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ABSTRACT 

The high cutting temperature developed during machining at high cutting velocity and 

feed rate affects the ability to achieve high productivity and quality. It also causes 

dimensional deviation, premature failure of cutting tools, impairs the surface integrity 

of the product by inducing tensile residual stresses, and induces surface and 

subsurface micro cracks in addition to rapid oxidation and corrosion. Unlike 

conventional coolants which generally cause environmental and health problems to 

the machine operators, Cryogenic machining using LN2 is an environmentally safe 

coolant which can achieve desirable control of cutting temperature and improve the 

machining performance. Many researchers have tried different cryogenic cooling 

methods such as cryogenic pre-cooling the workpiece, indirect cryogenic cooling or 

cryogenic tool back cooling and cryogenic jet cooling by micro-nozzles on the cutting 

tool edges or faces, tool–chip and tool–work interfaces. In the present research work, 

cryogenic cooling system was developed for supplying LN2 at tool-chip interface 

during milling process. The machining study was conducted on SS316 of work 

material under dry, wet and cryogenic machining environments with the following 

work – tool combination i.e. SS316 steel Physical Vapour Deposition - TiAlN coated. 

The performance of the milling study involves three different cooling approaches. 

They were: (i) Dry machining (ii) Wet machining (iii) Cryogenic machining. In 

cryogenic environments, the LN2 was supplied at the tool – chip interface under 

constant pressure of three bar, using nozzle. The experimental results of cutting 

temperature, cutting force, surface roughness under cryogenic cooling were compared 

with those of dry and wet machining. With  artificial neural network, prediction of 

responses of milling process are carried out using 4 different error back propagation 

algorithms such as (Gradient Descent, Scaled Conjugate Gradient Descent, Levenberg 

Marquart and Bayesian regularization or Bayesian Neural Network) models. Later, 

predicted results were compared between the conventional and non-conventional 

techniques and best suitable back propagation was identified for the current study. 

The validity of the models was established. The artificial neural network model 

formulated for cutting temperature cutting force, surface roughness and tool wear are 

found to predict the corresponding responses quite accurately. Support vector 

regression and machine learning techniques were applied for prediction using 



Regression- Epsilon Method by using various kernel functions (Linear, Polynomial, 

Sigmoid, and Radial Basis Function). The best kernel function suitable was identified. 

Later on, incorporation of support vector machine to optimization (Particle Swarm 

Optimization was introduced in order to build the novel hybrid model).  

 

Keywords: Cryogenic, Dry, Wet, LN2, Artificial Neural Network, Back Propagation 

Algorithm, Gradient Descent, Scaled Conjugate Gradient Descent, Levenberg 

Marquart, Bayesian Neural Network, Support Vector Regression, Support Vector 

Machine, Particle Swarm Optimization. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 IMPORTANCE OF MACHINING 

 

Machining is a major part of metal working that plays an important role in metal 

cutting and forming. In machining, the machine tools especially cutting tools play an 

important role in effective metal cutting. This is because of their roles in producing 

different shapes and forms. The importance of machining in modern automated 

manufacturing systems has, in fact, increased due to the significant increase in the 

production time and the need to offset the high capital investment. The need for 

improving the technological performance of machining operations, as assessed by the 

cutting temperature, cutting force, tool life and surface finish has long been 

recognized, to increase the economic performance of the machining operations. 

 

1.2 MILLING PROCESS 

 

Milling is one of the common high-production machining methods. It is accomplished 

with a cutting tool called a milling cutter. A milling cutter is a multiple edge tool, 

which is a revolving body with cutting elements called teeth, arranged on the 

circumferential surface, or on the end faces or both. The primary cutting motion in 

milling is rotation, which is imparted to the cutter. The feed motion is usually 

imparted in a straight line to either the cutter or the workpiece. Milling is typically 

used to produce parts that are not axially symmetric and have many product features, 

such as holes, slots, pockets and even three dimensional surface contours. The milled 

surfaces are largely used to mate with other parts in die, aerospace, automotive, and 

machinery design as well as in manufacturing industries (Lee and Lin 2000).  
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1.3 HEAT GENERATION IN METAL CUTTING 

 

During metal cutting, the energy dissipated gets converted into heat. Consequently, 

high temperatures are generated in the region of the tool cutting edge, and this 

temperature has a controlling influence on the rate of wear of the cutting tool, and on 

the friction between the chip and the tool. Long bottom (2005) described that during 

the machining process, a considerable amount of the machining energy is transformed 

into heat through plastic deformation of the workpiece surface, the friction of the chip 

on the tool face, and the friction between the tool and the workpiece. Figure 1.1 shows 

the heat generation zones in the metal cutting process. 

 

Figure 1.1: Heat generation zone in metal cutting 

 

There are three main sources of heat generation during the process of metal cutting. 

 

1.  Heat is produced in the primary shear zone as the workpiece is subjected to large 

irreversible plastic deformation.  

2.  Heat is produced by friction and shear on the tool rake face, or secondary shear 

zone. Thus, there exists both sticking and sliding friction. The combined effect of 

shear and friction action produces heat. 

3.  Heat is also produced at the tool – work interface, where the tool flank runs along 

the workpiece surface, and generates heat through friction.  

The cutting temperature is a decisive factor for other machinability indices such as the 

cutting force, surface finish and tool wear. It was reported that approximately 80% of 
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the generated heat is dissipated by the chip, about 18% by the tool and the rest by the 

work surface (HMT 2006). 

 

The heat generations in intermittent machining operations like milling differ 

significantly from the heat generations in continuous cutting operations, such as 

turning. In milling operations, the tool is subjected to cyclic heating and cooling, 

when the tool enters and exits the workpiece material. This leads to a phenomenon 

known as thermal fatigue (Wang et al 1996). Generally, thermal fatigue plays a 

significant role in shortening the tool life for tungsten carbide tools during the milling 

operation, where the cutter teeth gets heated intermittently at the corners, through 

contact with the workpiece. This causes cracks to develop in the tool and ultimately 

leads to thermal fracturing of the tool (Wang et al 1996).  

 

The temperatures attained in metal cutting are important, only so far as they affect the 

thermally activated mass transport phenomenon at the work – tool interface contacts. 

These may involve interfacial diffusion and alloy formation or self-diffusion, 

resulting in creep and/or softening of the tool material. The mutual diffusion of 

materials at the chip-tool contact is a significant cause for the formation of crater 

wear. Crater wear is essentially an exponential function of the average chip – tool 

interface temperature, provided the temperature is sufficient to cause interfacial 

diffusion (Kuppuswamy 1996). 

 

Kitagawa and Maekawa (1990) and Mazurkiewicz et al (1989) have reported that the 

temperature of the cutting tool in machining plays an important role in thermal 

distortion, and the dimensional accuracy of the machined part, as well as tool life. 

Brown and Hinds (1985) have reported that the high temperature at the cutting zone 

results in dimensional deviations, fast oxidation and corrosion, thermal residual 

stresses and micro cracks on the workpiece.  
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1.4 VARIABLES AFFECTING CUTTING TEMPERATURE 

1.4.1 Workpiece and Tool Material 

The mechanical properties of the workpiece material, particularly the tensile 

strength and hardness, have a considerable influence on the cutting temperature. 

Generally, as more energy is required for chip formation, more heat is generated, 

resulting in a corresponding increase in the cutting temperature. In addition, the 

thermal properties of the workpiece material also influence the rise in temperature. 

The higher the thermal conductivity, the lower is the rise in temperature. The 

performance of a cutting tool is dependent on the form stability of the cutting edge, 

which in turn is mostly dependent on the hardness and thermal conductivity of the 

tool – work materials (Sreejith and Ngoi 2000)  

 

1.4.2 Cutting Conditions 

In a given combination of the work and tool material, the cutting temperature 

depends upon the cutting speed, feed and depth of cut, and to a limited extent, the 

cutting fluids. Among these factors, cutting speed has a predominant effect. The mean 

temperature is proportional to the cutting speed and feed as follows: Mean 

Temperature  α Va fb , where a and b are constants depending on the tool and 

workpiece materials, V is the cutting speed and f is the feed of the tool (Kalpakjian 

and Schmid 2000, Shaw 2005 and Thomas Childs et al 1999). 

 

1.4.3 Cutting Fluid 

One of the important functions of the cutting fluid is to conduct the heat away 

from the tool and workpiece interface and avoid heat accumulation and temperature 

build-up in the vicinity of the active cutting edge. The fluid would be carried away by 

the outward flowing chip more rapidly than it could be forced between the tool and 

the chip. The effectiveness of the cutting fluid in lowering the tool temperature 

decreases with an increase in cutting speeds, and at higher speeds the fluids become 

completely ineffective in reducing the temperature. A flood of cutting fluid directed 

over the back of the chip loses its effectiveness at higher cutting speeds (Kovacevic et 

al 1995). 
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1.4.4 Tool Geometry 

The geometry of cutting tool has a significant effect on machining 

performance. Among various parameters of tool geometry, radial rake angle is one of 

the most important parameters, which determines the tool and chip contact area and 

hence affects the power consumption. A negative rake tool requires more energy 

input, since the tool contact area is correspondingly increased. In addition, owing to a 

more massive tool point, the heat flow into the shank is more effective and the 

temperature level is maintained. With an increase in the approach angle, the cutting 

temperature increases, since, for the same feed and depth of cut, the chip thickness 

increases. The nose radius of the tool has an influence on the total heat generation and 

its distribution. A large nose radius raises the cutting temperature, but at the same 

time it promotes the heat flow, as the contact area is also increased for a given 

combination of work and tool material (HMT 2006). 

 

1.5 CONVENTIONAL COOLANTS 

 

Historically, cutting fluids have been used extensively for the last 200 years. Cutting 

fluids are widely utilized to improve the process of machining operations such as 

turning, drilling, boring, grinding, and milling. The most common metal working 

fluids used today are either oil-based fluids including straight oils and soluble oils or 

chemical fluids including synthetics and semi-synthetics. The primary function of the 

cutting fluid is temperature control through cooling and lubrication. Cooling and 

lubrication are critical in decreasing tool wear, extending the tool life and achieving 

the desired dimensional accuracy and surface finish. A secondary function of the 

cutting fluid is to flush away chips and metal fines from the tool/workpiece interface, 

to prevent a finished surface from becoming marred, and also to reduce the 

occurrence of a built-up edge. However, a conventional coolant fails to penetrate into 

the chip – tool interface, and hence the coolant cannot remove the heat effectively, 

due to the bulk chip-tool contact under high cutting velocity and feed, where the 

temperature is the maximum (Shaw et al 1951, Merchant 1958, Cassin and 

Boothroyed 1965 and Kitagawa et al 1997).  
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Furthermore, the presence of extreme pressure additives in the cutting fluids is also 

one of the reasons that prevent the cutting fluid to penetrate into the tool – chip 

interface. Conventional cutting fluids pose serious health and environment hazards. 

People exposed to cutting fluids may have health problem when these fluids contacts 

the skin, inhale mists or vapour, or even swallow mists particles. Due to their toxicity, 

they may cause health problems, like dermatitis, problems in the respiratory and 

digestive systems and even cancer. Recent studies have reported increased rates of 

respiratory effects, including pneumonia, asthma, chronic bronchitis and impaired 

pulmonary function (Ameille et al 1995, Eisen et al 1997, Greaves 1997).  

 

According to some extensive assessments of current and past coolant exposures in 

relation to cancer mortality, an elevated risk of pancreatic cancer was also reported for 

all workers exposed to synthetics (Bardin et al 1997, Ely et al 1970). Improper 

disposal of these cutting fluids may even cause serious environmental problems, such 

as water pollution and soil contamination. Strict regulations and their enforcement 

against using cutting fluids has therefore, been tightened. Thus, the waste disposal and 

post handling of the cutting fluids and other related costs have increased substantially 

with tougher environmental laws. Companies and organizations are being forced to 

implement strategies to reduce the usage of cutting fluids in their machining 

operations.  

Further, extra floor space and additional systems are required for pumping, storage, 

filtration and recycling of the conventional coolants (Howes et al 1991, Byrne and 

Scholta 1993, Klocke and Eisenblatter, 1997, Sreejith and Ngoi 2000, Sutherland et al 

2000 and Dhar et al 2002a). Sokovic and Mijanovic (2001) have reported that on the 

shop floor, the operators may be affected by the bad effects of cutting fluids, such as 

skin and breathing problems. Chen et al (2000) and Barry and Byrne (2002) have 

stated that the cooling lubricant causes an increase both in the worker’s health and 

social problems, related to their use (working environment), and correct disposal 

(ecological aspect). This, in turn, means an increase in the costs for the manufacturing 

companies. Therefore, there is a need to look for new coolant application techniques. 

Cryogenic cooling is an effective cooling technique that does not pollute the 

environment, and hence, it is becoming very popular. Besides pollution control, the 



7 
 

industries also reasonably derive economic viability through technological benefits, in 

terms of product quality, tool life and saving in power consumption by using the 

cryogenic cooling technique. 

 

1.6 CRYOGENIC COOLING 

 

Cryogenics are defined as working at very low temperatures, below -150°C 

(123K).Various gases such as nitrogen, helium, oxygen, hydrogen, and neon can be 

utilized. In cryogenics, the normal boiling point of such gases lies below -180°C 

(93K). Cryogenic cooling has wider applications in industries, such as manufacturing, 

automotive, aerospace, electronics, food processing, and health, for cooling purposes.  

 

Liquid nitrogen is the most commonly used element in cryogenics. At atmospheric 

pressure, molecular nitrogen condenses (liquefies) at -196°C and freezes at - 210°C; it 

is the most abundant gas, and composes about four-fifths (78.03%) by volume of the 

atmosphere. The LN2 in a cryogenic machining system quickly evaporates and goes 

back into the atmosphere, leaving no residue to contaminate the part, chips, machine 

tool, or operator, thus eliminating disposal costs. It is a colourless, odourless, 

tasteless, non-toxic and non-flammable gas. These characteristics of liquid nitrogen 

have made it a preferred coolant (Yakup and Muammer 2008). 

 

Cryogenic cooling is a process which reduces the cutting temperature in the metal 

cutting process, by applying cryogenic fluids as the coolants. When liquid nitrogen is 

used as a coolant, it is environmentally safe (Kumar and Choudhury 2008) and 

requires no disposal facilities. To economize the cryogenic machining process, liquid 

nitrogen consumption must be minimized by applying it judiciously to the cutting 

area. Cryogenic cooling provides improved tool life, lesser cutting force, better 

surface finish, better chip breaking and chip handling, better dimensional accuracy, 

higher productivity and lower production cost. 

 

 

 



8 
 

1.7 OUTLINE OF THE THESIS 

 

This thesis aims to address the various problems discussed in the above sections. The 

various stages of the investigations were carried out and these investigations were 

divided into 8 chapters. The summary of discussions carried out chapter wise are 

detailed below. 

 

Chapter 1: This chapter presents the historical background and an introduction to the 

milling process, the heat generation zones in the metal cutting process, the effect of 

the temperature rise in the metal cutting process, and the drawbacks in the 

conventional cooling approaches. It also deals with the challenges faced and 

motivation for the need of cryogenic cooling in metal cutting operations. The 

objectives, scope and overall methodology of the experimental work have been 

outlined.  

 

Chapter 2: This chapter presents a comprehensive survey of the literature on the 

machining of different materials using various cooling approaches. The recent 

literature, the drawbacks of conventional cooling, different cryogenic cooling 

approaches and machining studies conducted on various work materials under 

cryogenic cooling is reviewed. The recently developed cryogenic cooling approaches 

are also discussed elaborately. Even the conventional and non-conventional prediction 

and optimization techniques along with their drawbacks have been illustrated. Apart 

from this, the chapter also makes a critical review of the current knowledge in the 

field of machining learning technique. Summary of literature review, problem 

statement, objectives of the study, scope and plan of work also have been outlined in 

this chapter. 

 

Chapter 3: In this chapter, the experimental methods and cutting conditions in the 

milling studies on SS316 steel using the carbide cutting tool are discussed. The details 

about the workpiece materials, cutting tool insert and tool holder are presented in this 

chapter. The instruments used to measure the cutting temperature, cutting force, 

surface roughness, tool wear, chip shape and chip morphology are presented. The 
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construction and working principle of the developed cryogenic cooling setup is also 

presented.  

 

Chapter 4: This chapter explains the experimental work carried out to investigate and 

evaluate the performance in the milling of SS316 steel under dry, wet and cryogenic 

cooling conditions. The experimental results of the cutting temperature, cutting force 

and surface roughness along with the pertinent discussions are presented. In the 

summary, the influence of LN2 cooling in the milling of the SS316 is compared with 

dry and wet machining. This chapter even deal with the performance evaluation in 

terms of the tool wear, chip shape and chip morphologies in the milling of SS316 

under dry, wet and cryogenic cooling conditions. 

 

Chapter 5: The chapter illustrates the formulation of prediction model (both 

conventional and non-conventional techniques, i.e RSM and ANN) for the selection 

of major influencing factors affecting the responses, to develop mathematical model 

(response equation) for analysis and prediction of cutting parameters, for development 

of single response prediction model using RSM, development of multi objective 

prediction using ANN.  It highlights the incorporation of 4 different back propagation 

algorithms to perform prediction and to identify the best suitable back propagation 

algorithm for the present study. Later the confirmation test (validation) was performed 

by conducting the experiments. 

 

Chapter 6: Discusses the formulation of optimization models to identify the optimum 

parameters of the desired responses. 

 Development of multi objective optimization models (Desirability approach 

and particle swarm optimization approach). 

 Confirmation experimental verification was performed for optimized process 

combinations. 

The chapter also addresses the performance of PSO model with corresponding 

statistical methods. 
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Chapter 7: This chapter elucidates on the concept of machine learning (Support 

Vector Machine) The SVM is applied for 2 sections 1) Prediction 2) Optimization. 

The prediction section is carried out using Support vector regression (SVR) technique 

via regression (epsilon) method using 4 different kernel function using “R Studio” 

platform. The comparison among the 4 incorporated kernel functions (linear, 

polynomial, radial basis, sigmoidal) is compared by attained R2 correlation coefficient 

and mean square error (MSE). This chapter illustrates the integration of best attained 

kernel function (radial basis function-(RBF)) from prediction part to optimization 

section. Now the hybrid optimization method i.e. PSO-RBF-SVM method is 

introduced and the “MATLAB” platform is utilized to carry out the optimization.  

 

Chapter 8:  Presents the overall summary of the investigations carried out in the 

milling of SS316 and the conclusions drawn. It also includes suggestions for further 

study in this area. 
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CHAPTER 2 

LITERATURE SURVEY 

2.1 CONVENTIONAL COOLANTS IN METAL CUTTING 

 

In today’s competitive manufacturing environment, the enhancement of productiveness 

with multiplied product excellent and decreased cost, as properly as the maximization 

of the earnings decides the sustainability of a manufacturing organisation. The foremost 

troubles in attaining excessive productiveness and first-class are brought on by way of 

the excessive reducing temperature developed at some stage in machining, at excessive 

slicing speed and feed rates, in particular when the work material is challenging to 

machine. In general, the circumstance of the reducing tools performs a extensive 

position in accomplishing constant quality, and additionally in controlling the ordinary 

fee of manufacturing.  

The above targets can be finished by way of lowering the excessive reducing 

temperature in the reducing zone. Such excessive temperature adversely impacts the 

device life, dimensional accuracy and surface integrity of the product. Increased cutting 

force, immoderate device wear, negative surface finish, bad dimensional stability, etc. 

are temperature-dependent facet effects; they are additionally interdependent and are 

the principal worries in the metallic reducing enterprise (Boothroyd 1985). The 

excessive reducing temperature can be decreased and sustainable excessive 

productiveness with suitable product nice performed through most fulfilling choice of 

the machining parameters, and perfect slicing fluid application, and with the aid of the 

use of warmth resistant tools. In industries, the excessive reducing temperature and its 

harmful outcomes are usually tried to be controlled, through making use of soluble oil 

as a traditional coolant. These fluids act each as coolants to limit the device temperature, 

and additionally as lubricant (Suresh et al 2009). According to (Klocke and Eisenblatter 

1997), the flood kind reducing fluid is usually adopted to limit the cutting temperature, 

and lubricate the sliding surface at some stage in machining. 

The literature survey is divided in to following sections: 
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 Introduction to conventional coolants in metal cutting 

 Types of conventional  cooling approaches 

 Application of coolants 

 Problems in conventional cooling 

 Cryogenic Machining 

 Study of different cryogenic cooling approaches in metal cutting 

 Recent studies on cryogenic cooling 

 Prediction Technique 

 Optimization Technique 

 Machine Learning – Support Vector Machine (SVM) 

 Summary on prediction, optimization & Machine learning technique 

 Research Gap  

 Need for the present study 

 Scope of the present study 

 Objectives of the present study 

 

2.2 TYPES OF CONVENTIONAL COOLING APPROACHES 

 

All the machining procedures produce warmness and friction, which will doubtlessly 

injury the cutting equipment as nicely as the surface end of the product. To limit the 

friction, switch the warmness and put off the chips away from the reducing zone, 

normally, reducing fluids are used. Heat technology in machining entails two essential 

processes; first of all the technology of warmness at some point of the plastic 



13 
 

deformation of the work material through the tool, and secondly, friction in the course 

of the motion of the chips between the workpiece and the cutting tool. 

 

2.2.1 Dry Machining 

 

Dry slicing is practiced by way of positive industries, the place coolant is no longer 

used for the metal reducing processes. It is ecologically desirable. The benefits of dry 

machining include: non-pollution of the surroundings (or water); no residue on the 

swarf, which will be mirrored in decreased disposal and cleansing costs; no risk to 

health; no accidents to the pores and skin and hypersensitivity free. Moreover, it affords 

price discount in machining (Sreejith and Ngoi 2000). The removing of the use of 

reducing fluids, if possible, can be a good sized incentive. The costs related with the 

use of reducing fluids are estimated to be many instances greater than the labour and 

overhead expenses (Sreejith and Ngoi 2000). Hence, the implementation of dry 

machining will decrease the manufacturing costs. 

 

Many metal-cutting tactics have been developed and multiplied primarily based on the 

availability of the coolants. It is properly acknowledged that coolants enhance the 

device life and device overall performance to a larger extent. In dry machining, there 

will be extra friction and adhesion between the device and the work piece, considering 

they will be subjected to excessive temperatures. This will end result in extended device 

wear, and hence, discount in device life. Higher machining temperatures will produce 

ribbon-like chips, and this will have an effect on the shape and dimensional accuracy 

of the machined surface (Paul et al 2001). However, dry cutting additionally has some 

high quality effects, such as discount in thermal shock, and hence, elevated device 

existence in an interrupted-cutting environment. 

 

2.2.2 Application of Flood/Wet Cooling 

This cooling method is the most broadly used in the machining industry. It presents the 

machining operation with a properly degree of lubrication, cooling and chip removal. 

Generally, soluble oil is used in the reducing quarter via flooding. The features of 

slicing fluids are (DE Chiffre 1988): 
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1. Increased device life 

2. Improved surface finish 

3. Improved tolerance 

4. Reduction in the cutting force 

5. Reduction in the vibration 

 

The lubricant additionally enables the breaking of the chips, and can play an necessary 

position in the prevention and reduction of corrosion (Da Silvia and Wallbank 1998). 

Klocke and Eisenblatter (1997) have mentioned that no matter the excessive value of 

cool ants, the most frequent cooling technique in machining nevertheless consists of 

flooding the reducing region with a massive volume of the coolant. The utility of a 

copious quantity of reducing fluid for the duration of intermittent reducing may want 

to enlarge the massive fluctuation of the reducing temperature. This can lead to thermal 

shock and provoke thermal cracks in the reducing edge, and subsequently motive device 

failure due to facet fracture (Shaw 2005, Elbestawi et al 1997, Vieira et al 2001). 

Therefore, some choice techniques have been pronounced to manage the thermal shock, 

and thereby enhance device existence all through the milling process. 

 

2.2.3 Application of Minimal Quantities/Mist Coolant Lubricant 

The utility of a minimal volume of lubrication consists of a combination of compressed 

air and oil droplets to the chip – device interface; this is known as a mist coolant. Most 

of the researchers evaluated the overall performance of minimal extent lubrication 

functions in the milling technique and observed to notably enhance the device lifestyles 

and surface end in contrast to the traditional flood coolant and dry machining (Lio et al 

2007, Thepsonthi et al 2009). Rahman et al (2001) used minimal volume lubrication 

(MQL) in milling functions of ASSAB 718 HH metal and located that the cutting 

pressure used to be decreased for MQL as in contrast with dry reducing and flood 

coolant reducing conditions, mainly at low cutting pace of seventy five m/min. 

Researchers additionally investigated MQL functions in turning process. Dhar et al 

(2006) investigated the impact minimal volume lubricant on reducing temperature, 

device put on and product best in turning AISI 4340 steel. It was once proven that the 
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MQL overall performance used to be higher than dry slicing as it decreased the slicing 

temperature and elevated surface end and dimensional accuracy. 

 

A find out about was once performed by way of Machado and Wallbank (1997) to 

consider the impact of extremely low lubricant volumes in machining. Small portions 

of lubricant (200-300ml/hr) in a quick flowing air movement with a strain of two bar 

had been used in turning of medium carbon metal AISI 1040. Results had been in 

contrast to the typical flood cooling technique as a benchmark with 5.2 l/min. The 

findings disclose that surface finish, chip thickness and pressure variant are all affected 

beneficially by way of the equivalent. Cutting pressure and feed pressure have been 

discovered decreased when the lubricant was once utilized below low reducing pace 

and excessive feed rate. 

 

In any other find out about with the aid of Varadarajan (2002), a difficult turning with 

minimal fluid software has been carried out to evaluate the machining overall 

performance with dry and moist turning. A specifically formulated reducing fluid was 

once utilized with a excessive velocity, thin-pulsed jet at the instant reducing zones at 

an extraordinarily low price of two ml/min. It was once located that reducing pressure 

was once decrease throughout minimal utility when in contrast to dry and traditional 

moist turning. Penetration of the reducing fluid with Epoxy components into the 

interface can limit the frictional contribution to cutting force, which in flip decrease the 

cutting temperature, shortening of tool-chip contact size and expand of shear attitude at 

some stage in minimal application deliver forth higher surface integrity and expanded 

device life. The ordinary overall performance for the duration of minimal reducing fluid 

software was once determined to be top of the line to that in the course of dry turning 

and traditional moist turning on the groundwork of reducing force, device life, surface 

finish, cutting temperature and tool-chip contact length. As the minimal rate of 

application is as low as two ml/min a fundamental element of the fluid is evaporated. 

The remnants carried away by means of the work and chips are too low to reason 

infection of the save environment. Applying a mist coolant additionally poses serious 

fitness dangers consisting of eye irritation; Breathing of the mist can also additionally 

reason serious respiratory issues and air air pollution (Yuvan et al 2001). 
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2.2.4 Application of High Pressure Cooling 

 

High-pressure cooling includes the use of an excessive strain jet of soluble oil in the 

slicing zone. Mazurkiewicz et al (1989) cited that a excessive strain jet of soluble oil, 

if utilized at the chip –tool interface, may want to limit the reducing temperature and 

enhance device lifestyles to some extent. By making use of a high-pressure coolant at 

some point of machining, the device existence and surface end are discovered to 

enhance considerably via reducing the warmth and slicing forces generated (Kovacevic 

et al (1995), Rahman et al (2000), Ezugwu et al (2007), Machado et al (1998), Sorby 

and Tonnessen (2006), Vosough and Svenningsson (2004), Zareena et al (2001), Diniz 

and Micaroni (2007), Ezugwu et al (2005) and Nandy et al (2009). Kovacevic et al 

(1995) have experimentally investigated the impact of excessive stress water jet 

cooling/lubrication in milling of titanium alloy. It was once discovered that surface 

great and device existence had been improved. 

  

Senthilkumar et al (2002) carried out experimental investigation on ASSAB -718 metal 

for the duration of give up milling operation the usage of uncoated tungsten carbide 

insert and a Ti-Al-CN lined insert at a velocity of one hundred fifty m/min with feed 

fee of 0.05 mm/tooth and depth of reduce 0.35 mm suggests that the effectiveness of 

excessive strain coolant in phrases of multiplied surface finish, decreased device put on 

and reducing forces, and manipulate of chip shape. The device put on with excessive 

stress coolant is considerably higher than that with dry reduce and traditional coolant. 

Hence, this reduces the friction at the device – work interface and will increase the 

surface finish. Due to the use of excessive strain coolant, the elimination of the warmth 

from the slicing zone, the cyclic thermal shock does now not take place, and 

subsequently a decrease cutting pressure probably to occur. However, the cooling with 

excessive strain coolant does no longer meet enterprise standards. When the coolant 

strain was once extended from 15 to 20.3 MPa, the device life reduced swiftly due to 

immoderate notch put on stated by means of Ezugwu et al (2005). 
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2.2.5 Application of Chilled Air Cooling 

 

In the cold compressed air environment, a Vortex air gun with a nozzle is used to direct 

bloodless air generated with the aid of the air gun to the device – chip interface. With 

the purposes of chilled air cooling in the course of machining, the device life and surface 

end are improved. Rahman et al (2003) studied the performance of chilled air cooling 

in quit milling on ASSAB 718 mildew metal and located that the expanded device life 

and surface finish, and decreased reducing forces have been found as in contrast with 

dry and conventional coolant cutting. 

 

Su et al (2006) studied the impact of dry, flood coolant, nitrogen oil mist, compressed 

cold nitrogen fuel (0°C and -10° C), and compressed cold nitrogen gasoline and oil mist 

cutting prerequisites on device lifestyles in the course of excessive velocity quit milling 

of Ti-6Al-4V. It used to be discovered that the device lifestyles beneath compressed 

cold nitrogen gasoline and oil mist cooling stipulations have elevated 2.69 instances in 

contrast to dry cutting and 1.93 times over nitrogen oil mist. It was once additionally 

said that the device existence used to be much less when the usage of a flood coolant 

due to the fact of the impact of mechanical and thermal impact, which motives thermal 

cracks on the cutting edge. 

 

Su et al (2007) performed an experimental investigation on device wear, surface finish, 

and chip form on excessive velocity milling of AISI D2 bloodless work device metal 

below dry cutting, minimal extent lubrication, air cooling, and air cooling with minimal 

volume lubrication conditions. It was once located that the software of air cooling with 

minimal volume lubrication strategies resulted longer device existence in contrast to 

dry and minimal volume lubrication. 

 

Yalcin et al (2009) carried out give up milling on AISI 1050 metal beneath dry, fluid 

and air cooling reducing conditions. The experimental outcomes confirmed that the 

surface roughness values for air cooling are decrease than that of dry milling, and 

greater in contrast to these below fluid cooling. It was once additionally said that the 
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flank put on in air cooling was once nearer to that in fluid cooling, and greater in dry 

milling in contrast to the fluid and cool air cooling systems. 

 

Lincoln et al (2008) carried out give up milling of AISI H13 and AISI D2 steels with 

TiAlN lined and PCBN tools, underneath dry, compressed, and bloodless air cooling 

systems. The consequences indicated that the bloodless air cooling structures supplied 

higher effects in contrast with dry and compressed air cooling conditions. It used to be 

mentioned that the reducing temperature used to be greater in the machining of AISI 

D2 metal in contrast to AISI H13 steel.Kim (2001) carried out an scan in measuring the 

reducing temperature of ball-end milling of hardened steel, for distinct cooling 

circumstance by using the usage of a K-type thermocouple, implanted in a gap of the 

work piece. The reducing temperatures had been about 790 ºC, 350 ºC, 540ºC and 450 

ºC in dry, moist and compressed chilled air at –9 ºC to -35 ºC respectively. The reducing 

surroundings for compressed chilled air at –9 ºC furnished the pleasant device lifestyles 

amongst all the cooling conditions. In the case of the moist condition, due to the cooling 

traits of the reducing fluid, the device suffers serious thermal fatigue, and the device 

put on swiftly will increase in contrast to dry condition. 

 

2.3 PROBLEMS IN CONVENTIONAL COOLING 

Kramar et al (2010) have said that traditional cooling is no longer environment friendly 

sufficient to forestall severe thermal loading in the reducing zone. Nandy et al (2009) 

mentioned that traditional cooling techniques fail to conduct efficaciously the warmth 

generated in the reducing zone, which is accountable for the shorter device life. Shaw 

et al (1951), Merchant (1958) and Cassin and Boothroyed (1965) have said that the 

conventionally utilized coolants, even with severe stress additives, fail to furnish the 

perfect manage of the reducing temperature, as they can't penetrate into the chip – 

device interface predominantly, due to the plastic contact between the device and chip, 

specifically at excessive reducing speed. 

 

Choudhury and El-Baradie (1998) and Rahman et al (1997) stated that traditional 

cooling structures resolve the trouble partially, however create lots of technical and 

environmental problems, such as, the requirement of extra structures for storage, 
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pumping, filtering, recycling and cooling; water and soil air pollution on disposal; 

fitness issues to the operators when they come into direct contact with the reducing 

fluids; and environmental issues when the reducing fluids dissociate as they come into 

contact with the warm surface at excessive temperatures. 

 

Tsai and Hocheng (1998) and Krabacher and Merchant (1951) have pronounced that 

the value of cutting-fluid-disposal is turning into higher, as the environmental rules are 

turning into tougher. Sokovic and Mijanovic (2001) referred to that on the keep surface; 

the operators can also be affected by means of the terrible consequences of the reducing 

fluids, such as pores and skin and respiratory problems. 

  

Due to the issues in the traditional cooling system, it is indispensable to use an 

environmentally suited coolant in the manufacturing industries. For this purpose, liquid 

nitrogen as a cryogenic coolant has been explored due to the fact that Nineteen Fifties 

in the steel cutting enterprise (Yakup and Muammer 2008). 

 

2.4 CRYOGENIC MACHINING 

The utility of cryogenic coolants in machining started out in the year 1950s. Cryogenic 

machining was once first investigated round the year 1953 through E.W. Bartley, who 

used sub-zero cooled CO2 as the coolant (Chattopadhyay et al 1985). Hollis (1961) has 

studied the impact of cryogenic cooling on the put on system of carbide tipped 

equipment at some point of the machining of titanium. Liquid carbon dioxide was once 

furnished to the base of the carbide via a capillary tube carried in the device shank, so 

as to furnish a low ambient temperature, and elevated temperature gradient through the 

go area of the tip. It used to be located that the proximity of the low temperature 

warmness sinks retarded crater wear, as the welding and plucking motion was once 

appreciably reduced. 

 

Researchers at Grumman Aircraft Engineering Corporation mentioned protected and 

profitable tool-life enhancement when the usage of LN2 to cool high-speed metal cease 

mills (Machinery 1965). The cryogenic method is different; in that the temperature at 

the cutting area is decreased to a very low vary (Cassin and Boothroyed 1965). It has 
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been pronounced that the temperature dependant put on is additionally decreased 

extensively in cryogenic machining. 

 

Uehara and Kumagai (1968) made an preliminary effort toward reading basically the 

results of cryo-machining. A collection of machining experiments have been carried 

out on special sorts of workpiece the usage of LN2 as a coolant. Decrease in 

measurement of build-up edges used to be located ensuing in accelerated surface 

roughness. Experiments confirmed that the slicing overall performance for the duration 

of cryogenic machining well-known shows complicated inclinations that rely upon the 

mixtures of reducing and cooling stipulations and additionally the kind of workpiece 

and device used. Uehara and Kumagai (1969a) have pronounced that cryogenic cooling 

distinctly decreased the cutting pressure and temperature, and expanded device 

lifestyles and surface integrity in non-stop as nicely as interrupted machining. 

 

Jainbajranglal and Chatopadhyay (1984) furnished the LN2 onto the tool-workpiece 

interface by using nozzles. The impact of LN2 on turning and grinding of low carbon 

steels was once in contrast with traditional soluble oil. During cryogenic turning, the 

expanded surface end and device life had been discovered in contrast to the traditional 

turning. Reduction in reducing forces was once found due to partial transformation of 

shear deformation of the chip into brittle fracture and discount in stagnation tendency 

of chip fabric and formation of constructed up edge. During cryogenic grinding, big 

minimize in each temperature and pressure had been located and offers smoother 

machined surfaces free from micro cracks when in contrast with traditional grinding. 

Machining of carbon metal the use of LN2 decreases the reducing forces and device put 

on and improves surface integrity. 

 

Li et al (1989) have studied the cryogenic ultra-precision machining of ferrous metals 

with natural diamond tools. It used to be stated that when the ferrous metals have been 

machined with natural diamond, a device underneath cryogenic cooling conditions, 

device put on was once managed effectively, which potential that the opportunity of the 

diffusion and adhesion was once reduced. Evans (1991) investigated the impact of 

cryogenic cooling on device put on mechanisms like adhesion and formation of build-
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up edges, abrasion, micro chipping, fracture and fatigue and tribo-thermal and tribo-

chemical wears in the turning of ferrous materials. Specially designed cooling device 

has been developed that cools the device shank clamped onto the specific cause device 

holder designed to decrease the warmness flux from the device with the rear of the 

device shank immersed in LN2 reservoir. An extraordinary chuck was once additionally 

designed thru which LN2 was once furnished the usage of stationary grant tube that hits 

the front face of the reservoir thereby throwing out the coolant centrifugally besides 

stopping the spindle whilst the chuck is in operation. The outcomes confirmed 

diminished tool wear and significant surface finish. 

 

Paul and Chattopadhyay (1995, 1996a, 1996b) have investigated the impact of 

cryogenic cooling by way of LN2 jet in the grinding of exclusive steels like mild, 

excessive carbon, cold die, warm die and excessive pace steels. The consequences that 

have been bought through experiments with appreciate to forces, unique energy, 

grinding quarter temperature, and surface residual stress the usage of cryogenic coolant 

and have been in contrast it with dry grinding and with traditional emulsion cooling. 

Cryogenic cooling is superior, with which in contrast to different coolants in controlling 

the temperature, residual stresses and grinding forces. With Cryo cooling, substantial 

discount in grinding area temperature has been located in particular for ductile material 

main to higher surface traits of ground surface and much less wheel loading and wheel 

wear. 

 

Hong and Zhao (1999) studied the important features of cryogenic cooling in the steel 

reducing process. It was once pronounced that liquid nitrogen as a coolant eliminated 

the warmness efficaciously from the reducing zone, reducing the reducing forces and 

editing the frictional characteristics at the chip – device interfaces. Ghosh et al (2003) 

investigated the impact of cryogenic cooling on the machining of 52100 bearing steel, 

A2 device metal and WC-Co rolls with 35 Alumina ceramic, PCBN and PCD tools. 

Significant device life enhancements in the cryogenic machining of such challenging 

ferrous substances had been attributed to greater efficient warmth elimination from the 

cutting insert, and a diminishment in the thermal softening of the cutting equipment at 

a greater temperature. 
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2.5 STUDY OF DIFFERENT CRYOGENIC COOLING APPROACHES IN 

METAL CUTTING 

 

2.5.1 Liquid Nitrogen Circulation System 

Wang et al (1996a) made an effort to maintain the tool temperatures at a lower range 

by circulating liquid nitrogen using copper tubes, as shown in Figure 2.1. 

 

 

 

Figure 2.1: Liquid nitrogen circulation system developed by Wang et al (1996a) 

 

Wang et al (1996a) performed experiments on machining superior ceramic composite 

like response bonded silicon nitride ‘Si3N4’ (RBSN) with a LN2 cooled Poly 

Crystalline Boron Nitride device (PCBN). A liquid nitrogen circulation device used to 

be designed to maintain the tool temperatures at a decrease range. The surface 

roughness of the workpiece machined with liquid nitrogen cooling used to be an awful 

lot higher than the surface roughness of the workpiece machined except liquid nitrogen 

cooling. 

 

Wang and Rajurkar (1997) investigated the impact of cryogenic cooling on device put 

on mechanism in the turning response bonded silicon nitride with CBN cutting device 

inserts. It used to be located that the tool life used to be improved due to cooling with 

the aid of liquid nitrogen. Wang and Rajurkar (2000) labored on the cryogenic 

machining of hard-to-cut materials. The cryogenic cooling machine presents higher 

cooling impact on the kind of insert used, in contrast to these used in traditional 
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coolants. Therefore the temperature impact in the reducing region was once minimized 

via keeping the greater warm power and warm hardness of the device and decreasing 

the device wear. There used to be an extend in the device life up to 5 folds when LN2 

coolant was once used as an alternative than the traditional coolant. The floor roughness 

of all the substances machined with liquid nitrogen cooling was once observed to be 

tons higher than the substances machined barring liquid nitrogen for the equal size of 

cutting. 

