
DOMAIN NAME SYSTEM (DNS) SECURITY: HEALTH

MEASUREMENT AND INTRUSION DETECTION

Thesis

Submitted in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

by

SANJAY

Reg. No.: 177039MA500

DEPARTMENT OF MATHEMATICAL AND COMPUTATIONAL SCIENCES

NATIONAL INSTITUTE OF TECHNOLOGY KARNATAKA

SURATHKAL, MANGALORE - 575025

MAY, 2022

DEDICATION AND ACKNOWLEDGMENT

I want to convey my heartfelt thanks and appreciation to the many people I have

collaborated with over the last several years for their unwavering support and encour-

agement, which has helped me reach this point in my doctorate studies.

Dr. Pushparaj Shetty D., my supervisor (Department of Mathematical and Com-

putational Sciences, National Institute of Technology Karnataka), thank you for your

patience, advice, and support. Your words of encouragement and insightful, thorough

comments have meant a great deal to me. I am glad that you accepted me as a student

and continued to believe in me throughout the years.

Dr. Rajendran Balaji, my co-supervisor, deserves credit for his constant mentor-

ing and never-ending supply of intriguing assignments. His unpretentious attitude to

science and study is inspiring, and his extensive expertise and thorough editing have

been beneficial to me.

I thank the Research Progress Assessment Committee (RPAC) members for their

continuous support and encouragement. I convey many thanks to all fellow doctoral

students, teaching faculties, and non-teaching staffs in the Department of Mathematical

and Computational Sciences for encouraging to pursue hardwork and their cooperation.

Finally, I should mention my source of inspiration, my wife, Mrs. Sandeepa

Barasa, for her unwavering mental support during the difficult journey. Many thanks

to her for making my life more beautiful and green.

ABSTRACT

DNS is an essential service for the smooth functioning of all Internet services includ-

ing web applications, email services, messaging services, online social networks, etc. . .

that works by resolving an alphabetic hostname to an IP address. Every network com-

munication usually begins with a DNS mapping of the given domain name to the IP

address specifically accessible by the program. Many programs stop working as soon

as this mapping service is inaccessible. As a result, adversaries are keen to deny this

service via bug exploits, exploiting the vulnerabilities, or by circumventing the proto-

col standard function. In such instances, the attackers may use DNS server settings

that lack sufficient security hardening and to do things like moving DNS zones, altering

DNS resolvers to report fake IP addresses to divert customers, divert web and email

traffic, or execute deadly DNS amplification attacks.

DNS also plays a significant role in the overall user experience of Internet services.

However, it is mostly forgotten, and is often discovered without adequate protection,

or running older software versions, or is entirely insecure. Since most organizations

are unaware that DNS is a key attack vector, DNS-based attacks and exploitations oc-

cur. The system of DNS could appeal to an attacker for disruptive operations such as

network footprinting, downloading malicious software, contact with command and con-

trol servers, data exfiltration out of a network, and DNS-based reflective amplification

DDoS attempts. In some cases, DNS applications face many security issues such as

DoS/DDoS attacks on DNS servers, DNS cache poisoning, NXDomain (Non-existent

domain), MITM (Man-in-the-Middle) attacks, and DNS ID spoofing. As a result, mon-

itoring DNS traffic for threat security is very important.

This research aims to provide two novel methods for securing DNS infrastructure,

i.e., DNS health measurement and DNS intrusion detection. As part of the research

goal, we compare the DNS query resolution latency in IPv4 versus IPv6 network stacks

by setting up a three-level DNS hierarchy for the forward lookup tree and a four-level

DNS hierarchy for the reverse lookup tree on a dual IP stack that includes ROOT on

top-level, TLD on second, SLD on third, and subdomains on the fourth level. We also

set up a dual-stack-based recursive resolver.

i

In this thesis, we offer a unique empirical technique for measuring the health of

authoritative DNS servers — a key, essential, and significant component of the DNS in-

frastructure. DNS software weaknesses, DNS latency comparison with ICMP latency,

and DNSSEC validation are three new parameter classes that are proposed and evalu-

ated for effective assessment of the health of authoritative DNS servers. The proposed

methodology can be extensible across the components of the entire DNS infrastructure

and could be used to analyze, identify, and prevent DNS abuse regularly.

We present - DNS Intrusion Detection (DID), a system integrated into SNORT - a

prominent open-source IDS, to detect major DNS-related attacks. We have developed

novel IDS signatures for various tools used in the DNS tunneling, DNS amplification,

and DNS DoS attacks. We identified the above DNS attacks carried out by different

tools available on the Internet using our method. DID observed a high detection rate

and a low false-positive rate during testing.

KEYWORDS: DNS; DNS Health; DNS IDS; DNS Tunneling; DNS Amplification;

DoS Attack; SNORT; IPv6 DNS Query Latency; DNS Hierarchy

Testbed.

ii

Contents

Abstract . i

List of Figures . vi

List of Tables . x

ABBREVIATIONS . i

1 Introduction 1

1.1 Research Motivation . 2

1.2 Problem Definition . 4

1.3 Research Objective . 5

1.4 Thesis Contributions . 6

1.5 Thesis Structure . 7

2 Background and Literature Survey 9

2.1 DNS History . 10

2.2 DNS Fundamentals and Concepts . 11

2.2.1 DNS Namespace . 11

2.2.2 DNS Hierarchy . 12

2.2.3 DNS Server Classifications . 15

2.2.4 DNS Query Types . 17

2.2.5 DNS Cache . 18

2.2.6 DNS Lookup Process . 19

2.3 DNS Protocol . 20

2.3.1 DNS Message Format . 21

2.3.2 DNS Header Format . 21

2.3.3 DNS Questions Format . 24

2.3.4 DNS Answer Format . 25

2.3.5 Authoritative Section . 27

iii

2.3.6 Additional Information Section 27

2.4 DNS Record Types . 27

2.5 DNS Record Syntax . 27

2.6 DNS Zone File . 29

2.7 DNS Threats Classification . 30

2.7.1 Attack Against DNS Infrastructure 31

2.7.2 Attacks Exploiting the DNS Infrastructure 37

2.8 Literature Survey . 40

2.8.1 Literature on DNS Health Measurement 40

2.8.2 Literature on DNS Intrusion Detection 44

2.8.3 Literature on DNS Hierarchy Testbed Setup and its Evaluation . 47

2.9 Summary . 49

3 DNS Health Measurement 51

3.1 Introduction . 51

3.2 Methodology and Proposed Health Parameters 52

3.2.1 DNS Vulnerabilities . 53

3.2.2 DNS Latency Comparison with ICMP Latency 64

3.2.3 DNSSEC Validation . 66

3.3 Authoritative Name Server Health Measurement and Key Finding . . . 67

3.4 Summary . 73

4 DNS Intrusion Detection (DID): IDS Signatures for DNS Tunneling, Am-
plification, and DoS Attacks 75

4.1 Introduction . 75

4.2 Proposed Methodologies . 77

4.2.1 DNS Tunneling . 78

4.2.2 DNS Amplification . 89

4.2.3 IDS Signature for DoS Attack on DNS Servers 96

4.3 Comparative Evaluation of DID and SNORT Concerning DNS Attacks . 98

4.4 Summary . 104

5 IPv6 Aware Dual-Stack DNS Hierarchy Testbed Setup and it’s Evaluation 105

5.1 Introduction . 105

iv

5.2 DNS Hierarchy Testbed Setup . 107

5.2.1 Commissioning of Forward Lookup DNS hierarchy 107

5.2.2 Commissioning of Reverse Lookup DNS hierarchy 113

5.3 DNS Latency Measurement Methodology 117

5.4 Test Results Analysis . 123

5.5 Summary . 128

6 Conclusion and Future Scope of the Work 131

A Course Work and Timeline 133

A.1 Course Work . 133

A.2 Work Timeline . 133

B List of Publications 135

B.1 International Journals . 135

B.2 International Journals (Communicated) 135

B.3 International Conferences . 136

v

List of Figures

2.1 Working of DNS . 10

2.2 The Domain Namespace Sample . 12

2.3 A Sample DNS Hierarchy . 13

2.4 An Example of Typical Iterative Query 18

2.5 The Recursive Query . 19

2.6 DNS Lookup Procedure for "www.cdac.in" 20

2.7 DNS Message Format . 21

2.8 DNS Header Format . 22

2.9 DNS Question Format . 26

2.10 DNS Answer Format . 26

2.11 Resource Record Format Example . 29

2.12 Attacks Against DNS Infrastructure 32

2.13 DNS Cache Poisoning Attack . 34

2.14 Variants of DNS Flood Attack . 35

2.15 DNS Reflection and Amplification Attack 38

3.1 Identified Parameters for Health Measurement of Authoritative Name

Server . 53

3.2 DNS Vulnerabilities Parameters . 54

3.3 Weightage of Identified Parameters as per Criticality 69

3.4 A Report on the Health of the Authoritative Name Servers for the Top

500 Domain Names . 70

3.5 Software Name, SOA, Dual Stack and Reverse Lookup check for the

Five Days of Health Assessment . 70

vii

3.6 Zone Transfer, Recursive Query, and DNSSEC check for the Five Days

of Health Assessment . 72

3.7 Results of DNS Query vs. ICMP Echo RTT Check 72

4.1 DNS Tunneling Attack . 80

4.2 A Network Packet Capture for Iodine Traffic 82

4.3 A Network Packet Capture for DNSCAT2 Traffic 84

4.4 A Network Packet Capture for DNS2TCP Traffic 86

4.5 A Network Packet Capture for ThunderDNS Traffic 87

4.6 A Network Packet Capture for OzymanDNS Traffic 89

4.7 Working of DNS Amplification Attack 90

4.8 Packet Capture for EthanWillnor Traffic 92

4.9 Packet Capture for Offensive-Python Saddam Tooltik Traffic 94

4.10 Packet Capture for DNS Flooder-v1.1 Tarffic 95

4.11 Packet Capture for DNSDRDOS Tarffic 97

4.12 DDoS Attacks on DNS Servers by using DNS Flood. 98

4.13 Experiment Setup for Evaluation of DID and SNORT 100

4.14 Performance Analysis of DID . 102

5.1 IPv6 aware DNS Tree for the Testbed 108

5.2 Root Hints File "/var/named/named.ca" 109

5.3 Zone File for Root DNS (/var/named/root-zone) 110

5.4 Zone File for "in" TLD DNS (/var/named/in-zone) 111

5.5 Zone File for "coednssecurity.in" SLD DNS (/var/named/coednssecurity-

zone) . 112

5.6 Zone File for "ARPA" TLD DNS (/var/named/arpa-zone) 115

5.7 Zone File for "in-addr.arpa" Domain DNS (/var/named/in-addr-zone) . . 116

5.8 Zone File for "ip6.arpa" Domain DNS (/var/named/ip6-zone) 116

5.9 Zone File for "189.156.220.in-addr.arpa" reverse lookup domain (/var/-

named/ ipv4-reverse-zone) . 118

5.10 Zone file for "0.0.0.3.0.0.0.0.0.0.1.4.4.0.4.2.ip6.arpa" reverse lookup do-

main (/var/named/ipv6-reverse-zone) 118

viii

5.11 DNS Query Resolution Process involving Hop Counts 119

5.12 Query RTT for Forward and Reverse Lookup through " National Knowl-

edge Network, India " . 124

5.13 RTT for Forward and Reverse Lookup through " Reliance Jio Info-

comm, India" . 124

5.14 Query RTT for Forward and Reverse Lookup through "Liberty Global

Telecommunications company, Germany" 125

5.15 Query RTT for Forward and Reverse Lookup through "Cox Communi-

cations Inc, USA" . 125

5.16 Query RTT for Forward and Reverse Lookup through " Vodafone India

Ltd" . 126

5.17 Query RTT for Forward and Reverse Lookup through " BTnet UK Re-

gional Network" . 126

5.18 The Working Process of Testbed Setup for Forward Lookup of www.coednssecurity.in’127

5.19 The Working Process of our Testbed Setup for Reverse Lookup of 2404:4100:0:3000::189:66

IP Address . 127

ix

List of Tables

2.1 Generic Top Level Domain Name . 14

2.2 List of Root DNS . 15

2.3 List of OPCODE for DNS Query . 23

2.4 List of RCODE for DNS Response . 25

2.5 Most used DNS Resource Records . 28

3.1 DNS Health Parameters Weightage Calculation 68

3.2 DNS Health Categories . 69

3.3 DNS Health Results . 71

4.1 List of DNS Tunneling Tools . 79

4.2 List of DNS Reflected Amplification Tools 91

4.3 Experiment Setup Configurations . 100

4.4 Confusion Matrix . 101

4.5 Evaluation of SNORT and DID Signatures 103

4.6 Efficiency of DID Signatures . 103

5.1 List of IP Addresses used in each Node of the Testbed Hierarchy 108

5.2 Reverse Lookup Domain Names used in the Testbed 113

5.3 Identified Vantage Points for Latency Test 120

5.4 Average Latency for Forward Lookup Query from the Recursive Re-

solver to DNS Hierarchy using Algorithm 9 and 10 for each Vantage

Point . 128

5.5 Average Latency for Reverse Lookup Query form Recursive Resolver

to DNS Hierarchy using Algorithm 9 and 10 for each Vantage Point . . 128

xi

ABBREVIATIONS

DNS Domain Name System

DNSSEC Domain Name System Security Extensions

IPSEC IP Security

TCP/IP Transmission Control Protocol / Internet Protocol

TLD Top Level Domain

TTLD Third Top Level Domain

SLD Second Level Domain

NS Name Server

DID DNS Intrusion Detection

RR Recursive Resolver

IETF Internet Engineering Task Force

BIND Berkeley Internet Name Domain

ICANN Internet Corporation for Assigned Names and Numbers

DNSEXT DNS Extensions working Group

MeNSa Measuring Name System Health

EDNS0 Extension Mechanisms for DNS

RTT Round Trip Time

ICMP Internet Control Message Protocol

SOA Start of Authority

NXDOMAIN Non-Existent Domain

RFC Request for Comments

IPSEC Internet Protocol Security

AXFR DNS Zone Transfer Query

TSIG Transaction Signature

PRNG Pseudorandom Number Generator

QID Query Identification

MITM Man in the Middle Attack

VP Vantage Point

DDoS Distributed Denial of Service

i

Chapter 1

Introduction

The Internet has grown drastically from past two decades, almost everything in this

world is connected in one or another way to the Internet which includes public and pri-

vate organizations in the sectors of government, mobile communication system, health

sector, nuclear and power energy, emergency services, agriculture, commercial institu-

tions & banking system, aviation transportation system, judiciary & law makers, and

police & defense. There are almost 5 billion users connected on the Internet that is 64

% of the world’s population. Around 1.8 billion websites are hosted over the Internet,

and currently, over 30 billion devices are connected on this massive network [1] [2].

The functionality of today’s Internet is completely dependent on Domain Name System

- DNS, as it is one among the most significant components of the Internet and one of

the key reasons the Internet is as vast as it is today. DNS is essential for the Internet

to function by mapping memorable website names or domain names to network layer

addresses. If the DNS system fails on the Internet, no websites will be accessible using

their names, the email system will stop functioning, and all the applications/services

that use domain names become inaccessible. Thus DNS is treated as the most criti-

cal component of overall Internet infrastructure, and DNS has been abused to perform

large-scale attacks. In the recent past, various attacks have been carried out on the DNS.

In the absence of DNS, all the essential services needed in everyday life tasks, e.g.,

commerce, financial, transportation, and healthcare, become unavailable for the end-

users. The DNS becomes the most targeted Internet protocol by the malicious users

for causing damage and gaining personal benefits; therefore, DNS faces many security

abuses such as DNS tunneling for data exfiltration, command & control (C2) attacks,

1

reflected amplification for generation DDoS traffic, DNS cache poisoning, DNS spoof-

ing & flooding, NXDOMAIN & NSNXDOMAIN attacks, DNS hijacking, Phantom

Domain attack and Botnet-based Distributed Denial of Service (DDoS) attacks [3].

DNS could be appealing to an adversary for malicious activities such as network re-

connaissance, malware downloads, contact with command and control servers, or data

transfers out of a network. As a result, monitoring DNS traffic for threat security is

very important. Since DNS is the most critical component of the Internet and intranet,

the security of DNS infrastructure is essential. This research work aims to focus on the

challenges in DNS security and provides two methods for securing DNS infrastructure,

i.e., measuring the health of DNS servers and DNS Intrusion Detection (DID) System;

it also illustrates the process of setting up IPv6 aware DNS hierarchy testbed and its

comparison evaluation for IPv4 and IPv6 protocols.

1.1 Research Motivation

DNS was designed by Paul Mockapetris in the early 1980s [4] with little considera-

tion for security. Today, it becomes a pivotal service at every network core, making it

a popular target for malevolent attacks. Because DNS capabilities has largely stayed

constant, there are a number of inherent vulnerabilities exists, and flaws in the DNS

protocol’s architecture are frequently abused in data leakage attacks.

As DNS has become the most critical infrastructure of the Internet, its failure impacts

the whole functioning of the Internet; websites cannot be accessed with the URL, email

flow will be interrupted, and all IoT devices will malfunction to connect to the Internet.

Therefore, evaluating the health condition of DNS servers has become a pressing issue

that must be addressed now. There are two general types of attacks on DNS, i.e., those

that intend to disable the DNS service and those intended to impact the data. One well-

known example for the former is a Denial of Service (DoS) attack on the DNS servers.

The second major type of attack is much more clever, and it seeks to change the in-

formation of the DNS response to send the user into an alternate, often compromised

location. DNS spoofing and cache poisoning is the example of such attacks. Shock-

ingly for around 36 years of the historical backdrop of the Internet, DNS was aimlessly

2

conniving in a wide range of malicious activities.

On 21 October 2002, all 13 root nodes of DNS observed massive DDoS traffic for an

hour. The one-hour assault was not observable to the normal end client, was done by

sending huge ICMP echo requests to the root DNS nodes using hundreds of controlled

bots. This Botnet based DDoS attack did not impact the Internet but merely slowed the

sections of the web; in this attack, one of the root name servers observerd around 80

Mbps of network traffic, ten times more than usual [5].

In 2007 three out of 13 root DNS servers were disturbed by the botnet attack, which

caused little disruption in the Internet service, and some corporate clients have even

seen that the attacks were reoccurring. The first wave of attack lasted two and a half

hours, while the second wave lasted five hours. The G and L root servers suffered badly

due to lack of anycast support and experiencing network failure that dropped some web-

site access attempts. 20 Gbps network traffic was observed during the attack on each

server [6] [7] [8].

On 19 March 2013, the Spamhaus website was put down by DNS reflected amplifi-

cation attack. IP addresses of the Spamhaus website were spoofed for sending DNS

queries to over 30000 open DNS resolvers asking all records of ripe.net domain name.

The public recursive resolvers responded with a DNS zone file, collectively generating

approximately 75 Gbps of attack traffic at the Spamhaus website that chocked the net-

work access at the website, resulting inaccessibility of the website [9].

The two consecutive waves of botnet-based DDoS were observed on many root DNS

nodes, which lasted two and half hours and one hour on 30 November and 1 December

2015. The root DNS observed high DNS query requests, around 5 million per second

for two domains, www.336901.com and www.916yy.com [10].

DYN DNS service provider in Europe was the main target of IoT botnet-based DDoS

attack which happened multiples times in a day on 21 October 2016. Mirai malware was

used to infect around 0.1 million IoT devices and converted them to the Bot to enslaved

in the Mirai Botnet, which collectively flooded port 53 of DYN’s DNS server with TCP

SYN request that generated around 1.2 Tbps network traffic, preventing end-users from

accessing more than 1,200 domains of DYN DNS server and the attack prevented traffic

3

from reaching DYN’s customers websites including Twitter, Spotify, Netflix and Ama-

zon [11] [12].

The traditional cyber security solutions such as IDS and IPS are limited in scope to

defend against DNS-based attacks because they do not address a wide range of security

threats related to the DNS ecosystem (as these solutions do not protect from DNS am-

plification and tunneling attacks generated from a wide range of tools). There are much

research conducted for studying and analyzing the DNS ecosystem; correspondingly,

the mainstream of the resolutions proposed (DNSSEC, TSIG, etc.) hitherto is designed

primarily to target cache poisoning and MITM attacks, but very few studies have been

concerned with measuring the health of DNS, and DNS intrusion detection. These stud-

ies and their research gaps are described in Chapter 2 and these studies has the common

research gaps (for example, no research work done in the area of DNS health mea-

surement that accounts for all of the health indicators listed by ICANN and added by

the MeNSa framework and in addition to this no research work is done in the area of

DNS intrusion detection which accounts all the tools used for DNS amplification and

tunneling attacks to detect these attacks). Furthermore, no research work is done on the

commission of at least three levels of DNS hierarchy with dual-stack for both forward

and reverse lookup zone and its latency evaluation related to DNS queries. Therefore

it shows the importance of DNS security for Internet infrastructure which motivates

researchers in their research domain.

1.2 Problem Definition

Over the past two decades, as the Internet has enormously evolved, the DNS infras-

tructure has been abused many times, leading to some portions of the Internet is not

accessible or feeling delayed. Any assault on the DNS system has the potential to do

significant harm to the millions of users who rely on it to function in the background

discreetly. There are many added security protocols like TSIG, DNSSEC, etc., evolved

to secure DNS infrastructure. Furthermore, many security appliances like DNS firewall

and UTM has been developed to intercede DNS. Nevertheless, these appliances do not

protect from all possible DNS attacks; and there has not been much study done on in-

trusion detection systems for the sole purpose of protecting DNS infrastructure.

4

Against this background, in this thesis, we aim to find a methodology to secure DNS

infrastructure by:

1. Finding the methodology to measure the health of the DNS server.

2. Creating IDS signature of DNS amplification, DNS tunneling, and DNS DoS

attacks and propose a security solution called "DNS Intrusion Detection (DID)."

3. As a part of research statements 1 and 2, there is a need to establish an IPv6-

aware dual-stack enabled DNS hierarchy testbed setup and conduct a DNS query

latency evaluation.

1.3 Research Objective

The main objective of this thesis work is to contribute to the field of knowledge by

developing DNS security solutions i.e. DNS health measurement and DNS intrusion

detection. The designed solutions are meant to protect DNS infrastructure from various

known threats related to DNS. This thesis work also aims to provide a novel method-

ology to conduct the first-ever study of DNS query latency comparison for IPv4 and

IPv6 protocols on a live testbed that emulates the three-level of DNS hierarchy for the

forward lookup and four-level DNS hierarchy for the reverse lookup tree.

In order to find the answer to the research topic, few questions are formulated and each

of these questions is part of the research topic. The research topic formulated is: "Do-

main Name System (DNS) Security: Health Measurement and Intrusion Detection."

The research question that formulated based on identified research gaps are:

Question 1. What types of attacks target DNS infrastructure and use DNS infrastruc-

ture to attack other systems, and how?

To secure DNS, we need to list various threats and classify those threats into attacks on

DNS infrastructure and attacks exploiting the DNS infrastructure.

Question 2. What is the methodology to find the health of the DNS server?

Find out the parameters that identify the health of the DNS server and health measure-

ment method based on these parameters.

5

Question 3. What are the attack signatures for DNS amplification, DNS tunneling,

and DoS attacks?

We need to determine the traffic characteristics of these attacks, create an appropriate

IDS signature to detect these attacks and use these signatures in the existing IDS i.e.

SNORT for detecting intrusion for DNS.

Question 4. How to set up IPv6 aware dual-stack enabled DNS hierarchy testbed?

To answer the above three questions, we need to create three levels of IPv6-aware dual-

stack DNS hierarchy testbed that can be further used for DNS health measurement and

DID. We also evaluate the DNS query latency for two network layer protocols i.e, IPv4

and IPv6.

1.4 Thesis Contributions

The DNS is the key component of the Internet and needs to be protected from various

well-known threats. Every communication that includes a domain name begins with a

name resolution to determine the IP address associated with it. Almost all applications

and protocols that are engaged in network communication use the DNS significantly.

As a result, someone can inevitably notice the flaws in DNS and exploit them at some

time. This Ph.D. thesis aims to provide the following contributions in the field of DNS

security:

1. We propose a novel list of parameters specifically for determining the health of

authoritative name servers. The aim is to understand the general behavior of au-

thoritative name servers, detect sluggishness in their performance, and arrive at

a score of their health through the identified list of parameters. The effective-

ness of identified parameters is evaluated by devising the corresponding probing

algorithms and experimenting with them among the authoritative name servers

serving the world’s top 500 domains. The proposed approach can be used period-

ically to assess and take necessary measures to protect authoritative domain name

servers from abuse.

6

2. We built unique IDS signatures for the following DNS-based attacks: DoS, Am-

plification, and Tunneling, and added them to the original rule-set file of SNORT

IDS to detect DNS-based intrusions. The proposed method effectively detects

empirical DNS assaults carried out using a variety of well-known tools available

on the Internet. DID was shown to have a high detection rate and a very low

false-positive rate during testing.

3. We aim to conduct the first-ever study of DNS query latency comparison for

IPv4 and IPv6 protocols on a testbed that emulates the DNS hierarchy. We also

highlighted the implementation of DNS hierarchy (root DNS, TLD, SLD, etc.)

using a simplified method on dual-stack. This research work also provides a

baseline for the configuration of root DNS, TLDs, authoritative domains, and

recursive resolver over IPv4 and IPv6 network-layer protocols.

1.5 Thesis Structure

The remaining of this thesis is as follows:

Chapter 2 introduces some key concepts and technologies related to DNS and illus-

trates various components of the DNS ecosystem. The DNS namespace, hierarchical

structure, DNS server classifications, query types, DNS cache, lookup procedure, DNS

message format, record types, and zone file structure are all illustrated in this chap-

ter. We also discuss DNS abuses, divided into two categories: attacks against DNS

infrastructure and attacks that exploit DNS infrastructure. Additionally, we provide

a comprehensive view of previous work aiming to analyze DNS health measurement,

DNS intrusion detection, and IPv6 aware DNS hierarchy test-bed setup and its evalu-

ation. It also includes a gap analysis that shows what information is accessible, what

information is lacking, and how to fill those gaps in this and future studies.

Chapter 3 describes our novel methodology for monitoring of DNS health, as well as

the health metrics discovered throughout the research. We also explain the several al-

gorithms used to evaluate each identified parameters. The experiment was conducted

on the name servers of the top 500 domains in the world and we highligted the cirtical

problem areas that needs to be addressed by DNS system.

7

Chapter 4 focuses solely on the necessity for an intrusion detection system in the DNS

environment. It also discusses the various tools to carry out DNS tunneling and DNS

amplification attacks and describes the signature established in this research for de-

tecting attacks from these listed tools. We also include the results of an experiment

conducted to assess the effectivness of DID with modified IDS signatures by compair-

ing with default SNORT settings.

Chapter 5 illustrates the process of setting up a DNS hierarchy on a dual-stack for both

forward and reverse lookup trees. The approach for evaluating DNS latency for the

DNS hierarchy is also discussed. The experiment is conducted from several locations

across the world, and the results are described.

Finally, we conclude our thesis in Chapter 6 by summarizing the research results and

proposing the future scope of work.

8

Chapter 2

Background and Literature Survey

In computer networking, the network equipment does not interact between them

by name as people do. Computers and other comparable devices interact and identify

themselves via a network using numbers such as IP addresses. People, on the other

hand, are used to referring to things by their names rather than their numbers, whether

they are speaking to another person or identifying a country, location, or object. As a

result, to overcome the communication gap between computers and people for enabling

communication easier, networking scientists evolved the Domain Name System (DNS),

which translates human-friendly names such as www.nitk.ac.in to network numbers

such as 218.248.46.85. Therefore when a user types a website address or domain name

into a web browser, DNS converts the name to a number. If a person desired to visit a

specific website, they put website name on the browser, such as www.cdac.in. In order

to get a web page, If users already knew the IP address, the user no longer has to write

www.cdac.in; instead, the user just needs to type in the website’s IP address. We may

input the domain name, and DNS will convert it to an IP address, because we are not

used to memorising and dealing with numbers, especially when there are billions of

websites on the Internet. When a user types www.cdac.in into a web browser, a query

to a DNS server is sent, asking for the IP address of the www.cdac.in. The DNS server

then searches a database on the Internet for a matching IP address for www.cdac.in, and

if it finds one, it resolves www.cdac.in to 196.1.113.45. The web browser then requests

the web page from the web server running on 196.1.113.45, and it opens the web page

after getting the response back from the web server. This complete process is illustrated

in Figure 2.1.

