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ABSTRACT

Web applications, IoT devices, and other real-time applications generate an abundance

of multi-structured data every day, increasing the complexity of data storage and man-

agement. Large organizations such as Amazon, Google, and Facebook use NoSQL

databases to store these large sets of diverse data. NoSQL databases offer an efficient

architecture for meeting the performance and scale requirements of big data compared

to relational databases. NoSQL document stores adopt the JSON format as the de-facto

standard for storing multi-structured data. The data first, schema later approach of doc-

ument stores greatly enhances the use of the JSON data format in modern applications.

However, this flexibility poses several challenges for data management and knowledge

discovery tasks.

A JSON collection does not have an explicit schema to describe the internal struc-

tures of documents; instead, the schema is implicit in the data, allowing the documents

to have various structures. Therefore, knowledge of the implicit schemas is essential

to understand the data stored in the collection. This schema information can be helpful

for efficient data retrieval, data integration, query formulation, etc. In this direction,

existing research extracts schemas from JSON documents using their structural related-

ness and generates either global schema or schema variants. The global schema is the

structural representation of the whole collection that summarises the unique attributes

in a collection. This information is generally used for JSON document validation, query

formulation, etc. As the global schema does not capture the different sets of attributes

available in each document, it does not support various data management tasks such

as data integration, query optimization, etc. To overcome this limitation, few studies

focus on extracting schema variants from the collections. Schema variants represent

the schema versions or distinct schemas of JSON collections that support the above-

mentioned data management tasks effectively. Most literature focuses on extracting the

schema versions from a collection using schema class types (entities) manually embed-

ded in the documents. Due to the dynamic nature and sheer size of JSON documents,



the manual embedding of class types in each document is not feasible in a real-time

scenario. To address this issue, researchers employ clustering approaches to automati-

cally identify the class types of a JSON collection in two steps. The primary step is to

extract the schemas from a collection and then cluster the documents using the struc-

tural similarity of extracted schemas. However, differently annotated JSON schemas

are not only structurally heterogeneous but also semantically heterogeneous. Litera-

ture shows that the automatic identification of class types of JSON documents based on

structural and semantic similarity of JSON schemas is still in its infancy. To address

these research gaps, this research employs both syntactic and semantic relationships

of JSON schemas to capture the contextual information. In this work, we propose (i)

Schema Embeddings for JSON Documents (SchemaEmbed) model to capture the con-

textually similar JSON schemas, (ii) Embedding-based Clustering approach to group

the contextually similar JSON documents, and (iii) Schema Variants Tree (SVTree) to

represent the schema variants of each cluster. As SVTree contains information about

the core (common) and schema-specific attributes in a cluster, it supports efficient data

retrieval. The proposed approach is evaluated with real-world and synthetic datasets.

The results and findings demonstrate that the proposed approach outperforms the cur-

rent approaches significantly in grouping the contextually similar JSON documents. In

addition, the impact of clustering in constructing a compact SVTree is also studied.

The heterogeneous nature of JSON documents increases the complexity of the ef-

ficient retrieval of data. Indexes have traditionally been used to improve the speed of

data retrieval. Existing indexing techniques for JSON data use global schema to identify

the unique attributes in a collection and support exact (lexical) matching of path-based

queries. However, they suffer from huge index sizes and data retrieval time. As JSON

schemas are annotated differently, providing semantic support increases the search rele-

vancy. Existing work on the semantic search of JSON documents uses knowledge bases

such as WordNet. However, they capture the abstract meaning of JSON attributes rather

than their context. To bridge these research gaps, this research proposes efficient and

compact index structures, namely JSON Index (JIndex) and Embedding-based JIndex

(EJIndex), to support both lexical and semantic matching of path-based queries. With

ii



the help of core and schema-specific attributes of schema variants stored in SVTree, the

proposed indexes reduce the index size by storing only a subset of attributes rather than

all the attributes in a collection. Experimental results demonstrate that the proposed in-

dexes outperform the existing approaches in retrieving both lexically and semantically

relevant results, significantly reducing index size and data retrieval time.

As JSON documents evolve and change over time, the implicit schemas must be

extracted and updated in the database to support dynamic data retrieval. Existing ap-

proaches focus either on maintaining the history of schema versions in data lakes or

updating the global schema. Nevertheless, the schema variants must be updated to

provide the latest documents for the user queries. In this work, we propose an Incre-

mental SchemaEmbed model to generate schema embeddings for new schema variants

of the latest documents while preserving the knowledge of old schema variants. The

Incremental Embedding-based Clustering approach assigns the latest documents to the

respective clusters based on the contextual similarity of their schema variants. Conse-

quently, the JIndex and EJIndex are updated incrementally to support the retrieval of

the latest documents for the user queries. The experimental results on diverse datasets

show that the proposed work is efficient in updating the schema variants and the indexes.

Keywords: JSON, Schema extraction, Schema variants, JSON Indexing, Semantic search
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CHAPTER 1

INTRODUCTION

The advancement of web applications, online businesses, the emergence of social net-

work organizations, and the adoption of hand-held computerized gadgets, Internet of

Things (IoT) devices, etc., contribute to the phenomenal growth of semi-structured and

unstructured data. As per SeedScientific (2021) statistics, more than 44 zettabytes of

data are being generated every day, and this number is expected to reach 463 exabytes

of data globally in the coming years. Managing such huge semi-structured and unstruc-

tured data in relational databases is challenging because it does not support scalability,

schema evolution, efficient data storage, management, etc. The schema-less nature of

NoSQL databases provides the flexibility to store and manage massive multi-structured

data in a distributed way. In addition, NoSQL databases offer efficient architecture in

meeting the performance and scale requirements of big data compared to traditional re-

lational databases. Most large organizations such as Google, Twitter, Microsoft, Ama-

zon, Facebook, and others use NoSQL databases to store and manage this huge semi-

structured and unstructured data efficiently.

Four types of NoSQL databases, namely key-value stores, document stores, column

stores, and graph databases, are popularly used to manage semi-structured and unstruc-

tured data. Although all the types of NoSQL databases share standard features such as

schema flexibility, scalability, etc., the structure of the data stored in these databases and

their applications vary significantly. Key-value stores represent each data element as a

key-value pair consisting of an attribute name and a value. Document stores employ the

1
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1.1. JSON Document Representation

concept of key-value stores, in which data is stored in the form of documents. Columnar

databases organize data into columns. Graph databases store data in graphs where the

nodes represent the data elements, and the edges represent their inclusive relationships.

The key characteristics of the NoSQL databases are given in Table 1.1.

Over the years, eXtensible Markup Language (XML) has been the standard data in-

terchange format over the web and is used to represent semi-structured data generated

by web applications. Recently, JSON has become the de facto format for data inter-

change over the web because JSON is lighter, simpler to read, and faster to parse than

XML (Liu et al. 2014). The JSON format also supports faster communication between

web applications than XML. For instance, it is observed from Table 1.2 that XML for-

mat has redundant opening and closing tags to represent the author information. In

contrast, JSON syntax is minimal, which makes JSON format lighter and faster. JSON

also provides intrinsic data type support, which is not supported in XML. The signif-

icant differences between XML and JSON formats given in Table 1.2 make JSON as

the primary data interchange format over the web. Moreover, large organizations, like

Google, Yahoo, Facebook, Twitter, etc., use JSON to store and manage multi-structured

data in NoSQL databases.

1.1 JSON DOCUMENT REPRESENTATION

JSON is a text-based data format that uses JavaScript object syntax to describe data in

a structured format. A JSON document collection is a group of documents within a

database. It is formally defined in Definition 1.1.1.

Definition 1.1.1. A Collection G = {D1, D2, ..., Dn} is a set of JSON documents

where the document Di is a JSON object.

JSON documents (objects) are dictionaries comprised of key-value pairs in which the

value may be another JSON object, allowing for an arbitrary nesting level. Besides sim-

ple dictionaries, JSON supports arrays and primitive types such as string, number, and

Boolean. As dictionaries and arrays can include another JSON object, the JSON format

is compositional. Definition 1.1.2 provides a formal definition of a JSON document.
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1. Introduction

Table 1.2: Features of XML and JSON data formats

Features Data formats

XML JSON

Document Made up of XML elements where at-
tributes describe the elements

Made up of a set of unordered attributes

Document
Representa-
tion

Tree (hierarchical) Map (key-value pairs)

Structure of
a document

<root>
<author>
<firstName>John</firstName>
<lastName>Smith</lastName>
</author>
<author>
<firstName>Noam</firstName>
<lastName>Zeilberger</lastName>
</author>
<book>
<title>Trademaker</title>
<year>2014</year>
</book>
<publisher>Science of

Science</publisher>
</root>

{
”author ”:
[{

”firstName”: ”John”,
”lastName”: ”Smith”
},
{ ”firstName”: ”Noam”,

”lastName”: ”Zeilberger”,
} ],
”book”:
{

”title”: ”Trademaker”,
”year ”: 2014
},
”publisher”: ”Science of Science”
}

Datatypes text, number, images, charts, graphs,
etc.

primitive data types: text, number,
boolean
complex data types: object, array

Schema XSD and DTD JSON-Schema

Ordering Enforces a strict order between the
nodes at each level

Mixes both ordered and unordered data

Uniqueness
of Keys

XML elements are non-deterministic JSON attributes are deterministic

Attribute
value

simple data types such as number, text,
etc.

both primitive and complex data types

Definition 1.1.2. A JSON document (object) D is made up of a set of unordered fields

(key-value pairs) {F1, F2, ..., Fm}. A field F has a key (also known as attribute) ka and

the value va where the type of the value can be represented as type(va) = {typeprim ∪

typecomp ∪ null}. The primitive data types, typeprim ∈ {string, number, boolean}, and

the complex data types typecomp ∈ {array, object} where array represents the ordered

lists of values and object is an unordered set of key-value pairs.
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1.1. JSON Document Representation

Figure 1.1: A Sample JSON document

Figure 1.1 depicts an instance of a JSON document D which has three keys at the

first level, such as author, book, and publisher. The value of the key author is of an

array type with two JSON objects (also known as an array of objects). In addition, the

key book has another JSON object with two fields, such as title and year. The value of

the key publisher is Science of Science with string type.

The JSON document can also be represented as a tree form in two different ways:

• Node-labeled tree: The nodes (vertices) represent the JSON attributes, and the

edges represent the inclusive relationship between the attributes. JSON arrays are

modeled as nodes, and their children are accessed via nodes labeled with numbers

that correspond to their position in the array. Defining arrays in this way allows

for preserving the structure of an array of objects as well as supporting efficient

data access by navigating the child nodes (Shang et al. 2021).

• Edge-labeled tree: The leaf nodes represent the JSON value, and edges represent

the JSON attributes. JSON arrays are represented as nodes, and their children are

accessed by axes labeled with numbers matching their array position. (Bourhis
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1. Introduction

et al. 2017). As edges carry the key information, constructing space-efficient

indexes to support efficient data retrieval is a daunting task.

In this work, JSON documents are represented as node-labeled trees in order to preserve

all the features of JSON format as well as to support efficient data retrieval.

Figure 1.2 depicts the tree representation of a JSON document shown in Figure 1.1.

The root of a JSON tree describes the whole document. However, the JSON format

does not have a specific root attribute as in XML. Therefore, in this work, the common

Root attribute is created for a JSON document. The author attribute is of array type

with two objects. The nodes labeled with 0 and 1 represent the child objects of author.

Figure 1.2: Tree representation of a JSON document in Figure. 1.1

1.2 JSON SCHEMA EXTRACTION

NoSQL database systems have emerged rapidly in recent years because of their schema-

less nature. The data first, schema later approach of NoSQL document stores provides

flexibility in storing multi-structured documents in JSON format. However, this flex-

ibility poses several challenges for data management and knowledge discovery tasks.

A JSON collection does not have an explicit schema to describe the internal structures

of documents; instead, the schema is implicit in the data, allowing the documents to

have various schemas. Therefore, knowledge of the implicit schemas is essential to un-
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1.2. JSON Schema Extraction

derstand the data stored in the collection. This schema information can be helpful for

efficient data retrieval, data integration, query formulation, etc.

The schema represents the structural description of documents stored in the database.

Schema extraction is the primary challenge in NoSQL database management and is re-

ferred to as the process of extracting the implicit structural description of a JSON doc-

ument. Schema extraction has already been addressed in the context of various data

formats, such as XML (Mlỳnková 2008) and Resource Description Framework (RDF)

data (Kellou-Menouer et al. 2021). Although XML and JSON share similar properties

like tree-shaped data format, self-describing nature, etc., the vital differences in Table

1.2 make the XML schema extraction approaches challenging to apply to JSON format

(Bourhis et al. 2017). For instance, the XML schemas are generated in the form of

regular expressions from XML elements. Whereas a JSON document has both ordered

(arrays) and unordered (nesting object) data, which must be represented as XML ele-

ments in order to use the XML schema extraction approaches for JSON data. While

the structures of XML elements and JSON arrays are different, XML schema extrac-

tion approaches may not always capture the complete structural information of a JSON

document. Therefore, schema extraction approaches for JSON data must preserve the

features of a JSON document, such as unordered dynamic data, different nesting levels,

arrays, and its deterministic nature.

JSON schemas are useful for data organization, indexing, integration, query for-

mulation, optimization, big data analytics, etc. Therefore, researchers have started to

pay attention to schema extraction approaches that facilitate schema generation in the

absence of an explicit one. The existing literature on JSON schema extraction has fo-

cussed primarily on extracting schemas in three different forms:

1. Extraction of Global Schema: Global schema is constructed by taking the union

or intersection of JSON attributes present in a collection. However, the global

schema may miss prominent attribute information, such as capturing different

data types for the same attribute. The loss of such information causes incorrect

results for user queries. Hence, the global schema is less informative to appli-
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1. Introduction

cation developers and users to analyze the implicit structure of data (Gallinucci

et al. 2019).

2. Extraction of Reduced Schema: While the data type of JSON attributes changes

the structure conceptually, the reduced schema is derived by fusing the objects

based on equivalent data types (Baazizi et al. 2019).

3. Extraction of Schema Variants: Schema variants represent the distinct schemas

of JSON collections. The schema variants summarize the co-occurrence of the

attributes present in each document that promote data management tasks like data

integration, data migration, etc. (D and Santhi Thilagam 2022).

Some of the challenges that are encountered while extracting schemas from JSON

collection are highlighted below:

• JSON documents are generated from unknown sources with no detailed infor-

mation about the data. This is crucial for the data analyst to search for schema

information either in the underlying application code or in the data itself (Klettke

et al. 2016).

• A JSON document contains both ordered (array) and unordered (nesting object)

data, which introduces high structural heterogeneity in a collection.

• A document contains the same attribute corresponding to more than one data type

(Habib et al. 2019).

• Schemas of the same entity in a collection might also vary due to data evolution

(Sevilla Ruiz et al. 2015).

• Using simple solutions such as intersection or union of all schemas does not work

well in practice (Wang et al. 2015).

• There is no unique generic algorithm for JSON schema extraction, which is

crucial for researchers to select an appropriate algorithm based on the type of

schemas they discover.
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Due to these challenges, developing a generic schema extraction approach for JSON

documents is difficult. Hence, JSON schema extraction approaches must be formulated

for each application based on the type of schemas to be extracted while preserving the

features of the JSON format.

1.3 APPLICATIONS OF JSON SCHEMA EXTRACTION

This section discusses the different uses of JSON schema extraction.

1. Data Exploration: Data exploration is an important application for JSON doc-

uments. Due to the dynamic and heterogeneous nature of JSON documents,

database administrators, developers, and researchers are often confronted with

different schemas present in a collection about which they do not have prior

knowledge. Therefore, in order to understand what data is stored in a collection,

the schema extraction approach helps in exploring the knowledge of the implicit

schemas (Gómez et al. 2016).

2. Query Formulation: The flexibility of schema-less data models introduces

complexity in data retrieval. In order to retrieve the required information from a

collection, the user must formulate a query with the attributes that exist in the col-

lection. Therefore, the schema extraction approach has the scope to fulfill the user

requirements to formulate a query. Most NoSQL document stores, such as Mon-

goDB (mongodb schema 2019), Couchbase (Couch Spark Connector 2019),

etc., have adopted this method to ease query processing. For instance, in Mon-

goDB, the schema is represented as a Binary Javascript Object Notation (BSON)

document that follows the hierarchical structure like a BSON object. In order

to build user-defined indexes, the users must have knowledge about the implicit

schema of a collection, which will help them to write the path of an attribute when

writing a query (Zhang et al. 2019). In the absence of schema information, query

preprocessing and reformulation techniques are needed to retrieve the relevant re-

sults for a user query (Tekli et al. 2019). These techniques are computationally

extensive due to the dynamic and heterogeneous nature of JSON documents.

9



1. Introduction

3. Query Optimization: In general, the query engine uses different schemas for

query planning and optimization. The queries are divided into sub-queries, and

the query optimizer uses the sub-queries to create an optimized query execution

plan (Quilitz and Leser 2008). As JSON collection has different schemas, the

co-occurrence of attributes in each schema assists in writing the optimized query

execution plan.

4. Distributed Query Decomposition: As NoSQL databases are designed for large-

scale data storage in a distributed environment, the documents in a collection

are stored on different servers. To support efficient retrieval of this data, the

queries must be distributed to the servers to fetch the relevant data with less query

processing time. For instance, in the MongoDB distributed environment (mon-

godb schema 2019), the documents are distributed to the shards based on shard

keys and partitioning methods. Config Server maintains the metadata information

about each shard, which helps the mongos (query router) direct the query to the

respective shards. For example, consider a query Q = {author, journal name}.

Suppose the query does not contain a shard key; then mongos broadcast the query

to all the shards and retrieve the results. Broadcasting queries to all shards (broad-

cast operation) increases the query processing cost. In order to minimize the num-

ber of broadcast operations, instead of sending the query to every shard, the query

can be decomposed into sub-queries in such a way that the query attributes can be

sent only to the specific shards containing the query attributes instead of directing

them to all the shards (Quilitz and Leser 2008). To accomplish this task, it is re-

quired to know what data is stored in each shard, the different schemas followed

in each shard, and so on.

5. Data Integration: Data integration is a long-standing research area in database

management. It is crucial when the data needs to be integrated from different

sources. For instance, the tourism management system needs to integrate data

about hotels, tourist places, and so on. However, JSON data is generated from

different sources with different schemas. In order to build a complete application,

the varied structured data must be integrated. This integration provides a global
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1.3. Applications of JSON Schema Extraction

virtual schema for all the data sources so that the database can be accessed in a

unified way (Amghar et al. 2019; Curé et al. 2011).

6. Big Data Analytics: Data lakes are the large-scale central repository for storing

relational and non-relational data. A lack of knowledge about the structure and

semantics of data stored in a data lake would facilitate inefficient data access. In

order to address this issue, data scientists and business analytics use various ma-

chine learning and data discovery techniques to extract the knowledge from data

stored in a data lake (Klettke et al. 2017). In this direction, schema extraction

helps in understanding the underlying data so that efficient data access can be

performed.

7. Data Organization: To improve the scalability of a database management sys-

tem, the documents are distributed horizontally across the cluster in a distributed

environment (Couch Spark Connector 2019; mongodb schema 2019). The com-

mon way to partition the data into shards is traversal-based partitioning for graph

databases and a key range or key hash strategy for other data models. However,

these partitioning strategies encounter an issue related to user query latency. i.e.,

the number of requests to many partitions for a user query is high. A possible

solution is to group the similar JSON documents based on structural or semantic

similarity of schemas and store each group in each shard (Priya and Thilagam

2022). This kind of partitioning method helps reduce query latency by forward-

ing the query requests to the specific shards rather than all the shards. Therefore,

knowing the implicit schemas of each shard reduces the query latency effectively.

8. Data Indexing: In general, index structures help in improving the performance

of data retrieval. Schema extraction methods help the user to know the different

attributes that exist in a collection. While designing the application, this schema

information helps the user to create an index on primary attributes, such as com-

mon and schema-specific attributes present in the documents, that improve the

overall data retrieval performance (Liu et al. 2014).
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1.4 MOTIVATION

Most NoSQL systems are based on a distributed architecture, where the document col-

lection is partitioned intelligently across the instances in the cluster. Even though most

schema-less NoSQL stores provide flexibility when importing data, formulating rele-

vant queries requires full knowledge of the underlying document schemas that promote

efficient query processing. In this direction, major NoSQL document stores such as

CouchBase (Couch Spark Connector 2019), MongoDB (mongodb schema 2019),

and third-party tools such as variety.js (2019), Elastic Search (2019), Apache Drill

(2019), etc. have already employed some notion of schema extraction mechanisms

to understand the underlying structures. In addition, researchers extract various forms

of schemas from the JSON collection, such as global schemas (Chouder et al. 2017;

Frozza et al. 2018; Klettke et al. 2015; Wang et al. 2015), and reduced schemas

(Baazizi et al. 2017, 2019). These approaches provide the summarization of attributes

in a collection that would fail to assist various tasks such as efficient query process-

ing, data integration, better data organization, etc. Therefore, there is a need for an

approach capable of identifying schema variants in JSON collections to summarize the

co-occurrence of the attributes that promote the aforementioned data management tasks

effectively.

Despite the schema variants in a collection, the ability to provide fast and flexible

access to data is a crucial problem in the database management system. Although the

data is organized in a systematic way, scanning the whole dataset for each access is ex-

pensive. Index structures play a major role in speeding up the search process. The most

widely used indexing structure for keyword-based queries is the Inverted Index (Hsu

and Liao 2020), which keeps a map of an attribute and its value list. The literature

on existing indexing schemes in related fields, such as XML, uses labeling schemes to

index documents by preserving the structural relationships of XML documents. Con-

sequently, the content index includes the content list for every node in the path index,

which continues to suffer from a large index size, resulting in increased query process-

ing time (Dhanalekshmi and Asawa 2018; Hsu and Liao 2020). Only very few studies

exist for JSON documents to provide memory-efficient index structures by storing the
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keys, values, and long strings in different indexes (Shang et al. 2021). Nevertheless, the

huge posting list size for every JSON attribute still increases the storage space. There-

fore, there is a need to improve the performance of JSON data retrieval by considering

the index storage space and query processing time. Hence, this work proposes compact

index structures using extracted schema variants that open up opportunities to address

the above-discussed issues effectively.

JSON documents are not only structurally heterogeneous but also semantically het-

erogeneous. However, existing research on indexing JSON documents focuses on pro-

viding the exact matches for the given query (Budiu et al. 2014; Shang et al. 2021;

Shukla et al. 2015). The major challenge in a traditional information retrieval system

is a vocabulary-mismatch problem, which occurs when documents relating to a par-

ticular query are not retrieved because different terms are used to represent the same

attribute. To address this issue, extant research in XML data provides semantic sup-

port on indexes by various methods, such as query rewriting, post-processing query

results by re-ranking, etc. (Tekli et al. 2019). However, these additional processes

further increase the complexity of data retrieval. In this work, we focus on processing

JSON path-based queries efficiently by considering the semantic relationships of JSON

schemas. However, the standard semantic measures of words using traditional knowl-

edge bases like WordNet (Miller 1995) are not efficient in revealing the context of the

query keyword. Therefore, in this work, we use the neural embedding-based index to

facilitate context-based semantic search.

As JSON documents evolve and change over time, the implicit schemas must be

extracted and updated in the database to support dynamic data retrieval. Most existing

approaches focus on maintaining the history of schema versions in data lakes (Klettke

et al. 2017, 2016; Scherzinger et al. 2013). In order to provide the latest documents

to user queries, there is a need to update the schema variants. Therefore, this work

proposes an approach to handle the dynamic data by updating the schema variants and

indexes effectively.

In summary, this work is primarily concerned with schema variant extraction from

JSON document collections and constructing compact index structures to support effi-
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cient data retrieval. Our motivation for conducting this research is threefold:

1. As the JSON attributes are annotated differently in the collection, there is a need

to organize a large JSON collection based on the contextual similarity of JSON

schemas. The exact schema variants in each cluster must be identified to support

the efficient retrieval of data.

2. There is a need to construct compact and efficient index structures for JSON

collection. The indexes must support both lexical and semantic matching of path

queries, related to which no study has been conducted until now.

3. There is a need to update the schema variants and indexes incrementally to handle

the dynamic JSON data.

1.5 ORGANIZATION OF THE THESIS

The rest of the thesis is structured as given below:

• Chapter 2 provides a taxonomy of JSON schema extraction approaches and a

detailed survey of existing research work that deals with the schema extraction

approaches and tools for NoSQL data models. The related works of JSON and

XML indexing techniques are also provided. Furthermore, the chapter provides a

list of research challenges in JSON schema extraction.

