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ABSTRACT

Cancer is a major cause of significant fatal rates and morbidity worldwide. According

to the latest World Health Organization (WHO) estimates issued in 2020, cancer

disease has the greatest mortality rate, accounting for around 10 million deaths. Over a

lifetime, 1 in 18 men and 1 in 46 women are known to develop lung cancer. Accurate

identification of lung cancer has been a challenging task for decades. Even though

there are techniques to identify lung cancer nodules, it takes enormous efforts from

expert radiologists. Therefore, it is very crucial to automate the process of identifying

nodules from Computed Tomography (CT) scans. This thesis discusses the methods

proposed to perform lung cancer detection, segmentation, and classification using

novel deep learning algorithms.

First, the task of detecting lung nodules from CT scan images is performed. The

lung nodules are irregular tissue formations that can be as small as 3 mm in diameter.

The detection of these lung nodules is a tedious and time-consuming task, as careful

examination needs to be carried out by radiologists. The annotations that the

radiologists provide must be precise and accurate as well. This can lead to human

error. Combining this with computer-aided algorithmic solutions may resolve this

issue. However, deploying this real-time environment is another challenge as it needs

to be interfaced with these solutions as per doctor’s requirements. In this thesis,

different deep-learning solutions are used to develop lung cancer nodule detection

from CT scan images. The potential nodule candidates are identified by the proposed

detection methods.

Second, the task of segmenting the nodule regions from the detected lung nodules is

performed. Once the potential nodule candidates are detected, the accurate nodules are

to be segmented. One of the main challenges that occur in segmentation of lung nodules

is that non-nodules that appear like nodules can be segmented. Therefore, segmentation

of lung nodules is essential to avoid misdiagnosis. In this thesis, Artificial Intelligence



(AI)-based methods are proposed to perform accurate lung nodule segmentation tasks

from the input CT scans.

Third, the task of classifying a segmented nodule as cancerous or non-cancerous is

performed. The tumor/nodule found in the lung/thoracic region can be malignant or

benign. The spread rate and re-occurrence of a malignant nodule in the human body are

very rapid. Therefore, it is crucial to identify the type of nodule at the earliest. In this

thesis, various deep-learning solutions are designed and developed to perform this task.

All the proposed methods in this thesis are evaluated on the publicly available

benchmark LUNA16 dataset; their respective results are presented in subsequent

chapters and verified by an expert pulmonologist. The proposed models resulted in

superior performance in comparison with state-of-the-art techniques. When compared,

state-of-the-art techniques had accuracies of 96.9%, 94.97%, and 96.9% for the

detection, segmentation, and classification task, respectively. However, the proposed

models yielded an accuracy of 98.21% for the detection task, a dice similarity

coefficient of 98.0% for the segmentation task, and an accuracy of 98.7% for the

classification task. This clearly shows an improvement of 1.31%, 3.03%, and 1.8% for

the detection, segmentation, and classification tasks respectively.

Keywords: Lung cancer, Medical imaging, Nodule segmentation, Nodule

detection, Nodule classification, Convolutional Neural Network.
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CHAPTER 1

INTRODUCTION

1.1 BACKGROUND

Cancer is considered to be the world’s most life-threatening illness. Many types of

cancer affect men and women alike. The medical term referring to uncontrolled and

irregular growth of cells in any tissue causing lumps, nodules, or masses to develop is

known as cancer (Rajan et al. 2019). There are over 100 cancer types that can occur in

various tissues such as the breast, skin, lung, colon, prostate, and blood, among others

(Tran et al. 2019). In many situations, there are no unique symptoms suggestive of

cancer; thus, the diagnosis may be delayed without a high degree of suspicion. The

symptoms that can be often seen in cancer patients are non-specific, such as fatigue,

weight loss, pain, pattern changes on the skin, bowel or bladder function changes,

abnormal bleeding, constant cough or speech changes, fever, lumps, or masses.

Cancer staging is related to the magnitude of cancer spread. It is often determined

by a combination of various imaging techniques and relevant tissue biopsy, which is

helpful in identifying the type of cancer. Staging is relevant for the prognosis, where it

helps caregivers to determine therapy protocols, which may include chemotherapy,

immunotherapy, radiation, and surgery either alone or in various combinations. In

particular, cancer in the body is more aggressive in later staging, i.e., the higher the

stage (generally between 0 and 4), the more critical the patient’s condition. These

treatments vary according to the stage and type of cancer.

The human body retains cell growth and regenerates whenever necessary.

1



1. Introduction

However, in unusual conditions, cell growth is uncontrolled and creates cell clusters

called tumors. Tumors can be categorized into two types, non-cancerous and

cancerous. Non-cancerous tumors are benign tumors, and cancerous tumors are

malignant tumors. It is possible to treat and remove the benign tumor as the tumor

does not invade other tissues or organs. Benign tumors can be treated entirely by

surgery. There is a maximum possibility that it will not reoccur; if it does, it will occur

in the same place. A malignant tumor can be treated with chemotherapy, radiation

therapy, etc. However, these tumors may reoccur and have a high chance of invading

other tissues and organs (Sinha 2018).

Lung cancer is the most common type among males and the third most common

type among females, as stated by Potghan et al. (2018). Notably, there is a decrease in

mortality rate in developed countries as there is an improvement in the detection of the

disease in its early stages, diagnosis, and treatment. However, the majority of current

research discards micro nodules when training models, which in turn fails to detect

early stage cancer. Deploying a Computer-Aided Detection (CAD) system is also a

very costly process in developing and underdeveloped nations. Therefore, this work

aims in developing a low complex computer-aided lung cancer detection system

considering micro-nodules which aids in early diagnosis. Tissue biopsy is an

image-guided procedure to identify whether a nodule detected is malignant or benign.

Studies have shown that the mortality rate is high for many patients diagnosed in the

later stages. For the last two decades, there has been a sustained interest in detecting

lung cancer at initial stages. Initially, chest X-ray screening was studied, but it was not

successful in early detection as many subjects had interval lung cancer. It also has

failed to demonstrate the reduction in the mortality rate (Kvale et al. 2014). Low-dose

CT scans have been recently tested to detect lung cancer (Choi et al. 2018; Robles and

Harris 2017; Sverzellati et al. 2016). The key questions to be addressed are, how

effective screening is for the large-scale at-risk population for early diagnosis of lung

cancer and how sensitive and accurate are the image findings for lung cancer

diagnostics. Deep learning methods in Artificial intelligence (AI) has captured a high

interest in medical image analysis for developing computer-aided detection (CAD)

2
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systems for early diagnosis.

1.1.1 Lung Cancer

The tumor originating in the lung region is called lung cancer (Potghan et al. 2018).

Many cancer deaths stem from lung cancer, which is also counted among the

life-threatening diseases in the world. It is an increasing cause of both morbidity and

mortality. Lung cancer today accounts for one in four cancer deaths (Liu et al. 2018a).

It can be characterized as abnormal cell growth in one or both lungs (Aggarwal et al.

2015). Early signs and symptoms in patients make it easy to detect lung cancer. While,

for most patients, signs are observed only after it has reached a higher stage making it

difficult to detect at the initial stages of lung cancer (Chiang A 2019).

Image processing is a technique adapted to extract vital information from an image,

where firstly, the image will be converted into a digital form. Then various operations

are performed on that image to get an enhanced image (Bhalerao et al. 2019). Improved

image processing methods, including AI algorithms, are the current cutting-edge tools

for enhancing prediction for prognosis and treatment, particularly in cancer tumors in

various medical applications. Liu et al. (2019) suggests that lung cancer can be detected

using image recognition methods, as there are apparent differences between balanced

and unhealthy pulmonary images.

1.1.2 Types of Nodules

The development of an irregular circular/oval growth in the lungs called lung nodules

is regarded as an early manifestation of lung cancer. The complex lung structure makes

diagnosing lung cancer a tedious task (Lavanya and Kannan 2018). Classification of

nodules can be made into two types: the cancerous nodules, i.e., the affected nodules,

which can also be called malignant nodules, and the non-cancerous nodules, i.e., the

type of nodules, also called benign nodules. As explained by Kuruvilla and Gunavathi

(2014), radiologists categorize nodules into four different types: Juxtapleural, Well-

circumsized, Vascularized, and Pleural-tail. This can be illustrated in Figure 1.1 (Farag

et al. 2010).

3
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Figure 1.1: Different types of nodules. Column-wise: 1. Juxta; 2. Well-Circumscribed;
3. Vascualarized and 4. Pleural-tail

Size is a primary determinant of a nodule, whether benign or malignant. A lung

nodule with a size greater than 3 cm has a higher chance of being malignant

(Choromańska and Macura 2012). The “doubling time” is even more significant: the

time taken for the nodule volume to double. This is a more sensitive and specific

feature of malignant lesions than just the size, but it needs serial images 1. If the

doubling time is faster, i.e., less than 30 days, it is likely due to a benign cause such as

an infection. A lesion that stays static for two years is considered benign.

A common and effective approach for detecting lung nodules is Computed

Tomography (CT). CT has a much higher resolution than a conventional chest X-ray in

which nodules usually need 1 cm or larger to be detected in a chest X-ray (Shaziya

et al. 2018). The confirmation of the malignancy requires tissue biopsy. Positron

Emission Tomography (PET) scan can also help determine if the nodule in the CT

image is malignant (Rahman et al. 2019). It should be remembered that benign

lesions such as an infection also lead to positive PET scans due to increased uptake of

FluoroDeoxyGlucose (FDG) when there is a high metabolism. The confirmation in

such situations demands a biopsy from the affected nodules or lymph nodes.

According to Liu et al. (2018a), due to the poor quality of CT scans, the complex

shapes of lung nodules and the unavailability of annotated information leave no option

for current techniques to only measure the nodule center and an important diagnostic

1To track changes in a diseased area and the results of therapies and treatments, serial images are
made up of the sequential acquisitions throughout time of images of the same patient.
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criterion, nodule width is often overlooked.

1.1.3 Stages of Lung Cancer

The staging of lung cancer can be done in four levels. These levels are illustrated in

Table 1.1. Based on the order of grade, the stages from I to IV are given by Kulkarni

and Panditrao (2014).

Table 1.1: Stages of Lung Cancer

Lung Cancer Stages Parts of the body affected
Stage I Restricted to the lung

Stage II and III Restricted to the chest
Stage IV Extensive metastases outside

the chest/thorax or pleural involvement

1.1.4 Imaging Modalities

Various imaging techniques are used to diagnose, classify, and recognize the stages of

lung cancer. Some popular techniques are Magnetic Resonance Imaging (MRI), CT,

PET, chest radiograph (known as X-ray), etc. These imaging techniques provide local

information on the presence of a tumor, metastate of the presence of the disease, and

even the lymph nodes in the human body. A combination of imaging techniques, such

as PET and CT, is also made to get deeper anatomical information about the region.

CAD devices are used to identify lung nodules automatically, which allows

radiologists to detect disease. Lung cancer can be diagnosed in the early stages using

CT images. Many CAD systems use CT scanning because the image capture process

is quick, does not damage the patient’s bones, and is less noisy (Potghan et al. 2018).

Imaging tests like CT scans can recognize lung cancer as it provides a more accurate

picture, suggests Kulkarni and Panditrao (2014). CT scans are more powerful in

identifying and diagnosing lung cancer than regular chest X-rays. A 3-dimensional

image can be reconstructed from CT scans as the acquisition of the images is

performed in a continuous manner (Hollings and Shaw 2002).
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1.1.5 Computed Tomography

Scanning CT is the most suitable method to visualize lung cancer (Niranjana and

Ponnavaikko 2017). As per Lakshmanaprabu et al. (2019), CT is best suited for

tracking the location of tumors and determining the cancer stage in the body. CT

scanning is used to identify lung mass tissue or nodules because it can detect slight

irregularities suggesting lung cancer (Aggarwal et al. 2015).

In medical practice, the most powerful and common imaging technique is known

to be CT for detecting nodules and for diagnosing with benefits such as

cost-effectiveness, high spatial resolution, availability, and non-invasiveness (Gibaldi

et al. 2015; Ng and Goh 2010). Compared to PET and MRI imaging techniques, CT

is much easier and less costly and can achieve better sensitivity in lung nodule

detection than X-ray imaging suggests Bhavanishankar and Sudhamani (2015), and

Cieszanowski et al. (2016). The diagnosis of lung cancer at its initial stages has shown

significant and encouraging results in CT screening in the form of pulmonary nodules,

thereby mitigating mortality rate (Monkam et al. 2019). Therefore, most work in this

field has been dedicated to lung nodule identification through CT scans of the thoracic

region.

1.1.6 Conventional and Deep Learning based CAD Systems for Lung Cancer

The existing lung cancer CAD systems can be categorized into two types, traditional

and deep-learning. Figure 1.2 depicts the block diagrams of the two kinds. The

traditional CAD systems, as shown in Figure 1.2(a), consisting of steps such as

pre-processing of input CT scans, segmentation of the region of interest (ROI), nodule

candidate generation, feature extraction, selection of optimal features, classification of

nodules and non-nodules. Traditional CAD systems consist of more steps and are

time-intensive. Deep learning-based CAD systems are considerably faster and better

performing than traditional CAD systems. The deep learning-based system, as shown

in Figure 1.2(b), consists of steps such as nodule candidate generation from CT scan

input and deep learning model to classify the nodule and non-nodule classes. This

thesis’s primary study area is designing and developing deep learning-based CAD
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systems for lung cancer.

Figure 1.2: Conventional machine learning and deep learning based CAD systems for
Lung Cancer

1.2 MOTIVATION

Lung cancer is one of the diseases with a very high mortality rate and is still a major

concern. Below are some of the motivations that encouraged to choose this as a research

area of this thesis.

1. According to the WHO, cancer accounted for 10 million deaths in 2020, and

globally, cancer causes about 1 in 6 deaths. In 2020, incidence rate of lung cancer

was 2.21 million and the mortality rate was 1.80 million. Based on incidence

and mortality, lung cancer ranked the highest among other cancers worldwide in

2018. These statistics motivated authors to develop a CAD system for lung cancer

detection.

2. A reliable CAD system with good performance can help provide radiologists

with a second opinion. Also, it can reduce radiologists’ interpretation time as

numerous CT scans have to be examined by a radiologist on a day-to-day basis.

This in turn helps the radiologist to avoid misdiagnosis.
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3. About 70% of the patients are detected with lung cancer at their final stages,

and only 16% have a chance of surviving in the next five years (Kulkarni and

Panditrao 2014). There are greater chances of improving the survival rate of

patients of 5 years to 70% if the patients are diagnosed earlier (Baldwin 2015).

1.3 APPLICATIONS

This section discusses some of the important applications for lung cancer-based CAD

systems.

1. The main benefit of lung nodule CAD systems is that they give doctors a second

opinion while treating patients, enabling them to treat patients more quickly.

2. Once the CAD system for lung cancer detection is successfully developed, the

tool can be implemented for other types of cancers as well.

1.4 CHALLENGES

Even though a lot of work is done in detecting lung cancer nodules, there are some

challenges to building real-time CAD systems. Some of the challenges are:

1. Acquired data is of poor quality because it contains noise for a range of reasons.

Pre-processing is a crucial and difficult step in order to enhance the quality of

image.

2. It is difficult to visually identify the difference between a malignant nodule and a

normal pulmonary structure. This makes it essential to develop a CAD system.

3. It is a challenging task to increase patients’ chances of survival as it is difficult to

identify malignant nodules at the initial stage of development.

4. There is a lot of variability in the available datasets as they are recorded by

multiple scanning devices, stored in different storage formats, or the modality of

the image may differ. It is challenging to build a generalized model.

5. Finding reliable features and integrating them into CAD systems for performing

benign and malignant nodules classification is tedious.
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6. To reduce the number of false positives/scan (FP/Scan), computation time and

improvising the model’s sensitivity are also challenging. There is no consistent

use of performance metrics to evaluate the system.

7. The radiologists may not give accurate annotations for a huge amount of data as

the images are multi-dimensional.

8. Due to the variation in nodule type and size, it is not easy to differentiate between

cancerous and non-cancerous nodules.

9. Selection of the optimal set of features for nodule detection and nodule

classification is a challenging task and requires much domain knowledge.

10. It is extremely difficult to identify a wider variety of lung cancer nodules with

improved sensitivity and less FP/scan. Therefore, it is essential to develop a lung

cancer CAD system that is more reliable and robust.

11. Many nodules are non-cancerous and should not be classified as cancerous,

leading to inappropriate diagnosis.

1.5 BRIEF OVERVIEW OF THESIS CONTRIBUTIONS

The significant contributions of this thesis include solving three tasks: detection,

segmentation, and classification. To address these three challenges, new techniques are

proposed. The contributions of this thesis are listed below:

1. Lung Cancer Detection system to identify nodules and non-nodules from raw CT

scans.

2. Lung Cancer Nodule Segmentation model to extract ROI from CT scans.

3. Lung Cancer Nodule Classification system on CT scans.
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1.6 ORGANIZATION OF THE THESIS

The thesis advances in 6 chapters. An outline of each chapter is given below.

• Chapter 1 : The Introduction section covers the discussion on lung cancer,

various imaging modalities, the challenges in lung cancer detection, and the

need for CAD systems. The chapter ends with a brief overview of research

contributions and a thesis outline.

• Chapter 2 : Literature Review section mainly consists of a detailed review of

the various conventional/traditional and deep-learning CAD systems developed

for detecting and classifying lung cancer nodules.

• Chapter 3 : Lung Cancer Detection includes the task of identifying nodules

and non-nodules from raw CT scans using various machine learning and deep

learning techniques.

• Chapter 4 : Lung Cancer Nodule Segmentation covers a novel deep learning

segmentation algorithm proposed to perform region of interest (i.e., nodule)

extraction from the CT scan.

• Chapter 5 : Lung Cancer Nodule Classification discusses further

categorization of nodules into malignant and benign nodules using novel deep

learning architectures.

• Chapter 6 : Conclusions and Future Scope chapter summarizes the

contributions and findings of this research work with future scope.
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CHAPTER 2

LITERATURE REVIEW

In this chapter the literature review of existing lung cancer CAD systems is discussed

in detail. The research in detecting pulmonary nodules in the lungs has been a

challenging problem for decades. Several methods have been proposed to perform this

task in the recent decade. However, not all the systems are reliable enough to deploy in

a real-time environment. Some of the deep learning methods have resulted in

promising outcomes in terms of evaluation metrics like accuracy, sensitivity,

free-response receiver operating characteristic (FROC), and so on. The high

performances among the deep learning methods are ensemble Convolution Neural

Network (CNN) and deep learning-based segmentation algorithms. The most popular

CNN methods resulting in higher performance include combination of two or more

conventional CNN models. With this, we can conclude that ensemble methods provide

better results as it combines the advantages of two or more networks to learn input

features better. This chapter covers a broad range of current works published in lung

cancer nodule detection and classification. Also, the overall findings based on the best

techniques available in the literature for both traditional and deep learning systems are

provided. A set of research gaps evolved from a thorough literature review is listed at

the end of the chapter, along with the problem definition and objectives. The review

here focuses on two main parts:

1. Conventional/ Traditional Methods

2. Deep learning Methods
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2. Literature Review

2.1 CONVENTIONAL/ TRADITIONAL METHODS

Traditional techniques include machine learning techniques such as Support Vector

Machine (SVM), K-Nearest Neighbor (KNN), Artificial Neural Network (ANN) etc.

Table 2.1 consists review of research done on lung cancer using traditional

machine-learning techniques. The contents of these tables include authors’ name, year

of publication, dataset(s) that the authors have used, feature extraction techniques,

segmentation techniques, classifiers used, performance measures for evaluating the

system, advantages and limitations of the work.