9

Figure 2.1 Working of DNS

2.1 DNS History

In the 1970s, mapping human-readable hostnames to numerical addresses was devel-

oped with Advance Research Project Agency Network - ARPANET, the forerunner of

today’s Internet. On the ARPANET network, a single file called "HOSTS.TXT" was

used on a centralized computer operated by NIC Stanford Research Institute (SRI) for

mapping of IP address to the domain name [13]. Users would call SRI staff during

working hours to add an entry to the hosts file, and they would manually add the host

and its corresponding numeric address to the file. For name resolution, this file must be

distributed to all systems in the network. The central system performed well for more

than a decade. The file size had grown much larger than anticipated in 1982, and the

pace of change increased as the network grew and the centralized system’s limit became

apparent. It was recognized that a centralized, manually modified host file would not

be scalable. Paul Mockapetris was given the task of developing an automatic naming

scheme by John Postel of the University of Southern California. Mockapetris was meant

to find a middle ground between five different technological solutions, but instead, he

10

came up with a new one, i.e., DNS. In 1987 the DNS specifications were updated and

formalized in RFC 1034 and 1035, resulting in the basic protocol still in use today [14]

[15].

2.2 DNS Fundamentals and Concepts

The core principles of the Domain Name System are discussed in depth in this section.

We use the DNS terminology defined by the IETF DNS operation working group in this

section and the rest of this chapter.

2.2.1 DNS Namespace

The DNS namespace is a tree structure that manages public hostnames on the Internet.

Each node has a textual label as well as one or more DNS resource records (RR) that

define the domain. The label, as well as the labels of its parent nodes, are separated by

a dot (as in "cdac.in") in the domain name. The core concept in the DNS is the domain

name; a standardized ASCII character string is used to describe a domain name. A

domain name comprises one or more labels separated by dots, and the length of a label

is limited to a maximum of 63 octats [76]. The top-level domain (TLD) is at the far

right, and the labels below it, from right to left, are lower in the namespace hierarchy.

Each label is referred to as a subdomain of the label immediately above it. There are

127 hierarchical levels in DNS; the letters A-Z, a-z, the digits 0-9, and the hyphen (-)

can appear on labels. The case of the labels does not matter, i.e., www.cdac.in and

WWW.CDAC.IN are equal.

As shown in Figure 2.2, in a textual hostname, the presence of the root domain is some-

times indicated by a single dot at the end of the name, but this dot is often omitted.

The root domain, i.e., dot (.), terminates the domain name and always is addressed as

an empty label and represented by HEX value 0x00. When parsers (web browsers, dig

commands etc.) of DNS messages come across the root domain, they must stop pro-

cessing the domain name. The fully qualified domain name, which is often abbreviated

to FQDN, refers to the full domain name, which includes all labels that make up the

name, including the root label, TLD label, SLD label. This term (FQDN) is often inter-

changed with the shorter term "domain name." In this thesis, the word "domain name"

11

refers to a fully qualified domain name (FQDN).

Figure 2.2 The Domain Namespace Sample

2.2.2 DNS Hierarchy

DNS follows a hierarchical database system distributed across the globe with millions of

servers nodes over the Internet, and many of these nodes are authoritative for specified

domain names. However, to convert a given domain name to an IP address, it can

obtain information from other servers in the DNS infrastructure. It implies that while

a recursive DNS may not have all of the records needed to resolve a domain name like

"www.cdac.in," it can figure out who to ask. Through port 53, DNS Protocol employs

both TCP and UDP as transport layer protocols. TCP is typically used for excahnge

of domain information between primary and secondary DNS servers, whereas UDP is

used for DNS server-client requests and answers.

As shown in Figure 2.3, the root domain is the highest level of the DNS hierarchy. It

is responsible for delegating administrative responsibility for TLDs, the next section

of a domain name. Over 1498 top-level domains have been assigned to the root zone

database in the DNS root zone [16].

TLDs are in the next level of the DNS hierarchy, followed by the root domain and

positioned on the extreme right of the domain name. Second-level domains - SLDs are

12

the next level down in the tree after TLDs. Subdomains or subsequent level domains and

hostnames are found under SLDs. Internet’s forerunners, now known as the Address

and Routing Parameter Area-ARPA, formed a special TLD i.e ARPA, responsible for

the reverse lookup process, i.e., resolving IP address to the domain name.

There are mainly three types of TLDs, i.e., gTLD, ccTLD, and infrastructure TLD.

Figure 2.3 A Sample DNS Hierarchy

1. gTLD - A gTLD (generic top-level domain) is a domain class that has three or

more characters. The word "generic" is in the name of gTLDs because they have

generic organization descriptors. These domain extensions are also not geograph-

ically restricted, and anyone from anywhere in the world can register them. Seven

generic top-level domains were established before the establishment of ICANN in

1998 [17] during the early stages of the Internet’s growth, as shown in Table 2.1.

The number of generic top-level domains (gTLDs) is constantly increasing. The

gTLDs that have recently been introduced are referred to as "new gTLDs."

2. ccTLD - ccTLDs (country code top-level domains) are usually reserved for coun-

tries, territories, and sovereign states, identified with a two letters country code.

The examples of ccTLDs are “in” (India), “uk” (United Kingdom"), “us” (United

13

States of America), “cn” (China), “tk” (Tokelau) etc. The criteria for ccTLDs

are set by the domain name regulation corporation in each country. There are

currently 248 ccTLDs in the root zone, and the IANA root database currently

contains 1498 TLDs as of Jan 2022.

3. Infrastructure Top-Level Domain (arpa) - This category has only one TLD, which

is arpa. This TLD is mostly used for technical network infrastructure adminis-

tration. With two subdomains, in-addr.arpa and ip6.arpa, this TLD is used for

reverse search of IPv4 and IPv6 addresses. Although the term was initially an

abbreviation for the Advanced Research Projects Agency, a US funding agency

that created the ARPANET core network, it was later renamed the Address and

Routing Parameter Area.

Table 2.1 Generic Top Level Domain Name

com This generic TLD, which stands for “commercial,” was originally intended
only for commercial use, but limitations on its use have since been removed.
Com domains may be used for a numerous purposes, including personal bi-
ographies.

net The “net” extension is derived from the term “network.” This generic top-level
domain was created to be used by networking companies and Internet Service
Providers (ISPs). However, the limits on its use have since been removed,
allowing businesses from all sectors to use this gTLD.

org The term “organization” has been shortened to “org.”. Org was created to be
used by charities and non-profit organizations. There are currently no limits
on who can register this gTLD.

int The “int” is acronyms to “international”, this gTLD is only available to orga-
nizations, offices, and services recognized by a treaty signed by two or more
countries.

mil Abbreviated to “military” specific to the US military, this gTLD is restricted
to United States Department of Defense branches, programs, and agencies.

gov The term “government” is shortened to “gov”, and this gTLD is only available
to US government departments and agencies, as well as eligible federal, city,
and local government agencies.

edu The gTLD domain “edu” came from “education”, is a sponsored top-level
domain. The domain was created to provide a domain name hierarchy for
organizations that focus on education, even though they are not affiliated with
the US.

14

2.2.3 DNS Server Classifications

The DNS comprises many name servers located worldwide and is arranged in a hierar-

chical order to achieve its functionality. There is no single server on the Internet that

holds DNS data for all domain names to IP address translations. Instead, records for a

particular domain are stored on a specific DNS server. It can also forward DNS ques-

tions for tranlations that the server does not have, to another DNS server that does. As

a result, there are three types of DNS servers.

Table 2.2 List of Root DNS

Root Server Name Letter Operator IP Address(IPv4 and
IPv6)

Instances

a.root-server.net "A" Verisign 198.41.0.4
2001:503:ba3e::2:30

16

b.root-server.net "B" USC-ISI 199.9.14.201
2001:500:200::b

6

c.root-server.net "C" Cogent Commu-
nications

192.33.4.12,
2001:500:2::c

12

d.root-server.net "D" University of
Maryland

199.7.91.13
2001:500:2d::d

156

e.root-server.net "E" NASA Ames Re-
search Center

192.203.230.10
2001:500:a8::e

254

f.root-server.net "F" Internet Systems
Consortium, Inc.

192.5.5.241
2001:500:2f::f

247

g.root-server.net "G" Defense Infor-
mation Systems
Agency

192.112.36.4
2001:500:12::d0d

6

h.root-server.net "H" U.S. Army Re-
search Lab

198.97.190.53
2001:500:1::53

8

i.root-server.net "I" Netnod 192.36.148.17
2001:7fe::53

69

j.root-server.net "J" Verisign, Inc. 192.58.128.30
2001:503:c27::2:30

118

k.root-server.net "K" RIPE NCC 193.0.14.129
2001:7fd::1

75

l.root-server.net "L" ICANN 199.7.83.42
2001:500:9f::42

187

m.root-server.net "M" WIDE Project 202.12.27.33
2001:dc3::35

6

15

2.2.3.1 Root DNS Server

A root DNS server is at the top of the DNS hierarchy and is the authoritative name

server for the root domain indicated by a dot (.). 12 distinct companies own and manage

the 13 root DNS servers with the letters A through M shown in Table 2.2. However,

it should be noted that all A to M servers are identical, with the same root zone file

containing the list of authoritative name servers for each TLD. There are many root

server instances (copies of a root server) worldwide to increase query performance.

The ICANN-operated L root server, for example, has 187 instances around the world.

As a result, the root name servers are essential components in the DNS query resolution

phase, as the resolution begins from them. Volunteer initiatives from a wide range of

organizations currently provide root name server operations.

2.2.3.2 Authoritative DNS Server

DNS services are typically provided by Web hosting companies or DNS hosting com-

panies on the Internet. They are usually in charge of the authoritative DNS servers for a

domain name, which clients ask. Since they are the authoritative source for the domain

in question, authoritative DNS servers serve the actual response: the final translation

of the domain name to the IP address. Master and slave authoritative name servers

are the different kinds of authoritative name servers. The master authoritative name

server maintains the original DNS records and database. In contrast, the slave authori-

tative name server maintains a duplicate copy, with the slave contacting the master for

database updates.

2.2.3.3 Recursive DNS Server

A recursive DNS server accepts user requests for website names or domain names and

checks authoritative DNS servers records for the corresponding IP address. Since re-

cursive server caches the result obtained from an authoritative server, recursive DNS

servers are expected to support authoritative DNS servers, which would otherwise be

unable to handle the massive amount of traffic generated by user requests. The first

servers contacted as a result of a request are recursive DNS servers. The recursive

server looks for the mapping in its cached response from an authoritative server with

16

a valid TTL, and it sends the response back to the client with mappings. If the recur-

sive server does not have the IP address, it looks through the authoritative DNS server

hierarchy. ISPs usually operate recursive DNS servers for their clients, but certain or-

ganizations have their recursive resolvers. Corporations such as Cloudflare (1.1.1.1),

Google (8.8.8.8), CDAC (223.31.121.171), and other organizations operate several free

public recursive DNS servers.

2.2.4 DNS Query Types

A client sends a request for the resource records to the DNS server in the form of DNS

query which is usually sent for getting IP address with respect to a domain name. The

two ways for resolving a host or domain name to an IP address using the domain name

scheme are recursive and non-recursive (iterative) queries.

2.2.4.1 Iterative DNS query

In an iterative query, the recursive DNS server queries all the levels in the DNS hierar-

chy until it receives an answers for the given query from each level. Therefore it always

does iterations of queries starting from root DNS on level 0 and followed by TLD on

level 1, SLD on level 2 and so on, as shown in Figure 2.4.

For iterative queries, the DNS server responds with a referral to another DNS server in

the hierarchy that may respond to the given query. The root DNS server and TLD DNS

server always react to iterative queries, and they are set up to only allow non-recursive

or iterative querying.

2.2.4.2 Recursive DNS query

The client requires a complete response to a recursive query, so a recursive DNS server

repeatedly queries until it receives the complete response on behalf of the client. In this

case, the client expects an IP address for the specified domain name without additional

work. During this process, every DNS server holds the query, and it will ask to next

DNS server in the DNS hierarchy level, as shown in Figure 2.5.

17

Figure 2.4 An Example of Typical Iterative Query

2.2.5 DNS Cache

The goal of caching is to store data for a short period of time in order to increase the

efficiency and reliability of data queries. DNS caching is the practise of storing data

closer to the asking client in order to resolve DNS queries quicker and prevent extra

searches farther down the DNS lookup chain, resulting in faster load times and lower

bandwidth/CPU use. DNS data can be cached in a number of locations, each of which

will keep DNS records for a set amount of time based on a time-to-live value (TTL).

DNS records are cached by default in modern web browsers for a fixed period. When

a request for a DNS record is made, the browser cache is the first place where the re-

quested record is looked for. The status of the DNS cache on the firefox web browser

can be checked by typing "about:networking/#dns" into the address bar and "chrome://net-

internals/#dns." for the chrome web browser. The purpose is obvious: the closer DNS

caching is to the web browser, the lesser computing steps are required to search the

cache and make the proper requests to an IP address. If the browser does not get lookup

from its DNS cache, it will send a DNS query to an operating system level DNS resolver

18

Figure 2.5 The Recursive Query

typically known as "stub resolver" or DNS client. When an application sends a DNS

query to "stub resolver", it first looks in its cache to see if the record exists. If the record

is not in its cache, it forwards the query to the local recursive server or ISP recursive

server. The recursive server then checks its DNS cache to resolve the requested DNS

query, and if found, the response is returned to the stub resolver.

2.2.6 DNS Lookup Process

When an Internet user opens a web browser and types a website name like www.example.com

into it, the web browser contacts the stub resolver i.e. DNS client which looks up the

network address for the specified website name on a recursive resolver assigned by In-

ternet Service Provider (ISP), the request is then forwarded to the recursive resolver of

the ISP, if the recursive resolver cannot find a response in its DNS record and cache

data, the request is then forwarded to DNS servers in the hierarchy until it obtains the

network address of the given website name or NXDOMAIN response if the domain

does not exists. The produced answer will be sent back to the query’s originator. For

19

finding the IP address of "www.cdac.in," the recursive DNS server begins by choosing

one among the 13 root name servers. The root server returns an address that points to

the “.in” TLD name server. The recursive DNS server then queries the “.in” TLD name

server, which response with an address for the authoritative server for the “cdac.in” do-

main, which is then contacted by the recursive DNS server, which returns the IP address

for the specified FQDN as shown in Figure 2.6.

Figure 2.6 DNS Lookup Procedure for "www.cdac.in"

2.3 DNS Protocol

DNS queries are served using the UDP transport layer protocol on port 53. UDP is

chosen for DNS requests and answers because it is quick and has a minimal overhead.

A DNS query consists of a single UDP request from the DNS client and a single UDP

response from the DNS server. When a DNS response is greater than 512 bytes or a

DNS server is performing activities like zone transfers, i.e. sending DNS records from

the main to the secondary DNS server, TCP is used instead of UDP to provide data

20

Figure 2.7 DNS Message Format

integrity checks.

2.3.1 DNS Message Format

In DNS, the information exchange between client and server is facilitated using DNS

request and reply transmission. Each request and reply follow the same common pat-

tern, with up to five separate sections containing data as shown in the Figure 2.7. The

Header section and the Question section are normally included in both queries and an-

swers [18]. Every DNS query and response message has 12 bytes DNS header, which

contains a unique ID representing each query/response, questions and answers count,

and additional information. The header section is followed by the Question and Answer

section. For DNS query, Answer section contains blank and number of answer section

in DNS header becomes 0. In the case of DNS reply, the Answer section includes the IP

address and domain name mapping. Each request and reply follow the common struc-

ture, except the length of the reply packet is always bigger than the request or query.

2.3.2 DNS Header Format

Since essential control fields are held in the header of any protocol, it is the most impor-

tant part of any message. The header portion of DNS messages contains many important

control flags and information about which of the other parts of the DNS message are

being utilize in the communication. Analyzing the header helps to grasp a few of the

21

complexities of how DNS messaging works. Figure 2.8 depicts the structure of the

header segment used in every DNS packets. These fields are used in different ways by

the client and server communications. Each header field is described as follows:

Query ID - It is called query identifier for the client; the client uses this 16-bit field

Figure 2.8 DNS Header Format

to fit the answer to the question. Every time the client sends a query, it uses a differ-

ent identification number. In the corresponding answer, the server repeats this number.

Query/Response Flags - It is a 16-bit field which includes the subfields as described

as follows:

1. QR - This is a one-bit field that makes a distinction between DNS queries and

their responses. When the query is produced, it is set to 0; when the query is

modified to an answer by a replying server, it is set to 1.

2. OPCODE - This is a 4-bit subfield that defines the type of query the carried by the

message. This parameter is defined by the creator of the query and replicated into

the response unaltered. Table 2.3 shows various OPCODE used while crafting a

DNS query.

3. AA - This one bit is called an authoritative answer flag and is used when the

server responds to the client. This bit indicates that the DNS server’s response is

authoritative (bit is set to 1) for the zone in which the domain name is mentioned

22

Table 2.3 List of OPCODE for DNS Query

Query Message Query
Code

Description

QUERY 0 It is used for a standard DNS query for asking the IP
address of a domain name.

INVERSE 1 An inverse DNS query for asking domain name of an
IP address

STATUS 2 A Server status query
(Not Used) 3 Currently not used, reserved for future use
NOTIFY 4 A primary authoritative server uses a special mes-

sage form introduced by RFC 1996 to notify a sec-
ondary authoritative server that data for a zone has
changed, prompting the secondary server to request a
zone switch.

UPDATE 5 RFC 2136 introduced a spatial message form to en-
force ’dynamic update,’ enabling resource records to
be selectively added, removed, or modified.

in the Question section. If the response is non-authoritative, then this bit is set to

0.

4. TC - The truncation flag is a single bit that, when set to 1, indicates that the

message was truncated because its size exceeded the limit permissible for the

transport mode utilised. This bit often indicates that the message was transmitted

using UDP and was too big to fit, since TCP has no message length restriction

whereas UDP messages are restricted to 512 bytes.

5. RD - This bit is called a Recursion desired flag and is used by the client. When

this bit is set in a DNS query, it demands that the server receive the query attempt

to address it recursively if it supports the recursive resolution. In the response,

the value of this bit remains unchanged.

6. RA - This is a single bit referred to as recursion available flag used in the server

response. In an answer, set to 1 or cleared to 0 to show if the server that produced

the response supports recursive queries. The system that sent the query will then

save this information for future use.

7. Z - This one bit is always set to zero and is retained for future usage.

23

8. AD - The DNSSEC protocol uses this one bit for indicating whether the response

contains authenticated data.

9. CD - This one bit used by DNSSEC protocol for DNSSEC checking needs to be

disabled if set.

10. RCODE - This is a response code flag of 4 bits and always set to zero in query,

then updated by the responding server to express the query’s results. This field is

used to show whether the question was successfully answered or whether an error

occurred. Table- 2.4 shows possible response codes when the server replies.

QDCount - It is 2 bytes field denoted by question count, which indicates the number of

questions in the “Question Section” of the DNS query message.

ANCount - The number of resource records in the message’s Response section is de-

fined here in 2 bytes.

NSCount - The number of resource records in the message’s Authority section is de-

fined here in 2 bytes.

ARCount - In the Additional portion of the message, this field specifies the number of

resource records.

2.3.3 DNS Questions Format

This section consists of one or more question records and is always present on both

query and response messages. In most DNS queries, at least one element in the Ques-

tion part explains what the client in the exchange is trying to figure out. If required,

these values are transferred in their original form to the answer message for the client’s

reference. Figure 2.9 depicts the format for each entry in a DNS message’s Question

section. Following are the fields of question section:

QNAME - This field is called a Question Name. The object, domain, or zone name

that is the subject of the query is denoted with regular DNS name format in this field. A

domain name is made up of a sequence of labels that start with an octet length and end

with the same number of octets. For the null label of the root, the domain name ends

24

Table 2.4 List of RCODE for DNS Response

Response Message Response
Code

Description

NOERROR 0 No error occurred
FORMERR 1 An issue with the query’s construction prevented

the server from responding to it. The query format
is unknown to the server, so the server cannot reply
to the response.

SERVFAIL 2 The server was unable to answer to the query re-
lated to a server-side issue.

NXDOMAIN 3 The domain does not include the name mentioned
in the query.

NOTIMP 4 The server does not support the type of query that
was sent.

REFUSED 5 The query was denied by the server.
YXDOMAIN 6 Name that should not exist does exist
YRRSET 7 RRset that should not exist does exist
XRRSET 8 The RRset does not exist
NOTAUTH 9 The server receiving the query is not authoritative

for the zone specified.
NOTZONE 10 Used for a name mentioned in the query is not

within the zone specified in the query.

with a zero-length octet. This field is variable in length.

QTYPE - A two-byte code that specifies the type of the query. Typical query types are

A, AAAA, MX, NS, PTR, CNAME, TXT etc.

QCLASS - A two-byte code that Specifies the resource record’s class, usually 1 for

Internet ("IN") class.

2.3.4 DNS Answer Format

This section contains the response of the DNS server to the client or stub resolver. There

are one or more resource records in this section, and it only appears in response from

the DNS server. Figure 2.10 shows DNS answer format, and the details of each field

are as follows:

NAME - The domain name for which the query was sent to the DNS server and in the

same format as the QNAME in the question section.

25

Figure 2.9 DNS Question Format

TYPE - The kind of data (A,MX,NS etc) in the record is specified by two bytes.

CLASS - The record’s Class is provided by two bytes, and the value is always "IN."

TTL - These four bytes determine how long (typically in seconds) the resource record

can be cached before being discarded by a recursive resolver or anyone who caches

these records. Zero values indicate that the current transaction can only use the re-

source record and should not be cached.

RDLENGTH - Two bytes specify the length of the RDATA field.

RDATA - It is variable length bytes that describe the data in the response of the query.

The format of this data varies based on the TYPE of resource record and CLASS.

RDATA field is a four-octet ARPA Internet address if the TYPE is A and the CLASS is

IN.

Figure 2.10 DNS Answer Format

26

2.3.5 Authoritative Section

There are one or more resource records in this section. It only appears in the response

message from the DNS server. This section provides information about one or more

authoritative servers for the domain name in question. This section contains the same

fields as the Answer section.

2.3.6 Additional Information Section

Like Answer and Authoritative section, There are one or more resource records in this

section, and it only appears in the response message from the DNS server. This section

provides additional information that may help the resolver. This section also contains

the same fields as the Answer section.

2.4 DNS Record Types

DNS records, often referred to as zone files, are directives that reside in authoritative

servers which include information about a domain, such as its IP address and how to

manage requests for that domain. DNS servers create a DNS record to include essential

information about a domain or hostname, including its current IP address. These records

are made up of a sequence of text files written in DNS syntax. DNS syntax is simply a

series of characters that function as commands to the DNS server. TTL, or time-to-live,

is a property of all DNS data records that shows how soon a DNS server can update that

information. The Table 2.5 lists the most popular DNS record types. For an Internet

user to reach a website using a domain name, all domains must have at least a few basic

DNS records, and some extra records serve additional purposes.

2.5 DNS Record Syntax

The resource records are coded in ASCII and organized according to a simple scheme.

Each DNS record is listed in a distinct line in the zone file. The Figure 2.11 shows a

standard structure for the records.

A space separates each field, and even some fields may become optional. Additional

fields occur in many types of records (e.g., MX). The details of each field are as follows:

27

Table 2.5 Most used DNS Resource Records

Record Name Type Description
A IPv4 Ad-

dress
They are used for translating a fully qualified
domain name (FQDN) to the IPv4 address that
corresponds to it.

AAAA IPv6 Ad-
dress

They are used for translating a FQDN to a cor-
responding IPv6 address.

SOA Start of Au-
thority

This record contains authoritative information
about a DNS zone, such as the primary DNS
server, the domain administrator’s email ad-
dress, the domain serial number, and multiple
timers for zone refresh. It also contains the
information needed between primary and sec-
ondary DNS servers for zone transfer.

MX Mail Ex-
change

It defines the mail servers that handle incoming
emails for a certain domain and correctly routes
emails between domains.

NS Name
Server

It specifies the authoritative name servers for a
particular domain name. A domain usually has
multiple NS records, which unfold primary and
backup nameservers for that domain.

PTR Pointer to
domain

It converts the IP address of a network to a
FQDN. PTR records are used in reverse DNS
lookups, where DNS queries begin with an IP
address and end with a domain name lookup.

CNAME Canonical
Name

It is DNS aliases where a record maps to an-
other name for cosmic or functional reasons. It
is mostly used for name-based virtual hosting
and for separating different services offered by
a single host.

TXT Text
Record

Provides a way for DNS to store arbitrary
strings for text or other data. It is also used to
fight email spam and for automatic service dis-
covery on private networks.

ANY All
Records

All resource records of all types know to the au-
thoritative server are returned.

OPT Optional This is a pseudo-record type that is required for
EDNS protocol to work along with DNS.

28

Figure 2.11 Resource Record Format Example

LABEL - It is a FQDN that is entered in the browser by the users.

TTL - An optional information and stands for "time to live," which refers to the amount

of time (in seconds) that a record can be kept in the cache.

CLASS - This is an optional field that defines a class of the resource record. Many

classes exist for DNS records, but the most commonly used class is the Internet (IN).

TYPE - A zone file contains a variety of resource records, as shown in Table- 2.5.

RDATA - The details that allow the domain name to be resolved.

2.6 DNS Zone File

All DNS records are specified in the zone file, which is nothing but a simple text file.

Clear criteria must be followed in order for the data to be interpreted properly by the

DNS application. Otherwise, the DNS would be unable to run, resulting in the SERV-

FAIL error message being shown to the recipient. As a result, it is important to follow

a certain structure. The zone name is defined first, followed by the TTL in certain situ-

ations. The majority of DNS documents are stored in zone files. A zone in DNS refers

to a specific organizational unit and is assigned to each DNS server. Suppose a client

wants to know a mapping of a certain domain. In that case, it looks for the necessary

records in the zone files and redirects the request to a lower-level server in the DNS hi-

erarchy before it reaches the final destination. A single line is used per record, and the

record ends with a line break. However, if a record needs to span several lines, brackets

29

are used to the file. Semicolons can be used whenever comments are to be made.

The resource record syntax discussed earlier can be used in the zone file for mentioning

zone information in the form of resource records, as shown in the following sample

zone file:

A Sample Zone File

$Origin sampledns.com

$TTL 4400

@ IN SOA sampledns.com. root.sampledns.com. (

07052021 ; serial

2D ; refresh

3H ; retry

2W ; expire

1H) ; minimum

IN NS nameserver.sampledns.com.

IN A 192.168.2.111

IN MX 10 mailserver.sampledns.com.

nameserver A 192.168.2.111

mailserver A 192.168.2.100

www A 192.168.2.101

2.7 DNS Threats Classification

Since the DNS system is an essential element of the Internet infrastructure while still

having several security flaws, it becomes a popular target for hackers. This is a serious

cyber security problem that leads to the malfunction of the Internet. Unfortunately, it

happened several times in the past three decades. DNS is vulnerable to a variety of

attacks if it is not installed and configured properly. A healthy and reliable DNS is

required for the Internet to run properly. DNS uses simple, easy to use and connection-

30

less transport layer protocol, i.e., UDP. There is no algorithm in UDP for checking that

the sending packet’s source is the source that it seems to be. As a result, an attacker

will eavesdrop on UDP/IP packets and create a fake packet that appears to be sent from

another source, called IP address spoofing. The packet’s recipient has no assurance that

the originating IP address in the receiving packet is the true source of the packet [19].

