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ABSTRACT

Over the past few years, the computer vision domain has evolved and made a revo-

lutionary transition from human-engineered features to automated features to address

challenging tasks. Computer vision is an ever-evolving domain, having its roots deeply

correlated with neuroscience. Any new findings that trigger a more intuitive under-

standing and working of the human brain generally impact the design of computer

vision algorithms. The convolutional neural network is one such algorithm that has

become the de facto standard for most computer vision tasks, such as image classifi-

cation, object detection, image segmentation, etc. However, the performance of CNNs

is highly dependent on labeled data, making their practicability difficult in scenarios

lacking sufficient labeled data, especially in medical applications. Therefore, it is im-

perative to develop deep learning methods with limited supervision. In light of this,

we explore the dimensions of deep learning with limited supervision through capsule

networks and semi-supervised learning for biomedical image analysis, with a primary

focus on segmentation.

In this thesis, we have systematically reviewed various techniques for handling

deep learning with limited labeled data, focusing on capsule networks and consis-

tency regularization-driven semi-supervised learning. Capsule networks have shown

immense potential for image classification tasks. However, extending it to pixel-level

classification or segmentation is difficult. It poses numerous challenges, including

the exponential growth of trainable parameters, expensive computation, and extensive

memory overhead. In this regard, we propose DRIP-Caps, a Dilated Residual Incep-

tion and Capsule Pooling framework that makes the capsule network lightweight by re-

ducing the computation complexity without compromising performance on the CSCR

(central Serous Chorioretinopathy) dataset.
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Semi-supervised learning is a major discipline that alleviates the requirement for

labeled data by incorporating labeled and unlabeled data to formulate pertinent infor-

mation. We present a semi-supervised framework based on a mixup operation-driven

consistency constraint for medical image segmentation by incorporating geometric con-

straints regressing over the signed distance map (SDM) of the object of interest, achiev-

ing superior performance on the publicly available ACDC and LA datasets. We also

propose a novel semi-supervised framework for enforcing dual consistency (data level

and network level) with the two-stage pre-training approach through networks of differ-

ent learning paradigms enforcing both local and global semantic affinities, improving

the overall performance. We envision these methods serving a major role in alleviating

the tedious labeling process as far as the segmentation task is concerned.

Keywords: Medical Image Analysis; Deep Learning; Limited Supervision;

Convolutional Neural Networks; Geometry Constraints; Semi-

Supervised Learning; Consistency Regularization; Capsule Net-

works; Dynamic Routing
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CHAPTER 1

INTRODUCTION

This chapter provides an overview of medical image analysis, emphasizing segmen-

tation tasks. Further, we explore the fundamental issue associated with DCNN-based

medical image segmentation methods, i.e., the deficit of labeled data when employ-

ing cutting-edge deep learning models and the techniques to overcome it. Finally, we

present the motivation behind the research, objectives, and contributions.

1.1 Medical Image Analysis

Medical image analysis entails using computational methods to examine and derive

useful information from diverse medical images. Computer-Aided Diagnosis (CADx)

provides a facilitative environment for using these methods to aid clinicians in address-

ing challenges in the medical domain, such as image segmentation, classification, en-

hancement, denoising, registration, super-resolution, etc. Medical image segmentation,

in particular, helps significantly in different stages of clinical practice involving extract-

ing and quantifying pixel-level abnormalities from diverse imaging modalities such as

Computed Tomography (CT), Magnetic Resonance Imaging (MRI), Ultrasound, etc.,

to guide physicians through timely diagnosis and therapy planning.



Figure 1.1: Challenges involved in medical image analysis.

1.2 Challenges in Medical Image Analysis

Medical image analysis poses numerous challenges due to multiple factors, from the

stage of acquisition (variance in imaging equipment, acquisition parameters, acquisition

protocols, motion artifacts, etc.) to analysis (noise, low contrast, registration errors,

intra-class variance, etc.), making segmentation tasks more challenging (Figure 1.1).

Therefore, the reliable automation of this process has widespread implications.

Over the past few years, the evolution of biologically inspired machine learning al-

gorithms, such as Deep Convolutional Neural Networks (DCNNs), has played a pivotal

role in developing generalized automated solutions transcending traditional machine

learning methods to achieve state-of-the-art performance on segmentation tasks. Most

of the DCNN-based segmentation methods follow an encoder-decoder structure to de-

vise the segmentation architecture; UNet (Ronneberger et al., 2015), VNet (Milletari

et al., 2016), 3D-UNet (Çiçek et al., 2016), and Deeplab (Chen et al., 2017) are a

few popular architectures that have achieved remarkable performance in the said task.

However, DCNNs are inherently dependent on labeled data (data hungry), limiting their

2



Figure 1.2: Different approaches of limited supervision.

adoption to problems that lack adequate labeled data. Additionally, for medical condi-

tions that are new or rare, it is hard to come by sufficient labeled samples to meet the

need for DCNNs. Moreover, acquiring pixel-level annotations for the segmentation

tasks is a highly cumbersome and subjective process, burdening medical practitioners

significantly in terms of time and effort. This necessitates the need to develop machine

learning algorithms with limited labeled data. In the next section, we shed light on the

different approaches under limited supervision for segmentation tasks.

1.3 Limited Supervision

Researchers are increasingly inquisitive about DCNNs with limited labeled data or lim-

ited supervision. Limited supervision strives to develop a robust automated solution

with limited labeled data or weak supervision. DCNNs with limited supervision include

partially supervised, inaccurately supervised, capsule networks, and semi-supervised

learning as the major disciplines (Figure 1.2). The following section will briefly discuss

the approach and some well-known methods of the techniques mentioned above.

As the name implies, partially supervised learning includes developing automated

methods for partially or sparsely labeled data. For volumetric analysis of medical im-

ages, methods by Bai et al., Bitarafan et al., and zheng et al. (Bai et al., 2018; Bitarafan

3



et al., 2020; Zheng et al., 2020a) introduced modifications to the cost function by as-

signing the least weight to the unlabeled slices. A label propagation approach is fol-

lowed by Bai et al. (Bai et al., 2018) following non-rigid registration from labeled to

unlabeled slices. Bitarafan et al. (Bitarafan et al., 2020) followed a similar approach

with a self-training strategy on a dataset involving a single labeled slice per volume.

Zheng et al. (Zheng et al., 2020a) proposed a novel solution based on an uncertainty-

informed self-training framework to improve segmentation performance. In Zheng et

al. (Zheng et al., 2020b), noted the most compelling slices responsible for training with

a deep network and subjected them to manual annotation followed by self-training. In

an interesting work, Wang et al. (Wang et al., 2020a) proposed a method for incorporat-

ing diverse types of sparse labels, including sparsely labeled volumes and fully labeled

volumes, using a hybrid loss function through a self-training framework.

Similar to sparse labels, the literature has adopted sparsely annotated region (scrib-

ble) based methods for medical image segmentation. The scribble-based segmentation

method pertains to the interactive segmentation genre, which includes feedback mech-

anisms to improve the segmentation performance (Tang et al., 2018a; Lin et al., 2016;

Tang et al., 2018b). Qu et al. (Qu et al., 2020) approached this problem via point-

based interaction, where the clinician should identify the prominent points of the ROI

in each test image. Liao et al. (Liao et al., 2020) presented a dynamic and iterative

approach for segmenting 3D medical images using a multi-agent reinforcement learn-

ing technique. Wang et al. (Wang et al., 2018) presented a scribble-based and Zhou

et al. (Zhou et al., 2019) an interactive editing network-based interactive framework

to improve the segmentation performance. Furthermore, the concept of active learning

is introduced in limited supervision, which involves selecting the regions that require

manual annotation, reducing the overall annotation effort. Yang et al., (Yang et al.,

2017) incorporated active learning into a deep neural network, concentrating on the

most definitive and vague regions for labeling. Sourati et al. (Sourati et al., 2019)

presented Fisher information-based active learning mechanism for selecting prominent

samples for manual labeling.

4



Inaccurately supervised learning: Inaccurately supervised learning or noisy label

learning emphasizes developing segmentation methods subjected to noisy or ambigu-

ous labels (Angluin and Laird, 1988; Natarajan et al., 2013). Incorrect boundary anno-

tations, bounding box annotations, and corrupted labels fall into inaccurately supervised

learning. Xue et al. (Xue et al., 2020) introduced a multi-stage framework involving

sample selection followed by label correction and model training for chest X-ray anal-

ysis. Zhang et al. (Zhang et al., 2020) adopted confidence learning to capture the

annotation errors at the pixel level by estimating the joint probability distribution be-

tween the accurate and noisy annotations using a mean-teacher architecture. Min et

al. (Min et al., 2019) presented a dual-stage framework based on the attention mecha-

nism coupled with hierarchical distillation to identify incorrect annotations. Zhu et al.

(Zhu et al., 2019) presented a label quality evaluation approach to reduce ambiguity

in segmentation due to incorrect annotations by training the network with appropriate

annotations. Mirikharaji et al. (Mirikharaji et al., 2019) presented a dynamic weighting

technique prioritizing learning from accurate labels and minimizing the impact of noisy

or incorrect labels.

Bounding box annotation is another intriguing and straightforward approach un-

der inaccurately supervised learning segmentation, guaranteeing insightful information

about the foreground regions. One of the critical tasks under the bounding box-based

annotation is the generation of pseudo-labels. Grabcut (Rother et al., 2004) is one

of the popular approaches for generating pseudo labels that dynamically estimate the

foreground-background distributions and use CRF-based models for segmentation. An

incremental approach (BoxUp) (Dai et al., 2015) is proposed for generating the region

proposals automatically, followed by training with DCNNs. Rajchl et al. (Rajchl et al.,

2016) proposed a DeepCut as an improvisation to the baseline GrabCut using DCNN

and a dense-CRF model. A bounding box tightness prior was introduced by Kervadec

et al. (Kervadec et al., 2020) by enforcing the ROI to restrict inside the bounding box,

thereby regularizing the output of the segmentation framework. Wang et al. (Wang

et al., 2020b) presented an incremental deep neural network framework with pseudo
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Figure 1.3: Different types of semi-supervised learning.

labels by leveraging a label denoising module for segmenting the pelvic region from

CT images with 3D bounding box annotations.

Capsule networks: Capsule networks are a class of artificial neural networks with a

parse-tree-based robust data representation capability (Sabour et al., 2017). Inspired by

the mechanism of the human visual cortex and inverse graphics, capsule networks pos-

sess all the inclinations to supersede CNNs in modern computer vision research. Cap-

sules are typically a collection of neurons that can represent the presence and properties

of an entity, such as texture, albedo, orientation, position, hue, etc., at a given location

(Sabour et al., 2017). The capsule network works on the principle that the formation of

an entity or an object can be expressed as the parse tree of objects. This enables capsule

networks to encode information from the minimal labeled data, making it an appealing

strategy for limited supervision. Inspired by the doctrine of the capsule, Lalonde et al.

(LaLonde et al., 2021) presented a convolutional capsule and incorporated it into the

U-Net-like architecture, namely SegCaps, for biomedical image segmentation.

Semi-supervised learning: Semi-Supervised Learning (SSL) has evolved as the

most viable approach in the medical domain to alleviate the tedious labeling process by

utilizing extensive unlabeled data with a small amount of labeled data to improve the

performance over its fully supervised counterpart. Furthermore, as unlabeled data can

be retrieved with trivial human effort in the medical field, any gain in performance by

incorporating them using SSL techniques comes at a relatively low cost. The prevalent
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SSL methods can be broadly classified into three types: i) self-training, ii) adversarial

procedure, and iii) consistency regularization techniques based on the problem-solving

approach (Figure 1.3). Consistency regularization can be further classified into data,

network, and task-level consistency.

1.4 Motivation and Problem Statement

Medical image segmentation can significantly help in different stages of clinical prac-

tice. Therefore, the reliable automation of this process has widespread implications.

The performance of deep learning-based methods depends heavily on the abundant

availability of annotated data. However, acquiring medical data is often challenging,

and annotation is often a time-consuming and expensive process. We focus on sce-

narios where we can reduce our dependency on the labeled data, either by devising

methods that encode pertinent information from the available labeled data or by using

unlabeled data in addition to the labeled data, thus significantly improving the overall

performance.

1.4.1 Problem Statement

The outcome of the research work is the development of improved deep learning-based

solutions for pixel-level classification with minimal supervision. Consequently, the fol-

lowing objectives are established:

Research Objectives:

1. Objective 1: To design and develop an improved capsule network architecture
that works with a small sample size for medical image segmentation.

The literature demonstrates the superiority of capsule networks with a limited
sample of labeled data. However, it imposes a heavy computational burden.
Therefore, we aim to extend and devise improved capsule network architectures
for biomedical applications in terms of the ability to encode information from
minimal labeled data with reduced computation cost.
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2. Objective 2: To design and develop semi-supervised methods for medical image
segmentation with limited labeled data.

Semi-supervised learning is a popular prospect for devising a method with lim-
ited labeled data. We aim to develop an efficient semi-supervised framework for
biomedical applications.

3. Objective 3: To develop a generalized semi-supervised framework incorporat-
ing multiple consistency constraints for medical image segmentation subjected to
low-sampled labeled data.

This objective aims to build improved architectures that deal with complex data
for image segmentation subjected to low-sampled labeled data.