2.2 DEEP LEARNING METHODS

Deep learning architectures include CNN, residual networks, LeNet etc. Table 2.2

briefly discusses popular deep-learning architectures used to segment and classify lung

cancer nodules. Table content includes authors’ name, year of publication, the dataset

used by authors, methods used, performance measures, advantages, and limitations of

the work.
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Table 2.1: Comparison of various Machine Learning CAD Systems for Lung Cancer based on techniques used and performance achieved

Authors
Dataset(s)

used
Techniques used Performance

Measures
Remarks

Pre-
processing Segmentation Feature Extraction Classification Advantages Limitations

Potghan et al.
(2018)

NSCLC,
LIDC N/A∗

Lung Volume
Segmentation
using local
thresholding
method and K-
Mean Clustering

Gray Level Co-
occurrence Matrix
(GLCM), Contrast,
dissimilarity,
Homogeneity,
Angular Second
Moment (ASM),
Energy, Mean and
Standard deviation

KNN, Multilayer
perceptron
(MLP)

Accuracy=98.30%
(KNN),
Accuracy=98.31%
(MLP)

Results are
commendable

Data imbalance
is not handled as
well as it is not
preprocessed

Javaid et al.
(2016)

LIDC and
Private data
from Mayo
Hospital
Lahore,
Pakistan

Contrast
stretching
(normalization)

Intensity
thresholding and
morphological
operations

Intensity, geometric
and statistical
features

SVM

Sensitivity=91.65%
and FPs/case=3.19
and
Accuracy=96.22%

Proposed system
is assessed with
different types of
nodules ranging
from small to
large, including
complex ones
like juxtavascular
and juxtapleural
nodules

Proposed CAD
system is not
efficient in the
detection of ground
glass nodules
(GGO) with low
intensity values

Aggarwal
et al. (2015)

Cancer
Imaging
Archive
database

Median filter Thresholding

Area, perimeter,
roundness, solidity,
eccentricity,
equivalent diameter,
centroid and convex-
area

Linear
discriminant
analysis (LDA)

Accuracy=84%,
Specificity=53.33%

This work provides
prior classification
of nodules and
normal anatomy
structure effectively

Data used for
training and testing
is only 90 and 150
images respectively.
Also, Specificity is
quite less

Kuruvilla and
Gunavathi
(2014)

LIDC N/A Morphological
operations

Mean, standard
deviation, skewness,
kurtosis and Fifth
and sixth central
moment

Feed forward
and feed forward
back propagation
neural networks

Accuracy=93.3%,
Specificity=100%,
Sensitivity=91.4% and
Mean square error=
0.998

Two new training
functions are
proposed in this
paper

Sensitivity is 82%
with 2 FPs/scan,
but when increased
to 91.4%, also
increases 30
FPs/scan

Gong et al.
(2018b)

LUNA16
and
ANODE09

optimal
threshold
for lung
parenchyma
segmentation
by applying
OTSU
threshold
algorithm

3D tensor
filtering and
local shape
feature analysis

Spherical features,
intensity features,
texture features and
location features
in two-dimensional
and three-dimension

Random Forest
(RF), J48
Decision Tree,
SVM, Logistic
Regression

Sensitivity=84.62%
with False
positive/scan=2.8

A novel approach is
proposed for lung
nodule detection
by incorporating a
3D tensor filtering
algorithm with the
use of local image
feature analysis

Performance of the
proposed method is
less

∗N/A-Not Available
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Table 2.1: Comparison of various Machine Learning CAD Systems for Lung Cancer based on techniques used and performance achieved
(continued)

Authors
Dataset(s)

used
Techniques used Performance

Measures
Remarks

Pre-
processing Segmentation Feature Extraction Classification Advantages Limitations

Li et al.
(2018)

LIDC and
General
Hospital of
Guangzhou
Military
Command

Gabor filter
Improved
random walk
method

Intensity, geometric
and texture features RF

Sensitivity=92%
and Receiver-
operating-characteristic
curve=0.95 (LIDC),
MeanSensitivity= 85%
and
MeanSpecificity= 82%
(Private hospital data)

Proposed approach
is tested on 2
datasets and
an improved
RF classifier is
suggested

Performance of the
system reported on
the private hospital
data is quite less,
which makes the
model less reliable

Farag et al.
(2017) LIDC Scan filtering Lung tissue

segmentation

Gabor filter, Local
binary pattern (LBP)
and signed distance
fused with LBP

SVM and KNN

Obtained AUC-
ROC=0.99
and
average f1-score= 0.975

Higher overall
AUCs and f1-scores
are obtained

Hundreds (e.g.,
LBP) or thousands
(e.g., Gabor)
of features are
calculated, which
slowed down the
learning process

Wu et al.
(2016) LIDC

Gaussian noise
and median
filter

Threshold-based
segmentation

Mean, variance,
morphological,
invariant moments,
area, diameter,
long and short
axis, circularity,
compactness,
contrast, correlation,
angular second
moment and
homogeneity

Particle Swarm
Optimization-
based Relevance
Vector Machine
(RVM)

Accuracy=79.4,
Sensitivity=72.7%,
False Negative
Rate=27.3%

Overall scheme
of the PSO-based
SVM classification
model is well
designed

Classification
accuracy is still not
good enough

Rajan et al.
(2019)

Lung cancer
data N/A∗ N/A N/A Multi-class

neural networks Accuracy=100%

Development of a
3D technique for
segmenting lung
nodules

Performance of
the system is
comparatively less

Oğul et al.
(2015) JSRT

Re sampling
and region
of interest
extraction

Gray-level
transform,
intensity based
blob detection
algorithm,
Lindeberg’s
multi-scale blob
detection scheme

Position, texture,
intensity, Gaussian,
detector and gradient
features

SVM
Sensitivity=80%
with
False positive/scan=6.4

Five different set
of nodule detection
technique is applied
and the best one is
chosen

Proposed approach
uses a large number
of features and the
false positive/scan
is very high

He et al.
(2014) LIDC N/A Threshold-based

segmentation

Texture and
morphological
based

ANN Accuracy=78.9%
Stage wise
classification is
performed

Results are given
only on 4 images

∗N/A-Not Available
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Table 2.1: Comparison of various Machine Learning CAD Systems for Lung Cancer based on techniques used and performance achieved
(continued)

Authors
Dataset(s)

used
Techniques used Performance

Measures
Remarks

Pre-
processing Segmentation Feature Extraction Classification Advantages Limitations

Cao et al.
(2020) LIDC

Spatial and
frequency
domain are
used for
image contrast
enhancement

Thresholding Weber local
descriptor (WLD) SVM

Specificity=99.15%
Sensitivity=98.73%
and
Accuracy=98.94%

A novel and
effective pulmonary
nodule detection
framework is
proposed

Only 84 cases with
105 nodules were
considered which
makes model less
reliable

Dolejsi et al.
(2009)

Lung TIME,
LIDC and
ANODE09

Multi-scale
filtering using
a Gaussian
filter

Thresholding
and binary image
processing

Intensity, volume,
shape and other
measurement

Asymmetric
AdaBoost
classifier

Sensitivity=78.68%
and 4.61 FPs/slice
(ANODE09)
Sensitivity=89.62% and
12.03 FPs/slice (LIDC)
Sensitivity=94.03% and
5.46 FPs/slice (Lung
TIME)

Proposed approach
is tested on 3
datasets

False positives per
slice for LIDC is
more

de Carvalho Filho
et al. (2017) LIDC N/A∗ N/A

Texture features
using phylogenetic
diversity

SVM and Genetic
Algorithm (GA)

Accuracy=92.52%,
Sensitivity=93.1% and
Specificity=92.26%

The performance
of the proposed
approach is good
and best model is
selected using GA

No segmentation is
performed, however
only larger nodule
bound is chosen as
given by up to 4
experts

Manikandan
and Bharathi
(2011)

N/A Wiener filter Region based
segmentation

Diameter, shape and
intensity

Fuzzy Inference
System (FIS) Sensitivity=92.3%

Use of FIS in this
domain inspired
researches to
explore further

Results are tested
on only 50 cases

de Carvalho Filho
et al. (2014) LIDC

Quadratic
enhancement
for selective
contrast
increase,
Gaussian
Filter and
median filter

Quality threshold
(QT) algorithm

Shape and texture
based features

SVM and Genetic
algorithm

Sensitivity=85.91%
Specificity=97.70%
Accuracy=97.55%
with a FPR of 1.82
per exam and 0.008 per
slice

The performance
of the proposed
approach is good

Only scans out
of 1012 scans are
considered and also
the sensitivity of
the proposed model
is less

Sweetlin
et al. (2018)

Private (300
CT scans) N/A Otsu’s

thresholding

Texture, shape and
run length based
features

SVM and Naive
Bayes (NB) Accuracy=94.36%

A positive impact of
choosing relevant
features on the
performance of the
classifier is shown

Only 305 nodules
were considered
which makes model
less robust. Also,
noise removal was
not performed

∗N/A-Not Available
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Table 2.1: Comparison of various Machine Learning CAD Systems for Lung Cancer based on techniques used and performance achieved
(continued)

Authors
Dataset(s)

used
Techniques used Performance

Measures
Remarks

Pre-
processing Segmentation Feature Extraction Classification Advantages Limitations

Gong et al.
(2018a)

Private
data from
Shanghai
Pulmonary
Hospital and
NSCLC-
Radiomics

Multi-scale 3D
dot filtering

A hybrid 3D
semi-automatic
segmentation

Texture, histogram
and shape based

Support vector
machine, Naive
Bayes classifier
and Linear
discriminant
analysis

AUC values are 0.88
and 0.99 for detecting
early and advanced
stage nodules

A positive trend
between CADx
performance and
cancer progression
stage is presented

Dataset is small,
with 243 cases and
is unbalanced with
76 benign nodules
less as compared to
malignant nodules

Kulkarni and
Panditrao
(2014)

LIDC

Image
Smoothing,
Image
Enhancement
(Gabor filter)

Marker based
watershed

Area, perimeter and
eccentricity SVM

Area= 1328,
Perimeter= 162,
Eccentricity=0.960

Stage wise
classification is
performed

Results are given
only on 4 images

Liu et al.
(2017) LIDC N/A∗

Two-
dimensional
OTSU’s curve
thresholding

22 texture and shape
features

Ensemble
classifier and
RF

Accuracy=93.2%,
Sensitivity=92.4%,
Specificity=94.8%,
AUC=97.6%

A novel
pulmonary nodule
segmentation
method is proposed

FP/Scan of this
work is slightly
higher than some of
other approaches

Aresta et al.
(2017) LIDC

Multi-scale
filtering using
a Gaussian
filter

Intensity based
lung volume
segmentation

Intensity, Hessian
values, gradient,
geometry and
distance to the
pleura

Support vector
machine with
radial basis
function

Sensitivity is 57.4%
with 4 FPs/scan

All solid, sub-
solid and non-
solid nodules are
considered as
opposed to other
methods

Sensitivity is very
less

Alilou et al.
(2014) LIDC N/A

Multiple
thresholds
followed by
morphological
opening and 3D
region growing
algorithm

3D geometrical,
3D intensity-based,
2D geometrical and
2D intensity-based
features

Rule-based
procedure and
SVM

Sensitivity=80.0%
with
False positive/Scan=3.9

The proposed
method is time-
efficient

Performance of the
proposed method is
less

Mehre et al.
(2016) LIDC N/A

Hard
thresholding
with attenuation
threshold

Geometry, and
intensity-based
statistical features

SVM

Sensitivity=92.91%
and
False positive per
slice=3

Development of
novel method for
balancing the data
without loss of
information

Large number of
features are used,
instead feature
selection methods
could have been
used

Dandıl
(2018)

CT Lung
Data set
from Sincan
Nafiz Korez
Hospital

Lung volume
extraction
method
(LUVEM)

Self-organizing
maps (SOM).

Intensity, shape,
texture, energy and
combined features

Probabilistic
neural network
(PNN)

Specificity=94.24%,
Sensitivity=97.42%
and
Accuracy=95.91%

New preprocessing
technique is
proposed for
image enhancement

Results are given
only on 38 images

∗N/A-Not Available
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Table 2.1: Comparison of various Machine Learning CAD Systems for Lung Cancer based on techniques used and performance achieved
(continued)

Authors
Dataset(s)

used
Techniques used Performance

Measures
Remarks

Pre-
processing Segmentation Feature Extraction Classification Advantages Limitations

Liu et al.
(2014) LIDC

Selective
enhancement
filter

Region growing and
thresholding

Mean, intensity
value, intensity
variance, kurtosis,
minimum intensity
value, maximum
intensity value,
size, overlap value,
circular shape
descriptor value

Conditional
random field
(CRF)

Sensitivity=89.30%

A novel and
effective pulmonary
nodule detection
framework is
proposed

Only 59 nodules
from 38 patients are
considered for both
training and testing,
which is less data

Akram et al.
(2016) LIDC N/A∗

Thresholding, initial
label masking,
background
removal, connected
component labeling,
morphological
operators and contour
correction

Geometric and
Intensity based
statistical features

SVM
Accuracy=97.52%,
Sensitivity=95.31%,
Specificity=99.73%

The performance of
the system is good
as there is high
specificity for the
dataset

Proposed approach
uses a large number
of features of 2D
and 3D geometry

Santos et al.
(2014) LIDC N/A

Thresholds, region
growing algorithm
and Hessian matrix

Texture features SVM

Accuracy=88.4%,
Sensitivity=90.6%
and
Specificity=88.5%

The performance
of the proposed
approach is good
and multiple
segmentation was
applied to segment
different regions in
the images

Only 28 scans
is considered for
the comparison
of the methods
which is not a fair
comparison

Yokota et al.
(2014) LIDC 3D line filter Thresholding

Density and shape
based statistical
features

ANN Accuracy=93.0%

Removal of
vessel regions
has improved the
performance of the
proposed system

All GCO based
features are used,
instead feature
selection methods
could have been
used to provide an
efficient model

de Sousa Costa
et al. (2018) LIDC N/A N/A

Texture features
using phylogenetic
distance and
taxonomic diversity

SVM

Sensitivity=93.42%
Specificity=91.21%
Accuracy=91.81%
and
Area under the ROC
curve=0.94

A useful tool for
expert physicians

No preprocessing
done to remove
noise

∗N/A-Not Available
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2.3 OVERALL FINDINGS FOR CONVENTIONAL CAD SYSTEMS

There are multiple systems developed previously for performing lung cancer detection

and classification. The best results obtained from various methods are mentioned below.

2.3.1 Pre-processing

This step is considered one of the important steps in building efficient CAD systems. It

is necessary to improve the image quality before performing any other step. In the

previously proposed CAD systems, the majority of the pre-processing involved

applying filters and normalization techniques to the input image. Amongst multiple

filtering techniques, the techniques that provided the best performances are contrasted

stretching (normalization technique), gabor filter, image contrast operations from

spatial and frequency domains, Weiner filter, and 3D line filters. The application of the

filters enhances the quality of the input images, which helps in the extraction of better

features.

2.3.2 Segmentation

As mentioned earlier, the nodule size can vary widely, and some images can consist of

small nodules, which in turn have much background. The background information is

considered noise. Therefore, it needs to be removed. To perform this operation,

segmentation of only the region of interest is done on the input images. Only the

region around the nodule location is cropped and considered for feature extraction.

Some of the segmentation techniques that helped in the better performance of the CAD

system are local threshold segmentation, intensity threshold segmentation,

morphological operations, and OTSU threshold segmentation. These segmentation

techniques help identify only the nodule region and remove unwanted background

information.

2.3.3 Feature Extraction

The performance of the CAD system depends on the features extracted from the input

images. They play a vital role in providing better results. Multiple sets of features

can be extracted from the images. Some of the common feature representations that

18



2.3. Overall Findings for Conventional CAD Systems

proved to provide reliable results for lung cancer detection CAD systems are Gray level

co-occurrence matrix (GLCM), contrast, dissimilarity, homogeneity, statistical features

such as energy, mean, standard deviation, skewness, kurtosis, Fifth and sixth central

moment, intensity, geometric, texture features, and Weber Local Descriptor.

2.3.4 Classification

The lung nodule classification is the ultimate goal in lung cancer CAD systems.

Various classifiers are used for performing the classification task. However, not all

classifiers perform well and result in reliable performance. The classifiers that resulted

in better performance for lung nodule classification tasks are K-Nearest Neighbors

(KNN), Support Vector Machine (SVM), Multi Layer Perceptron (MLP), Random

Forest (RF), Fuzzy Inference System (FIS), Probabilistic Neural Network (PNN), and

Artificial Neural Network (ANN). These classifiers resulted in reliable results in

classifying lung cancer nodules.
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Table 2.2: Comparison of various Deep Learning CAD Systems for Lung Cancer based on techniques used and performance achieved

Authors
Dataset(s)

used Techniques used Performance
Measures

Remarks
Advantages Limitations

Hua et al.
(2015) LIDC Deep belief network and

CNN

Sensitivity=73.4%,
Specificity=82.2%
(DBN) and
Sensitivity=73.3%,
Sensitivity= 78.7%
(CNN)

First research to apply deep learning
techniques to the problem of pulmonary
nodule classification

The major drawback of the deep
learning techniques used in this
study lies in the resizing issue of
the input images and it resulted in
low results

Kasinathan
et al. (2019) LIDC

Multiscale Gaussian
distribution to smoothen
CT images, Enhanced CNN

Accuracy= 97%,
Sensitivity= 89%,
Specificity= 91%

Accuracy is improved, and model takes
less computation time

Increasing the sensitivity also
increased false positives

da Nóbrega
et al. (2018) LIDC

Features extracted
through VGG16, VGG19,
MobileNet, Xception,
InceptionV3, ResNet50,
Inception-ResNet-V2,
DenseNet169, DenseNet201,
NASNetMobile,
NASNetLarge and classified
through Naive Bayes, MLP,
SVM, KNN and RF

Accuracy= 88.41%,
AUC=93.19%,
F-Score=78.83%,
TruePositiveRate=
85.38%,
and
PositivePredicted-
Value= 73.48%

Various models are trained and tested in
this work It is believed that based on
the performance and parameters of the
models used, it will help researchers to
choose a model for their problem

F-Score and Positive Predicted
Value are less and still can be
improved

Manikandan
and Bharathi
(2011)

LIDC Median filter, Convolution
Neural Network Accuracy= 96% Performance of the system is good

Data used for training the model
is only 70 images and for testing
is 30 images, so the reliability of
the model is still a question. It is
believed that CNN requires more
data to train the network

Tran et al.
(2019) LUNA

Novel 15-layer 2D deep
convolutional neural network
architecture

Accuracy=97.2%,
Specificity=97.3%
and
Sensitivity=96%

A novel architecture which helped in
achieving very good results

15 layer architecture needs more
computational resources. So, in
order to make this model useful
to low processing power systems,
optimization is required

Hamidian et al.
(2017) LIDC 3D fully convolutional

network (FCN)

Sensitivity= 80% and
False positives per
case= 22.4

A 3-D FCN model is proposed

The sensitivity of the model is
less and the false positives per
case is very high which has to be
improved
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Table 2.2: Comparison of various Deep Learning CAD Systems for Lung Cancer based on techniques used and performance achieved
(continued)

Authors
Dataset(s)

used Techniques used Performance
Measures

Remarks
Advantages Limitations

Jakimovski and
Davcev (2019)

Image & Data
Archive of
the University
of South
Carolina and
the Laboratory
of Neuro
Imaging
(LONI)
database

Convolutional Deep Neural
Network (CDNN) and a
regular CDNN

HighestAccuracy=
99.62% (CDNN),
HighestAccuracy=
87.6% (regular
CDNN)

The highest result achieved is
commendable

The drawback in the model is that
the minimal value of certainty is
decided manually and is accepted
as being satisfactory. Deciding
this value by the user, requires
lot of domain knowledge, as a
single wrong threshold may lead
to misclassification

Kim et al.
(2016)

In-house data
(20 subjects)

Stacked Denoising
AutoEncoder (SDAE),
linear SVM

Accuracy= 95.5%,
Sensitivity=94.4%,
and
AUC= 0.987

Data Augmentation is done to balance
malignant and benign nodules

Number of subjects are very less
to judge the reliability of the
model. The model can be further
tested on LIDC data

Setio et al.
(2016)

LIDC,
ANODE09
challenge and
DLCST

Multi-View Convolutional
Networks

Sensitivity= 85.4% at
1 false positive per
scan and 90.1% at
4 false positives per
scan

3 datasets are used for showing the
performance of the model

Performance can still be
improved, by increasing the
sensitivity and reducing the false
positives per scan

Sahu et al.
(2018) LIDC Lightweight Multi-Section

Convolution Neural Network Accuracy=93.18%
The proposed model is lightweight
which makes model to be ported to
mobile devices

A cloud based paradigm is needed
where a model exploits GPU’s
capabilities to determine and fetch
the salient sections quickly

Kumar et al.
(2015) LIDC

Deep features extracted from
an auto encoder, Binary
decision tree as a classifier

Accuracy=75.01%,
Sensitivity=83.35%,
and
False
positive=0.39/patient

FPR is reduced and the deep features
not only take the different conventional
semantic features like lobulation,
spiculation etc. in to account but they
also take into account the association
between them

Accuracy is less for the model to
be deployed in a hospital

Liu et al. (2019) Private data
(60 patients)

Low-level features such
as color moment and
texture feature, ResNet for
classification

Diagnostic
accuracy=100%
(experimental group)
and
74.29% (control
group)

The obtained accuracy for diagnostic
group is 100%, which is good

However, to check the robustness
of model, it would be good if
the performance is evaluated on
publicly available large data sets
such LIDC

21



2.Literature
R

eview
Table 2.2: Comparison of various Deep Learning CAD Systems for Lung Cancer based on techniques used and performance achieved
(continued)

Authors
Dataset(s)

used Techniques used Performance
Measures

Remarks
Advantages Limitations

Rahman et al.
(2019) LIDC

Preprocessed through
blurring and thresholding,
Classified through
MobileNet, VGG- 8 and
Inception-v3 deep neural
network models

Accuracy=97%,
Specificity=97.85%
and
Sensitivity=96.26%

Model in low processing power
computer, which in turn helps doctor to
detect nodules and take better decisions

Images from DICOM format
are converted to JPEG format
using Microsoft Paint for easy
processing, however it looses lot
of information

Xie et al. (2018) LIDC
Multi-View Knowledge-
based Collaborative (MV-
KBC) Deep Learning

AUC=95.70%
and
Accuracy=91.60%

Results are superior than various SOTA
approaches

There are 27 ResNet-50 models
embedded in the system. This
makes the proposed MVKBC
system require a highly
computational complex server for
training it

Bonavita et al.
(2020) LIDC CNN F1-weighted

score=11.8%

This was the first attempt to build
nodule-malignancy/patient-cancer
integrated framework to quantify
nodule malignancy

Performance of the model in terms
of precision, recall is less

Shakeel et al.
(2020)

Cancer
Imaging
Archive (CIA)

Improved deep neural
network and ensemble
classifier

Accuracy=96%,
Specificity=98%,
Precision=97%,
Recall=98% and
F1-score=98%

Results achieved from the model are
good

Model was tested on very few
samples

Rehman et al.
(2020) JSRT CNN Accuracy = 88%

The model performed better than some
of the high complex classification
models

The dataset contains only 100
malignant and 54 benign nodules.
This makes model less robust.