Since UDP applies no overhead to IP packets, DNS queries on UDP have much lower

latency than queries on TCP. DNS uses UDP rather than TCP because the mapping be-

tween host name and IP address is critical to latency. Remote attackers can see a lack of

routine DNS audits as an enticing opportunity to launch malicious attacks against the

victim networks. As a result, it is important to keep monitoring DNS servers and traffic

to counter DNS attacks.

DNS attacks are categorized as "Attacks against DNS Infrastructure" that include at-

tacks against DNS services like an attack against authoritative and recursive servers.

The other category is "DNS attacks exploiting DNS infrastructure," which includes re-

flection, amplification, domain hijacking, redirection, DNS malware, data exfiltration,

tunneling, etc.

2.7.1 Attack Against DNS Infrastructure

These attacks are aimed at the DNS infrastructure itself to either make the DNS service

inaccessible or corrupt the reply given by the DNS servers. DNS is made up of two

distinct components: authoritative servers and recursive servers, and that each compo-

nent is vulnerable to different types of attacks. Figure 2.12 depicts different threats that

could occur during the DNS query resolution workflow. The description of each attack

is as follows:

2.7.1.1 Man in The Middle

A man in the middle attack is a popular cyber security attack that helps an adversary

to listen a conversation between two systems. A MITM attack vector is very pop-

ular among LANs, and it works on almost all network communications that are not

encrypted or authenticated. Here the adversary must place themselves on a network

between the two network systems, and then the adversary can intercept communica-

31

Figure 2.12 Attacks Against DNS Infrastructure

tions traveling in any direction and modify or drop messages. In the case of DNS, the

adversary will typically place themselves between the stub resolver and the recursive

resolver, then change the DNS response to have a new IP address for the requested

domain name, essentially rerouting the user anywhere they wish [20]. MITM is usu-

ally done using ARP cache poisoning in a LAN environment; as a result, an adversary

will capture and modify the communication between the stub resolver and recursive re-

solver, making a message seem legitimate – as if it came from the intended DNS server.

There are various tools available on the Internet to perform this attack, but Etthercap

and Websploit are popular tools for performing DNS-based MITM attacks.

2.7.1.2 DNS ID Spoofing

DNS ID Spoofing is a kind of Man-in-the-Middle attack. The DNS query submitted by

the stub resolver includes a unique identification number called QID of the DNS header

section, used to link queries and responses. If the adversary can guess this QID, then

the adversary will spoof the recursive resolvers IP address, making a message seem

legitimate – as if it came from the intended DNS server. Therefore, DNS ID spoof-

ing involves duplicating the QID and IP information generated for the resolve request

submitted by the client and inserting false information. The stub resolver accepts the

response containing the unexpected information since the response QID fits the request

32

QID. The unique identification numbers are generated by a pseudo-random number

generator (PRNG) in DNS configuration software like BIND. Suppose a few consec-

utive IDs can be predicted. In that case, the entire PRNG function can be predicted,

which is a limitation discovered in an older version of the BIND software [21].

2.7.1.3 DNS Cache Poisoning

The DNS cache poisoning attack is a form of DNS ID spoofing on the recursive resolver

by the adversary to insert false DNS records inside the DNS cache of the recursive re-

solver to redirect users to the desired malicious websites controlled by the adversary

[28][29]. Most DNS information is stored in the DNS cache for anywhere from an

hour to a day after it is initially submitted. Although this is useful for reliability since a

cache search takes considerably shorter time and effort than a DNS query to the author-

itative server which follows DNS hierarchy again, it also ensures that if an adversary

can supply the cache with deceptive yet legitimate data for a common address, they

can easily redirect a significant number of users throughout the future. However, for

the bogus answer to appear true, the adversary may need to do some things, such as

spoofing the IP address of the actual authoritative DNS server queried by the recursive

resolver, predicting the Query ID, and sending port used by recursive resolver [22]. The

recursive resolver will then store the bogus answer in its DNS cache before the genuine

one comes from the actual authoritative server. The genuine one will be discarded sub-

sequently. This occurs because the recursive resolver only records and stores the first

response to the question and ignores the others.

As shown in the Figure 2.13, the recursive resolver gets a DNS query from its one of

the client for the domain "demodns.com", let us assume if DNS cache does not con-

tain the record for the requested domain, then the recursive resolver follows the DNS

hierarchy and redirects to forwards the query to one of the authoritative DNS servers

for the requested domain. When the adversary notices the query, he creates a fake DNS

response with the IP address he needs to poison inside the DNS cache of the recursive

resolver. The source IP address in the IP-header of the false reply message must be

the IP address of the authoritative DNS server, and the ID field in the false reply mes-

sage must match the ID field in the question message. Since recursive resolver queries

33

multiple DNS servers in the hierarchy for knowing the domain’s mapping, the latency

between sending the query and receiving the response is high. As the latency increases,

the intruder will have more time to formulate a bogus answer to the requesting host.

Figure 2.13 DNS Cache Poisoning Attack

2.7.1.4 NXDOMAIN

NXDOMAIN attacks, also known as water torture attacks or random subdomain at-

tacks, can target both the authoritative DNS server and the recursive resolver. The ad-

versary creates a DNS query with a non-existent subdomain or host of the domain name

and sends it to the target recursive resolver. As in the process of resolution through

iterative DNS query to the entire DNS hierarchy, the recursive resolver finds these do-

mains are invalid or non-existence and reply with NXDOMAIN results. To achieve

efficiency, the recursive resolver inserts the NXDOMAIN entry into its cache so that

future requests for the same domains are answered from the DNS cache [23]. As a

consequence of this operation, the resolver’s cache is exhausted by random and useless

replies, reducing the recursive resolver’s performance and resilience. Suppose a large

number of queries are created in a short period of time using Botnets. In that case, the

cache rapidly fills up, and legitimate users experience significant delays in receiving

responses, making this attack a more sophisticated distributed denial of service (DDoS)

attack.

34

2.7.1.5 DNS Flood

DNS flood is a variant of DoS attack and can target any authoritative or recursive DNS

server available for querying over the Internet. The DNS flooding attack aims to de-

plete server-side resources through a storm of UDP-based DNS queries from numerous

malware-infected systems [24]. It is a UDP flood that targets DNS server port 53, as

DNS normally uses UDP for query and response. There are two variants of DNS flood

attacks. In the first variant, an adversary uses a single link to overload the target DNS

server with bogus DNS queries to deplete the DNS server, as shown in Figure 2.14a.

The aim is here to overload the DNS server with a huge amount of DNS queries that con-

sume all its available resources like CPU memory and network, resulting in a slightly

longer response time for genuine DNS queries. As shown in Figure 2.14b, the second

variant uses a collection of compromised systems generally called BOTNET to cre-

ate massive DNS requests over UDP, resulting in a disruption in targeted DNS Server

availability [25][26].

(a) DoS Attack
(b) DDoS Attack

Figure 2.14 Variants of DNS Flood Attack

2.7.1.6 Modified Data Attack

DNS modified data attack is built on the interception of shared data. A single DNS do-

main can be hosted on multiple authoritative DNS servers one among them is called as

primary and rest all can be secondary. The authoritative DNS server can be configured

35

either by command line interface (CLI) or graphical user interface (GUI). Normally,

zone files or DNS zones can be configured by executing certain commands on the com-

mand line console, but they can also be configured with a graphical user interface. The

Zone file may be changed or removed to affect the DNS query comprehension or avoid

information from reaching the intended recipients [27]. The adversary must first obtain

admin privileges by launching attacks against existing vulnerabilities in DNS server ap-

plications to carry out a modified data attack. The DNS zone data will then be modified

remotely, leading users to malicious websites or communications.

2.7.1.7 Corrupted Data Attack

The DNS name resolution method can fail if an attacker may compromise an authori-

tative name server’s zone file with false resource records or negative responses. This is

a kind of modified data attack in which the attacker’s goal is to corrupt the zone files,

causing the domain to be unavailable to Internet users. For example, an incorrect NS or

A record for "nitk.ac.in" zone will make the domain unreachable.

2.7.1.8 Spoofing Master Attack

DNS zones are mostly stored in the master or primary DNS server, with a copy being

downloaded by the slave or secondary DNS server. The master name server is usually

the only one on which data can be written. Moreover, a synchronization mechanism

from the master name server called zone transfer can be initiated by the master or or-

dered by the slave name server. The adversary simply impersonates as a slave DNS

server and requests a copy of the critical zone file from the master DNS server [33].

The zone file content may reveal a lot about the internal network’s topology, which

adversaries can use to footprinting that leads to major attacks [30].

2.7.1.9 Spoofed Updates Attack

Rather than manually updating DNS records by modifying complex zone files, a DNS

client may use dynamic updates to change the domain name to IP address mappings in

the name server. The dynamic update feature allows remote DNS clients to enroll and

dynamically update their DNS records with the DNS server. This reduces the need for

manual zone record administration, particularly for clients whose IP address changes

36

frequently or uses DHCP protocol to gets an IP address. The dynamic updates are

usually secured by providing access control list such that registered and authenticated

clients can do dynamic updates. Spoofed updates attacks take advantage of this func-

tionality by spoofing the IP address of registered clients and pushing fake records or

deleting the DNS server’s original records, which may sometimes lead to DNS server

denial of service [31].

2.7.1.10 TCP SYN Flood Attack

If a DNS query fails over UDP, the message is sent over TCP port 53 instead of UDP.

TCP is often used for zone transfer between master and slave servers. An adversary may

take advantage of this by launching an SYN flood DoS attack, consuming all available

server resources, and leaving the server inaccessible to normal users. The attack makes

use of the TCP protocol’s core features, the three-way handshake. The adversary sends

many SYN packets to the targeted server by spoofing the IP address of identified slaves

of the authoritative DNS server. After that, the server reacts to each request and keeps

an available port open to accept the answer. The adversary keeps flooding new SYN

packets as the server waits for the final ACK packet, which never arrives. Each incom-

ing new SYN packet allows the server to open a new port for a set amount of time. After

all of the available ports have been used, the server cannot normally run, resulting in a

DoS attack [32].

2.7.2 Attacks Exploiting the DNS Infrastructure

Since security was not a priority when DNS was created, it was designed for usabil-

ity instead. Over time, it grew in strength; DNS is now targeted by a sophisticated

and complex range of attacks. DNS traffic flows freely across network perimeter and

intranet network segments. Organizations cannot just obstruct UDP port 53 traffic be-

cause it will break most, if not all, network communication. Adversaries are well aware

of this and have devised methods to use DNS to their advantage. There are a variety of

strategies that use the DNS infrastructure to launch attacks on other Internet nodes.

37

2.7.2.1 DNS Reflection

The open recursive DNS servers are used to launch the DNS reflection attack. The in-

truder takes advantage of this by crafting a DNS query that spoofs the victim system’s

IP address and sends it to an open recursive server, which performs the resolution pro-

cess and returns the response to the victim system that consumes network bandwidth at

victim [34]. Since DNS uses UDP, the recursive resolver believes the query came from

the target system and returns it. The DNS server always returns the response to a DNS

query to the query’s originator. The victim would misinterpret the answer as coming

from an intermediary DNS server and will disregard it. When the victim receives an

excessive number of duplicate DNS response packets, the time it takes to process and

discard them grows exponentially, causing the network to become congested and the

victim to go down, resulting in a denial of service attack. The prominent characteristic

of a reflection attack is that the intruder remains undetectable.

Figure 2.15 DNS Reflection and Amplification Attack

2.7.2.2 DNS Amplification

DNS amplification is a complex denial-of-service attack that uses the DNS server’s

behaviour to magnify the attack. The DNS amplification attack employs DNS reflection

to overwhelm the victim with massive responses from a list of recursive resolvers, as

shown in Figure 2.15. The adversary executes a variety of malicious activities in order

to carry out the amplification attack. First, the adversary spoofs the victim’s IP address

38

and uses a recursive resolver to send DNS queries. This will send all of the recursive

resolver’s DNS responses to the victim’s machine. Second, the adversary discovers an

Internet domain with several DNS records. Because DNS queries that request the whole

list of being requested records for a domain generate huge responses from the recursive

resolver, they must normally be spread into many packets. Recursive resolvers respond

with substantially bigger responses, perhaps up to a hundred times larger [35]. As a

result, if the intruder produces two megabytes of DNS queries per second, the attack

traffic on the victim is multiplied to two hundred megabytes per second, resulting in

victims’ infrastructure being affected by the unexpected load and may go down.

2.7.2.3 DNS Tunneling

Tunneling is one way in which adversaries manipulate DNS and exploit it to circumvent

security. This attack allows for command and control (C2) and data exfiltration traffic

that most enterprises do not monitor or are unable to detect. It uses basic DNS queries

and answers to encode information of various programs or protocols [36]. To carry out

this attack, the adversary must install malware on one of the systems in the targeted

organization, which sends encoded DNS queries for a domain name owned and hosted

by the adversary. The encoded DNS queries are sent to the organization’s legitimate

local DNS server, which forwards them to the requested domain name’s authoritative

DNS server. Since this authoritative DNS server is in the adversary’s control, it decodes

all these queries. It creates a tunnel among the victim system and the authoritative

DNS server by encoding DNS queries and responses. This tunnel can be used to steal

an organization’s confidential information, i.e., data exfiltration to the system of the

adversary, or send basic commands to a remote access trojan to enable a C2 channel, or

even total IP traffic can also be tunneled [37].

2.7.2.4 DNS Hijacking

During an Internet session, DNS hijacking manipulates the transaction and leaves users

unaware of the DNS servers they are using. It is a malicious exploit in which users

are routed using a rogue DNS domain, which switches the redirected Internet user’s IP

address [38]. Either downloading malware carries out the DNS attack on the victim’s

39

device or hacking DNS communication by man in the middle attack. DNS hijacking,

also referred to as DNS redirection, affects DNS clients infected with malware or Tro-

jans. It modifies the client’s TCP/IP settings to direct DNS requests to a rogue DNS

server controlled by the attacker [39], the rogue DNS server will then redirect web

traffic to malicious websites.

2.8 Literature Survey

2.8.1 Literature on DNS Health Measurement

Typical information and communication technology - ICT architectures of most criti-

cal infrastructure like energy sectors, communication sector, financial service sectors,

nuclear reactors, materials and waste sector, transportation system sectors etc., adopt

traditional ICT networks for interconnecting their sub-components. Because DNS is a

crucial component of ICT networks, it is classified as a critical infrastructure [40]. With

this realization, several technological improvements have been made to defend against

DNS exploitation. As a result, the overall health of the DNS infrastructure is critical

to the Internet ecosystem. DNS tracking, diagnostics, and wellbeing have significant

implications for today’s Internet and are primarily investigated by Internet researchers

and engineers.

In February 2009, the Georgia Institute of Technology hosted the “1st Annual Global

Symposium on DNS Security, Stability, and Resiliency”, intending to bring together

cross-functional stakeholders to highlight DNS threats and related issues. The outcome

of the symposium led to the identification of the major challenges, existing initiatives,

and potential solutions to difficulties facing the DNS and the validation of the necessity

for and advantages of continuous collaboration across fields [41].

The 2nd global annual conference on DNS security, stability, and resiliency was held

in 2010 by ICANN to assess DNS health [42]. The conference produced a definition

of DNS health and five primary measuring indicators for evaluating DNS health: co-

herency, integrity, speed, availability, and resiliency. Infrastructure operators, DNS op-

erators, policymakers, and end-users were all mentioned as four distinct points of view

on the notion of health. ICANN has identified three main areas of potential work that

it wants to address, i.e., Identifying DNS security threats, designing activities to assess

40

the DNS resiliency and improve its operating processes, and identifying methods for

establishing a DNS health measurement.

Several studies on DNS health have been done in the past, all of which claim to eval-

uate DNS health. However, there are still several unresolved issues for DNS health

measurement, including a lack of consensus on determining health indicators, a com-

mon concept of typical DNS behavior, and a lack of a standard framework for data or

information exchange. The authors of [43] suggest combining several DNS health and

security metrics in aggregated indexes.

The Measuring Naming System (MeNSa), proposed by the authors in [44] [45], is

a framework for assessing DNS health that includes a formal methodology, metrics,

and tools. The authors also provide a method for combining health and security met-

rics to generate threat indicators. The framework and aggregate metrics are useful,

as evidenced by the results of a scenario-based experiment in their research work. The

MeNSa project proposed a systematic and standardized methodology for assessing DNS

protection and health. The author added two more indicators to the five key indicators,

bringing the total number of indicators for determining DNS health to seven; stability

and vulnerability are the two new metrics. Their work on the MeNSa platform, on the

other hand, is limited to vulnerability, resiliency, and security indicators for assessing

DNS health. We expanded on this work and defined three major parameter classes (vul-

nerability, DNS latency comparison with ICMP latency, and DNSSEC validation) for

assessing the authoritative name server’s health concerning all prescribed indicators.

The MeNSa Project aims to define a series of metrics and an algorithm to measure the

DNS health level of various functions and from various perspectives.

Tejaswini et al. [46] identified some critical nodes as root DNS and few TLD DNS.

They suggested a simple method for estimating health by periodically monitoring these

identified nodes in the DNS hierarchy. They used DNS probing method to find out

the response time, which is used to measure health. The average response time was

estimated upon gathering the information over a period of time, and thresholds was

determined that might be used as a cut-off for assessing if the critical node was in a

critical state. For evaluation of DNS health, the authors only used one parameter: query

41

response time which belongs to the speed indicator of ICANN and MeNSa.

By executing passive probes and detecting the state based on previous behaviours,

C.Yamini et al. [47] present a simple but worldwide DNS network visualisation tech-

nique. They identified critical nodes and developed tools for probing and monitoring

their condition over time.

In their research paper titled " DNS Recursive Server Health Evaluation Model ",

Zhaoxin et al. [48] presented a technique to evaluate the health of recursive DNS

servers. They use three key indicators for evaluating the health of recursive DNS:

availability, integrity, and confidentiality. The identified parameters include DNSSEC,

EDNS0, software version type, and software vulnerabilities, corresponding to the three

key indicators. The proposed method was experimented against 13512 recursive DNS

servers of Jiangsu province of China.

Casey Deccio [49] addressed the difficulties of diagnosing and measuring DNS systems

and suggested a tool called looking glass for DNS measurement and diagnostics that is

lightweight, flexible, and easy to implement. On the other hand, the implementation

only accepts DNS queries from organizers/analysts via HTTP/SSH protocols and sends

them to the specified server on behalf of the organizer.

By studying the consistency of the DNS server on the Indonesian island of Sumatera,

Rizal Munadi et al. [50] investigated the health of DNS. They considered only two

parameters, i.e., response time and reliability, to assess the system’s health. The DNS

benchmark and visual route on the Linux machine were used to assess the system’s

health. In this study, ten different institutions were chosen, and two-parameter evalua-

tions were obtained and tabulated. DNS servers in universities were analyzed based on

DNS health and classified into healthy and unhealthy categories.

For evaluating the health of the authoritative DNS servers, Jian J et al. [51] used four

metrics, i.e., DNSSEC, redundancy, recursion, and query latency. Their research fo-

cused on the analytic hierarchy method (AHP) for DNS health measurement and defined

new metrics and parameters. For measuring the DNS, health authors used six Points of

View (PoVs) defined by the GCSEC, i.e., end-user, application service provider, re-

solver, name server, zone, and global.

42

Several research studies [52 -54] relate to DNS traffic monitoring and performance met-

rics, but few report on DNS health measurement.

2.8.1.1 Outcome of Literature Survey for DNS Health Measurement

DNS health is an important aspect of the DNS infrastructure; the identified indicators

for DNS health measurements are:

• Availability: The DNS service should be available and accessible when a DNS

query is sent by the DNS client.

• Coherency: One of the fundamental concepts of DNS is the capacity of DNS to

correctly maps the domain name to the IP address and vice versa.

• Integrity: DNS’s ability to protect against unauthorized data manipulation or loss,

including database non-repudiation and authenticity.

• Resiliency: In the event of a failure, the DNS servers have the potential to revert

to their original state.

• Speed: The efficiency of DNS concerning response time and throughput. In addi-

tion to DNS queries, speed applies to maintenance, administration, and manage-

ment operations.

• Stability: The capacity of DNS to perform in a consistent and predictable man-

ner (e.g., protocols and standards). Stability is critical since it allows for wide

acceptance and utilisation.

• Vulnerability: The probability that a DNS flaw would be abused by one or more

attacks.

While there are numerous studies on DNS measurements and performance assessment,

only a few on DNS health measurement regarding security, stability, and reliability,

meanwhile, the researchers of this domain must develop a high-level consensus on DNS

vital signs that can be used to determine system health, including coherency, integrity,

speed, availability, and resiliency. DNSTOP, DNS statistics collector, DNSViz, and

43

others have recently been developed to visualize DNS node status, trace and help to

limit domain names used for malicious purposes. Alternative DNS Health Checkers

include Pingdom DNS Check, whatmydns.net, MXtoolbox, DNSStuff, dns.squish.net,

and others [55-60]. Measuring the Naming System (MeNSa) presents a systematic

& standardized technique and a collection of metrics for assessing DNS health and

security.

2.8.1.2 Identified Research Gaps from the Literature Survey for DNS Health
Measurement

There are a number of initiatives in this domain, all of which claim to monitor DNS

health from a local viewpoint. The reality is a little different, and several obstacles

remain: there is no standard measure (just a shared list of five health indicators); no

agreed-upon method for computing health indicators; and no agreed-upon definition

of normal DNS behaviour. Even though many methods to measure DNS health have

been presented in the literature, none account for all of the health metrics identified

by ICANN and added by the MeNSa system. This thesis bridges the difference by

considering all health indicators and dynamically measuring DNS health by proposing

a new approach and new criteria for assessing DNS health.

2.8.2 Literature on DNS Intrusion Detection

Anna Drozdova’s thesis work [61] focused on developing and testing a system to safe-

guard DNS servers in a lab environment by installing an IDS at a key position - proxim-

ity to the DNS server - and implementing some snort rules to block malicious website

lookups. The test lab was set up in a LAN environment with three systems: a victim

system, an attacker system, and a SNORT IDS system. The experiment was carried out

in a secure LAN environment. The SNORT system’s infrastructure is being investigated

for DNS security, although DNS server protection is neither complete nor comprehen-

sive. However, this work aims to demonstrate the behavior of the DNS server protection

system in a real network and investigate the capabilities of the SNORT system and its

configuration settings for DNS server security.

In [62], Filip Hock and Peter Kortis proposed the notion of "Design, Implementation,

and Monitoring of the Firewall System for DNS Server Protection," which deals with

44

DNS security techniques applicable on the transport and network layers. Traffic shap-

ing, flow filtering, and priority are used in the suggested protection mechanism. They

demonstrated how a firewall might alter traffic dynamically to ensure that packets arrive

while the DNS server is under attack. They stated the guidelines for developing traffic

shaping and prioritization rules.

Bong-Hyun Kim [63] created the client control system using DNS dependability of the

system control block for changing and diversified security breaches in advance for block

module in his work "Design and Analysis of Client Control System Using DNS Control

Firewall." Dynamic IPS module design, embedded DNS system module design, Inter-

locking DNS service module design, and Cert & Analysis module design were all part

of the client control system design. The DNS control firewall is commonly used in the

design of client control systems.

Joao Afonso et al. [64] described a system that uses network sensors to perform real-

time network monitoring to identify, block, or limit the extent of an attempted intrusion

into the DNS application. The proposed solution employs heuristics to identify traffic

is harmful to the DNS by evaluating all data collected from various sources in real-time

and assigning appropriate weights to each component (occurrences, analysis, time be-

tween occurrences, incidence, and intrusion detection system) acting appropriately.

Pratick Satam et al. [65][66] describe an anomaly-based IDS that runs in two phases,

training and operational, to identify aberrant behavior and exploitation for DNS pro-

tocol. In the training phase, the usual behavior of the DNS protocol is simulated as a

finite state machine, with temporal statistics kept in a database. In a different database,

an irregular DNS traffic transition is noticed. An anomalous metric is created based on

these two statistics, and it is utilized in the operational phase to identify various DNS

assaults. The study was carried out using various known DNS assaults. However, they

did not examine DoS/DDoS assaults on DNS during the process.

Steven Cheung et al. [67] proposed a detection-response-based method for protecting

DNS against different threats, including DNS cache poisoning and spoofing. It is used

in conjunction with an IDS strategy and is driven by formal specifications that enable

reasoning. The authors created a DNS wrapper that monitors all incoming and outgoing

45

DNS messages from the DNS server for security violations. DNS traffic is examined

in comparison to their standards, and any variations are flagged as unusual. This event

is identified as a potential attack if the observed traffic differs from the authoritative

answer.

In [68], the authors presented a machine learning-based IDS for DNS DoS assaults,

which aims to recognize DNS DoS attacks using the learning capacity of neural net-

works. Back Propagation, Radial Basis Function, and Self-Organizing Maps neural

networks were used to test the suggested IDS. On the ns-2 simulator, the complete ex-

periment is simulated. The findings show that a BP neural network outperforms other

types, with a solution accuracy of 99 percent and a low false alarm rate for attack de-

tection.

2.8.2.1 Outcome of Literature Survey for DNS Intrusion Detection

The DNS protocol is based on UDP, a connectionless data exchange protocol. Any

hacker can easily spoof a legitimate IP address to generate attacks on DNS services.

Much research has been done to secure DNS from tunneling attacks, amplification at-

tacks, and DNS DoS attacks. However, there has been no study done to defend DNS

from all potential attacks. Further more from the literature survey, it is being observed

that traditional security solutions such as firewalls, IPS, or IDS are not purpose-built

DNS security systems, and have no in-depth understanding of the DNS protocol, and

are not adapted to protect DNS infrastructure, including host, root, TLD, SLD, and RR.

2.8.2.2 Identified Research Gaps from the Literature Survey for DID

The DNS infrastructure must work properly in order for the Internet to be available and

accessible. It is consequently critical to safeguarding the architecture on which it is built

and the records it contains. DNSSEC implementation at all domains in the hierarchy

can handle most key risks such as MITM and cache Poisoning; nevertheless, DNSSEC

cannot defend against all attacks. As the inbuilt signature are not able to identify all

DNS threats, standard security technologies, such as firewalls, intrusion prevention sys-

tems, and intrusion detection systems, are not designed and adapted to protect DNS

infrastructure, including root, TLD, SLD, RR, and DNS client. They lack an in-depth

46

understanding of the DNS protocol. This necessitates creating a DNS Intrusion Detec-

tion (DID) system that guards against all types of DNS assaults by defining appropriate

attack signatures for all attack surfaces.

2.8.3 Literature on DNS Hierarchy Testbed Setup and its Evalua-
tion

LDplayer [100], a DNS testbed created by Liang Zhu et al. in 2017, supports sev-

eral distinct levels of DNS hierarchy and numerous domains. This testbed was built to

conduct large-scale experiments to determine how traffic volume varies when all DNS

queries use the DNSSEC protocol and how server memory and network latency vary

when all queries are sent over TCP rather than UDP. The testbed efficiently simulated

the whole DNS hierarchy in a controlled environment where replays do not leak traffic

on the real Internet, and tests may be repeated. In order to resolve DNS, the testbed

supports both UDP and TCP transport layer protocols. However, the testbed was only

established over IPv4 protocol.

The Yeti DNS Study [101] is an effort to create a live root DNS server system testbed for

advanced root services, including certain IPv6-only operations, DNSSEC key rollover,

renumbering issues, scalability difficulties, and other challenges. The objective of

this alternative root system is to figure out the boundaries of DNS root name ser-

vices and provide relevant technical information. The initiative, funded by a Chinese

government organization, aims to test various DNS-related new technology to enable

sovereign countries to investigate and regulate the Internet and strengthen their network

sovereignty.

In [102], Soohong Park et al. presented four deployment scenarios for setting up DNS

in IPv6 wired and wireless networks and offered instructions to setup DNS for IPv6

network managers and users to utilize in their target networks. The authors addition-

ally looked at three IETF-proposed techniques for DNS setup in IPv6 hosts, including

recursive DNS server addresses and the DNS search list. According to the study, IPv6

equipped clients can get DNS addresses via router advertising DNS choices, DHCP

DNS possibilities, well-known DNS anycast addresses, and DNS query messages. Re-

searchers did not, however, discuss how to establish DNS on a dual-stack system.

