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ABSTRACT

Due to enhancements in space technology, the number of sensors is increasing grad-
ually, contributing towards the high availability of remote sensing images. Multiple
satellites have been placed into orbit around the Earth, and more launches are antici-
pated. There is a need to monitor the surface of the Earth continuously. Every day,
many images with high spatial and temporal resolution are captured. These contribute
to acquiring a large amount of remote sensing data and a need to analyze this available
data on time. These various possibilities contribute to the known revolution of Big Data
in remote sensing. Numerous global and local environmental monitoring applications
are made possible by the tremendous volume of images. Assessment of climate change,
monitoring of disasters, and urban planning are only a few examples of uses.
Determining changes in land use and land cover is crucial for conserving various natural
resources and the environment. It can reveal how humans utilize the land in a particular
area. Learning how land use patterns have changed worldwide has become necessary
to address global climate change and promote sustainable development. This research
proposes novel approaches and methods for autonomously utilizing the remote sensing
data collected by the increasing number of sensors. There is a high requirement to offer
new strategies to extract information from these remote-sensing images in a reliable
manner.

The primary focus of this thesis is on Change Detection (CD) methods that identify re-
gions in remote sensing images where the land cover or land use has changed. The CD
is the first step in comprehending the Earth’s surface’s dynamics and it’s evolution. This
thesis investigates methods for better information extraction by utilizing the temporal
correlation found in bitemporal and multitemporal image time series. Three significant
innovative contributions to the state of the art are presented in the thesis. The spatial-
temporal information is modeled with various pre-processing and clustering techniques

and integrated using deep learning approaches. These results in a significantly more



accurate change map identifying when, where, and what land cover changes have oc-
curred. The first contribution consists of a novel CD framework for bitemporal image
CD. The hybrid CD approach using superpixel segmentation, fuzzy-based clustering,
and lightweight deep learning is used to exploit the changes in remote sensing data.
The second contribution presents a novel hybrid encoder-decoder model for land use
and land cover CD that considers spatial and temporal aspects of binary and multiclass
changes in remote sensing images. The final contribution presents an iterative method
for enhancing the overall land cover classification performance for every pair of images
defined inside a time series.

For the five datasets used in this research work, the overall accuracy of the proposed
methods has improved significantly, increasing above 85%, when both space and time
are considered with the maximum likelihood. These results indicate that combining
space and time domains has immensely improved the accuracy of temporal CD anal-
ysis and can produce high-quality land cover prediction maps. A thorough qualitative
and quantitative analysis complements the outcomes of the experiment.

Keywords: Environmental monitoring, Change Detection, Land use and Land Cover,

Time-series, Deep Learning, Prediction.
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CHAPTER 1

INTRODUCTION

1.1 BACKGROUND AND MOTIVATIONS

The most stunning planet we can see from space is Earth, which extraordinarily sustains
life. However, the rate at which Earth’s environmental factors alter poses a hazard to
life. Therefore, it is the responsibility of the global community to protect the planet
Earth and limit the severity of numerous changes occurring on its surface. Understand-
ing the physical, chemical, and biological processes that affect the Earth’s system is
necessary to comprehend the changes occurring there. Understanding the effects of
both natural and artificial variables is also essential. It necessitates constant observation
of changes taking place on the Earth’s surface. By recognizing change, a closer eye can
be kept on the resources of the Earth. These might result in more effective planning and

sustainable resource use.

However, the stress on finite natural resources is tremendous due to population
growth and rising consumption. Food, minerals, fuels, and other necessities are in
high demand when there is a large population. Additionally, some natural resources are
depleted by regular natural disasters, including droughts, floods, landslides, forest fires,
earthquakes, etc., (Abbas Khan et al.| 2019). Although the industrial period promised a
comfortable existence, it also caused pollution and the devastation of habitats. To meet
the ever-increasing demands of the people, it is an urgent need to manage our natural
resources while also taking precautions to protect the Earth’s ecology. Additionally,

care should be taken to ensure that the requirements of the coming generation can also
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be satisfied.

The advancement of remote sensing technology and its use with space-based sen-
sors have demonstrated that it can support the monitoring and sustainable management
of various natural resources. Remote sensing is learning about an object without touch-
ing it, such as the human eye or camera. But these days, “remote sensing” generally
refers to identifying different features on the planet’s surface by monitoring electromag-
netic radiation interactions with the targets. Since resource management is the focus of
the majority of remote sensing applications, the United Nations (via resolutions of the

general assembly) has adopted the definition of remote sensing as follows:

“Remote sensing means sensing of the earth’s surface from space by using the prop-
erties of the electromagnetic wave emitted, reflected or diffracted by the sensed objects,

to improve resource management, land use and the protection of the environment.”

Thus, remote sensing can give us the inputs required in the form of reliable, timely,
and precise information for managing the Earth’s resources and making the right deci-
sions. These can help us better understand how the world works and lessen the adverse

effects of our local, regional, and international activities.

Remote sensing image analysis has become an emerging area nowadays. Various
remote sensing images like RADAR, multispectral, and multitemporal images are used
for different applications based on their spatial, spectral, and temporal resolutions, as
shown in figure with multiple existing data collection techniques. LULCCD (Land
Use and Land Cover Change Detection) and analysis through remote sensing imagery
are fundamental research topics in the remote sensing community. Due to the limited
spatial resolution of optical remote sensing imagery, pixel-centric spectral-based meth-
ods are the mainstream of traditional LULCCD and classification results. However, the
rapid development of high-resolution remote sensing imagery brings opportunities to
dig into more complex spatial patterns. Geographic object-based image analysis (GEO-
BIA) has thus become a new paradigm for LULCCD. It initially divides remote sensing

imagery into segmented objects and then classifies them.

Today, many imaging sensors can continuously acquire remotely sensed images
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Figure 1.1: Spatial, Spectral and Temporal Resolutions.
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of a given area on the ground. According to the trend, a more extended image time
series will be obtained and made available for usage in the future. Due to these factors,
many images of the same location might be routinely gathered. Additionally, many
historical discoveries from a particular investigative area are already kept in sizable

archives available to the public for free.

The generated image time series are characterized by time-varying quality and higher
geometrical and temporal resolution. Precision agriculture, geohazard prevention, in-
novative governance, and quick emergency response are just a few of the applications

they can revolutionize and make possible (Mullal 2013) (Barrett [2013) (Sawaya et al.
2003) (Jensen| [2009). However, with the right tools to automatically and reliably ex-

tract data from this massive volume of images, there is a huge possibility of being able
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to see the data gathered by these sky-gazing remote sensing applications.

This work focuses on CD approaches because of the significance of information
extraction from multiple images. Within a pair or set of images taken over the same
area, the CD is a method that distinguishes between changed and unchanged pixels.
The CD is crucial since it is one of the first processes that can be automatically applied
to pairs of images over a long period to comprehend the processes inside the numerous
images. CD can make large geographic datasets more usable and maintainable inside
this framework. Recently, the advancement of deep learning techniques empowers the
ability to learn more high-level semantic features from images. These also significantly

benefit the development of LULCC studies.

1.2 CHANGE DETECTION IN REMOTE SENSING IMAGES

CD (Change Detection) in remote sensing refers to identifying changes in an area’s
characteristics over time using remotely-sensed data. These can be achieved using
satellite or aerial imagery collected at different points in time and other types of re-
mote sensing data such as radar or lidar. Various CD techniques have been developed
in the past years, and efforts have been made to produce a comprehensive summary and
review of these methods. As one of the pioneers’ works (Singh| |1989) review clas-
sified CD methods into multiple categories. CD approaches can be characterized into
two broad groups: bitemporal CD and multitemporal CD, also known as time series
analysis-the former measures change based on a ‘two-epoch’ timescale, i.e., comparing
two dates. The latter analyses the changes based on a ‘continuous’ timescale, i.e. the
focus of the analysis is not only on what has changed between dates, but also on the
progress of the change over the period. Most CD methods belong to the bitemporal
CD approach. Almost all classifications for CD algorithms are based on bitemporal CD

with little attention to temporal trajectory analysis or multitemporal CD.

For bitemporal CD, algorithms can be attributed to one of the three approaches,
namely, directly comparing different data sources (direct comparison method), compar-
ing extracted information (post-analysis comparison method) and integrating all data

sources into a uniform model (uniform modelling method). For multispectral remotely-
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sensed images, transformation is often a necessary procedure. The detection elements
of the direct comparison method include pixels, basic image features, and transformed
features. The texture features and edge features are always taken as basic image fea-
tures. Based on the two most widely-used object extraction methods, namely, image
classification and feature extraction, comparison between objects after classification

and feature extraction are typical for the post-analysis comparison method.

Compared with bitemporal CD, the temporal trajectory analysis emphasizes dis-
covering the changing trend by constructing multitemporal data’s ‘curves’ or ‘profiles.’
From the viewpoint of processing methods, temporal trajectory analysis can be decom-
posed into bitemporal CD, and then relative post-processing is implemented after the
bitemporal CD. On the other hand, the so-called long time-series analysis method can
be employed for temporal trajectory analysis. Another critical application of temporal

trajectory analysis is real-time CD, such as video image sequences analysis.

Analysis of Change is concerned with two basic types of data:

1. Quantitative-differences in degree (continuous data), e.g., DEM(Digital Elevation

Model)

2. Qualitative-differences in kind (discrete data ) - e.g., LULC

The temporal ordering inside the given images makes them particularly interesting to
study. Techniques will differ depending on whether the data is quantitative or qualitative
pairwise (change) or time-series comparisons. It is thus necessary to propose CD and
time-series prediction algorithms robust to these changes. To take into account the intra-
class variability (i.e., the differences between the data/time series of the same class), the

classifiers must also generalize information very well.

Deep learning techniques have recently achieved breakthroughs in various computer
vision tasks, including image classification, object detection, and semantic segmenta-
tion. Meanwhile, this technology has quickly been adopted for remote sensing image
applications. For instance, semantic segmentation classification at a pixel level has been

proven to have great potential in land cover classification. The current state-of-the-art
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(SOTA) algorithms at an object level, such as YOLO (You only look once) and Faster-
RCNN, were also used for land cover object detection. However, the existing deep
learning-based approach to high-resolution remote sensing data is still in its infancy,
and a holistic approach still needs to be developed. Therefore, this work systematically
examines how well the deep learning-based techniques perform on high and medium
spatial resolution remotely sensed data considering the temporal domain, land use and

land cover classification, and CD, compared to traditional approaches.

1.3 APPROACHES TO CHANGE DETECTION

CD can monitor a wide range of phenomena, including LULCC, urbanization, and de-
forestation, assessing the impacts of natural disasters such as earthquakes and hurri-
canes, and detecting changes in vegetation. There are several approaches to CD in

remote sensing. The most used ones are listed here:

1. Image differencing: This involves subtracting two images of the same area taken
at different times and thresholding the resulting difference image to identify change
areas.

2. Multitemporal image analysis: This involves comparing images of the same area
taken at different times using various statistical techniques, such as principal com-
ponent analysis or spectral mixture analysis.

3. Object-based image analysis: This involves segmenting an image into distinct
objects or features and comparing them across multiple images to detect changes.

4. Machine/Deep learning approach: These approaches involve training a machine/deep
learning model on a set of labeled change/no-change examples and using the

trained model to detect changes in new images.

1.4 APPLICATIONS OF REMOTE SENSING IN CHANGE DETECTION FOR
EARTH RESOURCES MANAGEMENT

Remote sensing has a wide range of applications in earth resources management, in-

cluding:

1. Land use and land cover mapping: Remote sensing can be used to map and moni-

6
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tor changes in land use and land cover, including urbanization, deforestation, and
agriculture.

2. Natural resources management: Remote sensing can map and monitor resources
such as forests, water bodies, and minerals and track their distribution and condi-
tion changes over time.

3. Environmental monitoring: Remote sensing can be used to monitor the health and
condition of natural resources, including forests, wetlands, and coral reefs, and to
detect and track changes that human activities or natural disasters may cause.

4. Disaster management: Remote sensing is also used to monitor and track natural
disasters such as floods, hurricanes, and earthquakes and to assess the extent of
damage and the resources needed for recovery.

5. Agriculture and forestry: Remote sensing can be utilized to monitor crop health
and yield and to track the growth and condition of forests.

6. Climate and weather monitoring: Remote sensing can monitor and track changes
in atmospheric and climatic conditions, including temperature, precipitation, and
atmospheric composition.

7. Mineral exploration: Remote sensing is incorporated to map and identify the
presence of minerals and other resources, such as oil, gas, and coal.

8. Agricultural monitoring: Remote sensing can monitor crop health, assess irriga-
tion needs, and optimize fertilization and pest management.

9. Water resources management: Remote sensing can monitor and assess the quality
and quantity of water resources, including surface water and groundwater.

10. Coastal and marine resource management: Remote sensing can be utilized to
monitor and assess the health of coastal and marine environments, including coral

reefs, and to track the movement of marine animals.

1.5 HIGHLIGHTS OF THE PRESENT RESEARCH WORK

* An in-depth literature survey on challenges in CD in remote sensing images and
various CD models proposed for remote sensing data.

* Introducing unsupervised lightweight deep learning technique for CD in bitem-
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poral images.

* Proposing a multi-scale hybrid spatiotemporal model with attention mechanisms
for LULCCD.

* Presenting a time series analysis model for land cover classification using multi-

ple CNN and LSTM models.

1.6 BRIEF OVERVIEW OF THESIS CONTRIBUTIONS

1.6.1 Hybrid Change Detection Framework with Clustering and Lightweight Deep
Learning

CD is crucial in geospatial data processing, and proposed linear techniques fail to pre-
serve the complexities arising in medium and high-resolution remote sensing data. The
proposed nonlinear methods are time-consuming for massive datasets. The hybrid CD
approach using superpixel segmentation, fuzzy-based clustering, and lightweight deep
learning is used to exploit the changes in remote sensing data. Experiments were per-
formed on two datasets using the proposed hybrid CD framework. The results demon-
strate that the proposed framework reduces computational complexity with better clas-

sification accuracy.

1.6.2 Spatio-Temporal Feature-Based Bitemporal Image Change Detection

Integrating spatial and temporal features increases the CD performance for multitem-
poral images. The novel hybrid encoder-decoder model in the presented research con-
siders spatial and temporal aspects for bitemporal image CD. The attention mechanism
is incorporated to exploit essential features relevant to CD. The proposed model is com-
pared with various SOTA techniques on two LULC datasets. It is encountered that the
proposed model is computationally less complicated and achieves good accuracy for

the process of multiclass CD.

1.6.3 Multitemporal Time Based Land Cover Prediction

Multitemporal data analysis is carried out using SITS (Satellite Image Time Series)
dataset. The proposed architecture uses the characteristics of univariate, multivariate,
and pixel coordinate data for the land cover classification of SITS. Multiple deep learn-

ing methods are compared with the proposed framework, which outperforms the ex-
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isting models and provides higher classification accuracy and F1 scores for each land

cover class.

1.7 ORGANIZATION OF THE THESIS

The thesis advances in 6 chapters. An outline of each chapter is given below.

* Chapter 1: The Introduction section covers the need for CD and the difficulties
encountered during the change analysis process from remote sensing data. The
difficulties in processing remote sensing images, such as bitemporal and multi-
temporal, are discussed. Motivation, applications, and challenges in remote sens-
ing data based CD are also addressed. The chapter ends with a brief overview of

research contributions and a thesis outline.

* Chapter 2: Literature Review section mainly consists of a detailed review of the
CD techniques proposed using supervised and unsupervised methods like classi-
fication, prediction using LULC data with inclusion of spatiotemporal analysis
of time series images. The section discusses the identified research gaps and the

scope of the research work.

* Chapter 3: CD using unsupervised techniques includes the proposed hybrid
CD models and their design details and result analysis. The section contains the
details of the experiments and comparisons carried out to evaluate the model. The

analysis of the result is discussed in this section with appropriate conclusions.

* Chapter 4: Land Use Land Cover CD using Supervised Techniques covers
a novel multiscale spatiotemporal deep learning model for CD. The presented
model’s performance is compared against the available SOTA techniques and an-

alyzed the results to reach conclusions.

* Chapter 5: Spatio-temporal analysis of satellite image time series discuss the
model and design of a univariate, multivariate, and pixel coordinates time-based
prediction model for land cover classification of time series data. The perfor-

mance of the model is presented with appropriate analysis and discussions.
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* Chapter 6: Conclusions and Future Scope chapter summarizes the contribu-
tions and findings of this research work. This chapter also provides insights into

the future scope and directions for CD from remote sensing data.
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CHAPTER 2

LITERATURE REVIEW

This section offers a critical overview of the studies that have already been done on
CD in remote sensing. A concise description of this topic is provided in particular.
Then, the emphasis is shifted to review the CD literature using two types of remote
sensing images (bitemporal CD) or more (multitemporal CD). CD techniques focusing
on extracting rich semantic meaning from the remote sensing data to make substantial

spatial databases more maintainable and usable are considered in this review.

2.1 CHANGE DETECTION PROCESS

CD identifies a group of pixels that differs significantly between two or more multi-
temporal images (Radke et al. 2005). According to the definition in (Janssen and
Vanderwel| 1994), spatial-based technologies for remote sensing detect changes when
the spatial objects ( pixel groups or polygons) evolve as totally different, shrink or ex-
pand, shift positions or fragments, or gets merge. Finding differences in an object or
phenomenon’s condition by monitoring it at various times has also been described as

“change detection” (Coppin et al.| 2002).

Many communities are interested in CD for multitemporal data because of its ap-
plicability in many areas, including remote sensing, medical image analysis, surveil-
lance, infrastructure monitoring, etc. The multitemporal images of the same geographic
area are processed collectively in remote sensing to evaluate and quantify the degree

of change that has taken place on the Earth’s surface between the two dates. It indi-
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cates that multitemporal data may be utilized to quantify the temporal impacts. The
fundamental justification for using remote sensing data to identify surface changes is
that these changes may result in changes in radiance values. These changes are to be
distinguished from radiance changes brought on by other variables, such as varying

atmospheric conditions, etc. (Ingram et al.| |1981).