1.5 Major Contributions

We propose a novel capsule network-based segmentation architecture, namely DRIP-

Caps (Dilated Residual Inception with Pooling Capsules), for segmenting SRF (Sub

Retinal Fluid) from CSCR (Central Serous Chorioretinopathy) Optical Coherence To-

mography images. The DRIP-Caps architecture curtails the heavy computation costs

imposed by the baseline SegCaps architecture through its lightweight composition. The

proposed DRIP-Caps play a significant role in encoding coarse information from the

underlying data, thereby filtering out redundant information through the adoption of the

capsule pooling module and thus boosting the overall performance. Furthermore, the

proposed method bestows its high-level generalizability and capability of encoding in-

formation with low-sampled labeled data, making it promising for encountering diverse

medical images as far as segmentation is concerned.

Consistency regularization approaches are prevalent due to their relative simplic-

ity and soaring state-of-the-art performance on numerous public datasets. There are

primarily two types of consistency regularization approaches, namely 1) task-based

consistency and 2) data-based consistency. Data-based consistency regularization tech-

niques vary in the perturbations that are added to the input. Most methods introduce

random perturbations to the input and enforce consistency between the prediction and
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its perturbed variant. However, random perturbations may lead to 1) lazy-student phe-

nomena and 2) decreasing the performance gap between the student-teacher models,

depleting the overall performance. In this regard, we leverage the mixup-based risk

minimization operator in a student-teacher-based semi-supervised paradigm along with

structure-aware constraints to enforce consistency coherence among the student pre-

dictions for unlabeled samples and the teacher predictions for the corresponding mixup

sample by significantly diminishing the need for labeled data. Besides, due to the intrin-

sic simplicity of the linear combination operation used for generating mixup samples,

the proposed method stands at a computational advantage over existing consistency

regularization-based SSL methods. We experimentally validated the performance of

the proposed model on two public benchmark datasets, namely the Left Atrial (LA) and

Automatic Cardiac Diagnosis Challenge (ACDC) datasets, achieving superior perfor-

mance.

Semi-supervised learning is gaining attention for its intrinsic ability to extract valu-

able information from labeled and unlabeled data, resulting in improved performance.

Recently, consistency regularization methods have gained interest due to their efficient

learning procedures. They are, however, confined to data-level or network-level pertur-

bations, negating the benefit of having both forms in a single framework. In this regard,

we present a framework that incorporates data and network-level consistency in the

semi-supervised realm, thus facilitating the formation of optimal decision boundaries

in the low-density feature space for extremely low-sampled labeled data. Furthermore,

this framework provides a facilitative environment for incorporating segmentation ar-

chitectures with different learning paradigms in SSL. In this case, UNet from CNNs

and Swin-UNet from transformers (which can be extended to family of neural networks

such as recurrent networks and capsule networks) to facilitate mutual learning benefited

from the exclusive features obtained from the unique learning procedures of individual

models.
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1.6 Organization of this Thesis

Rest of the thesis is organized as follows:

Chapter 2 This chapter presents a detailed outline of the capsule network architecture,

followed by adopting the same into the segmentation of central serous chorioretinopa-

thy from CSCR OCT images.

Chapter 3 presents a detailed insight into the semi-supervised framework based on the

structure attentive mixup-coherence for medical image segmentation.

Chapter 4 presents a novel dual-stage pre-training procedure focussing on network

and data level consistency by enforcing global and local attention for biomedical image

analysis.

Chapter 5 concludes this thesis by providing a general overview of the presented re-

search work and discussing future work to realize the necessity of semi-supervised

learning for biomedical image analysis.
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CHAPTER 2

DILATED RESIDUAL INCEPTION WITH POOLING

CAPSULES FOR MEDICAL IMAGE

SEGMENTATION

This chapter presents a brief overview of capsule network architecture, followed by

the SegCaps and proposed DRIP-Caps architectures for segmenting sub-retinal fluid

from CSCR OCT images. Finally, we will discuss the experimental setup and datasets,

followed by qualitative and quantitative analysis.

2.1 Overview of Capsule Networks

Capsule networks are a class of artificial neural networks with a parse-tree-based robust

data representation capability. Inspired by the mechanism of the human visual cortex

and inverse graphics, capsule networks possess all the inclinations to supersede CNNs

in modern computer vision research. Capsules are typically the clusters of neurons

that can represent the presence and properties of an entity, such as texture, albedo,

orientation, position, hue, etc., at a given location (Sabour et al., 2017). The capsule

network works on the principle that the formation of an entity or an object can be

expressed as the parse tree of objects.

1The work described in this chapter has been published in: S.J Pawan and J. Rajan (2022). Cap-
sule networks for image classification: A review. Neurocomputing. 509, 102-120.

2S. J. Pawan, R. Sankar, A. Jain, M. Jain, D. Darshan, B. Anoop, A. R. Kothari, M. Venkatesan
and J. Rajan (2022). Capsule network–based architectures for the segmentation of sub-retinal serous
fluid in optical coherence tomography images of central serous chorioretinopathy. Medical Biological
Engineering Computing. 59(6), 1245-1259.



Figure 2.1: Schematic representation of parse tree of features exhibited by capsule
network.1

In Figure 2.1 (accessed April 4th, 20211), we have shown the pictorial representation

of the parse tree formation of an object. Here, the first set of primary capsules (PC-1

and PC-2) establishes a mutual relationship to form the first secondary capsule (SC-

1). Similarly, the second set of primary capsules (PC-3 and PC-4) establishes a mutual

relationship to form SC-2. Finally, SC-1 and SC-2 formulate the final object. The

general framework of capsule network architecture for image classification is shown in

Figure 2.2. The following section briefly elaborates on the conceptualization, history,

and working of the capsule networks.

Transforming Autoencoders: Hinton et al. (Hinton et al., 2011) introduced the idea

and conceptualization of capsules. It aims at formulating powerful neurons to encode

the generalized pose information. In (Hinton et al., 2011), Hinton et al. argue that

similar to the traditional computer vision algorithms such as SIFT (Lowe, 1999) that

represent the features in a vector form, the neural network also needs to be designed to

encode the features in vector form, and this can be achieved with the help of capsules

(cluster of neurons) that perform some intricate computation to form the more repre-

sentative outputs. The vector values correspond to the instantiation parameters of the

features such as height, scale, orientation, position, color, texture, deformation, veloc-

1http://sharenoesis.com/wpcontent/uploads/2010/05/
7ShapeFaceRemoveGuides.jpg
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Figure 2.2: General framework of capsule network architecture.

ity, etc. The length of the vector represents the probability or the confidence score of

an entity present in the image. These instantiation parameters exhibit an equivariant na-

ture. This means that when an object or feature changes its location over the manifold,

the instantiation parameters change by an equal proportion with the same prediction

probability.

Furthermore, the capsule network enables a straightforward representation of the

part-whole relationship. The capsules of the shallow layer l are referred to as primary

capsules, and the capsules of the higher level l+1 are referred to as secondary capsules.

The higher-level capsules can be activated only when the lower-level capsules exhibit

appropriate spatial dimensions. Hinton et al. (Hinton et al., 2011) affirmed that this

mechanism is more comparable to the working of the human visual system and would

perform superior to the state-of-the-art computer vision algorithms.

The feed-forward approach proposed in (Hinton et al., 2011) illustrates the working

of capsules on a 2D image that outputs the positions x and y as the pose parameters.

The network accepts an image along with the shifts ∆ x, ∆ y, and computes the shifted

image. It comprises a set of capsules that communicate with the bottom layer capsules,

and when there is a mutual agreement, it produces a shifted image. Each capsule com-

prises recognition units that compute three values, x, y, and p, respectively, which will

be propagated to the higher-level capsule; p is the probability score depicting the pres-

ence of the capsule visual entities. The capsule also possesses a generation unit that is

meant for estimating the contribution of the capsules on the resultant transformed im-
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Figure 2.3: A mathematical representation of the functioning of capsules: (a) A single
primary capsule on a single secondary capsule, (b) Multiple primary cap-
sules on a single secondary capsule, and (c) Multiple primary capsules on
two secondary capsules (can be generalized to any number of secondary
capsules).

age. The generation unit takes x+∆ x and y +∆ y as the inputs and is multiplied with

prediction p to increase the scalar value of the capsule with the right/correct prediction

and to nullify the effect of the capsule with a poor/wrong prediction.

Dynamic Routing Algorithm: Unlike the transforming autoencoders (Hinton et al.,

2011), which explicitly take an image along with the pose as the input, Sabour et al.

(Sabour et al., 2017) introduced a concrete training mechanism called dynamic routing

between the capsules to iteratively train the capsule network. According to the phi-

losophy of the capsule network, all the primary capsules at the lower layer l will try

to estimate the pose or the instantiation parameters of the secondary level capsules of

the layer l + 1 with the matrix transformation. If the multiple predictions agree, this

will activate the secondary capsule. In the next section, we will deduce the generalized

working of the dynamic routing algorithm.

A capsule i of layer l will attempt to estimate the pose parameters ûj|i of the sec-

ondary level capsule of layer l + 1, with the trainable weight matrix Wij as attested by

Eq 2.1 (Sabour et al., 2017).

ûj|i = Wij · ui (2.1)

A coupling coefficient cij associated with the output of every primary capsule depicts

the agreement with the higher level capsule j. The coupling coefficient cij of capsule i
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Figure 2.4: (a) Represents the place-coded equivariance, where different neurons are
activated when an object changes its viewpoint, (b) Represents rate-coded
equivariance involving the same neurons representing an object with dif-
ferent pose parameters.

to every capsule of the subsequent layer is summed to 1, determined by routing softmax

as defined in Eq 2.2 (Sabour et al., 2017), where bij are the log prior probabilities that

the lower-level capsule i is associated with the higher-level capsule j.

The coupling coefficient, cij is computed along with the other weights with the help

of the dynamic routing algorithm.

cij =
exp(bij)P
k exp(bik)

(2.2)

The actual output of the secondary level capsule is computed by Eq 2.3 (Sabour et al.,

2017).

sj =
X
i

cij · ûj|i (2.3)

The resultant output is subjected to a non-linear squash activation function to deflate the

vectors of short lengths close to zero, thereby increasing the length of the long vectors

close to one, as shown in Eq 2.4 (Sabour et al., 2017), where sj is the total input to

capsule j and vj is its output vector. Figure 2.3 symbolizes the prediction of a (a) single

primary capsule on a single secondary capsule, (b) multiple primary capsules on a single

secondary capsule, and (c) multiple primary capsules on two secondary capsules (which
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can be generalized to any number of higher-level capsules).

vj =
||sj||2

1 + ||sj||2
· sj
||sj||

(2.4)

The agreement between the predicted output of every capsule and the actual output

is computed by taking their dot product as attested in Eq 2.5 (Sabour et al., 2017).

If the resultant of multiple capsules dot product is a big scalar, it indicates that those

capsules establish an accurate spatial relationship –meaning these capsules or the parts

are trying to formulate an accurate whole. The coupling coefficients of such capsules

are maximized and minimized for the rest of the capsules. This makes the higher-level

capsules receive pertinent input signals from the lower-level capsules that have detected

the parts of the higher-level capsules.

aij = vj · ûj|i (2.5)

This is the essence of the training procedure of capsule networks using a dynamic rout-

ing algorithm. Further, Sabour et al. (Sabour et al., 2017) claimed that the lower level

capsules are place-coded –meaning as an object changes its viewpoint, different neu-

rons will represent the object; whereas, at the higher level, the capsules turn out to be

rate-coded, –meaning as the viewpoint of the object changes, the same neurons rep-

resent the object with different pose parameters. Figure 2.4 depicts the equivariance

nature exhibited by capsule networks.

Matrix Capsules with EM Routing: The method proposed by Sabour et al. (Sabour

et al., 2017) was shallow and used huge transformation matrices, inducing a large num-

ber of trainable parameters and computation overhead. To curtail the size of the trans-

formation matrices, Hinton et al. (Hinton et al., 2018) introduced matrix capsules with

a novel routing technique that uses a genre of capsules having a logistic unit to repre-

sent the presence of an entity (unlike the vector length approach introduced in (Sabour

et al., 2017)) along with a 4 × 4 matrix for encoding the pose parameters. Further,
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the method introduced a novel expectation-maximization routing algorithm (EM) as a

substitute for the dynamic routing algorithm to leverage deeper and multiple capsule

layers. As attested by the capsule network theory, all the lower-level capsules in EM

routing vote for the pose parameters of all the secondary-level capsules by multiplying

their pose parameters with the transformation matrices to map the part-whole relation-

ships. The transformation matrices are learned with the help of the backpropagation

algorithm. The votes are assigned with weights called assignment coefficients and are

iteratively learned and updated for every image with the help of the EM routing. In

the next section, we will explain the generalized working of matrix capsules with EM

routing.

In a multi-layered capsule network, every capsule i of layer l possesses a 4×4 matrix

capsule or pose capsule M with an activation probability of a. Between every capsule i

of layer l and all the capsules j of layer l+ 1, there is a 4× 4 viewpoint transformation

matrix Wij . A capsule i of layer l will vote for the transformation matrix of capsule

j, by multiplying the pose matrix Mi with the viewpoint transformation matrix Wij as

shown in Eq 2.6 (Hinton et al., 2018).

Vij = MiWij (2.6)

The pose and the activation output of all the capsules j of layer l+1 are computed using

the EM procedure that takes Vij and activation ai for all the capsules. Capsule networks

with EM routing achieved the state-of-the-art result on the SmallNorb dataset (LeCun

et al., 2004), but their performance on complex datasets such as CIFAR 10 remained

below par with an error rate of 11.9%.

