [2,2,2,2,1,2,1,1,2]. The index of the vertices in the increasing order of its
distance from vn is IL = [4,6,7,0,1,2,3,5,8]. The Neighbors of vertex 9 are [4,6,7] and
loads to be assigned are wNL = [10,13,20]. The Balancing Flow Algorithm computes
the balancing flow. The final assigned loads are wnew = [22,30,31,33,20,35,10,13,49,
57]. The difference between the average and initial loads is wdi f f = [8,0,−1,−3,10,−5,

87

20,17,−19]. The balancing flow fnew is (0,8,0,0,0,0,1,3,0,−15,5,0,−19,1,−11).
The l2-norm of ∥ fnew∥2 = 29 whereas the l2-norm of the balancing flow in Stevanović
(2014) is ∥ f2∥2 = 41.95 ≈ 42. Since the loads are assigned as in wnew, the balancing
flow results in the l2-norm that is lesser compared to l2-norm in Stevanović (2014).

Table 6.1 gives the comparison of l2-norm of the balancing flow ∥ f2∥2 generated by
Algorithm 2 and ∥ fnew∥2 generated by the proposed algorithm. For the Generalized Pe-
tersen graph, the loads assigned are w = [10,40,20,30,60,50,80,90,70,110,100,120].
The loads assigned to the nodes of Clebsch graph are w = [10,20,40,30,60,50,70,80,
100,90,150,120,130,110,140,160]. Once the loads arrive, the proposed algorithm as-
signs them to the nodes of the spanning tree G

′
such that the loads are balanced using

fewer network edges. Hence, the proposed algorithm generates a balancing flow with a
lesser l2-norm irrespective of the loads’ order.

Table 6.1 Graphs with l2-norm of ∥ f2∥2 and ∥ fnew∥2.

Graph |V |= n |E|= m ∥ f2∥2 ∥ fnew∥2

Petersen Graph 10 15 42 29

Generalized Petersen Graph GP(6,1) 12 18 107 68

Clebsch Graph 16 40 245 149

For the graphs in Table 6.1, it can be observed that the l2-norm of the balancing
flow ∥ fnew∥2 generated by the proposed algorithm is much less than that of the l2-norm
generated by Algorithm 2 in Stevanović (2014).

6.4 TIME COMPLEXITY

Theorem 6.4.1 and 6.4.2 give an evaluation of the worst-case time complexity of the
proposed algorithms for balancing the loads.

Theorem 6.4.1. Parameter Computation Algorithm takes O(n3) running time.

Proof. In Parameter Computation Algorithm, the apply_map() function takes O(n3)

running time since the entries of C are to be accessed and mapped. The for loop in step
3 repeats at most n times, and for every iteration a column of matrix N is deleted in
O(n) running time. So, the for loop takes an O(n2) running time. The spanning tree is

88

constructed from the vertex-edge incidence matrix N′ in O(nm)≊ O(n3) running time.
The for loop in step 9, in the worst case, takes an O(n) running time. In step 13, the
while loop repeats at most D = n−1 times, which takes an O(n) running time, and the
for loop inside iterates at most n times. So, the while loop that generates list IL has a
running time of O(n2). Construction of the list NL takes an O(n2) running time. As a
result, the algorithm has an O(n3) running time.

Theorem 6.4.2. The Balancing Flow Algorithm runs in O(n3) time.

Proof. In the Balancing Flow Algorithm, the for loop in step 8 repeats at most n times
which takes an O(n) running time and for every iteration the list NL and wNL is updated
and it takes an O(n) running time. So, the for loop that assigns the loads to the adjacent
(pendant) neighbors of vn has an O(n2) running time. If vn has no pendant neighbors, the
load distribution to the adjacent (non-pendant) neighbors takes an O(n) running time. In
addition, the assignment of the remaining loads to the non-adjacent vertices of a takes an
O(n) running time. The computation of balancing flow fnew requires the multiplication
of the m× (n− 1) matrix C with an (n− 1)× 1 column vector wdi f f , which takes an
O(n3) running time. So, the time complexity of this algorithm is O(n3).

Theorem 6.4.3. For every graph G with integer loads to be assigned to its vertices, the

load balancing is done in O(n3) time.