According to (Lu et al.| 2004)), successful CD research should identify the changing
area, change rate, the spatial distribution of the altered types, and the accuracy of the
CD procedure. The different CD techniques can be categorized according to the data
transformations they use or the analysis they perform to identify the areas of substantial
change (Singh! [1989). The fundamental method of change identification may be based
on comparing the outcomes of the independent classification of the images from the

two dates or the concurrent analysis of multitemporal data (Singh| |1989).

When using remote sensing, the information is gathered by sensors and then recorded
in images typically examined for changes brought on by a change in the land cover
or land use usage. CD aims to reject “unimportant” changes while detecting “major”
changes (Radke et al.| 2005). The latter could result from using various acquisition
technologies, meteorological and climatic conditions, or sensor noise. Due to these fac-
tors, multiple processes are typically carried out to prevent identifying changes that are
unimportant to the application. Usually, before using CD on Earth observation data in
an operational scenario, images are intended to be processed to limit the influence of
these factors on the images concerning the desired changes for the current application.

The following set of processes is to be carried out.

* The images should be geometrically corrected and co-registered at the sub-pixel
level. (Dai and Khorram| [1999),(Coppin and Bauer [1994) (Townshend et al.
1992),(Bruzzone and Cossu| [2003)),(Da1 and Khorram||1998)),(Bovolo et al.| [2011)).

* The images are atmospherically corrected to top-of-atmosphere reflectance or, in
the case of optical images, preferably to surface reflectance (Robinove| [1982)

(Coppin and Bauer| [1996) (Hall et al.| [1991).

A pre-processing of this kind makes it possible to analyze changes quantitatively and

12
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consistently. CD is usually concerned with detecting three categories of changes (Verbesselt

et al.| 2010).

1. Rapid categorical changes, or a sharp change from one land cover class to another.
Wildfires, deforestation, floods, and urbanization are a few examples of these
inter-class types of changes.

2. Seasonal variations linked to the annual life cycles of plants or other periodic
events.

3. Slow, gradual transitions that reflect intraclass variability. A specific instance is
when the LULC remains constant over time, but the spectral or backscattering
signature changes. These alterations could be brought about by inter-annual cli-
matic changes or gradual changes in land management. According to how they
behave over time, changes can also be categorized. They may be permanent or
recurring. They can also be classified according to whether a phenomenon is

natural or caused by humans (Olson et al.| 2004).

2.2 CATEGORIES OF CHANGE DETECTION

The literature on remote sensing frequently discusses CD. Numerous authors have writ-
ten articles on this subject, and multiple surveys and reviews have been published over
the years (Pandey et al.| 2021),(Lv et al.| |2021),(Shi1 et al.| 2020) (Hussain et al.| 2013).
This enormous body of literature may undoubtedly be seen from various angles. The

multiple categories of using CD approaches in remote sensing are as follows:

1. CD approaches are based on pixels or objects, depending on the constituents on
which they depend. Object-based CD organizes pixels into regions with uniform
spectral or texture information.

2. CD approaches for active or passive sensors depend on the input data type.

3. CD approaches can be single-scale or multi-scale depending on the scale on
which changes are examined.

4. CD techniques based on a supervised or unsupervised approach: based on the
type of changes made, the information about when they happened, and whether

or not they employ any ground truth data about changes made on the ground.

13
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The basis for supervised CD is knowledge of either changes or the land use for the
individual images. With the help of this ground truth data, a trained classifier can detect

changes and identify class transitions.

These CD approaches are independent of sensor discrepancies or subpar atmo-
spheric corrections and more resistant to pre-processing data. The disadvantage is the
requirement for reference data which should be gathered through an expensive in-situ
campaign or photo/image interpretation. Long image time series cannot be effectively
used to implement the collection of reference samples. They cannot be timely updated
worldwide, which is more significant. The post-classification comparison of the clas-
sification outcomes is a common step in supervised CD approaches. Other supervised
technique types rely on direct multidate classification, which directly categorizes the
multitemporal stack of images into land covers of static and dynamic types (Im and

Jensen 2005),(Deilami et al.| 2015)), (Tewkesbury et al.| 2015)).

Contrarily, unsupervised CD methods only use the data in multitemporal images.
The information on the type of change is typically implicitly available and must be
reconstructed using earlier knowledge of the kind of sensor and the study area. The CD

techniques are classified into two categories, as discussed below:

2.2.1 Bitemporal Change Detection Techniques

Based on comparing two images taken at two different time intervals. These CD ap-
proaches are better suited for the identification of abrupt category changes. Given a set
of two images with spatial dimensions represented as /;(i,j) and /5(i,j) captured over a
similar geographical location at different instants of time ¢; and ¢, including the ground
truth and reference image. Our aim is to determine the changed and unchanged areas
between these two sets of images. The change map (CM) generated from /; and /> and
CMp ;) is the set of values that are being changed at location (i,j) are represented in
equation 2.1]as

1, changed

0, unchanged

14
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The estimation of the probability of the changes in the pixel P(i,j) can be formulated as
in equation [2.2] as

CMpj) = Palciy = 1| 1(i,4), I2(4, §), ©) 2.2)
where P, is the dense probability prediction problem and c(i,j) = 1 denotes the pixels
that are being changed and the model’s parameter set is represented as ©. The general
technique of bitemporal image CD is as shown in figure 2.1 with a brief discussion on

each module.

Feature
Extraction

Fq

A 4 A4
Image |4 o A B Q.
Image 1.2 Change 1.2 I:l Q
Comparison Analysis . QCI
oo,

X A
Qo

Bi-temporal CD Map
Fa

Feature
Extraction

Image I,

Figure 2.1: Bitemporal Image Change Detection.

Feature Extraction Features are extracted between images /;and I, to emphasize

multitemporal information and stored in F} and F5, respectively.

Image Comparison For the assessment of the changes, features are compared. A
change index, D; 2 = d ([, F3) is created by comparing features using mathematical
operators. It evaluates changes in the feature space apparent in the spectral signature or

the backscattering coefficient in optical images.

Change Analysis A change map A, 5=f (D ») is created by analyzing the informa-
tion extracted from D, 5. The change index detects changes at the pixel/object, spatial
context, and single or multiple scale levels. In the final change map A, -, labels are

allocated to classes in the following way: Q = {Q,, Qc,, @cys -, Qey }» Where @, is the
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no-change class and ¢, is the k-th class in the general multiclass scenario (K > 1). In
binary approaches (K = 1), the pixels in 1, 2 can belong to either the change class or the

no-change class.

2.2.2 Multitemporal Change Detection Techniques

These methods can analyze many co-registered images (N>>2) acquired at various
times. They are also known as SITS due to the increasing availability of image time
series. Given, the historical daily time series dataset over n variables in V.= {V, V; - --
V,.} corresponding to a set of k locations as in equation

Loc® = {Loc}, Loc}, ..., Lock} (2.3)
in a spatial region R for previous t years: {y, ya, . . ., Y1}
Also given, the spatial attribute information as in equation [2.4]

SA = {SAle SAke . SAlcy (2.4)
regarding each location loc € Loc*.
The problem is to determine the daily state/conditions of the variables in V for any

location x ¢ (Loc* U Loc®) for future i years as in equation

{y(t-l-l)v Y+2)y -+ y(t+i)} (2.5)
when the spatial attributes of x are observed as SA{, SAS ..., SAT.
Here, Loc" is a set of z new locations { Loc},, Locs, . . ., Loc;} such that Loc! € Loc*
forj=1toz, and i is a positive integer, i.e. i € {1,2,3,--- }.

The most effective bitemporal CD approaches are reviewed and suggested in sec-
tion [2.2.1) using a general block diagram with three stages (see figure [2.I)). Due to the
increase in the availability of Earth observation images and data regulations, providing
unrestricted access to satellite images with no cost for the final user enables new classes

of CD methods utilizing SITS with the number of images as N >> 2.

In this framework, CD approaches based on deep learning work with SITS, a col-
lection of images of the same scene taken by one or more sensors at various periods.
Different multitemporal CD approaches may be classified depending on whether the
time-series images are arranged according to the sequence of their acquisition (Petit-

jean et al.| 2012). Some methods do not employ SITS’s temporal data to distinguish
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between several series of images. These techniques make use of all the available time-
series images. Still, they need to consider their temporal order or verify the consistency
of the temporal information within the image time series, limiting multitemporal infor-
mation utilization. Most SITS processing approaches perform a multitemporal analysis
of the behavior of the reflectance or backscattering values by extracting a temporal pro-

file time series (TS) for each pixel of the study area.

Due to the greater availability of data, seasonal or inter-annual time series analysis
is primarily discussed in the literature at medium resolution (like 300m - 400m). These
methods can only accurately assess minute changes obtained by high-resolution acqui-
sitions if they are made for TS with coarse spectral and spatial resolution. New strate-
gies have been suggested to cope with the recently accessible SITS with an improved
trade-off between spatial and temporal resolutions due to the launch of remote sensing
missions capturing images at higher revisit times (Solano-Correa et al.| 2017),(Solano-

Correa et al.| 2018)),(Bruzzone et al.| 2017).

Other unsupervised CD methods are based on the sequential analysis and forecast-
ing of the temporal profiles for TS collected by optical sensors. They are made to
operate in real-time or close to real-time CD with a short detection latency and a fixed
false alarm rate. Since they are highly non-stationary with seasonal oscillations and

inter-annual changes, remotely sensed 1D-TS are challenging to anticipate.

However, several methods have been put forth in the remote sensing literature to
address this problematic issue, particularly in the context of land cover time series anal-
ysis. Whenever the observations deviate from the forecast made from historical time
series data, change is recognized using this method. The TS’s stationarity is a common
presumption (Aminikhanghahi and Cook| 2017). However, in the general scenario, sta-
tionarity is lost due to land-cover dynamics (Kleynhans et al.| [2012). To overcome this
issue, the time series can be transformed into roughly stable parameters in case of no
change. Finally, modeling the backdrop image has been used to build unsupervised CD
approaches for SITS (Coppin et al.| [2002).

For decades, processing multitemporal images and CD has been an active research
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field in remote sensing. Although many successful application cases have been reported
on monitoring and detecting environmental change, there are enormous challenges in
applying multitemporal imagery to derive timely information on the Earth’s environ-
ment and human activities. In recent years, significant progress has been observed in
overcoming technological obstacles by developing new platforms and sensors. The
broader availability of extensive archives of historical images also makes long-term CD
and modeling possible. Such a development stimulates further investigation into de-
veloping more advanced image processing methods and new approaches to handling
image data in the time dimension. Over the past years, researchers have put forward
large numbers of CD techniques for remote sensing images and summarized or clas-
sified them from different viewpoints(Singh [1989)(Liu and Zhou| 2004). It has been
generally agreed that CD is a complicated and integrated process. No existing approach
is optimal and applicable to all cases. The categorization of the related work was done

as given below:

* CD using unsupervised deep learning techniques when labeled data is unavail-

able.
* A deep learning approach for LULC multiclass CD in satellite images.

* A multitemporal technique for land cover classification in SITS using deep learn-
ing.

2.3 CHANGE DETECTION USING UNSUPERVISED TECHNIQUES: A RE-
VIEW

The supervised learning techniques need to gather a large amount of training data as the
labeled sample for the CD task. With supervised learning, a bilateral semantic fusion
Siamese network (BSFNET) is proposed in (Du et al. 2021)) that is trained by a scale-
invariant sample balance method for pixel-wise CD from multitemporal images. In a
semi-supervised approach, a small amount of labeled data and a large amount of unla-
beled data are used, contributing to supervised and unsupervised learning for the model
to learn and make predictions from the multitemporal data. A semi-supervised graph

convolutional neural network (GCN) is used in (Saha et al.| 2020b) for the enhancement
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of spectral and spatial features in a multitemporal set of images.

A variety of unsupervised techniques are applied on remote sensing image analy-
sis based on principal component analysis, and low-rank (Zhang et al.| 2021b) and
weighted change vector analysis with improved Markov random field (Fang et al.| 2021).
In (Guo et al| 2021) and (Shi et al. 2021), multiple CD approaches with spatiospectral
channel augmentation, and generative representation learning are discussed. Concern-
ing time-series images numerous unsupervised methods like LSTM (Saha et al.| [2020a)
LSTM with Generative adversarial network-based one class classification (Jian et al.
2021)), transfer learning-based bilinear convolution network (Zhan et al.| 2021)), and

adversarial learning (Zhao et al.| 2020) for CD are being proposed.

Many CD frameworks are being proposed in the literature for various types of im-
ages like SAR , Optical and Multispectral images. SAR images are mainly analyzed uti-
lizing unsupervised CD techniques with superpixel segmentation and Fuzzy C-means
clustering(FCM). In (Gao et al.| [2016) they employed Gabor wavelets and FCM based
on PCANet to perform CD in SAR images.

An adaptive discrete wavelet transform was adapted in (Jakka et al.| 2019) to per-
form the CD. Superpixel feature extraction with the inclusion of contractive autoen-
coder with SLIC was employed in (Lv et al.| 2018) for SAR images. A DCNN was
designed for CD without any preprocessing operations with spatial fuzzy clustering in
(L1 et al, 2019b). Saliency guidance was provided in (Geng et al. 2019) with FCM
clustering using deep learning for CD in SAR images. CD for SAR images with radial
basis function and DCNN was proposed in (Pandeeswari et al.| 2021). Unsupervised
CD was applied in (Attiour and Najah 2021) for SAR images using FCM clustering
and Deep belief network. Patch-based CD method for SAR images with a pre-trained
multilayer fusion network was proposed in (Shu et al| 2021). Table 2.1] displays the

summary research work done in Unsupervised change detection based frameworks.
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2.4. Land Use Land Cover Change Detection with Deep Learning Techniques: A
Review

2.4 LAND USE LAND COVER CHANGE DETECTION WITH DEEP LEARN-
ING TECHNIQUES: A REVIEW

Deep learning techniques have emerged as a growing field with various architectures
like CNN, RNN ,and a hybrid model for LULCCD. The current research involves an-
alyzing the bitemporal images of a similar location to perform pre and post-change
analysis for better future planning and development of any study area. (Panuju et al.
2020) investigated land cover dynamics employing multitemporal and bitemporal CD
as a two-dimensional technique, focusing on multispectral images as a precondition
for the study. In (Wang et al| [2021)), an attention-based, highly supervised network
(ADS-Net) detects remote sensing image variations. A dual-stream fully CNN iden-
tifies features at multiple layers from bitemporal images. Then, a channel and spatial
feature fusion attention module are added in the network’s decoding phase. The fea-
tures of each layer are integrated to provide a variety of prediction maps for multiple
supervision modules. A basic CNN is used for LULC classification in(Verma and Jana
2019) to map complex urban structures at a finer scale in the Mumbai region. Simi-
larly, Deep CNN dubbed AlexNet and VGGNet were incorporated for the similar task
in (Gharbia et al.| 2020).

The authors in (Albert et al.| 2017) employed large-scale satellite imaging data and
cutting-edge computer vision techniques based on deep CNN to investigate trends in
land usage in urban districts. In (Ekim and Sertel| 2021), the Stochastic Ensemble,
Stochastic Weight Averaging (SWA), and Fast Geometric Ensemble (FGE), Deep Neu-
ral Network Ensemble (DNNE) approach for constructing a comparison analysis for
the LULC classification task is discussed. The Multi-Layer Perceptron—-Markov Chain
Model for analysing and predicting changes in New Jersey was performed in (Ngoy!
et al., 2021) for the projection of the 2015 LULC and was confirmed by actual data to
produce a 2100 LULC. Multispectral remote sensing classification using deep learning
algorithms was presented in (He and Wang| 2021). The association between character-
istics and spectra were investigated using correlation analysis. The contourlet was used
to estimate texture features and create spectral—texture characteristics of categorized

images after the specification of the parameters of the deep belief network.
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Constrained extreme learning classifiers based on cascaded deep CNN of VGG-S
and Caffenet for land-use classification are proposed in (Liang et al.| [2020). (Rajesh!
et al.| 2020) described object-based CNN with deep Features for LULC Mapping of
LISS-IV Imagery. A compressed SITS representation was created in (Kalinicheva et al.
2020) with a multi-view 3D convolutional autoencoder for the above task. First, a
single segmentation map for the whole SITS is produced. The retrieved spatiotemporal
objects are then grouped using their descriptions for the unsupervised SITS clustering.
With multitemporal and multispectral Sentinel-2 satellite data, the study in (Sefrin et al.
2021) focused on land cover classification and CD. They used two alternative deep
learning architectures and a few pre-processing procedures to tackle the difficult task
of detecting land cover change. The pre-processing phase defined an excluded class
and dealt with temporal water shoreline changes. An FCN was used and combined
with LSTM networks. The FCN could only accept monotemporal input data, and after
pairing with an LSTM, it also handled sequential multitemporal data. In (Rousset et al.
2021), authors employed neo channels with encoder-decoder networks based on deep

lab architecture to assess deep learning techniques for LULC classification.

