
Phishing Email and URL Detection using Machine

learning and Deep learning

Thesis

Submitted in partial fulfilment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

by

SOMESHA M

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

NATIONAL INSTITUTE OF TECHNOLOGY KARNATAKA

SURATHKAL, MANGALORE - 575 025

OCTOBER, 2023

ACKNOWLEDGEMENTS

I am writing to express my sincere gratitude to all the people who supported and in-

spired me during the tenure of my Ph.D. study. First and foremost, I would like to

express my sincere gratitude to my Supervisor Prof. Alwyn Roshan Pais, Professor

in the Department of Computer Science & Engineering, for his continuous encourage-

ment, patience, motivation, enthusiasm, and immense knowledge. His guidance and

insightful comments helped me in all the research and writing this thesis. Beyond the

research work, I have learned a lot from him, such as discipline, management, interper-

sonal skills, and so on. It will be helpful in the later stages of my career and life. I could

not have imagined having a better advisor and mentor for this thesis.

I want to express my sincere thanks and gratitude to my research progress assess-

ment committee members, Dr. Jeny Rajan and Dr. Nagendrappa H., for their posi-

tive criticism, insightful feedback, and constructive suggestions throughout my research

work. I also extend my sincere thanks to the entire faculty of the Department of Com-

puter Science and Engineering for their support. Nevertheless, I am also grateful to the

technical and administrative staff of the department for their timely help and cooper-

ation. Further, I sincerely thank NITK for providing the necessary infrastructure and

facilities to complete this research work successfully.

I warmly thank my lab mates Srinivas, Alok, Apoorva, Nikhil, Ajnas, Sivakumar,

Zubair, and Vikram for their encouragement and our good times in the department. Fur-

ther, I thank my fellow batch mates, seniors, and juniors for their support.

I bow to my mother Late. Shankaramma M and father Hanuma Naik M for blessing

me to achieve my all-set goals. I thank my wife Shashikala and children Jayanth and

Diganth, for their incredible support throughout my tenure in all aspects. My special

thanks to my brothers Late. Kotresh and Venkatesh, sisters Uma and Vimala, brothers-

in-law, sisters-in-law, Father-in-law, and Mother-in-law, for their continued support and

encouragement. My special Thanks to Dr. Nagendrappa & family and Prof. Sub-

haschandra Kattimani & family, who made my stay at NITK memorable.

I thank all my colleagues at GECK and SKSJTI for their continued support and en-

couragement.

Special thanks to The Department of Higher Education, Government of Karnataka,

and The Director of Technical Education (DTE) Karnataka for permitting me and deput-

ing me to pursue a Ph.D. under the Quality Improvement Program (QIP) scheme.

Finally, thank all of them whose names are not mentioned here but have helped me

in some way to accomplish the work.

Somesha M

ABSTRACT

The research thesis attempts to address the issue of email phishing, which poses a se-

rious risk to businesses and corporations. Through the use of social engineering strate-

gies, email phishing assaults persuade users to divulge personal data that can be ex-

ploited to access their digital assets. Despite the presence several defenses, the Anti-

Phishing Working Group survey reveals that the present approaches to phishing attack

detection are still insufficient and ineffective. This underlines the requirement for a

more effective system to identify phishing emails and offer greater protection against

such assaults to the end user.

There exist many machine learning based techniques to detect phishing emails.

Also, they use a large number of heuristics to classify the email. To overcome the dis-

advantages of existing schemes, we have presented an efficient word embedding cum

machine learning framework to classify the emails. The presented technique uses only

four email header based heuristics (i.e. From, Return-path, Subject, and Message-ID).

The model achieved a significant accuracy of 99.50% using FastText-CBOW algorithm

in combination with the Random Forest classifier.

Although machine learning based techniques achieved significant accuracy, it is ad-

visable to use deep learning models whenever we have sufficient data. We have pre-

sented an efficient deep learning model called ”DeepEPhishNet” for the classification of

emails. The presented model based on FastText-SkipGram with Deep Neural Network

(DNN) achieved a significant accuracy of 99.52%, TPR of 99.38%, TNR of 99.92%,

F-Score of 99.68%, Precision of 99.97%, and MCC of 98.71%.

The above methods make use of only four email header based heuristics for the

classification. To study the contribution of the email body in the detection of phishing

emails, we have presented an efficient model using transformers. The presented model

achieved an accuracy of 99.51% using open source datasets.

The body of the email might contain phishing URLs, which may lead to a phishing

attack. In order to overcome this, we have presented an efficient deep learning based

model for phishing URL detection. The accuracy achieved for the DNN, LSTM, and

CNN are 99.52%, 99.57%, and 99.43% respectively.

Overall, this research thesis presents efficient techniques for detecting phishing

emails and URLs using word embedding, deep learning, and machine learning clas-

sifiers.

ii

CONTENTS

List of Figures xi

List of Tables xiv

List of Abbreviations xv

1 Introduction 1

1.1 Information security . 2

1.2 Social network . 4

1.3 Cyberattack . 4

1.3.1 Cyberattack Types . 6

1.3.2 Malware . 6

1.3.3 Phishing . 7

1.3.4 Man-in-the-middle . 7

1.3.5 Denial-of-service attack . 9

1.3.6 SQL injection . 9

1.3.7 Zero-day exploit . 11

1.3.8 DNS tunneling . 12

1.4 Phishing attack . 13

1.4.1 Phishing medium . 14

1.4.2 Types of phishing Attacks . 15

1.5 Technological Methods for Phishing Attacks 23

1.5.1 Cross-Site Scripting . 23

1.5.2 Cross-Site Malicious CAPTCHA Attack 25

1.5.3 Social Engineering . 25

1.5.4 QRishing . 27

1.6 Phishing attack and prevention . 28

iii

1.7 Phishing detection techniques . 30

1.8 Need for improving existing techniques to detect phishing attacks . . . 31

1.9 Phishing attack detection challenges 32

1.10 Problem description . 33

1.11 Problem statement . 33

1.12 Objectives . 33

1.13 Thesis Contributions . 33

1.14 Thesis Organization . 35

2 Literature Review 37

2.1 A Review on Anti-Phishing Types and Techniques 37

2.1.1 ML based phishing email detection 38

2.1.2 Deep learning based email phishing 43

2.1.3 URL Phishing detection using ML 48

2.1.4 URL Phishing detection using Deep Learning 59

2.2 Evaluation Metrics . 65

2.3 Datasets used . 67

2.3.1 Dataset preparation . 67

2.4 Summary . 69

3 Phishing email detection framework using word embedding and machine
learning 71

3.1 Introduction . 71

3.2 Word Embedding: . 74

3.2.1 Need of word embeddings: . 74

3.2.2 Frequency-based word embedding 75

3.2.3 Prediction-based word embedding 77

3.3 Machine learning . 79

3.4 Email phishing . 79

3.5 Phishing Email Detection . 83

3.5.1 Input Emails . 84

3.5.2 Feature Extraction . 84

3.5.3 Selected heuristic features . 84

iv

3.5.4 Dictionary creation . 86

3.5.5 Vectorization . 87

3.5.6 Classification . 88

3.6 Implementation . 89

3.7 Results and discussion . 89

3.7.1 Experiment-1 . 90

3.7.2 Experiment-2 . 93

3.7.3 Experiment-3 . 93

3.7.4 Performance Evalution with Dataset-1 94

3.7.5 Performance Evaluation with Dataset-2 96

3.7.6 Performance Evaluation with Dataset-3 98

3.7.7 Model Validation . 98

3.7.8 Performance of individual features 98

3.7.9 Result Analysis . 100

3.7.10 Comparison study . 100

3.8 Summary . 103

4 DeepEPhishNet: A Deep learning framework for phishing email detection
using Word embedding algorithms 105

4.1 Introduction . 105

4.2 DeepEPhishNet Framework . 109

4.2.1 Classification . 110

4.3 Experimental Evaluation . 117

4.4 Results and discussion . 118

4.4.1 Basic experimental setup . 119

4.4.2 Experiment-1: Evaluation of Word2Vec-SkipGram model . . . 120

4.4.3 Experiment-2: Evaluation of Word2Vec-CBOW model 121

4.4.4 Experiment-3: Evaluation of FastText-SkipGram model 122

4.4.5 Experiment-4: Evaluation of FastText-CBOW model 122

4.4.6 Experiment-5: Evaluation of TF-IDF model 123

4.4.7 Models performance analysis with individual datasets 123

4.4.8 Discussion of Bi-LSTM and DNN results 124

v

4.4.9 Result Analysis . 125

4.4.10 Comparison with existing works 127

4.5 Summary . 128

5 Phishing Classification based on Text Content of an Email Body using Trans-
formers 131

5.1 Introduction . 132

5.2 BERT based phishing detection . 133

5.2.1 Emails collection . 134

5.2.2 In-house dataset preparation 135

5.2.3 Open source dataset collection 135

5.2.4 Data pre-processing . 135

5.2.5 Training and classification using transformers 135

5.3 Experimental resources and datasets 137

5.4 Experimental results and discussion 138

5.4.1 Basic experimental setup . 138

5.4.2 Results and discussion . 138

5.4.3 Result analysis . 140

5.4.4 Comparison study . 141

5.5 Summary . 142

6 Efficient deep learning techniques for the detection of phishing websites 143

6.1 Introduction . 144

6.2 Deep learning based URL classification model 149

6.2.1 Feature Extraction . 150

6.2.2 Feature Selection . 153

6.3 Implementaion . 155

6.3.1 Tools Used . 156

6.3.2 Datasets Used . 156

6.3.3 Deep Learning Algorithms . 156

6.4 Results and Discussions . 158

6.4.1 Validation of Selected Features using DNN 159

6.4.2 Results with DNN . 163

vi

6.4.3 Results with LSTM . 166

6.4.4 Results with CNN . 167

6.4.5 Result analysis . 169

6.4.6 Comparison study . 170

6.5 Limitations . 172

6.6 Summary . 172

7 Conclusion and future work 173

Bibliography 175

Publications 194

vii

LIST OF FIGURES

1.1 Internet security . 3

1.2 Cyberattack . 5

1.3 Malware attack . 6

1.4 Life cycle of phishing . 7

1.5 Man-in-the-middle attack . 8

1.6 DDoS attack . 9

1.7 SQL injection attack . 10

1.8 Zero-day exploitation . 11

1.9 DNS tunneling . 12

1.10 Phishing attack . 14

1.11 Phishing medium . 15

1.12 Spear phishing . 16

1.13 Smishing attack . 18

1.14 Vishing attack . 19

1.15 BEC attack . 20

1.16 Email phishing . 21

1.17 Cross site scripting . 24

1.18 Cross site malicious CAPTCHA attack 25

1.19 Scenario of social engineering attacks 27

2.1 Phishing classification structure . 38

2.2 Anti-Phishing techniques based on classification algorithms 39

3.1 Email Phishing attacks from 2010 to 2021 73

3.2 Email message Taxonomy - Courtesy (Almomani et al. 2013) 80

ix

3.3 Email message structure - Courtesy (Almomani et al. 2013) 81

3.4 Architecture of Phishing Email Detection 83

4.1 APWG 2020-21 Phishing Email Statistics 107

4.2 Architecture of ”DeepEPhishNet” a Phishing Email Classification Frame-

work . 110

4.3 Architecture of LSTM . 111

4.4 Bi-LSTM Architecture . 113

4.5 Bi-LSTM Experimental Parameters 115

4.6 Architecture of simple neuron . 116

4.7 DNN Architecture . 118

4.8 DNN Experimental Parameters . 119

4.9 Performance of the Model with Dataset-1 124

4.10 Performance of the Model with Dataset-2 125

4.11 Performance of the Model with Dataset-3 126

4.12 Validation Accuracy & Loss graphs - Word2Vec-CBOW cum DNN

model with Dataset-1 . 126

4.13 Validation Accuracy & Loss graphs - Word2Vec-CBOW cum DNN

model With Dataset-2 . 126

4.14 Validation Accuracy & Loss graphs - FastText-SkipGram cum DNN

model With Dataset-3 . 127

5.1 Architecture of the model . 134

5.2 BERT - Transformer architecture . 136

5.3 BERT base uncased - Example . 136

5.4 Accuracy and loss charts for Dataset-I 140

5.5 Accuracy and loss charts for Dataset-II 140

5.6 Accuracy and loss charts for Dataset-III 141

6.1 Architecture of Proposed Model . 149

6.2 Network performance using 18 features 162

6.3 Accuracy chart with 14 features . 162

x

6.4 Learning rate with α= 0.001 and α= 0.0001 162

6.5 DNN Individual feature accuracy . 164

6.6 Comparison between Optimizers . 165

6.7 DNN accuracy with ten features . 165

6.8 LSTM Individual feature accuracy . 168

6.9 Accuracy graph of LSTM . 168

6.10 Accuracy graph of CNN . 169

xi

LIST OF TABLES

2.1 Summary: Email phishing using ML techniques 44

2.2 Summary: Email phishing detection using DL 48

2.3 Summary: URL based phishing detection using ML 57

2.4 Summary: Feature extraction based Phishing URL detection using ML. 58

2.5 Summary: Anti-phishing techniques based on Website phishing using DL 64

2.6 Summary of DL based URL phishing detection using six metrics. . . . 65

2.7 Confusion matrix . 67

2.8 Datasets used . 69

3.1 APWG Email phishing statistics 2019 72

3.2 APWG Email phishing statistics 2020 74

3.3 Selection of vector size with Dataset-1 91

3.4 Selection of vector size with Dataset-2 92

3.5 Selection of vector size with Dataset-3 95

3.6 Performance Evalution with Dataset-1 96

3.7 Performance Evaluation with Dataset-2 97

3.8 Confusion Matrix (a). Dataset-1, (b). Dataset-2, (c). Dataset-3 99

3.9 Performance Evaluation with Dataset-3 99

3.10 Summary of the works executed on all three datasets 100

3.11 Performance of individual features . 101

3.12 Summary of the works implemented on publicly available datasets. . . . 101

3.13 Summary of the works that used word embedding techniques 103

4.1 Common parameters used in Word2Vec and FastText models 114

4.2 Hyper parameters used in Bi-LSTM 114

xiii

4.3 Hyper parameters used in DNN . 118

4.4 Performance of Word2Vec-SkipGram model 121

4.5 Performance of Word2Vec-CBOW model 121

4.6 Performance of FastText-SkipGram model 122

4.7 Performance of FastText-CBOW model 123

4.8 Performance of TF-IDF model . 124

4.9 Confusion Matrix (a). Dataset-1, (b). Dataset-2, (c). Dataset-3 125

4.10 Summary of Bi-LSTM and DNN results with word embeddings 127

4.11 Existing works comparison . 128

5.1 Used datasets . 138

5.2 Model performance with all three datasets 139

5.3 Obtained results using transformers with all three datasets 140

5.4 Comparison Study . 142

6.1 Summary of related work in comparison with proposed work 149

6.2 Information gain of individual features 152

6.3 Selected Features . 154

6.4 Accuracy of individual features . 161

6.5 Parameters for DNN . 164

6.6 DNN Experimental Results . 164

6.7 Parameters for LSTM . 167

6.8 Parameters for CNN . 169

6.9 Summary of the results of related existing works 170

6.10 Summary of the works implemented on the same dataset. 171

xiv

LIST OF ABBREVIATIONS

Abbreviations Expansion
AI Artificial Intillegence
AOL America Online
APT Advanced Persistent Threat
APWG Anti-Phishing Working Group
BEC Business Email Compromise
BERT Bidirectional Encoder Representations from Trans-

formers
Bi-LSTM Bidirectional LSTM
BNN Bayesian Neural Networks
CBOW Continuous Bag of Words
CIA Confidentiality, Integrity, and Availability
CNN Convolution Neural Networks
CTSS Compatible Time Sharing System
DBN Deep Belief Network
DDoS Distributed Denial of Service
DL Deep Learning
DKIM Domain Keys Identified Mail
DNN Deep Neural Networks
DNS Domain Name System
DT Decision Tree
ELM Extreme Learning Machine
FAIR Facebook Artificial Intelligence Research
FQDN Fully Qualified Domain Name
FRS Fuzzy Rough Set
GCN Graph Convolutional Network
GRU Gated Recurrent Unit
HEFS Hybrid Ensemble Feature Selection
IG Information Gain
IM Instant Message
IP Internet Protocol
IRC Internet Relay Chat
ISP Internet Service Provider
ISMS Information Security Management System

xv

Abbreviations Expansion

IT Information Technology
KNN K-nearest neighbors
LR Logistic Regression
LSTM Long Short-Term Memory
MITM Man-in-the-middle
ML Machine Learning
MMS Multi-Message Service
MTA Mail Transfer Agent
MUA Mail User Agent
NLP Natural Language Processing
OCR Optical Character Recording
PC Personal Computer
QR Quick Response
RCNN Recurrent Convolution Neural Networks
ReLU Rectified Linear Unit
RF Random Forest
RNN Recurrent Neural Networks
SG SkipGram
SPF Sender Policy Framework
SQL Structured Query Language
SMS Short Message Service
SMTP Simple Mail Transfer Protocol
SVM Support Vector Machine
TF-IDF Term Frequency-Inverse Document Frequency
URL Uniform Resource Locator
VoIP Voice-over IP
WE Word Embedding
Wi-Fi Wireless Fidelity
XSS Cross-site Scripting

xvi

CHAPTER 1

INTRODUCTION

The Internet has become an essential part of everyone’s life, serving as a widely used

and invaluable resource. It connects countless servers, websites, and web pages. Through

it, people can communicate with each other, exchanging emails, images, videos, and

messages. In essence, the Internet is a global network of computers and electronics that

facilitates the sharing and retrieval of information. Moreover, with a smartphone con-

nected to the internet, users can access a variety of websites, applications, and social

media platforms. Arguably, the internet is currently the quickest way to transmit and

receive data.

Attachments can be included in emails, such as Microsoft Word documents, PDF

files, and scanned copies of paper documents. In theory, there is no limit to the size

or quantity of attachments, but in reality, email clients, servers, and Internet Service

Providers (ISPs) usually have a maximum limit of 25MB. This discrepancy between

what is technically possible and what is allowed can make it hard to know whether a

file can be sent via email. For larger files, file hosting services are usually used. Spam

constituted up to 30% of all email traffic by 2003 due to the low cost of sending such

emails, endangering email’s viability as a valuable tool. The US CAN-SPAM Act and

similar laws have helped to reduce this issue, though it is still very prevalent. In Septem-

ber 2017, 59.56% of emails were classified as spam. It is expected to rise more than

85% by 2023-24. According to Storm et al. (2017), malicious emails take many forms,

such as phishing, email bombardment, and email worms. The first known phishing at-

1

1. Introduction

tempt took place in the mid-1990s when AOL users were tricked into revealing their

passwords. To detect phishing attacks, word embedding, machine learning, and deep

learning techniques are used (Wollschlaeger et al. 2017). These are more efficient and

accurate than existing methods.

1.1 INFORMATION SECURITY

Security of information is a part of information risk management which entails reduc-

ing and avoiding unauthorized or improper access to data, misuse, exposure, disrup-

tion, deletion, corruption, alteration, recording, or devaluation (Chahid et al. 2017).

Additionally, it involves strategies to mitigate the bad effects of such occurrences. The

fundamental objective of information security is to maintain the CIA (Confidentiality,

integrity, and availability) triad, which refers to ensuring balanced protection of data

integrity, confidentiality, and availability, as emphasized by Rybakov and Rybakova

(2019). Furthermore, it stresses effective policy implementation without sacrificing or-

ganizational efficiency. This is mainly accomplished by using a well-structured risk

management procedure that includes the following steps:

• Considering the threats.

• Analyzing the relevant data, resources, and risks, as well as any potential threats,

weaknesses, and consequences.

• Selecting a risk management strategy, such as avoiding, mitigating, sharing, or

accepting it.

• Keeping an eye on activities and making any required adjustments to deal with

any difficulties, changes, or possibilities for improvement.

• Choosing or developing suitable security controls and deploying them in areas

where risk mitigation is required.

Academicians and practitioners collaborate to create guidelines and regulations to

standardize the field, such as rules for passwords, antivirus software, firewalls, en-

cryption software, legal liability, security awareness training, and more. Additionally,

2

1.1. Information security

some rules and regulations govern the handling of data, including its access, process-

ing, storage, transfer, and destruction. These rules and regulations, as Miloslavskaya

and Tolstoy (2017) suggest, may also play a crucial role in promoting standardization

in cybersecurity practices. However, if an organization does not create a culture of

continuous development, any standards and guidelines implemented may not have a

significant effect. The extensive use of information technology gives rise to possibili-

ties for automating management processes and making services more efficient and of

higher quality. Additionally, the use of IT solutions in the public sector emphasizes

the need for secure service delivery. As a result, the Information Security Management

System (ISMS) is being implemented in public administration institutions to provide

security for their information resources and ensure that their mission is fulfilled con-

tinuously. The ISMS covers various planning and organizational tasks and is focused

on managing information risks that could jeopardize the effectiveness of a public ad-

ministration institution’s operations. Therefore, according to Aldowah et al. (2018), the

security management of information in public administration affects the effectiveness,

reliability, and quality of public services.

Figure 1.1: Internet security

Figure 1.1 illustrates the Internet security by maintaining confidentiality, availability

and integrity to achieve data security in the internet. The goal of information security is

to safeguard sensitive data from any unauthorized activity, such as viewing, alteration,

recording, obstruction, or eradication. This is done to guarantee the confidentiality and

3

1. Introduction

safety of data like financial data, intellectual property, and client account information.

1.2 SOCIAL NETWORK

Since the start of the twenty-first century, Social media has seen immense growth, al-

lowing people to interact, communicate, and exchange experiences. Twitter, Facebook,

and LinkedIn are a few examples that enable users to interact with and discover indi-

viduals who share their interests, worldviews, or hobbies. However, the main purpose

of these websites is to let users follow the posts made by real individuals. Examples

of specialized social media networks that concentrate on particular topics are websites

like Pinterest and Tumblr. Since so many people divulge personal information online,

phishers can utilize this data to target particular demographics and even get in touch

with their victims (Appel et al. 2020).

The social network is a way for social science researchers to understand relation-

ships between people, groups, organizations, and societies. It’s a way of thinking about

social structures. Every social unit is connected to other members of society through

these links. The social network approach suggests that social phenomena should be

studied based on relationships between and within units, rather than just the individual

properties of units. However, some people criticize this approach because they think

it ignores the idea that individuals can act independently and make decisions. Many

different types of relations result in different network patterns. This is why network an-

alytics are useful in many different research fields, such as anthropology, biology, com-

munication studies, economics, geography, information science, organizational studies,

social psychology, sociology, and sociolinguistics.

1.3 CYBERATTACK

A cyberattack is an assault committed by fraudsters using computational devices on a

computer or network of computers and digital devices in the cyber world. Data theft,

Disable systems intentionally, or the use of a compromised computer as a launching pad

for other attacks are all possibilities in a cyberattack. A cyberattack can be carried out

using different methods, such as malware, phishing, ransomware, and denial of service

4

1.3. Cyberattack

attacks, as reported by Fang et al. (2019a). Essentially, any action that aims to harm

information systems, computer networks, infrastructures, or personal devices can be

considered a cyberattack. Those who attempt to gain unauthorized access to restricted

data or functionalities in the system with potentially malicious intentions are commonly

known as attackers.

Cyberattacks can be categorized as either part of cyberwarfare or cyberterrorism

depending on the situation. Figure 1.2 provides a rundown of various cybercrime at-

tacks such as spyware, Domain Name System (DNS) spoofing, and password attacks.

Independent individuals, groups, communities, or organizations may launch cyberat-

tacks from an unknown source, using a product referred to as a ”cyber weapon” (Eder-

Neuhauser et al. 2017). In recent years, the number of cyberattacks has grown sig-

nificantly, and they can infiltrate a vulnerable system to steal, modify, or destroy the

target.

Cyberattacks can take numerous forms, ranging from targeting a single country’s in-

frastructure to infecting a user’s PC with malware. Legal professionals limit the term’s

application to cases where there is actual physical harm to distinguish it from common

data breaches and extensive hacking activities. The severity and complexity of cyberat-

tacks continue to increase, making them more dangerous (Sontowski et al. 2020).

Figure 1.2: Cyberattack

5

1. Introduction

1.3.1 Cyberattack Types

There are many cyberattacks identified by researchers are shown in Figure 1.2. Some

of them are discussed here,

1.3.2 Malware

Malware, short for malicious software, refers to any type of software program or code

designed with the intent of causing harm to a computer system, network, or device.

Malware can take many different forms, including viruses, worms, trojans, ransomware,

spyware, adware, and more. Malware invades a network by taking advantage of a weak-

ness, most frequently when a user clicks on an email attachment or malicious link,

which causes the installation of harmful software (Guillén et al. 2019). Malware has

the following capabilities once it has entered the system:

• Installs malicious software or other hazardous programs

• Causes several components to malfunction, rendering the system useless.

• Restricts access to essential network components (ransomware)

• Transmits data from the hard drive to secretly collect information (spyware)

Figure 1.3: Malware attack

Malware can manifest in many forms, such as Trojan horses, worms, ransomware,

spyware, rootkit, virus, adware, rogue software, wiper, keylogger, remote access, and

6

1.3. Cyberattack

scareware (as illustrated in Figure 1.3). To protect against such malicious software,

several defensive strategies should be taken depending on the type of malware. These

strategies may include isolating affected systems, installing antivirus programs, acti-

vating firewalls, regularly patching systems to prevent zero-day attacks, safeguarding

networks from intrusion, and making regular backups of data. Yet as malware becomes

more sophisticated, it is designed to elude detection by antivirus software algorithms.

1.3.3 Phishing

A common form of cybercrime is phishing. It was initially found in 1996. Phishing

and fishing have a similar tone. This is so because phishing attacks function similarly

to fishing in that bait is thrown out for the user to catch. In order to steal the user’s

personal information, the phisher entices them to visit a phishing website. Figure 1.4

shows the life cycle of phishing. The fraudulent technique of sending emails or other

Figure 1.4: Life cycle of phishing

messages that appear to be from a reliable source is known as phishing (Athulya and

Praveen 2020). The intention is to spread harmful software on the recipient’s computer

or acquire access to private data like credit card numbers and login credentials. Phishing

has recently increased in popularity as a cyber threat (Kathrine et al. 2019).

1.3.4 Man-in-the-middle

A man-in-the-middle attack is a type of cyber attack where a malicious actor inserts

themselves between two parties that are communicating, in order to intercept and po-

7

1. Introduction

tentially modify the communications between them. By intercepting and manipulating

the data, the malicious actor can gain access to sensitive information, such as passwords,

payment information, or other confidential information (Salem et al. 2021). These are

two common scenarios for man-in-the-middle attacks:

1. Once a device has been compromised by malware, an attacker can install software

to manipulate all of the victim’s data.

2. If a person is on an insecure public Wi-Fi, attackers can position themselves be-

tween their device and the network, allowing them to gain access to all the infor-

mation they have without the visitor being aware.

Figure 1.5: Man-in-the-middle attack

As illustrated in Figure 1.5, a man-in-the-middle attack occurs when an intruder inserts

themselves into a communication between a user and an application. The purpose of

this is to either eavesdrop on the conversation or to pretend to be one of the participants,

making it appear that an ordinary exchange of data is happening. The purpose of the

attack is to acquire personal information such as credit card numbers, login credentials,

and account information. These attacks usually target users of financial applications,

cloud-based services, web-based businesses, and websites that require sign-in. The

data obtained during an attack can be used for various activities such as fraud, unper-

mitted trading, or unpermitted password changes. Moreover, it can be used during the

infiltration phase of an Advanced Persistent Threat (APT) as a way to build a strong

foothold on a secure network.

8

1.3. Cyberattack

1.3.5 Denial-of-service attack

A denial-of-service attack is observed when a server, network, or system is flooded with

traffic, resulting in the depletion of bandwidth and resources (Jamal et al. 2018). This

prevents the system from responding to legitimate requests and can be conducted using

multiple compromised devices (Biron et al. 2018). It is also referred to as a Distributed

denial-of-service (DDoS) attack.

Figure 1.6: DDoS attack

Figure 1.6 illustrates DDoS (Distributed Denial of Service) attack is a type of cyber

attack where a website, server, or network is flooded with traffic from multiple sources

simultaneously, rendering it unable to function properly or completely shutting it down.

In a DDoS attack, a large number of computers or internet-connected devices, known

as a botnet, are hijacked by attackers and instructed to send a massive amount of traffic

to the target website or server, overwhelming its resources and making it unavailable to

legitimate users. The attackers may use a variety of techniques to generate the traffic,

such as sending malformed or malicious network packets, initiating large volumes of

web requests, or exploiting vulnerabilities in network protocols. DDoS attacks can

cause significant disruption to businesses, governments, and organizations, and are a

serious threat to the availability and security of online services.

1.3.6 SQL injection

SQL Injection is a type of security vulnerability that occurs in the database layer of an

application. It allows an attacker to inject malicious SQL code into a web application’s

9

1. Introduction

input fields for execution by the underlying database management system (DBMS).

SQL Injection attacks occur when a web application’s user-input fields are not properly

validated and sanitized. For example, a vulnerable web application might have a login

page where users enter their username and password. The application then creates an

SQL query to retrieve the corresponding password hash from the database and compare

it with the one provided by the user. If an attacker can inject malicious SQL code into

the application’s input fields, they can modify the SQL query in such a way that it re-

trieves sensitive information from the database or even allows them to execute arbitrary

SQL commands on the underlying database (Hasan et al. 2019). There are many dif-

ferent types of SQL Injection attacks, including simple injection, union-based injection,

blind injection, and error-based injection. To prevent SQL Injection attacks, it is impor-

tant to properly validate and sanitize user input, use parameterized queries or prepared

statements instead of constructing SQL queries dynamically, and keep the underlying

DBMS and web applications up to date with the latest security patches. Additionally,

it is good practice to use least privilege principles, such as using separate database user

accounts with limited permissions, to limit the damage that can be done in the event of

a successful SQL Injection attack. As depicted in Figure 1.7, attackers can gain control

Figure 1.7: SQL injection attack

as administrators of the database server, creating false identities, modifying existing

data, leading to issues such as canceling transactions or altering balances, exposing all

data stored on the system, destroying data or rendering it inaccessible, and resulting in

further repudiation problems.

10

1.3. Cyberattack

1.3.7 Zero-day exploit

A zero-day exploit occurs when a network vulnerability is made public but before it can

be fixed or patched. This time frame attracts attackers who exploit the newly disclosed

weakness. To defend against zero-day threats, ongoing monitoring is essential. The

term ”zero-day” refers to the fact that a vulnerability or weakness in a software or

system is discovered and exploited on the same day that it is first discovered, with

”day” referring to the time between when the vulnerability is discovered and when it

is publicly known or patched. This means that the software developer has zero days

to fix the vulnerability before it can be exploited by attackers. The term is used when

the vendor or developer has no time to fix the issue as they just became aware of it. A

zero-day attack is when the vulnerability is used by hackers before it can be repaired

by engineers. The terms vulnerability, exploit, and attack are closely related to the

term zero-day (Kim et al. 2018). A zero-day exploit is a technique used by harmful

Figure 1.8: Zero-day exploitation

individuals to attack systems that possess a vulnerability. The concept of exploitation

is demonstrated in Figure 1.8, where researchers use it to demonstrate how a weakness

can be exploited to breach the system or gain unauthorized access. The term ”zero-day”

refers to the fact that the exploit has not been publicly disclosed or widely known. In

some cases, malicious actors may keep the exploit to themselves and use it at a strategic

moment. Despite the attacker being aware of the exploit, it remains classified as a

zero-day exploit because it is not yet commonly known.

11

1. Introduction

1.3.8 DNS tunneling

DNS Tunneling is a technique that allows the transmission of non-DNS data over the

Domain Name System (DNS) protocol. DNS is typically used to resolve domain names

into IP addresses and is an essential component of the internet’s infrastructure. In DNS

tunneling, data is encoded and sent as DNS requests and responses, bypassing firewalls

and other network security measures that are not designed to detect such traffic. The

technique can be used for both legitimate and malicious purposes. On one hand, it can

be used for data exfiltration, bypassing censorship, and bypassing network restrictions.

On the other hand, it can also be used to carry out cyber attacks, such as data theft, com-

mand and control communication, and malicious data transfers. Malicious actors can

manipulate DNS requests to extract sensitive information from compromised systems

and transfer it to their infrastructure. Additionally, it can be utilized for communication

between the attacker’s infrastructure and the compromised system for remote control

purposes (Do et al. 2017).

Figure 1.9: DNS tunneling

In Figure 1.9, we can see how DNS tunneling is used to send data and commands

between malware and the attacker in the case of targeted attacks that result in data

exfiltration. The malware creates a Fully Qualified Domain Name (FQDN), such as

”get-command.attacker.com”, and sends it as a DNS query to the DNS cache server

in the enterprise network. The malware uses this method to request commands from

the attacker to search for sensitive information in the enterprise network. The DNS

cache server follows the standard procedure to resolve the FQDN by repeatedly query-

ing the attacker.com, root, and com DNS servers. Once the request for a command is

received, the attacker.com DNS server sends a response that includes the order to send

the malware via the DNS cache server. The malware then repeatedly sends a response

12

1.4. Phishing attack

to the command and awaits a new command, ultimately revealing any gathered private

information to the outside attacker in a similar fashion.

1.4 PHISHING ATTACK

Phishing is a tactic used by cybercriminals that involve tricking individuals into reveal-

ing sensitive information, such as passwords or credit card details. This is done through

deceptive means, such as posing as a trustworthy entity in an email, instant message, or

text message and enticing the recipient to click on a malicious link. This can lead to the

installation of malware on the victim’s device, a ransomware attack, or the exposure of

confidential information (Guarda et al. 2019). The most common forms of phishing

are emails or fake websites. The objective of phishing is to steal personal information

for financial gain or to infect a device with malware. To protect oneself, it’s crucial

to be aware of this type of cyberattack. Phishing attacks are often disguised as being

from a reputable source and prompt the victim to enter sensitive information into a fake

website (Baykara and Gürel 2018). These attacks can also be used to gather login in-

formation for further attacks on a company. Phishing is often the initial step in more

complex cyberattacks like APT and ransomware.

Due to the COVID-19 outbreak, people adopted a remote working strategy (work

from home). The internet has grown to be a vital tool for establishing social connec-

tions, but it also exposes people to deception. Phishing is a type of online fraud where

fraudsters try to obtain sensitive data, such as login credentials or credit card infor-

mation, by impersonating trustworthy entities through emails, text messages, or fake

websites. It is not limited to online marketplaces like online markets but can occur

through any online communication medium. Phishers use spam emails and false web-

sites that resemble the real ones to entice victims. By fooling users into visiting fake

websites through spam emails, they collect personal information.

Phishing attacks are often carried out by creating fake news, such as news about

major events, holidays, and anniversaries. The victim receives a message that appears

to be from a well-known person or organization. The attack is executed through the use

of a malicious file injection or links to malicious websites, with the goal to trick the

13

1. Introduction

victim into revealing personal and financial information, such as passwords, account

IDs, and credit card numbers, or leading them to a website where harmful software can

be installed on their device. It can be difficult to tell if a message is a successful phishing

attempt or not, as these messages often include company logos, other recognizable

images, and information obtained from the company. Phishing attacks may also involve

the use of subdomains and incorrect Uniform Resource Locators (URLs), similar to

other tactics used to manipulate links (Azeez et al. 2021).

Phishing attackers utilize JavaScript to embed a legitimate URL into the browser’s

address bar. Additionally, JavaScript can be used to alter the URL generated when a

link is clicked. User education and training are crucial in identifying phishing com-

munications and serving as the first line of defense against phishing attacks. However,

other strategies can also be employed to reduce the likelihood of successful attacks.

Figure 1.10 depicts the functioning of phishing, wherein communication messages re-

Figure 1.10: Phishing attack

sembling those from trustworthy websites are sent. Phishing emails usually contain

links that lead the user to fraudulent websites designed to imitate legitimate sources of

information. Subsequently, the user is prompted to provide personal data.

1.4.1 Phishing medium

The initial factor to consider in phishing attempts is the platform or channel used for

communication. The medium determines the available technological vectors and strate-

gies. Communication serves as the primary means for phishers to interact with their

targets (Kathrine et al. 2019). Phishing mediums refer to the different platforms or

channels that fraudsters use to carry out phishing attacks. There are three primary

14

1.4. Phishing attack

phishing mediums: the Internet, Short Messaging Service (SMS) / Multi-Messaging

Service (MMS), and Voice, as depicted in Figure 1.11. Phishers often use the Internet

Figure 1.11: Phishing medium

as a medium for phishing due to its vast scope of opportunities. The vector of a phish-

ing attack refers to its starting point, which can be through email, websites, or social

media. Technological methods for phishing attacks can be divided into two categories:

social engineering and malware-based attacks. Social engineering relies on exploiting a

user’s fear of losing something valuable to trick them into divulging personal informa-

tion to the phisher. Meanwhile, malware-based attacks use malicious software to steal

information from the victim’s device without their knowledge (Al-Hamar et al. 2021).

1.4.2 Types of phishing Attacks

There are many phishing attacks such as spear phishing, Pharming, Whaling and CEO

Fraud, Smishing, Vishing, Angler phishing, BEC phishing, Email Phishing, Page hi-

jacking, Efax, Instant Messenger (IM) phishing, and Wi-Fi phishing.

Spear phishing: Spear phishing is a targeted attack that involves crafting and

sending emails to a particular individual to make them appear authentic (Yao et al.

2018). Unlike mass phishing, spear phishing attackers utilize information about the

intended victim to increase the chances of success. Executives or those in the financial

field, who have access to the organization’s sensitive data and services, are usually the

target of spear phishing (Sonowal 2022b). It is also common for spear phishing to be

15

1. Introduction

used to gain access to an individual’s account or to impersonate a high-ranking official

or someone involved in key business operations. According to a 2019 study (Burns et al.

2019), accountancy and audit firms are often on the receiving end of spear phishing

attacks due to their employees’ access to data that could be valuable to criminals. Figure

Figure 1.12: Spear phishing

1.12 illustrates the action of spear phishing. First, the attacker identifies the target and

sends the phishing email. The victim opens the email containing malware that is sent

by the attacker. When the victim opens the email, the victim’s personal data or login

details are hacked by the attacker.

Whaling and CEO fraud: When high-level executives, such as the CEO or CFO,

are the targets of a whaling attack, valuable data from a corporation is stolen. This

could be private personnel information or financial data. High-ranking personnel is a

common target of whale attacks due to their influence within organizations and fre-

quent access to confidential information. The term ”whaling” refers to the scale of the

potential reward for the phishing scam since the ”whales” are carefully selected based

on their power, access, and influence within the organization (Al-Hamar et al. 2021).

Whaling describes spear phishing assaults that are specifically targeted at high-ranking

officials and other prominent targets. The content will probably be developed to ap-

peal to the intended audience or role. CEO fraud, which is essentially the opposite

of whaling, includes creating forged emails that appear to be from senior executives

to persuade other workers at a company to take a particular action, typically moving

money to an offshore account. Despite its low success rate, CEO fraud can result in

massive financial gains for criminals in the rare instances where it succeeds. Numerous

businesses have suffered tens of millions of dollars in losses as a result of such attacks.

The attacker’s email address may appear to come from a trustworthy source and may

even feature business logos or links to a fake website designed to look official. Since

16

1.4. Phishing attack

a whale typically holds significant levels of access and trust within their business, it is

valuable for the cybercriminal to put in extra effort to make the scam appear credible.

Pharming: Pharming is a type of cyberattack that utilizes malicious software to

deceive users into accessing a false website. This can be achieved either by manipulat-

ing the host’s file on the target’s device or by taking advantage of any vulnerabilities

in the DNS server program. Computers called DNS servers are in charge of converting

Internet names into their corresponding IP addresses. Some people use the term ”poi-

soned” to describe compromised DNS servers. Instead of using a corporate business

server, phishing involves unprotected access to a computer, such as changing a cus-

tomer’s home PC. The phrases “farming” and “phishing” were combined to create the

term “pharming” (Chavan et al. 2020). An example of a social engineering assault is

phishing, which attempts to obtain login credentials such as user names and passwords.

Both phishing and pharming have been employed in recent years to gather information

for online identity theft. Businesses that host e-commerce and online banking websites

are now extremely concerned about pharming. To counter this grave threat, sophisti-

cated anti-pharming methods are necessary. Pharming is not something that antivirus

and spyware removal software can stop.

Pharming could happen in one of two ways: either by using a DNS server software

vulnerability to the user’s advantage or by editing the host file on your victim’s PC.

Users are purposefully redirected to a false website by cybercriminals in order to obtain

and steal usernames and passwords. When a user visits a fraudulent website, malware

is downloaded and installed on their computer, damaging information and instigating a

pharming attack. When a person uses a browser like Chrome, Firefox, or Opera to visit

a website, the browser will contact the DNS server and request the IP address of the

domain. If a malicious actor is successful in this phishing attack, the DNS server will

be altered.

Smishing: The SMS/MMS medium is to blame for the smishing. Smishing is

a type of social engineering attack that uses SMS text messages to trick people into

revealing sensitive information or downloading malware. Smishing messages are de-

signed to appear as if they are from a trusted source, such as a bank or a government

17

1. Introduction

agency, and often ask the recipient to click on a link or call a phone number. If the

recipient follows the instructions, they may be directed to a fake website that looks le-

gitimate but is designed to steal their personal information, such as login credentials or

financial information. Alternatively, the link or phone number may install malware on

the recipient’s device, allowing the attacker to gain unauthorized access to their device

and personal information. Smishing is a serious threat to security and privacy, and it is

important to be vigilant when receiving unexpected text messages and to never provide

personal information in response to unsolicited requests. An alternative tactic involves

sending a target a text message that either has malware embedded in it or contains a

link to a malevolent website. Following the installation of the malware, the phisher can

continue to carry out their attack, which could range from merely obtaining the target’s

contacts and messages to creating a botnet or obtaining authorization tokens for logins

and transactions (Balim and Gunal 2019; Jia et al. 2021). Figure 1.13 illustrates that

Figure 1.13: Smishing attack

smishing is a three-step process that involves sending a bogus SMS message containing

a link. The user will be attacked by the hacker when they click the link and enter their

credentials. It is the simplest approach to obtaining someone’s data.

Vishing: When victims are tricked over the phone, it is known as a vishing attack,

it is also called voice phishing, a new type of crime. That is, the voice-based kind

18

1.4. Phishing attack

of phishing is known as vishing. Even while using a phone to try a personal scam is

nothing new, the development of voice-over IP (VoIP) technology led to a rise in this

activity. Vishing uses number spoofing technology to make calls appear to come from

a reliable source. VoIP is used to mask the call’s true physical origin, which allows

the victim to be tricked into divulging information. This type of deceit has been made

easier by VoIP and modern technologies because calls, even international calls, are so

inexpensive. Additionally, the usage of automation systems enhances phishers’ attacks

by blending them into real phone calls (Mondal et al. 2022; Ulfath et al. 2022). Figure

Figure 1.14: Vishing attack

1.14 illustrates a vishing attack flow. The attacker collects the victim’s mobile numbers

and starts the phishing call to the victim. The attacker first creates the trust of the victim.

Then the attacker forces the victim to give the personal data.

Angler Phishing: Using social media sites and accounts, cybercriminals pose as

customer service representatives in a new scam called angler phishing. The goal is to

deceive disgruntled customers into disclosing personal information. The angler fish, an

aquatic animal that pursues other fish, gave rise to the term ”angler phishing” assault.

Its luminous fin ray attracts prey before it eats them. The same strategies are employed

by phishing attackers while fishing for their prey. They construct fictitious social me-

dia accounts for prestigious businesses, notably financial institutions. Angler phishers

intercept disgruntled customers who try to contact businesses via Twitter, Facebook,

or Instagram. To lure victims to fraudulent, attacker-controlled websites, they require

them to perform specified tasks (Sonowal 2022a).