 

Wang et al (2002) studied the impact of cryogenic cooling on cutting forces, device life 

and workpiece surface end in the course of machining of tantalum. The outcomes 

confirmed that, cryogenic machining supplied higher floor finish, longer device life, 

and decrease cutting forces in contrast with traditional machining. The discount of 

device put on in cryogenic cooling more desirable machining counselled a tremendous 

machinability as in contrast to traditional machining. There was once a sharp make 

bigger in temperature in the cutting region making the device – workpiece location 

purple warm and the formation of constructed up edges when the LN2 coolant used to 

be now not used. It used to be additionally proven that the cryogenic cooling – more 

advantageous machining is an environment friendly approach for machining tantalum, 

when a carbide tool insert is used. 

 

2.5.2 Cryogenic Chip Cooling System 

In this approach of cryogenic cooling, the liquid nitrogen used to be furnished to the 

chip and device rake face, rather of flooding the entire cutting zone, in order to enhance 

the chip braking when the chip is cryogenically cooled. Figure 2.2 indicates the 

schematic layout of the liquid nitrogen jet that covers the chip and the device rake face. 

Figure 2.2 Cryogenic chip cooling developed with the aid of Hong et al (1999) Hong et 

al (1999) investigated the impact of cryogenic cooling on the machining of low carbon 

metal AISI 1008 ductile material, and suggested a considerable enchancment in chip 

breaking. The cooling setup was once designed such that the cryogen is impinged to 

the chip faces alternatively of flooding the entire cutting zone, which optimizes the 

coolant consumption to a giant extent. Hong and Ding (2001a) developed a secure 

strategy of the micro-manipulation of cutting temperatures in machining AISI / SAE 
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1008 low carbon steel. It was once stated that in chip breaking, the micro-temperature 

manipulation by using cryogenically cooling the chip, is an enhancement over pre-

cooling the workpiece, especially at a greater cutting speed. Furthermore, the chip 

cooling strategy decreased the bad aspect impact of expanded shear power in the shear 

zone, which happens at some point of workpiece pre-cooling. 

 

2.5.3 Cryogenic Dual-Nozzle Cooling System 

Researchers tried in the previous to introduce appropriate cryogenic cooling 

approaches, which is low-budget and realistic adequate to substitute traditional 

machining, that grant minimum wastage of the cryogenic coolant. This can solely be 

completed through finding the nozzle at appropriate function that lets in a perfect 

quantity of the coolant to be impinged on the preferred role at work – device interfaces. 

. In this method, the nozzle system supplies liquid nitrogen through well-controlled and 

targeted jets to the device rake face, the flank face, or concurrently to both. Hong (2001) 

developed a new in your price range and realistic strategy to cryogenic machining 

method for machining of low and excessive carbon steels, and titanium alloys. The 

graph implementation of the cryogenic dual-nozzle cooling machine is proven in Figure 

2.2 and Figure 2.3. In this method, the micro nozzle jetting to the slicing factor 

domestically minimizes the LN2 consumption. This method minimizes the quantity of 

liquid nitrogen consumption to stages at which nitrogen fees much less than the 

traditional reducing fluid. It used to be mentioned that cryogenic cooling reduces device 

wear, and will increase device existence up to 5 times, thereby permitting for high-

speed cutting, enhancing productiveness and decreasing the common manufacturing 

cost. In addition, this method reduces the frictional forces, improves chip breaking, 

eliminates the build-up edge, and improves surface quality. 
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Figure 2.2: The design implementation of the cryogenic dual-nozzle system - 

Both the primary and auxiliary nozzles are used to supply LN2 

 

Figure 2.3: The design implementation of the cryogenic dual-nozzle system - Only 

the primary nozzle is used (Hong et al 2001) 

 

Hong et al (2001) discovered the most wonderful cryogenic cooling method that yields 

the longest device life whilst preserving the minimum utilization of LN2. It is 

additionally recommended that the cutting equipment shall be cooled however now not 

the workpiece material. In order to get most fulfilling cooling the cutting fluid should 

be utilized immediately to, and solely to, the tip of the cutting device the place the 

material is being reduce and warmness is being generated preserving the flow rate 

proportional to the warmness generated. A micro nozzle is placed between the device 

face and chip breaker which can be a new most economical business cutting device 

assembly and designed with convenience. During the machining the LN2 absorbs the 
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heat, evaporates quickly, and types a fluid cushion between the chip and device face 

that features as lubricant as a result lowering the coefficient of friction and secondary 

deformation. 

 

Hong et al (2001a) have studied the impact of cryogenic cooling on friction and cutting 

forces in the turning of the Ti-6Al-4V alloy. The experimental effects of the cutting 

pressure measurements indicated that the cold strengthening of the titanium fabric 

expanded the cutting pressure in cryogenic machining, decrease the friction decreasing 

the feed force. It was once said that the friction coefficient on the chip – device interface 

was once significantly decreased in cryogenic machining. Increased shear perspective 

and lowered thickness of the secondary deformation area in cryogenic cooling have 

been additionally reported. 

 

Hong and Ding (2001) added a modern and least expensive approach of cryogenic 

cooling that directs the LN2 through micro jets to the flank, the rake or both, close to 

the reducing aspect in the machining of the Ti-6Al-4V alloy. A small quantity of liquid 

nitrogen utilized regionally to the cutting part is choicest to emulsion cutting, in 

decreasing the reducing temperature. Liquid nitrogen utilized in shut proximity to the 

device cutting edge, can considerably limit the device temperature, relying on the goal 

location. They additionally studied the impact of more than a few cryogenic cooling 

strategies in the turning of the Ti-6Al-4V alloy. The software of liquid nitrogen to a 

chamber between the device insert and shim to freeze the device lower back face, is 

proven in Figure 2.4. In cryogenic workpiece pre-cooling, freezing the workpiece in 

advance of the device slicing edge, prior to and for the duration of the reducing cycle, 

is illustrated in Figure 2.5. The twin – nozzle device for localized liquid nitrogen furnish 

to the rake and flank surfaces is proven in Figure 2.6. 

 

The Cutting temperature underneath cryogenic machining used to be in contrast with 

these underneath traditional dry cutting and emulsion coolant machining. The effects 

exhibit the order of effectiveness of the cooling procedures to be from worst to high-

quality have been dry cutting, cryogenic device returned cooling, emulsion cooling, pre 

- cooling the workpiece, cryogenic flank cooling, cryogenic rake cooling and 
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simultaneous rake and flank cooling. It used to be additionally suggested that the 

cooling impact of the LN2 is maximized, when it is injected as shut as feasible to the 

cutting side so that warmth era area can be correctly cooled. 

 

Figure 2.4: Cryogenic cooling on the tool back side (Hong and Ding 2001) 

 

 

Figure 2.5: Cryogenic workpiece pre-cooling (Hong and Ding 2001) 
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Figure 2.6: Cryogenic dual-nozzle cooling (Hong and Ding 2001) 

Hong et al (2002) measured the everyday and frictional forces by means of immediately 

simulating the pure frictional behaviour of the device – chip interface in cryogenic 

cutting. A particularly designed LN2 nozzle used to be used to follow excessive stress 

LN2 jets via an obstruction kind chip breaker with the aid of properly managed jets to 

the device – chip interface, meant to reap each cooling and lubrication outcomes with 

low-priced LN2 consumption. Proper software of LN2 to the contacting surfaces can 

decrease frictional coefficients by using decreasing the interface temperature and 

enhancing the contact sample that adjustments sticking contact to in simple terms 

sliding contact main to decreased superb shear strength. It additionally enhances the 

hardness of the device face in the course of slicing with the aid of preserving the floor 

integrity of the more difficult part, minimizing inclinations of growing friction. The 

lubrication impact of LN2 can be carried out through aggregate of more than a few 

temperature established results and micro scale hydrostatic effects. 

 

2.5.4 Cryogenic Main and Auxiliary Cutting Edge Cooling System 

 

In this cryogenic cooling method, the two liquid nitrogen jets from especially designed 

nozzles have been utilized nearly alongside the predominant and auxiliary slicing 

edges. Dhar et al (2000) investigated the outcomes of cryogenic cooling by using LN2 

jets on machinability traits in turning of undeniable carbon steels C-40 via carbide 

inserts below extraordinary slicing speeds and feeds. The liquid nitrogen jets have been 
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provided at the slicing area alongside the important and auxiliary cutting side at a strain 

of two bar. The cryogenic cooling reduces the cutting forces, device wear, and 

dimensional deviation and improves the chip formation and surface finish; it affords 

the advantages frequently thru discount in cutting temperature and beneficial trade in 

chip – device interaction. The gain of cryogenic cooling is appreciably influenced by 

using the device geometry, device and work cloth characteristics, and the ranges of the 

machining approaches parameters. 

 

Paul et al (2001) studied the function of cryogenic cooling through LN2 jet on device 

put on and surface end in simple turning of AISI 1060 metal at unique velocity and feed 

mixtures for two exceptional cutting inserts. The effectiveness of cryogenic cooling 

was once in contrast with these below dry and traditional cooling. The consequences 

confirmed that dry machining metal purpose most device put on and floor roughness 

whilst moist machining didn’t exhibit any considerable improvement. But cryogenic 

machining the usage of LN2 supplied decreased device wear, multiplied device 

existence and floor finish. The really helpful consequences of cooling might also make 

contributions to superb lubrication, retention of device hardness and beneficial chip – 

device and work – device interaction. 

 

Dhar et al (2002) studied cryogenic machining of two sorts of steels AISI-1040 and 

AISI-4320 the use of carbide inserts and pronounced that the cooling with the aid of 

LN2 jets can appreciably limit the cutting forces at some stage in machining besides 

affecting the working environment. It additionally offers advantages often through 

decreasing the reducing temperature, which helps in enhancing the chip – device 

interplay and keeps sharpness of the cutting edges. In machining steels by means of 

carbide inserts cryogenic cooling is predicted to be extra really helpful in end turning 

of excessive electricity steels, which are generally finished at low feed and cutting 

velocities. 

 

Dhar et al (2002a) have studied the function of cryogenic cooling via a liquid nitrogen 

jet in the common chip – device interface temperature, device wear, dimensional 

accuracy and surface end in the turning of the AISI 4140 steel. Cryogenic cooling 
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enabled a considerable discount in the reducing region temperature, and favorable chip-

tool and work-tool interactions. Cryogenic cooling furnished a discount in flank wear, 

and an enhancement in device existence was once said over dry machining. It used to 

be additionally mentioned that the surface end and dimensional accuracy extensively 

extended underneath cryogenic cooling. Dhar et al (2002b) have carried out 

experimental investigations on the function of cryogenic cooling by using liquid 

nitrogen jet on device put on and product excellent in the simple turning of AISI 1040 

and E 4340C steels at industrial velocity – feed combinations, through two sorts of 

carbide inserts of special geometry. The encouraging consequences consist of a massive 

discount in the device put on rate, dimensional inaccuracy and floor roughness with the 

aid of cryogenic cooling application, in general due to the fact of beneficial cutting area 

temperature and a alternate in chip – device and work – device interactions. 

 

Dhar and Kamruzzaman (2007) studied the impact of cryogenic cooling on the reducing 

temperature, device wear, floor roughness and dimensional deviation in the turning of 

AISI 4037 metal at industrial pace – feed combinations by using covered carbide insert, 

and in contrast the effectiveness of cryogenic cooling with dry and moist machining. 

The outcomes indicated great advantage in the cryogenic cooling on device life, surface 

end and dimensional deviation. This might also be attributed normally due to the 

discount in the cutting area temperature and the favorable exchange in the chip-tool 

interaction. Further, it was once stated that machining with soluble oil cooling failed to 

grant any extensive enhancement in device life; as a substitute the surface end 

deteriorated. 

 

2.5.5 Modified Cutting Tool Insert System 

 

In this cryogenic cooling method, the well-known cutting device insert used to be 

modified to provide liquid nitrogen at the reducing zone. Dhananchezian and Kumar 

(2011) investigated the impact of cryogenic cooling with a modified cutting device 

inserts on cutting temperature, cutting force, workpiece surface end and device put on 

throughout the machining of Ti-6Al-4V alloy. The consequences have been in contrast 

with traditional moist machining. A sizable advantage of cryogenic cooling on device 
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lifestyles and surface end was once reported. It used to be additionally pronounced that 

the utility of liquid nitrogen reduces reducing pressure due to successfully controlling 

the cutting temperature, preserving the power and hardness of the device material, 

discount in device put on and much less adhesion between device – chip and device – 

work interfaces. 

 

Dhananchezian and Kumar (2011a) have studied the position of cryogenic cooling on 

cutting temperature, reducing force, workpiece surface end and device put on in the 

turning of AISI 304 stainless metal with a modified PVD TiAlN covered carbide device 

inserts. The effectiveness of cryogenic cooling was once in contrast with traditional 

cooling. The outcomes confirmed that cryogenic cooling the usage of LN2 furnished 

reduced cutting temperature, reducing force, floor roughness and device put on in 

contrast with traditional cooling. The recommended outcomes of cryogenic cooling can 

be contributed that the superb lubrication, retention of device hardness and manage of 

temperature structured wear mechanisms. 

 

2.5.6 Hybrid Machining System 

The hybrid machining strategy combines ordinary turning with cryogenically stronger 

machining and plasma more suitable machining. Wang et al (2003) labored on the 

hybrid machining of the Inconel 718. It is stated that the hybrid machining of the 

Inconel 718 the usage of WG-300 ceramic device inserts, produced higher surface 

finish, longer device life, and decrease cutting forces in contrast with traditional 

machining. 

 

2.5.7 Cryogenic Rake and Flank Surface Cooling System 

In this cryogenic cooling method, liquid nitrogen jets have been impinged on the device 

rake and flank surfaces, the usage of a particularly designed nozzle. Venugopal et al 

(2007) studied the impact of cryogenic cooling on the increase and nature of device put 

on in the turning of the Ti-6Al-4V alloy bars with microcrystalline uncoated carbide 

inserts. The impact of cryogenic cooling with liquid nitrogen jets enabled a tremendous 

discount in the device wear, each on the crater and flank surfaces in the turning of the 

Ti-6Al-4V alloy. It used to be additionally mentioned that there was once extensive 
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enhancement in device life with the aid of a discount in adhesion – dissolution – 

diffusion device wear via the suitable manage of machining temperature at the reducing 

zone. 

 

Venugopal et al (2007a) have investigated the device put on and device existence of 

uncoated carbide reducing device inserts in the machining of the Ti-6Al-4V alloy 

beneath dry, moist and cryogenic cooling environments. The prices of boom of all the 

device put on parameters, namely, the common flank wear, most flank wear, common 

nostril put on and part depression, have been much less in cryogenic cooling. A sizable 

enhancement in device existence used to be received underneath cryogenic cooling as 

in contrast to dry and moist machining. 

 

2.6 RECENT STUDIES ON CRYOGENIC COOLING 

Hong (2006) investigated the lubrication mechanism of liquid nitrogen in the reducing 

process. It was once discovered that the injection of liquid nitrogen into the contact 

sector created a lubricating film. The take a look at outcomes confirmed that the liquid 

nitrogen jet used to be very advantageous in lowering friction. Liquid nitrogen injection 

varieties a physical barrier or hydrodynamic impact between two bodies which is 

constantly fine in decreasing the friction force. 

 

Stanford et al (2008) carried out an experimental investigation in the turning of BS 970-

080A15 (En 32b) undeniable carbon slight steel below quite a number cutting 

environments. The following slicing environments had been evaluated: i) Flood coolant 

ii) Compressed air blast iii) Dry cutting iv) Ambient temperature nitrogen fuel 

surroundings v) Cold nitrogen gasoline and vi) Liquid nitrogen gasoline environment. 

The outcomes indicated that uncoated tooling used in nitrogen cutting environments 

even as cutting En 32b simple carbon slight steel, can grant a 55% discount in the crater 

put on and 30% discount in the flank put on over different environments. 

 

Kumar and Choudhury (2008) studied the impact of cryogenic cooling on device put 

on and the excessive frequency dynamic cutting forces generated at some stage in the 

excessive speed machining of stainless steel. Liquid nitrogen was once provided to the 
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device tip the usage of a specifically designed nozzle. It used to be located from the 

experimental consequences that cryogenic cooling used to be fantastic in bringing down 

the slicing temperatures which accounted for the tremendous discount of the flank wear. 

The cutting pressure in cryogenic machining was once found to be much less than that 

of dry cutting, however the reduction in the cutting pressure is much less than 

anticipated. About 37.89% discount in the flank put on has been found with cryogenic 

machining over dry cutting. Cryogenic machining is a viable reply for excessive pace 

eco-friendly machining. 

 

Yakup and Muammer (2008) reviewed the use of liquid nitrogen as a coolant and 

investigated in element the phrases of utility strategies in material elimination 

operations, and their outcomes on reducing device and workpiece fabric properties, 

reducing temperature, device put on and device life, surface roughness and dimensional 

deviation, friction and cutting forces. It used to be said that cryogenic cooling has 

resulted as one of the most beneficial approach for steel reducing operations due to its 

functionality of producing massive enchancment in device existence and surface end 

via the discount in device put on by means of a ideal manipulate of machining 

temperature at the reducing zone. 

 

The traditional technique of cooling the usage of fluid is worried in manufacturing 

industries to resolve the trouble of extra warmness era at the steel cutting area (Natasha 

et al 2014). Regardless, the approach of flood cooling is no longer environment friendly 

in the discount of extra warmth generated at reducing location (Virginia et al 2014)  and 

regular cooling fluids is combo pollution sources a couple of wellbeing, environmental 

troubles and extra relocation fee (Domenico et al 2012, Yamina et al 2020). Similarly, 

it is resolved that, the associated charges to cutting fluids are 30% of over-all gathering 

charges (Shalina et al 2020). But a couple of environmentally perceptive controls 

confined the endeavours in a similar way as use and alternate of general cutting fluids 

in view of prosperity, dangerous and everyday tainting impact (Shalina et al 2019). 

Cryogenic treatment in machining would be one of the alternative approaches. 

Accordingly, in this learn about cryogenic sprinkle cooling device is used, this entails 

spraying of the Liquid nitrogen (LN2) at – 1960C at the tool-workpiece interface. LN2 
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liberally diminishes the temperatures at the tool-chip interface and makes an awful lot 

decrease grinding coefficient (Yongquan et al 2021). (Marco et al 2017) Illustrated low 

device put on and surface roughness price in cryogenic treatment in machining in 

contrast to dry machining in the midst of machining of titanium amalgam. (Ali et al 

2016) Demonstrated that CO2 yielded better device put on diverged from the moist 

machining for AISI 1045 steel. (Sudhansu et al 2015) outlined higher surface end cost 

in cryogenic machining stood out from the dry machining in the midst of machining of 

AISI 52100 steel. (Wit et al 2010) Observed decrease device put on and lessened floor 

roughness in cryogenic situation contrasted with minimal extent lubrication (MQL) 

machining stipulations on account of the astonishing reduction of the cutting 

temperatures. Accordingly, cryogenic machining grows the productiveness and nature 

of the issue in the machining of gamma titanium aluminides regarded in another way 

in relation to the subsequent wet, MQL machining. (Dhananchezian et al 2011) 

Completed monetary associated and everyday examination in the milling of AISI 304 

and deduced that cryogenic method is greater beneficial and assist to accomplish greater 

one-of-a-kind gain stood out from emulsion cooling, besides prosperity and organic 

concerns. Table 2.1 summarized the impact of flood cooling surroundings on milling 

overall performance traits whilst machining of a number hard to cut. Table 2.2 

summarizes the literature reachable on GRA, TOPSIS and RSM optimization strategies 

in milling of a number of substances beneath exceptional machining environments. 

 

From the literature, it used to be determined that cryogenic spray cooling/cryogenic 

exterior jet cooling technique has many blessings like much less coolant consumption, 

no undesirable cooling area, decreased cooling electricity wastage; localized cooling at 

the machining sector reasons discount of cutting region temperatures. In the literature, 

many researchers have employed this approach to computing device extraordinary sorts 

of challenging to reduce substances and determined higher overall performance traits 

when in contrast to dry, moist and MQL machining conditions. Hence, the current learn 

about focuses on the exterior cryogenic cooling technique with LN2 as coolant. From 

the literature, it used to be additionally determined that technique of provider of LN2 at 

the machining sector notably influences the milling overall performance traits greatly. 

In the present day work, a low fee exterior cryogenic jet cooling setup has been 
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developed to spray the LN2 between the tool-workpiece interfaces. To the author's 

understanding fewer records is on hand on machining of AISI 316 (SS316) beneath 

cryogenic condition. There is no change observed in the micro structure of AISI 304 stainless 

steel before and after cryogenic treatment for 10 min. (Muammer nalbant et al., 2010). From 

the literature, it can be surveyed that cryogenic cooling improves the device life, 

accomplishes higher surface end with in the midst of machining of hard to reduce 

material, paying heed to many functions of intrigue it over cools the surface, expands 

the hardness of the machined surface. The motive of the current examination is to reflect 

on consideration on the impact of LN2 as the coolant on cutting temperature and surface 

roughness in the coping with of SS316 over the moist (coolant) machining 

 

It is integral to decide the finest reducing stipulations and improvement of correlation 

fashions between the enter procedure parameters and output responses to enhance the 

productiveness with low manufacturing cost. In the literature, no try has been made on 

prediction and optimization of milling system whilst machining of SS316 underneath 

the cryogenic cooling environments. In cryogenic machining, the residual stress will form. 

However, the quantification of residual stresses depends on the cutting parameters levels at 

which machining operations are done. Based on literature, compressive type residual stress 

forms during cryogenic machining which are favourable to the machining operation (Jani 

Kenda et al., 2011) 
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Table 2.1: Contributions of earlier researchers on difficult to cut materials during 

milling with flood cooling method. 

 

 
 

Where: Ra = Surface roughness; T = Cutting temperature; F = Cutting force; TW = Tool wear; 

CM = Chip morphology; µ = Coefficient of friction; R = Residual stresses; PT = Phase 

transformation;   ST = Surface Topography; HV = Micro-hardness; WL = White layer 

thickness. 
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Table 2.2 (a): Literature report available on optimization and techniques during 

milling of different materials under environments. 

 

 
Where : Vb = Tool wear; Ra = surface roughness; F = cutting forces; MRR = Material Removal 

Rate; P = Power. 
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2.7 PREDICTION, OPTIMIZATION AND ANALYSIS TECHNIQUE 

The most critical point in solving engineering problems is modelling and analysis of 

the correlation between input and output variables. In general, there are two crucial 

modelling techniques used. They are known as analytical and empirical models.  

2.7.1 PREDICTION - NEURAL NETWORK MODEL  

Artificial Neural Network (ANN) used in deciphering several problems like process 

control and automation, signal/image processing, prediction of 

breakdown/malfunctioning of the system and production process optimization (Pradeep 

A. 2012, Gweon 1999, Yousif et al. 2008, Zurada et al. 1997). The motivation behind 

the recognition and implementation of ANN is due to its success in solving the 

nonlinear problems which have no relationship between input and output parameters 

(Ming Zhou 2002, Farahnakian et al 2011,Shalina et al 2019).  

Based on the architecture, ANN`s are classified as single layer feed-forward network, 

Multilayer feed-forward neural network and Recurrent neural network (Rajasekaran 

and Vijayalakshmi 2011).  

2.7.2 Classification Framework  

Classification technique is based on the inductive learning principle that analyzes and 

finds the patterns from the database. If the nature of an environment is dynamic, then 

the model must be adaptive i.e. it should be able to learn and map efficiently. Limère 

et al. (2004) presented a model for firm growth with decision tree induction principle. 

It gives interesting results and fits the model to economic data like growth competence 

and resources, growth potential and growth ambitions. Hoi et al. (2006) developed a 

novel framework of learning the unified kernel machines for both labeled and unlabeled 

data. This framework includes semi supervised learning, supervised learning and active 

learning. Also, a spectral kernel is proposed, where it classifies the given labeled data 

and unlabeled data efficiently.  

Xu et al. (2008) proposed a reproducing kernel Hilbert space framework for information 

theoretic learning. The framework uses the symmetric nonnegative definite kernel 
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function i.e. cross-information potential. Though this framework gives better result than 

the previous RKHS frameworks, still there is an issue to choose an appropriate kernel 

function for a particular domain. Shilton and Palaniswami (2008) defined a unified 

approach to support vector machines. This unified approach is formulated for binary 

classification and later on extended to one-class classification and regression. 

Kumar et al. (2012) explored a binary classification framework for two stage multiple 

kernel learning. The distinct advantage of this binary classification framework is that it 

is easier to leverage research in binary classification and to develop scalable and robust 

kernel based algorithms. Takeda et al. (2012) proposed a unified robust classification 

model that optimizes the existing classification models like SVM, minimax probability 

machine and fisher discriminant analysis. It provides several benefits like well-defined 

theoretical results, extends the existing techniques and clarifies relationships among 

existing models.  

Yee and Haykin (1993) viewed the pattern classification as an ill-posed problem, it is a 

prerequisite to develop a unified theoretical framework that classifies and solves the ill 

posed problems. Recent literature on classification framework has reported better 

results for binary class datasets alone. For multiclass datasets, there is a lack in accuracy 

and robustness. So, developing an efficient classification framework for multiclass 

datasets is still an open research problem. 

2.7.3 Data Selection 

Data selection is a primary task in data mining that selects the calibrated data from the 

storage repositories or data warehouses. Then the selected datasets can be analyzed 

using two different strategies. They are inductive approach and deductive approach. In 

inductive approach, the experimental results are used to integrate the results and 

findings within some theoretical context whereas in deductive approach it starts with a 

theory and implements the observed data.  

Ramakrishnan and Ullman (1995) reviewed the results with deductive databases and 

presented a summary of different projects that support rule based learning algorithms. 

Greco et al. (2001) combined deductive and inductive tools for data analysis process. 
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A system is developed to integrate the deductive analysis tools and data mining tools 

that manipulate the given datasets easily. It can also be used for large projects whose 

objective is to bind the information from different sources. 

LaLoudouana et al. (2003) discussed the dataset selection for SVM with extensive 

practical applications. Here, a new principle for selecting the datasets is constructed 

and demonstrated with different algorithms. Tax and Duin (2004) described about 

support vector data description to make a robust classifier for real time applications. 

Van der Walt and Barnard (2006) studied the relationship between distribution of data 

and classification performance. From the results, it is stated that certain properties of 

the data can influence the classifier performance.  

Schadewitz and Jachna (2007) compared the inductive and deductive research 

methodologies that analyze the qualitative data to identify, design and articulate the 

patterns. The deductive analysis helped to achieve a persistent description, structure 

and format for pattern design. From the investigation of data selection and its 

approaches, it is construed that the deductive analysis technique helps in formulating a 

new set of hypothesis to solve many real time problems. 

2.7.4 Data Normalization 

Data normalization is a preprocessing technique to transform the given data into a 

desired range. It improves the data quality and makes them fit for use by reducing the 

discrepancies in the given dataset. Data is usually normalized to remove inconsistency 

and to create a desirable data structure. Since the datasets are taken from the machine 

learning repository that contains some noise and redundant data, it is required to do 

normalization before classification process.  

Zhang et al. (2003) projected the need for data preprocessing techniques. Data collected 

in the storage devices and repositories may provide low quality data due to some 

disturbances like noise and ambiguity. So, it is suggested to clean the data before it is 

used for classification or prediction. Kotsiantis et al. (2006) discussed the importance 

of data preprocessing techniques in supervised learning algorithm. It is stated that the 
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instances can be formatted and represented clearly using the data preprocessing 

techniques.  

Jayalakshmi and Santhakumaran (2009) investigated the statistical normalization 

techniques like z-score, min-max and median. These normalization techniques enhance 

the reliability and accuracy of a classifier model. Yusof and Mustaffa (2011) compared 

the min-max, z-score and decimal scaling using the dengue outbreak database. These 

normalization techniques are used with both least square SVM and Neural Network. 

But, the least square SVM predicts better in comparison with the Neural Network 

technique.  

Rathod and Momin (2012) evaluated the performance of outlier detection with 

normalized dataset. Preprocessing techniques like min-max, z-score and decimal 

scaling are implemented in outlier detection to refine the results. Chandrasekhar et al. 

(2011) studied the different preprocessing and clustering techniques to avoid the 

redundant and missing values in gene expression data. These methods augment the 

performance and quality of clusters in random gene datasets using silhouette 

measurements. 

2.7.5 Data Imputation 

Missing data is a major problem in data mining that diminishes the quality of data. This 

substantial issue can be often found in statistical data analyses. And, the improper 

treatment of missing data will deform the data analysis or generate biased results. So, 

it is necessary to replace an incomplete observation with complete information and 

improve the precision of the interpretation and prediction.  

Efficient data imputation techniques that are used in literature are Bayesian Principal 

Component Analysis (BPCA), Regularization Expectation Maximization (Reg. EM), 

K Nearest Neighbor (KNN), Weighted K Nearest Neighbor (Wt. KNN), Local Least 

Squares (LLS) and Iterated Local Least Squares (It. LLS). Kim et al. (2004) discussed 

the imputation techniques like least square imputation, BPCA, KNN and Wt. KNN to 

estimate microarray gene expression data. In gene expression data, LLS imputation 

outperforms the other imputation methods.  
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Iacus and Porro (2006) discussed about the handling of missing data values using 

random recursive partitioning. The performance of random recursive partitioning has 

recorded higher accuracy when dealing with categorical attributes or in the presence of 

missing data. Yang et al. (2009) developed a novel imputation technique for gene 

expression data based on KNN and dynamic time warping. Since imputation techniques 

lead to computational complexity, the parameters in the techniques should be tuned 

appropriately.  

Ghoneim et al. (2011) focused on the impact of different missing value imputation 

techniques where it is reflected in the classification accuracy. Techniques like singular 

value decomposition, Wt. KNN, KNN and zero replacement are compared. Weighted 

KNN method provides accurate estimation for missing value in gene expression data 

that belongs to the same small tight expression cluster. Also, the classifier performance 

is slightly affected by the imputation techniques and makes it as robust one.  

Suthar et al. (2012) surveyed the different imputation techniques that are used to 

remove missing values in a given dataset. The merits and demerits of different 

imputation techniques are also presented. Magnani (2004) reported missing value 

techniques that deal with the knowledge discovery process. It helps in building a strong 

classifier model for a given dataset. Recent works have elaborated the importance of 

imputation techniques and its impacts on different datasets. So, before applying the data 

mining techniques, it is necessary to check whether the given dataset is error free. If 

there is any noisy or missing value, an appropriate preprocessing technique should be 

applied to remove the noisy and missing data.  

2.7.6 Data Validation 

Giannakopoulos et al. (1999) compared the performance of neural and semi neural 

algorithms designed for Independent Component Analysis (ICA) using Statlog datasets. 

A criterion was developed to select the useful basis vector of ICA and to measure the 

goodness of the results. King et al. (1995) evaluated the results of diverse classification 

algorithms with real time datasets that are taken from Statlog project. It is shown that 

there is no single best method that improves the accuracy of given datasets.  
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Rohwer and Morciniec (1995) tested twenty three classification algorithms on a tuple 

recognition system with eleven real time data sets and their performances are compared 

and depicted. Lastly, the empirical results proved that n-tuple method yields poor 

accuracy for certain data sets. Michie et al. (1999) compared and evaluated a range of 

classification techniques using Statlog project datasets. As a result, the comparative 

trials of different learning methods in large-scale commercial and industrial problems 

are represented.  

Bay et al. (2001) explained the need for data collection organizations and repositories 

like UCI Machine Learning repository, European Statlog dataset and Reuters dataset. 

This helps to develop a data analysis tool that combines techniques from different field 

such as computer science, statistics and mathematics to extract significant knowledge 

from data.  

Fedorova et al. (2012) investigated plug-in martingales that are used to test the 

exchangeability of data. The performance of the testing method was experimented with 

benchmark datasets and validated using real time data sets,taken from Statlog project 

database. From the discussion, it is deduced that the European Statlog repository 

contains the standard real time datasets. It can also be used for validating the newly 

formulated hypothesis or constraints. 

2.8 OPTIMIZATION - PARTICLE SWARM OPTIMIZATION (PSO) 

Aote et al. (2013) presented a detailed work on PSO along with its limitations. Bratton 

and Kennedy (2007) defined a standard PSO algorithm with the recent developments 

that helped to improve the performance on standard measures to extend original PSO. 

The defined standard PSO formed as a baseline for performance testing of 

improvements to the technique as well as to represent PSO to wider optimization 

community. Sousa et al. (2004) presented the use of PSO as a new tool for optimization, 

PSO performed in two stages, and in the first stage three different PSO algorithms were 

implemented and tested against a Genetic Algorithm and Tree Induction Algorithm 

(J48). In the second stage the best classifier variants improved in terms of attribute type 

support and temporal complexity.  



44 
 

Nouaouria et al. (2013) identified and discussed two data-related problems that may 

affect Particle Swarm Classification (PSC) efficiency: high-dimensional datasets, 

mixed-attribute data and presented solutions for each of these problems including recent 

improvements by a PSC algorithm. Hsieh et al. (2014) proposed a class of Hyper-

Rectangular Composite Neural Networks (HRCNNs) of which synaptic weights can be 

interpreted as a set of crisp If-Then rules; however, a trained HRCNN may result in 

some ineffective If-Then rules which can only justify very few positive examples (i.e., 

poor generalization) so, a PSO had been proposed based on Fuzzy Hyper-Rectangular 

Composite Neural Network (PFHRCNN) to trim the rules.  

Panahi et al. (2013) presented the new classifier system features an experience-

evaluation mechanism that would allow the classifiers “success rates” to contribute to 

their rise or decline in terms of performance parameters. A high success rate would 

promote the classifier's chance to survive and to reproduce where as a low success rate 

would render the classifier vulnerable to deletion. Using multiple data mining and 

control case studies, Success Rate Extended Classifier System (SRXCS) outperformed 

Extended Classifier System (XCS) fairly noticeably. The proposed improvement 

reduced the computational cost of the training process and resulted in fewer, more 

general classifiers in the final rule set without using the traditional rule reduction 

techniques.  

Chen et al. (2012) developed a new pruning algorithm , which had adopted Scoring 

Based on Associations(SBA) algorithm. The proposed algorithm aimed at improving 

the accuracy of associative classification for class imbalance problem. Eberhart and 

Kennedy (1995) presented optimization of non linear functions using PSO. Shi and 

Eberhart (1998) introduced a new parameter called inertia weight, into particle swarm 

optimizer to demonstrate the impact of this parameter on the performance of PSO. 

Esmin (2007) proposed the generation method of fuzzy rule by learning from examples 

using PSO method. Holden and Frietas (2007) proposed several modifications to the 

original PSO/ACO algorithm for the discovery of classification rules and evaluated the 

new version of the PSO/ACO (i.e., PSO/ACO2) algorithm with two different rule 

quality functions to illustrate the choice of rule quality measure greatly effects the end 

performance of PSO/ACO2.  
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Pan and Yang (2010) depicted a survey on transfer learning, which covered the recent 

advancement in transfer learning for classification, regression and clustering problems. 

The relationship between transfer learning and other machine learning techniques were 

elucidated. Simon et al. (2015) expounded association rule set summarization 

techniques to examine the risk of diabetic mellitus. Similar examination of the 

techniques on applicability, weakness and rule performance were made. Tripoliti et al. 

(2012) proposed an enhanced random forest algorithm for automated disease diagnosis.  

Liu et al. (2014) developed a PSO based simultaneous learning frame work for 

clustering and classification. The proposed framework constitutes automatic cluster 

algorithm, finding optimal cluster centre, and classification of test data. According to 

Liu et al (2011) the problem of pruning redundant rules had been addressed by an 

efficient post processing method. Permana and Hashim (2010) designed Fuzzy Particle 

Swarm Optimization (FPSO) to enhance the speed of convergence and performance of 

fuzzy system. Mangat (2010) designed a Swarm Intelligent (SI) techniques namely the 

PSO, Combined ACO/PSO and ACO/PSO with precision fitness for rule discovery in 

medical domain and their performance measures were compared.  

This chapter surveys the state of the art techniques which have been reviewed to 

develop the overall classification framework of this research work. 

 

 

Table 2.2(b): Papers referred on PSO techniques. 
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SL. 

NO 

Authors Input 

Parameters 

Operation Output 

Parameters 

Remarks/ Conclusion 

1 Farahnaki

an et al. 

(2011) 

Cutting 

speed, feed 

depth of cut  

 

End 

milling 

Cutting 

forces and 

surface 

roughness 

A very good training 

capacity of the proposed 

PSONN algorithm 

2 Yang et 

al.(2011a) 

Number of 

passes, 

depth of cut 

in each pass, 

speed, and 

feed 

Multi-face 

milling 

Production 

cost 

The proposed schemes 

may be a promising tool 

for the optimization of 

machining process 

parameters. 

3 Yang et 

al.(2011b) 

Number of 

passes, 

depth of cut 

in each pass, 

speed, and 

feed 

Multi-pass 

face 

milling 

Production 

cost 

The F-MOPSO does not 

have any difficulty in 

achieving well-spread 

Pareto optimal solutions 

with good convergence 

to true Pareto optimal 

front for multiobjective 

optimization problems. 
4 Razfar et 

al.(2010) 

Cutting 

speed, feed, 

depth of cut, 

engagement 

Face 

milling 

Surface 

roughness 

A good agreement is 

observed between the 

values predicted by the 

PSONNOS algorithm 

and experimental 

measurements. 5 Rao and 

Pawar 

(2010b) 

Number of 

passes, 

depth of cut, 

cutting 

speed and 

feed 

Multi-pass 

milling 

Production 

time 

The results are compared 

with the previously 

published results 

obtained by using other 

optimization techniques. 

6 Escamilla 

et al. 

(2009) 

 

Speed, feed 

and depth of 

cut 

End 

milling 

Surface 

roughness 

PSO optimization it can 

be successfully applied 

to multiobjective 

optimization of 

titanium’s machining 

process.  7 Prakasvud

hisarn et 

al. (2009) 

Speed, feed 

and depth of 

cut 

CNC end 

milling 

Surface 

roughness 

Both techniques can 

achieve the desired 

surface roughness and 

also maximize 

productivity 

simultaneously. 8 Li et al. 

(2008) 

Spindle 

speed, feed 

rate 

Milling Cutting 

force, tool-

life, surface 

roughness 

and cutting 

power.    

PSO in optimizing 

process parameters can 

converge quickly to a 

consistent combination 

of spindle speed and feed 

rate. 



47 
 

9 Zhao et al. 

(2008) 

 

Spindle 

speed and 

feed rate. 

Milling Cutting 

forces 

The machining process 

with constant cutting 

force can be achieved via 

process parameters 

optimization based on 

virtual machining. 10 Zuperl et 

al. (2007) 

 

Cutting 

speeds and 

feed rates 

Milling Cutting 

forces 

Compared with GA and 

SA the proposed 

algorithm can improve 

the quality of the solution 

while speeding up the 

convergence process. 11 Huang et 

al. (2007) 

 

Spindle, 

Feed rate, 

width 

End 

milling 

Tool wear Tool wear 

12 Rashmi et 

al. (2016) 

Spindle 

speed, Feed 

rate and 

Depth of cut 

Face 

Milling 

Cutting 

force, surface 

roughness  

and power 

consumption 

Compared with RSM, 

Desirability approach 

and the proposed PSO 

algorithm attained the 

effective results. PSO 

optimization it can be 

successfully applied to 

multiobjective 

optimization of AA6061-

4.5%Cu-5%SiCp 

machining process. 
13 Z.G. 

Wang et 

al. 

Cutting 

speed 

(m/min) 

Feed rate 

(mm/rev) 

machining 

time (min) 

multi-pass 

milling. 

Four typical 

runs at 

different 

depth of cut 

PGSA is shown to be 

more suitable and 

efficient for optimizing 

the cutting parameters 

for milling operation 

than GPCDP and PGA. 14 S.Bharathi 

Raja et al. 

(2010) 

Cutting 

speed 

(rev/min),Fe

ed 

(mm/min), 

Depth of 

cut(mm), 

Machining 

time  

Face 

Milling 

Desired 

Surface 

Roughness in 

minimum 

machining 

time  

It has been found that the 

predicted roughness 

using PSO is in good 

agreement with the 

actual roughness. 

 

 

 

15 F. Cus et 

al. (2008) 

Cutting 

Speed and 

Fee Rate 

End 

Milling 

Optimum 

Cutting 

Speed and 

Feed Rate 

and Cutting 

Force 

The simulation results 

show that compared with 

genetic algorithms (GA) 

and simulated annealing 

(SA), the proposed 

algorithm can improve 

the quality of the solution 

while speeding up the 

convergence process. 

PSO is proved to be an 

efficient optimization 

algorithm. 

16 F. Cus et 

al. (2003) 

Cutting 

Speed and 

Fee Rate 

End 

Milling 

Surface 

Roughness 

and MRR 

PSO is proved to be an 

efficient optimization 

algorithm. The 

experimental results 

show that the MRR is 

improved by 28%. 