(Campos-Taberner et al.| 2020) utilized a RNN , known as a 2-BiLSTM (Bidirec-
tional LSTM) network for land use classification for Sentinel-2 time-series data. Based
on a generative adversarial network, a semisupervised CNN for CD (SemiCDNet) is
proposed in (Peng et al.| 2020). The labeled and unlabeled data are provided as input
to the segmentation network to construct initial predictions and entropy maps. For the
utilization of most of the features of the unlabeled data, two discriminators were em-
ployed to ensure that the segmentation maps and entropy maps between these data have
the same distribution of features. For multitemporal remote sensing images, (Du et al.
2019) presented a unique CD technique named Deep Slow Feature Analysis (DSFA) in
their study which incorporated two DNN’s to project original bitemporal input images
onto a new feature space. SFA is enhanced to extract the most invariant components of
unaltered pixels, which are then suppressed in changing regions to emphasize modified
elements. Table displays the summary of research work done in LULC CD based

frameworks.
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2.5 TIME SERIES ANALYSIS USING DEEP LEARNING TECHNIQUES: A
REVIEW

The following papers represented how to model DNN for time series prediction/fore-
casting. In (Grover et al.| [2015) they discussed the combination of trained predictive
models in a discriminative approach with a DNN that performs modelling of the joint
statistics on a set of variables related to weather. The base model is incorporated with
three features like temporal mining, inter variable interactions and spatial interpolation.
In (Ghaderi et al. 2017) they used RNN with DL called as Deepforecast for the pre-
diction of wind speed which is spatio temporal in nature. They basically made use of
graph, whose nodes consist of entities which generate the data and the edges carries out
the task of modelling those nodes which are in interaction with each other. In (Borovykh!
et al. 2017) authors have analyzed and presented a conditional time series forecasting
method which is purely based on CNN by making use of wavenet architecture which al-
lows to extract temporal relationships between time series. It uses dilated convolutions
for the multivariate time series data. A general model for time series regression with
probability is presented in (Wen et al. 2017). They accommodated both the covariates
of static and temporal data which are to be learned across multivariate series, shifting

of the seasonality and other event spikes which are being planned for future.

A Significance-Offset CNN is developed in (Binkowski et al. [2018)), which is a
deep CNN for performing regression of asynchronous time series which is multivari-
ate in nature. The model uses autoregressive system of weighting where in the final
prediction is represented as a weighted sum of regressor which are adjusted and the
weights are the data which are dependent on the functions learnt through a CNN. In
(Rangapuram et al.| 2018) they combined state space models with DNN networks for
forecasting the time series. It allows to handle small data and also to learn complex
relationship and patterns from raw time series for a given larger data. The work in (L1
et al. 2017) modelled the traffic flow as a process of diffusion on a directed graph and
they introduced diffusion convolutional recurrent neural network (DCRNN) for predic-
tion of traffic data that involves both spatial and temporal dependency in the flow of

the traffic. The architecture made use of random walks in a bidirectional manner for
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extracting the spatial dependency and to capture the temporal dependency, it made use

of encoder decoder architecture with the features of scheduled sampling.

An empirical assessment of generic convolutional and recurrent neural architectures
was presented in (Bai et al. 2018)) for task related to sequence modelling. They made
use of TCN which combines residual connections and dilations with the incorporation
of causal convolutions which are needed for prediction in an autoregressive manner. In
(Lim| [2018) they introduced recurrent marginal structural network in the field of epi-
demiology which uses the property of sequence-to-sequence architecture for predicting
the expected outcome to a series of treatments which were planned in advance. A hy-
brid model is being developed in (Lim et al. 2019) called as deep momentum networks
that combines trading rules based on DL into the volatility scaling architecture of time
series momentum. The model also tries to learn the estimation of the trends and sizing
of the position in a data driven approach by optimizing the sharpe ratio of the signal. A
transformer architecture is being applied in (Li et al. 2019a) for the prediction of time
series data by incorporating a convolutional SA network with the production of queries
and keys with the involvement of causal convolution for the better understanding of the

local context.

In (Lim et al| 2021) they proposed a Temporal Fusion Transformer (TFT) which
incorporates architecture based on attention levels and a high-performance forecasting
which is multi-horizon in nature with explainable insights into temporal dynamics. The
TFT made use of recurrent layers for processing at local level and the long-term depen-
dencies processing was done by the interpretable SA layers. The authors designed a
time series model in (Salinas et al.| 2019)) based on RNN in combination with Gaussian
copula process which has a covariance structure with low rank which allows to lower
the computational complexity and also handle marginal distributions related to non-
gaussian processes. A conditional generative model for multivariate data is developed
in (Wen and Torkkolal 2019). They made use of DNN to parameterize the data. The
multivariate time series data is solved by learning the properties of quantile functions
and a conditional copula to be incorporated with the latent uniform random variables.

A DL framework for multi horizon prediction of time series data with the advent of
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temporal attention mechanism that also captures the latent patterns in the historical data
is being adapted in (Fan et al., 2019). It also used a multimodal fusion approach to
combine features from various parts of the history to effectively represent the future
forecast. In (Siddiqui et al.| [2019) they proposed the concept of demystifying con-
volutional DL models for analysis of time series data. A framework named (TSViz)
for testing the interpretability of time series analysis models based on DL is being de-
signed. The architecture identifies the parts of the input that are accountable for the
prediction, performing clustering of the filters, interpreting the variation learnt through
inverse optimization by the network and analyses of the network was done to check for

its robustness if any against the adversarial noise.

A global local framework for prediction of the time series using DNN is being
adapted in (Wang et al. 2019b)) which allows to uniquely characterize the time series in
an exchangeable manner. In (Sen et al.| [2019) they proposed a model for deep forecast-
ing of high dimensional data called as DeepGLO which has the feature of thinking at
global level and acting at local level. DeepGLo is a hybrid model design which consist
of a TCN with regularization along with a global matrix factorization model inclusive
of a temporal network that has the ability to extract local properties of each of the time
series and its associated covariates. The authors in (Smyl| 2020) incorporated a dy-
namic computational graph neural network model that allows a standard exponential
smoothing model to be mingled with LSTM into a common framework consisting of
hybrid and hierarchical method of forecasting. A novel framework called as GNET is
being presented in (Li et al. 2020) which is sequential DL framework designed for G
computation that can process complex time series while the imposition of assumptions
of minimal modelling and also gives an estimate of the individual or population level
treatment effects which varies with time. The authors in (Lim et al.| 2020) introduced
a Recurrent Neural Filter (RNF), which uses the architecture of recurrent autoencoder
that predicts dissimilar representations for each step of the Bayesian filtering which is

being captured or extracted by a series of encoders and decoders.

In (Lv et al.| [2014) they Nade use of stacked autoencoder for feature learning from

the time series data of traffic flow for the prediction of road segment level. In (Soua
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et al. 2016) they made use of DBN to forecast the traffic flow of future based on the
observations of the previous traffic flow. They considered traffic flow data as a freeway
in terms of timeseries. In (Rodrigues et al.| 2019) consideration of the issue of taxi
demand prediction was done and they exhibited a specific area as a time series of the
taxi demand. A DL model was designed to learn the features from the historical data of
time series related to taxi demand and they combined the features with other features
based on context like weather and social media data which can predict what may be the

future demand.

In (Liao et al. [2018) an integration was performed of sequence-to-sequence model
and LSTM to predict the speed of the traffic of a road segment. The model also took
into consideration other features which are external like roads geographical area, so-
cial events of public and travel information related activities like crowd queries which
are held online. The model in (Cheng et al.| [2018b) amalgamated traditional meth-
ods of prediction of wind speed in combination with threshold denoising (WTD) and
adaptive neuro fuzzy inference system (ANFIS) with a RNN. In (Dvornek et al.| [2017)
they developed a model using LSTM for classifying individual with autism spectrum
disorder (ASD) and it controls directly from the fMRI time-series of the resting state.
In (Huang et al. 2017) they developed an unsupervised model known as DCAE deep
convolutional auto encoder for feature learning of mid and high-level data from large

scale tfMRI time series.

The following papers represented how to model DNN for time series classification.
The authors in (Simonyan et al.| [2013)) adapted the use of classification of image models
using deep convnets which tries to generate an artificial image which is an illustration
of the class of interest. Another operation which they performed was saliency map
with respect to a specific class which highlights the specific areas of the image given
which is discriminative with reference to a given class. This allows the graph cut-
based object segmentation and also performed deconvolution procedure to generalize
the gradient based visualization techniques. In (Krizhevsky et al.| 2017) they performed
classification of images by making use of deep CNN by activation function like ReLu

also reduced overfitting with the features such as data augmentation and dropout on a
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highly challenging dataset. The temporal aspect was not addressed and they proposed
to use very large deep CNN for understanding the temporal structure like in videos as

compared to static images.

In (Santos and Kern| 2016) a review of early TSC (Time Series Classification) ap-
proaches is provided using DL models this work concentrates not only on theoretical
results and frameworks but also how different datasets of time series are used for early
time series classification. The proposed framework in (Wang and Oates| 2015) in an
offline manner to exclusively encode temporal patterns as spatial in the form different
types of images which are known as Gramian Angular Fields (GAF) and Markov Tran-
sition Fields (MTF). They made use of tiled CNN to extract high level features from the
individual GAF, MTF, and GAF-MTF images. In (Zheng et al. [2016) the learnt fea-
tures are applied into a multilayer perceptron (MLP) for classification. They proposed a
deep CNN (MC-DCNN), for classification of multivariate time series data. This model
first extract features from single univariate time series in each channel, and mixes infor-
mation from all the channels as feature illustration or representation at the final layer.
In (Wang et al.| 2017) the paper proposed a cycle DBN model for the classification of
multivariate time series in comparison to the performance of the DBN and KNN (K-
Nearest Neighbor). The presentation learning capability of DBN and the time series
data correlation is being utilized in an efficient manner. They used a cyclic approach of
feedback to classify and extract features from the data. The work in (Mittelman| [2015)
considers design of a FCN that makes use of an operation on causal filtering and it
permits for the rate of the output signal to be similar to that of the input signal. They
further processed an undecimated FCN (UFCN), which is inspired by the undecimated

wavelet transform.

Stacked LSTM autoencoder networks were made used in (Mehdiyev et al., 2017)
in an unsupervised or self-supervised manner. The compressed depiction of the time-
series data attained from LSTM autoencoders are then offered to Deep Feedforward
Neural Networks for classification. They incorporated cost sensitive learning due to the
imbalanced nature of the time series data. The work in (Hatami et al. |2018) they made

use of recurrence plots (RP) which performs the conversion of time series to 2D texture
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images and then a deep CNN classifier is applied on the images for classification of the
time series. The combination of RP and CNN is termed as texture image recognition
task. In (Cui et al. 2016)) they proposed a novel end to end model called as multiscale
CNN (MCNN) that carries out the task of feature extraction and classification in one
single framework by performing transformations on the time series. It performs extrac-
tion of features at various scales and frequencies. It exploits the CNN to learn features
in both time and frequency domains. An adaptive cost-sensitive learning strategy was
developed in (Geng and Luo 2018) to modify temporal information using DL. models
to tackle imbalanced time series classification problems. They made use of deep CNN

by using five neural networks to carry out the classification task.

A data augmentation technique being proposed in (Fawaz et al.| 2018a) which uses
dynamic time warping distance to overcome overfitting small time series datasets with
the inclusion of the weighted version of the DTW (Dynamic Time Warping) Barycentric
Averaging technique. The space induced by the DTW and the learned features of the
CNN were used to time-invariant features which are being used for classification. In
(Liu et al.| 2018) a tensor scheme along with a DL. model known as multivariate CNN
(MVCNN) is being developed for classification of multivariate time series data and it
also handles data which has lagged features. Convolution operation is applied to exploit

the local interactions amongst the variables.

In (Fawaz et al. [2018b)) they investigated how to apply transfer learning on deep
CNN on the target dataset by fine turning the network that is being pretrained on sim-
ilar kind of source dataset for the TSC task. They combined classic DTW and CNN
by exploiting it with the features of transfer learning. The work in (Gong et al.| 2018)
devised an algorithm known as MOMM (Multiobjective Model-Metric) learning for
approximation and classification of time series data. In MOMM a recurrent network is
used as a filter for the temporal data based on that a generative model is being learnt
for every time series which is a representation of that series. The model works on both
univariate and multivariate time series datasets. It also incorporates the features such
as weight optimization, network size and the distance metric while learning the repre-

sentations. A meticulous approach for learning features for human activity recognition
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problem is being discussed and developed in (Yang et al.| [2015)). The time series raw
signals are considered as higher-level abstract representations by the learned features
from the deep CNN architecture. The framework tackles multichannel time series data
by design of a unified model consisting of feature extraction and classification. In (Song
et al.| 2020) a new model is designed based on the deconvolutional networks and SAX
discretization to learn the representation for multivariate time series. A new model
is being discussed to learn the multivariate time series with the incorporation of deep
CNN with unsupervised learning and SAX discretization. They designed a network
framework exclusively to extract the cross-channel correlation with the operation of de-
convolution, which forces the pooling operation to perform the task of dimensionality

reduction along each setting in the individual channel.

In (Martinez et al.| [2018) they introduced an early classifier approach which incor-
porates reinforcement learning agent called as deep Q-network at an end-to-end level.
They defined a suitable series of states and actions with the inclusion of a special re-
ward function which targets at determining the negotiation between earliness and the
classification accuracy. Timenet a multilayered RNN known as timenet is designed in
(Malhotra et al.| [2017) which is used in a unsupervised way to perform extraction of
features from time series. It is the encoder network of the designed autoencoder as deep
RNN which is based on sequence-to-sequence models that converts time series of vary-
ing length into vector representations of fixed dimensions. In (Wang et al.| 2016b) they
presented an Earliness-Aware Deep Convolutional Networks (EA-ConvNets), which is
an end-to-end DNN for early classification of time series data. The architecture learns
the features by using deep hierarchy of shapelets which captures the salient properties
in each time series in combination with a dynamic truncation model which helps in fo-
cusing on the early parts of each of the time series. The algorithm proposed in (Wang
et al., 2016a) made us of classification of MTS data by making use of a RNN and
adaptive differential algorithm. Firstly, they used RNN for training the MTS sample
into various state clouds. Table [2.3]and 2.4] provides the summary of the prediction and

classification of time series data using DL techniques.
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2.6. Research Gaps

2.6 RESEARCH GAPS

The satellite remote sensing imagery is significantly profuse in space, providing de-
tailed view of large areas. However, these are relatively scarce with respect to time.
Data from fixed sensors are plentifully available over time, though these provide rela-
tively little detail in space due to limitation in the number of spatially distributed sen-
sors. The recent advancement in satellite and remote sensing technology has led to
explosive growth in spatial and spatiotemporal data. Extracting useful and interesting
information or patterns from these huge amount of data is also an added challenge in
this regard. Considering also the spatial evolution in order to differentiate among the
different classes is crucial since the phenomena to be dealt with are fully spatiotempo-

ral. The following gaps needs to be addressed.

» Urgent need to have rapid access to extended, temporal satellite bi-temporal im-

ages and multitemporal data for identifying patterns of change.

* The DNN (Deep Neural Network) models applied in the domain of ST predic-
tion generally appear with additional functionalities like feature-level data fusion,
convolution, etc., which are mainly utilized to learn the spatial and temporal de-
pendencies. However, because of the utilization of many parameters, they often

suffer from significant memory consumption and overfitting problems.

* DNNs typically require multitemporal data to be discretized at regular intervals,
making it challenging to forecast datasets where observations can be missing or
arrive at random intervals. The multitemporal data usually do not contain spa-
tial information. Thus, the spatial correlations among the data are not explicitly

considered in deep learning-based prediction/classification models.

* Continuous monitoring of land is needed for accurate prediction, and most of the
existing prediction models tend to fail to provide continuous monitoring of the

environment due to scarcity of data.

* Need for the development of multidimensional space time architecture for effi-

cient change detection and time series analysis and data assimilation for environ-
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mental characterization and scientific analysis.

2.7 PROBLEM STATEMENT AND RESEARCH OBJECTIVES

Geo-spatial data usually consists of spatio-temporal phenomena that are complex and
difficult to understand. It demands new methods to efficiently handle this data that
enable temporal analysis while accounting for the spatial context. Therefore, the re-
search aims to design novel approaches for CD analysis for geo-spatial data using deep

learning methods for land use and land cover mapping, analysis, and monitoring.

The objectives of the work are:

1. To design a unsupervised learning technique to filter, analyze and extract new
and relevant patterns for change detection from multi-sensor and multitemporal

satellite remote sensing images.

2. Develop supervised methods for spatial and temporal monitoring of land use and
land cover data using images of high temporal and medium spatial resolution by

a comparative study with various performance measures.

3. To develop a prediction and automatic/semiautomatic classification system for
satellite image time series for land cover classification data using machine/deep

learning techniques.

2.8 SUMMARY

This chapter elaborates on a detailed discussion about the CD process and the types of
CD. This chapter critically reviewed the latest work on multitemporal image CD, clas-
sification, and prediction techniques. A detailed review of all the ML and DL models
proposed for CD is also discussed in this chapter. The existing research gaps are listed,
and the current research work’s problem statement with research objectives is included
in one section of the chapter. The proposed methodology for each goal/objective is

explained in forthcoming chapters.
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CHAPTER 3

BITEMPORAL IMAGE CHANGE DETECTION FOR
REMOTE SENSING IMAGES USING
UNSUPERVISED DEEP LEARNING TECHNIQUES

3.1 INTRODUCTION

Due to outstanding performance in representing information and mining relevant knowl-
edge, DL methods have seen tremendous growth in pursuance of pattern recognition
and computer vision for assessment of remote sensing images. DL-based CD methods
can be generally classified into two categories for generating the change maps, i.e: i)
Comparison based on in-depth features and i1) Classification based on CNN. In the for-
mer, the difference image (DI) is analyzed to determine the change regions generated
by calculating the distance pixel-wise between the pairs of the deep features. In the
latter, the classification technique aims to learn the elements of change, unchanged and
intermediate data between the two bitemporal images used for training and testing the
model. Dealing with changes in smaller regions or areas from multitemporal images is
challenging in DL using unsupervised learning algorithms. A challenge of this nature

manifests itself in several stages, as follows:

1. The production of DI : A maximum number of DI generation methods use a rect-
angular window to characterize spatial information locally. Smoothing out may
occur during changes in small regions or amongst the image’s more refined de-
tails between the unchanged and changed areas in which the pixels are considered

to be changed are complex and challenging to recognize.
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2. Analysis of the DI based on clustering : Most of the clustering algorithms like
K-means or Hierarchical clustering approaches didn’t succeed in generating accu-
rate outcomes for the DI analysis, owing to the use of a cumulative optimization
objective function, which may force the prototype cluster of the minority class
i.e., changed pixels to move to the majority class i.e., unchanged pixels, specifi-

cally for distributions of the data that are imbalanced.