Sori et al.
(2021)

Kaggle Data
Science Bowl
2017 challenge
(KDSB) and
LUNA 16

Denoising first two-path
convolutional neural network
(DFD-Net)

Accuracy=87.8%

An image denoising technique is
adapted in this work to improve the
performance of the nodule detection
task. The method is less complex in
terms of computation time.

The accuracy of the method is too
less to be deployed in real-time
environment.

Surendar
(2021) LIDC-IDRI

Deep neural network with
adaptive sine cosine crow
search (DNN-ASCCS)

Accuracy=99.71%

The authors have proposed new
segmentation, feature selection and
classification methods for lung nodule
classification.

The results are only reported for
less number images which may or
may not give similar performance
for larger datasets.
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Table 2.2: Comparison of various Deep Learning CAD Systems for Lung Cancer based on techniques used and performance achieved
(continued)

Authors
Dataset(s)

used Techniques used Performance
Measures

Remarks
Advantages Limitations

Zhang et al.
(2019) LUNA16

Texture features, shape
features, 3D deep DPN
features, Gradient boosting
machine (GBM) for
classification

AUC=0.9687%
and
Accuracy=93.78%

Relevant features are considered and it
helped in yielding good results

Used network is complex and
there is still scope for optimization

Ypsilantis
and Montana
(2016)

LIDC

Thresholding-based region
for segmentation, Recurrent
Convolutional Networks
(ReCTnet) for classification

Sensitivity=90.5%,
False positives per
scan=4.5

Results from this work suggests
that LSTM layers enable to better
synthesize the anatomical information
across adjacent slices eventually
resulting in improved discrimination
ability

Having such a deep architecture
should not need segmentation as
an extra step, as model becomes
more complex

Fu et al. (2017) LIDC

Thresholding, 2D CNN,
SVM Morphological
operation, 3D region
growing, hand-crafted
feature extraction

Sensitivity=89%
at False positive=
4/scan
and
Sensitivity=71.6% at
False positive=1/scan

Combination of handcrafted features
and CNN features from both lung CT
images and enhanced images is proved
to be a promising method for lung
nodule detection

When FP/scan is 1, sensitivity
is very less making model less
efficient

de Carvalho Filho
et al. (2018) LIDC

Otsu algorithm, new indexes
of phylogenetic diversity
based on topology, CNN

Accuracy=92.63%,
Specificity=93.47%,
Sensitivity=
90.7% and
receiver operating
characteristic curve
of 0.934

The model performed very well given
larger number of samples and achieved
good results in terms of accuracy,
sensitivity, specificity and AUC

There is still scope for improving
the sensitivity of the model by
performing some modifications in
the CNN architecture

Wang et al.
(2018) LIDC

Histogram of Oriented
Gradients (HOG), Local
Binary Pattern (LBP),
Hybrid CNN network model

Receiver operating
characteristic curve
(AUC) from 0.9441
to 0.9702

The results achieved are good

The model used for the
classification is a complex
model and is computationally
expensive

Nibali et al.
(2017) LIDC

Deep residual learning,
curriculum learning, and
transfer learning

Accuracy=89.90%,
Specificity=88.64%,
Sensitivity= 91.07%,
Precision= 89.35 and
receiver operating
characteristic curve
of 0.9459

Data imbalance of benign and
malignant nodules is handled by
preprocessing the data

Performance can still be
improved, by increasing the
sensitivity and precision

da Silva et al.
(2017) LIDC

Otsu algorithm, Particle
Swarm Optimization,
Genetic algorithm,
Convolutional Neural
Network

Accuracy=94.78%,
Specificity=95.14%,
Sensitivity=94.66%,
Area under
curve=0.949

The results achieved by the model are
good

Many preprocessing techniques
are applied to the CT scans which
in turn increases the overhead of
the model and may not be robust
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Authors
Dataset(s)

used Techniques used Performance
Measures

Remarks
Advantages Limitations

Shen et al.
(2015) LIDC Multi-scale Convolutional

Neural Network (MCNN) Accuracy=86.4% Multi-scale patches of scans are used
rather than segmented patches

The performance of the model
is low and can be improved
by using advanced deep learning
architectures

Sun et al.
(2017) LIDC

CNN, DBN, and stacked
denoising autoencoder
(SDAE)

Area under the
curve (AUC)=
0.899±0.018

Three different state-of-art deep neural
network architectures have been
explored

For critical application like
lung cancer detection, the
performance needs to be higher
to be deployed in real-time
environment. Therefore, there
is still scope for improving the
performance of the model.

Liu et al.
(2018b) LIDC

Novel end-to-end deep
learning architecture named
dense convolutional binary-
tree network (DenseBTNet)

Accuracy=88.31%
and
Area under curve=
0.9335

A novel deep learning architecture
DenseBTNet is proposed

The performance of the model can
be improved by optimizing
the network and a center
crop operation is performed
in the architecture which is
computationally expensive and
may not work for all the cases

Liao et al.
(2019)

LUNA16 and
the training
set of Data
Science Bowl
2017

Gaussian filter, 3-D DNN Accuracy=81.42%
Volumetric information is fed to the
network and a novel 3-D Convolutional
neural network is proposed

The accuracy obtained from this
model is too low for using in lung
cancer CAD system and it makes
use of 3-D volumetric features,
which increases computational
complexity.

Zhao et al.
(2018) LIDC A hybrid CNN of LeNet and

AlexNet

Area under the curve
(AUC)= 0.822 to
0.877

The effects of kernel size, learning
rate, training batch size, dropout, and
weight initialization were investigated
on CT images for pulmonary nodule
classification using new Agile CNN

Both the used architectures
such as LeNet and AlexNet are
designed for color images, while
the medical images are gray scale
images, this results in an inability
to make full use of all channels.
Due to this , all the three channels
of input are homogeneous

Tajbakhsh and
Suzuki (2017)

Low-dose
thoracic
helical CT
(LDCT)

massive-training artificial
neural networks (MTANNs) Accuracy=88.06%

A comparison between massive-
training artificial neural network and
deep convolutional neural network is
given

The accuracy of the model is
less and can be improved by
optimizing the network

Lakshmanaprabu
et al. (2019) ELCAP

Modified Gravitational
Search Algorithm applied to
train Optimal Deep Neural
Network, LDA.

Sensitivity=96.2%,
Specificity=94.2%,
and
Accuracy=94.56%

An innovative approach is proposed and
is claimed to have speed, also is simple
to operate, with properties like non-
invasive and cheap

The use of 70 images for training
and 30 images for testing are too
less for lung image investigation
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Table 2.2: Comparison of various Deep Learning CAD Systems for Lung Cancer based on techniques used and performance achieved
(continued)

Authors
Dataset(s)

used Techniques used Performance
Measures

Remarks
Advantages Limitations

Neal Joshua
et al. (2021) LUNA16 3D AlexNet with lightweight

architecture Accuracy=97.17%

The method uses 3D AlexNet with
lightweight architecture implying that
model complexity is less as compared
to other deep learning models

There is a loss of information in
the feature map of the CNN layer.

Faruqui et al.
(2021)

Medical
IoT (MIOT)
dataset

LungNet Accuracy=96.81%
FPR = 3.35%

The authors have performed data
collection from wearable devices along
with latent features extracted from CT
scans. The method provides efficient
results.

FPR value reported here is
very high. Where, FPR is the
proportion of negative data
instances that were incorrectly
reported as positive. This needs to
be reduced.

Heuvelmans
et al. (2021) NLST

Lung Cancer Prediction
Convolutional Neural
Network (LCP-CNN)

AUC=94.5%
Sensitivity = 99%

The model is used to identify benign
and malignant nodules using deep
learning methods. The model displayed
high sensitivity rates.

The model has been trained on
fewer CT scan images.

Tian et al.
(2021) LIDC Enhanced Capsule Networks

(ECN)

Accuracy= 96.65%
Precision = 96.35%
Recall = 96.07%
F1-score=96.41%

The method uses an optimized fuzzy
possibilistic c-ordered mean based
algorithm called Converged Search
and Rescue (CSAR) and ECN for final
diagnosis. The optimization algorithm
resulted in promising results.

The model is computationally
complex.

Marentakis
et al. (2021)

NSCLC
radiomics

Long short-term memory
(LSTM) + CNN

Accuracy = 74%
AUC = 0.78

The authors have experimented on
combinatorial methods to achieve better
performance to classify lung cancer
histology images. The best results
are achieved from the combination of
LSTM, CNN, and radiomics.

The results can be further
improved.

Feng and Jiang
(2022) Private dataset Mask RCNN and Dual Path

Network (DPN)

Accuracy = 97.94%
Sensitivity = 98.12%
Specificity = 100%

The method has resulted in high
performance.

The dataset used in the work
consists of CT and MRI images of
45 patients, which is less data to
generalize the results.

Kasinathan
and Jayakumar
(2022)

LIDC-IDRI
Cloud-based Lung Tumor
Detector and Stage Classifier
(Cloud-LTDSC)

Accuracy = 98.6%

The proposed method uses a cloud-
based method to identify lung cancer in
CT and PET scans. The performance
reported in the work is good.

From 50 images it is not feasible
to generalize the method.
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2.4 OVERALL FINDINGS FOR DEEP LEARNING-BASED CAD SYSTEMS

The main reason for using deep-learning-based CAD systems is to overcome the issue

of using hand-crafted features for performing lung cancer detection and classification.

There is no need for performing multiple steps before classification, such as feature

extraction, segmentation, or feature selection. However, the input images may be pre-

processed before being input to the network. Also, different feature representations

or combinations of these feature representations can be provided as input to the deep

neural networks. The deep learning models take the images as input to the network,

learn meaningful feature representations from the input image and provide classification

output.

Best-performing results are obtained from deep learning architectures such as

CNN, Enhanced CNN, MobileNet-V2, VGG-8, Inception-V3, Convolutional Deep

Neural Network (CDNN), and Stacked Denoising Autoencoder (SDAE). The use of

deep-learning-based lung cancer detection and classification CAD systems proved that

the results obtained from these models are better in terms of performance and time

complexity. As the number of steps is reduced in deep models, the CAD systems are

faster and also efficient.

2.5 RESEARCH GAPS

Based on the literature survey, some research gaps are identified and listed below. These

are potential future prospects for developing a better and improved CAD system for lung

cancer identification.

1. Conventional algorithms work better when suitable hand-crafted features are

chosen for the classification task. This task has become simpler with the recent

development of deep learning because these techniques do not require

hand-crafted features to train the classifier. So, there is a lot of scope to build

deep learning based CAD systems for lung cancer detection.

2. In conventional CAD systems, annotations are pretty expensive as it has to be

done manually by experienced radiologists. With the help of deep learning,
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annotation costs can be reduced by automating the annotation process. This can

be done by training a deep learning model with a huge annotation dataset. This

model can now be used for unseen CT scans’ annotation.

3. There is a need to provide clinically relevant explanations for the features

discovered by the different learning algorithms as it makes the CAD system

more reliable for real-time usage.

4. Micro nodules (nodules < 3 mm) are usually truncated during the training of the

system as it is difficult to detect this set of nodules. These sets of nodules can

provide better insight for early detection of lung cancer nodules.

5. Selection of relevant features and optimal classifiers are required to achieve

significant results, which can help doctors consider it a second opinion.

6. The system can be designed in such a way that it learns from both clinical records

and medical images for multi-modal analysis.

7. Segmentation of pulmonary nodules plays a fundamental role and helps improve

the sensitivity of CAD systems. Hence it needs to be further explored.

8. In the literature, many authors have considered only a subset of data which could

be a better practice as it may not be a robust model, which in turn affects the

system’s performance in realistic scenarios. Hence, there is a need to evaluate

CAD systems on larger datasets. More experiments on larger datasets will

improve the systems’ performance and generalizability.

2.6 PROBLEM STATEMENT

Design, analysis and implementation of a deep learning-based decision support system

for lung cancer detection, nodule segmentation and classification of nodules into benign

and malignant.

Problem Description: The problem is divided into three tasks: detection,

segmentation, and classification. The detection task is identifying nodules and

non-nodules from a raw CT scan. CT scan usually consists of tissue structures or
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organs which look similar to a nodule. This kind of anomaly must be eliminated to

find cancer nodules from the CT scans. The detection task is followed by a

segmentation task in which a particular nodule region is extracted. Intensity

similarities between nodules and vessels make it challenging to perform accurate

segmentation. Also, tumor size in a CT scan is very small compared to other organs,

and extracting such a small region of interest is difficult. Finally, nodules are classified

into malignant and benign nodules. The main motive behind classifying lung cancer

nodules into malignant and benign is to improve the lifespan of the patients.

The objectives of the work are:

1. To build an automated lung cancer detection system with reduced false positives

to identify nodules and non-nodules from raw CT scans.

Description: One of the significant challenges in lung cancer detection is

identifying lung nodules into nodules and non-nodules. This objective aims to

propose a reliable CAD system that can differentiate between nodules and

non-nodules. Also, to perform detection, data augmentation techniques need to

be applied to avoid bias in the data. To solve these problems, novel deep

learning approaches are proposed. Deep learning has proved to provide better

performance in terms of medical image analysis. The goal is also to design a

lung cancer detection system with a reduced false positive rate with assurance

and reliability.

2. To develop an efficient deep learning-based segmentation model to extract region

of interest from lung CT scans.

Description: Nodule segmentation plays an important role in the classification

of lung cancer nodules. In the CT scan, the nodule size is too small compared

to the other organs in the scan. It is necessary to identify the region of interest,

i.e., the nodule, rather than other tissues/organs in the CT scan. In order to extract

the region of interest, an accurate segmentation needs to be performed on the CT

scan and crop only the region where the nodule exists. This helps in improving the

classification results of the benign and the malignant nodule. This objective aims
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to segment the lung nodules from the CT scan images using new deep learning-

based segmentation algorithms.

3. To design and develop a novel deep learning framework for classification on CT

scans.

Description: One of the important issues that exist in lung cancer classification

is classifying non-cancerous (benign) and cancerous (malignant) nodules

accurately. The main motive behind classifying lung cancer nodules into

malignant and benign is to improve the lifespan of the patients. This objective

aims to resolve this issue using various feature extraction and classification

methods. In recent trends, deep learning is exhibiting better performance for

these tasks. Therefore, the main aim is to improve the accuracy of benign and

malignant nodule classification using deep learning architectures.

2.7 DATASET USED FOR THIS THESIS

This section familiarizes the dataset used in this research work for experimental

analysis. The dataset utilized for performing lung cancer detection, segmentation, and

classification is LUng Nodule Analysis (LUNA), released in 2016. The LUNA16

dataset is open, where the reference standards and images are made publicly available.

LUNA16 dataset is a curated version of the Lung Image Database Consortium-Image

Database Resource Initiative (LIDC-IDRI) dataset (McNitt-Gray et al. 2007), which

is also a public-access dataset. Four expert radiologists have provided the annotations

(Setio et al. 2017a). The main aim of the LUNA16 dataset was to develop large-scale

automated nodule detection algorithms. Table 2.3 provides details related to the LUNA

dataset.

The dataset includes 888 CT scans taken from the LIDC-IDRI dataset. The dataset

excludes CT scans with a slice thickness of more than 2.5 mm. There are a total of

1186 positive lung nodules in the LUNA16 dataset out of 5,51,065 total candidates.

The candidate in two-dimension contains a lesion or lung nodule positioned in the

center. The nodule size can vary, so the image has a lot of background for the nodule

of a smaller size. The LUNA16 dataset consists of annotations labeled as nodules and

29



2. Literature Review

Table 2.3: Details of LUNA16 dataset

Parameters Details
Dataset LUNA16 (Setio et al. 2017a)

Date of release 2016
Dataset size (GB) 116

Number of samples 888
Image modality CT

Image dimension 512x512
Image format DICOM

Ground truth available Yes

non-nodules provided in a Comma Separated Value (CSV) file. The details given in

the annotation file of the LIDC-IDRI dataset are used further to split the nodule images

into benign and malignant nodules (McNitt-Gray et al. 2007). Nodules are classified

as benign or malignant depending on a range that four qualified and experienced

radiologists determine. The scale is from 1 to 5 (1 being least malignant and five being

most malignant).

2.8 SUMMARY

This chapter critically reviewed the current work in detection, segmentation, and

classification of lung cancer. Also, the overall findings based on the best techniques

available in the literature for both traditional and deep learning systems are provided.

The research gaps are listed, and the current research work’s problem statement is also

included in one section of the chapter. The details of the dataset referred to are also

highlighted in this chapter. The proposed methodology for each of the objectives is

explained in later chapters.
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CHAPTER 3

LUNG CANCER DETECTION

3.1 INTRODUCTION

Lung cancer is regarded as one of the most common types of cancer with the highest

mortality rate. The symptoms are visible after it has reached an advanced stage. The

diagnosis of lung cancer is performed using nodules. Nodules are abnormal, and

irregular tissue formation is observed in the lung region. The size of a nodule is

usually as small as 3 mm in diameter. To detect such a small nodule, radiologists must

conduct a careful examination. It is a tedious and time-consuming task to provide

precise and accurate information about a nodule type. This indirectly may lead to

human error. This issue can be resolved by combining CT screening with

computer-aided algorithmic solutions. Deploying this in a real-time environment,

which involves integrating these solutions with physicians, is another challenge. The

solutions must deliver precise and trustworthy outcomes. This chapter presents the

method proposed to detect nodules and the results obtained from the proposed

approach. In the proposed nodule detection approach, the nodules are detected by

using a novel segmentation method and followed by this, the potential nodule

candidates are further classified into nodules and non-nodules.

The contributions of this chapter are :

• RFR V-Net: A novel segmentation method is proposed. An investigation of

multiple receptive fields (RFs) is carried out for RFR V-Net.
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• A post-processing pseudo-coloring method is adapted to improve results of

nodule classification.

• NCNet: A new deep learning model is introduced for lung nodule classification.

Also, a comparison of both the proposed models with existing CAD systems is

provided.

• The results achieved by the proposed model are verified by an expert

pulmonologist.

The chapter is organized as follows: Section 3.2 discusses the proposed methodology

in detail. Section 3.3 briefs the results and discussion, and Section 3.4 summarizes the

proposed method and its significance.

3.2 PROPOSED METHODOLOGY

A schematic overview of the proposed models is shown in Figure 3.1. In stage 1, input

CT scans are preprocessed using Hounsfield Unit (HU). After preprocessing, they are

divided into multiple patches of size 96x96x16, as the computation of raw CT scans is

complex and expensive. These scans are fed as an input to the Receptive-Field

Regularized V-Net (RFR V-Net) to detect candidate nodules. In stage 2, the data is

prepared to identify whether a candidate nodule is a true nodule or an FP candidate.

The CT scans are cropped to 32x32x16, considering the center point of the candidate

nodules. The reason for reducing the size of the image is that the size of the nodules is

very small in the CT scan and can consist of background noise which can lead to

misclassification. In stage 3, an image enhancement technique is applied to the 2D CT

scan slices to post-process the image. In final stage 4, three sets of inputs are provided

to the models: a 2D slice of CT scan (middle slice), a 3D CT cube, and a

post-processed 2D CT slice image. These inputs are fed to three deep learning

architectures: SqueezeNet, ResNet, and the proposed Nodule Classification Network

(NCNet) for the nodule classification task. The details of each stage are provided in

the following sub-sections
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3.2. Proposed Methodology

Figure 3.1: Schematic overview of the proposed model for Lung Nodule Detection

3.2.1 Stage 1: Lung Nodule Detection

The first stage of lung nodule classification involves the identification of the candidates

in the CT scan. To perform this, the raw CT scan needs to be pre-processed in order to

clearly differentiate between the candidate nodules and tissue/organs in the lung.

Further, once the CT scans are pre-processed, RFR V-Net algorithm is applied to

identify candidate nodules. A detailed explanation of the pre-processing and the

proposed RFR V-Net model, is given in the subsection 3.2.1.1.
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3.2.1.1 Image Pre-processing

The raw CT scan images of the thoracic region are usually larger and for the early

stage detection, one major drawback is a region of interest being smaller in size as

shown in Figure 3.2. Therefore, efficient pre-processing of these scans are necessary to

attain a clearer image and to locate the areas of interest. In this work, pre-processing

is performed by measuring the different radio densities of various substances such as

soft tissues+, lungs, water, fat, and air. The Hounsfield unit (HU) is used as a relative

quantitative measurement of radio density by radiologists to analyze CT scans. These

densities are measured using the unit HU. The scans are clipped in the range of -1000

and 400 HU to discard the variations that occur in the images due to the resampling of

the images and bone densities. Once the scans are clipped based on the HU, images are

normalized before feeding as input to the neural network. After the normalization, the

images have a standard mean voxel value of 0 and a variance of 1.