47

Fuliang Li et al. [103] tested IPv6 network performance in form of network reacha-

bility, packet reordering and packet delay/loss. A comparison study was conducted on

IPv6 packet delay, IPv6 packet-loss by a probing tool, OneProbe. The paper concludes

stating, IPv6 and IPv4 have similar packet delay and loss. But through our experiment

we arrived at a different result in case of DNS queries.

In [104], the performance of UDP over IPv6 was tested for several versions of Win-

dows (Windows 7 and Windows Server 2008) and Linux (Ubuntu 10.04 and RedHat

5.5), and the experiment was done using a peer-to-peer connection between client and

server computers. The authors utilized various traffic-measurement software, including

IP traffic for Windows and Iperf for Linux systems. According to the authors, the UDP

throughput in IPv4 is greater than IPv6.

In [105], authors emphasized several measuring techniques in their research article and

concluded that IPv6 networks had a greater latency and loss than IPv4 equivalents.

In [106], the author used the Iperf network measurement application to evaluate the

network throughput of IPv4 and IPv6 on Linux systems, noting network performance

parameters including latency, throughput, and jitter for both protocols. They conclude

that when utilizing smaller packet sizes, the IPv6 header cost starts to pile up.

N Shanel et al. [80] compared the performance of IPv4 and IPv6 on six OS, including

major Windows and Linux variants. According to the findings, network performance is

influenced by IP version and traffic type and by the OS selected.

The research was done in [82] to revisit the performance of DNS latency for several

public recursive resolvers, including Google DNS, Open DNS, Cloudflare, and Quad9.

They discovered that IPv6 has greater DNS query latency than IPv4 for specific re-

solvers after analyzing the influence of IP version choice on DNS latency.

2.8.3.1 Outcome of Literature Survey for DNS Hierarchy Testbed Setup and its
Evaluation

Several studies comparing IPv6 versus IPv4 network performance in terms of TCP and

UDP protocols have been conducted. Moreover, very few study has been done to com-

pare DNS performance with network-layer protocols. The IPv4 subsequent queries can

take a different route in the real DNS hierarchy, and the same is true for the IPv6 net-

48

work. Therefore the DNS query latency in the real DNS hierarchy cannot be compared

directly from a particular vantage point due to variations in the number of hops of query

on IPv4 and IPv6 communication networks. This research work aims to undertake the

first-ever DNS query latency comparison on the DNS hierarchy testbed for IPv4 and

IPv6 protocols.

2.8.3.2 Identified Research Gaps from the Literature Survey for DNS Hierarchy
Testbed Setup and its Evaluation

1. The guidance required for commissioning DNS hierarchy testbed setup over IPv6 is

widely lacking.

2. None of the research brought up the operational difficulties that arose throughout the

deployment and provisioning of services.

3. None of the research gives a clear illustration and guidelines for setting up at least

three level of DNS hierarchy (ROOT, TLD, STD, Subdomains, and Recursive Resolver)

on top of IPv6, enabling forward and reverse lookup tree.

4. A lot of research work has been conducted on IPv6 performance, but none has been

done on DNS query latency compared to network-layer protocols.

Due to differences in the number of queries hops on IPv4 and IPv6 communication

networks, the DNS query latency from an Internet vantage point for IPv4 and IPv6 net-

works cannot be compared directly. Furthermore, there is no guarantee that the DNS

server in the hierarchy is dual-stack hosted.

2.9 Summary

We introduce some key concepts and technologies related to the DNS ecosystem. The

background of DNS is presented, as well as the protocol structure and various threats

related to DNS. In addition, we also conducted a comprehensive literature review on the

DNS health measurement, DNS intrusion detection, and DNS hierarchy testbed setup

with DNS query latency evaluation of IPv4 vs IPv6. We also highlighted the research

gaps for those issues to support the research requirements.

49

Chapter 3

DNS Health Measurement

3.1 Introduction

The authoritative name servers, recursive resolvers, and root DNS servers makes up the

DNS infrastructure. To ensure smooth and efficient query resolution, every part of the

DNS system must function properly. There are approximately 367.3 million registered

domain names as of the end of 2020 [77], and thousands of authoritative name servers

serves these domains. The DNS system relies heavily on authoritative servers as all

information in the DNS for a domain is served by authoritative servers for that domain.

In order to function properly, Internet networks depend heavily on DNS response time

and accuracy. Since authoritative DNS servers are susceptible to various attacks such

as DoS/DDoS, spoofing master, spoofed updates, and corrupted data/modified data, the

proper level of DNS health for a resilient and robust Internet is a major challenge, and its

health determines the DNS system’s performance. The overall DNS server health must

be understood in order to anticipate large-scale attacks and take precautionary steps.

Determining the health of a large-scale distributed infrastructure such as DNS, on the

other hand, is difficult, particularly without intruding into one’s network. Since DNS

spans the entire Internet and contains millions of nodes, evaluating its overall health

is a huge challenge requiring the installation and configuration of millions of probes,

which is not feasible due to various practical constraints, including security threats. We

suggest that such a distributed and global system can be assessed by examining the

health of a few crucial nodes like authoritative name servers, i.e., nodes with the ability

to invigorate or thwart the entire DNS system. Since authoritative DNS servers serve

all of the information in the DNS for a specific domain, their health is directly related

51

to the integrity, consistency, reliability, and accuracy of the resolved data. As a result,

determining the health status of authoritative DNS servers has become a pressing issue

in network security today.

We suggest a new approach for assessing the health of authoritative name servers, which

are a vital, central, and significant part of the DNS ecosystem. For most Internet com-

ponents, efficiency is usually calculated in response time, reliability, and throughput.

DNS software weaknesses, DNS latency comparison with ICMP latency, and DNSSEC

validation are among the parameters class we suggest for evaluating the health of au-

thoritative name servers. The identified parameters help figure out how authoritative

name servers behave in general, detect sluggishness in their results, and calculate a

health score. We evaluated the health of authoritative servers for the world’s top 500

domains by probing algorithms to evaluate these parameters and computing the overall

score. This method should be used regularly to examine the circumstances and take the

appropriate steps to secure authoritative domain name servers from attacks.

3.2 Methodology and Proposed Health Parameters

Misconfigurations, vulnerabilities, and malicious activity may all influence DNS perfor-

mance, affecting the entire Internet ecosystem. As a result, it is critical to track, analyze,

measure, and diagnose the DNS ecosystem’s health. We choose the probing approach

for DNS health since it is a straightforward DNS measurement and diagnostics method.

We came up with eight major parameters for evaluating the health of authoritative DNS

servers: software obfuscation, SOA validation, dual-stack support, non-availability of

zone transfer status, recursion validation, reverse lookup validation, DNS latency com-

parison with ICMP latency, and DNSSEC validation. We considered all of the main

indicators mentioned by ICANN and MeNSa, i.e., availability, coherency, integrity, re-

siliency, speed, stability, and vulnerability. Figure 3.1 shows identified parameters with

respect to main indicators.

52

Figure 3.1 Identified Parameters for Health Measurement of Authoritative Name Server

3.2.1 DNS Vulnerabilities

In order to thwart communications or direct unwitting end-users to fake web pages or

other destinations, attackers may target DNS services directly. On the other hand, DNS

could be used as a mediator in a larger network attack. DNS protocol does not provide

sufficient authentication capabilities to prevent unauthorized read/update of configura-

tion files, domain zone files, and files containing signing keys files [79]. Misconfig-

uration of DNS software is the most common cause of vulnerabilities, and incorrect

DNS service and zone information configuration may result in incorrect resolution or

server behavior. We identified the following parameters for the DNS vulnerabilities

checks: software obfuscation, SOA validation, dual-stack support, non-availability of

zone transfer status, recursion validation, and reverse lookup validation. We propose a

vulnerability check to identify the misconfiguration and flaws in the DNS server. The

53

suggested parameters for calculating the vulnerability score are shown in Figure 3.2.

Figure 3.2 DNS Vulnerabilities Parameters

3.2.1.1 Software Obfuscation

Attackers can profile a DNS server by learning the names of its software. Informa-

tion disclosure vulnerabilities like software name lookups are frequently neglected. It

is preferable if the DNS client is unaware of the DNS server’s software name. A new

DNS software vulnerability is found now and then, and attackers scour the Internet

for unpatched computers to exploit. As a best practice, hide software names on DNS

servers; while this is not natural protection, it does make scanning servers a bit more

difficult. The DNS server becomes subject to other attacks if an attacker learns the DNS

software name. The DNS application must reject requests for the name of DNS soft-

ware.

Each successive version of the DNS server software is generally free of vulnerabilities

found in earlier versions since design improvements have been incorporated to mitigate

54

specific issues.In some cases, upgrading to the most recent version of name server soft-

ware may not be possible straight away. Adversary takes advantage of this and uses a

variety of tools available on the Internet to determine a DNS server’s name and version,

which is the first step in attacking the DNS infrastructure, which malicious actors may

then target in order to gain access to the network, from which they can further enter the

network or use the DNS server for malicious purposes.

Because typical DNS misconfigurations influence DNS availability [78], this parameter

is linked to ICANN’s availability and MeNSa’s vulnerability indicators. As a result, we

use the DNS server fingerprinting tool - "fpdns" [81] for determining the DNS software

name to see if the DNS server provides its software name.

We propose this software name check by Algorithm-1, which checks software names

for all the authoritative DNS servers of a domain. SVCOUNT and NSCOUNT are the

Algorithm 1: DNS Server Software Name Check
Input : Name of the domain - DOMAIN
Output: 0 (Test Failed) or 1 (Test Passed)

1 Initialize SVCOUNT, NSCOUNT to 0
2 SERVERLIST=List of all authoritative DNS servers of DOMAIN
3 for I=1 to number of authoritative DNS Server of DOMAIN do
4 NSCOUNT = NSCOUNT + 1
5 IPADDR=Get IP address of DNS Server in SERVERLIST[I]
6 MSG=output of "fpdns IPADDR" command
7 if MSG contains "No match found" then
8 SVCOUNT = SVCOUNT + 1
9 end

10 else if MSG contains "TIMEOUT" then
11 SVCOUNT = SVCOUNT + 1
12 end
13 if NSCOUNT==SVCOUNT then
14 return 1
15 end
16 else
17 return 0
18 end
19 end

counters for the number of authoritative name servers that do not reveal the software

name for a given domain and counter for the number of authoritative name servers for

55

a given domain, respectively. The SERVERLIST obtains a list of all authoritative name

servers for the domain by following command: host -t NS DOMAIN. The IP address

(IPADDR) of each authoritative name server is received, and the "fpdns" command is

run on that IP address; the result is saved in the MSG variable. The "fpdns" command

returns either the DNS software name or "No match found." In rare circumstances, fire-

walls will block communication for "fpdns," resulting in a "TIMEOUT." We look for

the words "NO match found" and "TIMEOUT" in the MSG and use that to see if the

authoritative name server exposes the software name or not. The domain passes this

test if the software version is hidden on all authoritative name servers.

3.2.1.2 SOA Validation

Every domain must include an SOA record that identifies the most reliable DNS server

for the specific domain. The domain administrator’s email address, the domain serial

number, and a list of zone refresh times are all contained in this resource record. It

also provides information between primary and secondary DNS servers. The following

SOA interval values are compared to RFC 1912 [107]:

Refresh Interval: The refresh interval specifies how long secondary servers must wait

before transferring zones from the primary server. For zones that are updated often,

this number should be low (20 minutes to 2 hours), and for domains that are modi-

fied on a regular basis, a higher value can be substituted (2 to 12 hours). As a result,

we check these values as RFC 1912 proposes, a 20-minute (1200-seconds) to 12-hour

(4320-seconds) refresh interval range.

Retry Interval: The time a secondary server must wait until seeking an update from an

inaccessible primary nameserver is considered the retry interval. This interval must be

a minor portion of the refresh interval. If the refresh value is in the range mentioned ear-

lier (a 20-minute (1200-seconds) to 12-hour (43200-seconds) refresh interval range.),

the retry interval is 5 minutes (300 seconds) to 2 hours (7200 seconds).

Expire Interval: The expire value indicates how long the zone information in the sec-

ondary server should be considered valid if a secondary server cannot reach the primary

server to update even after retry intervals. The expire interval should be between 2 and

4 weeks, according to RFC1912.

56

Minimum Interval: This interval is the default TTL duration for resource records to

Algorithm 2: SOA Resource Record Check
Input : Name of the domain - DOMAIN
Output: 0 (Test Failed) or 1 (Test Passed)

1 MSG=SOA lookup for DOMAIN
2 REFRESH=get refresh interval value from MSG
3 RETRY=get retry interval value from MSG
4 EXPIRE=get Expire interval value from MSG
5 MINIMUM=get minimum interval value from MSG
6 if REFRESH <=43200 and REFRESH >= 1200 then
7 R=1
8 end
9 else

10 R=0
11 end
12 if RETRY <= 7200 and RETRY >= 300 then
13 RE=1
14 end
15 else
16 RE=0
17 end
18 if EXPIRE <= 2419200 and EXPIRE >= 1209600 then
19 E=1
20 end
21 else
22 E=0
23 end
24 if MINIMUM <= 432000 then
25 M=1
26 end
27 else
28 M=0
29 end
30 P=R+RE+E+M
31 if P <4 then
32 return 0
33 end
34 else
35 return 1
36 end

stay in the cache of other nameservers. The minimum interval should be shorter than

57

five days, according to RFC1912.

Suppose these intervals hold values outside the defined range of RFC1912, and if Re-

fresh and Retry Intervals are configured too little, the primary/master and secondary/slave

servers may experience higher processing and network burden, resulting in the termina-

tion of Internet service. In another case, when Expire interval is too large, the secondary

servers will offer inaccurate data to clients.

If the Refresh and Retry values in the SOA resource record of the master authoritative

server are set very high, and the zone file is changed frequently resulting data mismatch

between the master and slave authoritativ servers. This phenomenon is called a zone

drift, a mistake that causes inaccurate zone data maintained by secondary name servers.

The secondary server will often initiate zone transfers if the Refresh and Retry values

in the SOA RR are set very low; this is called zone thrash, a mistake that increases the

burden on both the master and slave authoritative servers. DoS may occur as a result

of inaccurate data or increasing demand. As a result, the SOA parameter is linked to

indices of availability and resiliency indicators of ICANN.

SOA validation is performed through Algorithm-2. The command "host -t SOA $DO-

MAIN" is used to acquire SOA values for the variable MSG. The MSG is used to get

the REFRESH, RETRY, EXPIRE, and MINIMUM values. We look for these intervals

in the RFC 1912 range; for example, REFRESH should last 20 minutes to 12 hours,

RETRY should last 5 minutes to 2 hours, EXPIRE should last 2 to 4 weeks, and MINI-

MUM should be less than five days.

3.2.1.3 Dual-Stack Support

Dual stack refers to a device’s ability to run both IPv4 and IPv6 at the same time,

enabling hosts to access both IPv4 and IPv6 networks, making it a very flexible coex-

istence technique. It is the most straightforward technique of obtaining IPv4 and IPv6

addresses. Every networking device in a network, including switches that utilize IPv4

or IPv6, will be set up to run both IPv4 and IPv6 at the same time. For IPv4 commu-

nication, the IPv4 protocol stack is often used, whereas, for IPv6 communication, the

IPv6 protocol stack is commonly used. DNS decides whether IPv4 or IPv6 is used;

nevertheless, the IPv6 protocol stack prioritizes over IPv4. If at all practicable, a DNS

58

server should be hosted on both an IPv4 and IPv6 network.

Consequently, the DNS server can be accessed through the IPv6 Internet even if the

IPv4 interface is unavailable and vice versa. Because IPv6 has an inbuilt security mech-

anism called IPSEC, DNS over IPv6 is more secure than IPv4. This test determines if

the authoritative DNS server is connected to a dual-stack network. The DNS resolution

method for that client will take longer if the DNS server does not support dual-stack

and the client is dual-stack enabled.

Because the dual-stack is a direct technique for enabling high performance, this check

links to ICANN’s availability and stability metrics. We developed Algorithm-3 for the

dual-stack implementation check, which takes the domain name as an input and deter-

mines whether the dual-stack is implemented on all the authoritative name servers of

that domain. NSCOUNT is a counter for recording the number of authoritative name

Algorithm 3: Dual-Stack Implementation Check
Input : Name of the domain - DOMAIN
Output: 0 (Test Failed) or 1 (Test Passed)

1 Initialize NSCOUNT, DSCOUNT to 0
2 SERVERLIST= List of all DNS servers of DOMAIN
3 for I=1 to number of authoritative DNS Server of DOMAIN do
4 Increment NSCOUNT by 1
5 IPv4_Record= lookup of A record at DNS server in the SERVERLIST[I]
6 IPv6_Record=lookup of AAAA record at DNS server in the

SERVERLIST[I]
7 if IPv4_Record or IPv6_Record contains "record" then
8 continue for loop
9 end

10 else
11 Increment DSCOUNT by 1
12 end
13 end
14 if NSCOUNT=DSCOUNT then
15 return 1
16 end
17 else
18 return 0
19 end

servers for a particular domain, whereas DSCOUNT is a counter for storing the number

59

of dual-stack enabled authoritative name servers. IPv4 and IPv6 lookups (using the host

command) are stored in IPv4_Record and IPv6_Record, respectively, for each author-

itative name server. If both the IPv4 and IPv6 lookups fail, the host command returns

"has no A record" and "has no AAAA record," respectively. Therefore if the "record"

is present in any of the variables IPv4_Record or IPv6_Record, the authoritative name

server is not dual-stack enabled. The algorithm returns "Test Passed" if all authoritative

name servers have dual-stack enabled.

3.2.1.4 Non-Availability of Zone Transfer Status

The two categories of authoritative DNS servers are master and slave DNS servers; the

master authoritative DNS server keeps track of the domain’s information in the zone

file at all times, and any changes to the zone file are communicated to all slave servers

for that domain. From a security standpoint, DNS zone transfers give a wealth of re-

connaissance data, and an adversary can use this information to map the network and

conduct an attack.

Most system administrators like to give each server in their networks a descriptive name

[69], such as MainDC, AddDC, HRMS, WSUS, etc. This saves the attacker much time

figuring out which internal/external application server to attack. It is quite straightfor-

ward to generate a map of the whole zone if the adversary can induce and capture a

complete zone transfer. An adversary uses an AXFR request in a DNS query to trans-

port complete zone information. It puts much demand on network resources and band-

width compared to conventional DNS queries. If the adversary performs this regularly

and uses Botnet, the authoritative DNS server may become overburdened, resulting in

Denial of Service to legitimate users. As a result, TSIG and ACL are suggested for se-

cure and approved zone transfers. Unauthenticated, remote users can take advantage of

probable AXFR zone transfers to obtain important reconnaissance data used in further

attacks. As a result, MeNSa’s vulnerability indicator is linked to the zone transfer check

parameter.

We propose Algorithm-4 for validating the zone transfer for all authoritative name

servers of a domain in question. If the dig command is used to transfer a zone, the

60

Algorithm 4: Zone Transfer Check
Input : Name of the domain - DOMAIN
Output: 0 (Test Failed) or 1 (Test Passed)

1 Initialize NSCOUNT, ZTCOUNT to 0
2 SERVERLIST= List of all DNS servers of DOMAIN
3 for I=1 to number of authoritative DNS Server of DOMAIN do
4 NSCOUNT = NSCOUNT + 1
5 MSG=AXFR lookup at next DNS server in the SERVERLIST[I]
6 if MSG does not contains "XFR size" then
7 ZTCOUNT = ZTCOUNT + 1
8 end
9 end

10 if NSCOUNT=ZTCOUNT then
11 return 1
12 end
13 else
14 return 0
15 end

entire zone will finish with the XFR size (which lists the number of records, messages,

and bytes transferred). As a result, we examine the MSG variable to determine if it

includes "XFR size." If "XFR size" is not included in MSG, the zone will not be down-

loaded, implying that the authoritative name server is secure for zone transfer.

3.2.1.5 Recursion Validation

At the same time, a DNS server might be authoritative, recursive, or both. Unless it is an

internal server or serves name requests on purpose, the recursive option should be dis-

abled. However, allowing recursive DNS requests on authoritative DNS servers poses

a security concern since an adversary can conduct DNS reflection attacks. This attack

may also be modified to magnify the response, resulting in an amplification attack in

which the authoritative server launches the DoS attack itself. The main function of an

authoritative name server is to resolve domain names for the zones for which it holds

authoritative data. As a result, the recursion needs to be disabled for an authoritative

DNS server, which prevents its use as a reflector for DDoS attacks. Therefore, block-

ing recursion on an authoritative name server protects the DNS server against reflected

amplification DoS/DDoS attacks. This parameter matches the resiliency (capacity to

61

withstand DoS attack) and vulnerability indicators of ICANN. Algorithm-5 does a re-

cursion validation check, this parameter should be checked for all the authoritative name

servers of a domain. The recursive query is sent using the dig command to each authori-

tative name server and the response is recorded in variable MSG, which reveals whether

recursion is enabled or not on authoritative name servers. If recursion is disabled in all

the authoritative name servers of a given domain then this results in a recursive query

check pass for that domain. The recursive query check should be performed against all

authoritative DNS servers of the domain in concern.

Algorithm 5: Recursive Query Check
Input : Name of the domain - DOMAIN
Output: 0 (Test Failed) or 1 (Test Passed)

1 Initialize NSCOUNT, RSCOUNT to 0
2 SERVERLIST= List of all DNS servers of DOMAIN
3 for I=1 to number of authoritative DNS Server of DOMAIN do
4 NSCOUNT = NSCOUNT + 1
5 MSG = send recursive query to next DNS server in the SERVERLIST[I]
6 if MSG contains "WARNING: recursion requested but not available" then
7 RSCOUNT = RSCOUNT + 1
8 end
9 end

10 if NSCOUNT=RSCOUNT then
11 return 1
12 end
13 else
14 return 0
15 end

3.2.1.6 Reverse Lookup Validation

A forward lookup maps an IP address to a domain name, whereas a reverse lookup

maps a domain name to an IP address. A new TLD called "in-addr.arpa" was created to

manage reverse lookups, and subdomains inside the "in-addr. arpa" domain are created

by reversing the octets that make up an IP address. The reverse lookup domain for the

223.31.121.0/28 network, for example, is “121.31.223.in-addr.arpa.”

Reverse lookups are extremely important for troubleshooting and security; certain mail

62

Algorithm 6: Reverse Lookup Check
Input : Name of the domain - DOMAIN
Output: 0 (Test Failed) or 1 (Test Passed)

1 Initialize NSCOUNT, RVCOUNT to 0
2 SERVERLIST= List of all DNS servers of DOMAIN
3 for I=1 to number of authoritative DNS Server of DOMAIN do
4 NSCOUNT = NSCOUNT + 1
5 NAME_Value = name of DNS Server in SERVERLIST[I]
6 IP_Value = lookup for A record at DNS server in SERVERLIST[I]
7 HOSTNAME = lookup for PTR record for IP_VALUE
8 if HOSTNAME = NAME_Value then
9 RVCOUNT = RVCOUNT + 1

10 end
11 end
12 if NSCOUNT=RVCOUNT then
13 return 1
14 end
15 else
16 return 0
17 end

servers will refuse to exchange Internet messages with other servers if reverse lookups

are not maintained. A reverse DNS query can be used to determine whether malicious

actors are utilizing the authoritative DNS server’s IP address. Spammers transmit spam

to addresses that do not have a DNS record. A reverse search of their IP address to

valid domain names should be possible on all healthy authoritative name servers. Ma-

licious individuals routinely register domains without first doing a reverse lookup, and

on the other hand, genuine companies should use the DNS server’s reverse lookup as

a best practice. In order to analyze the health of any DNS server, we propose that the

availability of this capability be checked. One of the core ideas of DNS is that DNS res-

olution must be precise. For example, the domain "www.nitk.ac.in" resolves to the IP

address 14.139.155.216, and 14.139.155.216 should also resolve to "www.nitk.ac.in”;

this is the principle of coherence. As a result, the ICANN’s coherency indicator and the

reverse lookup check parameter are linked. Algorithm-6 does reverse lookup validation

check; NSCOUNT and RVCOUNT variables contain the total number of authoritative

name servers of a domain and the number of authoritative name servers having reverse

63

lookup check passed. All the authoritative name servers of a domain will be validated

for a reverse lookup check. NAME_Value gets the name of the authoritative name

server and IP_Value gets the IP address of that DNS server. The host command is exe-

cuted to retrieve the domain name of the IP address (IP_Value) and the result is stored

in HOSTNAME. Now HOSTNAME and NAME_Value are compared to validate the

reverse lookup check. If the NSCOUNT equals RVCOUNT it proves all authoritative

name servers of that domain are validated for reverse lookup and the test result returns

1.

3.2.2 DNS Latency Comparison with ICMP Latency

DNS, which converts a domain name to an IP address, is critical to the quality of almost

all Internet applications and services. As a result, DNS query delay in network latency

is a critical factor impacting end-user Internet quality [70]. Because DNS is an often

overlooked source of network delay, DNS lookups can drastically slow down a user’s

browsing experience. The query Round Trip Time (RTT) is the time it takes a DNS

query to resolve a domain name to an IP address. DNS latency is a crucial performance

metric that determines how successful a DNS system is. When an authoritative server

gets overwhelmed, DNS resolution queries and responses must be delayed, and packets

may be lost and resent. This is due to DNS server under-provisioning, which can result

in a DoS assault. We aim to compare DNS query and ICMP echo request delay to

see if DNS is under-provisioned or network congestion between the DNS client and

authoritative DNS server.

The IP header includes an 8-bit TTL value that specifies the maximum number of layer-

3 hops made on the route to their destinations. Before being transmitted further, a

packet’s TTL value is reduced by one as it passes through intermediated layer-3 devices.

The TTL value determines the path between two network devices in the end. However,

owing to the nature of the Internet, the two end devices can communicate via alternate

channels in the future. As a result, the IP TTL values must be equal to compare DNS

query and ICMP echo request delay, suggesting that the communications follow the

same path.

64

Algorithm 7: DNS Query RTT vs. ICMP Echo RTT Check
Input : DNS-Server-IP DNS-SERVER
Output: 0 (Test Failed) or 1 (Test Passed) or 2 (Filtered by Firewall or

different route)

1 Initialize TIMEOUT_DNS, TIMEOUT_ICMP by 0
2 DNS_TTL, DNS_RTT=Send a DNS query to DNS-SERVER and record the

TTL values of the reply and DNS query Round Trip Time.
3 if TIMEOUT received in DNS query then
4 TIMEOUT_DNS =1
5 end
6 ICMP_TTL, ICMP_RTT=Send a ICMP echo request to DNS-SERVER and

record the TTL values of the reply and Round Trip Time of ICMP echo
request.

7 if TIMEOUT received ICMP echo request then
8 TIMEOUT_ICMP=1
9 end

10 if TIMEOUT_DNS=0 and TIMEOUT_ICMP=0 then
11 if DNS_TTL = ICMP_TTL then
12 if DNS_RTT >ICMP_RTT then
13 return 0
14 end
15 else
16 return 1
17 end
18 end
19 else
20 return 2
21 end
22 end
23 else
24 return 2
25 end

When a DNS query is transmitted to an authoritative DNS server, the DNS query RTT

is recorded together with the IP header TTL value. Subsequently, an ICMP echo request

is made to the authoritative DNS server, and the RTT and IP TTL values are recorded.

When both TTL values are the same, both messages have taken the same route. Suppose

the RTT for a DNS query is longer than the RTT for an ICMP echo request. In that case,

this is the result of DNS under-provisioning and bad DNS health, but if the RTT for an

ICMP echo request is longer than the RTT for a DNS query, the underlying network

65

is congested, and DNS health is good. This newly discovered health measure matches

ICANN’s speed and stability indications.

The difference between DNS query RTT and ICMP echo RTT can indicate if the DNS

server responds slowly (due to a DoS attack) or if the underlying network between the

vantage point and the DNS server is congested. As a result, comparing DNS query

latency and ICMP echo request latency is essential in determining DNS server health.