Proof. To compute the balancing flow that balances the loads at the nodes, we have
presented two algorithms, namely: the Parameter Computation Algorithm and the Bal-
ancing Flow Algorithm. Parameter Computation Algorithm takes an O(n3) running
time (Theorem 6.4.1) to compute several parameters. The Balancing Flow Algorithm
takes an O(n3) running time (Theorem 6.4.2) for assigning the loads and computing the
balancing flow with the help of the parameters determined by the previous algorithm.
As a result, load balancing can be done in O(n3) time for any graph G with integer loads
assigned to its vertices.

89

CHAPTER 7

CONCLUSIONS AND FUTURE SCOPE

In this thesis, the focus is on studying some Graph Labeling approaches and Graph
Spectra, along with their applications in relevant areas. In this chapter, conclusions and
future scope are presented.

Chapter 2 showed that the construction of exclusive sum labeling for odd cycles
given by Miller et al. (2005) failed to produce an exclusive sum labeling of odd cycles
C5 and C7. Further, we presented a modified exclusive sum labeling for cycles Cn of odd
length n > 5. Also, we give exclusive sum labeling of the Cartesian product of cycle Cn

and K2, i.e., Cn□K2, Cartesian product of complete graph Kn and K2, i.e., Kn□K2, the
disjoint union of paths, the disjoint union of cycles. One can obtain the exclusive sum
numbers for graphs resulting from various graph operations in future work.

In Chapter 3, we presented the exclusive sum number of complete k-partite graph
Kr1,r2,...,rk , which can model links in the relational database. Since the exclusive sum
labeling is a method of graph representation in terms of integers, and one can further,
look for its applications in situations where brevity is desirable.

Chapter 4 deals with proper monographs labelings. We have presented the proper
monograph labelings of classes of graphs such as cycles, Cn

⊙
K1, cycles with paths

attached to one or more vertices, and cycles with an irreducible tree attached to one
or more vertices. From the signatures of these proper monographs, we show that one
can determine their maximum independent sets. Further, one can investigate the proper
monograph labelings for other classes of graphs and also determine their relationship
with the properties of the graph.

In Chapter 5, we present several graphs that qualify as models for efficient MINs
based on the small values of the graph tightness introduced by Cvetković and Davidović
(2008). These graphs are constructed using some extensively used graph operations.
The tightness values of these graphs range from O(4

√
N) to O(

√
N), where N is the order

of the graph under consideration. Also, two new graph tightness values, namely Third

91

type mixed tightness t3(G) and Second type of Structural tightness t4(G), are defined in
this chapter. It has been shown that these tightness types are easier to calculate than the
others for the considered graphs. Moreover, their values are significantly smaller. In
the future, we can extend examples by comparing the tightness values of various graphs
obtained from different graph operations.

Chapter 6 presents an algorithm as a modified approach to the existing algorithm
in Stevanović (2014). The proposed algorithm results in a balancing flow with a lesser
l2-norm than the l2-norm of the balancing flow generated by the existing algorithm.
Further, we show that the load balancing by the proposed algorithm is done in O(n3)

time. One could investigate and examine some other properties of matrix C as a future
direction.

92

BIBLIOGRAPHY

Arlinghaus, S., Arlinghaus, W., and Frank, H. (1993). Sum graphs and geographic
information. Solstice : An Electronic Journal of Geography and Mathematics.

Barmon, C., Faruqui, M., and Battacharjee, G. (1991). Dynamic load balancing algo-
rithm in a distributed system. Microprocessing and Microprogramming, 29(5):273–
285.

Behzad, M. (1970). A characterization of total graphs. Proceedings of the American

Mathematical Society., 26:383–389.

Bergstrand, D., Hodges, K., Jennings, G., Kuklinski, L., Wiener, J., and Harary, F.
(1989). The sum number of a complete graph. Bull. Malaysian Math. Soc. (2),
12(1):25–28.

Bloom, G. and Golomb, S. (1977). Applications of numbered undirected graphs. Pro-

ceedings of the IEEE, 65(4):562–570.

Bloom, G. S., Hell, P., and Taylor, H. (1979). Collecting autographs: n-node graphs that
have n-integer signatures. Annals of the New York Academy of Sciences, 319(1):93–
102.