• Chapter 3 describes the research problem and objectives of the thesis.

• Chapter 4 describes how the schema variants are extracted and summarized in the

proposed data structure. The chapter also provides the experimental evaluation of

our approach in terms of efficiency and effectiveness.

• Chapter 5 discusses how the schema variants are used to construct compact in-

dex structures for JSON documents. The chapter also discusses how the proposed

scheme exploits the lexical and contextual relationship of queries with JSON doc-

uments for efficient data retrieval. Lastly, the experimental results of our proposed

work are analyzed.
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• Chapter 6 discusses how the schema variants and the index structures can be

updated incrementally to support the dynamic nature of JSON documents. The

performance of the proposed work is presented along with the necessary analysis

and discussion.

• Chapter 7 summarizes the research work presented in this thesis and provides

some insights into future work.
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CHAPTER 2

LITERATURE REVIEW

The majority of the literature related to schema extraction on semi-structured data is

concerned with XML and RDF data. This is due to the fact that they were the popular

data interchange format over web applications. Recently, JSON has been used as the

de facto format for data exchange in almost all web applications. JSON data format

started gaining public attention only in the past decade. In fact, the first mention of

schema extraction on JSON data only appeared in literature in 2013 (Cánovas Izquierdo

and Cabot 2013). Since then, few research works have attempted to understand and

propose different approaches to infer the schema.

The flexibility of the schema-less nature of NoSQL Databases ends up with major

challenges in querying the data stored. Even though the document stores, such as Mon-

goDB, CouchDB, Terrastore, etc., do not follow the fixed schema to store the data, they

require a knowledge of the underlying structures for retrieval of data. Since XML and

JSON allow one to represent tree-shaped data, this chapter includes the recent related

works of schema extraction and indexing methods of XML and JSON data formats.

The first section presents the schema extraction approaches for XML data. The sec-

ond section discusses the methods and tools for JSON schema extraction and presents

the research challenges associated with schema extraction. The third section presents a

brief review of the significant research works on structural indexing of XML and JSON

data with strong attention to structure-based and structure and content-based queries.
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2.1 XML SCHEMA EXTRACTION

The problem of schema extraction from a given schema-less data has been studied for

a decade, mainly for XML and JSON data formats. Even though XML and JSON are

two distinct data formats, both of them can be described as hierarchical semi-structured

data formats at a high level. This section describes the recent related works of schema

extraction on XML data formats.

Almost all the research works on XML schema extraction rely on two popular meth-

ods, such as the heuristics approach and grammar inference. The research works on

these methods can be differentiated by way of constructing a result and its type. In a

heuristics approach, the result does not belong to any class of grammar. In grammar

inference methods, the result belongs to a particular class of language with specific

features. The early efforts on schema extraction from XML documents uses the above

methods to learn the restricted classes of regular expressions as content models of the

Document Type Definition (DTD) or XML-Schema Definition (XSD) (Abelló et al.

2018; Bex et al. 2006; Li et al. 2019, 2018; Mlýnková and Nečaský 2009; Wang

and Chen 2019). For unordered content models (Ciucanu and Staworko 2013; Maatuk

et al. 2015), it is required to generate all the possible combinations of dependencies

among elements, resulting in an exponential number of candidate solutions. Each com-

bination of elements in a collection can define an unexpected solution, which should

be identified and verified for its existence in the class hierarchy. Thus, the process is

expensive concerning performance and processing.

Table 2.1 shows the summary of the recent works on XML schema extraction.

Zhang et al. (2018) proposed Generalized CHAin Regular Expression with Interleaving

(GenICHARE) algorithm to analyze the conciseness of regular expressions and infer

the schema from unordered XML documents. However, this algorithm works for a sin-

gle occurrence of elements in a document. Only the work proposed by Abelló et al.

(2018) generated DTD for unordered XML elements considering the name and type of

an element. However, the element with a different parent in the same or different doc-

ument is not considered. Conversely, this feature is the primary cause of heterogeneity.

Janga and Davis (2019) proposed a grammar-based approach to generate both schema
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2.1. XML Schema Extraction

Table 2.1: A comparison of existing research works on XML schema extraction meth-
ods

Research Article Ordered/
Un-

ordered

Schema-
match

Outcome Compatibility to
JSON format

Ciucanu and Sta-
worko (2013)

Unordered name Global
Schema

Learning restricted classes
of regular expressions from
XML elements is
challenging to apply to
JSON arrays, and
preserving the deterministic
nature of JSON format is
crucial.

Maatuk et al. (2015) Ordered name, type Global
Schema

Abelló et al. (2018) Unordered name, type Global DTD
Li et al. (2018) Ordered name Regular Ex-

pressions
Zhang et al. (2018) Unordered name Regular Ex-

pressions
Janga and Davis
(2019)

Unordered name, type DTD & XSD

Li et al. (2020) Unordered name, type Regular Ex-
pressions

languages XSD and DTD. Unlike other existing works focussed on schema extraction

on XML homogeneous collections, Janga and Davis (2019) supports schema extraction

on heterogeneous XML collections. Li et al. (2020) inferred k-occurrence interleaving

regular expressions (k-OIREs) by supporting interactive schema design and recommen-

dation. k-OIREs are extracted from both positive and negative samples of XML data.

To support efficient schema design, the author has used word embedding models that

capture the semantics of the context and helps in predicting the XML elements while

designing the schema.

It is noted from Table 2.1 that most existing works focused on extracting schemas

from unordered data. Although it is equivalent to the unordered nature of JSON docu-

ments, XML and JSON formats have vital differences. As seen in Table 1.2, (i) JSON

document consists of arrays data type which is not present in XML format (ii) the value

of any XML element is of primitive types such as string, number, etc. However, the

value of a JSON attribute could be another JSON object or array. While the XML

schema extraction methods typically learn the schemas as restricted classes of regular
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2.2. JSON Schema Extraction

expressions, the complex data structures such as arrays in JSON format introduce com-

plexity in learning the regular expressions. Therefore, it is concluded that the schema

extraction methods of XML format are difficult to apply to JSON.

2.2 JSON SCHEMA EXTRACTION

In the past decade, many approaches and tools have been developed for schema extrac-

tion in different application scenarios. Therefore, there is an increasing demand for a

systematic review of the work done in the field of schema extraction on JSON data. This

section presents a taxonomy of the schema extraction approaches and tools available for

JSON data.

2.2.1 Approaches

With the popularity of JSON in web and real-time applications, JSON not only acts as

the primary format to store and manage data in document stores but also the canonical

data representation for other NoSQL databases, such as wide column stores, key-value

stores, and graph databases. Therefore, the various approaches that have been used for

schema extraction can be categorized into two groups:

1. Schema extraction from document stores: It describes schema extraction from

JSON documents stored in document stores. Based on the nature of the output,

schema extraction approaches can be classified into two classes:

• Global schema extraction

• Schema variants extraction

2. Schema extraction using schema mapping: It discusses the approaches that gen-

erate JSON Schema from NoSQL databases other than document stores, such

as columnar databases, relational databases, and so on. The schemas generated

from these databases are transformed into JSON schemas using schema mapping

techniques.

The taxonomy of the schema extraction approaches and tools is presented in Figure 2.1.
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2. Literature Review

A summary and comparison of the schema extraction approaches for generating

global schema and schema variants are presented in Tables 2.2 and 2.3. The survey

tables are constructed based on the features of the existing approaches, such as their

ability to handle arrays, JSON object representation, methodologies used, and so on.

• Arrays: A key characteristic of JSON data types is arrays. An array is a complex

data type and is an ordered set of primitive or complex data types. Arrays of ob-

jects and arrays of arrays contribute to high schema heterogeneity and introduce

complexity in schema design.

• Schema-match measure: In general, a JSON document collection comprises

different schemas. In order to identify the uniqueness of the two schemas, the

attribute name, types, and values are compared. The schemas are merged based

on the attribute information.

• Data Representation: Extracting the structure information and analyzing them

to generate global schema or schema variants requires the data must be repre-

sented in some form. In this context, JSON documents could be considered as

a naive key-value pair, the root-to-leaf path of attributes, meta models, trees,

graphs, vectors, and so on.

• Clustering/Classification: In order to analyze the different properties of JSON

attributes that contribute to schema heterogeneity, clustering algorithms or clas-

sification techniques were used by some existing works.

• Approach: To explore the underlying structure of JSON documents, existing

research works have used several approaches such as Model Driven Engineering

(MDE), probabilistic approaches, hierarchical summarization of schemas, map-

reduce based approach, and so on.

• Output: Although JSON Schema1 is a specification to define the structure of

JSON documents, various approaches have defined their output in different forms

such as skeleton schema, r-schema, c-schema, schema variants, and so on. This
1http://json-schema.org/
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2.2. JSON Schema Extraction

is due to the fact that the JSON data format does not have a formal data model,

and few researchers have laid the formal foundation for the JSON Schema and

the query languages (Baazizi, Mohamed-Amine and Colazzo, Dario and Ghelli,

Giorgio and Sartiani, Carlo 2019; Bourhis et al. 2017) recently.

2.2.1.1 Global Schema Extraction

Global schema generates a single schema for a document collection that is adequate

to describe the structure of attributes present in a collection. The global schema is

constructed by merging multiple individual schemas into a single schema using schema

integration techniques. Table 2.2 provides a review of the existing research works by

considering specific features of JSON data such as arrays and schema-match measures.

Cánovas Izquierdo and Cabot (2013) proposed the unified meta-model for the JSON

objects generated by the same or different Application Programming Interface (API)

services. The model generates a global schema by taking the union of attributes from

each service. Wang et al. (2015) proposed a concept of skeleton that clusters similar

schemas and generates a summarized representation of heterogeneous schemas. How-

ever, a skeleton is constructed based on the frequency of attributes, and hence skeleton

may lack certain attributes that are included in some documents but are not considered

in skeleton construction. In addition, the path information of the attributes may not be

captured by the skeleton and the cost of skeleton construction is high. Klettke et al.

(2015) aims at measuring the heterogeneity of schema in a collection. Two graph struc-

tures are proposed to model the union of all attributes in JSON object collection. Baazizi

et al. (2017) determined the structural irregularities of the JSON data and produced the

global schema as a result. Chouder et al. (2017) find the multi-dimensional structures by

mining the approximate functional dependencies of data. Spoth et al. (2018) focussed

on visualizing the schema summary as data guides to the user, and the schema can be

further refined based on user feedback. This is different from his previous approach in

providing a summary of a schema collection rather than multiple schemas and considers

the attribute values as objects, including arrays.

There are many research works (Baazizi et al. 2019; Gallinucci et al. 2018, 2019;
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2.2. JSON Schema Extraction

Sevilla Ruiz et al. 2015) considered the type of values to find the similarity between

schemas. An enhanced work by Baazizi et al. (2019) goes a step further by inferring

the schema for a massive collection along with type equivalence. The author uses two

equivalence relations to fuse the objects based on the name and type of the JSON fields

and generate the reduced schema such as kind equivalence, and label equivalence. Kind

equivalence fuses types if two field values are objects or basic types or arrays. Label

equivalence combines types only if the set of keys is the same. Though the approach is

flexible and parallelizable, it is still restrictive. However, equivalence relations provide

reduced schemas rather than an informative schema.

DiScala and Abadi (2016) addressed the issue of automatically converting the de-

normalized JSON documents into normalized relational data using the schema gener-

ation algorithm. The algorithm uses functional dependencies of attributes and learns

the normalized relational schema from the JSON documents suitable for storing in rela-

tional databases. Frozza et al. (2018) generated schema for JSON and extended JSON

documents. The authors have proposed a hierarchical structure for summarizing the

schema. While other existing approaches generate global schema by considering the

properties of JSON data format, Spoth et al. (2021) proposed a schema discovery system

called JXPLAIN, which generates a tight and descriptive schema by reducing the am-

biguity in schema discovery. Given a collection of documents with N types, the author

merged these types into a new schema definition that closely approximates the ground

truth schema. In order to analyze the JSON documents in a better way, NAMBA (2021)

focussed on semantic information of metadata in terms of static and dynamic keys. The

static keys are common attributes present in a collection, and dynamic keys represent

that the structure of keys is not dynamically changing (not unique). The author has used

a predefined word embedding model to predict the classes of keys. However, the impact

of static and dynamic keys in schema discovery is not discussed. While other existing

approaches focus on inferring the schema from JSON data format, Koupil et al. (2022)

proposed MM-Infer, which has inferred schema from multi-models such as structured

vs. semi-structured, order-preserving vs. order-ignoring, and so on. The schemas from

each model are extracted and then merged locally using Apache Spark.
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2. Literature Review

All the current works finally generate a canonical/global schema from a candidate

set of schemas. Some research works took the union of attributes and generated a

global schema. In contrast, some research works focus on reducing the type of an at-

tribute and generating a reduced global schema. Even though extant literature focuses

on generating a single schema for a collection, the global schema fails to provide the

co-occurrence of attributes present in a specific document. This analysis is needed for

applications such as data integration, query optimization, distributed query formulation,

etc.

Application-based Comparison: Data Exploration, Query Formulation: Data explo-

ration is a preliminary step for a data analyst to understand what data is stored and its

characteristics, such as data completeness, relationships between data, and so on. In

order to understand what data is stored, the primary step is to understand the implicit

schemas of data which gives the structural description of a collection. To accomplish

this, almost all the approaches have given a path for data exploration and query formu-

lation in different ways.

2.2.1.2 Schema Variants Extraction

Global schema summarizes the structure of attributes present in a collection. However,

for applications such as data integration, decomposing and optimizing queries in dis-

tributed databases, data analysis, etc., requires to know the different schemas present

in a collection. We refer to this feature as schema variants. However, researchers have

used different terms such as versioned schema (Sevilla Ruiz et al. 2015), personalized

schema (Spoth et al. 2017), and so on. To define these terms uniquely in a taxonomy

(ref. Figure 2.1), in this work, schema variants is referred to as more than one schema

in a collection.

Sevilla Ruiz et al. (2015) discovered schema versions available in a collection. Nev-

ertheless, the internal structure of arrays is not described. The different approach by

Spoth et al. (2017) proposed schema on query using the probabilistic method. The

generated schema is shown to the user and can be modified based on user feedback.

Hence, the resulting output is a personalized schema. Gallinucci et al. (2018) find
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2.2. JSON Schema Extraction

the variants of the schema using association rules. Unlike previous methods, the hid-

den rules based on value and schema are captured to determine the schema variants

in a collection. However, in the case of massive heterogeneous data where the values

cannot be predicted, accessing the value from every document increases complexity.

Gallinucci et al. (2019), an extended version of Gallinucci et al. (2018), proposed a de-

cision tree-based Build Schema Profile (BSP) that captures the schema variants present

in a collection. However, BSP does not look into the content of the arrays. Instead,

it marks the presence of the array. Klettke et al. (2017) focussed on extracting the

schema versions by capturing the structural changes over time. To reduce the ambi-

guity of schema versions, the schema evolution history is maintained by mapping the

schema versions. Bawakid (2019) identified unique schemas by applying a clustering

algorithm to the inferred attributes. The author has employed Term Frequency-Inverse

Document Frequency (TF-IDF) vectors to identify similar attributes, with the goal of

discovering unique schemas. Schema extraction plays a key role in OnLine Analytical

Processing (OLAP) applications as well. Modern ideas for polyglot systems consist

mostly of multi-stores and polystores, depending on whether they provide a single or

several interfaces for cross-database management system querying. To support better

query processing on multi-stores, schema heterogeneity must be taken into account to

get consistent results. Forresi et al. (2021) extracted the exact schemas available in the

collection for efficient retrieval of documents from multi-stores. D and Santhi Thilagam

(2022) used a distributed formal concept analysis algorithm to identify the exact schema

variants from large JSON document collections.

Application-based Comparison: Query Optimization, Distributed query decomposition,

Data organization, Big Data Analytics: These applications rely on entities and their

variants in a schema. The approach by Sevilla Ruiz et al. (2015) is most suitable for

these applications because the approach discovered different entity versions of each en-

tity in a collection. However, the approach has an assumption that entity information

is embedded in the data source. As per Table 2.4, no such dataset provides such useful

schema-related information in the JSON datasets. Therefore, it will be interesting, and

more precise schemas can be extracted if entity information is embedded automatically
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2.2. JSON Schema Extraction

in the data source. In addition, Gallinucci et al. (2018, 2019) generated a schema profile

by capturing the hidden rules that describe each schema. A schema profile reflects the

probability for a schema to describe an instance of a class. D and Santhi Thilagam

(2022) describes the exact schema variants available in a collection that captures the

attribute co-occurrence in each schema variant. This information helps in the efficient

data organization and indexing of large document collection.

2.2.1.3 Schema Extraction using Schema Mapping

The increasing popularity of JSON data formats has attracted attention in storing and

processing them in relational databases, graph databases, OLAP applications, and so

on. Mapping non-JSON schemas to JSON Schemas and vice versa allows conventional

business applications and query optimization techniques to be applied to JSON datasets.

In general, the database transactions are validated in transactional relational sys-

tems based on the Atomicity, Coherence, Isolation, and Durability (ACID) properties

of relational databases. With the advancement of NoSQL databases in almost all web

applications, Irshad et al. (2019) proposed a hybrid solution for this issue by com-

bining the properties of relational and NoSQL database systems. The JSON schemas

are extracted, split, and stored in relational databases using the mapping algorithm.

Aftab et al. (2020) presented and assessed an effective Extract, Transform, Load (ETL)

method to migrate NoSQL to relational databases automatically that dynamically maps

schema from NoSQL to relational schema. variety.js (2019) tool was used to extract the

schema from the NoSQL database, and the ETL process was invoked to transform the

schema that meets the needs of the relational databases.

While existing approaches used the primitive and complex data types of JSON doc-

uments for schema extraction, Frozza and Mello (2020) proposed JS4Geo (an exten-

sion of JSON Schema) that allows the definition of schemas for geographic data in

well-known geographic data formats such as Keyhole Markup Language (KML), and

Geography Markup Language (GML). The proposed work extracts the JS4Geo schema

from each source and further generates a JS4Geo global schema using schema inte-

gration techniques. Different from existing works that focussed on schema extraction
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of JSON data stored in web applications and NoSQL Document Stores, Frozza et al.

(2020b) generates a JSON schema from NoSQL graph models. The input is a graph

where the edges between the vertices represent the relationship of attributes. The ver-

tices are extracted and grouped based on the labels. Based on the vertices and edges of

each group, different JSON schemas are generated instead of a single schema.

Apart from NoSQL graph models, Frozza et al. (2020a) has explored the implicit

structure of data in columnar databases as well. Columnar databases stores data in

columns. The column data types are defined by the applications. Therefore, in or-

der to infer the data types from each table, Frozza et al. (2020a) has proposed an

HBase Schema Inference (HBaSI) process that analyses the hierarchical structure of

the database. HBase stores data as byte arrays. HBase namespace is given as input

for HBaSI, and JSON Schema is generated as output. The formal definitions and the

canonical representation of the prototype developed by Frozza et al. (2020a) have been

included in their extended version (Frozza et al. 2021).

Even though several works use some mapping techniques to generate JSON schema,

they do not consider the important features of JSON documents, such as nesting depth

and arrays. This is because data models other than document stores were designed for

a specific purpose that may not meet the requirements of the JSON format.

2.2.2 Tools

Recent research efforts have focused on JSON schema inference in NoSQL systems.

There are some tools and solutions available for schema extraction, such as mongodb-

schema (mongodb schema 2019), schema.js (2019), variety.js (2019), Elastic Search

(2019), Apache Drill (2019), and Couch Spark Connector (2019) to perform schema

detection on NoSQL databases.

MongoDB-schema (mongodb schema 2019), a JavaScript library for JSON data

format, infers a probabilistic global schema for the document collection, which is sim-

ilar to the approach used by Klettke et al. (2015). Global schema is constructed by

the union of all distinct schemas present in a collection. If the same attribute A ap-

pears in many schemas with different types, then the union of the data types is taken
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to differentiate the structure of an attribute. This union type defines the type field of

MongoDB-schema. Count attribute represents the number of documents containing the

attribute A and probability represents the probability of the attribute A in the document.

The schema in Elastic Search (2019) is a mapping technique that outlines the fields of

JSON documents, their data type, and how they should be indexed in the underlying

Lucene indexes. To be precise, Elasticsearch extracts the underlying structure of docu-

ment collection in order to know the different attributes present in a collection. Static

mapping involves the exact structure information of attributes, while dynamic mapping

predicts the datatype of a new attribute if it is not present in an index. Variety (variety.js

2019), a schema generator for MongoDB, was implemented in a JavaScript framework

called Node. Variety generates metadata about a JSON document collection that speci-

fies the structure of attributes, its data types, and the number of occurrences.

The Apache Spark Inference mechanism (Apache Spark 2019) produces a precise

global schema for a collection of documents. The schema shows the compact repre-

sentation of a set of attributes with its associated type. However, while generating the

global schema, Spark lacks the nullable property. The nullable flag for every attribute

in a document is always set to true. Suppose two documents have the same set of at-

tributes in an array differed in null type, irrespective of the different structure, Spark

always shows as string type, which makes the structure as same in those documents.

However, the structure is different due to the presence of the null type. Besides, Spark

raises an error called a corrupted record. Hence, Spark fails to represent structural

heterogeneity, especially in the case of arrays.

Couch Spark Connector (2019) proposed a schema inference module for query for-

mulation for a user. Couchbase infers schemas from each document and identifies the

distinct schemas present in a collection. The distinct schemas are stored in a hashtable

and will be displayed to the user to formulate queries. If two schemas have the same

set of attributes with the same data types, they are unique. Hence, schema inference in

Couchbase is used for searching the documents. Profiling JSON data helps in optimiz-

ing the queries effectively with the help of metadata statistics like cardinalities. Apache

Drill (2019) infers schemas dynamically and uses them during query planning and ex-
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ecution. Möller et al. (2021) proposed JHound, which provides the empirical study

JSON files. JHound explores the JSON document collections and understands the reg-

ularity, nesting depth, data types, and completeness of the data. JHound has been tested

on real-life datasets and analyzed the metadata with schema evolution.

Even though several tools have been developed for the schema extraction of JSON

documents, they collect the union of the attributes and derive a unique schema. De-

spite the advantages of the mentioned tools, they are generally used for validating the

software.

2.2.3 Evaluation Strategy

This section explains how experiments with state-of-the-art approaches were conducted

and how their findings were analyzed and verified.

2.2.3.1 Datasets

An abundance of JSON datasets is available for schema extraction. Table 2.4 describes

the characteristics of JSON datasets used in recent research works. Several inferences

can be drawn from the data in Table 2.4 as follows:

• The complex structures in JSON format are arrays and nesting depth. It is ob-

served from Table 2.4 that all the datasets support attributes of primitive data

types. While some datasets include an array of primitive data types, they lack

in addressing the array of objects and array of array types. However, datasets

supporting these two types are suitable for the approaches that measure schema

heterogeneity. For instance, applications such as data integration and query opti-

mization require knowing the schema variants available in a collection.

• Most datasets do not support data type heterogeneity of attributes. i.e., an at-

tribute named author with string type in one document can be present as array

in another document. Therefore, attribute heterogeneity plays a key role in mea-

suring the efficiency of the schema extraction approaches. Baazizi et al. (2019)

have determined the data type heterogeneity and generated a reduced schema.

Reduced schema summarizes the attributes supporting different types.
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• The most important feature of the schema extraction process in any data format is

to capture the schema heterogeneity in nested objects. Approaches to identify the

different schemas from datasets of nesting depth 2 give very good results. How-

ever, the unordered heterogenous property present in nested objects showcases

the real complexity of the approach. Few schema extraction approaches (Baazizi

et al. 2019; Chouder et al. 2019; Wang et al. 2015) performed an evaluation

with datasets of more than two nesting depths and improved their performance.

• It is noted from Table 2.4 that few JSON datasets have flattened attributes, i.e., the

attributes with nested objects and arrays are flattened by concatenating the parent

and child attribute nodes of a JSON tree. The flattening process at the dataset

level may help to identify the unique attributes in a JSON collection. However,

the efficiency of the approach in handling nesting depth and arrays cannot be

measured. Therefore, flattening the nesting objects and arrays at the data parsing

level illustrates the complexity of the approach in handling all the characteristics

of the JSON dataset.