Machining time 

reductions of up to 20% 

are observed. 
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2.9 MACHINE LEARNING - SVM APPLICATION FOR CONVENTIONAL 

MACHINING OPERATIONS 

The prediction of machining performances such as surface roughness, cutting force and 

tool life need a proper optimization of the process since it is the challenging part in 

machining. Instead, it has been recognized that cutting condition such as cutting speed, 

feed rate and depth of cut should be selected to optimize the economics of machining 

process [13]. Hsueh and Yang [14] proposed a new diagnosis technique for tool 

breakage in face milling using SVM. The process parameters involved in this research 

are depth of cut, feed per tooth, spindle speed and cutting diameter. The considered 

kernel functions are linear, polynomial and radial basis function (RBF). Researchers 

used the feature of spindle displacement signals into the kernel-based SVM decision 

function to monitor tool breakage. The proposed technique is confirmed highly 

17 Prakasvud

hisarn et 

al. (2009) 

 

Cutting 

speed, Feed 

Rate, Depth 

of cut 

End 

Milling 

Surface 

Roughness 

SVMs and PSO 

techniques were 

implemented. The 

cooperation between 

both techniques can 

achieve the desired 

surface roughness and 

also maximize 

productivity 

simultaneously. 

 

18 Tandon, V 

et al. 

(2008) 

Cutting 

Speed and 

Fee Rate 

End 

Milling 

Optimum 

Cutting 

Speed and 

Feed Rate 

and Cutting 

Force 

ANN was implemented 

to predict cutting force 

and PSO to identify 

optimum speed and feed 

rate. Machining time 

reductions of up to 35% 

are observed. In addition, 

the new technique is 

found to be efficient and 

robust. 

19 R. 

Venkata 

Rao et al. 

(2010b) 

Number of 

passes, 

depth of cut 

for each 

pass, cutting 

speed, and 

feed. 

Milling Minimization 

of Production 

Time 

ABC, PSO and SA are 

implemented.  The 

comparison between 

these 3 techniques have 

been made and 

concluded that ABC and 

PSO perform better 

compared to SA. 20 M.Chandr

asekaran  

et al. 

(2010) 

N/A Milling, 

Turning, 

Grinding. 

Machining 

Performance 

prediction 

and 

optimization 

Discussed the overall 

history of the application 

of soft computing 

technique in machining 

performance prediction 

and optimization. 
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sensitive, robust and reliable Least-square SVM (LS-SVM) was considered to predict 

the surface roughness of milling aluminium alloy [15]. The model is developed to 

analyse the effect of process parameter such as spindle speed, feed rate, spindle 

acceleration, depth of cut, rake angle and tool diameter for surface roughness. Training 

and testing pattern vector have been recognized before LS-SVM training. RBF was 

selected as a kernel training function due to the high regression precision. The training 

parameters were determined by 5- fold cross validation procedures. LS-SVM has given 

a reasonable accuracy and gives 8 % average error. Caydas and Ekici [16] applied SVM 

to developed prediction models for surface roughness in turning process of AISI 304 

austenitic stainless steel. The considered process parameters are cutting speed, feed rate 

and depth of cut while RBF as a kernel function. Three different SVM models were 

developed. Namely, LS-SVM, spider SVM and SVM-KM. Spider SVM gave the best 

prediction model for surface roughness.Wang et al [17] applied LS-SVM for prediction 

model of surface roughness for grinding machining operation. Linear, polynomial, 

Gauss RBF and sigmoid function are considered as the kernel function. Result shows 

that LS-SVM was outperformed the RBF-NN in terms of minimum surface roughness 

value.  

Dong et al [18] introduced a novel model based on LS-SVM for prediction of surface 

roughness machining operation. 54 groups of data about surface roughness and four 

kinds of parameters were selected to analyze the prediction model. The prediction of 

surface roughness in milling operation is done by changing different parameters such 

as spindle speed, desired rate, cutting depth and milling blade number. Hence, the 

results are recorded to analyze the relation between machining parameters and surface 

roughness of work piece. In the training process, RBF was selected as a kernel function. 

From the experiment, the proposed prediction model is validated in theory and 

experimental, and it has shown that the model can describe the influence of spindle 

speed, desired rate and cutting depth to the surface roughness of work piece by milling. 
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Table 2.2 (C): Papers referred on SVM techniques. 

SL.

NO 

Authors & Year Machining 

Type/ 

Material/Tool 

Operation 

Parameters 

(Input) 

Output 

Parameters 

Purpose of SVM Conclusion 

1 Jingchao, Anhai Li, 

Rufeng Zhang 

August 2020 

Milling 

Hardened 

Steel (HRC52) 

Spindle 

Speed, Feed 

Rate , 

Sampling Data 

50KHz 

Cutting Force, 

Tool Wear 

Multifractal  detrended 

fluctuation analysis 

(MFDFA) –SVM  

Tool Condition Monitoring 

MFDFA – SVM identify 

various tool condition 

stages accurately up to 

95.6% 

2 Qinghua Gu, Yinxin 

Chang, 

Xinhong Li, 

Zhaozhao Chang 

July 2020 

End Milling Spindle 

Speed, Feed 

Rate , DOC 

Tool Wear 

Surface 

Roughness 

Radius margin Based SVM-

Fruit Fly Optimization 

(FOA-F-SVM) 

FOA-F-SVM reduce the 

computational cost & 

achieve greater 

classification accuracy 

3 Erhua Wang, Peng 

Yan,  Jie Liu 

June 2020 

End Milling 

Steel 300M 

Spindle 

Speed, Axial 

DOC, Radial 

DOC, Feed 

Rate 

 

Surface 

Roughness 

Hybrid Chatter Detection 

Method (HCDM) 

SVM- PSO – Feature 

Selection  

Model Recognize stable, 

transition and Chatter 

States accurately. 

4 Dong-Dong,  

Wei-Min Zhang, 

Yuan-Shi Li, 

Feng  Xue, 

Jurgen Fleischer 

April 2020 

 

Milling 

Process 

Spindle 

Speed, Feed 

Rate , DOC, 

Sampling Data 

Cutting Force, 

Tool Wear 

Chatter Detection in 2 cases 

Time domain and frequency 

domain.  

 

Multi –SVM can be used to 

conclude optimized 

parameters 

Multi - SVM model 96.6% 

Accuracy achieved. 
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5 Meng Hu 

Weiwei Ming 

Oct 2019 

 

Milling  

Ti-6Al-4V 

Spindle 

Speed, Time 

and Frequency 

Domain 

Signals 

Tool Wear V-SVM applied for training 

& Prediction tool 

monitoring 

 

V-SVM for classification of 

cutting edge(Intact, 

Chipped, Broken) 

V_SVM achieved 

prediction accuracy of 

98.9% in tool wear 

monitoring 

6 Ali Yeganefar, Seyed 

Ali Niknam, Reza 

Asadi 

April 2019 

Slot Milling  

AA 7075-T6 

Cutting Speed, 

Feed Per 

Tooth, DOC 

Surface 

Roughness, 

Cutting Force 

SVM,ANN, Regression 

methods utilized to predict 

& Optimize Surface 

Roughness & Cutting Force 

ANN-NSGA outperformed 

compared to SVR & 

regression approaches in 

prediction. 

Pareto-Optimal & 

Desirability function 

utilized in decision making 

7 Yun Chen, 

Huaizhong Li, 

Xiubing Jing, Liang 

Hou, Xiangjian Bu 

Jan 2019 

Micro Milling 

Steel 104 

Spindle 

Speed, Axial 

Doc, Feed 

Rate 

Surface 

Roughness 

Intelligent Chatter 

Detection based on Image 

feature STFT & SVM 

STFT model  performed 

Better compared to time 

domain and CWT image 

features classification  

8 Shixu Sun, 

Xiaofeng Hu, 

Weili Cai, 

Jin Zhong 

Jan 2019 

Milling Spindle 

Speed, DOC, 

Feed Rate 

Tool Wear , 

Surface 

Roughness 

Tool Breakage Detection 

(Milling Cutter Inserts) 

through Acoustic Emission 

technique 

SVM Model was proposed 

for insert breakage 

detection for offline and 

online phase. 

9 Muzaffer Ay, 

Sebastian Stemmler, 

Dirk Abel, Max 

Schwenzer, 

Fritz Klocke 

June 2018 

Milling Feed Rate Input & Output 

signals  

SVM was used for 

Nonlinear dynamic 

behaviour online 

identification. 

 

Blackbox &  Greybox 

model describe dynamic 

SVM, LS-SVM generate 

blackbox &  Greybox 

model Blackbox model – 

0.0196 & Greybox model 

0.0252 relative error. 

Blackbox model required 

more time to adapt to the 

varying training data. 
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behaviour with low relative 

error.  

10 Dongdong Kong, 

Yongjie Chen, Ning 

Li 

Shenglin Tan 

Jan 2016 

Ball End 

milling 

Spindle 

Speed, Feed 

Rate, DOC 

Cutting Force 

Flank Wear 

V-SVR for predicting tool 

wear. Sensitive Signals(tool 

wear) are selected using 

principal component 

analysis (KPCA) 

KPCA-VSVR effective in 

predicting tool wear in 

small samples 

11 Garcia-Nieto, Garcia 

Gonzalo,  

Vilan Vilan, 

Segade Robleda 

Dec 2015  

Milling 

Cast Iron 

Spindle 

Speed, Feed 

Rate, DOC 

Flank Wear SVM tool wear prediction SVM-PSO predicts flank 

wear, Improves 

generalization capability. 

12 Chen Zhang, 

Haiyan Zhang 

Jan 2015 

Ball End 

Milling  

Spindle 

Speed, DOC, 

Feed Rate 

Tool Wear LS_SVM Modelling & 

Prediction of Tool wear 

LS-SVM is more accurate 

in prediction compared to 

ANN 

13 Guofeng Wang, 

Yinwei Yang, Qinglu 

Xie, Yanchao Zhang 

Mar 2014 

Milling Spindle 

Speed, DOC, 

Feed Rate 

Tool Wear SVM,RVM classifiers used 

to recognize multi stages of 

tool wear status during 

milling process 

SVM, Relevance Vector 

Machine (RVM) 

comparison study depicted 

RVM is effective, RVM 

has strong generalization 

capability and RVM yields 

fewer relevance vectors. 

14 Bulent Kaya, 

Cuneyt Oysu, 

Huseyin M 

Ertunc,Hasan Ocak 

Nov 2012 

Milling 

Inconel 718 

Spindle 

Speed, DOC, 

Feed Rate 

Tool Wear SVM-GA Classification 

(decision) stages prediction 

such as workable, sharp, 

close to dull, dull states 

Classification rates for the 

tool condition monitoring 

system before and after 

inclusion of the genetic 

algorithm step were 

determined as 89% and 

100%  respectively. 

15 Kadirgama, Noor, 

Rahman June 2012 

End Milling 

AA6061-T6 

Cutting Speed, 

Feed Rate, 

Surface 

Roughness 

Potential Support Vector 

Machine (PSVM) 

Perform effective with 

error (2%-9%) predicting 

surface roughness 
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Axial Depth, 

Radial Depth 

Optimization of surface 

roughness  

16 Huang, Xinghui Li, 

Gan 

Jan 2010 

Ball Nose End 

milling 

Spindle 

Speed, DOC, 

Feed Rate 

Cutting Force, 

Flank Wear, 

Surface 

Roughness 

SVM developed for tool 

wear classification and to 

provide decision by 

constructing the hyper 

plane. 

SVM (classification 

Problem) formulated 

Regression Problem to 

estimate Tool Wear 

17 B. Lela, Bajic, Jozic 

March 2009 

Milling 

Steel St 52-3 

Spindle 

Speed, DOC, 

Feed Rate 

Surface 

Roughness 

RA,BNN & SVM depict the 

prediction relative error 

<8% 

BNN is best suitable for 

predicting Surface 

roughness  6.1% error. 

18 Yao-Wen Hsueh, 

Chan- Yun Yang 

Jan 2008 

Face Milling 

Cast Iron 

Spindle 

Speed, DOC, 

Feed Rate 

Cutting Force, 

Tool Wear 

SVM to classify cutting 

force signal feature. 

Prediction of Tool 

breakage (TO find milling 

cutter with or without tool 

breakage) 

19 Yao-Wen Hsueh, 

Chan- Yun Yang 

Jan 2008 

Aluminium 

7075  

Spindle 

Speed, DOC, 

Feed Rate 

Cutting Force, 

Tool Wear 

SVM to classify spindle 

displacement feature. 

on-line intelligent sensor 

tool breakage system 

proposed 

20 Dongfeng Shi 

, Nabil N. Gindy 

Jan 2007 

High Speed 

steel6667 

HRC 

 Tool Wear 

 

LS-SVM & Principal 

Component Analysis (PCA) 

An online tool wear 

monitoring system has 

been developed based on 

platform of PXI and 

LabVIEW.  Good 

Agreement between LS-

SVM and actual tool wear 

measured by optical scan 

microscope. 

21 Sohyung Cho, Shihab 

Asfour 

, Arzu Onar, Nandita 

Kaundinya 

June 2005 

Milling Spindle 

Speed, DOC, 

Feed Rate, 

Cutting Force 

Tool Wear 

Tool Breakage Detection. 

SVM to identify process 

abnormalities. 

SVM to initiate corrective 

actions in milling process 

SVM model will reduce 

machine down time,  

production cost  SVM is 

effective compared to 

Multiple Variable 

Regression Model (MVR). 
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2.9.1 SVM Application for Modern Machining Operations 

Modern machining used chemical, thermal or electrical process to remove material in 

machining process. Zhang et al [19] applied SVM with multi-objective to develop a 

hybrid model for processing parameters optimization in micro-EDM. Researchers 

assigned discharge peak current, pulse duration, pulse-off time, capacitance, electrode 

rotating speed and servo reference speed as process parameters. All these parameters 

influence processing time (PT) and electrode wear (EW) in quite different ways. PT 

and EW are important input objectives. Since these parameters influence the output 

objectives in quite an opposite way, it is not easy to find an optimized combination of 

these processing parameters which make both PT and EW minimum. Thus, researchers 

adopted SVM to establish a micro-EDM process model based on the orthogonal test. 

Orthogonal test is designed to provide input and output data for training and testing 

SVM model. Gaussian function is used as a kernel function for this model. Zhang and 

Sui [20] proposed a condition monitoring method for rolling element bearings based on 

auto-regressive (AR) model and SVM in EDM machining.  

The SVM model improved the traditional classification of the defect effectively such 

as local minimization problem, the choice of NN structure and overfitting problems. 

SVM obtained such a good results in the bearing condition monitoring of mechanical 

components. Process parameter that used in this model includes motor loads, frequency, 

outer diameter, inner diameter, thickness and pitch diameter. SVM model was 

compared with NN and RBF-NN and the correct classification rates are 91 % and 93% 

respectively. While the correct classification rate of the proposed method is 95%. 

Sugumaran et al [21] developed fault diagnostics of roller bearing using neighbourhood 

score multiclass SVM in EDM machining. Roller bearing is one of the most widely 

used rotary elements in a rotary machine. RBF is used as a kernel function. This 

research used kernel based neighbourhood score multiclass SVM for classification and 

decision tree for addressing the future selection process. The study on using a multi-

class SVM showed the effectiveness in diagnosing the fault conditions of the bearing. 

A review of application of SVM in machining modelling has been presented. 
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From the review, we found that SVM was widely used for modelling of machining performances such as surface roughness, tool wear, tool 

breakage and fault diagnosis for both conventional and modern machining. SVM also is a multi-objective modelling tool that can meet the 

requirements of the machining operation for finding sets of solutions based on combination with suitable variable.  

 

Table 2.3: Comparison of traditional and machine learning algorithms in machining . 

Author and 

Year 

Research Objective Classification 

Algorithm 
Kernels Techniques Results 

Sohyung Cho,  

Shihab Asfour 

Arzu Onar 

Nandita 

Kaundinya  

(2004) 

An intelligent tool breakage 

detection system to provide the 

ability to recognize process 

abnormalities and initiate 

corrective action during a 

manufacturing process, 

specifically in a milling 

process. 

Kernel Based 

Learning 

Linear 

Polynomial 

SVR - MVR (Mulitple 

Variable Regression) 

Proposed model (SVR) performs well with a tight 

threshold value for tool breakage determination.  
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Dongfeng Shi, 

Nabil N. Gindy 

(2007) 

Predictive model by 

combination of least squares 

support vector machines (LS-

SVM) and principal  

component  analysis (PCA) 

technique. 

Kernel, 

Statistical 

Based 

Learning 

RBF PCA, LS-SVM Least Square Support Vector Machine (LS-SVM) 

based tool wear prediction model is constructed. 

A good agreement can be found between predicted 

tool wear constructed by LS-SVM and actual tool 

wear measured by optical scan microscope in 

broaching process. 

Yao-Wen Hsueh, 

Chan-Yun Yang  

(2008) 

A support vector machine 

(SVM) to classify the feature of 

the cutting force signal for the 

prediction of tool breakage in 

face milling. 

Kernel Based 

Learning 

Linear SVM  A support vector machine (SVM) to monitor the 

patterns of the milling cutting force with and without 

tool breakage has been established. A real-time tool 

breakage diagnosis can be successfully implemented 

with the on-line intelligent sensor system. 

 
Yao-Wen Hsueh, 

Chan-Yun Yang 

(2008) 

Introduces a new diagnosis 

technique for tool breakage in 

face milling using a support 

vector machine (SVM).  

Kernel Based 

Learning 

Linear SVM  Spindle displacement signals were processed by a 

support vector machine (SVM) to monitor tool 

breakage in face-milling operations. 

 

Lela, Bajic, Jozic 

 (2009) 

To examines the influence of 

cutting speed, feed, and depth 

of cut on surface roughness in 

face milling process.  

 

Kernel Based 

learning 

RBF BNN- SVR The study shows that when the training dataset is 

relatively small (as in the study), both BNN and SVR 

modeling methodologies are comparable with RA 

methodology. 

K. Kadirgama,· 

M. M. Noor,· 

M. M. Rahman 

(2012) 

Optimization of the surface 

roughness when milling 

aluminium alloys (AA6061-

T6) with carbide coated inserts.  

Kernel, 

Statistical 

Based 

Learning 

Linear Response Surface 

Method (RSM),  

Support Vector 

Machine (PSVM) 

PSVM has been found to be the most successful 

technique to predict the surface roughness with 

respect to various combinations of four cutting 

parameters (cutting speed, federate, axial depth and 

radial depth). (Error 2-9%) 
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Guofeng Wang , 

Yinwei Yang, 

Qinglu Xie, 

Yanchao Zhang 

(2014) 

A tool wear monitoring system 

based on relevance vector 

machine (RVM) classifier is 

constructed to realize multi 

categories classification of tool 

wear status during milling 

process. 

Kernel Based 

Learning 

Gaussian  SVM-RVM The comparison of SVM with RVM shows that the 

RVM can get more accurate results under different 

number of small training samples.  

 

Moreover, the speed of classification is faster than 

SVM. This method casts some new lights on the 

industrial environment of the tool condition 

monitoring. 

Bulent Kaya , 

Cuneyt Oysu, 

Huseyin Ertunc 

and Hasan Ocak 

(2014) 

Cutting forces, torque, three 

axis accelerometer and 

acoustic emission signals were 

analyzed and used for the 

development of an online tool 

condition monitoring system  

 

Kernel, 

Statistical 

Based 

Learning 

Tree Kernel  Binary Decision Tree 

SVM-GA 

Various time domain and statistical features extracted 

from these signals were used to train support vector 

machine models in a binary decision tree, which was 

used to predict the condition of the cutting tool.  

 

The genetic algorithm was employed for reducing the 

dimensionality of the feature set by selecting the 

features that correlates best with the tool condition.  

 

The classification rates for the tool condition 

monitoring system before and after inclusion of the 

genetic algorithm step were determined as 89% and 

100%, respectively. 
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Gangadhar, 

Hemantha 

kumar, 

Narendranath, 

Sugumaran 

(2014) 

To study the tool wear state in 

early stage with help of 

monitoring system. 

 

Statistical 

Based learning 

J48 

Algorithm 

Decision Tree J48 Algorithm was used to understand and accuracy 

as of 89.3%. 

Garcia Nieto, 

Garcia Gonzalo, 

Vilan, Segade 

Robleda  

(2015) 

To build a new practical hybrid 

regression model to predict the 

milling tool wear in a regular 

cut as well as entry cut and exit 

cut of a milling tool. 

Kernel Based 

learning 

RBF PSO - SVM Milling tool flank wear can be accurately modeled 

using a hybrid PSO–SVM-based model 
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Table 2.4: Comparison of traditional and machine learning algorithms.  

Author and 

Year 

Research Objective Classification 

Algorithm 

Kernels Techniques Results 

Himaanshu, 

Amit K Agrawal, 

Tarun Pruthi, 

Chandra Shekhar, 

Rama Chellappa.  

(2002) 

Comparative study of linear 

and kernel based methods 

for face recognition 

Kernel, Instance 

based learning 

Linear, Polynomial, 

Gaussian, RBF 

SVM,PCA, Kernel PCA, 

LDA, KDA, Nearest 

Neighbor(NN) 

SVM gives better 

performance than Nearest 

Neighbor 

Dell Zhang,  

Wee Sun Lee  

(2003) 

Automatic question 

classification 

through machine 

learning approaches 

Kernel, Logic, 

Instance and 

Statistical based 

learning 

Tree kernel SVM, NN, Naive Bayes, 

Decision Tree, Sparse 

Network of Winnows 

 

SVM works better while 

compared to other machine 

learning methods 

Jin-Hyuk Hong, 

Jun-Ki Min, 

UngKeun Cho, 

SungBae Cho.  

(2007) 

Effectively apply SVMs to 

multi-class fingerprint 

Classification systems 

Kernel and Statistical 

based learning 

Linear, Polynomial 

Gaussian Sigmoid 

Multiclass SVM, Naive 

Bayes 

 

Integrated Naive Bayes(NB) 

and SVM give good accuracy 

than SVMs, NB 

H.Z.M Shafri, 

Ramle.  

(2009) 

 

New approach to classify 

SPOT 5 satellite image 

Kernel and Logic 

based learning 

 

Linear, Polynomial 

RBF, Sigmoid 

 

SVM, Decision trees SVM with RBF gives the 

highest accuracy than 

Decision tree 
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Hongjun Jia, 

AleixM.Martinez. 

(2009) 

Defines a criteria which 

minimizes the probability 

of overlap in Hyperplane 

Kernel based learning Linear Partial SVM, simple 

nearest neighbor 

Partial SVM obtains higher 

recognition rate than other 

algorithms 

Qisong Chen, 

Xiaowei Chen, Yun 

Wu  

(2010) 

KPCA to SVM for feature 

extraction 

Kernel and 

Perceptron based 

learning 

RBF PSO-SVM, KPCA-SVM, 

Least Square SVM, 

Neural Network 

LS-SVM with KPCA and 

PSO is proposed for the 

power load forecasting 

Kunlun Li, 

Xuerong Luo,   

Ming Jin. 

(2010) 

Novel SVM KNN 

classification based on 

Semi-supervised learning is 

proposed 

Kernel and Instance 

based learning 

RBF kernel SVM - KNearest 

neighbor 

SVM-KNN classifier 

improves the accuracy of 

classifier model 

Durgesh K. 

Srivastava, Lekha 

Bhambhu. 

(2010) 

A novel SVM based 

learning method for  

classification 

Kernel and Instance 

based learning 

linear, RBF 

Polynomial, Sigmoid 

Rule Based, Rule Based 

With Discretization, 

KNN, Local Transfer 

Function, SVM 

SVM outperforms other 

methods but choice of kernel 

function is critical 

Piotr 

Nazarko. 

(2011) 

Pattern classification in the 

damage detection system 

Kernel, Logic and 

Perceptron based 

learning 

Linear, Polynomial 

RBF, MLP, Quadratic 

Binary decision tree 

(BDT), Auto associative 

neural network ,SVM 

SVM exhibit more efficiency 

in comparison to ANNs , 

novelty index 

Shelly Gupta, 

Dharminder, 

Anand Sharma. 

(2011) 

Performance analysis of 

Classification techniques 

using the healthcare 

datasets 

Kernel, Logic, 

Instance, Perceptron 

and Statistical based 

learning 

Predefined kernels in 

Machine learning 

Tools 

SVM,NNRBFN SVM shows the most 

promising results than the 

Other 

 

 



61 
 

S. Anto, Dr.S. 

Chandramathi. 

(2011) 

Supervised classification 

approaches are reviewed 

with the medical field data 

Kernel, Rule, Logic, 

Instance, Perceptron 

& Statistical based 

learning 

Nonlinear kernel SVM, Decision Trees, 

Naive , Bayes Neural 

Network (NN) 

 

SVMs perform better with 

medical field in comparison 

with all other methods and 

next NN works better 

Milan Kumari, 

Sunila Godara. 

(2011) 

Develop a Model to take 

effective decision in 

medical domain 

Kernel, Logic & 

perceptron based 

learning 

Nonlinear kernel RIPPER, Decision Tree, 

ANN (MLP), SVM 

SVM turned out to be best 

classifier model for prediction 

 

Table 2.5: Comparison of performance metrics of different learning algorithms - (**** stars represent the best and * star the worst 

performance). 

Metrics Decision 

Trees 

Neural 

Networks 

Naive Bayes KNN SVM  Rule 

Learners 

Accuracy ** *** * ** **** ** 
Learning Speed *** * **** **** * ** 
Classification Speed **** **** **** * **** **** 
Tolerance to missing 

values 
*** * **** * *** ** 

Tolerance to 

Irrelevant attributes 
*** * ** ** **** ** 

Tolerance to 

Redundant attributes 
** ** * ** *** ** 

Highly 

interdependent 

attributes 

** *** *** *** ** *** 
Dealing with 

different attributes 
**** *** *** *** *** *** 

Tolerance to noise ** ** *** * *** * 
Tolerance to 

overfitting 
** * *** *** *** ** 

Incremental 

Learning 
** *** **** **** ** * 

Interpretation **** * **** ** **** **** 
Model Parameter 

handling 

 

*** * *** *** **** *** 
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2.10 SURVEY ON PREDICTION - NEURAL NETWORKS V/S STATISTICAL 

TECHNIQUES  

 

As a forecasting tool, ANN can be compared to Autoregressive moving Average (ARMA) 

class of models. ARMA methods, since ages have been used to model time series. In 

general, similarities do exist between the ANN and statistical techniques. An FFNN can be 

termed as a form of non-liner regression (Ripley 1996, Potzinger et al. 2000). A multiple 

linear regression scheme, a standard statistical tool, can be thought of as a simple ANN 

node. For example, for a linear equation of the type, y = w0 + w1x1 + w2x2 + . . . . . . . . + 

wnxn, the xi can be taken to represent the inputs to the node, wi can be taken as the 

corresponding weights and w0 can be the threshold function.  

 

The ANNs have been rigorously compared with statistical methods for applications 

pertaining to classification and prediction (Ripley 1994). Effectiveness of ANN in time 

series forecasting have been examined. Lapedes and Farber (1988) have shown that in two 

time series prediction problems, neural networks are clearly superior to statistical methods.  

 

Sharada and Patil (1994) analysed 75 different time series problems and inferred that the 

ANN and Box-Jekins forecasting system performed equally. Interestingly, it has been 

observed that the memory of a time series has some bearing on the performance. ANN 

performs slightly better than Box-Jekins model for time series with short memory while 

reverse is true for time series with long memory.  

 

A lot of study has been done on artificial neural networks and the regression methods to 

determine the suitability of these models for pattern mappings (Kim et al. 1993, Patuwo et 

al. 1993, Subramanian et al. 1993, Yoon et al. 1993 and Potts 2000). 
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2.11 SURVEY ON OPTIMIZATION (CONVENTIONAL V/S NON-

CONVENTIONAL TECHNIQUES)  

 

Baskar et al. (2005) implemented various operations research techniques such as GA, Tabu 

search (TS) algorithm, ACO and PSO for optimizing machining parameters of multi-

milling operation. The authors concluded that PSO algorithm always yields best result 

when compared to other algorithms and handbook recommendations. Wong et al.(2004) 

presented a hybrid of SA and GA optimization technique to select the optimal machining 

parameter for multi-pass milling operations. This approach used the strengths of SA and 

GA and overcame their weakness. It is evident from the results that this hybrid approach 

was more effective than conventional methods.  Indrajit Mukherjee et al. (2006) appraised 

the application potential of several modelling such as statistical regression technique, 

ANN, Response Surface Methodology (RSM) etc., and optimization techniques such as 

SA, GA and TS algorithm in metal cutting processes. Ramon et al. (2006) used GA for 

optimizing cutting parameters and made a remark on the advantages of multi-objective 

optimization approach over single objective function. An application sample was 

developed and its results were analysed for different machining conditions. Tansel et al. 

(2006) proposed Genetically Optimized Neural Network System (GONNS) for the 

selection of optimal cutting condition in machining. Optimal operating conditions were 

calculated to obtain the best possible compromise between roughness of machined surface 

and the duration. Baskar et al. (2006) developed GA, Hill Climbing Algorithm (HCA) and 

Memetic Algorithm (MA) to find optimum cutting parameters for multi-tool milling 

operations like face milling, corner milling, pocket milling and slot milling. Significant 

improvement was observed in using these techniques when compared to handbook 

recommendations and method of feasible direction.   

 

Franci Cus et al. (2003) proposed ANN to optimize cutting parameters for machining 

operation. The objective was to increase the productivity and reduce the production cost. 

Raid Al-Aomar et al. (2006) used GA to determine near optimal settings to both machining 



64 
 

and production process parameters so that the overall per order production cost is 

minimized. The experimental results and the sensitivity analysis showed the robustness of 

the proposed GA. Suresh et al. (2002) dealt with the study and development of surface 

roughness prediction model for machining mild steel using RSM. GA was used to give 

minimum and maximum values of surface roughness and their respective optimal 

machining conditions.   

 

Zarei et al. (2009) presented a Harmony Search (HS) algorithm to determine optimum 

cutting parameter for multi-pass face milling. GA was used to solve the same problem. 

Comparison of results revealed that the HS algorithm could obtain optimum solution with 

higher accuracy when compared to GA.  Venkata Rao et al. (2010) applied Artificial Bee 

Colony (ABC), PSO and SA algorithm for parameter optimization of a multi pass milling 

process. Minimization of production time was the objective considered subjected to various 

constraints. The accuracy and quick convergence to global optimum solution of ABC and 

PSO were very high as compared to SA algorithm. 

 

Yusup et al. (2012a) have incorporated Genetic Algorithm (GA) to find the optimal cutting 

conditions for acquiring better surface finish in milling process and concluded that good 

surface finish can be obtained at high speed, high rake angle and low feed rate. Benardos 

et al. (2002) have included the ANN technique in the study to predict surface roughness 

value. The authors concluded that the mean error of 1.86% obtained by using ANN seemed 

to be consistent throughout the range of values. In their research, Ab. Rashid et al. (2009), 

presented the development of mathematical model for surface roughness prediction for the 

milling process in order to evaluate the fitness of machining parameters namely spindle 

speed, feed rate and depth of cut.  
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2.12 SUMMARY ON USAGE OF CRYOGENIC (LN2) 

 

The review of the literature suggests that cryogenic cooling provides several benefits in 

machining. Based on the existing literature studies, it has been concluded that cryogenic 

cooling is a different approach, in which the temperature at the cutting zone is reduced 

substantially to a very low range (Mirghani et al 2007). It was also concluded from recent 

works that, cryogenic cooling is a possible answer for high speed eco-friendly machining 

(Kumar and Choudhury 2008). Cryogenic cooling is an environment friendly clean 

technology for achieving the desirable control of cutting temperature and enhancement of 

tool life.  

 

A recent work dealt with the experimental investigation of cryogenic cooling by liquid 

nitrogen in the machining of tool steels. The substantial benefits of cryogenic cooling on 

cutting temperature, cutting force, surface roughness, tool wear, chip shape and chip 

morphology were reported. However, more work is needed to explore the potential 

advantage of cryogenic cooling. In the existing cryogenic cooling methods, many 

researchers have attempted to supply the liquid nitrogen on the workpiece pre-cooling, tool 

back cooling, main and auxiliary cutting edges and tool rake and flank face. It has been 

seen that a lot of research has been done in the past, to improve the machinability of the 

difficult-to-cut materials, using the cryogenic cooling technique. Machining processes, like 

turning and grinding has been widely investigated under cryogenic machining conditions 

compared to that of milling. In the present study, the milling of the SS316, steel using 

cryogenic cooling LN2 as coolant has been investigated, for different cutting speeds and 

feed rates to evaluate the machining performance. 
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2.13 SECTION SUMMARY ON SVM 

From a review of the literature, it is established that a lot of research is still going on 

different classification algorithms to reduce the error rate and improve the accuracy. Here, 

the review relates to supervised machine learning methods like Artificial Neural Networks, 

Decision Trees, Rule Based and Support Vector Machines. The review of literature has 

driven the focus of the research work in the direction of Support Vector Machines which 

gives more regularization, generalization and approximation. As discussed in the previous 

section, selection of kernel function and its parameter in SVM is a critical issue that 

determines the performance of the classifier. In the forthcoming chapters, the adopted 

kernel based classifier is discussed in detail and an admissible kernel function for SVM is 

formulated.  

2.14 RESEARCH GAP 

A review of the literature suggests that the extremely low temperature of LN2 cooling 

provides significant benefits in machining without polluting the environment. Most of the 

cryogenic cooling applications using LN2 in machining studies have been examined in 

turning and grinding processes. There are only few research work carried out in milling 

operations under cryogenic cooling. In general, the cryogenic cooling approaches in metal 

cutting may be classified into four groups, according to the applications of the researchers: 

cryogenic pre-cooling the work piece by repulsing or an enclosed bath, cryogenic chip 

cooling, indirect cryogenic cooling or cryogenic tool back cooling or conductive remote 

cooling, and cryogenic jet cooling by the injection of cryogen to the cutting zone by general 

flooding, or to the cutting tool edges or faces, tool–chip and tool–work interfaces by micro 

– nozzles (Yildiz et al. 2008). The other few research gap are stated below: 

• Work has been done on the concept of cryogenic cooling with liquid nitrogen in 

end milling process. 

• The percentage of work carried on cryogenic concept in turning process is higher 

compared to milling process. 
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• From the literature it can be observed that fetching and validation of cutting force 

has been done using direct approach. 

• It can be derived from the literature that more concentration is towards the 

microstructural study and mechanical properties. 

• Very limited focus towards the incorporation of soft computing techniques in 

cryogenic machining methods. 

• Limited work has been noticed on the concept of cryogenic cooling and supplying 

liquid nitrogen at the tool – work interfaces in the face milling process. 

• Investigation on the effects of cryogenic cooling on the cutting temperature, cutting 

force, surface roughness and chip morphology in milling of SS 316 with PVD 

TiAlN coated carbide tool. 

• Prediction using various back propagation algorithms(BPA), identifying best BPA 

to utilize it in machine learning prediction. 

• Incorporating machine learning concept for prediction (using various kernel 

functions) and optimization (Hybrid technique – PSO-RBF-SVM) in milling 

process. 

2.15 NEED FOR THE PRESENT STUDY 

 

The challenge of modern machining industries is mainly focused on the achievement of 

high quality, in terms of work piece dimensional accuracy, surface finish, high production 

rate, less wear on the cutting tools, economy of machining in terms of cost saving, and 

increase of the performance of the product with reduced environmental impact. In all 

machining operations, tool wear is a natural phenomenon that eventually leads to tool 

failure.  
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The growing demands for higher productivity in machining need the use of high cutting 

velocity and feed rates, which will increase the cutting temperature and cause tool wear 

and tool fracture. Such a high cutting temperature, not only reduces tool life but also 

impairs the product quality, particularly, when the workpiece is quite strong, hard and heat 

resistant (Dhar et al 2002b). Conventional cooling methods are not only ineffective, but 

also spoil the working environment by producing harmful gases and smoke. Kitagawa et 

al (1997) reported that in the high speed machining of Inconel and titanium alloys, cutting 

fluids failed to reduce the cutting temperature and improve tool life effectively. High 

cutting temperature is one of the main reasons for rapid tool wear, and hence, the poor 

machinability of titanium alloys (Venugopal et al 2007).   

 

Dhar and Kamruzzaman (2007) reported that the machining of steel inherently generates 

high cutting temperature, which not only reduces tool life but also impairs product quality. 

Chip breaking is the major criterion in advanced automated industries. Machining of 

ductile materials in the automated machines is more complicated, because of the formation 

of continuous chips. In order to minimize the negative effects of the conventional cutting 

fluids, a new alternative coolant such as the use of cryogenics as a coolant and lubricant is 

now gaining increasing acceptance in the metal cutting industries. Cryogenic cooling has 

been attempted in the machining of steels (Dhar et al 2002, 2002a, and 2002b, Uhera and 

Kumagai, 1969 and 1970) with substantial technological benefits. The favorable role of 

cryogenic cooling in chip breaking, cutting temperature, cutting force and tool wear in the 

turning of steels was reported (Dhar et al 2000, 2000a and 2000b).  

 

In this research work, cryogenic cooling system was developed for reducing the cutting 

zone temperature in the milling process. In this system, the LN2 is applied to cool the 

cutting zone, particularly tool-chip interface by using nozzle. LN2 can easily penetrate into 

the tool-chip interface to reduce the cutting temperature. 
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2.16 SCOPE OF THE PRESENT STUDY 

 

The following are the scope of the present work: 

 

 Designing the experimental layout using L31 orthogonal array. 

 Conducting experiments for measuring process output variables while milling of 

SS316 (TiAlN coated carbide tool) using cryogenic technique. 

 Evaluating the influence of process parameters (spindle speed, feed rate, depth of 

cut, coolant type) on process output variables (cutting temperature, cutting force, 

surface roughness and tool wear) during milling by integrating design of 

experiment (DOE), response surface methodology (RSM) and analysis of variance 

(ANOVA) techniques. 

 Generation of RSM and artificial neural network (ANN) model for correlating the 

predicted results of milling process output variables with experimental results of 

milling process output variables.   

 Generation of desirability factor approach (DFA) and particle swarm optimization 

(PSO) model for optimizing the results of milling process output variables.   

 Generation and Integration of machine learning technique – support vector machine 

(SVM) model for prediction and optimizing the results of milling process output 

variables.  
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2.17 OBJECTIVES OF THE PRESENT WORK 

 

The present work investigates the influence of cryogenic cooling by liquid nitrogen in the 

machining of SS316 steel by carbide cutting tools under different cutting conditions, and 

compares the effectiveness of cryogenic cooling with that of dry and wet machining. The 

following objectives have been identified, as part of this study: 

 

1. To study the effect of cryogenic milling process parameters on cutting temperature, 

cutting forces, surface roughness, tool wear, chip morphology and to compare the 

results with dry and wet machining.  

2. Evaluation of the effects of process parameters on process output variables, while 

milling of SS316 coated TiAlN tool, through the integration of Analysis of 

Variance (ANOVA) and Response Surface Methodology (RSM).  

3. To predict and optimize the process parameters for achieving better milling 

performance characteristics using the statistical and soft computing techniques.   

4. Development of a suitable hybrid intelligent method for the prediction and 

optimization of milling (SS316) parameters.  
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CHAPTER 3 

 

EXPERIMENTAL CONDITIONS AND PROCEDURE 

 

This study was undertaken to perform milling operations on AISI 316 (SS316) using 

carbide cutting tool inserts under various spindle speed-feed rate-depth of cut 

combinations. The cutting environments evaluated in the milling process were: Dry 

machining, Conventional cooling (Wet) and Cryogenic cooling (LN2). A cryogenic 

cooling setup was developed and utilized for supplying liquid nitrogen at the cutting 

zone. In the present work, the cutting temperature, cutting force, surface roughness, tool 

wear, chip shape and chip morphology are considered, for studying the effect of 

cryogenic cooling. The influence of cryogenic cooling using liquid nitrogen was 

compared to that of dry and wet machining. This chapter explains experimental 

procedure, workpiece materials, cutting tool materials and the equipment being used. 

 

3.1 WORK MATERIAL - AISI 316 STAINLESS STEEL (SS316) 

Stainless steel is most notable for their corrosion resistance which increases with 

chromium content. Materials having a hardness of over 45 HRC (Rockwell hardness C 

scale), can be classified as difficult-to-machine materials (Becze and Elbestawi 2002, 

Poulachon and Moisan, 2000). In this research work CNC Spark DTC-12 was utilized 

to carry out cryogenic milling experiments on SS316 stainless steel (100mm x 40mm x 

30). Table 3.1 illustrate the experimental conditions, respectively, utilized in the current 

work. The chemical composition of the material is represented in Table 3.2. Figure 3.1 

depicts the microstructure along with the EDS spectra of the work material. 
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Table 3.1: Experimental design matrices of RSM model. 