19

1. Introduction

Business Email Compromise (BEC) phishing: Cybercrime is a daily threat to

businesses and partners of all sizes, and with the quick development of technology and

the heavy reliance on it in some transactions, a serious threat type has emerged that

poses a high level of risk to businesses and organizations that depend on financial trans-

actions in their operations. BEC, a form of email phishing used for financial gain, is the

name of this kind of threat. This attack increased significantly and caused significant fi-

nancial damages to businesses, particularly during the remote work era and the Corona

crisis, as it increased by 94% in the third quarter of this year. This kind of danger sim-

ply requires a passable degree of social engineering; it does not demand a significant

percentage of knowledge, experience, or abilities in deceit and fraud. BEC is a sort

of spear phishing assault that targets only governmental, nonprofit, and commercial or-

ganizations having a negative effect (often financial) on those organizations (Al-Musib

et al. 2021). As the name suggests, the goal is to access the victim’s corporate emails

and cause harm using their access; this usually takes the form of data mining and invoice

scams. This process, commonly referred to as a launch pad attack, can have a ripple

effect in which compromising a single account could lead to the breach or manipulation

of a secondary account. Phishers frequently spend weeks or months within a company’s

networks searching for the ideal attack. This can be accomplished by, for instance, the

invoicing system of the company, its suppliers, or a single person (ideally senior man-

agement). The attacker then sends a request via email for a money transfer with his or

her intentions. The benefit of this form of attack is that the phisher uses another party

to arrange the theft rather than stealing money directly. Figure 1.15 illustrates a BEC

Figure 1.15: BEC attack

attack that targets only governmental, nonprofit, and commercial organizations. The

attacker sends the email phishing. The victim opens the email which is compromised.

The compromised account is used to request payment. When the victim accepts the

20

1.4. Phishing attack

mail and makes the process, the attacker receives the money.

Email Phishing: Email phishing is a type of cyber attack where the attacker tries to

trick the recipient into revealing sensitive information, such as passwords, credit card

numbers, or other confidential data, by posing as a trustworthy entity in an email mes-

sage as shown in Figure 1.16. The attacker typically uses social engineering techniques

to create a sense of urgency or fear, such as claiming that the recipient’s account has

been compromised or that there is an urgent issue that requires the recipient’s immedi-

ate attention. Phishing emails are designed to look like they are from a reputable source,

such as a bank, a government agency, or a well-known company. They often include

logos and other familiar graphics, as well as links that redirect the recipient to a fake

website that looks like the real thing. When the recipient enters their information on the

fake site, it is collected by the attacker, who can then use it for fraudulent purposes. On

darknet markets, compromised streaming service accounts are typically sold directly to

customers (Parsons et al. 2019). It is important to be vigilant when receiving emails

that ask for sensitive information, and to never enter personal information on a website

that is not secure. To protect yourself from phishing attacks, be wary of unsolicited

emails, double-check the sender’s email address, hover over links to see where they

lead, and be cautious of emails that create a sense of urgency or fear.

Figure 1.16: Email phishing

Page hijacking: Page hijacking is a type of cyber attack where an attacker gains

unauthorized access to a website or web page and replaces the original content with

their malicious content. The goal of page hijacking is typically to redirect traffic to a

21

1. Introduction

malicious website, steal sensitive information from users, or spread malware.

There are several methods that attackers use to carry out page hijacking attacks,

including:

• DNS hijacking: The attacker changes the DNS settings of a website to redirect

traffic to a malicious server that hosts the fake web page.

• Man-in-the-middle (MITM) attack: The attacker intercepts the communication

between the user and the website and injects their content into the communica-

tion.

• Cross-site scripting (XSS): The attacker injects malicious code into a website or

web page that executes in the user’s browser when the page is loaded.

To protect against page hijacking attacks, website owners should take several measures,

including keeping their software up-to-date, implementing strong authentication mech-

anisms, and monitoring their websites for unauthorized changes. Users should also be

cautious when visiting unfamiliar websites or clicking on links in emails or messages

from unknown sources.

EFAX: eFax is similar to a typical fax, however, it doesn’t require a fax machine.

As opposed to the conventional methods that used phone lines, websites like efax.com

use IP (internet protocol) to transfer faxes. The benefit of this approach is that faxes

can be delivered to a recipient’s device as emails, negating the requirement for a fax

machine. However, because this mode of communication takes place online, it creates

a new way for phisher attacks to obtain victims’ personal information.

Instant Messaging (IM) Phishing: Instant messaging (IM) was one of the ear-

liest methods of online communication, first introduced as IRC (internet relay chat).

Other IM systems, including MSN Messenger and Yahoo, were later developed. To-

day, instant messaging platforms like Facebook Messenger are often combined with

other social media platforms, while separate IM platforms like WhatsApp and Tele-

gram, which are not connected to social media, remain widely used. Messages now

incorporate emojis, images, gifs, files, and URLs in addition to text, and IM clients can

22

1.5. Technological Methods for Phishing Attacks

offer voice and video calling capabilities. Unfortunately, due to its popularity, which

surpasses that of SMS messages, IM has become a haven for phishers (Gupta and Sing-

hal 2017). These attackers might use IM phishing tactics, such as sending messages

claiming that the recipient has won a prize or suggesting a chat because they feel lonely.

Wi-Fi Phishing: Wi-Fi phishing often takes place in public hotspots, which makes it

an untargeted form of a phishing attack. Attackers may choose a specific public Wi-Fi

hotspot if they know that a particular target frequently uses it, but this location could

also be used as a potential attack vector for spear phishing or whaling. There are various

types of Wi-Fi phishing attacks, but the most common one is similar to other phishing

methods, where attackers download malicious software to the victim’s device to obtain

passwords or redirect traffic to fake websites. Additionally, attackers may intercept the

data transmitted on these networks, which could lead to the theft of sensitive informa-

tion from users of the public hotspot (Aravindhan et al. 2017; Choi et al. 2022).

1.5 TECHNOLOGICAL METHODS FOR PHISHING ATTACKS

The technological methods described below can be used by phishers to access the vic-

tim’s personal information by exploiting one or more phishing attacks.

1.5.1 Cross-Site Scripting

Modern websites often utilize cross-site scripting to improve user experience, but this

also opens them up to cross-site scripting attacks (XSS or CSS). XSS is a type of code

injection that is similar to SQL injection, but instead of targeting the query function of

databases, it attacks HTML outputs. The code can be written in programming languages

such as PHP, NET, or Java. Poorly designed websites that do not properly sanitize user

inputs are particularly susceptible to this type of attack, allowing malicious actors to

insert their malware. This can result in the code being injected into data fields or the

URL. XSS attacks are executed to bypass the same-origin policy (SOP), which restricts

scripts loaded from one domain from accessing the data of another domain. As a result,

websites should not have access to login credentials or personal information of other

domains. However, during an XSS attack, the malicious script is launched as soon

as the victim loads the webpage in their browser, allowing the script to access private

23

1. Introduction

information stored in the victim’s browser, such as cookies, and send it to the phisher’s

secure server. This information can then be used by the phisher to enter the user’s

account and impersonate them (Mohammadi et al. 2017). Figure 1.17 illustrates cross-

site scripting. Cross-site scripting (XSS) can occur in two distinct forms: reflected and

Figure 1.17: Cross site scripting

stored XSS attacks. Of these two, persistent XSS, also known as stored XSS, is the

one with a greater impact. This technique involves storing malicious code on a web

application server, for example in a database, where it can be accessed by anyone who

requests that resource. The attack is not carried out until the victim requests the creation

of a dynamic webpage that includes the malicious code. If the code is not sanitized, the

victim will load a webpage that has been altered by the attacker. Examples of this type

of request include a comment section, blog, or message board. For instance, if a victim

accesses a webpage on which the attacker previously posted a comment containing

a script that has not been sanitized, every subsequent user’s browser that opens the

website will run the script, leading to the harvesting and storage of the user’s personal

information by the attacker until the script is removed. Reflected XSS is the second type

of XSS attack. In this case, the script is immediately ”reflected” back at the user, rather

than being stored indefinitely. The attacker can send the victim a specially crafted link

that includes the malicious code as a parameter in an HTTP query. When the victim

clicks on the link, the HTTP query is submitted and the malicious code is immediately

”reflected” back at the victim in the form of a webpage displaying the results of the

query. The victim’s private information is taken when the script executes and is sent to

the attacker.

24

1.5. Technological Methods for Phishing Attacks

1.5.2 Cross-Site Malicious CAPTCHA Attack

By tricking the user into exposing their personal information, the Same Original Policy

SOP can also be avoided. In 2016 investigation is done by using a cross-site hostile

CAPTCHA assault to achieve this. In this attack, a CAPTCHA is utilized to display user

data that has been taken from a trustworthy website. The victim subsequently completes

and submits the capture, which gives the phisher access to the victim’s confidential

information stored on the legitimate website. Alternatives to CAPTCHAs in this type

of attack include games and typing tests, or any other format that allows the user’s

private information to be displayed and communicated to the attacker (Hu et al. 2018).

Figure 1.18 illustrates a cross-site malicious CAPTCHA attack. The attacker provides

Figure 1.18: Cross site malicious CAPTCHA attack

the fake CAPTCHA to access the victim’s personal data. When the victim uses the

CAPTCHA their data were hacked by the attacker.

1.5.3 Social Engineering

Social engineering is the art of controlling another person or group of people in order

to achieve a goal by taking advantage of their sympathy, generosity, or trust. One of

the most established tools in the arsenal of phishers and the larger hacker community

is social engineering. The Greek tale of the Trojan Horse is a prime example and what

may be called a clever example of social engineering. One of the most adaptable tech-

nical techniques is the lack of a predefined media or vector need. It has been described

as ”the art and science of persuading individuals to do what you want,” and it lacks a

25

1. Introduction

specific technical defense tactic. It is possible to classify social engineering capabilities

as impersonal employees, hoaxes, confusion-creating tactics, and reverse social engi-

neering. A social engineering attack’s main objective is to stop the target from making

reasoned decisions and force them to depend on manipulable emotions. This encom-

passes feelings like ”Vanity, Greed, Sense of authority, Anger, Sense of duty, Fear,

Sense of belonging, Friendship, Patriotism, Philanthropy”.

A phisher can trick a victim into acting irrationally and providing personal information

by using these emotions and keeping the target from thinking logically.

Examples of these emotionally-based attacks are the well-known ”Nigerian Prince”

or ”You’ve won the jackpot” scammers, which prey on potential targets’ avarice. These

tactics try to influence the target by effectively bribing them, for as by telling a tale

about a wealthy person who has money he wants to transfer but needs help. The victim

is offered large money in exchange for this assistance, but only after giving the ”rich

individual” anything, like a small payment or bank account number, physical address,

etc., so that a background check may be carried out. The victim is compelled to carry out

the phisher’s request because of their desire for the substantial sum of money they have

been offered. This technique can be used in conjunction with the scarcity-based spear

phishing techniques, which claim that if the victim doesn’t act, the wealthy person ”will

find someone else who will,” potentially impairing their judgment and leading them to

act hastily.

Another sensation that is straightforward to control is a sense of obligation and

belonging. If the victim participates in an online group, the phisher, for instance, can

pose as a member of the group. The phisher can request that the victim sign a partition

or provide money to a cause that the group is based on by suggesting that other group

members have already participated. Because signing or contributing will be perceived

as a responsibility of all group members, this enhances the possibility that the victim

would fall for the scam.

Thirdly, when a phisher poses as an authority figure, people may become afraid. For

instance, a phisher may warn a victim that their account would be closed while posing

as the organization in charge of that account. An added benefit is if there is a sense of

26

1.5. Technological Methods for Phishing Attacks

urgency. Semantic attacks are forms of social engineering that rely on user engagement

with computers rather than on direct communication. To compromise a victim’s system

and steal their personal data, these assaults target the methods by which users interact

with their computers. One such attack may involve carefully crafting a phishing web-

site to avoid raising the targets’ suspicions. In the majority of phishing attacks across

all media and most vectors, the social engineering tactics mentioned above are used

(Heartfield and Loukas 2018; Taib et al. 2019). Figure 1.19 illustrates the scenario

Figure 1.19: Scenario of social engineering attacks

of social engineering attacks. The attacker performs the reconnaissance attack through

email. The user receives the email with pdf file attachment, where the a pdf file con-

tains the malware. When the user opens the attached file the malware steals the victim’s

personal information and sensitive data. Malware sends the hacked data to the attacker.

1.5.4 QRishing

A matrix with a configuration of black and white pixels is used as a QR (quick response)

code to store and transmit compressed information. Due to their increased readabil-

ity and data capacity, two-dimensional QR codes are swiftly replacing outmoded one-

dimensional barcodes. An optical scan is used to read QR codes to retrieve the data

contained therein, which frequently entails taking a picture of the codes. The informa-

tion is then processed by a QR code reader after it has been decoded, for instance by

opening an app store if the QR code is promoting a new mobile app. Because there

are more smart mobile devices on the market, businesses are using QR codes more

frequently to point customers to their websites, apps, and items both internally (for

27

1. Introduction

tracking, payment, and discounts) and outside. Nowadays, QR codes are frequently

encountered on product packaging, newspaper articles, and billboards.

Unfortunately, the accessibility of creating and disseminating QR codes has made

them a perfect tool for phishing assaults. This is made even more effective by the fact

that until a QR code scanner decodes it, humans are unable to comprehend its contents.

Additionally, many QR code readers launch an URL in a browser or undertake other

actions required to view the content of the QR code without first obtaining consent

from the user. Keeping with this illustration, a phisher could place QR codes in strategic

locations pretending to be advertisements for reputable businesses or products. After

that, the malicious URL causes a drive-by download, infecting the victim’s device, and

the QR codes then reroute scanners of these codes to a trustworthy website. Although

the victim wouldn’t be aware of the attack, their device would now be compromised and

transfer their personal information to the phisher. As an alternative, the link might take

visitors to a fake version of the real website, prompt them to log in, and then just grab

their login information. The use of URL shortening techniques makes it more difficult

for users to tell whether a URL is real, even if the QR code scanner does first give the

URL for the victim to check (Dudheria 2017).

In consideration of this, QRishing is an unsafe form of phishing that is simple to

combine with the other existing techniques to launch potentially disastrous attacks.

1.6 PHISHING ATTACK AND PREVENTION

Corporate companies commonly implement various security measures, including an-

tivirus software, firewall systems, and email protection, to safeguard their business op-

erations and preserve their identity (Salem et al. 2010). Even while prevention is

always the best course of action, a firm should not rely just on its users’ best practices.

Instead, it should ensure that all of its employees are thoroughly informed about what

phishing is and the dangers they run if they are not careful. Email phishing attacks are

the most typical type. Phishers occasionally use popular domains like Hotmail or even

ones that seem like actual email addresses. If someone you know has fallen victim to

a phishing scam, the perpetrators can use his or her account to send spam emails. The

28

1.6. Phishing attack and prevention

tone used during the attacks is typically scary. Your bank account has been blocked, or

Your email account will be erased shortly, are examples of phrases that are used to draw

attention and compel the victim to act without thinking.

Here are some tips for preventing phishing attacks:

• User should always verify the email address of the sender.

• User should pay attention to the email’s contact details and signature.

• User should not include login information or password on forms or pages that are

sent via email.

• Also, users should be cautious when clicking on links and downloading attach-

ments.

• If users receive an unusual request to send money or files from a friend, manager,

or coworker, a user should confirm the request with the sender.

When responding to smishing (SMS) messages, victims run the risk of being taken to

malicious websites where, after entering his/her information, the data will fall into the

hands of criminals. Personal information like address, credit card information and bank

login credentials, social media accounts, and emails are typically the targets.

With QRishing, it is possible to attack both people and the systems that will utilize

the information contained in this QR Code. It is possible to commit the widest range

of frauds depending on the content entered into the QR Code and the security of the

application that uses the scanned content. If the QR Code content makes use of a flaw

in the application that reads the QR Code, such as a buffer overflow, it may also be

able to take control of the victim’s device. One benefit for attackers of utilizing a QR

code to access a URL is that the user does not have to write the URL and frequently

simply retains the presented content, making them vulnerable to phishing attempts that

result in websites with identical designs. Users are frequently a system’s weakest link,

thus training them is essential. When referring to targeted attacks on businesses, users’

irrational curiosity exposes them to risk. Users should only use a trustworthy scanner to

29

1. Introduction

scan safe sites, and they should turn off any automatic reader actions, in order to prevent

QRishing. There should be an appropriately updated whitelist for information systems,

and it should be confirmed that the content size is normal.

Calls made during a Vishing assault may come directly from a person, from record-

ings, or automated systems. The attacker calls the victim and poses as a representative

from a bank or a credit card company. The attacker claims that there has been sus-

picious activity on the victim’s account and asks the victim to verify their identity by

providing personal information such as their account number, Social Security number,

or date of birth. The attacker may use a spoofed phone number to make it appear as

if the call is coming from a legitimate source, adding credibility to their story. If the

victim falls for the ruse and provides the requested information, the attacker can use it

to gain access to the victim’s account or engage in identity theft. The attacker may also

use high-pressure tactics, such as threatening to freeze the victim’s account or take legal

action, to coerce the victim into providing the information.

To protect against vishing attacks, it’s important to be cautious when receiving un-

solicited phone calls and to never give out sensitive information over the phone unless

we are certain of the caller’s identity. If we receive a suspicious call, hang up and call

the company’s customer service number directly to verify the legitimacy of the request.

1.7 PHISHING DETECTION TECHNIQUES

Many phishing detection techniques have been developed by researchers using various

approaches, some of which are as follows:

• DNS Analysis: Examining DNS records to identify malicious domains and other

unusual activity.

• DNS blocking: preventing emails from being sent from domains known to be

used in phishing attacks.

• IP Reputation Checks: This involves comparing the IP addresses of suspicious

emails to databases of known malicious IPs.

• URL Analysis: Searching the source code of a website or email for suspicious

30

1.8. Need for improving existing techniques to detect phishing attacks

links, malicious scripts, and other phishing-related indicators.

• URL Scanning: Detecting malicious domains and links by scanning the URLs of

suspicious emails.

• Attachment Analysis: Examining email attachment content to detect malicious

files.

• Keyword Filtering: Configuring keyword filters to detect phishing emails that

contain specific words or phrases.

• Content Analysis: Examining email content for potentially phishing-related phrases,

words, links, and images.

• Machine Learning: Detecting suspicious patterns in emails, websites, and other

data using machine learning algorithms.

• Web Browser Protection: Installing browser extensions and plugins to detect and

warn about malicious websites.

• Email Authentication: Checking emails for Sender Policy Framework (SPF), Do-

main Keys Identified Mail (DKIM), and Domain-based Message Authentication,

Reporting, and Conformance (DMARC) compliance.

• Behavioral Analysis: Examining user behavior for deviations from normal be-

havior that could indicate a phishing attack.

• Anti-Virus Software: Scanning emails for viruses, malware, and other malicious

code.

• User Education: Educating users on how to recognize and report phishing emails.

1.8 NEED FOR IMPROVING EXISTING TECHNIQUES TO DETECT PHISH-
ING ATTACKS

The internet has become an essential part of daily life for everyone. Banking, booking,

and recharging are now commonplace online transactions. However, these activities

31

1. Introduction

raise the risk of phishing attacks, which are the leading cause of online security prob-

lems. Because of the increasing frequency of attacks, phishing has become a major

concern for global internet security and the economy. User education is essential for

increasing technical awareness and decreasing susceptibility to phishing attacks. While

many phishing strategies and attacks exist, current detection techniques are insufficient.

We proposed using word embedding, deep learning, and machine learning techniques

to classify phishing emails, as well as an effective deep learning technique to detect

phishing websites, to improve performance.

1.9 PHISHING ATTACK DETECTION CHALLENGES

Many machine learning algorithms, as well as deep learning systems, cannot process

strings or plain text in their raw form. They require numbers as inputs to perform

any type of work (classification, regression, etc.). In order to create useful applica-

tions, knowledge must be extracted from large amounts of text-based data. Commercial

firms’ sentiment analysis of reviews, Google’s document or news classification or clus-

tering, and so on are examples of real-world text-based applications. Word embedding

refers to a collection of language models and feature selection techniques that are com-

monly referred to as word representation. Its primary goal is to map textual terms or

phrases into a continuous, low-dimensional space. Word embeddings effectively con-

vert human-written discourse into numerical form. It’s possible that the language that

was converted to numbers now has a new numeric representation. Deep learning, a

more efficient technique, can be used to detect phishing attacks on websites. A combi-

nation of machine learning, deep learning, and word embedding techniques is used to

classify email phishing attacks. Researchers can improve these techniques by adding

heuristic capabilities to detect phishing emails and websites.Identifying websites hosted

on compromised domains, as well as those embedded with flash, HTML, and iframes,

may also be part of this process. These additional capabilities would improve the overall

effectiveness of detecting phishing attacks.

32

1.10. Problem description

1.10 PROBLEM DESCRIPTION

Phishing is a type of manipulation attack in which the attacker disguises himself as

a trustworthy entity in order to trick victims into disclosing personal information. It

is a serious threat because it exploits human rather than system vulnerabilities. Users

must be educated and trained to recognize phishing websites and emails, but expecting

everyone to do so perfectly is unrealistic. User education and anti-phishing tools are in-

effective because attackers are constantly devising new ways to exploit flaws in existing

systems. While user education is important, it is not sufficient on its own. As a result,

we require a more effective and highly accurate system for detecting phishing emails

and websites.

1.11 PROBLEM STATEMENT

Design and develop an efficient mechanism to detect phishing websites and emails with

high accuracy by using limited features.

1.12 OBJECTIVES

• Propose an efficient word embedding framework to detect phishing emails using

email header features.

• Propose an efficient NLP based deep learning framework to detect phishing emails

using email body text.

• Propose an efficient deep learning classification mechanism to detect phishing

websites using minimal distinctive URL features.

1.13 THESIS CONTRIBUTIONS

The thesis proposes the use of word embedding, machine learning, and deep learning

methods to enhance the effectiveness of detecting phishing attempts in emails and web-

sites. Word embedding represents words in a numerical format for better understanding,

while machine learning algorithms analyze data to learn from patterns and trends, and

deep learning techniques involve complex neural networks for pattern and feature de-

tection. Using these techniques together can improve phishing detection efficiency and

33

1. Introduction

accuracy to protect individuals and organizations from such attacks. The main contri-

butions of the thesis are as follows:

• Proposed an efficient phishing emails detection technique based on header fea-

tures using word embedding and machine learning (Somesha and Pais 2022). The

proposed system uses a novel word embedding cum machine learning framework

to classify emails using only four email header-based heuristics (From, Return-

path, Subject, and Message-ID). In order to create precise email anti-phishing

systems, a real-time input data set is required. In this study, a real-time in-house

collection of phishing and legitimate email datasets are created.

• Proposed ”DeepEPhishNet” a deep learning framework for email phishing de-

tection using word embedding algorithms. The technique also makes use of four

header-based features of the emails for email classification. Various word em-

beddings have been evaluated, and the model based on FastText-SkipGram with

DNN achieved an accuracy of 99.52%.

• Proposed a model which utilizes BERT transformers to analyze the text content

of email bodies, enabling accurate identification and classification of phishing

attempts. By leveraging the power of BERT transformers, the model effectively

captures context, semantics, and syntactic structures, leading to enhanced perfor-

mance in phishing detection and classification with an accuracy of 99.51%.

• Proposed an efficient deep learning model for the detection of phishing web-

sites (Somesha et al. 2020). The framework relies on minimal distinctive URL

features to address the issues associated with phishing websites and to improve

accuracy and efficiency in phishing detection. The model incorporates Deep Neu-

ral Network (DNN), Long Short-Term Memory (LSTM), and Convolution Neu-

ral Network (CNN). Among all three methods, LSTM achieves an accuracy of

99.57%.

34

1.14. Thesis Organization

1.14 THESIS ORGANIZATION

The thesis is organized as follows: Chapter 2 gives a survey of various techniques

currently employed for the detection of phishing emails and websites. Chapter 3 in-

troduces a framework that utilizes word embedding and machine learning, focusing on

header features to identify phishing emails. It also covers the procedures for prepar-

ing an in-house dataset. Chapter 4 delves into deep learning techniques specifically

designed for the detection of phishing emails, utilizing the four header heuristics previ-

ously selected and discussed in Chapter 3. Chapter 5 proposes a method for classifying

phishing emails based on the textual content of their bodies, employing BERT trans-

formers. Chapter 6 describes the implementation of efficient deep learning techniques

for identifying phishing websites. Lastly, Chapter 7 concludes the thesis and explores

future research directions in the field of phishing detection.

35

CHAPTER 2

LITERATURE REVIEW

Numerous studies have been conducted using various methodologies to detect phishing

emails and websites. This chapter provides a thorough examination of anti-phishing

techniques designed specifically to combat email and website phishing. Furthermore,

the chapter includes a plethora of phishing indicators corresponding to each phishing

category as well as their associated limitations.

2.1 A REVIEW ON ANTI-PHISHING TYPES AND TECHNIQUES

At present, the primary focus of browsers, antivirus software, and existing anti-phishing

techniques is to safeguard online users from phishing attacks. They employ a range

of tools and techniques to detect both email phishing and website phishing attempts.

These protective measures include the use of whitelists, blacklists, source code anal-

ysis, URL validation, examination of images and logos, scrutiny of document object

models, evaluation of search engine results, assessment of page ranking, and analysis

of WHOIS data. We categorize these anti-phishing techniques based on the classi-

fication mechanisms they employ, and in the following discussion, we explore each

category along with its limitations. Figure 2.1 illustrates the classification of defense

mechanisms against email and website phishing. Researchers utilized classification al-

gorithms or models (shown in Figure 2.2) for implementing classification mechanisms

in their study. In this survey, our primary focus is on Machine Learning (ML) and

Deep Learning (DL) techniques, which have predominantly excelled in the detection of

37

2. Literature Review

phishing attacks.

Figure 2.1: Phishing classification structure

2.1.1 ML based phishing email detection

Anti-phishing mechanisms are critical in reducing the risks associated with email phish-

ing attacks. These mechanisms are intended to detect and prevent phishing attempts,

keeping users safe from fraudulent emails. Email filtering, link and URL analysis,

sender authentication, content analysis, and user education are all common anti-phishing

techniques. To create effective anti-phishing tools and techniques, we need techni-

cal expertise as well as a thorough understanding of phishing techniques. ML, DL,

Word Embedding (WE), Natural Language Processing (NLP), Artificial Intelligence

(AI), and phishing website analysis are common techniques used in the development of

anti-phishing tools.

Fette et al. (2007) provide a thorough literature review on the detection of phishing

emails, which are deceptive messages designed to obtain sensitive information from

users. The authors investigate the characteristics of phishing emails as well as the need

for effective detection mechanisms to combat this ever-changing threat. They go over

various types of features used in phishing email detection, such as content-based, URL-

based, header-based, and behavioral-based features. The authors also discuss various

machine learning techniques for classification and anomaly detection, such as super-

38

2.1. A Review on Anti-Phishing Types and Techniques

Figure 2.2: Anti-Phishing techniques based on classification algorithms

vised and unsupervised learning. The importance of diverse datasets and evaluation

metrics are emphasized. The data is a valuable resource for researchers and practition-

ers working to develop robust systems for detecting and mitigating phishing emails.

Smadi et al. (2018) proposed a framework for detecting phishing attacks in the on-

line mode that combines neural networks and reinforcement learning. The proposed

model can dynamically adapt to identify newly arrived phishing emails for newly ex-

plored email behaviors. A novel algorithm is used to investigate new phishing behav-

iors in new datasets. The dynamic system achieves 98.63% accuracy, 99.07% TPR, and

98.19% TNR. The disadvantage of this approach is that learning dynamic updates of

features and datasets for each email may cause the system to slow down.

Toolan and Carthy (2009) proposed an extension to the work of Fette et al. (2007),

using classifier ensembles for the classification of phishing and non-phishing emails.

They used the C5.0 algorithm and achieved a very high precision. Toolan and Carthy

(2009) used only FIVE features on approximately 8000 emails, half of which were

39

2. Literature Review

phishing and remaining legitimate.

Bergholz et al. (2010) proposed new filtering approaches by selecting novel fea-

tures suitable to identify phishing emails. The chosen features suites better to statistical

models of low dimensional descriptions of email topics. The work was carried out by

sequential analysis of email text, external links, and detection of embedded logos as

well as indicators for hidden salting (inserting white text on white background). They

used 27 basic features with two novel features (logo detection and hidden salting) and

obtained an f-measure of 99.46%.

Toolan and Carthy (2010) identified 40 features extracted from the email body of

over 10,000 emails which are divided into ham, spam, and phishing. The selected

features are evaluated using an information gain algorithm and classified as Best-IG,

Median-IG, and Worst-IG features. Best-IG features outperformed among all with

an average accuracy of 97.1%. The freely available datasets from SpamAssassin and

Phishing corpus was used (4202-ham, 1895-spam, and 4563-phish).

Khonji et al. (2011) proposed feature subset evaluation and feature subset searching

methods. The primary focus of this is to enhance the classification accuracy of phishing

emails by finding the effective feature subsets from the number of previously proposed

features. There are a total of 21 features selected (email body, email header, URL,

JavaScript, and external features) from Fette et al. (2007), Bergholz et al. (2010), Toolan

and Carthy (2010), and Gansterer and Pölz (2009). After evaluating with various feature

selection methods, Wrapper with RF performed the best with 21 features and an f1-

score of 99.396%. The authors used publicly available datasets of 4116 phishing emails

from monkey.com1 and 4150 ham emails from SpammAssasin.com2.

Abu-Nimeh et al. (2009) proposed distributed phishing detection by applying vari-

able selection using Bayesian Additive Regression Trees (BART). They presented a

distributed client-server architecture to detect phishing e-mails by automatic variable

selection. BART improves its predictive accuracy when compared to other classifiers.

This architecture is also used to detect phishing attacks in a mobile environment. Abu-

1https://monkey.org/ jose/phishing/
2https://spamassassin.apache.org/old/publiccorpus/

40

2.1. A Review on Anti-Phishing Types and Techniques

Nimeh et al. (2009) used 71 features for training and testing of 6 Machine learning

algorithms (RF, LR, SVM, Nnet, CART, BART), and proved that there is no standard

classifier for phishing email prediction.

Chandrasekaran et al. (2006) proposed a technique to classify phishing based on the

structural properties of phishing e-mails. They used one-class SVM to classify phishing

e-mails before it reaches the user’s inbox, essentially reducing human exposure based

on selected features. The prototype sits between user’s Mail Transfer Agent (MTA)

and Mail User Agent (MUA) and process each arriving email. Their results claim a

detection rate of 95% of phishing e-mails with a low false positive rate.

Cohen et al. (2018) proposed a novel set of general descriptive features for enhanced

detection of malicious emails using machine learning methods. The proposed features

are extracted directly from the email itself, therefore the features are independent, do not

require the internet or any other tools, and meet the needs of real-time systems. These

features are from all components, i.e., header, body, and attachments. The authors used

33142 emails which contain 38.73% of malicious and 61.27% benign emails. Applied

30 most prominent features of the 100 features extracted by applying three main feature

selection approach those are, Filter methods, wrapper methods, and embedded methods.

Random Forest (RF) classifier achieved the highest detection accuracy of 92.9%, TPR

94.7%, FPT 0.03 among 9 commonly used machine learning classification algorithms

(J48, RF, NB, Bayesian Networks, LR, LogitBoost, Sequential Minimal Optimization,

Bagging, and Adaboost).

Harikrishnan et al. (2018) made use of TF-IDF and some classical machine learn-

ing algorithms such as RF, AdaBoost, NB, DT, and SVM. The proposed method uses

TF-IDF for vector representation of words and SVD, NMF for feature extraction, and

dimensionality reduction. This model is trained on IWSPA-AP 18 datasets. The pro-

posed model has a testing accuracy of 90.29% for emails with headers using TF-IDF

and NMF representation.

Valecha et al. (2021) used a new convention called Persuasion cues instead of fea-

tures, keywords, or phishing techniques used by other researchers. The proposed tech-

41

2. Literature Review

nique uses Word2Vec with four machine learning classifiers and compared the candi-

date model for gain, loss, and gain loss persuasion cues with the baseline model and

achieved an improvement of approximately 5 to 20%. The model with Word2Vec and

SVM achieved the highest gain accuracy of 96.52%, loss of 96.16%, and gain loss ac-

curacy of 95.97%.

Oña et al. (2019) proposed a novel approach to identify and mitigate phishing at-

tempts. Their method involves utilizing Feature Selection, Automatic Learning, and

Neural Networks with Scrum methodology to develop a system that can recognize and

respond to phishing attacks that are recorded on an email server. The system was val-

idated using the blacklist of Phish Tank, a collaborative resource for information on

internet-based phishing. Their proof of concept demonstrated that the feature selection

algorithm effectively eliminates irrelevant email properties, and the neural network al-

gorithm efficiently learns and processes the relevant ones. Future studies could explore

the use of deep learning techniques and Bayesian Neural Networks (BNN) to enhance

this approach.

The researchers (Moradpoor et al. 2017), utilized publicly available email datasets

consisting of benign and phishing emails to construct a neural network (NN) based

model aimed at detecting and categorizing phishing emails. The datasets contained

genuine emails extracted from the ”Spam Assassin” and ”Phishcorpus” datasets, re-

spectively. The datasets were designed to include emails of varying difficulty levels.

For example, certain innocuous emails present in the ”Spam Assassin” dataset could be

easily distinguished from phishing emails due to the absence of phishing signatures. In

the future, research may be conducted to explore word embedding techniques, which

may help enhance the model’s performance and improve its accuracy and efficiency in

detecting phishing techniques.

Researchers led by Baykara and Gürel (2018) have created an anti-phishing simu-

lator that can recognize phishing attacks in both emails and websites. The simulator

offers information on how to detect phishing emails and determines the difficulty level

involved. The software employs a content-based approach to identify spam and phish-

ing emails by examining their contents. The Bayesian technique is utilized to categorize

42

2.1. A Review on Anti-Phishing Types and Techniques

spam words within the database. Future work will focus on expanding the phishing term

collection and conducting a more extensive text mining analysis of email content. The

use of artificial neural networks is also planned to achieve more precise findings and

classification.

Peng et al. (2018) introduced an approach to identify phishing attacks by employing

natural language processing and machine learning, specifically support vector machine

(SVM). The study focuses on investigating metadata properties, such as email sender

and receiver IDs, subject lines, email bodies, internet protocol addresses, and URLs

embedded in phishing emails. Based on these desired properties, an anti-phishing algo-

rithm is developed using SVM. Real-time success rates are achieved using datasets and

library sets like accord.net. Future research may expand the SVM method to address a

broader range of attacks, including CSS (Cross-Site Scripting) attacks.

Limitations: It is critical to recognize certain limitations when using machine

learning for email-based anti-phishing techniques. These include a lack of labeled data,

imbalanced datasets, difficulty adapting to new and evolving attacks, vulnerability to

adversarial attacks, feature engineering and interpretability challenges, and the trade-

off between false positives and false negatives. To overcome these constraints, ongoing

research and development efforts are required to improve data collection, model train-

ing, feature selection, and interpretability. Integrating machine learning with other tech-

niques, such as user behavior analysis and email authentication, can help anti-phishing

systems perform better.

2.1.2 Deep learning based email phishing

Nguyen et al. (2018) presented a deep learning model with hierarchical Long Short-

Term Memory (LSTM) and a supervised attention mechanism. The hierarchical LSTM

structure is implemented first for words at the lower level, whose results are then passed

to the LSTM structure in the sentences at the upper level to generate vector representa-

tion for the email. An attention mechanism is used to combine these two levels and to

assign the contribution weights to each of the words and sentences in the email. A deep

learning model is used to automate the feature engineering process for phishing email

43

2. Literature Review

Table 2.1: Summary: Email phishing using ML techniques
Author Model / Al-

gorithm
Features Dataset(s) Accuracy

(%)
Limitations

Smadi et al.
(2018)

Dynamic
evolving
Neural Net-
works

50
Hybrid

Phishing corpus
& PhishTank:
4559 SpamAs-
sasin:4559

Acc:
98.63
TPR:99.07
TNR:98.19

Limited comparison
with existing methods
and Lack of real-world
validation

Islam and
Abawajy
(2013)

SVM, Ad-
aBoost, and
NaiveBayes

21
Hybrid

SpamAssasin &
Phishing corpus

Acc: 97 Complexity of analysis is
high. High misclassifica-
tion of test data

Khonji et al.
(2012)

Lexical URL
Analysis &
RF

48
Hybrid

Phishing corpus:
4116, SpamAs-
sasin: 4150

F-score:
99.37 FP:
0.59

Lacks the ability to ac-
curately detect phishing
emails with non-textual
content in their body.

Gansterer and
Pölz (2009)

SVM & J48 30
Hybrid

Phishing corpus:
5000, SpamAs-
sasin: 5000

Acc: 97 Higher cost due to on-
line features, classifica-
tion speed depends on in-
ternet connection

Ramanathan
and Wechsler
(2012)

phishGILLNET 200
body

400,000 from
multiple resource

Acc: 97.7 The complex architecture
results in increased mem-
ory usage and computa-
tion time.

Ma et al.
(2009)

DT, RF, MLP,
NB, SVM

7 Hy-
brid

Phishing-46,525
Legitimate-
613,048

Acc: 99 Did not utilize a verified
dataset of phishing and le-
gitimate emails for analy-
sis.

Toolan
and Carthy
(2009)

Ensemble
model (C5,
Decision
Tree, K-NN,
LR, SVM,
R-Boost)

5 Hy-
brid

SpamAssasin:
4202, Phishing
corpus - 4563

F-Score:
99.31

May not handle real-
world phishing emails
accurately and small
feature sets may hin-
der detecting complex
phishing emails.

Abu-Nimeh
et al. (2009)

LR, CART,
SVM, NNET,
BART,& RF

71
Hybrid

Phishing cor-
pus:1403, Legit:
5152

Acc:97.09
(SVM)

Consumes more time and
memory due to large set
of features

Chandrasekaran
et al. (2006)

SVM 25
struc-
tural
features

In-House:
Phishing-200
Legitimate-200

Acc: 95 Used very small dataset
for analysis

Fette et al.
(2007)

PILFER - RF
& SVM

10
Hybrid

Phishing corpus:
860 SpamAssas-
sin: 6950

Acc: 96 Resulted in 0.12% false
positive and 7.35% false-
negative rates. Achieved
low performance with
large datasets.

Alhogail
and Alsabih
(2021)

GCN Body CLAIR collec-
tion Phishing:
3685 Legit: 4894

Acc: 98.2 Used only body based
features, accuracy is less
compared to some exist-
ing works. Unknown No.
of features.

44

2.1. A Review on Anti-Phishing Types and Techniques

detection. With the use of both the email headers and body, they achieved precision,

recall, and F1 scores of 0.990, 0.992, and 0.991 respectively.

Castillo et al. (2020) proposed email threat detection using a distinctive neural net-

work approach. The author described different approaches for detecting malicious con-

tent in emails. The proposed model is a combination of machine learning and natural

language processing and used publicly available and private datasets. The model uses

only email contents as input data set to classify emails as malicious or benign. In

this work, the Gensim-Word2Vec model is used to generate numeric word vectors and

achieved a testing accuracy of 95.68% with 1025 emails.

Hiransha et al. (2018) made use of IWSPA-AP 18 datasets to train the model con-

sisting of Keras word embedding and Convolutional Neural Networks (CNN). The pro-

posed model combining word embedding and CNN gives a vector representation for the

words in the emails which are then used in the classification of legitimate and phishing

emails. The proposed model achieved an accuracy of 96.8% using only email body text

and 94.2% using both email header and body text.

Alhogail and Alsabih (2021) introduced a novel model for classifying phishing

emails that leverages deep learning techniques, specifically Graph Convolutional Net-

work (GCN) and natural language processing, to improve the accuracy of phishing de-

tection using the body text of emails. The proposed model was tested using a supervised

learning approach and demonstrated superior classification accuracy and performance

compared to other deep learning methods. The training process was rapid, and the

model achieved high true positive and true negative rates, as well as recall, precision,

and overall accuracy. Text features in the email body represent a new research direc-

tion in the field of phishing detection since only a few studies have examined them.

Moreover, the proposed classifier can effectively identify zero-day phishing attempts

by identifying unseen body text, indicating its potential effectiveness in detecting the

most recently disseminated zero-day phishing emails. Consequently, further studies are

needed to evaluate its efficacy in detecting these zero-day phishing emails.

In recent research conducted by Li et al. (2020), LSTMs were employed for the clas-

45

2. Literature Review

sification of phishing emails. The primary dataset, which is privately owned, consisted

of a large volume of two million emails. However, there are concerns regarding the

methodology used to tag the training set. The labeling process involved a combination

of k-means clustering and K-nearest neighbors (KNN) after a small sample had been

manually labeled. Subsequently, features were extracted from both the email headers

and content to expand the sample size and automate the labeling of the remaining unla-

beled emails. The comparative analysis of labeling methods is also subject to scrutiny,

as a different quantity of emails was labeled and analyzed to determine the accuracy of

the proposed method compared to other labeling approaches.

Fang et al. (2019b) proposed a model called THEMIS, which is a combination of

deep learning and Word2Vec techniques for phishing email detection. The model uses

improved Recurrent Convolution Neural Networks (RCNN) with multilevel vectors and

attention mechanisms. They used word level and character level vectorization for a rich

set of vectors. The extracted vectors are tuned, trained, and tested using RCNN to obtain

an efficient phishing accuracy of 99.848% and FPR of 0.043%. The obtained results are

competitive, but the same would have been trained and tested with other WE and DL

techniques. The author used multiple datasets to have a bulky dataset.

Bagui et al. (2019) proposed an approach that uses deep semantic analysis, ML, and

DL techniques to classify phishing and legitimate emails. They used private datasets

collected from various industries in the USA. The proposed approach uses hybrid fea-

tures as text and achieved an accuracy of 98.89% with word phrasing and 96.34% with-

out word phrasing using n-gram analysis and one-hot encoding techniques. In the pro-

posed work, Bagui et al. (2019) claim that stop words are not removed and used both

header and body features.

Ra et al. (2018) used the combination of word embedding, a neural bag of n-grams,

and some deep learning models such as CNN, Recurrent Neural Network (RNN), LSTM,

and MLP for the detection of phishing emails. Deep learning models are used to extract

the optimal features and non-linear activation functions are used for classification. All

the models are trained on an anti-phishing shared task corpus at IWSPA-AP 2018. The

proposed model achieved a training accuracy of 99.1% with a word embedding vector

46

2.1. A Review on Anti-Phishing Types and Techniques

and LSTM network.

Verma et al. (2012) proposed ”Detecting phishing emails the natural language way”

in the year 2012, the first scheme used natural language processing techniques and

contextual information in detecting phishing emails. The scheme uses all parts of the

email including the header, text in the body, and the links present in an email. The

proposed model named ”PhishNet-NLP” operates between a mail transfer agent and a

mail user agent. The proposed method achieves an accuracy of 97%. The obtained

accuracy is comparatively less than in other works.

Gutierrez et al. (2018) proposed a model called SAFE-PC for detecting a new form

of phishing attacks, a semi-automated feature generation model for phishing classifica-

tion. The model uses a huge corpus received from Purdue University’s central IT orga-

nizations with the help of a state-of-the-art email filtering tool called Sophos installed

on a Microsoft Exchange server. The author used three datasets as caught, uncaught,

and benign of size 388,264 emails, 37,606, and 158,444 emails respectively, and used

806 features from email header, body, and links. The authors also tested their model

with SpamAssassin open-source corpus and noticed the model performed better with

collected real-time datasets. The authors claim that the proposed work is an extension

of the work carried out by Verma et al. (2012). Used features in the proposed work are

huge and may require more time to process in a real-time environment.

Verma et al. (2020) utilized natural language processing concepts to offer a com-

prehensive understanding of how phishing emails are classified. The classification of

emails using natural language processing techniques includes evaluating the accuracy

rate of various classifiers. The system produces a predicted matrix and classification

report, along with the computed accuracy rates of classifiers. In future studies, raw and

unstructured datasets will be employed for classification and clustering purposes.

Limitations: Anti-phishing techniques that utilize deep learning for email phish-

ing have certain limitations. They face challenges in generalizing to novel attack pat-

terns, are susceptible to adversarial manipulation, depend on acquiring ample and chal-

lenging to obtain training data, lack interpretability, encounter difficulties in contextual

47

2. Literature Review

Table 2.2: Summary: Email phishing detection using DL
Author Model/ Algo-

rithm
Features Dateset (s) Accuracy

(%)
Limitations

Bagui et al.
(2019)

Deep Semantic
Analysis, ML,
DL, and Word
Embedding

Hybrid -
Body and
Subject

Non-public 98.89 Used only text content without
using sender info and attach-
ments of an email, and Used
only one-hot encoding for vec-
tor generation.