Stacked Capsule Autoencoders: In (Kosiorek et al., 2019), Kosiorek et al. intro-

duced an unsupervised approach named stacked capsule autoencoders (SCAE), which

explicitly uses geometric relationships among the parts to form the whole. SCAE pri-

marily consists of 2 phases. In the first phase, part capsule autoencoder or PCAE

will predict the presence and the pose parameters of different regions of the image and
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then try reconstructing the original image by organizing the relevant parts. In the sec-

ond phase, object capsule autoencoder or OCAE will predict the pose parameters of

the objects, which are then used to reconstruct the pose parameters. SCAEs are ro-

bust to viewpoint changes and achieve state-of-the-art results on SVHN (Netzer et al.,

2011), and MNIST datasets with an accuracy of 55.00% and 98.70%, respectively, for

unsupervised classification. SCAE is the only method in the literature that performs

better without depending on mutual information for unsupervised object classification,

emphasizing the encoding capability. The performance of SCAEs on CIFAR 10 was

below par, and one of the possible reasons could be limited templates that made the

model less expressive. Further, separating the foreground-background regions and de-

tecting the appropriate parts from the complex images involving cluttered backgrounds

remains unaddressed.

Extending CapsNet from image-level to pixel-level classification or segmentation

is difficult. It poses numerous challenges, such as the exponential growth of trainable

parameters due to larger image size, expensive computation, and extensive memory

overhead. From the existing literature, we examined a notable contribution by Lalonde

et al. (LaLonde et al., 2021) called SegCaps, where the authors introduced convolu-

tional and deconvolutional capsules and a modified dynamic routing algorithm called

locally constrained dynamic routing for performing image segmentation. Inspired by

the above work, Savinien et al. (Bonheur et al., 2019) introduced a new approach for

performing multi-class segmentation that encapsulates the pose and appearances into

a special type of capsule called MaTwo-CapsNet and routes the data with the help of

a novel dual routing algorithm. The Inception Capsule, introduced by Kromm et al.

(Kromm and Rohr, 2019) uses Inception Blocks for the task of segmentation. Inspired

by the above work, Savinien et al. (Bonheur et al., 2019) introduced a new approach

for performing multi-class segmentation that encapsulates the pose and appearances

into a special type of capsule called MaTwo-CapsNet and routing the data with the

help of a novel dual routing algorithm. The Inception Capsule, introduced by Kromm

et al. (Kromm and Rohr, 2019) uses Inception Blocks for the task of segmentation. A
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residual encoder-decoder-based CapsNet model called RedCap was introduced by Zeng

et al. (Zeng et al., 2020) for image reconstruction. Recently, CapsNets have also been

used for video segmentation tasks. A semi-supervised video object segmentation model

called Capsule VOS was introduced by Duarte et al. (Duarte et al., 2019), which is ca-

pable of dealing with small objects and occlusion by using a novel attention-based EM

routing technique. A 3D CapsNet model called Video CapsNet was also introduced by

Duarte et al. (Duarte et al., 2018), which can perform image segmentation and action

recognition.

To summarize, capsule networks have certain advantages that are hard to achieve

with the help of CNNs. A capsule can represent the presence and properties of the

features in the form of vectors (whereas it is a scalar in ANNs and CNNs) that have

more relevant information. The length of the vector corresponds to the degree of confi-

dence that the object is present, and the direction represents the instantiation parameters.

Capsule networks can maintain spatial relationships among the features throughout the

training process with layer-wise squashing, enabling them to perform well even with

relatively small samples. Capsule networks use a dynamic routing algorithm that routes

only the appropriate information through the hierarchy of layers instead of blindly per-

forming pooling operations. Furthermore, they make the model translationally equivari-

ant; as a result, the neuronal activity keeps changing as the object or region of interest

(ROI) moves over the manifold of possible appearances while keeping the detection

probability constant.

2.2 A Brief Introduction to Central Serous Chorioretinopa-

thy (CSCR)

Central Serous Chorioretinopathy (CSCR) is a pathological ailment that results in the

accumulation of fluid under the macula or the central retina of the patient’s eye (Fig-
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Figure 2.5: Graphical depiction of fluid accumulation under the retina. 2

ure 2.5)2. CSCR can cause sudden or gradual vision loss as the central retina detaches

(Bennett, 1955; Wang et al., 2008). The pathological alteration in the retina results in di-

minished vision, degraded color distinction, and localized distortion. The complications

of CSCR include permanent vision loss, recurrent vision loss, and subretinal neovascu-

larization causing significant morbidity (Rao et al., 2019). CSCR is ubiquitous in the

younger population and is the fourth most common retinopathy after age-related mac-

ular degeneration, diabetic retinopathy, and branch retinal vein occlusion (Wang et al.,

2008). Earlier, the invasive angiography technique was used to investigate this disease.

Presently, OCT imaging technique is widely used (Huang et al., 1991; Anoop et al.,

2019; Menon et al., 2020) to characterize the disease. Manually identifying and seg-

menting the subretinal fluid (SRF) region from the OCT images is time-consuming and

error-prone. Therefore, most clinicians rely on a qualitative assessment of the images.

Automating the SRF segmentation process has the potential to enable retina physicians

to measure the SRF volume, which would enable them to i) improve their decision

making with regard to the management of CSCR, ii) indicate the progress of disease

or response to therapy, and iii) reduce permanent morbidity by enabling timely and

appropriate intervention.

2http://www.scienceofamd.org/
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2.2.1 Literature Review of Segmenting sub-retinal fluid from CSCR

OCT Images

There has been prior research related to the detection and quantification of the SRF

region from CSCR OCT images. Many approaches have followed conventional image

processing and machine learning techniques for detecting the SRF regions and have

achieved reasonably good accuracy (Hassan et al., 2020). However, these methods

(Hassan et al., 2020, 2016; Syed et al., 2016; Khalid et al., 2017; Hassan and Hassan,

2019) did not account for quantifying the true extent of the cyst and also were evaluated

on the limited samples of data that often lack generalizability. Hassan et al. (Hassan

et al., 2016) adopted a structure tensor-based method that used a support vector machine

(SVM) classifier to extract five unique features based on the thickness profile of the reti-

nal layers and cyst profile. Syed et al. (Syed et al., 2016) proposed a similar approach

on 3D OCT images that extracts eight distinct features based on the cyst profile and

the thickness of retinal layers to automate the cyst detection. A fully automated multi-

layered SVM technique was introduced by Khalid et al. (Khalid et al., 2017), which

extracts nine unique features based on cyst profile, drusen, retinal thickness, and RPE

atrophic profile. Hassan et al. (Hassan and Hassan, 2019) introduced an SVM-based

classifier that used a 7D-feature vector based on the thickness profile of the retinal lay-

ers and retinal fluids to automate the diagnosis and to monitor the progression of the

cyst based on the clinical standards. A very few methods focused on segmenting the

SRF region from CSCR OCT images.

Traditional image processing and machine learning-based approaches for detecting

and segmenting CSCR from OCT images exhibit several shortcomings (De Fauw et al.,

2018; Girish et al., 2018a; Goodfellow et al., 2016), including i) a need for manual

intervention, ii) features that are handcrafted, iii) parameters that are arbitrary in nature,

iv) a need for large volumes of data that are often not available, and v) an inability to

generalize across different vendors of OCT machines. To mitigate these drawbacks,

deep learning algorithms (De Fauw et al., 2018) were adopted by the research com-
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munity that automates the feature extraction technique by outperforming the traditional

methods. Gao et al. (Gao et al., 2019) introduced an area-constrained, double-branched,

fully convolutional neural network (FCNN) called DA-FCN for segmenting subretinal

fluid from spectral-domain OCT images. The authors have used a total of 23 volumes

of OCT images and achieved a DSC of 95.30%. Teja et al. (Teja et al., 2019) intro-

duced an end-to-end mechanism that used a random forest classifier coupled with a

Deeplab architecture to quantify subretinal fluid and achieved a mean DSC of 91.51%.

However, the experiments were conducted and evaluated on severely limited samples

of data (a total of 768 B-scans with only 250 B-scans of CSCR cases). Rao et al.

(Rao et al., 2019) introduced an FCNN-based UNet architecture to segment SRF re-

gions from CSCR OCT images. The authors used 15 volumes of CSCR OCT images

and achieved a DSC of 91.00%. However, CNN-based fully supervised methods suffer

from limitations such as the requirement for a substantial amount of data and a large

number of trainable parameters.

2.3 Methods

This section details the preprocessing followed by the capsule network-based solution,

SegCaps, and the proposed DRIP-Caps for segmenting sub-retinal fluid from central

serous chorioretinopathy scans from OCT images. Figure 2.6 represents the workflow

of the proposed framework.

2.3.1 Pre-processing

OCT images are generally corrupted with speckle noise, making clinical diagnosis chal-

lenging. Speckle noise is formed due to the phenomenon of coherence that occurs dur-

ing the OCT image acquisition process (Ozcan et al., 2007; Anoop et al., 2021; Iwai and

Asakura, 1996; Schmitt et al., 1999; Anoop et al., 2019; Menon et al., 2020). Opting for

22



Figure 2.6: The workflow of the proposed framework for the segmentation of SRF
from CSCR OCT images.

an appropriate denoising method based on the noise characteristics of OCT images can

improve the quality of the OCT images. In the literature, we can observe an improved

performance of segmentation methods (for Intra-Retinal Cyst segmentation (IRC) and

retinal layer segmentation) on denoised OCT images (Girish et al., 2018a,b; Anoop

et al., 2020; Girish et al., 2019). However, as compared to IRC, the segmentation of

subretinal cysts (CSCR) are less challenging. Further, we have denoised our data with

the method proposed by (Anoop et al., 2021) and found that denoising does not have

much impact on CSCR segmentation. So, we did not use any denoising techniques

in our experiments. Instead, we ignored the background region (as these regions do

not play any significant role in the learning process) by selecting only the ROI into the

model. It is possible to achieve this task by performing cropping, but as the analysis

of volumetric quantification of retinal fluid requires a full-scale image, we retained the

full-scale image. To make the background a zero intensity region, the initial Internal

Limiting Membrane (ILM) to the final Retinal Pigment Epithelium (RPE) layers were

segmented by using the IOWA reference algorithm, (Li et al., 2005; Abràmoff et al.,

2010; Garvin et al., 2009) which is capable of sequentially segmenting 11 retinal layers.

The regions besides ILM and RPE were also neutralized.

2.3.2 SegCaps for Segmentation of CSCR from OCT Images

In this section, we discuss the segmentation of SRF regions from CSCR OCT images

using the SegCaps (LaLonde et al., 2021) architecture. This architecture is backed by
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locally constrained dynamic routing and back-propagation algorithms. The network

architecture is depicted in Figure 2.7. The model accepts preprocessed CSCR OCT im-

ages and produces prediction vectors, which are then thresholded to generate binary seg-

mentation maps corresponding to SRF regions. The model follows an encoder-decoder

style, with the model’s encoder unit comprising strided convolutions followed by three

stages of convolutional capsules (hereafter termed as ConvCaps), which are responsible

for extracting and encoding features in a vector form. The decoder unit of the model

comprises deconvolutional capsules (hereafter termed as DeConvCaps), which are re-

sponsible for upsampling the encoder’s latent feature map to the original resolution

image. The features extracted from the encoder ConvCaps are concatenated with the

corresponding decoder DeConvCaps using skip connections. The model is capable of

taking into account both local and global level features to perform finer segmentation.

Furthermore, to improve the performance, the model uses masked reconstruction as the

regularization technique. This enables the model to not only learn the positive classes

but also reconstruct the entire input distribution.

The input to the model is a preprocessed OCT images of dimension [512×256×1],

which is subjected to a 2D same-convolution with a kernel of dimension [5×5×1], and

16 such kernels are used to get a feature map of size [512×256×16], which is then

reshaped into [512×256×1×16] to form the first set of capsules with 16 dimensions

in a single grid, henceforth referred to as a capsule-type. In the next section, we will

deduce the working of locally constrained dynamic routing for SRF segmentation. At

any given layer l in depth di , ∃ set of capsule-types Tl = {tl1, tl2, ..., tln | n ∈ N}. For

every capsule-type tli in T ∃ convolutional child capsules (hl ×wl) of z dimensions. In

the first routing iteration, the convolutional child capsules of every capsule-type in layer

l will try to approximate the output of the parent capsules pxy ∈ P in (l + 1)th layer,

P = {p11, ..., p1wl+1 , ..., phl+11, ...phl+1wl+1}. Let ûxy|tli = {ûxy|tl1 , ûxy|tl2 , ..., ûxy|tln} be

the prediction vectors of convolutional capsules across the capsule-types. This is ob-

tained by performing the dot product between the child capsules activation vector uxy|tli
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Figure 2.7: SegCaps architecture for SRF segmentation.

and the transformation matrix Wtli|xy, which is given by Eq. 2.7 (LaLonde et al., 2021).

ûxy|tli
= Wtli|xy

× uxy|tli
(2.7)

The net input to each of the parent capsule pxy is computed by Eq. 2.8 (LaLonde et al.,

2021).

pxy = Σnrtli|xy × ûxy|tli
(2.8)

where rtli|xy is the coupling coefficient, which is the weighted sum over all the prediction

vectors of child capsules across the capsule-types to the parent capsules. The coupling

coefficient between the child capsules of the lth layer to the parent capsule pxy in the (l+

1)th layer is summed to 1 by routing softmax. Here, btli|xy are the log prior probabilities

that the prediction vectors ûxy|tli should be routed to the parent capsules pxy. The log

priors are initialized with equal probabilities; these are learned automatically, along

with other weights. The routing softmax is computed as Eq. 2.9 (Hinton et al., 2018).
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rtli|xy =
exp(btli|xy

)

Σkexp(btli|k
)

(2.9)

The output of the parent capsules are squashed without changing the direction to

map the vectors with the highest magnitude to one and the vectors with the least mag-

nitude to zero, as given in Eq. 2.10 (Hinton et al., 2018).

vxy =
||pxy||2

1 + ||pxy||2
pxy

||pxy||
(2.10)

In the second routing iteration, only those child capsules that can predict the parent

capsules’ activation vector are considered. This is learnt by the coupling coefficient

rtli|xy by using the locally constrained dynamic routing algorithm, which looks for close

agreement between the activity vector of child capsules ûj|i and the parent capsules pxy,

which is given by Eq. 2.11 (Hinton et al., 2018).

aij = pxy.ûj|i (2.11)

The coupling coefficient of those child capsules, which can accurately approximate the

output of parent capsules, are maximized and minimized for the rest of the capsules.