Boillat, J. E. (1990). Load balancing and poisson equation in a graph. Concurrency:

practice and experience, 2(4):289–313.

Boland, J., Laskar, R., Turner, C., and Domke, G. (1990). On mod sum graphs. In Pro-

ceedings of the Twentieth Southeastern Conference on Combinatorics, Graph Theory,

and Computing (Boca Raton, FL, 1989), volume 70, pages 131–135.

Brooks, R. L. (1941). On colouring the nodes of a network. Mathematical Proceedings

of the Cambridge Philosophical Society, 37(2):194–197.

Brouwer, A., Cohen, A., and Neumaier, A. (1989). Distance-Regular Graphs. Springer-
Verlag, Berlin.

93

Brouwer, A. E. and Haemers, W. H. (2011). Spectra of graphs. Springer.

Chartrand, G. and Zhang, P. (2009). Chromatic graph theory. Discrete Mathematics
and its Applications. CRC Press, Boca Raton, FL.

Cvetković, D. and Davidović, T. (2008). Application of some graph invariants to the
analysis of multiprocessor interconnection networks. Yugoslav Journal of Operations

Research., 18(2):173–186.

Cvetković, D., Davidović, T., Ilić, A., and Simić, S. K. (2010). Graphs for small
multiprocessor interconnection networks. Applied mathematics and computation,
217(6):2468–2480.

Cvetković, D., Davidović, T., and Jovanović, I. M. (2016). Some new models for mul-
tiprocessor interconnection networks. Yugoslav Journal of Operations Research.,
26(4):423–439.

Cvetković, D. M., Doob, M., and Sachs, H. (1995). Spectra of graphs : Theory and

applications. Johann Ambrosius Barth, Heidelberg - Leipzig„ 3rd edition.

Cvetković, D. and Simić, S. (2011). Graph spectra in computer science. Linear Algebra

and its Applications, 434(6):1545–1562.

Cvetković, D. M. (1971). Graphs and their spectra. Publikacije Elektrotehničkog fakul-

teta. Serija Matematika i fizika, (354/356):1–50.

Cybenko, G. (1989). Dynamic load balancing for distributed memory multiprocessors.
Journal of Parallel and Distributed Computing, 7(2):279–301.

Diekmann, R., Frommer, A., and Monien, B. (1999). Efficient schemes for nearest
neighbor load balancing. Parallel Computing, 25(7):789–812.

Eager, D. L., Lazowska, E. D., and Zahorjan, J. (1986). Adaptive load sharing in
homogeneous distributed systems. IEEE Transactions on Software Engineering, SE-
12(5):662–675.

Elsässer, R., Kralovic, R., and Monien, B. (2003). Sparse topologies with small spec-
trum size. Theoretical Computer Science., 307:549–565.

Euler, L. (1741). Solutio problematis ad geometriam situs pertinentis. Commentarii

academiae scientiarum Petropolitanae, pages 128–140.

94

Fontanil, L. and Panopio, R. (2014). Independent set and vertex covering in a proper
monograph determined through a signature. Australas. J Comb., 59:64–71.

Gallian, J. A. (2021). A dynamic survey of graph labeling. Electronic Journal of

combinatorics, 1(DynamicSurveys):DS6.

Gervacio, S. and Panopio, R. (1982). Are generalized petersen graphs proper mono-
graphs. Matimyas Matemetika, 6:1–6.

Hammack, R., Imrich, W., and Klavžar, S. (2011). Handbook of product graphs. CRC
press.

Harary, F. (1969). Graph theory. Addison-Wesley Publishing Co., Reading, Mass.-
Menlo Park, Calif.-London.

Harary, F. (1990). Sum graphs and difference graphs. Congressus Numerantium,
72:101–108.

Harary, F. (1994). Sum graphs over all the integers. Discrete Mathematics, 124(1):99–
105.

Harary, F., Hentzel, I., and Jacobs, D. (1991). Digitizing sum graphs over the reals.
Caribb. J. Math. Comput. Sci., 1:1–4.