Figure 3.2: A CT Scan illustrating that pulmonary nodules occupy less than 5% of CT
scan

3.2.1.2 Nodule Detection: RFR V-Net

The primary nodule detection is performed using the proposed RFR V-Net. The

proposed network is a fully CNN which is a modified V-Net architecture that has

demonstrated improved performance for medical image segmentation (Milletari et al.

2016). Our key contribution to the V-Net architecture is the regularization of receptive
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field in convolutional layers. The V-Net architecture consists of three encoder-decoder

block pairs and skip connections apart from input and output blocks as shown in

Figure 3.3. The encoder block consists of downsampling convolutions and is also

connected to the residual connection of the output. In contrast, the decoder block

consists of upsampling deconvolutions. The convolution and deconvolution blocks are

investigated for various RFs. Most CNNs use larger RFs which do not generalize well.

In computer vision, image sizes vary for each problem. The RF of a convolution layer

plays an important role in deciding the feature size and the information passed to the

network’s succeeding layer. Therefore, the term RF Regularization was coined by

Koutini et al. (2020). They have shown that larger RFs often tend to overfit the model

and lead to performance degradation of the system. Therefore, a regularization

technique is adapted for RFs in order to improve the segmentation performance.

In a convolutional layer, the RF of a neuron corresponds to the slice of the layer

input that impacts the neuron’s activation. The convolutional layer’s output depends on

the activations of the previous convolution layer or network’s input. In both cases, it

is called the input feature map of a layer. The primary determinant of the size of RF

is the filter size of the input feature map. The amount of input feature map affected is

directly proportional to the filter’s size chosen in the layer. The choice of RF in a layer

affects all the RFs chosen in the previous layers of the network. This can be recursively

calculated using equation 3.1 (Koutini et al. 2019).

Sn = Sn−1 ∗ sn
RFn = RFn−1 + kn−1 ∗ Sn

(3.1)

Where, Sn represents the cumulative stride, RFn represents the RF of neuron

corresponding to layer n, sn represents the stride and kn represents filter size of layer

n.
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Figure 3.3: Architecture diagram of proposed RFR V-Net
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The architecture diagram of the RFR V-Net is shown in Figure 3.3. Due to the large

size of the raw CT scan image, the CT scan is divided into patch sizes of 96x96x16

and fed as an input to the RFR V-Net. The model consists of an encoder block with

five layers consisting of filter sizes 5x5x5, 5x5x5, 3x3x3, 3x3x3, and 1x1x1, and stride

of 1, respectively. As mentioned above, the RF of the network is the last convolution

layer, i.e., 1x1x1. The decoder block consists of upsampling deconvolution layers with

five filter sizes 1x1x1, 3x3x3, 3x3x3, 5x5x5, 5x5x5, and stride of 1, respectively. Each

convolution performed in the network utilizes volumetric kernels having a filter size

of axaxa, where a represents the number of filters. In this network, the max-pooling

operation is not applied; rather a strategy reducing the resolution of the data through

different stages along with a compression path is performed. A 2x2x2 voxel wide kernel

is applied with a stride of 2, and when only non-overlapping 2x2x2 volume patches are

considered, the resulting feature maps’ size is reduced by half. This method is inspired

by Cicek et al. (2016). The use of pooling operations is discouraged because the main

disadvantage of max pooling is that other elements are ignored and only the maximum

element from the pooling region is taken into account. The distinguishing features

vanish after conducting the maximum pooling operation if the majority of the elements

in the pooling area are of high magnitudes. Hence, the pooling operations are replaced

by convolution layers instead. Rectified Linear Unit (ReLU) is used as non-linearity in

the hidden layers, whereas softmax is used for the final layer of the model. The RFR

V-Net model returns images of size 96x96x16, which are potential nodule candidates

in the raw CT scan images. The generated nodule candidates may also consist of False

Positive (FP) candidate nodules which will be later reduced/removed by an FP reduction

technique, and classification of true nodules and non-nodules is performed.

3.2.2 Stage 2: Data preparation for Nodule Classification

In the second stage, the detected candidate nodules are further classified into nodules

and non-nodules. This classification is performed using the annotations provided by

the radiologists in the dataset. The images are cropped to 32x32x16 regions using the

nodule centers for precision. There is an imbalance in the dataset for nodule and non-

nodule images. Therefore, to avoid the overfitting of the model, the nodule images are
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augmented to balance the two classes. The augmentation is applied to only the training

and validation splits of the dataset. The details of the augmentation methods used for

nodule images are provided in subsection 3.2.2.1.

3.2.2.1 Image Augmentation

Once the nodule candidates are generated, the nodules need to be identified as true

nodules and FP candidates. In the LUNA16 dataset, there are only 1186 true nodules

and 5,51,065 candidates. Therefore, there is a high chance that some candidates are

misdiagnosed as true nodules. In order to reduce this high data imbalance, the number

of images of true nodules is increased by performing extensive data augmentation.

Also, it strongly avoids overfitting in the deep learning models while the training step.

Random image transforms of 90 degrees for zero or more times with 0.5 probability

are applied to the images. Transpose of the images is also taken by row and column

swap. Affine transform augmentation (Nalepa et al. 2019) is made uniformly with a

translation from 0 to 1 with random scaling from 0.5 probability. A seemingly easy

technique called flipping an image (and its annotations) can significantly boost model

performance. The images are vertically and horizontally flipped with a probability of

0.7. The images are randomly scaled with a probability of 0.3. Also, the brightness

and contrast of the images are varied with a limit of 0.4. Our models discover which

clusters of pixels and the connections among those clusters indicate the presence of an

item in the frame. However, machine learning models, such as convolutional neural

networks, have a tendency to be quite fragile. For example, although our models may

memorize a particular arrangement of pixels that describes an object, if that same

object is mirrored throughout the picture, our models may find it difficult to identify it.

The proposed deep learning model is being fed with more information to learn by

generating multiple versions of our images in different orientations without going

through the time-consuming process of gathering and labeling more training data.

3.2.3 Stage 3: Post-processing

To enhance the 2D slice from a detected nodule image, the pseudo coloring technique

(Wang et al. 2022) is applied. The grayscale image is converted to a pseudo-colored
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image as illustrated in Figure 3.6. Human beings can perceive many different colors

but can only distinguish between a few gray-level values (Niranjana and Ponnavaikko

2017). So, to help the radiologists better identify lung nodules/lesions, the pseudo-

coloring contrast image enhancing technique looks promising. To convert a gray scale

image into the pseudo-color image, three matrices are required. This is implemented

by applying three different transformation functions, i.e., for Red, Green, and Blue

colors, on the grayscale image. Combining the output resulting from the transformation

functions on the grayscale image provides a pseudo-colored image. The approach of

pseudo coloring a grayscale image can be shown by equations 3.2, 3.3, and 3.4.

R(x, y) = TR[f(x, y)] (3.2)

G(x, y) = TG[f(x, y)] (3.3)

B(x, y) = TB[f(x, y)] (3.4)

The intensity values of the primary colors, i.e, Red, Green and Blue at coordinate

(x, y) is denoted by R(x, y), G(x, y), and B(x, y). A grayscale image is denoted by

f(x, y). The transformation functions for the three primary colors are represented by

TR[.], TG[.], and TB[.].

3.2.4 Stage 4: Lung Nodule Classification

The classification of the lung nodules is performed using three sets of image inputs,

2D CT scan slice (middle slice), 3D CT cube, and the post-processed pseudocolor CT

image. Three image inputs are separately fed to three deep learning architectures,

namely, SqueezeNet, ResNet, and NCNet. The primary objective of this stage is to

classify nodule and non-nodule images and to reduce the FPs/Scan. A detailed

explanation of the proposed network is provided in the subsection 3.2.4.1.
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3.2.4.1 Nodule Classification: NCNet

The proposed model integrates the two best operations of Squeezenet’s fire module

and ResNet’s skip connection outperforming both architectures’ performance. ResNet

consists of stacking convolutional blocks with a skip connection and an identity

function. SqueezeNet consists of a fire module in which two operations, namely,

squeeze and expand, are used. The squeeze operation consists of 1x1 convolution

blocks rather than 3x3 convolution blocks in order to achieve fewer parameters with

better performance. Next, the expand layer performs multi-scale learning and

concatenation operations using a convolution block of kernel sizes 1x1 and 3x3. In

mathematical terms, the fire module consists of three hyperparameters related to the

dimension, i.e., s1x1, e1x1, and e3x3. That is, squeeze operation having convolutional

layer kernel size of 1x1 (s1x1), expand layer having kernel size of 1x1 (e1x1), and 3x3

(e3x3). The design space of Squeezenet is defined by meta parameters that control the

dimensions in a fire module of the CNN (Iandola et al. 2016). The filters in the

expand layer are represented by basee. The number of expand filters in the initial fire

module is increased using incre with a given frequency freqe. For a fire module i, the

number of filters in expand layer is given by the below equation 3.5.

ei = basee + (incre + 1 ∗ 1

freqe
) (3.5)

The number of filters in the squeeze layer is decided by a metaparameter named

Squeeze Ratio (SR). The SR is the range [0,1] which is used by all the fire modules.

The number of filters in squeeze layer is given in below equation 3.6.

si, 1x1 = SR ∗ (ei, 1x1 + ei, 3x3) (3.6)

In the ResNet architecture, the residual connections are given to convolution layers.

For the proposed NCNet, the residual connections are provided to the fire module. This

operation is carried out using identity blocks given in equation 3.7 mimicking ResNet

architecture (He et al. 2016). In the equation, x denotes the input vector, and y denotes

the output vector. The residual mapping that takes place in the model is represented by
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F (x,Wi), where Wi represents weights of ith layer.

y = F (x,Wi) + x (3.7)

In the above equation, function F (x,Wi) represents a fire module. No extra

parameters or computational complexity is introduced in equation 3.7. Short-cut

connection and element-wise addition are used for performing F + x operation. One

important point to be taken care of in performing the above operation is the

dimensionality of input x, and F must be the same. In case this condition is not

satisfied, linear projection Ws must be performed to match the dimensions. This is

illustrated by using the below equation 3.8.

y = F (x,Wi) +Wsx (3.8)

The working of NCNet is demonstrated in Figure 3.4. The key contribution of the

proposed work is the integration of fire modules instead of conventional convolution

blocks with a skip connection. This approach is novel and has not been done as far as

our knowledge is concerned. ResNet is a deep architecture and as the depth of the

network increases, the generation of training parameters in the network also increases.

Therefore, in order to overcome the issue of huge parameters, a fire module is

introduced in the network. The proposed NCNet architecture is developed for 2D and

3D CT scan inputs. The model worked exceptionally well for both 2D and 3D CT

scans.
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Figure 3.4: These are multiple architectures used in this work, where, (a) shows Conventional ResNet, (b) shows working of Squeeze and
Expand block in SqueezeNet, and (c) shows proposed NCNet architecture which is a new combination of (a) and (b)
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3.3 RESULTS AND DISCUSSIONS

The performance metrics considered for evaluating the proposed RFR V-Net are Dice

Similarity Coefficient (DSC) and Intersection over Union (IoU). DSC is a statistical tool

which measures the similarity between two sets of data. IoU measures the percentage of

overlap between two objects. DSC and IoU are considered primary evaluation metrics

for segmentation task as these metrics are popularly used for analyzing overlapping

between the two segmentation results. The computation of the metrics is given in the

below equations, where TP, FP, and FN represent True Positive, False Positive, and

False Negative, respectively.

DSC =
2 ∗ TP

(TP + FP ) + (TP + FN)
(3.9)

IoU =
TP

TP + FP + FN
(3.10)

The results of nodule detection are provided in Table 3.1. The comparison of SOTA

methods with the proposed approach for both performance metrics is provided in the

table. The existing works that have been considered here for comparison are mainly

based on U-Net, V-Net, Mask R-CNN, etc.

Table 3.1: Comparison of the proposed work with other Nodule Detection CAD systems

Ref. DSC (in %) Authors IoU
Cao et al. (2020) 82.74 Aresta et al. (2019) 0.55
Roy et al. (2019) 93.00 Wu et al. (2018) 0.58

Ronneberger et al. (2015) 94.97 Messay et al. (2015) 0.74
Wang et al. (2017) 82.15 Wang et al. (2017) 0.71

Proposed RFR V-Net 95.01 Proposed RFR V-Net 0.83

Table 3.1 shows that the proposed RFR V-Net obtained the best DSC of 95.01% and

an IoU of 0.83 compared to existing approaches. However, the second best performing

approach was proposed by Ronneberger et al. (2015) with a DSC of 94.97%. The

second-best performance for IoU was 0.74 from a technique proposed by Messay et al.

(2015). The findings show that the DSC of the proposed method was just improved

by 0.04% when compared to the second-best method by Ronneberger et al. (2015).
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However, the proposed model provided a much-improved result in terms of IoU with

an improvement of 9% over the second-best method (Messay et al. 2015).

The results obtained for various patients with an image size of 96x96x16 are

shown in Figure 3.5, along with the true segmentation mask and the segmentation

mask predicted by the proposed RFR V-Net model. From the figure, the mask

predicted by the RFR V-Net is almost matching to that of the original segmentation.

This shows that the proposed RFR V-Net architecture performed well in segmenting

the lung nodules in the CT scan images.

Figure 3.5: Results achieved for the proposed RFR V-Net.
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An illustration of the nodule and non-nodule images before the post-processing step

is shown in Figure 3.6. The number of nodules and non-nodules present in the dataset

after the division is 1186 and 5,51,056, respectively. It can be noted that the data is

imbalanced. Because of data skewness, the chances of this data being classified as a

non-nodule are higher (Shi et al. 2020). To overcome this issue, the nodule images

must be augmented. The image enhancement of CT slices are illustrated in Figure 3.6.

Hue, Saturation, Value (HSV) colormap is applied to the grayscale 2D CT slice using

the OpenCV tool. The range of values used for Hue is [0,179], Saturation is [0,255],

and Value is [0,255]. This provides increased visibility of the CT slice where the lesions

are better seen than in the normal CT slice.

Figure 3.6: Nodule and non-nodule images obtained before post-processing ((a) and
(b)) and after post-processing ((c) and (d))

The models used in this work are trained using various parameters mentioned as

follows: Optimizer used is Adam, the activation function is ReLU, and the loss function

used is Binary cross-entropy. The models are trained with batch sizes of 64 for 2D input

images and 32 for 3D input images. The activation used in the hidden layers of all the
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models is ReLU. The reasons for using ReLU in the models are, firstly, ReLU is a non-

linear activation function. Secondly, it returns the output value from max(0, x) where

x is the input. Therefore, it removes the negative values and provides a much simpler

computation. Thirdly, the ReLU activation function helps to mitigate the vanishing

gradient issue. As deep architectures are used in this work, ReLU activation is more

suitable. The final decision is made using the sigmoid activation function.

The proposed NCNet 3D was trained and tested for 20, 32, 44, 56, and 110 layers.

However, the model provided the best recognition accuracy of 98.21% and the least

FPR of 0.0166 for 56 layers. As the literature suggests, more layers give the model

more “capacity”. Hence, the proposed model does not provide the best accuracy for 20,

32, or 44 layers. The reason for the decrease in performance for a 110-layered network

is due to the overfitting of the model because of the limited training data and complex

network architecture. Figure 3.7 demonstrates the training and validation accuracy and

loss obtained for the NCNet when trained using 56 layers. The model’s accuracy in

any ideal deep-learning architecture should increase with epochs. An observation can

be made from the figure that both the training and validation accuracy of the NCNet is

rising. This evidently shows that the model is learning discriminative information of

the two classes exceptionally. Also, when the number of epochs increases, the model’s

loss should decrease and be observed here. Hence, it can be said that the FPR for the

model is very minimal.

Figure 3.7: Graph representing the accuracy and loss achieved for the proposed
NCNet3D model
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Figure 3.8: Confusion matrices obtained for best recognition accuracies
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Confusion matrices illustrate both the recognition accuracy and the number of

images detected as nodules and non-nodules. Figure 3.8 demonstrates the confusion

matrices obtained for 2D, pseudo-3D, and 3D models of SqueezeNet, ResNet, and

proposed NCNet, respectively. ResNet and proposed NCNet are evaluated by altering

the number of layers in the network architectures. The best results were obtained using

56 layers. The number of samples getting detected correctly is comparatively better for

3D models than for 2D models.

The comparison of best-performing models in terms of FPs/Scan is illustrated using

the FROC curve in Figure 3.9. The average FPs/Scan value of the NCNet-Pseudo-3D

and NCNet-3D models for 56 layers is provided in the FROC curves. The models

resulted in 2.4 and 2.3 FPs/scan for NCNet-Pseudo-3D and NCNet-3D, respectively.

Figure 3.9: FROC curve comparing the performance of (a) NCNet-Pseudo-3D-56 at 2.4
FPs/scan, and (b) NCNet-3D-56 at 2.3 FPs/scan

The performance measures considered for the assessment are accuracy (ACC),

specificity (SPE), precision (PRE), sensitivity (SEN), F-score, FPR, and FPs/Scan.

Table 3.2 demonstrates the evaluation of the various 2D, pseudo-3D, and 3D models

used in this work. The results have been listed for 33 models for 2D, pseudo-3D, and

3D with different layer variations in ResNet and NCNet architectures. From the table,

it can be noted that 3D models outperformed the 2D models. This is because the

capturing of nodule information in 3D is better than in 2D slices of the CT scans.

Volumetric information in 3D data contributes to the improvement of the performance

of the system.
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Table 3.2: Comparison of various models on multiple layer configurations with
proposed work for 2D, pseudo-3D, and 3D data

Models Dimension ACC SPE PR SEN F-score FPR FPs/
(in %) (in %) (in %) (in %) Scan

SqueezeNet 2D 90.07 85.22 86.75 94.81 0.9061 0.1477 3.2
SqueezeNet Pseudo-3D 94.66 91.98 92.53 97.29 0.9485 0.0801 2.6
SqueezeNet 3D 95.44 91.98 92.63 98.82 0.9563 0.0801 2.5
ResNet20 2D 89.56 89.99 90.08 89.14 0.8962 0.1001 3.8
ResNet32 2D 90.54 90.18 90.42 90.88 0.9066 0.0982 3.7
ResNet44 2D 91.61 91.71 91.74 91.51 0.9163 0.0828 3.5
ResNet56 2D 92.52 91.83 91.98 93.19 0.9259 0.0817 3.4
ResNet110 2D 88.93 90.27 89.7 87.54 0.8862 0.0973 4
ResNet20 Pseudo-3D 90.38 90.19 92.16 91.48 0.9012 0.0898 3.5
ResNet32 Pseudo-3D 91.12 90.93 91.67 92.36 0.9152 0.0894 3.3
ResNet44 Pseudo-3D 93.29 90.94 90.70 92.99 0.9258 0.0863 3.2
ResNet56 Pseudo-3D 94.69 94.54 94.43 94.83 0.9464 0.0546 3
ResNet110 Pseudo-3D 87.51 84.01 88.64 86.32 0.8815 0.0815 4.1
ResNet20 3D 91.38 91.21 90.98 91.5 0.9128 0.0879 3.3
ResNet32 3D 92.06 91.42 91.28 92.73 0.92 0.0857 3.2
ResNet44 3D 94.59 94.89 94.7 94.28 0.9449 0.051 2.8
ResNet56 3D 95.56 95.93 95.81 95.39 0.956 0.0407 2.5
ResNet110 3D 89.89 88.15 88.3 91.67 0.8996 0.1184 3.7
NCNet20 2D 91.28 89.05 89.29 93.57 0.9138 0.1094 2.8
NCNet32 2D 92.34 90.27 90.4 94.54 0.9243 0.098 2.6
NCNet44 2D 93.11 91.81 91.84 94.44 0.9313 0.0818 2.5
NCNet56 2D 94.87 94.62 94.53 95.12 0.9483 0.0537 3.1
NCNet110 2D 90.9 90.9 90.71 90.92 0.9082 0.0901 3.6
NCNet20 Pseudo-3D 92.36 91.42 91.89 91.89 0.9651 0.0812 2.5
NCNet32 Pseudo-3D 93.97 92.45 92.85 94.01 0.9467 0.0310 2.9
NCNet44 Pseudo-3D 95.14 94.42 95.92 95.68 0.9543 0.0362 2.7
NCNet56 Pseudo-3D 97.53 97.59 97.53 97.48 0.9751 0.0201 2.4
NCNet110 Pseudo-3D 89.60 87.46 88.91 86.59 0.9278 0.0214 3.4
NCNet20 3D 93.59 92.99 92.92 94.2 0.9356 0.07 3.1
NCNet32 3D 94.49 94.39 94.27 94.6 0.9444 0.0561 3
NCNet44 3D 96.63 96.41 96.34 96.87 0.9661 0.0359 2.7
NCNet56 3D 98.21 98.33 98.36 98.38 0.9823 0.0166 2.3
NCNet110 3D 91.45 91.32 91.14 91.59 0.9137 0.0868 3.3

However, the results obtained for pseudo-color 3D images are approximately near

to 3D models. Even though the input size is drastically reduced from 32x32x16 to

32x32x3 in pseudo-color images, the performance achieved from the image

enhancement technique proved to work efficiently. The limitation of the proposed
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NCNet is the decrease in performance for a 110-layered network. This is due to the

overfitting of the model because of the limited training data and complex network

architecture. The issue can be resolved using huge image nodule data to train the

model.