This method of routing the data through the hierarchy of layers is more elegant than

performing primitive pooling operations. The reconstruction module is placed at the

end of the decoder architecture. It is a 3-layer 1×1 convolutional neural network that

plays the role of a regularizer. Regularization is performed by masking the capsules

predicting the negative classes, which will reconstruct the original input image. The

encoder-decoder module uses a novel margin loss (Hinton et al., 2018), and the re-

construction module uses mean squared error (MSE) as the loss function. Due to the

expensive computation associated with capsules, optimizing the performance by reduc-

ing the number of trainable parameters with competitive performance is an active area

of research. In this regard, we introduce DRIP-Caps, an improvement over SegCaps,

which is explained in detail in the following section.
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2.3.3 DRIP-Caps for Segmentation of CSCR from OCT Images

We propose DRIP-Caps by introducing modifications to the deeper layers of the base-

line SegCaps (LaLonde et al., 2021) architecture. The architecture of the proposed

method is depicted in Figure 2.8. The proposed method reduces the number of trainable

parameters and overall computation complexity by performing accurate segmentation

without compromising performance. We achieve this by incorporating the following

techniques: Dilated convolutions (Yu and Koltun, 2015), Residual connections (Zeng

et al., 2020), Inception blocks (Kromm and Rohr, 2019), and Capsule Pooling (Xiong

et al., 2019) together into a single block, which will be referred to as a DRIP block

hereafter. The DRIP block is shown in Figure 2.9. After forming the first set of cap-

sules of dimension [512×256×1×16] (as explained in Section 2.3.2), we create three

more ConvCaps layers in succession to progressively downsample the input. The lay-

ers at depth-2 and depth-3 in the encoder and decoder arms comprise the novel DRIP

block. This is to mitigate the parameter explosion that was observed to occur in both

the SegCaps (LaLonde et al., 2021) and the UNet (Rao et al., 2019) models at these

depths. A DRIP block receives the previous layer’s output, and within the block, the

data is passed to an inception block. The motivation behind introducing an inception

block is that a network with inception layers is not restricted to just one receptive field;

instead, it can view the image through multiple receptive fields. With multiple recep-

tive fields, the network can detect highly local and global features and construct a richer

feature space compared to a non-inception network, thereby further improving the per-

formance of capsules (Kromm and Rohr, 2019). The inception block uses ConvCaps

layers internally, with a kernel of shapes [1×1], [3×3], and [3×3] with a dilation rate of

2, to increase the size of the receptive field while giving the benefit of fewer parameters.

We also propose a more general dilated locally constrained dynamic routing algorithm

(Algorithm 1) as opposed to the locally constrained dynamic algorithm (LaLonde et al.,

2021) to propagate the output of the capsules.

The inception block is followed by a Capsule Pooling (hereafter termed as Cap-
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Figure 2.8: DRIP-Caps with DRIP Blocks for SRF Segmentation.

sPool) operation (Xiong et al., 2019). Adhering to the fact that any object can be con-

structed by using only a small number of object parts, it can thus be represented by a

small number of capsule types. Therefore, it is unnecessary to route the output of all the

child capsules to a particular parent capsule in the subsequent layer. Alternatively, we

can select the child capsules to be sent to the next layer using the CapsPool operation.

This operation does not subsample within the same capsule type; instead, it subsam-

ples over the depth axis to preserve the representation of object parts. Subsampling is

performed by calculating the response for each capsule type. Capsule response Vtxy is

defined as the norm of its activation vector, and capsule-type response Vt is defined as

the maximum of all the responses within a capsule-type, as can be seen from Eq. 2.12

(Xiong et al., 2019) and Eq. 2.13 (Xiong et al., 2019). The indices of capsule-types

corresponding to the top-k capsule-type responses Vt are extracted as shown in Eq. 2.14

(Xiong et al., 2019).
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Figure 2.9: DRIP block.

Vtxy =

sX
c

(Ctxyc)2 (2.12)

Vt = maxx∈X,y∈Y(Vtxy) (2.13)

Index = get index(top k(Vt)) (2.14)

This helps in selecting the capsules that represent the object most accurately. The

capsule-types corresponding to these indices are passed on further. Here, the number

of capsules to be chosen is a hyperparameter (k), which we have chosen to be 4. Fi-

nally, a residual connection with a [1×1] ConvCaps layer is added to the output of the

CapsPool, which is passed on to the next layer. The residual connection provides an

alternate path for the gradients to flow in the network, further improving the model

performance (Zeng et al., 2020).

The 3 layers of DRIP blocks further downsample the input. The output is then

passed to an upsampling DRIP block, where the ConvCaps operations are replaced with

DeConvCaps operations having kernel sizes of [2×2], [4×4] and [6×6], respectively
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Table 2.1: The architecture details of the proposed DRIP-Caps method for SRF seg-
mentation from OCT images of CSCR (UDB:Upsampling DRIP Block,
DDB: Downsampling DRIP Block, CP: Capsule Pooling, RC: Residual
Connection).

Block Operation Type Kernel Dilation Routing Output
Size Rate Iterations Capsules

DDB

Inception

Conv Capsule 1× 1 1 3 3
Conv Capsule 3× 3 1 3 3
Conv Capsule 3× 3 2 3 3
Concatenation - - - 9

CP Capsule Pooling - - - 4

RC
Conv Capsule 1× 1 1 3 4

Addition - - - 4

UDB

Inception

DeConv Capsule 2× 2 - 3 3
DeConv Capsule 4× 4 - 3 3
DeConv Capsule 6× 6 - 3 3
Concatenation - - - 9

CP Capsule Pooling - - - 4

RC
DeConv Capsule 2× 2 - 3 4

Addition - - - 4

Algorithm 1 Dilated Locally Constrained Routing
1: Routing(ûxy|tli , r, l, kh, kw, dh, dw)
2: for all capsule-types tli within a kh x kw kernel centered at position (x, y) in layer

l with dilation of (dh, dw) and capsule xy centered at position (x, y) in layer (l+1)
do

3: btli ← 0
4: end for
5: for iteration = 1, 2, . . . , r do
6: for all capsule-types tli in layer l: ctli ← softmax(btli)
7: for all capsule xy in layer (l + 1): pxy ← Σnrtli|xyûxy|tli
8: for all capsule xy in layer (l + 1): vxy ← squash(pxy)
9: for all capsule-types tli in layer l and capsules xy in layer(l+1): btli|xy ← btli|xy+

uxy|tli .vxy

10: end for
11: return vxy =0
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in the inception block and a [2×2] DeConvCaps layer in the residual block. It is to

be noted that the upsampling DRIP block does not use dilation. The output is then

concatenated with that of the first DRIP block layer with a skip connection, as shown

in Figure 2.9. This is followed by another DRIP block.

The rest of the network follows the standard encoder-decoder architecture. The in-

put is further upsampled using DeConvCaps operations, and skip connections are used

to concatenate feature maps from the encoder arm to aid the model in constructing

the segmentation map. Finally, the model produces the segmented output and the re-

constructed output. The utilization of DRIP blocks in the deeper layers of SegCaps

provides various advantages over vanilla SegCaps (LaLonde et al., 2021), such as a

richer feature space, effective feature selection using CapsPool, a dramatic decrease in

the number of trainable parameters, and a faster convergence rate. To our knowledge,

this is the first CapsNet-based segmentation model to employ a combination of Dilated

ConvCaps, Residual Connections, Inception Blocks, and Capsule Pooling to perform

segmentation. Table 2.1 depicts the implementation details of the proposed method.

2.4 Results and Analysis

This section presents the hardware details, evaluation metrics adopted in the study, fol-

lowed by the discussion involving qualitative and quantitative analysis.

2.4.1 Hardware Details

The proposed method was implemented in Keras (Chollet et al., 2015) with Tensorflow

(Abadi et al., 2016) as the backend. All the experiments were evaluated and performed

on a 64-bit workstation with an Ubuntu 18.04 operating system, solid-state hard drive,

NVIDIA Quadro P5000 with 16 GB GPU memory, and Intel Xeon(R) Gold 5120 CPU

@2.20 GHz×28 processor.
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2.4.2 Evaluation Metrics

The results of all three methods adopted in the study were subjected to both quanti-

tative and qualitative analysis. Quantitative analysis was performed by measuring the

pixel-wise similarity between the ground truth and the prediction by considering Re-

call, Precision, and Dice coefficient as the metrics. Recall computes the ratio of True

Positive (TP) to the sum of TP and False Negative (FN), and precision computes the

ratio of TP to the sum of TP and False Positive (FP). The Dice coefficient (Dice, 1945)

computes the harmonic mean of precision and recall. To summarize, Recall, Precision,

and the Dice coefficients are computed as Eq. 2.15 and Eq. 2.16, respectively.

Precision =
TP

TP + FP
, Recall =

TP

TP + FN
(2.15)

Dice Coefficient = 2× Precision× Recall

Precision + Recall
(2.16)

2.4.3 Datasets

The performance of the proposed methods was evaluated on the CSCR data collected

from the Pink City Eye and Retina Center, Jaipur, India. The dataset consists of 25 pa-

tients’ volumetric data acquired using the Cirrus HD500 machine (Carl Zeiss Meditech,

California, USA). Each volume has 128 B-scans of dimension 512×256, both in the

vertical and horizontal direction, over 6×6 mm of the macula. The ground truth for

each B-scan was marked and verified by an expert retina surgeon having 15 years of

experience. The entire dataset was partitioned into a train, test, and validation set by

following the 60%-20%-20% rule. The final dataset consisted of 1792 frames (14 vol-

umes) for training, 640 frames (5 volumes) for validation, and 768 frames (6 volumes)

for testing. The entire dataset was normalized to zero mean and unit variance before

training and testing the model. The model was trained with 5-fold cross-validation to
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make the training process unbiased and get a good performance estimate.

2.4.4 Discussion

Figure 2.10 depicts the qualitative analysis of the proposed DRIP-Caps architecture with

UNet (Rao et al., 2019) and SegCaps (LaLonde et al., 2021) architectures, respectively.

The rows in Figure 2.10 show the frames from different volumes, and the columns corre-

spond to the input image, ground truth, and the segmented output of the three methods,

respectively. Table 2.2 depicts the quantitative analysis of the 5-fold cross-validation

of UNet (Rao et al., 2019), SegCaps (LaLonde et al., 2021), and DRIP-Caps architec-

tures, respectively. It is evident that the proposed model outperforms UNet (Rao et al.,

2019) and achieves competitive performance compared to SegCaps (LaLonde et al.,

2021). Further, to measure the performance of the proposed segmentation architectures

on different sample sizes of training data, we trained and compared the performances

of UNet (Rao et al., 2019), SegCaps (LaLonde et al., 2021), and DRIP-Caps on 1792,

640, and 384, samples respectively, by keeping the test data constant. Table 2.3 portrays

the quantitative analysis of the experiments. It clearly shows that the overall Dice coef-

ficient or the performance of the UNet-based model (Rao et al., 2019) tends to decrease

as the sample size decreases (92.81 to 90.54 to 88.55). The same pattern is observed

in the recall rate (92.26 to 88.49 to 85.88) with stabilized precision. This is mainly

because the method in (Rao et al., 2019) can locate the SRF region accurately but fails

to precisely segment the entire SRF region. In contrast, SegCaps (LaLonde et al., 2021)

and DRIP-Caps maintained the same performance even with limited samples. To sub-

stantiate this observation, we visualized the predictions on test data when we trained

with 640 and 384 samples, respectively. We found that the UNet (Rao et al., 2019)

fails to locate the SRF regions accurately, whereas, SegCaps (LaLonde et al., 2021) and

the proposed methods give accurate segmentation results. Figure 2.11 depicts the com-

parison of the UNet (Rao et al., 2019) and the DRIP-Caps model, when trained with

a small sample size. It can be observed from Figure 2.11 that the results of the DRIP-
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Table 2.2: Comparison of SegCaps and DRIP-Caps model with UNet (dice - Dice Co-
efficient, pre - Precision, rc - Recall).

Models UNet SegCaps DRIP-Caps

dice pre rc dice pre rc dice pre rc

Split1 92.75 92.44 93.48 97.35 98.80 95.17 96.58 98.75 94.50
Split2 91.23 92.71 90.01 91.24 89.90 92.37 90.61 90.95 90.28
Split3 93.72 93.60 93.86 93.83 92.06 95.66 94.97 93.11 94.90
Split4 92.66 93.97 91.39 94.50 92.90 94.12 93.67 93.49 93.85
Split5 93.50 94.51 92.59 94.30 93.95 94.66 94.68 94.56 94.81
Average 92.81 93.44 92.26 94.24 93.54 94.39 94.04 94.17 94.06
Parameters 1.9M 1.4M 870K

Table 2.3: Comparison of SegCaps, UNet, and DRIP-Caps model with variable num-
ber of samples (dice - Dice Coefficient, pre - Precision, rc - Recall).