Nguyen
et al.
(2018)

NLP, DL, and
H-LSTM

20 Hybrid IWSPA-AP 2018 99.0 Need large amount of labeled
data for training the DL mod-
els and achieved results with
body and hybrid features are
moderate.

Li et al.
(2020)

LSTM, KNN,
and K-Means

7 Header
and body

Private 95.0 Used limited dataset, requires
accurate labeling of phishing
emails, and did not address is-
sues of identity forgery and
cloud attachments.

Castillo
et al.
(2020)

DNN, CN,
RNN,and
Word2Vec

Body Enron, APWG,
and Non-public

95.68 Some unbalanced datasets
used, reliance on pre-trained
word embeddings, and only
email contents used for
phishing detection.

Ra et al.
(2018)

CNN, MLP,
LSTM,and WE

Hybrid IWSPA-AP 2018 99.1 Highly imbalance datasets are
used to train the model, not
tested the model with balanced
datasets to justify the results.

Hiransha
et al.
(2018)

WE, CNN Body IWSPA-AP 2018 96.8 The dataset is highly imbal-
anced and leads to decrease in
accuracy.

Harikrishnan
et al.
(2018)

Classical ML
techniques,
TF-IDF

Hybrid Combination of
different publicly
available datasets

90.29 Achieved accuracy is very
low compared to all existing
works. Over fitting due to un-
balanced datasets

Valecha
et al.
(2021)

Word2Vec and
Machine learn-
ing techniques.

Hybrid Millersmile3 96.52 Used persuasion cues, did not
compare efficiency with other
works, compared only with
baseline model

comprehension, exhibit false positives and negatives, and demand substantial time and

resources for training. It is necessary to update and expand the training data, enhance re-

silience against adversarial attacks, improve interpretability and contextual understand-

ing, and integrate these techniques with other anti-phishing methods to bolster overall

defenses.

2.1.3 URL Phishing detection using ML

Marchal et al. (2017) proposed a client-side application that extracts features mainly

48

2.1. A Review on Anti-Phishing Types and Techniques

from the URL and content of the website resulting in a 210 feature vector. The authors

used a Gradient Boosting algorithm to classify phishing sites to achieve a significant

detection rate. Using a large feature vector may include substantial time for the feature

extraction and classification of URLs.

Li et al. (2019) proposed a stacking model combining Gradient Boosting Decision

Tree, XGBoost, and LightGBM algorithms for detecting phishing web pages. The au-

thors extracted features from the suspicious website’s URL and Hypertext Markup Lan-

guage (HTML). The extracted features contain 8 URLs and 12 HTML-based elements

to generate a feature vector. The vector is fed to the stacked model for the classification

and achieves an accuracy of 97.30%.

Jain and Gupta (2018b) proposed a client-side technique that uses features from

the URL and source code of the suspicious site for classification. They applied five

machine learning algorithms to identify the best classifier suitable for their dataset. RF

had outperformed other classifiers with an accuracy of 99.09%.

El-Alfy (2017) proposed phishing websites based on probabilistic neural networks

and clustering K-medoids. This framework combined unsupervised and supervised al-

gorithms for training the nodes. K-medoid technology uses feature selection or transfor-

mation, and component analysis reduces space dimensionality. The technique achieved

96.79% accuracy by considering 30 features.

Zhang et al. (2014) proposed SMO for detecting and classifying Chinese phishing

e-business websites. They used 15 unique and some generic domain-specific features

to evaluate the model. They have used four different machine learning algorithms to

classify phishing sites. Among all four algorithms, SMO performed the best in detecting

phishing sites with an accuracy of 95.83%. The disadvantage of this approach is that it

works better with Chinese websites only.

Rao and Pais (2019) proposed a new model for classifying phishing attacks, which

utilizes heuristic features derived from URLs, source code, and third-party services.

The aim was to overcome the limitations of existing anti-phishing methods. The model

was tested using eight machine learning techniques, with the Random Forest (RF)

49

2. Literature Review

method yielding the highest accuracy rate of 99.31%. The author employed several

orthogonal and oblique classifiers to identify the most efficient random forest classi-

fier for detecting phishing websites. The principal component method proved to be

the most effective oblique Random Forest (ORF) classifier, achieving an accuracy of

99.55%. Going forward, phishing attacks that involve embedded objects like Flash or

HTML files will require the inclusion of additional heuristics. Other heuristics that ex-

clude third-party services were explored to enhance the proposed model’s effectiveness.

The Proposed model will help reduce dependence on external services and minimize

detection delays.

Nathezhtha et al. (2019) have proposed a three-phase attack detection system called

the Web Crawler-based Phishing Attack Detector (WC-PAD), which can determine the

occurrence of phishing attacks. The system uses various input factors, such as web

traffic, content, and URLs, to classify websites as phishing or non-phishing. The effec-

tiveness of the proposed system was validated by using datasets gathered from actual

phishing situations used in an experimental study. It is found that the current meth-

ods for phishing detection are insufficient in addressing zero-day phishing website at-

tacks. The proposed WC-PAD, however, demonstrated a high detection accuracy rate

of 98.9% for both phishing and zero-day phishing attacks. Nonetheless, there is still

room for improvement in terms of detection accuracy performance.

Pham et al. (2018) developed a neuro-fuzzy framework named Fi-NFN that utilizes

aspects of web traffic and a URL to detect phishing websites. This framework is based

on the innovative strategy of fog computing, as promoted by Cisco, that aims to create

an anti-phishing model to monitor and protect fog users from phishing attacks in a

discreet manner.

Yuan et al. (2018)proposed a method to detect phishing websites and their intended

victims by analyzing features obtained from the URLs and website linkages. Various

machine learning models are considered for phishing detection, the Deep Forest model

has demonstrated superior performance and a high true positive rate. The proposed

approach involves extracting features exclusively from the URLs and links on first-level

web pages without accessing the content of second-level pages. This results in a fast and

50

2.1. A Review on Anti-Phishing Types and Techniques

accurate method for use in real-world situations. Additionally, a search operator-based

approach for phishing target detection suggested, which also achieved a relatively high

level of accuracy. However, further development of this feature in machine learning is

necessary.

Chiew et al. (2019) introduced a new feature selection framework called Hybrid En-

semble Feature Selection (HEFS) for machine learning-based phishing detection sys-

tems. HEFS consists of two phases: the first phase involves using a novel Cumulative

Distribution Function gradient (CDF-g) algorithm to generate primary feature subsets,

which a data perturbation ensemble utilizes to create secondary feature subsets. The

second phase of HEFS uses a function perturbation ensemble to obtain baseline fea-

tures from the secondary feature subsets. The experiments showed that combining

HEFS with the Random Forest classifier resulted in the most effective detection, ac-

curately identifying 94.6% of phishing attempts. However, further improvements to the

detection rate will require enhancing the accuracy of the Random Forest classifier.

Yadollahi et al. (2019) have developed a resilient detection system that can adapt

to the surrounding environment and phishing websites. This system utilizes machine

learning to differentiate between legitimate and phishing websites online and incorpo-

rates many features. The proposed approach is a completely client-side solution that

extracts various types of discriminative information from URLs and web page source

code, eliminating the need for assistance from a third party. However, while this ap-

proach effectively detects various types of phishing websites, it may not be able to

identify zero-day attacks.

Zhang et al. (2017) propose a novel framework for detecting phishing web pages

that incorporates textual content labels as part of its features. This framework com-

prises rule-based, URL-based, web-based, and text-based features selected using an ef-

fective two-stage Extreme Learning Machine (ELM). In the first stage, ELM is used to

build classification models for the textual content of web pages, with Optical Character

Recognition (OCR) utilized as an aid tool to extract text from web pages with picture

formats. In the second stage, a classification model on hybrid features was created

using a linear combination model-based ensemble ELMs (LC-ELMs), with weights

51

2. Literature Review

determined using the generalized inverse. The framework’s future development plans

include an incremental approach to upgrading the detection model and improving the

textual content categorization process.

Ghimire et al. (2021) presented different approaches for detecting phishing URLs

based on feature extraction using machine learning. Network-based and URL-based

features fed into the machine learning classifiers. The proposed system is categorized

into five parts: data collection, feature engineering, data preprocessing, algorithm clas-

sification, and performance evaluation. However, there is a need to improve the accu-

racy of phishing detection to enhance the system’s overall performance.

Nagunwa et al. (2019) proposed a new framework for anticipating zero-hour phish-

ing websites by introducing hybrid features demonstrating good prediction performance.

The prediction performance of the features explored using eight machine-learning tech-

niques. The Random Forest approach showed the best performance, with an accuracy

of 98.45% and a false negative rate of 0.73%. To further enhance prediction perfor-

mance and efficiency beyond existing works, additional research should focus on ex-

ploring novel perspective features and utilizing advanced machine learning methodolo-

gies, such as deep learning and online learning.

In their study, Adewole et al. (2019) presented a novel hybrid rule induction al-

gorithm aimed at distinguishing between legitimate and phishing websites. They also

explored the possibility of early detection of phishing attacks through a combination

of rules generated by two commonly used rule induction algorithms, namely JRip and

PART. The PART algorithm proved to be more effective in detecting phishing than JRip.

To address zero-day phishing attacks, future research should focus on investigating the

use of adaptive machine-learning techniques for phishing detection.

The study by Afek et al. (2017) focused on analyzing the detection of malicious

URLs, considering two datasets, namely Phish Tank and UCI. The researchers first

collected the most effective features from these datasets using a DBA-based detector

module. They then generated seventy-eight optimal rules using association rule mining

based on these features. However, repetitive elements in the rules may limit the effec-

52

2.1. A Review on Anti-Phishing Types and Techniques

tiveness of identifying fraudulent URLs. The study suggests that identified problem can

be solved using the Frequent Rule Reduction technique and a classification approach to

predict phishing websites.

Kumar and Indrani (2021) conducted a study comparing manual feature selection

methods with those used in the Filter method and proposed a new manual feature se-

lection methodology. The study also compared the performance of various machine

learning classification methods, such as Naive Bayes, J48, and HNB, to efficiently de-

tect phishing websites. The researchers closely monitored the performance of a clas-

sifier that combined HNB and J48 to address the identified issue. However, given the

continuous evolution of new phishing techniques, there is a need to improve the feature

selection process to ensure effective detection.

Zabihimayvan and Doran (2019) introduced the Fuzzy Rough Set (FRS) theory that

relies on an anti-phishing approach. The theory allows the selection of the most ben-

eficial features from three established data sets. These features fed into three popular

classifiers for detecting phishing attempts. To evaluate the effectiveness of the Fuzzy

Rough Set feature selection in creating a comprehensive phishing detection, the classi-

fiers trained on an independent out-of-sample data set.

Alam et al. (2020) proposed a model to detect phishing attacks utilizing machine

learning algorithms: random forest and Decision Tree (DT). The researchers employed

a Kaggle dataset of phishing attacks to support ML processing. Utilized feature selec-

tion methods such as principal component analysis to examine the dataset’s character-

istics. DT was used to categorize websites, while RF was employed for classification.

RF tackled the over-fitting issue resulting in 97% accuracy. Nonetheless, building a

phishing attack detection method based on CNN is necessary.

The study by Garcés et al. (2019) explored various machine-learning approaches to

identify abnormal behavior linked to phishing web attacks. The detection of phishing

attacks is achieved by analyzing URLs and determining their trustworthiness based on

specific characteristics. The analysis involves using contaminated data sets and Python

tools to generate real-time information, which can aid in making proactive decisions

53

2. Literature Review

to reduce the impact of such attacks. Nevertheless, it should be noted that machine

learning methods are not always foolproof. By acknowledging these limitations, the

community can work towards developing new tools to enhance these imperfect tech-

niques’ effectiveness.

Jain and Gupta (2018a) introduced a machine learning-based solution named PHISH-

SAFE to combat phishing attacks, which leverages URLs as a key feature. Specifically,

they utilized 14 URL elements to determine whether a website is malicious. To eval-

uate the efficacy of the proposed system, the researchers used more than 33,000 au-

thentic and phishing URLs to train the system with Support Vector Machine (SVM)

and Naive Bayes classifiers. The results revealed that the system achieved over 90%

accuracy in detecting phishing attacks when an SVM classifier was employed. Future

improvements to the system could include adding more features to increase its accuracy.

Furthermore, alternative machine learning techniques could be explored to enhance the

solution’s effectiveness.

Kunju et al. (2019) presented a concise overview of various machine learning ap-

proaches to identify phishing websites, such as KNN Algorithm, Naive Bayes, Deci-

sion Tree, Support Vector Machines, Neural Networks, and Random Forest algorithms.

The authors emphasized the importance of raising awareness about social attacks and

their detection, as many users remain oblivious to this serious threat and continue to

fall victim to it. Despite the potential consequences of sharing sensitive information

on hidden phishing websites, many consumers are unaware of this issue and willingly

submit their personal data. Thus, detecting and preventing phishing attacks remains a

significant challenge for future research and development.

Rashid et al. (2020) suggested an efficient approach to detecting phishing attacks

using machine learning. The study showed that the proposed method achieves opti-

mal performance by utilizing only 22.5% of the new capability and combining it with

the Support Vector Machine (SVM) classifier, resulting in the reliable identification of

95.66% of phishing and legitimate websites. The authors suggest that future research

could examine the impact of feature selection with other classification algorithms to

further improve the system’s effectiveness.

54

2.1. A Review on Anti-Phishing Types and Techniques

Sahingoz et al. (2019) proposed a real-time anti-phishing system incorporating seven

distinct categorization algorithms and features based on NLP. This system differs from

previous studies in various ways: it is not language-dependent, uses significant amounts

of both genuine and phishing data, operates in real-time, identifies new websites, does

not rely on third-party services, and employs classifiers with a plethora of features. To

evaluate the system’s performance, the researchers created a new dataset and used it to

assess the experiment’s findings. The study results and the comparison of the various

classification methods indicate that the Random Forest approach, which only uses NLP-

based features, is the most effective, with a 97.98% accuracy rate in detecting phishing

URLs. If a website is identified as a phishing site, it can be added to the network’s local

blacklist and prevented from receiving further requests.

Salihovic et al. (2018) employed machine-learning techniques to eliminate the hu-

man factor in security breaches. The authors used two datasets, the Phishing Websites

Data Set from UCI and the Spam Emails Dataset, along with Weka software, to train

and test six successful algorithms, including Random Forest, k-Nearest Neighbor, Arti-

ficial Neural Network, Support Vector Machine, Logistic Regression, and Naive Bayes.

The outcomes revealed that the Random Forest algorithm was the most effective for

both datasets. These results serve as a foundation for future initiatives to detect online

fraud more quickly and accurately.

Patil et al. (2018) discussed three techniques for detecting phishing websites. The

first technique involves scrutinizing various URL components, while the second in-

volves verifying the website’s authenticity by investigating its location and ownership.

The third technique involves visually examining the website to determine its legitimacy.

These techniques rely on machine learning algorithms and techniques to assess various

attributes of the URL and the website. However, the system’s drawback is that it may

produce a few false positive and false negative results. There is a need to enhance the

machine learning algorithm’s performance by incorporating richer features to overcome

this limitation. This will lead to a significant improvement in accuracy and help to avoid

these limitations.

Buber et al. (2017) have developed a technique for identifying URLs used in phish-

55

2. Literature Review

ing attacks by utilizing NLP approaches and removing certain aspects of the proposed

system. The extracted features are analyzed by two groups, one focusing on distinguish-

ing between malicious and legitimate URLs using individual characteristics. At the

same time, the other simply vectorizes the URLs words and analyzes their usage. The

experimental investigation includes three separate test scenarios, namely, Word Vectors,

NLP-based features, and a hybrid approach combining both features. The experiments

use Random Forest, Sequential Minimal Optimization (a kernel-based strategy), and

Naive Bayes (a statistical-based approach) algorithms. The Random Forest algorithm

achieves the highest success rate at 97.2%, outperforming the other algorithms evalu-

ated. However, there is still a need to improve the performance of tree-based, kernel-

based, and statistical-based algorithms to detect phishing attacks with greater accuracy.

Balamurugan and Jayabharathy (2022) conducted a study that concentrated on pre-

dicting multimedia bullying content, encompassing text, images, video, and audio.

They used machine learning techniques such as K-nearest neighbor, support vector

machine, naive Bayes, and random forest to forecast bullying in multimedia content.

Textual bullying harms social media, and it is crucial to identify and classify social

media interactions accurately as bullying. When users reveal personal information on

unrelated websites, it could result in phishing attacks, and informing users about ma-

licious attacks becomes more challenging. The researchers proposed a technique that

uses SVM text categorization to determine whether the text in social networks involves

bullying. Furthermore, modern techniques are necessary to improve the detection of

phishing.

Limitations: Tables 2.3 and 2.4, summarizes the reviews of phishing URL detec-

tion using machine learning techniques. Despite the advantages of this technique, such

as its ability to identify fraudulent activities, there are also several drawbacks. For in-

stance, the method may not always be entirely accurate. It may detect phishing attacks

with less precision, not evaluate the impact of feature selection, and not detect online

fraud quickly and accurately. Given these limitations, there is a need to enhance the

performance and efficiency of machine learning techniques.

Existing web-based anti-phishing techniques using machine learning models have

56

2.1. A Review on Anti-Phishing Types and Techniques
Ta

bl
e

2.
3:

Su
m

m
ar

y:
U

R
L

ba
se

d
ph

is
hi

ng
de

te
ct

io
n

us
in

g
M

L
A

ut
ho

r(
s)

Te
ch

ni
qu

e
Fe

at
ur

es
D

at
as

et
s

Si
gn

ifi
ca

nc
e

L
im

ita
tio

ns
A

la
m

et
al

.
(2

02
0)

R
F

&
D

T
32

K
ag

gl
e

A
ttr

ib
ut

es
se

le
ct

io
n

us
in

g
pr

in
ci

pa
lc

om
-

po
ne

nt
an

al
ys

is
(P

C
A

)
an

d
ac

hi
ev

es
97

%
ac

cu
ra

cy
us

in
g

R
F

al
go

ri
th

m
.

D
ep

en
ds

on
a

si
ng

le
fe

at
ur

e
se

le
ct

io
n

m
et

ho
d

w
ith

ou
t

ju
st

ifi
ca

tio
n

an
d

us
ed

lim
ite

d
ev

al
ua

tio
n

m
et

ri
cs

.
G

ar
cé

s
et

al
.

(2
01

9)
M

ac
hi

ne
le

ar
ni

ng
U

R
L

s
K

ag
gl

e
(4

20
46

4
U

R
L

s)
pr

ov
id

e
re

al
-t

im
e

in
fo

rm
at

io
n

an
d

m
in

i-
m

iz
e

th
e

im
pa

ct
of

an
at

ta
ck

.
M

L
te

ch
-

ni
qu

es
de

te
ct

in
L

at
in

A
m

er
ic

an
an

d
pr

o-
po

se
co

gn
iti

ve
se

cu
ri

ty
ar

ch
ite

ct
ur

e

H
ig

h
fa

ls
e

po
si

tiv
es

or
fa

ls
e

ne
ga

tiv
es

in
th

e
cl

as
si

fic
at

io
n

pr
oc

es
s.

D
id

no
ta

dd
re

ss
dy

na
m

ic
na

tu
re

of
ph

is
hi

ng
te

ch
ni

qu
es

.

Ja
in

an
d

G
up

ta
(2

01
8a

)

PH
IS

H
-

SA
FE

(S
V

M
&

N
ai

ve
B

ay
es

)

14
Ph

is
ht

an
k.

co
m

(3
29

51
)

PH
IS

H
-S

A
FE

:
U

R
L

Fe
at

ur
es

-B
as

ed
Ph

is
hi

ng
D

et
ec

tio
n

Sy
st

em
U

si
ng

M
ac

hi
ne

L
ea

rn
in

g.

A
nt

i-
ph

is
hi

ng
te

ch
ni

qu
e

w
ith

on
ly

90
%

ac
cu

ra
cy

w
hi

ch
is

co
m

pa
ra

tiv
el

y
le

ss
.

R
as

hi
d

et
al

.
(2

02
0)

SV
M

cl
as

si
-

fie
r

5
U

C
Ir

ep
os

ito
ry

Pe
rf

or
m

s
be

st
fo

r
re

lia
bl

y
id

en
tif

yi
ng

95
.6

6%
of

ph
is

hi
ng

an
d

su
ita

bl
e

w
eb

si
te

s
us

in
g

on
ly

22
.5

%
of

in
no

va
tiv

e
fu

nc
tio

n-
al

ity
.

T
he

st
ud

y
us

ed
on

ly
on

e
pe

rf
or

m
an

ce
m

et
ri

c
i.e

.
ac

cu
ra

cy
fo

r
m

od
el

ev
al

ua
tio

n
an

d
in

cl
ud

es
sm

al
ld

at
as

et
si

ze
.

Sa
hi

ng
oz

et
al

.(
20

19
)

R
F

w
ith

N
L

P
ba

se
d

fe
at

ur
es

27
8

Ph
is

hT
an

k
(3

71
75

)
&

L
eg

iti
m

at
e:

Y
an

-
de

x
se

ar
ch

A
PI

(3
64

00
)

It
is

la
ng

ua
ge

in
de

pe
nd

en
t,

us
es

m
as

-
si

ve
am

ou
nt

s
of

le
gi

tim
at

e
an

d
ph

is
hi

ng
da

ta
,e

xe
cu

te
si

n
re

al
-t

im
e,

ca
n

de
te

ct
ne

w
w

eb
si

te
s,

in
de

pe
nd

en
t

of
th

ir
d-

pa
rt

y
se

r-
vi

ce
s,

an
d

em
pl

oy
s

fe
at

ur
e-

ri
ch

cl
as

si
fie

rs

D
at

as
et

cr
ea

tio
n

bi
as

es
,

cl
as

s
im

ba
la

nc
e

an
d

hu
ge

fe
at

ur
e

se
tf

oc
us

in
g

on
N

L
P.

Sa
lih

ov
ic

et
al

.(
20

18
)

M
L

al
go

-
ri

th
m

an
d

R
an

ke
r

+
PC

O

-
U

C
Ir

ep
os

ito
ry

E
lim

in
at

e
th

e
hu

m
an

el
em

en
tf

ro
m

se
cu

-
ri

ty
br

ea
ch

es
ca

rr
ie

d
ou

t,
ac

hi
ev

ed
ac

cu
-

ra
cy

is
of

97
.3

3%

L
im

ite
d

da
ta

se
t,

lim
ite

d
al

go
ri

th
m

se
le

c-
tio

n
w

ith
ou

t
ju

st
ifi

ca
tio

n,
la

ck
of

ex
pl

a-
na

tio
n

fo
re

xp
er

im
en

ta
ls

et
up

an
d

ab
se

nc
e

of
st

at
is

tic
al

si
gn

ifi
ca

nc
e

an
al

ys
is

Pa
til

et
al

.
(2

01
8)

M
L

te
ch

-
ni

qu
e

an
d

al
go

ri
th

m

12
-

Pr
op

os
ed

a
hy

br
id

so
lu

tio
n

fo
r

de
te

ct
in

g
an

d
pr

ev
en

tin
g

ph
is

hi
ng

w
eb

si
te

s
us

in
g

m
ac

hi
ne

le
ar

ni
ng

ap
pr

oa
ch

es
.

E
va

lu
at

e
va

ri
ou

s
U

R
L

an
d

w
eb

si
te

at
tr

ib
ut

es

L
im

ite
d

m
od

el
te

st
in

g
ap

pr
oa

ch
es

an
d

us
ed

on
ly

on
e

da
ta

se
t

ev
al

ua
tio

n.
T

he
st

ud
y

ha
s

m
in

im
al

fa
ls

e
po

si
tiv

e
an

d
fa

ls
e

ne
ga

tiv
e

re
su

lts
.

B
ub

er
et

al
.

(2
01

7)
N

L
P

&
M

L
40

Ph
is

hT
an

k
&

Y
an

-
de

x
se

ar
ch

A
PI

B
y

em
pl

oy
in

g
N

L
P,

th
e

sy
st

em
ge

ne
ra

te
s

ce
rt

ai
n

fe
at

ur
es

an
d

ap
pl

ie
s

th
re

e
di

st
in

ct
M

L
te

ch
ni

qu
es

to
cl

as
si

fy
th

e
U

R
L

s.
Im

-
pr

ov
ed

7%
pe

rf
or

m
an

ce
fr

om
th

ei
rp

re
vi

-
ou

s
w

or
k.

L
im

ite
d

da
ta

se
t(

37
17

m
al

ic
io

us
an

d
36

40
le

gi
tim

at
e

U
R

L
s)

57

2. Literature Review

Ta
bl

e
2.

4:
Su

m
m

ar
y:

Fe
at

ur
e

ex
tr

ac
tio

n
ba

se
d

Ph
is

hi
ng

U
R

L
de

te
ct

io
n

us
in

g
M

L
.

A
ut

ho
r(

s)
Te

ch
ni

qu
e

Fe
at

ur
es

D
at

as
et

s
Si

gn
ifi

ca
nc

e
L

im
ita

tio
ns

Z
ab

ih
im

ay
va

n
an

d
D

or
an

(2
01

9)

Fu
zz

y
R

ou
gh

Se
t

(F
R

S)
&

M
L

24
,

30
,

&
9

U
C

I1
,M

en
de

le
y,

&
U

C
I2

FR
S

th
eo

ry
to

ol
us

ed
to

se
le

ct
th

e
m

os
te

ff
ec

tiv
e

fe
at

ur
es

,t
he

fe
at

ur
es

ar
e

tr
ai

ne
d

us
in

g
M

L
al

go
-

ri
th

m
s

an
d

ga
in

ed
f-

m
ea

su
re

of
95

%
w

ith
R

F.

T
he

st
ud

y
ev

al
ua

te
s

th
e

ef
fic

ac
y

of
FR

S
fe

at
ur

e
se

le
ct

io
n

on
th

re
e

be
nc

hm
ar

ke
d

da
ta

se
ts

;t
he

pe
r-

fo
rm

an
ce

m
ay

no
tb

e
op

tim
al

fo
ra

ll
ph

is
hi

ng
at

-
ta

ck
s.

Y
ua

n
et

al
.

(2
01

8)
D

ee
p

Fo
re

st
m

od
el

12
Ph

is
hT

an
k

(2
89

2)
&

A
le

xa
R

an
ki

ng
an

d
N

et
-

w
or

k
se

cu
ri

ty
ch

al
le

ng
e

re
po

si
to

ry
(3

30
5)

C
om

pe
tit

iv
e

pe
rf

or
m

an
ce

by
id

en
tif

yi
ng

ea
ch

w
eb

si
te

in
le

ss
th

an
on

e
se

co
nd

us
in

g
st

at
is

ti-
ca

lf
ea

tu
re

s
an

d
lin

gu
is

tic
fe

at
ur

es
of

U
R

L
s

an
d

lin
ka

ge
s

of
w

eb
pa

ge
s.

R
el

ia
nc

e
on

th
ir

d-
pa

rt
y

se
rv

ic
es

,n
ee

d
to

ac
ce

ss
w

eb
pa

ge
co

nt
en

t
fo

r
co

nt
en

t-
ba

se
d

ap
pr

oa
ch

es
,

us
ed

sm
al

l
si

ze
da

ta
se

t
fo

r
te

st
in

g.
It

m
ay

no
t

be
ef

fe
ct

iv
e

ag
ai

ns
t

ne
w

an
d

ev
ol

vi
ng

ph
is

hi
ng

te
ch

ni
qu

es
.

C
hi

ew
et

al
.

(2
01

9)
M

L
-b

as
ed

H
y-

br
id

E
ns

em
bl

e
Fe

at
ur

e
Se

le
c-

tio
n

(H
E

FS
)

B
as

el
in

e
(1

0)
&

al
l(

48
)

U
C

I
A

ne
w

fe
at

ur
e

se
le

ct
io

n
fr

am
ew

or
k

ca
lle

d
H

E
FS

pe
rf

or
m

s
be

st
w

he
n

in
te

gr
at

ed
w

ith
an

R
F

cl
as

si
-

fie
r,

w
he

re
th

e
ba

se
lin

e
fe

at
ur

es
co

rr
ec

tly
di

st
in

-
gu

is
h

94
.6

%
of

ph
is

hi
ng

an
d

le
gi

tim
at

e
w

eb
si

te
s

Fe
at

ur
es

us
ed

to
de

te
ct

ph
is

hi
ng

ar
e

sp
ec

ifi
c

to
ce

rt
ai

n
at

ta
ck

s
an

d
m

ay
no

tb
e

ab
le

to
de

te
ct

ne
w

an
d

un
kn

ow
n

ph
is

hi
ng

at
ta

ck
s.

Y
ad

ol
la

hi
et

al
.(

20
19

)
M

ac
hi

ne
L

ea
rn

-
in

g
38

Pr
iv

at
e

-
Ph

is
hi

ng
(3

98
3)

,
L

eg
iti

m
at

e
(4

02
1)

O
nl

in
e

an
d

fe
at

ur
e-

ri
ch

M
L

te
ch

ni
qu

e
de

si
gn

ed
to

di
ff

er
en

tia
te

be
tw

ee
n

ph
is

hi
ng

an
d

le
gi

tim
at

e
w

eb
si

te
s.

E
xt

ra
ct

s
va

ri
ou

s
ki

nd
s

of
di

sc
ri

m
i-

na
tiv

e
in

fo
rm

at
io

n
fr

om
U

R
L

s
an

d
w

eb
pa

ge
’s

so
ur

ce
co

de
.

M
ay

fa
ce

ch
al

le
ng

es
in

de
te

ct
in

g
so

ph
is

tic
at

ed
ph

is
hi

ng
at

ta
ck

s
th

at
us

e
ad

va
nc

ed
ob

fu
sc

at
io

n
te

ch
ni

qu
es

.
L

im
its

sc
al

ab
ili

ty
du

e
to

un
av

ai
l-

ab
ili

ty
of

th
ir

d-
pa

rt
y

se
rv

ic
e.

U
na

bl
e

to
id

en
tif

y
ze

ro
-d

ay
at

ta
ck

s.
Z

ha
ng

et
al

.
(2

01
7)

E
xt

re
m

e
L

ea
rn

-
in

g
M

ac
hi

ne
(E

L
M

)

14
D

S-
1:

(P
hi

sh
Ta

nk
(2

78
4)

,
St

at
sc

ro
p

(3
12

1)
),

D
S-

2:
(S

M
S

&
E

m
ai

l
(5

00
),

Se
ar

ch
en

gi
ne

&
St

at
sc

ro
p

(5
00

))

Tw
o-

st
ag

e
E

L
M

ap
pr

oa
ch

us
in

g
U

R
L

,
H

T
M

L
,

so
ur

ce
co

de
,

an
d

w
eb

hy
br

id
fe

at
ur

es
to

de
te

ct
ph

is
hi

ng
w

eb
pa

ge
s.

Fo
un

d
ef

fe
ct

iv
e

in
E

ng
lis

h
an

d
C

hi
ne

se
ph

is
hi

ng
w

eb
pa

ge
s.

Fr
am

ew
or

k
is

ev
al

ua
te

d
on

ly
on

E
ng

lis
h

an
d

C
hi

ne
se

ph
is

hi
ng

w
eb

pa
ge

s,
di

d
no

t
co

ns
id

er
dy

na
m

ic
na

tu
re

of
ph

is
hi

ng
at

ta
ck

s.

G
hi

m
ir

e
et

al
.

(2
02

1)
M

ac
hi

ne
le

ar
n-

in
g

21
Ph

is
hT

an
k

(4
50

17
6)

V
ar

io
us

M
L

al
go

ri
th

m
s

ar
e

us
ed

to
cl

as
si

fy
ph

is
hi

ng
U

R
L

s;
th

e
m

od
el

pe
rf

or
m

an
ce

is
ev

al
-

ua
te

d
on

or
ig

in
al

,
un

de
r-

sa
m

pl
ed

,
an

d
ov

er
-

sa
m

pl
ed

da
ta

.

R
el

ie
s

on
ne

tw
or

k-
ba

se
d

an
d

le
ng

th
-b

as
ed

fe
a-

tu
re

s
lim

it
th

e
de

te
ct

io
n

ca
pa

bi
lit

y
an

d
us

e
de

-
fa

ul
t

hy
pe

rp
ar

am
et

er
s

w
ith

ou
t

fin
e-

tu
ni

ng
fo

r
be

tte
ra

cc
ur

ac
y.

N
ag

un
w

a
et

al
.(

20
19

)
E

ig
ht

m
ac

hi
ne

le
ar

ni
ng

31
Ph

is
hT

an
k

(9
01

9)
&

G
oo

gl
e

an
d

B
in

g
se

ar
ch

en
gi

ne
s

(1
73

3)

Pr
op

os
ed

fr
am

ew
or

k
fo

r
pr

ed
ic

tin
g

ze
ro

-h
ou

r
ph

is
hi

ng
w

eb
si

te
s

by
in

tr
od

uc
in

g
ne

w
hy

br
id

fe
at

ur
es

w
ith

ei
gh

tM
L

al
go

ri
th

m
s.

R
F

ac
hi

ev
ed

ac
cu

ra
cy

an
d

fa
ls

e
ne

ga
tiv

e
ra

te
s

of
98

.4
5%

an
d

0.
73

%
.

N
ee

d
fo

r
co

nt
in

uo
us

fe
at

ur
e

di
sc

ov
er

y,
th

e
sc

al
-

ab
ili

ty
an

d
ef

fic
ie

nc
y

of
th

e
ap

pr
oa

ch
fo

r
la

rg
er

-
sc

al
e

de
pl

oy
m

en
ts

no
te

xt
en

si
ve

ly
di

sc
us

se
d,

ex
-

pl
or

in
g

ne
w

po
te

nt
ia

lf
ea

tu
re

s
an

d
on

lin
e

le
ar

n-
in

g
fo

rf
ur

th
er

im
pr

ov
em

en
t

A
de

w
ol

e
et

al
.(

20
19

)
H

yb
ri

d
ru

le
-

ba
se

d
m

od
el

D
S1

-
10

&
D

S2
-

30

U
C

I
(D

S1
:

L
eg

iti
m

at
e

(5
48

),
Ph

is
hi

ng
(7

02
)

an
d

Su
sp

ic
io

us
(1

03
)

-
To

-
ta

l
(1

35
3)

,
D

S2
:

Ph
is

h-
in

g
(4

89
8)

&
L

eg
iti

m
at

e
(6

15
7)

)

T
he

m
od

el
co

m
bi

ne
s

th
e

st
re

ng
th

s
of

JR
ip

an
d

PA
R

T
al

go
ri

th
m

s,
to

im
pr

ov
e

th
e

ac
cu

ra
cy

of
ph

is
hi

ng
U

R
L

de
te

ct
io

n,
th

e
m

od
el

us
es

a
co

m
-

pr
eh

en
si

ve
se

t
of

fe
at

ur
es

to
de

te
ct

ph
is

hi
ng

U
R

L
s

T
he

ap
pr

oa
ch

is
co

m
pu

ta
tio

na
lly

ex
pe

ns
iv

e
w

he
n

w
or

ki
ng

w
ith

la
rg

e
da

ta
se

ts
be

ca
us

e
it

ut
i-

liz
es

tw
o

ru
le

in
du

ct
io

n
al

go
ri

th
m

s,
an

d
its

ef
-

fe
ct

iv
en

es
s

ag
ai

ns
tn

ew
or

un
se

en
ph

is
hi

ng
te

ch
-

ni
qu

es
m

ay
be

lim
ite

d
si

nc
e

it
re

lie
s

on
a

fix
ed

se
to

ff
ea

tu
re

s
an

d
al

go
ri

th
m

s.

58

2.1. A Review on Anti-Phishing Types and Techniques

limitations, including a lack of sufficient training data, vulnerability to adversarial at-

tacks, difficulty identifying zero-day attacks, challenges with imbalanced data, strug-

gles in generalizing diverse phishing attacks, and privacy concerns. To overcome these

limitations, ongoing research and development are needed to improve model perfor-

mance and robustness. Combining machine learning with other techniques like user

education and regular security updates can strengthen anti-phishing defenses.

2.1.4 URL Phishing detection using Deep Learning

Bahnsen et al. (2017) Bahnsen et al. (2017) used a Recurrent Neural Network (RNN)

with Long Short-Term Memory (LSTM) to classify phishing URLs in their work. The

authors used 3-fold cross-validation to compare the traditional Random Forest (RF) ma-

chine learning algorithm to the LSTM-based approach. The RF algorithm used 14 fea-

tures for URL statistical and lexical analysis and achieved a 93.5% accuracy. The RNN

model, which processed the URLs directly, outperformed the RF algorithm with an ac-

curacy of 98.7%. Notably, the RNN approach eliminated the need for time-consuming

and labor-intensive manual feature extraction.

Le et al. (2018) use a deep learning model to detect phishing URLs. They use the

URLNet framework to learn a nonlinear URL embedding for malicious URL detection

directly from the URL. To learn URL embedding, URLNet uses CNN specifically for

both characters as well as words of the URL string. The proposed method has similar

accuracy for word and character levels and performs much better than other methods.

This method may fail if the phishing sites are represented with short URLs (bitly, goo,

tiny, etc.) and data URLs.

Zhao et al. (2018) proposed a Gated RNN model and showed that Gated Recurrent

Unit (GRU) outperforms the RF classifier with 21 features and achieved 2.1% better

efficiency than RF, i.e., 98.5%. But, here, only URLs are used as data sets and need to

transform all characters into vectors to learn hidden patterns. Hence, GRU needs more

time to train and requires system architecture to be optimized for better performance.

Mohammad et al. (2014) proposed a model to predict phishing sites based on self-

structuring neural networks. They used 17 features extracted from the URL and source

59

2. Literature Review

code of the website. These features are used to classify websites in artificial neural

networks. This model should be regularly retrained with up-to-date training data sets.

Feng et al. (2018) proposed a novel classification model for detecting a given web-

site’s legitimacy. They used the Monte Carlo algorithm (Zhou et al. 2016) for train-

ing the model and the risk minimization principle to avoid overfitting in the proposed

model. They have adopted 30 features from the UCI4 repository and could achieve an

accuracy of 97.71%.

Yi et al. (2018) proposed a deep learning framework with two feature sets: original

and interaction features. The original features extracted from the URL analysis, i.e.,

the presence of special characters (@, , Unicode), count of dots, and domain age.

The interaction features extracted from the website’s source code, i.e., in-degree, out-

degree, frequency of accessing URL, and cookie absence. Deep Belief Network (DBN)

is applied to the extracted features and achieved an accuracy of 90% true positive rate

and 0.6% false positive rate.

Saha et al. (2020) have introduced a data-driven approach to leverage deep learn-

ing techniques for detecting phishing websites. Specifically, their method employs a

multilayer perceptron, also called a feed-forward neural network, to predict phishing

web pages. The dataset used in their study was obtained from Kaggle and contained

information from 10,000 websites. The approach yielded promising results, with 95%

accuracy during training and 93% during testing. Notably, the model can effectively

recognize unknown web pages and learn from the dataset, as evidenced by the small

gap between training and test accuracy. The accuracy of their authentic website de-

tection method is higher than that of the current phishing detection system, at 98.4%.

Future research will explore using more layers in neural networks and more precise

models, such as backpropagation neural networks, for detecting phishing attacks.

A deep learning-based end-to-end automatic phishing web page classification method

called HTML Phish was proposed by Opara et al. (2020). In this approach, the HTML

content of a web page is fed into HTML Phish, which employs convolutional neural

networks to create an optimized network to learn the semantic connections between

60

2.1. A Review on Anti-Phishing Types and Techniques

characters and words in the HTML document. Additionally, convolutions are applied

to a matrix concatenation of character and word embeddings to ensure that new words

in test HTML documents are actively incorporated. In the future, this model will be

compared with feature engineering-based models that only extract features from HTML

pages.

Maurya and Jain (2020) proposed an anti-phishing architecture that internet security

providers (ISPs) could use to combat phishing attacks on their level and provide secure

connections to end-users, irrespective of their device configurations. The proposed ar-

chitecture employs deep learning categorization as the backend to detect phishing web-

sites at the end of the ISP. By introducing an intermediate security layer at the ISPs

between multiple servers and end-users, this method adds an additional layer of secu-

rity. With a single point of blocking, millions of users can be protected against a specific

phishing attempt, making implementing this system highly effective. End-users receive

secure services regardless of their system configurations, without the need for power-

ful computing devices, as the computational overhead for phishing detection models is

borne solely by the ISPs. Future research will focus on developing an adaptive mech-

anism that can handle DNS cache poisoning of end-user systems. Furthermore, there

is a need to improve the accuracy of the prediction model by utilizing more adaptive

optimization approaches.

Adebowale et al. (2023) designed and implemented a deep learning-based phishing

detection system that utilizes website content, including photos, text, frames, and the

universal resource locator. The resulting Intelligent Phishing Detection System (IPDS)

is a hybrid classification model that combines the long short-term memory algorithm

and convolutional neural network. A comprehensive experimental investigation was

conducted to evaluate the effectiveness of IPDS in identifying phishing web pages and

phishing attacks on big datasets. The LSTM and CNN combination is a deep learn-

ing technique that combines pictures, text, and frame information to produce a unified

phishing detection scheme. In the future, the focus will be on improving the scheme’s

accuracy and developing a web browser plugin based on a deep learning algorithm to

recognize web phishing across platforms and provide real-time consumer protection.

61

2. Literature Review

Singh et al. (2020) developed a phishing detection system that utilizes deep learn-

ing techniques to detect such attacks. The system uses convolutional neural networks

to analyze URLs and identify phishing websites in real time. URL concatenation was

performed to prepare the dataset for the learning algorithm due to the large number of

phishing and legitimate website URLs in the dataset. The primary goal of this sys-

tem is to differentiate between legitimate and phishing URLs, but it achieves only 98%

accuracy in detecting phishing attacks. Therefore, there is a need to enhance the per-

formance of deep learning techniques to detect phishing attacks more efficiently and

accurately.

Yang et al. (2019) proposed a rapid multidimensional feature phishing detection

method based on deep learning. In the first phase, character sequence features of the

provided URL are extracted and used for rapid classification by deep learning with-

out any external assistance or prior knowledge of phishing. In the second phase, the

multidimensional features are created by combining deep learning’s rapid classification

output with URL statistical data, webpage code features, and webpage text features.

This method can reduce the time required to detect potential phishing attacks before

triggering a threshold. The accuracy of the proposed method reaches 98.99%, with a

false positive rate of only 0.59%, using a dataset comprising millions of legitimate and

phishing URLs. Future research can further improve the efficiency of detection.

Yerima and Alzaylaee (2020) proposed an approach based on deep learning to

achieve highly accurate identification of phishing sites. NLP is used to extract fea-

tures from the URLs of these sites. Convolutional neural networks are utilized in this

method for high-accuracy classification, distinguishing between legitimate and phish-

ing websites. The model was evaluated using a 6,157 legitimate and 4,898 phishing

websites dataset. Numerous experiments reveal that CNN-based algorithms effectively

identify unknown phishing sites. The CNN-based technique outperformed conventional

machine learning classifiers tested on the same dataset, with a phishing detection rate

of 98.2% and an F1-score of 0.976. This study’s technique surpasses the most recent

deep learning-based phishing website detection methods. As a future work, the model

training process can be improved by automatically identifying and selecting the most

62

2.1. A Review on Anti-Phishing Types and Techniques

influential factors that, when combined, produce the best-performing CNN model.

In their study, Zinovyeva et al. (2020) explored the possibility of utilizing deep

machine learning and natural language processing for autonomous content monitoring.

The researchers synthesized previous studies on identifying antisocial behavior online

and compared relevant methodologies with modern NLP models. They discussed im-

portant NLP methodological advancements such as bidirectional encoding, attention,

hierarchical text representations, and pre-trained transformer-based language models.

Additionally, they introduced a pseudo-sentence hierarchical attention network as an

extension of previous approaches.

In their research, Jonker et al. (2021) investigated the use of natural language pro-

cessing, a subsection of Machine Learning, to resolve the issue of phishing. They also

examined various ML techniques, including RNN, LSTM, CNN, TD-IDF, and multi-

ple NLP techniques, such as Word2Vec, Doc2Vec, and BERT. All of these techniques

generated precise classification results, with f1-scores ranging from 90.03% to 98.94%.

Nonetheless, there remains necessary to enhance the performance of detecting phishing

attacks.