Because the DNS design employs anycast for ROOT and TLD name servers, even if the

authoritative server is anycast enabled, we always verify the IP TTL values of DNS and

ICMP responses. If they match, we know the DNS query and ICMP echo request have

the same destination.

3.2.3 DNSSEC Validation

When a DNS client makes a query to an authoritative DNS server, the client has no

way of confirming the authenticity and integrity of the DNS reply because security was

not a consideration when DNS was established. Since DNS utilizes UDP as its trans-

port layer, DNS clients cannot detect a false or spoofed answer to one of their DNS

requests. An attacker can easily spoof the authoritative server that a client requested by

faking a response that appears to originate from that server. In other words, an attacker

can redirect a user to a potentially dangerous website without the user’s awareness. An

IETF research team created the DNS Security Extensions (DNSSEC) in the 1990s to

defend against this problem. DNSSEC is a DNS extension that adds security to DNS by

preventing difficulties with integrity and authentication. As a result, DNSSEC protects

against MITM attacks, DNS cache poisoning, and response manipulation by ensuring

that the correct servers transmit the right responses. DNSSEC improves DNS response

authentication by using digital signatures based on public-key cryptography. Authorita-

tive DNS servers cryptographically sign DNS responses to ensure validity & integrity,

and recursive resolver validates it. Because a domain is vulnerable to a DNS response

spoofing attack if DNSSEC is not enabled, this value is critical for assessing the health

of the authoritative DNS server. DNSSEC validation fulfills ICANN’s integrity indica-

tor because it preserves the integrity of DNS replies, verified denial of existence, and

origin authentication. For a given domain name, Algorithm-8 does a DNSSEC valida-

66

tion check by downloading the latest root domains DNSSEC keys, which will be used

to validate DNSSEC for a domain. The DNS query is sent to the local DNS server for

asking DNSSEC records for the domain in question and the result is recorded into the

MSG variable. If the MSG variable contains "SUCCESS" then DNSSEC is enabled for

that domain. If MSG contains "FAILED" then DNSSEC is not enabled, else DNSSEC

is not validated for that domain due to broken trust of chain in the DNS hierarchy.

Algorithm 8: DNSSEC Validation Check
Input : Name of the domain - DOMAIN
Output: 0 (Test Failed) or 1 (Test Passed)

1 keys=download root DNSSEC Keys
2 MSG=send a DNS query asking DNSSEC check for DOMAIN to local DNS

server
3 if MSG contains "SUCCESS" then
4 DNSSEC=1
5 end
6 else if MSG contains "FAILED" then
7 DNSSEC=0
8 end
9 else

10 DNSSEC=2
11 end
12 if DNSSEC = 1 then
13 return 1
14 end
15 else
16 return 0
17 end

3.3 Authoritative Name Server Health Measurement and Key Find-
ing

Because each discovered parameter is crucial for assessing health and poses a distinct

amount of threat to health, the criticality of each discovered parameter is translated to a

weightage as indicated in the Figure 3.3a.

As many organizations block ICMP echo queries for security reasons, therefore we skip

the DNS latency comparison with ICMP latency parameter check when evaluating DNS

67

health in these instances. The revised weightage for the remaining parameters is calcu-

lated as shown in the Figure 3.3b. When we represent each parameter in a 360-degree

form, we get a value of 45. If an ICMP timeout occurs while comparing the DNS query

to ICMP echo RTT, and the value of each parameter will be 51.45. Table 3.1 shows the

weightage computation for each proposed parameter.

All discovered parameters are assessed using algorithms 1 to 8 to determine the per-

centage of a domain’s health, divided into four categories as shown in Table 3.2. We

measured the health of authoritative DNS servers of the top 500 domains listed by

Moz’s ranking [83] for five consecutive days and recorded the result as shown in the

Figure 3.4.

The health of the authoritative name server for the top 482 domains (remaining 18 are

Table 3.1 DNS Health Parameters Weightage Calculation

Proposed Health
Parameters

Health Indicators
from ICANN and
MeNSa

Criticality Weight Value Value
When
ICMP
Timeout

Software Name
Check

Availability and
Vulnerability

High 1.5 67.5 77.14

SOA Check Availability and
Resiliency

Medium 1.0 45 51.45

Dual-Stack
Check

Availability and
Stability

Low 0.5 22.5 25.71

Zone Transfer
Check

Vulnerability Low 0.5 22.5 25.71

Recursive Query
Check

Resiliency and
Vulnerability

High 1.5 67.5 77.14

Reverse Lookup
Check

Coherency Low 0.5 22.5 25.71

DNS Query
Vs. ICMP RTT
Check

Speed and Stabil-
ity

Medium 1.0 45 NA

DNSSEC Valida-
tion

Integrity High 1.5 67.5 77.14

Total 8 360 360

68

(a) When ICMP Reply Received (b) When ICMP Timeout Received

Figure 3.3 Weightage of Identified Parameters as per Criticality

the name of the websites) is summarized in Table 3.3.

The health for the domain "example.com" is 100% on day-5, and it has been a healthy

domain for all five days of testing, whereas the health percentage for the domain "time.com"

has been 93% for all five days of testing. The domain "gnu.org" is consistently regarded

as an unhealthy domain, with a healthy percentage of roughly 19.

The DNS software fingerprinting is revealed by almost 50% of the domain’s authorita-

tive name servers on all five days, as seen in Figure 3.5.

61% of the domains failed the SOA check, leaving them open to zone trashing and

zone drift, which cause availability issues on them. A total of 41% of domains do not

support dual-stack and are hosted only on the IPv4 network. An average of 163 do-

Table 3.2 DNS Health Categories

S/No. Health Percentage Health category
1. 75-100 Healthy
2. 50-74 Moderately Healthy
3. 25-49 Poor Health
4. Below 25 Unhealthy

69

Figure 3.4 A Report on the Health of the Authoritative Name Servers for the Top 500
Domain Names

Figure 3.5 Software Name, SOA, Dual Stack and Reverse Lookup check for the Five
Days of Health Assessment

70

Table 3.3 DNS Health Results

Domains Health/Days Day-1 Day-2 Day-3 Day-4 Day-5
Healthy 55 44 58 53 57
Moderately Healthy 273 280 276 263 261
Poor Health 153 156 146 164 162
Unhealthy 1 2 2 2 2

mains do not adhere to the coherency principle i.e. not configured for reverse lookup.

The Figure 3.6 shows that zone transfers are permitted on three domain’s authori-

tative name servers on all five days. These domains have vulnerabilities and are prone

to leaking potentially sensitive information, and an attacker can gain knowledge of the

infrastructure, allowing him to plan more complex network-based attacks. For all five

days, almost all domain authoritative name servers prevent recursive requests, and only

three authoritative name servers (adobe.com, mail.ru, and samsung.com) serve as recur-

sive servers, making them vulnerable to DDoS. Even though DNSSEC has been around

for 15 years, our findings demonstrate that it is still not widely used or obeyed by au-

thoritative name servers; our result shows that only 33 domains out of 482 are DNSSEC

enabled.

The DNS latency comparison with the ICMP latency parameter check is an important

health indicator. This comparison may reveal that DNS servers can be under DoS at-

tack (if latency difference is too high), proving that the health results can be computed

dynamically using our methodology. As shown in Figure 3.7, the results vary from time

to time, and therefore a healthy server today may not be healthy tomorrow, indicating

a probable attack. This could be used to alert the respective administrator to take mea-

sures to prevent such attack scenarios. Therefore the extended parameters (specifically

DNS query vs. ICMP echo RTT) are better in evaluating the authoritative name servers

effectively and accurately.

71

Figure 3.6 Zone Transfer, Recursive Query, and DNSSEC check for the Five Days of
Health Assessment

Figure 3.7 Results of DNS Query vs. ICMP Echo RTT Check

72

3.4 Summary

We identified 8 novel parameters (Software Obfuscation, SOA Validation, Dual-Stack

Support, Zone Transfer Status, Non-Recursive Querying, Reverse Lookup Validation,

Latency Comparison of DNS Query and ICMP Echo Request, and DNSSEC Valida-

tion) and proposed a series of algorithms for measuring the health of authoritative DNS

servers. The results obtained on a list of the authoritative name servers serving the top

500 domains for five days have been tabulated. By measuring the health of the top 500

domain’s authoritative name servers, we highlight the critical problem areas for those

name servers serving the domains that need to be resolved by addressing the appro-

priate health parameters. This passive approach can be scaled easily across the DNS

hierarchy and could be used to determine the health of the global or regional or even

a segment of the DNS system at any given instance of time. The experiment can be

repeated periodically to identify divergent behavior that may lead to malicious attacks

on the Internet infrastructure.

73

Chapter 4

DNS Intrusion Detection (DID): IDS
Signatures for DNS Tunneling, Amplification,
and DoS Attacks

4.1 Introduction

The Internet is the global connectivity of multiple networks managed by the various

stakeholders like government and private organizations, business, academia, ISP etc.

Initially designed to connect government research centers (ARPA network), the Inter-

net has grown exponentially since 1994 to serve billions of users and electronic gadgets

connected to every corner of the globe. As there are more than 1.8 billion websites

on the Internet and among them around 400 million live at any point in time, the DN-

SEXT of the IETF has designated DNS as the "Critical Infrastructure" due to the ever-

expanding Internet and its phenomenal growth of websites. As a result, DNS is the most

targeted protocol among all Internet applications in today’s Internet era. DNS abuses

are classified into two categories: attacks on DNS infrastructure and attacks exploiting

DNS infrastructure. Many abuses in the first category, i.e., attacks on DNS infrastruc-

ture, have already been addressed by DNSSEC and TSIG protocols, except for DDoS

attacks. However, many challenges like DNS amplification and tunneling are still open

for researchers in the second type of attack, i.e., attacks exploiting DNS infrastructure.

DNS tunneling can use DNS infrastructure as a formidable weapon to attack any orga-

nization for data exfiltration or command and control (C2). Oskar Pearson suggested

DNS tunneling on the Bugtraq mailing group in 1998, and in the early 2000s, a tool

called NSTX was created as a proof of concept for DNS tunneling [84]. Since then,

75

several tools have been built, and malware such as Morto and Feederbot use it to convert

command and control channels [71]. Most organizations do not monitor DNS traffic for

suspicious activities. DNS is usually permitted to freely move through perimeter secu-

rity devices like firewalls, making DNS an attractive vector for attackers that use DNS

tunneling to convey commands and exfiltrate data discretely. A wide range of tunneling

technologies via DNS is developed, and they are explored in this thesis work.

On the other hand, DNS amplification uses the benefits of open recursive resolvers to

overwhelm the network of any victim on the Internet. Since the inception of the Inter-

net, this issue is still open for researchers to work on. The Internet has previously been

abused several times using DNS amplification attacks, including the Dyn attack in 2016

and the Spamhaus attack in 2013. Many security applications, appliances, protocols,

and DNS security add-ons have emerged over the recent year, and the DNS protocol

has been updated several times. When it comes to DNS security, traditional network se-

curity technologies such as firewalls and intrusion detection & prevention systems have

shown to be inadequate. They provide insufficient coverage of the DNS threat environ-

ment, leading to an unacceptably high number of false positives and, in certain cases,

system failures. Finally, they cannot identify data exfiltration efforts or DNS tunneling,

reflective amplification in a timely way, which is critical in today’s highly regulated

contexts [72].

DNSSEC is a set of IETF protocols for ensuring the security of DNS information. It

is simply a set of DNS extensions that offer authentication of response/query, response

integrity, and authentication denial of existence. DNSSEC protects the malicious user

from tampering with DNS record answers, which might lead to visitors being sent to

their website, thus protecting against MITM attacks. The additional security provided

by DNSSEC comes at a cost since attackers can use the higher domain sizes to launch

DNS amplification attacks [73].

Transaction Signature (TSIG) is developed to protect the transaction of zone transfer

between master and slave DNS servers. The use of symmetric keys and cryptographic

hash functions in TSIG guarantees safe communication between masters and slave

servers. TSIG assures that data received in zone transfers is valid and has not been

76

tampered with in transit and the DNS response’s legitimacy. TSIG is a technique for

preventing IP spoofing during resource record (RR) updates between master and slave

servers, and it is used to authenticate DNS database updates. There has been much

research done and many security products and protocols established for safeguarding

DNS infrastructure. However, none of them can stop all DNS-related attacks, and there

are still many security vulnerabilities with DNS. We propose a snort-based approach to

counter all probable DNS-related threats in this research work.

4.2 Proposed Methodologies

Multiple technologies exist for securing DNS infrastructure against various Internet

threats, with TSIG, DNSSEC, and IDS being the most popular and extensively imple-

mented. TSIG is only used to secure zone transfers between master and slave servers

and ensure that cryptographically authenticated slaves can download critical zone files

from the master server. In contrast, DNSSEC ensures the integrity and authenticity of

the DNS transaction between authoritative DNS servers and recursive resolvers. Both

TSIG and DNSSEC do not completely secure the DNS protocol from DNS abuses such

as DNS tunneling, amplification, and denial-of-service attacks. The purpose of IDS

approaches, on the other hand, is to examine acceptable and unacceptable behavior of

DNS traffic in order to identify threats to the DNS protocol. Even though IDS solu-

tions include a diverse signature set for practically detecting all Internet threats, there

are only a few rules for identifying abuses of DNS infrastructure, and those rules are

generic and not tailored to a specific attack weapon or application. This research work

fills the gaps by developing new IDS signatures for practically all tools used for DNS

tunneling, amplification, and DoS attacks. These novel signatures are combined with

SNORT’s current DNS-based signatures to protect any node in the DNS infrastructure

hierarchy, including Root, TLDs, authoritative servers, recursive servers, and even stub

resolvers. The resultant IDS is called DNS Intrusion Detection - DID.

An intrusion in a network is a malicious activity that violates any security principles,

such as privacy, integrity, availability, and authentication. Network traffic must be mon-

itored for particular network segments or devices to defend against network intrusions.

77

TCP/IP network, transport, and application layer protocols must be examined to detect

malicious activities. This job is done by IDS, which sends out an alert whenever it

detects malicious activity on the network. As the name implies, IDS can only identify

ongoing security abuses in the network by raising a specific alarm to notify the right per-

sons. Many free and open-source IDS systems are available, including SNORT, SURI-

CATA, BRO, and Security Onion. This research work proposes an approach called DID

for safeguarding DNS infrastructure utilizing SNORT IDS and a novel IDS signature

applied to SNORT to defend almost all kinds of DNS attacks, including DNS tunneling,

DNS amplification, and DNS DoS/DDoS attacks. We have considered SNORT in this

work as it is among the most popular and familiar IDS. SNORT Talos is a well-known

signature-based network IDS with many rules for identifying malicious programs and

unusual network activities [74].

4.2.1 DNS Tunneling

The DNS protocol is utilized by all devices connected to the Internet. Most organiza-

tions do not monitor DNS traffic, making it a convenient target by attackers for Internet

abuse. DNS tunneling is a technique in which an adversary utilizes DNS query and re-

sponse to tunnel any communication, such as HTTP, FTP, SSH, and even the complete

internet protocol (IP) traffic of TCP/IP. Malicious users primarily utilize the DNS tunnel

for data exfiltration and command and control (C2). DNS tunneling was first introduced

in 1998, and since then, various tools have been created to enable DNS tunneling, as

indicated in Table 4.1.

Suppose all outgoing DNS (UDP port 53) traffic is allowed through the organization’s

edge firewall. In that case, a DNS tunnel can be established between a compromised

client and the attacker’s controlled DNS server, allowing data exfiltration or C2 even

if all other traffic is blocked at the firewall except DNS. When a tunnel is successfully

established between a compromised client and an attacker’s DNS tunnel server, certain

tunneling tools create TUN or TAP network interfaces on both endpoints of the tunnel.

This interface can also carry any protocols traffic between two endpoints, and even en-

tire IP traffic can be tunneled through a DNS tunnel.

78

4.2.1.1 The Component of the DNS Tunnel

The DNS tunnel consists of two primary components: a compromised DNS client and

the attacker’s authoritative DNS server. The attacker must register an Internet domain

or subdomain. The domain’s authoritative DNS must refer to the attacker’s DNS server;

this is where the server portion tunneling software is configured and running. The at-

tacker needs to install the client portion of tunneling software on the victim’s system.

Upon successful installation, the compromised client sends a DNS query for a sub-

domain representing an encoded communication. A local or ISP DNS resolver at the

client-side finally routes the query to the attacker’s DNS server. The compromised

client then receives a malicious DNS response from the controlled DNS server, which

contains commands to the clients for data exfiltration or C2, and passes unnoticed via

perimeter devices like firewalls. Through the DNS tunnel, the attacker may keep doing

this over time and being undetected.

As shown in Figure 4.1, to construct a tunnel, the attacker utilizes data encoded in

the DNS payload. DNS tunneling transports IPv4 network packets over DNS queries

Table 4.1 List of DNS Tunneling Tools

Name Programming
Language

Resource
Record
Used

Encoding Platform Encryption

Iodine C NULL Base32/64 Linux,
Unix, Ma-
cOS X and
Windows

No

DNSCAT2 C and Ruby CNAME,
MX , TXT

HEX and
NetBIOS

Linux,
Unix, Ma-
cOS X and
Windows

Yes

DNS2TCP C TXT,
KEY

BASE64 Linux No

ThunderDNS Python, Bash,
powershell

TXT Base64 Windows
and Unix

No

OzmanDNS Perl TXT Base32 Linux No

79

Figure 4.1 DNS Tunneling Attack

and responses by using the hostname to convey data using a DNS query and a record

type, e.g., MX, A, CNAME, TXT, and NULL for transferring the answer, implying that

DNS queries will be in a format similar to <encoded data>.exampledns.com and same

is applied to DNS responses. Base32, Base64, Binary, HEX, and NETBIOS are some

of the encoding formats that may encode data in the DNS queries and responses.

Assume that the hacker has a compromised client and owns the domain "exampledemo.in.".

To transport the data, hackers use base32 encoding method, which obscure and com-

press the data while constantly slicing it into arbitrary sizes. If the message "I have

a secret.doc file" has to be delivered to the hacker’s DNS tunnel server, the compro-

mised client issues the following DNS query: "JEQGQYLWMUQGCIDTMVRXE-

ZLUFZSG6YZAMZUWYZI=.exampledemo.in TXT ?". Once the query is being re-

ceived by hackers DNS tunnel server, If the hacker wishes to send the message "pleased

to meet you, send the content of the secret.doc file," it sends the following response " JE-

QGQYLWMUQGCIDTMVRXEZLUFZSG6YZAMZUWYZI=.exampledemo.in TXT

OBWGKYLTMVSCA5DPEBWW KZLUEB4W65JMEBZWK3TEEB2GQZJAMNXW45DFNZ”.

After getting the answer, the compromised client will use the same technique to exfil-

trate the content of a secret.doc file. This is how DNS tunneling works and how it is

80

used for data exfiltration. Many tools are available on the Internet to demonstrate the

notion of DNS tunneling, each with its own set of features [75], with the most com-

monly used being: Iodine, DNSCAT2, DNS2TCP, ThunderDNS, and OzmanDNS. To

defend DNS tunneling, we recommend that all of these tools have an IDS signature,

which we propose in this research work.

4.2.1.2 IDS Signature for Iodine

Bjorn Andersson and Erik Ekman [85] created the Iodine application in C programming

language, using a client-server architecture to tunnel IPv4 network traffic using DNS

queries and responses. The tool uses NULL record type and supports fragmentation,

compression, and encoding. The whole IP traffic is tunneled by establishing a TUN

interface on the client and server components assigned to an IPv4 address. In this way,

any application layer protocol can be wrapped by an IP header is exchanged between

client and server. It also uses the EDNS protocol to transport network packets larger

than 512 bytes over UDP, resulting in improved speed. The tool can operate on various

UNIX-like platforms & Windows, and tunnels may be established between any two

hosts regardless of the operating system.

In the iodine tunnel, the NULL resource record type is frequently utilized. The NULL

RR type is no longer in use and is now solely used for testing. If NULL is encountered

in a DNS query/response, DNS tunnel activity is suspected. The Figure 4.2 shows a

typical network packet captured for Iodine tunnel traffic.

Based on the characteristic and traffic captured of iodine application we have developed

following IDS signature to recognise iodine tunnel:

IDS Signature for Iodine

alert udp any 53 -> any any (msg:" iodine DNS Tunnelling Request"; content:"|00

01 00 01|", offset 4, depth 4; content:"yrb", distance 4, within 4; content:"|00 0a

00 01|", within 255; threshold: type threshold, track by_src, count 2, seconds 15;

sid: 806254370; rev:1;)

81

Figure 4.2 A Network Packet Capture for Iodine Traffic

The above signature will detect iodine traffic if the DNS response packet contains

"00 01 00 01" (both DNS questions and Answer Resource Records contains 1 each),

and "yrb" (As in the initial client request, the domain is prefixed with “yrb” in the DNS

query, the response also contains this prefix to the domain name) and “00 0a 00 01”

(represents NULL type request and IN class). This pattern should match at least twice

in fifteen seconds to generate an alert for iodine tunnel traffic.

The client tries to auto-detect DNS query type, and if it gets NOTIMP as a reply which

means the server does not support this kind of request, then CNAME is used as default

query type, and the domain is prefixed with "yrb." The default snort signature will not

be able to detect this; thus, we identified the following signature as:

IDS Signature for Iodine

alert udp any 53 -> any any (msg:" iodine DNS Tunnelling Request"; content:"|00

01 00 01|", offset 4, depth 4; content:"yrb", distance 4, within 4; content:"|00 05

00 01|", within 255; threshold: type threshold, track by_src, count 2, seconds 15;

sid: 806254370; rev:1;)

82

4.2.1.3 IDS signature for DNSCAT2

DNSCAT2 is acclaimed for its ability to construct a command and control tunnel using

the DNS protocol, allowing an adversary to operate invisibly. The main advantage of

DNSCAT2 over other tools is that tunnel traffic is encrypted, and also the attacker does

not require an authoritative DNS server for a domain name. The tunnel may be pre-

cisely established among the compromised victim and tunnel server over UDP port 53,

used for file downloads, uploads, and even remote access shells. DNSCAT2 has two

parts: a server and a client. The server part is made in a ruby programming language

and needs to run a DNS tunnel server over UDP port 53. It tries to establish a legitimate

association when it receives DNS queries from the compromised clients.

On the other hand, the client is part of DNSCAT2 written in "C" and intended to operate

indefinitely on a target machine. When the client component is run on a compromised

server with the domain name specified, the client negotiates with the tunnel server by

sending DNS queries to the local DNS server, which then forwards them to the DNS

tunnel server, which the adversary ostensibly controls. If the client is run without spec-

ifying a domain name, it will attempt to connect directly to the tunnel server through

port 53.

If DNSCAT2 traffic is sent over an unencrypted channel, it may be readily observed.

Because all queries and answers are always prefixed with "dnscat," its traffic is de-

tectable. This traffic may be identified using the following IDS rule:

IDS signature for DNSCAT2

alert udp any any -> any 53 (msg: “DNSCAT2-Tunneling Attempt”; content:"|00

01 00 00|",offset 4,depth 4; content: “dnscat”, distance 28, within 255; sid:

806254374; rev:1)

DNSCAT2 uses CNAME, MX, and TXT resource records in DNS query and re-

sponses and Hex or NetBIOS encoding techniques. However, because DNSCAT2 em-

ploys encryption in client-server connections, it will not be easy to detect. The DNS

query/reply packets are always bigger than 100 bytes because each packet comprises an

unencrypted 5-byte header and an unencrypted 2-byte nonce. Keep in mind that normal

83

DNS packets are typically less than 100 bytes on average [86], whereas, for DNSCAT2

traffic, the average size of query or response packets is more than 100 bytes. Based on

these characteristics of DNSCAT2 tunnel traffic, we created the following novel IDS

signatures below for identifying DNSCAT2 tunnel CNAME traffic:

IDS signature for DNSCAT2

alert udp any any -> any 53 (msg: "Possible-DNSCAT2-Tunnel-CNAME-

Traffic"; content:"|00 01 00 00|",offset 4,depth 4; content: "|00 05 00 01|",dis-

tance 6, within 255; dsize:>100;detection_filter: track by_src, count 2, seconds

10;sid:806254375;rev:1;)

The Figure 4.3 shows a typical network packet captured for DNSCAT2 tunnel traf-

fic.

Suppose the DNS query packet is larger than 100 bytes and contains "00 01 00 00"

(both DNS queries and Answer Resource Records contain one each) and "00 05 00 01"

(represents CNAME type request and IN class). In that case, the signatures described

Figure 4.3 A Network Packet Capture for DNSCAT2 Traffic

84

above will identify iodine CNAME traffic; this pattern must match at least twice in ten

seconds. Similarly following signatures detect DNScat2 tunnel MX and TXT traffic:

IDS Signatures for DNSCAT2

alert udp any any -> any 53 (msg: "Possible-DNSCAT2-Tunnel-MX-Traffic";

content:"|00 01 00 00|",offset 4,depth 4; content: "|00 0f 00 01|",distance

6, within 255; dsize:>100;detection_filter: track by_src, count 2, seconds

10;sid:806254376;rev:1;)

alert udp any any -> any 53 (msg: "Possible-DNSCAT2-Tunnel-TXT-Traffic";

content:"|00 01 00 00|",offset 4,depth 4; content: "|00 10 00 01|",distance

6, within 255; dsize:>100;detection_filter: track by_src, count 2, seconds

10;sid:806254377;rev:1;)

4.2.1.4 IDS Signature for DNS2TCP

The primary goal of the DNS2TCP application is to overcome the captive portal and

gain free Internet access; hence it tunnels TCP traffic over the DNS protocol and does

not require to have TUN/TAP interface. The advantage of this utility over others is that

it can execute on client systems without requiring administrator privileges. The tool

is written in C programming language and only accepts TXT or KEY requests, and

the data sent is encoded in Base64. It utilizes the fixed subdomain "=auth" to initiate

TCP handshakes between client and server and employs the session-tag, which uses the

first four bytes of the subdomain to monitor and keep the same session. Based on the

behavior of the DNS2TCP tunnel, we created the following signature to identify the

tunnel traffic:

IDS signature for DNS2TCP

alert udp any any -> any 53 (msg: "DNS2TCP-TCP Handshake"; content:"|00 01

00 00|", offset 4, depth 4; content:"=auth", distance 4; content:"|00 10 00 01|",

distance 2, within 255; sid:806254378; rev:1;)

85

Figure 4.4 A Network Packet Capture for DNS2TCP Traffic

If a DNS query is transmitted over port 53 to any DNS server, the signature, as

mentioned above, comprises three contents to detect DNS2TCP tunnel traffic. The first

content "00 01 00 00" belongs to question resource records equals one and Answer

Resource Records equals zero, the second content "=auth" correlates to the TCP hand-

shake string between client and server, and the third content "00 10 00 01" corresponds

to the IN class TXT record.We captured the network packet of DNS2TCP attack traffic

as shown in Figure 4.4.

4.2.1.5 IDS Signature for ThunderDNS

ThunderDNS tunnels like DNS2TCP may be used to build a tunnel that routes TCP

traffic over the DNS protocol. The tunnel server application is developed in Python and

is even Docker-compatible. The client software is written in a Linux shell, a Windows

Power Shell, and a PHP web application [87]. The majority of IDS do not have an

inherent ThunderDNS tunnel signature.

For communication between the server and the client, it employs a basic protocol; the

following are the features of client-server communication:

1. The client requests a TXT record in the following format from the server to register

86

Figure 4.5 A Network Packet Capture for ThunderDNS Traffic

the tunnel: 0<random string with 7 characters><client ID>.<domain name>.

2. Once the initial negotiation completes, the client pools data from the server as fol-

lows: 1<random string with 7 characters><client ID>.<domain name>.

3. If new data is available for the client, then the server reply with TXT records with

the data; else, it will return as <id>ND.