3. Classification and training using a classifier based on deep learning : When deal-
ing with small regions, the number of changed or modified pixels is less than
that of those that stay unchanged. The pseudo label samples used for training the
change class may be insufficient to improve DL classifier training, resulting in

poor classification accuracy.

The analysis of the DI is a crucial step that assists in converting the CD process into
a task of classifying binary values, such as clustering by k-means or the operation of
thresholding. Fuzzy C- Means (FCM) is a popular clustering technique that can be
applied optimally to detect changes in optical images. According to recent research, the
DI has to be classified into three classes: higher probability unchanged, intermediate,
and higher probability changed. The pixels in the intermediate category are difficult to
separate using a particular clustering approach. Still, they may be discriminated against

using a classifier based on DL like a deep CNN.

CNN or ConvNet have contributed to remote sensing image analysis, which can
automatically extract useful features from the raw dataset in a hierarchical learning
fashion without the manual development of complex features. For the task of CD, the
upper layers of information representation that are being learned and tested by ConvNet
can intensify the parameters of the given input that are important for discrimination and
limit the irrelevant variations, thus contributing to emphasizing the changes that have

occurred concerning the ground observations.

There is a need to design a CD framework for analyzing optical remote sensing
images of medium and very high resolutions (VHR). Hence, this work proposes a robust

and unified Superpixel based Parallel Fuzzy Clustering approach using unsupervised
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3.2. Proposed Hybrid Change Detection Framework

learning in optical remote sensing images. The significant contributions of our research

work are outlined as follows.

* The full benefit of superpixels containing neighborhood information using the
Simple Linear Iterative clustering (SLIC) method of segmentation is utilized in

the proposed approach.

* Incorporation of a parallel FCM clustering with lightweight deep convolutional
neural network (LWDCNN) model to extract the deep spatial-spectral-temporal
features from the remote sensing images, further improving CD performance for

small areas.

* The proposed model is unsupervised and can cater to CD tasks for images of

medium and very high spatial resolutions.

For the analysis of more discriminative features, the extracted feature pair of the fused
and reconstructed image is divided into three clusters based on FCM Clustering. The
changed and unchanged samples from the bitemporal images are incorporated as la-
beled data to train the network. The intermediate samples are utilized as labeled data to
test the network by feeding the features to the softmax classifier to categorize the final

change map.

The chapter is organized as follows: Section [3.1| introduces the motivation behind
using unsupervised technique. Section [3.2]briefs preliminary concepts and the details
of each module of the proposed CD framework . Section describes the data and
consideration of the study area . Section |3.4|details the experimental setup and analysis

of results, and Section [3.5|summarizes the proposed method and its significance.

3.2 PROPOSED HYBRID CHANGE DETECTION FRAMEWORK

The first framework is being divided into multiple phases and the proposed architecture
of unsupervised change detection is as shown in figure The following sequence of
operations are being followed for the change detection in the bi-temporal images.

* Pre-processing and generation of the difference image
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Figure 3.1: Proposed Hybrid Change Detection Framework.

 Superpixel segmentation using SLIC algorithm

Clustering using Fuzzy C-means

Training and testing

* Deep convolutional neural networks for classification.

3.2.1 Pre-processing and Generation of the Difference Image

A primary DI (Differene Image) as in equation [3.1]is produced to analyze the changes

to demonstrate the degree of differences between a given set of bi-temporal images.

B

> (X7 - X3
b=1
where X® denotes the values of the pixels in the b""(b = 1,2,3..B) band of image

X,n(m=1,2..).

Xp = 3.1

Structural Similarity Index (SSI) : The equation [3.2]is used to calculate the similarity
between the two images for the generation of the primary DI where p, , p, are the

averages of x; and y;, az, o2 is the variance of z; and y; ,0,, being the covariance of x
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and y and c;,c, being the two variables for the stabilization with the weak denominator.

(2utapty + 1) (2020 + )
SSIM = 3.2
(©9) = G218 T er) (02 + 07 ) -2

3.2.2 Superpixel Segmentation using SLIC Algorithm

Simple linear iterative clustering (SLIC) algorithm creates superpixels by clustering
pixels in the image plane based on their similarity, color, and proximity. D is the
sum of the lab and XY plane distances, normalized by the grid interval S. In Dy,the
variable m, allows us to modify the compactness of a superpixel. The segmentation
scale parameter m is set to 10, which means 10 x 10 pixels for each of the superpixels,
allowing for a good fit between the segmentation acceleration and the final accuracy
of the generated superpixels. Algorithm 3.1 shows the pseudocode representation of
proposed hybrid dimensionality reduction technique. The algorithm as developed in
(Achanta et al. 2012) for superpixel segmentation with SLIC was being used for the
segmentation purpose in our proposed model.
digp = \/(lk — 1)+ (ar, — a;)? + (b — b;)%dyy, = \/(Jik —2:)? + (yp — ¥:)?Ds = dip+
(3.3)

m

g tay,

Algorithm 3.1: Superpixel Segmentation with SLIC.

1: Initialize cluster centers in Cy, = [lx, ag, by, T, yk]T by sampling pixels at regular

grid steps S.

Perturb cluster centers in an n X n neighborhood, to the lowest gradient position.

repeat

for each cluster center C}, do
Assign the best matching pixels from a 2S x2S square neighborhood around the
cluster center according to the distance measure as in Eqn[3.3].

end for

7: Compute new cluster centers and residual error E (L1 distance between previous
centers and recomputed centers)

8: until E < threshold

9: Enforce Connectivity.

@

3.2.3 Clustering using Fuzzy C-Means Algorithm

The FCM method divides a bounded collection of n elements X={z1,z5...x, } into sets
of C fuzzy clusters as per the stated criterion. The algorithm returns a list of cluster

centers C={c1,cs...c. }and a partition matrix for a finite data collection. Each element
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specifies the degree to which an element belongs to a cluster. Where W= w;, ; € [0, 1]
,i=(1,2...n), j=(1,2...c) and w; ; denotes the degree to which element x; belongs to cluster

c;. The objective function is calculated as in equation [3.4]as:

argénax Z Z w;’ [|v; — ¢l? (3.4)
i=1 j=1
The w; ; is computed using equation 3.5]:
2
1 (H% - CjH)’“
’LU@' = s (35)
T e Uz — el

The reconstructed and fused difference image with parallel FCM technique is used to

categorize the DI into sets of three clusters.

3.2.4 Training and Testing

The clusters are denoted as change class 6. that represents pixels of high intensity,
unchanged class 6,,, pixels of low intensity, and the intermediate class 6; that are the
hard pixels being classified to determine final change or unchanged class. The pixels
that exhibit a high probability of being changed are denoted as 6. and unchanged as 6,
these two clusters, i.e., 6. and 6, are being nominated as training samples to train the
model. The pixels 6; will be tested and further classified by Deep Convolutional Neural
Network (DCNN). Let TpI ' denotes a group of pixels being focused at pixel p in image
I; and Tpl * represents a group of pixels being focused at pixel p in image I,. Each group
of pixels is of size p x p. The concatenation of both the images is performed to create
a new image patch 7, with a size of 2z x z. Let N denotes the group of pixels that

belongs to 0. and 6,,,which contributes to obtaining the sample images 7}, p=1,2,3...N.

3.2.5 Lightweight Deep Convolutional Neural Network for Classification

The CNN aims to learn distinct features from multitemporal images, and this set of
features can distinguish between change and unchanged information. The lightweight
DCNN ,is a network derived from CNN, which contains multiple convolutional ,max-
pooling, and fully connected layers. The architecture of the DCNN consist of three
convolutional layers namely Conv1, Conv2, and Conv3, and two max-pooling layers as

shown in figure The model parameters are shown in Table
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Max
CONV2 Pooling CONV2 FC
8x8x12 Ax4 1x1x96 96/Relu
Max
CONV1 Pooling N
24x24x6 12x12 ‘ hanged
Input ] il @
Image Unchanged
28 x 28 L) ‘
5x5
H — @
4x4
Feature Extraction Classification

Figure 3.2: Light Weight Deep Convolutional Neural Network.

Table 3.1: Lightweight CNN Model Parameters.

Layer Type Output Shape Parameters
Input Layer 28.,28.3 —
Convl 28,28.,6 10374
Pooll 3,3,6 0
Dropout 3,3,6 0
Conv2 3,3,12 4620
Pool2 1,1,12 0
Dropout 1,1,12 0
Conv2 1,1,96 1248
Dropout 1,1,96 0
Flatten 96 0
Dense 96 9312
Dropout 96 0
Dense 2 194

Total Trained Parameters 25,748

3.3 STUDY AREA AND DATA DESCRIPTION
3.3.1 Alappuzha District Kerala,India

The present study was conducted for Alappuzha, Kerala’s smallest district and a tourist
attraction in India. It is well-connected to other parts of Kerala via waterways. Alap-
puzha (Alleppey) is located on a peninsula between the Arabian Sea and a network of
rivers that pour into it. The experiments were performed on these datasets with medium

spatial resolutions. The data set used for analysis was bitemporal images from the
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Geoportal website, Bhuvan, National Remote Sensing Agency, Indian Space Research
Organization, India. We acquired the remote sensing images from the Resourcesat2
Linear Imaging Self Scanning (LISS-III) sensor over the small area of the Alappuzha
district in Kerala, India. The LISS-III data sets are categorized into four spectral bands:
0.52-0.59 microns (B2), 0.62-0.68 microns (B3), 0.77-0.86 microns (B4), and 1.55-1.70
microns (B5). There are three visible bands and one near-infrared band. LISS-III data
has a spatial resolution of 23.5 m. The images are as shown in figure [3.3] (a) acquired
on 05-02-2009 and figure [3.3] (b) acquired on 10-12-2019 with the reference image in
[3.3(c). Both the images are of similar spatial resolution of 23.5m/pixel (medium reso-

lution) and consist of 257 x 257 pixels.

(a) Pre-image (b) Post-image (c) Ground Thruth

Figure 3.3: LISIII Dataset for the Alappuzha Region (Bhuvan).

3.3.2 Earth Dataset of a Small Region Near Paris,France

The second dataset used was the bitemporal optical time-series images for a city near
the Paris location called as Earth dataset from Baudhuin et al.|, the images are as shown
in figure [3.4(a) acquired on 24-03-2010 and [3.4(b) acquired on 17-12-2019 with ref-
erence image in [3.4(c). The experiments were performed on these datasets consisting
of very high-resolution images. They are of 50cm/pixel spatial resolution with a size
of 650x 650 pixels. The dataset consists of three bands that describe the seasonal vari-
ations. As seen in Figures [3.3] and [3.4] significant variations occurred in the two sets
of bitemporal images. Both the datasets used were unique. The first study area is an
ecologically small, fragile area in India. The second study region consisted of the green
land converted mostly to buildings for a small area near Paris. The final change maps

for the bitemporal images were obtained, with white pixels signifying a change and
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(a) Pre-image (b) Post-image (c) Ground Thruth

Figure 3.4: Earth Dataset for a City near Paris.

black pixels representing unchanged.

3.4 RESULTS AND DISCUSSIONS
3.4.1 Experimental Setup

The proposed method is evaluated by experiments in universally available optical image
datasets. The entire set of experiments are executed on a computer with Core Intel 17-
8700k CPU, 16-GB RAM, and NVIDIA GeForce GTX 1090Ti GPU. using python3
programming implementation. Two remote sensing datasets as described above are

used to evaluate the performance of the proposed method and SOTA techniques.

3.4.2 Performance Evaluation Measures

For the evaluation of our proposed method, numerous experiments were performed on
the two optical image datasets. A detailed explanation of evaluation measures are as

follows:

Various performance measures are used like Percentage of correct classification
(PCC), as in Eqn [3.6] Kappa Coefficient (KC), and Area under the receiver operat-

ing characteristics (AUC).

B TP +TN
 TP+TN+FP+FN

The kappa coefficient(KC) as in Eqn. with PRE (proportion of expected agree-

pPCC

(3.6)

ment) in Eqn[3.8]is a parameter that is used to measure the classification outcome accu-
rately. Higher values of kappa signify higher accuracy. The kappa coefficient is given
by
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PCC — PRE
ppp_ (TP+FPL(TP+FN)  (FN+TN).(FP+TN) a8)

(TP+TN+FP+FN)? ' (TP+TN + FP+ FN)?

Area under ROC curve: The area under the ROC curve or precisely area under the
curve in classification performance evaluation is an aggregate measure over all possi-
ble classification thresholds. It was used when the model ranks random positives over
random negatives. It measures how well the prediction ranked than its absolute value;

therefore, AUC is scale-invariant. AUC value ranges from O to 1.

The Area Under the Curve (AUC) as indicated in Eqn[3.9)and Eqn[3.10] with Sensi-
tivity and Specificity is a summary of the ROC curve that measures a classifier’s ability
to distinguish between classes. The AUC indicates how well the model distinguishes
between positive and negative classes. The greater the AUC, the better the performance

of the model.

TP

tivity = ll=———— 3.
Sensitivity = Reca TP+ FN (3.9
TN

AUC is calculated as the Area Under the Sensitivity(TPR)-(1— Speci ficity)(FPR)
Curve. The F1 score is calculated using Eqn

Fl— 2 x Precision x Recall B 2«TP
"~ Precision + Recall ~ 2+«TP+ FP+ FN

3.11)

Overall accuracy: Overall accuracy is a measure that states how many samples are
correctly mapped to their corresponding class. It is the most comfortable measure to
find the performance of a classifier. Consider a dataset that has N number of samples
and C class labels, then the confusion matrix M of classification is a square matrix of
size C' x C. Overall accuracy is measured using the equation 3.12,

C
OA = ZTlM (3.12)
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Diagonal elements M;; in the confusion matrix is the number of samples correctly clas-

sified, and the overall accuracy of a classifier is always measured on a percentage scale.

3.4.3 Comparative Methods

The comparison and analysis are performed with the current SOTA methods proposed
in the CD domain. A unique CD framework for high-resolution remote sensing images
was proposed in |Gong et al.| (2017). It incorporated superpixel-based change feature
extraction using superpixel segmentation and neural network-based hierarchical differ-
ence representation learning (SBDN) to classify the changed and the unchanged pixels
to generate the final change map.

Multi-scale superpixel segmentation (MSDNN) CD technique based on stacked denois-
ing autoencoders (SDAE) is proposed in Lei et al.|(2019)). SDAE was utilized to analyze
the difference representation between superpixels of bitemporal images in the proposed
method.

In He et al. (2021), the authors developed a unique multi-scale analysis framework for
unsupervised CD based on multi-scale visual saliency coarse-to-fine fusion (MVSF).
Superpixels were used as primitives in MVSF to analyze the DI obtained using the
change vector analysis approach. The global contrast of each superpixel was then used
to construct multi-scale saliency maps at the superpixel level.

A weighted fusion technique was devised to add multi-scale saliency at the pixel level.
The authors in|Zhang et al. (2018) merged DRL (difference representation learning) and
unsupervised clustering into a unified model with superpixel segmentation (HIDRL-
Net). Superpixel segmentation was employed to organize individual pixels into homo-
geneous zones, which simplifies the multi types CD work, and patches centered at the
superpixels are being used to represent them for object-based change analysis.

The research in Zhang et al.| (2021a)) proposed an end-to-end superpixel-enhanced CD
network (ESCNet) for VHR images, which combined differentiable superpixel segmen-
tation and a deep CNN for VHR images. For feature extraction and superpixel segmen-
tation of bitemporal image pairings, two weight-sharing superpixel sampling networks
(SSNss) have been developed. The varied information is then mined using a UNet-based

Siamese neural network.
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3.4.4 Experiments on the LISS-III Dataset

The application of various methods for CD on the LISS III dataset is demonstrated in
figure [3.5] (a)-(f). SBDN [3.5[(a) and MSDNN [3.5(b) results have not produced a good
map, and multiple regions are not detected and classified. The change map shows that
the MVSH3.5(c) and HIDRLNe(3.5(d) method has exhibited good but not complete
changes compared with the ground truth image. ESCNet [3.5] (e) method has also been
performed very effectively, but detecting small changes is not done accurately. The map
of the proposed approach reveals the change areas without any noise, as depicted with
[3.5(f) in comparison to all of the above methods. The statistics in Table [3.2] show that

our proposed method has performed well compared to other CD methods.

Table 3.2: Comparative Analysis of Various Methods on LISS-III (Alappuzha) Dataset.

LISSIII Dataset
Methods PCC(%) KC(%) AUC(%) Fl1(%)
SBDN 91.25 61.35 782 43.71
MSDNN 94.56 72.56  68.5 48.34
MVSF 89.66 7745  69.8 51.02
HIDRLNet 95.33 63.58  79.1 59.34
ESCNET  96.21 75.69  80.1 67.45
Proposed  98.28 81.64  84.6 74.57

3.4.5 Experiments on the Earth Dataset

Figure [3.6(a)-(f) demonstrates the CD results generated by various approaches on the
Earth dataset. SBDN3.6(a) has detected very few changes, and partial analysis of
change areas by the MSDNN is seen in [3.6(b). MVSH3.6(c) and HIDRLNe{3.6(d)
has shown the change regions but is not adequate to the ground truth, including the
ESCNET in [3.6(e). The proposed [3.6(f) method has meticulously identified all the
changed regions in small areas without the inclusion of any noise. The statistics in
Table 3.3 show that our proposed method is better than that of other CD methods.The
PCC, KC, AUC, and F1 score results for both datasets have increased, and the use
of self-supervision as a data-centric the approach has demonstrated the efficiency of

the proposed framework. Using superpixel segmentation, clustering, and bitemporal
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patches of images collected to train the model with self supervision have shown signif-

icant performance and improvement in the results. The AUC for both the datasets is as
shown in figure [3.7(a)and [3.7|(b).