• Although there is a large number of schema extraction approaches available in

literature, very few research works have used the same datasets for evaluation. For

instance, Klettke et al. (2015) and Frozza et al. (2018) have used datasets from

Movie, Company, and Drugs scenarios and compared the number of schemas

discovered by each approach. Similarly, Baazizi et al. (2019) and Chouder et al.

(2019) have used GitHub, Twitter, Wikidata, and NYTimes datasets. However,

the results of these approaches were not compared to evaluate them due to their

different output. Consequently, the results after comparing the approaches for the

same datasets are meaningful and complete.

2.2.3.2 Evaluation Measures

Multiple measures have been adopted to evaluate the schema extraction approaches. As

JSON documents are application-specific, existing approaches use various evaluation

measures to determine the performance of their approaches. Table 2.5 shows the sum-

mary of evaluation measures used in the literature, which eventually helps the readers
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to decide on the performance evaluation methods in different aspects. Table 2.5 offers

various insights as follows:

• Extant approaches have calculated the execution time of the schema extraction

process, which is the basic metric in this field. However, many approaches have

not compared their execution time with other approaches.

• Although most approaches have evaluated their approaches with real datasets, it

is observed from Table 2.5 that very few approaches have compared their results

with other existing approaches in the literature. Most works compared the perfor-

mance of their approaches with the baseline approach.

• Many approaches have extracted all the schemas from a collection and then con-

structed a single global schema. Comparing the intermediate results, i.e., the

number of schemas with existing approaches, would determine the efficiency of

the parsing methods used. However, these intermediate results have not been

evaluated by most of the works cited in the literature.

• Although extant approaches designed schema extraction algorithms to support

array data type, few approaches have evaluated their algorithm using datasets that

do not contain either an array of objects or an array of arrays.

2.2.4 Challenges and Research Directions

In this thesis, we have examined many approaches and tools for schema extraction from

JSON data. Despite the wide variety of methods available in the literature, this field has

significant scope for future research. This section discusses the open issues and research

challenges in the field of JSON schema extraction.

Unlike the conventional schema extraction approaches on XML or RDF data where

the complex structures are less, JSON data is highly dependent on two complex struc-

tures, such as objects and arrays. Moreover, the presence of arrays introduces high

structural heterogeneity in a collection. This makes the schema extraction approaches

of JSON data differ from other semi-structured data formats.
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Table 2.5: Summary of evaluation measures used in existing research works

Research Article Output
Format

Type of
Dataset

Dataset
with

Arrays ?

Experimental
Measure

Comparison
with

alternative
solutions

Cánovas Izquierdo
and Cabot (2013)

Class - - - -

Sevilla Ruiz et al.
(2015)

Versioned
Schemas - - - -

Wang et al. (2015) - Real ✓ Effectiveness Baseline

Klettke et al. (2015) JSON Real ×

Execution
time, Schema
& Attribute
Existence

Baseline

Gallinucci et al.
(2018)

Tree Real &
Synthetic ×

Precision,
Conciseness,
and Expres-
siveness

Baseline

Baazizi et al. (2017) JSON Real ✓

Effectiveness,
Execution
Time,
Scalability

-

Gallinucci et al.
(2019)

Tree Real &
Synthetic × Effectiveness

& Efficiency Baseline

Baazizi et al. (2019) JSON Real ✓
Efficiency,
Succinctness,
Precision

Baseline

Chouder et al. (2019) md-
schema Real × Querying ×

Frozza et al. (2018) ROrd
(Schemas) Real ×

Number of
Schemas,
Execution
Time

Wang et al.
(2015)

D and Santhi Thi-
lagam (2022)

Schema
Variants Real ✓

Number of
Schemas,
Execution
Time

Gallinucci
et al. (2019)

Similar to the traditional schema extraction problem, schema extraction from JSON

documents is also highly application-specific. The majority of the approaches were de-

veloped by keeping a set of requirements and constraints in mind. Hence, a quantitative

comparison among the approaches is difficult in practice as they generate schemas in

different forms. Furthermore, considering the different approaches presented, decid-
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ing a particular algorithm for schema extraction is challenging because the algorithm

depends on the type of data model being examined and the type of schema (global or

schema variants or relational schema) expected.

The JSON schema extraction encounters the following research challenges and re-

search gaps specific to JSON data:

• Computational Complexity: In this big data era, the dynamic nature and mas-

sive size of data generated pose challenges for the schema extraction approach to

extract precise and concise schemas. In particular, to capture the array structure,

the extraction algorithms have to parse the complete nesting depth of arrays (ar-

ray of objects and array of arrays), causing the computational complexity of the

extraction algorithms to be high. Consequently, it is challenging to develop an

efficient and scalable method for schema extraction from massive JSON datasets.

Few existing works (Baazizi et al. 2019) have addressed this issue using Apache

Spark. However, they focus on generating a single schema for a collection. Iden-

tifying the schema variants supports various data management tasks effectively.

Developing a computationally efficient method for schema extraction is a promis-

ing research direction in this area.

• Dynamic Schema Extraction: The dynamically generated JSON documents

can be stored in two ways: (i) inserting new documents with new schema vari-

ants, which can also be referred to as schema versions, usually maintained in a

data lake, and (ii) modifying the old schema variants by updating the documents

already stored in the collection. Even though there are existing works in sup-

porting schema evolution updates (Klettke et al. 2017, 2016; Scherzinger et al.

2013), we observe that the research work related to the dynamic schema extrac-

tion method for modifying the existing schema variants is still in its infancy. Data

management tasks such as data indexing, data organization, and so on require the

latest documents to be updated to support relevant data retrieval. Therefore, apart

from maintaining the schema evolution, the schema extraction methods should

support dynamic operations as well.
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• Benchmarking JSON Datasets: It is observed from Section 2.2.3 that although

most approaches evaluated their work with real datasets, almost all approaches

use different datasets, which could be the major reason for the lack of compari-

son with other alternative solutions. Although few datasets exist for the schema

extraction process, it is required to build benchmark datasets that support all the

characteristics of JSON data which will eventually help in identifying the features

covered by the existing approaches.

• Performance Evaluation: Due to the dearth of benchmark datasets containing

explicit ground truth values, it is generally difficult to evaluate schema extraction

approaches. In many instances, researchers are required to conduct their experi-

mental study on synthetic data by deciding the number of schemas prior or have

to investigate the different schemas using domain expertise manually. Further-

more, there is no recognized standard to evaluate schema extraction approaches

developed for JSON data.

• Semantic Schema Extraction: JSON documents not only have different schemas

based on structural similarity but also differ semantically, i.e., two schemas with

the same contextual or semantic meaning use different attributes. Semantic schema

extraction helps in grouping the semantically equivalent schemas that return rel-

evant results for user queries efficiently. Literature shows that the structural and

semantic similarity of JSON schemas is still in its early stage.

• Efficient Data Indexing: With the rapid emergence of JSON data generated and

stored in NoSQL document stores, it becomes vitally important to use indexes

for efficient data access. Existing JSON indexing techniques use full-text search

or indexing JSON attributes by extracting schema. Full-text search incurs long

query latency (Shang et al. 2021) and indexing JSON attributes suffer from

huge index sizes by storing all distinct paths of JSON document collection in an

index. Therefore, identifying the primary attributes for indexing the documents

that causes for large index size is a promising research area.

• Supporting Semantic Search: JSON documents are not only structurally hetero-
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geneous but also semantically heterogeneous, which further demands the need for

using the semantic properties of heterogeneous JSON schemas to support seman-

tic search. While traditional semantic models capture the linguistic knowledge of

data, the similarity score of queries and the terms in the documents is based on the

abstract meaning of attributes which does not capture the context of data. Dense

Retrieval (Guo et al. 2022) is a promising alternative approach that matches

query terms and schema variants in a low-dimensional embedding space and is

as efficient in finding the contextual meaning of data. While existing work fo-

cussed on dense retrieval of unstructured data (Uma Priya and Santhi Thilagam

2020), finding the contextual similarity in hierarchical data like JSON is still in

the preliminary stage.

• Schema Inference and Advanced learning techniques: Majority of the litera-

ture used traditional techniques to extract and analyze schemas. Gallinucci et al.

(2018, 2019) generated schema profile using the decision tree. Although few

approaches (Baazizi et al. 2019) have used distributed processing frameworks

to extract schemas from a large collection, combining the distributed techniques

with advanced learning methods such as machine learning and deep learning en-

hances the performance of the approaches in terms of execution time. In addition,

these techniques provide a way to analyze the large collection in an efficient way.

2.3 XML AND JSON INDEXING TECHNIQUES

The indexing techniques of XML can be applied to JSON with some enhancements

suitable for the nature of JSON data. Hence, this section discusses the related work of

XML and JSON data indexing techniques, as seen in Table 2.6, with strong attention to

structure-based and structure and content-based queries, respectively.

2.3.1 Syntactic Search

The path-based index is constructed by summarizing the paths of XML data. The early

effort in designing a path-based index is a data guide. Data guides describe the struc-

tural summary of the XML/JSON data by integrating the forest of tree-shaped schemas.

Although it was originally developed for XML (Goldman and Widom 1997), similar
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approaches have been applied to JSON data (Klettke et al. 2015; Liu and Gawlick

2015; Liu et al. 2016) as well. Qadah (2017) designed index structures for processing

containment queries on interlinked XML documents. Dhanalekshmi and Asawa (2018)

reduce the number of index entries by combining the terminal siblings at the same level

into a single path. Hsu and Liao (2020) designed UCIX, an updatable compact index

structure for XML documents using a branch map labeling scheme. UCIX adopts the

structural summary method to provide information about the XML documents. The

XML nodes are encoded based on the presence of XML elements in a document. How-

ever, the size of each index node structure is large, which increases the complexity

of a large dataset. Wellenzohn et al. (2020) proposed a dynamic interleaving scheme

that merges the path and values of an attribute in an index. Hence, the approach has

achieved robust performance for content and structure queries. However, the substruc-

ture retrieval or recursive queries can not be performed due to the distribution of path

and value bytes in an interleaved key.

In case of JSON, relational databases such as Oracle (Liu et al. 2014) and SAP

extend an RDBMS to support JSON data format. Budiu et al. (2014) has designed a

unified query language and indexing data structure for answering JPath queries. The au-

thor has modeled JSON documents as unordered labeled trees and handled the arrays of

objects by splitting them into different objects and numbering them in a sequence. The

set of the same structured JSON objects in an array is grouped to reduce the index size.

However, the array still suffers from redundant attributes if there is a mismatch in com-

paring the structure of JSON objects. Shukla et al. (2015) designed the CAS index for

Microsoft Azure’s DocumentDB. The path and value are concatenated, and the result is

stored in Bw-tree, which results in high path redundancy in index keys. These problems

are addressed by Shang et al. (2021), which is an enhancement of Shukla et al. (2015),

by storing the keys, values, and long strings in different indexes. Their index pruning

policy, on the other hand, retains index keys based on user preference, which creates

complexity in handling queries that are not present in the index. Wahyudi et al. (2019)

used the vector space model to find similar JSON documents. However, they have fo-

cussed on the contents of a small JSON collection rather than the structure of JSON
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data. Jiang et al. (2020) built bitwise structural indices to provide a memory-efficient

index for vast JSON documents. Subramaniam et al. (2019) proposed D-DGReLab+

for efficient processing of user queries in a distributed environment. D-DGReLab+ also

includes the pruning technique that removes the irrelevant nodes.

In summary, the space requirement of the content index in XML/JSON data is di-

rectly proportional to the number of nodes in the index tree or the number of unique

paths or attributes in a collection. This significantly improves the precision of simi-

larity search as well as the amount of storage space required for the index. Consid-

ering the schema-less model of JSON documents, the collection may have different

schemas, resulting in large number of attributes which results in space overhead at the

index. Therefore, there is a requirement to reduce the space overhead of indices for

large datasets.

2.3.2 Semantic Search

While database systems have emphasized the integration of syntactic keyword-based

search functionality, the information retrieval community has made few efforts to ex-

tend syntactic processing toward the semantic full-text search of semi-structured data

through semantic indexing techniques. These techniques attempt to address the seman-

tic relatedness problem by encoding both queries and documents into semantic repre-

sentations using an external knowledge base and performing a retrieval in the semantic

space (Kumar et al. 2012; Tekli et al. 2019). However, when the user query is not

present in the index, then these techniques employ query pre-processing techniques

such as query disambiguation (Navigli 2009; Tekli 2016), and query post-processing

techniques such as query relaxation and refinement (Allan et al. 2012; Carpineto and

Romano 2012) to find the indexed terms that match the query. This process uses Word-

Net (Miller 1998) to find the possible matches.

Alghamdi et al. (2014) built schema and data index to handle structure-based queries

and the value index to handle content-based queries. However, it ends up in a large

index size as each attribute in the XML dataset acts as an index key. Agarwal et al.

(2016) presented Generic Keyword Search (GKS) for XML documents wherein the
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meaningful information is retrieved not only from Lowest Common Ancestor (LCA)

nodes but also from nodes containing a subset of keywords in the search query. Tekli

et al. (2019) designed a semantic aware indexing system to provide a generic keyword

query model for structured, semi-structured, and unstructured documents. While few

research studies focus on semantic search in a hierarchical structure like XML, the

existing approaches use the knowledge resources such as WordNet (Miller 1998). In

case of semi-structured data where the attributes preserve the ancestral relationship,

capturing the context rather than lexical information gives efficient results for all kinds

of datasets.

Given that our research explores the dense retrieval of JSON data, it is necessary to

discuss related work that has attempted to use neural embeddings to retrieve data effi-

ciently. In the embedding-based retrieval model, queries and documents are trained in

the same or different embedding space (Lashkari et al. 2019; Liu et al. 2021a,b; Zhan

et al. 2021, 2020) and compare their inner product. Since the document embeddings

are precomputed and indexed, the search operation is faster using approximate nearest

neighbor search algorithms. Lashkari et al. (2019) jointly train the terms, semantic type,

entities, and documents which improves the retrieval efficiency and effectiveness. The

posting list is constructed based on the similarity of term vectors rather than term oc-

currences. Huang et al. (2020) introduced a unified embedding framework to model se-

mantic embeddings for facebook search using the inverted index. The author focussed

on improving the recall efficiency to satisfy the user’s search instead of giving exact

results. Zhan et al. (2020) presented Learning To Retrieve (LTRe), which uses the pre-

trained encoder for document embeddings and constructs the index beforehand. The

query embeddings are generated and updated at each training iteration. By updating the

parameters, the model retrieves better relevance than rerank. Tonellotto and Macdonald

(2021) improves the performance of dense data retrieval by pruning the non-relevant

query embeddings. This approach enhances data retrieval relevance by reducing the

number of irrelevant documents retrieved.

While there is a lot of research on embedding-based retrieval of unstructured data,

this field is still in its infancy for hierarchical data formats such as XML and JSON.
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It is observed from the literature that extant research works focus on either the lexical

or semantic matching of XML/JSON documents. Most existing works on JSON data

need further improvement in reducing the redundancy incurred by arrays during index

construction, which will significantly impact data retrieval time. Considering the nature

of JSON data in real time, there is a need for an index structure that supports both

lexical and semantic matching of documents for better information retrieval. The index

structure must be compact without losing any information and provide better response

time.

2.4 SUMMARY

In this chapter, a structured review of the various approaches used in schema extrac-

tion of XML and JSON data is presented. Exploring the structural information from

JSON documents is a challenging task due to the heterogeneity in schemas. Over the

last decade, a wide variety of approaches developed for schema extraction with dif-

ferent goals and outcomes. This chapter organized the state-of-the-art approaches into

different categories based on the nature of the output. Finally, the various research

challenges and directions in this field are discussed. When choosing an appropriate

approach, different aspects of the application must be considered, such as the type of

schema required and the types of the dataset that support different features of JSON

format, and so on. This comprehensive review provides a better understanding of the

several schema extraction approaches and their applications.

This chapter also provides a review of the different indexing methods available for

XML/JSON document retrieval. From the literature, it has been found that the existing

index structures suffer from huge index sizes and, thereby, data retrieval time. In addi-

tion, the support for the semantic search of JSON documents is still in the preliminary

stage. Therefore, there is a requirement for designing compact structures for JSON

document collection, which supports both exact and semantic matching of user queries.
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CHAPTER 3

PROBLEM DESCRIPTION

JSON is the primary format for storing multi-structured documents in NoSQL doc-

ument stores. Due to the lack of a strict schema enforced on documents, the JSON

documents in the collection can have different schemas. The absence of schema infor-

mation increases the complexity of accessing and managing heterogeneous documents.

Therefore, knowledge of the implicit schemas is essential to understand the data stored

in the collection. This schema information can be helpful for efficient data retrieval,

data integration, query formulation, etc. Most literature on schema extraction of JSON

documents focuses on generating global schema, which does not capture the different

sets of attributes present in a collection. Therefore, there is a need to extract schema

variants that captures the co-occurrence of attributes and promote the above-mentioned

tasks effectively. In addition, JSON documents are not only varied by structural het-

erogeneity but also by semantic heterogeneity. Therefore, the complexity of handling

structural and semantic heterogeneity of large data volume is rising. To address this

research gap, this work clusters the JSON documents based on the contextual similarity

of JSON schemas. The schema variants are extracted at each cluster which captures the

common and schema-specific attributes. In order to efficiently manage and access the

large collection of JSON documents, it becomes important to use efficient index struc-

tures. This work proposes a compact indexing scheme that supports both lexical and

semantic matching of JSON path-based queries efficiently. In addition, data is growing

with the continuous addition, modification, or deletion of attributes or documents in
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the existing collection. Therefore, there is a need to support dynamic data retrieval by

updating the schema variants and indexes efficiently.

3.1 OBJECTIVES

The work is subdivided into the following objectives:

1. Designing an embedding-based clustering approach to cluster the contextually

related JSON documents and proposing a tree structure to store the schema vari-

ants: This objective aims to identify schema variants by partitioning the con-

textually similar JSON documents into clusters and then provide the summa-

rized schema variants representation in the form of SVTree by considering all

the features of JSON format such as primitive data types, arrays, and nesting ob-

jects. The problem is formally stated as: Consider a JSON document collection

G = {Di}ni=1 and Di = {Aj,s}
tj
s=1 where Aj,s represents the attribute As in doc-

ument j, tj represents the number of attributes in a document j and n denotes

the size of the collection. The proposed work aims to assign G into K clusters

{C1, C2, ..., CK} where Ci contains equivalent JSON documents based on con-

text. On each cluster, the schema variants S = {Si}ni=1 are identified and stored

in a new data structure called SVTree. The structural similarity of JSON schemas

in each cluster provides the exact schema variants.

2. Proposing a compact indexing scheme that exploits the lexical and contextual

relationship of queries with JSON documents for efficient data retrieval: The

second objective of this work is to design a compact schema-aware indexing

scheme that supports both lexical and semantic matching of JSON path-based

queries over JSON collections. The extracted schema variants allow us to ana-

lyze the co-occurrence of attributes and identify the common and schema-specific

attributes, which helps in constructing compact index structures for efficient data

retrieval. The problem is formally stated as: Consider a JSON document collec-

tion G = {Di}ni=1 and Di = {Aj,s}
tj
s=1 where Aj,s represents the attribute As

in document j, tj represents the number of attributes in a document j and n de-

notes the size of the collection, SVTree provides the common and schema-specific
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attributes at each cluster Ci. The proposed work aims to build space-efficient in-

dexes I ∈ {JIndex, EJIndex} for efficient retrieval of JSON data, where JIndex

denotes lexical match and EJIndex denotes semantic match. It also aims to im-

prove the quality of search relevance and query processing time.

3. Extending the approach to update the schema variants and indexes for dynamic

data retrieval: The third objective of this work is to update the schema variants

and index structures to provide the latest results to user queries. Consider an up-

dated JSON document collection G′ = {D′
i}ni=1 and D′

i = {A′
j,s}

tj
s=1 where A′

j,s

represents the attribute As in document j, tj represents the number of attributes in

a document j and n denotes the size of the collection, the proposed work aims to

develop an Incremental embedding-based clustering approach that extracts dif-

ferent JSON schemas in the collection G′ and analyses the contextual similarity

among them to group the similar JSON documents based on the old K clusters

ie., the contextual similarity of G′ is compared with the K clusters. The output is

an updated SVTree that represents the summarization of updated schema variants

available at each cluster Ci along with its core and schema-specific attributes. In

addition, JIndex and EJIndex are updated incrementally to support the retrieval

of the latest documents for user queries.
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CHAPTER 4

SCHEMA VARIANTS EXTRACTION

4.1 INTRODUCTION

The problem of finding the schema variants is related to the problem of finding the

distinct schemas available in a collection. The challenges involved in identifying the

schema variants from heterogeneous data collection are (i) JSON stores its data in map

format (key-value pairs), and its specific constructs are nesting objects and arrays. (ii)

The complexity of handling structural and semantic heterogeneity of large data volume

is rising. The former issue is that the unordered nature of JSON data introduces struc-

tural heterogeneity in the collection. Although arrays are ordered lists of values, JSON

arrays have no restrictions on their type of values (Bourhis et al. 2017). The lack of

data type restriction creates numerous structural variations in arrays, making it difficult

to find exact schema variants. In the latter issue, JSON documents are not only struc-

turally heterogeneous but also semantically heterogeneous. In addition, the sheer size

of data collection comprises a large set of attributes with different types. However, a

schema variant includes a subset of attributes. Hence, the analysis of the interesting

distribution of attributes from a large set takes a huge computation time to identify the

exact schema variants.

Currently, the literature on schema extraction of JSON data focuses on different

goals such as global schema (Cánovas Izquierdo and Cabot 2013; Chouder et al. 2017;

DiScala and Abadi 2016; Klettke et al. 2015), reduced schema (Baazizi et al. 2017)

and versioned schema (Kellou-Menouer and Kedad 2017; Sevilla Ruiz et al. 2015).
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The problem of schema extraction is also focused on finding the core and schema-

specific attributes available in a collection (Bawakid 2019). All the above-mentioned

solutions on schema extraction facilitate schema integration, query processing, and so

on. However, these approaches are based on naive structural features of JSON data. The

performance of information retrieval can be further improved by including the seman-

tics of attributes. Furthermore, as the number of heterogeneous JSON sources grows,

it is very challenging to manage them in an organized manner to support the efficient

retrieval of data.

Clustering provides a way to organize and summarize the large data collection by

grouping similar documents in one cluster. Many approaches have been developed for

clustering semi-structured data in XML (Aı̈telhadj et al. 2012; Costa and Ortale 2013,

2017; Piernik et al. 2016, 2015) format. Despite being the most popular data repre-

sentation and interchange format, the research on JSON document clustering is very

sparse due to its complex hierarchical structure. Most of the existing works use naive

structural features for finding similar structured JSON documents. However, JSON doc-

uments not only have varied structures but also differ semantically, i.e., two schemas

with the same contextual meaning use different attribute names. For instance, consider a

Publication scenario in the form of JSON document collection from various publishers

such as DBLP, IEEE, ACM, and so on. Each publisher uses a different set of attributes

to represent the classes, such as conference, journal, book, etc. For example, schemas a

and c in Table 4.1 represent the class conference; however, they have varied structures

but are related by context.

The following example illustrates the need for JSON document clustering based on

contextual similarity. Let us consider the simple JSON schemas with different attributes

as illustrated in Table 4.1. Schemas a and c are associated with conference, while b

belongs to news article. The task is to find a similar schema for Table 4.1 (a). The

schemas a and b share the root attribute Paper whereas a and c share a different root.

Despite the presence of Paper, schemas a and b are semantically identical, whereas a

and c are similar by context, i.e., conference. Although the attributes HeadLine and

Title give the same meaning, the context is different. Also, the same set of attributes
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present in a are annotated differently in c, and hence they belong to the same cluster

irrespective of their structures. In this case, the contextual similarity is identified by

the surrounding attributes in a schema. Therefore, context-based clustering of JSON

documents facilitates the efficient organization of data, which would further enhance

the performance of query processors by reducing the search space. For example, a

query is to retrieve the author names who published papers in conference proceedings in

2020 then grouping the documents that share a similar context conference improves the

performance of information retrieval. This work does not use JSON values (contents)

to determine similarity; instead, it concentrates on clustering JSON documents based

on the contextual similarity of JSON schemas.