Following signature captures this replay and confirm the ThunderDNS tunnel traffic:

IDS signature for ThunderDNS

alert udp any 53 -> any any (msg:"ThunderDNS Tunnel Traffic"; content:"|00

01 00 01|", offset 4, depth 4; content:"|00 10 00 01|", distance 4; content:"ND",

distance 4, within 255; threshold: type threshold, track by_src, count 15, seconds

2;sid:806254380;rev:1;)

The above signature has three main patterns to identify ThunderDNS traffic; the first

pattern is for the question and answers section as seen in the previous signatures, the

87

second is TXT record IN class, and the third pattern is "ND," the patterns need to match

15 times in 2 seconds.

4.2.1.6 IDS signature for OzymanDNS

In 2004, Dan Kaminsky developed OzymanDNS application in Perl to create an SSH

tunnel through DNS requests and responses to transmit files from client to server for

data exfiltration. The DNS quires are base32 encoded, while the DNS responses are

TXT records that are base64 encoded. During the tunnel negotiation, the term "up" or

"down" is used in the Perl script to indicate whether the traffic is upstream or down-

stream from the client. As a result, we discovered two IDS signatures for OzymanDNS

tunnel traffic.

Signature-1: Figure 4.6. shows the tunnel traffic captured for DNS query containing

down request and based on this following signatures are created for detecting Ozy-

manDNS tunnel traffic:

IDS signature for OzymanDNS

alert udp any any -> any 53 (msg:"OzymanDNS Client Down Request"; con-

tent:"|00 01 00 00|",offset 4,depth 4; content:"id-",distance 4; content:"down";

within:10; content:"|00 10 00 01|"; distance:5; within:255; threshold: type

threshold, track by_src, count 20, seconds 5;sid:806254381;rev:0;)

The signature mentioned above has four parts: the first part (content |00 01 00 00|)

corresponds to a DNS query with one question and zero answers, the second part is the

"id-" keyword, the third part is the "down" keyword, and the last part (content:”|00 10

00 01|”) corresponds to a TEXT record in the IN class. In 5 seconds, this pattern must

match 20 times.

Similarly following signatures detects OzymanDNS tunnel traffic for up request from

client.

88

Figure 4.6 A Network Packet Capture for OzymanDNS Traffic

IDS signature for OzymanDNS

alert udp any any -> any 53 (msg:"OzymanDNS Client up Request"; con-

tent:"|00 01 00 00|";offset:4;depth:4; content:"-0"; distance:16; content:"id-

";distance:1;within:3; content:"up"; within:8; content:"|00 01 00 01|"; distance:5;

within:255; threshold: type threshold, track by_src, count 20, seconds 5;sid:

806254382;rev:0;)

4.2.2 DNS Amplification

DNS amplification attacks are also known as reflective distributed denial of service

(RDDoS) attacks. They can take two forms: being the target or acting as a middleman

in attacking another network. A decent amplification attack vector meets two criteria:

1. The query can be sent from a faked source address (e.g., using an ICMP or UDP

protocol that does not require a handshake)

2. The response to the query is multiple factors and much larger than the query itself.

Because DNS is a key and omnipresent Internet infrastructure that fits these conditions,

89

it has become the most significant amplification source. DNS is an application-layer

protocol primarily used with UDP connection, and UDP is a stateless protocol that is

essentially a best-effort protocol. Because there is no connection handshake, spoofing

the source IP address in receiving packets is quite straightforward. According to RFC

1034 and 1035, the payload size of DNS request packets was previously limited to 512

bytes. However, due to the development of Extension Mechanisms for DNS (EDNS(0))

and later adoption of these standards, the DNS payload packet size can now reach up

to 4096 bytes. A common DNS query is between 50 and 100 bytes in size, and DNS

response can range in size from a few hundred bytes for an A or CNAME record to

thousands of bytes or more for a big ANY or TXT record. The DNS amplification at-

tack takes leverages of this and EDNS(0) to enable an adversary to amplify the amount

of bandwidth they can target at a possible victim for a DDoS attack.

DNS Amplification employs the reflection approach, in which the attacker spoofs the

Figure 4.7 Working of DNS Amplification Attack

target system’s IP address and sends a DNS query to a list of public recursive resolvers.

The target system will receive a response from all the recursive resolvers in response

to the query sent by the attacker. By asking for all records (ANY records) of a speci-

fied domain and enabling EDNS(0) protocol, the attacker crafts DNS query so that the

amplified responses overburden the victim’s network resulting DDoS attack as shown

90

Table 4.2 List of DNS Reflected Amplification Tools

Tool Name Query Type Program Class EDNS Support
Ethanwilloner ANY C IN No
Saddam ANY Python ANY Yes
DNS FlooderV1.1 ANY C IN Yes
DNSDRDOS A C IN No

in Figure 4.7. DNS answers from authentic DNS servers are interpreted as authentic

DNS communication by the victim machine; as a result, preventing these attacks is

quite tough. Compared to the number of UDP payload bytes that an amplifier deliv-

ers to respond to a request, the bandwidth amplification factor (BAF) is computed as

the amount of UDP payload bytes that can be used to assess the potential impact of an

amplification attack and can weigh the potential outcomes of an amplification attack.

The BAF is determined as the difference between the number of payloads an amplifier

transmits to a victim and the number of payloads an attacker sends to an amplifier [88].

The recursive resolver’s BAF ranges from 28 to 54. The following formula computes

BAF:

Bandwidth Amplification Factor (BAF) =
Packet Size of DNS Response

Packet Size of DNS Query

A selection of the most popular tools for launching DNS reflective amplification attacks

is shown in the Table 4.2. All tools operate similarly, requiring a list of recursive servers

and the victim system’s IP address and a list of domains used in DNS queries with

ANY option selected. We developed IDS signature for all these tools as illustrated in

the following sections.

4.2.2.1 IDS Signature for Ethanwilloner

Ethan Willoner created a C program that may be used to demonstrate the notion of a

DNS amplification attack [89]. The utility sends DNS queries to a list of open DNS

servers specified in the C program, with the source spoofing the target. Because the

code requires access to raw sockets, it must be run with root privileges. This tool can

91

spoof the sender’s IP address, and the source code can be modified to set recursive re-

solvers and domain names for DNS queries.

We captured the attack traffic as shown in Figure 4.8 and analyzed the traffic to create

an IDS signature that identifies this attack pattern. The following are the essential fac-

tors for detecting this attack on the victim:

1: Standard Query Response –The DNS response from the recursive server always con-

tains the content “81” corresponds to the Response with recursion desired, or content

“83” corresponds to the response with truncated and recursion desired.

2: Question Section – The question section corresponds to the following content in the

DNS header:”|00 01|”.

3: Query Type – This tool uses “ANY” in query type with Internet class “IN,” which is

represented by content:”|00 ff 00 01|”

4: The DNS response size – We generate the alert if the DNS packet size is more than

100.

5: Threshold value – We generate an alert if 10000 packets match the signature in ten

seconds.

The signatures for identifying Ethanwillnor traffic is as follows:

Figure 4.8 Packet Capture for EthanWillnor Traffic

92

IDS signature for Ethanwilloner tarffic

alert udp any 53 -> any any (msg:"EthanWillonr-DNS Amplification Attack";

content:"|81|",offset 2,depth 1; content:"|00 01|", distance 1, within 2;con-

tent:"|00 ff 00 01|",distance 6, within 100; dsize:>100; threshold: type threshold,

track by_src, count 10000, seconds 10; sid:806254383;rev:1;)

alert udp any 53 -> any any (msg:"EthanWillonr-DNS Amplification Attack";

content:"|83|",offset 2,depth 1; content:"|00 01|", distance 1, within 2;con-

tent:"|00 ff 00 01|",distance 6, within 100; dsize:>100; threshold: type threshold,

track by_src, count 10000, seconds 10; sid:806254384;rev:1;)

4.2.2.2 IDS signature for Offensive-Python Saddam

The offensive python Saddam utility [90] is a python application that may execute dif-

ferent amplification attacks, such as DNS, SNMP, NTP, and SSDP. This program needed

raw socket functionality on the operating system as well as the Python 2.7 Pinject mod-

ule. It allows for benchmarking and exposes the amplification factor for a collection of

open recursive resolvers.

IDS signature for OffensivePython-Saddam tarffic

alert udp any 53 -> any any (msg:"Saddam-DNS Amplification Attack"; con-

tent:"|81|", offset 2, depth 2; content:"|00 01|", distance 1, within 2;content:"|00

ff 00 ff|", distance 8; threshold: type threshold, track by_src, count 10000, sec-

onds 10; sid:806254385;rev:1;)

alert udp any 53 -> any any (msg:"Saddam-DNS Amplification Attack"; con-

tent:"|83|", offset 2, depth 2; content:"|00 01|", distance 1, within 2;content:"|00

ff 00 ff|", distance 8; threshold: type threshold, track by_src, count 10000, sec-

onds 10; sid:806254385;rev:1;)

If the sadam tool is used for an amplification attack, the above signature will raise an

alert. Except for the query type, the parameters are identical to those of the ethanwilloner

93

Figure 4.9 Packet Capture for Offensive-Python Saddam Tooltik Traffic

tool. Any query type will be applied with any class represented by content:”|00 ff 00

ff|”.

Figure 4.9 shows a network capture of Offensive-Python Saddam traffic.

4.2.2.3 IDS Signature for DNS Flooder-v1.1

Prolexic discovered this toolkit threat in 2013, written in C, and it features a new, pop-

ular technique of creating big DNS resource records for the response of DNS queries

[91]. With this, malicious actors can now magnify replies by a factor of 50 or more.

This toolkit includes a different record section that uses EDNS(0) to increase the UDP

response size so that the server responds with the largest feasible response. The tool

uses ANY request with a spoofed IP address for performing a reflected amplification

attack. We captured DNS Flooder-1.1 attack traffic as shown in Figure 4.10, and iden-

tified the following signature to detect DNS flooder traffic:

94

IDS signature for DNS Flooder v1.1 tarffic

alert udp any 53 -> any any (msg:"DDoS Attack attempt using DNS flooder

1.1";content:"|81|",offset 2,depth 2; content:"|00 01|",distance 1, within 2; con-

tent:"|00 ff 00 01|",distance 8; content: "|00 00 29|",distance 50;content:"|00 00

00 00|",distance 2, within 4;dsize:>200;threshold: type threshold, track by_src,

count 10000, seconds 10; sid:9999993;rev:1;)

alert udp any 53 -> any any (msg:"DDoS Attack attempt using DNS flooder

1.1";content:"|83|",offset 2,depth 2; content:"|00 01|",distance 1, within 2; con-

tent:"|00 ff 00 01|",distance 8; content: "|00 00 29|",distance 50;content:"|00 00

00 00|",distance 2, within 4;dsize:>200;threshold: type threshold, track by_src,

count 10000, seconds 10; sid:9999993;rev:1;)

The signature is the same as Ethanwalliner except for EDNS(0), The content “|00

00 29|” corresponds to OPT query type in an additional section of the response, and

content “|00 00 00 00| corresponds to Z bits.

Figure 4.10 Packet Capture for DNS Flooder-v1.1 Tarffic

95

4.2.2.4 IDS Signature for DNSDRDOS

In 2015, Nullsecurity created a C programming code called "dnsdrdos.c" used as a

proof-of-concept for demonstrating a widespread DNS reflection attack that results in

a denial of service on the victim’s network [92]. The code must be built to generate an

object code executable that requires a list of open recursive resolvers, victim IP address,

a domain name to resolve, and a loop count. The adversary may successfully conduct a

DDoS attack from several hosts, utilizing multiple open name servers, and overwhelm

the target with undesired network traffic.

By analysing wireshark traffic shown in Figure 4.11, the ensuing signatures were cre-

ated to detect DNSDRDOS traffic at the victim as:

IDS Signature for DNSDRDOS Tarffic

alert udp any 53 -> any any (msg:"DDoS Attack attempt using DNDDRDOS.C

Program"; content:"|81|",offset 2,depth 1; content:"|00 01|", distance 1, within

2;content:"|00 01 00 01|",distance 6; dsize:>100; threshold: type threshold, track

by_src, count 10000, seconds 10; sid:806254388;rev:1;)

alert udp any 53 -> any any (msg:"DDoS Attack attempt using DNDDRDOS.C

Program"; content:"|83|",offset 2,depth 1; content:"|00 01|", distance 1, within

2;content:"|00 01 00 01|",distance 6; dsize:>100; threshold: type threshold, track

by_src, count 10000, seconds 10; sid:806254388;rev:1;)

The IDS signatures are similar to the other amplification attack tools. However, for

DNSDRDOS, we observed that the response size is always greater than 100 bytes, and

10000 similar packets were found every 10 seconds to identify this attack.

4.2.3 IDS Signature for DoS Attack on DNS Servers

An attacker can sometimes target DNS servers by flooding a particular domain’s author-

itative server or recursive resolver to disrupt the DNS resolution process, causing a DoS

attack on DNS called DNS flood. In this case, the attacker tries to flood a DNS server

96

Figure 4.11 Packet Capture for DNSDRDOS Tarffic

with ostensibly valid traffic, overloading server resources and hindering the server’s

ability to direct genuine requests to domain resources. Therefore, a DNS flood attack

compromises the ability of a website, API, or any online application to react by inter-

rupting DNS resolution. As depicted in Figure 4.12, several controlled systems known

as bots flood the target DNS server with DNS requests, rendering it unavailable to legit-

imate users for DNS resolution resulting in the Distributed Denial of Service (DDoS)

attack. Because the huge volume of traffic typically originates from various places,

searching for correct records on the domain, and imitating legitimate traffic, DNS flood

assaults can be difficult to differentiate from regular heavy traffic. DNS flood attacks

have been affecting root name servers for almost 17 years and have been on the rise

recently. In order to overrun the name server, DNS flood attacks frequently employ

high-bandwidth IoT devices such as NVR devices, IP cameras, Canary, Ring doorbells,

etc., which become part of botnets such as Mirai. A number of applications may be

used to create normal DNS requests with the faked/spoofed IP address and send them

to targeted DNS servers for DoS. DNS flooding programs such as Google’s DNS-Flood

[93] and Python’s SCAPY are popular for crafting DNS queries.

When DNS servers receive more than 10000 DNS queries per ten seconds, the follow-

97

Figure 4.12 DDoS Attacks on DNS Servers by using DNS Flood.

ing rule will alert "DNS Flood Attempt" :

IDS Signature for DoS Attack on DNS

alert udp any any -> any 53 (msg:"DNS Flooder-DoS Attack"; content:"|01 00 00

01|", offset 2, depth 4; content:"|00 01|", distance 10, within 255;threshold: type

threshold, track by_src, count 10000, seconds 10; sid:806254390;rev:1;)

4.3 Comparative Evaluation of DID and SNORT Concerning DNS
Attacks

SNORT IDS has more than 25000 signatures to detect anomalies in the network traffic,

and among them, there are very few signatures to detect DNS-based anomalies. The

snort signatures are signatures for TCP and UDP-based DoS and DDoS attacks, attacks

on various applications like FTP, TELNET, SSH and DNS, etc., attacks on DBMS, web

application attacks, and attacks on e-mail related protocols like POP, IMAP, & SMTP.

SNORT contains several predefined signatures to defend DNS from different attacks,

and these existing signatures can protect from "Attempt on DNS name and version" and

"Attempt on zone transfer." Two files, “dns.rules” and “protocol-dns,” contain DNS-

related signatures but lacks signature for some of the tools described in the section-4.2

98

for DNS tunneling and amplification attacks. We created a separate set of signatures

for detecting DNS-based abuses, including existing signatures related to DNS attacks

and novel signatures developed in previous sections. SNORT is then used in conjunc-

tion with the resulting signature set to detect intrusion in DNS infrastructure, and this

solution is known as "DNS Intrusion Detection - DID."

To the best of our knowledge and when writing this thesis, there is no publicly accessible

produced dataset is available for all DNS attacks. As a result, we conducted experiments

in a real environment to produce the dataset we needed for our research. The experiment

setup is made for the evaluation of DID and SNORT signatures in a controlled but real

environment; we created an Internet domain name "blr.coednssecurity.in" for perform-

ing DNS tunneling attacks, and we also used our public DNS resolvers 223.31.121.171

and 14.139.152.4 as DNS reflector to simulate amplification attacks in order to avoid

legal issues. We chose a physical server with 128 GB of RAM and 16 core two sockets

CPU for our experiment. This server is configured for virtualization with the widely

used hypervisor "KVM" on CentOS 8.1. In this experiment, we installed DID in a

virtual computer running CentOS 8.1. The victim system is running on a different Cen-

tOS8.1 virtual machine. As an attack node, Kali Linux virtual machine is set up on

another physical server on a separate physical network than the target system. It is used

to perform DNS-based attacks on the victim system. As shown in the Figure 4.13, the

following are the components of the experiment setup we established:

1. Target Node : In the experiment, this node is targeted by the attack node; in the case

of tunneling attacks, the client component of each tunneling tool is installed on this

node which creates a DNS tunnel with the attack node; and in the event of amplifica-

tion attacks, attack node spoofs the IP address of this system and sends DNS request to

our public DNS resolvers using various amplification attack tools, resulting in massive

DNS response traffic to this system.

2. Attack Node : This node is used to carry out various attacks, including DNS tun-

neling, amplification, and DNS Flood attacks, utilizing all of the tools described in

section-4.2.

3. SNORT IDS : With about 25000 registered signatures, this node is equipped with

99

Table 4.3 Experiment Setup Configurations

System Name CPU assigned Memory Assigned OS used IP address Assigned
Victim System 8 Core Xeon 16 GB Centos 8.1 14.139.152.14
DID 8 Core Xeon 16 GB Centos 8.1 14.139.152.5
SNORT-IDS 8 Core Xeon 16 GB Centos 8.1 14.139.152.6
Attacker

System
8 Core Xeon 32 GB Kali 2020 223.31.121.172

SNORT version 2.9, all of the gateway’s network traffic is mirrored on this node to get

a DNS anomaly.

4. DID: This node has SNORT version 2.9 installed and configured, and except for

DNS rules, all signatures are deleted, and the signatures produced in section-4.2 are

appended to the existing DNS rules. Like the SNORT IDS node, this node receives all

network traffic from the gateway through switch port mirroring.

Throughout the experiment, the target node generated legitimate DNS requests to dif-

ferent DNS servers. Table 4.3 lists the configuration of each system in the experimental

setup. The confusion matrix, which reflects the outcome of categorization in true and

Figure 4.13 Experiment Setup for Evaluation of DID and SNORT

false [94], is a matrix used to evaluate the performance of IDS. As indicated in Ta-

100

Table 4.4 Confusion Matrix

Predicted
Actual

Legitimate Intrusion
Legitimate True Negative False Positive
Intrusion False Negative True Positive

ble 4.4, there are several options for categorizing events.

True Positive : Successfully recognized intrusions by the IDS.

True Negative : The IDS detects valid traffic and marks it as such.

False Positive : The IDS incorrectly classifies legitimate traffic as intrusive traffic.

False Negatives : These are intrusions that the IDS misses and labels as legitimate traf-

fic. We use standard performance metrics to evaluate IDS, and the following are the

standard performance measures:

Detection Rate (or Sensitivity) : This is the ratio of expected attacks to all attacks.

It is exceedingly unusual for an IDS to properly detect all potential assaults, resulting

in a ratio of 1. True positive rate is another name for it, and it may be represented

mathematically as:

True Positive Rate (TPR) =
T P

T P+FN

False Positive Rate : The ratio of the number of valid cases incorrectly categorized as

an intrusion to the total number of legitimate instances is known as the False Positive

Rate and represented mathematically as:

False Positive Rate (FPR) =
FP

FP+T N

Accuracy : The accuracy, often known as the classification rate, is computed as the

proportion of properly categorized cases to the total number of occurrences. It assesses

an IDS’s ability to identify genuine or malicious traffic. Accuracy called as the fraction

of data categorised as the proper kind in the entire data. Real situations are True Posi-

tive (TP) and True Negative (TN), while false detected situations are False Positive (FP)

and False Negative (FN). The following equation calculates the accuracy of the system:

101

Accuracy(CR) =
T P+T N

T P+T N +FP+FN

To the best of our knowledge, there are no datasets that simulate DNS-based assaults

when writing this work. As a result, the experiment setup was conducted for 22 hours,

during which we monitored DNS activity and classified it as genuine or intrusion.

The effectiveness of DID signatures was assessed using the following experimental

attacks:

Experiment-1 : The DNS amplification attacks were carried out using attack nodes

connected to different ISP networks then target nodes. The attacking node used all

DNS amplification attack tools mentioned in section-4.2 to initiate the attacks against

different instances in 22 hours.

Experiment-2 : DNS Tunnelling attacks were performed as part of this experiment

utilizing the DNS tunneling attack tools mentioned in section-4.2. In 22 hours, the

attack was launched many times.

Experiment-3 : For 22 hours, the DoS attack was carried out from attack node to victim

node running an authoritative DNS server, utilizing various tools such as DNS-Flood

and Hping on distinct instances.

Figure 4.14 Performance Analysis of DID

102

Table 4.5 Evaluation of SNORT and DID Signatures

Attack Type Attack tool Name Number of Instances
Number of Alerts
SNORT DID

DNS tunnel

Iodine 4 0 4
Dnscat2 2572 0 3610
Dns2tcp 8 0 8
Thunderdns 11 0 11
Ozmandns 277 0 277

DNS Amplification

Ethanwilloner 1070000 0 107
Saddam 18150000 0 1815
Dns flooderv1.1 140000 0 14
Dnsdrdos 21030000 0 2103

DoS Flood DNS 890000 0 89
Legitimate Traffic (True Negative) 5408922

Table 4.6 Efficiency of DID Signatures

Tool Name True Positive False Positive False Negative
Iodine 4 0 0
Dnscat2 3610 1038 0
Dns2tcp 8 0 0
Thunderdns 11 0 0
Ozmandns 277 0 0
Ethanwilloner 107 0 0
Saddam 1815 0 0
Dns Flooderv1.1 14 0 0
Dnsdrdos 2103 0 0
Flood DNS [28] 89 0 0
Total 8038 1038 0

The efficacy of the suggested signatures in detecting various DNS-based attacks is

shown in Table 4.5 and Table 4.6. Our findings demonstrate that the detection rate for

DNS attacks has significantly improved. Unlike the traditional DNS defensive mecha-

nism i.e. SNORT, the suggested new rules can accurately identify DNS amplification,

DNS tunneling, and DNS-based DoS/DDoS assaults. The Figure 4.14 shows the TPR,

FPR, and CR for signatures produced in section-4.2, except for signatures of DNSCAT2

(CR=0.9998), the CR is 1 for all other signatures. There are roughly 25000+ signatures

in SNORT (including DNS-related signatures), but only about 100 signatures in DID,

all of which are DNS-related signatures. As a result, DID outperforms SNORT when it

103

comes to defending DNS-based attacks.

4.4 Summary

We have created novel IDS signatures for the following DNS-based attacks: DoS, Am-

plification/Reflection, Tunneling, and added them to the existing ruleset file of SNORT

IDS to detect DNS-based intrusions.

Our approach successfully identifies empirical DNS attacks performed by various known

tools available over the Internet. Evaluation of DID showed a high detection rate and a

very low false-positive rate.

104

Chapter 5

IPv6 Aware Dual-Stack DNS Hierarchy
Testbed Setup and it’s Evaluation

5.1 Introduction

The importance of the DNS application for accessing the Internet and the threats it

faces are widely recognized. As a result, DNS has been developed and implemented as

a globally dispersed, highly scalable infrastructure resistant to a wide range of attacks.

Our civilization is largely anticipated to become safer, smarter, and more sustainable

due to the Internet of Things (IoT). It is expected to connect approximately 100 billion

of these devices to the Internet in the next decade [95]. IoT is a chance to significantly

improve the value of DNS because each of them has a unique IP address that DNS can

only resolve. With the exponential increase in the number of digital devices connect-

ing to the Internet, we would be compelled to upgrade to IPv6, hence the need for DNS

over IPv6. However, the guidance required for commissioning DNS over IPv6 is widely

lacking, and this research work attempts to bridge this knowledge gap.

DNS latency is a critical metric for determining how responsive a DNS server is to

IoT devices and, as a result, how they perceive the speed and performance of online

services. Because IoT devices require end-to-end communication and the number of

Internet devices has already exceeded the IPv4 limit, it is critical to maintaining net-

work availability and performance. Additionally, as IPv6-enabled IoT devices become

more prevalent, DNS traffic will increase dramatically, necessitating DNS query latency

testing.

The DNS query latency from a particular Internet vantage point for IPv4 and IPv6 can-

105

not be compared directly due to variations in the number of hops of query on IPv4 and

IPv6 communication networks. Moreover, there is no assurance that the DNS server

in the hierarchy is hosted on a dual-stack. This research work aims to determine the

DNS query latency difference between IPv4 & IPv6 protocols. It also gives a clear il-

lustration and provides reference guidelines for setting up a three-level DNS hierarchy

(ROOT, TLD, SLD, TTLD, and recursive resolver) on a dual IP stack (IPv4 and IPv6),

enabling both forward and reverse lookup trees.

Therefore a first-of-its-kind and live testbed setup is established, tested successfully,

and made available for the benefit of Internet researchers, ensuring constant hops be-

tween the recursive resolver and each of the DNS servers in the hierarchy.

IPv6 is a network layer protocol, which supports communication, and data transfer over

the network. It was introduced in 1998 to replace the fast depleting IPv4 address space.

IPv4 protocol, the previous standard, consists of four octacts, each byte/octet is written

in a dotted decimal notations. A standard IPv4 address is 32-bit, which allows for 4.2

billion unique IP addresses. To support more unique IP addresses, IPv6 was introduced.

The adoption of IPv6 is ever-increasing, and India has been leading in its availability

and preference within the Asian continent.

The major improvement in IPv6 over IPv4 is that IP addresses are lengthened from 32

bits to 128 bits. IPv6 provides 340 undecillion IP addresses compared to 4.2 billion

IPv4 addresses [96]. This huge number of IP addresses provided relief from the threat

of the exhaustion of IP addresses to connect computers or IoT devices hosts in a net-

work. IPv6 protocol, which is of 128-bits, consists of eight numbered strings, each

containing four characters (alphanumeric), separated by a colon. As 3.4 x 10^38 ad-

dresses are available in the new 128-bit IPv6 address space [98], ensuring that we won’t

run out of unique IP numbers to give to new devices very soon. Auto-configuration is

also supported in IPv6 to assist address the majority of the flaws in IPv4.

Over the last two decades, DNS has improved security and privacy while also expand-

ing the types of applications it can handle. Moreover, this expansion has been delayed

by the enormous installed base with a diverse variety of implementations that are reluc-

tant to update. Due to DNS optimizations, caching, and distributed operation, changes

106

must be carefully planned, and their impact is difficult to quantify. As the number of

digital devices increasing exponentially, we are compelled to upgrade to IPv6, hence

the need for DNS over IPv6.

This research work stresses and anticipates that worldwide Internet infrastructure will

be updated to serve many participants by using dual-stack network protocols. To the

best of our knowledge, there is no prior study that investigates the latency concerns as-

sociated with DNS queries over an IPv6 network or one that highlights the difficulties

in commissioning DNS hierarchy over dual-stack. We have started by implementing

an IPv6-aware DNS infrastructure. With this update, we can eliminate IPv4’s short-

comings, such as restricted address space, huge routing tables, tiny packet sizes, and

inflexible fixed length headers. The DNS query latency of the dual-stack DNS testbed

has been tested for both IPv6 and IPv4 Internet protocols.

5.2 DNS Hierarchy Testbed Setup

The experiment aims to establish a three-level DNS hierarchy for forward lookups

that resolve domain names to IP addresses and a four-level DNS hierarchy for reverse

lookups that resolve IP addresses to domain names. The nodes of the hierarchy are

Root, TLDs, SLDs, TTLD, and Recursive resolvers. The entire hierarchy is built on

dual-stack network protocols, with each node having two network interfaces for IPv4

and IPv6 networks. CentOS7.0 Linux system is used as the base operating system in all

the nodes in the hierarchy, and Bind-9.9.4-61 is used on all DNS servers in the hierar-

chy. The DNS hierarchy testbed setup is connected to the real Internet through public

IP addresses, as shown in Table 5.1 . Figure 5.1 depicts the design of the DNS hierarchy

for both forward and reverse lookup trees.