Runs Spindle Speed 

(rpm) 

Feed rate 

(mm/min) 

Depth of cut 

(mm) 

Coolant type 

1 -1 -1 -1 -1 
2 1 -1 -1 -1 
3 -1 1 -1 -1 
4 1 1 -1 -1 
5 -1 -1 1 -1 
6 1 -1 1 -1 
7 -1 1 1 -1 
8 1 1 1 -1 
9 -1 -1 -1 1 

10 1 -1 -1 1 
11 -1 1 -1 1 
12 1 1 -1 1 
13 -1 -1 1 1 
14 1 -1 1 1 
15 -1 1 1 1 
16 1 1 1 1 
17 -1 0 0 0 
18 1 0 0 0 
19 0 -1 0 0 
20 0 1 0 0 
21 0 0 -1 0 
22 0 0 1 0 
23 0 0 0 -1 
24 0 0 0 1 
25 0 0 0 0 
26 0 0 0 0 
27 0 0 0 0 
28 0 0 0 0 
29 0 0 0 0 
30 0 0 0 0 
31 0 0 0 0 

 

Table 3.2: Composition ranges for 316 grade of stainless steel. 

Grade C Mn Si P S Cr Mo Ni N 

316 0.08 2.0 0.75 0.045 0.03 18.0 3.00 14.0 0.1 
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Figure 3.1: SEM image of EDS spectra of SS316 

3.1.1 Methodology  

In this research work, the milling experiments were carried out on the SS316 under dry, 

wet and LN2 machining environments. The methodology used in the milling of the 

SS316 is shown in Figure 3.2(a) and the photographic view of the present investigation 

is depicted in Figure 3.2(b). 

 

 

Figure 3.2(a): Methodology for the milling of the SS316 steel 
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Figure 3.2(b): Photographic view of the present investigation 

3.2 EXPERIMENTAL SETUP AND PROCEDURE 

The work part SS316 was primarily milled on CNC machine using coated carbide tool 

in three distinct machining environment (dry, flood and LN2). The machining 

experiments have been carried out on a CNC Milling Machine (Spark DTC 250) as 

shown in Figure 3.3. It is having drum type tool changer. The maximum number of 

tools that can be accommodated in this machine is 12. Proximate sensors are provided 

to sense the tool position. The movement of the axis are achieved by the servo motor. 

The effects of spindle speed and cooling approach were studied and compared with dry 

machining. The experiments were carried out at three spindle speeds i.e. 1000, 2000 

and 3000rpm, feed rate of 350, 450, 550 mm/min and depth of cut of 0.5,1,1.5mm. A 

total flow of the current work is depicted in Figure 3.4. The cutting force were 

calculated via indirect approach via fetching data through Ethernet cable (Provided by 
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– FANUC) (data acquisition). In indirect fetching method of cutting force, first fetch 

the esteems in terms of current values  and later using the referral current graphs and 

substituting the values in the formulas we obtain the cutting force values. The 

machining temperature at tool-chip interface was measured using the infrared 

thermometer. A roughness tester (surtronic) was used to measure the surface of the 

work part. The surface value was recorded at four different positions and the average 

esteem was taken. Wear on the flank and rake faces of the inserts were measured with 

help of an optical microscope and further analysed using SEM for each trial. Tool wear 

was recorded at three different locations and the average value was considered for the 

study. SEM and energy dispersive spectroscopy (EDS) was used to investigate the 

microstructure and chip morphology.  

 

Figure 3.3(a): Experimental setup CNC vertical milling machine (Spark DTC 250)  
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3.2.1 Flow of Work  

 

Figure 3.4: Approach pragmatic for modelling and optimization 
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3.3 PARAMETERS AND THEIR LEVELS   

The process parameters and their levels for milling operation considered in the study 

are shown in Table.3.3 for L31 Design of Experiment (DOE) (orthogonal array 

experiments). The parameter ranges were set based on the trial experiments and cutting 

tool specifications. 

As the degrees of freedom should be always less than number of experiments to be 

conducted as per the orthogonal array rule (Design of Experiment). In the current work 

there are 4 inputs with 3 Levels and the lack of fit observed in L9 and L27. So the L31 

was opted for the current study with number of center point minimum replication 7, 

corner point 16 and axial (star) point 8. 

Table 3.3: The machining parameters and their levels. 

Machining 

Parameters 

Units Notation Operating Levels 

Coded Low(-1) Middle(0) 

 

 

High(+1) 
Spindle Speed  

 

(rpm) S 1000 2000 3000 

Feed Rate (mm/min) F 350 450 550 

Depth of Cut   

 

(mm) D 0.5 1 1.5 

Coolant type 

 

 CT -1(Dry) 0(Wet) 1(LN2) 

 

3.4 RESPONSE SURFACE METHODOLOGY   

Response surface methodology (RSM) is a collection of both statistical and 

mathematical techniques utilized for modeling, analysis and design of experiments, in 

which a response of interest is influenced by several variables and the objective, is to 

optimize this response.  This technique is helpful for modeling and analysis of 

parameters, in which response of interest is affected by several variables and the 

purpose is to optimize this response. In this study, RSM based central composite 

rotatable design experiments of all possible combination of levels of the spindle speed, 

feed rate and depth of cut were investigated.  It is a dynamic and foremost important 

tool of design of experiment, wherein the relationship between responses of a process 

with its input decision variables is mapped to achieve the objective of maximization or 

minimization of the response properties (Raymond & Douglas 2002).  
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The multiplicative model for the predicted surface roughness (response surface) in end 

milling in terms of the independent variable investigated can be expressed as, 

𝑅𝑎 = 𝐶𝑜 𝑉𝑜
𝑘 𝑓𝑧

1 𝑎𝑚                                                  (3.1) 

Where Ra is the predicted surface roughness (μm), Vo is the cutting speed (m/min), fz is 

the feed per tooth (mm/tooth), and a is the axial depth of cut (mm). Co, k, l, and m are 

model parameters to be estimated from experimental results. To determine the constants 

and exponents, this mathematical model can be linearized by employing a logarithmic 

transformation and equation (3.1) can be re-expressed as, 

ln 𝑅𝑎 = ln 𝐶 + 𝑘 ln 𝑉 + 𝑙 ln 𝑓𝑧 +  𝑚 ln 𝑎                                            (3.2) 

The linear model of equation (3.2) is, 

𝑦 =  𝛽0𝑥0 + 𝛽1𝑥1 + 𝛽2𝑥2 + 𝛽3𝑥3                                           (3.3) 

Where y is the true response of surface roughness on a logarithmic scale x0 = 1 (dummy 

variable), x1, x2, x3 are logarithmic transformations of speed, feed, and depth of cut, 

respectively, while β0, β1, β2, and β3 are the parameters to be estimated. Equation (3.3) 

can be expressed as, 

       𝑦1̂ =  𝑦 − 𝜀 =  𝑏0𝑥0 + 𝑏1𝑥1 + 𝑏2𝑥2 + 𝑏3𝑥3                                  (3.4) 

Where 𝑦1̂ is the estimated response and y the measured surface roughness on a 

logarithmic scale, ε the experimental error and the b values are estimates of the β 

parameters. 

 

The second-order model can be extended from the first-order model’s equation as: 𝑦2̂ =

 𝑦 − 𝜀 =  𝑏0𝑥0 + 𝑏1𝑥1 + 𝑏2𝑥2 + 𝑏3𝑥3 +  𝑏11𝑥2
1 + 𝑏22𝑥2

2 + 𝑏33𝑥2
3 +  𝑏12𝑥1𝑥2 +

𝑏23𝑥2𝑥3 + 𝑏13𝑥1𝑥3                                                                                (3.5) 

Where  𝑦2̂ is the estimated response based on the second order model. 

It is also called multiple regressions. In this, three-way interaction is carried out. 
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3.5 MEASUREMENT OF PERFORMANCE CHARACTERSTICS  

In the present study, the considered responses are cutting temperature, cutting force, 

surface roughness and tool wear. So, the upcoming section deals with the measurement 

of the response characteristics through various devices. 

 

3.5.1 Cutting Force: Indirect Method of Measuring the Cutting Forces  

Measuring the cutting forces during machining is a very complicated task. The direct 

method of measuring the cutting force is having a lot of disadvantages like cost, 

mounting of sensors, constrains of cutting parameters and machine, and cutting 

condition. Therefore indirect method of measuring cutting forces is used. There are 

several techniques used to measure the cutting forces in indirect method. One technique 

is to tap the current signals of the feed servo motor from the MCU as shown in Figure 

3.5. The current drawn by each axis is measured with and without cutting. The current 

drawn by the servomotor is nothing but the force required to move the table from the 

initial stage to the cutting stage.  The current drawn during without cutting includes 

contributing factors like the friction force, preload torque, weight of the table and 

component, motor inertia, disturbance in the electrical and mechanical system. The 

current drawn during cutting includes these effects and cutting force required to remove 

the material during cutting. The difference between instantaneous cutting force with 

cutting and without cutting. That is without cutting refers to the tool was in the air and 

the program was executed (the current drawn by each axis measured), whereas with 

cutting refers to the method where the tool is engaged with the material by a specified 

depth of cut (current drawn by the servo motor is measured). The torque can be 

calculated by multiplying the current with torque constant.  

Torque of the motor Tm, = current drawn by the motor * RMS Torque constant.   (3.6) 

Each motor has its own torque constant which is specified in the motor specification 

table. We have                                𝑇
𝑚=

𝐹𝐿𝜋𝔶  

1000

                 (3.7) 

Where F= cutting force in N, L = lead in mm, 𝜂 = efficiency of power transmission. 
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Figure 3.5: Data acquiring from SERVOGUIDE software 

3.5.2 Surface Roughness Measurement 

The surface roughness was measured by using ‘MITUTOYO SURFTEST SJ-301 

surface roughness tester as shown in Figure 3.6 (a) and Figure 3.6 (b) shows the 

pictorial view of surface roughness tester measuring surface roughness on the 

workpiece SS316. The roughness tester uses a differential inductance method as direct 

technique.  The tester consists of a hard needle shape stylus made of diamond. The 

stylus includes a tip radius of 2 µm and applies a force of 0.75 mN with a stylus speed 

of 0.25 mm/s to measure the surface roughness. Basically, the surface roughness (Ra) 

was measured at three different locations. Further on, the average was calculated and 

the average was considered as the response.  While carrying out the measurement, the 

cut off length and evaluation length was fixed as 0.8 mm and 4mm, respectively. The 

Ra and Rz values of SS316 machined surface were directly fetched using roughness 

tester.  
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Figure 3.6: (a) Surface roughness tester MITUTOYO SURFTEST SJ-301 

(b) Surface roughness tester measuring surface roughness on the workpiece 

SS316 

 

3.5.3 Surface Topography  

The topography of the SS316 machined surface was examined using a 3D laser 

microscope by using Olympus LEST OLS4000 laser confocal microscope available at 

CMTI, Bangalore as shown in Figure 3.7. The microscope uses a laser scanning to 

measure the surface profile of the machined components. The microscope can measure 

surface texture more accurately due to low laser spot diameter of 0.4 µm 

 

Figure 3.7: Laser optical confocal microscope 

3.5.4 Scanning Electron Microscope   

Scanning electron microscope with Energy dispersive X—ray spectroscopy (EDS) 

from JEOL as shown in Figure 3.8 was used to study the tool wear, chip morphology 

and surface morphology SEM was utilized. The scanning electron microscopy 

instrument had a resolution of at 30 KV. The specimens were loaded properly in the 

sequence. SEM images at different magnifications were taken.  Along with 
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microstructures EDS analysis was carried out for the specimen to know the elemental 

composition present in the alloy. Figure 3.9 depicts the Rapid-I Machine Vision System 

Images Depicting progression of crater wear.  

 

 

Figure 3.8: Scanning electron microscopy 

  

 

Figure 3.9: Rapid- I machine vision system images depicting progression of crater 

wear 

3.5.5 X-ray diffraction (XRD) analysis   

The X-ray diffraction analysis were carried out using BRUKER D8 ADVANCE 

machine it is used to measure the phases present in the hot machined specimens with 

different temperatures as shown in Figure 3.10.  In XRD software, the inputs are as 
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follows: starting angle of scan of 20º, end angle scan of 100º, step size of 0.1 seconds 

and targeted CuKα.  After fetching the XRD patterns, the patterns were analyzed using 

the software PCPDFWIN to determine the phases present in the machined specimen.  

 

 

Figure 3.10: X-Ray diffraction 

 

3.6 OPTIMIZATION OF PARAMETERS 

3.6.1 Parametric Optimization Using Desirability Function 

Desirability Function approach is a multiple-response optimization method. This 

approach was first introduced in 1980 by Suich and Deringer. The method finds 

operating conditions “targeted” which are the most desirable response value. The 

general approach is first converting each response x1 into an individual desirability 

function di that varies over the range 0 < di < 1 (Deringer and Suich 1980, Baji et 

al.2010). The desirability functions are categorized into three sectors based on the 

response characteristics. 
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1. If the target for the response is a maximum value / "Higher is better". 

 {

0

[ 
𝑟𝑖−𝑟𝑖∗

𝑟𝑖′−𝑟𝑖∗

1

] a    

    

2. If the target for the response is a minimum value / "Lower is better". 

 {

1

[
𝑟𝑖∗−𝑟𝑖

𝑟𝑖∗−𝑟𝑖"
]

0

b   

      

 

   

3. If the target for the response is between lower and higher value / "Nominal is better". 

{

[
𝑟𝑖−𝑟𝑖∗

𝑂𝑖−𝑟𝑖∗
]

[
𝑟𝑖−𝑟𝑖∗

𝑂𝑖−𝑟𝑖∗
]  

0

a  

Where: Oi is the objective value, c and  a describe the 

exponential parameters which verify the shape of the desirability function. 

 

3.6.2 Optimal Machining Parameters: Particle Swarm Optimization (PSO)  

The optimal process parameters are achieved by employing the PSO and desirability 

approach. The PSO was implemented using MATLAB and the Desirability approach 

was carried out using Minitab software. The working conditions for the PSO model are 

illustrated in the algorithm. The projected model and the parameters that play a vital 

role in obtaining finer convergence characteristics of PSO are discussed in 

(Optimization Chapter 6). If the number of parameters increases, the learning rate 

increases in turn the number of iteration increases in the search space. The outcome 

leads to probability of getting global optimum solution and leading the convergence to 

be accomplished in a smaller number of iterations. Therefore there is a boundary on 

maximum velocity to be attained by the particles.  

The above criterion indicates the abandoned increase in velocity of particles, so it is 

necessary to make the search algorithm to be limited boundary range. The direction of 

ri ≤ ri*
 

ri*<  ri< ri'
 

ri ≥  ri'
 

   ri ≤ ri
" 

   ri
" <  ri<  ri
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   ri ≥  ri
* 
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the velocity gets altered in opposite direction if the velocity of the particles surpasses 

ahead of the specified range. This results in converging quickly towards its global 

optimum solution.  

A)  Proposed Methodology: PSO 

Based on the literature survey, the PSO technique yields good result as 

compared to the rest of the techniques. So the PSO technique is incorporated in this 

present study. PSO is stochastic optimization technique which is a population based 

optimization technique, PSO technique was implemented (Eberhart et al.in 1995). The 

PSO technique was implemented by taking an inspiration of birds flocking. In the PSO 

algorithm the particles are estimated by the fitness function to be optimized and have 

velocities for the particles. The PSO has two important values which are termed as pbest 

and gbest. The pbest value is the best solution achieved so far among the particle, gbest 

value is the best solution obtained so far in the population. Once these two values i.e 

pbest and gbest are acquired, the particles are upgraded with their velocity and positions 

using the equation (3.8). PSO incorporates various parameters such as number of 

particles, range of particles, global vs local values, dimension of particles, learning 

factor. The information mechanism sharing in PSO is entirely diverse as compared to 

the rest of the techniques. The information sharing in PSO is one way sharing 

mechanism. In PSO, the gbest has the right to share the information with others. As the 

evolution glances only for the best solution, all the particles present intend to converge 

towards the best solution as quickly as possible in most of the cases. The PSO algorithm 

mainly consists of three different factors as follows: 1) Social 2) Cognitive 3) Inertia 

(Eberhart et al.in 1995, Munish et al.2015). All these three constraints concentrate 

mainly on accelerating the particle towards the best position. The best position is the 

one which is so far followed by all the neighbouring swarm; this position is considered 

to be the global best (gbest) position. The Cognitive constraint concentrates on 

accelerating the individual particle towards its best position (pbest), the position (pbest) 

which is accomplished by the individual particles so far. The inertia constraint plays a 

vital role in maintaining the stability between the gbest and pbest investigation 

competence among the search space. If the fitness values of gbest and pbest values are 
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compared among each other, if the pbest value is found to be better than the gbest value, 

then the value of the gbest changes 

The equations (3.8 - 3.10) are incorporated to vary the position of the individual 

particles to reach global optimum solution in search space. 

       𝑣 𝑖
𝑟+1 = 𝑤. 𝑣𝑖

𝑟 + 𝑐1. 𝑄1. (𝑝𝑏𝑒𝑠𝑡𝑖 − 𝑦𝑖
𝑟) +  𝑐2. 𝑄2. (𝑔𝑏𝑒𝑠𝑡 − 𝑦𝑖

𝑟)         (3.8) 

Where 𝑣𝑖
𝑟 = ‘ ith’ particle momentum at ‘rth’ iteration; w = inertia weight; c1,c2=learning 

factors which varies in the range of 1 to 4; Q1,Q2= random numbers between 0 to 1; 

𝑝𝑏𝑒𝑠𝑡𝑖= pbest location of ‘ ith’ particle or pbest value is the best solution achieved so 

far among the particle; gbest=gbest location of swarm; 𝑦𝑖
𝑟 = 

[𝑦𝑖1
𝑟 , 𝑦𝑖2

𝑟 , 𝑦𝑖3 
𝑟 , … … … … … . . 𝑦𝑖𝑁

𝑟 ], “ith” particle current position at “rth”  iteration in N- 

dimensional search space or gbest value is the best solution obtained so far in the 

population.  

After calculating the momentum, the next position of the rth particle is calculated as 

follows: 

                                                            𝑦𝑖
𝑟+1 =  𝑦𝑖

𝑟 + 𝑣𝑖
𝑟+1             (3.9) 

Inertia weight can be determined by using the equation (3.10) or the Inertia weight can 

be chosen to be any random value. This determined inertia weight can be substituted in 

equation (3.9) 

   W = 𝑤𝑚𝑎𝑥 −
[(𝑊max− 𝑊𝑚𝑖𝑛

)∗𝑖𝑡𝑒𝑟𝑐𝑢𝑟𝑟]

𝑖𝑡𝑒𝑟𝑡𝑜𝑡𝑎𝑙
    (3.10) 

Where Wmax = maximum inertia weight; Wmin = minimum inertia weight; itercurr= 

current iteration; itertotal=total number of iteration. 
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B) PSO OPTIMIZATION OF PROCESS PARAMETERS 

PSO coding structure is to be defined and the initial population is distinct. The 

computation with particle swarm with particle swam intelligent operators is used to 

evaluate fitness with respect to the objective function. General flow chart of PSO 

algorithm is shown in Figure 3.11. 

Terminologies used in PSO algorithm: 

 Particle: Individual in the group of swarms. A potential solution is represented 

each swarm in the problem. 

 Swarm: Population of the algorithm. 

 Personal best (pbest): Personal best position of a given particle, so far. That 

is, the position of the particle that has provided the greatest success, pbest in 

equation (3.8) represents best position (pbest) individual until iteration k. 

 Global best (gbest): Position of the best particle of the entire swarm, gbest 

in equation (3.8) represents best position of the group until iteration k. 

 Leader: Particle that is used to guide another particle towards better regions 

of the search space. 

 Velocity (vector): This vector drives the optimization process, that is, it 

determines the direction in which a particle needs to “fly” (move), in order to 

improve its current position. 

 Inertia weight (w): It is employed to control the impact of the previous history 

of velocities on the current velocity of a given particle and denoted by w. 

 Learning factor: Represents the attraction that a particle has towards either its 

own success or that of its neighbours. Two learning factors used: C1 and C2, 

where C1 is the cognitive learning factor and it represents the attraction that a 

particle has towards its own success and C2 is the social learning factor and 

represents the attraction that a particle has toward the success of its neighbours. 

Both, C1 and C2 are constants (Malghan et al. 2016, Gonzalez et al. 2012). 
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C)  PSO Algorithm : (Malghan 2016, Eberhart et al.in 1995) 

1. Initialize the population of n particles randomly. 

2. For each particle, the fitness value is calculated. 

3. If the obtained fitness value of the particle is better than the best fitness value 

(Pbest) in history, than the present value is assigned as new best fitness value 

(new Pbest). 

4. Choose the particle with the best fitness value of all the particles which are 

considered so far as the global best (gbest). 

5. The velocity and position of each particle need to be calculated. 

6. Each particle velocities are secured to a maximum velocity. If the sum of the 

acceleration will cause the velocity on that dimension to surpass ahead of the 

specified range set by the user, then the velocity need to be limited.  

7. Terminate if minimum error condition is reached or when the maximum 

iteration is reached else go to step 2. 

 

Figure 3.11: The PSO flow chart to optimize the process parameters: Cutting 

force, Surface roughness and Power consumption as objective functions  
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3.7 PREDICTION TECHNIQUE: NEURAL NETWORK (NN) MODEL 

The goal of the work is to construct a neural network model in order to predict the 

cutting temperature, cutting force, surface roughness and tool wear during milling 

operation. Multilayer Perceptron (MLP) was developed for prediction. The 4 various 

back propagation algorithms (BPA) i.e. (Gradient descent, Scaled Conjugate Gradient 

Descent, Levenberg Marquart and Bayesian regularization (BR) or Bayesian Neural 

Network (BNN)) were incorporated in the MLP model. The following section will focus 

on the architecture and training methods used in the present work. 

3.7.1 Architecture of Multi-Layer Perceptron (MLP) Model- ANN 

The intricate and disruptive engineering problems have been effectively solved by using 

the MLP models. Error back propagation method has been adopted to consecutively 

solve this problem. In order to resolve the errors occurring during learning process 

various learning algorithms exist such as the Gradient Decent learning rule, Adaptive 

Filtering or Least Mean Square algorithm. The architecture encompasses three different 

types of layers namely input layer 1 (neurons -4), hidden layer 1 (neurons 6), and output 

layer 1 (neurons - 4). The flow of signal is named as Feed Forward Neural Network as 

the signal moves in a forward direction, from input layer to hidden layer and then from 

hidden layer to the output layer. The data being processed in the network will bypass 

several layers without any existence of feedback connections. Figure 3.12 shows 

schematic representation of input and output parameters in Multi-Layer Perceptron feed 

forward neural network. The neural network has to behave in a way that the set of inputs 

should determine anticipated result.  The weights are assigned primarily in two ways. 

One way is to use the learning rule to learn the output pattern by providing the trained 

data. Another way is to assign the weights based on the prior knowledge. The back 

propagation algorithm for given epoch of training data executes in two different ways 

namely the sequential mode or batch mode. Basically the disparity among these two 

ways is that in sequential mode, the weights of neurons are entirely dependent on the 

pattern basis. While in the case of batch mode, the weights and the bias of neurons are 

entirely on the epoch basis. Generally, the sequential mode is widely used in back-

propagation learning. Usually, the network needs to be trained in a way that it leads to 
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minimal error. The error is calculated based on the difference between the desired error 

and actual error. Basically there are two methods to specify the error, either by 

specifying the number of epochs or by specifying the error value. The variation among 

these two ways is that if number of epochs is specified, then the training data will 

execute until it reaches the specified epoch number; later on the testing of the data is 

carried out.   In epoch specification, the training data will run up to the specified number 

of epoch and once it reaches the specified value; the testing of the data is carried out.  

In the other way, the training will iterate till the specified value of error is reached. In 

the present study, Multi-Layer Feed Forward Neural Network (MLFFNN) architecture 

is adopted for training and predicting the mechanical properties of the SS316 steel 

material. The input parameters are spindle speed, feed rate, and depth of cut. The 

predicted response parameters are cutting temperature (CT), cutting force (FX), surface 

roughness (Ra) and tool wear (TW). 

 

 

Figure 3.12: Structure of neural network with input and output parameters in 

multi-layer perceptron feed forward neural network
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Table 3.4: Information on prediction & optimization.  

Parameters Prediction Parameters Optimization 

Definition Predicting is making claims about 

something that will happen, often 

based on information from past and 

from current state. 

Definition Optimization is the technique to obtain best results for the 

given problems under given constraints. 

The purpose of optimization is to achieve the “best” design 

relative to a set of prioritized criteria or constraints.  

Advantage  The advantage includes automatic 

learning of dependencies only from 

measured data without any need to 

add further information (such as type 

of dependency like with the 

regression). 

Advantage Optimization is the technique to obtain best results for the 

given problems under given constraints.  

An investigation is done here to compare and arrive at the best 

optimization technique from among Desirability Approach and 

PSO. 

Training The neural network is trained from 

the historical data with the hope that 

it will discover hidden dependencies 

and that it will be able to use them 

for predicting into future 

Objective 

Function 

Finding an optimal solution for more than one objective 

functions is called multi-objective optimization (deals with 

more than one objective function). 

Prediction 

Type 

(Criteria) 

The prediction type can be classified 

according to various criteria.  

Basic criteria are: 

 Data that we have for teaching 

prediction and for prediction 

 What we want to predict - value  

Goal of 

optimization 

The goal of optimization is to minimize or maximize certain 

quantities. 

In mathematical models, these goals are expressed as functions 

of certain variables 

These include maximizing factors such as productivity, 

strength, reliability, longevity, efficiency, and utilization. 
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This decision-making process is known as optimization. 

Predict Value When we want to get exact value (or 

more values) of a variable in future, 

then we are predicting value. 

Creation of 

objective 

Functions 

The response equations attained through RSM model are 

further utilized as fitness function in implementation of PSO 

algorithm. 

Predict Trend Whether the value will go up or 

down without considering size of the 

change - then we are predicting 

trend. 

PSO Inspired 

BY 

Particle Swarm Optimization Technique is said to be inspired 

by a swarm of birds or a group of fish.  

Thus, this algorithm is also called a population-based 

stochastic algorithm. 

Advantage of 

NN in 

prediction 

NN is able to learn from examples 

only and that after their learning is 

finished, they are able to catch 

hidden and strongly non-linear 

dependencies, even when there is a 

significant noise in the training set. 

Advantage of 

PSO 

Have few parameters to adjust, Converge fast, Has a own 

memory, Simple to implement 

Disadvantage 

of NN in 

prediction 

NN can learn the dependency valid 

in a certain period only 

Disadvantage 

of PSO 

End to fall into a sub- optimal state. Weak local search ability. 
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Table 3.5: Information on back propagation algorithms (BPA) / Training algorithms (TA). 

Sl.NO/ 

Training 

Algorithms 

Gradient descent 
Scaled Conjugate Gradient 

Descent 
Levenberg-Marquardt Bayesian Regularization 

1 

Requiring many 

iterations for functions 

which have long, 

narrow valley structures 

This method also avoids the 

information requirements 

associated with the evaluation, 

storage, and inversion of the 

Hessian matrix, as required by 

the Newton's method. 

Levenberg-Marquardt algorithm 

is a method tailored for functions 

of the type sum-of-squared-error. 

Bayesian regularization expands the 

cost function to search not only for 

the minimal error, but for the 

minimal error using the minimal 

weights. 

2 

The downhill gradient is 

the direction in which 

the loss function 

decreases most rapidly.  

But this does not 

necessarily produce the 

fastest convergence. 

In the conjugate gradient 

training algorithm, the search 

is performed along conjugate 

directions which produce 

generally faster convergence 

than gradient descent 

directions. 

Very fast when training neural 

networks measured on that kind of 

errors. 

To overcome the problem in 

interpolating noisy data, MacKay 

(1992) has proposed a Bayesian 

framework which can be directly 

applied to the neural network 

learning problem. 

3 

Big neural networks, 

with many thousand 

parameters 

Recommended when we have 

very big neural networks. 

Not recommended when we have 

big data sets and/or neural 

networks requires a lot of memory 

 

Estimate the effective number of 

parameters actually used by the 

model.  

The number of network weights 

actually needed to solve a particular 

problem. 
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4 

The reason is that this 

method only stores the 

gradient vector (size n), 

and it does not store the 

Hessian matrix (size 

n2). 

Since it does not require the 

Hessian matrix, 

It works without computing the 

exact Hessian matrix. Instead, it 

works with the gradient vector and 

the Jacobian matrix. 

By using Bayesian regularization, 

one can avoid costly cross 

validation. It is particularly useful to 

problems that cannot, or would 

suffer, if a portion of the available 

data were reserved to a validation 

set.  

Regularization also reduces (or 

eliminates) the need for testing 

different number of hidden neurons 

for a problem. 

5 

It requires information 

from the gradient 

vector, and hence it is a 

first order method. 

This method has proved to be 

more effective than gradient 

descent in training neural 

networks. 

It cannot be applied to functions 

like cross entropy error. 

A third variable, gamma, indicates 

the number of effective weights 

being used by the network, thus 

giving an indication on how 

complex the network should be. 
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Figure 3.13: Memory v/s Speed -Training algorithms 

(https://www.neuraldesigner.com/blog/5_algo) 

Table 3.4 represents the general information on prediction and optimization techniques. 

Table 3.5 represents the 4 different back propagation algorithms incorporated in the 

current study for prediction of responses. From the Figure 3.13, it can be inferred that 

Bayesian Regularization is better approach when compared to rest of BPA’s. As 

discussed earlier in Table 3.5, Bayesian is best suitable for the current study due to its 

convergence rate, speed and storage parameters. 

 

 

 

 

 

 

 

https://www.neuraldesigner.com/blog/5_algo
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 CHAPTER 4 

RESULTS AND DISCUSSION (Part-I) 

MACHINABILITY STUDY OF SS316 

4.1 MILLING PERFORMANCE OF SS316 UNDER CRYOGENIC COOLING 

 

The milling experiments were carried out on SS316 specimen’s with PVD TiAlN coated 

carbide tools at different spindle speeds (1000,2000 and 3000 rpm), keeping feed rate 

(450 mm/min) and depth of cut (Doc,1mm) combinations constant under dry, wet and 

cryogenic machining conditions. The experimental results of cryogenic machining on the 

cutting temperature, cutting force, surface roughness and tool wear have been compared 

with those under dry and conventional coolant (wet) machining conditions 

4.1.1 Cutting Force (N) 

The investigation explores variation of cutting forces in different machining condition 

since it co-relates with the other fundamental cut characteristics such as tool wear, 

machining temperature, and surface quality (Kumar et al 2020, Ramesh et al 2018, 

Meddour et al 2014, Azlan et al 2012). Figure 4.1 (i), (ii) and (iii) portrays the variation 

in resultant cutting force concerning machining span (time) under dry, flood and LN2 

method of cutting with spindle speed 1000, 2000 and 3000 rpm respectively. Figure 4.1 

demonstrates that the resultant cutting force shows an expanding pattern with machining 

condition. It may be due to the warm softening of the work material at raised temperature 

and higher cutting velocity. 

Related article: 

Karthik Rao M C, Rashmi L Malghan*, Mervin A Herbert and Shrikantha S Rao. 

(2019). “Dataset on Flank Wear, Cutting Force and Cutting Temperature 

Assessment of Austenitic Stainless Steel AISI316 under Dry, Wet and Cryogenic 

during Face Milling Operation”, Data in Brief , 26:104389, 

DOI:10.1016/j.dib.2019.104389 
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Captivatingly, LN2 method of machining brought exceptional reduction of cutting power 

of around 43% and 16% in comparison with dry and surge cooling conditions 

individually. It is obvious from the Figure 4.1, that cryogenic approach offers promising 

diminishment in the machining power, feasible results like less instrument wear, and 

better surface quality. Likewise, considerable variation in the resultant cutting power was 

seen among surge and LN2 cooling mode for spindle speed of 1000-3000 rpm 

 

       

 

Figure 4.1: Variation of cutting force at speed of (i) 1000rpm (ii) 2000rpm (iii) 

3000rpm 

 

 

(i) (ii) 

(iii) 
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4.1.2 Machining Temperature (ºC) 

Cooling strategies in machining are adopted with an objective of diminishing the cutting 

temperature. These are likewise helpful in keeping the Cutting tools from extreme 

impairment like adhesion, diffusion and abrasion which are emphatically co-identified 

with machining temperature. In addition, at machining SS316 at raised temperature 

prompts to swift tool wear.  

The disparity recorded in cutting temperature amid the examination is shown in Figure 

4.2 (i), (ii) and (iii) for spindle speed 1000, 2000 and 3000rpm respectively. It is clear 

from the figure that, spindle speed increases linearly with cutting temperature at 

machining zone because of enhanced friction at device work interface. In case of LN2, the 

machining temperature was relatively less in contrast with dry and flood modes for all 

considered scopes of spindle speeds. A remarkable diminishment in cutting temperature 

was seen under LN2 condition than that of dry (around 58%) and flood (around 42%) 

situations. This is on the grounds that, the heat exchange happens amid LN2 machining 

mode through convection and dissipation. Utilization of LN2 superbly encourages the 

liquid beads to reach at device workpiece interface which offer proficient warmth 

exchange in this manner and gives enhanced lubrication prompting low machining 

temperature. This may be added to the prevalence of atomised coolant particles to enter 

effectively in to the cutting zone.  

     

 

(ii) (i) 
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Figure 4.2: Variation of cutting temperature at speed of (i) 1000rpm (ii) 2000rpm 

(iii) 3000rpm 

4.1.3 Surface Roughness (µm) 

After milling, the surface roughness (Ra) values of the samples are estimated, and these 

attained Ra values of the work part under all the three cutting conditions are shown in 

Figure 4.3 (i), (ii) and (iii) for spindle speed 1000, 2000 and 3000rpm respectively. 

Marginally lower Ra reverences were seen at higher rates (2000 rpm and 3000rpm) when 

contrasted to the lower (1000 rpm). The previously mentioned figure illustrated that 

surface roughness diminishes with increment in spindle speed. This showed the machined 

surface has a tendency to become smoother for rapid regular machining. High machining 

temperature resulted in softening of work part (samples) which decreases the initiated 

cutting forces and subsequently a decent surface quality was accomplished (Patricia et al 

2010, Azlan et al 2010, Suresh et al 2012). At higher spindle speed, the chips are created 

and split away close to the tool tip with less deformation of material which thus 

safeguards the surface attributes of machined part causing enhanced surface quality 

(Venkatesh et al 2018, Chandrasekaran et al 2010). Then again, surface unpleasantness 

recorded under dry and flood machining condition in comparison with LN2. This is 

because of the way that, LN2 mode offers more successful cooling and lubrication than 

that of dry and flood conditions. Because of which a critical diminishment in the friction 

could be accomplished in blend with high rate of heat exchange. Thus, surface quality 

(iii) 
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was good in contrast to flood machining. However, in case of dry machining, no cutting 

liquid was provided leading to high friction which thus added to higher surface 

roughness. It is evident from the Figure 4.4 and Figure 4.5 that less surface defects were 

found in cryogenic machining. This is ascribed to lower cutting temperatures and 

retaining of the tool shape provided by the LN2 spray. In contrast, more surface defects 

like side flow, debris, grooves and adhered micro particles were identified in dry and wet 

machining conditions due to the type of tool geometry obtained in the respective 

machining environments (Refer Figure 4.6) 

 

         

 

Figure 4.3: Variation of surface roughness at speed of (i) 1000rpm (ii) 2000rpm (iii) 

3000rpm 

 

(i) 

(iii) 

(ii) 
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Figure 4.4: SEM images of machined surfaces at s = 1000 rpm, f =450 mm/min and 

d = 1 mm under different cooling environments (a) Cryogenic (b) Flood (wet)         

(c) Dry 
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Figure 4.5: SEM images of machined surfaces at s = 3000 rpm, f =450 mm/min and 

d = 1 mm under different cooling environments (a) Cryogenic (b) Flood (wet)         

(c) Dry 

 

4.2 Tool Wear Study of a PVD TiAlN Coated Carbide Tool in the milling of SS316 steel 

 

4.2.1 Introduction 

The temperature created at cutting zone is primarily responsible for rapid tool wear while 

machining SS316. High machining temperature regularly presented serious tool wear like 

chipping, break of the tool nose and plastic deformation. There are various wear 

mechanisms which can altogether influence the tool wear amid processing of SS316. The 

significant wear components saw in the present examination were abrasion, diffusion, 

plastic deformation and chipping. 

 

Figure 4.6 shows the SEM views of the worn out tips of a PVD TiAlN coated carbide 

tool at cutting speeds of 1000, 2000 and 3000 rpm, constant feed rate of  450 mm/min 

and depth of cut 1 mm under dry, wet and LN2 machining. In the milling of SS316 steel 

with a PVD TiAlN coated carbide tool, chipping and flaking were observed under all the 

machining environments. The chipping on the cutting edge during dry and wet machining 

was more serious than under LN2 machining (Girish et al 2015, Gianni et al 2014). In the 

wet machining also chipping and flaking of the cutting edge was observed.  

In the case of milling of SS316 steel with the cutting speeds of 1000, 2000 and 3000 rpm 

chipping and flaking observed in dry machining was higher than that of wet and 
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cryogenic cooling. The flaking was observed in dry machining due to a strong adhesion 

between the chip and the tool rake as a result of high cutting temperature. Compared to 

dry and wet machining, the chipping of the cutting edge under LN2 cooling was lower. At 

the same cutting speed, less chipping and flank wear were observed in cryogenic cooling 

due to the control of temperature-dependant tool wear mechanisms (Branimir et al 2009, 

Mohanraj et al 2021). Further, with the application of LN2 coolant, both cooling and 

lubricating of the tool reduces cutting temperature and cutting force resulting in 

decreased chipping and flaking. 
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Figure 4.6: Optical microscopic images depicting progression of flank wear. 

Time 

(Seconds) 

Machining 

Type 
30 60 90 

Spindle 

speed: 1000 

rpm 

Feed: 450 

mm/min 

Doc:1 mm 

Dry 

   

Coolant 

   

LN2 

   

Spindle 

speed: 2000 

rpm 

Feed: 450 

mm/min 

Doc:1 mm 

Dry 

   

Coolant 

   

LN2 

   

Spindle 

speed: 3000 

rpm 

Feed: 450 

mm/min 

Doc:1 mm 

Dry 

   

Coolant 

   

LN2 

   



105 
 

4.2.2 Investigation of Flank Wear (µm) 

Tool wear amid processing of SS316 was described by flank and crater wear and in this 

way envisioned with the assistance of optical magnifying lens (microscope) and SEM 

imaging. Figure 4.7 demonstrates the movement of average flank wear for various 

machining span at the spindle speed of 1000, 2000 and 3000 rpm under dry, flood and 

LN2 cutting conditions. A quick development in flank wear was seen after 60s of 

machining at high spindle speed (2000-3000rpm), particularly while machining under dry 

cutting condition. However, the prevalence of using LN2 was all the more prominently 

obvious for high spindle speed persistent machining which offers better cooling  in 

contrast to dry and flood machining prompts less wear (Solntsev 2001, Ajit et al 2011). 

Thus, LN2 emerged as a reasonable option for machining SS316.  

Figure 4.8 exhibits the microscopic pictures of flank wear alongside machining span 

under all machining conditions. High substance reactivity of SS316 prompts adhesion of 

the material on the tool confront which brings about the creation of built up edge (BUE). 

This phenomenon which is ascribed to higher friction was seen subsequent to machining 

span of 90s under dry and flood cutting conditions. Besides, the previously mentioned 

figure likewise shows that the inclination of BUE generation was more conspicuous amid 

dry mode when contrasted with wet mode of machining. Excellent cooling along with 

effective lubrication brought about critical decrease in friction and thus added to the 

remarkable cutting inserts performance especially under LN2 mode even at higher spindle 

speed.   
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Figure 4.7: Variation of flank wear at speed of (i) 1000rpm (ii) 2000rpm                

(iii) 3000rpm 

 

 

 

 

 

 

 

(i) (ii) 

(iii) 
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Figure 4.8: Optical microscopic images depicting progression of crater wear 
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4.2.3 Examination of Crater Wear  

Wear on rake face of the inserts while milling of SS316 is principally represented at the 

contact asperities or interface region. High temperature at this area is the central point 

which reacts in adhesion wear and diffusion wear. Figure 4.8 and 4.9, demonstrate the 

rapid-I and optical microscopic pictures of rake faces for both dry and wet (flood and 

LN2) machining at various spindle speed and machining duration. Greater damages are 

predominantly visible at rake faces under dry mode contrasted to flood and LN2 

machining (Daniel et al 2019, Uma et al 2018, Daniela et al 2014). 