Table 4.1: A sample collection of JSON documents and their schema representation

S.No JSON Documents Schema

a ”Paper”:
{

”Title”: ”NDC-Study”,
”Authors”: ”Smith”,
”Conference Name”: ”ICoSiam”,
”Year”:2004

}

Paper Title
Paper Authors
Paper Conference Name
Paper Year

b ”Paper”:
{

”Headline”: ”A model for positive change”,
”Reporter”: ”Sebastian”,
”Company”: ”ACD”,
”Date”:2007

}

Paper Headline
Paper Reporter
Paper Company
Paper Date

c ”Article”:
{

”Authors”:
{

”Author”:”John Meyer”
}
”Conference”:
{

”Name”:”CoPD”
”Year”:1997

}
}

Article Authors Author
Article Conference Name
Article Conference Year
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The performance of document clustering is determined by the quality of relevant

feature extraction and efficient document representation. The most frequently used tree

representation of JSON often involves information loss and complex computations. Re-

ducing complex computations consists of reducing the number of relationships between

nodes in a JSON tree, which results in information loss. Vector representations of semi-

structured data have been increasingly used to represent a range of features, such as

paths, subtrees, attributes, and queries (Piernik et al. 2015). In traditional vector rep-

resentations, each word is assigned its own dimension, resulting in a high-dimensional

sparse representation. In addition, when the data is not appropriately distributed in the

feature space due to high intra-variance, conventional clustering algorithms struggle to

produce satisfying performance (Song et al. 2014). Because they employ a linear map-

ping function to transform the original data into a feature vector which causes the rele-

vant data to be scattered around the feature space. Existing research (Xie et al. 2016;

Yang et al. 2017) represents documents as TF-IDF vectors and then obtains non-linear

mapping via autoencoders. Since TF-IDF vectors are based on word frequency, they

generate inefficient word representations in comparison to distributed word representa-

tions (word embeddings) (Park et al. 2019). Word embeddings, which are often trained

using neural networks, represent words in a low-dimensional vector space and capture

their syntactic and semantic relationships (Mikolov et al. 2013). Hence, these models

are more effective than TF-IDF vectors at capturing semantically relevant embeddings.

More recently, the distributed representation for embeddings is modeled with pre-

trained language models (Park et al. 2019; Peters et al. 2018), which generate rich

contextualized embeddings than conventional word embeddings. While the efficiency

of clustering is determined by the quality of feature representations (Zhou et al. 2020),

incorporating contextualized embeddings naturally enhances the performance. How-

ever, the existing works on the word or document embeddings focussed on the sequence

of words or sentences in unstructured data (Park et al. 2019; Uma Priya and Santhi Thi-

lagam 2020). Hence, the benefit of contextualized embeddings on semi-structured data

is not yet explored in the literature. Therefore, this work is the first attempt to construct

context-based embeddings in a hierarchical structure, i.e., JSON documents.
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To address the aforementioned challenges, in this work, we designed an embedding-

based clustering approach for grouping the JSON documents based on the contextual

similarity of JSON schemas. The schema variants at each cluster are summarized in a

data structure.

Our major contributions in this chapter are as follows:

1. Studying the problem of clustering JSON documents and extracting schema vari-

ants from JSON documents.

2. Proposing a SchemaEmbed model to learn the syntactic and semantic relationship

of attributes from JSON documents by considering their ordered and unordered

properties.

3. Devising an embedding-based approach for clustering JSON documents based on

contextual similarity of JSON schemas

4. Proposing SVTree to store schema variants and exhibit schema variants summa-

rization

5. Evaluating the proposed approach on both real and synthetic datasets

The rest of this chapter is organized as follows. Section 4.2 describes the problem state-

ment. Sections 4.3 and 4.4 present the proposed approach in detail. Section 4.5 presents

the experimental study and performance analysis. Section 4.6 presents a summary of

the chapter.

4.2 PROBLEM DESCRIPTION

This section presents the design of our approach to identify schema variants from a

JSON collection. Consider a JSON document collection G = {Di}ni=1 and Di =

{Aj,s}
tj
s=1 where Aj,s represents the attribute As in document j, tj represents the num-

ber of attributes in document j and n denotes the size of collection. The proposed work

aims to develop an embedding-based approach that extracts different JSON schemas

in the collection G and analyses the contextual similarity among them to group the
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4. Schema Variants Extraction

Figure 4.1: Flow diagram of schema variants extraction

contextually similar JSON documents at K clusters {C1, C2, ..., CK}. The output is a

tree-based data structure that represents the summarization of schema variants available

at each cluster Ci along with its core and schema-specific attributes. Figure 4.1 shows

the flow description of the proposed schema variants extraction approach. Table 4.2

illustrates the set of all the symbols used in this chapter.

The proposed work is divided into two phases, such as (i) Embedding-based cluster-

ing approach and (ii) Identification of schema variants. The description of each phase

is explained in the following sections.

4.3 EMBEDDING-BASED CLUSTERING APPROACH

The objective of this phase is to design a model for capturing the contextual similarity

of JSON schemas and group the contextually similar documents. Given a collection of

JSON documents represented as G = {D1, D2, ..., Dn}, and its N-gram attributes N ,

SchemaEmbed model attempts to learn the contextual relationship of JSON schemas
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4.3. Embedding-based Clustering Approach

by constructing the unigrams and trigrams vocabularies from the set of flattened JSON

attributes. The JSON documents are clustering based on schema embeddings generated

by the SchemaEmbed model. Four major steps such as JSON schema extraction, fea-

ture extraction, constructing SchemaEmbed model to generate schema embeddings, are

involved in generating the contextualized vectors for a whole JSON collection. Finally,

the JSON documents are clustered using an embedding-based clustering approach.

Table 4.2: Symbols

Symbols Definitions

G,n JSON Document Collection and its size
D JSON Document
S JSON Schemas
A JSON Attributes
U Unigram Attributes Set
T Trigrams Attributes Set
F Embedding Matrix
W, d Vocabulary and dimension size of Word2Vec Model
P Probability function used in Word2Vec model
va, va’ Input and Output vector for an attribute a
X, Y, Z Input, Output(Encoded) and Decoded vector of deep autoencoder
H1, H2, H3 Hidden layer vectors of deep autoencoder
Mu, Mt Unigram and Trigram similarity matrix
Eu, Et Unigram and Trigram schema embeddings
M Combined similarity matrix to be given to clustering algorithm
N N-grams Vocabularies
C Clusters
B Similarity Graph obtained in spectral clustering algorithm
V, E Vertices and Edges of B
H Degree Matrix in spectral clustering algorithm
L Laplacian Matrix in spectral clustering algorithm
I Eigen Vectors in spectral clustering algorithm

4.3.1 JSON Schema Extraction

The JSON document can also be represented as a tree where the nodes (vertices) rep-

resent the JSON attributes and edges represent the inclusive relationship between the
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4. Schema Variants Extraction

attributes. In order to preserve the ancestral relationship of attributes, every attribute

in a JSON tree must preserve its parent information. Hence, in this thesis, the inclu-

sive relationship of attributes is maintained by flattening the attributes. i.e., the parent

attributes are concatenated with the child.

As a first step, the JSON documents are flattened by parsing the JSON tree in a

depth-first order and concatenating the parent and child attributes. More precisely,

the flattened representation of an attribute denotes the root-to-leaf path of an attribute.

Hence, the schema comprises a set of flattened attributes extracted from a JSON docu-

ment. Table 4.1 depicts the sample JSON document collection and their schema repre-

sentation. The schema S is formally defined in Definition 4.3.1.

Definition 4.3.1. Given a document D ∈ G, a schema S is a set of flattened attribute

names K such that K = {ka
prim ∪ ka

comp}where ka
comp is the unique pathname obtained

by concatenating the pathname from root r to ka.

4.3.2 Feature Extraction

JSON documents comprise both ordered (array) and unordered (nesting object) at-

tributes. In order to support both ordered and unordered properties of JSON, this work

takes unigram and trigram attributes as input and feeds them to SchemaEmbed sepa-

rately to generate schema embeddings Eu and Et respectively.

Unigrams Extraction: Given JSON attributes {A1, A2, ..., Am}, the SchemaEmbed

model aims to extract schema embeddings Eu for G. In this work, the attributes in

JSON schemas are flattened. Hence, the set of unordered flattened attributes or uni-

grams U together forms a document. For instance, the unigram set U = { Paper Title,

Paper Authors, Paper Conference Name, Paper Year, Paper Headline, Paper Reporter,

Paper Company, Paper Date} for the schemas a and b in Table 4.1.

Trigrams Extraction: When the unigram attributes are considered for representing

the attribute embeddings, the skip-gram model generates dense representation for un-
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Figure 4.2: Flow description of SchemaEmbed model

ordered attributes and ignores the substructure of attributes in a schema. However, a

JSON schema comprises unordered and ordered attributes, and hence capturing the sub-

structures of the schema preserves the ordered nature of the JSON schema. Hence, in

this work, the schema embeddings are generated using the n-gram attributes of schemas.

In general, the size of the n-grams (n > 1) might be treated as a parameter. Neverthe-

less, we chose to set it to 3 because preliminary tests revealed that trigrams performed

well and were consistent. This is due to the fact that the frequent ordered attributes are

captured due to the presence of the array. Hence, non-array attributes are unordered in

most cases. Increasing the n value beyond three results in a smaller n-gram set, which

may not effectively capture the hidden semantics among the n-grams.

Given a collection of JSON documents represented as G = {D1, D2, ..., Dn} where

Di comprises of a set of flattened JSON attributes {A1, A2, ..., Am}, the trigrams ti =

{ti1 , ti2 , ..., tix} for each Di where tii = (Ap, Aq, Ar) are extracted. The trigram set

T comprises all the trigrams extracted from all schemas. For instance, the trigram

set T = { [Paper Title, Paper Authors, Paper Conference Name], [Paper Authors, Pa-

per Conference Name Paper Year], [Paper Headline, Paper Reporter, Paper Company],

[Paper Reporter, Paper Company, Paper Date]} for the schemas a and b in Table 4.1.
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4.3.3 SchemaEmbed Model

In general, the pre-trained models capture different meanings of a word based on the

context. The contextualized representations help in improving the clustering quality.

Hence, in this work, the pre-trained models are used to preserve the key contexts of

the document. The SchemaEmbed model is proposed using the Word2Vec and a deep

autoencoder. Algorithm 4.1 shows the pseudocode of the SchemaEmbed model, and it

has been depicted pictorially in Figure 4.2.

Algorithm 4.1: SchemaEmbed Model
1 S:= Schemas, N:= N-Grams Vocabularies;
2 Function SchemaEmbed(S, N):
3 initialize w2v dimension, epoch;
4 w2v model := Word2Vec(N, w2v dimension);
5 foreach Si ∈ S do
6 Extract the N-Grams Ni;
7 foreach Ni ∈ Si do
8 attributeEmbedding[Si] :=

attributeEmbedding[Si].append(w2v model[Ni]);
9 end

10 schemaEmbedding[Si] := concatenated attributeEmbedding[Si] ;
11 end

/* Deep Autoencoder */
12 Let X := schemaEmbedding[S] ;
13 Let A, B, C, D be the Weight Matrix and a, b, c, d be the bias for the layers ;
14 H1 := tanh(AX + a);
15 H2 := sigmoid(BH1 + b);
16 Y := sigmoid(CH2 + c);
17 Z := ReLU(DY + d);
18 L(xi,zi) :=

∑n
i=1xilog(zi) + (1-xi)log(1-zi);

19 Train the deep autoencoder from lines 13 to 16 for the given epoch to minimize L ;
20 return Y

Word2Vec aims to learn an embedding matrix F ∈ RW×d for attributes A where

W and d represent the vocabulary size and the dimension, respectively. i.e., For each

target attribute at, the pre-trained Word2Vec model employs a skip-gram model to learn

distributed representation of attributes. The objective of the skip-gram model (Mikolov

et al. 2013) is to maximize the average log probability by

1

T

T∑
t=1

∑
−c≤j≤c,j ̸=0

log p(At+j|At) (4.1)
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where T represents the number of training attributes, and c represents the training con-

text size.

Each attribute A in the document is represented as a vector, and for each input vector

at, the probability of predicting the output vector at+j using the softmax function can

be found as

P (at+j|at) =
exp(v′ Tat+j

vat)∑
a∈V exp(v′ Ta vat)

(4.2)

where the input and output vectors of the attribute A are represented by va and v′a re-

spectively. This model attempts to predict the surrounding attributes based on a target

attribute. i.e. the attributes author, conference name and conference year belongs to

a context conference. Unlike regular words, the words in this work are unordered flat-

tened attribute names where the words authors author and authors are more similar.

Since the skip-gram model does not preserve the word order explicitly, the surrounding

attributes predict the context for a schema.

While Word2Vec learns the dense representation from the context of attributes, the

autoencoder learns the dense representation from the context of schemas. Hence, the

attribute vectors are concatenated for each schema and given as input to the autoencoder.

Basic Autoencoder: The encoder-decoder, an unsupervised model, learns to map an

input to output through a two-step process. (i) Encoding: The encoder compresses input

x into latent vector representation y such that y = f(x). (ii) Decoding: The decoder

predicts output z from y such that z = x′ = g(y). The best encoding-decoding scheme

is learned through iterative optimization. The decoded output is compared with the in-

put at each iteration and minimizes reconstruction error between input and output across

all the samples by backpropagation. The objective function of a basic autoencoder is

given by

L′ =
n∑

i=1

L(x; g(f(x))) (4.3)

where L represents the loss function, n represents the number of documents, x repre-

sents the input vector, f(x) represents the encoded vectors in latent space, and g(f(x))

represents the decoded vector which is as close as the input vector. The underlying
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semantics of the input x is likely to be captured in the latent representation y by mini-

mizing L′ between input and output across all the samples.

Deep Autoencoder: The deep autoencoder has two purposes: (i) generate low-dimensional

data and (ii) learn contextualized schema embeddings. The deep autoencoder works in

four simple steps:

1. Get the concatenated attribute embeddings associated with each attribute in a

schema

2. Pass the resulting embeddings through the hidden layers with non-linear activa-

tion functions

3. Train the encoder by back-propagating the errors

4. Continue iterating until the minimum error is achieved

Let X , Y , and Z represent the input vector, encoded and decoded latent representations,

respectively. Given the input samples X = {x1, x2, ..., xn}, this work aims to determine

the non-linear mapping function f : X → Z and g : Z → X such that, for xi ∈ X ,

the corresponding decoded representation zi ∈ Z, and reconstructed sample x′
i ∈ X ′ is

obtained.

The intuition behind the deep autoencoder is to increase the degree of abstract rep-

resentation of the input. The non-linear activations on attribute embeddings generate

compact schema-level embeddings with respect to their corresponding cluster centers.

The number of hidden layers varies for deep autoencoder. In this work, the deep au-

toencoder has an input layer, three hidden layers, and an output layer — the more deep

the autoencoder, the less the reconstruction loss.

The number of neurons in the input and output layers is proportional to the input

size, i.e., the number of schemas. The hidden layers have a varying number of neurons,

such as 160, 80, and 40, respectively. The number of neurons progressively decreases as

the network structure deepens. Each layer in the autoencoder is fully connected with the

next layer. For an input vector xi ∈ X , rather than passing this representation directly
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to an output layer, we add additional transformations on xi by adding more hidden

layers before clustering. For a five-layer auto-encoder, say input layer, an output layer,

and three hidden layers (H1, H2, and H3), the mapping function for a fully-connected

autoencoder is computed as

H1 = f1(AX + a)

H2 = f2(BH1 + b)

Y ≡ H3 = f3(CH2 + c)

Z = f4(DY + d)

(4.4)

where A,B,C and D represent the weight matrices, X represents the input vectors,

H1, H2, H3 represents the hidden layer vectors at each layer. Z represents the output at

the decoder layer. The bias terms at each layer are given as a, b, c, and d. For an input

vector xi ∈ X , each node in the hidden layers is regulated by non-linear activation

functions f1(.), f2(.), f3(.) and g(.) such as tanh, sigmoid, etc.

The efficiency of the deep autoencoder is estimated by reducing the reconstruction

error as follows:

L′ =
n∑

i=1

L(xi; g(Df3(Cf2(Bf1(Axi + a) + b) + c) + d)) (4.5)

where L is defined as

L(xi, x
′
i) =

n∑
i=1

xi log(x
′
i) + (1− xi) log(1− x′

i) (4.6)

For all the hidden layers of the encoder and decoder, we use tanh and sigmoid

activation functions for non-linearity. The non-linear mappings enhance the data rep-

resentation of the input. The decoded vector is output through the ReLU activation

function and batch normalization. The dimensions of the resulting vector Z are the

same as those of the input dimension. Batch normalization is applied after each layer to

normalize the output (activation) of a previous layer using zero mean and unit standard

deviation. The difference between the expected and actual values is calculated, and the

error is propagated from the output layer to the first hidden layer. The weight matrix is

adjusted to the input layer and continues iterating until the error falls into the required

range or after a certain number of iterations has been completed. The backpropagation
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aims to reduce the reconstruction error.

Schema Embeddings: The unigrams U and trigrams T are considered as vocabular-

ies to SchemaEmbed. The SchemaEmbed encoder generates Eu and Et as output which

will capture the contextual similarity between schemas based on unordered and ordered

attributes as well.

4.3.4 Clustering

SchemaEmbed learn the non-linear mappings from the concatenated unigram and tri-

gram attribute embeddings. The encoder of SchemaEmbed model generates the cluster-

friendly schema level embeddings Eu = {u1, u2, ..., un} and Et = {t1, t2, ..., tn} re-

spectively. Since both Eu and Et captures the contextual similarity of schemas, the

maximum of two similarity scores determines the clusters. Therefore, the pair-wise

similarity matrices Mu and Mt are computed for Eu and Et, respectively. The similar-

ity matrix Mu is represented as

Mu = [dui,uj
]n×n (4.7)

where ui, uj ∈ Eu, and

dui,uj
=

(ui)
T (uj)

∥ (ui) ∥∥ (uj) ∥
(4.8)

The similarity matrix Mt is also computed in the same way as equations 4.7 and 4.8.

The final similarity matrix M ∈ Rn∗n is computed as

M = Max(Mu,Mt) (4.9)

Given the similarity matrix M , the task of embedding-based clustering approach is to

learn a set of K clusters C = {C1, C2, ..., CK},
⋃K

i=1Ci = M,Ci ∩Cj = ϕ for 1 ⩽ i ̸=

j ⩽ K in the feature space M . In this work, similar schemas are clustered using spectral

clustering algorithm (Von Luxburg 2007) with M . The clustering problem can now be

reformulated as an undirected similarity graph B = (V,E) where V = {v1, v2, ..., vn}

represents the vertices and E represents the weighted edge between vi and vj . The edge

is weighted using sij ∈ M . The Degree matrix H is termed as {h1, h2, ..., hn} is a

diagonal matrix where the degree hi of a vertex vi ∈ V is defined as

hi =
n∑

j=1

sij (4.10)
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Given a similarity matrix M , the normalized Laplacian matrix L = Rn∗n is defined as

L = H−1/2(H −M)H−1/2 (4.11)

Compute the first k’s eigenvectors I = {i1, i2, ..., ik} associated with L where I ∈ Rk

and let the vectors represent the columns of I . The ith row of I is represented as ji ∈ Rk.

The data points {j1, j2, ..., jn} in Rk are clustered using K-Means clustering. Algo-

rithm 4.2 provides the pseudocode of clustering JSON documents using SchemaEmbed

model.

Algorithm 4.2: Clustering JSON documents
Input: JSON Document Collection D = {D1, D2, ..., Dn}
Output: Clusters C = {C1, C2, ..., CK}

1 initialize w2v dimension := 50, epoch := 50 ;
2 Let Unigrams Similarity Matrix Mu ∈ Rn×n, Trigrams Similarity Matrix Mt ∈ Rn×n,

and Combined Similarity Matrix M ∈ Rn×n ;
3 Extract Schemas S = {S1, S2, ..., Sn} from D ;
/* Feature Extraction */

4 foreach Si ∈ S do
5 construct unigrams and add to U;
6 construct trigrams and add to T;
7 end
8 Eu = SchemaEmbed(S, U);
9 Et = SchemaEmbed(S, T);
/* Construction of Similarity Matrices */

10 foreach (i, j) ∈ Eu do
11 Mu := cosine(i,j);
12 end
13 foreach (i, j) ∈ Et do
14 Mt := cosine(i,j);
15 end
16 foreach (i, j) ∈ n do
17 M [i][j] := Max(Mu[i][j]),Mt[i][j]
18 end

/* Clustering */
19 Let clusters C = {C1, C2, ..., CK} and centroids c = {c1, c2, ..., cK};
20 Cluster the schemas and the documents using spectral clustering algorithm ;

4.4 IDENTIFICATION OF SCHEMA VARIANTS

The embedding-based clustering approach clustered the JSON documents based on the

contextual similarity of JSON schemas. This section describes the identification of

schema variants at each cluster and how the new data structure aids in summarizing the
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schema variants.

In this thesis, we examine the power of contextual and structural similarity in de-

termining similar JSON schemas. Contextual similarity measure aids in determining

the semantic similarity of JSON schemas based on the context in which the attributes

are involved. In addition, finding the structural similarity prior to contextual similarity

limits the vector space. Hence, in this work, the contextual similarity of JSON schemas

is identified prior to structural similarity.

Finding the structural similarity determines the core attributes and schema-specific

attributes present in a cluster. The strength of SchemaEmbed model using Word2Vec

and deep autoencoder lies in handling large collections and training the word vec-

tors efficiently. The purpose of using Word2Vec in this work has two advantages: (i)

Word2Vec generates a low-dimensional dense representation of attributes by consid-

ering the presence of surrounding attributes. (ii) Due to the use of word frequencies,

the vocabulary list in the Word2Vec model for each dataset helps to identify the core

attributes Ac present in a cluster. However, with only the word frequencies, Word2Vec

fails to determine the schema-specific attributes As in each schema variant. As a re-

sult, a well-known Inverse Document Frequency (IDF) approach is used to estimate the

attributes specific to a schema. The IDF measure can be calculated as

IDFa = log
G

(dfa)
(4.12)

where dfa is the number of documents containing an attribute a, and G represents the

number of documents in a collection. The core and schema-specific attributes are de-

fined formally in Definition 4.4.1.

Definition 4.4.1. For a JSON document D, the set of attributes A can be represented

as A = {Ac ∪ As} where Ac and As represents the core and schema-specific attributes

respectively. The core attributes are shared by all schema variants of a collection, and

schema-specific attributes are unique to a schema variant.
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4.4.1 SVTree

SVTree is an ordered tree capable of representing the schema variants in a compressed

form. It is built by reading attributes at each schema extracted sequentially and map-

ping each attribute to a path in an SVTree. Schema variants may have core attributes,

and hence the path or branch of a tree may overlap. As the more branches overlap,

the more compression we achieve in SVTree. For instance, given two schemas b1 =

{ba1 , ba2 , ..., bam} and b2 = {bb1 , bb2 , ..., bbn} where m ≤ n, ∀i ∈ [1,m], bai = bbi ,

then b1 is called a subset or prefix of b2.

The SVTree, SV T = (r, V, E) is a directed tree where V is a finite set of nodes

(vertices). Each interior node vi ∈ V is represented by its unique identifier of the node

{nodeNamei}. The radix node vk ∈ V is represented by the 2-tuple {nodeNamei, attList}

and each leaf node vj ∈ V is represented by the 3-tuple {nodeNamej, SV Num, DocIDList}

where

• nodeNamej is the unique identifier of the node j

• attList is the list of core attributes Ac

• SV Num is the unique identifier of the schema variant

• DocIDList is the list of document IDs following the specific schema variant

(branch) in a tree

E is a set of directed edges of SV T where e ∈ E is represented by a tuple (vm, vn)

with vm, vn ∈ V and vm ̸= vn.

The size of SVTree has a significant impact on mining the tree for incremental up-

dates or any search operation. Hence, in order to compress the size of SVTree, schema

restructuring is used to reorganize the core and schema-specific attributes in sorted order

so that maximum attributes in a branch can be overlapped. In other words, the maxi-

mum prefix can be obtained. Schema restructuring is important since the frequency-

descending order of attributes can result in a higher degree of prefix sharing. This sort

of order can be used to re-order the attributes during restructuring. However, the restruc-
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turing not only provides the compact tree but also the structure of attributes (inclusive

relationship) in each schema variant is preserved.

We next describe the construction of SVTree at each cluster to show the summarised

representation of schema variants available in a collection. The flow of SVTree con-

struction works in two phases:

1. Schema restructuring phase:

(a) Sort the core attributes based on lexicographic order in order to follow the

core sequence of attributes at all schemas in a cluster.

(b) Sort the schema-specific attributes in increasing order of IDF score at each

schema because the lower the score, the probability of the attribute in other

documents are high.