5.2.1 Commissioning of Forward Lookup DNS hierarchy

The forward lookup DNS hierarchy is used to resolve the domain name to the IP ad-

dresses; the Internet vantage point sends a DNS query asking A record for "www.coednssecurity.in"

to the recursive resolver which queries the entire hierarchy for the result. The forward

lookup DNS hierarchy nodes are Root DNS, TLD DNS for "in" domain, and SLD DNS

107

Table 5.1 List of IP Addresses used in each Node of the Testbed Hierarchy

Nodes in the Hierarchy IPv6 Address IPv4 Address
Root Server (.) 2405:8a00:8001::9 14.139.152.9
TLD ("in." and "arpa.") Server 2405:8a00:8001::10 14.139.152.10
SLD ("coednssecurity.in." and
"IP6.ARPA.")

2405:8a00:8001::11 14.139.152.11

Subdomain
("1.0.0.8.0.0.a.8.5.0.4.2.IP6.ARPA")
Server

2405:8a00:8001::12 14.139.152.12

Recursive Resolver - RR 2405:8a00:8001::13 14.139.152.13

Figure 5.1 IPv6 aware DNS Tree for the Testbed

for "coednssecurity.in" domain. When the recursive resolver receives a DNS query, if it

does not know the answer, it sends a query to the root server, for which it needs to know

the IP address of the root. The root hints file will be part of every node that provides

an authoritative server for the root domain "." as well as their IPv4 and IPv6 addresses.

The root hints file "/var/named/named.ca" for all the nodes in the hierarchy is as shown

Figure 5.2.

108

Figure 5.2 Root Hints File "/var/named/named.ca"

5.2.1.1 Installation and configuration of the Root server

The Domain Name System (DNS) is organized into a hierarchy of controlled regions or

"zones," The root zone is at the top and DNS servers in the root zone are known as root

servers. We have created a new Root DNS domain," n.root-servers.in", that contains the

information of TLD domains, i.e., "in" and "arpa". Following configurations are made

in bind software to create a root server:

1. bind configuration file "/etc/named.conf"

Bind configuration file "/etc/named.conf” for Root DNS

options { listen-on port 53 { 14.139.152.9; };

listen-on-v6 port 53 { 2405:8a00:8001::9; };

allow-query { any; };

recursion no; };

zone "." IN { type master;

file "root-zone"; };

Here the root name server has two network interfaces, each for IPv4 and IPv6, and

it will run on both the interfaces; the root servers can be allowed to be queried from any

host on the Internet. The recursion is disabled for protecting from DoS attacks, and the

zone file for the root domain is "/var/named/root-zone".

109

2. Zone file configuration "/var/named/root-zone

The zone file needs an SOA record and NS records for the root domain. As shown

in the Figure 5.3, we added delegation to the "in" zone by adding NS record "in. NS

in-dns.in.". The name servers requires glue AAAA records as " in-dns.in. AAAA

2405:8a00:8001::10" and glue A records as " in-dns.in. A 14.139.152.10".

Figure 5.3 Zone File for Root DNS (/var/named/root-zone)

5.2.1.2 Installation and configuration of "in" TLD server

We configured only one TLD in the hierarchy testbed, i.e., "in" for the forward lookup

tree. Bind software for the "in" domain is configured as follows:

1. The "/etc/named.conf" file is modified as below mentioned:

Bind configuration file "/etc/named.conf” for "in" TLD DNS

options { listen-on port 53 { 14.139.152.10; };

listen-on-v6 port 53 { 2405:8a00:8001::10; };

allow-query { any; };

recursion no; };

zone "in" IN { type master;

file "in-zone"; };

110

The authoritative server for TLD "in" listens on both IPv4 and IPv6, enabling dual-

stack on DNS; the queries are allowed from any host, and recursion is disabled. The

server will own the "in" domain as master, and the zone file is "/var/named/in-zone".

2. Zone file configuration "/var/named/in-zone"

As shown in Figure 5.4 we added delegation to the "coednssecurity.in" zone by adding

NS record "coednssecurity.in. NS ns.coednssecurity.in.". The name servers requires

glue AAAA records as " ns.coednssecurity.in. AAAA 2405:8a00:8001::11" and glue A

records as " ns.coednssecurity.in. A 14.139.152.11".

Figure 5.4 Zone File for "in" TLD DNS (/var/named/in-zone)

5.2.1.3 Installation and configuration of "coednssecurity.in" SLD server

The following are the procedures to configure the SLD "coednssecurity.in" server with

Bind software:

1. The "/etc/named.conf" file is modified as below mentioned:

111

Bind configuration file "/etc/named.conf” for "coednssecurity.in" SLD DNS

options { listen-on port 53 { 14.139.152.11; };

listen-on-v6 port 53 { 2405:8a00:8001::11; };

allow-query { any; };

recursion no; };

zone "coednssecurity.in" IN { type master;

file "coednssecurity-zone"; };

The zone file for "coednssecurity.in" domain is "/var/named/coednssecurity-zone".

2. Zone file configuration "/var/named/coednssecurity-zone"

As this server is an authoritative nameserver for the "coednssecurity.in" domain, it re-

turns the address records (both IPv4 & IPv6) for all hosts of the domain, the zone file

"coednssecurity-zone" for STLD ("coednssecurity-zone.in") is shown in Figure 5.5.

Figure 5.5 Zone File for "coednssecurity.in" SLD DNS (/var/named/coednssecurity-
zone)

112

Table 5.2 Reverse Lookup Domain Names used in the Testbed

IP Network Reverse lookup Domain Name
IPv4 - 220.156.189 189.156.220.in-addr.arpa
IPv6 - 2404:4100:0000:3000 0.0.0.3.0.0.0.0.0.0.1.4.4.0.4.2.ip6.arpa

5.2.2 Commissioning of Reverse Lookup DNS hierarchy

Like a forward lookup tree, the reverse lookup tree is organized into a hierarchical

tree of servers. Its origins may be traced back to the Address and Routing Parameter

Area (arpa) top-level domain. Delegated servers "in-addr.arpa" for IPv4 and "ip6.arpa"

for IPv6 are located one level below the ”arpa” TLD [97]. The reverse lookup DNS

hierarchy resolves the IP address to their respective domain names; the Internet vantage

point sends a DNS query asking PTR record for IP address (V4 or V6) to the recursive

resolver, which queries the entire hierarchy for the result. The nodes in the reverse

lookup DNS hierarchy testbed are : Root server , TLD server for "arpa" domain , SLD

server for "in-addr.arpa, ip6.arpa" domains and subdomains DNS for "189.156.220.in-

addr.arpa, 0.0.0.3.0.0.0.0.0.0.1.4.4.0.4.2.ip6.arpa." domains.

5.2.2.1 Setting Up Root Server for Reverse Lookup Tree

The root server setup continues following the description shown in the section-5.2.1.1.

We added delegation to the "ARPA" zone by adding NS record "arpa. NS in-dns.arpa.".

The name servers requires glue AAAA records as " in-dns.in. AAAA 2405:8a00:8001::10"

and glue A records as " in-dns.in. A 14.139.152.10".

5.2.2.2 Setting up TLD server for "ARPA" domain

As the hierarchy needs to be established on the dual-stack network, the "arpa" domain

holds information for two SLDs, "ip6.arpa" and "in-addr.arpa". The "in-addr.arpa" do-

main is used for IPv4 reverse DNS lookups and the ip6.arpa domain is used for IPv6

reverse lookups. In the in-addr.arpa domain, an IPv4 address is represented by a series

of bytes in reverse order, expressed as decimal numbers. Dots separate the numbers,

which terminate with the suffix ".in-addr.arpa.". In the "ip6.arpa" domain, an IPv6 ad-

dress is represented as a name by a series of nibbles, expressed as hexadecimal digits, in

113

reverse order [99]. Dots separate these bits, which conclude with the suffix ". ip6.arpa.".

In our case, the examples are shown in the Table 5.2.

We configured the TLD DNS server for the "arpa" domain in the same server where the

authoritative server for the "in" domain is configured, and to configure the TLD DNS

server for the "arpa" domain with bind software, we followed the steps below:

1. The "/etc/named.conf" file is modified as below mentioned:

Bind configuration file "/etc/named.conf” for "ARPA" TLD DNS

options {listen-on port 53 { 14.139.152.10; };

listen-on-v6 port 53 { 2405:8a00:8001::10; };

allow-query { any; };

recursion no; };

zone "." IN { type hint;

file "named.ca";};

zone "in" IN { type master;

file "in-zone"; };

zone "arpa" IN { type master;

file "arpa-zone";};

The TLD server owns two zones, "in" and "ip6.arpa," as master with "in-zone" and

"arpa-zone" zone files, respectively.

2. Zone file configuration "/var/named/arpa-zone"

As shown in Figure 5.6 we added delegation to the "in-addr.arpa" and "ip6.arpa" zones

by adding NS records " in-addr.arpa. NS ns.coednssecurity.in.." and " ip6.arpa. IN NS

ns.coednssecurity.in." respectively. The name servers requires glue AAAA records as "

ns.coednssecurity.in. AAAA 2405:8a00:8001::11" and glue A records as " ns.coednssecurity.in.

A 14.139.152.11".

114

Figure 5.6 Zone File for "ARPA" TLD DNS (/var/named/arpa-zone)

5.2.2.3 Setting up SLD server for "in-addr.arpa" and "ip6.arpa" domains

We configured the SLD server for "in-addr.arpa and ip6.arpa" domains in the same

server where the authoritative DNS server for the "coednssecurity.in" domain is con-

figured. The following procedure is followed to configure the SLD server for "in-

addr.arpa" and "ip6.arpa" domains with bind software:

1. bind configuration file "/etc/named.conf" is modified as below mentioned:

Bind configuration file "/etc/named.conf” for "in-addr.arpa" and
"ip6.arpa" TLD DNS

options { listen-on port 53 { 14.139.152.11; };

listen-on-v6 port 53 { 2405:8a00:8001::11; };

recursion no; };

zone "coednssecurity.in" IN { type master;

file "coednssecurity-zone"; };

zone "ip6.arpa" IN { type master;

file "ip6-zone";};

zone "in-addr.arpa" IN { type master;

file "in-addr-zone";};

Now this server becomes authoritative DNS server for three domains "coednsse-

115

Figure 5.7 Zone File for "in-addr.arpa" Domain DNS (/var/named/in-addr-zone)

curity.in, in-addr.arpa and ip6.arpa" domains. The zone files for "in-addr.arpa" and

"ip6.arpa" are "/var/named/in-addr-zone "and "/var/named/ip6-zone" respectively.

2. Zone file configuration "/var/named/in-addr.arpa"

As shown in Figure 5.7, we added delegation to the "189.156.220.in-addr.arpa." zones

by adding NS records " 189.156.220.in-addr.arpa. NS ns1.ns.coednssecurity.in.".

3. Zone file configuration "/var/named/ip6.arpa"

As shown in Figure 5.8, we added delegation to the "0.0.0.3.0.0.0.0.0.0.1.4.4.0.4.2.ip6.arpa."

zones by adding NS records " 0.0.0.3.0.0.0.0.0.0.1.4.4.0.4.2.ip6.arpa. NS ns1.ns.coednssecurity.in.."

The A records for ns1.ns.coednssecurity.in host needs to be added in the "coednssecu-

Figure 5.8 Zone File for "ip6.arpa" Domain DNS (/var/named/ip6-zone)

116

rity.in" SLD domain in the forward lookup tree.

5.2.2.4 Setting up Authoritative DNS Server for "189.156.220.in-addr.arpa." and
"0.0.0.3.0.0.0.0.0.0.1.4.4.0.4.2.ip6.arpa " Sub-domains

The following procedures is followed to configure the authoritative server for "189.156.220.in-

addr.arpa." and "0.0.0.3.0.0.0.0.0.0.1.4.4.0.4.2.ip6.arpa " sub-domains with bind soft-

ware:

1. The "/etc/named.conf" file is modified as below mentioned:

Bind configuration file "/etc/named.conf” for "189.156.220.in-addr.arpa."
and "0.0.0.3.0.0.0.0.0.0.1.4.4.0.4.2.ip6.arpa" Domains DNS

options { listen-on port 53 { 14.139.152.12; };

listen-on-v6 port 53 { 2405:8a00:8001::12; };

allow-query { any; };

recursion no;};

zone "0.0.0.3.0.0.0.0.0.0.1.4.4.0.4.2.ip6.arpa." IN { type master;

file "ipv6-reverse-zone"; };

zone "189.156.220.in-addr.arpa." IN {

type master;

file "ipv4-reverse-zone";};

The server owns two subdomains "189.156.220.in-addr.arpa." and "0.0.0.3.0.0.0.0.0.0.1.

4.4.0.4.2.ip6.arpa as master authoritative server.

2. Zone file configuration "/var/named/ipv4-reverse-zone" As shown in the Figure 5.9,

we added PTR records for the IPv4 address 220.156.189.66 as "www.coednssecurity.in".

3. Zone file configuration "/var/named/ipv6-reverse-zone As shown in Figure 5.10 we

added PTR records for the IPv6 address 2404:4100:0:3000::189:66 as "www.coednssecurity.in".

5.3 DNS Latency Measurement Methodology

When a client makes a DNS query to a recursive resolver requesting the IP address of

117

Figure 5.9 Zone File for "189.156.220.in-addr.arpa" reverse lookup domain (/var/-
named/ ipv4-reverse-zone)

Figure 5.10 Zone file for "0.0.0.3.0.0.0.0.0.0.1.4.4.0.4.2.ip6.arpa" reverse lookup do-
main (/var/named/ipv6-reverse-zone)

a domain name (for example, "www.cdac.in"), the resolution process typically takes 8

query transactions, as illustrated in the Figure 5.11. The DNS query latency is the time

taken to resolve the DNS query. The query latency is dependent on the hop count for

each phase performed in the resolution process. The sum of the hop counts below is

used to compute the overall hop count involved in the resolution of www.cdac.in:

1. The number of hops for a DNS query made from the client to the RR.

2. The number of hops for a DNS query made from RR to the root server.

3. The number of hops in a DNS reply sent from the Root server to the RR.

118

Figure 5.11 DNS Query Resolution Process involving Hop Counts

4. The number of hops for a DNS query made from RR to a TLD server.

5. The number of hops in a DNS reply sent from the TLD server to the RR.

6. The number of hops for a DNS query made from RR to an SLD server.

7. The number of hops in a DNS reply sent from the SLD server to the RR.

8. The number of hops in a DNS reply sent from the RR to the DNS client.

We aim to measure DNS latency for network layer protocols as the time taken by the

recursive resolver to resolve a DNS query by searching the complete hierarchy for the

domain. This is accomplished by sending a DNS query from a vantage point to RR.

When the RR’s DNS cache is empty, it will follow the hierarchy testbed and get the

result which will be stored in its DNS cache. Then sending the identical query from

the vantage point to RR again when the RR’s DNS cache already has an answer for the

requested query, and this time the RR replies from its cache. The latency difference be-

tween these two subsequent queries gives the DNS latency for network-layer protocols.

In the Internet DNS hierarchy, there will always be a variation in the hop count for the

119

Table 5.3 Identified Vantage Points for Latency Test

IPv4 address IPv6 address Locality Service Provider
14.139.152.3 2405:8a00:8001::120 Bangalore, India National Knowl-

edge Network
(NKN) India

137.97.236.20 2409:4071:2107:e48c:
b070:4d55:56b7:f8a6

Bangalore, India Reliance Jio Info-
comm

46.5.5.161 2a02:8070:a1b7:9c00:
8fe:40f3:8403:af14

Stuttgart Boeblin-
gen, Germany

Liberty Global
Telecommunica-
tions company

98.169.113.35 2600:8806:6100:51d:
5de3:de28:caf:8745

McLean, Virginia,
USA

Cox Communica-
tions Inc

1.39.176.154 2402:3a80:cfe:b782:
51d7:299a:6dd0:fd76

Bangalore, India Vodafone India
Ltd.

86.153.4.253 2a00:23c5:b90d:700:
d547:85f6:503f:dced

Farnborough , Rush-
moor, England

BTnet UK Re-
gional network

query resolution process between RR and the entire hierarchy, as it may take a different

route for steps number 2 to 7. As a result, due to the variartion of hop count for two

subsequent DNS quires, we cannot compare two subsequent queries for DNS latency

evaluation concerning the real DNS hierarchy available on the Internet. This required

setting up a DNS hierarchy testbed set up such that the hop count should always be

equal from RR to each node of the hierarchy. Therefore we established a three-level

DNS hierarchy comprising Root, TLD, and SLD DNS servers, and the hop count is al-

ways constant from our RR to each node in the hierarchy. For conducting a latency test,

we identified few Internat vantage points across the globe, as shown in the Table 5.3.

As RR and every node in the hierarchy directly connected in the same IPv4 and IPv6

network, the hop count from RR to every node is always is zero for both the net-

work. Therefore we can precisely determine the actual DNS query latency for IPv4

and IPv6 networks, which is not achievable in the real DNS hierarchy due to the ex-

treme variance in the number of hop counts. We created the two algorithms (9 and

10) for evaluating DNS latency for IPv4 and IP6 networks. To check DNS query la-

tency for the IPv4 network, we disable the IPv6 interface of our RR, and we ensure

the DNS cache is empty by clearing its cache. A DNS query asking for “A” record for

120

domain “www.coednssecurity.in” is sent from a vantage point to our RR. As the cache

is empty at RR, for this request, it will follow each node in the hierarchy to find the

result. The result is cached, and the reply is given back to VP (A client machine or

webservice on Interet from which DNS query can be sent to the hierarchy. The DNS

query latency at VP for this query is recorded as “IPv4_Latency_cache_cleared”. We

again send the same query from the same VP to the RR, and now this time, the reply is

returned from the RR’s cache. The DNS query latency at VP for this query is recorded

as “IPv4_Latency_cached”. If the hop counts (Ipv4_Hope_count_cache_cleared and

IPv4_Hope_count_cached) for both subsequent queries are the same, we calculate the

resulting query latency as the difference between IPv4_Latency_cache_cleared and

IPv4_Latency_cached. The same method is applied to evaluate DNS query latency

for IPv6 networks.

We sent the following eight types of DNS queries from each VP listed in the table by us-

ing Algorithm-9 and Algorithm-10 and recorded latency values as shown in Figure 5.12

to Figure 5.17:

1. DNS query over IPv4 network asking A record for “www.coednssecurity.in” domain,

when RR cache is empty.

2. DNS query over IPv4 network asking PTR record for “2404:4100:0:3000::189:66”

IP address, when RR cache is empty.

3. DNS query over IPv6 network asking A record for “www.coednssecurity.in” domain,

when RR cache is empty.

4. DNS query over IPv6 network asking PTR record for “2404:4100:0:3000::189:66”

IP address, when RR cache is empty.

5. DNS query over IPv4 network asking A record for “www.coednssecurity.in” domain,

when RR cache has an entry for the same query.

6. DNS query over IPv4 network asking PTR record for “2404:4100:0:3000::189:66”

IP address, when RR cache has an entry for the same query.

7. DNS query over IPv6 network asking A record for “www.coednssecurity.in” domain,

when RR cache has an entry for the same query.

8. DNS query over IPv6 network asking PTR record for “2404:4100:0:3000::189:66”

121

Algorithm 9: Evaluation of DNS latency for IPv4 network
Input : List of Internet Vantage Point
Output: Latency Values

1 Disable IPv6 network interface at RR
2 for every Internet Vantage Point do
3 Clear DNS cache of RR
4 Send a DNS forward lookup query from Vantage Point to RR through IPv4

network
5 IPv4_Latency_cache_cleared = DNS query Latency measured for the query

sent above
6 IPv4_Hope_count_cache_cleared = IPv4 Hop Count measured for the

query sent above
7 Send a DNS forward lookup query from the same Vantage Point to RR

through the IPv4 network
8 IPv4_Latency_cached = DNS query Latency measured for the query sent

above
9 IPv4_Hope_count_cached = IPv4 Hop Count measured for the query sent

above
10 if IPv4_Hope_count_cache_cleared == IPv4_Hope_count_cached then
11 IPv4_Latency = IPv4_Latency_cache_cleared - IPv4_Latency_cached

Store IPv4_Latency for this Vantage Point.
12 end
13 else
14 goto Setp-3.
15 end
16 end

IP address, when RR cache has an entry for the same query.

Figure 5.18 shows the working process of DNS hierarchy testbed setup for forward

lookup of “www.coednssecurity.in” domain. If the DNS cache of the RR is empty, then

the resolution process will be completed in 10 query transactions starting from the In-

ternet vantage point.

If the DNS cache of RR is empty, then the resolution process will be completed

122

Algorithm 10: Evaluation of DNS latency for IPv6 network
Input : List of Internet Vantage Point
Output: Latency Values

1 Disable IPv4 network interface at RR
2 for every Internet Vantage Point do
3 Clear DNS cache of RR
4 Send a DNS forward lookup query from Vantage Point to RR through IPv6

network
5 IPv6_Latency_cache_cleared = DNS query Latency measured for the query

sent above
6 IPv6_Hope_count_cache_cleared = IPv6 Hop Count measured for the

query sent above
7 Send a DNS forward lookup query from the same Vantage Point to RR

through the IPv4 network
8 IPv6_Latency_cached = DNS query Latency measured for the query sent

above
9 IPv6_Hope_count_cached = IPv4 Hop Count measured for the query sent

above
10 if IPv6_Hope_count_cache_cleared == IPv6_Hope_count_cached then
11 IPv6_Latency = IPv6_Latency_cache_cleared - IPv6_Latency_cached

Store IPv6_Latency for this Vantage Point.
12 end
13 else
14 goto Setp-3.
15 end
16 end

in 28 query transactions starting from the Internet vantage point. The same is true for

reverse lookup of “220.156.199.66” IPv4 address. Figure 5.19 show for reverse lookup

of “2404:4100:0:3000::189:66” IPv6 address for our testbed.

5.4 Test Results Analysis

When comparing IPv4 and IPv6 latency, it is like comparing the latency of two sep-

arate Internets. For forward and reverse lookups, the average query latency from the

recursive resolver to DNS hierarchy is computed using algorithms 9 and 10 for each

vantage point, as shown in Tables 5.4 and 5.5. Each node in the hierarchy and the RR

are connected in the same IPv4 network and the same is true for the IPv6 network. As

a result, the hop count from the recursive resolver to each node remains constant (zero

hop count), giving actual DNS query latency results. We computed forward lookup la-

123

Figure 5.12 Query RTT for Forward and Reverse Lookup through " National Knowl-
edge Network, India "

Figure 5.13 RTT for Forward and Reverse Lookup through " Reliance Jio Infocomm,
India"

tency as 9.4 and 15.2 milliseconds for IPv4 and IPv6 respectively for forward lookup

and 13.2, 22.6 milliseconds for reverse lookup from one vantage point of the same net-

work of the testbed. For the testbed, the results show that IPv4 outperforms IPv6. Other

vantage points, as illustrated in Tables 5.4 and 5.5, produce similar findings.

124

Figure 5.14 Query RTT for Forward and Reverse Lookup through "Liberty Global
Telecommunications company, Germany"

Figure 5.15 Query RTT for Forward and Reverse Lookup through "Cox Communica-
tions Inc, USA"

Since the sub-domains (189.156.220.in-addr.arpa and 0.0.0.3.0.0.0.0.0.0.1.4.4.0.4.2.ip6.arpa)

are involved in the reverse lookup tree, and the total number of query transactions for

a complete reverse lookup is 28 (as shown in Figures 5.19), query latency for forward

lookup will always be lower than reverse lookup for both IPv4 and IPv6. According to

125

Figure 5.16 Query RTT for Forward and Reverse Lookup through " Vodafone India
Ltd"

Figure 5.17 Query RTT for Forward and Reverse Lookup through " BTnet UK Regional
Network"

the findings, reverse lookup latency is 35.25 percent higher than forward lookup latency

for IPv4 and 25.49 percent higher for IPv6. When compared to IPv4, the findings in

our experiment demonstrate that IPv6 has a modest performance loss for DNS requests.

This might be because DNS query/response packet sizes are typically short, with 512

bytes or less. If DNSSEC is enabled, the results may vary since the packet size will be

126

Figure 5.18 The Working Process of Testbed Setup for Forward Lookup of
www.coednssecurity.in’

Figure 5.19 The Working Process of our Testbed Setup for Reverse Lookup of
2404:4100:0:3000::189:66 IP Address

127

Table 5.4 Average Latency for Forward Lookup Query from the Recursive Resolver to
DNS Hierarchy using Algorithm 9 and 10 for each Vantage Point

ISP IPv4 latency (L1-
L2) (ms)

IPv6 latency (L3-
L4)(ms)

National Knowledge Network,
INDIA

9.4 15.2

Reliance Jio Infocomm, INDIA 14.4 20.8
Liberty Global Telecommunica-
tions Company, GERMANY

15.6 19.6

Cox Communications Inc, USA 15.6 31.8
Vodafone India Ltd., INDIA 15.2 18.8
BTnet UK Regional Network,
ENGLAND

12 16.2

GLOBAL AVERAGE 13.7 20.4

larger.

Table 5.5 Average Latency for Reverse Lookup Query form Recursive Resolver to DNS
Hierarchy using Algorithm 9 and 10 for each Vantage Point

ISP IPv4 latency (L1-
L2) (ms)

IPv6 latency (L3-
L4)(ms)

National Knowledge Network,
INDIA

13.2 22.6

Reliance Jio Infocomm, INDIA 23.4 24.4
Liberty Global Telecommunica-
tions Company, GERMANY

22.8 23.8

Cox Communications Inc, USA 16.6 33.4
Vodafone India Ltd., INDIA 19.2 25.6
BTnet UK Regional Network,
ENGLAND

16 23.8

GLOBAL AVERAGE 18.53 25.6

5.5 Summary

We conducted a latency evaluation of DNS queries over the IPv4 and IPv6 protocol

stack, by establishing a testbed emulating the DNS hierarchy of servers and a recursive

resolver. The recursive resolver is probed by clients from various locations over the

Internet, for resolution of a given domain name (forward lookup), and resolution of IP

128

address (reverse lookup) in both ‘cached’ and ‘no-cache’ scenarios for computing the

accurate latency caused by the different protocol stacks. The results indicate that IPv4

outperforms IPv6 in the case of DNS queries.

We listed the procedure for establishing a DNS hierarchy over dual-stack networking

protocols, provisioning both forward lookup and reverse lookup, starting from ROOT,

TLD (in), STLD (coednssecurity.in) for the forward lookup, and ROOT, TLD (arpa.),

STLD (ip6.arpa. and in-addr.arpa.), TTLD (0.0.0.3.0.0.0.0.0.0.1.4.4.0.4.2.ip6.arpa. and

189.156.220.in-addr.arpa.) for the reverse lookup.

129

Chapter 6

Conclusion and Future Scope of the Work

The core of this research work deals with the safety and security of the major compo-

nents of the DNS ecosystem through effective non-intrusive DNS Health Measurement

and DNS Intrusion Detection. As a part of research work, we established the three-level

DNS hierarchy for forward lookup and four-level hierarchy for reverse lookup on the

dual-stack network and conducted latency evaluation for network-layer protocols, and

figured out that DNS implementation over IPv6 has slightly more delay than IPv4.

DNS Health Measurement - A host of new parameters has been proposed to evaluate

the health of the authoritative name server of any given domain along with the details

of the probing algorithms for determining the value of the proposed parameters. The

proposed parameters were then used for determining the health of authoritative name

servers serving the top 500 domains over a period of five days and the results tabulated.

This passive approach can be scaled easily across the DNS hierarchy and could be used

to determine the health of the global, regional, or even a segment of the DNS system

at any given instance of time. The experiment can be repeated periodically to identify

divergent behavior that may lead to the abuse of authoritative name servers and prevent

catastrophic failures.

The future scope of the work is extending this approach by adding more appropriate

parameters (ex. Anycast support, EDNS support, etc.) to determine the health of the

entire DNS hierarchy, including root name servers, TLDs name servers, and even re-

cursive resolvers.