Table 3.3: Comparative Analysis of Various methods on Earth (Paris) Dataset.

Paris Dataset
Methods PCC(%) KC(%) AUC(%) F1(%)

SBDN 93.54 69.47 66.1 38.28
MSDNN 94.44 71.43 58.9 45.09
MVSF 88.37 80.41 70.1 41.25
HIDRLNet 92.10 75.25 67.3 52.11
ESCNET 94.22 78.50 81.2 58.78
Proposed 96.43 82.30 85.7 64.06
- E.- ! - Ea- ! - EJ' E
(a) SBDN (b) MSDNN (c) MVSF
o !J' E - EJ' i ol EJ' E
(d) HIDRLNet (e) ESCNET (f) proposed

Figure 3.5: Change Maps generated for LISS-III (Alappuzha) dataset.
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(d) HIDRLNet

(e) ESCNET (f) proposed

Figure 3.6: Change Maps generated for Earth (Paris) dataset.
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Figure 3.7: AUC Curve.

3.5 SUMMARY

In addressing issues like performing CD on optical remote sensing datasets of a small
area, there is a high possibility of generating noise and distortion in the images, which
may decline CD accuracy. For locations designated as small areas, the number of
changed pixels may be false compared to the actual number of real changed pixels due
to the closeness of the pixel values in the images, which is a big challenge addressed in
this chapter. Existing methods are mainly proposed for a large set of areas. This chap-

ter proposed an accurate CD framework due to the richness of DL. In the phase of DI
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generation using superpixel segmentation, the developed fused image due to the prop-
erty of superpixels focused on enhancing the gap between the changed and unchanged
areas. It also helped decrease the interference caused by the pixels, which are changed

and labeled as false.

While performing DI analysis in the clustering phase using preliminary centers as
constraint terms in the objective function, the novel paralle]l FCM algorithm was utilized
to preserve the clustering algorithm in the right direction during the optimization phase.
To meticulously control the imbalance between the changed and unchanged classes
from the bitemporal images, the training and testing samples were generated from the
image patches of the changed and unchanged pixels. This strategy enriched the CD
process by training and testing the proposed light weight DCNN with the intermediate
patches and final changed class. With the incorporation of patches of the same area,
the framework could effectively capture the changed class’s distinguishable features.
The evaluation of each module in the framework was done in a precise manner by
comparing it with several SOTA approaches. The experimental analysis demonstrates
the effectiveness and usefulness of each component in the proposed framework. In the
future, an effort will be made to enhance the framework with the facility of limited

supervision using deep learning to overcome the drawbacks of supervised learning.
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CHAPTER 4

A DEEP LEARNING APPROACH FOR
MULTI-CLASS CHANGE DETECTION IN LAND
USE LAND COVER DATA USING SUPERVISED
TECHNIQUES

4.1 INTRODUCTION

Land is the most crucial component for analyzing Earth’s change. Handling the in-
creasing load on land use demands a productive policy for endurable land use and eco-
nomic growth. Investigation of local and global indicators established on land use maps
could disclose information on sustainable development progress (Camilleri et al.| 2017).
LULC changes, on the other hand, contribute to severe environmental concerns in var-
ious regions of the world. It is necessary to detect and mitigate land deterioration and
improve the land rehabilitation process to detect and monitor changes on the surface
of the Earth (Nedd et al.| [2021). With industrialization and globalization, human ex-
ploitation of land has increased globally, posing a severe environmental hazard(Wijaya
et al.| 2018) (Antrop| 2009). As a result, determining the change in LULC has become

a critical issue that needs attention globally(Ojima et al.| [1994).

The physical component of the Earth’s surface (land cover) and how we use the
land (land use) are difficult to distinguish in environmental monitoring and many other
subdomains, according to (Hansen et al.| |2022)) worldwide. Field surveys or satellite
image analysis can achieve this via remote sensing techniques. While surveys in the

field are more comprehensive and definitive, they are expensive projects that take a
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long time to update (MohanRajan et al.| 2020).

Deep learning (DL) methods are currently the talk of the town due to their extensive
applications in image processing, natural language processing, signal processing(Xie
et al.| 2017),etc. DL has also emerged as a strong baseline in earth observation and
remote sensing domain to analyze SAR, optical, VHR(very high resolution), and hy-
perspectral data (Zhu et al. [2017)(Bai et al.| [2022). CD methods involved with remote
sensing data consist of the feature extraction process and identification of the change ar-
eas. The essential features like texture, color, and context are analyzed in the extraction
stage. Identifying the extracted features for determining change points is performed by
designing hybrid or using pre-trained deep learning models in the set of multitemporal

images.

To solve these challenges, a DL-based approach called a ST encoder-decoder net-
work is developed with attention mechanisms to examine historical LULCC for a given
region using satellite images. This analysis will be helpful for city planning and en-
vironmental management in fast-increasing cities, saving time and energy. The major

contributions of our research work are as follows:

* A dual branch end-to-end encoder-decoder network is designed with self and
dual attention modules that accept two LULC maps as input and extract features

independently to identify and analyze the changes.

* The class imbalance problem is overcome by the attention module based network

trained directly without the pre-training models.

* The architecture learns the multiscale features from both the images and the low-
level features are preserved through the long-range connections between the en-

coder and the decoder module.

* The proposed framework is evaluated on a LULC dataset for the Dakshina Kan-
nada and Goa region, and the model achieved an overall accuracy of 94.11% and
94.93%.

The chapter is organized as follows: Section 4.1 is for introduction, Section 4.2
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briefs the overall framework and provides decription of each component. Section 4.3
describes the data and its collection with the study area considered , and Section 4.4]
presents the results and its detailed analysis using various evaluation parameters, and

Section summarizes the proposed method and its significance.

4.2 OVERALL FRAMEWORK

In general, the overall framework is depicted in figure The proposed CD approach
for LULC remote sensing datasets consists of three basic steps: (1) pre-processing, (2)
training sample generation, and (3) end-to-end CD learning. The presented method
uses a supervised binary CD framework to create a change map in binary format (i.e.,
a change/no-change map) from two images obtained from the same location simultane-

ously. In the following three subsections, the further steps are discussed.

Pre-processing The pre-processing phase plays a crucial role in CD for remote sens-
ing data. Image processing methods like co-registration and denoising are used to make
the images as comparative as possible. This stage also deals with eliminating noise and

scale variations, if any.

Training sample generation The initial step in the model design process is creating
training data to build the DL model. A training data set is a group of samples used to
train and develop a model. Several training samples were extracted by the individual
selection of pixel locations belonging to each class from the LULC data. The distinct
images were used to utilize each LULC class location for training the model. The
proposed DL model for CD “learns” from training samples, each of which relates an
example input to the related output. Each training dataset for the final models included
multiple samples corresponding to several images of every location from LULC data.
For our study, LULC maps of thirteen years, from 2005 to 2018, were used for the
CD process, and the proposed model was applied to identify the LULC changes. Ten
images from 2005-06 to 2014-15 were used for training, and three images from 2015-16

to 2017-18 were used for testing and validation.

The different LULC maps of different years were utilized to derive the signature
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Figure 4.1: Overall Framework of the Proposed Approach.

classes from the same LULC class during the training, testing and validation process.
The derived signatures were also utilized with the four models for comparison during
this training process. Every image’s samples were divided in a similar way, and this

division is maintained for every training. Thus no training sample was ever employed

54



4.2. Overall Framework

for validation, and vice versa. A unique, weighted sparse categorical cross-entropy loss
function was utilized for all model training. However, given the enormous training
data, the configuration of DL routines was done to last a fixed number of epochs. The
proposed model is being trained and evaluated using the testing data by updating and

fine-tuning the parameters needed to generate the final binary change map.

4.2.1 Proposed Change Detection Framework

In this section, the details of the proposed architecture are elaborated as shown in figure
Four encoders and four decoders are developed for the task of CD. The criteria
for fixing the number of encoders and decoders was done based on the proposed ar-
chitectures in (Peng et al.| [2021) (Bandara and Patel| [2022) (Chen et al. 2022). An
explanation of how the self and dual attention mechanisms were applied at the decoder
level to identify ST relationships for detecting changes in the bitemporal images based

on the proposed architecture led to two novel architectures, STEDSAN and STEDDAN.

Encoder Network At the encoder the dual branch feature extraction module (FEM)
contains four blocks of the 2D convolution layer of size 3x3 and performs strided con-
volutions with a stride of 1 and 2 with downsampling, including the batch normal-
ization function. This dual branch encoder network takes both the bitemporal images
as separate input for the processing without loosing valuable information, leading to
faster convergence and making the network more stable. For the encoder, the feature
maps extracted in the n'* layer of FEM at time instant ¢; and ¢, are used as f,f%
Rwnxhnxdn for n=1...N. The extracted feature maps are represented as fi for Xt and

2 for X!2. The information which is being changed or unchanged is inferred from fx!
and f12. To achieve the difference image from the change information being learnt and
the combined feature illustration of the extracted two images from the outputs of the
last layer of each block of convolution, the task of concatenation of the two features is
incorporated. The task of concatenation is performed to concatenate the two features
(fr, fQ) , (fﬁl, 52),(f§1, 52) (f]il, f)....(ftl, f\?) is carried out in an effective way. The

encoder generates multilevel features consisting of high-resolution coarse features and
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Figure 4.2: Spatio Temporal Encoder Decoder Network.
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low, fine-grained resolution features needed for the CD process. The difference be-
tween multilevel features of the pre-change and post-change images is computed. The

encoder block is given in Equation 4.1]

Fy = BN((CONV2Dgys(cat(fy', f1)) (4.1)
The features are concatenated and provided as convolved feature maps to the decoder.
Since it is a probability prediction problem,for determining the changes in every pixel a
decoder like architecture is successively inducted for carrying out this task as explained

in the next section.

Decoder network The decoder consists of four sets of deconvolutional (transposed
convolution) blocks, each consisting of a deconvolutional layer of size 3x3 with a stride
of 1 and 2 with the upsampling operation. Each module’s various intermediate change
maps are represented as I3, where (N=1..4) are being weighted, upsampled and fused
as the final ultimate change map. The activation function is included after every de-
convolutional layer except for the last deconvolutional layer. To achieve this, a softmax
layer is added to develop the final binary change map that will correspond to deter-
mine the changes in each class label for the prediction of the final map. With such a
dual-stream architecture of encoder-decoder, the output will be the same size as the in-
put, causing no harmful effects on the pixels and finer details of the image will also be
preserved. The concatenated extracted feature pairs at each stage by strengthening the

change information through the SA modules, are explained in the next section.

4.2.2 Attention Mechanism

The attention mechanism is incorporated into the DL architectures. It refers to a process
through which a network can weight features according to their importance to a task and
use that weighting to aid in completing the task (Mnih et al.| |2014). For image CD the
main goal of the attention technique was to determine the weight distribution in the
image and assign various weights to various significant locations. By decreasing the
weight of features irrelevant to the target and increasing the weight of relevant features

to promote learning, the attention mechanism inhibits the learning of such features.
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Multiple attention models are being proposed in the area of DL for computer vision
like soft, spatial, channel, mixed, self, and hard attention, as summarized in (Yang

2020)(Brauwers and Frasincar| [2021)).

| Key1 | | Key2 | | Key3 | | Key4 |

Attention

A%
ey ” Value

\L \4 \4 Y

Value1 Value2 Value3 Value4

Source

Figure 4.3: Self Attention Mechanism.

4.2.2.1 Self Attention

SA (Self Attention) for sequential data(Vaswani et al. 2017) is a mechanism for fo-
cusing attention that links various positions of a single sequence to determine how each
position of the sequence should be represented. SA is one kind of attention technique
built on encoder-decoder architecture and incorporated in our proposed approach as em-
ployed in (Ramachandran et al.| 2019). There is no recurrence operation being used in
SA. Weighted correlations exist between the components of the input sequence. As per
figure 4.3] three terms are considered query, key, and value to clarify the fundamental
concept of the SA mechanism. Consider a database with several key-value pairs. The
database element must be located for a new query that most closely matches it. These
can be done by determining how closely the query resembles each key in the database.
This concept is the foundation for the SA process, which determines the correlations
between various components. In particular, the query and key are derived from the
same source in the SA method. SA calculates queries(Q), keys (K), and values (V)
for the images in a given hidden sequence H using a linear transformation of the input

sequence in equation as follows:
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_ QKT
Attention(Q, K, V) = softmam(ﬁ)v 4.2)
k

where d, is the scaling factor, K denotes dimensionality, Attention(Q,K,V) denotes
the attention matrix (N x d), and N denotes the number of items in the input sequence.
In our case, while taking the inputs for the study for the SA mechanism, the sensitivity
analysis was done on how to compare and contrast the effect of each input on the output.
Typically, the most common approach is to hold all the attributes at their mean value
while varying just one of the inputs to assess the effect of changing just one variable.
In this example, one attribute is varied at a time at multiple steps to assess the overall
sensitivity of each variable. Adding half a step means the midpoint value is used be-
tween the mean and maximum for a single variable, and adding a full step means the
maximum value for that variable will be used. This process was carried out to sup-
ply the required values effectively in our proposed approach. The weighted sum of the
value vectors yields the output vector, with each value vector’s weight determined by

an affinity function based on the query and its corresponding key.

The attention value is derived by weighting and summing all values. The weight
coefficient computation reflects the process of concentrating on crucial information.
The mechanism focuses more on the value corresponding to the weight, representing
the information’s significance. In contrast, the value is the information that corresponds

to the weight.

In our proposed architecture, the source comes from the encoder layer, and the tar-
get is the result of the decoder layer. The source’s elements comprise several “key,
value” data pairs. The design of the SA mechanism included in our proposed STED-
SAN network is depicted in the figure When the query, key, and value tensors
are individually extracted from the input feature tensor by three different 1 x1 convo-
lutional layers, a query as a vector is described at a given point in the query (or key,
value) tensor. The bitemporal image feature mappings in the temporal dimension are
concatenated to create the feature tensor. Learning an attention function that translates
a query vector, a set of key-value vector pairs, and a set of output vectors is the main

goal of the SA module for ST analysis.
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To calculate E, a set of key vectors, value vectors , and query vectors are created from
an input tensor. Each output vector is then created by learning the weighted sum of
the values. The weight given to each value depends on how similar the query is to the
input vector and the associated key. The features are calculated from the input images

CxXHXW \where C, H, and W are the input image’s channel, height, and

givenas A € R
width, as seen in the figure 4.4] The computation of keys, values, and queries from A
occurs initially. Feeding them to 1x 1 convolution layers, the input feature tensor A is

first transformed into two feature tensors, Q (query) and K (key), where Q, K € C'x H

X W.
1x 1 conv|
> —> reshape & transpose
self attention feature
key K attention map map
A s
Xt comy reshape softmax
> > > —
> E
N
i ya CxHxW NxN
query Q X CxHXW
reshape
1x1 conv -
> ) reshape

valueV

® matrix multiplication @ sum operation

Figure 4.4: Self-Attention Module incorporated in STEDSAN.

This tensor is subjected to the reshape operation to produce R“*", where N=H x W
is the number of pixels. The attention is later calculated using the key matrix and the
query matrix. The key matrix K7 and the query matrix Q are multiplied, and each
element is divided by the square root of dj. A softmax layer is then applied following
the given equation to produce the initial attention map S € R¥*¥, The similarity
between the i key and the j query is represented by the element S;; in the similarity
matrix as given in equation Here, S}; stands for the it" position impact on the j*

position or the influence of position j on the feature tensors at position i. As a result, the
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dependency linkage between any two components of the wider context is expressed.

$ji = €$p(Ki ’ QJ) (4.3)

S exp(K; - Q)

Similarly, A is provided into another 1 x 1 convolutional layer to generate a new

feature tensor V' € RY*Y . The matrix multiplication operation is performed between
V and the transpose of S and reshape the result to RE*#*W In the last stage, the scale
parameter « is multiplied, and an element-wise sum operation with feature vector V is
performed to obtain the final output E € RE*#*W a5 shown in equation that is the

SA feature map as follows:

N
Ej = Z(SJZV;) + Aj (44)
i=1

« is initially set to O in this case and subsequently evolves to assign increasing
weight. As observed, the final SA feature map E is a weighted average of features from

all positions and the original features.

4.2.2.2 Dual Attention

An attention layer is added in the framework to improve its ability in our proposed
encoder-decoder architecture to focus on valuable areas of the inputs. The network is
designed with both channel and spatial attention modules to achieve robustness in the
CD process (Woo et al.| [2018)). The network can focus on the feature maps with the help
of channel attention that are more significant for developing the final change map. The
soft selection of feature maps can be regarded as channel-wise attention. On the other
hand, spatial attention allows the networks to highlight the essential spatial parts of the
feature maps. The upsampling of the attention maps is performed to have the identical
field of view as the inputs. The attention maps assist the network in decomposing
the distorted portions of the image and focusing on the image’s necessary components

independently.

The multiscale information generated by the high-level and low-level stages is com-

bined using a spatial attention block (SAB) to learn more spatially representative fea-
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tures. The channel attention block (CAB) redistributes channel feature responses to
strengthen the critical channel information while suppressing irrelevant channels. Chan-
nel attention is globally applied from a spatial viewpoint, while spatial attention works
locally. The intermediate feature maps generated from the encoder represented as
F € ROH*W provided as input, and the channel and spatial attention modules pro-
duce a 1D channel attention map as M, € R“*'*! and 2D spatial attention map as
M, € RM>H*W a5 explained in the following sections. The entire process of the chan-

nel and spatial attention is summarized as follows as given in equation 4.5}

F'=M/(F)®F,
4.5)
F// — MS(F,) ® F/
where ® represents element-wise multiplication. During the multiplication process,
the element-wise broadcasting (copying) of the attention values in a manner by broad-
casting channel attention values along the spatial dimension and spatial attention values

along the channel dimension. £ is denoted as the final refined spatial attention feature

map.