2. Insertion phase:

(a) Create root and radix node in SVTree. Insert all core attributes in the radix

node. In general, each attribute corresponds to a node in SVTree. However,

the large number of attributes increases the nodes in SVTree. Hence, in this

work, the core attributes are compressed into an array and stored in a single

radix node.

(b) For each schema-specific attribute Aj in Si,

i. traverse SVT

ii. if Aj already exists in SVTree then continue else create a new branch

and insert all the remaining schema-specific attributes of Si in SVTree.

Algorithm 4.3 describes the construction of SVTree where the vertices (nodes) and

edges are set to ϕ. Initially, the root node is inserted in SVTree. The first branch of a tree

is constructed by the first schema in a collection where the core attributes are marked

as radixNode, and the attributes in the list of schema-specific attributes correspond

to the interior node in SVTree. The end of schema-specific attribute list is marked as
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Figure 4.3: Construction of SVTree

leafNode. The core attributes are inserted only once in SVTree. The algorithm gets the

schema-specific attribute list of each schema and continues insertion.

Algorithm 4.4 describes the insertion of schema-specific attributes in two ways: (i)

If a branch already exists in SVTree: Iterate over the nodes in a specific branch and

check for the same sequence of attributes. In the case of SVTree, the interior node could

also be marked as leafNode when one schema variant is a subset of another, i.e., if

the nodes in the branch is a subset of a new schema variant that is being inserted, then

continue inserting nodes in the same branch and mark the leaf nodes appropriately. For

instance, in Figure 4.3, S1 is a subset of S3. In this case, the interior node of S3 is a

leaf node of S1. Hence, the interior node acts as a leaf node to represent the schema

variant. However, the leaf nodes contain children, and it is explained pictorially in

Figure 4.3. If the nodes in a branch are a superset of the new schema variant that is

being inserted, then one of the interior nodes in a branch must be a leaf node for the

new schema variant (ii) Create a new branch in SVTree: If the attributes in new schema

variant are not present in SVTree, then create a new branch from radixNode and insert

the remaining attributes.

The identification of schema variants using SVTree is explained briefly in algorithms

4.3 and 4.4. Figure 4.3 illustrates the SVTree constructed for the given schemas. Figure
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Algorithm 4.3: Construction of SVTree - Summarized schema variants
Input: JSON Schema Variants S = {S1, S2, ..., Sn}
Output: SVTree SVT

1 initialize SVT: V = ϕ, E = ϕ;
2 SVNum=0;
3 currentNode := SVT.addRootNode(root);
4 V := V ∪ currentNode;
5 Read S1 ;
/* Insertion of Core Attributes S1 = Ac ∪As1 */

6 childNode := SVT.addRadixNode(Ac);
7 V := V ∪ childNode;
8 newEdge := SVT.addEdge(currentNode, childNode);
9 E := E ∪ newEdge;

10 SVT.currentNode = childNode;
11 SVT.radixNode := SVT.currentNode;

/* Insertion of Schema-specific Attributes */
12 foreach a ∈ As1 do
13 childNode := SVT.addNode(a);
14 V := V ∪ childNode;
15 newEdge := SVT.addEdge(SVT.currentNode, childNode);
16 E := E ∪ newEdge;
17 end
18 SVNum := SVNum + 1;
19 SVT.leafNode := childNode;
20 SVT.leafNode.DocIDList += S1;
21 SVT.leafNode.SVNum := SVNum;
22 foreach Si ∈ S do
23 traverse SVT till SVT.radixNode;
24 SVT.currentNode := SVT.radixNode;
25 SVT.currentNode := SVT.nextNode;
26 SVT := InsertSS(Asi , Si, SVT, SVT.currentNode, SVT.radixNode);
27 end

4.3(a) represents the schema variants {S1, S2 and S3}. After finding core and schema-

specific attributes, the attributes are re-ordered in Figure 4.3(b). Figure 4.3(c) describes

the construction of SVTree: Parse the attributes in S1 and insert in SVTree if not exist.

The rectangle node represents the radix node containing core attributes, circle nodes

in bold represent the end of the schema. Figure 4.3 (d) describes the insertion of S2

in SVTree after S1: Parse the attributes in S2 and insert in SVTree if not exists. e is

not in SVTree. So, create a new node after the radix node. Now radix node has two

children, and both are leaf nodes (end of schema). Figure 4.3 (e) describes the insertion

of S3 in SVTree after S2: Parse the attributes in S3. The schema-specific attributes are
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Algorithm 4.4: SVTree Insertion
1 Function InsertSS(As, S, SVT, SVT.currentNode, SVT.radixNode):
2 foreach a ∈ As do
3 if a := SVT.currentNode then
4 if SVT.nextNode != ϕ then
5 SVT.currentNode := SVT.nextNode;
6 else
7 SVT := InsertSVT(a, As, S, SVT, SVT.currentNode)
8 end
9 else

10 SVT := InsertSVT(a, As, S, SVT, SVT.radixNode)
11 end
12 end
13 return SVT
14 Function InsertSVT(a, As, S, SVT, SVT.currentNode):
15 if a is end of As then
16 childNode := SVT.addNode(a);
17 V := V ∪ childNode;
18 newEdge := SVT.addEdge(SVT.currentNode, childNode);
19 E := E ∪ newEdge;
20 SVNum := SVNum + 1;
21 SVT.leafNode := childNode;
22 SVT.leafNode.DocIDList += S;
23 SVT.leafNode.SVNum := SVNum;
24 else
25 childNode := SVT.addNode(a);
26 V := V ∪ childNode;
27 newEdge := SVT.addEdge(SVT.currentNode, childNode);
28 E := E ∪ newEdge;
29 SVT.currentNode = childNode;
30 end
31 return SVT

(c, e, f). While traversing SVT, the core attribute nodes and schema-specific attribute c

are already in the tree. Hence, S3 follows the first branch and added (e, f) immediately

below c. f is marked as the leaf node.

In general, the number of nodes determines the size of the SVTree. In the worst

case, the maximum number of nodes in SVTree is 2k, where k represents the number of

attributes present in distinct schema variants. The worst case is due to the high number

of unique attributes in each schema variant. However, the size is too large to contain

all the unique schema variants in an SVTree. Nevertheless, in a real scenario, the set of
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schema-specific attributes in a specific schema variant may be shared with other schema

variants. Figure 4.3 illustrates this scenario. In such a context, the shared attributes

overlap with the nodes that already exist in a tree. Hence, the maximum number of

nodes in SVTree can be written in different scenarios as: The number of nodes is 2k in

the worst-case where k represents the number of attributes in distinct schema variants.

On average, there are (1 + n) nodes where n represents the number of schema-specific

attributes. If the subset of schema variants is present in a collection, then (1 + A + B)

nodes are present in SVTree where α ⊂ A, B = (n − A). A is a superset variant

of α and 1 represent the radix node. The average case is due to the reasonable core

attributes present in a collection, and the best case occurs when there are subsets of

schema variants.

4.5 EXPERIMENTAL EVALUATION

This section presents the experimental results of the proposed approach with existing

approaches.

4.5.1 Datasets

We use both real-world data used in literature and synthetic dataset for our experiments.

1. DBLP (Mohamed L. Chouder and Stefano Rizzi and Rachid Chalal 2017): This

real-world dataset contains 2 million XML documents scraped from DBLP and

converted to JSON. In this work, we have chosen 2,00,000 documents randomly

from 2 million documents. The documents are flattened and include eight types

of publications, such as conferences, journals, theses, etc. The dataset comprises

11 schema variants and 25 unique attributes.

2. The synthetic dataset (SD) 1 is also populated for publication scenarios with ref-

erences from various publications such as IEEE2, ACM3, and so on. The JSON

documents are flattened, and eight types of publications are supported, such as

patent, conference, journal, book, miscellaneous, thesis, and so on. There are 39

1https://github.com/umagourish/Synthetic-Datasets
2www.ieee.org
3www.acm.org
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schema variants and 77 unique attributes in this collection. The number of schema

variants does not correlate with the number of different types of publications.

Both datasets together have 50 schema variants, i.e., different structures and 13 classes.

The schema variants are classified based on the presence or absence of attributes. The

number of clusters for measuring the similarity is decided based on the number of

classes in both datasets. The data collection includes arrays and nesting levels. Hence,

the real dataset and synthetic dataset have different hierarchical structures. As both

DBLP and synthetic datasets belong to the publications scenario, the schema variants

have shared attributes.

4.5.2 Experimental Setup

The proposed approach uses Python language and Keras framework for implementing

deep autoencoder. The dimension and window sizes for the Word2Vec model are set

to 300 and 3, respectively. The deep autoencoder is designed with an input layer, three

hidden layers, and an output layer. The network dimensions are x-160-80-40-x, where x

represents the size of the input. The weight matrix for every layer is randomly assigned

from a Gaussian distribution. Each activation layer is followed by batch normalization

of size set to 50. The fully connected deep autoencoder is fine-tuned for 1500 iterations

without dropout. These parameters are set to achieve a reasonable reconstruction loss

for the dataset. The model is optimized with adam optimizer. The proposed deep

autoencoder is trained using a backpropagation algorithm according to the values of the

loss function obtained through processing iterations.

4.5.3 Evaluation Metrics

Typically, there are two types of metrics used to evaluate the efficiency of document

clustering algorithms: intrinsic and extrinsic metrics. In this work, we employ Silhou-

ette Co-efficient (SC) to evaluate unsupervised clustering. The most common extrinsic

metrics, such as precision, recall, and F1-Measure, depend on the alignment of cluster

labels to ground truth labels that are problematic for a wide variety of labels. In this

instance, the measures such as Normalised Mutual Information (NMI) score, Adjusted

Mutual Information (AMI), and Adjusted Rand Index (ARI) score are more appropriate
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4. Schema Variants Extraction

because they are not influenced by the absolute label values (Vinh et al. 2010). In

addition, this work uses a cosine similarity score to measure the contextual similarity

of the schemas.

4.5.4 Results and Discussion

This section begins with an introduction to the research questions and then reports on

our findings in relation to each research question.

Research Questions: We conduct a systematic evaluation of our proposed approach

using the following research questions (RQ):

1. RQ1: How does the proposed work compare with the baseline approaches in

terms of efficiency perspective, i.e., the contextual similarity of JSON schemas?

2. RQ2: How does the proposed work compare with the baseline approaches in

terms of effectiveness perspective, i.e., measuring clustering performance with

standard evaluation measures?

3. RQ3: What is the impact of clustering in identifying and storing the JSON

schema variants in SVTree?

4.5.4.1 RQ1: Evaluation of Efficiency

In this chapter, efficiency evaluates the performance of the proposed approach by esti-

mating the contextual similarity score of JSON schemas. It is observed from the liter-

ature that few research works have focussed on the semantic similarity of JSON data.

To study the effect of contextual representations of JSON schemas, the proposed ap-

proach is compared not only with existing work such as JSONGlue (Blaselbauer and

Josko 2020) but also with the baseline word-level and document-level word embedding

models such as Word2Vec (Mikolov et al. 2013), Doc2Vec (Le and Mikolov 2014),

InferSent (Conneau et al. 2017), USE (Cer et al. 2018), Embeddings from Language

Models (ELMo) (Peters et al. 2018), and RoBERTa (Liu et al. 2019). JSONGlue uses

the knowledge base WordNet (Miller 1998) for identifying the semantic relationships

between attributes. All of the baseline models are pre-trained models of supervised/un-

supervised learning of words or sentences.
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4. Schema Variants Extraction

Table 4.3 illustrates the cosine similarity of different pairs of schemas belonging to

the same context, i.e., Schemas S1, S2 and S3 belongs to book context, S4 and S5 belongs

to conference and so on. The analysis of the similarity score is categorized based on the

presence of core attributes:

1. High core attributes in pair: In order to show the effectiveness of the proposed

approach, the core attributes are further classified into ordered and unordered core at-

tributes.

• Ordered: The number of core attributes is high in the pair (S8, S9). Still, the pro-

posed approach shows a better score than other models. This is due to the reason

that the trigrams captured the subsequence of attributes present in a schema, and

this structure contributes to a better similarity score. However, other document

embedding models consider the whole structure of a schema, and hence the score

of SchemEmbed is high compared to the existing approaches.

• Unordered: Considering the pair (S6, S7), the presence of schema-specific at-

tributes distinguishes the context, and hence the score is 0.18. In addition, the

core attributes are present randomly in the pair. While Doc2Vec shows the next

least score, other models have shown a high score. Nevertheless, in the case of

Word2Vec, the similarity is based on the individual attribute vectors without per-

forming any arithmetic operation on vectors, and hence it shows high similarity.

However, Doc2Vec works on the concatenated embeddings, and hence the score

is less compared to Word2Vec.

2. High schema-specific attributes in pair: The pairs (S1, S2), (S1, S3) and (S4, S5)

have more schema-specific attributes, i.e., the attributes are unique to the schema. It is

observed that (S1, S3) contains more than 50% of schema-specific attributes for which

all models yield less score compared to (S1, S2) and (S4, S5). Word2Vec has achieved

0.93 for (S1, S2), and the use of autoencoding further improves its similarity in the

proposed work.
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The proposed SchemaEmbed model uses pre-trained models of Word2Vec and en-

codes the vectors with different activation functions. By comparing the similarity of

Word2Vec and the SchemaEmbed model, the use of autoencoding in the proposed

model further enhances the performance of embeddings in a feature space. The at-

tribute embeddings generated by the Word2Vec model are based on the co-occurrence

of attributes rather than their sequence. However, the document embeddings created

by advanced models retain the attribute order in each schema, which results in a high

similarity score even when the schemas are not identical by context. From Table 4.3,

it is found that the scores of RoBERTa, ELMo and InferSent are close to the proposed

work. However, these three models show higher similarity for (S6, S7), which actu-

ally must be less. This is due to the presence of the same set of subsequences such as

title language and month year note url. However, the presence of subsequences does

not affect the similarity score of SchemaEmbed because SchemaEmbed uses trigrams to

capture the subsequence which is not present in (S6, S7). Therefore, it is observed that

the proposed work shows better performance on the set of unordered as well as ordered

flattened attributes. In contrast, other existing models work better on the order of words

and sentences.

JSONGlue (Blaselbauer and Josko 2020) constructs a bipartite graph to compare

the similarity in schemas. This thesis implements the semantic module of JSONGlue

to compare it with the proposed work. In comparison with JSONGlue, it is observed

from Table 4.3 that the proposed approach works exceptionally well on all the schema

pairs. In the pair (S6, S7), the score of JSONGlue is 0.7 because JSONGlue compares

the meaning of attributes rather than their context. Furthermore, the efficiency of Word-

Net relies on its design and word coverage which produces null synsets for unknown

words in WordNet. This property distinguishes the proposed approach in finding the

contextual relationship based on the co-occurrence of attributes rather than the already

existing words in the knowledge base.

The original JSONGlue has calculated the semantic similarity for JSON schema

matching. In this work, JSONGlue has been extended such that the semantic similar-

ity of JSON schemas with a threshold of 0.7 has been considered for clustering the
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schemas. A similarity score of less than 0.7 is not considered a similar schemas. It is

observed from Table 4.3 that the contexts are better captured and exhibit higher effec-

tiveness in grouping the schemas using the proposed approach. One can see that the

results of the proposed work are close and better than those InferSent, USE, ELMo, and

RoBERTa for each case we have tried.

Results show that the proposed approach performs well in finding contextually rel-

evant JSON documents compared to the baselines. The performance of the proposed

embedding-based clustering approach demonstrates the power of a deep autoencoder on

JSON data. The major advantage of the proposed approach is in handling both ordered

as well as unordered attributes.

4.5.4.2 RQ2: Evaluation of Effectiveness

Effectiveness is measured based on the inter-cluster and intra-cluster similarity of JSON

schemas. In this work, the K-Means algorithm is used to group the documents into

clusters for the dataset taken. Experiments are carried out with varying numbers of

clusters.

Table 4.4: Clustering performance to determine the contextual similarity of JSON
schemas using external clustering validity metrics

Models
Metrics

NMI AMI ARI

Word2Vec (Mikolov et al. 2013) 0.72 0.61 0.3

Doc2Vec (Le and Mikolov 2014) 0.4 0.39 0.13

InferSent (Conneau et al. 2017) 0.63 0.62 0.30

USE (Cer et al. 2018) 0.64 0.63 0.35

ELMo (Peters et al. 2018) 0.58 0.57 0.29

RoBERTa (Liu et al. 2019) 0.71 0.51 0.53

JSONGlue (Blaselbauer and Josko 2020) 0.57 0.25 0.13

SchemaEmbed 0.75 0.69 0.58

We evaluated the quality of clusters using external validity measures such as NMI,

AMI, and ARI. It is observed from Table 4.4 that the proposed approach outperforms
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the baselines over the datasets. It is clear from Table 4.4 that Word2Vec and RoBERTa

have shown a close score to the proposed approach on all three metrics. Interestingly,

all methods had a major drop in scores between AMI and ARI measures. For instance,

Word2Vec gave a high NMI score of 0.72, which is close to the proposed approach.

However, it gave an ARI score of 0.3, which has a large drop comparatively. Doc2Vec

has shown less score compared to other methods on all three metrics. Although the pre-

trained Word2Vec vectors are used in the proposed work, we are able to show improved

performance in all the metrics. Figure 4.4 shows how the proposed approach changes

NMI, ARI, and AMI values from epoch to epoch. The number of epochs is decided

based on the training loss of the SchemaEmbed model. Every evaluation metric has

an obvious upward trend. This result demonstrates that the proposed SchemaEmbed

model based on the pre-trained model and deep autoencoder structure work towards the

desired direction.
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Figure 4.4: Clustering Performance Vs. Training Epochs

Structural Similarity: Most of the existing approaches cited in Chapter 2 use struc-

tural properties of JSON documents to extract global, skeleton, or reduced schema.

As the BSP approach performs the classification of schema variants based on attribute

node conditions, the performance of the proposed approach is compared with the BSP

approach.

Both approaches are evaluated for the above-given datasets. The BSP approach is

assessed using entropy and sEntropy values, whereas the proposed approach is evalu-

ated with SC, NMI, AMI, and ARI. It is found from Table 4.5 that the BSP approach has
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achieved null entropy and sEntropy for the above datasets, ensuring that the approach

has achieved maximum precision and concise representation. Although BSP is efficient

in describing the schema variants, it does not consider one of the significant properties

of JSON data, such as arrays. However, array structures significantly change the cate-

gory of documents. Furthermore, in schema-based split, the presence or absence of an

attribute determines the split, which results in using the structural similarities of JSON

schemas for classifying the schema variants. In comparison with the BSP, the proposed

approach goes one step further in finding the structural and semantic relationship of

JSON schemas, including the internal structures of arrays.

Table 4.5: Clustering performance to determine the structural similarity of JSON
schemas

Evaluation
Metrics

BSP (Gallinucci
et al. 2019)

TF-IDF
(Bawakid 2019)

Proposed
Work

entropy 0
sEntropy 0
SC 0.6 0.68
NMI 0.65 0.75
AMI 0.64 0.69
ARI 0.32 0.58

In addition, the proposed approach is also compared to the conventional TF-IDF-

based clustering approach (Bawakid 2019). In contrast to the proposed approach, TF-

IDF-based approach performs clustering based on the structural similarity of JSON

schemas (frequency of attributes). It extracts the exact schema variants rather than

clustering contextually similar schema variants. It is evident from Table 4.5 that the

proposed approach achieves better performance than TF-IDF-based approach on all the

evaluation measures.

4.5.4.3 RQ3: Evaluation of Schema Variants

This section describes the impact of using clustering on schema variants identification.

We also discuss the ways in which the proposed approach is different from existing
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approaches in the field of JSON schema extraction.

The efficiency of SVTree is evaluated based on core and schema-specific attributes

on clustered and unclustered data. Figure 4.5 illustrates the efficiency of SVTree before

and after clustering. Before clustering, the equivalent schemas are not identified, and

hence the number of core attributes is too low with a high number of schema-specific

attributes. This increases the number of nodes in SVTree. However, after identifying

the equivalent schemas, there will be a sufficient number of core attributes in the subset

of documents compared to the whole document collection, which introduces node re-

duction in SVTree. For unclustered data, the JSON schemas are parsed and inserted in

SVTree by traversing over each path in a single pass. However, it incurs a large number

of nodes due to the lack of core prefixes in a tree. In Figure 4.5, the unsorted dataset

has only one core attribute, i.e., id, and 392 schema-specific attributes. Although the

number of unique attributes is less, the high number of schema-specific attributes is due

to the presence of repeated nodes for an attribute. For instance, in Figure 4.3e, e be-

longs to both S2 and S3, and hence the node is repeated. Creating a single node for an

attribute that is not in the core attributes list generates a global schema which is not the

focus of this work. Whereas if the whole collection is sorted based on core and schema-

specific attributes, the number of nodes is probably less than unsorted. It is proved from

Figure 4.5 that there are 297 schema-specific attributes in sorted data compared to 392

in unsorted. However, it is still high compared to clustered data. This is due to the fact

that the set of core attributes is determined on a large collection. A collection may have

distinct schema variants which have fewer core attributes. However, a small collection

may contain a large number of core attributes. Hence, clustering has an impact on re-

ducing the search space and introduces the list of core and schema-specific attributes

efficiently. In Figure 4.5, clustered schema variants have 184 schema-specific attributes

in all clusters, which is 46% lesser than the unclustered tree.

Figure 4.5 is evident for the reduction in the size of the SVTree after clustering. Fig-

ure 4.3 shows the existence of node redundancy for varying sizes of schema variants.

However, the presence of redundancy even after clustering is due to the different se-

quences of attributes in schema variants. The main reason behind node redundancy is
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Common Schema-Specific Total

0

100

200

300

400

1

392 393

1

297 298

65

109

184

N
o.

of
no

de
s

in
SV

Tr
ee

Unclustered Unsorted
Unclustered Sorted
Clustered Sorted

Figure 4.5: Efficiency of SVTree

the nature of datasets.

4.6 SUMMARY

In this chapter, an embedding-based clustering approach is proposed for discovering

schema variants from a heterogeneous JSON data collection by capturing the structure

and semantics of attributes in JSON documents. Throughout the literature, all existing

works concentrates on schema extraction by considering the structural similarity of

JSON schemas. In comparison to the state-of-the-art methodologies discussed in the

survey, this research pioneers the use of both structural and semantic similarity for

JSON schema inference using a clustering algorithm. The proposed SchemaEmbed

model produced the JSON schema embeddings. Clustering contextually relevant JSON

schemas addressed the semantic matching issues in JSON structures. Literature has

seen a few works (Klettke et al. 2015; Wang et al. 2015) designed a data structure

to store the global schema. In general, the number of nodes in a tree for constructing a

global schema is equivalent to the number of unique attributes in a collection. Hence,

the final representation does not explicitly show the exact schema variants that exist in

a collection. To address this issue, we presented SVTree, a new data structure to provide

the summarized representation of schema variants. SVTree captures the hidden schema
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information, such as core and schema-specific attributes present in a collection. Using

the schema variants extracted, any database system can build efficient indexes in order

to improve the performance of data retrieval. The extensive experiments on real and

synthetic datasets show the effectiveness of the proposed approach with baseline and

existing approaches.
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CHAPTER 5

SCHEMA-AWARE INDEXING

5.1 INTRODUCTION

Over the past decade, JSON has established itself as the de facto format for storing

multi-structured data in NoSQL Document Stores. As documents evolve over time,

there is increased complexity in efficiently retrieving data. Indexes have traditionally

been used to speed up the search process in hierarchical data. Considering the nature

of JSON data where the value of an attribute has different substructures in their nesting

level, the parent-child (P-C) and ancestor-descendant (A-D) relationship of attributes

must be preserved for efficient retrieval of path queries. Of the wide variety of in-

dexing techniques available for hierarchical data, path-based indexes are particularly

effective for fast data access (Sasaki et al. 2020). As the number of heterogeneous

JSON sources grows, indexes often consume ample space and degrade data retrieval

performance. Thus, there is a demand for fast and space-efficient index structures for

JSON documents.