Samples UNet SegCaps DRIP-Caps

dice pre rc dice pre rc dice pre rc

1792 92.81 93.44 92.26 94.24 93.54 94.39 94.04 94.17 94.06
640 90.54 92.75 88.49 92.32 95.30 89.91 92.19 92.97 91.73
384 88.55 92.73 85.88 92.88 92.89 93.03 91.87 91.87 92.06

Caps model are closer to the ground truth when compared with the results of a UNet

(Rao et al., 2019) based model. We further evaluated the performance of the proposed

model with an expert retina surgeon having 15 years of experience by following the

scoring technique. The segmentation results were scored on a scale from 1–5, where

1 and 5 represent the worst and best results, respectively. As depicted in Table 2.4 the

proposed DRIP-Caps outperformed UNet (Rao et al., 2019) and achieved comparable

results with SegCaps (LaLonde et al., 2021). Further, the proposed DRIP-Caps man-

aged to give competitive results as compared to SegCaps (LaLonde et al., 2021) with a

reduction of parameters of 37.85% as compared to baseline SegCaps (LaLonde et al.,

2021) and 54.21% as compared to UNet architecture (Rao et al., 2019).

Table 2.5 depicts the analysis of the computation complexity associated with UNet

(Rao et al., 2019), SegCaps (LaLonde et al., 2021) and DRIP-Caps architectures re-
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Figure 2.10: Performance comparisons of Capsule Network based architectures
namely SegCaps and DRIP-Caps with UNet architecture.

Table 2.4: Expert evaluation and scoring on the segmentation of OCT images of
CSCR.

Model Score[1-5]

UNet 3.5
SegCaps 4.5
DRIP-Caps 4.5

spectively. Despite having fewer parameters, the CapsNet-based models generally take

more time to train than UNet-based (Rao et al., 2019) models as they leverage both the

backpropagation and dynamic routing algorithms. In contrast, the latter involves only

the backpropagation algorithm. Although UNet (Rao et al., 2019) takes less time per

epoch than DRIP Caps and SegCaps (LaLonde et al., 2021), the overall performance

of UNet (Rao et al., 2019) is subpar as compared to SegCaps (LaLonde et al., 2021)

and DRIP-Caps. Also, the performance of UNet (Rao et al., 2019) deteriorated as the

number of training samples decreased. The proposed model takes slightly more time
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Figure 2.11: Performance comparison of DRIP-Caps with UNet-based model when
trained with small sample size.

per epoch than SegCaps (LaLonde et al., 2021) with a comparable test time (3.65 ms

and 3.88 ms for SegCaps (LaLonde et al., 2021) and DRIP-Caps respectively). How-

ever, it’s apparent from Table 2.5 that the network architecture of DRIP-Caps that in-

curred fewer parameters showed a faster convergence rate (converged in approximately

350-450 epochs) than SegCaps (LaLonde et al., 2021) that took more epochs for the

convergence (550-650 epochs) and also reduced the size of the .h5 (smaller the size,

the easier the hardware deployment of the model) file in comparison with SegCaps

(LaLonde et al., 2021) and UNet (Rao et al., 2019) for segmenting SRF from CSCR

OCT images. Thus, the reduced computational complexity of the proposed model, as

evidenced by the reduced trainable parameter count and convergence time, and the com-

petitive performance compared to SegCaps (LaLonde et al., 2021) make it ideal for the

segmentation of subretinal fluid from CSCR.

Training Methodology: The weights of all three models were initialized with the He

initializer (He et al., 2015). SegCaps (LaLonde et al., 2021) and DRIP-Caps make use

of margin loss (Hinton et al., 2018) Lk as the loss function between the child capsules to

all the higher-level capsules k, to maximize the prediction probability of the true classes

by reducing the prediction probabilities for other classes. Here, Tk = 1 if a higher-level

capsule is predicted accurately or null values otherwise. We used 0.9 for m+ and 0.1

for m− as the upper and lower limits for the correct and incorrect classes. λ is set to 0.5

to regulate gradient flow during the training process, as shown in Eq. 2.17. The cost is
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Figure 2.12: The learning curve (Loss vs Epoch) for UNet (A), SegCaps (B), and
Drip-Caps (C) respectively.

Table 2.5: Time complexity analysis of UNet, SegCaps and DRIP-Caps methods.
Methods Param Time/Epoch Epochs Train Time Test Time Size

UNet 1.9 M 30 s 150-200 1.25 hr 3.15 ms 31 MB
SegCaps 1.4 M 307 s 550-650 46.90 hr 3.65 ms 17 MB
DRIP-Caps 870 K 345 s 350-450 33.54 hr 3.88 ms 10 MB

the sum of all the losses of higher-level capsules. The reconstruction module uses MSE

(Eq. 2.18), where xi is the output of the final decoder capsules, and yi is the ground

truth. UNet (Rao et al., 2019) makes use of the binary cross entropy (BCE) (Shore

and Johnson, 1980) loss function as defined in Eq. 2.19; where n represents the total

number of pixels in the input OCT image, xi represents an actual pixel and yi represents

a predicted pixel.

Lk = Tk max(0,m+ − ||Vk||)2 + λ(1− Tk)max(0, ||Vk|| −m−)2 (2.17)

MSE = (
1

n
)

nX
i=1

(yi − xi)
2 (2.18)

BCE =
nX

i=1

(xilog(yi) + (1− xi)log(1− yi)) (2.19)

We have used a batch size of 1 for SegCaps (LaLonde et al., 2021) and DRIP-Caps,

and a batch size of 32 for UNet (Rao et al., 2019). The number of routing iterations was

set to 1 at depth-1 of the encoder arm and 3 for the rest of the model for both SegCaps

(LaLonde et al., 2021) and DRIP-Caps. The learning rate for all models was set to
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0.001, and the Adam optimizer (Kingma and Ba, 2014) was used. All the models were

trained from scratch till convergence with a patience parameter of 100 by monitoring the

validation loss. Figure 2.12 depicts the learning curve (Loss vs Epoch) for UNet (Rao

et al., 2019) (A), SegCaps (LaLonde et al., 2021) (B), and Drip-Caps (C), respectively.

2.5 Summary

In this work, we adopted an existing capsule network-based fully automatic method

(named SegCaps) to segment the SRF region from CSCR OCT images. We further

proposed an improvement to SegCaps (named DRIP-Caps) that makes it lightweight

and reduces computational overhead. The customized encoder-decoder based capsule

network model accepts the preprocessed OCT images and was trained from scratch to

achieve the defined objective. We discussed in detail the drawbacks of convolutional

neural networks and how they were addressed by capsule networks. We demonstrated

this by comparing the performance of the SegCaps architecture with the UNet archi-

tecture for segmenting the SRF region from CSCR OCT images. However, capsule

networks pose many challenges in segmentation tasks, such as exponential parameter

growth and significant computational overhead. To constrain the growth of trainable

parameters and thus reduce the computational complexity, we used the DRIP block in

the deeper layers of SegCaps. Within the DRIP block, the Residual Connections facili-

tated better gradient flow, while the Inception block gave a broader view of the features.

Combining them with Capsule Pooling allowed only the necessary information to be

propagated to the subsequent layers. The qualitative and quantitative results demon-

strate the ability of the model to accurately segment the SRF region from CSCR OCT

images and thus help ophthalmologists better diagnose patients. Further, we observed

that the proposed model could perform accurate segmentation even with a limited num-

ber of available samples, which can be considered an improvement over the existing

state-of-the-art approaches. Future work can be focused on further improving the rout-
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ing algorithm that establishes a better relationship between the child and parent capsules

and utilizing domain knowledge of the problem to build a robust segmentation pipeline.
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CHAPTER 3

SEMI-SUPERVISED STRUCTURE ATTENTIVE

TEMPORAL MIXUP COHERENCE FOR MEDICAL

IMAGE SEGMENTATION

3.1 Overview of Semi-Supervised Learning

In recent years, convolutional neural network (CNN)-based approaches have emerged

as the most successful methods for medical image segmentation. However, these meth-

ods are data-intensive and hence require a large number of labelled samples in order

to develop reliable estimates. Furthermore, acquiring massive amounts of labelled data

is a time-consuming and labor-intensive task. Semi-supervised learning is the most

practical and ideal procedure for reducing monotonous labelling process by efficiently

combining unlabeled data with a small amount of labelled data to improve performance

over the supervised baseline. Figure 3.1 demonstrates the difference in learning proce-

dures of fully-supervised and semi-supervised learning-based methods. Furthermore,

as unlabeled data can be acquired with trivial human effort in the medical field, any

gain in performance by incorporating them using SSL techniques comes at a relatively

low cost. The SSL methods can be broadly classified into three types: i) self-training,

ii) adversarial procedure, and iii) consistency regularization techniques based on the

problem-solving approach. Consistency regularization can be further classified into

data, network, and task-level consistency. The following section highlights some popu-

lar methods under the above disciplines.

3The work described in this chapter has been published in: S. J. Pawan, G. Jeevan, and J. Rajan
(2022). Semi-supervised temporal mixup coherence for medical image segmentation. Biocybernetics
and Biomedical Engineering. 42(4), 1149-1161.



Figure 3.1: The difference between the learning paradigms of fully-supervised and
semi-supervised learning methods.

Self-Training: Self-training, often known as pseudo-labeling, is a facile approach to

attaining the objective of SSL. It involves using a small set of labeled data to make ap-

propriate pseudo-labels for the unlabeled data and gradually growing the labeled train-

ing set, which improves the segmentation performance as a whole (Lee et al., 2013;

Rasmus et al., 2015). Zhu et al. (Zhu et al., 2021) presented a self-training strategy

based on the centroid sampling technique (CSST) to choose the unlabeled sample in

each epoch meticulously. Furthermore, the method introduced a fast-training schedule

strategy to speed up the training time by reducing the image resolution without compro-

mising the performance. In (Li et al., 2020a), Li et al. proposed a general approach for

designing an effective self-training framework based on a multi-stage and pre-training

strategy that can be integrated into any segmentation architecture by carefully incor-

porating the unlabeled data. Inspired by the uncertainty estimation technique, Li et al.

Li et al. (2020c) presented a self-training approach to facilitate systematic training and

optimization of the segmentation network.

In an interesting work, Chaitanya et al. (Chaitanya et al., 2021) embedded the con-

cept of contrastive learning into self-training to encode pixel-level information from

labeled data and further extend it to unlabeled data with the appropriate pseudo la-

bels. Zhang et al. (Zhang et al., 2022) presented an SSL framework based on cluster

assumption and a consistency regularization strategy for generating the hard labels.

Furthermore, it incorporates active learning for less-confident samples using adversar-
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ial perturbation and the model’s density-aware entropy. In (Wu et al., 2022), Wu et al.

proposed a pseudo-label strategy based on an unsupervised k-means approach followed

by a mixup operation for generating new training samples on HE-stained meningioma

pathological images. However, self-training involves expensive training procedures and

may cause significant memory and hardware overhead. However, the iterative nature of

self-training strategies may result in a longer training duration. Additionally, the quality

and complexity of labeled data provided during the initial training phase may signifi-

cantly influence the learning process.

Adversarial Training Procedures: Adversarial training procedures enable a con-

ducive environment for the concurrent training of two contending networks to extract

meaningful information from limited labeled and extensive unlabeled data to attain the

objective of SSL. In (Souly et al., 2017), Soul et al. followed a generative adversarial

training approach to generate additional training samples by employing a generator net-

work and a discriminator/classifier network to map the generated image to an appropri-

ate class or fake class. Accurately classified samples will help enhance the segmentation

performance, whereas fake samples will help establish a strong cluster of real and fake

samples in the feature space. Ma et al. (Ma et al., 2021) proposed a similar approach

by employing an attention-guided generator and the segmentation generator for retinal

vessel segmentation. Zhang et al. (Zhang et al., 2017) introduced a unique adversarial

training framework involving a generator and a discriminator. The generator network

aims to generate segmentation labels for labeled and unlabeled samples. On the other

hand, the goal of the discriminator network is to tell whether the segmentation labels

came from labeled or unlabeled samples. This way, the adversarial loss can be used to

encourage the generator to improve its predictions for unlabeled samples. Hung et al.

(Hung et al., 2018) introduced a similar approach by replacing a fully-connected clas-

sifier with a fully convolutional classifier tailored to the challenging segmentation task,

resulting in improved performance. Inspired by Zhang et al. and Hung et al. (Zhang

et al., 2017; Hung et al., 2018) Han et al. (Han et al., 2020) adopted a similar approach

by employing a multi-scale feature extraction module to improve the segmentation ac-
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curacy in the generator network and an attention block in the discriminator network

to facilitate intensity and geometric information for segmenting anomalies from breast

ultrasound images. However, the adversarial training procedure is highly susceptible to

erroneous pseudo-labels and may often lead to learning data points without favoring the

segmentation task.

Consistency Regularization: Consistency regularization utilizes unlabeled data to

formulate a hypothesis favoring consistent predictions on the same data under diverse

perturbations (data consistency) such as dropout, augmentations, noise, etc. Simi-

larly, the consistency between the two tasks is estimated at the task level. The follow-

ing section briefly reviews prominent methods proposed under data and network-level

consistency-based methods.

Network-level consistency regularization: Li et al. (Li et al., 2020b) introduced

a dual-task semi-supervised pipeline that predicts both segmentation maps and signed

distance maps (SDMs); SDMs are intended for incorporating geometric constraints.