A summary of the related works using deep learning to classify phishing URLs is

tabulated with six metrics in Table 2.6. These metrics include the detection of phishing

sites that replace textual content with an image (Image-based phishing), the detection

of phishing sites that contain most of the hyperlinks directed towards a common page

(Common Page Detection), the detection of phishing sites that are hosted in any lan-

guage (language independence). The detection of phishing sites consists of a maximum

number of broken links (Broken links), detection of phishing sites based on different

models, and the number of features used to classify phishing sites.

Limitations: Table 2.5 and 2.6 provides an overview of deep learning methods for

detecting phishing attacks. While deep learning has shown promise in detecting phish-

ing, there are some limitations, including difficulties in determining website legitimacy,

addressing only common issues, lack of comparison with engineering-based models,

limitations in detecting multidimensional features on websites, the poor performance

63

2. Literature Review

Table
2.5:Sum

m
ary:A

nti-phishing
techniques

based
on

W
ebsite

phishing
using

D
L

A
uthor(s)

Technique
Features

D
atasets

Significance
L

im
itations

Saha
et

al.
(2020)

D
ata-driven

10
K

aggle
(10000

w
eb

pages)
A

data-driven
fram

ew
ork

based
on

deep
learn-

ing
w

as
proposed

to
detect

phishing
w

ebsites,
aim

ing
to

surpass
the

reliance
of

traditional
m

ethods
on

digitalplatform
s.

A
chieved

com
paratively

low
training

and
test-

ing
accuracy.

T
he

perform
ance

m
ay

be
im

-
proved

by
adding

m
ore

neural
netw

ork
layers

and
back

propagation
netw

orks.
O

para
et

al.
(2020)

H
T

M
L

Phish
a

D
L

Tech-
nique

500000
H

T
M

L
docum

ents

In-house
generation

using
w

eb
craw

ler
and

B
eautiful

Soup
library

L
earn

the
sem

antic
connections

betw
een

the
characters

and
w

ords
in

the
H

T
M

L
docum

ent
convolutionsw

ere
applied

to
a

concatenation
of

the
characterand

W
E

m
atrix

A
bsence

of
thorough

com
parison

w
ith

fea-
ture

engineering
based

m
odels

and
real

tim
e

brow
serextension

im
plem

entation
is

pending.

M
aurya

and
Jain

(2020)
A

nti-
phishing
architecture
using

D
L

30
U

C
I

repository
(11055

w
ebsites)

A
nti-phishing

fram
ew

ork
based

on
deep

learn-
ing

atISPs
levelto

ensure
safety.Itadds

an
in-

term
ediate

security
layer

atISPs
and

is
placed

betw
een

num
erous

servers
and

end-users
en-

suiring
single

pointofblocking.

L
im

ited
focus

on
real-tim

e
phishing

detection,
lack

of
em

pirical
evaluation

and
lack

of
de-

tailon
adaptive

optim
ization

techniquesand
the

phishing
detection

m
odels

is
lim

ited
only

to
ISPs.

A
debow

ale
etal.(2023)

IPD
S

w
ith

L
ST

M
and

C
N

N

35
PhishTank

&
C

om
-

m
on

craw
l(1

m
illion

U
R

L
sand

10000
im

-
ages)

T
he

study
explore

differentiating
unique

legit-
im

ate
U

R
L

s
from

the
phishing

U
R

L
s

using
L

ST
M

and
C

N
N

in
com

bination
w

ith
IPD

S
classifierand

achieved
an

accuracy
of93.28%

D
ataset

bias
or

im
balance

m
ay

affect
perfor-

m
ance

and
generalizability.Insufficientevalua-

tion
m

etrics
used

and
lim

ited
scope

offeatures.

Singh
et

al.
(2020)

C
N

N
D

irectU
R

L
s

PhishTank
(37175)

&
Y

andex
Search

A
PI(36000)

Traditional
m

ethods
of

detecting
phishing

are
notalw

ays
effective,used

C
N

N
a

deep
learning

technique
that

extracts
features

directly
from

the
U

R
L

s.Itavoids
feature

engineering.

T
he

achieved
accuracy

show
ed

a
slight

im
-

provem
ent

com
pared

to
their

previous
w

ork;
how

ever,
it

rem
ains

relatively
low

w
hen

com
-

pared
to

otherexisting
studies.

Y
ang

et
al.

(2019)
C

N
N

-L
ST

M
H

ybrid
netw

ork

20
U

R
L

statisticaland
24

W
eb

page
code

features

phishtank.com
(1021758)

&
dm

oz-
tools.net(989021)

T
he

system
em

ploys
a

dynam
ic

category
deci-

sion
algorithm

forquick
detection

w
ithoutprior

phishing
know

ledge,
as

w
ell

as
m

ultidim
en-

sionalfeature
detection

foraccurate
results.

L
ack

of
im

plem
entation

to
extract

w
ebpage

code
and

w
ebpage

textfeatures.

Y
erim

a
and

A
lzaylaee

(2020)

C
N

N
30

U
C

I
repository

(Phishing
-

4898,
L

egitim
ate

-6157)

presents
a

deep
learning-based

approach
to

en-
able

high
accuracy

detection
of

phishing
sites,

reaching
98.2%

phishing
detection

rate
w

ith
an

F1-score
of0.976.

T
he

com
putational

com
plexity

m
ay

lim
it

its
scalability

to
larger

datasets
and

m
ay

not
be

effective
against

sophisticated
and

targeted
phishing

attacks
designed

to
evade

detection
Z

inovyeva
etal.(2020)

D
L

and
N

L
P

U
R

L
s

W
ikipedia,

Tw
itter,

Facebook,
&

Form
-

spring

T
he

study
investigates

the
potential

of
auto-

m
atic

content
m

onitoring
using

deep
m

achine
learning

and
N

L
P,incorporating

N
L

P
advance-

m
ents

and
introducing

a
new

pseudo-sentence
hierarchicalattention

netw
ork.

C
om

putationally
expensive

m
odel,hierarchical

structures
m

ay
not

alw
ays

enhance
antisocial

online
behaviordetection

accuracy.

64

2.2. Evaluation Metrics

Table 2.6: Summary of DL based URL phishing detection using six metrics.

Techniques
Image
based
Phishing

Common
page
based
Phishing

Language
independ-
ence

Broken
Links Models Features.

Yao et al.
(2018)

No No Yes No Neural networks 17

Parsons et al.
(2019)

Yes Yes Yes No PNN K-Modoids
Clustering

30

Al-Musib
et al. (2021)

No No Yes No Gated Recurrent
Neural Network

Direct URLs

Balim
and Gunal
(2019)

No No Yes No Convolution
Neural Network

Direct URLs

Jia et al.
(2021)

No No Yes No Recurrent Neural
Network

Direct URLs

Yang et al.
(2019)

No No Yes No CNN-LSTM Hy-
brid Network

Direct URLs

Mondal et al.
(2022)

Yes Yes Yes No Neural Network 30

Sonowal
(2022a)

Yes No Yes Yes Deep Learning
DBN

8

of sentimental classifiers, and detecting only voice spoofing attacks. Therefore, there is

a need to improve deep learning techniques to enhance their ability to detect phishing

attacks in both email and website domains.

Despite current technological advancements, website or URL phishing still faces

limitations. These include evolving phishing techniques, polymorphic attacks, chal-

lenges posed by HTTPS encryption, zero-day attacks, phishing in legitimate domains,

and the use of shortened URLs and redirectors. A multi-layered approach integrating

URL analysis, content inspection, behavior monitoring, machine learning techniques,

and user education is necessary to mitigate these limitations. Continuous research and

development are vital to avoid emerging phishing techniques and enhance the detection

and prevention of website and URL phishing attacks.

2.2 EVALUATION METRICS

Evaluation metrics are used to compare different models and algorithms to determine

which is most effective for a given task. Evaluation metrics can be used to assess the

accuracy and performance of a model, such as its ability to generalize to unseen data and

65

2. Literature Review

optimize a model’s hyperparameters, such as learning rate, to ensure it is as accurate as

possible. And also can be used to select the most effective features for training a model,

such as those with the highest correlation with the target variable, interpret a model’s

output. In the subsequent chapters of the thesis, various tabulated results to compare

existing works. We have used traditional metrics to evaluate the performance of our

proposed systems. The evaluation metrics used to evaluate our proposed models given

below.

• The sensitivity or recall is known as true positive rate (TPR):

TPR =
TP

(TP + FN)
∗ 100 (2.1)

where, TP = No. of phishing data classified as phishing, and (TP + FN) = Total

no. of phishing data.

• Specificity as true negative rate (TNR):

TNR =
TN

(TN + FP)
∗ 100 (2.2)

where, TN = No. of ham data classified as ham, and (TN + FP) = Total no. of

ham data.

• Accuracy (Acc):

Acc =
(TP + TN)

(TP + FP + TN + FN)
∗ 100 (2.3)

where, (TP + TN) = No. of correctly classified phishing and ham data, and (TP

+ FP + TN + FN) = Total no. of records in the dataset.

• Precision (P):

P =
TP

(TP + FP)
∗ 100 (2.4)

where, TP = No of phishing input data classified as phishing, and (TP + FP) =

Total no. of input data samples classified as phishing.

• F-score (F) :

F = 2 ∗ P ∗ TPR
P + TPR

(2.5)

• Matthews Correlation Coefficient (MCC): This measure is considered as a bal-
anced measure, used for different class size datasets. MCC provides a correlation
coefficient between predicted and observed outcomes.

MCC =
TP ∗ TN − FP ∗ FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(2.6)

66

2.3. Datasets used

Equations (2.1) through (2.6) evaluate the input sample based on their positive and neg-

ative rates. TP, or truly positive, represents the number of phishing samples correctly

classified as phishing, while TN, or truly negative, represents the number of legitimate

samples correctly classified as legitimate. FP, or false positive, is the number of le-

gitimate samples incorrectly classified as phishing, while FN, or false negative, is the

number of phishing samples incorrectly classified as legitimate. These basic metrics

are used to calculate recall (2.1), specificity (2.2), accuracy (2.3), precision (2.4), F-

measure (2.5), and Matthews Correlation Coefficient (2.6), as shown in Table 2.7.

Table 2.7: Confusion matrix
n=M Predicted YES Predicted NO

Actual YES TP FN
Actual NO FP TN

2.3 DATASETS USED

The thesis focuses on the classification of email and website phishing. In the research on

email phishing, two publicly available open source datasets from separate repositories

were utilized. The ham emails were exclusively collected from the SpamAssassin.com4

web repository, while the phishing emails were sourced from the phishing corpus mon-

key.com5. In addition to these open source datasets, in-house datasets were created to

address issues such as redundancy and period mismatch that were observed in the open

source datasets. Regarding the website phishing research, the dataset was obtained from

Rao and Pais (2019), and a minimal set of features was selected from this dataset. The

subsequent procedures for preparing the email dataset are discussed in detail below.

2.3.1 Dataset preparation

Two methods were used to create the Datasets: 1. Open-source corpus and 2. In-house

corpus generation.

4https://spamassassin.apache.org/old/publiccorpus/
5https://monkey.org/ jose/phishing/

67

2. Literature Review

2.3.1.1 Open-source corpus

Data preparation is a significant aspect of the current research. Prior studies typically

relied on two open-source datasets (SpamAssasin and monkey.com) consisting of phish-

ing and legitimate emails. However, these datasets contained duplicate emails from pre-

vious years. To address this, Dataset-1 was created by selecting 6295 unique legitimate

emails and 9135 phishing emails after removing duplicates. Subsequently, Dataset-2

was formed by combining the phishing emails from Dataset-1 with 18270 legitimate

emails from an in-house corpus.

2.3.1.2 In-House corpus

One of the most vital steps in email phishing is dataset creation by investigating in-

dividual emails. To be apprised of the daily phisher activities, researchers must have

updated, new, real-time data. Most research has utilized existing open-source datasets

such as Dataset-1, shown in Table 2.8. The selected SpamAssassin datasets were col-

lected in 2002, and the Phishing corpus datasets were collected between 2004 to 2007

and from 2015 to 2017. The ham email datasets were older than the phishing corpus

emails collected after November 2004. Since these open-source datasets do not match

their period, the period mismatch may fail phishing email detection. Phishers can al-

ter insignificant parameters to trap victims. The phisher’s behaviors and strategies are

changing every day to fool victims by acquiring sensitive information to defraud users.

To combat this problem and deal with the current tricks, Dataset-3 was created using

real-time internal phishing and legitimate datasets. The new repositories were collected

from institution students, research scholars, relatives, and friends to comprehend the

behavior of fraudsters with a varied set of users. The chosen emails were analyzed

manually and labeled as phishing or legitimate. The selected datasets and their sizes

are tabulated in Table 2.8. The following steps are taken to distinguish emails as either

phishing or legitimate during the formation of datasets:

• Analyse the behavior of suspicious emails.

• Analyse the source code of the original email message.

68

2.4. Summary

Table 2.8: Datasets used

Dataset Legitimate
Emails

Phishing
Emails Total

Dataset-1 6295 9135 15430
Dataset-2 18270 9135 27405
Dataset-3 18270 8986 27256

• Analyse the Google warning indicators.

• Using MxTOOLBOX6 online tool to analyze email headers.

2.4 SUMMARY

In this chapter, we provided a comprehensive overview of various studies related to

phishing. We explored the application of anti-phishing techniques and discussed us-

ing different methodologies such as machine learning, deep learning, word embedding,

natural language processing, and feature extraction for detecting phishing attacks. Fur-

thermore, we delved into the evaluation metrics employed in these studies, the datasets

utilized, and the methods employed for dataset preparation. By examining these essen-

tial aspects, we better understood the diverse approaches and strategies used in phishing

detection.

6https://mxtoolbox.com/Public/Tools/

69

CHAPTER 3

PHISHING EMAIL DETECTION FRAMEWORK
USING WORD EMBEDDING AND MACHINE

LEARNING

Phishing email detection is crucial for maintaining online security, as these decep-

tive messages aim to deceive recipients and extract sensitive information. Researchers

have developed techniques using word embedding and machine learning to combat this

threat. Word embedding represents text as numerical vectors, capturing contextual and

semantic information to improve detection accuracy. Machine learning algorithms an-

alyze and classify emails based on labeled datasets, learning patterns to distinguish

phishing from legitimate emails. Our proposed framework integrates word embedding

techniques (Word2Vec, FastText, TF-IDF) with machine learning algorithms (decision

trees, random forests, support vector machines, logistic regression, and XG boost) for

comprehensive phishing email detection. Transforming email content into numerical

representations enhances feature extraction, while training models on large labeled

datasets ensures accurate detection. Our goal is to create an efficient and robust sys-

tem that effectively identifies and mitigates phishing attacks by combining the power of

word embedding and machine learning.

3.1 INTRODUCTION

Fraudsters engage in ”Phishing Emails”, a deceptive activity where they send emails

that appear to be from trustworthy companies or organizations to deceive victims and

71

3. Phishing email detection framework using word embedding and machine learning

gain financial benefits through a camouflage email. They often include a link that looks

legitimate but leads to a fake website where the victim is prompted to enter personal

information. Any information the victim provides is directly sent to the scam artists

behind the scheme.

Word embedding is a technique used to represent words in a numerical vector form.

This vector representation can be used to capture the semantic meaning of words and

phrases. Machine learning or deep learning algorithms are used to classify emails based

on the vector representations of the header features.

Numerous studies (J Kuss et al. 2014; Kaltiala-Heino et al. 2004; Ryan et al.

2014; Shaw and Black 2008; Zhang et al. 2020) suggest that the younger generation

has a strong dependence on digital devices and communication networks for various

purposes, such as communication, education, entertainment, and financial transactions.

As a result, this population is more vulnerable to phishing email attacks. Phishing

attacks usually involve sending emails with links to forged websites that appear genuine.

Email phishing is a significant and real threat to e-commerce since it involves messages

from seemingly credible sources that request individuals and financial institutions to

reveal and give access to sensitive information, which cybercriminals can then steal.

According to the phishing activity trends report of the Anti-Phishing Working Group

(APWG), the number of phishing attacks continued to increase during the fall of 2019.

The APWG (2019b) report identified a total of 266,387 phishing sites from July through

September 2019, which was 46% higher than the second quarter’s 182,465 and nearly

double the 138,328 recorded in APWG (2019a). However, email phishing activities

drastically reduced in 2019, as shown in Table 3.1 of APWG’s four-quarter statistics

2019 for unique phishing emails.

Table 3.1: APWG Email phishing statistics 2019

Quarter-1 Phishing
Emails Quarter-2 Phishing

Emails Quarter-3 Phishing
Emails Quarter-4 Phishing

Emails
January 34630 April 37045 July 35530 October 45057
February 35364 May 40177 August 40457 November 42424
March 42399 June 34932 September 42273 December 45072
Total - Q1 112393 Total - Q2 112154 Total - Q3 118260 Total - Q4 132553

72

3.1. Introduction

Table 3.1 provides data on the total number of unique phishing email messages

received by the APWG from clients. The latest four-quarter reports in 2020 indicate

that there were 1,031,347 unique phishing email campaigns recorded from consumers.

Table 3.2 presents the monthly results for the four quarters of 2020. Cybercriminals

have taken advantage of the COVID-19 pandemic by using disaster-related content to

launch phishing attacks against healthcare facilities and professionals. However, the

number of email phishing scams has decreased significantly in 2021, with only 484,469

cases reported.

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021
0

2

4

6

8

10

12

14

·105

Year

N
o

of
at

ta
ck

s
*

10
5

Figure 3.1: Email Phishing attacks from 2010 to 2021

Based on the APWG’s 2015 survey report, the highest recorded number of phish-

ing emails reached 1,413,978. The statistical data depicted in Figure 3.1 illustrates the

trends of phishing email occurrences between 2010 and 2021. The data highlights that

the year 2015 stands out as a critical period with a significant surge in phishing email

attempts. The APWG survey emphasizes the need for additional research to develop ef-

fective anti-phishing solutions, as email phishing continues to pose a substantial threat.

Based on the Mimecast (2019) survey report, finance organizations, professional

services, and manufacturing companies were the most affected by phishing attacks, with

68%, 66%, and 66%, respectively. Kaspersky (2019)’s third-quarter report highlights

73

3. Phishing email detection framework using word embedding and machine learning

that educational institutions and universities are at high risk of having their sensitive

documents stolen and sold on the dark market. The current filters and security measures

Table 3.2: APWG Email phishing statistics 2020

Quarter-1 Phishing
Emails Quarter-2 Phishing

Emails Quarter-3 Phishing
Emails Quarter-4 Phishing

Emails
January 52407 April 43282 July 119181 October 143950
February 43270 May 39908 August 119180 November 119700
March 44008 June 44497 September 128926 December 133038
Total - Q1 139685 Total - Q2 127687 Total - Q3 367287 Total - Q4 396688

have limited success in detecting phishing attacks, as phishing websites and emails

are designed to resemble legitimate ones closely. This similarity makes it difficult for

existing systems to distinguish between the two accurately, leaving users vulnerable to

an increasing threat. Users become a victim and end up revealing their sensitive private

information due to,

• Lack of computer system knowledge

• Inadequate knowledge of security and security indicators

• Replication of original sites with minor changes mostly goes unnoticed by users

• Ignoring security warnings.

3.2 WORD EMBEDDING:

Word embedding refers to a group of language models and methods for selecting fea-

tures that are also known as word representation. Its main goal is to convert textual

terms or phrases into a continuous low-dimensional space. Word embeddings effec-

tively convert human textual language into a numeric representation. It is possible that

the converted text to numbers is a different numeric representation of the same text.

3.2.1 Need of word embeddings:

Word embedding is a way of representing words as vectors of numbers in a high-

dimensional space. The need for word embedding arises from natural language process-

ing (NLP) algorithms often requiring a fixed-length representation of words to perform

74

3.2. Word Embedding:

various tasks such as language translation, sentiment analysis, text classification, and

more. Word embedding techniques enable us to convert text data into a format machine

learning models can understand and process. Instead of representing each word as a

sparse one-hot vector, word embedding techniques transform each word into a dense

vector that captures its semantic meaning and relationships with other words.

One of the significant advantages of using word embeddings is that they can capture

the context and meaning of words, which is essential for many NLP applications. For

example, words that are semantically similar or related in meaning, such as ”cat” and

”dog,” will have vectors that are closer together in the embedding space than unrelated

words like ”cat” and ”table.” Word embeddings also allow us to apply mathematical

operations such as vector addition and subtraction to find relationships between words.

For instance, we can add the vector for ”king” to the vector for ”woman” and subtract

the vector for ”man” to get the vector that is closest to the vector for ”queen.” In sum-

mary, word embeddings play a critical role in many NLP applications by providing a

way to represent words in a dense, low-dimensional space that captures their semantic

relationships and meaning.

Example: Sentence = ”Word embeddings are word converted into numbers”. Words

in the sentence are ’embeddings’ or ’numbers’. A dictionary may be the list of all

unique words in the sentence, so a dictionary may look like [’Word’,’embeddings’,’are’,

’conver-ted’,’into’,’numbers’]. Word embedding is categorized into two types: (1).

Frequency-based and (2). Prediction-based embedding techniques.

3.2.2 Frequency-based word embedding

Frequency-based word embedding is a type of word embedding technique that uses

the statistical information of a text corpus to generate word representations. The most

common frequency-based word embedding technique is the Count-Based model, which

includes methods like CountVectorizer and Term Frequency-Inverse Document Fre-

quency (TF-IDF) vectorization.

Count Vectorization (CV): CountVectorizer is a technique that counts the fre-

quency of each word in a text corpus and creates a vector of these counts for each

75

3. Phishing email detection framework using word embedding and machine learning

document. The resulting vectors can be used as features for a machine learning model.

While this technique is simple and fast, it does not capture the semantic relationships

between words.

Count vectorization involves generating a matrix with dimensions d × n, where d

represents the corpus size (the number of documents) and n corresponds to the number

of distinct tokens found in the documents. This matrix records the frequency of each

word’s occurrence within a document. To measure the similarity between the result-

ing vectors, cosine similarity is employed, which evaluates the angle between the two

vectors.

TF-IDF: TF-IDF vectorization is an extension of CountVectorizer that takes into

account the relative importance of each word in the text corpus. It assigns a weight to

each word in a document based on its frequency and frequency across all documents in

the corpus. This weighting scheme aims to give more importance to words that are rare

in the corpus but frequently occur in a specific document.

Term Frequency and Inverse Document Frequency vectorization works by finding

out the unique words present not just in the document but in the entire corpus of the

documents. The intuition behind this is that the more frequent words may not be the

relevant words. Some words appear in the documents more number times. IDF works

by finding such words and giving better unique words present in the entire corpus of

documents, as the more frequent irrelevant words hold little to no new information. TF

the number of times a word has appeared in a document. Further, it can be divided by

the total number of words in a document. Therefore,

TF (t, d) =
x

y
(3.1)

where x is the count of t in document d, and y is the number of words in document d.

IDF measures the uniqueness of the word across the corpus.

IDF (t, d) = log(
N

n
) (3.2)

where N is the total number of documents present in the corpus, and n is the number of

documents where the term t appears.

TF − IDF = TF ∗ IDF (3.3)

76

3.2. Word Embedding:

CountVectorizer and TF-IDF vectorization generate sparse vectors, where most ele-

ments are zero, and each dimension corresponds to a particular word in the corpus

vocabulary. While frequency-based word embedding techniques are simple and easy

to implement, they have limitations. They do not capture the semantic relationships

between phrases beyond their frequency, and they generate high-dimensional sparse

vectors that can be computationally expensive to use in large datasets. Nonetheless,

these methods are helpful as a starting point for many NLP tasks or as a complementary

technique to more advanced word embedding models.

3.2.3 Prediction-based word embedding

Prediction-based word embeddings are more efficient and accurate language model-

ing techniques in modern research and are considered a byproduct of language models

according to Almeida and Xexéo (2019). Some prediction-based word embedding tech-

niques, such as Word2Vec, FastText, and GloVe, are discussed below.

Word2Vec (W2V): To infer any relationship between two words is difficult in their

one-hot encoding representation. Sparsity is another issue with the one-hot encoding, as

many redundant 0 are in their vector representation. Word2Vec solves these problems

by using surrounding words to represent the target words. Word2Vec is a predictive

model that learns embedding from the given text. It is a three-layer architecture with a

small hidden layer that generates embeddings from given text. The size of the input and

output provided is generally the same. Word2Vec has two algorithms: Continuous Bag

of Words (CBOW) and SkipGram (SG).

• CBOW: Continuous Bag of Words tries to predict the word with the help of the

context. This context can be a single word or a group of words. CBOW uses

a neural network as continues distributed representation of the context of words

and predicts a word as an output. The working and architecture of the CBOW and

SkipGram models were presented by Mikolov et al. (2013). This model predicts

the probability of occurrence of a word given the context of words surrounding

it.

• SkipGram model: The SkipGram model tries to predict the context of the given

77

3. Phishing email detection framework using word embedding and machine learning

word. The architecture is just opposite to that of the CBOW model. SkipGram

takes the input as the target word and outputs the context words that surround the

target word.

For example: Given the sentence, ”It was an apple pie”, if the input is ”a”, the

output would be ”It”, ”was”, ”apple”, and ”pie” for the window size of 5. The

dimension of all the input and output data is the same, and one-hot encoded. This

model consists of one hidden layer with a dimension equal to the embedding size,

which is lesser than the vector size of input/output. A softmax activation function

is applied at the end of the output layer, which describes the likelihood of the

appearance of a specific word in the context.

Two challenges that appear with Word2Vec are,

• Out of Vocabulary (OOV) words: Word2Vec can handle only words it has

encountered during its training. For example, Word2Vec vocabulary containing

words such as ”tensor” and ”flow” can not handle embedding for the word ”ten-

sorflow”, i.e., a compound word. Thus it leads to an ”out of vocabulary” error.

• Morphology: Word2Vec does not do any parameter sharing for words such as

”eat” and ”eating” with the same radicals. Each word is uniquely learned based

on the context in which the word appears. Thus the internal structure of the word

can be utilized properly to make the embedding more efficient.

FastText: A library created by Facebook Artificial Intelligence Research (FAIR) lab-

oratory, allows for learning word embedding and text classification (Bojanowski et al.

2017; Joulin et al. 2016a,b). It is open source software, that can learn billions of

words in a few minutes and is suitable for supervised and unsupervised learning. This

library implements the concept of enriching word vectors with subword information

(Bojanowski et al. 2017) and a bag of tricks for efficient text classification (Joulin

et al. 2016b). It is accessible in 294 languages, and can find resources on the Facebook

research1 page. The two methods used to learn word representation and develop word

vectors in FastText are CBOW and SkipGram, as seen in Word2Vec.
1https://research.fb.com/downloads/fasttext/

78

3.3. Machine learning

GloVe: Glove represents Global Vectors, an unsupervised learning distributed word

representation model to obtain vector representation of words. Global Vectors generated

using the co-occurrence matrix statistic from a corpus. The matrix denoted by Xi, Xi,j

represents the number of times the word j appears in the context of the word i. Pi,j =

Xi,j/Xi, which gives the probability that the word j occurs in the context of the word i.

These probabilities can provide some potential to encode some form of the underlying

meaning of the contextual meaning.

3.3 MACHINE LEARNING

Machine learning is a type of artificial intelligence (AI) that allows computer systems

to learn and improve their performance on a task without being explicitly programmed.

It is a process of training algorithms to recognize patterns and make predictions or

decisions based on data input. Machine learning algorithms categorized into three main

types: supervised learning, unsupervised learning, and reinforcement learning.

Supervised learning involves providing a machine learning model with labeled data,

meaning the input data is paired with the correct output. The model then uses this

labeled data to learn how to make predictions or classify new data.

On the other hand, unsupervised learning involves providing the model with unla-

beled data and allowing it to identify patterns and relationships on its own. Clustering

and dimensionality reduction are examples of unsupervised learning.

Reinforcement learning involves a model learning from feedback in the form of

rewards or penalties, and using this feedback to improve its decision-making over time.

Machine learning has numerous applications in various fields, including image recog-

nition, natural language processing, fraud detection, recommendation systems, and

more. It is a rapidly growing field with the potential to revolutionize many industries

and improve the accuracy and efficiency of many tasks.

3.4 EMAIL PHISHING

The invention of email is commonly credited to Ray Tomlinson, an American computer

programmer, who implemented the first email system on the ARPANET (a precursor to

79

3. Phishing email detection framework using word embedding and machine learning

the internet) in 1971 (Leiner et al. 1997). Tomlinson is also credited with introducing

the use of the ”@” symbol to separate the user from the destination address in an email

address.

While Tomlinson is widely recognized as the inventor of email, other early email

systems were in use at the time, such as the SNDMSG system on the Compatible Time-

Sharing System (CTSS) developed by MIT in the 1960s. However, Tomlinson’s email

system was the first to use the @ symbol and to establish the standard for sending

and receiving messages across different computer networks. Email messages typically

consist of three main components: the header, the body, and the footer. In this research,

the primary focus is on analyzing the header and body components of the email. The

taxonomy and structure of the email (Figures 3.2 & 3.3) clearly describe the format of

the email message.

Figure 3.2: Email message Taxonomy - Courtesy (Almomani et al. 2013)

Header: The header contains information about the email, such as the sender and

recipient(s), the date and time the message was sent, the subject line, and any other

details such as the email’s importance level or whether it has been read or replied to.

Body: The email’s body is the message’s main content, where the sender writes the

message to the recipient(s). It can include text, images, hyperlinks, attachments, and

other multimedia elements. Fraudulent activities, such as phishing, can occur in either

of the two components of an email. Email phishing is a cyber-attack where an attacker

80

3.4. Email phishing

Figure 3.3: Email message structure - Courtesy (Almomani et al. 2013)

attempts to trick a victim into providing sensitive information such as login credentials,

financial information, or personal information by sending fraudulent emails that appear

to be from a trusted source. The attacker typically creates an email that looks like it

came from a legitimate company or individual, then sends it to many recipients, hoping

that some will fall for the scam.

The email usually contains a convincing message urging the recipient to take im-

mediate action, such as clicking on a link, downloading an attachment, or entering their

login credentials. The link or attachment may be malicious, and once clicked or down-

loaded, it can infect the victim’s device with malware, allowing the attacker to gain

access to their sensitive information. Alternatively, the login credentials entered by the

victim may be captured by the attacker and used for malicious purposes.

To avoid falling for email phishing scams, it’s essential always to be wary of un-

expected or suspicious emails, particularly those that ask for sensitive information or

urge immediate action. Always check the sender’s email address, be wary of any dis-

crepancies, and avoid clicking links or downloading attachments unless you know their

authenticity. It’s also a good idea to use anti-phishing software and keep your devices

81

3. Phishing email detection framework using word embedding and machine learning

and software up to date with the latest security patches.

Phishing attacks are categorized into deceptive and malware phishing. Deceptive

phishing is related to social engineering schemes, which depend on forged email claims

that appear as originated from a legitimate organization. And also, an embedded link

redirects the user to fake websites to obtain personal information to defraud the user.

The strategy of a phishing email is to attract victims and direct them to a particular

phishing website. The received emails are embedded with URLs and trick the user into

clicking on the embedded link to reveal confidential information. Many researchers

have identified several email phishing features, and many different mechanisms exist

to identify legitimate and fake emails. According to Almomani et al. (2013), three

types of feature sets exist: basic features, latent topic features, and dynamic Markov

chain features. The author (Almomani et al. 2013) identified different anti-phishing

approaches contributed by researchers.

A brief survey of techniques used in machine learning, deep learning, word em-

bedding, and natural language processing is discussed in detail in the previous chapter

2.

The research contributions of this chapter are listed below:

• Creation of In-house real-time phishing and legitimate email datasets.

• Proposed a novel phishing email detection technique using word embedding and

machine learning.

• The proposed novel architecture uses only FOUR email header features and achieves

competitive accuracy.

• Proposed work outperformed all other existing works on publicly available datasets.

• The proposed work justified that the newly created datasets are accurate and ob-

tained nearly similar results as publicly available datasets.

A summary of major works based on machine learning and word embedding with ma-

chine learning or deep learning to detect phishing emails is discussed in Chapter 2. It

82

3.5. Phishing Email Detection

may be observed that the related works are also evaluated based on the parameters used.

According to the survey, most of the research was carried out on both the header and

body of an email, and some works on attachments along with the header and body of

an email. None of the works focused exclusively on email header features or word vec-

tors based on email headers. After analyzing the research gaps, this work proposes a

model which uses only email header-based heuristics for efficient phishing email detec-

tion. The study of related works gave clarity to adopt word embedding for our research

with machine learning classifiers. The architecture in the next section evaluates the best

possible combination of the classification process with multiple word embedding and

machine learning classifiers. Based on the research summary, it may be concluded that

word embedding techniques may generate more suitable word vectors to classify given

emails as phishing or legitimate using different machine learning classifiers. Hence,

this chapter introduces a new approach for detecting phishing emails using machine

learning and a novel word embedding technique.

3.5 PHISHING EMAIL DETECTION

Figure 3.4: Architecture of Phishing Email Detection

Figure 3.4 illustrates the proposed design for identifying phishing emails, which

comprises multiple stages to process and categorize emails as either legitimate or phish-

ing. The process for classifying phishing emails involves five stages: 1. Input email

83

3. Phishing email detection framework using word embedding and machine learning

processing, 2. Feature extraction, 3. Dictionary creation, 4. Vectorization, and 5. Clas-

sification.

3.5.1 Input Emails

Email is the primary form of communication between known parties in electronic mes-

saging media. The initial step in analyzing these emails is to organize them into dataset

repositories. These repositories are then mined for the necessary heuristics. The re-

quired heuristics are obtained specifically from the email headers of pre-processed

datasets sourced from public repositories and in-house generated ones.

3.5.2 Feature Extraction

The initial stage of the proposed model involves feature extraction, which entails ob-

taining the necessary heuristics from the emails. To accomplish this, Python scripts

used to extract only the essential header heuristic features from MBOX format files.

Following the extraction of the required heuristics, extraneous tags, text, garbage char-

acters, and special symbols are eliminated. The extracted data from individual emails

save to a CSV file. This CSV file serves as an input to the proposed architecture for

distinguishing between legitimate and phishing emails.

3.5.3 Selected heuristic features

Chapter 2 acknowledged that previous research employed a mix of hybrid features or

exclusively focused on content-based features. However, for this particular study, only

four header labels have been selected as heuristic features. Specifically, the analysis

will concentrate on the ”From,” ”Return-Path,” ”Subject,” and ”Message-id” attributes

found in the email header.

• From: The label ”From” indicates the sender’s name and email address, which

may belong to an individual, a company, or an organization that has registered an

account with an email service provider. Unfortunately, fraudsters may also use

genuine email accounts to send harmful content, such as web links, malware, and

other deceptive tactics to scam unsuspecting users.

• Return-Path: The ”Return-path” is an attribute within the email header created

84

3.5. Phishing Email Detection

by the SMTP (Simple Mail Transfer Protocol) protocol. Its primary function

is to keep a record of the reverse path of an email, mainly used for managing

bounced emails. However, it is worth noting that cybercriminals can exploit these

bounced email return paths to distribute harmful links and try to deceive specific

individuals into revealing their sensitive information.

• Subject: The subject of an email provides a concise overview of the message

content, and it is a crucial heuristic among the four header fields. Cybercrim-

inals often exploit the subject line to include attention-grabbing, time-sensitive

language and terms related to banks, finances, and accounts in their attempts to

carry out fraudulent activities.

• Message-ID: A Message-ID is a distinctive identifier assigned to each email that

adheres to a particular format. Since the Message-ID is specific to the email

address and message, no two emails will share the same ID. Regrettably, cyber-

criminals can use a generated Message-ID to pose as legitimate users and engage

with the end-user, potentially obtaining their personal information.

The above four email header features are useful in classifying phishing emails for the

following reasons:

The ”From” field indicates the sender of the email. Phishing emails often imper-

sonate legitimate entities or individuals to deceive recipients. By analyzing the ”From”

field, suspicious or spoofed email addresses can be identified, helping to flag potential

phishing attempts.

The ”Return-path” header provides information about the email’s path and assists

in managing bounced emails. In phishing attacks, cybercriminals may manipulate the

return-path to hide their true identity or mask the actual source of the email. Analyzing

this header can reveal discrepancies or anomalies that may indicate a phishing attempt.

The ”Subject” line of an email often serves as the initial attention-grabbing element.

Phishing emails may employ enticing or urgent subjects to prompt recipients to take

immediate action. By examining the subject line, suspicious keywords, patterns, or

85

3. Phishing email detection framework using word embedding and machine learning

unusual requests can be identified, helping to identify potential phishing emails.

The ”Message-ID” is a unique identifier assigned to each email. While this header

alone may not directly contribute to phishing email classification, it can aid in tracking

and analyzing email conversations, identifying patterns, and detecting campaigns or

patterns associated with phishing attacks.

By analyzing and scrutinizing these specific email header features, security systems

and algorithms can leverage their information to assess the authenticity and potential

malicious intent of emails, thereby assisting in the classification and identification of

phishing emails.

3.5.4 Dictionary creation

The heuristics extracted from the text undergo tokenization using the nltk library, which

breaks down the input document into smaller units like words or terms. Depending on

the input document, it could be a phrase, sentence, paragraph, or an entire document,

and each of these smaller units is called a token. The tokenization output is then used

for lemmatization, where the inflectional endings of words are removed, and the dic-

tionary form of the word is provided through the use of vocabulary and morphological

analysis that studies the structure and formation of the word. Lemmatization accurately

identifies a word and converts it to its base form, considering the context in which it is

used.

Example: Let us consider the following sample feature,

Subject = ”Transaction alerts for your State Bank of India Debit Card”

When the subject is tokenized, the string looks like,

[’Transaction’, ’alerts’, ’for’, ’your’, ’State’, ’Bank’, ’of’, ’India’, ’Debit’, ’Card’]

The output from the tokenizer is fed to the lemmatizer, the obtained output from the

lemmatizer as below,

[’Transaction’, ’alert’, ’for’, ’your’, ’State’, ’Bank’, ’of’, ’India’, ’Debit’, ’Card’]

86

3.5. Phishing Email Detection

3.5.5 Vectorization

The vectorization process, an unsupervised learning method, involves converting words

to a numerical format subsequently trained using classification models. Before vec-

torization, pre-processing extracted features from the emails involves removing special

symbols, extra spaces, irrelevant numeric data, and garbage characters as part of the to-

kenization process. The extracted words are lemmatized to remove inflectional endings

and converted to lowercase. This work employs two common vectorization methods:

frequency-based (count of words/context co-occurrences) and prediction-based. The

prediction-based methods include FastText and Word2Vec, while the frequency-based

methods include TF-IDF and Count vectorization. These word embedding techniques

allow for the representation of words, enabling machine learning algorithms to com-

prehend words with comparable meanings. Word vectors are numerical vectors repre-

senting words meaning and are multidimensional floating-point values that approximate

positions in geographic space for semantically similar words.

The Word2Vec SkipGram algorithm takes a dictionary of existing words as input

and generates corresponding vectors for each word, even for unfamiliar ones. The al-

gorithm incorporates numerous parameters such as vector size, window size, minimum

count, number of workers, number of iterations, and input datasets. By adjusting these

parameters, appropriate vectors can be generated to optimize performance.

The Word2Vec-CBOW model utilizes the same parameters as SkipGram to gener-

ate word vectors comprised of real numbers, contingent on the vector size and other

parameters designated to the Word2Vec function. Compared to SkipGram, Word2Vec’s

CBOW technique predicts the target word by taking context words as input. This tech-

nique is quicker and more effective with more common words.

The FastText library function is equipped with various parameters, such as the in-

put corpus, vector size, window size, minimum count, and number of workers, used

to generate vectors. The algorithm employs hierarchical classifiers and n-gram tech-

niques to train models with unlabeled datasets. In this study, the FastText SkipGram

and CBOW models take a dictionary of words generated in Section 3.5.4 as input and

87

3. Phishing email detection framework using word embedding and machine learning

produce corresponding real-valued vectors.

TF-IDF: TF-IDF is a technique that helps to identify the most important words in

a document by computing a weight for each word that is proportional to its frequency

in the document but inversely proportional to its frequency in the entire corpus of docu-

ments. The TF part of the technique calculates the frequency of a word in a document,

while the IDF part calculates the importance of a word in the corpus of documents. The

resulting vectors are generated by replacing the true or false conditioned boolean values

of vector size for the words of the dictionary. TF-IDF terms have to be normalized to

reduce the bias in term frequency from terms in short or longer documents. The corre-

sponding sparse matrix is generated to identify the corpus’s term frequency and inverse

document frequency.

Count Vectorization: The Count Vectorizer function performs basic pre-processing

on the input text, which includes removing punctuation marks and converting all words

to lowercase. It then creates a vocabulary of known words that will be used to encode

unseen text later. The encoded vector returned has a length equal to the size of the entire

vocabulary, and the integer count indicates the number of times each word appeared in

the document. To reduce bias in term frequency from terms in short or long documents,

normalization of Count Vectorizer terms is necessary. The normalized resultant vector

is size 100, and the corresponding sparse cse matrix is obtained from the count vector-

izer. The generated vectors are further used in machine learning classifiers to classify

the email as phishing or legitimate. Section 3.2 discusses the workings of the word

embedding algorithms used in the proposed work.

3.5.6 Classification

The vectorization module actively generates a variety of vectors that excel at determin-

ing word similarity within a continuous vector space. We use the vectors produced by

word embedding techniques in conjunction with five machine-learning classification al-

gorithms to classify emails as phishing or legitimate. The work demonstrates the use of

machine learning algorithms such as Random Forest (RF), Decision Tree (DT), Support

Vector Machine (SVM), XGBoost, and Logistic Regression (LR) for email classifica-

88

3.6. Implementation

tion. These algorithms are well known for their ability to correctly classify emails as

phishing or legitimate.

3.6 IMPLEMENTATION

The presented model relies on several libraries for its implementation. The Pandas li-

brary used for efficient database processing and data manipulation, including reshaping

and merging data frames. The nltk library, on the other hand, is used for performing

statistical natural language processing tasks such as tokenization, lemmatization, and

stopword removal. In addition, the sklearn library is used for various machine learn-

ing tasks, including classification, regression, clustering, and dimensionality reduction.

This library provides several algorithms and tools to construct robust machine learning

models. Lastly, the Gensim library is an open-source tool for creating word embed-

dings. It provides an efficient way to convert words and documents into vectors that

can be used in various natural language processing tasks, including text similarity and

document classification.

Overall, combining these libraries provides a powerful toolset for developing the

model. They enable efficient data processing, feature engineering, and the creation

of robust machine learning models, which are essential for accurate phishing email

detection.

3.7 RESULTS AND DISCUSSION

The experiments are conducted using three different datasets, as mentioned in Table

2.8. The training and testing were performed on each dataset using 70% & 30% of

their total size and a window size 10. However, before performing the main experi-

ments, some prerequisite tasks were required. Developed Python scripts to minimize

the noise by removing empty spacing, angle brackets, single and double quotes, and

other unnecessary symbols. The parsed email header heuristics were saved as a CSV

file. The proposed model trained using these selected CSV files with word embedding

and ML algorithms. The training accuracy from dataset-1 was 100% with Word2Vec

(CBOW & SkipGram) and RF for vector size 300. Similarly, the highest training ac-

89

3. Phishing email detection framework using word embedding and machine learning

curacy achieved in the training experiments conducted on dataset-2 was 99.88% with

Word2Vec (CBOW) and RF for vector size 200. The training was also conducted on

a purely in-house repository, i.e., dataset-3, and the highest training accuracy achieved

was 99.87% with Word2Vec (CBOW & SkipGram) and RF for vector size 150. The

results indicate that Word2Vec with RF consistently performed the best with all three

datasets.

3.7.1 Experiment-1

The model presented in this study utilized Dataset-1 as input and employed various

word embedding algorithms, such as TF-IDF, Count Vectorization, Word2Vec (CBOW),

Word2Vec (SkipGram), FastText (CBOW), and FastText (SkipGram), to conduct the ex-

periment. To assess the performance of each algorithm, the output vector size was var-

ied from 50 to 300, and the corresponding results were recorded in Table 3.3. Notably,

when the vector size was set to 300, TF-IDF in combination with RF, DT, XG Boost,

and LR algorithms demonstrated high accuracy levels of 99.37%, 99.13%, 98.62%,

and 99.07% respectively. Similarly, for vector size 150, TF-IDF in combination with

SVM achieved an accuracy of 98.16%. Count Vectorizer exhibited similar performance

to TF-IDF. The RF, DT, XG Boost, LR, and SVM algorithms achieved accuracies of

99.33%, 98.92%, 98.42%, 98.77%, and 97.17% respectively for both vector sizes of

300 and 150. The results indicate that, in most cases, the efficiency of TF-IDF and

Count Vectorization improves with increasing vector size, except for SVM.