The main type of tool wear noticed amid this study are plastic deformation, development 

of BUE and built-up-layer (BUL) as portrayed in figure 4.9. Adhesion of the work 

material was the most noteworthy wear under dry, flood and LN2 machining. The 

previously noted Figure 4.8 demonstrates the development of BUE and BUL because of 

plastic distortion of the work material (Zhirafar et al 2007, Hussein et al 2018, Prashant et 

al 2021, Mohanraj et al 2021). Lower thermal conductivity and higher substance affinity 

of the work part SS316 might have contributed to this. Interestingly, a more impact of 

applying LN2 procedure over dry and flood methods is evidenced from Figure 4.8. It even 

displays the better execution capacity of LN2 based machining. 
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Figure 4.9: Rapid- I machine vision system images depicting progression of crater 

wear 
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4.2.4 Summary (Tool Wear) 

In all the work-tool combinations, the flank wear (VB) was lower in LN2 cooling over 

dry and wet machining. The present method of LN2 cooling reduced the flank wear in the 

range of 39 - 55% and 30 - 48.5%, respectively, over dry and wet machining, depending 

upon the work – tool combinations and cutting parameters. The reduction of the tool wear 

in LN2 cooling leads to reduced abrasion and attrition wear, by maintaining the tool 

hardness with a reduction in the cutting temperature (Oppenkowski et al 2010, 

dhananchezian et al 2011). Moreover, the adhesion and diffusion wear were also reduced 

due to better penetration of the liquid nitrogen into the tool – chip and tool – work 

interfaces. 

In wet machining, large quantities of coolant are applied at low pressure into the cutting 

zone, in order to remove the heat, which was not able to penetrate into tool-chip interface. 

This is because of the fact that the soluble oil in wet machining has a smaller effect on 

tool – chip interface, whereas LN2 coolant has a higher cooling and lubrication effect to 

reduce tool wear. Kumar and Choudhury (2008) investigated on tool wear in machining 

of stainless steel with carbide inserts under dry machining and cryogenic cooling by 

nozzle and observed around 37.39% reduction in the flank wear with cryogenic 

machining over the dry machining 

4.3 STUDY OF CHIP MORPHOLOGY UNDER CRYOGENIC COOLING 

 

4.3.1 Chip Morphology on Milling of SS316 

 

The chips that are formed during the machining operation have strong effects on the 

surface finish, cutting force, workpiece accuracy and tool life. Generally, chip formation 

is influenced by the cutting speed as well as the feed rate. Further, the chip could give 

information on both force and temperature experienced at the cutting zone. In this 

section, the chips obtained from each of the cutting conditions are analysed. Chip 

morphology is important because it influences: 
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1. The stability of the process – e.g., long chips can disturb the machine, and the 

environment, and they have a negative effect on the cutting process itself. 

2. The environmental effect of the production – e.g. small, broken chips is far easier 

to handle, store, transport and recycle. 

 

The chip formation under different metal cutting conditions can be classified into few 

categories. Workpiece material and cutting condition will influence the type of chips 

formed during machining. The surface finish and overall cutting operation are 

significantly influenced by chips produced. The types of chips produced during metal 

cutting are continuous chips, continuous chips with built up edge, discontinuous chips 

and serrated chips (Kalpakjian and Schmid 2003, Noordin et al 2004, Yogesh et al 2018, 

Ajit et a 2011) 

 

The morphology of the top surface of the chips delivered in the wake of milling of the 

work part was profoundly analysed with the assistance of the SEM pictures as portrayed 

in Figure 4.10 (i), Figure 4.10 (ii) and Figure 4.10 (iii). Generally, SS316 is described by 

serrated chips which are firmly confirmed from the previously mentioned Figure 4.10 (iv) 

and Figure 4.10 (v). This phenomenon is fundamentally credited to shear localisation and 

plastic distortion of the work material amid machining (Kalpakjian and Schmid 2003, 

Noordin et al 2004, Yogesh et al 2021). In addition, machining SS316 at higher spindle 

speed (3000rpm) causes higher friction at contact asperities leading to high plastic 

deformation and henceforth creates more serrated chips under dry condition. Along these 

lines, level of serration was seen to be more under dry condition when contrasted with 

that of wet machining condition. This can be credited to high temperature development at 

cutting zone while machining the work material under dry condition. Such high 

machining temperature prompts a noteworthy upgrade in the plasticity of the work part. 

At the other cases of machining, the distortion of the workpiece material under flood and 

LN2 condition was less because of lower machining zone temperature. This may be due to 

the side stream of chip material, as apparent from the Figure 4.10 (iii). 
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                     (a)                                              (b)                                              (c) 

 

Figure 4.10 (i): SEM images of the chip shape of the SS316 steel at a spindle speed of 

1000 rpm and feed rate of 450 mm/min under various machining conditions 

(a) Dry machining (b) Wet machining (c) LN2 machining 

 

     

                  (a)                                                       (b)                                                 (c) 

 

Figure 4.10 (ii) : SEM images of the chip shape of the SS316 steel at a cutting speed 

of 3000 rpm and feed rate of 450 mm/min under various machining conditions 

(a) Dry machining (b) Wet machining (c) LN2 machining 

Related Article    
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Figure 4.10 (iii): SEM images of chips produced under (a) Dry (b) Flood (c) 

Cryogenic conditions 
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Figure 4.10 (iv): Chip forms generated at s = 1000 rpm, f = 450 mm/min and d = 1 

mm under different cooling environments (a) Cryogenic (b) Wet (c) Dry. 

 

             

 

Figure 4.10 (v): Chip forms generated at s = 3000 rpm, f = 450 mm/min and d = 1 

mm under different cooling environments (a) Cryogenic (b) Wet (c) Dry. 

 

 

4.3.2 Summary on Chip Morphology 

In all work – tool combinations the chips obtained under LN2 cooling are smaller than 

those obtained under similar machining conditions than those under dry and wet 

machining. Further, the chips obtained in the case of dry machining were found dark blue 

colour due to extreme heat generated at tool – chip interface. In wet machining, the chips 

produced in black colour which also indicates intense heat generated at tool – chip 

interface. The chips produced in LN2 machining were silver in colour indicating that 

chips were not burnt due to lower heat generation at tool – chip interface. Therefore, 

favourable chip shapes are obtained in all work materials under LN2 machining, when 

compared to dry and wet machining. This may be attributed mainly to better penetration 

of LN2 into the tool – chip interface, resulting in the reduction of the cutting temperature. 

Further, at lower temperature, the chip cannot promote curl, due to increased chip 

(a) (b) (c) 

(c) (b) (a) 
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hardness and lower ductility. This enhances the chip brittleness for easy chip breaking. 

Mirghani et al (2007) have reported that cryogenic cooling enhances the chip brittleness 

for easy chip breaking, when the evaporated gas is directed towards the tool cutting edge, 

thereby cooling the newly generated chips. The serration on chip surface obtained under 

dry machining is very rough indicating that the higher shearing action at tool – chip 

interface (Sivaiah et al 2019). The chip surface produced under wet machining also is 

serrated, indicating intensive shearing action at tool – chip interface. When the LN2 

coolant is used, serration on the chip surface is reduced due to lower shearing action at 

tool – chip interface. This is because, the penetration of LN2 into the tool-chip interface 

results in the formation of a nitrogen cushion at tool – chip interface, which reduces the 

friction. 
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CHAPTER 5 

RESULTS AND DISCUSSION (PART 2) 

PROCESS MODELLING FOR PREDICTION 

 

5.1 RSM FOR SS316 

The Central Composite Design (CCD) was used to implement the response prediction 

using RSM. All L20 orthogonal array (OA) was utilized and 20 experiments were 

performed, which incorporates 8 cube points, 6 center points in cube, 6 Axial points 

and alpha value is 1. The range of the process parameters were set by taking into 

consideration the tool or insert specification and also by performing trial experiments 

in order to achieve the desired responses. In the present work, CCFCD is used for 

establishing the relationship between the empirical process parameters and the milling 

process output variables of SS316. The final obtained mathematical regression 

equations are listed in equations 5.1-5.4. The experimental data considered to perform 

RSM is represented in Table 5.1. 

Later on the model performance was validated with the help of analysis of variance 

(ANOVA) (Tables 5.2- 5.5). The significance of the model is identified by this method. 

If the model satisfies the condition of Prob>f less than 0.0500, then the model is 

significant (Bement 1989, Huang et al 2007,  Prakasvudhisarn et al 2009, Venkata et al 

2011, Dikshit et al 2016,Malghan et al 2016, Montgomery 2017). Since, all the 

proposed models satisfy the condition of Prob>f is less than 0.0500, it can be concluded 

that all the proposed models are significant (Tandon et al 2002, Rao et al 2010, Yu et 

al 2015).  

The adequacy of the fitted regression model was identified using the R2 correlation 

coefficient, the value of R2 need to be close to unity. For all the responses, the “Pre R-

squared” are in reasonable accidence with the “Adj R-Squared” values (Rashid et al 

2012, Zhang et al 2000, Raja et al 2001). The precision ratio of all the developed models 

(ratio >4 is desirable) shows the adequacy of incorporating the proposed model (Suresh 

et al 2010,Mukherjee et al 2006, Tansel et al 2014).   
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5.1.1 Regression Equations (RSM Approach) For Responses 

 

The attained response equations through RSM approach are stated below: 

 

T = 157.752+15.3889*S+16.0556*F+3.38889*D-104.889*CT+2.87067*S*S-3.12933 

*F*F + 0.870667*D*D + 15.3707*CT*CT - 4.50000*S*F + 1.37500*S*D + 

5.37500*S* CT  + 2.0*F*D-9.25000*F*CT-1.62500*D*CT   (5.1) 

 

FX = 337.224-27.1667*S + 27.1667*F + 3.27778*D - 63.5556*CT +14.3480*S*S -

15.6520*F*F-5.65200*D*D-4.15200*CT*CT-6.31250*S*F-0.812500*S*D+8.93750    

* S*CT-0.437500*F*D +2.06250*F*CT+0.562500*D*CT    (5.2) 

 

Ra  = 1.23988-0.193944*S+0.137611*F+0.0157778*D-0.585556*CT-0.0370733*S 

*S-0.0310733*F*F+0.0104267*D*D+0.191427*CT*CT-.00300000*S*F+0.00487500 

*S*D+0.112250*S*CT-0.00325000*F*D-0.0498750*F*CT+0.00400000* D*CT 

          (5.3) 

 

FW = 0.251472 + 0.0418333*S + 0.0180000*F + 0.00350000*D - 0.0520000*CT-

.0420227 *S*S-0.01252*F*F + 0.00797733*D*D - 0.0335227*CT*CT + 

0.00125000*S*F-0.00137500*S*D - 8.75000E-04*S*CT - 6.25000E-04*F*D - 

0.00137500*F*CT-0.00100000 *D*CT      (5.4) 

 

Where: T = Cutting temperature, FX = Cutting Force (X-axis), Ra = Surface roughness, 

Fw = Flank wear. Where coolant type column indicates, -1 = Dry, 1 = LN2 and 0 = 

Flood (wet) machining conditions. 
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Table 5.1 Experimental conditions for RSM method. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SL.

No 

Spindle 

Speed 

(rpm) 

Feed Rate 

(mm/min) 

Depth 

Of 

Cut 

(mm) 

Coolant 

type 

Cutting 

Temperature 

CT, (℃) 

Cutting force 

Fx (N) 

Surface 

Roughness 

Ra,(µm) 

Flank 

Wear, 

Vb,(µm) 

1 1000 350 0.5 -1 237 384 2.09 0.16 

2 3000 350 0.5 -1 269 337 1.443 0.24 

3 1000 550 0.5 -1 299 459 2.427 0.195 

4 3000 550 0.5 -1 295 365 1.857 0.283 

5 1000 350 1.5 -1 241 393 2.103 0.17 

6 3000 350 1.5 -1 271 340 1.473 0.25 

7 1000 550 1.5 -1 304 464 2.463 0.203 

8 3000 550 1.5 -1 324 370 1.883 0.291 

9 1000 350 0.5 1 35 243 0.747 0.06 

10 3000 350 0.5 1 84 214 0.583 0.142 

11 1000 550 0.5 1 56 309 0.957 0.09 

12 3000 550 0.5 1 89 269 0.77 0.18 

13 1000 350 1.5 1 39 256 0.757 0.069 

14 3000 350 1.5 1 85 219 0.693 0.146 

15 1000 550 1.5 1 59 315 0.996 0.102 

16 3000 550 1.5 1 95 276 0.78 0.175 

17 1000 450 1 0 142 382 1.397 0.168 

18 3000 450 1 0 177 326 0.964 0.25 

19 2000 350 1 0 139 300 1.07 0.211 

20 2000 550 1 0 168 348 1.303 0.253 
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5.1.2 Analysis of Variance (ANOVA) Results 
 

Table 5.2: Analysis of variance for cutting temperature (CT, ℃) of SS316 using RSM 

method. 
 

 

Source                          DF   Seq SS   Adj MS        F P Percentage 

Contribution 

Regression   14     210053 15003.8   187.08   0.000  

Linear                         4        205808 780.5     9.73   0.000  

Speed                        1              5033 88.8     1.11   0.004 2.381 

Feed 1              4356 75.2     0.94   0.347 2.061 

DOC 1                 272 28.8     0.36   0.557 0.128 

Coolant type                 1        196147 2909.7    36.28   0.000 92.812 

Square                         4           1822 455.5     5.68   0.005  

Speed*Speed                  1              1078 14.4     0.18   0.678 0.510 

Feed*Feed                    1                48 25.7     0.32   0.579 0.022 

DOC*DOC                      1                 84 1.9     0.02   0.880 0.039 

Coolant type * 

Coolant type    

1             612 611.7     7.63   0.014 0.289 

Interaction 6             2423 403.9     5.04   0.004  

Speed*Feed                   1              410 410.1     5.11   0.038 0.194 

Speed*DOC                    1                 60 60.1     0.75   0.400 0.028 

Speed*Coolant type           1               564 564.1     7.03   0.017 0.266 

Feed*DOC    1             105   105.1     1.31   0.269 0.049 

Feed*Coolant type            1           1208 1207.6    15.06   0.001 0.571 

DOC*Coolant type             1                77 76.6     0.95   0.343 0.036 

Residual Error                  16              1283 80.2    

Lack-of-Fit                   10            1228 122.8    13.29   0.002  

Pure Error                     6                  55 9.2    

Total   30   211336     

 

S = 8.95545, R-Sq = 99.39%,  R-Sq(pred) = 96.82%,  R-Sq(adj) = 98.86% 

From the Table 5.2, it can be derived that coolant type has major contribution of 92.812 

%, followed by Spindle Speed of 2.381%, Feed Rate 2.061 % and  Depth of cut 0.128%, 

and remaining minor contribution of 2.618 % made by square and interaction terms on 

the CT. The attained R-Sq is 99.39%, R-Sq(pred) is 96.82%  and R-Sq(adj) is 98.86% 

for the response CT. 
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Table 5.3 Analysis of variance for cutting force (FX, N) of SS316 using RSM 

method. 

 

Source                          DF   Seq SS   Adj MS        F P Percentage 

Contribution 

Regression   14     149472 10676.6   96.99   0.000  

Linear                         4         145142 1225.0   11.13   0.000  

Speed                        1              21425 1.9    0.02   0.003 14.166 

Feed 1           30012 1587.8   14.42   0.002 19.844 

DOC 1                249 88.0    0.80   0.385 0.1646 

Coolant type                 1           93456 2682.8   24.37   0.000 61.796 

Square                         4             2561 640.2    5.82   0.004  

Speed*Speed                  1               141 130.2    1.18   0.293 0.093 

Feed*Feed                    1            346 1046.8    9.51   0.007 0.228 

DOC*DOC                      1                  51 43.3    0.39   0.539 0.003 

Coolant type * Coolant type    1           2022 2022.4   18.37   0.001 1.337 

Interaction 6            1769 294.8    2.68   0.054  

Speed*Feed                   1                 23 22.6    0.20   0.657 0.015 

Speed*DOC                    1                 86 85.6    0.78   0.391 0.056 

Speed*Coolant type           1           1278 1278.1   11.61   0.004 0.845 

Feed*DOC    1                  2    1.6    0.01   0.907 0.001 

Feed*Coolant type            1             371   370.6    3.37   0.085 0.245 

DOC*Coolant type             1                 11 10.6    0.10   0.761 0.007 

Residual Error                  16            1761 110.1    

Lack-of-Fit                   10             1733 173.3   37.14   0.000  

Pure Error                     6             28       4.7    

Total   30   151233     

S = 5.91834, R-Sq = 99.46%,  R-Sq(pred) = 96.49%,  R-Sq(adj) = 98.99% 
 

Similarly, From the Table 5.3 it can be observed that coolant type has major 

contribution of 61.796 %, followed by Spindle Speed of 14.166%, Feed Rate 19.844 % 

and  Depth of cut 0.1646%, and remaining minor contribution of 4.029% made by 

square and interaction terms on FX. The attained R-Sq is 99.46%, R-Sq(pred) is 96.49 

and R-Sq(adj)  is 98.99% for the response FX 

 

 

 

 

. 
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Table 5.4: Analysis of variance for surface roughness (Ra, µm) of SS316 using 

RSM method. 

 
Source                          DF   Seq SS   Adj MS        F P Percentage 

Contribution 

Regression   14   7.47851   0.534179   107.91   0.000  

Linear                         4   7.05665   0.047927     9.68   0.000  

Speed                        1   0.72320   0.000141     0.03   0.002 9.569 

Feed 1   0.34086   0.000236     0.05   0.830 4.510 

DOC 1   0.00448   0.003895     0.79   0.388 0.059 

Coolant type                 1   5.98811   0.187811    37.94   0.000 79.231 

Square                         4   0.17950   0.044875     9.07   0.001  

Speed*Speed                  1   0.06686   0.008562     1.73   0.207 0.884 

Feed*Feed                    1    0.02900   0.000129     0.03   0.874 0.383 

DOC*DOC                      1     0.02482 0.006120 1.24   0.283 0.328 

Coolant type * 

Coolant type    

1   0.05883   0.058828    11.88   0.003 0.778 

Interaction 6      0.24235   0.040392     8.16 0.000  

Speed*Feed                   1   0.00014   0.000144     0.03   0.867 0.001 

Speed*DOC                    1   0.00038   0.000380     0.08   0.785 0.005 

Speed*Coolant 

type           

1   0.20160   0.201601    40.72   0.000 2.667 

Feed*DOC    1   0.00017   0.000169     0.03   0.856 0.002 

Feed*Coolant 

type            

1   0.03980   0.039800     8.04   0.012 0.526 

DOC*Coolant 

type             

1   0.00026   0.000256     0.05   0.823 0.003 

Residual Error                  16   0.07921   0.004950    

Lack-of-Fit                   10   0.07611   0.007611    14.76   0.002  

Pure Error                     6   0.00309   0.000516    

Total   30   7.55771     

 

S = 0.0395831, R-Sq = 99.67%,  R-Sq(pred) = 98.36%,  R-Sq(adj) = 99.38% 

 

From the data represented in the Table 5.4 it can be seen that coolant type has major 

contribution of 79.231%, followed by Spindle Speed of 9.569%, Feed Rate 4.510% and 

Depth of cut 0.059%, and remaining minor contribution of 6.631 % is made by square 

and interaction terms on Ra. The attained R-Sq is 99.67%, R-Sq(pred) is 98.36 and R-

Sq(adj)  is 99.38% for the response Ra. 
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Table 5.5: Analysis of variance for flank wear VB (µm) of SS316 using RSM 

method. 

Source                          DF   Seq SS   Adj MS        F P Percentage 

Contribution 

Regression   14   0.127682   0.009120    90.62   0.000  

Linear                         4   0.087005   0.002250    22.36   0.000  

Speed                        1   0.031500   0.004935    49.04   0.000 24.363 

Feed 1   0.006612   0.001245    12.38   0.003 5.114 

DOC 1   0.000221       0.000154 1.53   0.234 0.170 

Coolant type                 1   0.048672   0.000971     9.65   0.007 37.645 

Square                         4   0.040557   0.010139   100.74   0.000  

Speed*Speed                  1   0.035304   0.003970    39.44   0.000 27.305 

Feed*Feed                    1    0.002812   0.001050   10.43   0.005 2.174 

DOC*DOC                      1     0.000009   0.000308   3.06   0.100 0.006 

Coolant type * 

Coolant type    

1   0.002432      0.002432   24.16   0.000 1.881 

Interaction 6      0.000120  0.000020     0.20   0.972  

Speed*Feed                   1   0.000025   0.000025     0.25   0.625 0.019 

Speed*DOC                    1   0.000030   0.000030     0.30   0.591 0.023 

Speed*Coolant type           1   0.000012   0.000012   0.12   0.732 0.009 

Feed*DOC    1   0.000006   0.000006   0.06   0.806 0.004 

Feed*Coolant type            1   0.000030   0.000030   0.30   0.591 0.023 

DOC*Coolant type             1   0.000016   0.000016     0.16   0.695 0.012 

Residual Error                  16   0.001610   0.000101    

Lack-of-Fit                   10   0.001453   0.000145     5.53   0.024  

Pure Error                     6   0.000158   0.00002    

Total   30   0.129292     

 

S = 0.0100321, R-Sq = 98.75%,  R-Sq(pred) = 95.95%,  R-Sq(adj) = 98.66% 

 

From the Table 5.5, it can be derived that coolant type has major contribution of 37.645 

%, followed by Spindle Speed of 24.363%, Feed Rate 5.114% and  Depth of cut 

0.170%, the square term speed * speed made contribution of 27.305% and the 

remaining minor contribution of 5.403 % is made by other square and interaction terms 

on FW. The attained R-Sq is 98.75%, R-Sq(pred) is 95.95% and R-Sq(adj)  is 98.66% 

for the response Ra. 

Thus the effect of all terms (Table 5.2-5.5) of responses is assessed by employing the 

significance tests. Table (5.2-5.5) depicts the attained “P” values (95% confidence 

level) of all terms via the CCD model (Yang et al 2011, Malghan et al 2017, Benardos 

et al 2002). In Table (5.2-5.5) if the terms “P” values <0.05 then these terms are 

considered to be significant terms else non-significant terms (Yang et al 2011b, Venkata 
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et al 2010, Farahnakian et al 2011). Thus the ANOVA approach gives the substantial 

influence of the input variables towards the responses (cutting temperature, cutting 

force, surface roughness and flank wear). The effect of each term is distinguished to 

assess sufficiency and exactitude of the model.  

 

The experimental accumulated control-response data are applied for generation of 

mathematical (nonlinear) models of the responses. The attained results and the effect 

of input parameters on flank wear is elaborated via the surface plots. The evaluation is 

executed and sufficiency is tested via assistance of coefficient of correlation, ANOVA 

and significance test (Rao et al 2017, Baskar et al 2005, Venkata et al 2010). The 

response (wear) equation attained through CCD model is shown below in equation 5.4. 

 

 

 

 (c) 

(a) (b) 

(d) 
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Figure 5.1: Surface plots of wear rate with (a) speed & feed (b) speed & depth of 

cut (c) speed & coolant type (d) feed & depth of cut (e) Feed & coolant type (f) 

depth of cut & coolant type 

Figure 5.1 depicts the surface plots in which two variables can be simultaneously 

analysed while keeping rest of the parameter to its mid-value. These plots are acquired 

from the CCD to identify the conduct of wear variation with milling variables. The 

accompanying key perceptions were made to comprehend the method, 

 

1. The response (wear) increments linearly with spindle speed and feed rate as 

represented in Figure 5.1(a). At higher spindle speed the contact zone between 

tool and the chip interface diminishes and the tool material softens due to the 

exposure of excess heat at the cutting edge, thus causing excess wear at the tool. 

Hence at higher feed rate more built up edge is caused leading to higher 

adhesion wear. 

 

2. The response (wear) increases with an expansion of spindle speed and depth of 

cut as appeared in Figure 5.1(b). Higher depth of cut causes more friction 

between contacting asperities thus causing thermal softening of tool resulting in 

increased tool wear.  

 

3. From the Figure 5.1(c), it can be delineated that at higher speed and using LN2 

the wear mechanism observed is only abrasion. This is due to spraying of LN2 

(f) (e) 
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at cutting zone which reduces the sticking of workpiece material to cutting edge 

and results in less built up edge formation on tool. 

 

4. From the Figure 5.1(d), it is observed that at higher feed rate more built up edge 

is caused leading to fracture of tool and formation of micro groves and more 

adhesion wear. Higher depth of cut leads to greater friction between tool and 

workpiece, subsequently causing thermal softening of tool thus resulting higher 

tool wear.   

 

5. Figure 5.1(e) states that at higher feed rate by using LN2 less adhesion wear was 

attained due to the less formation of built up edge on the cutting tool edge. 

 

6. Figure 5.1(f), the significant reduction of wear rate was obveserved using LN2. 

The reduction of wear rate was due to the diminishment nature of material 

adhesiveness and chipping at cutting edge.  

 

Table 5.2-5.5 exhibits the ANOVA result of response attained through the CCD model. 

The CCD model terms such as linear and corresponding square “P” values of CCD 

model are found to be less than 0.05. From the Table 5.5 it can be noticed that the CCD 

model is observed to be adequate and fit for improving prediction of the response 

(wear). The generated CCD model is tested for its accuracy in predicting with the 

assistance of 15 test cases as shown in Table 5.2-5.5. The deviation (in terms of %) for 

prediction of all responses through CCD approach is demonstrated in Figure 5.2. The 

percent deviation varies in the range between -8.0152 to +5.3241% for CCD method in 

case of wet machining. The CCD design established regression equation is used to 

produce best milling conditions corresponding to required responses (Cus et al 2003, 

Zarei et al 2008, Al-Aomar et al 2018). 
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Figure 5.2: Wear prediction deviation values (in terms of %) for fifteen test cases 

for LN2 machining  

5.1.3 Comparison results of responses under wet and LN2 machining for SS316 

The Table 5.6-5.9 exhibits the ability of RSM in predicting the responses of required  

Cutting Temperature (CT,℃), Cutting Force (FX, N), Surface Roughness (Ra, µm) 

Flank Wear(VB, µm) for the given input process parameters. Table 5.6-5.9 exhibits 

comparison of CT, FX, Ra and VB predicted by RSM Model, with the experimentally 

obtained CT, FX, Ra and VB of SS316 material. From the data presented in Table 5.6 

the maximum error obtained for Cutting Temperature (CT, ℃) is 14.36% at spindle 

speed of 1260 rpm, feed rate of 530 mm/min and depth of cut of 1.1 mm, Similarly the 

minimum percentage of error is 2.92 % at spindle speed of 1560 rpm, feed rate of 510 

mm/min and depth of cut 1.3 mm for wet machining. The maximum error obtained in 

case of LN2 machining for response Cutting Temperature (CT, ℃) is 12.31% at spindle 

speed of 2650 rpm, feed rate of 430 mm/min and depth of cut of 0.8 mm and the 

minimum percentage of error is 2.86 % at spindle speed of 1380 rpm, feed rate of 385 

mm/min and depth of cut 1.1 mm.  Figure 5.3 indicates the comparison between 

experimental and RSM predicted for the response cutting temperature (CT) under wet 

and LN2 machining conditions. From the Table 5.6 it can be agreed that the RSM 

technique is acceptable and suitable for the prediction of experiments conducted. Also 

indicating that the experiments conducted are correct and suitable. 
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Table 5.6: Test Cases - Comparison of cutting temperature (CT, ℃) predicted by RSM 

with the experimentally obtained CT of SS316 for Wet and LN2 machining. 

SL.

NO 

Cutting Temperature (℃) 

Experimental Predicted Error (%)  

 Spindle 

Speed 

(rpm) 

 

Feed Rate 

 

(mm/min) 

 

Depth 

Of Cut 

 (mm) 

 

Wet 

 

LN2 

RSM 

 

Wet 

RSM 

 

LN2 

Wet LN2 

1 2110 460 1.2 163 85 148 95 9.20 11.76 

2 2840 380 0.6 220 148 195 154 11.36 4.05 

3 1750 365 0.8 162 68 141 75 12.96 10.29 

4 1280 420 1.4 154 49 134 45 12.94 8.16 

5 2007 455 0.9 193 80 200 89 3.63 11.25 

6 1560 510 1.3 171 92 166 103 2.92 11.96 

7 2650 430 0.8 209 130 183 146 12.44 12.31 

8 1260 530 1.1 188 38 161 42 14.36 10.53 

 9 2315 520 0.7 192 119 169 129 11.98 8.40 

10 1380 385 1.1 161 70 152 68 5.59 2.86 

11 2540 490 1.2 200 126 187 142 6.50 12.70 

12 1870 525 1.4 194 77 200 85 3.09 10.39 

13 2740 415 0.9 213 134 196 154 7.98 12.06 

14 2290 375 0.7 197 109 171 122 13.20 11.93 

15 2460 520 0.4 201 121 174 135 12.43 11.57 

 

 

Figure 5.3: Represents the experimental v/s RSM predicted for response (CT) 

under wet and LN2 machining conditions 
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Table 5.7: Test Cases - Comparison of cutting force (FX, N) predicted by RSM 

with the experimentally obtained CT of SS316 for Wet and LN2 machining. 

SL.

NO 

Cutting Force (N) 

Experimental Predicted Error (%) 

Spindle 

Speed 

(rpm) 

 

Feed Rate 

 

(mm/min) 

 

Depth 

Of Cut 

(mm) 

 

Wet 

 

LN2 

RSM 

 

Wet 

RSM 

 

LN2 

Wet LN2 

1 

 

2110 460 1.2 209 118 216 127 3.35 7.63 

2 2840 380 0.6 287 187 300 201 4.53 7.49 

3 1750 365 0.8 193 102 201 113 4.15 10.78 

4 1280 420 1.4 177 84 192 92 8.47 9.52 

5 2007 455 0.9 200 113 208 124 4.00 9.73 

6 1560 510 1.3 186 98 197 107 5.91 9.18 

7 2650 430 0.8 256 168 284 188 10.94 10.90 

8 1260 530 1.1 171 80 189 89 10.53 10.14 

9 2315 520 0.7 227 136 246 151 8.37 10.23 

10 1380 385 1.1 181 91 190 101 4.97 10.95 

11 2540 490 1.2 245 153 272 171 11.02 10.76 

12 1870 525 1.4 198 109 205 121 3.54 10.01 

13 2740 415 0.9 269 177 293 193 8.92 9.04 

14 2290 375 0.7 213 121 189 122 11.27 0.83 

15 2460 520 0.4 238 145 256 161 7.56 11.03 

 

Similarly, From the Table 5.7 it can be observed that, the maximum error obtained for 

Cutting Force (FX, N) in case of wet machining is 11.27% at spindle speed of 2290 

rpm, feed rate of 375 mm/min and depth of cut of 0.7 mm. Similarly, the minimum 

percentage of attained error is 3.35 % at spindle speed of 2110 rpm feed rate of 460 

mm/min and depth of cut 1.2 mm. The maximum error obtained in case of LN2 

machining for response Cutting Force (FX, N) is 11.03% at spindle speed of 2460 rpm, 

feed rate of 520 mm/min and depth of cut of 0.4 mm and the minimum percentage of 

error is 0.83 % at spindle speed of 2290 rpm, feed rate of 375 mm/min and depth of cut 

0.7 mm. Figure 5.4 indicates the comparison between experimental and RSM predicted 

for the response cutting force (FX) under wet and LN2 machining conditions. 
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Figure 5.4: Represents the experimental v/s RSM predicted for response cutting 

force (FX) under wet and LN2 machining conditions. 

From the data represented in Table 5.8, it can be seen that the maximum error obtained 

for Surface Roughness (Ra, µm) in case of wet machining is 13.09% at spindle speed 

of 1750 rpm, feed rate of 365 mm/min and depth of cut of 0.8 mm. Similarly, the 

minimum percentage of attained error is 7.18 % at spindle speed of 2007 rpm feed rate 

of 455 mm/min and depth of cut 0.9 mm. The maximum error obtained in case of LN2 

machining for response Cutting Force (FX, N) is 12.73 % at spindle speed of 1280 rpm, 

feed rate of 420 mm/min and depth of cut of 1.4 mm and the minimum percentage of 

error is 9.38 % at spindle speed of 1750 rpm, feed rate of 365 mm/min and depth of cut 

0.8 mm. Figure 5.5 indicates the comparison between experimental and RSM predicted 

for the response surface roughness (Ra) under wet and LN2 machining conditions. 
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Table 5.8: Test Cases - Comparison of surface roughness (Ra, µm) predicted by 

RSM with the experimentally obtained CT of SS316 for Wet and LN2 machining. 

SL.

NO 

Surface Roughness (Ra, µm) 

Experimental Predicted Error (%) 

Spindle 

Speed 

(rpm) 

 

Feed Rate 

(mm/min) 

 

Depth Of 

Cut (mm) 

 

Wet 

 

LN2 

RSM 

Wet 

RSM 

LN2 
Wet LN2 

1 2110 460 1.2 2.13 1.1 2.31 1.23 8.45 11.82 

2 2840 380 0.6 2.62 1.46 2.93 1.61 11.83 10.27 

3 1750 365 0.8 1.91 0.96 2.16 1.05 13.09 9.38 

4 1280 420 1.4 1.73 0.55 1.91 0.62 10.40 12.73 

5 2007 455 0.9 2.09 1.08 2.24 1.21 7.18 12.04 

6 1560 510 1.3 1.83 0.89 2.05 0.98 12.02 10.11 

7 2650 430 0.8 2.47 1.3 2.69 1.44 8.91 10.77 

8 1260 530 1.1 1.71 0.42 1.85 0.47 8.19 11.90 

9 2315 520 0.7 2.26 1.19 2.55 1.31 12.83 10.08 

10 1380 385 1.1 1.77 0.64 1.99 0.72 12.43 12.50 

11 2540 490 1.2 2.35 1.28 2.59 1.44 10.21 12.50 

12 1870 525 1.4 1.99 1.01 2.18 1.12 9.55 10.89 

13 2740 415 0.9 2.56 1.37 2.87 1.52 12.11 10.95 

14 2290 375 0.7 2.22 1.16 2.5 1.29 12.61 11.21 

15 2460 520 0.4 2.31 1.21 2.57 1.35 11.26 11.57 

 

 

Figure 5.5: Represents the experimental v/s RSM predicted for response Surface 

roughness (Ra) under wet and LN2 machining conditions. 
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Table 5.9: Test Cases - Comparison of flank-wear Rate (VB, µm) predicted by 

RSM with the experimentally obtained CT of SS316 for Wet and LN2 machining. 

SL.

NO 

Flank-Wear Rate (µm) 

Experimental Predicted Error (%) 

Spindle 

Speed 

(rpm) 

 

Feed Rate 

(mm/min) 

 

Depth Of 

Cut (mm) 

 

Wet 

 

LN2 

RSM 

 

Wet 

RSM 

 

LN2 

Wet LN2 

1 2110 460 1.2 2.29 1.51 2.56 1.63 11.79 7.95 

2 2840 380 0.6 2.51 1.93 2.31 2.15 7.97 11.40 

3 1750 365 0.8 1.96 0.86 2.15 0.77 9.69 10.47 

4 1280 420 1.4 1.82 0.74 1.65 0.66 9.34 10.81 

5 2007 455 0.9 2.22 1.49 2.06 1.64 7.21 10.07 

6 1560 510 1.3 1.87 0.78 2.1 0.69 12.30 11.54 

7 2650 430 0.8 1.14 0.53 1.26 0.59 10.53 11.32 

8 1260 530 1.1 0.68 0.37 0.61 0.41 10.29 10.81 

9 2315 520 0.7 2.16 1.43 2.31 1.57 6.94 9.79 

10 1380 385 1.1 1.69 0.68 1.85 0.61 9.47 10.29 

11 2540 490 1.2 2.32 1.57 2.56 1.75 10.34 11.46 

12 1870 525 1.4 2.07 1.12 1.89 1.25 8.70 11.61 

13 2740 415 0.9 2.69 1.99 2.92 1.77 8.55 11.06 

14 2290 375 0.7 2.18 1.41 2.36 1.55 8.26 9.93 

15 2460 520 0.4 2.41 1.63 2.13 1.44 11.62 11.66 

 

 

 

Figure 5.6: Experimental v/s RSM predicted for response Flank Wear (FW) 

under wet and LN2 machining conditions 

0
0.5

1
1.5

2
2.5

3
3.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

E
x
p

, 
P

re
d

ic
te

d
 V

a
lu

es
 (

F
W

)

No. of Experiment

Experimental V/S RSM for Flank Wear (FW)

with Wet & LN2 conditions
Experimental  FW
(Wet)
RSM FW (Wet)

Experimental FW (LN2)

RSM FW (LN2)



 

132 

From Table 5.9, it can be derived that, the maximum error obtained for Surface 

Roughness (Ra, µm) in case of wet machining is 12.30 % at spindle speed of 1560 rpm, 

feed rate of 510 mm/min and depth of cut of 1.3 mm. Similarly, the minimum 

percentage of attained error is 6.94 % at spindle speed of 2315 rpm feed rate of 520 

mm/min and depth of cut 0.7 mm. The maximum error obtained in case of LN2 

machining for response Cutting Force (FX, N) is 11.61 % at spindle speed of 1870 rpm, 

feed rate of 525 mm/min and depth of cut of 1.4 mm and the minimum percentage of 

error is 7.95 % at spindle speed of 2110 rpm, feed rate of 460 mm/min and depth of cut 

1.2 mm. Figure 5.6 indicates the comparison between experimental and RSM predicted 

for the response Flank wear (FW) under wet and LN2 machining conditions.  

5.1.4 Summary  

The effect of process parameters of SS316 on CT, FX, Ra and VB of machined 

components for milling in different conditions (wet and LN2), has been investigated 

experimentally. The experiments were carried out as per orthogonal array (OA) in order 

to identify the effects of input parameters such as Spindle speed, Feed Rate and  

Depth of cut on the performance attributes.  

 RSM modelling developed has produced quite satisfactory predictions for the    

Output of milling operation in different conditions (Wet and LN2), which is    

indicated again by the validation experiments. 

 RSM modelling also helps in understanding the correctness of the conducted   

experiments and suitability. 

 RSM technique leads in predicting the single response individually thus 

reducing the importance of the other responses. Hence, a multi-objective 

optimization is advisable   in case of more than one response.  

 

Further, the same data is used for prediction of the responses using artificial neural 

network (ANN) using various back propagation algorithms. The neural network based 

approach has been incorporated in the study, as few literatures suggest that neural 

network (NN) techniques are well suited to predict the non-linear behaviour of the 

system.  
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ANN MODELLING FOR PREDICTION 

5.2 ANN MODEL DEVELOPMENT TO PREDICT RESPONSES OF SS316 

5.2.1 Neural Network Modelling 

Neural networks are nonlinear mapping systems consisting of neurons and weighted 

connection links, which consist of user-defined inputs and produce an output that 

reflects the information stored in connections during training (Azlan et al 2018, 

Karkalos et al 2016). In this study, a multilayer neural network consisting of three 

layers, i.e., input, hidden, and output layer, was considered. In this study, several back 

propagation training algorithms have been tested, including gradient descent with 

momentum and adaptive learning method, scaled conjugate gradient descent algorithm, 

Levenberg–Marquardt algorithm and the Bayesian regularization. In addition, the 

Levenberg–Marquardt with Bayesian regularization is used to improve the 

generalization capability of the neural networks (Prashant et al 2021, Kuldip et al 2016). 

In all of those neural network models, the nonlinear tanh activation functions are used 

in the hidden layer, and input data are normalized in the range of [-1,1]. Linear 

activation functions are used in the output layer (Venkatesh et al 2018, Sener et al 

2015). The weights and biases of the network are initialized to small random values to 

avoid immediate saturation in the activation functions. The data set is divided into two 

sets as training and test sets (Farag Abdallah et al 2019, Ireneusz et al 2017). Neural 

networks are trained by using training data set, and their generalization capacity is 

examined by using test sets. The training data were never used in test data. Matlab’s 

neural network toolbox is used to train neural networks. Simulations with test data 

repeated many times with different weight and bias initializations. 

 

5.2.2 Prediction of Cutting Temperature (CT,℃), Cutting Force (FX, N), Surface 

Roughness (Ra, µm) Flank Wear(VB, µm)  

 

The responses Cutting Temperature (CT,℃), Cutting Force (FX, N), Surface 

Roughness (Ra, µm) Flank Wear(VB, µm)  are  predicted with a trained feed-forward 

neural network. Spindle Speed, feed rate and depth of cut are used as inputs to neural 

network. These neural networks are trained with 18 data sets without including 9 data 
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sets. Training algorithms and network architectures are selected for minimum root-

mean-squared (RMS) error for best predictions using a training procedure. Selection 

process for the ANN architecture includes identifying first most optimum training 

algorithm and most optimum number of hidden layer neurons for a minimized RMS 

error (Girish et al 2017). Hence, the number of neurons in the hidden layer is decided 

by choosing the network structure that minimizes the RMS error with trial-and-error. 

The results of these tests are summarized in Table 3. The data used for modelling without 

random noise has been taken care. In the present study the noise refers to: 

1) The Ethernet cable used is shielded as per the industrial ISO standard format 

nullifying the noise. 

2) The machine used for carry out the experiment is a rigid industrial type 3-axis 

standard CNC machine in a good condition without any significant noise. 

3) All experiments are conducted with proper operating ambient conditions. 

4) No other electronic sensors are used during experiments. 

5) The data being prepared for neural networks model are properly normalized. 

The experimental data are found to be in normal condition without the occurrence of 

any abnormality. 