Most search indexes are based on inverted indexes, which use a bag of words model

to store and retrieve the structural relationship between terms and documents and their

statistical measures of relevance. Inverted index associates each term in the document

with JSON objects containing the term, represented as (term, DocIDs). When a search

query is executed, the index is queried in a single scan of the index, and the candidate

results are identified (Baeza-Yates et al. 1999). Nonetheless, inverted indexes are solely

used for finding exact keyword (lexical) matches in each document.
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Figure 5.1: Query processing in MongoDB architecture (mongodb schema 2019)

Motivation

Figure 5.1 shows the process of query processing in MongoDB (mongodb schema

2019) distributed environment. The documents are distributed to the shards based on

the shard key and partitioning methods. Config Server maintains the metadata infor-

mation about each shard which helps the mongos (query router) direct the query to the

respective shards. For instance, a query Q = {conference name=”IPM”}. Suppose if

Q is not a covered query, i.e., Q does not contain a shard key, then mongos must broad-

cast the query to all the shards to retrieve the data. Frequent broadcasting of a query

introduces a high query processing cost. This can be improved by constructing the most

appropriate index at each shard and config server by identifying the primary attributes

that contribute to limiting the amount of data a query must process. This scenario has

motivated us to design an efficient and compact index structure that can be placed at

each shard and config server for efficient JSON data retrieval.

The following example illustrates the need to explore the contextual relationship of

JSON attributes for better information retrieval. JSON documents not only have varied

structures but also differ semantically. For instance, consider a Publication scenario in

the form of JSON document collection, as shown in Table 4.1, from various publish-
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ers such as DBLP1, IEEE2, ACM3, and so on. Each publisher uses a different set of

attributes to represent the class or category, such as conference, journal, book, etc. For

example, schemas S1 and S3 in Table 4.1 represent the class conference, while S2 be-

longs to news article. In other words, schemas S1 and S3 are structurally different but

contextually similar, i.e., the same set of attributes are annotated differently in S1 and

S3. In order to return the results for Q, the naive lexical search returns D1. However, Q

is semantically relevant to D3 as well. Therefore, the task is to find the relevant schemas

for a given query and retrieve the respective documents, such as D1 and D3. Because

the relevant documents use terms that are similar but different from exact query terms,

this problem can be classified as a vocabulary mismatch problem. A traditional lexical-

based index is unable to deal with this situation. As a result, there is a requirement to

address this problem to improve the performance of relevant data retrieval.

Most existing works of JSON data (Budiu et al. 2014; Hamadou et al. 2019; Shukla

et al. 2015) focussed on the path-based indexing approach, and all the paths in a JSON

document collection act as an index key. In addition, arrays have repeated substructures

which increases the size of an index. Therefore, there is a requirement to compress the

index for efficient data retrieval without losing essential information. Moreover, they

ignore the semantics of data during the construction of the index. While there has been

less research effort (Tekli et al. 2019) put into semantic search, existing works have

used word sense disambiguation (WSD) to capture the semantic relationship between

attributes by employing synsets, hypernyms, and other techniques. WordNet includes

linguistic information about the attributes, and the similarity score is based on the ab-

stract meaning of attributes. However, the context assumes more than just linguistic

knowledge, i.e., the syntactic and semantic information found on the relationship of

surrounding attributes in a schema is included as well. In case of massive JSON data

where the structure varies according to the presence or absence of unordered attributes

at different levels (schema variants), the contextual similarity is more appropriate in

providing more relevant results for applications such as information retrieval.

1www.dblp.org
2www.ieee.org
3www.acm.org
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Contributions

In order to address the above-mentioned research problems, this work aims at answer-

ing the research question: ”How to efficiently retrieve JSON documents addressing both

lexical and semantic matches of queries with improved performance in index size and

data retrieval time?.” To address this question, this work proposes a compact indexing

scheme for efficiently processing the query with less index size. The performance im-

provement in index size is achieved by identifying the primary attributes that cause large

index sizes and removing them from the index. By using the dense retrieval method,

the approach captures the contextual relationship between the query and the schema

variants. Dense retrieval is a promising alternative approach that matches query terms

(attributes) and schema variants in a low-dimensional embedding space and is as effi-

cient in finding the contextual meaning (Guo et al. 2022). It often uses deep neural

networks to learn the dense contextual representations of queries and schemas that con-

tain valuable insights such as semantic relationships, linguistic styles, etc. These low-

dimensional dense vectors are frequently referred to as word embeddings. The inner

product or cosine similarity between a query and schema embedding is regarded as the

relevance score. In this work, the words semantic and context are used interchangeably.

The major contributions of this work include:

• Proposing a JSONPath index table for indexing the structural information of

JSON documents using a novel JDewey labeling scheme

• Proposing a compact JSON Index (JIndex) for lexical matching of queries with

improved index size and response time

• Designing an approach to exploit the semantics of schema variants and construct

Embedding-based JIndex (EJIndex) to support efficient semantic search

• Conducting an empirical study to demonstrate the effectiveness and robustness of

the proposed work vs. the lexical-only and semantic-only approaches

The rest of the chapter is organized as follows: The preliminaries are given in Section

5.2. Section 5.3 describes the problem along with research objectives, and the proposed
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work is explained in Section 5.4. Section 5.5 presents the experimental results and

performance analysis. Finally, the chapter is summarized in Section 5.6.

5.2 PRELIMINARIES

Figure 5.2: Tree Representations of two JSON documents

5.2.1 JDewey Labeling Scheme

In case of tree-shaped data such as XML, in order to retain the structure of XML docu-

ments, most of the existing works (Hsu and Liao 2020; Qtaish and Ahmad 2016) have

concentrated on labeling the nodes, i.e., the XML nodes are given unique identifiers by

preserving the ancestral relationship of the attributes. Similarly, in this work, the prefix

labeling scheme (Min et al. 2009) is used to exploit the structural information of the
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JSON tree. The commonly used prefix labeling scheme is Dewey order (Tatarinov et al.

2002), where the nodes are given unique labels that describe the path from the root to

the node. Unlike XML, the most sensitive part of JSON is an array type representing

the set of ordered objects or any primitive data types. Thus, the Dewey order of XML

data can not be directly applied to JSON data. Hence, in this work, we propose JDewey

for JSON documents, an extension of Dewey order for XML data that preserves the P-

C and A-D relationship of JSON attributes as well as the array representation of JSON

data. In this approach, each node is associated with a vector of integers that corresponds

to the path from the document root to the specific node in the document tree. JDewey is

briefly described as follows:

1. JDewey(Root)=0

2. if node q is the child of node p, then JDewey(q)=JDewey(p)+”.”+q

3. if node q is the nth child of node p where p is a root node, then JDewey(q)=n

4. if node q is the nth child of node p where p is not a root node and of non-array

type, then JDewey(q)=JDewey(p)+”.”+n

5. if node q is the nth child of node p where p is not a root node and of array type,

then JDewey(q)=JDewey(p)+”#”+n

Figure 5.3 depicts the JDewey scheme for index tree representation of JSON docu-

ments in Figure 5.2. Unlike XML, JSON documents do not have root attributes. Hence,

this work introduces a common root node labeled 0. The ancestors of node Q labeled

4.1.1.1 are nodes labeled 4.1.1, 4.1 and 4. In case of an array, the ancestor of node D

labeled 1#1 is A labeled 1. A is of array type, and hence its immediate children are

appended with #.

5.3 PROBLEM DESCRIPTION

Consider a JSON document collection G = {D1, D2, ..., Dn} where n denotes the size

of the collection, and SVTree, the proposed work aims to build space-efficient indexes
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Figure 5.3: JDewey scheme for Index tree representation of JSON documents in Figure
5.2

I ∈ {J,E} for efficient retrieval of JSON data, where J denotes lexical match, and E

denotes semantic match. The proposed work is also focused on the quality of search

relevance and data retrieval time. The following research objectives have been identified

to solve the problem described above:

• Analyzing the heterogeneous structure of JSON documents and identifying the

primary attributes to build an efficient index structure

• Building a space-efficient index for lexical matching of queries

• Exploiting the contextually similar JSON schemas by analyzing their structural

components and building a semantic index with limited size

5.4 LEXICAL AND SEMANTIC INDEXING

This section explains (i) the construction of JSONPath index to determine the core and

schema-specific attributes at each nesting level in the documents, (ii) JIndex to retrieve

exact document matches, (iii) EJIndex to retrieve the contextually related JSON docu-

ments in a collection, and (iv) a data retrieval phase to process the queries efficiently.

The workflow of the proposed work is depicted graphically in Figure 5.4. The descrip-

tion of each phase is given below:
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Figure 5.4: Flow diagram of the proposed indexing scheme

5.4.1 JSONPath Index

The proposed JSONPath index aims to minimize the size of lexical (JIndex) and seman-

tic (EJIndex) indexes and to facilitate efficient query evaluation. In order to have effi-

cient querying of JSON documents, the index must preserve the structural relationships

of attributes. This work employs JDewey labeling scheme (as described in Section 5.2)

to preserve the P-C and A-D relationship of the attributes. However, including these

relationships for every attribute in the index incurs space overhead. As a result, the path

information for all attributes is efficiently stored in a path table called JSONPath index.

The JSONPath index ensures that the parent and children information for each attribute

in a collection is used to efficiently handle simple path queries and recursive queries.

Furthermore, the idea of building a JSONPath index is to exploit the core attributes

in all the nesting levels of documents in a collection. Although SVTree contains the

core and schema-specific attributes present in a collection, they represent the root-to-

leaf path of attributes. Using this information, the JSONPath index captures the core

and schema-specific attributes at each nesting level of documents. This is because core
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Table 5.1: JSONPath Index table for JSON documents in Figure 5.2

attributeLabel attributeName Parent Children Common Flag

0 Root - {1, 2, 3, 4, 5} 1
1 A 0 {1#1, 1#2} 1
1#1 D 1 - 1
1#2 E 1 - 1
2 H 0 {2.1} 0
2.1 I 2 - 0
3 J 0 {3.1} 1
3.1 K 3 {3.2} 1
3.1.1 L 3.1 - 1
4 M 0 {4.1} 1
4.1 N 4 {4.1.1} 1
4.1.1 P 4.1 {4.1.1.1, 4.1.1.2} 1
4.1.1.1 Q 4.1.1 - 1
4.1.1.2 R 4.1.1 - 1
4.2 O 4 {4.2.1} 1
4.2.1 T 4.2 - 0
5 S 0 - 0

attributes exist in a whole collection and hence incorporating them for structure-based

queries increases data retrieval time and index size. Furthermore, JSON trees can con-

tain many repeated subtree structures in the form of arrays. We can take advantage of

these repeated subtree structures to minimize size and speed up the data retrieval time.

The tree representation of the JSONPath index is shown graphically in Figure 5.5.

Assuming that the JSON document is represented as a tree where the attributes

are represented as nodes and the edges represent the inclusive relationship between

attributes, the JSONPath index is represented by a 5-tuple {attributeLabel, attribute-

Name, Parent, Children, Common Flag} where

• attributeNamej is the name of the node j

• attributeLabelj is the unique identifier of the node j. It is represented by JDewey

labels, and therefore, the path of a node j from the root is preserved

• Parent of node j denotes the attributeLabeli of the parent node i
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Algorithm 5.1: Construction of JSONPath Index
Input: JSON Document Collection D = {D1, D2, ..., Dn}, SVTree SV T
Output: JSONPath Index P

1 initialize P: V = ϕ;
2 V := V ∈ Root ;
3 Root.attributeLabel := 0 ;
4 Root.attributeName := Root ;
5 Root.Parent := null ;
6 Root.Children := null;
7 Root.CommonFlag := 1;
8 levelCount := 0;
9 foreach Di ∈ D do

10 Insert(Di, P);
11 end

• Children of node j contains the attributeLabeli of the child nodes of node attributeNamei

• Common Flag represents whether the attribute is a core or schema-specific at-

tribute. This information is obtained from SVTree.

The JDewey labels are used to denote the Parent and Children fields of a JSONPath

index, which aids in the identification of the appropriate parent and children nodes

within the same index structure. The ’-’ in the Children field indicates that the attribute

is a leaf node. The value of Common Flag field is either 0 or 1, where 0 represents the

schema-specific attribute, and 1 represents the core attribute.

The JSONPath index table is populated by reading attributes at each document se-

quentially and mapping each attribute to the entries in the index. Documents may have

core attributes, and hence the path or branch of a JSON tree may overlap. As the more

paths overlap, the more compression we achieve in the JSONPath index. Algorithm 5.1

explains the construction of the JSONPath index table. Table 5.1 shows the JSONPath

index for the documents in Figure 5.2. Since the Root node is common for all JSON

documents, the table is initialized with Root and attributeLabel as 0, as per the JDewey

label rules given in Section 5.2. The Children is initialized as null at this step.

Algorithm 5.2 explains the insertion of nodes in the JSONPath index. The JSON

trees are traversed in depth-first order, and the process of JSONPath index construction
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Figure 5.5: A Complete index tree representation for documents in Figure 5.2 with a
part of JSONPath Index and JIndex

is as follows:

1. The root node of JSON trees is labeled as ’0’.

2. While parsing the node N of the JSON tree,

(a) if N is not present in the JSONPath index and N is not a leaf node, then

insert N in the JSONPath index. Update the Parent field and increment the

Count value. Update the Children field of N’s parent with N’s label. Update

the Children field of N when the respective child node is parsed.

(b) else if N is not present in JSONPath index and N is a leaf node, then insert N

in JSONPath index. Update the Parent field and increment the Count value.

Update the Children field of N’s parent with N’s label. Update the Children

field of N with ’-.’

(c) for each attribute Ai in JSONPath index table, if Ai ∈ Ac then the value of

Common Flag is 1 else 0.
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Algorithm 5.2: JSONPath Index Insertion
1 Function Insert(D, P):
2 childList := [] ;
3 parse D in depth first order;
4 foreach Aj ∈ D do
5 if Aj /∈ P then
6 if Aj is in level-1 then
7 levelCount := levelCount + 1;
8 Aj .attributeLabel := levelCount;
9 Aj .attributeName := Aj;

10 Aj .Parent := 0;
11 checkType(Aj);
12 else
13 checkType(Aj);
14 end
15 else
16 checkType(Aj);
17 end
18 end
19 return P
20 Function checkType(A):
21 if type(A) ∈ object then
22 childCount := 0;
23 for x ∈ A do
24 childCount := childCount + 1;
25 if x /∈ P then
26 x.attributeLabel := A.attributeLabel + ”.” + childCount;
27 x.attributeName := x;
28 x.Parent := A.attributeLabel;
29 A.Children := A.Children.append(x.attributeLabel);
30 if x /∈ SVT.radixNode then
31 x.CommonFlag := 0
32 end
33 checkType(x);
34 end
35 end
36 else if type(A) ∈ array then
37 aCount := 0;
38 foreach x ∈ A do
39 aCount := aCount + 1;
40 if type(x) ∈ object then
41 childCount := 0;
42 for y ∈ x do
43 childCount := childCount + 1;
44 if y /∈ P then
45 y.attributeLabel := x.attributeLabel + ”#” + childCount;
46 y.attributeName := y;
47 y.Parent := x.attributeLabel;
48 x.Children := x.Children.append(y.attributeLabel);
49 if x /∈ SVT.radixNode then
50 x.CommonFlag := 0
51 end
52 checkType(y);
53 end
54 end
55 else
56 x.Children := null;
57 end
58 end
59 end
60 else
61 x.Children := null;
62 end
63 return P

The complexity arises when parsing the array of objects since an array contains a

set of the same or different structured objects. In this case, irrespective of the number

of object occurrences, the P-C relationship is considered to decide the path. Hence, this

work contributes to compressing the array structure without losing its A-D relationship.

Figure 5.5 shows the complete index tree representation for documents in Figure 5.2, in

which bold oval-shaped nodes represent the core attributes, and the value list is shown

as a set of rectangles. In case of an array of objects, the node A in the first document is
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of array type with two objects, each of which contains a set of attributes such as D and

E. Since the objects share the same structure, these attributes are mapped together with

’-’ and represented as D and E with A as the array parent. The respective value nodes

are listed in the order of parsing the document.

When the second document is accessed, the nodes A, D, E, and so on are already

present in the JSONPath index. As the node S was not previously indexed, the new

nodes are placed according to the rules we established. The array parent A has two

objects with D, E, and D. Although there is a missing attribute in the second object

of A, the presence of already existing D and E nodes in the JSONPath index simplifies

the insertion process. The first document has a child node for node O in the JSONPath

index, whereas O has a value node in the other. As a result, the JSONPath index is

updated to meet the requirements of new documents. The use of the JDewey label

helps to find the P-C relationship without losing the essential information such as array

representation.

5.4.2 JIndex

The most popular index structures available for XML and JSON documents are tree

and hash tables. While the path expression plays a vital role in structure-based queries

of hierarchical data format such as JSON, tree structures are not efficient in processing

partial matching queries (Hsu and Liao 2013). Recursive queries require all interior

and leaf nodes to be stored in the index, and hence the index size is huge. Therefore,

this work employs a hash-based table to store JIndex and EJIndex for fast access. In

addition, the value of the JSON attribute belongs to a primitive or complex type, i.e.,

the JSON attribute node must be either a leaf node or an interior node with a subtree as

its child. In this case, path indexing allows for faster processing of queries instead of

node indexing.

In this thesis, JIndex is constructed only for the leaf nodes of the JSONPath index,

specifically for the schema-specific attributes As. Algorithm 5.3 explains the construc-

tion of JIndex from the JSONPath Index table. The structure of JIndex is represented

by a tuple (attributeLabel, posting list) where the attributeLabel of the leaf node de-

97



5. Schema-Aware Indexing

Algorithm 5.3: Construction of JIndex and EJIndex
Input: JSONPath Index P, JSON Document Collection D = {D1, D2, ..., Dn}
Output: JIndex, EJIndex
/* Construction of JIndex */

1 foreach Di ∈ D do
2 foreach K ∈ Di do
3 parse the flattened Di;
4 if P[K.Ap].CommonFlag == 1 then
5 if K.Ap /∈ JIndex then
6 JIndex[K.Ap] := ϕ ;
7 JIndex[K.Ap].postingList := {Di, K.Apv};
8 else
9 JIndex[K.Ap].postingList := JIndex[K.Ap].postingList ∪ {Di,

K.Apv};
10 end
11 end
12 end
13 end

/* Construction of EJIndex */
14 Φ(Q) := EQ(Q) ;
15 Φ(S) := ES(S) ;
16 foreach P[K.Ap].CommonFlag == 1 do
17 EJIndex[K.Ap] := ϕ ;
18 sSchema := top-k nearest neighbors of K.Ap ;
19 sDocs := DocIDs of sSchema ;
20 EJIndex[K.Ap].postingList := sDocs;
21 end

scribes the path of the leaf node attribute, and the posting list is represented by a set of

{DocID, value}. Hence, the leaf nodes containing As in the JSONPath index become

an index key in JIndex. While traversing the JSON documents, the posting list of JIndex

is updated for each path in the document.

Index Pruning: JSONPath index identifies core and schema-specific attributes effi-

ciently. JSONPath index also acts as a pruning technique that prevents core attribute

nodes from being processed during query evaluation. In JIndex, the leaf nodes are iden-

tified by the Children field of an attribute. If Children is null for an attribute, then the

attribute belongs to a primitive data type, and hence it is a leaf node. The attributeLabel

of leaf nodes determines the path of an attribute and is stored as an index key. The

value list and the respective DocIDs appended to the leaf node are the posting list for
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Algorithm 5.4: Search JIndex and EJIndex
1 Function SearchJIndex(q, θ, JIndex):
2 foreach term ∈ JIndex do
3 if q == term and θ == null then
4 W := JIndex[term].postingList ;
5 else if q == term and θ != null then
6 foreach x ∈ JIndex[term].postingList do
7 if x == θ then
8 W := DocID ;
9 end

10 end
11 end
12 end
13 return W
14 Function SearchEJIndex(q, EJIndex):
15 foreach term ∈ EJIndex do
16 if q == term then
17 W := EJIndex[term].postingList ;
18 end
19 return W

the respective index key. In naive existing approaches, all the leaf nodes have an entry

in the index. This actually increases the index size. To overcome this problem, in this

work, the hash table comprises leaf nodes that are schema-specific attributes.

5.4.3 EJIndex

This section describes the process of constructing EJIndex for the semantic retrieval of

JSON data collection. The flow of the proposed EJIndex construction is explained in

Algorithm 5.3. Our workflow includes multiple steps: As a first step, we learn the em-

bedding space for attributes and documents separately by using SchemaEmbed model.

In this work, query terms are represented as attributes. Since the attributes and doc-

uments are represented as a vector, finding their similarity is not challenging. In the

second step, each schema-specific attribute As observed in the document collection is

added as an index key, and its DocID is populated as a posting list in the inverted index.

The structure of EJIndex is similar to JIndex and represented by a tuple (attributeLabel,

posting list) where the posting list is represented by a set of {DocID} belongs to the

top-k relevant schema variants for a query. In order to identify the most similar docu-
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ments for the query, an approximate neighbor search is used that finds the top-k similar

schema variants for the query. The steps of this procedure are explained as follows:

5.4.3.1 Learning the embedding space

We assume that queries are attributes from a document collection. Our proposed idea is

to represent the query and schema variants as embeddings in order to effectively identify

the contextual relationship between the query term and the schema variants. The model

comprises three components: a query encoder EQ = f(Q), which produces a query

embedding; a schema encoder ES = g(S), which makes a schema embedding; and a

similarity function has a score between query Q and schema S. In this work, the two

models MQ and MS are two distinct networks for Q and S that can share parameters.

The inner product between Q and S determines the contextual relevance, and the top-k

related schema variants are identified. This document retrieval method assumes that the

top-k nearest documents in the embedding space will be the most relevant documents

to the query term.

Schema Embeddings: The schema embeddings Et generated in Section 4.3 is used

to calculate the contextual similarity with the query embeddings. Hence Φ(S) = Et.

Query Embeddings: Given a query term Q, the model MQ is designed with the pa-

rameters of MS where the query encoder EQ generates query embeddings Φ(Q) after

back-propagation. Various research works have jointly learned query and document

embeddings, improving the semantic relevance between queries and documents. How-

ever, in our case, we have a structured query containing an attribute or set of attributes.

Jointly learning query and schema variants increases the number of core attributes and

simultaneously reduces the performance of semantic relevance. The resultant docu-

ments are merely equivalent to finding exact matches for a query. Therefore, this work

learns query and schema embeddings separately using the same parameters.
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5.4.3.2 Building EJIndex

Given a query embedding Φ(Q) and schema embedding Φ(S), a relevance estimation

function is formally measured as follows:

R(Φ(Q),Φ(S)) =
Φ(Q)TΦ(S)

∥ Φ(Q) ∥∥ Φ(S) ∥
(5.1)

All documents in the collection can be inversely sorted and posted for each index

key. However, due to the sheer size of the document collection, it is not appropriate

to include all schema variants in each posting list. As a result, the top-k most similar

schema variants can be included in each posting list, excluding the remaining results.

For each index key, an approximation of the nearest neighbor search locates and returns

k schema variants with the highest degree of vector similarity. Hence, the length of

the posting list would be determined by the size of the k chosen. In this work, the

postings are represented by the DocIDs of the top-k schema variants returned by the

nearest neighbor search. The postings within each posting list may or may not contain

the index key, but they are the results that are most similar to the index key based on the

learned embeddings.

5.4.4 Query Evaluation

The indexes are built before data retrieval begins. The P-C and A-D relationships are

denoted by / and // as defined in Definition 5.4.1. This work aims to answer two types

of queries: structure-based queries (SQ) and content and structure-based queries (CSQ)

as defined in Definitions 5.4.2 and 5.4.3. These query types are evaluated separately for

arrays and nesting levels.

Definition 5.4.1. A query path q is represented by q = eA1eA2...eAx where e ∈ {/, //}

and Ai ∈ V .

Definition 5.4.2. An SQ Q(q) consists of query path q of a leaf attribute Ai ∈ J . Q

returns JSON Documents {D1, D2, ...Dk} satisfying q.

Definition 5.4.3. A CSQ Q(q, θ) consists of query path q and value predicate θ of a leaf

attribute Ai ∈ J . Q returns JSON Documents {D1, D2, ...Dk} satisfying q and θ.
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SQ contains a path predicate where the path is expressed by P-C and A-D relation-

ships. SQ comprises simple path query and recursive query as described in Table 5.2.

For example, an array query Q1 = /A/#/E where the bold attribute is the target

node. E is present in two occurrences of the first document and one occurrence of the

second document (refer Figure 5.5). Although the attribute has a different number of

occurrences in a document collection, the JSONPath index table assures that the P-C

relationship of E is the same for both documents. Therefore, the respective results are

returned to the user. Consider a nesting level query Q3 = /M/N/P/Q. The attribute

Q is present in both documents, i.e., Q ∈ Ac, and hence both documents are retrieved

as a result.