The performance of Word2Vec (CBOW) was evaluated alongside RF, DT, and SVM

algorithms, achieving accuracy levels of 99.26% and 98.79% for vector size 300, and

98.90% for vector sizes 100 and 200, respectively. When combined with XG Boost and

LR algorithms, Word2Vec (CBOW) achieved an accuracy of 98.92% for vector size 100

and 99.16% for vector size 200. Word2Vec (SkipGram) in combination with RF, DT,

and LR algorithms yielded accuracies of 99.35%, 98.96%, and 99.26%, respectively,

for vector size 200. Similarly, SVM and XG Boost algorithms achieved accuracies of

98.90% and 98.92%, respectively, for vector sizes 50 and 150. Notably, the results of

Word2Vec exhibit variability across the chosen vector sizes.

90

3.7. Results and discussion

Table 3.3: Selection of vector size with Dataset-1
Word

Embedding
Machine
Learning

Testing Accuracy(%) of Vectors
50 100 150 200 300

TF-IDF

RF 98.92 98.59 99.07 99.16 99.37
DT 98.49 98.03 98.64 98.66 99.13

SVM 97.08 97.73 98.16 98.08 97.97
XG Boost 98.25 97.64 98.27 98.27 98.62

LR 98.21 98.16 98.62 98.92 99.07

Count
Vectorizer

RF 98.90 98.59 98.98 99.29 99.33
DT 98.55 98.08 98.55 98.87 98.92

SVM 96.11 97.08 97.17 97.10 96.37
XG Bosst 98.33 97.86 98.34 98.38 98.42

LR 98.18 97.77 98.53 98.64 98.77

Word2Vec
(CBOW)

RF 98.81 98.94 98.87 99.09 99.26
DT 97.73 98.25 98.49 98.40 98.79

SVM 98.72 98.90 98.85 98.90 98.75
XG Boost 98.70 98.92 98.40 98.79 98.79

LR 99.15 98.90 98.92 99.16 98.90

Word2Vec
(SkipGram)

RF 98.94 99.00 98.98 99.35 98.79
DT 98.29 98.23 98.44 98.96 98.68

SVM 98.90 98.75 98.77 98.85 98.46
XG Boost 98.75 98.57 98.92 98.77 98.66

LR 99.11 99.07 99.16 99.26 98.92

FastText
(CBOW)

RF 99.42 99.50 99.50 99.31 99.16
DT 98.92 99.03 99.11 98.94 98.64

SVM 98.38 98.29 97.95 97.79 97.45
XG Boost 98.87 99.29 98.64 98.94 98.70

LR 98.66 99.05 98.72 98.94 98.55

FastText
(SkipGram)

RF 99.44 99.33 99.39 99.37 99.46
DT 98.75 98.94 99.24 98.94 98.79

SVM 98.87 98.46 98.31 97.86 97.79
XG Boost 99.26 98.96 99.18 98.85 98.96

LR 99.44 99.16 99.03 99.37 99.24

FastText, a vectorization algorithm introduced by Facebook, is similar to Word2Vec

which employs two-word learning techniques, CBOW and SkipGram. FastText (CBOW)

combined with RF achieves the highest accuracy of 99.50% for vector sizes 100 and

150, according to the results. Similarly, for vector sizes 150 and 50, the DT and SVM

algorithms achieve accuracies of 99.11% and 98.38%, respectively. For vector size

100, the XG Boost and LR algorithms achieve accuracies of 99.29% and 99.05%, re-

spectively. When combined with RF, FastText (SkipGram) achieves an accuracy of

91

3. Phishing email detection framework using word embedding and machine learning

99.46% for vector size 300. Furthermore, when applied to DT, FastText (SkipGram)

achieves 99.24% accuracy for vector size 150, while SVM, XG Boost, and LR algo-

rithms achieve 99.87%, 99.26%, and 99.44% accuracy for vector size 50, respectively.

FastText (CBOW) combined with RF achieves the highest level of accuracy of 99.50%

for vector size 100.

Table 3.4: Selection of vector size with Dataset-2
Word

Embedding
Machine
Learning

Accuracy(%) of Vector size
50 100 150 200 300

TF-IDF

RF 95.99 98.47 99.05 99.39 99.28
DT 95.51 97.86 98.42 98.77 98.50

SVM 94.96 97.20 97.80 97.94 97.74
XG Boost 95.44 97.91 98.36 98.66 98.67

LR 95.00 97.38 98.34 98.83 98.94

Count
Vectorizer

RF 95.96 98.51 99.01 99.37 99.37
DT 95.78 98.02 98.40 98.62 98.56

SVM 94.93 96.69 97.33 97.53 96.68
XG Bosst 95.42 98.0 98.40 98.70 98.77

LR 95.10 97.14 98.28 98.73 98.75

Word2Vec
(CBOW)

RF 98.39 98.58 98.47 98.42 98.62
DT 97.44 97.43 97.88 97.70 97.60

SVM 97.46 98.60 98.40 98.33 98.40
XG Boost 98.03 97.88 98.12 98.10 98.09

LR 97.91 98.16 98.21 98.13 98.38

Word2Vec
(SkipGram)

RF 98.68 98.58 98.72 98.38 98.56
DT 97.78 97.50 97.44 97.88 97.86

SVM 97.97 97.99 97.87 97.35 97.53
XG Boost 98.23 98.06 98.02 97.84 98.11

LR 98.61 98.77 98.68 98.70 98.96

FastText
(CBOW)

RF 98.72 98.62 98.58 98.39 98.64
DT 97.94 98.00 97.98 97.44 97.64

SVM 97.98 97.61 97.35 96.82 96.78
XG Boost 98.15 98.08 97.85 97.61 97.83

LR 98.00 97.85 97.87 97.30 97.46

FastText
(SkipGram)

RF 98.48 98.47 98.71 98.59 98.50
DT 97.54 97.75 97.48 97.77 97.49

SVM 97.24 97.16 97.05 96.82 96.65
XG Boost 98.05 98.03 97.93 98.11 98.10

LR 98.41 98.36 98.43 98.50 98.30

92

3.7. Results and discussion

3.7.2 Experiment-2

Table 3.4 shows the results of Experiment-1 on Dataset-2, which aimed to validate our

proposed technique using a legitimate dataset generated in-house. For a vector size of

200, the accuracy results for TF-IDF with RF, DT, and SVM are 99.39%, 98.77%, and

97.94%, respectively. XG Boost and LR achieved 98.67% and 98.94% accuracy for

vector size 300, respectively. Count vectorizer also performed well, with RF, DT, and

SVM achieving accuracies of 99.37%, 98.62%, and 97.53% for vector size 200, respec-

tively. XG Boost and LR also achieved accuracies of 98.77% and 98.75%, respectively.

It is worth noting that the TF-IDF and count vectorizer performed better for vector sizes

200 and 300.

The accuracy achieved with Word2Vec (CBOW) combined with RF for vector size

300 was 98.62%. For vector sizes 150, 100, 150, and 300, DT, SVM, XG Boost, and

LR achieved accuracies of 97.88%, 98.60%, 98.12%, and 98.38%, respectively. With

Word2Vec (SkipGram) and RF, an accuracy of 98.72% was obtained for vector size

150. Similarly, DT, SVM, XG Boost, and LR achieved accuracies of 97.88%, 97.99%,

98.23%, and 98.96% for vector sizes 200, 100, 50, and 300, respectively.

For vector size 50, CBOW with RF, SVM, XG Boost, and LR achieved accuracies of

98.72%, 97.98%, 98.15%, and 98.00%, respectively. For vector size 100, DT achieved

an accuracy of 98.00%. For vector size 150, FastText (SkipGram) combined with RF

achieved an accuracy of 98.71%. FastText (SkipGram) achieved accuracies of 97.77%,

97.24%, 98.11%, and 98.50% when combined with DT, SVM, XG Boost, and LR for

vector sizes 200, 50, 200, and 200, respectively.

Overall, the results of the experiments performed on Dataset-2 show that the accu-

racy varies with vector size. The highest accuracy achieved with TF-IDF and RF for

vector size 200 was 99.39%.

3.7.3 Experiment-3

In the current experiment, Dataset-3, an internal repository, serves as the input for the

proposed model. The results of this experiment are presented in Table 3.5. The follow-

ing results were obtained by using Dataset-3 as the input for the proposed model: For

93

3. Phishing email detection framework using word embedding and machine learning

vector sizes 150 and 200, TF-IDF combined with RF achieved an accuracy of 99.12%,

while TF-IDF combined with DT achieved an accuracy of 99.03%. SVM, XG Boost,

and LR accuracy rates for vector sizes 100 and 150 were 97.60%, 98.74%, and 98.34%,

respectively. When combined with RF, DT, SVM, XG Boost, and LR, Count Vectorizer

produced accuracy rates of 99.18%, 99.09%, 97.63%, 98.86%, and 98.49% for vec-

tor sizes 150, 200, 150, 200, and 150, respectively.For a vector size of 150, RF and

SVM achieved an accuracy of 98.86% in Word2Vec (CBOW). DT, XG Boost, and LR

achieved accuracy rates of 98.69%, 98.52%, and 98.54% for vector sizes 100, 50, and

200, respectively. In the case of Word2Vec (SkipGram), RF achieved 99.06% accuracy

for a vector size of 100, while DT, XG Boost, and LR achieved 98.69%, 98.76%, and

98.86% accuracy for a vector size of 300, respectively. Similarly, for a vector size of

50, SVM achieved an accuracy of 98.69%.Overall, the results of the experiment with

Dataset-3 show that the accuracy rates achieved for different vector sizes vary across

the algorithms used.

FastText (CBOW) achieved 98.86% accuracy with RF for a vector size of 150. With

a vector size of 200, the accuracy rates of DT, XG Boost, and LR were 98.76%, 98.62%,

and 98.46%, respectively. With a vector size of 50, SVM achieved an accuracy rate of

98.16%. FastText (SkipGram) combined with RF, SVM, and XG Boost, on the other

hand, achieved accuracy rates of 98.85%, 98.11%, and 98.52% for a vector size of 50,

respectively. For a vector size of 300, DT and LR achieved accuracy rates of 98.62% and

98.67%, respectively. Overall, for a vector size of 150, the Count Vectorizer combined

with RF produced the highest accuracy rate of 99.18%.

3.7.4 Performance Evalution with Dataset-1

In the current study, the presented model is assessed using individual datasets, and the

results obtained from Dataset-1 are presented in Table 3.6, which includes six metrics.

After analyzing the results in Section 3.7.1 and Table 3.3, a vector size of 300 was cho-

sen. Based on the input from Dataset-1, the RF classifier with FastText (SkipGram)

exhibited the highest accuracy of 99.46%, along with MCC, Precision, TPR, TNR, and

F-Score metrics of 98.99%, 99.89%, 99.20%, 99.84%, and 99.54%, respectively. The

94

3.7. Results and discussion

Table 3.5: Selection of vector size with Dataset-3
Word

Embedding
Machine
Learning

Accuracy(%) of Vector size
50 100 150 200 300

TF-IDF

RF 98.73 99.06 99.12 99.12 99.08
DT 98.58 98.71 98.70 99.03 98.93

SVM 96.46 97.60 97.60 97.05 97.03
XG Boost 98.24 98.74 98.52 98.69 98.64

LR 97.64 98.00 98.34 98.16 98.08

Count
Vectorizer

RF 98.75 99.06 99.18 99.17 99.12
DT 98.67 98.92 98.79 99.09 98.93

SVM 96.32 97.49 97.63 97.04 96.93
XG Boost 98.49 98.72 98.73 98.86 98.79

LR 97.71 98.08 98.49 98.09 98.09

Word2Vec
(CBOW)

RF 98.75 98.80 98.86 98.74 98.80
DT 98.57 98.69 98.60 98.52 98.57

SVM 96.83 98.09 98.50 98.22 98.26
XG Boost 98.52 98.46 98.47 98.02 98.08

LR 98.18 97.94 98.24 98.54 98.19

Word2Vec
(SkipGram)

RF 98.81 99.06 99.02 98.63 98.99
DT 98.30 98.58 98.50 98.43 98.69

SVM 98.69 98.31 98.27 98.03 98.12
XG Boost 98.04 98.38 98.59 98.46 98.76

LR 98.38 98.47 98.78 98.78 98.86

FastText
(CBOW)

RF 98.79 98.82 98.86 98.75 98.80
DT 98.50 98.63 98.64 98.76 98.68

SVM 98.16 97.98 97.75 97.88 97.89
XG Boost 98.26 98.46 98.26 98.62 98.32

LR 98.11 98.35 98.31 98.46 98.27

FastText
(SkipGram)

RF 98.85 98.60 98.84 98.73 98.84
DT 98.49 98.49 98.53 98.51 98.62

SVM 98.11 97.42 97.48 97.16 97.22
XG Boost 98.52 98.37 98.46 98.41 98.26

LR 98.46 98.42 98.47 98.47 98.67

table also highlights the top individual classifier accuracies, with SVM using Word2Vec

(CBOW) achieving an accuracy of 98.75%. Additionally, XG Boost and LR with Fast-

Text (SkipGram) achieved their best individual accuracies of 98.96% and 99.24%, re-

spectively.

95

3. Phishing email detection framework using word embedding and machine learning

Table 3.6: Performance Evalution with Dataset-1
Word
Embeddings Algorithm Acc MCC

Preci-
sion TPR TNR

F-
Score

TF-IDF

RF 99.37 98.71 99.96 98.98 99.95 99.47
DT 99.13 98.22 99.48 99.05 99.26 99.26
SVM 97.97 95.84 99.63 96.99 99.45 98.30
XGBoost 98.62 97.15 99.30 98.36 98.99 98.83
LR 99.07 98.09 99.70 98.72 99.57 99.21

Count
Vectorizer

RF 99.33 98.62 99.85 99.01 99.79 99.43
DT 98.92 97.77 99.26 98.90 98.95 99.08
SVM 96.37 92.58 99.08 94.95 98.61 96.97
XGBoost 98.42 96.75 99.22 98.11 98.88 98.66
LR 98.77 97.46 99.37 98.54 99.10 98.95

Word2Vec
(CBOW)

RF 99.26 98.50 100 98.75 100 99.37
DT 98.79 97.52 98.95 98.95 98.56 98.95
SVM 98.75 97.44 99.89 97.98 99.84 98.93
XGBoost 98.79 97.53 99.77 98.16 99.68 98.96
LR 98.90 97.74 99.40 98.70 99.17 99.05

Word2Vec
(SkipGram)

RF 98.79 97.53 100 97.95 100 98.96
DT 98.68 97.30 99.29 98.44 99.01 98.86
SVM 98.46 96.88 99.92 97.49 99.89 98.69
XGBoost 98.66 97.27 99.89 97.84 99.84 98.85
LR 98.92 97.79 99.85 98.31 99.79 99.07

FastText
(CBOW)

RF 99.16 98.26 99.82 98.77 99.73 99.29
DT 98.64 97.18 99.05 98.65 98.61 98.85
SVM 97.45 94.72 98.39 97.33 97.63 97.86
XGBoost 98.70 97.32 99.60 98.24 99.40 98.91
LR 98.55 97.00 98.98 98.58 98.51 98.78

FastText
(SkipGram)

RF 99.46 98.88 99.89 99.20 99.84 99.54
DT 98.79 97.50 98.76 99.19 98.21 98.97
SVM 97.79 95.48 99.67 96.70 99.50 98.15
XGBoost 98.96 97.85 99.56 98.69 99.36 99.12
LR 99.24 98.44 99.71 99.02 99.57 99.36

3.7.5 Performance Evaluation with Dataset-2

The testing procedures for dataset-2 are identical to those discussed for dataset-1 in the

previous section 3.7.4. A vector size of 200 is selected based on the results obtained

in experiment-2, as indicated in Table 3.4. Table 3.7 presents the testing results of

dataset-2, with seven different metrics. Among all the results, TF-IDF demonstrated

excellent performance with RF, DT, and LR, achieving accuracies of 99.39%, 98.77%,

and 98.83%, respectively. SVM and XG Boost showed good results with FastText

96

3.7. Results and discussion

(SkipGram) and Count vectorizer, with accuracies of 98.82% and 98.70%, respectively,

as highlighted in Table 3.7. The highest accuracy achieved is observed for TF-IDF with

RF, with corresponding metrics of MCC 98.63%, Precision 99.19%, TPR 98.97%, TNR

99.60%, and F-score of 99.08%.

Table 3.7: Performance Evaluation with Dataset-2
Word
Embeddings Algorithm Acc MCC

Preci-
sion TPR TNR

F-
Score

TF-IDF

RF 99.39 98.63 99.19 98.97 99.60 99.08
DT 98.77 97.23 98.16 98.13 99.09 98.14
SVM 97.94 95.35 96.55 97.22 98.29 96.88
XGBoost 98.66 96.98 98.31 97.66 99.16 97.98
LR 98.83 97.36 98.24 98.24 99.13 98.24

Count
Vectorizer

RF 99.37 98.57 99.30 98.79 99.65 99.05
DT 98.62 96.89 97.76 98.08 98.89 97.92
SVM 97.93 94.41 95.37 97.12 97.72 96.24
XGBoost 98.70 97.07 98.38 97.70 99.20 98.04
LR 98.73 97.14 98.09 98.09 99.05 98.09

Word2Vec
(CBOW)

RF 98.42 96.50 99.78 95.60 99.89 97.64
DT 97.70 94.80 97.07 95.97 98.56 96.52
SVM 98.33 96.27 98.96 96.08 99.48 97.50
XGBoost 98.10 95.78 99.15 95.26 99.57 97.17
LR 98.13 95.76 97.44 96.87 98.75 97.15

Word2Vec
(SkipGram)

RF 98.38 96.43 99.52 95.77 99.76 97.61
DT 97.88 95.25 97.43 96.24 98.72 96.83
SVM 97.35 94.21 99.12 93.31 99.55 96.13
XGBoost 97.85 95.22 98.42 95.25 99.20 96.81
LR 98.70 97.08 98.57 97.53 99.28 98.05

FastText
(CBOW)

RF 98.39 96.48 99.18 96.23 99.57 97.68
DT 97.44 94.33 96.79 95.76 98.33 96.27
SVM 96.82 93.01 96.79 94.07 98.31 95.41
XGBoost 97.61 94.77 98.25 94.93 99.08 96.56
LR 97.30 94.04 97.29 94.92 98.58 96.09

FastText
(SkipGram)

RF 98.59 96.87 99.56 96.31 99.78 97.90
DT 97.77 94.98 96.77 96.52 98.40 96.64
SVM 98.82 93.09 98.82 92.16 99.39 95.38
XGBoost 98.11 95.82 99.01 95.47 99.50 97.21
LR 98.50 96.63 98.05 97.45 99.03 97.75

97

3. Phishing email detection framework using word embedding and machine learning

3.7.6 Performance Evaluation with Dataset-3

The testing procedures for dataset-3 were conducted in a similar way to those discussed

in sections 3.7.1 and 3.7.2, and the results are presented in Table 3.9. These results

are comparable to those obtained for dataset-1 and dataset-2, demonstrating that the

in-house dataset creation procedures are reliable. Our institution’s real-time repository,

which is unique to us, is a noteworthy contribution. The best accuracy achieved with

the new corpus was 99.18% using Count Vectorizer and RF, with corresponding MCC,

Precision, TPR, TNR, and F-score of 98.11%, 98.05%, 99.38%, 99.09%, and 98.71%

respectively.

3.7.7 Model Validation

The phishing email classification uses a validation method of a train/test split with a

70%/30% ratio of the total dataset size for all three datasets. This approach randomly

divides the data into 70% for training and 30% for testing. The confusion matrices

for the results of each individual dataset can be found in Tables 3.8 - (a), (b), and (c).

Dataset-1 contains 15430 emails, with 10801 used for training and 4629 for testing.

Dataset-2 has 27405 emails, with 19183 for training and 8222 for testing. Dataset-3

has a total of 27256 emails, with 19079 used for training and 8177 for testing. The

evaluation metrics computed from the confusion matrix for the binary classifier are

tabulated in Table 3.10.

It is worth noting that the training time for various algorithms varies from 67.15

seconds (for TF-IDF) to 425.02 seconds (for Word2Vec-SkipGram) when the vector

size is set to 200. Similarly, the testing time for various algorithms ranges from 50.44

seconds (for TF-IDF) to 328.56 seconds (for Word2Vec-SkipGram) when the vector

size is set to 200.

3.7.8 Performance of individual features

The current study employs four header labels exclusively for email classification. The

performance of each label is presented in Table 3.11. Notably, the Return-Path feature

obtains a high accuracy of 99.34% when used in conjunction with FastText and RF.

Similarly, Subject is the second-best feature, achieving an accuracy of 98.71% when

98

3.7. Results and discussion

Table 3.8: Confusion Matrix (a). Dataset-1, (b). Dataset-2, (c). Dataset-3
True
Positive

True
Negative TP TN TP TN

False
Positive 2741 1 FP 2701 22 FP 2652 54

False
Negative 22 1865 FN 28 5471 FN 13 5458

(a) (b) (c)

Table 3.9: Performance Evaluation with Dataset-3
Word
Embeddings Algorithm Acc MCC

Preci-
sion TPR TNR

F-
Score

TF-IDF

RF 99.12 97.97 97.86 99.38 99.00 98.61
DT 98.70 97.03 98.28 97.68 99.19 97.98
SVM 97.60 94.52 92.62 99.87 96.64 96.11
XGBoost 98.52 96.59 97.17 98.18 98.67 97.67
LR 98.33 96.17 95.76 99.01 98.03 97.36

Count
Vectorizer

RF 99.18 98.11 98.05 99.38 99.09 98.71
DT 98.79 97.22 98.20 98.01 99.15 98.11
SVM 97.63 94.58 92.59 100 96.63 96.15
XGBoost 98.73 97.07 97.63 98.38 98.89 98.00
LR 98.49 96.55 95.64 99.64 97.99 97.60

Word2Vec
(CBOW)

RF 98.86 97.39 98.51 97.95 99.29 98.23
DT 98.60 96.82 98.59 97.11 99.33 97.84
SVM 98.51 96.57 96.53 98.79 98.38 97.65
XGBoost 98.47 96.49 97.49 97.75 98.81 97.62
LR 98.24 95.98 97.90 96.65 99.00 97.28

Word2Vec
(SkipGram)

RF 99.02 97.78 98.51 98.51 99.27 98.51
DT 98.49 96.61 98.48 97.00 99.24 97.73
SVM 98.27 96.12 94.84 99.92 97.52 97.31
XGBoost 98.59 96.82 98.03 97.71 99.03 97.87
LR 98.78 97.24 98.40 97.89 99.21 98.15

FastText
(CBOW)

RF 58.86 97.40 96.97 99.49 98.57 98.21
DT 98.64 96.89 97.54 98.24 98.83 97.89
SVM 97.75 94.88 93.10 99.92 96.82 96.39
XGBoost 98.26 96.02 96.78 97.82 98.47 97.29
LR 98.31 96.13 95.72 99.02 97.99 97.34

FastText
(SkipGram)

RF 98.84 97.38 96.79 99.69 98.43 98.22
DT 98.53 96.69 97.49 98.07 98.76 97.78
SVM 97.48 94.37 92.41 100 96.36 96.05
XGBoost 98.46 96.52 96.09 99.24 98.09 97.64
LR 98.47 96.55 96.54 98.83 98.30 97.67

99

3. Phishing email detection framework using word embedding and machine learning

Table 3.10: Summary of the works executed on all three datasets
Measure (%) Dataset-1 Dataset-2 Dataset-3
Accuracy 99.50 99.39 99.18
MCC 98.97 98.62 98.15
Precision 99.96 99.19 98.00
TPR 99.20 98.97 99.51
TNR 99.95 99.60 99.02
F-Score 99.58 99.08 98.75
FPR 0.05 0.40 0.98

tested with Word2Vec-SkipGram and RF model. Additionally, From and Message-

Id features are able to achieve accuracies of 97.75% and 95.23%, respectively, which

are also noteworthy. Thus, it can be inferred that all four selected features are highly

effective in classifying emails.

3.7.9 Result Analysis

A series of experiments were conducted using the proposed method to determine the op-

timal vector sizes. These experiments evaluated the performance of hybrid techniques,

which incorporate word embedding and machine learning on individual datasets. The

results were organized into tables and analyzed thoroughly to identify the most effec-

tive model. According to the results, FastText-CBOW and RF combination achieved

the highest accuracy of 99.50% for Dataset-1 with vector size 100. TF-IDF and RF

achieved the highest accuracy of 99.39% for Dataset-2 with vector size 200, and the

Count Vectorizer and RF achieved the highest accuracy of 99.18% for Dataset-3 with

vector size 150. These results show that the Random Forest classifier consistently per-

forms the best with most word embedding algorithms. The achieved results are com-

petitive when we compare with other existing works.

3.7.10 Comparison study

To evaluate the presented approach and determine its effectiveness, a comparison study

is conducted using common datasets and methods that have been used in existing re-

search papers. This comparison study is aimed at providing a benchmark against which

the performance of the presented approach can be evaluated. The common datasets and

methods are chosen to ensure that the comparison is fair and unbiased. By using com-

100

3.7. Results and discussion
Ta

bl
e

3.
11

:P
er

fo
rm

an
ce

of
in

di
vi

du
al

fe
at

ur
es

Fe
at

ur
e

C
la

ss
ifi

er
T

F-
ID

F
A

cc
ur

ac
y(

%
)

C
V

A
cc

ur
ac

y(
%

)
W

2V
-C

B
O

W
A

cc
ur

ac
y(

%
)

W
2V

-S
G

A
cc

ur
ac

y(
%

)
FT

-C
B

O
W

A
cc

ur
ac

y(
%

)
FT

-S
G

A
cc

ur
ac

y(
%

)

Fr
om

R
F

86
.7

3
86

.7
3

97
.7

2
97

.7
5

94
.3

5
94

.1
1

D
T

86
.6

8
86

.6
0

97
.7

5
97

.7
2

94
.3

5
94

.1
1

SV
M

85
.0

7
83

.6
3

94
.3

0
93

.9
8

74
.8

8
85

.5
0

X
G

-B
oo

st
85

.7
4

85
.7

9
96

.4
9

96
.6

0
93

.8
7

93
.4

2
L

R
86

.0
9

86
.0

9
96

.0
1

96
.3

0
87

.7
7

89
.9

4

M
es

sa
ge

-I
D

R
F

85
.0

7
85

.1
0

94
.2

9
95

.2
3

90
.8

9
89

.9
2

D
T

85
.0

2
84

.9
9

94
.1

8
95

.0
7

90
.9

1
89

.9
2

SV
M

80
.6

5
79

.6
9

75
.5

4
75

.8
6

53
.9

7
54

.3
7

X
G

-B
oo

st
84

.9
1

84
.8

6
93

.2
7

93
.8

3
90

.1
1

89
.5

2
L

R
84

.4
0

84
.3

5
86

.3
3

91
.4

8
51

.1
1

73
.0

2

R
et

ur
n-

Pa
th

R
F

97
.8

9
97

.8
9

99
.3

3
99

.3
4

98
.6

3
98

.6
1

D
T

97
.8

3
97

.8
6

99
.3

0
99

.5
1

98
.6

3
98

.5
8

SV
M

96
.5

8
96

.1
2

95
.9

4
96

.0
5

86
.8

4
87

.4
2

X
G

-B
oo

st
97

.6
0

97
.5

1
98

.8
5

99
.1

9
98

.5
0

98
.2

6
L

R
97

.8
1

97
.7

5
98

.4
0

98
.4

2
93

.6
1

95
.1

1

Su
bj

ec
t

R
F

96
.2

9
96

.2
0

98
.6

8
98

.7
1

98
.1

6
98

.6
2

D
T

96
.2

6
96

.1
7

97
.4

6
97

.4
6

97
.4

0
97

.8
1

SV
M

94
.4

0
93

.6
7

96
.2

6
96

.9
3

92
.6

8
94

.8
6

X
G

-B
oo

st
94

.6
9

94
.8

3
96

.5
8

96
.8

7
96

.2
4

97
.3

4
L

R
95

.1
8

95
.1

2
97

.9
5

98
.3

6
93

.5
8

96
.2

3

Ta
bl

e
3.

12
:S

um
m

ar
y

of
th

e
w

or
ks

im
pl

em
en

te
d

on
pu

bl
ic

ly
av

ai
la

bl
e

da
ta

se
ts

.
A

ut
ho

r
N

o.
of

Fe
at

ur
es

Ty
pe

of
fe

at
ur

es
D

at
as

et
si

ze
A

cc
ur

ac
y

(%
)

Sm
ad

ie
ta

l.
(2

01
8)

50
H

yb
ri

d
Ph

is
hi

ng
-4

55
9

H
am

-4
55

9
98

.6
3

Is
la

m
an

d
A

ba
w

aj
y

(2
01

3)
21

H
yb

ri
d

U
nk

no
w

n
97

M
al

ay
si

a
(2

01
3)

21
H

yb
ri

d
Ph

is
hi

ng
-4

30
0

H
am

-6
00

0
99

K
ho

nj
ie

ta
l.

(2
01

2)
47

H
yb

ri
d

Ph
is

hi
ng

-4
11

6
H

am
-4

15
0

99
.3

7
G

an
st

er
er

an
d

Pö
lz

(2
00

9)
30

H
yb

ri
d

Ph
is

hi
ng

-5
00

0
H

am
-5

00
0

97
To

ol
an

an
d

C
ar

th
y

(2
00

9)
5

H
yb

ri
d

Ph
is

hi
ng

-4
20

2
H

am
-4

56
3

99
.3

1
H

am
id

an
d

A
ba

w
aj

y
(2

01
1)

7
H

yb
ri

d
To

ta
l-

45
94

96
To

ol
an

an
d

C
ar

th
y

(2
01

0)
22

H
yb

ri
d

Ph
is

hi
ng

-4
20

2
H

am
-4

56
3

97
Fe

tte
et

al
.(

20
07

)
10

H
yb

ri
d

Ph
is

hi
ng

-8
60

H
am

-6
95

0
96

Pr
op

os
ed

w
or

k
4

H
ea

de
r

Ph
is

hi
ng

-9
13

5
H

am
-6

29
5

99
.5

0

101

3. Phishing email detection framework using word embedding and machine learning

mon datasets and methods, it is possible to compare the performance of the presented

approach against existing methods and identify its strengths and weaknesses. Addition-

ally, this approach can help in identifying areas where improvements can be made to

further enhance the performance of the presented approach. Overall, the comparison

study provides valuable insights into the effectiveness of the presented approach and its

potential for practical use in real-world applications.

Using common datasets:

This section presents a comparison between the results obtained from our presented

work and those obtained from other works that were conducted on the same open-source

dataset using common methods. The results from the existing works were extracted di-

rectly from their respective papers and are presented alongside our results in Table 3.12.

The comparison shows that some of the existing works used multiple hybrid features

but achieved lower accuracy compared to our presented work, which only used four

header heuristics. It is worth noting that the datasets used by different researchers var-

ied in size, but we used the same publicly available dataset consisting of 9135 phishing

emails and 6295 legitimate emails from the open-source corpus. Our presented model

outperformed all other existing works by achieving an accuracy of 99.50%.

Using Common methods:

Table 3.13 presents a comparison between the presented work and other word embedding-

based techniques. It can be observed that the presented technique outperforms the other

techniques with an accuracy of 99.50%, 99.39%, and 99.18% for different datasets.

This is a remarkable achievement considering that the presented technique achieved

such high accuracy with only four header features of the email. It is worth noting that

some of the other techniques used multiple hybrid features and still achieved less ac-

curacy compared to the presented work. The results presented in Table 3.13 further

demonstrate the effectiveness and superiority of the presented technique over other ex-

isting word embedding-based techniques for email phishing classification.

102

3.8. Summary

Table 3.13: Summary of the works that used word embedding techniques

Author Features Dataset (s) Dataset
size

Accuracy
(%)

Precision
(%)

F-score
(%)

Nguyen
et al.
(2018)

Hybrid
IWSPA-AP
2018

Legit:4082
Phish:503 – 99.0 99.1

Bagui et al.
(2019)

Hybrid Private
Legit:14950
Phish:3416 98.89 – –

Castillo
et al.
(2020)

Body
Enron, APWG,
and Non-public

Legit:84111
Phish:30776 95.68 – –

Ra et al.
(2018)

Body
IWSPA-AP
2018

Legit:5088
Phish:612 99.1 90.59 93.07

Hiransha
et al.
(2018)

Body
IWSPA-AP
2018

Legit:5088
Phish:612 96.8 – –

Harikrishnan
et al.
(2018)

Hybrid
IWSPA-AP
2018

Legit:5088
Phish:612 90.29 92.5 94.6

Verma
et al.
(2012)

Hybrid PhishCatch
Legit:1000
Phish:2000 97 – –

Gutierrez
et al.
(2018)

Hybrid
Purdue
university’s
Sophos

Legit:158000
Phish:425870 96.5 – –

Valecha
et al.
(2021)

Hybrid
Enron
Millersmile

Legit:19153
Phish:17902 96.52 98.53 96.31

Presented
Model

Header
Dataset - 1 Legit:6295

Phish:9135 99.50 99.96 99.58

Dataset - 2 Legit:18270
Phish:9135 99.39 99.19 99.08

Dataset - 3 Legit:18270
Phish:8986 99.18 98.00 98.35

3.8 SUMMARY

This chapter introduces innovative methods for detecting phishing emails by utilizing

word embedding and machine learning classifiers. The presented approach uses only

four header features of emails for classification. The results of the experiments demon-

strate that the FastText-CBOW algorithm combined with RF classification achieves the

103

3. Phishing email detection framework using word embedding and machine learning

highest accuracy of 99.50% when tested with publicly available datasets. Addition-

ally, the RF classifier performed consistently well with all word embedding algorithms.

Therefore, the RF classifier is more appropriate for phishing email classification when

used in conjunction with word embedding techniques.

104

CHAPTER 4

DEEPEPHISHNET: A DEEP LEARNING
FRAMEWORK FOR PHISHING EMAIL

DETECTION USING WORD EMBEDDING
ALGORITHMS

Email phishing refers to a type of social engineering tactic that utilizes fraudulent emails

with the aim of deceiving users into revealing their authentic personal or business cre-

dentials. Several phishing email detection methods based on machine learning, deep

learning, and word embedding have been developed. In this chapter, a deep learning

model for detecting email phishing is presented, which employs word embedding al-

gorithms, such as Word2Vec, FastText, and TF-IDF, to represent email messages as

vectors. These vectors are then utilized as inputs to a deep neural network, which is

trained to classify emails as legitimate or phishing. The effectiveness of the proposed

framework is evaluated on a dataset of phishing and legitimate emails, and promising

results are obtained. The approach has the potential to enhance the accuracy of email

phishing detection systems and reduce the false positive and false negative rates. No-

tably, the DeepEPhishNet method only employs four header-based features of emails

(From, Returnpath, Subject, and Message-ID) as in Chapter 3 for email classification.

4.1 INTRODUCTION

Phishing is a common tactic used by criminals to deceive victims into sharing sensi-

tive information or installing malicious software that can grant access to their networks.

105

4. DeepEPhishNet: A Deep learning framework for phishing email detection using
Word embedding algorithms

What may seem like a harmless email can actually be the beginning of ransomware,

cryptojacking, or data theft. This type of attack affects over 100,000 internet users glob-

ally every day. Unfortunately, detecting phishing emails has become more challenging

over time, as attackers have developed more sophisticated techniques. As humans are

often the first line of defense against phishing emails, hackers are using more advanced

tactics to trick their targets. With the increase in internet usage, the number of phishing

URL and email attacks has also risen, and fraudsters now have access to more resources

to carry out complex and risky attacks. Furthermore, the COVID-19 pandemic has pro-

vided new opportunities for attackers to disguise their identity and execute phishing

attacks. Despite these challenges, it is crucial to stay vigilant and utilize available tools

to prevent falling prey to these scams.

The Sophos phishing insights report (Adam 2021) highlights that there has been

a significant increase in phishing activities since the start of the pandemic. The re-

port shows that the government sector has experienced a 77% rise in phishing attacks,

followed by the professional and business services sector at 76% and the healthcare sec-

tor at 73%. Additionally, research by SophosLab has investigated how attackers have

profited from the pandemic. They found that attackers have taken advantage of work-

from-home arrangements and home package delivery scams. These findings emphasize

the need for individuals and organizations to remain vigilant and take proactive mea-

sures to protect themselves against phishing attacks.

Cofense’s annual state of phishing study, conducted by Higbee (2021), has revealed

that email phishing attacks aimed at stealing credentials have had a considerable impact

on various industries. The study found that the education sector was targeted the most

with a 77% phishing attack rate, followed by retail at 73%, and trade at 71%, among

others. The report indicates that criminals have been using various techniques, includ-

ing mimicking, credential theft, fraudulent calls, and the use of urgency messages, to

obtain innocent people’s credentials and trap them into financial loss, especially dur-

ing the peak of the pandemic. These findings emphasize the importance of increased

awareness and training to recognize and prevent such attacks. Additionally, implement-

ing strong security measures and maintaining regular updates to software and systems

106

4.1. Introduction

Q1-20 Q2-20 Q3-20 Q4-20 Q1-21 Q2-21 Q3-21 Q4-21 Q1-22 Q2-22
0

1

2

3

4

·105

1.4 · 105
1.28 · 105

3.67 · 105
3.97 · 105

3.25 · 105

30,308

86,333

42,748 53,638 65,429

N
o.

of
E

m
ai

lP
hi

sh
in

g
D

et
ec

te
d

Figure 4.1: APWG 2020-21 Phishing Email Statistics

can help mitigate the risk of credential theft via email phishing.

The APWG’s phishing statistics from Q1-2020 through Q2-2022, as shown in Fig-

ure 4.1, reveal that the mid-three quarters of 2020 and 2021 experienced the highest

incidences of email fraud. These statistics from the pandemic period prompted re-

searchers to investigate better methods for accurately classifying phishing emails. To

address this challenge, the researchers implemented Word Embedding and Deep Learn-

ing (WE-DL) techniques. Word embedding creates vector representations of words,

which deep learning algorithms can use to classify emails accurately into their respec-

tive categories. The WE-DL model produced the most successful results compared to

other existing techniques that used a limited number of features. The implementation of

these advanced techniques can help improve the accuracy of phishing email detection

systems and minimize the risk of individuals falling victim to phishing scams.

This research work has made several significant contributions, including:

• DeepEPhishNet Framework: A novel DeepEPhishNet framework for email phish-

ing detection using Word Embedding and Deep Learning (WE-DL) techniques

has been presented. This framework utilizes Word2Vec, FastText, and TF-IDF to

107

4. DeepEPhishNet: A Deep learning framework for phishing email detection using
Word embedding algorithms

represent email messages as vectors, which are then used as input to a deep neural

network trained to classify emails as phishing or legitimate. The WE-DL model

successfully identified more phishing emails than other approaches, indicating its

potential for improving the accuracy of email phishing detection systems.

• Improved Detection Accuracy: DeepEPhishNet framework outperformed exist-

ing techniques with a limited number of features and achieved higher accuracy

rates in detecting phishing emails.

• Reduced False Positive and False Negative Rates: DeepEPhishNet framework

also showed a significant reduction in false positive and false negative rates, min-

imizing the risk of individuals falling victim to phishing scams.

• Application in Real-World Scenarios: The DeepEPhishNet framework has the

potential for practical application in real-world scenarios, where it can improve

the accuracy of email phishing detection systems and help organizations and in-

dividuals protect themselves from phishing attacks.

The DeepEPhishNet has the potential to make a valuable contribution to the field of

email phishing detection, enhancing the security and protection of individuals and or-

ganizations from phishing scams. The presented model for email phishing detection

using Word Embedding and Deep Learning (WE-DL) techniques offers several advan-

tages over existing techniques, including:

• Higher Accuracy: The model achieved higher accuracy rates in detecting phish-

ing emails, outperforming existing techniques with a limited number of features.

This higher accuracy is essential for improving the protection of individuals and

organizations against phishing scams.

• Flexibility: The WE-DL technique is highly flexible, allowing it to handle a wide

range of email data types and formats. This flexibility enables the model to adapt

to new types of phishing attacks and improve its accuracy over time.

• Speed: The model is fast and efficient, allowing it to process large volumes of

108

4.2. DeepEPhishNet Framework

email data quickly. This speed is essential for organizations that need to quickly

identify and respond to phishing attacks.

• Generalizability: The WE-DL technique is generalizable, meaning that it can be

applied to a wide range of email data sets and phishing attack scenarios. This

makes the model highly adaptable and applicable to real-world scenarios.

Until this point, there have been no published works that solely rely on email header fea-

tures for email phishing detection, except for our previous work, which was discussed

in Chapter 3. Most phishing detection techniques rely on email content analysis or a

combination of content and header information. However, our previous work demon-

strated that email header features, such as From, Return-Path, Subject, and Message-ID,

can be used effectively to classify emails as either phishing or legitimate. The model in

this chapter builds on this previous work by incorporating Word Embedding and Deep

Learning techniques to improve the accuracy and efficiency of email phishing detection

using only these four header features.

4.2 DEEPEPHISHNET FRAMEWORK

The ”DeepEPhishNet” model is an advancement of our previous work (Somesha and

Pais 2022). The DeepEPhishNet is designed with several stages of email data pro-

cessing. The first step involves collecting email data to create datasets for evaluating

the model. Once the data is collected, the next steps include feature selection, data

cleaning, dictionary construction, and vectorization, which were discussed in Chapter

3, section 3.5. However, the classification method used in this chapter is different, as

the proposed model employs deep learning classifiers to improve the accuracy and ef-

ficiency of email phishing detection. By using word embedding techniques, the model

is able to represent email messages as vectors, which are then used as inputs to a deep

learning networks for classification. This approach shows promising results and has the

potential to improve the accuracy of email phishing detection systems, as well as reduce

false positive and false negative rates.

109

4. DeepEPhishNet: A Deep learning framework for phishing email detection using
Word embedding algorithms

Figure 4.2: Architecture of ”DeepEPhishNet” a Phishing Email Classification Frame-
work

4.2.1 Classification

Out of many classification methods used by different researchers discussed in chapter

2, we have selected two of those methods from deep learning models such as Bi-LSTM

and DNN. Before using classification, the selected datasets vectors are created by using

word embedding techniques such as Word2Vec, FastText, and TF-IDF. These vectors

are inputs to the deep learning classifiers to classify given input as phishing or legiti-

mate email by training and testing the model. The used classifiers are discussed below.

Formal Description of LSTM : A recurrent neural network is a specific type of bio-

inspired neural network that can model and learn a sequential data pattern. It learns

sequential dependencies by learning one sequence at a time and thereby introducing

time to neural network modeling.

The recurrent neural network has been good at the sequential and time-series data

set and has proved very useful (Bahnsen et al. 2017; Smith and Jin 2014). But the

general recurring network suffers from a vanishing gradient problem or an explosive

gradient problem, i.e., they can not retain memory across a larger path that causes long-

110

4.2. DeepEPhishNet Framework

Figure 4.3: Architecture of LSTM

term dependencies (Jozefowicz et al. 2015; Mikolov et al. 2014). And as a result,

a long correlation between sequences is not maintained and the network fails in such

circumstances. So LSTM takes care of the long correlation between sequences.

LSTM (Figure 4.3) removes the vanishing gradient problem or exploding gradi-

ent problem to avoid long term dependencies. In LSTM, a neuron is replaced by cell

memory which performs the task using activation function to input by forming a linear

combination of the dot product of input and weights with bias. LSTM also, uses update

gate, forget gate, and output gate to avoid long term dependencies.