131

DNS Intrusion Detection - In this work, we propose a snort-based intrusion detec-

tion system designed particularly for detecting DNS protocol anomalies, as well as

created the attack signatures for DNS tunneling, DNS amplification, and DoS/DDoS

tools. Simulations on a conventional SNORT IDS deployment with inbuilt signatures

revealed that the proposed solution "DID" is appropriate for attack categorization in

network-based intrusion detection system for DNS-based attacks. Using various attack

tools available on the Internet, we evaluated DID against a wide variety of DNS attacks

(DNS amplification, tunneling, and DoS attacks). Our findings indicate a 100% attack

detection rate, an extremely low false-positive alert rate of 0.01918 percent, and a 99.98

percent accuracy.

The future scope of work includes a machine learning-based approach to identifying

attack patterns of DNS amplification attack tools & DNS tunneling attack tools and

creating appropriate signatures dynamically.

DNS Hierarchy Testbed Setup on Dual-Stack -By constructing a testbed mimick-

ing the DNS hierarchy of servers and a recursive resolver, we evaluated the latency of

DNS requests over the IPv4 and IPv6 protocol stacks. Clients from all across the Inter-

net probed the recursive resolver for domain name resolution (forward lookup) and IP

address resolution (reverse lookup) in both cached and non-cache scenarios to compute

the accurate delay caused by the various protocols stacks. In the case of DNS queries,

the results show that IPv4 beats IPv6. We have also demonstrated the procedure for

setting up a dual-stack enabled three-level DNS hierarchy for forward lookup and a

four-level DNS hierarchy for reverse lookup. The major findings of our study show that

DNS query latency in IPv6 is higher than in IPv4, and query latency in reverse lookup

is always higher than forward lookup for both network-layer protocols. It also shows

that when the number of DNS query repetitions for a particular query increases, the

performance difference between DNS searches over IPv6 and IPv4 narrows.

The next phase of development will be to add DNSSEC to the hierarchy and perform

a DNS query latency check for dual-stack, and is planed for the future scope of the work.

132

Appendix A

Course Work and Timeline

A.1 Course Work

A.2 Work Timeline

133

Appendix B

List of Publications

B.1 International Journals

1. Sanjay, Balaji Rajendran, Pushparaj Shetty and Gopinath P, “Revisiting the Per-
formance of DNS Queries on a DNS Hierarchy Testbed over Dual Stack,” ac-
cepted in The Computer Journal by Oxford Academic, UK, 2021. (SCIE and
Scopus, IF: 1.5)

2. Sanjay, Balaji Rajendran and Pushparaj Shetty, “A Quantitative Method for Mea-
suring Health of Authoritative Name Servers,” accepted in International Journal
of Information Security and Privacy (IJISP) - IGI Global, USA, 2022. (ESCI and
Scopus)

B.2 International Journals (Communicated)

1. Sanjay Adiwal, Balaji Rajendran, Pushparaj Shetty D and Sithu D Sudarsan,
“DNS Intrusion Detection - DID,” communicated in The International Journal
of Information Security - Springer, 2022. (SCIE and Scopus, IF: 2.2)

135

B.3 International Conferences

1. Sanjay, Balaji Rajendran and Pushparaj Shetty, “Domain Name System (DNS)
Security: Attacks Identification and Protection Methods,” 16th annual compre-
hensive security conference SAM 18(2018 Security and Management), July 30 -
August 02 , 2018, Las Vegas, USA. (EBSCO).

2. Sanjay, Balaji Rajendran and Pushparaj Shetty, “DNS Amplification & DNS Tun-
neling Attacks Simulation, Detection and Mitigation Approaches,” 5th Interna-
tional Conference on Inventive Computation Technologies (ICICT-2020), 26-28
February, 2020, coimbatore, India. (Scopus).

136

References

[1] Internet Stats & Facts (2021), “List of Internet, eCommerce, Hosting, Mobile &

Social Media Statistics for 2021. Websitesetup,” Available: https://websitesetup.org/

news/internet-facts-stats/, [Last accessed: July, 2021].

[2] Key Internet Statistics to know in 2021, Broadband Search, Available: https://website

setup.org/news/internet-facts-stats, [Last accessed: July, 2021].

[3] Hudaib, Adam Ali Zare, and E. A. Z. Hudaib. “DNS advanced attacks and

analysis,” International Journal of Computer Science and Security (IJCSS), 8(2),

p.63,2014.

[4] P. Mockapetris and K. J. Dunlap.“ Development of the domain name system.”

Symposium proceedings on Communications architectures and protocols, 1988.

[5] Massive DDoS Attack Hit DNS Root Servers, Available: https://www.cs.cornell.edu/

people/egs/beehive/rootattack.html, [Last accessed: July, 2021].

[6] Factsheet, “Root server attack on 6 February 2007”, Available: https://www.icann.org/

en/system/files/files/factsheet-dns-attack-08mar07-en.pdf, [Last accessed: July,

2021].

[7] D. Massey, L. Zhang and V. Pappas, “Enhancing DNS Resilience against De-

nial of Service Attacks,” in 37th Annual IEEE/IFIP International Conference on

Dependable Systems and Networks (DSN’07), Edinburgh, pp. 450-459, 2007.

[8] Lessons learned from Internet root server attack, Network World, Available: https://

www.networkworld.com/article/2294962/update–lessons-learned-from-internet-root-

server-attack.html. [Last accessed: July, 2021].

[9] Matthew Prince “The DDoS That Knocked Spamhaus Offline (And How We

Mitigated It), cloud flair,” Available: https://blog.cloudflare.com/the-ddos-that-

knocked-spamhaus-offline-and-ho/, [Last accessed: July, 2021].

137

[10] Moura, G. C., Schmidt, R. D. O., Heidemann, J., de Vries, W. B., Muller, M.,

Wei, L., & Hesselman, C. “Anycast vs. DDoS: Evaluating the November 2015

root DNS event,” In Proceedings of the 2016 Internet Measurement Conference,

pp. 255-270, 2016.

[11] Josh Fruhlinger, “DDoS explained: How distributed denial of service attacks are

evolving,” Available: https://www.csoonline.com/article/3222095/ddos-explained-

how-denial-of-service-attacks-are-evolving.html. [Last accessed: Aug, 2021].

[12] Tim Greene, “How the Dyn DDoS attack unfolded,” Available: https://www.network

world.com/article/3134057/how-the-dyn-ddos-attack-unfolded.html. [Last accessed:

Aug, 2021].

[13] Pope, M. B., Warkentin, M., Mutchler, L. A., & Luo, X. R. “The domain name

system—past, present, and future.” Communications of the Association for In-

formation Systems, 30(1), 21, 2012.

[14] Mockapetris, P. V. “RFC1034: Domain names-concepts and facilities”, 1987.

[15] Mockapetris, P. V. “ RFC1035: Domain names - implementation and specifica-

tion,” 1987.

[16] List of Top-Level Domains, IANA, Available: https://data.iana.org/TLD/tlds-alpha-

by-domain.txt,[Last accessed: Aug, 2021].

[17] Weitzenboeck, E. M., “ Hybrid net: the regulatory framework of ICANN and the

DNS.” International Journal of Law and Information Technology, 22(1), 49-73,

2014.

[18] DNS response message format, Available: http://www.firewall.cx/networking-

topics/ protocols/domain-name-system-dns/161-protocols-dns-response.html.[Last

accessed: Aug, 2021].

[19] L. Zhu, Z. Hu, J. Heidemann, D. Wessels, A. Mankin and N. Somaiya, “Connection-

Oriented DNS to Improve Privacy and Security,” 2015 IEEE Symposium on Se-

curity and Privacy, pp. 171-186, 2015.

138

[20] Bai, X., Hu, L., Song, Z., Chen, F., & Zhao, K. “ Defense against DNS man-in-

the-middle spoofing.” In International Conference on Web Information Systems

and Mining (pp. 312-319). Springer, 2011.

[21] M. H. Jalalzai, W. B. Shahid and M. M. W. Iqbal, “DNS security challenges and

best practices to deploy secure DNS with digital signatures,” 2015 12th Interna-

tional Bhurban Conference on Applied Sciences and Technology (IBCAST), pp.

280-285, 2015.

[22] Man, K., Qian, Z., Wang, Z., Zheng, X., Huang, Y., & Duan, H. “ DNS Cache

Poisoning Attack Reloaded: Revolutions with Side Channels.” In Proceedings of

the 2020 ACM SIGSAC Conference on Computer and Communications Security,

pp. 1337-1350, 2020.

[23] Potasznik, M. Detecting Globally Malicious Events with Local Records: A Case

Study.

[24] Kim, T. H., & Reeves, D. “A survey of domain name system vulnerabilities and

attacks.” Journal of Surveillance, Security and Safety, 1(1), 34-60, 2020.

[25] T. Mahjabin and Y. Xiao, “Mitigation Process for DNS Flood Attacks,” 2019 16th

IEEE Annual Consumer Communications & Networking Conference (CCNC),

pp. 1-2, 2019.

[26] T. Mahjabin, Y. Xiao, T. Li and C. L. P. Chen, “Load Distributed and Benign-

Bot Mitigation Methods for IoT DNS Flood Attacks,” in IEEE Internet of Things

Journal, vol. 7, no. 2, pp. 986-1000, 2020.

[27] Conrad, D. (2012). “Towards Improving DNS Security, Stability, and Resiliency.

Internet Society.” Available: https://dev. www. isocdev. org/towards-improving-

dns-security-stability-and-resiliency-0. [Last accessed: Aug, 2021].

[28] Dagon, D., Antonakakis, M., Day, K., Luo, X., Lee, C. P., & Lee, W. “Recursive

DNS Architectures and Vulnerability Implications.” In NDSS , 2009.

139

[29] Khan, I., Farrelly, W., & Curran, K. “A Demonstration of Practical DNS Attacks

and their Mitigation Using DNSSEC.” International Journal of Wireless Networks

and Broadband Technologies (IJWNBT), 9(1), 56-78, 2020.

[30] M. Skwarek, M. Korczynski, W. Mazurczyk and A. Duda, “Characterizing Vul-

nerability of DNS AXFR Transfers with Global-Scale Scanning,” 2019 IEEE Se-

curity and Privacy Workshops (SPW), pp. 193-198, 2019.

[31] S. Ariyapperuma and C. J. Mitchell, “Security vulnerabilities in DNS and DNSSEC,”

The Second International Conference on Availability, Reliability and Security

(ARES’07), pp. 335-342, 2007.

[32] S. H. C. Haris, R. B. Ahmad and M. A. H. A. Ghani, “Detecting TCP SYN Flood

Attack Based on Anomaly Detection,” 2010 Second International Conference on

Network Applications, Protocols and Services, pp. 240-244, 2010.

[33] Dhaval Kapil , DNS Security , Sep 8, 2015, Available: https://dhavalkapil.com/blogs/

DNS-Security/ [Last accessed: Aug, 2021].

[34] Di Paola S., Lombardo D.“Protecting against DNS Reflection Attacks with Bloom

Filters.” International Conference on Detection of Intrusions and Malware, and

Vulnerability Assessment, pp. 1-16. Springer, Berlin, Heidelberg, 2011.

[35] Rozekrans, T., Mekking, M., & de Koning, J. “Defending against DNS reflection

amplification attacks.” University of Amsterdam System & Network Engineering

RP1, 2013.

[36] Raman, Daan, Bjorn De Sutter, Bart Coppens, Stijn Volckaert, Koen De Boss-

chere, Pieter Danhieux, and Erik Van Buggenhout. “DNS tunneling for network

penetration.” International Conference on Information Security and Cryptology,

pp. 65-77. Springer, Berlin, Heidelberg, 2012.

[37] M. Aiello, M. Mongelli and G. Papaleo, “Basic classifiers for DNS tunneling

detection,” 2013 IEEE Symposium on Computers and Communications (ISCC),

pp. 000880-000885, 2013.

140

[38] Shaikh, Asadullah and Pardeshi, Bhavika and Dalvi, Faraz, “Overcoming Threats

and Vulnerabilities in DNS,” Proceedings of the 3rd International Conference on

Advances in Science & Technology (ICAST), 2020.

[39] GUDEKLI, U. T., & CIYLAN, B. “DNS TUNNELING EFFECT ON DNS PACKET

SIZES.” 2019.

[40] Casalicchio, E., Caselli, M., Coletta, A., & Fovino, I. N. “DNS as critical infras-

tructure, the energy system case study.” International Journal of Critical Infras-

tructures 6, 9(1-2), 111-129, 2013.

[41] ICANN. “Security, Stability and Resiliency of the Domain Name System ICANN

Technical Report,” 2009, Available: https://spinlock.com/wp-content/uploads/2010/

02/2009-DNS-SSR-Symposium-Report.pdf [Last accessed: Aug, 2021].

[42] ICANN. “Measuring the Health of the Domain Name System.” Retrieved from

Report of the 2nd Annual Global Symposium on DNS Security, Stability and

Resiliency, 2010 Available: https://www.icann.org/en/system/files/files/dns-ssr-

symposium-report-1-03feb10-en.pdf [Last accessed: Aug, 2021].

[43] Casalicchio, Emiliano, M. Caselli, A. Coletta, and I. Nai Fovino. “Aggregation of

DNS health indicators: issues, expectations and results.” In Proc. 2012 Workshop

of Securing and Trusting Internet Names, pp. 1-8. 2012.

[44] Casalicchio, Emiliano, Marco Caselli, Alessio Coletta, Salvatore Di Blasi, and

Igor Nai Fovino. “Measuring name system health.” In International Conference

on Critical Infrastructure Protection, pp. 155-169. Springer, Berlin, Heidelberg,

2012.

[45] E. Casalicchio, M. Caselli and A. Coletta, “Measuring the global domain name

system,” in IEEE Network, vol. 27, no. 1, pp. 25-31, 2013.

[46] Cy, Tejaswini Yadav, Balaji Rajendran, and P. rajani. “An Approach for Deter-

mining the Health of the DNS.”, International Journal of Computer Science and

Mobile Computing,Vol. 3, Issue. 9, pg.442 – 449, 2014.

141

[47] Yamini, C., Balaji, R., & Papanna, M. N., “DNS Health Visualizatio”, Interna-

tional Journal of Computer Science and Mobile Computing,V ol. 3, Issue. 9,

pg.202 – 211, 2014.

[48] Keyu Lu, Zhengmin Li, Zhaoxin Zhang and Jiantao Shi, “DNS recursive server

health evaluation model,” 18th Asia-Pacific Network Operations and Manage-

ment Symposium (APNOMS), pp. 1-4, 2016.

[49] C. Deccio, “DNS Diagnostics through the Eye of the Beholder,” International

Conference on Computing, Networking and Communications (ICNC), pp. 753-

758, 2019.

[50] R. Munadi, E. Firdaus, T. Y. Arif and F. Y. Zulkifli, “An evaluation of DNS server

health of public universities in Sumatera Island,” 15th International Conference

on Quality in Research (QiR) : International Symposium on Electrical and Com-

puter Engineering, pp. 13-17, 2017.

[51] Jian Jin, Zhiwei Yan, Jong-Hyouk Lee, Guanggang Geng, “Health Evaluation of

a Domain Name System Based on the Analytic Hierarchy Process,” Journal of

Internet Technology, vol. 19, no. 1 , pp. 027-034, 2018.

[52] Jaeyeon Jung, E. Sit, H. Balakrishnan and R. Morris, “DNS performance and the

effectiveness of caching,” IEEE/ACM Transactions on Networking, vol. 10, no.

5, pp. 589-603, 2002.

[53] Richard Liston, Sridhar Srinivasan, and Ellen Zegura, “ Diversity in DNS perfor-

mance measures,” Proceedings of the 2nd ACM SIGCOMM Workshop on Inter-

net measurment (IMW ’02). Association for Computing Machinery, New York,

NY, USA, 19–31, 2002.

[54] Y. Wu, J. Tuononen and M. Latvala, “Performance Analysis of DNS with TTL

Value 0 as Location Repository in Mobile Internet,” IEEE Wireless Communica-

tions and Networking Conference, pp. 3250-3255, 2007.

[55] Domain DNS Health Checker Tool, Available: https://dnschecker.org/domain-

health-checker.php [Last accessed: Sept, 2021].

142

[56] Paranoid about your DNS. Monitor, validate and verify your DNS configurations,

Available: https://dnsspy.io/ [Last accessed: Sept, 2021].

[57] Domain Health Report, Available: https://mxtoolbox.com/domain/ [Last accessed:

Sept, 2021].

[58] DNS health check : find bugs on your domain, Available: https://www.dnsqueries

.com/en/domain_check.php [Last accessed: Sept, 2021].

[59] DNS Monitoring Tool for Server Performance and Health Checks, Available:

https://www.solarwinds.com/ server-application-monitor/use-cases/dns-monitoring

[Last accessed: Sept, 2021].

[60] IntoDNS checks the health and configuration and provides DNS report and mail

servers report, Available: https://intodns.com / [Last accessed: Sept, 2021].

[61] Drozdova, A. “SECURING A DNS SERVER WITH SNORT IDS: Severen-Telecom

case”, 2015.

[62] Hock, F., & Kortiš, P. “Design, implementation and monitoring of the firewall sys-

tem for a DNS server protection.” International Conference on Emerging eLearn-

ing Technologies and Applications (ICETA) (pp. 91-96). IEEE, 2016.

[63] Kim, B. H., & Park, Y. G. “Design and analysis of client control system using

DNS control firewall.” International Journal of Smart Home, 7(5), 135-144, 2013.

[64] Afonso J, Veiga P. “Improving DNS Security Using Active Firewalling with Net-

work Probes.” International Journal of Distributed Sensor Networks. May 2012.

[65] P. Satam, H. Alipour, Y. Al-Nashif and S. Hariri, “DNS-IDS: Securing DNS in

the Cloud Era,” International Conference on Cloud and Autonomic Computing,

Boston, MA, 2015, pp. 296-301,2015.

[66] Satam, P., H. Alipour, Youssif B. Al-Nashif and S. Hariri. “Anomaly Behavior

Analysis of DNS Protocol.” J. Internet Serv. Inf. Secur. 5, 85-97, 2015.

143

[67] Cheung, Steven, and Karl N. Levitt. “A formal-specification based approach for

protecting the domain name system.” Proceeding International Conference on

Dependable Systems and Networks, IEEE, 2000.

[68] Rastegari, Samaneh & Saripan, M Iqbal & Rasid, Mohd. “Detection of Denial of

Service Attacks against Domain Name System Using Neural Networks.” Inter-

national Journal of Computer Science Issues. 6, 2009.

[69] Robert J. Shimonski, Wally Eaton, Umer Khan, Yuri Gordienko, “Chapter 11 -

Detecting and Performing Security Breaches with Sniffer Pro”, Sniffer Pro Net-

work Optimization and Troubleshooting Handbook, Syngress, Pages 513-565,

2002.

[70] Liang, J., Jiang, J., Duan, H., Li, K., & Wu, J. “Measuring query latency of top

level DNS servers.” International Conference on Passive and Active Network

Measurement, pp. 145-154, 2013.

[71] Sammour, M., Hussin, B., Othman, M. F. I., Doheir, M., AlShaikhdeeb, B., &

Talib, M. S. “DNS Tunneling: a Review on Features.” International Journal of

Engineering and Technology, 7(3.20), 1-5, 2018.

[72] Efficient IP, “DNS Security, Secure Your DNS, Secure Your Network,” Available:

https:// www.efficientip.com/solutions/dns-security/ [Last accessed: Sept, 2021].

[73] AKAMAI, “The State of the Internet,” Available: https://www.akamai.com/uk/en/

multimedia/documents/state-of-the-internet/dnssec-amplification-ddos- security-

bulletin.pdf [Last accessed: Sept, 2021].

[74] Zhao, G., Xu, K., Xu, L., & Wu, B. “Detecting APT malware infections based on

malicious DNS and traffic analysis.” IEEE access, 3, 1132-1142, 2015.

[75] Farnham, G., & Atlasis, A. “ Detecting DNS tunneling.” SANS Institute InfoSec

Reading Room, 9, 1-32, 2013.

144

[76] M. Bretelle, “Encoding DNS-over-TLS (DoT) Subject Public Key Info (SPKI) in

Name Server name.” Available: https://tools.ietf.org/id/draft-bretelle-dprive-dot-

spki-in-ns-name-00.html, [Last accessed: Oct, 2021]

[77] Verisign, The Domain Name Industry Brief, Available: https://www.verisign.com/

en_US/domain-names/dnib/index.xhtml, [Last accessed: Oct, 2021]

[78] C. Deccio, J. Sedayao, K. Kant and P. Mohapatra, “Measuring Availability in the

Domain Name System,” 2010 Proceedings IEEE INFOCOM, pp. 1-5, 2010.

[79] Chandramouli, R., & Rose, S. “Secure domain name system (DNS) deployment

guide.” NIST Special Publication, 800, 81-2, 2006.

[80] Narayan, S., Peng S., and Fan, N. “Network performance evaluation of Internet

Protocols IPv4 and IPv6 on operating systems.” Proceedings of 2009 IFIP Inter-

national Conference on Wireless and Optical Communications Networks, Cairo,

Egypt, 28-30 April, pp. 1-5, IEEE, 2009.

[81] Fredrik Ljunggren, Jakob Schlyter, Kirei AB, DNS server fingerprinting tool -

"fpdns" , Available: https://github.com/kirei/fpdns, [Last accessed: Oct, 2021]

[82] Al-Dalky, R. and Rabinovich, M. “Revisiting Comparative Performance of DNS

Resolvers in the IPv6 and ECS Era.” arXiv:2007.00651 [cs.NI],2020.

[83] Moz’s list of the most popular 500 websites on the internet. Available: https://moz

.com/top500, [Last accessed: Nov, 2021]

[84] Yue Wang, Anmin Zhou, Shan Liao, Rongfeng Zheng, Rong Hu, Lei Zhang, “A

comprehensive survey on DNS tunnel detection,” Computer Networks,Volume

197, 2021.

[85] Bjorn Andersson and Erik Ekman, IODINE, Available: https://code.kryo.se/iodine,

[Last accessed: Nov, 2021]

[86] Gudekli, U. T., & Ciylan, B. “dns tunneling effect on dns packet sizes.”, 2019.

145

[87] ThunderDNS, Available: https://blog.fbkcs.ru/traffic-at-the-end-of-the-tunnel-or-

dns-in-pentest/, [Last accessed: Nov, 2021]

[88] Rossow, C.“Amplification Hell: Revisiting Network Protocols for DDoS Abuse.”

In NDSS, 2014.

[89] Ethanwilloner, DNS-Amplification-Attack, Available: https://github.com/ethan

willoner/DNS-Amplification-Attack, [Last accessed: Nov, 2021]

[90] Offensive python/ Saddam - DDoS Tool for Amplification, Available: https://github.com/

OffensivePython/Saddam, [Last accessed: Nov, 2021]

[91] Prolexic, DNS Flooder v1.1, Available: https://github.com/plxsertr/dnsreflect,

[Last accessed: Nov, 2021]

[92] DNS dist ributed reflection Denial of Service, noptrix, Available: ht tp://www.nopt

rix.net, [Last accessed: Nov, 2021]

[93] Google Code, DNS-Flood, Available: https://code.google.com/archive/p/dns-flood/,

[Last accessed: Nov, 2021]

[94] Khraisat, A., Gondal, I., Vamplew, P., & Kamruzzaman, J. (2019). Survey of

intrusion detection systems: techniques, datasets and challenges. Cybersecurity,

2(1), 1-22.

[95] Rose, K., Eldridge, S., & Chapin, L. “The internet of things: An overview.” The

internet society (ISOC), 80, 1-50, 2015.

[96] Hanumanthappa, J., & Manjaiah, D. H. “A Study on Comparison and Contrast

between IPv6 and IPv4 Feature Sets.” In International Conference on Computer

Network and Security (ICCNS), 2008.

[97] Ploessel, M. “Attacking and Defending DNS.” In Special Ops (pp. 393-452).

Syngress, 2003.

[98] Nikkel, B. J. “An introduction to investigating IPv6 networks.” Digital Investiga-

tion, 4(2), 59-67, 2007.

146

[99] Hu, Q., & Brownlee, N. “IPv6 host address usage survey.” International Journal

of Future Computer and Communication, 3(5), 341, 2014.

[100] Liang Zhu and John Heidemann. “LDplayer: DNS Experimentation at Scale.” In

Proceedings of the Internet Measurement Conference 2018 (IMC ’18). Associa-

tion for Computing Machinery, New York, NY, USA, 119–132, 2018.

[101] L. Song, Ed., D. Liu, P. Vixie, A. Kato, S. Kerr, Yeti DNS Testbed, RFC8483,

Available: https://datatracker.ietf.org/doc/html/rfc8483, [Last accessed: Nov, 2021]

[102] Park, S., Jeong, J. and Hong, C.S. “DNS Configuration in IPv6: Approaches,

Analysis, and Deployment Scenarios.” IEEE Internet Computing, 17, 48-56,

2013.

[103] Fuliang, L., Xingwei, W., Tian, P. and Jiahai, Y. “A Case Study of IPv6 Net-

work Performance: Packet Delay,Loss, and Reordering.” Hindawi Mathematical

Problems in Engineering, 2017.

[104] Soorty, B., & Sarkar, N. I. “Evaluating IPv6 in peer-to-peer Gigabit Ethernet for

UDP using modern operating systems.” In 2012 IEEE Symposium on Computers

and Communications (ISCC) (pp. 000534-000536). IEEE, 2012.

[105] Xiaoming, Z., Jacobsson, M., Uijterwaal, H., and Mieghem, P. “IPv6 delay and

loss performance evolution.” Int. J. Commun. Syst., 21, 643-663, 2008.

[106] Savita, S., Purohit, G.N., and Naveen, H. “Performance Analysis of IPv4 v/s IPv6

in Virtual Environment using UBUNTU.” Proceedings of International Confer-

ence on Computer Communication and Networks CSI-COMNET-2011, Udaipur,

India, 4-6 December, pp. 86-91, IJCA,2011.

[107] D. Barr, “RFC1912: Common DNS Operational and Configuration Errors”, 1996.

147

	Abstract
	List of Figures
	List of Tables
	ABBREVIATIONS
	Introduction
	Research Motivation
	Problem Definition
	Research Objective
	Thesis Contributions
	Thesis Structure

	Background and Literature Survey
	DNS History
	DNS Fundamentals and Concepts
	DNS Namespace
	DNS Hierarchy
	DNS Server Classifications
	DNS Query Types
	DNS Cache
	DNS Lookup Process

	DNS Protocol
	DNS Message Format
	DNS Header Format
	DNS Questions Format
	DNS Answer Format
	Authoritative Section
	Additional Information Section

	DNS Record Types
	DNS Record Syntax
	DNS Zone File
	DNS Threats Classification
	Attack Against DNS Infrastructure
	Attacks Exploiting the DNS Infrastructure

	Literature Survey
	Literature on DNS Health Measurement
	Literature on DNS Intrusion Detection
	Literature on DNS Hierarchy Testbed Setup and its Evaluation

	Summary

	DNS Health Measurement
	Introduction
	Methodology and Proposed Health Parameters
	DNS Vulnerabilities
	DNS Latency Comparison with ICMP Latency
	DNSSEC Validation

	Authoritative Name Server Health Measurement and Key Finding
	Summary

	DNS Intrusion Detection (DID): IDS Signatures for DNS Tunneling, Amplification, and DoS Attacks
	Introduction
	Proposed Methodologies
	DNS Tunneling
	DNS Amplification
	IDS Signature for DoS Attack on DNS Servers

	Comparative Evaluation of DID and SNORT Concerning DNS Attacks
	Summary

	IPv6 Aware Dual-Stack DNS Hierarchy Testbed Setup and it's Evaluation
	Introduction
	DNS Hierarchy Testbed Setup
	Commissioning of Forward Lookup DNS hierarchy
	Commissioning of Reverse Lookup DNS hierarchy

	DNS Latency Measurement Methodology
	Test Results Analysis
	Summary

	Conclusion and Future Scope of the Work
	Course Work and Timeline
	Course Work
	Work Timeline

	List of Publications
	International Journals
	International Journals (Communicated)
	International Conferences