Furthermore, it comprises an adversarial component between SDMs of labeled and un-

labeled samples to improve the prediction accuracy of unlabeled data. Following Li

et al. (Li et al., 2020b), Luo (Luo et al., 2020) developed a dual-task technique that

predicts a level-set function to encode the geometry information with the segmentation

maps. Notably, this method adds a transform function that inter-converts the outputs

of each task into another (level-set to segmentation maps and vice versa) by estab-

lishing task-level regularization. In (Liu et al., 2022), Liu et al. introduced a shape

and boundary-aware SSL framework by employing SDM and a pixel-wise segmenta-

tion map (PSM). Furthermore, it extracts multi-scale features from the pyramid pooling

module (PPM) and passes them onto the feature fusion module (FFM) for high-level

segmentation results. Chen et al.(Chen et al., 2021) devised Cross-Pseudo-Supervision

(CPS) by enforcing network-level consistency to achieve the objective of SSL. In CPS,

two networks are perturbed or initialized with different techniques; the segmentation

maps of one network are used to guide the other network by establishing network-level
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consistency. CPS achieved superior performance on numerous benchmark datasets.

Following CPS (Chen et al., 2021), Filipiak (Filipiak et al., 2021) investigated the ef-

ficacy of CPS with n networks (n-CPS) to learn from one another. In addition, n-CPS

applies an ensembling technique to improve performance. In (Luo et al., 2021a), Luo

introduced cross-teaching, a variant of CPS, by employing two networks with distinct

learning paradigms. Cross-teaching uses 3D-UNet/CNN and Swin-UNet/Transformers

(Cao et al., 2021) and guides each other with the segmentation maps.

Data-level consistency regularization: Inspired by the mean-teacher (MT) paradigm

(Tarvainen and Valpola, 2017), Yu et al. (Yu et al., 2019) presented an uncertainty-

aware mean-teacher (UA-MT) framework with a self-ensembling strategy based on the

Monte-Carlo dropout to estimate the uncertainty. Ouali et al. (Ouali et al., 2020) in-

troduced Cross-Consistency Training (CCT). CCT employs a standard supervised ap-

proach involving an encoder and the main decoder to train the labeled data. Further-

more, it uses additional decoders to leverage the unlabeled data, taking perturbed inputs

and establishing consistency with the output of the main decoder and additional de-

coders. Wang et al. (Wang et al., 2020c) followed a similar approach by employing

a dual uncertainty weighted technique. This method uses Bayesian deep learning to

estimate the feature and segmentation uncertainty to improve the segmentation perfor-

mance. Hang et al. (Hang et al., 2020) proposed a procedure for integrating entropy

minimization into the student network to encourage higher confidence segmentation

predictions on unlabeled data. It also includes local and global consistency losses to

consider local and global affinities to improve the segmentation performance. In an

interesting work, Shu et al. (Shu et al., 2022) presented a novel technique to address

some inherent limitations of the student-teacher framework, such as a lazy student, by

introducing a cross-mix teaching paradigm. Cross-mix facilitates a practical approach

by facilitating additional data flexibility in addition to the transductive monitor for an-

choring between the teacher and student model for active knowledge distillation. How-

ever, coming up with the optimal variation for perturbing the data is challenging. A

low-level perturbation may often result in a poor student model, affecting the overall
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performance. On the other hand, the high-level perturbation results in a performance

void between the student and teacher models, impeding the efficient usage of the mean-

teacher paradigm. Also, in the case of network perturbations, if both the methods fail

to compensate or benefit each other, there is a meager chance of performance gain.

3.2 Methods

This section provides a detailed insight into the working of the overall architecture and

the motivation behind the various building blocks constituting the proposed architec-

tural design.

3.2.1 Motivation

Data-based consistency regularization methods are widely used for enforcing consis-

tency in semi-supervised learning. These methods vary in terms of the perturbations

that are added to the input. Most methods introduce random perturbations to the in-

put and enforce consistency between the prediction and its perturbed variant. How-

ever, random perturbations may lead to 1) lazy-student phenomena and 2) decreasing

the performance gap between the student-teacher models, depleting the overall perfor-

mance (Verma et al., 2022). Methods such as Virtual Adversarial Training (Miyato

et al., 2018) attempt to address this issue by explicitly searching for perturbations that

can alter the model’s prediction, forcing it to learn optimal decision boundaries. Such

methods involve calculating the gradient of the predictor with respect to its input and

may cause expensive computation in deep networks such as U-Net (Ronneberger et al.,

2015) and V-Net (Milletari et al., 2016) used for medical image segmentation. Our

approach is motivated by (Verma et al., 2022), which overcomes the aforementioned

restrictions with an interpolation-driven consistency regularization technique. We pro-

pose a semi-supervised consistency constraint that enforces coherence between the pre-
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dictions of a student model for unlabeled images and the predictions of the teacher

model for images generated by a mixup of unlabeled images. The mixup coherence

imposes regularization such that the model refrains from being biased towards specific

samples, forcing it to generate the prediction of a sample even in its mixup form. The

images generated by the mixup operation effectively push the decision boundary to low-

density regions (Isaksson et al., 2022; Chen et al., 2020), enabling the model to learn

more robust decision boundaries for pixel-level prediction. Furthermore, we adopt an

additional prediction head to the segmentation network designed to estimate the Signed

Distance Map (SDM) of the target. We observe that this auxiliary task greatly aids the

model in learning from the distinctive structural information of the target, resulting in

more robust segmentation predictions. Consequently, the pseudo targets generated by

the teacher model for unlabeled images are improved, thereby significantly contributing

to improving the unsupervised training of the student model. Furthermore, we explore

the efficacy of the proposed model by incorporating various modifications to the overall

cost functions tailored to the challenging task of medical image segmentation.

3.2.2 Multi-Head Architecture

The proposed method uses a multi-headed architecture, where a common encoder-

decoder backbone is incorporated with two prediction heads, each responsible for a

different prediction task. The parallel tasks facilitate robust representation learning by

prioritizing features that are relevant to both tasks, thus reducing the risk of overfitting.

Figure 3.2 provides details of the proposed multi-head architecture with predictions f1

and f2. The auxiliary task f2(x) predicts the SDM corresponding to the pixel x of the

input image, while the primary task f1(x) is responsible for the segmentation output.

Segmentation Map Prediction: The primary objective of the network is to generate

pixel-wise predictions corresponding to the region of interest (ROI) for a given input

sample. The first prediction head f θ
1 is trained on labeled data through a DSC-based

loss function. The supervised dice loss Eq. 3.1 is essential in promoting stability in the

47



Figure 3.2: Primary and auxiliary tasks of multi-head architecture for the calculation
of SDM and segmentation losses.

training process, especially in the early stages.

LDSC = 1− 2
P
|y ∩ fθ1(x)|P

|y|+
P
|fθ1(x)|

(3.1)

Signed Distance Map Prediction: Geirhos et al. (Geirhos et al., 2019) demonstrated

that convolutional neural networks are inherently biased towards texture information

over the structure of an object. This might potentially limit the performance of medical

image segmentation tasks. Previous works (Li et al., 2020b) have shown that learning

the distinctive structure information of segmentation targets can improve the perfor-

mance of segmentation networks. This is facilitated by incorporating an auxiliary task

that regresses over-signed distance maps of the segmentation ground truth. Ma et al.

(Ma et al., 2020) provided empirical proof for the efficacy of Signed Distance Map-

based losses in boosting the performance of CNNs for segmentation tasks by enforcing

anatomical and geometrical constraints to the segmentation network. Following (Ma

et al., 2020), we use a transformation function T (Eq. 3.2) to compute the ground truth

SDM values corresponding to the labeled samples.
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Figure 3.3: Analysis of mixup coherence using unlabeled data for semi-supervised
semantic segmentation.

T(i) =


− infj∈∂y ∥i− j∥2, i ∈ yin

0, i ∈ ∂y

infj∈∂y ∥i− j∥2, i ∈ yout

(3.2)

In Eq. 3.2, yin, yout and ∂y denote the inside, outside, and boundary of the target

in the segmentation mask. A loss function, LSDM is introduced to enforce consistency

between the ground truth distance maps computed from the ground truth segmentation

mask y and the predicted distance map f2(x) as given by Eq. 3.3, where x and y are

images and labels in a batch of labeled samples bl.

LSDM =
1

|bl|
X

(T(y)− fθ2(x))
2 (3.3)

Although previous works have used similar SDM regressions as an auxiliary task for

semi-supervised segmentation (Luo et al., 2020; Li et al., 2020b), they either restrict to

a single target class (binary) or use a global distance map that combines all non-zero

targets. In the proposed method, we incorporate a multi-class signed distance map

regressing over the SDMs of each target class independently, aiding the multi-class

segmentation problem. As SDM is transformation invariant, the distance maps for all
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inputs can be pre-computed from their segmentation labels before the training phase.

Further, we are using a multi-head model that shares the encoder-decoder parameters,

effectively bringing down the computational and memory overhead of incorporating

LSDM to a minimum.

3.2.3 Temporal Mixup Coherence

Temporal consistency refers to the consistency in predictions over successive iterations.

Previous works such as Mean-Teacher (Tarvainen and Valpola, 2017), and Temporal

Ensembling (Laine and Aila, 2017) have demonstrated the efficacy of employing tem-

poral consistency in semi-supervised learning. The proposed method uses two identical

segmentation networks, a student and a teacher. The student network is trained through

back-propagation over the supervised and unsupervised losses, whereas the teacher net-

work is a non-trainable network whose parameters are computed as the moving average

of the student model’s parameters. By enforcing a consistency constraint between the

predictions of the student and the teacher networks, we create a pseudo-supervision for

training the student network by the teacher network, encouraging the student network

to produce predictions that are coherent with its past predictions. Notably, this consis-

tency loss does not require segmentation labels and hence can be applied over unlabeled

samples. For the multi-task network, the temporal consistency loss is defined over the

outputs of both tasks.

A mixup operator is defined as in Eq. 3.4 (Zhang et al., 2018), where uj , uk are two

unlabeled image samples and λ ∈ [0, 1]. Following (Zhang et al., 2018), the value of

λ is randomly sampled from a β distribution parameterized by the hyper-parameter α.

We set α to 0.2 based on the results from experimental studies performed in sub-section

3.3.4. The mixup operator is used to generate new samples from unlabeled samples

and fed to the student network to produce segmentation predictions for the generated

samples. Figure 3.3 represents the mechanism of mixup coherence using unlabeled

data in semantic segmentation, where fθ(x) is the segmentation output of the trainable
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Figure 3.4: Analysis of mixup coherence using unlabeled data for semi-supervised
semantic segmentation.

student model, fθ′ (x) is the segmentation output of the mean-teacher model.

Mixλ(uj, uk) = λ · uj + (1− λ) · uk (3.4)

Without loss of generality, we assume that every training batch contains two unlabeled

samples. The two samples x1, x2 are subjected to the mixup operation (Eq. 3.4) to

create an input um for the fθ segmentation network. Subsequently, the original samples

x1, uk are also fed directly to the moving average network fθ′ to obtain segmentation

predictions y1 and y2. These predictions are subjected to the same mixup operator and

λ as used with the unlabeled samples. The resulting mixup prediction, ym is compared

against the segmentation prediction fθ(um) for mixed samples. Intuitively, these two

predictions represent the same information and hence should be similar, as expressed

by Eq. 3.5 (Verma et al., 2022):

fθ (Mixλ (x1, x2)) ≈ Mixλ (fθ′ (x1) , fθ′ (x2)) (3.5)

This intuition provides us the scope for designing an unsupervised loss leveraged the
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Algorithm 2 Semi-supervised Mixup-Coherence Procedure for Image Segmentation.
Require:
1. DL(x, y): Collection of images and their segmentation masks (labeled samples).
2. DUL(x): Collection of images (unlabeled samples).
3. α: Rate of moving average.
4. ω(t): Iteration dependent ramp-up function.
5. Q: Random Distribution on [0,1].
6.Mixλ(a, b) = λa+ (1− λ)b.
7.f θ

1 (x), f θ
2 (x): Segmentation and SDF task branches of model with shared trainable

parameter θ and task specific trainable parameters θ1 and θ2.
8. f θ

′

1 (x), f θ
′

2 (x): Segmentation and SDF task branches of Mean Teacher(MT) model
with non-trainable shared parameter θ′ and non-trainable task specific parameters θ′

1

and θ
′
2. Parameters θ′ , θ′

1, θ′
2 are computed as the moving averages of θ, θ1, θ2 respec-

tively.
D[yi] = GSDF (yi) ∀ (xi, yi) ∈ DL(x, y) Pre-Compute SDF for all the segmentation
masks.

for t = 1, . . . , T do
Sample {(xi, yi)}bli=1 ∼ DL(x, y)
Sample {uj}uj=1, {uk}uk=1 ∼ DUL(x)
Sample λ ∼ Q

LDice(x,y) = 1 - 1
[bl]

P
xi,yi∈bl

2
P

fθ
1 (xi)yiP

fθ
1 (xi)+

P
yi

LSDF (x,z) = 1
[bl]

P
xi,zi∈bl || f

θ
2xi − D[yi] ||2

ûm = Mixλ(uj, uk)

{yi}uj=1 = {f θ
′

1 (uk)}uj=1, {yk}uk=1 = {f θ
′

1 (uk)}uk=1

ŷm = Mixλ(yj, yk)
LC = Consistency Loss ({f θ(um), ŷm}um=1)
LTotal = 0.5× LDice + 0.5× LSDF + ω(t)× LC

gθ ← ▽θ LTotal

θ‘ = aθ‘ + (1− α)θ
θ ← Step(θ, gθ)

end for=0
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unlabeled data samples. We explore alternatives in the design of this consistency con-

straint in sub-section 3.3.4 and empirically observe that a DSC-based pseudo-supervision

is able to produce superior performance by overcoming the class-imbalance issues in-

herent to segmentation tasks. We design the unsupervised consistency loss LC as de-

fined in Eq. 3.6.