Ĉ<t> = tanh(Wc[a
<t−1>, x<t>] + bc) (4.1)

Γu = σ(Wu[a<t−1>, x<t>] + bu) (4.2)

Γf = σ(Wf [a<t−1>, x<t>] + bf) (4.3)

Γo = σ(Wo[a
<t−1>, x<t>] + bo) (4.4)

C<t> = Γu ∗ Ĉ<t> + Γf ∗ C<t−1> (4.5)

a<t> = Γo ∗ C<t> (4.6)

Weight matrices Wc,Wu,Wf ,Wo and bias vector bc, bu, bf , bo, and temporary cell state

(Ĉ<t>), update gate (Γu), forget gate (Γf), output gate (Γo), cell state (C<t>) and ac-

tivation (a<t>) respectively (Hochreiter and Schmidhuber 1997) remain same for all

time steps in single unit of LSTM network and updated after each epoch during back

propagation method. The long memory is usually called cell state (Eq. 4.1). This

allows the network to store the information coming from previous cell. It is updated

111

4. DeepEPhishNet: A Deep learning framework for phishing email detection using
Word embedding algorithms

using the value of both update gate (Eq. 4.2) and forget gate (Eq. 4.3). The forget gates

enable the network to forget the information which is not necessary or not relevant by

multiplying with 0. It also helps to retain information by multiplying by 1. The update

gate determines which information should be entering the cell memory to store. The

output gate (Eq. 4.4) decides which result should be moving forward to the next hidden

layer. For exploring the feasibility of a recurrent neural network on our data set, we

have implemented LSTM.

In this neural network, we have taken four LSTM units performing different mathe-

matical computations as defined earlier. Each unit has 10 timesteps. Each timestep has

one output, which is passed as input to the next timestep. The last timestep of the first

unit is also passed to the second unit, and so on, and finally, we get output from the last

timestep of the fourth unit of LSTM. The obtained output is further densed to a single

output and passed it to the sigmoid function. The loss function is calculated and error is

optimized using Adam Optimizer. During backpropagation, each parameter of all four

units of LSTM is updated. And again, the Loss function is calculated in each epoch; the

network learns when variables are updated. We modified the dataset dimensionality to

implement LSTM. We have converted 10 features to 10 timesteps, each timestep con-

sists of one feature. Through LSTM, we attempted to find out the possible relationship

between different features. Initially, at the first gate, zero vector and first timestep were

passed to the first gate. The output from the first LSTM gate passed as input to second,

and so on till the tenth gate. The obtained single output from the tenth gate forms a

single LSTM unit output, which is again passed as input to the first gate of the second

unit. Hence, the output of the previous gate along with the current timestep fed to the

next gate and the output of the previous LSTM unit fed to the next unit until the fourth

LSTM unit. In the fourth unit, its output was densed to 1, which is passed on to the

sigmoid activation function (4.12), and then the loss function (4.13) is calculated and

optimized using Adam Optimizer.

Formal Description of Bi-LSTM : Bidirectional LSTMs (Bi-LSTM) are inspired

by bidirectional RNNs (Schuster and Paliwal 1997), which use two separate hidden

layers to process sequence data in both forward and backward directions. The two

112

4.2. DeepEPhishNet Framework

hidden layers are connected to the same output layer by bidirectional LSTMs. It has

been demonstrated that bidirectional networks outperform unidirectional networks in

many classification applications.

Figure 4.4: Bi-LSTM Architecture

The algorithmic structure of Bi-LSTM has layered structure which contains forward

and backward LSTM layers as shown in Figure 4.4. The output of the forward layer h

is calculated by using positive sequence inputs iteratively from time t− n to t− 1 and

backward layer sequence of outputs are calculated using the reverse inputs of time t−n

to t − 1. The forward layer and backward layer outputs are calculated using the basic

LSTM equations Eq. 4.3 to Eq. 4.6. The output of the Bi-LSTM layer is generated as

output vector Yt, and an element of every layer is calculated using the below equation

Eq. 4.7:

yt = σ(ht, ht) (4.7)

where the sigmoid function (σ) is used to join the two output sequences together. The

output of the Bi-LSTM layer will be represented by a vector Yt = (yt−n,...yt,...yt−1),

where the last element yt−1 is predicted speed for next iteration.

The word embedding model takes four selected features from the datasets and func-

tional parameters from Table 4.1 as inputs to generate word vectors. These word vectors

are then used as inputs for the Bi-LSTM model. The Bi-LSTM model is designed to

classify emails as legitimate or phishing, utilizing specific hyperparameters listed in Ta-

ble 4.2. The proposed Bi-LSTM model consists of a 300-dimensional output space and

113

4. DeepEPhishNet: A Deep learning framework for phishing email detection using
Word embedding algorithms

includes three LSTM layers (two Bidirectional LSTM layers and one regular LSTM

layer), four dropout layers, and four dense layers. The ReLU activation function is

applied to the three intermediate layers, while the sigmoid activation function is used

at the output layer. The model utilizes the Adam optimizer. The model classification

output is ’0’ for legitimate and ’1’ for phishing. The network structure of Bi-LSTM

model with its layers, shape of the network and selected trainable, non-trainable and

total parameters are shown in tabular structure of Figure 4.5.

Table 4.1: Common parameters used in Word2Vec and FastText models

Hyper parameter
Values for
Word2Vec

Values for
FastText

Test-Train split 30-70 30-70
Vector size 300 300
Window size 10 10
Workers 10 10
Iterations 50 -

Formal Description of DNN : The Deep Neural Network is a type of machine

learning technology. It consists of many common neural network layers. It has one

input layer, one output layer, and at least one hidden layer as shown in Figure 4.6.

Each layer is composed of the basic computing unit i.e., the neuron. The neuron is

inspired by the biological neuron that performs mathematical functions for the storage

of information. And this information is transmitted to another neuron and therefore

Table 4.2: Hyper parameters used in Bi-LSTM

Hyper parameter
Values
for LSTM

Output dimentionality space 300
Embedding dimension 128
Vocabulary length 100
Output size 256
No. of Epochs 300
No. of LSTM Layers 3 (2-Bi-LSTM, 1-LSTM)
Drop out layers 4
Dense layers 4
Activation functions ReLU, Sigmoid
Optimizer Adam

114

4.2. DeepEPhishNet Framework

Figure 4.5: Bi-LSTM Experimental Parameters

information propagates in the neural network. A Neuron’s general mathematical repre-

sentation is:

Y k = Φ(
i=n∑
i=0

Wixi + b) (4.8)

Where Φ is activation function, Wi ∈ RL∗B is weight of ith neuron and Y k is the output

of ith neuron. The number of neurons in the input layer depends upon the dimension

of datasets or equivalent to the number of features of the dataset, i.e., X ∈ RL∗K

where L is the total number of the dataset, K is a total number of features in datasets

and R represents a real number. The number of neurons in the output layer depends

on the number of outputs we want. The number of neurons in the hidden layer is a

hyperparameter that needs to be tuned to obtain an optimum result. Since each neuron

performs computation, the number of neurons defines the network complexity. Each

deep neural network is a complex mathematical function that adapts itself according

to the nature of data. So making the network more complex may end up with data

115

4. DeepEPhishNet: A Deep learning framework for phishing email detection using
Word embedding algorithms

Y
k

Figure 4.6: Architecture of simple neuron

overfitting, i.e., it performs pretty good with training data but fails to achieve good

accuracy with unknown data.

Let l = {0,1,2,3,4,5} be the layers in my deep learning model. Y(l−1) be the input to

layers {1,2,3,4,5}, Y(l) be output value of layer, where W(l) be weight of layer i that is

used for linear transformation of inputs from n layer to output of m layers. B(l) be bias

of layer i, F(l) be the associated activation function to each layers. Y(0) is nothing but

input layer and Y(l) is output layer.

Z(l) = Y (l−1) ∗W (l) +B(l) (4.9)

Y (l) = F (Z(l)) (4.10)

where * is for matrix multiplication. W values were initialized with Xavier Initialization

(the initializer used to initialize random values) and B initialized with zero. W and B

are updated after each iteration in the backpropagation method. Layer 0 is the input

layer and output layer 6, layers 1 - 5 are hidden layers activated with the ReLU function

provided by:

Y l
i =

 0 if Z l
i ≤ 0

Z l
i Otherwise

(4.11)

where i represent ith iteration and l represent lth layer. The intermediate output of our

116

4.3. Experimental Evaluation

model Y ∗ is obtained from below given sigmoid activation function :

Y ∗ =
1

1 + exp−Z l
(4.12)

where l=6 in case of output layer. The loss function (L(Y ∗, Ŷ)) over entire dataset is

defined as sum of cross entropy between model output and actual output, that is shown

as below.

L(Y ∗, Ŷ) =
n∑

j=1

[ŷj log y∗j + (1− ŷj) log(1− y∗j)] (4.13)

where Y∗ is intermediate output of entire dataset obtained after processing it through

deep learning model and y∗j ∈ (0, 1) is jth row of Y∗ while Ŷ is actual label of our dataset

and ŷj ∈ {0, 1} is jth row of Ŷ , where 0 represent legitimate site and 1 indicate phishing

site. And above given loss function is optimized using Adam Optimizer at every epoch

to update parameters and train deep neural model using the backpropagation algorithm.

The functional formations represent these features without overfitting, because of DNN

has 5 hidden layers along with one input and one output layer.

The proposed DNN model comprises six layers with one input and one output layer

as shown in Figure 4.7. In this work, the DNN model takes an output vectors from the

word embedding model as input. Along with the vectors, the model requires various

hyperparameters, including the number of nodes, batch size, epochs, number of hid-

den layers, dropout layer, output layer, activation functions, and optimizer. The model

utilizes 264 nodes, a batch size of 64, ReLU activation for all layers except the output

layer, and sigmoid activation for the output layer. The ReLU and sigmoid activation

functions are used to standardize hidden and output layers. The output of the model Y k

is ’0’ for legitimate and ’1’ for phishing. The rational for dropout is to speed up the

training by decreasing the internal covariate shift and overfitting. The specific hyper-

parameters used are presented in Table 4.3, and the layered structure, output shape and

parameters used in each layer of DNN network is illustrated in tabular format Figure

4.8.

4.3 EXPERIMENTAL EVALUATION

This section discusses the basic experimental setup, resources used, and evaluation met-

rics used to evaluate the DeepEPhishNet model. In this work, we have used email as

117

4. DeepEPhishNet: A Deep learning framework for phishing email detection using
Word embedding algorithms

Figure 4.7: DNN Architecture

Table 4.3: Hyper parameters used in DNN

Hyper parameters
Values

for DNN
Layer size 264
Batch size 64
No. of Epochs 300
Dense layers 6
Drop out layers 6
Output layer 1
Activation layers 6-ReLU, 1-Sigmoid
Optimizer Adam(lr=3e-4)

the basic resource. The required emails are gathered from two different resources, one

from a predefined open source corpus and another from an in-house generated corpus as

discussed in Chapter 2. The dataset preparation procedure is also discussed in Chapter

2, section 2.3.1,and the prepared datasets with corpus size are tabulated in Table 2.8.

The evaluation metrics used are also discussed in chapter 2 section 2.2.

4.4 RESULTS AND DISCUSSION

Various experiments were conducted to assess the effectiveness of the proposed model

on three datasets, namely Dataset-1, Dataset-2, and Dataset-3. The experiments were

carried out in five stages.

In the first experiment, we evaluated the performance of the Word2Vec-SkipGram

118

4.4. Results and discussion

Figure 4.8: DNN Experimental Parameters

model using Bi-LSTM and DNN over the three datasets. The second experiment fo-

cused on evaluating the performance of the Word2Vec-CBOW model using Bi-LSTM

and DNN over the same datasets. For the third and fourth experiments, we evaluated

the performance of the FastText-Skipgram and FastText-CBOW models, respectively.

Finally, in the fifth experiment, we evaluated the performance of the TF-IDF model

using Bi-LSTM and DNN. The basic experimental setup is provided below.

4.4.1 Basic experimental setup

Python was the programming language used for the proposed work, along with common

libraries such as gensim, pandas, nltk, sklearn, numpy, TensorF low, and Keras.

The neural network framework was developed using Google Colaboratory1.

1https://colab.research.google.com/

119

4. DeepEPhishNet: A Deep learning framework for phishing email detection using
Word embedding algorithms

The work employed three word embedding algorithms, namely Word2Vec, Fast-

Text, and TF-IDF. Table 4.1 lists the common parameters used for experiments 1 to 4

for all three word embeddings. The deep learning classifiers utilized in the proposed

work were Bi-LSTM and DNN. Tables 4.2 and 4.3 present the basic functional param-

eters and their corresponding values for these deep learning classifiers.

4.4.2 Experiment-1: Evaluation of Word2Vec-SkipGram model

For this experiment, we have tabulated the functional parameters used to obtain the vec-

tors in Table 4.1. We have used the gensim library, applied cosine similarity, and set

the parameter word2vec − skipgram to 1. These parameters have been selected after

conducting several experiments by varying the values of all parameters. This model has

generated a comprehensive set of vectors for the selected parameters, which are then

used as inputs to the deep learning models such as Bi-LSTM and DNN to check the

legitimacy of the emails.

To accomplish this, the Bi-LSTM model has been initialized with its functional pa-

rameters, as mentioned in Table 4.2, and the neural network layers illustrated in Figure

4.5. In the current architecture, we have used three LSTM layers, out of which two are

Bi-LSTM layers and one is an LSTM layer. Additionally, we have used four dropout,

four dense, and one activation layer. The activation functions used are ReLU at three

intermediate layers and sigmoid(σ) at the output layer. Finally, we have used the Adam

optimizer.

The parameters utilized for constructing the DNN ensemble network with the em-

bedding model are presented in Table 4.3 and Figure 4.8. The ReLU activation function

is used with all dense layers, except for the output layer where the Sigmoiod (σ) ac-

tivation function is used. Each dense layer has a size of 264, except for the last dense

layer which only has one layer. Using these network setup properties, the model’s per-

formance is evaluated and presented in Table 4.4 for all three datasets. Based on the

data presented in Table 4.4, it can be seen that the model ensemble including a DNN

achieves the highest accuracy levels. Specifically, for Dataset-1, the accuracy rate is

99.14%, while for Dataset-2, the accuracy rate using the Bi-LSTM model is 98.74%,

and for Dataset-3, the DNN model achieves an accuracy rate of 99.43%. Notably, the

120

4.4. Results and discussion

Table 4.4: Performance of Word2Vec-SkipGram model

Dataset Classifiers TPR TNR F-score Precision MCC Validation Loss
Validation
Accuracy

Dataset-1
Bi-LSTM 99.37 98.93 98.93 98.49 98.18 0.0088 99.11
DNN 99.45 98.93 98.91 98.37 98.28 0.0083 99.14

Dataset-2
Bi-LSTM 99.59 97.10 99.04 98.50 97.20 0.0125 98.74
DNN 99.32 97.39 99.00 98.37 98.69 0.0123 98.67

Dataset-3
Bi-LSTM 99.16 99.77 99.54 99.92 98.17 0.0068 99.31
DNN 99.29 99.89 99.62 99.96 98.49 0.0057 99.43

DNN model is particularly effective for Dataset-3, which is an in-house dataset. Addi-

tionally, it is worth mentioning that DNN models tend to perform better than Bi-LSTM

models when using the Word2Vec-SkipGram model. Table 4.4 also includes other eval-

uation parameters such as TPR, TNR, F-score, Precision, MCC, and Validation loss.

4.4.3 Experiment-2: Evaluation of Word2Vec-CBOW model

In this experiment, we utilized the Word2Vec-CBOW model for vectorization after se-

lecting functional parameters, similar to experiment 1, with the exception thatword2vec−

skipgram was set to 0 (while word2vec − cbow was set to 1). The output of this

model was then used as input to both the DNN and Bi-LSTM models, using the same

models and functional parameters outlined in experiment 1. The results of this exper-

iment are shown in Table 4.5, where the DNN model achieved the highest accuracy

rates of 99.18% for Dataset-1, 98.74% for Dataset-2, and 99.31% for Dataset-3. It is

worth noting that the DNN model was particularly well-suited for classification using

the Word2Vec-CBOW model, and achieved the highest accuracy rate of 99.31% for the

in-house dataset (Dataset-3). Additional evaluation parameters are also presented in

Table 4.5.

Table 4.5: Performance of Word2Vec-CBOW model
Dataset Classifiers TPR TNR F-score Precision MCC Validation Loss

Validation
Accuracy

Dataset-1
Bi-LSTM 99.94 98.49 98.78 97.65 98.02 0.0095 99.05
DNN 99.67 98.86 98.96 98.26 98.29 0.0082 99.18

Dataset-2
Bi-LSTM 99.55 96.18 98.77 98.00 96.43 0.0153 98.38
DNN 99.38 97.47 99.05 98.73 97.16 0.0112 98.74

Dataset-3
Bi-LSTM 99.10 99.77 99.51 99.92 98.04 0.0073 99.27
DNN 99.28 99.40 99.54 99.80 98.16 0.0068 99.31

121

4. DeepEPhishNet: A Deep learning framework for phishing email detection using
Word embedding algorithms

4.4.4 Experiment-3: Evaluation of FastText-SkipGram model

The functional parameters used to obtain the vectors in this experiment are presented in

Table 4.1, and an additional parameter, fasttext − skipgram, was set to 1, following

the same approach as experiment 1. These parameters and their associated values were

selected after conducting several experiments, and the FastText-SkipGram embedding

model was utilized to generate efficient vectors. The output vector of the model is

the input to deep learning classifiers as described in experiment 1. The results of the

ensemble model are presented in Table 4.6, where the DNN model achieved the highest

accuracy rates of 98.90% for Dataset-1, 98.74% for Dataset-2 with the Bi-LSTM model,

and 99.52% for Dataset-3 with the DNN model. It is worth noting that the DNN model

was particularly effective for the in-house dataset (Dataset-3), achieving the highest

accuracy rate of 99.52%. Additionally, the DNN model outperformed the Bi-LSTM

models when utilizing the FastText-SkipGram model. Table 4.6 also includes the results

of other evaluation parameters.

Table 4.6: Performance of FastText-SkipGram model

Dataset Classifiers TPR TNR F-score Precision MCC Validation Loss
Validation
Accuracy

Dataset-1
Bi-LSTM 99.19 96.87 98.78 98.39 96.43 0.0147 98.39
DNN 99.50 98.52 98.59 97.70 97.70 0.0110 98.90

Dataset-2
Bi-LSTM 99.19 96.87 98.78 98.39 96.43 0.0147 98.39
DNN 99.20 96.15 98.60 98.00 95.90 0.0163 98.15

Dataset-3
Bi-LSTM 99.52 99.14 99.62 99.71 98.46 0.0057 99.42
DNN 99.38 99.92 99.68 99.97 98.71 0.0046 99.52

4.4.5 Experiment-4: Evaluation of FastText-CBOW model

In this particular experiment, we employed the FastText-CBOW model for vectoriza-

tion, utilizing the same functional parameters as in experiment 3, with the only differ-

ence being that fasttext − skipgram was set to 0, and fasttext − cbow was set to

1. The resulting vectors generated from this model were fed as input to Bi-LSTM and

DNN models, using the same LSTM and DNN models utilized in previous experiments.

The outcomes obtained from the deep learning classifiers were collected and tabulated

in Table 4.7, where the DNN model consistently achieved the highest accuracy rates for

all three datasets. From the results, it was evident that the DNN model attained the high-

122

4.4. Results and discussion

est accuracy of 98.81% for Dataset-1, 98.26% for Dataset-2, and 99.48% for Dataset-3.

The DNN model is determined to be the optimal choice for classifying phishing emails

based on the FastText-CBOW model. Furthermore, it is essential to mention that the

DNN model achieved the highest accuracy rate for the in-house dataset (Dataset-3),

which was 99.48%. The other evaluation parameters have also been included in Table

4.7.

Table 4.7: Performance of FastText-CBOW model
Dataset Classifiers TPR TNR F-score Precision MCC Validation Loss

Validation
Accuracy

Dataset-1
Bi-LSTM 97.26 99.11 98.24 97.26 97.02 0.0124 98.57
DNN 99.50 98.38 98.48 97.48 97.52 0.0113 98.81

Dataset-2
Bi-LSTM 99.14 95.85 98.49 97.84 95.58 0.0179 98.01
DNN 99.37 96.17 98.68 98.00 96.15 0.0155 98.26

Dataset-3
Bi-LSTM 97.71 100 98.84 100 95.32 0.0176 98.24
DNN 99.42 99.66 99.65 99.89 98.61 0.0050 99.48

4.4.6 Experiment-5: Evaluation of TF-IDF model

The TF-IDF model is utilized in this study to create word vectors for the email header

data inputs. The functional parameters for generating these vectors include a random

test-train split of 30-70% of the dataset size, a selected random state of 2, and a maxi-

mum feature count of 100. The vectors produced are then fed into deep learning clas-

sifiers, including Bi-LSTM and DNN, as discussed in previous experiments. Table

4.8 presents the results, which show that the DNN model outperformed the Bi-LSTM

model with an accuracy of 98.81% for Dataset-1, 98.65% for Dataset-2 (with the Bi-

LSTM model), and 99.04% for Dataset-3 (with the DNN model). Notably, the DNN

model attained the highest accuracy of all models for the in-house dataset (Dataset-3).

Additionally, the DNN model achieved better accuracy than the Bi-LSTM models for

the TF-IDF model. Table 4.8 also provides details on other evaluation parameters.

4.4.7 Models performance analysis with individual datasets

The present work employed word embedding techniques and deep learning models on

three datasets, and their performance was evaluated using bar charts depicted in Figures

4.9, 4.10, and 4.11. The analysis indicated that the combination of Word2Vec-CBOW

with DNN yielded the best performance on Dataset-1, achieving an impressive accuracy

123

4. DeepEPhishNet: A Deep learning framework for phishing email detection using
Word embedding algorithms

Table 4.8: Performance of TF-IDF model
Dataset Classifiers TPR TNR F-score Precision MCC Validation Loss

Validation
Accuracy

Dataset-1
Bi-LSTM 98.94 98.27 98.12 97.32 96.93 0.0125 98.53
DNN 99.22 98.55 98.48 97.76 97.51 0.0104 98.81

Dataset-2
Bi-LSTM 98.31 99.76 99.11 99.92 96.39 0.0134 98.65
DNN 99.11 96.77 98.70 98.30 96.23 0.0132 98.30

Dataset-3
Bi-LSTM 98.30 99.76 99.11 99.92 96.41 0.0135 98.65
DNN 98.93 99.39 99.36 99.80 97.45 0.0092 99.04

W2V-CBOW W2V-SG FT-CBOW FT-SG TF-IDF

98.4

98.6

98.8

99

99.2

99.05
99.11

98.57

98.39

98.53

99.18
99.14

98.81

98.9

98.81

A
cc

ur
ac

y
(%

)

Bi-LSTM
DNN

Figure 4.9: Performance of the Model with Dataset-1

of 99.18%. On Dataset-2, both Word2Vec-CBOW with DNN and Word2Vec-SkipGram

with Bi-LSTM models exhibited similar and commendable accuracy levels of 98.74%.

Likewise, for Dataset-3, all models utilizing DNN showed strong performance, with

FastText-SkipGram with DNN achieving the highest accuracy of 99.52%. The findings

of the analysis suggested that most word embedding techniques demonstrated enhanced

performance when used in conjunction with the DNN algorithm. The validation accu-

racy and validation loss charts for the best performing model with individual datasets

were shown in Figure 4.12, 4.13, & 4.14. Furthermore, the confusion matrix for the

best overall results from individual datasets was tabulated in Table 4.9.

4.4.8 Discussion of Bi-LSTM and DNN results

Table 4.10 provides a summary of the results obtained from using different word em-

bedding techniques to detect phishing emails with Bi-LSTM and DNN. As shown in

124

4.4. Results and discussion

W2V-CBOW W2V-SG FT-CBOW FT-SG TF-IDF

98

98.2

98.4

98.6

98.8

98.38

98.74

98.01

98.39

98.65

98.74
98.67

98.26

98.15

98.3

A
cc

ur
ac

y
(%

)
Bi-LSTM

DNN

Figure 4.10: Performance of the Model with Dataset-2

Table 4.9: Confusion Matrix (a). Dataset-1, (b). Dataset-2, (c). Dataset-3
True
Positive

True
Negative TP TN TP TN

False
Positive 2741 1 FP 2701 22 FP 2652 54

False
Negative 22 1865 FN 28 5471 FN 13 5458

(a) (b) (c)

the table, DNN demonstrates better performance than Bi-LSTM in the classification of

phishing emails. Specifically, using FastTextSkipGram on Dataset-3, the DNN model

achieves the highest accuracy of 99.52%, compared to 99.42% for the Bi-LSTM model.

The lowest accuracy achieved by the DNN model is 98.15% with FastText-SkipGram

on Dataset-2, whereas the Bi-LSTM model’s lowest accuracy is 98.01% with FastText-

CBOW on Dataset-2. Therefore, it can be concluded that DNN models with word

embedding techniques are more suitable for phishing email classification.

4.4.9 Result Analysis

The analysis of the performance of various word embedding and deep learning models

reveals that the DNN classifier consistently outperforms the Bi-LSTM classifier across

all three datasets. It is observed from the achieved results tabulated in Tables 4.4, 4.5,

4.6, 4.7, & 4.8, and shown in Figures 4.9, 4.10, 4.11, 4.12, 4.13, and 4.14 that DNN

125

4. DeepEPhishNet: A Deep learning framework for phishing email detection using
Word embedding algorithms

W2V-CBOW W2V-SG FT-CBOW FT-SG TF-IDF

98.2

98.4

98.6

98.8

99

99.2

99.4

99.6

99.27 99.31

98.24

99.42

98.65

99.31
99.43 99.48 99.52

99.04

A
cc

ur
ac

y
(%

)

Bi-LSTM
DNN

Figure 4.11: Performance of the Model with Dataset-3

(a) Model accuracy (b) Model loss

Figure 4.12: Validation Accuracy & Loss graphs - Word2Vec-CBOW cum DNN model
with Dataset-1

(a) Model accuracy (b) Model loss

Figure 4.13: Validation Accuracy & Loss graphs - Word2Vec-CBOW cum DNN model
With Dataset-2

126

4.4. Results and discussion

(a) Model accuracy (b) Model loss

Figure 4.14: Validation Accuracy & Loss graphs - FastText-SkipGram cum DNN model
With Dataset-3

consistently exhibiting good results than Bi-LSTM.

Table 4.10: Summary of Bi-LSTM and DNN results with word embeddings

Dataset Word Embedding Bi-LSTM
Accuracy

DNN
Accuracy

1

Word2Vec - CBOW 99.05 99.18
Word2Vec-Skipgram 99.11 99.14
FastText - CBOW 98.57 98.81
FastText-Skipgram 98.39 98.90
TF-IDF 98.53 98.81

2

Word2Vec - CBOW 98.38 98.74
Word2Vec-Skipgram 98.74 98.67
FastText - CBOW 98.01 98.26
FastText-Skipgram 98.39 98.15
TF-IDF 98.65 98.30

3

Word2Vec - CBOW 99.27 99.31
Word2Vec-Skipgram 99.31 99.43
FastText - CBOW 98.24 99.48
FastText-Skipgram 99.42 99.52
TF-IDF 98.65 99.04

4.4.10 Comparison with existing works

Table 4.11 presents a summary of prior studies that have utilized word embedding in

conjunction with deep learning techniques for phishing email classification. None of

the studies considered using header features alone for classification; rather, they relied

on body features or a combination of header and body features. The best accuracy

achieved among these studies was 99.1%, which was obtained using email body features

127

4. DeepEPhishNet: A Deep learning framework for phishing email detection using
Word embedding algorithms

as reported by Ra et al. (2018). In contrast, our model achieved a higher accuracy of

99.52% for our in-house dataset (Dataset-3) using only four email header features. This

surpasses the performance of previous models, demonstrating the effectiveness of our

approach.

Table 4.11: Existing works comparison

Author Features Dataset (s) Dataset
size

Accuracy
(%)

Precision
(%)

F-score
(%)

Li et al.
(2020)

Hybrid Private
Large
Dataset 95 ~94 ~94

Nguyen
et al. (2018)

Hybrid
IWSPA-AP
2018

Legit:4082
Phish:503 – 99.0 99.1

Bagui et al.
(2019)

Hybrid Private
Legit:14950
Phish:3416 98.89 – –

Castillo et al.
(2020)

Body
Enron, APWG,
and Non-public

Legit:84111
Phish:30776 95.68 – –

Ra et al.
(2018)

Body
IWSPA-AP
2018

Legit:5088
Phish:612 99.1 90.59 93.07

Hiransha
et al. (2018)

Body
IWSPA-AP
2018

Legit:5088
Phish:612 96.8 – –

Proposed
Model

Header

Dataset - 1
Legit:6295
Phish:9135 99.18 98.26 98.96

Dataset - 2
Legit:18270
Phish:9135 98.74 99.05 98.73

Dataset - 3
Legit:18270
Phish:8986 99.52 99.68 99.97

4.5 SUMMARY

This study introduces a new model named DeepEPhishNet, which combines deep learn-

ing and word embedding techniques to classify phishing emails. To evaluate the ef-

fectiveness of the proposed model, an in-house email dataset was created. The results

demonstrated that word embedding, when used with DNN models, achieved the highest

accuracy of 99.52% for the in-house dataset, indicating the robustness of our approach.

Additionally, the study found that DNN models outperformed Bi-LSTM models for

the classification of phishing emails. The ability of our models to achieve high accu-

racy using only four email header features for classification underscores their simplicity

and effectiveness in identifying phishing emails. Overall, the proposed DeepEPhishNet

128

4.5. Summary

model provides a promising solution for accurately detecting phishing emails, which

can help protect users from cyber attacks.

129

CHAPTER 5

PHISHING CLASSIFICATION BASED ON TEXT
CONTENT OF AN EMAIL BODY USING

TRANSFORMERS

Phishing email classification using email header features with word embedding and

machine learning is discussed in chapter 3, and word embedding with deep learning

is discussed in chapter 4. The results obtained in these two chapters are comparative.

Further to re investigate, we used email body text as an input to the deep learning model.

The deep learning model used in the current work is BERT transformer to analyze the

text content of the email body. BERT, or Bidirectional Encoder Representations from

Transformers, is a state-of-the-art natural language processing pre-training technique

that uses deep learning to understand the context of a given sentence. Using BERT,

the text content of the email body can be analyzed to determine whether it is legitimate

or phishing. The BERT transformer will look at the words used in the email body, as

well as the grammar and syntax, and will then classify the email as either legitimate

or phishing. The advantage of using BERT for email classification is that it enables

the system to understand the context of the email body and accurately detect phishing

emails. It is also more accurate and efficient than traditional methods, such as using

keyword searches, which can often result in false positives.

To summarize, using BERT transformers for phishing classification is an effective

and efficient way to detect and classify emails as phishing or legitimate.

131

5. Phishing Classification based on Text Content of an Email Body using Transformers

5.1 INTRODUCTION

Phishing attacks pose a significant threat to individuals and organizations, targeting

sensitive information through deceptive emails. Detecting and preventing such attacks

is of paramount importance in ensuring cybersecurity. In recent years, deep learning

models, particularly Transformers, have emerged as powerful tools in natural language

processing tasks. This chapter focuses on exploring the application of Transformers in

classifying phishing emails based on the textual content of the email body. The text

content of an email body contains valuable information that can help identify phish-

ing attempts. By leveraging the capabilities of Transformers, which excel in capturing

contextual information and long-range dependencies, we aim to build a robust phishing

classification system.

In this chapter, we delve into the theoretical foundations of Transformers and their

effectiveness in understanding and processing textual data. We discuss the specific chal-

lenges posed by phishing emails and how Transformers can address these challenges

by modeling the intricate relationships between words and phrases. The primary objec-

tive of this study is to design and implement a phishing classification framework using

Transformers. We investigate BERT Transformer architectures and explore the perfor-

mance in detecting and differentiating between legitimate emails and phishing emails.

To evaluate the effectiveness of our proposed framework, we utilize a comprehensive

dataset consisting of labeled email bodies, encompassing both legitimate and phishing

instances. We conduct rigorous experiments and assess the performance of the BERT

Transformer model in terms of accuracy, precision, recall, and F1 score. Furthermore,

we discuss the interpretability of the Transformer-based phishing classification system,

providing insights into how the model makes its predictions and identifying important

features for distinguishing between legitimate and phishing emails.

The researchers have proposed email phishing detection algorithms based on su-

pervised learning and unsupervised learning. These algorithms use different machine

learning and deep learning algorithms for the classification. The existing methods make

use of hybrid features (Body and Header) for the classification (A Hamid and Abawajy

2011; Abu-Nimeh et al. 2009; Bagui et al. 2019; Gansterer and Pölz 2009; Harikr-

132

5.2. BERT based phishing detection

ishnan et al. 2018; Islam and Abawajy 2013; Khonji et al. 2012; Ma et al. 2009;

Nguyen et al. 2018; Ra et al. 2018; Smadi et al. 2018; Toolan and Carthy 2009;

Valecha et al. 2021). Some works have used email header features only for the detec-

tion of phishing email (Somesha and Pais 2022). Some researchers (101; Bountakas

et al. 2021; Castillo et al. 2020; Hiransha et al. 2018; Ramanathan and Wechsler

2012) have used only the body part of the email for the phishing email detection. In the

current work, we are presenting a novel technique based on transformers that uses only

the email body text content.

Overall, this chapter aims to contribute to the field of email security by showcasing

the potential of Transformers in phishing classification based on the text content of an

email body. By harnessing the power of deep learning and Transformer models, we

strive to enhance the detection and mitigation of phishing attacks, ultimately bolstering

cybersecurity.

The following are the contributions of this work:

• The presented work describes a novel deep learning technique that uses trans-

formers to identify phishing emails using email body text as input.

• The model performance is evaluated on open source and in-house generated datasets.

• Finally, a comparison study is performed on our proposed model and other exist-

ing works.

5.2 BERT BASED PHISHING DETECTION

The architecture and its functional parameters of the work is discussed in this section.

The architecture is designed to satisfy the objective of the work as shown in Figure

5.1. The objective of the work is to classify the email as phishing or ham using only

the text part of an email body. The proposed architecture uses the following steps such

as email collection, in-house dataset preparation, data pre-processing and training and

classification using transformers.

133

5. Phishing Classification based on Text Content of an Email Body using Transformers

Figure 5.1: Architecture of the model

5.2.1 Emails collection

Email datasets serve as essential inputs for classifying emails as either legitimate or

phishing. Several open-source datasets, such as Nazario, SpamAssassin, Enron, IWSPA,

and CLAIR-ACL, are widely available, and researchers often rely on them to demon-

strate the efficacy of their methodologies. However, some of these open-source datasets

have become outdated and no longer reflect the current landscape of phishing tech-

niques. Intruders have become knowledgeable about these datasets and have devised

new tricks and techniques to evade detection. Phishers constantly develop fresh ap-

proaches to deceive innocent users and gain financial benefits through the acquisition

of account credentials. To combat these fraudulent phishing activities, anti-phishing

techniques have been introduced to address these evolving tactics. Real-time phishing

and legitimate emails are fundamental resources necessary for constructing tools aimed

at effectively combating these new tricks and techniques. In our research, detailed in

Chapter 3, we have created proprietary datasets sourced from personal emails of in-

stitution students, family members, and friends. These emails have been meticulously

collected, analyzed, and curated to establish both phishing and legitimate datasets, en-

suring their relevance and alignment with current phishing practices.

134

5.2. BERT based phishing detection

5.2.2 In-house dataset preparation

In-house datasets are prepared by analyzing the behavior of the recently collected emails,

source code of the original emails, Google warning indicators, and using MxToolbox1

online tool discussed in chapter 2. The prepared in-house dataset-III and its size is

tabulated in Table 5.1.

5.2.3 Open source dataset collection

The phishing data for the open-source dataset was collected from the Nazario2 reposi-

tory. This dataset encompasses emails spanning the years 2004 to 2017. The legitimate

email data, on the other hand, was sourced from the SpamAssassin3 repositories. These

repositories provide ham data collected during the period from 2002 to 2004. It’s worth

noting that the open-source datasets may not align with the timeframe in which they

were collected, potentially rendering them susceptible to being learned by phishers. To

address the issue of period mismatch, we have curated Dataset-II, which combines le-

gitimate emails from our in-house corpus captured between 2004 and 2017, along with

phishing emails sourced from the Nazario phishing corpus. The creation of Dataset-II

aims to mitigate the problem of mismatched timeframes and enhance the relevance and

effectiveness of the dataset for our research purposes.

5.2.4 Data pre-processing

Initially, the input data should be preprocessed using Python scripts. Python scripts

are written to process emails collected from open source and in-house repositories as

input. The developed Python scripts extract the body text of an email from MBOX files

and remove unwanted tags, junk, and special characters. Cleaning the processed data

involves removing inflectional endings and special characters from the email body text.

5.2.5 Training and classification using transformers

A transformer is a deep learning model used majorly in the fields of NLP and computer

vision. The transformer is introduced by Vaswani et al. (2017) and designed to process

1https://mxtoolbox.com/Public/Tools/
2https://monkey.org/˜jose/phishing/
3https://spamassassin.apache.org/old/publiccorpus/

135

5. Phishing Classification based on Text Content of an Email Body using Transformers

Figure 5.2: BERT - Transformer architecture

Figure 5.3: BERT base uncased - Example

sequential data for translation and text summarization by using an attention mechanism.

Among many transformer models, Bidirectional Encoder Representations from Trans-

formers (BERT) is one of the popular and efficient language transformation models

proposed by Google and published by Devlin et al. (2018) and his colleagues4 as a new

language representation model.

In this work, we used BERT model, a popular NLP model to classify emails by train-

ing only body text which is in the form of natural language. BERT uses bi-directional

4https://ai.googleblog.com/2018/11/open-sourcing-bert-state-of-art-pre.html

136

5.3. Experimental resources and datasets

context word learning in left to right and right to left contexts of email content. To do

language processing and classification, we use a bert-base-uncased pre-trained model is

of Huggingface’s library called transformers to train and classify the given email body

text as shown in Figure 5.2. The model includes 12 transformer layers, 768 hidden sizes,

12 self-attention heads, and 110 million parameters in total. BERT has token classifi-

cation by fine-tuning the model. It can be applied to tasks other than natural language

processing. The model has two pre-trained tasks, Masked Language Modeling (MLM)

and Next Sentence Prediction (NSP). MLM model randomly masks a given sentence to

15% of the words in the input. The model predicts the masked words from the entire

input masked sentences. During prediction, the NSP model concatenates two masked

sentences as inputs. The model must then predict whether or not the two sentences fol-

lowed each other. During preprocessing, the texts are lowercase to vocabulary size. A

certain percentage of tokens in each sentence are randomly selected for masking. The

default rate is 15% of the tokens. [MASK] replaces 80% of the masked tokens, ran-

dom token replaces 10% of masked tokens, remaining 10% of masked tokens are left

unchanged. Thus the embedding has special tokens called [CLS] at the beginning of

each sentence, the token [SEP] to separate two sentences in a sequence and at the end

of the sentence, and [MASK] to mask any word in the sentence. An overview of the

BERT model for a classification task is shown in Figure 5.3. In the classification stage,

the model classifies the given email as phishing or ham and also outputs the prediction

accuracy.

5.3 EXPERIMENTAL RESOURCES AND DATASETS

In the proposed work, we used email as a primary resource. The required emails were

obtained from two sources as discussed in chapter 2. Section 5.2 discusses dataset

preparation procedures, and Table 5.1 lists prepared datasets with corpus sizes. Database-

1 contains 3976 legitimate and 4216 phishing emails from the open source corpus,

database-2 contains 12288 legitimate and 9391 phishing emails, and database-3 con-

tains 12288 legitimate and 10639 open source phishing emails.

137

5. Phishing Classification based on Text Content of an Email Body using Transformers

Table 5.1: Used datasets

Dataset Ham
emails

Phish
emails Total

Dataset-I 3976 4216 8192
Dataset-II 12288 9391 21679
Dataset-III 12288 10639 22927

5.4 EXPERIMENTAL RESULTS AND DISCUSSION

To assess the proposed model, we ran three different experiments with three different

datasets, which are listed in Table 5.1. Table 5.2 summarizes the findings of all three

experiments. The basic experimental setup required to carry out these experiments is

provided below.

5.4.1 Basic experimental setup

To begin with basic experimental setup, the programming language used is Python, and

the libraries used are pandas, numpy, seaborn, nltk, and ktrans. The tool used to develop

model is Jupyter Notebook and the operating system used is Ubuntu-18.04.6 LTS. The

hyper parameters used to develop proposed model are, The MODEL NAME used is

bert-base-uncased, MAXLEN size is set to 128, The Batch size used is 32, Learning

rate is set to 5e-5, and Number of epochs used is 10. The data used for training is 75%

of the total dataset size and testing of 25% of the dataset size for all three datasets and

the SEED used is 2020 random state.

5.4.2 Results and discussion

In this section the experimental procedures are discussed. The model uses randomly se-

lected data for training and testing with a ratio of 75:25% of the total dataset size. After

removing unwanted characters and symbols, the data is feed to the BERT transformer

model. The BERT base model has 12 transformer layers, 768 hidden sizes, and 12 self-

attention heads. The transformer learns and selects parameters from the input data. For

Dataset-I and II, the TFBertMainLayer is set to 109482240 parameters associated with

droput 37 and dense classifier. The models total parameters and trainable parameters

for the Dataset-I is set to 109484547. The size and contents of Dataset-III varies, the

model parameters and layers also vary with respect to the complexity of the data.

138

5.4. Experimental results and discussion

Table 5.2: Model performance with all three datasets

Dataset

Learning rate = 5e-5 (0.0337)
Training
accuracy

Training
loss

Validation
accuracy

Validation
loss

Training
time (seconds)

Dataset-I 0.9995 0.0023 0.9951 0.0251 951
Dataset-II 0.9903 0.0253 0.9856 0.0609 2504
Dataset-III 0.9902 0.0260 0.9897 0.0254 2699

The objective of the proposed model is to classify the given input as either positive

or negative (0 or 1) to indicate phishing or legitimate email. The model performance

with dataset-I, dataset-II, and dataset-III are tabulated in Table 5.2. The model perfor-

mance with dataset-I is 99.95% training accuracy, 99.51% validation accuracy, 0.0023

training loss, 0.0251 validation loss, and time taken to build the model is 951 seconds.

The validation accuracy and validation loss graphs are shown in Figure 5.4. The results

of all evaluation metrix for the dataset-I are tabulated in Table 5.3. According to Table

5.3, the precision is 99.20%, recall is 99.80%, and f-score is of 99.50%. The obtained

results with open source datasets are competitive and outperformed all other existing

works.

Using in-house data Dataset-II, the model performance is analyzed with a training

accuracy of 99.03%, validation accuracy is 98.56%, training loss is of 0.0253, validation

loss is of 0.254, and time taken to train and validate the model is 2504 seconds. All

relevant metrics were measured and recorded, with the detailed results presented in

Table 5.3. According to the results, the obtained precision is 99.74%, recall is 97.76%,

and f-score is of 98.74%. The model accuracy charts for the given input is shown in

Figure 5.5. The results of proposed model with Dataset-II proves that the prepared

dataset is appropriate and suites best for the phishing classification.

Dataset-III is a combination of in-house legitimate and Nazario’s phishing emails.

The model performed equally well with the selected data and achieved training accuracy

of 99.02%, validation accuracy of 98.97%, training loss is of 0.0260 and validation loss

is of 0.0254. The accuracy and loss charts are shown in Figure 5.6, performance metrics

are tabulated in Table 5.3.

139

5. Phishing Classification based on Text Content of an Email Body using Transformers

Table 5.3: Obtained results using transformers with all three datasets
Measure Dataset-I Dataset-II Dataset-III
Sensivity/Recall 0.9980 0.9776 0.9813
Specificity 0.9925 0.9965 1.0000
Precision 0.9920 0.9974 1.0000
Negative Prediction Value 0.9981 0.9702 0.9777
False Positive Rate 0.0075 0.0035 0.0000
False Discovery Rate 0.0080 0.0026 0.0000
False Negative Rate 0.0020 0.0224 0.0187
Accuracy 0.9951 0.9856 0.9897
F-score 0.9950 0.9874 0.9905
MCC 0.9902 0.9709 0.9795

(a) Model accuracy (b) Model loss

Figure 5.4: Accuracy and loss charts for Dataset-I

(a) Model accuracy (b) Model loss

Figure 5.5: Accuracy and loss charts for Dataset-II

5.4.3 Result analysis

The primary input for the current study is the email body text content. The proposed

model eliminates all unrelated and garbage content in the email body text and examines

the content. Selected three datasets are processed independently with the proposed

model. BERT base model with suitable parameters produces a competitive performance

140

5.4. Experimental results and discussion

(a) Model accuracy (b) Model loss

Figure 5.6: Accuracy and loss charts for Dataset-III

with all three datasets, and the results are tabulated in Tables 5.2 & 5.3 and shown

in Figures 5.4, 5.5, and 5.6. Due to BERT’s pre-trained nature, the current method

eliminates the most time-consuming feature selection and extraction processes. The

proposed model suites for text processing and classification and achieves the highest

accuracy using individual datasets for phishing classification.