Channel attention The channel attention method concentrates on “what” is signifi-
cant given an input image since each feature map channel is considered a feature de-
tector. The input feature map’s spatial dimension is reduced to compute the channel
attention effectively. The channel attention module fine-tunes the integrated features
through channel attention maps (CAM). Each channel’s significance is encoded via
CAM, whose weights are dynamically recalibrated across the network. Average pool-
ing is adopted for gathering spatial information. The max-pooling operation collects
crucial information on distinguishing object properties to infer precise channel-wise at-
tention. As a result, simultaneously average-pooled and max-pooled features are used.
Channels appropriate to the CD process are highlighted, while irrelevant channels are
concealed by multiplying features f; (k=1- - - K) with appropriate attention map weights
wy, (k=1 --- K). As a result, the channel attention module determin es which channel
to learn from the combined heterogeneous features. Estimation of the CAM (M CF ) is

described as in equation
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M;" = o(MLP(AvgPool(F)) + MLP(MazPool(F))) “6)
= o(Wi(Wo(FS,,)) + Wi(Wo(FS.))) |

avg maz

where F represents input feature maps. Finer attention inference is achievable when
both average-pooled and max-pooled features are used simultaneously. The spatial de-
tails from the input feature maps are first compressed along the spatial axis using an
average pooling (AvgPool) and a max-pooling (MaxPool) operation. After the pooling
operations, feature maps will be compressed into two vectors of size C' x 1 x 1, since
there are C feature maps of Hx IW. Additionally, as both of the aggregated channel fea-

tures belong to the same semantic embedding space while using both pooling methods,

a shared MLP is utilized for attention inference to save the parameters.

The vectors are then transmitted to a shared multi-layer perception (MLP) layer. It is
argued that the maximum-pooled feature, which encodes the fundamental component’s
magnitude, can compensate for average-pooled ones, which more subtly encode global
statistics. Therefore, both functionalities were combined simultaneously and used a
shared network like MLP for those tasks. The shared MLP’s outputs are blended using
element-wise summing. Finally, each channel’s attention weights are assigned using
a sigmoid function represented as 0. Wy € RY/™¢ and W; € RE*Y/" are the MLP
weights which are being shared for both inputs and the activation function ReLU is

followed by Wj.

Spatial attention The spatial attention is computed using the channel-wise refined
features. A 2D descriptor is initially calculated that encodes channel information at
each pixel over all spatial locations to produce a 2D spatial attention map. The raw
attention map is then obtained by applying one convolution layer to the 2D descriptor.
The inter-spatial relationship among the features generates the spatial attention maps.
This module focuses on where is an informative part that is complementary to the chan-
nel attention. The spatial attention module refines the channel-by-channel sophisticated
features across the spatial context after the channel attention process. In spatial atten-
tion maps, each pixel location’s value is recorded the same way as in the feature maps.

The spatial attention module is trained to improve its ability to recalibrate the weights
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of each pixel position dynamically. It receives feedback from ground truth maps it-
eratively during the network training phase. Eventually, it generates spatial attention
maps (SAM), which attribute higher and lower relevance to locations of changing and
unchanged pixels accordingly. Notably, a SAM w.(c = 1--- N) is initially calculated
with the spatial attention component. Here N signifies the absolute number of pixels of
each feature map, and c is the ¢! pixel location in the generated map. The spatial-wise
refinement is then accomplished by element-wise multiplication of each feature map of

high level named f in the collection of feature map fi(k = 1--- K) with w,.

The processed and developed feature maps can be designated as fr ® w.. Pixel
changes are highlighted by multiplying with a set of larger weights after the spatial-wise
refinement, whereas unaffected pixels(unchanged) are concealed by multiplying with
lower weights. As a result, the model can quickly approach the regions being changed
and enhance the combined features in the spatial dimension. Employing average and
maximum pooling to implement channel pooling over the channel axis is an effective
method for generating the 2D descriptor. A high kernel size selection suggests that
selecting spatially significant regions requires a large receptive field. Given this, spatial
attention was computed using the channel pooling method and a convolution layer with
a large kernel size. The spatial attention module uses the average- and maximum-pooled
features over the channel axis with a convolution kernel size of 7. The architecture of
the channel and spatial attention module incorporated with the proposed approach is

provided in figure The Spatial attention map M is calculated as follows using
equation 4.7}

M. = o(f™"([AvgPool(F); MaxPool(F)])) | @)
= ([ ([Faogs Frnaa)))s

avg’ * mazx
Where {77 means a convolution operation with the filter size of 7 x 7 and signifies
the concatenate operation. The AvgPool and MaxPool layers on the channel axis ini-
tially perform the average and max pooling of the input feature maps F. Then, features

of the AvgPool and MaxPool are convolved and concatenated by a convolutional layer

f™7. o is utilized to construct the final M. The sigmoid function ¢ normalizes the
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final attention map. This attention-based fusion of features can automatically investi-
gate the implication of individual raw image features and image difference features to
solve the heterogeneous problem across the channel dimension efficiently. It can also
further recalibrate the significance of each pixel location across the spatial dimension

to approach interested areas rapidly.

4.2.3 Model Parameters

In any DL approach, the model is trained with several parameters classified as trainable
and non-trainable. The term “trainable parameters” refers to variables whose values can
be changed based on their gradient (the derivative of the lost/error/cost in relation to the
parameter). Those parameters whose values are not optimized as per their gradient
are ‘“‘non-trainable parameters”. The total number of parameters that are being utilized
for training the model is 87,689,930 which consist of 87,678,918 trainable and 11,012

non-trainable parameters for the effective generation of the final change map.

Updating of parameters Based on the training dataset,the STEDSAN and STED-
DAN architecture is trained. There are numerous parameters that needs to be tuned,
including size of input patch, dropout rate, quantity of neurons, layers, rate of dilation,
size of mini-batch, primary learning rate, and the amount of epochs. In this study, the
configuration of the network’s parameters begins with an initial value. The network is
then evaluated using accuracy indicators, such as computing the network’s overall ac-

curacy with test data. Finally, new values are assigned, and the parameters are updated.

Stopping condition, model evaluation and optimization The parameters of the model
are adjusted iteratively using optimization. In this study, CNN parameters are modified
using an Adam Optimizer (Kingma and Ba 2014). The tests performed on the dataset
are used to determine the best values for these parameters. The Adam optimizer uses
little memory and is computationally effective. To do this, three sorts of sample datasets
were created: (1) training data, (2) testing data, and (3)validation data. The training and

validation datasets are used to train and assess the network.
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4.3. Study Area and Data Description

The network’s performance on the validation data determines the appropriate weight
to use when choosing the parameters. Up to the completion of all epochs, the learning
phase remains active. Additionally, the loss function uses the validation dataset to gen-
erate the loss value. The network’s compliance with the expected output and ground-
truth label is used to calculate the loss function. To achieve this, a network is trained
using training data. Its error is determined by evaluating the network using a validation
dataset. Finally, test data is used to evaluate the network’s performance. Until the stop-
ping condition is met, this process is continued. The stopping conditions are established

based on obtaining a satisfactory level of accuracy.

4.3 STUDY AREA AND DATA DESCRIPTION

The main aim of the analysis was to select a suitable area for the study’s purpose and
to obtain the LULC maps of a particular site for the assessment of the data. LULC
maps help users interpret the current landscape. Annual LULC data stored in national
spatial databases will allow for monitoring agricultural ecosystems, forest conversions,
surface water bodies, and other temporal dynamics. The requirement of high-quality
spatiotemporal data of the chosen area, classified according to the type of land, for at
least ten years was needed to analyze the land cover patterns and changes efficiently
and generate a reliable change map for further improving the investigation. The dataset
consist of coastal region called Goa and a district from Karnataka, India, known as

Dakshina Kannada (formerly South Canara), used to perform the analysis.

4.3.1 Dakshina Kannada

Dakshina Kannada is a district in karnataka India. It consists of 4,559 square kilometre.
Its geographical location coordinates are 12.8438 N Latitude and 12.8438 N longitude,
with a maximum elevation of approximately 1,115 m above mean sea level. The Ara-
bian Sea shelters it on the west and the western ghats on the east. The climate in this
study area is moderately mild and humid in the winter season and dry and hot in the
summer season, and receives abundant rainfall during the monsoon. Mangaluru city is
the district headquarters, as evident through the vast areas of urbanization. The ma-

jor rivers of this region are Gurupura, Kumaradhara, Netravathi, Nandini or Pavanje,
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Phalguni, Shambhavi, and Payaswini join the Arabian sea. The average annual rain-
fall in this district is 4,030 millimeters. Dakshina Kannada district had a population
of 2,083,625, according to the 2011 census of India. The study area location is shown
in figure . The location of the study area is as shown in figure with the LULC
maps from 2005-06 and 2017-18 in figure [4.7(a) and [4.7(b). Figure @4.7] (c) shows the

descriptions of the classes and color codes for each of the class labels.
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Figure 4.6: Location Map of the Study Area (Dakshina Kannada.)
source:https://stategisportal.nic.in/stategisportal/Karnataka_
BharatMaps/map.aspx
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Figure 4.7: LULC Data and Description of each LULC Class (Dakshina Kannada)
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4.3. Study Area and Data Description

4.3.2 Goa

The second study area chosen for our research work is the state of Goa, one of India’s
smallest states on a coastal belt, covering an area of 3702 square km. Its geographical
location coordinates are 15.2993° N Latitude and 74.1240° E Longitude with a max-
imum elevation of approximately 56 m, above mean sea level (AMSL). The western
Ghats geographically separates Goa from the Deccan highlands within the Konkan re-
gion on the southwestern coast of India. Goa borders the state of Maharashtra in the
northeast and the southeast, Karnataka. It consists of sandy beaches, bays, and rocks

covering an area of 160 km falling on the west coast that borders the Arabian sea.
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Figure 4.8: Location Map of the Study Area (Goa).
source:https://stategisportal.nic.in/stategisportal/Goa_
BharatMaps/map.aspx
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Figure 4.9: LULC Data and Description of each LULC Class (Goa).

The lowlands consist of mango plantations, rice fields, and deciduous forests. The
Sahyadri mountains form the natural border between India and Goa, part of the Western
Ghats, and a sequence of ridges separates the malabar coast from the deccan plateau.
Goa being the tourist destination is evident through the vast areas of urbanization. The
major rivers of this region are Terekhol, Mandovi, Baga, Zuari, Colval, Saleri, Mandre,
Harmal, Sal, Talpona, and Galjibag that all join the Arabian sea. The climate in this
study area is relatively mild and humid in the winter month and dry and hot in the sum-
mer, and receives abundant rainfall during the monsoon. The average annual rainfall in
this district is 330 centimeters annually. The location of the study area is as shown in
figure 4.8 with the LULC maps from 2005-06 and 2017-18 in figure [4.9(a) and 4.9(b).
Figure[d.9](c) shows the descriptions of the classes and color codes for each of the class

labels.

4.3.3 Data Collection

The NRSC, Hyderabad, part of the ISRO, provided LULC data for the study. This
web-based utility, known as Bhuvan, allows users to explore a set of map-based content
and obtain spatial data. Bhuvan generates maps for land resource analysis at the end of
each year using multitemporal Indian Remote Sensing Satellite(IRS) Resourcesat-1/2
(P6) AWIFS for time series data. Following a hybrid method, the data is classified into
various LULC categories with decision tree (DT), Supervised Maximum Likelihood
Classifier (MXL), or both. The number of temporal datasets available during the sea-
son, the absence of cloud/haze, the terrain’s complexity, and the precision of temporal

registration are all factors in choosing a classifier for the generation and classification of
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Table 4.1: Details of the Dataset (Goa and Dakshina Kannada Region).

‘ Image Type ‘ LULC Maps ‘
‘ Date and number of data used ‘ 2005-06 to 2017-18 (Total 13 maps ) ‘
| LULC classes | 18 (15 active) |
‘ Format ‘ TIF ‘
| Resolution | 56 m |
| Sensor | Advance Wide Field Sensor (AWiFs) |
| Scale | 1:250k |
‘ Source ‘ NRSC, ISRO Hyderabad India ‘

LULC maps. Using AWiFS data, the fifth cycle built on the categorization and mapping
processes employed in earlier cycles are detailed in (NRSC| 2010). The details of the

dataset are provided in Table 4.1.

4.4 RESULTS AND DISCUSSIONS
4.4.1 Experimental Setup

The proposed method is evaluated by experiments in universally available LULC image
datasets. The entire set of experiments are executed on a computer with Core Intel 17-
8700k CPU, 16-GB RAM, and NVIDIA GeForce GTX 1090Ti GPU. using python3
programming implementation. Two remote sensing datasets in form of LULC data
as described above are used to evaluate the performance of the proposed method and

SOTA techniques.

4.4.2 Performance Evaluation Parameters

Overall accuracy (OA),Precision (P), recall(R), Fl-score, and mean IOU are five per-

formance metrics used to quantify the proposed method’s performance .

1. Overall Accuracy-The overall accuracy suggests how accurately the model de-

tects both the changed as well as unchanged pixels as in equation 4.8

TP+ TN

A=
© TP+ FP+TN+ FN

(4.8)
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2. Precision-The ratio of true positives to the sum of true positives and false positives

is precision (P) as in equation 4.9

TP
P ) ) - 4-
TeclLsion TPLFP 4.9)

3. Recall-True positives over the sum of true positives and false negatives are used
to compute recall (R) values as in equation .10} Precision and recall must be

higher in an accurate CD architecture.

TP
Recall = m—m (410)

4. F1-Score- In binary classification, the F1 score is defined as the harmonic mean
of precision and recall as in equation 4.T1] It’s a statistical metric for evaluating

performance.

Pl =9« p?“ecz:szion X recall @10
precision + recall

5. Mean IOU- The percentage of overlap between the predicted image and the corre-
sponding ground truth image is provided by IOU. IOU values are used to measure
the average intersection of the predicted image of each class with the labeled pic-

ture, and these values are produced using the equation 4.12]

1 e O
MeanIOU = — S 4.12
can Nc;ﬂ+ﬂ+cii ( )

where N, is the total number of classes present, C;; is the class-wise predicted
pixels,T; represents the total number of corresponding class-wise pixels in the

ground truth, and £, is the total number of pixels whose predictions are i.

4.4.3 Comparative Methods

Based on some of the parameters discussed in the evaluation matrix section, the com-
parison was performed. Several recent CD methods being proposed were chosen for

comparison. Existing proposed methods use existing pre-trained convolutional models
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like VGG16, Alexnet, VGGNet to train and test the network. One of the most straight-

forward methods to address class imbalance is to assign a weight to each class. The

weight class is automatically defied based on inversely adjusting weights according to

class frequencies. The Glorot normal initializer (Glorot and Bengio 2010) is used to

initialize all weights. The back-propagation method with the Adam optimizer is used

to train the weights. The training, validation, and test data in this study are chosen from

65%, 15%, and 20% of the sample datasets, respectively.

1. IFN (Image Fusion Network) -(Zhang et al.| 2020) uses the FC-Siam-Conc design

for its image fusion network. The siamese encoder is implemented using VGG-
16, and the decoder employs a UNet-based decoder to preserve details. In the

decoder, IFN extra introduces channel attention and spatial attention.

. H-SALENet -It is an encoder and decoder network suggested in (Cheng et al.
2021). H-SALENet uses a deep convolutional module in conjunction with a hier-
archical and long-range context augmentation module (HLAM) in the encoder to
extract the deep features of bitemporal images. Deep convolution and 2D trans-
former structured multi-head SA learning improve the representation capability
of multi-level and long-range dependent change features. The decoder includes
a Laplacian pyramid expansion module (LPEM) that captures change informa-
tion at many scales while reducing high-frequency information loss, reducing the

influence of deep feature resampling on the change map.

. ADS NET-A dual-stream structure with attention is used in (Wang et al.| [2021) to
create an encoding—decoding scheme using only convolutions and max-pooling.
The encoding stage extracts various level features from bitemporal single date
images. The decoding stage adds feature maps from various layers into a deep

supervision network with discrete branches to recreate the change map.

. SIAMGL-This method has effectively extracted representative features from bitem-
poral HSR RS images using the Siamese architecture with shared parameters in
(Zhu et al.| 2022). The global hierarchical (G-H) sampling technique was devel-

oped to address the issue of an uneven training sample caused by a shortage of
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samples. Furthermore, a binary change mask is inserted between the encoder and
decoder to limit the influence of the no-change regional background on the re-
gional change foreground, further improving the accuracy of the proposed frame-

work.

4.4.4 Result Analysis
4.44.1 Experiments on the Dakshina Kannada Dataset

The proposed model generated the binary change maps for the given two bi-temporal
LULC maps for 2005-06 and 2017-18 to determine the LULC class-wise binary changes
with black pixels representing no change and white pixels as change. The change
maps generated by various SOTA methods are being compared with the proposed ap-
proach, as shown in figure (a) IFN , @.10(b) H-SALENet, @.10(c) ADS-NET,
4.10(d)SIAM-GL H4.10(e) STEDDAN(Proposed) and {.10(f) Ground Truth. Visual in-
terpretation and detailed analysis are used to make the comparison. STEDDAN effec-
tively returns large area change regions with complete boundaries and strong internal
compactness when large area change areas are found amongst the LULC class. STED-
DAN detects the image noises compared to other methods, and these pixels are classi-
fied as unaltered areas in the change maps. Visual analysis of STEDDAN change maps
reveals outstanding performance, and results match ground truth maps for small and
large area LULCCD tasks. The quantitative evaluation is shown in Table STED-
DAN has achieved the best outcomes, with the highest F1 (82.90%) ,MIOU (74.1%)
and OA (94.11 %). SiamGL has gained a very close margin to the proposed method.

Table 4.2: Quantitative Performances of Different Methods on the Dakshina Kannada
Dataset.