Table 3.3: Comparison of previous works with the proposed NCNet

Ref. Input Methods used ACC SEN SPE FPs/
dimension (in %) (in %) (in %) Scan

Wang et al.
(2019)

2D
Deep Fully
Connected Network
(DFCNet)

∗N/A 90 N/A 15

Xu et al.
(2020)

2D DeepLN N/A 91.17 N/A N/A

Kumar et al.
(2015)

2D
Deep features from
autoencoder

75.01 83.35 N/A N/A

Hua et al.
(2015)

2D
Deep belief Network,
CNN

N/A 73.4 82.2 N/A

Proposed
NCNet 2D SqueezeNet-ResNet

combination 94.87 95.12 94.62 3.1

Hussein et al.
(2017)

3D
Transfer learning and
multi-task learning

91.26 N/A N/A N/A

Han et al.
(2015)

3D
CMixNet, Faster R-
CNN

N/A 94 91 N/A

Naqi et al.
(2020)

3D Stacked autoencoders 96.9 95.6 97 2.8

Liao et al.
(2019)

3D
3D deep neural
network

81.42 N/A N/A N/A

Gong et al.
(2018b)

3D
Random Forest, J48
Decision Tree, SVM,
Logistic

N/A 84.62 N/A 2.8

Proposed
NCNet Pseudo-3D SqueezeNet-ResNet

combination 97.53 97.48 97.59 2.4

Proposed
NCNet 3D SqueezeNet-ResNet

combination 98.21 98.38 98.33 2.3

∗N/A-Not Available

The performance comparison of the proposed NCNet with other previous works for

lung nodule detection on the LUNA16 challenge and the parent dataset LIDC-IDRI

is provided in Table 3.3. Deep learning-based architectures are the foundation for all

of the techniques that are being compared. Some of the networks used are deep fully

connected networks (Wang et al. 2019), deep belief networks, convolutional neural
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networks (Hua et al. 2015), Faster R-CNN (Han et al. 2015), etc. Some works have

used transfer learning, where pre-trained deep learning models are used for classifying

lung cancer nodules (Hua et al. 2015; Hussein et al. 2017). The results achieved from

the proposed model outperformed previously proposed CAD systems. The findings

show that the accuracy of the proposed method was improved by 1.31% when compared

to the second best method by Naqi et al. (2020). The proposed approach also achieved

very less FPs/Scan of 2.3, whereas the second best FPs/Scan of 2.8 were obtained by

Gong et al. (2018b); Naqi et al. (2020). The main aim of this work was to develop

an efficient CAD system that performs lung cancer nodule detection with an higher

accuracy rate and less FPs/Scan. The aim is achieved in this work by surpassing the

performances for both objectives in comparison to the existing CAD systems.

3.4 SUMMARY

Lung nodule detection using computer-aided algorithmic techniques is challenging, and

the research has been carried out for three decades by now. Deep learning algorithms are

a recent trend that has displayed drastic performance improvement in medical imaging

tasks.

This chapter mainly focused on the proposed novel segmentation algorithm “RFR

V-Net” to perform lung nodule detection in raw CT images. The method uses

regularized RFs in V-Net architecture encoder and decoder blocks. The introduction of

RFs improved the performance of the segmentation method. Another novel

architecture named NCNet is proposed to perform lung nodule classification into

nodules and non-nodules. The model proposed is a hybrid of SqueezeNet, which is

considered as one of the light-weight CNN and results in fewer training parameters.

The Global Average Pooling (GAP) used in the SqueezeNet architecture has no

parameters, a regularizing effect, and enables various input sizes for the networks.

This layer retains an extensive amount of useful localization information instead of

fully connected layers, which greatly reduces the model size. Secondly, ResNet, a

popular deep learning model for increasing the number of layers in the network

without vanishing gradient problem. A pseudo-coloring image enhancement technique

51
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is adopted in this work. Enhancing the 2D slice input in a CT scan by adding intensity

values to the slice and converting a grayscale 2D image to an RGB image proved to

perform almost as good as a 3D model.
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CHAPTER 4

LUNG CANCER NODULE SEGMENTATION

4.1 INTRODUCTION

Lung cancer is one of the cancers with the highest death rates worldwide. Even though

there are techniques to identify lung cancer nodules, it takes enormous effort from

expert radiologists. Therefore, it is very crucial to automate the process of identifying

nodules from CT scans. This will provide clinicians with a second opinion, making

lung cancer nodule diagnosis much easier. CAD systems are used to automate the

process of locating lung cancer nodules. Several CAD systems are proposed to

perform lung cancer detection and classification. The detection stage is named CADe

systems, where the possible nodule candidates are identified. The classification stage

is named CADx systems, where the nodule identified by CADe systems are classified

into cancerous (malignant) and non-cancerous (benign) nodules. AI-based methods

are most commonly used in recent trends to perform lung cancer detection and

classification. Identifying the nodule region from a CT scan is quite a tedious task, as

in certain cases, the tissue regions present in the scans are considered a nodule.

Therefore, a careful examination is required to segment the nodule region from a CT

scan input image. This can be achieved by deep learning segmentation approaches.his

chapter discusses the two proposed systems for addressing lung nodule segmentation

tasks. Followed by this, the nodules are further classified into cancerous and

non-cancerous nodules.
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4. Lung Cancer Nodule Segmentation

The contributions of the two proposed systems are as follows:

1. Contributions of the proposed lung cancer nodule segmentation system-I

• A novel segmentation method named Light-weight RefineNet to perform

lung nodule Segmentation from CT scans.

• A new lightweight classification model named PSO-based CondenseNet to

classify lung nodules.

2. Contribution of the proposed lung cancer nodule segmentation system-II

• A novel segmentation method named Elagha initialization based Fuzzy C-

Means clustering (EFCM) to perform segmentation of nodule regions from

a given CT scan.

The chapter is organized as follows: Section 4.2 is dedicated for proposed lung

cancer nodule segmentation system-I and its results and discussion, Section 4.3

discusses proposed lung cancer nodule segmentation system-II in detail along with its

results and discussion, and Section 4.4 summarizes the proposed method and its

significance.

4.2 PROPOSED LUNG CANCER NODULE SEGMENTATION SYSTEM-I

The block diagram of the proposed lung nodule segmentation and classification CAD

system is shown in Figure 4.1. The input considered for the CAD system is 3D CT

scans. The raw CT scans need to be pre-processed as the scans contain background

information that is unnecessary for the segmentation or classification task. The

pre-processed CT scans are fed to the Deep Convolutional Generative Adversarial

Network (DCGAN) network, which performs augmentation tasks. The augmentation

step is essential in developing the CAD system as the number of non-nodules is large

compared to the nodules in the dataset. Also, when the identified nodules are further

classified into benign and malignant nodules, the images are very few in number.

Therefore, DCGAN is used for increasing the number of images in both cases. The

ROI is segmented from the CT scans using the novel lightweight RefineNet model.
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4.2. Proposed Lung Cancer Nodule Segmentation System-I

The model uses fewer parameters to perform the segmentation of candidate nodules

from the pre-processed CT scans. The detected candidate nodules are further classified

into benign and malignant nodules, which is performed using a novel lightweight

PSO-based CondenseNet deep learning model. A detailed description of each method

is provided in the below subsections.

Figure 4.1: Block diagram of the proposed Lightweight CAD system

4.2.1 Pre-processing

Pre-processing step is considered as one of the crucial steps in the lung nodule detection

and classification task. The primary step of pre-processing is organizing the images
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4. Lung Cancer Nodule Segmentation

provided in the LUNA16 dataset. The CT scans are provided in the digital imaging and

communications in medicine (DICOM) file format, a standard data format used to store

medical images. These scans are read from python scripts, and two file types are created

in this process, namely, .raw and .mhd. The image content is stored in the .raw file type,

whereas the image’s meta-data, like diagnostics and annotations, is stored in the .mhd

file. The CT scans are three-dimension and have approximately 200 slices where each

squared slice is 512 pixels (Potghan et al. 2018).

The slices in the dataset are of larger size. Therefore, making it difficult in terms of

computation. To overcome this issue, the size of the CT scan is reduced by applying a

technique named Hounsfield unit (HU). HU is used as a relative quantitative

measurement of radio density by radiologists to analyze CT scans. This popular

technique is used to identify various chemical compositions in the CT scans, such as

bones, water, air, etc. On the basis of this technique, each image’s pixel is converted to

HU values. The CT scan pictures are trimmed between -1000 and 400 HU to reduce

image resampling variations as well as bone densities. The images are normalized

before being fed into the neural network as input. This is done by applying a standard

mean voxel value of 0 and a variance of 1. The images are generated based on the

annotations provided by the LUNA16 challenge organizers. Two folders are generated,

namely, nodules and non-nodules. The number of positive and negative nodules

generated are 1186 and 5,47,346, respectively. The images are cropped to 32x32

dimensions to be computationally less expensive.

4.2.2 Augmentation

After pre-processing the nodule and non-nodule images, it can be observed that there

is a huge data imbalance in the number of images of the nodule and non-nodule

classes. Training the neural network using these images can cause the network to

overfit and results in performance reduction. Therefore, Deep Convolutional

Generative Adversarial Network (DCGAN) is used to increase the number of images

in the nodule classes. DC-GAN is one of the popular techniques used for augmenting

images in low-resource data (Kulkarni and Panditrao 2014). GAN architecture mainly
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works on the two networks, namely, discriminator (D) and Generator (G), as shown in

Figure 4.2. Both networks are trained simultaneously. The role of D is to differentiate

between real and fake samples, whereas the role of G is to generate synthesized images

as per input samples. The input samples are mapped using a uniform distribution.

Figure 4.2: Schematic architecture of Generative Adversial Network

The networks are trained using an optimization function along with the two-player

minimax game as shown in equation 4.1:

min
G

max
D

ϵx∼pdatalog D(x) + ϵz∼pz [log (1−D(G(z)))] (4.1)

where, the generator G gets input samples z(1), . . . , z(m), from an uniform

distribution pz. These images are mapped from Gz to image space distribution pg. The

network is trained for the discriminator to maximize D(x) for images with x ∼ pdata

and to minimize D(x) for images with x ≁ pdata. The G network is responsible for
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generating images G(z) in order to fool the D network at the time of training network

in such a way that D(G(z)) ∼ pdata. Hence, the G network is maximized for D(G(z))

and, in the meantime, minimized for 1 − D(G(z)). During the training of the

DC-GAN network, the generator is used to enhance the synthesizing of the real

images. In contrast, the discriminator network enhances the ability to differentiate

between real and synthesized images.

4.2.3 Light-weight RefineNet for Nodule Segmentation

This work introduces a novel lightweight RefineNet model to segment nodules from

CT scans. RefineNet architecture is a deep learning model proposed to perform high-

resolution semantic segmentation using a multi-path refinement network by exploiting

features at multiple levels of abstraction (Jakimovski and Davcev 2019). The network

extracts features by recursively refining low-resolution features with high-resolution

features. Figure 4.3 demonstrates the proposed lightweight RefineNet architecture for

the nodule segmentation task. The input image fed to the network is a preprocessed CT

scan. The output resulting from the network is the predicted mask of the nodule.

The proposed lightweight RefineNet consists of four main components. The first

component is the main block which consists of 3 sub-blocks. The first component

takes a multi-path input which is the input image with different input dimension sizes.

This component consists of three sub-blocks: Residual Convolution Unit (RCU),

Multi-Resolution Fusion, and Chained Residual Pooling. The first block RCU is built

on the Residual Network (ResNet) architecture backbone, except there is no batch

normalization in the RCU sub-block. This block is a type of adaptive convolution.

In the RefineNet model, the RCU block consists of 3x3 convolution blocks with

the ReLU activation function. In the proposed lightweight RefineNet model, the

conventional convolutional blocks are replaced with depthwise separable convolutions

to reduce the network layers’ number of additions and multiplications. In the second

sub-block, element-wise summation of multi-resolution features is performed. Hence,

the name is multi-resolution fusion. This block generates high-resolution feature maps

by fusing the inputs from all the paths. Initially, depthwise convolutions are applied for
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Figure 4.3: Architecture of proposed Lightweight RefineNet for Lung Nodule
Segmentation

the inputs to achieve similar feature map sizes and then upsampled to obtain larger

feature maps. Again, all the input feature maps are summed, and this layer helps in

rescaling the input features for multi-path input. The last sub-block is the chained

residual pooling. Here, the background information of the large image region is

captured. The input is pooled with different window sizes and then fused using

learnable weights to perform this. Here, a chain is formed with multiple pooling

blocks where each block consists of one pooling layer followed by a depthwise

separable convolution layer. The purpose of forming a chain of pooling layers is that

the input of one pooling layer is fed as an input to the next pooling layer causing it to

access the features from a large region without using a large pooling window. This
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work uses a 4-cascaded Lightweight RefineNet architecture to segment lung nodules

from a CT scan image.

4.2.4 PSO-based CondenseNet

In this work, the candidate nodules identified by the Lightweight RefineNet model are

further classified into benign and malignant nodules. This classification is performed

using a curated version of SOTA lightweight deep learning architecture CondenseNet,

which is an improved version of DenseNet (He et al. 2016). The working principle of

CondenseNet happens in two stages training, condensing, and optimization.

Condensing stage can be one or more. In general terms, this network combines the

functionalities of two architectures, ResNext and ShuffleNetv1. From ResNext

architecture, group convolutions are used to improve the performance, whereas, in

ShuffleNet, the group convolutions’ channels are shuffled to improve the performance.

In CondenseNet architecture, the input features are grouped together for grouped

convolution in the training stage instead of randomly shuffling the channels. The input

feature is of dimension OxCxWxH, where O represents the number of output

channels, C represents the number of input channels, W represents the width, and H

represents height. When this input feature is fed to a DenseNet architecture, the 4D

tensor is reduced to an OxC dimension to a matrix D by 1x1 convolutions.

In the training process of CondenseNet architecture, the feature subsets of low

importance are screened for each group. The splitting of features into equal-sized

groups is performed before the training begins. Therefore for each group, a feature

map of O/G size is obtained. In the condensation stage, the importance of yth feature

map for the group g is decided based on the averaged absolute value of weights in

between them, and it is done across all the outputs in that particular group as given in

equation 4.2.

O/G∑
x=1

|Dg
x,y| (4.2)

In order to introduce group-level sparsity in the architecture, a popular regularisation

technique Group Lasso (Meier et al. 2008) is used. In the condensing stage, the group-
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lasso regulariser pushes all the column elements ofDg to zero. This is done because the

value in the square root is dominated by the elements with a larger value in the column.

This is given in equation 4.3.

G∑
g=1

C∑
y=1

√√√√O/G∑
g=1

Dg
x,y

2 (4.3)

The number of condensing stages in the architecture is decided using a condensing

factor C. If C=3, then the number of stages will be C − 1 = 2. The weights in the

filters are pruned after each condensing stage by using a mask on the filter. By the end

of the training, 1/C of the weights are left after pruning in each filter group. In the

optimization stage, only the strong ones are picked up out of weak and strong feature

maps, and the weaker feature maps are discarded. An index layer is introduced in

the testing phase to select the best feature and rearrange the groups. Here, the pruned

weights are discarded, and the sparsified model is converted into a regular connected

model.

In the proposed PSO-based CondenseNet model, the CondenseNet model is

curated to improve performance by tuning the model’s hyperparameters as given in

Figure 4.4. A hyperparameter in machine learning is a parameter whose value is used

to regulate the learning process. The choice of hyperparameters can be challenging

and depends on factors such as the size of the dataset, hardware’s computational

power, network size, etc. Therefore, to achieve the best performing model, swarm

intelligence algorithm particle swarm optimization (PSO) is used to optimize five

hyperparameters in the CondenseNet model, namely, number of layers, loss value,

learning rate in Adam optimizer, batch size, and number of epochs.

The optimized value for each hyperparameter is obtained by passing the initial

framework parameters to the PSO algorithm. The fitness value of each particle

(hyperparameter) is calculated, and the global best and local best values are obtained.

These values are further utilized to update the velocity and position of the particle until

the termination criteria are obtained. The termination criteria in this network are to

achieve hyperparameters with a minimum value. For example, the number of layers in
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the network must be less, and the network’s performance must also be best. This

process is iterated till the optimized value is obtained for all the hyperparameters.

Figure 4.4: Architecture of proposed PSO-based CondenseNet for Lung Nodule
Classification

4.2.5 Materials and Methods: Neural Network Configurations

This work uses three different neural networks for three tasks: DCGAN for data

augmentation, lightweight RefineNet for nodule segmentation, and PSO-based
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CondenseNet for nodule classification. Initially, the parameters for training the neural

networks are chosen empirically. After a cross-validation step, each network is further

tuned by changing the parameter values until the optimized value is achieved. The

parameters that yielded the best results are listed in the subsections below.

1. DCGAN: The network consists of a generator model with layers like Dense,

batch normalization, upsampling, convolution, and activation. The discriminator

model consists of layers similar to the generator model, excluding the upsampling

layer. The loss function used is binary cross-entropy, optimizer used is stochastic

gradient descent (SGD) with a learning rate set to 0.005. The number of epochs

is set to 100 with an early stopping criterion if the loss of the model does not

change after 10 epochs. The batch size is set to 128.

2. Lightweight RefineNet: The network consists of layers such as depthwise

separable convolution, batch normalization, and max pooling. In the

multi-resolution block, the upsampling layer is used. The activation function

used in the last layer of the model is softmax. The model is trained using binary

cross-entropy loss function and Adam optimizer with a learning rate set to

0.001. The number of epochs set is 100 with an early stopping criterion if the

loss of the model does not change after 10 epochs.

3. PSO-based CondenseNet: The network consists of layers such as convolutions,

learned group convolutions, dense, average pooling, and batch normalization.

The activation function used in the intermediate layers is rectified linear unit

(ReLU). The number of epochs set is 50 with a batch size of 256. The condense

factor set is 4, and the group, Lasso Lambda value, is 0. The hyperparameter

tuning is performed using PSO, consisting of input parameters such as swarm

size set to 18, number of iterations is set to 100, inertia weight is set to 0.7, and

cognitive and social parameters are set to 2. The PSO hyperparameters are

chosen based on careful analysis and experimentation.
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4.2.6 Evaluation Metrics

The evaluation of the proposed system is performed using different performance metrics

for segmentation and classification tasks. The segmentation of nodules is measured

using metrics such as DSC, IoU, SEN, and Positive Prediction Value (PPV). DSC and

IoU are considered primary evaluation metrics, and these metrics are also popularly

used for analyzing overlapping between the two segmentation results. The system’s

robustness is measured using SEN and PPV, which are considered auxiliary evaluation

metrics. The computation of the metrics is given in the below equations, where TP, TN,

FP, and FN represent True Positive, True Negative, False Positive, and False Negative,

respectively.

DSC =
2 ∗ TP

(TP + FP ) + (TP + FN)
(4.4)

IoU =
TP

TP + FP + FN
(4.5)

SEN =
TP

TP + FN
(4.6)

PPV =
TP

TP + FP
(4.7)

The classification of nodules is measured using metrics such as ACC, SEN, SPEC,

PR, F1-score, False Negative Rate (FNR), and FPR. F1-score is computed using PR and

recall (REC), where the recall metric’s equation is similar to SEN. The computation of

these metrics is given in below equations:

ACC =
TP + FP

TP + FP + TN + FN
(4.8)

SPEC =
TN

FP + TN
(4.9)

PR =
TP

FP + TP
(4.10)
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F1− Score =
2 ∗ PR ∗REC
PR +REC

(4.11)

FNR =
FN

TP + FN
(4.12)

FPR =
FP

FP + TN
(4.13)

4.2.7 Results and Discussion
4.2.7.1 Segmentation of lung nodules in the CT scan

Figure 4.5 shows the output obtained for the proposed lightweight RefineNet. The

input CT scan consists of lung nodules, and to train the network ground truth mask is

fed along with the CT scan. In the testing phase, the proposed method predicts the

segmentation output mask. The figure shows that the proposed segmentation method

has predicted segmentation masks accurately indicating the system is trained well and

working correctly in identifying candidate nodule structures. However, from closer

observation in CT scans 1, 2, and 5, some of the tiny nodule regions in the CT scan are

not captured in the predicted segmentation mask generated from the proposed model.

Therefore, there is still scope of performance improvement in micro-nodule

segmentation.