Harary, F. and Norman, R. Z. (1960). Some properties of line digraphs. Rendiconti del

Circolo Matematico di Palermo, 9(2):161–168.

Harary, F. and Schwenk, A. J. (1974). Which graphs have integral spectra? In Lecture

Notes in Mathematics, pages 45–51. Springer Berlin Heidelberg.

Hegde, S. M. and Vasudeva (2009). On mod difference labeling of digraphs. AKCE

International Journal of Graphs and Combinatorics, 6(1):79–84.

Hu, Y. F., Blake, R. J., and Emerson, D. R. (1998). An optimal migration algorithm for
dynamic load balancing. Concurr. Pract. Exp., 10:467–483.

Jaradat, M. M. M. (2005). On the Anderson-Lipman conjecture and some related prob-
lems. Discrete Mathematics., 297(1-3):167–173.

Krausz, J. (1943). Démonstration nouvelle d’une théoreme de whitney sur les réseaux.
Mat. Fiz. Lapok, 50(1):75–85.

95

Krueger, P. and Finkel, R. A. (1984). An adaptive load balancing algorithm for a multi-
computer. Technical report, University of Wisconsin-Madison Department of Com-
puter Sciences.

Mahamoodian, E. S. (1981). On edge-colorability of Cartesian products of graphs.
Canadian Mathematical Bulletin., 24(1):107–108.

Miller, M., Patel, D., Ryan, J., Sugeng, K. A., Slamin, and Tuga, M. (2005). Exclusive
sum labeling of graphs. J. Combin. Math. Combin. Comput., 55:137–148.

Rosa, A. (1966). On certain valuations of the vertices of a graph. In Theory of Graphs

(Internat. Symposium, Rome, pages 349–355.

Slamet, S., Sugeng, K., and Miller, M. (2006). Sum graph based access structure in a
secret sharing scheme. Journal of Prime Research in Mathematics, 2:113–119.

Song, J. (1994). A partially asynchronous and iterative algorithm for distributed load
balancing. Parallel Computing, 20(6):853–868.

Sonntag, M. (2003). Difference labelling of cacti. Discussiones Mathematicae Graph

Theory, 23(1):55–65.

Sonntag, M. (2004). Difference labelling of digraphs. Discussiones Mathematicae

Graph Theory, 24(3):509–527.

Stein, W. (2007). Sage mathematics software. http://www. sagemath. org/.

Stevanović, D. (2014). Remarks on dynamic load balancing of integer loads and integral
graphs. Applied Mathematics and Computation, 226:38–43.

Sugeng, K. A. and Ryan, J. (2007). On several classes of monographs. Australasian

Journal of Combinatorics, 37:277.

Sutton, M. (2000). Summable Graph Labelings and Their Applications. PhD disserta-
tion, The University of Newcastle.

Tuga, M. and Miller, M. (2005). ∆-optimum exclusive sum labeling of certain graphs
with radius one. In Combinatorial geometry and graph theory, volume 3330 of Lec-

ture Notes in Comput. Sci., pages 216–225. Springer, Berlin.

Tuga, M., Miller, M., Ryan, J., and Ryjáček, Z. (2005). Exclusive sum labelings of
trees. J. Combin. Math. Combin. Comput., 55:109–121.

96

Vizing, V. G. (1965). Critical graphs with given chromatic class (in russian). Metody

Discret. Analiz., 5:9–17.

West, D. B. (1996). Introduction to graph theory. Prentice hall Upper Saddle River, NJ.

Whitney, H. (1932). Congruent graphs and the connectivity of graphs. American Jour-

nal of Mathematics, 54(1):150–168.

Wilf, H. S. (1967). The eigenvalues of a graph and its chromatic number. Journal of

the London Mathematical Society, s1-42(1):330–332.

Xu, C., Lau, F. C., Lau, F. C., Monien, B., and Lüling, R. (1995). Nearest-neighbor
algorithms for load-balancing in parallel computers. Concurrency: Practice and

Experience, 7(7):707–736.

Xu, C.-Z. and Lau, F. C. M. (1992). Analysis of the generalized dimension exchange
method for dynamic load balancing. Journal of Parallel and Distributed Computing,
16(4):385–393.