Method F1(%) MIOU(%) OA(%)
IFN 69.64 51.6 88.42
H-SALENet 72.58 64.3 92.38
ADS-NET  71.89 66.8 92.76
Siam-GL 78.46 714 93.54
Proposed 82.90 74.1 94.11
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(a) IFN (b) HSALENET (c) ADSNET

(d) CMSIAMGL (e) STEDDAN (f) proposed

Figure 4.10: Change Maps generated for Dakshina Kannada dataset.

4.4.4.2 LULC Change Analysis for Dakshina Kannada Region

The following analysis shows the different categories of changes in each LULC class in
terms of area and percentage of changes for the dakshina Kannada region from 2005-06
to 2017-18. All the changes are shown in Table 4.3] Table 4.4] and Table 4.5] The fi-
nal multiclass change map showcasing the conversion from one LULC class to another
LULC class changes from the year 2005-06 to 2017-18 for the Dakshina Kannada re-
gion is shown in figure with overall changes shown in each LULC class for the
assessment period in each figure seperately. The model determined changes in only 15
LULC classes showcasing there was no impact of LULC types like shifting cultivation,

rann, and snow cover for the considered area.

* The BU is increased from 135.42 sq km to 205.82 sq km showing an increase in
the area with 1.544%. Figure displays the area-wise changes showcasing

that the ZC, LS, and GL are not converted to the BU class.

* The KC is increased by 0.851% with an area changes from 33.55 sq km to 72.38
sq km. Figure displays the area-wise changes showcasing that ZC is not

converted to the KC class.
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The RC is decreased by 0.158% with an area changes from 14.848 sq km to 7.624
sq km. Figure [4.13a displays the area-wise changes showcasing that ZC,LS,

Wmin is not converted to the RC class.

The ZC is being increased by 0.005% with an area changes from 0 sq km to
0.255 sq km. Figure displays the area-wise changes showcasing that D/S

FLS ,Wmax and Wmin are not converted to the ZC class.

The D/T C is being increased by 0.873% with an area changes from 153.24 sq
km to 193.07 sq km. Figure [4.14a displays the area-wise changes showcasing

that only ZC is not converted to the D/T C class.

The CF i1s being decreased by 1.359% with an area changes from 67.004 sq km
to 5.004 sq km. Figure d.14b|displays the area-wise changes showcasing that ZC

and LS are not converted to the CF class.

PL is decreased by 0.008% with an area changes from 928.78sq km to 928.41 sq
km. Figure displays the area-wise changes showcasing that only ZC is not

converted to the PL class.

The EF is decreased by 0.066% with an area changes from 2441.63 sq km to
2438.58 sq km. Figure [d.15b|displays the area-wise changes showcasing that ZC

1s not converted to the EF class.

The DF is decreased by 0.062% with an area changes from 555.30 sq km to
552.45 sq km.Only ZC is not converted to DF. Figure displays the area-

wise changes showcasing that only ZC is not converted to the DF class.

The D/S Fis increased by 0.002% with an area changes from 4.674 sq km to 4.772
sq km. Figure displays the area-wise changes showcasing that ZC,LS and

GL are not converted to the D/S F class.

The LS is being increased by 0.0004% with an area changes from 0.0464 sq
km to 0.0685 sq km .LULC classes like KC,RC,ZC,CF,GL,WL,Wmin are not
converted to LS. Figure displays the area-wise changes showcasing that
KC,RC,ZC,CF,GL,WL and Wmn are not converted to the LS class.
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The GL is decreased by 0.0083% with an area changes from 30.44 sq km to 30.04
sq km. Figure 4.17D] displays the area-wise changes showcasing that ZC,D/S

FLS,Wmx and Wmn are not converted to the GL class.

The WL is decreased by 1.705% with an area changes from 132.13 sq km to 54.37
sq km. Figure 4.184 displays the area-wise changes showcasing that ZC,LS are

not converted to the WL class.

The Wmx is decreased by 0.088% with an area changes from 58.76 sq km to
54.72 sq km. are not changed to Wmax. Figure [d.18b] displays the area-wise

changes showcasing that ZC and LS are not converted to the Wmx class.

The Wmn is increased by 0.181% with an area changes from 3.12 sq km to 11.40
sq km. Figure [4.19a] displays the area-wise changes showcasing that ZC,LS and

GL are not converted to the Wmn class.

Figure 4.11: Multiclass Change Map of the Dakshina Kannada District.
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Figure 4.15: Area Wise Changes in LULC Classes (Plantation and Evergreen Forest).
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4.4.4.3 Experiments on the Goa Dataset

The proposed model generated the binary change maps for the given two bi-temporal
LULC maps for 2005-06 and 2017-18 to determine the LULC class-wise binary changes
with black pixels representing no change and white pixels as change. The change
maps generated by various SOTA methods are being compared with the proposed ap-
proach, as shown in figure [4.20| (a) IFN , B.20(b) H-SALENet, #.20(c) ADS-NET,
4.20(d)SIAM-GL [4.20(e) STEDSAN(Proposed) and #.20(f) Ground Truth. Visual in-
terpretation and detailed analysis are used to make the comparison. STEDSAN effec-
tively returns large area change regions with complete boundaries and strong internal
compactness when large area change areas are found amongst the LULC class. STED-
SAN detects the image noises compared to other methods, and these pixels are classified
as unaltered areas in the change maps. Visual analysis of STEDSAN change maps re-
veals outstanding performance, and results match ground truth maps for small and large
area LULCCD tasks. The quantitative evaluation is shown in Table[4.6] STEDSAN has
also achieved the best outcomes, with the highest F1 (82.87%) ,MIOU (74.8%) and OA
(94.93 %). Some of the SOTA methods has gained a very close margin to the proposed

method.

& SO

(b) HSALENET (c) ADSNET

(d) CMSIAMGL (e) STEDDAN (f) proposed

Figure 4.20: Change Maps generated for Goa dataset.

89



4. A Deep Learning Approach for Multi-Class Change Detection in Land Use Land

Cover Data using Supervised Techniques

Table 4.6: Quantitative Performances of Different Methods on the Goa Dataset.

Method F1(%) MIOU(%) OA(%)
IFN 70.60 52.5 89.10
H-SALENet 72.07 63.2 91.27
ADS-NET  72.03 679 92.46
Siam-GL 79.94 704 93.45
Proposed 82.87 74.8 94.93

4.44.4 LULC Change Analysis for Goa Region

The following analysis shows the different categories of changes in each LULC class in

terms of area and percentage of changes for the Goa region from 2005-06 to 2017-18.
All the changes are shown in Table 4.7, Table 4.8] and Table 4.9] The model determined

changes in only 15 LULC classes as per the LULC maps as shown in figure 4.21]

showcasing there was no impact of LULC types like shifting cultivation, rann, and

snow cover for the considered area.

The BU area is increased by 1.259% with an area changes from 156.72 sq km to
203.33 sq km. Figure displays the area-wise changes showcasing that the

GL and RC are not converted to the BU class.

The KC is increased by 0.1646% with an area 598 changes from 171.12 sq km
to 177.22 sq km. Figure {.22b] displays the area-wise changes showcasing all

classes being converted to the KC class.

The RC is increased by 1.1777% with an area changes from 9.757 sq km to 53.356
sq km. are not converted to RC. Figure displays the area-wise changes

showcasing that ZC and GL are not converted to the RC class.

The ZC is increased by 0.103% with an area changes from 0.0314 sq km to 3.847
sq km. Figure displays the area-wise changes showcasing that Only GL is

not converted to the ZC class.

The D/T C is increased by 2.42% with an area changes from 118.47 sq km to
208.08 sq km. Figure [4.24a] displays the area-wise changes showcasing that only

GL is not converted to the D/T C class.
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The CF is decreased by 3.299% with an area changes from 209.54 sq km to 87.41
sq km. are not converted to CF. Figure {4.24b] displays the area-wise changes

showcasing that ZC and GL are not converted to the CF class.

The PL is increased by 0.0258% with an area changes from 292.20 sq km to
293.15 sq km. Figure displays the area-wise changes showcasing that only

GL is not converted to the PL class.

The EF is decreased by 0.568% with an area changes from 542.02 sq km to 520.96
sq km. Figure displays the area-wise changes showcasing that ZC is not

converted to the EF class.

The DF is increased by 0.0029% with an area changes from 1803.82 sq km to
1803.93 sq km. All classes are converted to DF. Figure displays the area-

wise changes showcasing that all classes are converted to the DF class.

The D/S F is increased by 0.0094% with an area changes from 31.44 sq km to
31.79 sq km. Figure displays the area-wise changes showcasing that ZC

and GL are not converted to the D/S F class.

The LS is increased by 0.0001% with an area changes from 22.601sq km to
22.608 sq km. Figure displays the area-wise changes showcasing that ZC

and GL are not converted to the D/S F class.

The GL is decreased by 0.0003% with an area changes from 0.0502 sq km to
0.0386 sq km. Figure displays the area-wise changes showcasing that Only

three classes are converted into the GL class, i.e., D/T C, EF and DF.

The WL is decreased by 1.455% with an area changes from 219.37 sq km to
165.48 sq km. Figure displays the area-wise changes showcasing that ZC

and GL are not converted to the WL class.

The Wmx is decreased by 0.311with an area changes from 104.98 sq km to 93.46
sq km. Figure 4.28Db|displays the area-wise changes showcasing that ZC and GL

are not converted to the Wmx class.
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* The Wmn is increased by 0.471% with an area changes from 19.82 sq km to
37.28 sq km. Figure {.29a] displays the area-wise changes showcasing that ZC

and GL are not converted to the Wmn class.
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Figure 4.21: Multiclass Change Map for the Goa Region.
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Figure 4.22: Area Wise Changes in LULC Classes (Built-up and Kharif Crop).
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4.5 SUMMARY

This chapter presented a solution for LULCCD with improved classification accuracy
in less computational time. The proposed deep encoder-decoder model analyzed spa-
tial and temporal features for effective CD. All the existing spatiotemporal CD models
lag in multiscale feature analysis. However, introducing a dedicated multiscale feature
analysis module that extracts spatiotemporal features in different window sizes helped
improve accuracy. Compared to existing models, the model uses a combination of spa-
tiotemporal analysis with an attention mechanism for identifying essential elements for
producing binary and multiclass change maps. These STEDSAN (Goa Region) and
STEDDAN (Dakshina Kannada Region) networks helped to minimize the number of

learnable parameters effectively and significantly reduce overall execution time.

The performance of the proposed model is evaluated against the existing DL tech-
niques. The dataset for analyzing the model performance is heterogeneous, with vege-
tation, buildings, roads, and other classes. The model exhibited better CD performance
for all types of classes. The model was able to produce higher accuracy in such chal-
lenging scenarios also. The model demonstrated excellent performance even in the

presence of limited training samples.
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CHAPTER 5

A MULTITEMPORAL TECHNIQUE FOR LAND
COVER CLASSIFICATION IN IMAGE TIME SERIES

5.1 INTRODUCTION

Deep learning SITS classification presently relies on obtaining significant features from
temporal patterns |Lyu et al. (2018). CNN’s approaches are considered the best models
for identifying patterns or trends in the 2-dimensional domain (2D). They have also
achieved remarkable classification accuracy in the one dimensional (1D) field, incor-
porating time-series and spectral data Liu and Shi| (2020) Cheng et al.| (2018a). Since
SITS’ temporal relationships are extensive and complicated, modeling the DL archi-
tecture to assess remote sensing time series continues to be an open challenge Wang
et al.[| (2019a). Recent advances in DL techniques hold great potential for large-scale
assessment of the land cover.

The design of innovative approaches that merge spatio-temporal information from SITS
with DL techniques is highly recommended. As a result, the capability of multiple DL
algorithms is evaluated for predicting land cover using time series data. The following

three goals are specifically addressed:

1. With the proposed framework, the effectiveness of several deep learning architec-
tures is evaluated for the classification of land cover using spatiotemporal features
from time series of satellite images using a test dataset.

2. Accuracy assessment for the classification performance of every model is done
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by building a feature extractor to identify spatial and temporal properties. De-
pending on the features, various classifiers are trained and experimented on the

LCC dataset.

3. The proposed approach extracted the best land cover from the multitemporal
remote sensing images achieving higher F1 scores than the GRU, TCNN, and

attention-based models.

The chapter is organized as follows: Section [5.1] is for introduction, Section [5.2]
briefs the design of the overall framework used in this research. Section [5.3| describes
the proposed framework for land cover classification and an explanation of each mod-
ule used for classification. A diagrammatic representation of the proposed model is
included in this section. Section [5.4] describes the data and details of the study area.
Section [5.5] presents the results and its detailed analysis using various evaluation pa-

rameters, and and the chapter is concluded in Section

5.2 OVERALL FRAMEWORK

The complete framework is being divided into multiple phases and the proposed work
is as shown in figure The following sequence of operations with different mod-
els are being followed for spatiotemporal assessment of time series images. In this
chapter, land cover classification (LCC) is performed for SITS data. The focus was
on DNN architectures that account for spatial, temporal, and spatio-temporal informa-
tion: The models devised are Gated Recurrent Unit (GRU), Temporal Convolutional
Neural Networks (TCNN), GRU+ TCNN, Attention model on TCNN and GRU. The
proposed model is also tested in a partitioned manner with the following three pos-
sible combinations, namely Univariate+Multivariate (U+M), Univariate+Multivariate+
pixel Coordinates (U+M+C), and Univariate+ Multivariate(LSTM) + Coordinates. The

TiSeLac dataset has been trained using the following models:

5.2.1 Gated Recurrent Unit

Traditional recurrent neural networks (RNN) can only cope with forward to backward

sequences. Because they are unable to learn future information, they may lose it. As a
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Figure 5.1: Full approach for Time Series Analysis of SITS.

result,the bidirectional recurrent neural network (Bi-RNN), which incorporates an RNN

to deal with future input, was introduced by Penghua and Dingyi| (2019). Bi-RNN is

built by dividing a regular RNN into two directions, one moving clockwise and the other
with reverse time. The same output layer is linked to both RNNs, as shown in figure
[5.2] This architecture can provide detailed background data for the output layer intake
sequence. The historical input data must penetrate both a forward and a reverse GRU,
gathering the contextual data of a complete time series to simulate sequence-level LCC

analysis using Bi-GRU.

5.2.2 Temporal CNN

The temporal CNN belongs to the category of RNNs, which aims to focus on the tempo-

ral dimension of the time series data with consideration of the spatial data by combining

one dimensional (1D) FCN and causal convolutions |Brock and Abdallah|(2022)). In this

model, 1D convolutions are applied across the temporal dimension. Each dataset sam-

ple is reshaped to (number of channels x number of days). A width filter equal to the
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Figure 5.2: Bidirectional Gated Recurrent Unit.

number of channels moves across the dimension of days. The land cover analysis for
the SITS is done by explicitly managing data flow through time. This model gives far

better accuracy than the previous model, with a much shorter training time.

5.2.3 GRU+Temporal CNN

In this model, both GRU and Temporal CNNs are used separately on the dataset.
The outputs of these are concatenated together and this concatenated tensor is passed
through a few fully connected layers, terminating with a 9-way softmax. The accuracy
of this model is slightly higher than the Temporal CNN model, however the training
time per epoch is higher. Increasing the number of GRUs that are stacked together
in this model doesn’t help in improving the accuracy but does increase training time.

Hence, it should be avoided.

5.2.4 Attention on Temporal CNN and GRU

Attention models are neural network input processing methods that let the network con-
centrate on individual components of a complicated input one at a time until the entire
dataset has been classified. The idea is to divide challenging activities into manageable
attentional chunks processed sequentially. A function called attention is used to trans-
late a query to an output from an “‘s set” of key-value pairs. A scenario in which the
end output, the fundamental values, and the query are all vectors. The weights assigned

to each value are then stated by the query’s compatibility function with the associated
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key value. The result is then computed as a weighted sum of the values. The intuition
behind using attention for our task is that the time series data of some days may be more
crucial than others to predict land cover, and attention enables us to capture this |Gar-
not and Landrieu| (2020). The figure [5.3] provides the architecture of TempCNN with
attention mechanism. Attention has been applied to the Temporal CNN model and the

GRU+Temporal CNN model.

. . Fully
Satellite Image Max Pooling 9 Way
Time Series gecilt I Layer COC::::ed Softmmax

Max- Max-
Input & Conv Pooling —- Conv Pooling * FC

Figure 5.3: Attention on Temporal CNN.

5.3 PROPOSED FRAMEWORK

The architecture proposed in the figure[5.4]integrates three different models: the multi-
variate model on the left, ten univariate models in the center, and a model for aggrega-

tion to position the information on the right. The description is as given below:

¢ Multivariate model: Uses a 1D convolution on the actual data. It consists of three
convolutional layers with no presence of pooling layers in between with a filter

size of 3 and a ReLLU activation function.

* Univariate Model: This model makes use of 10 univariate models. Uses 1D con-
volutions individually for each feature and concatenates the results. It comprises

two convolution layers, including max-pooling and flatten layers at both levels.
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Both layers’ outcomes are concatenated to engineer the features at different lev-

els.

* Pixel Coordinates: This model is utilized to pass through the preprocessed and
scaled pixel coordinates to the final set of fully connected layers. Then, each of
these feature extraction model outputs is concatenated to be classified with the

usual fully-connected layers:

The concatenation of these models is performed for the task of LCC on the Tiselac
dataset. The variants of the proposed framework are implemented using the Univariate
+ Multivariate + Coordinates component, Univariate + Multivariate component, and

Univariate + Multivariate (LSTM) + Coordinates component.