A. Scope 

In this section, it is proposed to formulate a Neural Network based approach (ANN) 

with incorporation of various back propagation algorithm to predict the responses 

of SS316 Cutting Temperature (CT,℃), Cutting Force (FX, N), Surface Roughness 

(Ra, µm) Flank Wear (VB, µm) with the input parameters being spindle speed, feed 

rate and depth of cut. 

B. Data Collection 

The data for training the ANN network proposed for response prediction in 

SS316 is collected from the experiments carried out on milling. The data are 

listed in Table 5.1.        

C. Neural Network Training  
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In any FFNN application even today, the exact architecture to be used needs to 

be found (Reddy et al. 2005). More often than not, this is a trial and error 

exercise, as regards to the selection of a number of hidden layers and neurons 

in each of these layers. In this application, training was started with one hidden 

layer from 3 to 7 neurons in each hidden layer. The minimum mean squared 

error (MSE) was set as 0.0001. Initially, during training, the learning rate 

parameter and momentum factor were preferred as 0.5 each. The number of 

hidden neurons was fixed based on MSE and the mean error in prediction of 

training data. Single hidden layer was tried out to obtain the minimum MSE. It 

was observed that the network converges well with a single hidden layer when 

tried with a different number of nodes varying from 3 to 7 in the hidden layer. 

Here the training was started with varying learning rates from 0.1 to 0.9 in steps 

of 0.05.  The learning rate and the momentum parameters were initially taken 

as 0.3 and 0.9, respectively, for training. For all patterns, p, the global error 

function is expressed in terms of MSE (Yagnanarayana 2008) and is given by 

equation 5.5  

                                            E =  ΣEP = (1
P⁄ ) ΣΣ (bkp −  Skp

    0)2                  (5.5) 

Where, bkpis the actual output and Skp
0 is the network output for the Kth output 

neuron for the pth pattern. 

The mean error in the output prediction is shown in equation 5.6 (Reddy et al. 

2005) 

     Etr(x) = 1/N S |(bk(x) – Pk(x))|               (5.6) 

Where, Etr(x) is the mean error in prediction of training data set for output 

parameter x,  N is the number of the data sets, bk(x) is the actual output and 

Pk(x) is the predicted output. The following sigmoid function as represented in 

equation 5.7 was used as the activation function (Reddy et al. 2008, Mandal et 

al. 2009, Reddy et al. 2005, Li, Liu and Xiong 2002, Mousavi et al.2007, Haque 

and Sudhakar 2002).   

                                              F(x) = 1/ (1+exp (-x))                                (5.7)  
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5.2.3 Training of the Neural Identifier  

Identification requires setting up a suitably parameterized identification model and 

adjustment of these parameters of the model to optimize a performance function based 

on the error between the outputs from the plant and the identification model (Gianni et 

al 2014). It is assumed that the weight matrices of the neural network proposed as the 

identifier exists, for which, both plant and the identifier have the same output for any 

specified inputs, for the same initial conditions (Yu et al 2015, Malghan et al 2015). 

The system under consideration is simulated at different operating conditions for a wide 

range of the steady state active power flow level in the tie-line flowing between the two 

areas to generate data for training. During training the weights and biases of the network 

are iteratively adjusted to minimize the network performance function. The 

performance function used for the neural identifier under consideration is the mean 

square error, MSE, given by equation 5.8. 

 

                                                                      (5.8) 

Where, N is the size of the training dataset P12 and ^P12 are the target and predicted 

value of the output of the neural network when the qth input is presented and e  is the 

error (difference between the target and predicted value) for the qth input. The 

performance index V in (Zhou et al 2017) is a function of weights and biases, x = 

[x1,x2,x3…Xn]  and can be given by equation 5.9. 

                                                                            (5.9) 

The performance of the neural network can be improved by modifying x till the desired 

level of the performance index, is achieved. This is achieved by minimizing V(x) with 

respect to and the gradient required for this is given by equation 5.10 

                                                                                      (5.10) 

Where, J(x) is the Jacobian matrix given by 
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And e(x) is the error for all the inputs. The gradient in (Tandon et al 2008) is determined 

using backpropagation, which involves performing computations backward through the 

network. This gradient is then used by different algorithms to update the weights of the 

network. These algorithms differ in the way they use the gradient to update the weights 

of the network and are known as the variants of the Backpropagation algorithm. This 

work compares the performance of the basic implementation of the Backpropagation 

algorithm i.e. Gradient descent algorithm with other variants in order to investigate the 

potentials of these algorithms for online applications in power system identification. A 

brief overview of the different algorithms considered in this work is given under: 

 

i) Gradient Descent algorithm (GD): The network weights and biases, is modified in 

a direction that reduces the performance function in (Jingchao et al 2020) most rapidly 

i.e. the negative of the gradient of the performance function (Shixu Sun et al 2019). The 

updated weights and biases in this algorithm are given by equation 5.11. 

                                                         (5.11) 

Where, xk is the vector of the current weights and biases, ΔVk is the current gradient of 

the performance function and αk is the learning rate. 

 

ii) Scaled Conjugate Gradient Descent algorithm (SCGD):  

The gradient descent algorithm updates the weights and biases along the steepest 

descent direction but is usually associated with poor convergence rate as compared to 

the Conjugate Gradient Descent algorithms, which generally result in faster 

convergence (Dongdong et al 2016). In the Conjugate Gradient Descent algorithms, a 

search is made along the conjugate gradient direction to determine the step size that 

minimizes the performance function along that line. This time consuming line search is 

required during all the iterations of the weight update. However, the Scaled Conjugate 

Gradient Descent algorithm does not require the computationally expensive line search 
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and at the same time has the advantage of the Conjugate Gradient Descent algorithms 

(Sohyung Cho et al 2015). The step size in the conjugate direction in this case is 

determined using the Levenberg-Marquardt approach. The algorithm starts in the 

direction of the steepest descent given by the negative of the gradient as shown in 

equation 5.12. 

                                                                                  (5.12) 

The updated weights and biases are then given by equation 4.13 

                                                                               (5.13) 

Where, αk  is the step size determined by the Levenberg-Marquardt algorithm (Chen 

Zhang et al 2015). The next search direction that is conjugate to the previous search 

directions is determined by combining the new steepest descent direction with the 

previous search direction and is given by equation 5.14. 

 

                                                                                        (5.14) 

 

The value of βk is as given in (Yao-Wen et al 2008), by equation 5.15 

                                                                  (5.15) 

Where µk is given by equation 5.16 

                                                                                         (5.16) 

 

iii) Levenberg-Marquardt algorithm (LM):  

Since the performance index in (Ali et al 2019) is sum of squares of non-linear function, 

the numerical optimization techniques for non-linear least squares can be used to 

minimize this cost function. The Levenberg-Marquardt algorithm, which is an 

approximation to the Newton’s method is said to be more efficient in comparison to 

other methods for convergence of the Backpropagation algorithm for training a 

moderate-sized feedforward neural network (Zhang et al 2015). As the cost function is 

a sum of squares of non-linear function, the Hessian matrix required for updating the 
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weights and biases need not be calculated and can be approximated as shown in 

equation 5.17. 

                                                                                    (5.17) 

The updated weights and biases are given by equation 5.18. 

                                                           (5.18) 

iv)  Bayesian Regularization (BR):  

Regularization as a mean of improving network generalization is used within the 

Levenberg-Marquardt algorithm. Regularization involves modification in the 

performance function. The performance function for this is the sum of the squares of 

the errors and it is modified to include a term that consists of the sum of squares of the 

network weights and biases. The modified performance function is given by equation 

5.19. 

                                                                   (5.19) 

Where SSE and SSW are given by equations 5.20 and 5.21 

                                                                              (5.20) 

                                                                              (5.21) 

Where, n is the total number of weights and biases, Wj in the network. The performance 

index in (5.19) forces the weights and biases to be small, which produces a smoother 

network response and avoids over fitting. The values of α and β are determined using 

Bayesian Regularization in an automated manner (Lela et al 2009, Gu et al 2020, Dong 

et al 2020).  

 

Feed forward neural networks are well-known modelling tools for complex nonlinear 

problems. The aim is always to infer the function from the given data set. The data set 

usually consists of input vectors x and corresponding target vectors t. Neural networks 

parameterize the unknown function by means of parameter vector w, which leads to a 
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nonlinear function y(x; w) (Wang et al 2020). By inferring the parameter w, the function 

y(x; w) is inferred as well. This is achieved by adjusting w so as to minimize an error 

function (Ali et al 2019, Hu et al 2019), which is usually the sum-of-squares error 

(SSE). The process of adjusting w is also called learning or training. This research uses 

the BNN modelling approach. BNN gives a probabilistic interpretation to the network 

learning process. The SSE function is expressed in terms of the likelihood function 

representing probability of the observed data when the parameters are known (Chen et 

al 2019). This function is usually taken to be a separable Gaussian assuming zero-mean 

Gaussian noise on the target variables and the hyperparameter ß controls the variance 

of the noise (Muzaffer et al 2018, Yeganefar et al 2019). BNN includes regularization, 

and the regularizer is interpreted as prior probability distribution over the parameters. 

For a weight decay regularizer, prior distribution is a Gaussian where variance is 

governed by the hyperparameter (Yeganefar et al 2019). Once the likelihood function 

and a prior distribution have been determined, the Bayes’ theorem can be used to find 

the posteriori distribution of the network weights. Having found the posteriori 

distribution, predictions can be made by marginalization over the parameters (Garcia et 

al 2015, Kong et al 2016, Jingchao et al 2020). (BNN automatically controls the 

network complexity, so there is no need for validation data set and cross-validation 

procedure. 

 

BNN model used in this study consists of three layers and a hidden layer of six neurons. 

The input layer is composed of three neurons. The output layer has four neuron and a 

linear activation function. Among 31 datasets, 18 are used for training cycle and 

remaining 9 are used for testing and validation with 4 datasets.  To optimize BNN 

weights w, the scaled conjugate gradient algorithm (Lela et al 2009) has been used. The 

final values of the hyper parameters have been obtained as a=2.88, ß=20.39. The R 

values of 0.987 and 0.984 have been obtained for training and testing, respectively. The 

purpose of a set of data sets (exclusive) for testing is to verify the generality of the ANN 

model for accurate interpolation in the given domain of the problem 
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Table 5.10 Statistical comparison of different training algorithms. 

 

 

Figure 5.7: Statistical RMS error comparison between GD, SCGD, LM and BNN 

algorithms 

 

5.2.4 Analysis of Results and Discussion 

The validation of all models was performed with the testing data set. Relative errors 

obtained using RSM and BNN methodologies have been compared, and the results of 

testing are shown in Table 5.11-5.13. The average relative errors for RSM and BNN 

models are clearly indicated for responses (CT, FX, Ra, FW) in Table 5.11-5.13 for the 

test cases. Thus from the Table 5.10 the results attained indicate that the BNN model 

offers the best prediction capability compared to rest of the back propagation 

algorithms. So in upcoming chapter of optimization the BNN is taken in to account to 
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compare with Support vector regression technique. Figure 5.7 represents the statistical 

RMS error comparison between GD, SCGD, LM and BNN algorithms. Figure 5.8 

represents the output response cutting temperature (CT) comparison between 

experimental, RSM and BNN. Figure 5.9 represents the output response cutting force 

(FX) comparison between experimental, RSM and BNN. Figure 5.10 represents the 

output response surface roughness (Ra) comparison between experimental, RSM and 

BNN. Figure 5.11 represents the output response Flank Wear (FW) comparison 

between experimental, RSM and BNN. 

Table 5.11: Summary of the test cases results for the response: Cutting 

temperature (CT) for LN2 condition. 

Exp.

NO 

Experimental 

CT 
RSM BNN 

Relative Error 

Obtained by RSM 

(%) 

Relative Error 

Obtained by BNN 

(%) 

1 48 53 50 10.42 4.17 

2 57 62 60 8.77 5.26 

3 70 77 66 10.00 5.71 

4 62 58 66 6.45 6.45 

5 73 79 70 8.22 4.11 

6 86 93 89 8.14 3.49 

7 68 74 71 8.82 4.41 

8 89 96 93 7.87 4.49 

9 97 104 92 7.22 5.15 

  

 
 

Figure 5.8: Output response cutting temperature (CT) comparison between 

experimental, RSM and BNN 
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Table 5.12: Summary of the test cases results for the response: Cutting force 

(FX) for LN2 condition. 

Exp.

NO 

Experimental 

FX 
RSM BNN 

Relative 

Error 

Obtained by 

RSM (%) 

Relative Error 

Obtained by BNN 

(%) 

1 107 99 101 7.48 5.61 

2 125 135 131 8.00 4.80 

3 156 171 167 9.62 7.05 

4 92 101 96 9.78 4.35 

5 109 119 116 9.17 6.42 

6 131 141 139 7.63 6.11 

7 77 84 80 9.09 3.90 

8 89 97 94 8.99 5.62 

9 110 119 115 8.18 4.55 

 

 

 

Figure 5.9: Output response cutting force (FX) comparison between 

experimental, RSM and BNN 

Table 5.13: Summary of the test cases results for the response: Surface 

Roughness (Ra) for LN2 condition. 

Exp.NO Experimental Ra RSM BNN 
Relative Error 

Obtained by RSM  

(%) 

Relative Error 

Obtained by 

BNN (%) 

1 1.36 1.47 1.44 8.09 5.88 

2 1.77 1.84 1.81 3.95 2.26 

3 1.93 2.09 1.98 8.29 2.59 

4 1.12 1.2 1.17 7.14 4.46 

5 1.4 1.32 1.45 5.71 3.57 

6 1.67 1.76 1.62 5.39 2.99 

7 0.83 0.9 0.87 8.43 4.82 

8 1.26 1.35 1.31 7.14 3.97 

9 1.38 1.47 1.44 6.52 4.35 
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Figure 5.10: Output response surface roughness (Ra) comparison between 

experimental, RSM and BNN. 

Table 5.14: Summary of the test cases results for the response: Flank Wear (FW) 

for LN2 condition. 

Exp.NO Experimental FW RSM BNN 

Relative Error 

Obtained by RSM 

(%) 

Relative Error 

Obtained by 

BNN (%) 

1 1.31 1.39 1.26 6.11 3.82 

2 1.78 1.95 1.92 9.55 7.87 

3 1.42 1.57 1.48 10.56 4.23 

4 0.89 0.97 0.84 8.99 5.62 

5 1.66 1.82 1.76 9.64 6.02 

6 1.05 1.14 1.11 8.57 5.71 

7 0.49 0.53 0.47 8.16 4.08 

8 1.1 1.17 1.14 6.36 3.64 

9 0.93 0.87 0.97 6.45 4.30 

 

 

Figure 5.11: Output response flank wear (FW) comparisons between 

experimental, RSM and BNN 
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After the validation of the models, a simulation of the prediction, using the best model, 

was performed. The simulation was carried out by varying two cutting parameters, 

while the third is kept constant. Figure 5.12 shows how the surface roughness depends 

on the feed and depth of cut in the case when the spindle speed of 2000 (rpm) is kept 

constant. It can be seen that both factors influence on Ra but the feed is by far more 

dominant factor.  

 

Figure 5.13 shows the influence of the spindle speed and feed on the surface roughness 

for the invariable depth of cut of 1 (mm). It is obvious that Ra decreases when the 

spindle speed increases and the feed simultaneously decreases. The feed is again, by 

far, a more influential factor.  

 

The influence of the spindle speed and depth of cut on the surface roughness for the 

constant feed of 450 (mm/min) is shown on Figure 5.14. Both factors show the similar 

intensity of influence on Ra. The surface roughness decreases if the spindle speed 

increases.  

Generally, the surface roughness decreases with the increase of spindle speed. This is 

usually explained relating to the type of chip formation and built-up edge generated 

from the machining process. At very low spindle speed, discontinuous chip formation 

occurs, which gives a poor surface finish. As the spindle speed increases, the chip 

formation becomes less discontinuous, and the surface finish improves. Further 

increase of spindle speed reduces the size of the built-up edge until a continuous chip 

is formed, and then, surface roughness approaches a steady low value.  

Considering the fact that the research has been made above the spindle speed range 

where built-up edge appears, the increase of spindle speed leads to the decrease of 

surface roughness. Further increase of the spindle speed causes tool wear, and that 

maintains approximate constant value of surface roughness. 

The feed rate is the most significant factor associated with surface roughness. When 

feed rate increases, surface roughness increases too. The selection of the feed rate must 
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be performed carefully, because apart from the strong influence on Ra, excessive feed 

increases cutting forces, tool deflections, tool wears, chipping, etc.  

In comparison with spindle speed and feed, the depth of cut has a minor influence on 

surface roughness. From a geometrical point of view, depth of cut has not influence 

surface roughness because the height and form of the roughness profile are independent 

of the depth of cut. The depth of cut has indirect influence on surface roughness through 

the formation of the built-up edge, chip deformation, cutting force, cutting temperature, 

vibration, etc. 

 
 

Figure 5.12: Influence of feed and depth of cut on surface roughness for constant spindle 

speed of 2000(rpm).  

 

 
 

Figure 5.13: Influence of spindle speed and feed on surface roughness for constant 

depth of cut 1(mm). 
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Figure 5.14: Influence of spindle speed and depth of cut on surface roughness for 

constant feed of 450 (mm/min). 
 

 

The Gradient Descent algorithm was very slow in converging for the required value of 

the performance index. The time required for training the network using the BNN was 

the least whereas, maximum time was required for training the network using the Scaled 

Conjugate Gradient Descent algorithm. The training algorithm employing Levenberg-

Marquardt algorithm continuously modifies its performance function and hence, takes 

more time as compared to the Bayesian Regularization but this time is still far less than 

the Scaled Conjugate Gradient Descent method. From Table 5.10, it can be established 

that the Bayesian Regularization is the fastest of all the training algorithms considered 

in this work for training a neural network.  

 

A neural network has been proposed to predict the responses on the basis of the values 

of the input variables. The proposed neural network is trained using different variants 

of the Back propagation algorithm. Investigations in to the training performance of the 

different algorithms establish that the Levenberg-Marquardt algorithm is the fastest to 

converge. Comparison of the predictions made by the different neural networks reveal 

that the neural network trained using the BNN algorithm gives the most accurate 

predictions. The fast convergence teamed with good predictive quality makes Bayesian 

regularization algorithm are the most suitable choice of all the variants considered in 

this work for training a neural network for this application. 
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Table 5.15 Information on back propagation algorithms / Training algorithms. 

Sl.NO/ 
Training 

Algorithms 
Gradient descent Scaled Conjugate Gradient Descent Levenberg-Marquardt Bayesian Regularization 

1 

 

 

Requiring many iterations 

for functions which have 

long, narrow valley 

structures 

This method also avoids the information 

requirements associated with the evaluation, 

storage, and inversion of the Hessian matrix, as 

required by the Newton's method. 

Levenberg-Marquardt algorithm is a 

method tailored for functions of the 

type sum-of-squared-error. 

Bayesian regularization expands the cost function to search 

not only for the minimal error, but for the minimal error 

using the minimal weights. 

2 

The downhill gradient is 

the direction in which the 

loss function decreases 

most rapidly. 

But this does not 

necessarily produce the 

fastest convergence. 

In the conjugate gradient training algorithm, the 

search is performed along conjugate directions 

which produce generally faster convergence than 

gradient descent directions. 

Very fast when training neural 

networks measured on that kind of 

errors. 

To overcome the problem in interpolating noisy data, 

MacKay (1992) has proposed a Bayesian framework which 

can be directly applied to the neural network learning 

problem. 

3 

Big neural networks, with 

many thousand parameters 

Recommended when we have very big neural 

networks. 

Not recommended when we have big 

data sets and/or neural networks 

requires a lot of memory 

 

Estimate the effective number of parameters actually used 

by the model. 

The number of network weights actually needed to solve a 

particular problem. 

4 

The reason is that this 

method only stores the 

gradient vector (size n), 

and it does not store the 

Hessian matrix (size n2). 

Since it does not require the Hessian matrix, It works without computing the exact 

Hessian matrix. Instead, it works with 

the gradient vector and the Jacobian 

matrix. 

By using Bayesian regularization, one can avoid costly 

cross validation. It is particularly useful to problems that 

cannot, or would suffer, if a portion of the available data 

were reserved to a validation set. 

Regularization also reduces (or eliminates) the need for 

testing different number of hidden neurons for a problem. 

5 

It requires information 

from the gradient vector, 

and hence it is a first order 

method. 

This method has proved to be more effective than 

gradient descent in training neural networks. 

It cannot be applied to functions like 

cross entropy error. 

A third variable, gamma, indicates the number of effective 

weights being used by the network, thus giving an 

indication on how complex the network should be. 
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Table 5.15 represents the working concepts of Training Algorithms such as Gradient 

descent, Scaled Conjugate Gradient Descent, Levenberg-Marquardt and Bayesian 

Regularization. Figure 5.15 depicts the speed of training algorithms versus memory of 

training algorithms for Gradient descent, Scaled Conjugate Gradient Descent, 

Levenberg-Marquardt and Bayesian Regularization. Bayesian is best suitable for the 

current study due to its convergence rate, speed and storage parameters. 

 

 

Figure 5.15: Memory v/s Speed -Training algorithms 
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Exp.N

o. 

Experimental 

- CT 
RSM GD SCGD LM BNN 

Relative Error 
- CT Obtained 
by RSM (%) 

Relative Error 
- CT Obtained 

by GD   (%) 

Relative Error 
- CT Obtained 
by SCGD (%) 

Relative Error 
- CT Obtained 

by LM   (%) 

Relative Error 
- CT Obtained 

by BNN (%) 

1 48 43 44 51 50 49 10.42 8.33 6.25 4.17 2.08 

2 57 62 62 61 60 59 8.77 8.77 7.02 5.26 3.51 

3 70 77 64 65 66 67 10.00 8.57 7.14 5.71 4.29 

4 62 57 67 66 65 64 8.06 8.06 6.45 4.84 3.23 

5 73 80 67 78 69 70 9.59 8.22 6.85 5.48 4.11 

6 86 94 92 91 90 89 9.30 6.98 5.81 4.65 3.49 

7 68 61 63 72 65 66 10.29 7.35 5.88 4.41 2.94 

8 89 97 97 96 94 92 8.99 8.99 7.87 5.62 3.37 

9 97 107 91 92 94 95 10.31 6.19 5.15 3.09 2.06 

Exp.N
o. 

Experimen
tal - Fx 

RSM GD SCGD LM BNN 
Relative Error 
- Fx Obtained 
by RSM (%) 

Relative Error 
- Fx Obtained 

by GD (%) 

Relative Error 
- Fx Obtained 
by SCGD (%) 

Relative Error 
- Fx Obtained 
by LM    (%) 

Relative Error 
- Fx Obtained 
by BNN  (%) 

1 107 99 100 102 103 104 7.48 6.54 4.67 3.74 2.80 

2 125 136 134 133 131 129 8.80 7.20 6.40 4.80 3.20 

3 156 171 167 166 163 162 9.62 7.05 6.41 4.49 3.85 

4 92 101 99 98 97 96 9.78 7.61 6.52 5.43 4.35 

5 109 119 117 116 115 113 9.17 7.34 6.42 5.50 3.67 

6 131 142 140 137 136 135 8.40 6.87 4.58 3.82 3.05 

7 77 84 83 82 81 80 9.09 7.79 6.49 5.19 3.90 

8 89 97 96 95 93 92 8.99 7.87 6.74 4.49 3.37 

9 110 119 118 117 116 115 8.18 7.27 6.36 5.45 4.55 

Table 5.16: Test cases - Comparison of cutting temperature (CT, ºC) predicted by RSM, GD, SCGD, and LM with the experimentally obtained 

CT of SS316 for LN2 machining 

and BNN  

 

Table 5.17: Test Cases - Comparison of cutting force (FX, N) predicted by RSM, GD, SCGD, and LM with the experimentally obtained FX of SS316 

for LN2 machining. 

and BNN  
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Figure 5.16: Statistical (RSM) v/s ANN (GD, SCGD, LM, BNN) for response 

cutting temperature (CT) under LN2 machining conditions 

Table 5.16 represents the 9 Test Cases - Comparison of Cutting Temperature (CT, ºC) 

predicted by RSM, GD, SCGD, LM and BNN with the experimentally obtained CT of 

SS316 for LN2 Machining. Figure 5.16 depicts the deviation (%) of output CT attained 

through the statistical (RSM) and ANN (GD, SCGD, LM and BNN) approaches for 

SS316 in LN2 Machining.  

 

 

Figure 5.17: Statistical (RSM) v/s ANN (GD, SCGD, LM, BNN) for response 

cutting force (Fx) under LN2 machining conditions
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Exp
.NO 

Experiment
al - FW 

RSM GD SCGD LM BNN 

Relative Error 
- FW Obtained 

by RSM  (%) 

Relative Error 
- FW Obtained 

by GD (%) 

Relative Error 
- FW Obtained 
by SCGD (%) 

Relative Error 
- FW Obtained 

by LM   (%) 

Relative Error 
- FW Obtained 

by BNN (%) 

1 1.31 1.43 1.2 1.22 1.24 1.26 9.16 8.40 6.87 5.34 3.82 

2 1.78 1.93 1.92 1.89 1.87 1.85 8.43 7.87 6.18 5.06 3.93 

3 1.42 1.54 1.53 1.52 1.49 1.48 8.45 7.75 7.04 4.93 4.23 

4 0.89 0.97 0.82 0.83 0.84 0.86 8.99 7.87 6.74 5.62 3.37 

5 1.66 1.8 1.79 1.76 1.73 1.71 8.43 7.83 6.02 4.22 3.01 

6 1.05 1.14 1.13 1.11 1.1 1.09 8.57 7.62 5.71 4.76 3.81 

7 0.49 0.54 0.45 0.46 0.51 0.5 10.20 8.16 6.12 4.08 2.04 

8 1.1 1.2 1.19 1.18 1.16 1.14 9.09 8.18 7.27 5.45 3.64 

9 0.93 0.85 1 0.99 0.98 0.97 8.60 7.53 6.45 5.38 4.30 

  
      

Exp.
No. 

Experiment
al - Ra 

RSM GD SCGD LM BNN 
Relative Error 
- Ra Obtained 
by RSM (%) 

Relative Error 
- Ra Obtained 

by GD   (%) 

Relative Error 
- Ra Obtained 
by SCGD (%) 

Relative Error 
- Ra Obtained 

by LM   (%) 

Relative 
Error - Ra 

Obtained by 
BNN (%) 

1 1.36 1.47 1.45 1.43 1.42 1.41 8.09 6.62 5.15 4.41 3.68 

2 1.77 1.89 1.88 1.86 1.85 1.83 6.78 6.21 5.08 4.52 3.39 

3 1.93 2.09 1.8 1.82 1.83 1.85 8.29 6.74 5.70 5.18 4.15 

4 1.12 1.2 1.19 1.18 1.17 1.16 7.14 6.25 5.36 4.46 3.57 

5 1.4 1.29 1.5 1.49 1.48 1.45 7.86 7.14 6.43 5.71 3.57 

6 1.67 1.8 1.55 1.58 1.6 1.61 7.78 7.19 5.39 4.19 3.59 

7 0.83 0.9 0.89 0.88 0.87 0.86 8.43 7.23 6.02 4.82 3.61 

8 1.26 1.36 1.35 1.34 1.33 1.31 7.94 7.14 6.35 5.56 3.97 

9 1.38 1.49 1.48 1.47 1.46 1.44 7.97 7.25 6.52 5.80 4.35 

Table 5.18: Test cases - Comparison of surface roughness (Ra, μ) predicted by RSM, GD, SCGD, LM and BNN with the 

experimentally obtained Ra of SS316 for LN2 machining. 

Table 5.19: Test cases - Comparison of flank wear (VB, µm) predicted by RSM, GD, SCGD, LM and BNN with the experimentally 

obtained VB of SS316 for LN2 machining. 

Ra of SS316 for LN2 Machining. 
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Figure 5.18: Statistical (RSM) v/s ANN (GD, SCGD, LM, BNN) for response 

surface roughness (Ra) under LN2 machining conditions 

Table 5.18 represents the 9 Test Cases - Comparison of Surface Roughness (Ra, µm) 

predicted by RSM, GD, SCGD, LM and BNN with the experimentally obtained Ra of 

SS316 for LN2 Machining. Figure 5.16 depicts the deviation (%) of output Ra attained 

through the statistical (RSM) and ANN (GD, SCGD, LM and BNN) approaches for 

SS316 in LN2 Machining.  

   

Figure 5.19: Statistical (RSM) v/s ANN (GD, SCGD, LM, BNN) for response 

flank wear (FW) under LN2 machining conditions 

Table 5.19 represents the 9 Test Cases - Comparison of Flank Wear (FW, µm) predicted 

by RSM, GD, SCGD, LM and BNN with the experimentally obtained FW of SS316 for 

LN2 Machining. Figure 5.17 depicts the deviation (%) of output FW attained through 

the statistical (RSM) and ANN (GD, SCGD, LM and BNN) approaches for SS316 in 

LN2 Machining.  
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Table 5.20: Summary of relative error comparison between RSM, GD, SCGD, 

LM and BNN for output parameters CT, CF, Ra, and FW. 

 

5.2.5 Summary 

 

1. ANN modelling developed has produced quite satisfactory predictions for the 

output of milling operation, ANN model has been successfully designed and 

validated to predict the responses namely Cutting Temperature (CT, ℃), Cutting 

Force (FX, N), Surface Roughness (Ra, µm) Flank Wear (VB, µm) using various 

network structure and different methods with the experimental data carried out 

on face milling of SS316 being used for training. 

2. Comparison of the predictions made by the different neural networks reveal that 

the neural network trained using the BNN algorithm gives the most accurate 

predictions. 

3. The fast convergence teamed with good predictive quality makes Bayesian 

regularization algorithm are the most suitable choice of all the variants 

considered in this work for training a neural network for this application. 

4. The relative error attained through BNN is accurate and less as compared to rest 

of the back propagation algorithms i.e. (Gradient descent learning, Scaled 

Conjugate Gradient Descent, Levenberg-Marquart). 

5. The comparative study made between the statistical techniques (RSM) and 

neural based approach (BNN) indicate that the error achieved in prediction 

using BNN model is much lesser than that of the RSM prediction. Hence, this 

model gives better results as compared to RSM.  

 

The comparison study was made among all the prediction approaches by one 

parametric approach. The attained results through one parametric approach are 

summarized as follows in Table 5.20. 

Methods Relative error 

(%) CT (ºC) 

Relative error 

(%)  CF (FX) 

Relative error  

(%) Ra (µm) 

Relative error 

(%)  FW (µm) 

RSM 8.06 - 10.42 7.48 - 9.78 6.78 - 8.43 8.43 - 10.2 

GD 6.19 - 8.99 6.54 - 7.87 6.21 - 7.25 7.53 - 8.4 

SCGD 5.15 - 7.87 4.58 - 6.74 5.08 - 6.52 5.71 - 7.27 

LM 3.09 - 5.71 3.74 - 5.5 4.19 - 5.8 4.08 - 5.62 

BNN 2.06 - 4.29 2.8 - 4.55 3.39 - 4.35 2.04 - 4.3 
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CHAPTER 6 

RESULTS AND DISCUSSION (PART 3) 

  OPTIMIZATION CRYOGENIC MILLING PROCESS 

 

6.1 INTRODUCTION 

The milling process modelling and optimization strategy mentioned. The phases and 

methodology followed to mannequin and optimize the milling operation for the 

responses are illustrated in Figure 3.4. The experimental data (Table 5.1) has been 

accrued as per outline matrices of Central Composite Design (CCD/RSM). Further, 

using analysis of variance (ANOVA) the statistical sufficiency of the strategy has 

been evaluated.  The experimental accumulated control-response data are applied for 

generation of mathematical (nonlinear) models of the responses. The procedure 

involved in the study is explained via the surface plots. The evaluation is executed 

and sufficiency is tested via assistance of coefficient of correlation, ANOVA and 

significance test. The response equations attained through RSM model are shown in 

equation 6.1-6.4. The accuracy of the prediction of the created model is verified with 

15 test cases and the superlative one is chosen in light of the average absolute percent 

deviation esteem.  

 

The chapter deals with comparison of both traditional (RSM-Desirability Factor 

Approach (DFA)) and non-traditional (PSO) approach  

 

Related Article: 

Karthik Rao M C, Rashmi L Malghan*, Arun Kumar Shettigar, Shrikantha S 

Rao and Mervin A Herbert. (2019). “An Efficient Approach to Optimize Wear 

Behaviour of Cryogenic Milling Process of SS316 Using Regression Analysis and 

Particle Swarm Techniques”, Trans Indian Inst Met, 72(1):191–204, 

https://doi.org/10.1007/s12666-018-1473-y 
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6.2 TRADITIONAL APPROACH (RSM) 

The Central Composite Design (CCD) was used to implement the response prediction 

using RSM. A total of 20 experiments were performed, which incorporates of 8 cube 

points, 6 center points in cube, 6 axial points and alpha value is 1. The range of the 

process parameters were set by taking into consideration the tool or insert 

specification and even by performing the trial experiments in order to achieve the 

desired responses. In the present work, CCFCD is used for establishing the 

relationship between the empirical process parameters and the milling process output 

variables of SS316. The final obtained mathematical regression equations are listed in 

equations 6.1-6.4.  

 

Later on the model performance was validated with the help of analysis of variance 

(ANOVA) (Tables 5.2-5.5). The significance of the model is identified by this 

method. If the model satisfies the condition of Prob>f is less than 0.0500, then the 

model is considered to be significant. All the proposed models satisfies the condition 

of Prob>f is less than 0.0500, Hence, it can be concluded that all the proposed models 

are significant. The adequacy of the fitted regression model was identified using the 

R2correlation coefficient and the value of R2 need to be close to unity. For all the 

responses the “Pre R-squared” are in reasonable accordance with the “Adj R-

Squared” values. The precision ratio of all the developed models (ratio >4 is 

desirable) shows the adequacy of incorporating the proposed model.   

 

6.3 NON TRADITIONAL OPTIMIZATION APPROACH (EVOLUTIONARY 

APPROACH- PSO) 

Evolution algorithms (EAs) are imitative of natural evolutionary principles to 

constitute search and optimization procedure. Genetic algorithm (GA) is evolutionary 

algorithm and was introduced by John Holland (1975). These algorithm functions are 

for selection of the fittest to produce better approximation to solutions. 

Particle swarm optimization algorithm (PSO) is a relatively new approach in modern 

heuristics for optimization and it is one of the evolutionary protocol methods. PSO 
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was first developed by Eberhart and Kennedy (1995) for continues function 

optimization. There are several stochastic algorithms such as genetic algorithms, 

differential evolution, Tabu search, simulated annealing, ant colony optimization and 

particle swarm optimization. These algorithms are used to find optimal solution for 

different objective function. The basic concept of PSO originated from the food 

hunting behaviour of birds. It was found that through the intelligent swarming 

behaviour, flocks of birds would always suddenly change the direction, scatter and 

gather. Behaviour of birds is also unpredictable but always consistent as whole, with 

individuals keeping the most suitable distance. Every swarm of PSO is a solution in 

the solution space. It adjusts the fight according to its own and its companion flying 

experience. The goal of optimization is to minimize or maximize certain quantities 

such as life, mass, etc. In mathematical models, these goals are expressed as functions 

of certain variables. There are various methods available for solving these models 

towards minimization or maximization. The response equations attained through RSM 

model are further utilized as fitness function in implementation of PSO algorithm. 

The chapter deals with the implementation and comparison of both statistical and 

evolutionary optimization techniques and background of these optimization 

techniques are explained in chapter 3 (section 3.10). The foresaid optimization 

techniques are carried out to predict the optimum combinations of process parameters 

for the desired responses. For veracity, the validation experiments have been 

conducted. 

6.4 PHASES FOLLOWED TO ATTAIN THE STATED GOALS  

To satisfy the stated goals of the current work four phases have been followed and 

these are elaborated below: 

Phase 1: Selecting milling factors and respective levels 

 The decision of machining factors and choice on the working levels are of 

central significance to persuade over the procedure and abate the imperfections. Too 

wider working scope of the factors will lead to infeasible elucidation on the retort 

surface, on the other hand excessively limit range will bring about inadequate or poor 

data about the process (Pereira et al 2016, Sartori et al 2017, Shalina et al 2020). 
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Design of experiment and RSM methods are pragmatic to contemplate and evaluate 

the impression of factors on responses. Accordingly, accessing available literature, 

doyen’s recommendation and trial tests directed at the study are utilized to choose 

process factors and fix their working reach. Table 6.1 exemplifies the considered 

input factors and their respective operating ranges. 

Phase2: Experiment Conduction 

CCD is largely acceptable and utilized non-linear regression strategy to fit the 

response surface. Experiments are carried out according to CCD design matrices and 

are represented in Table 3.1. In the work, for the CCD model thirty-one experimental 

runs are carried out, these runs deliver the complete perception of point by point 

comprehension of all input terms over the outcomes (Chetan et al 2015, Shalina et al 

2019). Further, fifteen distinctive (experiments) blend of milling variables was carried 

out to validate (test cases) models. 

 

Phase 3: Development of CCD model, statistical investigation and Performance 

assessment. The data represented in Table 6.2 are utilized to generate a CCD model. 

The common type of polynomial function (second order) is signified underneath 

through equation (a): 

 𝑍1̂ =  𝑧 − 𝜀 =  𝑏0𝑥0 + 𝑏1𝑥1 + 𝑏2𝑥2 + 𝑏3𝑥3 + 𝑏4𝑥4 +  𝑏11𝑥2
1 + 𝑏22𝑥2

2 + 𝑏33𝑥2
3 +

𝑏44𝑥2
4 +  𝑏12𝑥1𝑥2 + 𝑏23𝑥2𝑥3 + 𝑏13𝑥1𝑥3 + 𝑏14𝑥1𝑥4                                (a)                                              

 

The previously mentioned response surface function incorporates linear (X1, X2, X3, 

X4) quadratic (X12, X22, X32, X42) and two-term factor interaction (X1*X2, 

X1*X3, X1*X4, X2*X3, X2*X4 and X3*X4) and the error term (ε), where z is the 

true response on a logarithmic scale x0 = 1 (dummy variable), x1, x2, x3 are 

logarithmic conversions of spindle speed, feed rate, and depth of cut, respectively, 

while b0, b1, b2, b3 and b4 are the factors to be appraised. 

 

The coefficients are determined firstly by means of accumulating milling (control-

response) data and next are to perform the model which is constructed via regression 

analysis. The collected control and response data are analysed and nonlinear control-
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response associations are established. The fundamental and interaction among the 

factors effect is analysed. The originated model is verified for its efficacy and 

significance by incorporating ANOVA strategy. The software tool (Minitab) was 

incorporated for the stated goal. Further, to overview the CCD performance the 15 

test cases were adapted. 

 

Phase 4: Optimization of Milling Process Parameters 

No impeccable general prerequisites characterized yet to distinguish the best 

set of milling parameters. Currently there are numerous optimization tools accessible 

and each has distinctive constraint and focal points. The model performance for the 

most parts relies upon the specific issue area and process multifaceted nature. The 

current work compares the performance of DFA and PSO techniques to distinguish 

set of milling process variables that will yield preferred responses. 

 

Phase 5: Results and Discussions 

In this section, milling process modeling and optimization are discussed. The 

experimental data has been accrued as per outline matrices of CCD. The surface plots 

and the corresponding input and output relations are generated using the gathered data 

is utilized.  

Further, using analysis of variance (ANOVA) the statistical sufficiency of the strategy 

has been evaluated (Yongquan et al 2020, Marco et al 2017). The accuracy of the 

prediction of the created model is verified with 15 test cases and the superlative one is 

chosen in light of the average absolute percent deviation esteem. The best ideal 

milling prerequisites accountable for the desired responses are resolved using DFA 

and PSO (Chen et al 2010). At long last, the best optimization technique is opted by 

evaluating the performance between conventional (DFA) and nonconventional (PSO). 
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Table 6.1: Experimental conditions for RSM method. 
SL.

No 

Spindle 

Speed 

(rpm) 

Feed Rate 

(mm/min) 

Depth 

Of Cut 

(mm) 

Coolant 

type 

Cutting 

Temperature 

(℃) 

Cutting force 

Fx (N) 

Surface 

Roughness 

Ra(µm) 

Flank wear, 

Vb,(µm) 

1 1000 350 0.5 -1 237 384 2.09 0.16 
2 3000 350 0.5 -1 269 337 1.443 0.24 
3 1000 550 0.5 -1 299 459 2.427 0.195 
4 3000 550 0.5 -1 295 365 1.857 0.283 
5 1000 350 1.5 -1 241 393 2.103 0.17 
6 3000 350 1.5 -1 271 340 1.473 0.25 
7 1000 550 1.5 -1 304 464 2.463 0.203 
8 3000 550 1.5 -1 324 370 1.883 0.291 
9 1000 350 0.5 1 35 243 0.747 0.06 

10 3000 350 0.5 1 84 214 0.583 0.142 
11 1000 550 0.5 1 56 309 0.957 0.09 
12 3000 550 0.5 1 89 269 0.77 0.18 
13 1000 350 1.5 1 39 256 0.757 0.069 
14 3000 350 1.5 1 85 219 0.693 0.146 
15 1000 550 1.5 1 59 315 0.996 0.102 
16 3000 550 1.5 1 95 276 0.78 0.175 
17 1000 450 1 0 142 382 1.397 0.168 
18 3000 450 1 0 177 326 0.964 0.25 
19 2000 350 1 0 139 300 1.07 0.211 
20 2000 550 1 0 168 348 1.303 0.253 

 

Where: In coolant type column -1 = Dry, 1 = LN2 and 0 = Flood (wet) machining 

conditions. 