97

PUBLICATIONS

Journal publications:

1. S. M. Hegde and Y. M, Saumya. Construction and Analysis of Graph Models for
Multiprocessor Interconnection Networks. Yugoslav Journal Of Operations Re-

search, 32(1), 87–109, 2022. ISSN 2334-6043. doi:10.2298/Y JOR200915017H.

2. S. M. Hegde, and Y. M. Saumya. Maximum Independent Sets in a Proper Mono-
graph Determined through a Signature, Discrete Mathematics, Algorithms and

Applications, doi: 10.1142/S1793830922500926.

3. S. M. Hegde and Y. M, Saumya. Further results on Exclusive Sum Labeling
of graphs and its application in Relational Database Systems, Communicated to
International Journal of Applied and Computational Mathematics (Under review)

4. S. M. Hegde, and Y. M. Saumya. A Modified Approach for Dynamic Load Bal-
ancing of Integer Loads, Communicated to Journal of Parallel and Distributed

Computing (Under Review)

Paper presented at Conferences:

1. Suresh M Hegde, and Saumya Y. M. Further results on Exclusive Sum Label-
ing of graphs and its application in Relational Database Systems, International

Conference on Graph Labeling and Applications ICGLA-2020. at Department of
Mathematics, Goa University, Goa-India, September 17-19, 2020.

99

BIODATA

Name : Saumya Y. M.
Email : saumya2087@gmail.com
Date of Birth : 20th May 1987.
Permanent address : Saumya Y. M.,

D/o P. M. Patali,
D.No 1-70/5, ’Manasa’,
Mugrodi Road, Padavinangady
Mangaluru-575008.

Educational Qualifications :

Degree Year Institution / University
B.E.(Information Science 2009 P. A. College of Engineering, Mangaluru.
& Engineering) VTU,Belgaum

M.Tech.(Systems Analysis 2012 NITK, Surathkal
& Computer Applications)

101

	Abstract of the Thesis
	List of Figures
	List of Tables
	INTRODUCTION
	GRAPHS AND THEIR REPRESENTATIONS
	GRAPH LABELINGS
	SUM LABELINGS AND EXCLUSIVE SUM LABELINGS
	APPLICATIONS OF SUM LABELINGS
	AUTOGRAPHS AND MONOGRAPHS
	GRAPH SPECTRA
	APPLICATIONS OF GRAPH SPECTRA
	ORGANIZATION OF THE THESIS

	EXCLUSIVE SUM LABELINGS OF GRAPHS
	EXCLUSIVE SUM NUMBER OF AN ODD CYCLE cn
	EXCLUSIVE SUM NUMBER OF CNBOXK2
	EXCLUSIVE SUM NUMBER OF CNBOXK2
	EXCLUSIVE SUM NUMBER OF KPN AND kCN

	APPLICATIONS OF EXCLUSIVE SUM LABELING IN RELATIONAL DATABASES
	EXCLUSIVE SUM NUMBER OF COMPLETE k-PARTITE GRAPH K123
	APPLICATION OF EXCLUSIVE SUM LABELINGS IN RELATIONAL DATABASES

	MAXIMUM INDEPENDENT SETS FROM THE SIGNATURES OF PROPER MONOGRAPHS
	PRELIMINARIES
	PROPER MONOGRAPH LABELINGS OF Cn AND CnK1
	PROPER MONOGRAPH LABELINGS OF Cn WITH PATHS ATTACHED TO ITS VERTICES
	PROPER MONOGRAPH LABELINGS OF Cn WITH ATTACHED IRREDUCIBLE TREES

	GRAPH MODELS FOR MULTIPROCESSOR INTERCONNECTION NETWORKS
	PRELIMINARIES
	NEW TIGHTNESS VALUES BASED ON THE CHROMATIC NUMBER
	GRAPHS SUITABLE FOR MINs

	DYNAMIC LOAD BALANCING OF INTEGER LOADS
	PRELIMINARIES
	NOTATIONS

	EXISTING ALGORITHMS
	THE PROPOSED ALGORITHMS FOR LOAD BALANCING
	TIME COMPLEXITY

	CONCLUSIONS AND FUTURE SCOPE
	BIBLIOGRAPHY
	PUBLICATIONS

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