4.2.7.2 Free-response Receiver Operating Characteristic (FROC) analysis of
Lung Nodule Segmentation system

The FROC analysis of the proposed Lightweight RefineNet architecture is shown in

Figure 4.6. The sensitivity values of the system for different FPs are shown in the

figure. It can be observed from the graph that there is an increase in the sensitivity

rates, and the model resulted in higher sensitivity values for 2, 4, and 8 FPs. This is a

crucial metric as the lung nodule segmentation task is critical, and the number of FPs

must be very few for an ideal CAD system.
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Figure 4.5: Results achieved by the proposed Lightweight RefineNet model

Figure 4.6: FROC curve illustrating the performance of the Lightweight RefineNet
model at different FPs/scan
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4.2.7.3 Performance of Lung Nodule Segmentation system

The proposed lightweight RefineNet is evaluated in comparison to state-of-the-art

(SOTA) segmentation methods such as U-Net, V-Net, Fully Connected Network

(FCN) U-Net, Mask RCNN, and RefineNet. The performance metrics considered for

the evaluation are DSC, IoU, SEN, and PPV, gave for 0.125, 0.25, 0.5, 1, 2, 4, and 8

FPs/scan. The performance of the methods is presented in Table 4.1. The results of the

proposed lightweight RefineNet achieved the best sensitivity rates for 2,4 and 8

FPs/scan. The best performance of the proposed method resulted in 98%, 93.5%,

98.5%, and 98.4% for DSC, IoU, SEN, and PPV for 8 FPs/scan, respectively. The

second-best performance was resulted by RefineNet.

Table 4.1: Performance of the proposed Light-weight along with existing segmentation
methods for different FPs/scan values

Metrics Models FPs/scan
0.125 0.256 0.512 1 2 4 8

DSC

U-Net 73.3 74.1 75.9 77.8 78.9 79.5 80.2
V-Net 88.0 89.4 89.9 90.7 91.5 91.9 92.8

FCN U-Net 86.7 87.2 88.6 89.1 90.8 91.3 92.1
Mask RCNN 68.4 68.9 70.3 71.1 71.5 71.8 72.1

RefineNet 91.1 92.3 93.8 94.9 96.2 96.5 96.8
Light-weight RefineNet 93.6 94.9 95.8 96.4 97.2 97.6 98.0

IoU

U-Net 76.4 77.7 78.6 79.3 80.9 81.1 81.4
V-Net 87.9 88.2 89.5 89.9 90.3 90.5 90.9

FCN U-Net 85.3 86.4 87.8 88.7 89.0 89.3 89.7
Mask RCNN 69.5 70.3 70.8 71.6 72.0 71.9 72.9

RefineNet 86.2 87.1 89.3 90.8 91.4 91.5 91.8
Light-weight RefineNet 88.3 89.0 90.6 91.4 92.1 92.8 93.5

SEN

U-Net 69.5 74.2 75.8 79.1 81.6 83.1 86.3
V-Net 77.2 80.3 84.9 87.2 89.7 90.4 91.4

FCN U-Net 78.5 80.6 83.8 84.2 87.6 89.8 91.7
Mask RCNN 71.3 75.9 78.3 81.6 85.3 86.4 89.4

RefineNet 71.2 73.5 86.3 88.0 93.1 94.7 95.7
Light-weight RefineNet 73.6 82.7 95.8 97.2 97.2 97.9 98.5

PPV

U-Net 80.6 82.1 85.9 86.2 87.0 87.3 87.8
V-Net 82.8 85.4 88.7 90.3 91.8 92.7 93.5

FCN U-Net 83.9 85.0 86.8 89.2 90.4 91.7 93.7
Mask RCNN 83.7 84.6 85.9 87.0 88.5 89.1 90.1

RefineNet 87.0 89.8 91.3 92.6 95.2 95.8 96.1
Light-weight RefineNet 89.5 91.2 93.6 95.1 96.8 97.6 98.4
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However, one major drawback of other segmentation methods is that they are

computationally intensive in terms of time and resource consumption. Therefore, it can

be said that the use of Lightweight deep learning methods is beneficial in terms of both

computation and improved performance. The proposed model has achieved a DSC of

98% and an IoU of 93.5% with 24 Million parameter and training time of 142 seconds.

4.2.7.4 Comparison of Lightweight RefineNet with SOTA Nodule Segmentation
CAD systems

The existing algorithms proposed to perform the segmentation of lung nodules of CT

scans are dominated by deep convolution networks. The proposed lightweight

RefineNet is compared with the SOTA CAD systems in terms of DSC, IoU, SEN, and

PPV, which is presented in Table 4.2.

Table 4.2: Comparison of the proposed Light-weight RefineNet with SOTA Lung
Nodule Segmentation CAD systems

Ref. Methods used DSC (in %) IoU (in %)
Cao et al. (2020) DBResNet 82.74 -

Dolejsi et al. (2009) Deep ResNet 94.68 -
Ronneberger et al. (2015) U-Net 94.97 -

Wang et al. (2017) Central focused CNN 88.15 71
Messay et al. (2015) Regression neural Network - 74
Proposed method Light-weight RefineNet 98 93.5

The proposed architecture is not only better in terms of performance but also is

low-complex in nature i.e. it takes fewer trainable parameters. A deep network named

dual branch ResNet (DBResNet) was proposed by Cao et al. (2020), which captures

multi-view and multi-scale features from the CT scan images. However, the method’s

performance can be improved as lung nodule segmentation is a critical task. Also, the

proposed method is a data-driven approach, requiring a huge amount of data to get

good performance. Another residual network was proposed by Dolejsi et al. (2009),

which gave better performance, but the deep network is computationally extensive.

U-Net architecture is one of the most common segmentation architectures used for

segmentation tasks. Ronneberger et al. (2015) have proposed the U-Net model to

perform lung nodule segmentation. The method resulted in a low DSC value which is

not a reliable factor to segment nodules. A data-driven approach was proposed by
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Wang et al. (2017) to perform nodule segmentation from CT scans. The model

proposed captures both 2D and 3D multi-scale features. However, the results can still

be improved. A regression neural network was proposed to segment pulmonary

nodules by Messay et al. (2015). A fully-automated segmentation approach is

introduced in this work and also has good IoU performance.

4.2.7.5 Performance evaluation for proposed Lung Nodule Segmentation system
on multiple datasets

The proposed method is compared with multiple datasets as mentioned in Table 4.3.

The additional datasets considered for evaluation are International Early Lung Cancer

Action Program (I-ELCAP), Lung time, and Lung Nodule Database (LNDb). These

datasets are the popular datasets used for lung cancer nodule segmentation. I-ELCAP

dataset consists of 50 low-dose documented whole-lung CT scans for detection (Reeves

et al. 2017). The lung time dataset consists of 157 scans, divided into two sets (Dolejšı́

et al. 2009). LNDb dataset consists of 294 CT scans (Pedrosa et al. 2021). All the

datasets are annotated with lung nodule locations. The datasets are evaluated for the

detection of nodules in CT scans. However, the nodules could not be further classified

into benign and malignant due to a lack of ground truth. The proposed lightweight

RefineNet model performed well on all the datasets.

Table 4.3: Performance evaluation for proposed Lung Nodule Segmentation system

Dataset DSC
(in %)

IoU
(in %)

SEN
(in %)

PPV
(in %)

LUNA16 (Iandola et al. 2016) 98.0 93.5 98.5 98.4
I-ELCAP (Reeves et al. 2017) 97.5 95.9 95.0 97.1

Lung TIME (Dolejšı́ et al. 2009) 98.3 95.1 92.0 96.3
LNDB (Pedrosa et al. 2021) 96.8 94.3 94.5 95.1

4.2.7.6 Performance comparison of various Optimization Algorithms along with
parameters used

The tuning of hyperparameters is performed using optimization algorithms such as

Ant-Colony Optimization (ACO), BAT algorithm, Artificial Bee Colony (ABC)

optimization, Genetic Algorithm (GA), and Particle Swarm Optimization (PSO). The

algorithms are bio-inspired optimization techniques used to achieve the optimal
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solution for a given problem. Each algorithm’s working is carried out with different

parameter initialization. The parameters considered for the different optimization

algorithms combined with CondenseNet architecture and its respective performance

results achieved are presented in Table 4.4. The initial parameters considered are

chosen in an empirical manner. The parameters providing the highest performance

results are presented in the table. The best results for lung nodule classification are

achieved using the PSO algorithm fused with CondenseNet architecture.

Table 4.4: Performance comparison of various Optimization Algorithms used

Optimization Algorithm Parameters used ACC
(in %)

SEN
(in %)

SPE
(in %)

ACO-based CondenseNet

Number of ants=15
Initialisation of pheromone=0.5
Weight of pheromone of
decision=0.5
Number of iterations=100
Number of generations=500

90.84 89.03 90.31

BAT-based CondenseNet

Population size=50
Loudness=0, 30
Pulse rate=0, 5
Minimum frequency=0
Maximum frequency=100
Number of iterations=100

75.48 76.71 74.98

ABC-based CondenseNet

Colony size=200
Limit=100
Number of onlookers=100
Number of employed bees=100
Number of scouts=1

79.3 78.83 79.94

GA-based CondenseNet

Initial population size=50
Offspring/parent populations
size=50
Mutation rate=15
Fitness function=Maximize
Sorting method=Ascending
Probability of crossover=85%
Number of iterations=100

66.4 65.9 67.4

PSO-based CondenseNet

Number of iterations=100
inertia weight=0.7
cognitive and social
parameter=2
Number of iterations=100

98.7 98.8 97.9
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4.2.7.7 AUC-ROC graph representing various Optimization Algorithms
combined with CondenseNet architecture

The proposed CondenseNet architecture is evaluated with various optimization

algorithms such as ACO, ABC, BAT, GA, and PSO, illustrated in Figure 4.7. The

algorithms displayed varying performances when fused with CondenseNet architecture

for tuning of hyperparameters. The ideal Area Under the Receiver Operating

Characteristic Curve (AUC-ROC) curve will be nearer to a value of 1.0. The higher the

AUC, the better the classifier. From the experimentation, it can be concluded that the

best AUC value is achieved by the PSO-based CondenseNet classifier.

Figure 4.7: AUC-ROC graph representing various Optimization Algorithms combined
with CondenseNet architecture

4.2.7.8 Analysis of accuracy and loss for the proposed Classification method

The proposed PSO-based CondenseNet method is trained for 50 epochs. Figure 4.8

illustrates the accuracy and loss values throughout the training and validation phase of

the network. In order to attain the optimal performance of the system, the accuracy

value should be higher, and the loss value should be lower towards the end of the

network’s training. The graph shows that the proposed method is trained similarly,

resulting in the best accuracy and lowest loss for the classification problem. Because

different inputs are supplied in each batch, the curve is not exactly exponential, which

may result in poor performance. However, at the end of the training phase, the model
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learns better, and the best weights are chosen from the validation phase and used to

evaluate the unknown data.

Figure 4.8: Graph representing the accuracy and loss achieved

4.2.7.9 Performance of Lung Nodule Classification system with existing methods

The detected lung nodules are further classified into benign and malignant nodules

using a novel classification method named PSO-based CondenseNet. The performance

metrics used to evaluate the proposed method are ACC, SEN, SPE, PR, F1-score, FPR,

and FNR. The proposed method is evaluated with SOTA lightweight classification

systems: SqueezeNet, Squeeze-and-Excitation Net (SENet), ShuffleNet, MobileNetv2,

and CondenseNet. The results obtained for all the methods are presented in Table 4.5.

The proposed method achieves the best results with 98.7%, 98.8%, 97.9%, 95.3%,

96.1%, 0.0495, and 0.0231 for ACC, SEN, SPE, PR, F1-score, FPR, and FNR values,

respectively.

Table 4.5: Performance of the proposed Lung Nodule Classification method

Models ACC
(in %)

SEN
(in %)

SPE
(in %)

PR (in
%)

F1-score
(in %) FPR FNR

SqueezeNet 88.3 89.2 86.9 88.1 87.5 0.0640 0.0438
SENet 89.9 90.5 89.5 90.4 91.3 0.0545 0.0441
ShuffleNet 90.3 92.1 94.9 93.6 95.1 0.0622 0.0458
MobileNetv2 95.4 93.0 92.7 94.5 95.3 0.0521 0.0372
CondenseNet 95.1 96.3 93.4 92.5 96.0 0.0568 0.0454
PSO-based
CondenseNet 98.7 98.8 97.9 95.3 96.1 0.0495 0.0231
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4.2.7.10 Comparison of PSO-based CondenseNet with SOTA Nodule
Classification CAD systems

The proposed PSO-based CondenseNet method is compared with the SOTA nodule

classification systems and is provided in Table 4.6. The existing CAD systems are

dominated by CNN models for the classification task. Hussein et al. (2017) have

proposed a deep learning CNN model with high-level attributes in which the transfer

learning technique has been adapted. A stacked autoencoder method was proposed by

Naqi et al. (2020) to classify lung nodules. The method uses multiple CNN models to

achieve better performance. However, the number of parameters for multiple CNNs

will be higher, causing the model to be complex. A 3D Deep Neural Network was

proposed by Liao et al. (2019), which extracts volumetric information from the input

scans. However, the system’s performance is less and can not be used for real-time

deployment. Tran et al. (2019) have introduced an autoencoder model with deep

features. The sensitivity and FP/scan value obtained in their method are not

satisfactory for a reliable CAD system. Also, one of the major drawbacks of using

deep learning models is that they can overfit for less data and also consume a lot of

resources to train better. Therefore, in this work a lightweight CNN model is proposed

for the classification of lung nodules. The results obtained by the proposed method are

better than the existing CAD systems in terms of performance and also training time.

Table 4.6: Comparison of the proposed PSO-based CondenseNet with SOTA systems

Ref. Methods used ACC
(in %)

SEN
(in %)

SPE
(in %)

Hussein et al. (2017) High-level attributes, CNN 91.26 - -

Naqi et al. (2020) Stacked autoencoders 96.9 95.6 97

Liao et al. (2019) 3D DNN 81.42 - -

Tran et al. (2019) Deep features with autoencoder 75.01 83.35 -

Proposed method PSO-CondenseNet 98.7 98.8 97.9

4.2.7.11 Comparison of Time and Space Complexity for proposed models

Computational complexity is a significant factor considered while deploying any

model for real-time usage. The reason being less availability of high configuration

73



4. Lung Cancer Nodule Segmentation

systems at every remote location. Therefore, the more the model is light-weight, the

better the model for using it on mobile devices. Here, training time is considered per

epoch. The time and space complexities are mentioned in Table 4.7 for segmentation

and classification tasks in terms of training time in seconds (s) and number of

parameters in millions (M). It can be observed that both the proposed models perform

better in comparison to other existing models, making it feasible for real-time usage.

Table 4.7: Time and Space Complexity comparison for proposed models

Segmentation Classification

Models
Parameters

(M)
Training
Time (s)

Models
Parameters

(M)
Training
Time (s)

U-Net 30 232 SqueezeNet 27.5 580

V-Net 27 192 SENet 25.6 394

FCN U-Net 130 780 ShuffleNet 5.3 289

Mask RCNN 63 423 MobileNetv2 3.5 188

RefineNet 26 165 CondenseNet 2 103

Proposed Light-weight 24 142 PSO-based 1.7 82
RefineNet CondenseNet

4.3 PROPOSED LUNG CANCER NODULE SEGMENTATION SYSTEM-II

The CT scans consist of candidates that need to be identified as nodules and

non-nodules, which are performed using the EFCM method. Once the nodules are

categorized, it needs to be further classified into benign and malignant nodules. The

nodule can be assigned a malignant label based on the malignancy score provided by

expert radiologists. The average score of all the radiologists is calculated, and the

nodule is assigned the corresponding label. Once we get the two classes, the

classification is performed using two sets of feature representations, BoVW, deep

features, and the combination of both features. The classifier used is the SVM for the

final decision. Figure 4.9 demonstrates the architecture of the proposed method. The

details of each module in the architectures are dicussed in subsections 4.3.1, 4.3.2,

4.3.3, 4.3.4, and 4.3.5.

74



4.3. Proposed Lung Cancer Nodule Segmentation System-II

Figure 4.9: Schematic architecture of the proposed method
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4.3.1 Image Enhancement

Enhancing the images draws more attention toward certain characteristics of an image,

making the images more precise, sharp, and detailed. This, in turn, can be used for

better analysis and information extraction from the images. In this work, the

Histogram Equalization (HE) technique is used where the contrast is altered by

adjusting the intensity of the image, which provides an enhanced CT scan image. The

comparative frequency of occurrence of different gray levels in the image is

represented in the histogram (Salem et al. 2019).

The histogram h(rk) of an image consists of a L total intensity values rk within a

range of [0-255] (refer equation 4.14).

h(rk) = nk (4.14)

where, nk is the number of pixels with an intensity value of rk in the image.

The histogram can be obtained by plotting the p(rk) which is shown in below

equation 4.15:

p(rk) =
h(rk)

number of rows(M) ∗ number of columns(N)
=

nk
MN

; k = 0, 1, 2, ..., (L−1)

(4.15)

The HE of an image is a transformation function i.e, Cumulative Distribution

Function (CDF) is given in below equations 4.16 and 4.17:

cdf(k) =
k∑
i=0

pr(ri), k = 0, 1, ..., L− 1 (4.16)

s(k) = T (rk) =

⌊
(L− 1)

k∑
i=0

pi

⌋
=

⌊
(L− 1)

MN

k∑
i=0

ni

⌋
; k = 0, 1, ..., (L− 1) (4.17)

where, k is total intensity value, pr is plot of histogram, and r is intensity value of a

pixel in the image.
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4.3.2 Image Segmentation

The proposed work uses a novel clustering approach named Elagha initialization-based

Fuzzy C-Means clustering to segment the nodule region from the given input CT scan.

At first, FCM partitions the image into several clusters, and then the cluster centroids are

selected randomly to compute the Euclidean distance. This random selection of initial

centroids may lead to the local optimum solution. Thus, to overcome this drawback,

Elagha initialization is used to initialize centroids. It generates the initial centroids

based on the overall shape of the data. This modification in traditional FCM is termed

EFCM.

EFCM method divides the input image (X) into M clusters such that

xj = x1, x2, ..., xm. Then, Elagha initialization calculates the initial cluster centroids

by identifying the boundaries of data points and divides them into F rows and F

columns to calculate the initial centroids. The width wj and height hj of the grid cell is

computed as shown in equations 4.18 and 4.19:

wj =
wj,max − wj,min

F
(4.18)

hj =
hj,max − hj,min

F
(4.19)

Where wj,max and wj,min represents the maximum and minimum widths, hj,max and

hj,min signifies the maximum and minimum heights respectively. The N number of

initial cluster centroids (ci) is given by equation 4.20,

ci =
wj
2

+
hj
2
, i = 1, 2, ..., N (4.20)

After initialization of centroids, the membership function calculation of each pixel

is done using equation 4.21:

µij =
1∑N

i=1

∑M
j=1

(
1
dij

) 2
q−1

(4.21)
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Where, q indicates the power exponent, dij is the Euclidean distance between

samples xj and cluster centroid ci and is given by, equation 4.22:

dij =

√√√√ N∑
i=1

M∑
j=1

(xj − ci)2 (4.22)

The objective function ξ used for the initialization of the FCM algorithm is given

by equation 4.23:

ξ =
N∑
i=1

M∑
j=1

µijd
2
ij (4.23)

The clusters are formed for nodule and non-nodule regions into separate groups

based on the Euclidean distance. The output of the EFCM algorithm is a segmented

image consisting of lung nodule regions.

4.3.3 Bag-of-Visual Words

Learning feature representations from images using the BoVW method is a two-tiered

process. The information from the segmented images is extracted from a pre-generated

codebook or dictionary consisting of low-level local features, also known as visual

words. The image descriptors used in this work are Scale-Invariant Feature Transform

(SIFT) features. A visual dictionary is represented using a histogram named “Bag of

Visual Words”, which is used as a mid-level feature representation (Sundarambal et al.

2021). The words in the image mean information in a patch of an image. The patch

size must be larger than a few pixels to retrieve more and better information, as it

should consider key parts like corners or edges.

SIFT operation is based on the local edge histogram technique. The SIFT

technique is one of the popular methods that work very effectively for the BoVW

method. Densely sampled SIFT features are extracted from the images. K-means

algorithm is used to get cluster centers to generate a visual codebook or dictionary on

these features. A histogram is built to the nearest code in the codebook based on the

number of occurrences of a feature in each image. The image is then divided into

sub-regions of size 2 x 2, and histograms are built for each sub-region. Once all the
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histograms are generated, all the sub-region histograms are concatenated to form a

single feature vector.

4.3.4 Deep Features

In medical imaging, deep architectures are mostly used for final decision-making.

However, in this work, deep architecture is used as a feature representation. The deep

learning models are well-known for learning hierarchical information from the input

images. The higher the layers, the more information the network learns. This novel set

of features is used for classifying cancerous and non-cancerous nodules. Images of

both categories are trained separately using a deep CNN architecture, and intermediate

features of both classes are extracted. The deep features learn better representations as

the network gets deeper.

4.3.5 Nodule Classification

Classification of detected nodules into cancerous and non-cancerous is performed

using an SVM classifier. The model is trained using BoVW, deep features, and the

combination of these features. The kernel used for SVM is linear. The

hyperparameters set for the SVM model are cross-validation parameter set to 5 and the

cost parameter set to 0. The model is tested using probability estimates generated from

the trained model for the classification.

4.3.6 Results and Discussion

This section discusses about the results obtained by the proposed segmentation and

classification models. The performance metrics considered for segmentation task are

DSC, IoU, SEN, and PPV, and for classification task are accuracy, error rate, specificity,

sensitivity, FPR, and F-score.