5.4 STUDY AREA AND DATA DESCRIPTION

The dataset (TiseLac) comprises satellite images from an annual Landsat8 time series
of 23 high-resolution images of dimensions of 2866 x 2633 pixels of the La Réunion
Island at level 2A processing recorded in 2014. A dataset is made up of pixels: 230
columns, ten features, and 23 dates. Amongst the training and test datasets, 99,687
time series at a 30m spatial resolution are presented by the pixels from the 23 satel-
lite images. The training set contains 81714 instances, whereas the testing set contains
17973 pixels taken from the 23 landsat8 images. Each pixel has ten features at each
timestamp: seven surface reflectances, one for each independent multi-spectral band
(OLD): Ultra Blue, Blue, Green, Red, NIR (Near Infrared), SWIR1 (Short Wave In-
frared), and SWIR2. Each sample in the time-series dataset is arranged in temporal
order, with features from 1 to 10 representing the initial timestamp and features from
220 to 230 representing the final timestamp. Table [5.1|shows the distribution of classes
in the TiSeLaC dataset. Figure [5.5]depicts the details of the study region. This cate-
gorization addresses three significant difficulties that might be exploited and linked to
land cover data. Each sample is assigned to one of 9 distinct classes. The essential
perspective classes are retained, and spatial processing is used, supported by photo in-
terpretation. The dataset was randomly sampled using pixels to create the fairest and

most accurate ground truth possible. This classification aspired to accomplish two fun-

113



5. A Multitemporal Technique for Land Cover Classification in Image Time Series

damental exploitable challenges associated with the land cover data for the time-series

images.

1. The rich band information comprises ten features with a description of each pixel.

2. Temporal data is showcased with the 23-time points amongst which band features
are considered. The spatial information is associated with each pixel in the form

of coordinates.

Figure 5.5: Reunion Island.

Table 5.1: Class distributions in the Training and Testing data for TiSeLaC Dataset.

Class ID Class Name Instances Train Instances Test

1 Urban areas 16000 4000
2 Other built-up surfaces 3236 647

3 Forests 16000 4000
4 Sparse Vegetation 16000 3398
5 Rocks and bare soil 12942 2599
6 Grassland 5681 1136
7 Sugarcane Crops 7656 1531
8 Other crops 1600 154

9 Water 2599 519

The Table [5.1 shows that class proportions are equivalent between train and test splits
and are a little unbalanced regarding minority classes like other crops and water. The

various land cover classes are 1.Urban areas (UA), 2.Other builtup surfaces (OBA),3.Forests
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(Fr),4.Sparse Vegetation(SV), 5.Rocks and Bare Soil (RBS), 6.Grassland (GL), 7.Sug-
arcane Crops (SC), 8.0Other Crops(OC) and 9.Water (Wr).

5.5 RESULTS AND DISCUSSION

5.5.1 Performance Evaluation Parameters

The performance of the various models for the LCC is evaluated using a test set. The
metrics for evaluation are the accuracy, class-wise F1 scores, and macro and weighted
average of F1 scores. The F1 score is the mean of precision and recall, given as
F1=2(P*R)/(P+R). The capability of each model is computed by calculating the F1
score of every class for the LCC. The macro average is used to determine the general
classification capacity of each model. The macro—average of the F1 scores is the av-
erage of all class-wise F1 scores, and it covers the class imbalance problem, providing
attention to the rare essential classes. The weighted-average F1 score for the LCC is
generated by computing the mean of all per-class F1 scores while considering each
class’s support. The dataset’s number of actual class instances is referred to as support.
The weight is effectively the fraction of each class’s support relative to the total of all

support values.

5.5.2 Comparative Methods

This section showcases the classification results using existing and proposed models.
The LCC classification results are of temporal and spatio-temporal models. Table
and Table shows the per-class accuracy, overall accuracy, per class F1 score, macro
average, and weighted average F1 score for the eight DL models. As seen from Ta-
ble [5.2], the basic models with spatial and temporal capability obtained comparable
accuracy levels. The proposed architecture achieves higher accuracy levels than the
spatiotemporal models, as shown in last three coloumns of Table [5.3]. The proposed
framework achieves an overall accuracy of 93% with macro average F1 scores of 87%
and weighted average score of 93% with the overall support of 17973 for the classifi-
cation task. As seen from the results, the proposed architecture has achieved similar
accuracy and F1 scores, showcasing the model’s effectiveness for classifying the land

covers in time series data. The proposed framework’s precision, recall, and F1 scores
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are comparatively higher during the analysis process.

Bidirectional GRU In the Bidirectional GRU model, the prediction of samples is
shown in the confusion matrix of figure [5.6| (a). As seen in figure [5.6] (a) the correct
prediction shows the samples showcasing a higher recall rate for UA and Fr class and
an average recall rate for SV and RBS class, and the forecast is slightly lower for the
OBS, GL,SC, OC,and Wr classes. The F1 score is also calculated as shown in figure
(a), and it 1s zero for the other crops class, stating no prediction for this label. The
overall accuracy for the Bidirectional GRU model is 69%. Macro average F1-score is
52%, weighted average F1 score is 69%. As seen it can be inferred from the tables and
the matrix, the land cover prediction is not so accurate, being lower on the recall rate

for each class showing average performance.

Temporal CNN The temporal CNN model uses 1D convolutions, and the prediction
of samples is shown in the confusion matrix of figure [5.6] (b). The correct predic-
tion, as seen in figure[5.6| (b), shows that the samples showcase a higher recall rate for
UA,Fr,SV.RBS,GL,SC,and Wr and average recall rate for OBS, and the prediction is
slightly lower for the OC class. The F1 score is also calculated for each category, as
shown in figure (b). The overall accuracy for the TempCNN model is 69%. Macro
average F1 score is 81%, weighted Average F1 score is 89%. As seen it can be inferred
from the tables and the matrix, the land cover prediction is slightly higher on the recall

rate for almost seven classes for the DL model.

GRU+Temporal CNN The integration of GRU and temporal CNN model prediction
of samples is shown in the confusion matrix of figure [5.6] (c). As seen in figure [5.6]
(c), the correct prediction shows that the samples showcase a higher recall rate for UA,
Fr,SV,RBS, GL,SC, and Wr average recall rate for OBS, and the forecast is slightly
lower for the OC class. The F1 score is also calculated for each category, as shown
in figure (c). The overall accuracy for the GRU+TempCNN model is 91%. Macro
average F1-score is 82%, weighted Average F1 score is 90%. As seen it can be inferred
from the tables and the matrix, the integration of both models for the land cover pre-

diction accuracy has increased by 1% only, with the recall rate being slightly higher for
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almost seven classes for the DL model.

Attention on Temporal CNN The attention to the temporal CNN model using self-
attention and the prediction of samples are shown in the confusion matrix of figure [5.6]
(d). The correct forecast, as seen in figure [5.6] (d) , shows that the samples showcase
a higher recall rate for UA, Fr,SV,RBS, GL,SC, and Wr, average recall rate for OBS,
and the prediction is slightly lower for the OC class. The F1 score is also calculated for
each category, as shown in figure (d). The overall accuracy for the attention on the
temporal CNN model is 91%. Macro average Fl1-score is 83%, weighted average F1
score is 91%. As seen it can be inferred from the tables and the matrix, the integration
of both models for the land cover prediction accuracy has increased by 1% only, with

the recall rate being slightly higher for almost seven classes for the DL model.

Attention on Temporal CNN +GRU The attention to temporal CNN with the GRU
model and the prediction of samples are shown in the confusion matrix of figure[5.6|(e).
The correct prediction, as seen in figure [5.6] (¢), the samples showcase a higher recall
rate for UA, Fr,SV,RBS, GL,SC, and Wr average recall rate for OBS, and the prediction
is slightly lower for the OC class. The F1 score is also calculated for each class, as
shown in figure (e). The overall accuracy for the attention on the temporal CNN
with the GRU model is 90%. Macro average Fl-score is 82%, Weighted average F1
score is 90%. As seen it can be inferred from the tables and the matrix, the integration
of both models for the land cover prediction accuracy has decreased by 1% only, with

the recall rate being slightly higher for almost seven classes for the DL model.

5.5.3 Result Analysis with the Proposed Framework
5.5.3.1 Univariate+ Multivariate + Coordinates

In the Univariate+ Multivariate + Coordinates model, the prediction of samples is shown
in the confusion matrix of figure[5.6(f). As seen in figure [5.6] (f), the correct prediction
shows that the samples showcase higher recall rates for UA, Fr,SV,RBS,GL,SC, and Wr
,average recall rates for the OBS and OC classes. The F1 score is also calculated for
each category, as shown in figure (f). The overall accuracy for the attention on this

model is 93%. Macro average F1 score is 87%, weighted average F1 score is 93%. As
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seen it can be inferred from the tables and the matrix, the integration of the three models
for the prediction of the land cover accuracy has increased by 3% only, with the recall

rate being higher for almost seven classes for the DL. model.

5.5.3.2 Univariate+ Multivariate

The Univariate+ Multivariate model without the pixel coordinates the prediction of sam-
ples are as shown in the confusion matrix of figure [5.6](g). As seen in figure [5.6| (g),
the correct prediction shows the samples showcasing higher recall rates for UA, OBS,
Fr,SV,RBS, GL,SC, and Wr and slightly average recall rates for the OC class. The F1
score is also calculated for each category, as shown in figure (g). The overall ac-
curacy for the attention on Univariate+ Multivariate model is 93%. Macro average F1
score is 87%, weighted average F1 score is 93%. As seen it can be inferred from the
tables and the matrix the integration of the two models for the prediction of the land
cover the accuracy is almost the same as the previous model except for showing higher
recall rate on OBS class and with the recall rate being more higher for almost eight

classes for the DL model.

5.5.3.3 Univariate + Multivariate (LSTM) + Coordinates

In the Univariate + Multivariate (LSTM) + Coordinates model with the inclusion of
LSTM (RNN), the prediction of samples is shown in the confusion matrix of figure
[5.6] (h). As seen in figure [5.6] (h), the correct prediction shows the samples showcas-
ing higher recall rates for UA, Fr,SV,RBS, GL,SC, and Wr, with slightly average recall
rates for the OBS and OC classes. The F1 score is also calculated for each class as
shown in figure (h) . The overall accuracy for the attention on Univariate+ Multi-
variate(LSTM)+ Coordinates model is 93%. Macro average F1 score is 87%, weighted
average F1 score 1s 93%. As seen it can be inferred from the tables and the matrix the
integration of the two models for the prediction of the land cover the accuracy is almost
the same as the previous model except for showing higher recall rate on OBS class and

with the recall rate being more higher for almost 8 classes for the DL model.
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Figure 5.6: Confusion Matrix of Land Cover Classification for the Time Series Dataset
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using the DL. Models: (a) Bidirectional GRU (b) Temporal CNN (c) GRU + Tempo-
ral CNN (d) Attention on Temporal CNN (e) Attention on Temporal CNN + GRU (f)

Univariate + Multivariate + Coordinates (g) Univariate + Multivariate (h) Univariate +

Multivariate (LSTM) + Coordinates.
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Figure 5.7: F1 Scores of Land Cover Classification for the Time Series Dataset using
the DL Models: (a) Bidirectional GRU (b) Temporal CNN (c) GRU + Temporal CNN
(d) Attention on Temporal CNN (e) Attention on Temporal CNN + GRU (f) Univariate
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5.6. Summary

5.6 SUMMARY

This chapter aimed to evaluate the effectiveness of various spatiotemporal deep learning
models for determining land cover on a broad scale in Reunion Island. The proposed
framework achieves higher accuracy levels to demonstrate that the LCC capabilities of
CNN (spatial) and LSTM (temporal) algorithms are rather limited. Overall, the pro-
posed framework with the inclusion of LSTM outperformed the GRU, TempCNN, and
variations to these models with integration of attention mechanisms in the tropical en-
vironment. Overall, the univariate, multivariate, and pixel coordinate model produced
the best results in the study area considered, driving the use of these models for deter-
mining the landcover in the tropical setting more encouraging by decreasing the work

of employing human interpreters in identifying LULC over large areas.
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CHAPTER 6

CONCLUSIONS AND FUTURE SCOPE

This chapter presented the findings from the research tasks completed for the Ph.D.
and included in this thesis. It summarizes the results and discusses how the work will

progress in the future.

The main topic of this dissertation was the application of medium and high-resolution
images obtained by remote sensing instruments, particularly optical multitemporal and
time-series data. Today, it is evident that there is a tendency towards an increase in
the accessibility of remote sensing images. The thesis concentrated on creating new
paradigms and cutting-edge methodologies to process images retrieved from lengthy
time series effectively. CD methods were investigated in this context to glean valu-
able information from the enormous collection of these images. Moreover, techniques
for pre-processing optical multispectral images have received attention for executing

successive automatic analyses of the changes.

The focus of the investigation was the issue of effectively detecting minute changes
in the land cover datasets occurring at different instants of time and proper rehabilitation
of pixels for the generation of the final change map. The thesis was more specifically
focused on (i) building novel CD methods and unsupervised/supervised processes for
evaluating and enhancing CD outcomes that benefit from the availability of spatiotem-
poral data and (ii) filtering out unwanted pixels and restoring relevant pixels in optical
images to lessen their impact on subsequent processing and change analysis in multi-

temporal data. Several images taken over the same geographic area are utilized using
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6. Conclusions and Future Scope

the proposed approaches.

The most recent automatic and unsupervised methods for CD are thoroughly ana-
lyzed in Chapter 2. In particular, the multitemporal CD approaches and bitemporal CD
techniques, which each need a pair of images or a whole time series of satellite images
as input, were both investigated and discussed in this chapter. The shortcomings and
difficulties of cutting-edge techniques have been examined and discussed. A gap in the
literature exists regarding the definition of unsupervised and automatic CD techniques
based on all of the temporal data from extended image time series. No method uses the
pairwise computed change maps temporal correlation in multi-temporal images. Addi-
tionally, only some methods proposed in the literature explicitly address the temporal

uniformity of changes.

The dissertation presents three crucial advancements to the SOTA: The first con-
tribution (Chapter 3) is a novel CD method for self-producing training data to detect
changes in small regions or areas based on deep learning for medium and very high
spatial resolution images. The lightweight deep learning framework is trained using
the changed and unchanged pixels produced from the image patches of the bi-temporal
images using superpixel segmentation and parallel FCM clustering. The intermediate
pixels were utilized to extract the semantic information from the feature representa-
tions to classify and build the final change map. Experiments on the two datasets affirm
the viability and usefulness of the proposed technique. The bitemporal image patches
overcame the issue of limited training samples to train and test the network with self-
supervision, which reduced the possibility of errors in generating the accurate final
change map. The performance assessment of the proposed method is being evaluated
using five current SOTA CD methods with the inclusion of deep learning techniques

used for the comparative analysis.

The second contribution (Chapter 4) attempted to apply deep learning methods for
LULCCD and analysis in multitemporal remote sensing images. To evaluate the bi-
temporal images spatially, a novel dual-branch encoder-decoder network is built with
operations like downsampling with strided convolution for the encoder and upsampling

with transpose convolution for the decoder. The analysis is more effective for each
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LULC class by including an attention module( self, spatial, and channel) at each stage
in the decoding network to analyze the nature, trend, and pattern changes in the multi-
temporal data. From 2005 to 2018, the model successfully assessed nearly all changes
in the 15 LULC classes. By qualitative comparisons with proposed CD methods that
are now considered SOTA, the effectiveness of our methodology using was tested using
a dataset of a small region like Dakshina Kannada. The experiments demonstrated that
the model effectively accounted for multiclass changes in each LULC class to provide
change maps. Since LULC serves as a critical element for climate change, environmen-
tal monitoring, etc., specific changes in the LULC classes may impact the environment
and contribute to making effective planning related to land monitoring and assessment

of nature.

In the third contribution (Chapter 5), utilizing the inherent properties of SITS, an in-
vestigation of the feasibility of using spatiotemporal deep learning models for LCC was
assessed. This research considered eight deep learning models: GRU, temporal CNN,
GRU + temporal CNN, attention on temporal CNN, attention on temporal CNN + GRU,
multivariate + univariate + pixel coordinate with its three variants, and the inclusion of
LSTM for multivariate data. It was found that, for the majority of land cover classes,
the complementary spatiotemporal information extracted by the proposed model (uni-
variate + multivariate + pixel coordinates) from the SITS significantly increased the ac-
curacy of the model in the classification of the land cover classes in contrast to the GRU
and temporal CNN, which are only made to focus on temporal features. The evaluated
spatiotemporal models, exceptionally well-trained on regional data, could distinguish
between the various land cover classes. When viewed in the context of the global as-
sessment and the long-term goal for the sustainable development goals, the size and
scope of this study are valuable for tracking significant changes in land cover classes

and forest areas.

6.1 FUTURE SCOPE

Many deep learning-based CD applications have shown that these techniques have had

considerable success in the remote sensing community’s field of CD. Further studies
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might be carried out to address existing problems and look into intriguing subjects
brought up throughout the Ph.D. to expand the research activities completed in the
thesis. Yet, there are numerous difficulties with the procedures, and these include the

following:

* Numerous platforms and sensors for the timely acquisitions of remote sensing
data are being developed, and with them come several complex challenges, in-
cluding high dimensionality in the datasets (spatial resolution, complex features
of multispectral and hyperspectral images), complicated data structures (preser-
vation of nonlinearity and overlapping distributions which may occur in the data),
and the nonlinear optimization difficulty (increased computational complexity).
The complexity of multi-source data significantly aggravates the challenge of de-
veloping solid and discriminative representations from training data using deep
learning techniques. These might be considered severe data processing difficul-
ties for heterogeneous sources of remote sensing datasets based on the type of

sensors deployed.

* Massive training samples, often acquired through labor and time intensive proce-
dures like field surveys and human interpretation of remote sensing results, are
necessary for supervised deep learning techniques. With few training samples,
building a reliable model for deep learning-based methods is extremely difficult.
Techniques for unsupervised deep learning must be developed for effective CD
and analysis of the study area considered for evaluation by the researchers in

future years.

* As discussed in chapter 2, numerous effective and precise deep-learning mod-
els and frameworks are proposed for this work. Researchers currently repeatedly
suggest novel deep learning-based CD algorithms. Yet, selecting an effective one
and ensuring its correctness for various purposes can be challenging. In real-
world applications, it is essential to consider the robustness of deep learning al-

gorithms proposed for remote sensing CD.
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