LC = 1−DSC(fθ (Mixλ (x1, x2)) ,Mixλ (fθ′ (x1) , fθ′ (x2))) (3.6)

We combine the ideas introduced in the preceding sections to propose an overall semi-

supervised training pipeline as detailed in Figure 3.4. The parameters of the segmenta-

tion network fθ are updated using the overall loss Loverall which combines the super-

vised and an unsupervised loss components as defined in Eq. 3.7 and Eq. 3.8. Following

Li et al. (Li et al., 2020b), the weight coefficient β in Eq. 3.7 is set to 0.3. This choice

of β is also justified by the result from ablation experiments performed in sub-section

3.3.5.

Lsup = LDSC + β · LSDM (3.7)

Lunsup = LC (3.8)

Following (Tarvainen and Valpola, 2017; Luo et al., 2020), we use an iteration-

dependent ramp-up function to control the balance between the supervised loss and the

unsupervised consistency loss, designed to increase the priority of the unsupervised

consistency regularization as the training progresses. The overall semi-supervised loss

guiding the training phase is then defined as in Eq. 3.9.

Loverall = Lsup + ω(t) · Lunsup (3.9)

The next section outlines experiments that detail design alternatives considered and

provide empirical proof for choices that constitute the proposed method. Algorithm 2

depicts pseudo-code of the overall architecture.
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3.3 Results and Analysis

This section presents the hardware details, evaluation metrics, ablation study, and dis-

cussion involving qualitative and quantitative analysis.

3.3.1 Hardware Details

The proposed method is implemented by extending an open-sourced framework for

semi-supervised medical image segmentation (Luo, 2020). All the models were trained

from scratch on a workstation equipped with Intel(R) Xeon(R) CPU E5-2698 v4 @

2.20 GHz and NVIDIA-Tesla V100 GPU. The poly learning rate strategy is adopted

to adjust the learning rate, where the initial learning rate and power are set to 0.01

and 0.9, respectively, and the learning rate is updated in regular intervals by following

1− iter
maxiter

power .

3.3.2 Evaluation Metrics

We use the Dice Similarity Coefficient (DSC) (Dice, 1945), Jaccard Similarity Coeffi-

cient (JSC), Average Surface Distance (ASD), and 95% Hausdorff Distance (95HD) for

quantitative evaluation. DSC and JSC are the widely used statistical metrics in segmen-

tation tasks to measure the similarity between prediction and the ground truth. ASD

computes (in mm) the average distance between the surface of the ground truth and the

prediction, and 95%HD measures (in mm) the maximum distance of the prediction to

the nearest point on the ground truth. For evaluations on ACDC, which is a multi-class

segmentation dataset, the reported result is the mean of the metrics that were calculated

for each target class.
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3.3.3 Datasets

We assess the performance of the proposed model on two popular publicly available

datasets, namely the Left Atrial (LA) Segmentation Challenge dataset, and the Auto-

matic Cardiac Diagnosis Challenge (ACDC) dataset.

Left Atrial (LA) Segmentation Challenge Dataset (Tobon-Gomez et al., 2015): The

dataset aims at segmenting the LA cavity to aid the diagnosis of atrial fibrillation. The

dataset contains 100 patients’ 3D Gadolinium-Enhanced Magnetic Resonance Images

(GE-MRI) at a resolution of 0.625 × 0.625 × 0.625 mm3 along with the segmentation

mask. In our experiments, we adopt the preprocessing steps used by Yu et al. (Yu

et al., 2019) and split the data into 80 patient cases for training and the remaining 20

for evaluating the performance of the model.

Automatic Cardiac Diagnosis Challenge Dataset (ACDC) (Bernard et al., 2018):

The Automatic Cardiac Diagnosis Challenge deals with the assessment of segmentation

in cardiac MRI. The dataset consists of 100 patients’ annotated segmentation masks

depicting the left ventricle (LV), the myocardium (Myo), and the right ventricle (RV).

We randomly chose 70, 10, and 20 patients for training, validation, and testing. Due to

the sizeable inter-slice spacing in ACDC, we followed the method proposed in Bai et

al. (Bai et al., 2017) to generate segmentation predictions for two-dimensional slices

rather than 3D volumes.

3.3.4 Ablation Study

We elaborate on the various ablation studies, such as investigations with various consis-

tency losses and shape-aware functions, followed by hyperparameter tuning, that were

conducted in designing the proposed architecture. Since our work is focused on pro-

ducing meaningful improvements in segmentation performance for the extremely low

labeled data situations, we conduct these ablation experiments with a proportion of 5%

labeled samples from the LA dataset.
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Table 3.1: Segmentation performance on the LA dataset when trained with different
Shape-Aware loss functions on 5% labeled data.

Shape-Aware Loss DSC↑ JSC↑ 95HD↓ ASD↓
None 82.47±0.34 70.66±0.46 12.78±0.13 2.82±0.09

Boundary Loss 84.63±0.17 73.88±0.19 14.11±0.44 3.75±0.13
Hausdorff Loss 84.18±0.24 73.07±0.36 14.98±0.96 3.79±0.28

SDM Loss 85.2±0.63 74.56±0.9 11.48±0.49 2.6±0.16

Table 3.2: Segmentation performance on the LA dataset when trained with different
consistency constraints for mixup coherence on 5% labeled data.

Consistency Constraint DSC↑ JSC↑ 95HD↓ ASD↓
L1 84.19±0.73 73.10±0.98 12.87±0.44 2.89±0.28
L2 82.96±0.62 71.52±0.89 14.23±0.64 3.51±0.34

DSC 85.2±0.63 74.56±0.9 11.48±0.49 2.6±0.16

We utilize the Left Atrial dataset to analyze the performance at multiple proportions

of labeled data subjected to the following modifications: The first experiment utilizes

the basic mixup coherence strategy with the sole segmentation prediction head. Subse-

quently, we introduce an additional prediction head to the network, which is designed

to estimate the signed distance map of the target as its output. This output is used to

design losses such as Signed Distance Map loss (Navarro et al., 2019), Boundary Loss

(Kervadec et al., 2019), and Hausdorff distance (Karimi and Salcudean, 2020) losses.

The segmentation performance of the model when trained with each of these losses is

tabulated in Table 3.1. We can observe the substantial performance improvement by

incorporating the shape-aware auxiliary losses, as they encourage the model to learn

from the distinctive structure information of the segmentation targets, thereby improv-

ing the robustness of the predictions. This, in turn, has a favorable downstream effect

on the unsupervised training of the student model, where better predictions result in

better pseudo targets. The results show a marked superiority of the SDM-Loss over

the alternatives in all four evaluation metrics. A potential avenue for improvement was

56



Table 3.3: Ablation study on the effect of the α parameter on the performance of the
proposed method on the LA dataset (5%).

α DSC↑ JSC↑ 95HD↓ ASD↓
0.05 84.61±0.02 73.77±0.07 13.23±0.82 3.26±0.30
0.1 84.64±0.73 73.89±1.02 14.18±1.50 3.72±0.47
0.2 85.2±0.63 74.56±0.9 11.48±0.49 2.6±0.16
0.3 83.83±0.90 72.80±1.25 14.46±1.47 3.74±0.39
0.4 84.91±0.67 74.09±0.95 12.95±0.36 3.00±0.14

Table 3.4: Ablation study on the effect of the β parameter on the performance of the
proposed method on the LA dataset (5%).

β DSC↑ JSC↑ 95HD↓ ASD↓
0.05 83.25±0.48 71.92±0.64 16.26±0.57 4.29±0.36
0.1 83.57±0.17 72.38±0.39 16.68±0.95 4.33±0.21
0.2 84.19±0.65 73.21±0.94 14.85±1.06 3.87±0.20
0.3 85.2±0.63 74.56±09 11.48±0.49 2.6±0.16
0.4 84.01±0.55 73.06±0.65 14.98±1.13 3.93±0.48
0.5 84.43±0.22 73.45±0.31 13.59±0.31 3.44±0.06

explored by experimenting with alternatives for the consistency constraint that can ef-

fectively enforce mixup coherence. In this context, we conduct experiments using L1,

L2, and DSC-based consistency losses on the LA dataset. The observations in Table

3.2 attest to our previous intuition regarding the effectiveness of a DSC-based consis-

tency loss for enforcing coherence in segmentation problems, demonstrating a stark

superiority over the L1 and L2 variants.

3.3.5 Hyper-parameter Tuning

This section presents the impact of various hyperparameters, such as α and β, on the

performance of the proposed architectural design. The hyper-parameter α determines

the distribution of the weights used in the mixup of two inputs. We conducted a series
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of experiments varying the alpha value to train on the LA dataset. From the results

furnished in Table 3.3, we see that a α value of 0.2 produces optimal performance. This

observation aligns with the α value recommended by Zhang et al. (Zhang et al., 2018)

in their work. The hyper-parameter β referenced in Eq 3.7 determines the contribution

of the shape-aware loss to the overall loss. While maintaining the other parameters at

optimal values, we conduct experiments varying the β to train the proposed method on

the LA dataset. As in previous experiments, we continue to use the lowest labeled data

proportion of 5% for this evaluation. From the results furnished in Table 3.4, we see

that a β value of 0.3 produces optimal performance.

3.3.6 Training Methodology

For 3D segmentation on the LA dataset, we used V-Net (Milletari et al., 2016) as the

default backbone network. A stochastic gradient descent (SGD) optimizer guides the

training for 6000 iterations, and the poly learning strategy updates the LR every 2500

iterations. The input is a sub-volume of size 112×112×80 with a batch size of 4,

consisting of 2 labeled and unlabeled samples each. For 2D segmentation on the ACDC

dataset, we used U-Net (Ronneberger et al., 2015) as the default backbone network. An

SGD optimizer trains the model with a batch size of 16, having 8 samples of labeled

and unlabelled images each. The learning rate is updated every iteration using the

poly learning rate strategy. All of the slices are resized into 256×256 pixels, and the

intensity of each slice is changed to [0, 1] before feeding into the model. Further,

for evaluating SSDL methods such as CCT (Ouali et al., 2020), and DTC (Luo et al.,

2020) that required certain architectural changes to the backbone, we make necessary

changes to U-Net (Ronneberger et al., 2015), and V-Net (Milletari et al., 2016) to create

derivatives that align with the designs of the respective methods. Each experiment has

been repeated three times with a randomly chosen seed. The tabulated observations

report the mean and standard error of the evaluated metrics across the three trials.
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3.3.7 Discussion

We demonstrate the efficacy of the proposed method by comparing it with a supervised

baseline and other SSL methods, particularly those that achieved considerable success

in application to the ACDC and LA datasets. Furthermore, to develop a comprehensive

understanding of the performance, we train the models with different proportions of

labeled and unlabeled samples drawn from the training split.

Figure 3.5: Qualitative comparison of the proposed method with other SSL methods
on LA dataset using 10% labeled data. The first column indicates the
ground truth, followed by the visualization of the predictions made by
other methods on the test data.

Figure 3.6: A graphical depiction of the performance and confidence intervals of pro-
posed method in comparison with other existing approaches on the LA
dataset, at various proportions of labeled and unlabeled samples.

The superior quantitative performance of the proposed method is evidenced by the

results on the LA dataset, furnished in Table 3.5. We divided the dataset into 5%
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Table 3.5: The performance comparison of the proposed method with other related
methods on LA dataset with varying labeled and unlabeled proportions.

Labeled Method DSC↑ JSC↑ 95HD↓ ASD↓

Supervised 37.16±0.23 26.63±0.20 38.06±1.29 12.22±0.31
DTC 80.46±0.79 68.55±0.89 18.39±0.52 4.67±0.26
MT 82.81±0.63 71.05±0.91 13.04±1.06 3.09±0.16
EM 80.42±1.17 68.19±1.62 25.37±4.39 7.66±1.28
SASSNet 79.44±1.50 66.76±2.21 26.52±4.15 7.54±1.36

4(5%)

UAMT 78.61±0.05 65.62±0.31 27.79±3.56 8.30±1.26
GACT 84.12±1.21 73.10±1.58 12.99±1.07 3.43±0.28
Proposed 85.2±0.63 74.56±0.9 11.48±0.49 2.6±0.16

Supervised 70.21±4.16 56.84±4.62 29.10±3.79 8.48±0.99
DTC 87.42±0.19 77.93±0.28 9.20±0.32 2.24±0.08
MT 86.57±0.28 76.61±0.41 10.55±0.29 2.34±0.19
EM 85.59±0.18 75.18±0.28 14.80±1.36 4.05±0.41
SASSNet 86.25±0.56 76.09±0.81 18.00±0.07 4.52±0.10

8 (10%)

UAMT 86.09±0.34 76.02±0.32 13.05±2.94 3.60±0.86
GACT 86.52±0.82 76.63±1.17 10.24±0.70 2.06±0.04
Proposed 87.99±0.21 78.73±0.32 8.45±0.30 2.02±0.03

Supervised 84.73±0.94 73.97±1.40 20.92±4.17 5.83±1.25
DTC 89.09±0.13 80.59±0.15 7.71±0.03 2.09±0.01
MT 88.9±0.5 80.28±0.75 8.73±0.72 2.35±0.12
EM 89.16±0.36 80.59±0.56 8.60±1.23 2.60±0.52
SASSNet 88.69±0.07 79.90±0.13 9.58±0.45 2.80±0.16

16 (20%)

UAMT 88.45±0.37 79.56±0.49 11.36±3.91 3.20±1.19
GACT 88.00±0.99 79.08±1.32 9.08±1.60 1.97±0.03
Proposed 89.75±0.14 81.51±0.22 7.02±0.24 1.76±0.01

80 (100%) Supervised 91.36±0.05 84.16±0.09 5.78±0.31 1.84±0.21
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(Labeled/L-4, Unlabeled/U-76), 10% (L-8, U-72), and 20% (L-16, U-64) labeled and

unlabeled proportions to evaluate the performance. Resilience in reduced labeled data

settings is evident from the (L-4, U-76) case, wherein the proposed method achieves

a significant improvement over GACT (Liu and Zhao, 2022) (second best) by 1.08%,

1.46%, 1.51 mm, and 0.83 mm in DSC, JSC, 95HD, and ASD metrics, respectively.