5.4.4 Comparison study

In Table 5.4, we have provided a compilation of recent studies that exclusively uti-

lize the text contents of email bodies as input for their models. The majority of these

studies made use of commonly available open source datasets and achieved satisfac-

tory outcomes. In our proposed work, Dataset-I is used, consisting of the Nazarios

phishing corpus and SpamAssassin ham datasets, which were previously utilized by

Ramanathan and Wechsler (2012). By utilizing Dataset-I, our model surpassed all other

existing works, demonstrating an impressive accuracy of 99.51% during the 1st and 6th

epochs out of a total of 10 epochs. Furthermore, the model achieved the highest pre-

cision, recall, and f-score values, reaching 99.20%, 99.80%, and 99.50% respectively.

The proposed model also exhibited strong performance when applied to Dataset-II and

Dataset-III, achieving accuracies of 98.56% and 98.97% respectively. The experimen-

tal results conclusively demonstrate that the proposed model outperforms other existing

techniques.

141

5. Phishing Classification based on Text Content of an Email Body using Transformers

Table 5.4: Comparison Study
Author(s) Datasets Precision Recall F-score Accuracy
Alhogail and Alsabih (2021) CLAIR-ACL 0.985 0.983 0.985 0.982

Castillo et al. (2020)
Enron, APWG,
and Private - - - 0.9568

Bountakas et al. (2021) Enron & Nazario 0.9863 0.9931 0.9897 0.9895
Bountakas et al. (2021) Enron & Nazario 0.85 0.8409 0.8454 0.8449
Hiransha et al. (2018) IWSPA-AP 2018 - - - 0.942

Ramanathan and Wechsler
(2012)

SpamAssassin,
Nazario’s Phishing
Corpus and Enron

0.997 0.997 0.997 0.977

Proposed work
Dataset-I 0.9920 0.9980 0.9950 0.9951
Dataset-II 0.9974 0.9776 0.9874 0.9856
Dataset-III 1.0 0.9813 0.9905 0.9897

5.5 SUMMARY

This chapter presented a novel phishing email classification model based on BERT

transformers using only email body text. We also built an internal email dataset and

validated it with our proposed model. For the open source data, the proposed model

with dataset-I achieved the highest accuracy of 99.51%. Furthermore, the proposed

work outperformed all other existing works using only the email body text feature for

the identification or detection of phishing emails.

142

CHAPTER 6

EFFICIENT DEEP LEARNING TECHNIQUES FOR
THE DETECTION OF PHISHING WEBSITES

Researchers have explored various methods to detect phishing websites, which are

fraudulent websites designed to trick users into sharing sensitive information. One ap-

proach is heuristic analysis, which involves using a set of predefined rules to identify

malicious websites. This method analyzes patterns and features such as domain names

and URLs to detect suspicious sites. Another method is supervised machine learning,

which uses labeled data to train a model to identify phishing sites with high accuracy.

This approach involves feeding the model examples of both legitimate and phishing

websites so that it can learn to differentiate between them. Unsupervised machine

learning, on the other hand, uses unlabeled data to train a model to detect malicious

websites. This method employs clustering and anomaly detection techniques to iden-

tify suspicious sites without prior knowledge of their classification. Deep learning is a

subset of machine learning that uses neural networks to learn from large datasets. Deep

learning can analyze the content and structure of websites as well as user behavior

to detect phishing websites. The chapter proposes new models for detecting phishing

URLs using deep neural networks, long short-term memory, and convolutional neural

networks, using only 10 features from the work of Rao and Pais (2019). These models

aim to improve the accuracy and efficiency of phishing website detection.

143

6. Efficient deep learning techniques for the detection of phishing websites

6.1 INTRODUCTION

The advent of the internet has brought about significant changes in various areas, in-

cluding social networking, communication, banking, marketing, and service delivery.

The number of users availing themselves of these internet services is increasing rapidly.

However, as communication technology grows to meet human needs, adversaries also

grow to disrupt communication and steal sensitive information by tricking users through

malware or phishing websites. Phishing is a fraudulent technique used in the cyber

world, where a phisher sends bait in the form of a replica of a legitimate website and

waits for users to fall prey. The phisher succeeds when a user becomes a victim by

trusting the fake website. Recent research scientists have been paying more attention to

phishing attacks to prevent damage to innocent internet users. Several consortia, such as

NSFOCUS, Anti-Phishing Working Group (APWG), and others, have conducted sur-

veys of such attacks. These surveys aim to identify the extent of phishing attacks, the

methods used by phishers, and the impact of such attacks on individuals and organi-

zations. By understanding these aspects, countermeasures can be developed to protect

internet users from falling prey to phishing attacks.

The Anti-Phishing Working Group (APWG) is a non-profit international consortium

that analyzes phishing attacks reported by its members, which include security prod-

ucts, service-oriented organizations, law enforcement agencies, government agencies,

trade associations, and regional international treaties and communications organiza-

tions such as BitDefender, Symantec, McAfee, VeriSign, and others. APWG publishes

statistical reports on phishing trends across cyberspace periodically, either quarterly or

half-yearly. According to the latest APWG (2018) report, there were 263,538 reported

phishing attacks, representing a 46% increase compared to the fourth quarter of 2017.

Phishing attacks can take different forms, including email phishing, website phish-

ing, and malware. In email phishing, attackers send spoofed emails pretending to be

from trusted companies or organizations. In website phishing, phishers create websites

that mimic real sites and advertise on other website contents or technology giants such

as Facebook, Twitter, Google, etc. Some phishing sites use security indicators such as

Hypertext Transfer Protocol Secure (HTTPS) and the green padlock, which can make

144

6.1. Introduction

it challenging for users to differentiate between real and fake sites. Various techniques

have been proposed to detect and prevent phishing attacks. These techniques include:

• Listing-based detection: The first technique for detecting and preventing phish-

ing attacks is called listing-based detection. This technique is used by most

web browsers, such as Chrome, Mozilla, and Opera, and involves maintaining

a database of blocked and permitted URLs. The database of blocked URLs is

called a blacklist, while the permitted URLs are stored in a whitelist. The browser

compares the URL of a website the user is trying to access with the entries in the

blacklist and whitelist databases. If the URL matches a blacklist entry, the web-

site is blocked, and the user is alerted. However, if the website is not found in

the whitelist database, even legitimate sites may be blocked. On the other hand,

if the website is not in the blacklist database, it may be a phishing site, and the

user may fall prey to the attack. This technique is not foolproof, as it may fail

when encountering zero-day phishing sites that are newly created and not yet in

the database. Moreover, phishers may slightly change the URL to bypass this

technique. Therefore, it is crucial to update the list regularly to keep up with the

increasing number of phishing attacks.

• Heuristic-based detection:Another technique for detecting and preventing phish-

ing attacks is heuristic-based detection. This technique relies on extracting fea-

tures from phishing sites and using them to identify potential attacks. The fea-

tures may include the domain name, URL structure, content, images, and other

elements of the website. By analyzing these features, the system can determine

if the site is a phishing site or not. However, this technique has its limitations,

as not all phishing sites will have the same heuristic features, which can reduce

detection rates. Furthermore, this technique can be easily bypassed if the attacker

knows which detection features the system is using and designs their phishing

site to avoid those features.

• Visual-similarity based detection: Visual-similarity based detection is a technique

used to detect phishing attacks by comparing the visual elements of a suspicious

145

6. Efficient deep learning techniques for the detection of phishing websites

website with a database of logos, screenshots, favicons, and Document Object

Models (DOM) of legitimate websites (Fu et al. 2006; Hara et al. 2009; Rao

and Ali 2015; Wenyin et al. 2005). If the similarity score is higher than a cer-

tain threshold, it is assumed that the suspicious site has mimicked some legitimate

sites and is declared as phishing. However, this technique has limitations as phish-

ers could easily bypass this security system by making slight changes to visual el-

ements without changing the contents of the website. Therefore, visual-similarity

based detection should be used in conjunction with other detection methods to

improve accuracy and reduce false positives.

• Conventional Machine-learning based detection: Heuristic detection has a limita-

tion that it cannot adjust to changes in phishing sites, even minor ones, resulting

in missed detections. To overcome this problem, machine learning techniques

have been applied to provide flexibility to the heuristic model. This approach

involves training a machine learning model with datasets that contain values of

features extracted using a heuristic approach. Various algorithms such as Support

Vector Machine Decision Tree (SVMDT), Random Forest (RF), Sequential Min-

imum Optimization (SMO), Principal Component Analysis Random Forest, J48

tree, Multilayer Perceptron, among others, are used for this purpose. These al-

gorithms can detect zero-day phishing attacks when trained with heuristic model

features. With a vast training dataset, these algorithms perform better as they can

learn most of the possible variations that phishing sites may have. According

to Rao and Pais (2019), the accuracy achieved using machine learning techniques

for detecting phishing sites is about 99.5%. In a survey conducted by Khonji et al.

(2013), the detection of phishing sites with an accuracy of over 99% was possi-

ble using machine learning techniques. The performance of the machine learning

algorithm depends on the size of the training data, the quality of the extracted

features, and the values of certain hyperparameters used to optimize accuracy.

• Deep learning based detection: Deep learning is a machine learning technique

that learns features directly from data. The data may be images, text, or sound.

Deep learning requires a large amount of labeled data and makes it possible for

146

6.1. Introduction

the Graphical Processing Unit (GPU) to train deep networks in less time. New

trends have been made to exploit Deep Neural Network (DNN) techniques such as

multi-layer feed-forward network (Zhang and Yuan 2012), Convolutional Neu-

ral Networks (CNN) (Le et al. 2018) and Recurrent Neural Network (RNN)

(Bahnsen et al. 2017) to detect and prevent phishing attacks. These networks

are trained through multi-featured data sets obtained using heuristic methods.

Bahnsen et al. (2017) trained the RNN over the URL character sequence. They

argued that each character sequence has correlations, i.e., nearby characters in the

URL are likely to be connected. These sequential patterns are important because

they can be used to improve predictor performance. Le et al. (2018) used CNN

to learn sequential URL behavior. They adopted two techniques that are CNN

character level and CNN word level, which identify unique characters and words.

Each character or word is represented as vector and trains the vectors over CNN

to learn the sequential behavior of the URL to identify the phishing URLs.

The use of machine learning algorithms that are trained on data sets containing

heuristic methods has resulted in the development of numerous approaches to combat

phishing sites. Many studies (Huh and Kim 2011; Jain and Gupta 2018c; Khonji et al.

2013; Whittaker et al. 2010) have utilized external sources such as Google or Bing

search results, Alexa1 ranking, and WHOIS2 to identify phishing sites. However, some

phishing sites hosted on compromised domains can evade such techniques. Accord-

ing to the report by APWG (2014), while most phishing sites do not survive for more

than a day, those hosted on compromised sites can persist for more extended periods,

highlighting the limitations of the existing methods and contributing to the increase in

phishing attacks. Hence, there is a need for a more accurate mechanism that can prevent

phishing attacks while minimizing the use of third-party services with fewer features.

The heuristic method captures potent and specific features that are robust enough to de-

tect even zero-day phishing attacks. These methods were employed to extract the nec-

essary features for training our multi-layer DNN, Long Short-Term Memory (LSTM)

Network, and CNN. We also endeavored to optimize the hyperparameters of these net-
1https://www.alexa.com/topsites
2https://www.whois.com

147

6. Efficient deep learning techniques for the detection of phishing websites

works to achieve the best possible accuracy with minimal features.

In a study conducted by Rao and Pais (2019), they employed Random Forest (RF)

and its variations as classifiers, along with a comprehensive set of features, to classify

phishing sites. In our current study, we have utilized deep learning algorithms such as

Convolutional Neural Network (CNN), Long Short-Term Memory (LSTM), and Deep

Neural Network (DNN) to detect phishing websites. Additionally, we used an infor-

mation gain algorithm to select the top-performing features among our proposed fea-

tures and utilized them for classifying phishing websites. The feature selection process

resulted in a reduction of the number of features from 18 to 10 while achieving the

same accuracy as that of our previous work. Among these ten features, six are features

proposed by other researchers, while four are features proposed in our earlier work.

Furthermore, our approach relies less on third-party services than the previous work.

The related works with deep learning classifiers are summarized in Table 6.1. The

table gives a comparison between the proposed method and all other approaches using

six different metrics. These metrics include the detection of phishing sites that replace

textual content with an image (Image-based phishing), detection of phishing sites that

contains most of the hyperlinks directed towards a common page (Common Page De-

tection), detection of phishing sites that are hosted in any language (language indepen-

dence), detection of phishing sites that consists of maximum number of broken links

(Broken links), detection of phishing sites based on different models, and the number

of features used for classification of phishing sites.

The current chapter makes the following research contributions,

1. An innovative Information Gain (IG) algorithm is introduced to effectively iden-

tify the most effective features for detecting phishing URLs.

2. Novel DNN, LSTM, and CNN models are proposed specifically designed for

phishing URL detection, utilizing a minimal set of 10 features.

3. The performance evaluation of these models reveals promising accuracies of

99.52%, 99.57%, and 99.43% for DNN, LSTM, and CNN respectively.

148

6.2. Deep learning based URL classification model

Table 6.1: Summary of related work in comparison with proposed work

Techniques
Image
based
Phishing

Common
page
based
Phishing

Language
independ-
ence

Broken
Links Models Features.

Rao and Pais
(2019)

Yes Yes Yes Yes Machine Learn-
ing

18

Guarda et al.
(2019)

No No No No SMO 15

Yao et al.
(2018)

No No Yes No Neural networks 17

Parsons et al.
(2019)

Yes Yes Yes No PNN K-Modoids
Clustering

30

Al-Musib
et al. (2021)

No No Yes No Gated Recurrent
Neural Network

Direct URLs

Balim
and Gunal
(2019)

No No Yes No Convolution
Neural Network

Direct URLs

Jia et al.
(2021)

No No Yes No Recurrent Neural
Network

Direct URLs

56 No No Yes No CNN-LSTM Hy-
brid Network

Direct URLs

Mondal et al.
(2022)

Yes Yes Yes No Neural Network 30

Sonowal
(2022a)

Yes No Yes Yes Deep Learning
DBN

8

Proposed
Model-I

Yes Yes Yes Yes Deep Learning
DNN

10

Proposed
Model-II

Yes Yes Yes Yes Deep Learning
LSTM

10

Proposed
Model-III

Yes Yes Yes Yes Deep Learning
CNN

10

6.2 DEEP LEARNING BASED URL CLASSIFICATION MODEL

Figure 6.1: Architecture of Proposed Model

The aim of this research is to identify the legitimacy of a given URL using minimal,

149

6. Efficient deep learning techniques for the detection of phishing websites

distinctive features with the help of deep learning classifiers. The proposed system’s

architecture is presented in Figure 6.1, which comprises feature extraction, feature se-

lection, and classification methods. Initially, a set of webpage URLs is fed as input

to the feature extractor, which extracts necessary features from three sources, includ-

ing URL obfuscation, hyperlink, and third-party based. The extracted features are then

forwarded to the Information Gain (IG) feature ranking algorithm, which helps to se-

lect the most effective features by carefully analyzing their dependencies. The top 10

best-performing features are then trained through various deep learning techniques to

produce the URL’s status as either legitimate or phishing. The individual models’ com-

prehensive explanations are provided below.

6.2.1 Feature Extraction

The features are extracted from three sources such as,

• URL Obfuscation features

• Hyperlink based features

• Third-Party based features

These features are extracted using Selenium with Python language, an HTML parser,

and BeautifulSoup for parsing the websites. The selection of prominent features from

the extracted features is carried out using the information gain mechanism. The infor-

mation gain for the features proposed by Rao and Pais (2019) is given in Table 6.2.

URL Obfuscation Features:

These are the properties that can be obtained from the URL itself, without requir-

ing access to the website’s content or relying on third-party services. To define various

URL-based features, we first need to comprehend the anatomy of a typical URL. A

URL is a unique Uniform Resource Identifier (URI) that is utilized to locate existing

resources on the internet. When a web client requests the server for resources such

as HTML, CSS, images, videos, or other hypermedia, a URL is used. A URL typi-

cally comprises of four or five components. The typical structure of URL is, (http:

150

6.2. Deep learning based URL classification model

//www.reg.signin.nitk.com.pk/secure/login/web/index.php). It

consists of the following parts.

• Scheme: The scheme is used to identify the used protocols, Hypertext Transfer

Protocol (HTTP) or HTTP with Secure Sockets Layer (HTTPS).

• Hostname: The hostname identifies the machine that contains resources. The

hostname includes the Generic top-level domain (gTLD) and Country-code top-

level domain (ccTLD). In the given example reg.signin indicates subdomain, nitk

is primary domain, com is gTLD and pk is ccTLD.

• Path: The path identifies the basic or required information in the host that the

web client wants to access. From the given URL example, the pathname is se-

cure/login/web/index.php.

• A query String: When a query string is used, the path component follows and

provides a string of information that the resource can use for some purpose. The

query string is usually the name and value pair string. Name and value pairs

are separated by an ampersand (&). For example: In the URL http://www.

google.co.uk/search?q=url&ie=utf-8, ?q = url&ie = utf − 8 is

the query string with name and value pairs as q = url and ie = utf − 8.

In Rao and Pais (2019), the authors proposed five URL obfuscation features (UF1,

UF2, UF3, UF4, UF5). Out of those, two features are poorly performing when applied

to the IG algorithm shown in Table 6.2. The best performing three features have been

selected, those are,

1. UF1: Dots in Hostname

2. UF3: Length of URL

3. UF5: Presence of HTTPS

Hyperlink based features:

These features are extracted from the hyperlinks in the source code of a website. The

151

6. Efficient deep learning techniques for the detection of phishing websites

Table 6.2: Information gain of individual features
Features from Rao and Pais (2019) Information gain
UF1 - Dots in Hostname 0.0874
UF2 - URL with @ symbol 0.00797
UF3 - Length of URL 0.28293
UF4 - Presence of IP 0.00523
UF5 - Presence of HTTPS 0.07321
TF1 - Age of Domain 0.29139
TF2 - Page Rank 0.88344
TF31 - Website in search engine Results-title 0.15664
TF32 - Website in search engine Results-copyright 0.16603
TF33 - Website in search engine Results-description 0.27909
HF1 - Frequency of domain in anchor links 0.21588
HF2 - Frequency of domain in CSS links,image links and script links. 0.04654
HF3 - Common page detection ratio in website 0.40058
HF4 - Common page detection ratio in footer 0.29128
HF5 - Null links ratio in website 0.25015
HF6 - Null links ration in footer 0.08162
HF7 - Presence of anchor links in Website 0.14237
HF8 - Broken links ratio 0.20216

hyperlink is an electronic document element that connects from one source to another.

The web source may be an image, program, HTML document or HTML document

element. Rao and Pais (2019) technique consists of 8 hyper link based features that are

used for phishing detection. We have selected six best performing features among eight

features based on the results of information gain analysis shown in Table 6.2, and the

selected features are given below:

1. HF1: Presence of domain in anchor links

2. HF2: Frequency of css links, image links and script links

3. HF3: Common page detection ratio in website

4. HF4: Common page detection ratio in footer

5. HF7: Presence of anchor links in website

6. HF8: Broken links ratio

It may be observed that HF5 and HF6 have performed better in information gain but

152

6.2. Deep learning based URL classification model

they have been eliminated since these features characteristic are captured by HF3 and

HF4 (Srinivasa Rao and Pais 2017).

Third-Party based feature:

In this section, we use third-party services such as WHOIS, Alexa and Search en-

gine for the extraction of third-party based features. Surprisingly, out of these three

features, the Alexa rank based feature performed significantly better in the informa-

tion gain. Even though other third-party features performed better than the other (URL

obfuscation, Hyperlink based) features, we have not considered them in our feature

selection to reduce the dependency on third-party services.

TF2: Alexa Ranking is a third-party based service used to classify the phishing

sites. The rationale behind this feature is that phishing sites are low ranked and target

websites are highly ranked. This feature checks the rank of a suspicious website in the

Alexa database. To calculate the rank, an HTTP request is sent to (http://data.

alexa.com/data?cli=10&url="+domain) and use an XML parser to get the

Alexa ranking.

Pagerank =

 0 if rank is not found

rank Otherwise

The selected features from the above three sources are highlighted and marked as se-

lected features in Table 6.3.

6.2.2 Feature Selection

We have used information gain as a ranking criterion to score the features and by apply-

ing threshold, we have filtered out prominent features. The intuition behind ranking is

to evaluate the relevance of the features for the detection of phishing websites. And the

relevance of feature implies that each feature may be mutually exclusive to each other,

but it must not be completely independent of class labels. There must exist a relation

between feature and class labels. And the features which are irrelevant and have no

relation or abysmal role can be discarded. Hence, our primary aim behind using this

technique is to rank features on the basis of its relevance and influence on the class la-

bels and thus could be used in the feature reduction process. Information gain (Quinlan

153

6. Efficient deep learning techniques for the detection of phishing websites

Table 6.3: Selected Features
Features from Rao and Pais (2019) Selected Features (X)
UF1 X
UF2 -
UF3 X
UF4 -
UF5 X
TF1 -
TF2 X
TF31 -
TF32 -
TF33 -
HF1 X
HF2 X
HF3 X
HF4 X
HF5 -
HF6 -
HF7 X
HF8 X

1986) is measured based on the entropy of a system, which is defined as a degree of dis-

order and impurity in the system. And information gain is defined as a reduction in the

impurity and bringing more certainty in the system. And for feature ranking purposes,

we have calculated information gain on the entire dataset. Summarizing information

gain looks at each feature in isolation and is calculated on each feature independently.

By computing information gain of each feature independently, we get a quantitative

measure of significance and relevance of this feature on class labels. Computation of

information gain for a feature involves two steps:

1. Compute entropy of the class label for the entire dataset. It can be computed by

the formula:

Info(D) =
m∑
i=1

pi ∗ log2pi (6.1)

where m= 2 i.e., the total unique number of class labels (phishing, legitimate)

and in our dataset, it is two. D represents a feature of a dataset. Hence, each

feature has some instances belonging to one class and remaining to another class.

pi represents the probability of instances of D that belongs to ith class. We can

154

6.3. Implementaion

compute probability pi by counting the number of instances of D that belongs to

ith class then we divide by the total number of instances of D. Once we get pi for

all i, we use equation 6.1 to calculate entropy of D.

2. Computation of conditional entropy for each unique value of that feature:

The calculation of conditional entropy requires a frequency count of the class

label by feature value. The feature value can be continuous as well as discrete.

i. For discrete-valued features, it can be calculated by the formula:

InfoA(D) =
v∑

i=1

| Di | / | D | ∗Info(Di) (6.2)

Where v is equal to total unique discrete values present in the feature value, Di

represents a count of ith type of value in feature, and D is the total count of feature

value.

ii. For continuous-valued features, we have sorted feature value and have

divided them in
√
n bins, where n is equal to the total count of feature values.

Now we have n different classes and it can be treated as discrete-valued features,

and the equation 6.2 is used to calculate the conditional entropy of continuous

feature.

Now the information gain is calculated using the equation given below:

InformationGain(A) = Info(D)− InfoA(D) (6.3)

The information gain for the features proposed by Rao and Pais (2019) is given in Table

6.2.

6.3 IMPLEMENTAION

Given a list of website URLs, we have trained and cross validated a proposed deep

learning based model to identify as legitimate URL or phishing URL. We have used the

Selenium library in Python and Firefox web driver to get screenshots of website URLs,

and also to download the source code. We used Beautiful Soup in Python to parse the

source code to extract the required features. Screenshots and status codes are further

used to verify that contents have not changed while extracting features from source

code. Extracted datasets are further examined manually and removed duplicates, legit-

155

6. Efficient deep learning techniques for the detection of phishing websites

imate URLs, and unwanted URLs (neither phishing nor legitimate) from the phishtank

dataset. This process is to avoid legitimate sites that are treated as phishing and reduce

the processing time by avoiding unwanted comparisons.

6.3.1 Tools Used

We have implemented python scripts to extract all features using Python 3.6 from URL

and URL content. We collected phishing URLs from the PhishTank3 website, and legit-

imate sites from the Alexa databases. When these URLs are fed as inputs to the python

script, all the required features are extracted and stored in text files. These extracted

features are transferred to deep learning algorithms to train and cross validate so that it

can start classifying URLs into legitimate and phishing sites. We have implemented a

deep learning algorithm with a TensorFlow package, an opensource machine learning

framework implemented on top of python which supports parallel computing.

6.3.2 Datasets Used

We have used the dataset of Rao and Pais (2019) for all our experiments in this chapter.

The dataset consists of 3526 instances out of which 2119 are phishing sites collected

from PhishTank and 1407 legitimate sites collected from the Alexa database. These

were further divided into categories of training sets and testing sets of 75% and 25%

respectively for model evaluation.

6.3.3 Deep Learning Algorithms

To evaluate the performance of the feature set, the feature set have been trained and

cross-validated against many different parameter combinations. In the multi feed-forward

network, we must gather data based on feature sets and then tune the parameters to

achieve maximum accuracy in phishing site classification. It is an essential process in

which parameters must be set by training networks and validated across appropriate

values. After achieving the right value, phishing sites can easily be classified with the

highest probability. We used Python programming language along with the TensorFlow

library to implement deep learning algorithms. From various combinations of hidden

3http://www.phishtank.com/index.php

156

6.3. Implementaion

layers, we found that the deep neural network with five hidden layers achieved the best

results. And this can be understood that the features we have extracted in the nonlinear,

separable, and complex functions need to be represented most effectively. The proposed

deep feed-forward neural network comprises of 7 layers, where five layers are hidden,

one input layer and one output layer. All layers were followed and standardized by the

Rectified Linear Unit (ReLU) or Sigmoid function. The first four layers were followed

by the ReLU function and the output layer using the sigmoid function. The rationale

behind batch normalization is that it speeds up training by reducing the internal co-

variate shift and reducing overfitting. ReLU activation has replaced Sigmoidal or Tanh

activation functions in hidden layers due to their tendency to learn faster than sigmoidal

or tanh, avoiding significant delays in the rate of gradient descent convergence after an

initial set of iterations. In the current research we have used three deep learning algo-

rithms to classify the websites as phishing or legitimate those are DNN, LSTM, and

CNN. The formal description of DNN and LSTM are discussed in Chapter 4 section

4.2.1, the formal description of CNN is discussed bellow.

Formal Description of CNN : Convolutional Neural network is similar to an ordi-

nary deep neural network. These networks consist of neurons that have weights and

bias, which are updated and made to learn. Each of these neurons receives inputs

that are converted into a linear combination of dot products of weights and input bias.

But instead of fully connected hidden layers, it performs convolution on input layers

x ∈ RL∗B. Convolution is performed using convolution operator ⊗ of length L with

stride s, and consist of convolving filter W ∈ RB∗K .

Generally, convolutional neural networks are used with images due to the high cor-

relation between pixels and networks. CNN’s can figure out relations and different

features using convolutional techniques, which are used in conjunction with the pool-

ing layer, and batch normalization is done before passing it to any activation function

(Krizhevsky et al. 2017; Le et al. 2018). It has also been used in Natural Language

Processing after character encoding due to the correlation between character sequences

(Le et al. 2018; Pham et al. 2016).

In this work, the selected ten features from the Information Gain algorithm are fed to

157

6. Efficient deep learning techniques for the detection of phishing websites

the CNN model to identify the status of the suspicious site. The proposed CNN model

consists of eight layers (six convolution and two dense layers). In the first layer, the

input is passed to the convolution layer, and the output of this layer is activated using

tanh function (Eq. 6.4). Then the activated output is subjected to batch normalization

and pooling. The obtained output is passed to the next convolutional layer. In this way,

we have six convolutional layers connected sequentially in which the output of one layer

is the input of the next. At the seventh layer we densed the output of sixth convolutional

layer to 500, and again activated using tanh function, then at the end densed it to 1. The

output of the tanh function is passed to sigmoid activation function (4.12) for output

in range of (0,1). And then the loss function (4.13) is calculated and being optimized

using Adam Optimizer. Then we have a backpropagation method where variables are

updated, and thus network learns.

tanh = (e2x−1)/(e2x+1) (6.4)

We have used ten features extracted in the feature selection process. The size of our

dataset is 3526. So we converted our dataset into the dimensionality of (3526, 10, 1)

and passed it to our CNN model for phishing detection.

6.4 RESULTS AND DISCUSSIONS

We conducted experiments to evaluate the performance of our DNN, LSTM, and CNN

models with different features and parameters. All experiments were conducted with

the same dataset of 3526 instances. Each experiment has been repeated, and data has

been randomly selected from the dataset. For evaluating our model, we have used

accuracy (Eq. 6.5) and error (Eq. 6.6) rates as the main evaluation metrics. To calculate

the same, we considered the phishing sites as condition positive (P), where P represents

the total number of phishing sites in our dataset. The legitimate sites are termed as

condition negative (N), where N represents the total number of legitimate sites in our

dataset. The correctly classified phishing sites are termed as True Positive (TP), which

is calculated as the ratio of correctly classified phishing sites out of the total number

of phishing sites (P). Correctly classified legitimate sites are termed as True Negative

(TN), which is calculated as the ratio of correctly identified legitimate sites out of the

total number of legitimate sites (N).

158

6.4. Results and Discussions

• Accuracy (ACC) : Measure the legitimacy and phishing rate of the total number

of websites.

ACC =
TP + TN

P +N
(6.5)

• Error Rate (ERR) : Measure the rate of legitimacy or phishing from incorrectly

classified websites.

ERR = 1− TP + TN

P +N
(6.6)

6.4.1 Validation of Selected Features using DNN

Our work of feature retention and rejection based on inferences that we have drawn

from information gain listed in Table 6.2. We have retained those features which have

higher information gain. In this section, we are validating our claim of feature selection

using DNN.

To validate our selection of features, we have conducted three experiments. The

First experiment is conducted by supplying all 18 features of the work Rao and Pais

(2019) to DNN. The overall accuracy obtained using 18 features is 97.95%. The results

of the individual accuracy is tabulated in Table 6.4. The testing accuracy of individ-

ual feature varies from 60.86% (UF2, UF4) to 96.47% (TF2). Based on the accuracy,

we have eliminated two URL based features whose testing accuracy is less than 61%

(UF2, UF4). We have eliminated two hyperlink based features HF5, HF6 since their

functionalities are taken care of by HF3 and HF4, respectively. And also, individual

accuracy of HF5 and HF6 are less than HF3 and HF4. Experiment 2 is conducted after

eliminating four features (UF2, UF4, HF5, HF6) from the total set of 18 features. The

accuracy chart of training and testing using these 14 features is given in Figure 6.3.

The overall accuracy obtained using 14 features is 99.20%. Experiment 3 conducted to

evaluate features by minimizing third-party based features. The overall accuracy after

eliminating four third-party feature is 98.97%.

The 10 features used in experiment 3 are the same which have the highest informa-

tion gain as given in Table 6.2. The experimental results are in line with the information

gain and they validate our selection of features.

159

6. Efficient deep learning techniques for the detection of phishing websites

Experiment 1: Evaluation of individual heuristic features using deep neural

network: In this experiment, the performance of each individual feature has been eval-

uated and is given in Table 6.4. This has been done in order to know the individual

contribution of each feature in determining accuracy. The features, which have higher

accuracy in detecting phishing sites, have more relevance to class labels. And this rel-

evance will be an experimental manifestation of our feature ranking process using IG

algorithm. It will also be an experimental justification of retention and rejection of

features using information gain. The overall accuracy obtained using 18 features is

97.95%. The accuracy chart using 18 features is shown in Figure 6.2. The obtained

accuracy is less than the work proposed by Rao and Pais (2019) with the same set of

features.

Experiment 2: Evaluation of model using 14 features: In this experiment, we

have evaluated our model accuracy using fourteen features. The feature that we left

out are UF2, UF4, HF5, HF6. We have summarized reasons for leaving out above

mentioned features as follows:

• UF2 and UF4: The first two features have individual accuracy of less than 61%,

which is the lowest in Table 6.4. In our information gain Table 6.2, two of the

lowest value are 0.00797 and 0.00523 for UF2 and UF4, respectively. The lowest

accuracy among other features and lowest information gain among other features,

validate our claim of rejection in the feature selection process. These two features

are the least relevance to class labels and their individual contributions are the

lowest. Hence, our experimental analysis upholds the rejection of these features

in order to reduce inhibition offered by the least performing network.

• HF3 vs HF5: HF3 is the ratio of the most common link to the total number of

links in the URL web page, and HF5 is a ratio of null links to the total number of

links in the URL web page. If the null link is the most common link, then both

are equivalent, and if null links are less or absent, then null link ratio features are

of no use. So, HF3 contains HF5 (Srinivasa Rao and Pais 2017). For removing

features, we had considered the information gain of each feature. In Table 6.4,

160

6.4. Results and Discussions

Table 6.4: Accuracy of individual features
Features Training Accuracy Testing Accuracy
UF1 64.94 63.94
UF2 59.90 60.86
UF3 78.03 76.79
UF4 59.90 60.86
UF5 66.94 67.12
TF1 77.34 79.41
TF2 95.83 96.47
TF31 81.96 80.01
TF32 75.57 74.18
TF33 64.78 62.0
HF1 72.04 68.25
HF2 64.48 61.32
HF3 82.37 80.31
HF4 80.33 79.18
HF5 75.04 73.95
HF6 63.39 63.25
HF7 68.75 68.03
HF8 76.96 75.88

HF3 individual accuracy is higher than that of HF5. Hence, our retention of HF3

is experimentally justified.

• HF4 vs HF6: HF4 is the ratio of the most common link to the total number of

links in the footer, and HF6 is the ratio of the null link to the total number of links

in the footer. Both will have the same value if the most common link is a null

link. And if null links are less or absent, it is shallow. HF3, therefore, contains

HF5 (Srinivasa Rao and Pais 2017). In our feature selection process, we have

considered higher information gain of HF4 over HF6. In our experimental anal-

ysis, the individual accuracy of HF4 is higher than that of HF6, which validates

our claim.

After removing these features, accuracy has increased to 99.20%, and the same can be

observed in Figure 6.3.

Experiment 3: Evaluation of features by minimizing third-party based fea-

tures: In this experiment, we began with retaining all third-party features (TF1, TF2,

TF31, TF32, TF33) shown in Table 6.3. The extraction of third-party features from

161

6. Efficient deep learning techniques for the detection of phishing websites

Figure 6.2: Network performance using 18 features

Figure 6.3: Accuracy chart with 14 features

Figure 6.4: Learning rate with α= 0.001 and α= 0.0001

162

6.4. Results and Discussions

URL is a time consuming process. Hence, phishing URL detection can not be done in

a faster time-bound manner. If any of these third-party features are not available, then

we have to deal with missing data, and the accuracy of the model will drop. Hence, we

removed all the third-party features including TF2, which has the highest information

gain to test the robustness of our model. The accuracy of our model dropped to 90%

after removing all the third-party features. Again we experimented with the inclusion

of one third-party feature (TF2) and obtained an accuracy of 98.97% with 5000 epochs.

6.4.2 Results with DNN

In section 6.4.1, we have conducted three experiments using DNN to validate our fea-

tures by comparing results obtained from the IG ranking algorithm. We have selected

ten best performing features from experiment 3. The individual accuracies of the best

ten features are shown in Figure 6.5. Experiment four is conducted using DNN on the

dataset of Rao and Pais (2019) with selected ten features. The hyperparameters tuning

is performed to optimize the model by selecting the learning rate (α), optimizer, number

of hidden layers, number of nodes in layers, and number of epochs.

Experiment 4: Evaluation of model by tuning parameters: In experiment 3, we

have not fine tuned the parameters to optimize our model. In experiment 4, fine tuning

of parameters was performed to optimize our DNN model. The parameter fine tuning

process is as follows:

• Learing rate: We began with α = 0.001, keeping rest of the features as specified

in Table 6.5. At this α value, our model’s loss function converged rapidly, as

indicated in Figure 6.4 with higher losses. In this case, we got 99.69% training

accuracy and 98.97% testing accuracy. Hence, we increased α to 0.0001 and the

loss function of our model began to converge as we can see in Figure 6.4 at about

800 epochs with lowest loss (error) of about 0.012%. We achieved a test accu-

racy of 99.20% and training accuracy of 99.51% with 5000 epochs. We further

increased the number of epochs to 6000 by keeping α to 0.0001 and achieved

consistent training accuracy of 99.55% and testing accuracy of 99.52% as shown

in Figure 6.7 and all experimental results are tabulated in Table 6.6. We also, in-

163

6. Efficient deep learning techniques for the detection of phishing websites

creased the α to 0.00001 and the loss function converged at much higher epochs

with the same accuracy. We, therefore, concluded that further decreasing of alpha

would take more processing time without increasing model accuracy.

Table 6.5: Parameters for DNN

Layers
Number of units
in layers

Learning
rate Optimizer Epochs

Activation
function

6 10, 19, 100, 200, 300, 1 0.0001 Adam Optimizer 6000 ReLU

Table 6.6: DNN Experimental Results

Experiment α value No. of Features Epochs
Training
Accuracy

Testing
Accuracy

1 0.001 18 5000 98.71 97.95
2 0.001 14 5000 99.96 99.20
3 0.001 10 5000 99.69 98.97
4 0.0001 10 5000 99.51 99.20

0.0001 10 6000 99.55 99.52

Figure 6.5: DNN Individual feature accuracy

• Optimizer: We used Adam optimizer to give us training accuracy of around

99.55% and test accuracy of 99.52%. We also tested our model with a Gradient

descent optimizer, which makes our model very slow and less accurate. This can

be clearly seen with the graph shown in Figure 6.6.

164

6.4. Results and Discussions

Figure 6.6: Comparison between Optimizers

Figure 6.7: DNN accuracy with ten features

• Number of epochs: We have used the iterative process to determine the total

number of epochs to be used for the best performance of our model. We started

with 500 epochs and increased by 500 until we got the minimum loss. The min-

imum loss means that if we keep iterating the model, the loss will continue to

decline to some minimum value and then start fluctuating, so we have to stop

at that minimum point. And it varies with different learning rates with different

optimizers.

• Number of hidden layers: The increasing number of hidden layers will result in

increased network complexities because we will fit our data with the number of

hidden layers and the number of hidden units. We have initialized with one hidden

layer and moved progressively to identify the optimal hidden layers. Based on

the empirical analysis, we achieved the model optimal results with four hidden

layers. On further increasing the layers, the model showed non-promising results

165

6. Efficient deep learning techniques for the detection of phishing websites

with additional processing time.

• Number of units in hidden layers: There is no way to determine the number

of hidden units in each layer. So we began with a smaller number of hidden

units in hidden layers, as if they were faster but could not learn properly, and it

resulted in less accuracy. So we increased and tested the accuracy of each of these

configurations. It is observed that having more units slows down and leads to data

over-fitting and therefore obtained lower accuracy.

Therefore, after all these experiments, we found that DNN is consistent by achieving

99.55% training accuracy and 99.52% testing accuracy with finalized 10 features. The

individual features training and testing accuracies of DNN are shown in Figure 6.5. And

the accuracy graph of selected features using DNN is shown in Figure 6.7. Experimental

results are tabulated in Table 6.6. Due to the close difference between training and test

accuracy, overfitting is reduced.

6.4.3 Results with LSTM

To check the effectiveness of our 10 features we conducted an experiment using LSTM.

The parameters used for the experiment are given in Table 6.7. In LSTM, hyperparame-

ters are tuned to achieve better accuracy. Those hyperparameters are used in experiment

five to achieve promising accuracy.

Experiment 5: Evaluation of LSTM model by tuning parameters:

• Number of LSTM Units: We have started with 32 LSTM units. However, more

LSTM units slow the processing of training. The network testing accuracy was

much lower than that of training accuracy, which implies overfitting. After dropouts

were used to reduce overfitting, there was a trade-off between accuracy and over-

fitting, and overfitting was reduced by reducing the precision of training. So we

started decreasing LSTM units. And the above trend was seen until the number

of LSTM units was reduced to four.

• Learning rate (α): This is one of the most important parameters to determine our

model’s convergence. If α kept large (near to one), the minimum convergence

166

6.4. Results and Discussions

point in the model contour can be skipped. If α kept small (near to zero), it will

take a long time to reach the minimum convergence point. We began with α=

0.0001. But due to the lower magnitude of α, the network was slowly converg-

ing even after 5000 epochs and there was no improvement in accuracy with an

increasing number of epochs and it was 98%. So we increased to 0.001. And at

this α, we got our maximum accuracy (99.57%). But we continued till 0.1 (larger

α) and it proved to be pointless as the network started oscillating and accuracy

was decreasing.

• Optimizer: We have experimented with a simple gradient optimizer and applied

an incremental approach by adding epochs. The experiment conducted with a

maximum of 10000 epochs and observed the convergence rate was going slow

with 10000 epochs. In this process, we observed the best possible accuracy with

700 epochs using Adam optimizer.

After tuning above mentioned parameters, we have achieved a training accuracy of

98.86% and testing accuracy of 99.57%. The accuracy graph that we have obtained is

shown in Figure 6.9. The individual features testing and training accuracies are given

in Figure 6.8. This figure shows that the training and testing accuracy of individual

features are very close and prevents overfitting.

Table 6.7: Parameters for LSTM
Number of
LSTM units

Learning
rate Optimizer Epochs

4 0.001 Adam Optimizer 700

6.4.4 Results with CNN

The experiments are carried out using the CNN model to validate the performance of

ten selected features. Table 6.8. lists the parameters used to conduct the experiments.

Experiment 6: Evaluation of CNN model by tuning parameters:

• Window Size: This is the size of a one-dimensional window that must be con-

volved sequentially. Because there are only 10 features in the dataset, the win-

dow size options are limited. So we started with a larger window size (7) and

167

6. Efficient deep learning techniques for the detection of phishing websites

Figure 6.8: LSTM Individual feature accuracy

Figure 6.9: Accuracy graph of LSTM

discovered that it did not learn properly due to a lower number of layers (2) by

evaluating accuracy and loss value trends during training. So we began by reduc-

ing the window size until we reached a window size of 2.

• Stride value: The number of steps skipped after each convolution. Higher strides

will reduce the size of the output. We began with a stride value of 4, which

reduced the number of convolutional layers in the model. However, the lower

convolutional layer performed poorly. As a result, we reduced it to one.

• Number of filters in each layer are tabulated in Table 6.8.

Table 6.8 also includes a list of other hyperparameters. It also performs better with 10

168

6.4. Results and Discussions

Figure 6.10: Accuracy graph of CNN

features, achieving 99.29% training accuracy and 99.43% testing accuracy. Figure 6.10

depicts the accuracy graph that we obtained.

Table 6.8: Parameters for CNN
Layers

Number of filters
in layers

Learning
rate Optimizer Epochs

Window
size

Activation
function Stride

7
32, 64, 64, 128,
128, 264, 512 0.001

Adam
Optimizer 200 2 tanh 1

6.4.5 Result analysis

The current investigation encompasses a series of experiments, from feature selection

to model validation with the selected heuristics. Three deep learning classifiers are em-

ployed to determine the authenticity of websites, distinguishing between phishing and

legitimate ones. In the first experiment, individual features are meticulously evaluated

using deep neural networks. Out of the initial 18 features, 14 are thoughtfully cho-

sen and subjected to testing with the proposed model. The accuracy of the model is

meticulously observed in the second experiment.

The third experiment revolves around streamlining the process by eliminating four

underperforming third-party features that significantly prolonged the feature extraction

process. Consequently, the best-performing ten features are retained to assess the pro-

posed model. This model comprises three deep learning classifiers and is executed

individually, with variations in learning rates, the number of epochs, the architecture of

layers, and the number of units in each layer, among other factors. As a result of finely

169

6. Efficient deep learning techniques for the detection of phishing websites

Table 6.9: Summary of the results of related existing works

Techniques Accuracy (%)

Zhang et al. (2014) 95.83

Mohammad et al. (2014) 92.48

El-Alfy (2017) 96.79

Zhao et al. (2018) 98.5

Le et al. (2018) 99.29

Bahnsen et al. (2017) 98.7

Yang et al. (2019) 98.99

Feng et al. (2018) 97.71

Yi et al. (2018) 90

tuned experimental parameters, the model exhibits outstanding performance, achieving

a remarkable 99.55% training accuracy and 99.52% testing accuracy when employing

the DNN model.