4.3.6.1 Nodule Segmentation

Figure 4.10 shows the dominance of the proposed EFCM segmentation method. The

proposed model obtains the DSC of 97.10%, whereas existing methods obtain lower

values, such as U-Net of 80.36%, V-Net (92.86%), Fully Connected Network (FCN)

U-Net (91.20%), and Mask Region-based CNN (Mask RCNN) (71.16%). Also, the
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IoU of the proposed technique is 91.96%, but the existing methods show lesser values.

Likewise, the SEN value of 95.35% makes the proposed model preferable to the current

techniques. On the other hand, the proposed system attained the PPV of 96.30%, which

is higher than the existing methods. However, the second best performing method was

V-Net followed by FCN U-Net. It can be inferred that the proposed EFCM segmentation

model displayed an improved performance in terms DSC, IoU, SEN, and PPV.

Figure 4.10: Comparison of proposed EFCM model with existing techniques

The evaluation of the nodule segmentation system for the LUNA16 dataset is

performed using a primary performance metric named FPs/scan. Figure 4.11 illustrates

the FROC curve achieved for the proposed EFCM method. The graph depicts that the

proposed method resulted in low FPs/scans, proving it is a better performing system.

The FPs/scan result for the proposed EFCM model is 2.7 FPs/Scan with a sensitivity

of 95.35%.

The proposed EFCM segmentation method is compared with the existing lung

nodule segmentation systems in Table 4.8. The methods considered for comparison are

mostly deep learning architectures such as U-Net (Ronneberger et al. 2015), dual

branch residual network (Cao et al. 2020), CNN (Wang et al. 2017), deep Fully

Convolution Networks (FCN) (Roy et al. 2019), and so on. In recent trends, deep

learning architectures have taken over image segmentation techniques. However in the

proposed method, a clustering approach for segmentation attained improved results of

97.10% for DSC, and 91.96% of IoU respectively.
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Figure 4.11: FROC curve for the performance of proposed EFCM at 2.7 FPs/scan

Table 4.8: Comparison of the proposed system with the SOTA systems

Ref. Methods used DSC Ref. Methods used IoU
(in %) (in %)

Ronneberger et al.
(2015)

U-Net 94.97 Wu et al. (2018)

Segmentation
Attributes and
Malignancy
Prediction

58.00

Cao et al. (2020)
Dual branch
residual
network

82.74
Aresta et al.
(2019)

iW-Net 55.00

Roy et al. (2019) Deep FCN 93.00
Messay et al.
(2015)

Regression
Neural Network

74.00

Wang et al. (2017)
Central
focused CNN

82.15
Wang et al.
(2017)

Central focused
CNN

71.00

Proposed
method EFCM 97.10 Proposed

method EFCM 91.96

4.3.6.2 Nodule Classification

The performance of the lung nodule classification system is evaluated on the publicly

available LUNA16 dataset. The accuracy obtained for the lung nodule classification

task is 96.87%. The performance metrics considered for the evaluation of the proposed

method are accuracy, error rate, specificity, sensitivity, FPR, and F-score. The results

are presented in Table 4.9.
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Table 4.9: Performance of the Lung Nodule Classification for the proposed system

Performance metric BoVW Deep features BoVW + Deep features
ACC (in %) 93.48 95.32 96.87

Error rate (in %) 6.52 4.68 3.13
SPE (in %) 93.04 95.01 96.60
SEN (in %) 93.94 95.61 97.15

FPR 0.0696 0.0499 0.0340
F-score 0.9337 0.9522 0.9681

Figure 4.12 illustrates the quantitative analysis of the three feature representations

using the Receiver-Operating Characteristics (ROC) curve. The ideal system provides

an Area Under Curve (AUC) of 1. The AUC values attained for BoVW, deep, and

BoVW + Deep features are 0.83, 0.88, and 0.92, respectively. The classification

performance analysis is presented for the SVM classifier. It can be noted from the

Figure 4.12 that BoVW + Deep features resulted in the highest AUC of 0.92. The

feature combination worked effectively to improve the performance of the system.

Figure 4.12: ROC curves for (a) BoVW, (b) Deep features, (c) BoVW + Deep features
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A layer-wise feature comparison is performed for deep and BoVW + deep features.

Figure 4.13 illustrates the accuracy values obtained for different intermediate layers for

deep features. The number of layers considered is from 1 to 10. It can be noticed that

the performance of the system increases with the increase in layers. After 7th layer,

there is a degradation of accuracy observed in the figure. This is due to overfitting the

model for more layers as complexity increases, and less data is available to train the

deep architecture. Therefore, the number of layers must be monitored to prevent the

model from overfitting.

Figure 4.13: Layer-wise accuracy values for (a) Deep features, (b) BoVW + Deep
features
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The proposed method is compared with SOTA lung nodule classification systems.

The systems previously proposed for performing lung nodule classification system

utilizes deep learning architectures such as ANN, CNN, multi-scale CNN, Stacked

Auto Encoder (SAE), etc. The results are presented in Table 4.10. It can be noted from

the table that the proposed method achieved better performance as compared to the

SOTA lung nodule classification systems.

Table 4.10: Comparison of the proposed system with the SOTA systems

Ref. Methods used ACC SEN SPE
(in %) (in %) (in %)

Silva et al. (2016) Taxonomic indexes and 88.44 84.22 90.06
phylogenetic trees, SVM

Song et al. (2017) CNN, DNN, SAE 84.15 N/A∗ N/A

Shen et al. (2015)
Multi-scale CNN,
Random forest

86.84 N/A N/A

Gupta et al. (2018)
Super-Resolution CNN,
SVM

85.70 N/A N/A

Shaukat et al. (2019)
Intensity, shape, texture
features and ANN

93.70 95.50 94.28

Proposed method BoVW + Deep features,
SVM 96.87 97.15 96.60

N/A∗-Not Available

Another major issue in training these networks is it is computationally expensive as

it requires a lot of time to train a deep model. However, in our method, we used CNN

as a feature extractor rather than a classifier. It does not require much time to extract

intermediate features. It is also computationally less expensive as the classifier used

does not require much time to learn BoVW and deep features. Because BoVW features

are encoded, representations do not take up more time for calculation.

4.4 SUMMARY

Number of CAD systems have been proposed in the past years. However, some

limitations of the existing systems are that they are trained on less data, the complexity

of the model is too high, the model is computationally intensive, the system’s

performance is not reliable for deployment in real-time, etc.
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4.4. Summary

This chapter is mainly focused on two proposed novel segmentation algorithms.

The first proposed system introduces a novel low-complex deep learning approach to

perform lung nodule segmentation and classification. There is a need to develop

low-complex models as the conventional CNN models take up a lot of computer

resources and are largely dependent on the size of the dataset. A novel lightweight

RefineNet is introduced to segment lung nodule candidates from CT scans. Before

feeding the identified nodules to the classifier, there is a need for more cancerous and

non-cancerous nodules. More images are generated using a DC-GAN model, a SOTA

data augmentation technique. The identified nodules are further fed to a lightweight

PSO-based CondenseNet to classify them into cancerous and non-cancerous nodules.

The primary goal of this work is to create a CAD system that is both performance and

computationally-efficient. The proposed system achieves performance at par with the

SOTA CAD systems and is lightweight. The key contribution of this work is that the

models proposed for both segmentation and classification take significantly fewer

parameters to achieve high performance in terms of DSC, IoU, ACC, SEN, and SPE.

In this second proposed system, a novel clustering-based segmentation method

named EFCM is designed to extract lung nodules from the given CT scan. A hybrid of

two different types of feature representations for lung nodule classification is proposed

in the work. The method glorifies that deep learning can be used as a classifier and as a

suitable feature extractor. The segmentation method introduced in this work performs

better than existing segmentation methods in terms of DSC, IoU, and PPV. The

proposed method acknowledges that a combination of certain feature representations

can enhance the system’s performance in terms of various evaluation metrics such as

ACC, SEN, etc. It also reduces the computational cost of the system by reducing the

system’s learning parameters. The proposed system effectively combines the encoded

feature representation method BoVW and deep features extracted from intermediate

layers of a CNN. The performances obtained in the medical imaging tasks are rather

critical and also require quicker output. The proposed method provided better and

faster results than other CAD systems proposed for the lung nodule classification tasks.
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CHAPTER 5

LUNG CANCER NODULE CLASSIFICATION

5.1 INTRODUCTION

Cancer is one of the world’s deadliest illnesses, with a high death rate. Cancer is

formed by abnormal cell growth in any tissue, which leads to the formation of tissue

lumps, masses, or nodules. Lung cancer is one of the most life-threatening cancers,

accounting for the majority of cancer-related deaths. There has been increasing

interest in research in the early identification of lung cancer by investigating lung

nodules. Some CAD systems have been previously developed, but there is still scope

for improving their performance to identify and classify lung nodules. Nodules in lung

cancer may be characterized into two categories, namely, cancerous and

non-cancerous. Malignant nodules are cancerous, while benign nodules are not. One

of the primary determinants of the nodule type is size. In this chapter, a novel nodule

classification method is proposed to categorize the nodules into cancerous and

non-cancerous.

The contributions of the chapter are :

• A new preprocessing technique named Boosted Bilateral Histogram Equalization

(BBHE) is introduced in this work to improve the quality of CT scans.

• Level-1 classification is performed using the proposed Cauchy Black Widow

Optimization-based Convolutional Neural Network (CBWO-CNN), in which

Cauchy mutation is used to choose the best weights.
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• A novel Squeeze-and-Excitation-Xception (SE-Xception) CNN model with

shared network parameters is proposed for performing Level-2 classification of

lung cancer in CT scans.

The chapter is organized as follows: Section 5.2 discusses the proposed methodology

in detail. Section 5.3 briefs the results and discussion, and Section 5.4 summarizes the

proposed method and its significance.

5.2 PROPOSED METHODOLOGY

This work aimed to perform lung nodule classification using a bi-level classification

approach. In Level-1, candidates are classified into nodules and non-nodules, and in

Level-2, the detected nodules are further classified into benign and malignant. The

proposed classification approach is divided into four main stages: data preparation,

Level-1 classification, transfer-learned knowledge, and Level-2 classification. The

block diagram of the proposed methodology is shown in Figure 5.1.

In the first stage, data preparation involves the preprocessing of input CT scans.

Pre-processing helps to denoise the scan, improve its visibility which in turn enhances

the quality of the image. The preprocessed scans are fed as an input to the Level-1

classification task. Boosted Bilateral Histogram Equalization filtering technique is

used to preprocess input CT scans and is explained in detail in section 5.2.1. The

second stage is to differentiate between nodules and non-nodules. The dataset consists

of very few positive nodules as compared to non-nodules. To mitigate this issue,

positive lung nodule data is augmented only for training and validation dataset splits.

This process is described in the data augmentation section 5.2.2. The level-1

classification task is performed using the proposed CBWO-CNN. The third stage is the

transferring of learned knowledge from the CBWO-CNN model to the proposed

SE-Xception model. In machine learning, transfer learning (Torrey and Shavlik 2010)

focuses on using the knowledge acquired while completing one task to complete

another task that is linked to it. The reason for adapting the transfer learning approach

is that the size of the data used for classifying benign and malignant nodules is

significantly less. Deep learning models perform well on large datasets. Therefore, to
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Figure 5.1: Block diagram of the proposed approach

address this issue, a weight-sharing scheme is adapted in this work. The best

pre-trained weights obtained from the trained CBWO-CNN model for nodule and

non-nodule images are used as initialization weights for training the SE-Xception

model for benign and malignant nodules. The fourth stage of the proposed method is

the classification of lung nodules into benign and malignant. An architecture named

“SE-Xception” is proposed in this work. A detailed description of all the methods is

provided in the below sections.

5.2.1 Image Preprocessing

Preprocessing provides the quality enhanced image to locate small particles in the

scanned image. A CT scan is a medical imaging procedure that uses X-rays and

computer technology to produce detailed, cross-sectional images of the body. CT

scans are stored in the image format of the ‘raw’ and ‘mhd’ extensions. These CT
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scans are loaded using the python tool SimpleITK (Lowekamp et al. 2013). The

location of candidates is provided in X, Y, and Z coordinates. The candidate location is

chosen based on the center of the nodule or non-nodule. A 32 x 32 region is cropped

out from each candidate location and saved into two classes, positive and negative, i.e.,

nodules and non-nodules. These classes are decided based on the annotations provided

by the radiologists. The reason for reducing the size of the image to 32x32 is that the

size of the nodules is very small in the CT scan and can consist of background noise

which can lead to mis-classification. When a scan is cropped to a size of 48 × 48 or

larger, more background noise is introduced, which causes mis-classification. When

the scan size is reduced to 16 x 16, the nodule is clipped and significant data is lost.

Various preprocessing methodologies have been developed, but still, quality remains

to be a challenge. A Boosted Bilateral Histogram Equalization algorithm has been

developed to improve the image quality so that small parts can be seen clearly. The

detailed illustration of the BBHE is as follows:

Initially, the histogram is generated for the image ℏ (χj) = npj . Then the histogram

is smoothed by bilateral filtering to preserve the edges in an image given by equation

5.1.

ℏχ (χj) = ℏ (χj) ∗ ψ (5.1)

Where, χj represents the jth intensity level, npj denotes the number of pixels having

intensity level χj , and ψ denotes the bilateral filtering. After that, boosting is applied

on the edge preserved histogram given by equation 5.2. Boosting is a technique that

enhances the edges detected by the bilateral filtering process.

ℏB (χj) =


ℏχ(χj)−Pmin

(Pmax−Pmin)
(m (k)− Pmin)α + Pmin, ifℏB (χj) > Pmin

ℏψ (χj) , otherwise
(5.2)

Where, m(k) denotes the peak histogram’s smoothed value, Pmin and Pmax denotes

the local minimum and maximum pixel values, α boosts the minor regions which is

given by α = log(Pmax − Pmin)/log(m(k) − Pmin). Now, mapping is done using
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Histogram Equalization (HE) and enhancement in the contrast of the image is obtained

(χ′). δ is multiplied by the gain (Γg) and noise reduction (Γn) functions to improve

details of the edges. The detail gain function is given as equation 5.3.

Γdetail(i,j) = ⌊Γg (i, j) .Γn (i, j)⌋ ∗B (i, j) (5.3)

Where, Γg (i, j) = 1/ {R. [χs(i, j) + 1.0]p} and

where Γn (i, j) = Noffset +
{
Nband/

[
1 + e−δ(i,j)−E

]}
.

Finally, by multiplying the details with the detail function (Γdetail) using equation

5.4, the improved detail image δ′ is obtained.

δ′ (i, j) =
∑

Γdetail.δ (i, j) (5.4)

Equation 5.5 is used to integrate the χ′ and δ′ in the final step.

χ′′ (i, j) = w × χs (i, j) + (1− w)× δ′ (i, j) (5.5)

Where, the final enhanced image is χ′′ (i, j), and w is a weighted function. The value

of w can be anywhere between 0.0 and 1.0.

After preprocessing of CT scans, sample images of nodules, non-nodules, benign

and malignant nodules are shown in Figure 5.2. There is a considerable difference

in this dataset’s number of nodules and non-nodules. To avoid the above-mentioned

skewness in the data, the non-nodule data images are sub-sampled, i.e., the images are

randomly selected from all the subsets of the dataset. Nodules must be further classified

into benign and malignant nodules after the nodule and non-nodule categories have been

established.

5.2.2 Data Augmentation

In the above step, there is a clear data imbalance between the two classes. There are a

total of 1186 positive lung nodules in the LUNA16 dataset out of 5,51,065 total

candidates. To overcome this problem, the augmentation of positive nodules is

performed. The images are augmented by performing some image operations such as
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Figure 5.2: Nodule, non-nodule, benign, and malignant images after preprocessing of
CT scans

modifying brightness, contrast, random rotation of the image to 90 degrees,

transposing, scaling the images, and flipping the images horizontally and vertically.

Figure 5.3 shows some of the augmented images of a nodules’ CT scan. The

augmentation images shown in the figure are taken only from one CT scan.

Figure 5.3: Augmented images of a nodule CT scan
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5.2.3 Level-1 Classification: CBWO-CNN

Classifying candidates in a lung CT scan into nodules and non-nodules is critical

because some nodules resemble tissues or organs in that area, making it difficult to

classify the nodule correctly. The training should be done properly to avoid high bias

and low variance as well as low bias and high variance.

Algorithm 1 : CBWO-CNN algorithm

1: Input: Extracted features F ′
EXT =

⌊
ξ+1 , ξ

+
2 , ξ

+
3 , ξ

+
4 , ..., ξ

+
N

⌋
2: Training: Initialize the kernel (K(x,y)), bias φb, pooling layers (lPLlayers), weights
3: Loop: for i pixels in image ξ+x,y
4: Step 1: Evaluate the convolution operation using
5: ℘conv2 = Lrelu

(
φB + Σ2

x=0 + Σ2
y=0 wi,jξ

+
x,y

)
6: Step 2: Evaluate the pooling layer using
7: ℘pooling3 = lPLlayers

(∣∣ξ+x,y∣∣)
8: Step 3: Generate flattened feature vectors
9: ℘pooling3 (ζflatten) =

⌊
ξ+1 , ξ

+
2 , ξ

+
3 , ξ

+
4 , ..., ξ

+
n

⌋
.

10: Step 4: Evaluate the fully connected layer using
11: ℘FC4 = γ (

∑n
i=1wiςflatten + φb)

12: Step 5: If
∑(

ξ+x,y − ξ
+

x,y

)
=0

13: Lung cancer nodule is detected
14: Else Update weights using
15: ∂fitness = f

(
W+
k

)
= f

{
w+

1 , w
+
2 , w

+
3 , w

+
4 , ...w

+
n

}
16:

w1 = α× w+
1 + (1− α)× w+

2

w2 = α× w+
2 + (1− α)× w+

1

17: Step 6: Based on cannibalism the strong solution is preserved and then
18: Cauchy mutation is performed for better accuracy rate
19: vk+1

w = (1− α)w+
k v

k
w + α (ηi.N (0, σ)) + µ1µ2

(
pk − w+

k

)
20: EndIf
21: EndFor
22: Step 7: For ξ+x,y − > Candidate nodule
23: If malignancy rate> 3 and malignancy rate <= 5
24: Nodule is positive
25: Else Nodule is negative
26: EndIf
27: EndFor
28: Output: Lung cancer nodule detection

The detailed discussion of algorithm 1 is given as follows:

1. Pre-processed images in terms of features are given as input to the CBWO-CNN

algorithm. These features are denoted as F ′
EXT which are fed as input to a
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convolutional layer that offers related feature mapping with not losing the

related features that are best significant aimed at prediction.

2. The parameters required for training the model are kernel (K(x,y)), bias φb,

pooling layers (lPLlayers), weights. In this step, these parameters are initialized

empirically.

3. The first step in training the CBWO-CNN is convolutional layers ℘conv2 .

Convolutional neural networks takes an input image matrix ξ+x,y and then

convolves it with filters or else kernels K(x,y) to take out the features. The input

image is convolved utilizing a filter, and also this convolution procedure learns

the identical feature prevalent on the total image. The output matrix’s size with

no padding (i.e.) |ξ+x,y| x K(x,y), the window slides after every procedure, and the

features are learned via the feature maps. The feature maps capture the image’s

and work’s local receptive field utilizing shared weights and also biases.

4. In the second step, the pooling layer is responsible for reducing the Convolved

Feature’s spatial size ℘pooling3 . This is to reduce the computing power needed by

dimensionality reduction to process the data. Herein, lPLlayers signifies the diverse

pooling layer i.e., it may be maximum pooling layer or else minimum pooling

layer or else average pooling layer, etc. In this work, maxpooling is used.

5. In the third step, the output from the convolutional layer is flattened

℘pooling3 (ζflatten). The convolutional, as well as pooling layers, form CNN’s

layer together. The number of layers like these are incremented aimed at

capturing the low-level information much more relying on the images’

complexity. Hence, the convolutional layer’s output is flattened.

6. In the fourth step, the fully connected layer’s (FCL’s) input is the convolutional

layer’s output that is flattened and then fed as input to the FCL. The flattened

vector trains the FCL that is identical to that of Artifical Neural Network. The

vector’s training is executed utilizing, ℘FC4 = γ (
∑n

i=1wiςflatten + φb). Herein,

φb signifies the bias that is randomly initialized; wi implies the respective input
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node’s weight; γ signifies the activation function and the FCL utilizes the relu

activation function aimed at acquiring the input image’s vector values

7. Step 5 is performed to minimize the loss using backpropagation, which,

minimizes the loss between the observed output and the actual output.

Backpropagation calculates the gradient of the loss function with respect to each

parameter in the network, which tells us how much changing that parameter

would affect the loss. The algorithm then adjusts the parameters in a way that

reduces the loss. This is done by iteratively updating the weights and biases in

the opposite direction of the gradient (hence the name “backpropagation”),

meaning that the network moves down the gradient towards the minimum of the

loss function. The magnitude of the updates is controlled by a learning rate

hyperparameter, which determines how much the parameters are adjusted in

each iteration. CBWO provides with selecting the best weights that is

W+
K =

{
w+

1 , w
+
2 , w

+
3 , w

+
4 , ...w

+
n

}
and improving the accuracy.