Algorithm 5.5 shows the pseudocode for evaluating the recursive query. The func-

tion RQuery evaluates the query path q by using the JSONPath index table to determine

its children nodes. Furthermore, we need a buffer bufferP (initially empty) to hold the

path from root to the current node n. The algorithm starts with the current node n (ini-

tially root) and identifies the branches matching q. The function MatchPath matches

the query predicate q with the current nodes in bufferP. If a branch does not match with

q, then q is an invalid query path; otherwise, n in bufferP will be evaluated further till it

reaches the leaf node. When n is a leaf node, the path in bufferP is added to queryList.

Hence, RQuery function returns the set of query paths named qList. The qList returns

all mappings such that n maps to the start node of all the paths. The search function

determines the respective results from JIndex and EJIndex for every query path in qList.

Consider a recursive query Q5 = /M/O//. The attribute O in Q3 has two different

structures, namely the value VO1 and its child node T , as in Figure 5.3. O is a core at-

tribute, and it has different sub-structures. Hence, all the documents in the collection are

returned as a result of Q5. CSQ contains both path and value predicates. Algorithm 5.5

shows the pseudocode for evaluating recursive content and structure queries on JIndex.

Since EJIndex evaluates only the path predicate q, RCSQ is not applicable on EJIndex.

The function RCSQ is called with the query path predicate q and value path predicate θ.

The complete path of q is obtained from RQuery function, and the value predicate θ is

matched with the Search function. Algorithm 5.4 shows the search function on JIndex
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Algorithm 5.5: Query Evaluation
1 Function RQuery(q, J):
2 n := currentNode ;
3 (Initially, n := root) qList := ϕ ;
4 matchp := MatchPath(q, J , n) ;
5 if matchp found then
6 bufferP := bufferP.append(n) ;
7 foreach child ∈ n do
8 if n is not a leaf node then
9 bufferP := bufferP.append(n) ;

10 RQuery(n) ;
11 end
12 else if n is a leaf node then
13 qList := qList.append(bufferP) ;
14 end
15 end
16 else
17 return invalid query ;
18 end
19 return qList
20 Function RCSQ(q, θ):
21 qStart := start node of q ;
22 q1 := RQuery(qStart, J) ;
23 SearchJIndex(q1, θ, JIndex) ;
24 return W

and EJIndex. SearchJIndex function returns all the DocIDs matching the path q if θ is

null otherwise the respective DocIDs matching θ is retrieved. Since EJIndex evaluates

only the path predicate q, it returns all the documents belonging to top-k contextually

related schemas.

Table 5.2: Query Conditions

No. Query Type Query Condition Representation

QT1 Simple Path Query Array /A#B
QT2 Simple Path Query Array /A#B=”xyz”
QT3 Simple Path Query Nesting Level /A/B/C
QT4 Simple Path Query Nesting Level /A/B/C=”pqr”
QT5 Recursive Query /A//C
QT6 Recursive Query /A//C=”pqr”
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5.5 EXPERIMENTAL EVALUATION

This section presents the experimental evaluation of the proposed work in comparison

with the existing approaches. We implemented the modules in Python language and

Keras framework for implementing deep autoencoder. The results are analyzed with

respect to the index size, data retrieval time, and the number of relevant documents

retrieved.

5.5.1 Datasets

We use both real-world data used in literature and synthetic dataset (SD) 4 (as given in

Section 4.5.1 for publication scenario) for our experiments. In addition, the proposed

indexes are evaluated with the Movies and Companies scenario as well. The Movie

scenario is considered from freebase and IMDb databases, and the companies scenario

is from freebase. Freebase Movies (FM) (Hassanzadeh et al. 2013) contains 84, 530

documents with 60 attributes, and IMDb (Hassanzadeh et al. 2013) contains 1, 37, 978

documents with 41 attributes. Freebase Companies (FC) (Hassanzadeh et al. 2013)

contains 74,971 documents with 127 attributes.

Table 5.3: Reduction in number of search keys in JIndex using JSONPath index

Dataset JIndex
Existing Approaches Improvement in

Reduction

DBLP (Mohamed L.
Chouder and Stefano Rizzi
and Rachid Chalal 2017)

25
SIV 29 +13.8%
AzureDB 29 +13.8%

SD 4 194
SIV 195 -
AzureDB 195 -

FM (Hassanzadeh et al.
2013) 52

SIV 60 +13.3%
AzureDB 60 +13.3%

IMDb (Hassanzadeh et al.
2013) 39

SIV 41 +4%
AzureDB 3208 82x

FC (Hassanzadeh et al.
2013) 123

SIV 127 +3%
AzureDB 3623 29x

4https://github.com/umagourish/Synthetic-Datasets.
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Table 5.4: Improvement in index size using JSONPath Index

Dataset JIndex (MB)
Existing Approaches (MB) Performance Im-

provement

DBLP (Mohamed L.
Chouder and Stefano Rizzi
and Rachid Chalal 2017)

139.8
SIV 211.7 +33.9%
UQP 211.7 +33.9%

SD 4 13.8
SIV 14.3 +3%
UQP 14.3 +3%

FM (Hassanzadeh et al.
2013) 58

SIV 72.4 +20.4%
UQP 72.4 +20.4%

IMDb (Hassanzadeh et al.
2013) 57.6

SIV 72.3 +20.3%
UQP 85.7 +32.7%

FC (Hassanzadeh et al.
2013) 21.9

SIV 33.1 +33.8%
UQP 35.7 +38.6%

5.5.2 Baseline and Existing Approaches for Comparison

The proposed approach is evaluated by comparing its efficiency and effectiveness with

the following approaches:

1. AzureDB (Shukla et al. 2015): The author designed the CAS index for Microsoft

Azure’s DocumentDB. The path and value are concatenated, and the result is

stored in Bw-tree. All the paths in a JSON document collection act as an index

key. Hence, AzureDB is considered to compare the number of index keys with

the proposed work.

2. UQP (Budiu et al. 2014): UQP designed a summarized index tree for JSON

documents. Each node in the index tree maintains an inverted index with the

corresponding documents. For simplicity, in this work, UQP constructs a single

inverted index by employing the merging techniques followed in Budiu et al.

(2014). This assumption is based on the fact that a sum of all inverted indexes is

equivalent to the size of a single index if the merging technique is valid. UQP is

compared with the proposed approach to measure the index size.

3. Standard Inverted Index (SIV): The proposed JIndex without index pruning is

105



5. Schema-Aware Indexing

0 10 20 30 40 50 60 70 80 90100
0

10

20

30

40

50

FC Chunks(%)

In
de

x
Si

ze
(M

B
)

(a) FC

0 10 20 30 40 50 60 70 80 90100
0

10

20

30

40

50

60

70

80

90

100

IMDb Chunks(%)

In
de

x
Si

ze
(M

B
)

(b) IMDb

0 10 20 30 40 50 60 70 80 90100
0

10

20

30

40

50

60

70

80

90

100

FM Chunks(%)

In
de

x
Si

ze
(M

B
)

(c) FM

0 10 20 30 40 50 60 70 80 90100
0

20

40

60

80

100

120

140

160

180

200

DBLP Chunks

In
de

x
Si

ze
(M

B
)

(d) DBLP

Figure 5.6: Comparison of JIndex ( ), SIV ( ), and UQP ( ) with respect to
index size for various dataset chunk sizes

denoted as SIV. SIV is compared with the proposed approach for measuring index

size and data retrieval time.

4. SemIndex+ (Tekli et al. 2019): SemIndex+ built an index for structured, unstruc-

tured, and partly structured data. This work focuses on SemIndex+ for partially

structured data. SemIndex+ is compared with the proposed work to measure se-

mantic relevance.

Efficiency refers to the ability of the approach to improve its performance by means

of index size and data retrieval time. On the other hand, effectiveness determines the

quality of relevant results for a specific query.
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Figure 5.7: Comparison of JIndex ( ), SIV ( ), and UQP ( ) with respect to data
retrieval time for various dataset chunk sizes

5.5.3 Results
5.5.3.1 Evaluation of Efficiency

In this section, we have evaluated the index size required for JIndex as well as the

time required to process the queries related to each dataset. Tables 5.3, 5.4, and 5.5

and Figures 5.6, and 5.7 illustrate the respective results and are explained briefly in the

following sections.

Index Size: Table 5.4 shows the size of JIndex and its comparison with the existing

approaches such as AzureDB (Shukla et al. 2015) and UQP (Budiu et al. 2014) for the

datasets. Figure 5.6 illustrates the evaluation of the relative scalability of JIndex with

existing approaches. The index structure of AzureDB is (term, posting list), where the

term represents the full path of an attribute with value and the posting list contains the

DocIDs of the term. This maximizes the number of index keys while minimizing the

posting list size for each index key. JIndex’s structure differs because it has fewer index
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keys and a larger posting list. AzureDB also encodes path data as bytes and posting

lists as bitmaps. To have a fair comparison, the number of index keys in AzureDB is

examined. In particular, the path of an attribute without a value predicate is considered.

According to Table 5.4, JIndex uses less size than existing approaches and achieves

an average performance improvement over existing approaches. The size of the index

grows linearly with the size of the dataset, as shown in Figure 5.6. The difference

between the size of JIndex and UQP increases with the size of the dataset. The ex-

periment is also carried out to determine the reduction in the number of JIndex keys

using the JSONPath index. Table 5.3 demonstrates the overall progress in reducing the

number of index keys. Compared to AzureDB, JIndex performed better in datasets with

a high number of array occurrences and nesting levels. FC and IMDb have achieved

29 times and 82 times improvement over the existing work. However, other datasets

have minor differences in the number of entries comparatively. Although the number of

keys differs less between JIndex and UQP, the index pruning approach has a significant

impact on index size, as seen in Table 5.4. This variation is due to the nature of the

datasets. According to Table 5.4, JIndex reduces index size by a maximum of 38.6% on

diverse datasets.

Data Retrieval Time: To test the performance of JIndex, we formulated different

query types as shown in Table 5.2. Since the index stores the root-to-leaf path as a

search key, it efficiently returns the results in a single lookup. Figure 5.7 plots JIndex

and existing work data retrieval time-averaged over all queries, considering different

chunk sizes of all the datasets. Results show that query execution is linear in all dataset

chunk sizes.

The query types mentioned in Table 5.2 has been evaluated for all datasets, and the

results are shown in Table 5.5. The table also highlights the performance improvement

with SIV. It is noted that the simple queries such as QT1, QT2, QT3, and QT4 had taken

considerably less time than recursive queries such as QT5 and QT6. This is due to

the fact that recursive queries are converted to a set of simple queries (absolute paths

matching the path of the recursive query), and the results of all simple queries must be
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Table 5.5: Improvement in data retrieval time for various kinds of queries

Dataset Query
Type

SIV(ms) JIndex(ms) Performance Im-
provement

Average Performance
Improvement

DBLP (Mohamed L.
Chouder and Stefano
Rizzi and Rachid Chalal
2017)

QT1 356 200 +44%

+38.3%

QT2 370 265 +44%
QT3 314 194 +39%
QT4 398 259 +35%
QT5 642 410 +37%
QT6 723 502 +31%

SD 4

QT1 466 309 +34%

+28%

QT2 216 174 +31%
QT3 379 308 +20%
QT4 276 203 +27%
QT5 1756 1539 +23%
QT6 259 176 +33%

FM (Hassanzadeh et al.
2013)

QT1 413 159 +72%

+33.75%

QT2 214 180 +16%
QT3 326 283 +14%
QT4 199 154 +33%
QT5 NA NA NA
QT6 NA NA NA

IMDb (Hassanzadeh et al.
2013)

QT1 226 147 +35%

+30.3%

QT2 276 180 +35%
QT3 213 144 +33%
QT4 294 207 +30%
QT5 854 724 +16%
QT6 246 190 +33%

FC (Hassanzadeh et al.
2013)

QT1 218 179 +18%

+34%

QT2 214 131 +39%
QT3 212 134 +37%
QT4 245 125 +50%
QT5 1286 1133 +12%
QT6 279 141 +49%

NA Not Applicable

retrieved. Hence, the data retrieval time of recursive queries depends on the number of

absolute paths present in an index. A recursive query is not applicable in FM dataset

since FM contains arrays at the first level of a document and has a maximum of two

nesting levels. The maximum performance on data retrieval time is achieved on DBLP

because the number of absolute paths is less for recursive queries through which Q5 and

Q6 have better performance. Although FC has six levels of depth, the number of index

keys is 123, wherein the array of objects is compressed based on its P-C relationship, as

in Figure 5.3. This reduces the number of hits in the index, which automatically boosts
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the performance of data retrieval time. Similarly, JIndex has shown 30% improvement

over SIV in the IMDb dataset.

In summary, JIndex outperformed the existing approaches in terms of index size

and data retrieval time, as shown in Tables 5.4 and 5.5. The increased efficiency of our

approach is linear on all datasets; thus, it exhibits robust performance irrespective of the

dataset characteristics, size, and query set. The improved efficiency of JIndex is due to

the fact that the approach does not enforce that all attributes must act as an index key.

5.5.3.2 Evaluation of Effectiveness

The real-time datasets are made up of a certain number of attributes with varying struc-

tures. As a result, they are inapplicable for semantic search. EJIndex is evaluated for

DBLP and SD because they are part of the publication scenario. To perform the near-

est neighbor search on our latent embedding space, we employed Faiss (Johnson et al.

2019) for vector quantization and integrated it with an inverted index.

Table 5.6: No. of relevant documents retrieved by JIndex (lexical analysis), EJIndex
(semantic analysis), and SemIndex+

Query JIndex k=1 k=2 k=3
SemIndex+
(Tekli et al.
2019)

EJIndex SemIndex+
(Tekli et al.
2019)

EJIndex SemIndex+
(Tekli et al.
2019)

EJIndex

conference
name - 2,576 2,576 6,141 6,141 326 6,467
author 4,04,471 3,565 3,565 6,141 6,141 8,739 1,70,010
year 2,49,187 1,23,240 3,565 1,23,711 2,576 2,598 326

It is important to explore whether the improvement in index size provided by our

approach results in poor/better performance when searching for relevant documents.

Several researchers in the field of information retrieval have proposed that effectiveness

is measured by means of Mean Average Precision (MAP). However, MAP combines

precision and recall for ranked retrieval results (Zhang and Zhang 2009). While the

indexing approach is responsible for guaranteeing that relevant documents are avail-

able for retrieval, this work evaluates the effectiveness by means of the percentage of

relevance.
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Table 5.6 presents the number of relevant documents retrieved for the sample queries.

Since the proposed work focuses on both lexical and semantic analysis, Table 5.6 pro-

vides a separate list of documents using JIndex and EJIndex. The ratio of the posting

list, say k, is constant for EJIndex and SemIndex+. Furthermore, in order to show the

impact of k, the approach is evaluated for different values of k.

EJIndex and SemIndex+ obtain the relevant schemas associated with each query. It

is noted from Table 5.6 that JIndex does not contain the query attribute conferencename,

and hence the result is null. The query attribute, on the other hand, has a different

structure in the dataset, as shown in Table 5.7. Because author and year is simple

keyword queries in the DBLP dataset, JIndex matches exactly and return 4,04,471 and

2,49,187 documents, respectively. When k = 2, EJIndex and SemIndex+ return the

identical documents for conferencename and author. Whereas when k = 3, EJIndex

returns more documents than SemIndex+. As the proposed retrieval method is based on

top-k most similar schemas, the size of the retrieved set is determined by the documents

following the specified schemas.

To better understand the behavior of EJIndex and SemIndex+, it is vital to analyze

not only the number of relevant documents but also the percentage of relevance. For ex-

ample, for year, SemIndex+ retrieves more documents than EJIndex. However, it is not

determined whether the quantity of documents retrieved is significant. As a result, the

percentage of relevance is evaluated by inspecting the context of queries and schemas,

as shown in Table 5.7. The top three semantically related schemas for EJIndex and

SemIndex+ are shown in Table 5.7.

The SD has been populated with 29 schema variants and 13 classes. Thus, for each

query, the relevant schemas are mapped with the classes to measure the relevance. For

instance, the query conferencename belongs to the context Conference, so the retrieved

schemas must match the same context, which SemIndex+ fails to do for k = 3. How-

ever, the queries author and year are simple keyword queries that belong to all contexts.

In this case, the approaches are evaluated based on the presence of contextually similar

attributes in each relevant schema. For author, SemIndex+ returns an exact match rather
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than a semantic match. However, EJIndex returns contextually relevant schemas. For

the year query, SemIndex+ returns all exact matches, which JIndex already does. There-

fore, EJIndex retrieves relevant schemas irrespective of the query structure and schemas.

5.5.4 Discussion
5.5.4.1 JIndex

Considering the scalability of the index size for JSON datasets of varying sizes, the

results demonstrate that the current approaches utilized more space and had lower scal-

ability than JIndex. Since JSON documents are varied by structure in real-time, we

analyzed the proposed work based on the nature of the datasets, as below:

1. JSON Documents with≤2 level: DBLP, SD, and FM datasets have two levels of

attributes. In particular, all the attributes in the FM dataset belong to an array of

strings or numbers data types. Hence, both SIV and UQP have an equal number of

index keys. However, JIndex has less number of index keys compared to existing

approaches. In addition, Table 5.4 demonstrates that even a slight variance in

index keys results in a big difference in index size. This is due to the fact that

the attributes pruned by JIndex are core attributes that often take up a significant

amount of space in all the datasets. Similarly, the approaches yield a good result

on index size for DBLP and SD datasets. The impact of index size is reflected in

data retrieval time as well. The results from Table 5.5 show that the data retrieval

time for three datasets yielded a maximum of 38% improvement in performance.

2. JSON Documents with >2 level: JIndex outperformed all other existing ap-

proaches for datasets with more than two nesting levels (IMDb and FC). This is

owing to the fact that large levels have many arrays of object data types which

introduce redundant paths. From Table 5.3, the results of IMDB and FC datasets

for JIndex and AzureDB show the impact of the index pruning technique and ar-

ray compression followed by JIndex. JIndex achieved a maximum of 82 times

AzureDB’s index keys. The redundant paths are compressed efficiently by JIn-

dex, and specifically, the redundant core attributes are pruned from JIndex. As a

result, JIndex can have fewer index keys and a smaller index size without sacrific-
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ing any data from datasets. AzureDB consumed an ample size compared to other

approaches. This is because it stores all occurrences of an array as a separate

index key, which has redundant paths in the index key. For instance, in Figure

5.2, even though the 0th occurrence of attribute a in two documents has the same

structure, AzureDB has four index keys due to the presence of different values.

This increases the redundancy in paths which increases the index size. How-

ever, JIndex has two index keys holding the values of two documents and hence

achieved better compression in the index. Regarding the data retrieval time, the

performance improvement of JIndex is similar to the above case. One may think

that the fewer index keys and index size may improve data retrieval time com-

pared to the above case. This case is predicted based on the nature of the dataset,

i.e., the large number of array of objects has a high posting list for an index key

that needs to be retrieved for all the queries. Hence, the data retrieval time is

based on the nature of the dataset.

Although there is a trade-off between data retrieval time and index size, JIndex

achieves at least a 28% improvement in query response time for all kinds of datasets

compared to existing approaches. By analyzing the index size from Table 5.4, it is

observed that JIndex works exceptionally well on datasets with more than two nesting

levels.

5.5.4.2 EJIndex

The data in Table 5.7 allow for numerous observations. The first observation reveals that

both proposed and existing works obtain a sufficient number of relevant documents for

all five document collections. Another observation is that even though both works yield

a similar percentage of relevant documents, their effectiveness varies depending on the

context. For instance, consider the conferencename query; EJIndex retrieves documents

related to the conference irrespective of its exact term. However, the schema belonging

to Miscellaneous context returned by SemIndex+ is not relevant to the query. While

both works return a similar number of relevant documents for each query, when k grows

larger, the received documents are not always overlapping and become complementary.
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In summary, results demonstrate that JIndex and EJIndex serve the purpose of effi-

cient JSON data retrieval by leveraging both lexical and semantic matching of queries

with reduced index size and data retrieval time. The proposed indexing scheme can

be used in NoSQL distributed environment where the common and schema-specific at-

tributes in each shard help to reduce the index size at each shard. The only problem

in the proposed scheme is that when the query is CSQ and a core attribute, then the

approach does a sequential scan to retrieve the respective documents. However, this

kind of query type is not frequent in real-time, and the number of core attributes is usu-

ally less. Therefore, the proposed indexing scheme would take less time for retrieval.

However, this is the primary limitation of the approach, which will be addressed in the

future.

5.6 SUMMARY

This chapter proposed a compact schema-aware indexing scheme for JSON document

collection that supports both lexical and semantic matching of JSON path-based queries.

To the best of our knowledge, this is the first work of its kind to capture contextual infor-

mation in JSON schemas and design an embeddings-based index for JSON documents.

In addition, we introduced the JDewey labeling scheme to preserve the structural rela-

tionship of the attributes. The experimental results of the proposed work confirm that

the index size and data retrieval time are linear with respect to the document collection

size and more effective in retrieving contextually relevant documents.
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CHAPTER 6

INCREMENTAL APPROACH FOR HANDLING
DYNAMIC JSON DATA

6.1 INTRODUCTION

The widespread use of IoT systems and modern real-time applications in today’s world

generates massive JSON data dynamically. As the data changes, the implicit schemas

associated with the data also change. The process of updating the schema of the docu-

ment in a collection from one version to another, often by adding, removing, or modi-

fying the attributes, is referred to as schema evolution. Any change in the JSON doc-

uments can be addressed in the following two ways: either by schema versions of the

documents or by updating the old schema variants of the modified documents.

Most literature focuses on extracting the schema versions from a collection using

schema class types (entities) manually embedded in the documents. These approaches

maintain schema versions in data lakes efficiently for the updated document versions

(Klettke et al. 2017, 2016; Scherzinger et al. 2013). Due to the dynamic nature and

sheer size of JSON documents, the manual embedding of class types in each document

is not feasible in real-time. Therefore, there is a need to automatically identify the class

types of new schema variants with the help of the previous class knowledge. This work

employs an Incremental embedding-based clustering approach to handle the dynamic

data.

The modified documents are clustered based on the contextual similarity of the re-

spective schemas. The Incremental SchemaEmbed model computes the contextual sim-
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ilarity of the modified JSON schemas based on the class-incremental scenario where the

classes for the new and modified documents are identified by preserving the old classes,

i.e., new documents are efficiently organized into the clusters based on their similarity

with the old documents. At each cluster, the SVTree is updated incrementally by adding

new schema variants and modifying existing schema variants.

When documents evolve, it is necessary to provide the latest documents for user

queries. To address this issue, incrementally updating the indexes is essential. Most

existing works of JSON indexing techniques are well-suited for the static environment

(Budiu et al. 2014; Shang et al. 2021; Shukla et al. 2015), and they lack in providing

dynamic support. Although few studies exist in XML indexing techniques (Hsu and

Liao 2020; Wellenzohn et al. 2020), they suffer from huge index sizes and high data

retrieval time. Hence, in this work, an updatable compact indexing scheme is developed

based on SVTree for efficient updates of JSON documents.

The major contributions of this work include the following:

1. Proposing an Incremental SchemaEmbed model to generate the schema embed-

dings for new data using the pre-trained SchemaEmbed model.

2. Proposing an Incremental embedding-based clustering approach to cluster the

new documents based on the previous clusters.

3. Designing an approach for updating the SVTree, JIndex, and EJIndex to reflect

the updates in the data.

4. Evaluating the proposed approach with baseline approaches on real and synthetic

datasets.

The rest of this chapter is structured as follows. Section 6.2 describes the problem

statement. Section 6.3 presents the incremental schema variants extraction, and Section

6.4 presents the incremental indexing in detail. Section 6.5 presents the experimental

study and performance analysis. Finally, Section 6.6 presents a summary of the chapter.
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6.2 PROBLEM DESCRIPTION

This section presents the design of our approach to update schema variants and indexes

incrementally with respect to updated document collection. Consider an updated JSON

document collection G′ = {D′
i}xi=1 and D′

i = {A′
j,s}

tj
s=1 where A′

j,s represents the at-

tribute A′
s in document j, tj represents the number of attributes in a document j and x

denotes the size of the collection, the proposed work aims to develop an Incremental

embedding-based clustering approach that extracts different JSON schemas in the col-

lection G′ and analyses the contextual similarity among them to group the similar JSON

documents based on the old K clusters i.e., the contextual similarity of G′ is compared

with the K clusters. The output is an updated SVTree that represents the summarization

of updated schema variants available at each cluster Ci along with its core and schema-

specific attributes. In addition, JIndex and EJIndex are updated incrementally to support

the retrieval of the latest documents for user queries.