Subsequently, the experiments continue with LSTM, employing meticulously fine-

tuned parameters, ultimately achieving the highest testing accuracy of 99.57%. Sim-

ilarly, the exploration extends to CNN, employing the same set of ten features and

meticulously fine-tuned parameters, resulting in a testing accuracy of 99.43%. These

results conclude that the LSTM model is the most suitable choice for classifying phish-

ing URLs.

6.4.6 Comparison study

In this section, we compare our model with existing works that use deep learning for

the classification of phishing sites. Like other researchers (Gowtham and Krishnamurthi

2014; He et al. 2011; Marchal et al. 2017; Ramesh et al. 2014; Yang et al. 2019),

the results of existing works are collected from the respective papers for the comparison

analysis. The listed results in Table 6.9. are the results obtained by respective authors

with their datasets. These researchers’ datasets could not be used for comparison be-

cause of the limitation of feature extraction. Our technique requires third-party based

feature (TF2) for the classification of phishing URLs. The use of third-party services

170

6.4. Results and Discussions

for feature extraction requires the datasets with live phishing sites. The existing works

(listed in Table 6.9) datasets majorly consists of URLs that have already been taken

down from the Internet. Hence, they cannot be used for comparison with our work. The

comparison study has been conducted with Rao and Pais (2019), CANTINA (Zhang

et al. 2007), and CANTINA+ (Xiang et al. 2011) using the common dataset. The

results are given in Table 6.10. It is observed that our model with DNN, LSTM, and

CNN achieved significant accuracy compared to the existing works. It is also, demon-

strated that the proposed model with LSTM outperformed other proposed models with

an accuracy of 99.57% which is an improvement over our previous work (99.5%) with

minimal features. Note that Le et al. (2018), Bahnsen et al. (2017), and Zhao et al.

(2018) applied various deep learning algorithms on the URLs rather than content for

the classification of phishing URLs. Le et al. (2018) achieved a significant accuracy

compared to other existing works that used features extracted from content (El-Alfy

2017; Feng et al. 2018; Mohammad et al. 2014; Yi et al. 2018; Zhang et al. 2014).

Despite the use of content-based features in training our model, it is observed that our

model outperformed Le et al. (2018) work and other deep learning based methods of

Bahnsen et al. (2017) and Zhao et al. (2018) which use URLs for the classification. This

shows the richness of our feature set in detecting the phishing sites.

Table 6.10: Summary of the works implemented on the same dataset.

Techniques Accuracy (%)

Rao and Pais (2019) 99.5

Zhang et al. (2007) 89.18

Xiang et al. (2011) 99.13

Proposed Model-I [DNN] 99.52

Proposed Model-II [LSTM] 99.57

Proposed Model-III [CNN] 99.43

Deployment of model: The model is deployed as a desktop application that takes URL

as an input and gives the status of the URL as output. The application makes a connec-

tion to REST API which is running at a remote server where the actual execution of

technique takes place. The REST API is hosted on an Intel Xeon 16 core Ubuntu server

171

6. Efficient deep learning techniques for the detection of phishing websites

with 16GB RAM and a 2.67GHz processor. The REST API is implemented using the

Spring framework and the GET method is used to transfer the URL from application to

the program running at the remote server. On receiving the URL, the running program

at the remote server proceeds with the extraction of features. These features are com-

bined to form a feature vector that is further sent to a trained deep learning model for

identifying the legitimacy of the given URL. The REST API sends back the status of

the URL (legitimate or phishing) to the application to display the message.

6.5 LIMITATIONS

In this section, we discuss the limitations of our proposed work. Since the proposed

model is dependent on third-party services, non availability of these services will limit

the performance of our work.

Also, our proposed model might fail to detect phishing sites that use embedded

objects such as flash, java scripts and HTML files to replace textual content. In the

future, we intend to include the features for the detection of these embedded objects in

the phishing sites.

6.6 SUMMARY

In this chapter, we present a deep learning model to detect the legitimacy of a given

website. We used URL heuristic and third-party service based features for training the

deep learning models. Unlike the work of Rao and Pais (2019), we minimized the

number of features and reduced the dependency on third-party services to achieve a

significant accuracy of 99.57%. We also tested our features with various deep learning

based models such as CNN, DNN & LSTM, and we achieved an accuracy of 99.57%

with LSTM, 99.43% with CNN and 99.52% with DNN. The LSTM and DNN outper-

formed by achieving better results with 10 features than the work Rao and Pais (2019)

with machine learning with 18 features.

172

CHAPTER 7

CONCLUSION AND FUTURE WORK

To conclude, the four research studies introduced novel techniques and models to de-

tect phishing emails and determine website authenticity. The first study suggested using

machine learning classifiers and word embedding to detect phishing emails. Using only

four email header features, the presented techniques achieved an impressive accuracy

rate of 99.50%. The RF classifier performed consistently well with all the word em-

bedding algorithms tested, making it the most appropriate classifier for phishing email

classification using word embedding techniques.

The second work presented a novel model, DeepEPhishNet, that combines deep

learning and word embedding to classify phishing emails. The model achieved an ac-

curacy of 99.52% for an in-house dataset using only four email header features for

classification. These two works may be extended, including incorporating email body

features for classification with minimum features, and other researchers may use the

in-house dataset for testing their models.

The third work presented a phishing email classification model based on BERT

transformers, achieving an accuracy of 99.51% for open-source data. The presented

model outperformed all other existing works using only the email body text feature to

identify or detect phishing emails. Future work may include extending this work using

different advanced transformers and minimum features of the email header and body

text for classification.

173

7. Conclusion and future work

The fourth research work presented a deep learning model to determine website le-

gitimacy by using URL heuristics and third-party service features to train the models.

The presented model attained an impressive accuracy rate of 99.57%, with the LSTM

and DNN models performing better than other deep learning models tested. The pre-

sented techniques and models contribute significantly to phishing email and website

detection.

Future work: Future research in phishing detection can concentrate on several

areas to enhance the current studies. Firstly, incorporating additional heuristics us-

ing word embedding and machine learning techniques can leverage the content of the

email body, leading to improved accuracy in phishing detection. Secondly, evaluating

the performance of features through deep learning techniques can further enhance the

classification process, resulting in higher accuracy rates. Additionally, utilizing essen-

tial features from both email headers and body text can facilitate the development of a

more efficient and practical classification model with a minimal feature set. Sharing the

in-house dataset with other researchers enables collaborative testing and comparative

evaluations, contributing to the advancement of phishing detection techniques. Explor-

ing advanced transformer models that leverage attention mechanisms and contextual

representations can also enhance phishing detection capabilities. Furthermore, includ-

ing additional heuristic features that can enable the detection of phishing sites hosted

on compromised domains and identify sophisticated phishing attempts involving em-

bedded objects like iframes, flash, and HTML. By addressing these future directions,

the field of phishing detection can make significant strides in the development of more

robust and effective techniques to combat online security threats.

174

BIBLIOGRAPHY

.

.

A Hamid, I. R. and Abawajy, J. (2011). “Hybrid feature selection for phishing email

detection.” In International Conference on Algorithms and Architectures for Parallel

Processing, Springer, 266–275.

Abu-Nimeh, S., Nappa, D., Wang, X. and Nair, S. (2009). “Distributed phishing detec-

tion by applying variable selection using bayesian additive regression trees.” In 2009

IEEE International Conference on Communications, IEEE, 1–5.

Adam, S. (2021). “Sophos: Phishing insights 2021.”)https://news.sophos.

com/en-us/2021/08/26/phishing-insights-2021/.

Adebowale, M. A., Lwin, K. T. and Hossain, M. A. (2023). “Intelligent phishing de-

tection scheme using deep learning algorithms.” Journal of Enterprise Information

Management, 36(3), 747–766.

Adewole, K. S., Akintola, A. G., Salihu, S. A., Faruk, N. and Jimoh, R. G. (2019).

“Hybrid rule-based model for phishing urls detection.” In International Conference

for Emerging Technologies in Computing, Springer, 119–135.

Afek, Y., Bremler-Barr, A. and Shafir, L. (2017). “Network anti-spoofing with sdn data

plane.” In IEEE INFOCOM 2017-IEEE conference on computer communications,

IEEE, 1–9.

175

BIBLIOGRAPHY

Al-Hamar, Y., Kolivand, H., Tajdini, M., Saba, T. and Ramachandran, V. (2021). “En-

terprise credential spear-phishing attack detection.” Computers & Electrical Engi-

neering, 94, 107363.

Al-Musib, N. S., Al-Serhani, F. M., Humayun, M. and Jhanjhi, N. (2021). “Business

email compromise (bec) attacks.” Materials Today: Proceedings.

Alam, M. N., Sarma, D., Lima, F. F., Saha, I., Hossain, S. et al. (2020). “Phishing

attacks detection using machine learning approach.” In 2020 third international con-

ference on smart systems and inventive technology (ICSSIT), IEEE, 1173–1179.

Aldowah, H., Ul Rehman, S. and Umar, I. (2018). “Security in internet of things:

issues, challenges and solutions.” In International conference of reliable information

and communication technology, Springer, 396–405.

Alhogail, A. and Alsabih, A. (2021). “Applying machine learning and natural language

processing to detect phishing email.” Computers & Security, 110, 102414.

Almeida, F. and Xexéo, G. (2019). “Word embeddings: A survey.” arXiv preprint

arXiv:1901.09069.

Almomani, A., Gupta, B. B., Atawneh, S., Meulenberg, A. and Almomani, E. (2013).

“A survey of phishing email filtering techniques.” IEEE communications surveys &

tutorials, 15(4), 2070–2090.

Appel, G., Grewal, L., Hadi, R. and Stephen, A. T. (2020). “The future of social media

in marketing.” Journal of the Academy of Marketing Science, 48(1), 79–95.

APWG (2014). “Apwg 2014 global phishing reports first half 2014..”

https://docs.apwg.org/reports/APWG_Global_Phishing_

Report_1H_2014.pdf). Accessed: 2014-09-25.

APWG (2018). “Apwg 2018 phishing attack trends reports, first quar-

ter 2018..” https://docs.apwg.org/reports/apwg_trends_report_

q1_2018.pdf). Accessed: 2018-07-31.

176

BIBLIOGRAPHY

APWG (2019a). “Apwg 2018 phishing attack trends reports, fourth quarter

2018..” https://docs.apwg.org/reports/apwg_tre-nds_report_

q4_2018.pdfa). Accessed: 2019-03-04.

APWG (2019b). “Apwg 2019 phishing activity trends reports, third quarter

2019..” https://docs.apwg.org//reports/apwg_tre-nds_report_

q3_2019.pdfb). Accessed: 2019-11-04.

Aravindhan, R., Shanmugalakshmi, R. and Ramya, K. (2017). “Circumvention of

nascent and potential wi-fi phishing threat using association rule mining.” Wireless

Personal Communications, 94(4), 2331–2361.

Athulya, A. and Praveen, K. (2020). “Towards the detection of phishing attacks.”

In 2020 4th international conference on trends in electronics and informatics

(ICOEI)(48184), IEEE, 337–343.

Azeez, N. A., Misra, S., Margaret, I. A., Fernandez-Sanz, L. et al. (2021). “Adopting

automated whitelist approach for detecting phishing attacks.” Computers & Security,

108, 102328.

Bagui, S., Nandi, D., Bagui, S. and White, R. J. (2019). “Classifying phishing email us-

ing machine learning and deep learning.” In 2019 International Conference on Cyber

Security and Protection of Digital Services (Cyber Security), IEEE, 1–2.

Bahnsen, A. C., Bohorquez, E. C., Villegas, S., Vargas, J. and González, F. A. (2017).

“Classifying phishing urls using recurrent neural networks.” In 2017 APWG sympo-

sium on electronic crime research (eCrime), IEEE, 1–8.

Balamurugan, G. and Jayabharathy, J. (2022). “Cyberbully classification based on tweet

texts for detection of phishing links.” In Smart Data Intelligence, Springer, 367–374.

Balim, C. and Gunal, E. S. (2019). “Automatic detection of smishing attacks by machine

learning methods.” In 2019 1st International Informatics and Software Engineering

Conference (UBMYK), IEEE, 1–3.

177

BIBLIOGRAPHY

Baykara, M. and Gürel, Z. Z. (2018). “Detection of phishing attacks.” In 2018 6th

International Symposium on Digital Forensic and Security (ISDFS), IEEE, 1–5.

Bergholz, A., De Beer, J., Glahn, S., Moens, M.-F., Paaß, G. and Strobel, S. (2010).

“New filtering approaches for phishing email.” Journal of computer security, 18(1),

7–35.

Biron, Z. A., Dey, S. and Pisu, P. (2018). “Real-time detection and estimation of denial

of service attack in connected vehicle systems.” IEEE Transactions on Intelligent

Transportation Systems, 19(12), 3893–3902.

Bojanowski, P., Grave, E., Joulin, A. and Mikolov, T. (2017). “Enriching word vec-

tors with subword information.” Transactions of the Association for Computational

Linguistics, 5, 135–146.

Bountakas, P., Koutroumpouchos, K. and Xenakis, C. (2021). “A comparison of natural

language processing and machine learning methods for phishing email detection.” In

The 16th International Conference on Availability, Reliability and Security, 1–12.

Buber, E., Diri, B. and Sahingoz, O. K. (2017). “Nlp based phishing attack detection

from urls.” In International Conference on Intelligent Systems Design and Applica-

tions, Springer, 608–618.

Burns, A., Johnson, M. E. and Caputo, D. D. (2019). “Spear phishing in a barrel:

Insights from a targeted phishing campaign.” Journal of Organizational Computing

and Electronic Commerce, 29(1), 24–39.

Castillo, E., Dhaduvai, S., Liu, P., Thakur, K.-S., Dalton, A. and Strzalkowski, T.

(2020). “Email threat detection using distinct neural network approaches.” In Pro-

ceedings for the First International Workshop on Social Threats in Online Conversa-

tions: Understanding and Management, 48–55.

Chahid, Y., Benabdellah, M. and Azizi, A. (2017). “Internet of things security.” In

2017 International Conference on Wireless Technologies, Embedded and Intelligent

Systems (WITS), IEEE, 1–6.

178

BIBLIOGRAPHY

Chandrasekaran, M., Narayanan, K. and Upadhyaya, S. (2006). “Phishing email de-

tection based on structural properties.” In NYS cyber security conference, volume 3,

Albany, New York.

Chavan, S., Inamdar, A., Dorle, A., Kulkarni, S. and Wu, X.-W. (2020). “Phishing

detection: malicious and benign websites classification using machine learning tech-

niques.” In Proceeding of International Conference on Computational Science and

Applications, Springer, 437–446.

Chiew, K. L., Tan, C. L., Wong, K., Yong, K. S. and Tiong, W. K. (2019). “A new

hybrid ensemble feature selection framework for machine learning-based phishing

detection system.” Information Sciences, 484, 153–166.

Choi, H. S., Carpenter, D. and Ko, M. S. (2022). “Risk taking behaviors using public

wi-fi™.” Information Systems Frontiers, 24(3), 965–982.

Cohen, A., Nissim, N. and Elovici, Y. (2018). “Novel set of general descriptive features

for enhanced detection of malicious emails using machine learning methods.” Expert

Systems with Applications, 110, 143–169.

Devlin, J., Chang, M.-W., Lee, K. and Toutanova, K. (2018). “Bert: Pre-training

of deep bidirectional transformers for language understanding.” arXiv preprint

arXiv:1810.04805.

Do, V. T., Engelstad, P., Feng, B. and Van Do, T. (2017). “Detection of dns tunneling in

mobile networks using machine learning.” In International Conference on Informa-

tion Science and Applications, Springer, 221–230.

Dudheria, R. (2017). “Evaluating features and effectiveness of secure qr code scan-

ners.” In 2017 International Conference on Cyber-Enabled Distributed Computing

and Knowledge Discovery (CyberC), IEEE, 40–49.

Eder-Neuhauser, P., Zseby, T., Fabini, J. and Vormayr, G. (2017). “Cyber attack models

for smart grid environments.” Sustainable Energy, Grids and Networks, 12, 10–29.

179

BIBLIOGRAPHY

El-Alfy, E.-S. M. (2017). “Detection of phishing websites based on probabilistic neural

networks and k-medoids clustering.” The Computer Journal, 60(12), 1745–1759.

Fang, X., Xu, M., Xu, S. and Zhao, P. (2019a). “A deep learning framework for predict-

ing cyber attacks rates.” EURASIP Journal on Information security, 2019(1), 1–11.

Fang, Y., Zhang, C., Huang, C., Liu, L. and Yang, Y. (2019b). “Phishing email detection

using improved rcnn model with multilevel vectors and attention mechanism.” IEEE

Access, 7, 56329–56340.

Feng, F., Zhou, Q., Shen, Z., Yang, X., Han, L. and Wang, J. (2018). “The application

of a novel neural network in the detection of phishing websites.” Journal of Ambient

Intelligence and Humanized Computing, 1–15.

Fette, I., Sadeh, N. and Tomasic, A. (2007). “Learning to detect phishing emails.” In

Proceedings of the 16th international conference on World Wide Web, 649–656.

Fu, A. Y., Wenyin, L. and Deng, X. (2006). “Detecting phishing web pages with visual

similarity assessment based on earth mover’s distance (emd).” IEEE transactions on

dependable and secure computing, 3(4), 301–311.

Gansterer, W. N. and Pölz, D. (2009). “E-mail classification for phishing defense.” In

European Conference on Information Retrieval, Springer, 449–460.

Garcés, I. O., Cazares, M. F. and Andrade, R. O. (2019). “Detection of phishing at-

tacks with machine learning techniques in cognitive security architecture.” In 2019

International Conference on Computational Science and Computational Intelligence

(CSCI), IEEE, 366–370.

Ghimire, A., Jha, A. K., Thapa, S., Mishra, S. and Jha, A. M. (2021). “Machine learn-

ing approach based on hybrid features for detection of phishing urls.” In 2021 11th

International Conference on Cloud Computing, Data Science & Engineering (Con-

fluence), IEEE, 954–959.

Gowtham, R. and Krishnamurthi, I. (2014). “A comprehensive and efficacious archi-

tecture for detecting phishing webpages.” Computers & Security, 40, 23–37.

180

BIBLIOGRAPHY

Guarda, T., Augusto, M. F. and Lopes, I. (2019). “The art of phishing.” In International

conference on information technology & systems, Springer, 683–690.

Guillén, J. H., Del Rey, A. M. and Casado-Vara, R. (2019). “Security countermea-

sures of a sciras model for advanced malware propagation.” IEEE Access, 7, 135472–

135478.

Gupta, S. and Singhal, A. (2017). “Phishing url detection by using artificial neural

network with pso.” In 2017 2nd International Conference on Telecommunication and

Networks (TEL-NET), IEEE, 1–6.

Gutierrez, C. N., Kim, T., Della Corte, R., Avery, J., Goldwasser, D., Cinque, M. and

Bagchi, S. (2018). “Learning from the ones that got away: Detecting new forms of

phishing attacks.” IEEE Transactions on Dependable and Secure Computing, 15(6),

988–1001.

Hamid, I. R. A. and Abawajy, J. (2011). “Hybrid feature selection for phishing email

detection.” In International Conference on Algorithms and Architectures for Parallel

Processing, Springer, 266–275.

Hara, M., Yamada, A. and Miyake, Y. (2009). “Visual similarity-based phishing detec-

tion without victim site information.” In 2009 IEEE Symposium on Computational

Intelligence in Cyber Security, IEEE, 30–36.

Harikrishnan, N., Vinayakumar, R. and Soman, K. (2018). “A machine learning ap-

proach towards phishing email detection.” In Proceedings of the Anti-Phishing Pilot

at ACM International Workshop on Security and Privacy Analytics (IWSPA AP), vol-

ume 2013, 455–468.

Hasan, M., Balbahaith, Z. and Tarique, M. (2019). “Detection of sql injection attacks:

a machine learning approach.” In 2019 International Conference on Electrical and

Computing Technologies and Applications (ICECTA), IEEE, 1–6.

He, M., Horng, S.-J., Fan, P., Khan, M. K., Run, R.-S., Lai, J.-L., Chen, R.-J. and

Sutanto, A. (2011). “An efficient phishing webpage detector.” Expert systems with

applications, 38(10), 12018–12027.

181

BIBLIOGRAPHY

Heartfield, R. and Loukas, G. (2018). “Protection against semantic social engineering

attacks.” In Versatile Cybersecurity, Springer, 99–140.

Higbee, A. (2021). “Cofense: Annual state of phishing report-2021..”

)https://cofense.com/wp-content/uploads/2021/02/cofense-

annual-report-2021.pdf.

Hiransha, M., Unnithan, N. A., Vinayakumar, R., Soman, K. and Verma, A. (2018).

“Deep learning based phishing e-mail detection.” In Proc. 1st AntiPhishing Shared

Pilot 4th ACM Int. Workshop Secur. Privacy Anal.(IWSPA), Tempe, AZ, USA.

Hochreiter, S. and Schmidhuber, J. (1997). “Long short-term memory.” Neural compu-

tation, 9(8), 1735–1780.

Hu, Y., Chen, L. and Cheng, J. (2018). “A captcha recognition technology based on deep

learning.” In 2018 13th IEEE Conference on Industrial Electronics and Applications

(ICIEA), IEEE, 617–620.

Huh, J. H. and Kim, H. (2011). “Phishing detection with popular search engines: Simple

and effective.” In International Symposium on Foundations and Practice of Security,

Springer, 194–207.

Islam, R. and Abawajy, J. (2013). “A multi-tier phishing detection and filtering ap-

proach.” Journal of Network and Computer Applications, 36(1), 324–335.

J Kuss, D., D Griffiths, M., Karila, L. and Billieux, J. (2014). “Internet addiction: A

systematic review of epidemiological research for the last decade.” Current pharma-

ceutical design, 20(25), 4026–4052.

Jain, A. K. and Gupta, B. (2018a). “Phish-safe: Url features-based phishing detection

system using machine learning.” In Cyber Security, Springer, 467–474.

Jain, A. K. and Gupta, B. B. (2018b). “Towards detection of phishing websites on client-

side using machine learning based approach.” Telecommunication Systems, 68(4),

687–700.

182

BIBLIOGRAPHY

Jain, A. K. and Gupta, B. B. (2018c). “Two-level authentication approach to protect

from phishing attacks in real time.” Journal of Ambient Intelligence and Humanized

Computing, 9(6), 1783–1796.

Jamal, T., Haider, Z., Butt, S. A. and Chohan, A. (2018). “Denial of service attack in

cooperative networks.” arXiv preprint arXiv:1810.11070.

Jia, J., Dong, Z., Li, J. and Stokes, J. W. (2021). “Detection of malicious dns and web

servers using graph-based approaches.” In ICASSP 2021-2021 IEEE International

Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE, 2625–

2629.

Jonker, R. A. A., Poudel, R., Pedrosa, T. and Lopes, R. P. (2021). “Using natural

language processing for phishing detection.” In International Conference on Opti-

mization, Learning Algorithms and Applications, Springer, 540–552.

Joulin, A., Grave, E., Bojanowski, P., Douze, M., Jégou, H. and Mikolov, T.

(2016a). “Fasttext. zip: Compressing text classification models.” arXiv preprint

arXiv:1612.03651.

Joulin, A., Grave, E., Bojanowski, P. and Mikolov, T. (2016b). “Bag of tricks for

efficient text classification.” arXiv preprint arXiv:1607.01759.

Jozefowicz, R., Zaremba, W. and Sutskever, I. (2015). “An empirical exploration of

recurrent network architectures.” In International conference on machine learning,

PMLR, 2342–2350.

Kaltiala-Heino, R., Lintonen, T. and Rimpelä, A. (2004). “Internet addiction? poten-

tially problematic use of the internet in a population of 12–18 year-old adolescents.”

Addiction Research & Theory, 12(1), 89–96.

Kaspersky (2019). “Spam and phishing in q3 2019..” https://securelist.

com/spam-report-q3-2019/95177/).

183

BIBLIOGRAPHY

Kathrine, G. J. W., Praise, P. M., Rose, A. A. and Kalaivani, E. C. (2019). “Variants of

phishing attacks and their detection techniques.” In 2019 3rd International Confer-

ence on Trends in Electronics and Informatics (ICOEI), IEEE, 255–259.

Khonji, M., Iraqi, Y. and Jones, A. (2012). “Enhancing phishing e-mail classifiers:

A lexical url analysis approach.” International Journal for Information Security Re-

search (IJISR), 2(1/2), 40.

Khonji, M., Iraqi, Y. and Jones, A. (2013). “Phishing detection: a literature survey.”

IEEE Communications Surveys & Tutorials, 15(4), 2091–2121.

Khonji, M., Jones, A. and Iraqi, Y. (2011). “A study of feature subset evaluators and

feature subset searching methods for phishing classification.” In Proceedings of the

8th Annual Collaboration, Electronic messaging, Anti-Abuse and Spam Conference,

135–144.

Kim, J.-Y., Bu, S.-J. and Cho, S.-B. (2018). “Zero-day malware detection using trans-

ferred generative adversarial networks based on deep autoencoders.” Information Sci-

ences, 460, 83–102.

Krizhevsky, A., Sutskever, I. and Hinton, G. E. (2017). “Imagenet classification with

deep convolutional neural networks.” Communications of the ACM, 60(6), 84–90.

Kumar, M. S. and Indrani, B. (2021). “Frequent rule reduction for phishing url classi-

fication using fuzzy deep neural network model.” Iran Journal of Computer Science,

4(2), 85–93.

Kunju, M. V., Dainel, E., Anthony, H. C. and Bhelwa, S. (2019). “Evaluation of phish-

ing techniques based on machine learning.” In 2019 International Conference on

Intelligent Computing and Control Systems (ICCS), IEEE, 963–968.

Le, H., Pham, Q., Sahoo, D. and Hoi, S. C. (2018). “Urlnet: Learning a url

representation with deep learning for malicious url detection.” arXiv preprint

arXiv:1802.03162.

184

BIBLIOGRAPHY

Leiner, B. M., Cerf, V. G., Clark, D. D., Kahn, R. E., Kleinrock, L., Lynch, D. C.,

Postel, J., Roberts, L. G. and Wolff, S. S. (1997). “The past and future history of the

internet.” Communications of the ACM, 40(2), 102–108.

Li, Q., Cheng, M., Wang, J. and Sun, B. (2020). “Lstm based phishing detection for big

email data.” IEEE transactions on big data, 8(1), 278–288.

Li, Y., Yang, Z., Chen, X., Yuan, H. and Liu, W. (2019). “A stacking model using

url and html features for phishing webpage detection.” Future Generation Computer

Systems, 94, 27–39.

Ma, L., Ofoghi, B., Watters, P. and Brown, S. (2009). “Detecting phishing emails using

hybrid features.” In 2009 Symposia and Workshops on Ubiquitous, Autonomic and

Trusted Computing, IEEE, 493–497.

Malaysia, U. (2013). “An enhanced online phishing e-mail detection framework based

on evolving connectionist system.” Int. J. Innov. Comput., Inf. Control, 9(3), 1065–

1086.

Marchal, S., Armano, G., Gröndahl, T., Saari, K., Singh, N. and Asokan, N. (2017).

“Off-the-hook: An efficient and usable client-side phishing prevention application.”

IEEE Transactions on Computers, 66(10), 1717–1733.

Maurya, S. and Jain, A. (2020). “Deep learning to combat phishing.” Journal of Statis-

tics and Management Systems, 23(6), 945–957.

Mikolov, T., Chen, K., Corrado, G. and Dean, J. (2013). “Efficient estimation of word

representations in vector space.” arXiv preprint arXiv:1301.3781.

Mikolov, T., Joulin, A., Chopra, S., Mathieu, M. and Ranzato, M. (2014). “Learning

longer memory in recurrent neural networks.” arXiv preprint arXiv:1412.7753.

Miloslavskaya, N. and Tolstoy, A. (2017). “Ensuring information security for internet

of things.” In 2017 IEEE 5th International Conference on Future Internet of Things

and Cloud (FiCloud), IEEE, 62–69.

185

BIBLIOGRAPHY

Mimecast (2019). “Mimecast - the state of the email security report 2019..”

https://www.mimecast.com/globalassets/documents/ebook/

state-of-email-security-2019.pdf?v=2).

Mohammad, R. M., Thabtah, F. and McCluskey, L. (2014). “Predicting phishing web-

sites based on self-structuring neural network.” Neural Computing and Applications,

25(2), 443–458.

Mohammadi, M., Chu, B. and Lipford, H. R. (2017). “Detecting cross-site scripting

vulnerabilities through automated unit testing.” In 2017 IEEE International Confer-

ence on Software Quality, Reliability and Security (QRS), IEEE, 364–373.

Mondal, S., Ghosh, S., Kumar, A., Islam, S. H. and Chatterjee, R. (2022). “Spear

phishing detection: An ensemble learning approach.” In Data Analytics, Computa-

tional Statistics, and Operations Research for Engineers, CRC Press, 203–234.

Moradpoor, N., Clavie, B. and Buchanan, B. (2017). “Employing machine learning

techniques for detection and classification of phishing emails.” In 2017 Computing

Conference, IEEE, 149–156.

Nagunwa, T., Naqvi, S., Fouad, S. and Shah, H. (2019). “A framework of new hybrid

features for intelligent detection of zero hour phishing websites.” In International

Joint Conference: 12th International Conference on Computational Intelligence in

Security for Information Systems (CISIS 2019) and 10th International Conference on

EUropean Transnational Education (ICEUTE 2019), Springer, 36–46.

Nathezhtha, T., Sangeetha, D. and Vaidehi, V. (2019). “Wc-pad: web crawling based

phishing attack detection.” In 2019 International Carnahan Conference on Security

Technology (ICCST), IEEE, 1–6.

Nguyen, M., Nguyen, T. and Nguyen, T. H. (2018). “A deep learning model

with hierarchical lstms and supervised attention for anti-phishing.” arXiv preprint

arXiv:1805.01554.

Oña, D., Zapata, L., Fuertes, W., Rodrı́guez, G., Benavides, E. and Toulkeridis, T.

(2019). “Phishing attacks: detecting and preventing infected e-mails using machine

186

BIBLIOGRAPHY

learning methods.” In 2019 3rd Cyber Security in Networking Conference (CSNet),

IEEE, 161–163.

Opara, C., Wei, B. and Chen, Y. (2020). “Htmlphish: enabling phishing web page de-

tection by applying deep learning techniques on html analysis.” In 2020 International

Joint Conference on Neural Networks (IJCNN), IEEE, 1–8.

Parsons, K., Butavicius, M., Delfabbro, P. and Lillie, M. (2019). “Predicting sus-

ceptibility to social influence in phishing emails.” International Journal of Human-

Computer Studies, 128, 17–26.

Patil, V., Thakkar, P., Shah, C., Bhat, T. and Godse, S. (2018). “Detection and preven-

tion of phishing websites using machine learning approach.” In 2018 Fourth interna-

tional conference on computing communication control and automation (ICCUBEA),

IEEE, 1–5.

Peng, T., Harris, I. and Sawa, Y. (2018). “Detecting phishing attacks using natural lan-

guage processing and machine learning.” In 2018 ieee 12th international conference

on semantic computing (icsc), IEEE, 300–301.

Pham, C., Nguyen, L. A., Tran, N. H., Huh, E.-N. and Hong, C. S. (2018). “Phishing-

aware: A neuro-fuzzy approach for anti-phishing on fog networks.” IEEE Transac-

tions on Network and Service Management, 15(3), 1076–1089.

Pham, N.-Q., Kruszewski, G. and Boleda, G. (2016). “Convolutional neural network

language models.” In Proceedings of the 2016 Conference on Empirical Methods in

Natural Language Processing, 1153–1162.

Quinlan, J. R. (1986). “Induction of decision trees.” Machine learning, 1(1), 81–106.

Ra, V., HBa, B. G., Ma, A. K., KPa, S., Poornachandran, P. and Verma, A. (2018).

“Deepanti-phishnet: Applying deep neural networks for phishing email detection.”

In Proc. 1st AntiPhishing Shared Pilot 4th ACM Int. Workshop Secur. Privacy

Anal.(IWSPA), Tempe, AZ, USA, 1–11.

187

BIBLIOGRAPHY

Ramanathan, V. and Wechsler, H. (2012). “phishigillnet-phishing detection method-

plogy using probabilistic latent semantic analysis, adaboost, and co-training.”

EURASIP Journal on Information Security, 2012(1), 1–22.

Ramesh, G., Krishnamurthi, I. and Kumar, K. S. S. (2014). “An efficacious method for

detecting phishing webpages through target domain identification.” Decision Support

Systems, 61, 12–22.

Rao, R. S. and Ali, S. T. (2015). “A computer vision technique to detect phishing at-

tacks.” In 2015 Fifth International Conference on Communication Systems and Net-

work Technologies, IEEE, 596–601.

Rao, R. S. and Pais, A. R. (2019). “Detection of phishing websites using an efficient

feature-based machine learning framework.” Neural Computing and Applications,

31(8), 3851–3873.

Rashid, J., Mahmood, T., Nisar, M. W. and Nazir, T. (2020). “Phishing detection us-

ing machine learning technique.” In 2020 First International Conference of Smart

Systems and Emerging Technologies (SMARTTECH), IEEE, 43–46.

Ryan, T., Chester, A., Reece, J. and Xenos, S. (2014). “The uses and abuses of facebook:

A review of facebook addiction.” Journal of behavioral addictions, 3(3), 133–148.

Rybakov, O. J. and Rybakova, O. S. (2019). “Principles of information security of a

child on the internet.” In Ubiquitous Computing and the Internet of Things: Prereq-

uisites for the Development of ICT, Springer, 427–433.

Saha, I., Sarma, D., Chakma, R. J., Alam, M. N., Sultana, A. and Hossain, S. (2020).

“Phishing attacks detection using deep learning approach.” In 2020 Third Interna-

tional Conference on Smart Systems and Inventive Technology (ICSSIT), IEEE, 1180–

1185.

Sahingoz, O. K., Buber, E., Demir, O. and Diri, B. (2019). “Machine learning based

phishing detection from urls.” Expert Systems with Applications, 117, 345–357.

188

BIBLIOGRAPHY

Salem, O., Alsubhi, K., Shaafi, A., Gheryani, M., Mehaoua, A. and Boutaba, R. (2021).

“Man-in-the-middle attack mitigation in internet of medical things.” IEEE Transac-

tions on Industrial Informatics, 18(3), 2053–2062.

Salem, O., Hossain, A. and Kamala, M. (2010). “Awareness program and ai based tool

to reduce risk of phishing attacks.” In 2010 10th IEEE International Conference on

Computer and Information Technology, IEEE, 1418–1423.

Salihovic, I., Serdarevic, H. and Kevric, J. (2018). “The role of feature selection in

machine learning for detection of spam and phishing attacks.” In International Sym-

posium on Innovative and Interdisciplinary Applications of Advanced Technologies,

Springer, 476–483.

Schuster, M. and Paliwal, K. K. (1997). “Bidirectional recurrent neural networks.”

IEEE transactions on Signal Processing, 45(11), 2673–2681.

Shaw, M. and Black, D. W. (2008). “Internet addiction.” CNS drugs, 22(5), 353–365.

Singh, S., Singh, M. and Pandey, R. (2020). “Phishing detection from urls using deep

learning approach.” In 2020 5th international conference on computing, communica-

tion and security (ICCCS), IEEE, 1–4.

Smadi, S., Aslam, N. and Zhang, L. (2018). “Detection of online phishing email using

dynamic evolving neural network based on reinforcement learning.” Decision Sup-

port Systems, 107, 88–102.

Smith, C. and Jin, Y. (2014). “Evolutionary multi-objective generation of recurrent

neural network ensembles for time series prediction.” Neurocomputing, 143, 302–

311.

Somesha, M. and Pais, A. R. (2022). “Classification of phishing email using word em-

bedding and machine learning techniques.” Journal of Cyber Security and Mobility,

279–320.

Somesha, M., Pais, A. R., Rao, R. S. and Rathour, V. S. (2020). “Efficient deep learning

techniques for the detection of phishing websites.” Sādhanā, 45(1), 1–18.

189

BIBLIOGRAPHY

Sonowal, G. (2022a). “Phishing kits.” In Phishing and Communication Channels,

Springer, 115–135.

Sonowal, G. (2022b). “Types of phishing.” In Phishing and Communication Channels,

Springer, 25–50.

Sontowski, S., Gupta, M., Chukkapalli, S. S. L., Abdelsalam, M., Mittal, S., Joshi, A.

and Sandhu, R. (2020). “Cyber attacks on smart farming infrastructure.” In 2020

IEEE 6th International Conference on Collaboration and Internet Computing (CIC),

IEEE, 135–143.

Srinivasa Rao, R. and Pais, A. R. (2017). “Detecting phishing websites using automa-

tion of human behavior.” In Proceedings of the 3rd ACM workshop on cyber-physical

system security, 33–42.

Storm, B. C., Stone, S. M. and Benjamin, A. S. (2017). “Using the internet to access

information inflates future use of the internet to access other information.” Memory,

25(6), 717–723.

Taib, R., Yu, K., Berkovsky, S., Wiggins, M. and Bayl-Smith, P. (2019). “Social engi-

neering and organisational dependencies in phishing attacks.” In IFIP Conference on

Human-Computer Interaction, Springer, 564–584.

Toolan, F. and Carthy, J. (2009). “Phishing detection using classifier ensembles.” In

2009 eCrime researchers summit, IEEE, 1–9.

Toolan, F. and Carthy, J. (2010). “Feature selection for spam and phishing detection.”

In 2010 eCrime Researchers Summit, IEEE, 1–12.

Ulfath, R. E., Sarker, I. H., Chowdhury, M. J. M. and Hammoudeh, M. (2022). “De-

tecting smishing attacks using feature extraction and classification techniques.” In

Proceedings of the International Conference on Big Data, IoT, and Machine Learn-

ing, Springer, 677–689.

Valecha, R., Mandaokar, P. and Rao, H. R. (2021). “Phishing email detection using

persuasion cues.” IEEE Transactions on Dependable and Secure Computing.

190

BIBLIOGRAPHY

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł.

and Polosukhin, I. (2017). “Attention is all you need.” Advances in neural informa-

tion processing systems, 30.

Verma, P., Goyal, A. and Gigras, Y. (2020). “Email phishing: Text classification using

natural language processing.” Computer Science and Information Technologies, 1(1),

1–12.

Verma, R., Shashidhar, N. and Hossain, N. (2012). “Detecting phishing emails the

natural language way.” In European Symposium on Research in Computer Security,

Springer, 824–841.

Wenyin, L., Huang, G., Xiaoyue, L., Min, Z. and Deng, X. (2005). “Detection of

phishing webpages based on visual similarity.” In Special interest tracks and posters

of the 14th international conference on World Wide Web, 1060–1061.

Whittaker, C., Ryner, B. and Nazif, M. (2010). “Large-scale automatic classification of

phishing pages.” .

Wollschlaeger, M., Sauter, T. and Jasperneite, J. (2017). “The future of industrial com-

munication: Automation networks in the era of the internet of things and industry

4.0.” IEEE industrial electronics magazine, 11(1), 17–27.

Xiang, G., Hong, J., Rose, C. P. and Cranor, L. (2011). “Cantina+ a feature-rich ma-

chine learning framework for detecting phishing web sites.” ACM Transactions on

Information and System Security (TISSEC), 14(2), 1–28.

Yadollahi, M. M., Shoeleh, F., Serkani, E., Madani, A. and Gharaee, H. (2019). “An

adaptive machine learning based approach for phishing detection using hybrid fea-

tures.” In 2019 5th International Conference on Web Research (ICWR), IEEE, 281–

286.

Yang, P., Zhao, G. and Zeng, P. (2019). “Phishing website detection based on multidi-

mensional features driven by deep learning.” IEEE access, 7, 15196–15209.

191

BIBLIOGRAPHY

Yao, W., Ding, Y. and Li, X. (2018). “Deep learning for phishing detection.” In 2018

IEEE Intl Conf on Parallel & Distributed Processing with Applications, Ubiquitous

Computing & Communications, Big Data & Cloud Computing, Social Computing &

Networking, Sustainable Computing & Communications (ISPA/IUCC/BDCloud/So-

cialCom/SustainCom), IEEE, 645–650.

Yerima, S. Y. and Alzaylaee, M. K. (2020). “High accuracy phishing detection based on

convolutional neural networks.” In 2020 3rd International Conference on Computer

Applications & Information Security (ICCAIS), IEEE, 1–6.

Yi, P., Guan, Y., Zou, F., Yao, Y., Wang, W. and Zhu, T. (2018). “Web phishing detection

using a deep learning framework.” Wireless Communications and Mobile Computing,

2018.

Yuan, H., Chen, X., Li, Y., Yang, Z. and Liu, W. (2018). “Detecting phishing websites

and targets based on urls and webpage links.” In 2018 24th International Conference

on Pattern Recognition (ICPR), IEEE, 3669–3674.

Zabihimayvan, M. and Doran, D. (2019). “Fuzzy rough set feature selection to enhance

phishing attack detection.” In 2019 IEEE International Conference on Fuzzy Systems

(FUZZ-IEEE), IEEE, 1–6.

Zhang, D., Yan, Z., Jiang, H. and Kim, T. (2014). “A domain-feature enhanced classifi-

cation model for the detection of chinese phishing e-business websites.” Information

& Management, 51(7), 845–853.

Zhang, N. and Yuan, Y. (2012). “Phishing detection using neural network.” CS229

lecture notes, 301.

Zhang, W., Jiang, Q., Chen, L. and Li, C. (2017). “Two-stage elm for phishing web

pages detection using hybrid features.” World Wide Web, 20(4), 797–813.

Zhang, Y., Hong, J. I. and Cranor, L. F. (2007). “Cantina: a content-based approach to

detecting phishing web sites.” In Proceedings of the 16th international conference on

World Wide Web, 639–648.

192

BIBLIOGRAPHY

Zhang, Y.-y., Chen, J.-j., Ye, H. and Volantin, L. (2020). “Psychological effects of cog-

nitive behavioral therapy on internet addiction in adolescents: A systematic review

protocol.” Medicine, 99(4).

Zhao, J., Wang, N., Ma, Q. and Cheng, Z. (2018). “Classifying malicious urls using

gated recurrent neural networks.” In International Conference on Innovative Mobile

and Internet Services in Ubiquitous Computing, Springer, 385–394.

Zinovyeva, E., Härdle, W. K. and Lessmann, S. (2020). “Antisocial online behavior

detection using deep learning.” Decision Support Systems, 138, 113362.

193

PUBLICATIONS

1. Somesha, M., Pais, A. R., Rao, R. S., & Rathour, V. S. (2020). Efficient deep

learning techniques for the detection of phishing websites.. Sadhana (Springer),

45(1), 1-18. [Published]

2. Somesha, M., & Pais, A. R. (2022). Classification of Phishing Email Using Word

Embedding and Machine Learning Techniques. Journal of Cyber Security and

Mobility, (River publisher), 279-320. [Published]

3. Somesha, M., & Pais, A. R. (2022). DeepEPhishNet: A Deep learning framework

for email phishing detection using Word embedding algorithms. Journal of Cyber

Security and Mobility, (River publisher). [Accepted]

4. Somesha, M., & Pais, A. R. (2022). Phishing Classification based on Text Con-

tent of an Email Body using Transformers. International Conference on Infor-

mation Security, Privacy and Digital Forensics (Springer) [Accepted]

195

BIO-DATA

Name: Somesha M

Date of Birth: 01/05/1974

Gender: Male

Marital Status: Married

Father’s Name: Hanuma Naik M

Mother’s Name: Late. Shankaramma M

Wife Name: Shashikala R

Email Id: somesh.naik@gmail.com

Present Address: Assistant Professor,

 Dept. of Computer Science & Engineering,

 Govt. SKSJ Technological Institute, K R Circle,

 Bangalore – 560001.

Educational Qualification: B.E (CSE) – UVCE, Bangalore – 560001

 M,Tech (Computer Network Engineering),

 National Institute of Engineering, Mysore – 570006.

Areas of Interest: Information Security, Cyber Security, Computer Networks,

Phishing, Machine Learning.

196