8. In step 6, to update novel weights, a population is created and inside the

population, the parents are mated to create offspring’s procreation. During

mating, diverse eggs are obtained. However, only strong eggs are sustained and

stored in an array for reproducing then offspring and from the parents w1 and

w2. Now, centred on cannibalism the strong solution is conserved, and next, the

Cauchy mutation is executed aimed at an excellent accuracy rate vk+1
w

9. In step 7, based on the malignancy rate, nodule classification is performed. For

every candidate nodule, a malignancy rate is calculated by averaging the

malignancy score provided by 4 radiologists in LUNA16 dataset. The

malignancy score values lie between the range 1 to 5, where 1 being least

malignant and 5 being most malignant. If the average score is below 3, the

nodule is considered as negative and if the average score is above 3 and below 5,

the nodule is considered as positive.

10. The output returned by the algorithm is whether the given candidate input is

nodule (positive) or non-nodule (negative).
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5.2.4 Level-2 Classification: SE-Xception

Lung cancer nodule classification is a challenging task. SE-Xception, a combination of

two best-performing and popular deep learning architectures, SE-Net, and Xception, is

proposed in this work. SE-Net architecture consists of a block named as

Squeeze-and-Excitation block. In this block, the channel-wise feature responses are

adaptively recalibrated using modeling channel inter-dependency explicitly. The SE

block is shown in Figure 5.4(a).

Figure 5.4: Diagrammatic representation of (a) Xception network, (b) Squeeze-and-
Excitation block, and (c) proposed SE-Xception model

In figure 5.4(b), the SE block diagram, Ftr represents a convolution operation where

the input X is transformed to U . The Ftr in the proposed work is an Xception block. In

previous works, inception and residual blocks are used as convolution operations. Ftr

is represented in equation 5.6.

Ftr : X → U,XϵRH′xW ′xC′
, UϵRHxWxC (5.6)

The notation V = [v1, v2, ..., vC ] is used to illustrate a set of learned filter kernels,

where vC denotes the parameters of filter kernel. The outputs can be written as:

U = [u1, u2, ..., uC ], where uC is given in equation 5.7.
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uc = vc ∗X =
C′∑
s=1

vscXx
s (5.7)

The features that are obtained after performing Ftr are U . The first operation

carried out in the network is passing features through the squeeze operation (Fsq). A

channel descriptor is produced from the feature maps when passed through the

squeeze operation. The feature maps are aggregated across the spatial dimensions (H x

W). An embedding of the global distribution of feature responses is generated

channel-wise from this descriptor. It makes the information from the network’s global

receptive area that all its layers are to use. The squeeze operation is shown in equation

5.8. By shrinking U by its spatial dimensions H x W, a statistic zϵR is generated such

that cth is calculated.

zc = Fsq(uc) =
1

HxW

H∑
i=1

W∑
j=1

uc(i, j) (5.8)

An excitation operation is performed after the squeeze operation to capture the

aggregated information of the channel descriptors. This operation fully captures the

channel-wise dependencies, where it learns the non-linear and non-mutually-exclusive

relationship of the channels. This operation is represented in equation 5.9, where

Rectified linear unit (ReLU) activation function is denoted using δ notation,

W1 = RC
r
XC , and W2 = RC

r
XC . ReLU activation function returns the output value

from max(0, x) where x is the input. Consequently, it eliminates the values that are

negative and offers a much more simple computation.

s = Fex(z,W ) = σ(g(z,W )) = σ(W2δ(W1z)) (5.9)

The network’s SE blocks’ capacity and computational cost can be changed by

adjusting a hyperparameter named the reduction ratio r. This also helps to investigate

the trade-off between performance and computational cost. Using r, a bottleneck with

two completely connected (FC) layers is created with dimensionality reduction. This

block’s final output is given by rescaling U with s activations, which can be expressed

in equation 5.10.
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x̃c = Fscale(uc, sc) = scuc (5.10)

where Xc = x1, x2, ..., xc, Fscale(uc, sc) represents channel-wise multiplication of

scalar sc and the feature map ucϵR(HxW ).

Xception network architecture is completely based on depth-wise separable

convolution blocks. The working of the Xception model is illustrated in Figure 5.4(b).

The hypothesis includes calculating spatial correlations, so it is possible to decouple

cross-channel correlations in the CNN feature maps fully. The name Xception means

“Extreme Inception”. It is named Xception because it has a more robust hypothesis

than the underlying architecture of InceptionV3 (Xia et al. 2017). Xception

architecture consists of 36 convolution layers. These convolution layers are organized

into 14 different modules. Every module consists of linear residual connections except

for the first and last layers. In brief, the Xception network can be said to be the

stacking of depth-wise separable convolution layers in a linear fashion, consisting of

residual connections. The input data is mapped to spatial correlations for each output

channel separately, and then a 1 x 1 depthwise convolution operation is performed.

This operation captures the cross-channel correlation. These correlations can be

pictured as a 2D+1D mapping instead of a 3D mapping. Here, the 2D space

correlations are performed first, and then the 1D space correlation is performed.

Xception proved to provide slightly better results as compared to InceptionV3 on the

LUNA16 dataset.

The proposed SE-Xception model is a combination of SE-Net and Xception.

SE-Net consists of a squeeze-and-excitation block, which performs the operations

mentioned in the above sections. The addition of these modules in the Xception

reduces the parameters of the model. Figure 5.4(c) shows the graphical representation

of the proposed methodology. The figure represents the operations performed in the

SE-Xception model. Only one module operation is illustrated. Input X is first passed

to an Xception module. The input is given to a convolution filter with a filter size of 1,

and then it is passed to a convolution filter with a filter size of 3. These two operations

are concatenated, which is known as depth-wise separable convolution. This operation
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is followed by a SE-block where the squeeze and excitation operation is performed.

Initially, to generate a channel descriptor, a global pooling operation is performed on

the Xception module’s output. The pooling operation is followed by a Fully Connected

(FC) layer with the ReLU as the activation function. The sigmoid activation function

acts as a simple gating mechanism. This operation is known as the excitation

operation. Once this step is completed, the output is scaled, represented as X̃ .

5.3 RESULTS AND DISCUSSION

5.3.1 Level-1 Classification

This section describes the performance of the proposed models. As the data is skewed,

the non-nodules are selected by performing sub-sampling, where a set of non-nodule

images are chosen from each subset to balance the data. The data imbalance (Setio et al.

2017b) may be the reason for overfitting (Banik and Bhattacharjee 2021) the model,

which affects the model’s performance. The model is validated on 10% of the total data

and tested on 20% of the data. Adam optimizer is used in both networks. The loss

function used is binary cross-entropy (Ruby and Yendapalli 2020). The total number

of epochs is set to 200. An early-stopping criterion is used while training, in which if no

improvement is found in the validation loss after 20 epochs, the training is terminated.

CBWO-CNN model is initially evaluated on four different activation functions, namely,

Exponential Linear Unit (ELU) (Clevert et al. 2015), Tanh (Nwankpa et al. 2018),

LeakyReLU (Glorot et al. 2011), and ReLU (He et al. 2015). The model performance

of various activation functions on the CBWO-CNN model is demonstrated in Figure

5.5.

Considering ELU as an activation function in the networks, its convergence is faster

than other activation functions (Clevert et al. 2015). The difference between tanh and

sigmoid lies in the range of the output value it returns. Tanh output value ranges from -1

to 1, whereas the sigmoid output value ranges from 0 to 1. However, the tanh function’s

performance in the models’ hidden layers is relatively poor compared to other activation

functions. LeakyReLU activation function is an extension of ReLU. The alpha value is

added to the function to solve the issue of “dying ReLU” in this activation function.
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Figure 5.5: CBWO-CNN model evaluated on various activation functions on testing
data

The results obtained from the LeakyReLU activation function in the hidden layer are

second-best among the other activation functions used to evaluate the model. ReLU

provides faster and more accurate results as it removes the negative values to pass to the

next layer. The model performed best with the ReLU activation function in the hidden

layer.

The performance metrics used to evaluate the CBWO-CNN model are accuracy

(ACC), sensitivity (SEN), specificity (SPE), precision (PR), F1-score, and false

positive rate (FPR). The corresponding results achieved from these confusion matrices

are illustrated in Table 5.1. The average results obtained from the 5-fold validation of

the model are depicted in the table. The table represents the performance measures

stated above with their corresponding results.

Table 5.1: Performance of CBWO-CNN model

Performance
measures Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average

ACC (in %) 95.21 94.04 96.18 95.77 97.63 96.37
SEN (in %) 96.16 96.81 95.23 94.57 97.73 96.10
SPE (in %) 94.29 97.26 97.11 96.94 97.54 96.63
PRE (in %) 94.26 97.18 96.98 96.79 97.48 96.53
F1-score (in %) 95.21 97.00 96.10 95.67 97.61 96.32
FPR 0.057 0.027 0.028 0.030 0.024 0.033

Several popular deep-learning architectures are used to evaluate the lung cancer
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classification system. The architectures chosen for the evaluation of the Level-1

classification system are CNN, VGG-19, Inception-V3, Deep Belief Network, ResNet,

Recurrent Neural Network, and proposed CBWO-CNN. ACC, SEN, and SPE are the

performance metrics that are evaluated. The results obtained are presented in Table

5.2. Hence, it can be noted that the proposed CBWO-CNN model performed better for

Level-1 classification.

Table 5.2: Evaluation of CBWO-CNN

Models ACC (in %) SEN (in %) SPE (in %)
CNN 84.65 82.88 83.47

VGG-19 87.89 86.77 86.56
Inception-V3 86.51 85.98 87.40

Deep Belief Network 89.95 87.21 88.68
ResNet 94.65 92.80 93.91

Recurrent Neural Network 95.83 94.41 95.03
Proposed CBWO-CNN 96.37 96.10 96.63

5.3.2 Level-2 Classification

The task of classifying positive lung nodules into benign and malignant nodules is

known as lung nodule classification. In this work, the lung cancer nodule classification

is performed using the proposed SE-Xception model with shared parameters from the

CBWO-CNN model trained in Level-1 classification. To get the best performing

model, the proposed model is evaluated on four activation functions in the model’s

hidden layer. The activation functions used are ELU, Tanh, LeakyReLU, and ReLU.

The network proved to provide better performance for the ReLU activation function.

The four activation functions’ performance has been assessed for three models,

SE-Net, Xception, and proposed SE-Xception is demonstrated in Figure 5.6.

The proposed SE-Xception is evaluated with performance metrics such as accuracy

(ACC), sensitivity (SEN), specificity (SPE), precision (PR), F1-score, and false positive

rate (FPR). The results achieved are presented in Table 5.3. The results are presented

without shared network parameters and with shared network parameters for the SE-

Xception model. The model trained without shared parameters resulted in overfitting

of the model due to fewer training images. The accuracy achieved for the proposed
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Figure 5.6: (a) SE-Net, (b) Xception, and (c) proposed SE-Xception evaluated on
various activation functions on testing data for Level-2 Classification

SE-Xception is 82.29%. The improvement in the result is performed using pre-trained

weights from Level-1 classification. This improved accuracy by almost 12%. The

accuracy achieved for the proposed SE-Xception was 94.76%. Therefore, the practice

of transfer learning using pre-trained models for a new task rather than training a new

model from scratch provides some advantages such as improved performance, reduced

training time and data requirements.

Table 5.3: Performance assessed without and with shared network parameters

Performance measures
Without
shared
parameters

With shared
parameters

ACC (in %) 82.29 94.75
SEN (in %) 85.85 96.14
SPE (in %) 78.49 92.83
PRE (in %) 80.95 94.89

F1-score (in %) 83.33 95.52
FPR 0.21 0.07

The proposed SE-Xception model is compared with the previous works performing

lung cancer nodule classification. The results achieved from the proposed model

outperformed the previous works. Performance comparison of the previous works is

illustrated in Table 5.4.

The effect of the proposed SE-Xception method is visually demonstrated in Figure

5.7. The images given in the green box are malignant nodules correctly classified as

malignant nodules, and the images presented in the red box are benign nodules
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Table 5.4: Comparison of previous works with proposed model

Reference Methods used ACC
(in %)

SEN
(in %)

SPE
(in %)

Gupta et al. (2018) Super-Resolution CNN, SVM 85.70 - -

Shen et al. (2015) Multi-scale CNN, Random forest 86.84 - -

Silva et al. (2016)
Taxonomic indexes and
phylogenetic trees, SVM

88 82 94

Song et al. (2017) CNN, DNN, SAE 84.15 - -

Shaukat et al. (2019)
Intensity, shape, texture features
and Artificial Neural Network

93.70 95.50 94.28

Cao et al. (2020)
3D tensor filtering, 3D level set
segmentation, correlation feature
selection, and random forest

- 84.62 -

Proposed work SE-Xception 94.75 96.14 92.83

misclassified as malignant nodules. The reason for some of this misclassification is the

indistinguishable similarity in the anatomical structure of the nodules. Even though the

FPR of the proposed method is significantly less, the method still has scope for

improvement, as minimal misclassification is also not acceptable in medical

applications.

Figure 5.7: Visual depiction of correctly and mis-classified nodules for Level-2
Classification
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5.4 SUMMARY

This chapter introduced a bi-level classification model for the classification of lung

cancer nodules. To enhance the CT scan images; a new BBHE technique is used.

Level-1 classification performs bifurcation among nodules and non-nodules found in

the candidates based on the locations provided by the radiologists. Level-2

classification performs the classification of benign and malignant lung cancer nodules

from the nodules identified in the Level-1 classification. A deep learning architecture,

CBWO-CNN, is introduced to perform Level-1 classification, and a SE-Xception

network is proposed to perform Level-2 classification. The proposed SE-Xception

model uses the shared network parameters from the CBWO-CNN model used for

training nodules and non-nodules. This hybrid network is designed and developed

using recently proposed and best-performing models, namely, SE-Net (Hu et al. 2018)

and Xception (Chollet 2017). SE-Net is made use to obtain a lesser number of

parameters. The Xception network is an extreme version of the InceptionV3 network

(Xia et al. 2017). CBWO-CNN and SE-Xception models are the core contributions of

this chapter.
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CHAPTER 6

CONCLUSIONS AND FUTURE SCOPE

Lung nodule detection using computer-aided algorithmic techniques is challenging,

and the research has been carried out for three decades. Deep learning algorithms are a

recent trend that has displayed drastic performance improvement in medical imaging

tasks. The analysis in the report includes an in-depth study of the specific

traditional/conventional and deep learning algorithms for the identification and

classification of lung cancer nodules. There is a need to develop a better automated

and time-tested pulmonary detection system to increment the life span of lung cancer

patients and provide early diagnosis of lung cancer. So, our aim was to focus on the

challenges in the detection, segmentation, and classification of lung cancer nodules

and target to build a reliable CAD system that will help the radiologist for a second

opinion.

The first work introduced a novel deep-learning architecture named RFR V-Net for

detecting lung cancer nodules with reduced FP. Further, nodule classification is

performed using a new combination of SqueezeNet and ResNet, named NCNet. In our

second work, a new lightweight RefineNet is introduced to segment lung nodule

candidates from the CT scans. More images are generated using a DC-GAN model, a

SOTA data augmentation technique. The identified nodules are further fed to a

lightweight PSO-based CondenseNet to classify them into cancerous and

non-cancerous nodules.

In our third work, a new clustering-based segmentation method named EFCM is
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proposed to extract lung nodules from the given CT scan. The work also encourages

that deep learning can be used as a classifier and as a suitable feature extractor. The

proposed system effectively combines the encoded feature representation method

BoVW and deep features extracted from intermediate layers of a CNN. In our fourth

work, a bi-level classification model is proposed for the classification of lung cancer

nodules. To enhance the CT scan images, a novel BBHE technique is used. A new

deep learning architecture, CBWO-CNN, is introduced to perform Level-1

classification, and a novel SE-Xception network is introduced to perform Level-2

classification. The proposed SE-Xception model uses the shared network parameters

from the CBWO-CNN model used for training purposes.

The proposed models’ top results for the detection, segmentation and classification

tasks were 98.21% ACC, 98.0% DSC, and 98.7% ACC, respectively. Hence, the

proposed approaches provided improved results than existing lung cancer CAD

systems.

6.1 FUTURE SCOPE

The techniques proposed in this thesis for lung cancer detection, segmentation, and

classification outperform existing models. However, there is significant scope for

future work. The work and ideas presented in this thesis may be further extended and

improved. The following are potential future research directions in this area:

• From a clinical perspective, a set of obstacles can be observed in developing a

reliable CAD system. Due to the increased demand for large amounts of data for

data-hungry methods like deep learning, the data made available from the

providers lack quality assurance, proper annotations, fitness, and correct

segmentation. Therefore, one of the important obstacles is that if automated

methods are developed for these datasets, the ultimate results may not be

accurate.

• The multi-dimensionality of the images retrieved is another reason for not having

proper annotations of the data. The images generated from a CT scanner can be
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of 100-400 slices. The more slices, the higher the data. For a scan with more

slices, the annotations will be tedious as each slice has to be carefully examined

manually by the radiologists. Hence, there is a need for standardized data that has

been curated from trained professionals and clinicians.

• When viewed from an ethical perspective, there is no standard system to check

the ethics in which the algorithm is developed. The components in the algorithm

can be illegal. The deployment of these algorithms in the hospital environment

can cause more harm than good. A law or regulation must be passed to verify the

AI algorithms from an ethical perspective.

• The current diagnostics used for lung cancer identification mostly consider only

visually recognizable findings from imaging modalities. The presence or

absence of lung cancer nodules is solely determined from images such as chest

radiographs, MRI, or CT scans. However, the important factor that needs to be

considered is pathological differences observed in the patient along with visually

recognizable findings. This can provide an accurate diagnosis of lung cancer.

• One issue that needs to be addressed is the early diagnosis of malignant nodules

in the patient. The patient’s survival rate can be increased by identifying the

malignant nodules at the initial stage of development.

• Another issue that most developers and researchers often oversee is the type of

CT scanners used across the globe. The type of CT scanners varies across the

world. In well-developed countries, the CT scanners’ configuration is advanced,

which can generate CT slices in the image of up to 400 or more. However, the

CT scanners used in developing or under-developed countries may not be that

advanced. The number of slices taken from the patient may be up to 8 or 16. This

huge difference in the number of slices in an image is an important drawback that

needs to be taken care of when developing a reliable and deployable automated

system worldwide.

• Multiple challenges occur in the visibility of the images. The structure of a

malignant nodule and a normal pulmonary structure appears to be similar.
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Because of the difference in the nodule’s type and size, distinguishing between

cancerous and non-cancerous nodules is complicated. The images that are made

available for research purposes are of poor quality and noisy. Therefore, image

pre-processing needs to be performed to enhance the visibility of the images.

• The variability of storage formats of the image makes it tedious to build a

generalized model.

• It is also challenging to identify reliable feature representations and integrate

them into CAD systems to perform the classification of benign and malignant

nodules.

• The recent advent of deep learning has made things easier as they do not require

hand-crafted features for training the classifier. So, there is a lot of scope in deep

learning and neural network architectures to build CAD systems for lung cancer

identification.

• In conventional CAD systems, annotations are quite expensive as it has to be done

manually by experienced radiologists. With the help of deep learning, annotation

costs can be cut down by automating the annotation process. It can be achieved

by training a deep learning model with an extensive data set of annotations. This

model can now be used for unseen CT scans’ annotation.

• There is a need for providing clinically relevant explanations for the features

discovered by the different learning algorithms as it makes the CAD system

more reliable for real-time usage.

• In the previously developed CAD systems, micronodules (i.e., nodules < 3 mm)

are usually truncated at the system’s training as it is difficult to detect these sets of

nodules. Considering these sets of nodules can provide better insight for earlier

detection of nodules of lung cancer.

• The CAD system can be designed in such a way that it learns from both clinical

records and medical images for multi-modal analysis.
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• Many authors have considered only a subset of data in the literature, which is not

a good practice as it may not be a robust model. In turn, it also affects the

system’s performance in realistic scenarios. Hence, there is a need to evaluate

CAD systems on larger datasets. More experiments on larger datasets will

improve the systems’ performance and generalizability.

• One of the major concerns of developing fully functional, real-time deployable

lung cancer CAD systems is the data imbalance found in the cancerous and

non-cancerous nodules in the CT scans and the stage classification of the cancer

nodules. Therefore, there is a need to develop a deep learning model that

handles data imbalance issues and focuses more on the cancer nodules in the CT

scans. This can be achieved using attention-based deep learning methods. Also,

the low data issue can be temporarily solved using simulated CT scans using

augmentation techniques such as Generative Adversarial Networks. In this

current trend, the GAN model is gaining more attention to simulate data with

fewer samples.

• Deep models are, in general, considered to be computationally intensive.

Therefore to overcome these issues, in the recent trends, low-complexity deep

learning models are used. These models minimize the additions and

multiplications in the neural network training and, in turn, reduce the overall

complexity of the model in both the time and space domains. The reason for

doing this is to deploy the CAD systems in low-memory devices such as

hand-held smart devices, smartphones, etc. This will help the common

individual to be aware of the disease condition with the help of professional

doctors.
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