 

6.4.1 Regression Equations (RSM Approach) For Responses 

 

The attained response equations through RSM approach are stated below: 

 
T =157.752+15.3889*S+16.0556*F+3.38889*D-104.889*CT+2.87067*S*S-3.12933*F*F+ 0.870667    

     * D*D +15.3707*CT*CT-4.50000*S*F+1.37500*S*D+5.37500*S*CT+2.0*F*D-9.25000*F*CT-  

      1.62500*D*CT             (6.1) 

 

FX = 337.224-27.1667*S+27.1667*F+3.27778*D-63.5556*CT+14.3480*S*S-15.6520*F*F- 5.65200     

       *D*D-4.15200*CT*CT-6.31250*S*F-0.812500*S*D+8.93750*S*CT-0.437500*F*D +2.06250   

      *F*CT+0.562500*D*CT        (6.2) 
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Ra = 1.23988-0.193944*S+0.137611*F+0.0157778*D-0.585556*CT-0.0370733*S*S-0.0310733*  

        F*F+0.0104267*D*D+0.191427*CT*CT-0.00300000*S*F+0.00487500*S*D+0.112250*S*CT-     

       0.00325000*F*D-0.0498750*F*CT+0.00400000*D*CT     (6.3) 

 

FW=0.251472+0.0418333*S+0.0180000*F+0.00350000*D-0.0520000*CT-0.0420227*S*S- 0.01252   

       *F*F+0.00797733*D*D-0.0335227*CT*CT+0.00125000*S*F-0.00137500*S*D-8.75000E-   

        04*S* CT-6.25000E-04*F*D-0.00137500*F*CT-0.00100000*D*CT    (6.4) 

 

Where: T = Cutting temperature, FX = Cutting Force (X-axis), Ra = Surface 

roughness, Fw = Flank wear. 

 

6.5 OPTIMIZATION OF MILLING PROCESS PARAMETERS 

The way towards deciding the superlative result among numerous probable plausible 

elucidations is indicated as an optimization. The CCD strategy is one of the best 

method for determination of response coefficient value (i.e. R=0.9791), as its 

determination coefficient point out the goodness of fit of the model (Debnath et ll 

2016, Gupta et al 2015 and Gupta et al 2016). The coveted responses can be identified 

by incorporating the empirical model (DFA) and non-traditional (PSO) optimization 

strategies. In process of optimization the attained model via CCD approach is used as 

objective function. In CCD method the regression equations are attained, with these 

equations the data can be generated via substituting the selected range of input 

parameters in the study, thus CCD is opted and used as objective function to carry out 

prediction and optimization. 

 

6.5.1 Traditional Method of optimization 

This method uses a deterministic inquiry technique. Where the results moment 

will be in the uni-directional way and thus end up in local (sub optimal) solutions. In 

order to decide the optimal solution the DFA is the best way as this method is widely 

used approach. The plots as depicted in Figure 6.1 have clarified the qualitative 

information about the close optimal solution. Figure 6.1 exhibits the milling optimum 

parameter values acquired via DFA method for milling operation. 
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6.5.2 Nonconventional optimization 

A stated optimization technique is stochastic in its way of multi-modal search and 

accurately situates the close optimal outcomes (Wang et al 2020, Garcia et al 2015). 

The PSO enactment relies principally on algorithm factors tuning and the rate of 

convergence for the stated province. The PSO factors tuning and the obtained 

outcomes are conferred in the accompanying segment. 

 

A. PSO:  PSO is established on the idea of rummaging conduct of bird flocks. 

PSO is prominent in manufacturing sector due to its few factors such as fine-

tuning of factors, rate of convergence and simplicity of execution trademark 

(characteristic). In PSO, swarm is considered as a unit which is comprised of 

numerous distinct results and each result is considered as a particle. Every 

particle possesses position and velocity vector and the search space takes place 

in multi-dimensional. In PSO it can be noted that, each individual movement 

of the particles takes place with a specific speed and progressively change 

their flight way in view of self-flying and particle involvement in a manifold-

way search domain. The systematic study was made to reach to an optimized 

value of PSO factors. The estimation of  optimized factors of PSO  is listed 

underneath: 

Number of factors    4 

Number of Particles   80 

Number of iterations   110 

Learning rate     0.6 

The PSO optimized factors return desired responses and the corresponding 

milling condition is represented in Table 6.7.  

 

6.6 CONFIRMATION EXPERIMENTS 

The superlative milling conditions that outcome in required responses are resolved 

utilizing both conventional and nonconventional optimization techniques. The goal 

function solely dependent on the regression equation created via CCD approach. The 

response surface may be one-way or diverse-modal in gamut space. The conventional 
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optimization strategy, DFA involves deterministic type of explore with specific 

standards. The attained optimal value of responses CT, FX, Ra and FW achieved via 

DFA are represented in Figure 6.1. From Figure 6.1, it is observed that the attained 

response values for optimal input parameters are comparatively higher than PSO 

method. The comparative study between the DFA and PSO approaches can be related 

through the achieved optimal responses and by calculating the percentage of error 

gained via both DFA and PSO methods.  This may conceivably due to the multi-

modal search domain. Optimum estimations of process parameters and their relating 

response esteems are exhibited in Table 6.7. The incorporated techniques are tested 

for its accuracy in predicting with the assistance of 15 test cases as shown in Table 

6.3-6.6. Table 6.3-6.6 represent the percentage of LN2 impact on wet machining of all 

responses achieved via RSM and PSO approaches. The results gained via LN2 point 

towards achievement of better results as compared to that of wet machining. From 

Table 6.4-6.7, it can be derived that, the quantity (in terms of %) of influence of LN2 

over wet machining. 

 

Scanning electron microscope (SEM) is ideally involved to contemplate the material 

surface, because of the blend of crystal and clear resolution, amplification level and 

field profundity depth. Flank wear is a standout amongst the most vital value to be 

controlled in light of the fact that the flank confront ceaselessly contacts with the 

machined material and eventually rises the values of cutting forces, thus it impairs the 

surface (Pereira et al 2016, Kaynak et al 2016, Yamina et al 2020, Ali et al 2016).  
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                            Table 6.2: Test cases for conditions (Wet machining and Cryogenic machining) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SL.NO 

Experimental 
Cutting 

Temperature 

Flank-Wear Rate 

(µm) 

Surface Roughness 

(µm) 

Cutting Force 

(N) 

S 

(rpm) 

 

F 

(mm/min) 

 

D 

(mm) 
Wet LN2 Wet LN2 Wet LN2 Wet LN2 

1 2110 460 1.2 163 85 2.29 1.51 2.13 1.1 209 118 

2 2840 380 0.6 220 148 2.51 1.93 2.62 1.46 287 187 

3 1750 365 0.8 162 68 1.96 0.86 1.91 0.96 193 102 

4 1280 420 1.4 154 49 1.82 0.74 1.73 0.55 177 84 

5 2007 455 0.9 193 80 2.22 1.49 2.09 1.08 200 113 

6 1560 510 1.3 171 92 1.87 0.78 1.83 0.89 186 98 

7 2650 430 0.8 209 130 1.14 0.53 2.47 1.3 256 168 

8 1260 530 1.1 188 38 0.68 0.37 1.71 0.42 171 80 

9 2315 520 0.7 192 119 2.16 1.43 2.26 1.19 227 136 

10 1380 385 1.1 161 70 1.69 0.68 1.77 0.64 181 91 

11 2540 490 1.2 200 126 2.32 1.57 2.35 1.28 245 153 

12 1870 525 1.4 194 77 2.07 1.12 1.99 1.01 198 109 

13 2740 415 0.9 213 134 2.69 1.99 2.56 1.37 269 177 

14 2290 375 0.7 197 109 2.18 1.41 2.22 1.16 213 121 

15 2460 520 0.4 201 121 2.41 1.63 2.31 1.21 238 145 
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Figure 6.1: Result of CT, FX, Ra and FW using DFA technique 
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                              Table 6.3: Comparison of cutting temperature (CT, ºC) predicted by RSM and PSO, with the experimentally                               

                               obtained CT of SS316 for Wet and LN2 machining. 

 

 

 

 

 

 

 

 

 

 

 

 

 

SL.

NO 

Cutting Temperature (℃) 
% of  LN2 Impact on 

Wet machining Experimental Prediction 

Spindle 

Speed 

(rpm) 

 

Feed Rate 

(mm/min) 

 

Depth 

Of Cut 

(mm) 

 

Wet 

 

LN2 

PSO 

 

Wet 

PSO 

 

LN2 

RSM 

 

Wet 

RSM 

 

LN2 

LN2  Over 

Wet 

(PSO) 

LN2 

Over 

Wet (RSM) 

1 2110 460 1.2 163 85 154 89 143 97 42.2 32.1 

2 2840 380 0.6 220 148 209 132 195 154 36.8 21.0 

3 1750 365 0.8 162 68 149 75 138 90 49.6 34.7 

4 1280 420 1.4 154 49 132 54 120 45 59.0 62.5 

5 2007 455 0.9 193 80 197 85 200 93 56.8 53.5 

6 1560 510 1.3 171 92 185 99 166 108 46.4 34.9 

7 2650 430 0.8 209 130 196 124 183 146 36.7 20.2 

8 1260 530 1.1 188 38 161 29 140 49 81.9 65.0 

9 2315 520 0.7 192 119 180 124 169 129 31.1 23.6 

10 1380 385 1.1 161 70 159 79 152 68 50.3 55.2 

11 2540 490 1.2 200 126 191 131 187 142 31.4 24.0 

12 1870 525 1.4 194 77 198 70 200 85 64.6 57.5 

13 2740 415 0.9 213 134 209 147 196 160 29.6 18.3 

14 2290 375 0.7 197 109 189 111 156 128 41.2 17.9 

15 2460 520 0.4 201 121 197 129 174 135 34.5 22.4 
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Figure 6.2: Experimental v/s PSO v/s RSM for cutting temperature (CT) for wet 

& LN2 

 

Figure 6.3: LN2 influence over wet machining achieved in terms of percentage 

(%) for response cutting temperature (CT) achieved through PSO & RSM 

Methods 

In Figure 6.2 the comparison between experimental, PSO and RSM has been done 

with respect to the output response of cutting temperature (CT) with machining 

condition as wet and LN2.  

Figure 6.3 represents the percentage of LN2 impact on wet machining of all responses 

achieved via RSM and PSO approaches. The results gained via LN2, point towards 

achievement of better results as compared to that of wet machining. From Figure 6.3, 

it can be derived that, LN2 influence over wet machining achieved in terms of 

percentage (%). 
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                                   Table 6.4: Comparison of cutting force (FX, N) predicted by RSM and PSO, with the predicted obtained   

                                    cutting force (FX) of SS316 for Wet and LN2 machining. 

SL.

NO 

Cutting Force (N) % of LN2 Impact 

on Wet machining Experimental Prediction 

Spindle 

Speed (rpm) 

 

Feed Rate 

(mm/min) 

 

Depth Of 

Cut (mm) 

 

Wet 

 

LN2 

PSO 

 

Wet 

PSO 

 

LN2 

RSM 

 

Wet 

RSM 

 

LN2 

LN2  

Over 

Wet 

(PSO) 

LN2 

Over 

Wet 

(RSM) 

1 

 
2110 460 1.2 209 118 209 118 216 127 43.5 41.2 

2 2840 380 0.6 287 187 287 187 300 201 34.8 33.0 

3 1750 365 0.8 193 102 193 102 201 113 47.2 43.8 

4 1280 420 1.4 177 84 177 84 192 98 52.5 49.0 

5 2007 455 0.9 200 113 200 113 208 124 43.5 40.4 

6 1560 510 1.3 186 98 186 98 197 107 47.3 45.7 

7 2650 430 0.8 256 168 256 168 284 190 34.4 33.1 

8 1260 530 1.1 171 80 171 80 189 91 53.2 51.9 

9 2315 520 0.7 227 136 227 136 246 165 40.1 32.9 

10 1380 385 1.1 181 91 181 91 190 103 49.7 45.8 

11 2540 490 1.2 245 153 245 153 272 187 37.6 31.3 

12 1870 525 1.4 198 109 198 109 205 121 44.9 41.0 

13 2740 415 0.9 269 177 269 177 293 193 34.2 34.1 

14 2290 375 0.7 213 121 213 121 128 122 43.2 4.7 

15 2460 520 0.4 238 145 238 145 256 174 39.1 32.0 
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Figure 6.4: Experimental v/s PSO v/s RSM for cutting force (FX) for Wet & LN2 

 

Figure 6.5: LN2 influence over wet machining achieved in terms of percentage 

(%) for response Cutting Force (FX) achieved through PSO & RSM Methods 

In Figure 6.4 the comparison between experimental, PSO and RSM has been done 

with respect to the output response of cutting force (FX) with machining condition as 

wet and LN2. Figure 6.5 represents the percentage of LN2 impact on wet machining of 

all responses achieved via RSM and PSO approaches. The results gained via LN2, 

point towards achievement of better results as compared to that of wet machining. 

From Figure 6.5, it can be derived that, LN2 influence over wet machining achieved 

in terms of percentage (%). 
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                   Table 6.5: Comparison of surface roughness (Ra, µm) predicted by RSM and PSO, with the experimentally obtained  

                   CT of  SS316 for Wet and LN2 machining. 

SL.

NO 

Surface Roughness (µm) % of LN2 Impact 

on Wet machining   Experimental Prediction 

Spindle 

Speed (rpm) 

 

Feed Rate 

(mm/min) 

 

Depth Of 

Cut (mm) 

 

Wet 

 

LN2 

PSO 

 

Wet 

PSO 

 

LN2 

RSM 

 

Wet 

RSM 

 

LN2 

LN2  

Over 

Wet 

(PSO) 

LN2 

Over 

Wet 

(RSM) 

1 2110 460 1.2 2.13 1.1 2.13 1.1 2.48 1.34 48.4 46.0 

2 2840 380 0.6 2.62 1.46 2.62 1.46 2.93 1.69 44.3 42.3 

3 1750 365 0.8 1.91 0.96 1.91 0.96 2.16 1.23 49.7 43.1 

4 1280 420 1.4 1.73 0.55 1.73 0.55 2.08 0.84 68.2 59.6 

5 2007 455 0.9 2.09 1.08 2.09 1.08 2.24 1.28 48.3 42.9 

6 1560 510 1.3 1.83 0.89 1.83 0.89 2.13 1.20 51.4 43.7 

7 2650 430 0.8 2.47 1.3 2.47 1.3 2.69 1.68 47.4 37.5 

8 1260 530 1.1 1.71 0.42 1.71 0.42 2.01 0.79 75.4 60.7 

9 2315 520 0.7 2.26 1.19 2.26 1.19 2.55 1.38 47.3 45.9 

10 1380 385 1.1 1.77 0.64 1.77 0.64 2.10 1.02 63.8 51.4 

11 2540 490 1.2 2.35 1.28 2.35 1.28 2.59 1.61 45.5 37.8 

12 1870 525 1.4 1.99 1.01 1.99 1.01 2.18 1.28 49.2 41.3 

13 2740 415 0.9 2.56 1.37 2.56 1.37 2.87 1.77 46.5 38.3 

14 2290 375 0.7 2.22 1.16 2.22 1.16 2.50 1.32 47.7 47.2 

15 2460 520 0.4 2.31 1.21 2.31 1.21 2.57 1.56 47.6 39.3 
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Figure 6.6: Experimental v/s PSO v/s RSM of surface roughness (Ra) for Wet & 

LN2 

 

Figure 6.7: LN2 influence over wet machining achieved in terms of percentage 

(%) for response Surface Roughness (Ra) achieved through PSO & RSM 

Methods. 

In Figure 6.6 the comparison between experimental, PSO and RSM has been done 

with respect to the output response of surface roughness (Ra) with machining 

condition as wet and LN2.  

Figure 6.7 represents the percentage of LN2 impact on wet machining of all responses 

achieved via RSM and PSO approaches. The results gained via LN2, point towards 

achievement of better results as compared to that of wet machining. From Figure 6.7, 

it can be derived that, LN2 influence over wet machining achieved in terms of 

percentage (%). 
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                            Table 6.6: Comparison of flank-wear Rate (VB, µm) predicted by RSM and PSO, with the experimentally  

                          obtained CT of SS316 for Wet and LN2 machining. 

 

SL.NO 

Flank-Wear Rate (µm) % of  LN2 Impact 

on Wet machining  Experimental Prediction 

Spindle 

Speed (rpm) 

 

Feed Rate 

(mm/min) 

 

Depth Of 

Cut (mm) 

 

Wet 

 

LN2 

PSO 

 

Wet 

PSO 

 

LN2 

RSM 

 

Wet 

RSM 

 

LN2 

LN2  

Over 

Wet 

(PSO) 

LN2 

Over 

Wet 

(RSM) 

1 2110 460 1.2 2.29 1.51 2.32 1.44 2.65 1.83 37.9 30.9 

2 2840 380 0.6 2.51 1.93 2.75 1.87 2.31 2.2 32.0 4.8 

3 1750 365 0.8 1.96 0.86 1.77 0.69 2.7 1.45 61.0 46.3 

4 1280 420 1.4 1.82 0.74 2.03 0.86 1.52 0.38 57.6 75.0 

5 2007 455 0.9 2.22 1.49 2.26 1.32 2.06 1.74 41.5 15.5 

6 1560 510 1.3 1.87 0.78 1.68 1.24 2.7 1.52 26.1 43.7 

7 2650 430 0.8 1.14 0.53 1.14 0.65 1.38 0.89 42.9 35.5 

8 1260 530 1.1 0.68 0.37 0.39 0.31 0.38 0.22 20.5 42.1 

9 2315 520 0.7 2.16 1.43 2.44 1.21 2.19 1.77 50.4 19.2 

10 1380 385 1.1 1.69 0.68 1.98 0.47 2.28 1.03 76.2 54.8 

11 2540 490 1.2 2.32 1.57 2.09 1.86 2.56 1.89 11.0 26.2 

12 1870 525 1.4 2.07 1.12 2.28 1.4 1.89 1.45 38.5 23.3 

13 2740 415 0.9 2.69 1.99 2.43 2.06 2.78 1.37 15.2 50.7 

14 2290 375 0.7 2.18 1.41 2.28 1.89 2.08 1.65 17.1 20.7 

15 2460 520 0.4 2.41 1.63 2.39 1.47 2.13 1.24 38.4 41.8 
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Figure 6.8: Experimental v/s PSO v/s RSM of flank wear (FW) for Wet & LN2 

 

Figure 6.9: LN2 influence over wet machining achieved in terms of percentage 

(%) for response flank wear (FW) achieved through PSO & RSM Methods 

In Figure 6.8 the comparison between experimental, PSO and RSM has been done 

with respect to the output response of flank wear (FW) with machining condition as 

wet and LN2.  

 

Figure 6.9 represents the percentage of LN2 impact on wet machining of all responses 

achieved via RSM and PSO approaches. The results gained via LN2, point towards 

achievement of better results as compared to that of wet machining. From Figure 6.9, 

it can be derived that, LN2 influence over wet machining achieved in terms of 

percentage (%). 
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6.7 COMPARATIVE STUDY FOR FW – (EXPERIMENTAL V/S PSO V/S 

RSM) UNDER WET & LN2 MACHINING CONDITIONS 

 

From the Figure 6.10 it can be noticed that the flank wear increments linearly with 

spindle speed beneath both environmental conditions i.e. (cryogenic and wet) 

(Sudhansu et al 2015, Wit et al 2010, Bailey et al 1976, Natasha et al 2014). Since, the 

higher spindle speed produces high temperatures within very minute time. 

Additionally contact area diminishes amid the tool - workpiece area of interface. Thus 

tool material softening leads to higher tool wear, because as the cutting edge is 

continuously exposed to high cutting temperatures at higher spindle speed.  

 

In LN2 (cryogenic) condition, flank wear diminishment was observed to be 45.16 % 

contrasted with the wet machining.  The control over the mechanism of wear (i.e 

abrasion and adhesion) was successful and adequate by spraying required amount of 

nitrogen liquid at the tool appearances of rake and flank, as the appearance of tool 

prompts change in wear resistance of the cutting tool and additionally decreases in the 

cutting zone temperature (Kaynak et al 2014, Virgina et al 2014, Domenico et al 2012 

Dinesh et al 2016). 

 

Figure 6.10 delineates the tool flank wear SEM images, with concerning the changing 

speed subsequently 3 minute machining in both environments (i.e. Wet and 

Cryogenic).  The mechanisms of wear (i.e. Abrasion and adhesion) were detected on 

the appearance of the tool (flank face) in both conditions (i.e. wet, cryogenic). It was 

observed that, in case of wet condition flank wear was higher contrasted with the case 

of cryogenic condition.  This is mainly to the fact of the temperature increment 

generated in wet case of machining further, leading to creation of built-up-edges 

(BUE) due to the robust adhesion of the chip to the tool face (rake) (Umbrello et al 

2012).  From Figure 6.10 it is apparent that at the cutting tool tip (flank) there is 

adhesion of machined material. But by spraying of liquid nitrogen (LN2) at the zone 

of machining will substantially lessen the temperatures, thus reducing the adhesion 

and BUE formation. The outcomes signify that even at higher spindle speed; by 

spraying (LN2) tool wear can be reduced. Thus machining with the LN2 will enhance 
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tool life and quality of product. The consequences of PSO determined optimized 

milling condition is in good concurrence with SEM images contrasted with              

CCD approach. 

 

Study of SEM micrographs of machined SS316       

Environment (Optimal Conditions) 
Process Parameters:  3000 (rpm)         350(mm/min)          0.5  (mm)                   1 LN2                

Wet (Coolant) Machining Cryogenic (LN2) Machining 
 

 
 

 

  

 
 
 

 
   

Figure 6.10: Microscopic view of milling samples of tool flank wear at different 

machining condition 

 

 

Table 6.7: Optimized process parameters in milling. 

Optimization 

Tool 

Milling Condition 

Spindle 
Speed 
(rpm) 

Feed  
rate 
(mm/min) 

Depth of 
cut 
(mm) 

Coolant 
type 

Cutting 
Temperature 
(CT, °C) 

Cutting 
Force 
(Fx, N) 

Surface 
Roughness 
(Ra, µm) 

Flank 
Wear 
(VB, 
µm) 

Experimen

tal 

3000 350 0.5 1 84 214 0.583 0.142 

DFA 3000 350 

 

0.5 1 99.98 225.0

0 

1.14 0.13 

PSO 3000 350 0.5 1 97 223 1.10 0.152 

Micro Voids 

Micro Voids 
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6.8 CONCLUSIONS 

The response data are gathered for various milling conditions according to CCD 

outline (using regression equations of all outputs). Both conventional and 

nonconventional optimization strategies have been employed to decide the optimum 

process factors compared to desired responses. The accompanying inferences are 

drawn: 

 It is to be noticed that, CCD model is observed to be statistically sufficient in 

response prediction. In order to carry out and attain the optimized values, the 

achieved response (regression equation) is used as a goal (objective) function. 

 

 The desired responses and the relative milling prerequisite are resolved using 

traditional and non-traditional. It is fascinating to take note that non-traditional 

strategy (PSO) outperformed DFA in determining the best milling condition 

that generate required responses. 

 

 The comparative study was carried out using RSM and PSO techniques in 

order to identify the best machining condition and to indicate the optimized 

parameters under wet and LN2 machining condition. 

 

 The results attained indicate that utilization of LN2 helps in achieving better 

results compared to that of wet machining condition (see Table 6.3-6.6). 

 

 The goal of the current study is to build up a relation (nonlinear) for the 

response and to decide the best set of process factors that brought about 

desired responses and further to accomplish better microstructure. In order to 

reach the stated purpose. The data set, modelling and various tools of 

optimization have been involved.   

 

 The computational results reveal that the PSO algorithm is competitive with or 

superior to the other optimization algorithms for the considered problem. 
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 The outcomes acquired through PSO are likewise compared with the 

customary desirability approach and it was found that PSO gives closer values 

compared to the results obtained with the desirability approach. 

 

 Since, PSO could able to obtain a global optimum solution within a reasonable 

execution time due to its faster convergence characteristic, the algorithms can 

be used on on-line systems for the selection of optimal cutting parameters. 

 

 The method is completely generalized and problem independent, so that it can 

be easily generalised to other machining operations such as drilling, grinding, 

non-traditional machining operations, etc. 
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CHAPTER 7 

 RESULTS AND DISCUSSION (PART 4)  

PART A  

MACHINE LEARNING – SUPPORT VECTOR MACHINE 

 
 

7.1 INTRODUCTION 

 

The support vector machine (SVM) is firmly grounded in the framework of statistical 

learning theory, which characterizes the properties of learning machines enabling 

them to generalize well to unseen data. Traditional neural network approaches for the 

empirical data modelling have suffered from difficulties with generalization, 

producing models that may over-fit the data (Muzaffer et al 2018). The SVM learning 

is gaining popularity due to its many attractive features and promising empirical 

performance. The formulation of SVM embodies the structural risk minimization 

(SRM) principle, which has been shown to be superior (Garcia et al 2015) (to 

traditional empirical risk minimization (ERM) principle, employed by conventional 

neural networks. SRM minimizes an upper bound on the expected risk, as opposed to 

ERM that minimizes the error on the training data. Support vector regression (SVR) is 

a new technique, which has been successfully applied to function estimation based on 

the concept of SVM. SVR has advantages over traditional approaches such as neural 

networks for the following reasons: 

 

 Good generalization performance—once it is presented with a training set, it is 

able to learn a rule, which can correctly classify a new object quite often. 

 Computational efficiency—it is efficient in terms of speed and complexity. 

 Robust in high dimensions—in general, dealing with high-dimensional data is 

difficult for a learning algorithm because of over-fitting. One of the major 

reasons for attracting much attention is that SVRs are more robust to this over-

fitting than other algorithms. 

 

In the current research the SVR is implemented in order to perform regression, 

Regression model can be seen from these set of packages (Kernlab, e1071).  
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SVR can be performed in a linear or nonlinear manner, depending on what is known 

as the “kernel-trick.” The use of support vector kernel expansion provides us a 

potential avenue to represent nonlinear dynamical systems and underpin advanced 

analysis. Other computational models are often computationally expensive and 

sufficient model sparsity cannot be guaranteed. In an attempt to mitigate these 

drawbacks, focus is on the application of support vector regression (SVR) with hybrid 

kernel in nonlinear black-box systems identification. 

 

There are three different types of SVM regression i.e SVM eps – Regression, SVM nu 

– Regression, Bound Constraint SVM eps – Regression. Among these 3 types SVM 

eps – Regression, SVM nu – Regression utilize the e1071 package and Bound 

Constraint SVM eps – Regression utilize kernlab package. The functions used in the 

regression method are SVM for SVM eps – Regression, SVM nu – Regression and 

KSVM function for Bound Constraint SVM eps – Regression. By taking a dataset 

how model can be built using SVM on the training data and do the testing of the 

same. Even, how to access the goodness or accuracy fit of the model.   

 

7.2 SVM eps – REGRESSION AND SVM nu - REGRESSION 

 Package e1071 with the svm function. 

 Svm (y ~., data, kernel, cost, type = “eps – regression”, epsilon, gamma, 

cost,…) 

Where : y = response variable (need to be numerical and continuous variable), 

dot = all other attributes are contributing to it, data = dataframe need to be 

specified, kernel = need to be specified (linear, polynomial, radial basis, 

sigmoid, cost = default, type = “eps – regression”, epsilon =(default), gamma 

=(default), cost =(default). 

 Kernel ->kernel function. 

 Parameters cost, gamma and epsilon. 

 Type set to “eps – regression”. 

 Continuous response variable y and the covariates data. 
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7.3 STEPS TO PERFORM SVR 

1) Load the e1071 package. 

2) Get the necessary data with a continuous response variable. 

3) Preliminary inspection of the data (Summary). 

4) Split the sample data into training set and a testing set on a random basis. 

5) Estimate the SVM using the default settings (Radial basis function as the 

kernel with cost parameter value set equal to 1) 

6) Summary function provides details of the estimated model. 

 

7.4 COMMANDS UTILIZED TO PERFORM SVR 

 

Step 1: Load the data 

Ex: milling (<- read.csv(“H:\\Training\\RDatasets\\milling.csv”) 

 dim(milling) 

[1] 150 7 

Where  150 : Indicate rows, 7 : Indicates columns 

Step 2: Head(milling) 

Displays the data with column names. (Identify the independent and 

dependent data,     

Identify the response variable - Quantitative column). 

 Load package: library(e1071) 

 Load function: svm 

 Provide Formula, Kernel Functions[Linear, Polynomial, Radial Basis, 

Sigmoid], Scale = True (default), Size (default), Type =(Select any one among 

these 5 types {c – Classification, nu – Classification, One – Classification (for 

novelty detection), eps – regression,  nu – regression}), epsilon = 0.1(default), 

gamma (based on kernel function),Cost =1 (default) 

 

Step 3: Basic Check-up of Data (To identify the irregularities/abnormalities/outliers 

in the data) 

 Summary (milling): To identify the categorical and quantitative 

data values. 
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 Library (paych) 

 Describe (milling): Identify the skewness in the data (If 

anything more then 0, highly skew value: Indicates the 

abnormalities/ outliers in the data on the higher side.  

 High Skew value: logarithmic Transformation on data needs to 

be performed (So that response variable comes in the normal 

range). 

 

Objective: The best possible output or model which is having higher level of 

accuracy when performed on my testing data so that it can very well roll it out in to 

the production cost. 

 

Step 4: Split Data in to Training and Testing Data 

 set.seed(1000) 

o 1338*0.7 

o [1] 936.6 

 train (-sample(1:1338,937, replace = False)  

o System picks random values without any duplications (so replace = 

false)  

 traindata(-milling[train,]   

o (traindata is subset of milling dataset, rows which come part of train 

and all columns, so (+train). 

 testdata(-milling[-train,]  

o rows which didn’t come as part of the train and all columns(so –train). 

 

Step 5: Estimate the svm using the default settings 

 Type = “eps – regression” 

 Kernel = “All 4 types”. 

 Cost, Gamma, Scale, epsilon = default values. 
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Kernel Functions Commands 

 fitepslinear(-svm(dependent variable name., data = traindata (building 

the model using traindata and later testing it on testdata), type = “eps-

regression”, kernel = “linear”) 

 fitepspoly(-svm(dependent variable name., data = traindata, type = 

“eps-regression”, kernel = “polynomial”) 

 fitepsradial(-svm(dependent variable name., data = traindata, type = 

“eps-regression”, kernel = “radial”) 

 fitepssigmoid(-svm(dependent variable name., data = traindata, type = 

“eps-regression”, kernel = “sigmoid”). 

 

Objective: To check whether to what extent objective is met in terms of making 

accurate predictions on testing data (Theoretical way: Whether for this data this 

particular model would be fit or no). 

 

Step 6: To check each of the model: 

 fitepslinear or summary(fitepslinear) 

Parameters 

o Svm – type = eps-regression 

o Svm – kernel= linear 

o Cost = 1 

o Gamma = 0.1111 

o Epsilon = 0.1 

Number of support vectors = 12 

 

 Plot (fitepslinear) 

      Similarly other models can be performed. 

Step 7: Setting the Cross – Validation (To improvise the model) 

 fitepslinear(-svm(dependent variable name., data = traindata, type = 

“eps-regression”, kernel = “linear”, cross = 17) 

 fitepspoly(-svm(dependent variable name., data = traindata, type = 

“eps-regression”, kernel = “polynomial”, cross = 17) 
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 fitepsradial(-svm(dependent variable name., data = traindata, type = 

“eps-regression”, kernel = “radial”, cross = 17) 

 fitepssigmoid(-svm(dependent variable name., data = traindata, type = 

“eps-regression”, kernel = “sigmoid”, cross = 17) 

 

Cross – Validation: After Execution of Cross- Validation, It gives the 2 

important things (TMSE = Total Mean Square Error for each model, R2 = 

Correlation Coefficient Square) on the training data (To identify where this 

model is heading to). 

 

Objective: To create the best possible model, which is giving the least possible error 

as well has highest possible R2 both on training and testing data. 

 

Step 8: Results 

Table 7.1: To identify the accuracy associated with each of the model. 
 

Dataset Kernel Types / Models 

:             

                  Linear 

 

Polynomial 

 

Radial 

 

Sigmoid 

Training 

Data 

TMSE 44.27 40.31 30.35 79.93 

R2 72.63 75.52 82.46 15.26 

Testing 

Data 
R2 79.91 80.28 89.57 28.45 

 

7.5 STEPS TO OBTAIN RESULTS  

1) Summary(fitepslinear)  

a. Parameters 

i. Svm – type = eps-regression 

ii. Svm – kernel= linear 

iii. Cost = 1 

iv. Gamma = 0.1111 

v. Epsilon = 0.1 

 

b. Number of support vectors = 12 

c. 10 fold cross-validation on training data: 

d. Total Mean Squared Error : 44274925 
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e. Squared Correlation Coefficient: 0.7263019 

f. Mean Squared Errors: 165510515 302226.3 33272219 

354367.4……….(Errors obtained for different tried 937 combination). 

 

From the obtained results indicated in Table (7.1) it can be infer that Radial 

model is doing better job. But before concluding. Prediction need to be 

performed on the test data to identify which model results in attaining a 

greater accuracy. 

 

 

 

2) To perform predictions (on test data) on each model: using “predict” 

function. 

predepslinear(-predict(fitepslinear,testdata) 

predepspoly(-predict(fitepspoly,testdata) 

predepsradial(-predict(fitepsradial,testdata) 

predepssigmoid(-predict(fitepssigmoid,testdata) 

3) Plot 

plot(testdata$charges, predepslinear)  : we obtain scatter plot (as actual values 

are incr4easing even the predicted looks increasing). 

 

4) Correlation existing between the actual data and predicted data 

Cor(testdata$charges,predepslinear)^2 

[1] 0.7635 : R2for linear model 

Cor(testdata$charges,predepspoly)^2 

[1] 0.792296 : R2for linear model 

Cor(testdata$charges,predepsradial)^2 

[1] 0.8629372 : R2for linear model 

Cor(testdata$charges,predepssigmoid)^2 

[1] 0.1639803 : R2for linear model 
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Thus from the attained results of the Table (7.1) it can be inferred that radial model is 

reliable (86.29 % of accuracy on test data) as it does good job on both the training and 

testing data. 

 

7.6 ENTIRE SVM eps – REGRESSION AND nu – REGRESSION 

Steps 

 Provides details of the type of svm, cost parameter, kernel type and 

associated gamma and epsilon, kernel parameter, number of support 

vectors, training error and cross validation error. 

 Tune the model to obtain optimum parameters – set up the ranges for 

the cost and sigma and epsilon parameters (-> tune.svm) 

 Find the best cross validation performance and store the optimal 

values. 

 Estimate the optimal model using the training data and show the cross 

validation error 

 Use predict method with the test data and the fitted model. 

 Look at the scatter plot between the predicted and actual values. 

 Also evaluate the R- Squared. 

 

7.7 Comparison of Statistical Model (RSM), BNN, SVR and RVM for Responses  

 

Table 7.2 (a): Summary of the test cases results for the response: Surface 

Roughness (Ra). 

Exp.

NO 

Experimental 

Ra 
RSM BNN SVR 

Relative 

Error 

Obtained by 

RSM  

(%) 

Relative 

Error 

Obtained 

by BNN 

(%) 

Relative 

Error 

Obtained 

by SVR 

(%) 

1 1.36 1.47 1.44 1.39 8.09 5.88 2.21 

2 1.77 1.84 1.81 1.79 3.95 2.26 1.13 

3 1.93 2.09 1.98 1.95 8.29 2.59 1.04 

4 1.12 1.2 1.17 1.14 7.14 4.46 1.79 

5 1.4 1.32 1.45 1.36 5.71 3.57 2.86 

6 1.67 1.76 1.62 1.71 5.39 2.99 2.40 

7 0.83 0.9 0.87 0.8 8.43 4.82 3.61 

8 1.26 1.35 1.31 1.28 7.14 3.97 1.59 

9 1.38 1.47 1.44 1.35 6.52 4.35 2.17 
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Figure 7.1: RSM v/s BNN v/s SVR predicted for response surface roughness (Ra) 

under wet and LN2 machining conditions 

Table 7.2 (b): Summary of the test cases results for the response: Cutting Force 

(FX). 

Exp.

NO 

Experimental 

FX 
RSM BNN SVR 

Relative 

Error 

Obtained by 

RSM (%) 

Relative 

Error 

Obtained by 

BNN (%) 

Relative 

Error 

Obtained 

by SVR 

(%) 

1 107 99 101 110 7.48 5.61 2.80 

2 125 135 131 117 8.00 4.80 6.40 

3 156 171 167 160 9.62 7.05 2.56 

4 92 101 96 93 9.78 4.35 1.09 

5 109 119 116 112 9.17 6.42 2.75 

6 131 141 139 137 7.63 6.11 4.58 

7 77 84 80 78 9.09 3.90 1.30 

8 89 97 94 90 8.99 5.62 1.12 

9 110 119 115 112 8.18 4.55 1.82 

 

 

Figure 7.2: RSM v/s BNN v/s SVR predicted for response Cutting Force (FX) 

under wet and LN2 machining conditions 
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Table 7.2 (c): Summary of the test cases results for the response: Cutting 

Temperature (CT). 

Exp.

NO 

Experimental 

CT 
RSM BNN SVR 

Relative 

Error 

Obtained 

by RSM 

(%) 

Relative 

Error 

Obtained by 

BNN (%) 

Relative 

Error 

Obtained 

by SVR 

(%) 

1 48 53 50 47 10.42 4.17 2.08 

2 57 62 60 55 8.77 5.26 3.51 

3 70 77 66 73 10.00 5.71 4.29 

4 62 58 66 61 7.9 6.45 1.61 

5 73 79 70 75 8.22 4.11 2.74 

6 86 93 89 83 8.14 3.49 3.49 

7 68 74 71 65 8.82 4.41 4.41 

8 89 96 93 86 7.87 4.49 3.37 

9 97 104 92 94 7.22 5.15 3.09 

 

 

 
 

Figure 7.3: RSM v/s BNN v/s SVR predicted for response cutting temperature 

(CT) under wet and LN2 machining conditions 

 

 

 

 

 

 
 

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9D
ev

ia
ti

o
n

 (
%

) 
-

C
T

No. of Experiments

Cutting Temperature (CT) Relative error

RSM v/s BNN v/s SVR

RSM BNN SVR



188 
 

Table 7.2 (d): Summary of the test cases results for the response: Flank Wear 

(FW). 

 

Exp.

NO 

Experimental 

FW 
RSM BNN SVR 

Relative 

Error 

Obtained 

by RSM 

(%) 

Relative 

Error 

Obtained 

by BNN 

(%) 

Relative 

Error 

Obtained 

by SVR 

(%) 

1 1.31 1.39 1.26 1.35 6.11 3.82 3.05 

2 1.78 1.95 1.92 1.87 9.55 7.87 5.06 

3 1.42 1.57 1.48 1.39 10.56 4.23 2.11 

4 0.89 0.97 0.84 0.93 8.99 5.62 4.49 

5 1.66 1.82 1.76 1.71 9.64 6.02 3.01 

6 1.05 1.14 1.11 1.09 8.57 5.71 3.81 

7 0.49 0.53 0.47 0.48 8.16 4.08 2.04 

8 1.1 1.17 1.14 1.07 6.36 3.64 2.73 

9 0.93 0.87 0.97 0.9 6.45 4.30 3.23 

 

 

    
 

Figure 7.4: RSM v/s BNN v/s SVR predicted for response flank wear (FW) under 

wet and LN2 machining conditions 

Tables 7.2(a-d) represents the comparison results attained for responses (Ra, FX CT 

and FW) respectively through statistical, neural network, machine learning models. 