The proposed approach is divided into two phases such as (i) Incremental Schema

Variants Identification and (ii) Incremental Schema-Aware Indexing. The description

of each phase is given in the following sections.

6.3 INCREMENTAL SCHEMA VARIANTS EXTRACTION

The process of schema variants identification works in two steps: (i) Incremental SchemaEm-

bed model and (iii) Incremental SVTree construction.

6.3.1 Incremental SchemaEmbed model

Numerous deep learning algorithms succeed based on the following two assumptions:

i) training data is identical and independently distributed, and ii) training data labels

are available. The former is uncommon if new data arrives sequentially over time.

Therefore, continuous learning has been offered as a solution to the former issue of

incrementally learning new tasks without forgetting previous information. The latter

requires additional human annotation and can be noisy. Therefore, unsupervised learn-

ing addresses the latter by directly learning the latent representations for downstream

tasks from unlabeled data. However, unsupervised continuous learning, which is sup-
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Figure 6.1: Incremental SchemaEmbed Learning Architecture

posed to address both of the aforementioned difficulties, has received limited research.

Hence, in this work, we examine a novel challenge for continuous learning that involves

pseudo-label fusion at a later stage rather than human annotations, which is crucial for

real-world applications.

As documents evolve, the model must learn them to acquire new knowledge. How-

ever, the model forgets what it has learned before. This is called catastrophic forgetting.

To alleviate this issue, the Incremental SchemaEmbed model Mi in this work uses the

old parameters of a SchemaEmbed model Mi−1 to preserve the old knowledge. Figure

6.1 shows the flow description of the proposed incremental model.

To define formally, the incremental learning problem T can be expressed as learning

a sequence of N tasks T 1, T 2, ..., TN corresponding to N − 1 incremental steps. Each

task T i ∈ T contains P non-overlapped classes to learn. In this work, we explore

class-incremental learning in an unsupervised environment starting from task T 2 for

incremental steps, assuming that the initial model was trained on T 1. Let D1, ..., DN be

the training data associated with N tasks, and Di represent the data associated with T i.

P i refers to the number of newly added classes for task T i ∈ T , which is also defined

as incremental step size.

6.3.1.1 Pre-Training Phase

The pre-training phase allows us to learn the contextual similarity of JSON schemas for

a given JSON collection G. The initial non-incremental task T 1 is trained with data G1

on model M1. The documents belonging to initial schema embeddings are clustered

with the spherical clustering algorithm, and the initial classes P 1 for G1 were identified
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in Section 4.3.

6.3.1.2 Incremental Training Phase

As an initial step, the schemas for all the new documents are extracted. Given a collec-

tion of JSON documents represented as G′ = {D′
1, D

′
2, ..., D

′
x} where Di comprises

of a set of flattened JSON attributes {A′
1, A

′
2, ..., A

′
y}, the trigrams t′i = {t′i1 , t

′
i2
, ..., t′ix}

for each D′
i where t′ii = (A′

p, A
′
q, A

′
r) are extracted. The trigram set T ′ comprises all the

trigrams extracted from all new schemas.

As a second step, the trigrams T ′ are given as input to the Incremental SchemaEm-

bed model. At each task T i, where i ∈ {2, 3, ..., N}, the objective is to learn a model

Mi at each incremental step which recognizes N t = P 2 + P 3 + ... + P t classes. The

model Mi is trained using the previous model Mi−1 using the pre-trained weights of

Mi−1 except the last layer of the fully connected deep autoencoder. The model Mi−1 is

trained with dataset G and Mi is trained with G′. Algorithm 6.1 shows the flow of the

proposed incremental learning of schemas for the new documents.

Algorithm 6.1: Incremental embedding-based clustering algorithm
Input: A sequence of N tasks T 1, T 2, ..., TN , Initial Model M1, JSON

Document Collection G1, G2, ..., GN

Output: Updated Model MN

1 P 1 = | T 1 |class;
2 for i← 2 to N do
3 Gi ← {x1, x2, ..., xni

};
4 pae ← pi−1;
5 Mi, Ei = Incremental Learning(Gi, pae);
6 {c1, c2, ..., ck} = Θ(Ei, P

i−1);
7 P i = | T i |class;
8 end

The fully connected and sigmoid layers are used as they were used in SchemaEmbed

model. The weights of SchemaEmbed model are carried to the Incremental SchemaEm-

bed model. The binary cross entropy is used as a loss function. The proposed network

is trained using a backpropagation algorithm based on the values of the loss function

obtained through successive iterations.
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6.3.2 Incremental Embedding-based Clustering

We apply a clustering algorithm based on schema embeddings for new documents to

generate cluster assignments. Firstly, this algorithm classifies the new documents by

comparing the similarity of old and new embeddings instead of relying on new embed-

dings alone. Secondly, the labels of old and new data are fused and passed to a new set

of data.

The Incremental SchemaEmbed model produces a set of schema embeddings Ei for

every batch of new documents which are clustered with the Mini-batch K-means clus-

tering algorithm (Sculley 2010). This clustering algorithm is used because it utilizes

small random batches of fixed-size vectors to store them easily in memory. When-

ever new documents arrive or the existing document changes, a fresh sample of schema

embeddings is obtained from the model. Then, the nearest cluster center for the new

documents is calculated with the objective function f(C,d). The objective function de-

termines the distance between each point in ’N’ samples and ’K’ centers, and then the

document is assigned to the closest center. The count for each center is updated with

the vectors, and the learning rate is determined as the inverse of the number of samples

assigned to a cluster during the process. The applied learning rate decreases with the

number of iterations. The clusters are updated, and the process is repeated until the

clusters converge. An increase in the count of iterations reduces the outcome of recent

examples so that convergence can be noticed in the existing condition without any mod-

ifications in the clusters. Moreover, the perfect balance of accuracy and computation

time is taken care of, which makes real-time clustering efficient.

6.3.3 Incremental SVTree

SVTree SV T for document collection G is constructed with the help of core and schema-

specific attributes Ac and As identified in the schema restructuring phase of Section

4.4.1. When the set of new documents G′ arrives with schemas S ′, the old schemas

S and new schemas S ′ may share some attributes if they belong to the same dataset

scenario.

The description of adding the updated schemas S ′ in an already existing SVTree is
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explained below:

1. Insertion of new schemas: When a set of new schemas are to be inserted, the

existing SVTree is updated by accommodating the updated node information of

new schemas. The inclusion of schemas to SVTree involves the following steps,

and its pseudocode is given in Algorithm 6.2:

(a) The core attributes A′
c = Ac ∩ S and the schema-specific attributes A′

s =

S ′ \ A′
c.

(b) If A′
c = Ac, then sort A′

s according to its IDF value and check if the same

sequence is already present in the SVTree. If so, increment the SV Num of

the specific branch. Otherwise, insert them as a new branch in SVTree.

(c) If A′
c < Ac then change the elements of radix node from Ac to A′

c. Then the

respective As are changed to A′
s, which should be reflected in the SVTree as

well.

(d) If A′
c > Ac then A′

c = Ac and A′
s = S ′ \ A′

c and then follow the step (b).

2. Deletion of existing schemas: To delete a set of schemas, the user is required

to provide the list of document identities so that the respective schemas will be

deleted from the SVTree. The given DocIDs is removed from DocIDList of the

leaf node. If the size of DocIDList becomes zero after deleting the respective

DocIDs, then the nodes containing the specific schema variant are deleted from

SVTree. However, this operation does not affect the radix node containing core

attributes. Therefore, deletion of a schema variant from a tree reduces the number

of nodes describing the schema-specific attributes.

3. Modification of existing schemas: While performing modifying operations on

any existing document, it is highly desirable to incorporate only the updated part

of the respective schemas in an existing SVTree instead of regenerating the entire

tree. For instance, when a document is modified with new attributes, then it is

required to incorporate the new updates without reconstructing the SVTree. The

process of SVTree updation involves deleting the old information and adding the
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Algorithm 6.2: SVTree Updation
Input: SVTree SV T , JSON Documents D′

1, D
′
2, ..., D

′
x, Schema Variants S ′}

Output: Updated SVTree SV T ′

1 A′
c = Ac ∩ S ′;

2 foreach Si ∈ S do
3 A′

si
= Si \ A′

c;
4 end
5 if A′

c < Ac then
6 SV T.radixNode := A′

c;
7 newNode := SV T.addNode(Ac \ A′

c);
8 V := V ∪ newNode;
9 newEdge := SV T.addEdge(SV T.radixNode, newNode);

10 E := E ∪ newEdge;
11 foreach childnode in SV T.radixNode do
12 newEdge := SV T.addEdge(childnode, SV T.newNode);
13 E := E ∪ newEdge;
14 end
15 else
16 foreach Si ∈ S ′ do
17 traverse SV T till SV T.radixNode;
18 SV T.currentNode := SV T.radixNode;
19 SV T.currentNode := SV T.nextNode;
20 SV T ′ :=

InsertSS(A′
si
, Si, SV T, SV T.currentNode, SV T.radixNode);

21 end
22 end

new information in the respective nodes of SVTree. Deleting any attributes in a

given schema variant Sa of a document Da is handled in the following fashion.

(a) If Sa becomes Sb after deleting some attributes where Sb ∈ S, then the

respective nodes in SVTree is updated, i.e., the DocIDList of a leaf node

containing Sb is added with Da. Similarly, the DocIDList of a leaf node

containing Sa is updated by deleting Da. This situation arises because Sb is

a subset of Sa.

(b) If Sb /∈ S, then Sb is a new schema variant for SVTree. Therefore, the

DocIDList of a leaf node containing Sb is updated by deleting Da. Similarly,

the new schema variant is added to SVTree as in 1.
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6.4 INCREMENTAL JINDEX AND EJINDEX

The research community has paid less attention to supporting dynamic operations on

JSON indexes. When the original document is modified, expensive index rebuilding or

identifier reassigning is required. Thus, there is a need for an efficient indexing scheme

to provide concurrent updates of JSON documents. The proposed JIndex and EJIndex

are constructed based on the schema-specific attributes in a cluster. The indexes are

updated based on the changes in SVTree. The new branch in SVTree corresponds to

adding new index keys or updating the posting list of existing index keys. JIndex and

EJIndex require the same number of keys as the number of updated schema-specific

attributes in a cluster. Thus, the proposed JIndex and EJIndex require less number

of index keys, resulting in a reduction in index size as well as reduced data retrieval

time while supporting dynamic operations efficiently. All update operations are directly

executed without index rebuilding. The insertion and deletion of documents are handled

by updating the posting list of the respective attributes. The detailed approaches are

explained as follows:

The structure of JIndex, EJIndex and insertion of keys have been described in Sec-

tion 5.4. This section describes dynamic insertion, deletion, and modifications to JIndex

and EJIndex in different cases as below:

1. Insertion of new documents:

(a) Inserting documents with already existing keys: If the new document Da

arrives with already existing keys say case (b) of insertion in Section 6.3.3,

then Da is appended to the posting list of the attributes Aa (index keys ) in

the specific schema variant.

(b) Inserting documents with new keys: If the new document Da arrives with

new keys, then the respective keys are added to the JSONPath index. In

addition, the keys are created in JIndex, and EJIndex. The respective posting

lists are created with Da.

2. Document Deletion: The user provides the DocID to be deleted from the index.

The Ac and As are obtained from SVTree. Therefore, JIndex searches for the
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index keys (As), and then the entry DocID and its value will be removed from the

respective posting list. Similarly, in EJIndex, the DocID will be removed from the

respective posting list. Algorithm 6.3 shows the procedure of deletion operation

in JIndex and EJIndex.

3. Modification of existing documents: Updating the index for the existing docu-

ments involves deletion of old attributes and insertion of new attributes. There-

fore, JIndex searches for the attributes to be deleted using As, and then the given

DocID and its value will be removed from the respective posting list. As a next

step, the new attributes to be added follow the step 1. Similarly, in EJIndex, the

DocID will be updated in the respective posting lists.

Algorithm 6.3: JIndex and EJIndex Deletion
Input: JIndex, EJIndex, Da

Output: Updated JIndex and EJIndex
1 foreach Daa ∈ Da do
2 foreach K ∈ Daa do
3 parse the flattened Daa ;
4 if K.Ap ∈ As then
5 JIndex[K.Ap].postingList := JIndex[K.Ap].postingList \ {Da, K.Apv};
6 EJIndex[K.Ap].postingList := EJIndex[K.Ap].postingList \ Da;
7 end
8 end
9 end

6.5 EXPERIMENTAL EVALUATION

This section presents the experimental results of the proposed approach with existing

approaches.

6.5.1 Datasets

We use real and synthetic datasets for conducting our experiments as described in Sec-

tion 4.5.1. In order to evaluate the proposed approach, the original dataset has been

updated as follows:

• As per Section 4.5.1, there are 39 schema variants in SD 1 with 77 unique at-
1https://github.com/umagourish/Synthetic-Datasets
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tributes in a collection. Five schema variants have been newly added, with ten

new attributes. Therefore, 15,045 documents have been added to evaluate the

incremental approach.

• For real datasets such as DBLP (Mohamed L. Chouder and Stefano Rizzi and

Rachid Chalal 2017), IMDb (Hassanzadeh et al. 2013), FC (Hassanzadeh et al.

2013), and FM (Hassanzadeh et al. 2013), new documents (10% of the old

dataset) are added to the old dataset.

6.5.2 Baseline and Existing Approaches for Comparison

The proposed model is compared with the following two baseline models. The baselines

and proposed model adapt the same architecture f . However, the training procedures

of f differ among the baselines.

1. Weight Initialization (Init) model: The Init model uses the parameters of the

previous model and trains the new data. For instance, Let Mi−1 and Mi be the

models trained sequentially using the deep autoencoder architecture f . The pa-

rameters of f for training on Mi are initialized with the parameters of f trained

on Mi−1.

2. Combined Training (Comb) model: In this baseline, the data from old and new

classes are combined to train the autoencoder f . The last hidden layer of the

encoder is dropped from model Mi−1, and the mean of parameters used in the

previous layers are calculated for the new additional layer in model Mi.

6.5.3 Results and Discussion

This section presents the experimental results of the proposed work using real and syn-

thetic datasets.

6.5.3.1 Incremental Embedding-based Clustering

The quality of clustering new documents based on their schema embeddings is evalu-

ated using NMI, AMI, and ARI.
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Table 6.1: Efficiency of incremental clustering approach

Evaluation
Metrics

Comb Init
Proposed

Work

SC 0.61 0.56 0.67
NMI 0.7 0.68 0.74
AMI 0.68 0.66 0.70
ARI 0.41 0.39 0.59

Experimental Setup: Let the schema variant S is denoted by a sequence of attributes

S = {A1, A2, ...., An} where n is the number of schema variants. Attributes present in

the vocabulary W are initialized to the corresponding attribute embeddings. However,

the attributes present in new documents may not be present in the vocabulary list, and

hence the vocabulary list is updated for each and every new document. These attributes

are updated to generate the final attribute embeddings.

The proposed model focuses on updating the parameters of decoding layers. In this

work, the last layer of the autoencoder is dropped from model Mi−1, and the mean of

parameters used in the previous layers are calculated for the new layer in model Mi.

After updating the model with pre-trained weights, the final decoder layer with its input

size is added at the end of the deep autoencoder to reduce the reconstruction loss.

Results: Table 6.1 presents the experimental results on the updated datasets. It is

observed from Table 6.1 that the proposed model has shown better results than baseline

models, and the values have an upward trend. The proposed approach achieves an NMI

score equal to 74%, which is an improvement of an absolute 5.7% and 8.8% compared

to the baseline models Comb and Init, respectively. Furthermore, the AMI and ARI

scores have shown similar improvement over the baselines. The SC value of 0.67 has

shown that the inter-similarity between the clusters is less, and hence the clusters are

well formed.

The performance of the Init model is less because it only works on static datasets

and is not capable of learning new knowledge incrementally. Furthermore, it suffers
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Figure 6.2: Efficiency of Incremental SVTree

from catastrophic forgetting, i.e., the knowledge about previous data is not carried to

train the new data. The Comb model directly deals with the encoder layer, which lacks

focus on controlling the whole autoencoder. Although it fine-tunes the encoder layer,

it fails to consider the fully connected autoencoder. The proposed work focuses on

controlling the whole autoencoder by fine-tuning the decoder rather than the encoder

layers.

While comparing the results of the proposed Incremental embedding-based clus-

tering approach with the baseline embedding-based clustering approach (ref. Chapter

4), both approaches yield similar results for all the evaluation measures we have con-

sidered. However, it is observed that the incremental clustering approach has updated

the clusters for new and modified documents with reasonable SC values and is able to

achieve good NMI, AMI, and ARI scores effectively.

6.5.3.2 Incremental SVTree

Figure 6.2 depicts the efficiency of the Incremental SVTree after updating the old SVTree

as discussed in Section 4.5.4.3. Based on the new schema variants at each cluster, it is

observed from the results that the number of common attributes is increased from 65

to 66, and the respective schema-specific attributes have increased from 186 to 190.

However, there is a large difference in the unclustered data, i.e., the number of schema-
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specific attributes has been increased from 297 to 326. Similarly, the unclustered and

unsorted tree yields a difference of 30 nodes. By comparing the results, the number

of nodes in both baselines is almost the same, whereas the proposed work shows a

drastic difference in the number of nodes. Therefore, Incremental SVTree contributes

to providing the summarization of schema variants efficiently even after updating the

database.

6.5.3.3 Incremental JIndex

Since the research on JSON dynamic indexing techniques is still in the preliminary

stage, the proposed indexes are compared with the baseline inverted index rebuild from

scratch. Each update process begins by searching for the target attributes and then

inserting or deleting them. The proposed approach is evaluated by index update time

and index size.

Table 6.2: Improvement in Index Size using JSONPath index

Dataset JIndex
(MB)

SIV
(MB)

Performance
Improvement

DBLP (Mohamed L. Chouder and
Stefano Rizzi and Rachid Chalal
2017)

153.5 253.2 +39.3%

SD 1 16.2 17.3 +6%

FM (Hassanzadeh et al. 2013) 59.1 90.9 +34.9%

IMDb (Hassanzadeh et al. 2013) 63.1 87.1 +27.5%

FC (Hassanzadeh et al. 2013) 26.7 44.5 +40%

Index Size: Table 6.2 shows the updated index size of JIndex and SIV after adding

new documents to the old JIndex and SIV. It is observed from the results that although

the number of core attributes is less in the new documents, JIndex achieved a minimum

of 6% over SIV for SD and a maximum of 40% improvement for the FC dataset over

SIV. The major difference between the minimum and maximum improvement of JIndex

occurs due to the nature of the datasets. SD has only one core attribute, and hence JIndex
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Figure 6.3: Index updation time

achieved less improvement over SIV. However, FC has a nesting depth of 7, and hence

the number of core attributes is comparatively high. Therefore, the proposed approach

was able to show better improvement.

Index Updation Time: To evaluate the update performance, the varying number of

core and schema-specific attributes are fed into the indexes. The proposed indexes in-

volve modification of the existing posting list for already existing attributes and adding

a new posting list for new attributes. While index rebuild creates new keys for all core

and schema-specific attributes, the index rebuild time and data retrieval time are high

for each update operation. In contrast, JIndex and EJIndex focus on updating only

schema-specific attributes through which the index update time is reduced.

The results of index updation time are analyzed for different data types such as array

attribute and nesting objects as illustrated in Figure 6.3. It is noted from the results that

the array attribute considerably consumes more time than the nested attribute. This is

because the array attribute has more than one value, and all the values must be removed

before inserting the new values. The performance of the proposed work also depends

on the nature of the datasets, where long documents consume more time than small

documents in a large collection.
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6.6. Summary

6.5.3.4 Incremental EJIndex

The research on dynamic semantic indexing techniques for JSON documents is still

in the preliminary stage. Therefore, the proposed Incremental EJIndex is compared

with EJIndex to evaluate whether the incremental approach is able to identify the new

schemas for the given queries. The top three semantically related schemas identified

before (EJIndex) and after (Incremental EJIndex) adding new documents are tabulated

in Table 6.3. For the query headline, EJIndex has identified the news article context cor-

rectly, and the other two schemas are related by the meaning. The schema paper/author

paper/article type paper/article name paper/date of publication paper/pages belongs

to the context News Article was added to the collection. Similarly, for the query month-

filed, the Incremental EJIndex is able to identify the newly added schema for the context

Patent. The respective relevant documents will be retrieved for the given queries in the

same way as in Section 5.5.3.2. It is evident from the results that Incremental EJIndex

identifies the new schema correctly. Experiments reveal that the proposed Incremental

EJIndex is able to identify the context during schema evolution.

6.6 SUMMARY

In this chapter, we have presented an approach for updating the new documents to

the respective clusters using the Incremental SchemaEmbed model and Incremental

embedding-based clustering approach. The model used a late fusion of classes to deter-

mine the cluster centers for new documents. The core and schema-specific attributes in

the SVTree are updated to reflect the new schema variants efficiently. To provide latest

documents to user queries, the index structures such as JIndex and EJIndex are updated

incrementally. Experimental results show that the proposed model determines the clus-

ters efficiently, and the proposed indexes outperform baseline indexes in reducing the

index size and index updation time. It is also evident from the results that the proposed

approach incorporates the updates efficiently in already existing indexes.
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CHAPTER 7

CONCLUSIONS AND FUTURE SCOPE

This dissertation has focused on extracting schema variants from JSON collections and

constructing compact indexes for efficient retrieval of dynamic JSON data. This is

achieved in three facets. Firstly, we proposed Embedding-based clustering approach

using SchemaEmbed model to cluster the contextually relevant JSON documents and

SVTree to represent the schema variants. As the schema variants capture the different

sets of attributes present in a collection, it supports various applications such as big

data analytics, distributed query decomposition, query optimization, etc. The proposed

clustering approach has been tested with real and synthetic datasets. The experimental

results substantiate the effectiveness of the proposed approach compared to existing

approaches. The results of SVTree confirm that the proposed work is able to identify

the core and schema-specific attributes, which will eventually be used for efficient data

retrieval. While the proposed work concentrated on generating the schema variants

and cluster-friendly data representation, such as schema embeddings, there is a scope

for optimizing the clustering algorithm through which we can achieve better cluster

assignment and schema embeddings.

Secondly, in order to support efficient retrieval of JSON data, we proposed com-

pact indexes such as JIndex and EJIndex to answer JSON path-based queries. Using

the schema variants extracted, the proposed indexes facilitate efficient data retrieval

for structure-based and structure and content-based queries. An in-depth experimen-

tal analysis demonstrated the efficiency of the proposed indexes by achieving less index
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7. Conclusions and Future Scope

size and data retrieval time. The results also demonstrate that simple path-based queries

take less retrieval time than recursive queries because all the child nodes of the query

attribute must be traversed to retrieve results for recursive queries.

Thirdly, in order to handle the dynamic nature of JSON data, we proposed Incre-

mental embedding-based clustering approach using Incremental SchemaEmbed model

to cluster the new and modified documents incrementally. The SVTree, JIndex, and

EJIndex are simultaneously updated without rebuilding from scratch. Through the dis-

cussion and comparison of experimental results, it is evident that the clustering quality

of the proposed work is better than baseline models. Our analysis of update operations

on the proposed index shows that it significantly reduces the index size, resulting in

faster data retrieval.

7.1 FUTURE SCOPE

This section discusses the future research directions of the proposed work.

• In the present work, the schema embeddings generated by SchemaEmbed model

are fed into a clustering algorithm to group the contextually relevant documents.

In the future, the quality of the clustering algorithm can be further improved by

jointly optimizing the SchemaEmbed model parameters and cluster centers in the

same vector space.

• SVTree is an effort to design a compact data structure for summarizing schema

variants. The number of nodes in the tree structure can be further minimized

by identifying the frequent attribute set in the schema-specific attributes while

preserving all the features of JSON data format.

• The proposed JIndex uses the path of an attribute as an index key to answering

path-based queries. It is observed that recursive queries take a long query pro-

cessing time by searching for all the child nodes of the query attribute. Assigning

a single index key for all the child nodes of the query attribute helps reduce the

query processing time. The single index key can be designed by combining the

path of the sibling keys of an attribute, which eventually reduces the index size.
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7.1. Future Scope

• While the preliminary experiments of the incremental approach for handling dy-

namic data show significant performance in updating the schema variants and

indexes, we plan to examine the same in a real-time scenario.
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