From Table 7.2(a-d) it is apparent that SVR approach yields better predicted results as 
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CT, FW) due to its features of Good generalization performance, Computational 

efficiency and Robust in high dimensions (M S Ahmad et al 2020). From Figures 7.1, 

7.2, 7.3 and 7.4 it can be derived that radial model with cross validation utilized to 

carry out SVR technique helps in predicting greater desired results as compared to 

other prediction techniques of RSM and ANN for all responses (Ra, Fx, CT, FW 

respectively) due to its features of Good generalization performance, Computational 

efficiency and Robust in high dimensions (M S Ahmad et al 2020).  After Execution 

of Cross- Validation (SVR), It yields main 2 things (TMSE = Total Mean Square 

Error for each model, R2 = Correlation Coefficient Square) on the training data (To 

identify where this model is heading to). The TMSE and R2 acts as deciding factors to 

choose the best technique, thus based on this from Figures 7.1-7.4 it can be concluded 

that SVR tends to predict best desired values of responses compared to RSM and 

BNN techniques.  

 

7.8 RESULTS USING “R” PLATFORM 

 

A) Description of Dataset 

 

 
 

Figure 7.5: Description of dataset 
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B) Find the abnormalities in datasets 

 

 
 

Figure 7.6: Find the abnormalities in datasets. 

 

 
C) Summary of All Models  

 

Linear Model 

 

 
 

Figure 7.7 (a): Linear model 

 
 

Polynomial Model 

 

 
Figure 7.7 (b): Polynomial model 
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Radial Model 

 

 
Figure 7.7 (c): Radial model 

 
Sigmoidal Model 

 

 
Figure 7.7 (d):  Sigmoidal model 

 

 
D) To check  accuracy of the model 
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Figure 7.7 (e): To find fitness of the model 
 

 

 

E) Prediction for testdata 

            
 

Figure 7.7 (f): To find prediction of test data of models 
 

 
F) To plot scatter plot 

Plot(testdata$cuttingtemperature,predepslinear) [As actual values are increasing even 

the predicted values are increasing] 

 

 Figure 7.7 (g): To plot scatter graph 
 

 

G) To find Correlation square between actual and predicted data 

            
Figure 7.7 (h): To find Correlation square between actual and predicted data 
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Figure 7.8: Predicted Data V/S Test Data 

 

It is obvious that estimation accuracy of SVM depends on kernel parameters, capacity 

C and insensitivity region e. The value of e influences the number of support vectors 

used to form the regression function. If e increases, fewer support vectors are chosen, 

and the smoothness of the regression function increases too. The capacity C 

represents a trade-off cost between the empirical error and the model complexity 

(flatness). Figure 7.5 gives a brief idea on usage and description of dataset, Figure 7.6 

represents the procedure to filter out the abnormalities present in the considered 

dataset. Figure 7.7 (a-d) mentions the steps carried out to identify the fitness and 

number of support vectors required for the models (Linear, Polynomial, Radial and 

Sigmoidal models) respectively to predict the desired results. Figure 7.7 (e) describes 

and checks the accuracy of models. Figure 7.7 (f) implies the prediction approach on 

test data. Figure 7.7 (g) shows the commands utilized to plot the scatter graph for both 

actual and predicted datasets. Similarly Figure 7.7 (h) represents and checks the 

Correlation square attained between actual and predicted data. SVM Programming 

was carried out using “R” platform. 

 

In this research, radial basis function kernel was used. The kernel parameter s and the 

parameter e were determined by a leave-one-out (LOO) cross-validation procedure 

(Mazaffer et al 2019, Kong et al 2016).All 30 data points were used in the LOO 

procedure. First, the capacity C was chosen to be constant and set to 10, and e was set 

to 0.21. Then, the LOO procedure was performed to find s, which minimizes the mean 

squared error (MSE). The minimal MSE was achieved at s=1.7. Afterward, the same 
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procedure was repeated but now to find e, which minimizes the MSE, and in this case, 

s was set to 1.7. It was found that e=0.13 gives the minimal value of the MSE. In both 

cases, the minimal values of the MSE were found using PSO optimization algorithm 

(Wang et al 2020). The results of the LOO procedure in a graphical form are shown 

on Figure 7.8, precisely for kernel parameter (Figure 7.9a) and parameter e (Figure 

7.9b). After both parameters have been found, the SVM model is ready for the 

learning process. The effectiveness of training of the SVM model is depicted on 

Figure 7.10a and its ability to predict correct values for unseen data on Figure 7.10b. 

The values of R very close to 1 for both training and testing indicate that the model 

has been very well learned and that also has the excellent generalization ability. 

 

 

Figure 7.9: Results of LOO procedure in determining kernel parameter σ (a) and  

parameter ɛ (b) 

 

 
Figure 7.10(a): Results of SVR for training   Figure 7.10(b): Results of SVR for 

testing  
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PART B 

 
 

7.9 SVM-PSO PREDICTION-OPTIMIZED MODEL 

 
 

Support vector machines (SVMs) are a set of related super-vised learning methods 

used for classification and regression (Jingchao et al 2020, Gu et al 2020, Hu et al 

2019).The SVMs were originally developed for classification and were later 

generalized to solve regression problems (Dong-Dong et al 2020, Garci et al 2015, 

Cho et al 2004, Hsueh et al 2008, Wang et al 2014). This last method is called 

Support Vector Regression (SVR). The model produced by SVR only depends on a 

subset of the training data, because the cost function for building the model tries to 

ignore any training data that are close (within a threshold ∈) to the model prediction. 

When the regression SVM is applied to nonlinear separable data, it is necessary to use 

the kernel trick. The reason that this kernel trick is useful is that there are many 

regression problems that are not linearly regressable in the space of the inputs x, 

which might be in a higher-dimensionality feature space given a suitable mapping 

x↦ψ(x) (Kya et al 2014, Gangadhar et al 2014). 

 

The basic idea of SVR is briefly described here. Instead of attempting to classify new 

unseen variables ᷃x into one of two categories ỹ=±1,  now to predict a real-valued 

output y for the observed value t so that our training data is a set of L points of the 

form {xi,ti}, where i=1,2,…,L, y∈R,and x∈R D (Himaanshu et al 2002,Zhang et al 

2003, Hong et al 2007, Durgesh et al 2010 and Chen et al 2010). 

 

               (1) 

 

Where “·” denotes the dot product, xi is the D-dimensional real input vector, w is the 

normal vector to the maximum-margin hyperplane, and yi is the predicted output 

value (equation 1). The parameter b/||w|| determines the offset of this hyperplane from 

the origin along the normal vector w. The SVR uses a more sophisticated penalty 

function: a penalty is not imposed if the predicted value yi is less than the distance ɛ 

away from the actual value ti, i.e., if |ti-yi|<ɛ.  
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Referring to Figure 7.11, the region bound by yi ±ɛ∀I (equation 2), is called the e-

insensitive tube. Another modification to the penalty function is that output variables 

outside the tube are allocated one of two slack variable penalties, depending on 

whether they lie above (ξ>0and ξ+-)or below(ξ+) the tube, where ξ>0∀i. 

                                                                (2) 

The task is then to find a functional form f that can correctly predict new cases that 

the SVM has not been presented with before. This can be achieved by training the 

SVM model on a sample set called the training set, a process that involves the 

sequential optimization of an error function. Depending on the definition of this error 

function, two types of SVM models can be recognized and the resulting SVM 

problem can be formulated as follows (Piotr Nazarko 2011, Gupta et al 2011, Anto et 

al 2011):  

 

(a) Regression SVM type 1 (also known as ɛ–SVM regression): for this type of SVM, 

we have to solve an optimization problem, minimizing the following general risk 

using (equation 3 and 4), function (Piotr Nazarko 2011, Gupta et al 2011,and Kumari 

et al 2011): 

 

                       (3) 

Subject to 

                                                                               (4) 
 

(b) Regression SVM type 2 (also known as ν–SVM regression): for this SVM model, 

it is necessary to solve the following optimization problem, minimizing the following 

general risk function (Piotr Nazarko 2011, Gupta et al 2011, Anto et al 2011, and 

Garcia et al 2015):  

                       (5) 
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Subject to 

 

                                           (6) 

 

where ψ : X→Z is the transformation of the input space into a new space Z, usually a 

larger dimension space, where we define an inner product by means of a positive 

definite function k (kernel trick, (equation 6),) (Piotr Nazarko 2011, Gupta et al 2011, 

Anto et al 2011, and Garcia et al 2015). 

 

       (7) 

 

The above problem is quadratic with linear constraints, and so, the Karush–Kuhn –

Tucker (KKT) optimality conditions are necessary and sufficient (equation 7 and 8). 

The solution, which can be obtained from the dual problem, is a linear combination of 

a subset of sample point-denominated support vectors (s.v.) (Garcia et al 2015, 

Kadirgama et al 2012, Lela et al 2009, Shi et al 2007, and Sun et al 2019) as follows:  

 

 

 

 
Figure 7.11: SVM Graph 

 
 

               (8) 
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The reason that this kernel trick is useful is that there are many regression problems 

that cannot be linearly regressed in the space of the inputs x, which might be in a 

higher dimensional feature space given a suitable mapping (equation 9). Different 

kernel functions are described in the bibliography as for example (Himanshu et al 

2002, Piotr Nazarko 2011, Gupta et al 2011, Anto et al 2011, Huang et al 2010 and 

Garcia et al 2015) 

 

 

Radial basis function 

                            (9) 

 

Polynomial Kernel 

                                                 (10) 

Where s, a and b (equation 10) are the parameters defining the kernel’s behaviour. 

To sum up, to use an SVM to solve a regression problem for data that is not linearly 

separable, we need to first choose a kernel and relevant parameters that can be 

expected to map the nonlinearly separable data into a feature space where it is linearly 

separable. 

 

 

7.10 THE GOODNESS OF FIT OF THIS APPROACH 
 

In this study, an SVR technique in combination with the PSO approach has been 

implemented in order to predict the milling tool flank wear values using radial basis 

function (RBF) kernels (Piotr Nazarko 2011). The goodness of fit of a statistical 

model describes how well it fits a set of observations. Indeed, it is important to select 

the model that best fits the experimental data. The following criterion was considered 

here (Gupt et al 2011, Kumari et al 2011, Anto et al 2011):  

 

The coefficient of determination (R): as it is well known, in statistics, the coefficient 

of determination (R2) is used in the context of statistical models whose main purpose 

is the prediction of future outcomes on the basis of other related information 

(Senthilkumar et al 2016, Shalina et al 2019). If an intercept is included, then R2 is 
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simply the square of the sample correlation coefficient between the outcomes and 

their predicted values. To fix ideas, this ratio indicates the proportion of total variation 

in the dependent variable explained by the model (milling tool wear in our case). A 

dataset takes the value “ti”, each of which has an associated modelled value “yi”as 

indicated (equations 11 and 12)  (Yamina et al 2020, Shalina et al 2020). The former 

is called the observed value, and the latter is often referred to as the predicted value. 

The variability in the dataset is measured through different sums of squares (Piotr 

Nazarko 2011, Anto et al 2011, Garcia et al 2015, Marco et al 2017) 

 

                                        (11) 

In the previous sums, ˉt is the mean of the n observed data 

                                                   (12) 

Bearing in mind the above sums, the general definition of the coefficient of 

determination is  

                                                       (13) 

The coefficient of determination (equation 13) value of 1.0 indicates that the 

regression curve fits the data perfectly. 

 

7.11 ANALYSIS OF RESULTS AND DISCUSSION 

 

The predicted output variable is the flank wear (VB) measured in micrometres. 

Additionally, it is well known that the SVM techniques are strongly dependent on the 

SVM hyper parameters: the regularization factor C (see Eq. (5), the hyper parameter 

that defines the e-insensitive tube (allowable error), and s that represents the kernel 
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parameter if an RBF is chosen. There exists a vast body of literature regarding the 

choice of hyper parameters for SVMs (Piotr Nazarko 2011, Gupta et al 2011, Anto et 

al 2011, and Garcia et al 2015) Some methods often used to determine suitable hyper 

parameters are (Gupta et al 2011, Anto et al 2011, Garcia et al 2015, Ali et al 2016) 

Cross-validation, grid search, random search, Nelder–Mead search, heuristic search, 

genetic algorithms, pattern search, etc. 

 

In other words, a novel hybrid PSO–SVM-based model was applied to predict the 

milling tool wear (output variable) from the other three remaining variables (input 

variables) in a milling process (Piotr Nazarko 2011, Ali et al 2016), studying their 

influence in order to optimize its calculation through the analysis of the coefficient of 

determination (R2) with success Figure 7.12 shows the flowchart of this new hybrid 

PSO–SVM-based model developed in this study. The PSO-SVM model was tried out 

by researchers for biomedical field, but the highlight of our study is to implement the 

PSO-RBF-SVM model for milling with identifying the best kernel and to implement 

the same for regression that is to carry out prediction and optimization.   

 

The determination coefficient is the statistical measure of how well a regression curve 

approximates real data points. Furthermore, it is a descriptive measure ranging from 

zero to one, indicating how good one term is predicted by another one. Thus, R2 =1 

indicates the best approximation and R2=0 the worst one. 

 

Table 7.3: Initial ranges of the three hyper-parameters of the PSO–SVM based 

model with an RBF kernel. 

SL.NO SVR Hyper parameters Higher Limit Lower limit 

1 с 10-3 10-5 

2 ɛ 10-3 10-9 

3 σ 10-3 10-5 

 

 

Table 7.4: Optimal hyper-parameters of the fitted RBF–SVM-based model 

found with a PSO technique. 
 

Kernel Values Of Optimal Hyper parameters 

RBF Regularization Factor C = 58.726, ɛ = 0.01631, σ = 0.5364 

   



201 
 

 

 
 

Figure 7.12: Flowchart of the new hybrid PSO–SVM-based model 

 
Cross-validation was the standard technique used here for finding the real coefficient 

of determination (R2). The data set is randomly divided into l disjoint subsets of equal 

size, and each subset is used once as a validation set, whereas the other l-1 subsets are 

put together to form a training set. In the simplest case, the average accuracy of the l 

validation sets is used as an estimator for the accuracy of the method (Garcia et al 

2015). The combination of the hyper parameters with the best performance is chosen 

in this way, 10-fold cross-validation was used here. 

 

As it has been previously pointed out, in order to guarantee the prediction ability of 

the PSO–SVM-based model, an exhaustive 10-fold cross-validation algorithm was 

used (Wang et al 2014). The referred algorithm consists in splitting the sample into 10 

parts and using 9 of them for training and the remaining 1 for testing. This process 

was performed 10 times using each of the parties of the 10 divisions for testing and 

calculating the average error. Therefore, all the possible variabilities of PSO–SVM-
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based model parameters have been evaluated in order to get the optimum point, 

looking for those parameters that minimize the average error. With these optimal 

hyper parameters, the error criterion was calculated from the built model using 90 % 

of the sample and tested with the remaining 10 %. In this way, we are able to simulate 

as much as possible the real conditions under which the model would be built in order 

to later fit it to new observation data unrelated to the construction of the model.  

  

The regression modelling has been performed with SVR–e using the LIBSVM library 

(Lela et al 2009). The searching in the parameter space has been made, taking into 

account that the SVM algorithm changes its results significantly when its parameters 

increase or decrease by a power of 10. The binds (initial ranges) of the space of 

solutions used in particle swarm optimization (PSO) technique are shown in Table 

7.3. The number of particles used has been 20. The stopping criterion is fulfilled if 

there is no improvement after the 10 iterations, along with the maximum number of 

iterations equal to 1000. 

 

Table 7.5: Coefficient of determination (R) and correlation coefficient for the 

hybrid PSO–SVM-based model with an RBF kernel fitted in this study. 

 

Kernel Coefficients of Determination (R2)/Correlation Coefficients (r) 

RBF 0.94/0.96 

 

 

 

Table 7.6: Evaluation of the importance of the variables according to their 

weights in the fitted PSO–SVM-based model with an RBF kernel. 

 
  
 

 

 
 

To optimize the SVM parameters, the PSO module is used.  The PSO searches for the 

best C, s, and e parameters by comparing the forecasting error of each iteration. 

Search space is organized in three dimensions, one for each parameter. Main fitness 

factor is the coefficient of determination (R). Table 7.4 shows the optimal hyper 

parameters of the fitted RBF–SVM-based model found with the PSO technique. Table 

SL.NO Input Variable Weight 

1 Spindle Speed 1.9583 

2 Depth Of Cut 0.1046 

3 Feed Rate 2.3217 
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7.5 shows the coefficient of determination and correlation coefficient for the fitted 

PSO–RBF–SVM-based model from 2006 to 2011. According to this statistic, the 

SVM with the RBF kernel is the best model for estimating the flank wear in the 

milling process, since the fitted SVM with the RBF kernel has a coefficient of 

determination (R2) equal to 0.95 and a correlation coefficient equal to 0.98. These 

results indicate an important goodness of fit, that is to say, a good agreement is 

obtained between our model and the observed data. 

 

The importance ranking of the nine input operation variables in order to predict the 

milling tool wear (output variable) in this high nonlinear complex problem is shown 

in Table 7.6. Finally, this research work was able to predict the milling tool flank 

wear in agreement to the actual milling tool wear values observed experimentally 

using this hybrid PSO–SVM based model with great accuracy and success. Therefore, 

the use of an SVM model with an RBF kernel is necessary in order to achieve an 

effective approach to nonlinearities present in the regression problem. Obviously, 

these results coincide again with the outcome criterion of goodness of fit (R2) so that 

the SVM model with an RBF kernel has been the best fitting.  

 

In summary, the PSO–SVM-based model (Wang et al 2020, Hu et al 2019) is a 

suitable tool in modelling and assessment of singular problems, such as the study of 

the milling tool wear (flank wear in this case) in an industrial milling process. The 

most important operation input variables were used to fully characterize the problem. 

The attained PSO optimal points are represented in Figure 7.13 for LN2 machining 

condition. The entire summarized results are shown in Figure 7.14. The Figure 7.14 

indicates that SVR technique yields better results compared to that of RSM and BNN 

techniques in case of LN2 machining condition. 
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Figure 7.13: PSO Optimal points for SS316 for LN2 machining condition 

 

 
 

Figure 7.14: Summarized results of RSM, BNN and SVR techniques in terms of 

% of deviation 

 

Table 7.7: Summary of relative error comparison between RSM, BNN and SVR 

for output parameters CT, CF, Ra, and FW. 

Methods 
Relative error 

(%) 

CT (ºC) 

Relative error 

(%)  

CF (FX) 

Relative error 

 (%)  

Ra (µm) 

Relative error 

(%)  

FW (µm) 

RSM 8.06 - 10.42 7.48 - 9.78 6.78 - 8.43 8.43 - 10.2 

BNN 2.06 - 4.29 2.8 - 4.55 3.39 - 4.35 2.04 - 4.3 

SVR 1.61-4.17 1.09-4.28 1.04-3.61 1.99-4.0 
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Table 7.7 represents the Summary of relative error comparison between RSM, BNN 

and SVR for output parameters CT, CF, Ra, and FW. Also indicates that SVM 

prediction approach is much impressive compared to RSM and BNN respectively. 

Similarly, Table 7.8 shows PSO-RBF-SVR approach is outperformed compared to 

DFA and PSO optimization tool respectively. 

 

Table 7.8: Summary of optimized process parameters in milling using PSO-RBF-

SVR with DFA and PSO approaches respectively. 

 

 

 

7.12 CONCLUSIONS 

Based on the experimental and numerical results, the main findings of this research 

work can be summarized as follows: 

1. The SVR technique incorporated in this study yields better results as 

compared to RSM and BNN techniques. 

2. RBF kernel function yielded better results compared to other kernel function 

such as Linear, Polynomial and Sigmoid. So in further study the RBF was 

incorporated with PSO technique to carry out optimization. 

3. The milling responses can be accurately modeled using a hybrid PSO–SVM-

based model with an RBF kernel.  

4. This hybrid PSO–RBF–SVM-based model to predict the responses and allows 

to lower costs in the quality’s assessment of the milling process. 

Optimization 

Tool 

Milling Condition 

Spindle 

Speed 

(rpm) 

Feed 

rate 

(mm/

min) 

Depth 

of cut 

(mm) 

Coolant 

type 

Cutting 

Temperature 

(CT, ºC) 

Cutting 

Force 

(Fx, N) 

Surface 

Roughness 

(Ra, µm) 

Flank 

Wear 

(VB, 

µm) 

Experiment

al 

3000 350 0.5 1 84 214 0.583 0.142 

DFA 3000 350 

 

0.5 1 99.98 225.00 1.14 0.13 

PSO 3000 350 0.5 1 97 223 1.10 0.152 

PSO-RBF-

SVR 
3000 350 0.5 1 90 216 0.78 0.149 
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5. A high coefficient of determination equal to 0.95 was obtained when this 

hybrid PSO–RBF–SVM-based model was applied to the experimental dataset. 

6. The significant order of the input variables involved in the prediction of the 

milling tool flank wear values was set. Specifically, the input operation 

variables spindle speed and feed rate could be considered as the most 

influential parameters, respectively. 

7. The influence of the kernel parameter setting of the SVMs on the responses 

regression performance was established.  

8. Finally, the results verify that this hybrid PSO–SVM based regression method 

significantly improves the generalization capability achievable with only the 

SVM based regression. 
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CHAPTER 8 

CONCLUSIONS AND SCOPE FOR FUTURE WORK  

In the current study, the regression equations are developed on the experimental data 

collected as per the design of experiments. Generally, the responses are predicted more 

accurately when the response equation have better fit. This is decided based on R2, i.e. 

coefficient of determination value. In this research work, the effort has been to develop 

input and output relationship in the face milling operation using cryogenic technique.  

Later on the model developed has been tested statistically using Analysis of Variance 

and with the Neural Network (Gradient Descent, Scaled Conjugate Gradient Descent, 

Levenberg Marquart, and Bayesian Neural Network) approach. From the study, it can 

be derived that all the models are adequate and effective in making predictions. Later 

on, the comparison is made among Response Surface Methodology and Neural 

Network approach via nine test cases in order to check their prediction accuracy and to 

identify the best suitable back propagation approach predicting model for the current 

research. From the results, it can be observed that the deviation percentage attained for 

predicting Ra is found to be less than 10.5% by all the considered models. 

Thus neural network method will help to make the prediction of cutting force, surface 

roughness, cutting temperature, tool wear for opted combination of machine parameters 

in face milling using cryogenic techniques. The requirement of face milling process 

using cryogenic technique entirely depends on the required application as requirement 

of better responses (cutting force, surface roughness, cutting temperature, tool wear) 

was critical in the current application. Thus the present work will help in minimizing 

the expensive trial and error methods. Later on, the work can be further implemented 

in automated numerical based machines in order to control the setting of parameters in 

web based (online mode) via incremental training of neural network. 
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8.1 States of Conclusion  

The research can be extended towards the various stages. The first stage is by using 

design of experiments and different combination of parameters to build the database 

and to identify the significant parameters using Analysis of Variance. The second stage 

is modelling and comparing the predicted responses (Cutting force, surface roughness, 

cutting temperature, tool wear) using Response Surface Methodology and neural 

network (Gradient Descent, Scaled Conjugate Gradient Descent, Levenberg Marquart, 

and Bayesian Neural Network) approaches. The third stage is formulation of multi 

objective optimization models to identify the optimum parameters of the desired 

responses and even to address the performance of Particle Swarm Optimization model 

with statistical method (Response Surface Methodology). The fourth stage is to 

elucidate on the concept of machine learning (Support Vector Machine), as in the study 

Support Vector Machine is applied for the purpose of prediction and optimization. In 

prediction 4 kernel functions are used for prediction using Support Vector Regression 

(SVR) technique. Later on, the integration of best attained kernel function (Radial Basis 

Function) is hybridized to optimization technique forming a hybrid technique PSO-

RBF-SVM method to carry out the optimization. The fifth stage is to carry out 

validation test by conducting 9 experimental test cases to identify the best suitable 

prediction model in terms of deviation and accuracy.  

 

In the current study, the variation and effects of variables such as spindle speed, feed 

rate, and doc on cutting force, surface roughness, cutting temperature, tool wear in face 

milling operation with cryogenic technique is examined. The experiments were 

conducted on SS316 and the attained results were analysed by incorporating statistical 

method Regression Analysis, neural network method Bayesian Neural Network and 

machine learning method Support Vector Regression approaches. All the mentioned 

three methods were compared with each other in order to identify the best suitable 

method for the current study.  

The best suitable method is chosen based on its attained relative error. The statistical 

significance of the model is expressed in terms of its performance i.e the error 

percentage achieved. The deviation attained by the models is as follows: 
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Response Surface Methodology: 8.43% (Max) - 3.95% (Min) 

Bayesian Neural Network: 5.88% (Max) - 2.36% (Min) 

Support Vector Regression: 3.61% (Max) - 1.04 % (Min) 

It was found that neural network approach Bayesian Neural Network and machine 

learning model Support Vector Regression prediction correlate well with experimental 

results. But the best prediction for response surface roughness was attained by Support 

Vector Regression model with the deviation percentage of 3.61%.  

The study also indicated the coolant type and feed rate are more dominant factors on 

Ra compared to spindle speed and doc, while doc was least influential on response Ra. 

1. The investigation was intended to check the acceptability of the cryogenic (LN2) 

machining approach for difficult to cut metals like SS316. The supporting inferences 

were made based on the results obtained from the present study.  

LN2 method of machining was useful in improving the breakability of chips, which is 

directly due to  

 Reduction of cutting temperature at tool-chip and tool-workpiece 

junction helping to improve  

1) Tool-life by reducing tool wear. 

2) The surface quality of the product. 

3) Reduction in power consumption in machining due to reduced 

cutting force. 

2. The attained statistical results of the LN2 method over without-coolant and with-

coolant machining concerned to test cases for cutting force Fx (N), cutting 

temperature CT (ºC), surface roughness Ra (µm) and flank wear FW (µm) are as 

follows: 
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 Cutting force - Fx (N) with percentage reduction from 53.21% to 34.20%. 

 Cutting temperature (ºC) with percentage reduction from 65.88% to 44.51%. 

 Surface roughness (µm) with percentage reduction from 75.43% - 44.27%. 

 Flank wear (µm) have minimized from 59.76% to 23.10%. 

The machinability of SS316 can be improved in milling by the cryogenic (LN2) 

method of machining under the pre-defined range of input process constraints(31). 

 

3. Better performance was attained by Bayesian Neural Network model when 

compared to Gradient Descent, Scaled Conjugate Gradient Descent, and Levenberg 

Marquart due to its adoptability and convergence features. 

The deviation percentage attained for predicting Ra by the statistical (Response Surface 

Methodology) and Neural Network based (Gradient Descent, Scaled Conjugate 

Gradient Descent, Levenberg Marquart and Bayesian regularization or Bayesian Neural 

Network) approaches lies between as follows: Response Surface Methodology: (8.43% 

– 6.78%), Gradient Descent: (7.25% – 6.21%), Scaled Conjugate Gradient Descent: 

(6.52% – 5.08%) , Levenberg Marquart : (5.80% – 4.19%) and Bayesian Neural 

Network: (4.35% – 3.39%).  

 

4. The outcomes acquired through Particle Swarm Optimization are likewise compared 

with the customary desirability approach and it was found that Particle Swarm 

Optimization gives closer values compared to the results obtained with the 

desirability approach. The Support Vector Regression technique incorporated in this 

study yields better results as compared to Response Surface Methodology and 

Bayesian Neural Network techniques. 

 

Radial Basis Function- Kernel function yielded better results compared to other kernel 

function such as Linear, Polynomial and Sigmoid. So, in further study the Radial Basis 

Function was incorporated with Particle Swarm Optimization technique to carry out 

optimization. The output responses can be accurately modelled using a hybrid Particle 

Swarm Optimization - Support Vector Machine (PSO–SVM) based model with a Radial 
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Basis Function kernel. This hybrid Particle Swarm Optimization - Radial Basis Function 

- Support Vector Machine (PSO–RBF–SVM) based model accurately predicts the 

desired responses and allows optimization leading to quality product economically. 

The Novelty of the present research work is: 

 Implementation of an intelligent prediction and optimization systems through a 

hybrid model, incorporating Neural Networks, SVR and PSO algorithms. 

 The weights generated from among the best of the 4 (GD, SCGD, LM and BNN) 

approaches, are fed to the desired SVR model. 

 Here again the weights generated from among the best of 4 kernels (Linear, 

polynomial, Radial and Sigmoidal) are interfaced to the PSO model. 

 Thus, it can be seen that the weights generated at the initial training phase are 

further refined in the next stage of SVR training processing and these process 

lead to best results when used in PSO processing. 

 The exhaustiveness interms of different algorithms for neural network and SVR 

processing as detailed above has not been seen in any of the literature studied in 

the context of the present work. 

 

8.2 SCOPE FOR FUTURE WORK 

The basic purpose of this thesis has been fulfilled by the contributions presented in the 

preceding chapters of this dissertation. However, there is still scope for future research 

which facilitates the enhancement of the performance. Among them few possible future 

research topics have been outlined as follows. 

1. Reverse mapping approach can be implemented to predict the responses in 

various research operations. 

2. Classification and clustering of machining type (Cryogenic, dry or wet) with 

respect to surface roughness value (µm) using image processing technique. 

3. Prediction of surface roughness value (µm) of milled samples using machine 

vision system and image processing technique. 
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APPENDIX I 
PREDICTION PROGRAM 

main() 
{ 
  

cout << "       Prediction of responses of Milling of SS316" << endl; 
  

cout << "       Forward Mapping technique through Artificial Neural    
                        Network " << endl;          
  

cout << "                                  by" << endl;  
     

cout << "        KARTHIK RAO M C [155078ME15P06]" << endl;  
  

cout << "        National Institute of Technology Karnataka, Surathkal" 
<<endl; 
 
cout << endl; 
  

cout << endl << "Enter your Network preference" << endl;  
  

cout << "1. Feed Forward Neural Network" << endl;  
  

fchoise = getch();  
  

if (fchoise != '1') { return 0; }  
  

else  for(;;) {  
 

char choice;  
 

cout << endl << "Enter the Training or Prediction preference" << 
endl;  

   
cout << "1. load data" << endl;   

  
cout << "2. learn from data" << endl;  

   
cout << "3. compute output pattern" << endl; 

cout << "4. make new data file" << endl;  
 

cout << "5. save data" << endl;  
 

cout << "6. print data" << endl;  
 

cout << "7. change learning rate and momentum factor" << endl;  
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cout << "8. exit" << endl << endl;  

 
cout << "Enter your choice (1-8)";  

   
 
// HIDDEN1 -> OUTPUT 
  

for(y=0; y<output_array_size; y++) {  
   

for(x=0; x<hidden_array_1_size; x++)   
 {  

temp += (hidden1[x] * weight_h_o[x][y]);  
}  
output[pattern][y] = (1.0 / (1.0 + exp(-1.0 * (temp + bias[y +  
hidden_array_1_size])))); 

 
temp = 0;  

 }  
 

return;  
} 
 
void backward_pass(int pattern) 
{ 
 

 register int x, y;  
  

register double dweight_h_o = 0.0 , dweight_h_h = 0.0, dweight_i_h = 0.0, 
temp = 0.0; 

 

// COMPUTE ERRORSIGNAL FOR OUTPUT UNITS 

for(x=0; x<output_array_size; x++)   
  
{  
   

errorsignal_output[x] = ((target[pattern][x] - output[pattern][x]) * 
output[pattern][x] * (1- output[pattern][x])) ; }  
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// ADJUST WEIGHTS OF CONNECTIONS FROM HIDDEN LAYER 1 TO 
OUTPUT UNITS  
  
for(x=0; x<hidden_array_1_size; x++) {  
   

for(y=0; y<output_array_size; y++) {  
  

dweight_h_o = weight_h_o[x][y] - oldweight_h_o[x][y];  
 

weight_h_o[x][y] += ((learning_rate * errorsignal_output[y] * 
hidden1[x]) + (momentum * dweight_h_o));  

  
}  

  
}  
  

for(x=0; x<hidden_array_1_size; x++)   
   

for(y=0; y<output_array_size; y++)   
   

oldweight_h_o[x][y] = weight_h_o[x][y];  
   
 
// ADJUST BIASES FOR OUTPUT UNITS  
  

for(x=(hidden_array_1_size); x<bias_array_size; x++) {  
 
bias[x] += (learning_rate * errorsignal_output[x]);  
 }  

 
 
// COMPUTE ERRORSIGNAL FOR HIDDEN LAYER 1 UNIT 
  
for(x=0; x<hidden_array_1_size; x++) {  
  

for(y=0; y<output_array_size; y++) {  
   

temp += (errorsignal_output[y] * weight_h_o[x][y]);  
}  
 
errorsignal_hidden[x] = (1-hidden1[x]) * temp;  
 

temp = 0.0; 

}  
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// ADJUST BIASES OF HIDDEN LAYER 1 UNIT 
  

for(x=hidden_array_1_size; x<(bias_array_size-hidden_array_1_size); x++) 
{  
   

bias[x] += (learning_rate * errorsignal_hidden1[x]);  
  
}  
    
 // COMPUTE ERRORSIGNAL FOR HIDDEN LAYER 1 UNITS 
  

for(x=0; x<hidden_array_1_size; x++) {   
  

temp += (errorsignal_hidden1[y] * weight_h_h[x][y]);   
}  

  
errorsignal_hidden1[x] = hidden1[x] * (1-hidden1[x]) * temp;  

  
temp = 0.0;  

  
}  
 

 

******************************** The End *********************************** 

 

Particle Swarm Optimization Code 

 

ff = 'Karthik'; % Objective Function 

% Initializing variables 

popsize = 100; % Size of the swarm 

npar = 4; % Dimension of the problem 

maxit = 100; % Maximum number of iterations 

c1 = 1.7; % cognitive parameter 

c2 = 1.8; % social parameter 

C=1; % constriction factor 

% Initializing swarm and velocities 
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lwb1=26; 

lwb2=0.048; 

lwb3=0.2; 

lwb4=200; 

upb1=130; 

upb2=0.143; 

upb3=0.6; 

upb4=600; 

par1=rand(popsize,1)*(upb1-lwb1)+lwb1; 

par2=rand(popsize,1)*(upb2-lwb2)+lwb2; 

par3=rand(popsize,1)*(upb3-lwb3)+lwb3; 

par4=rand(popsize,1)*(upb4-lwb4)+lwb4; 

%%par2=rand(popsize,1)*0.5; 

%par3=rand(popsize,1)*0.2; 

par=[par1,par2,par3,par4]; % random population of 

% continuous values 

vel = rand(popsize,npar); % random velocities 

% Evaluate initial population 

cost=feval(ff,par); % calculates population cost using 

% ff 

minc(1)=min(cost); % min cost 

meanc(1)=mean(cost); % mean cost 

globalmin=minc(1); % initialize global minimum 

% Initialize local minimum for each particle 

localpar = par; % location of local minima 

localcost = cost; % cost of local minima 

% Finding best particle in initial population 
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[globalcost,indx] = min(cost); 

globalpar=par(indx,:); 

% Start iterations 

iter = 0; % counter 

while iter < maxit 

iter = iter + 1; 

% update velocity = vel 

w=(maxit-iter)/maxit; %inertia weiindxht 

r1 = rand(popsize,npar); % random numbers 

r2 = rand(popsize,npar); % random numbers 

vel = C*(w*vel + c1 *r1.*(localpar-par)+c2*r2.*(ones(popsize,1)*globalpar-
par)); 

% update particle positions 

par = par + vel; % updates particle position 

overlimit=par<=1; 

underlimit=par>=0; 

par=par.*overlimit+not(overlimit); 

par=par.*underlimit; 

% Evaluate the new swarm 

cost = feval(ff,par); % evaluates cost of swarm 

% Updating the best local position for each particle 

bettercost = cost < localcost; 

localcost = localcost.*not(bettercost) +cost.*bettercost; 

localpar(find(bettercost),:) =par(find(bettercost),:); 

% Updating index g 

[temp, t] = min(localcost); 

if temp<globalcost 

globalpar=par(t,:); indx=t; globalcost=temp; 
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end 

[iter globalpar globalcost] % print output each 

% iteration 

minc(iter+1)=min(cost); % min for this 

% iteration 

globalmin(iter+1)=globalcost; % best min so far 

iters=0:length(minc)-1; 

plot(iters,minc,iters,meanc,iters,globalmin); 

xlabel('generation');ylabel('cost'); 

 

 

******************************** The End *********************************** 
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APPENDIX II  - Machine Specifications 

DTC- 250/Spark [Drill Tap Machining Center, Vertical]  

I. Feed Slide - Z Axis (Vertical) 

a. Type of Feed   : A. C. Servo drive with ball screw and pre-loaded nut. 

b. Feed range   : 1 mm/min. to 10,000 mm/min. 

c. Rapid Traverse  :15000 mm/min. 

d. Motor torque   : 7 Nm. 

e. Max working Stroke : 250 mm. 

f. Axial Thrust  : 350 kg. 

 

 II. Feed Slide - X Axis (Horizontal) 

a. Type of Feed   : A. C. Servo drive with ball screw and pre-loaded nut. 

b. Feed range   : 1 mm/min. to 10,000 mm/min. 

c. Rapid Traverse  : 20000 mm/min. 

d. Motor torque   : 3.5 Nm. 

e. Max working Stroke : 300 mm. 

f. Axial Thrust  : 180 kg. 

 

III. Feed Slide - Y Axis (Horizontal) 

a. Type of Feed   : A. C. Servo drive with ball screw and pre-loaded nut. 

b. Feed range   : 1 mm/min. to 10,000 mm/min. 

c. Rapid Traverse  : 20000 mm/min. 

d. Motor torque   : 3.5 Nm. 

e. Max working Stroke : 250 mm. 

f. Axial Thrust  : 180 kg. 

 

IV. Spindle Drive 

a. No. of Spindles  :  1. 

b. Speed Range   : 60 to 6000rpm as std, 80 to 8000 rpm as optional. 

c. Type of Motor   : A.C. Motor with Transistor (PWM) Control. 
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d. Constant Power range    : 5.5 kw max at 30 min. of Continuous Running, 3.7 

kw  

                                        Continuous Running.                                                           

                                        

e. Tool Holder Taper : BT 30. 

 

V. Electrical Supply Condition 

a. Machine  : 415V+ 5%, 5o Cycle/Minute, 3Phase, 4 wire. 

b. Controls  : 24 Volts, DC. Necessary Transformer for Conversion 

is       provided. 

c. Tool Connected Load : 15 KVA Std. 

 

VI. Automated Tool Changer 

a. Tool Storage   : 6Nos. 

Capacity 

b. Max Tool Weight : 2.5 kg. 

c. Max Tool Length : 200mm. 

d. Max Tool Dia : 80mm. 

 

APPENDIX III 

G codes   

G00 - Positioning at rapid speed   

G01 - Linear interpolation (machining a straight line) 

G02 - Circular interpolation clockwise (machining arcs) 

G03 - Circular interpolation, counter clockwise 

G04 - Dwell   

G09 - Exact stop   

G10 - Setting offsets in the program   

G12 - Circular pocket milling, clockwise   
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G13 - Circular pocket milling, counter-clockwise 

G17 - X-Y plane for arc machining 

G18 - Z-X plane for arc machining 

G19 - Z-Y plane for arc machining 

G20 - Inch units   

G21 - Metric units  

G27 - Reference return check   

G28 - Automatic return through reference point 

G29 - Move to location through reference point 

G31 - Skip function   

G32 - Thread cutting   

G33 - Thread cutting   

G40 - Cancel diameter offset 

G41 - Cutter compensation left 

G42 - Cutter compensation right 

G43 - Tool length compensation   

G44 - Tool length compensation cancel 

G50 - Set coordinate system and maximum RPM 

G52 - Local coordinate system setting 

G53 - Machine coordinate system setting 

G54~G59 - Workpiece coordinate system settings 

G61 - Exact stop check  

G65 - Custom macro call   

G70 - Finish cycle   

G71 - Rough turning cycle   

G72 - Rough facing cycle   
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G73 - Irregular rough turning cycle   

G73 - Chip break drilling cycle   

G74 - Left hand tapping   

G74 - Face grooving or chip break drilling   

G75 - OD groove pecking   

G76 - Fine boring cycle   

G76 - Threading cycle  

G80 - Cancel cycles   

G81 - Drill cycle   

G82 - Drill cycle with dwell   

G83 - Peck drilling cycle   

G84 - Tapping cycle   

G85 - Bore in, bore out   

G86 - Bore in, rapid out   

G87 - Back boring cycle   

G90 - Absolute programming   

G91 - Incremental programming   

G92 - Reposition origin point   

G92 - Thread cutting cycle   

G94 - Per minute feed   

G95 - Per revolution feed   

G96 - Constant surface speed control   

G97 - Constant surface speed cancel   

G98 - Per minute feed   

G99 - Per revolution feed 
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M codes  

M00 - Program stop  

M01 - Optional program stop  

M02 - Program end  

M03 - Spindle on clockwise  

M04 - Spindle on counter-clockwise  

M05 - Spindle off  

M06 – Tool change  

M08 - Coolant on  

M09 - Coolant off  

M10 - Chuck or rotary table clamp  

M11 - Chuck or rotary table clamp off 

M19 - Orient spindle  

M30 - Program end, return to start  

M97 - Local sub-routine call  

M98 - Sub-program call  

M99 - End of sub program 
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