While some approaches fared better in low data situations and others in somewhat

higher proportions, it is encouraging to note that the proposed method performed best

or equally well in virtually all proportions across the evaluation metrics over multiple

trials, which is significant. Though methods such as Cross-Teach (Luo et al., 2021a)

have achieved considerable success in dealing with 2D images, they are below par in

3D due to the unavailability of imagenet pre-trained weight that played a significant

role in boosting the performance on 2D data. In Figure 3.5, we present the qualitative

analysis depicting the superiority of the proposed method over all the proportions. It is

apparent that the proposed method showed a better tendency in segmenting the region

of interest (ROI) compared to other methods. Furthermore, in Figure 3.6 we plot the

line graph depicting the confidence interval of the performance of the proposed method

in comparison with other existing approaches.

The results on ACDC dataset are furnished in Table 3.6. We divide the dataset

into (L-7, U-133) and (L-14, U-126) proportions to evaluate the performance of the

SSL methods. Compared to the previous techniques, the proposed Temporal Mixup

Coherence (TMC) performs strongly in the 95HD and ASD metrics while registering

consistent improvements in DSC and JSC over successive iterations. While the DTC

(Luo et al., 2020) approaches the proposed method’s DSC and JSC performance, albeit

relatively inconsistent, it still falls behind significantly in 95HD and ASD, where TMC

is a distant winner with an improvement of over 3.99% and 1.01% which is signifi-

cant. On the other hand, the URPC (Luo et al., 2021b) maintains a marginally better

mean value of 95HD for the 5% case. However, the URPC (Luo et al., 2021b) fails

to compete meaningfully in DSC and JSC metrics, trailing behind the proposed method

by 3.4% and 4.7% and also with several other methods (Luo et al., 2020; Ouali et al.,
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Table 3.6: The performance comparison of the proposed method with other related
methods on ACDC dataset with varying labeled and unlabeled proportions.

Labeled Method DSC↑ JSC↑ 95HD↓ ASD↓

Supervised 78.22 ± 0.82 66.89 ± 0.99 7.79 ± 0.94 2.28 ± 0.34
CCT 83.69 ± 0.16 73.28 ± 0.24 6.7 ± 0.28 2.02 ± 0.07
DTC 84.97 ± 0.07 75.07 ± 0.13 9.66 ± 1.11 2.64 ± 0.29
MT 80.96 ± 1.21 69.9 ± 1.33 11.47 ± 1.4 3.2 ± 0.32

UAMT 81.84 ± 0.66 70.86 ± 0.82 9.52 ± 0.89 2.96 ± 0.19
URPC 82.04 ± 0.38 71.14 ± 0.48 5.47 ± 0.35 1.70 ± 0.06
GACT 84.00 ± 0.20 73.74 ± 0.20 7.37 ± 0.34 2.38 ± 0.20

EM 82.21 ± 0.20 71.40 ± 0.25 9.22 ± 1.47 2.75 ± 0.30

7 (5%)

Proposed 85.44 ± 0.13 75.91 ± 0.21 5.67 ± 0.39 1.63 ± 0.16

Supervised 84.07 ± 1.15 73.81 ± 1.45 8.88 ± 0.61 2.71 ± 0.11
CCT 86.23 ± 0.25 76.92 ± 0.31 7.86 ± 0.44 2.26 ± 0.10
DTC 86.57 ± 0.31 77.67 ± 0.41 7.06 ± 1.05 2.13 ± 0.24
MT 85.14 ± 0.3 75.46 ± 0.42 9.4 ± 1.6 2.79 ± 0.37

UAMT 85.56 ± 0.16 76.2 ± 0.30 7.01 ± 0.51 2.33 ± 0.22
URPC 85.46 ± 0.22 76.17 ± 0.32 6.04 ± 0.48 1.86 ± 0.09
GACT 86.59 ± 0.46 77.75 ± 0.54 5.71 ± 0.53 1.60 ± 0.13

EM 84.89 ± 0.20 75.15 ± 0.27 7.76 ± 0.46 2.31 ± 0.13

14 (10%)

Proposed 87.0 ± 0.03 78.21 ± 0.12 5.87 ± 0.21 1.79 ± 0.08

140 (100%) Supervised 91.42 84.60 2.64 0.59

Table 3.7: Time complexity analysis of the proposed method with other related consis-
tency regularization methods (calculated on the ACDC dataset with 7-L and
133-U cases for 100 iterations).

Methods Time (min)↓
CCT 9:43

UAMT 7:17
GACT 7:05
DTC 5:14

URPC 4:38
MT 4.28
EM 4:48

Proposed 4.00
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Figure 3.7: Qualitative comparison of the proposed method with other SSL methods
on ACDC dataset using 5% labeled data. The first column indicates the
ground truth, followed by the visualization of the predictions made by
other methods on the test data.

Figure 3.8: Box plots depicting the performance of the proposed method in compari-
son with other semi supervised methods on the ACDC dataset.

2020). Furthermore, we can observe from Table 3.6 that TMC trained with only 5% of

the labeled data outperforms the supervised model trained with twice as much labeled

data, and it is the only SSDL model to do so across all metrics; demonstrating TMC’s

efficacy with limited samples of labeled data. Figure 3.7 represents the qualitative anal-

ysis of 5% labeled data, depicting the superiority of the proposed method. The box

plots in Figure 3.8 further strengthen the performance of the model. In Table 3.7 of the

manuscript, we present the time complexity of the proposed method calculated on the

ACDC dataset with 7-labeled and 133 unlabelled cases for 100 iterations. It is evident

that the proposed method stands top with the least training time over other related SSL

methods. To conclude, our results on the ACDC and LA datasets indicate a marked
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superiority of the proposed method, achieving improved results across multiple metrics

and maintaining performance consistency through repeated trials.

3.4 Summary

This chapter investigated and implemented a mixup operation-driven consistency con-

straint for semi-supervised medical image segmentation by incorporating geometric

constraints by regressing over the signed distance map of the object of interest. We

extensively analyzed, evaluated, and compared the performance of the proposed model

with other consistency regularization methods on two popular challenge datasets, namely

the Left Atrial Segmentation and Automatic Cardiac Diagnosis datasets. The experi-

mental results show that the proposed method is superior to other consistency regularization-

based SSL methods on relatively lower proportions of labeled samples, demonstrating

efficacy and robustness. We envision a potential future improvement by incorporating a

manifold strategy that encourages mixup coherence at hidden layers instead of focusing

only on the output.
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CHAPTER 4

A DUAL-STAGE SEMI-SUPERVISED

PRE-TRAINING APPROACH FOR MEDICAL

IMAGE SEGMENTATION

4.1 Methods

This section presents the motivation and workflow of the proposed dual-stage semi-

supervised pre-training approach for medical image segmentation.

4.1.1 Motivation

The advent of deep neural networks has played a significant role in developing au-

tomated methods for addressing segmentation tasks. However, they rely heavily on

labeled data, suppressing their practicability in the medical domain. Semi-supervised

learning is gaining attention in medical image segmentation due to its intrinsic ability

to extract valuable information from labeled and unlabeled data, resulting in amplified

performance. In recent literature, consistency regularization methods have gained inter-

est due to their efficient learning procedures. They are, however, confined to data-level

or network-level perturbations, negating the benefit of having both forms of pertur-

bations in a single framework. Table 4.1 presents different consistency regularization

techniques in semi-supervised learning.
4The work described in this chapter has been accepted in the Transactions on Artificial Intelligence:

Rajath C Aralikatti, S. J. Pawan, and J. Rajan (2022). A Dual-Stage Semi-Supervised Pre-Training
Approach for Medical Image Segmentation.



Table 4.1: Types of Consistency Regularization in Semi-Supervised Learning.

Methods Data Network

UA-MT (Yu et al., 2019) ✓ ×
CCT (Ouali et al., 2020) ✓ ×

Double Uncertainty(Wang et al., 2020c) ✓ ×
Cross-Mix (Shu et al., 2022) ✓ ×
Cora-Net (Shi et al., 2021) × ✓

SASSnet(Li et al., 2020b) × ✓

DTC (Luo et al., 2020) × ✓

LG-ER-MT (Hang et al., 2020) × ✓

Liu et al. (Liu et al., 2022) × ✓

CPS (Chen et al., 2021) × ✓

n-CPS (Filipiak et al., 2021) × ✓

Cross-Teach (Luo et al., 2021a) × ✓

1. Data and Network-level consistency: This study aims to incorporate data and
network-level consistency in the semi-supervised realm, thus facilitating the for-
mation of optimal decision boundaries in the low-density feature space for ex-
tremely low-sampled labeled data.

2. Efficient usage of networks with different learning paradigms with a pre-training
approach in SSL: To make efficient usage of segmentation architectures with
different learning paradigms in SSL. In this case, UNet/VNet from CNNs and
Swin-UNet from transformers (which can be extended to other dynamics of neu-
ral networks such as recurrent networks and capsule networks) to facilitate mutual
learning benefited from the exclusive features obtained from the unique learning
procedures of individual models.

4.1.2 Dual Stage Training Procedure

We use the UNet model M1 as our CNN segmentation network and the SwinUNet

model M2 as our vision transformer segmentation network (Cao et al., 2021). The
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model takes an input of shape h× w × 1. In the following section, we elaborate on the

mechanism of the dual-stage training procedures.

Stage 1 (Data Consistency Stage): Data consistency is employed in this stage us-

ing the mean-teacher paradigm on both the CNN and transformer networks. The mean-

teacher paradigm is a self-ensembling strategy with a teacher model whose weights are

an exponential moving average (EMA) of the base student model’s weights. Data con-

sistency is enforced between the predictions on clear inputs by the student model (f θMx )

and noisy inputs by the teacher model (f θEMA−Mx ) on unlabeled data Du. The consis-

tency loss Lc computes the data consistency between the student model’s prediction

(PMx) and the teacher model’s prediction (PEMA−Mx) with mean square error (MSE) as

a similarity measure. The best-performing model on the validation set is saved for both

the CNN and transformer models to serve as their pre-trained weights in the next stage.

The loss functions for the the first stage are defined below- LS1 and LS2 are the

supervised losses on labeled data Dl for models M1 and M2 defined by Eqns. 4.1-4.2

respectively.

LS1 =

DlX LDice(PM1 , Y ) + LCE(PM1 , Y )

2
(4.1)

LS2 =

DlX LDice(PM2 , Y ) + LCE(PM2 , Y )

2
(4.2)

LC1 and LC2 are consistency losses on unlabeled data Du for models M1 and M2 defined

by by Eqns. 4.3-4.4 respectively.

LC1 =
DuX

LMSE(PM1 , PEMA−M1) (4.3)

LC2 =
DuX

LMSE(PM2 , PEMA−M2) (4.4)

LDice, LCE , LMSE above respectively mean dice loss, cross entropy loss and mean
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Figure 4.1: A schematic representation of the proposed dual stage training procedure
for semi-supervised medical image segmentation.

square error. The overall objective for stage 1 is given by Eq. 4.5.

LStage1 = (LS1 + λLC1) + (LS2 + λLC2) (4.5)

where λ is the parameter that determines balance between labeled and unlabeled losses

defined by the Gaussian warming up function λ(t) = λo × e(−5(1− t
tmax

)2) (Samuli and

Timo, 2017; Tarvainen and Valpola, 2017). A λo value of 0.1 was used in this pre-

training stage.

Stage 2 (Network Consistency Stage): This stage starts with reloading both the

CNN and transformer networks with the weights saved in the previous stage. By do-

ing so, our model retains the data robust nature learned in the first stage. We then

incorporate network-level consistency by fine-tuning our model with the cross-pseudo-

supervision loss Lcps that makes it possible to combine the information learned by the

CNN and transformer networks. Lcps works by making the pseudo label from the out-

put of one model’s teacher (YEMA−Mx) serve as the target for the other model’s student

(PMy ) and vice versa. We specifically use the teacher models to guide the cross-teaching

process with their pseudo labels, as teacher models being an exponential moving aver-

age (EMA) of the student model weights serve as a more stable representative of each
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Algorithm 3 Pseudo-code for the proposed dual-stage semi-supervised approach
1: Input: (X,Y ) ∈ Dl, X ∈ Du

2: Output: Final parameters of the resultant model θres
3: fθ

1 = prediction by model M1 with parameters θ
4: fθ

2 = prediction by model M2 with parameters θ
5: BestVal() = function to select the model with best validation performance
6: Other notations used are as described in the earlier sections and in Fig. 4.1
7: # Stage 1:
8: θM2

, θEMA−M2
← Swin-UNet Initialization

9: for iter = 1, . . . , itermax do
10: Sample (Xl, Y ) ∼ Dl, Xu ∼ Du

11: X = Xl ∪Xu

12: PM1
= f

θM1
1 (X), PEMA−M1

= f
θEMA−M1
1 (X + η)

13: Compute losses LS1
(PM1

, Y ), Lc1(PM1
, PEMA−M1

)
14: Minimize the loss LS1

+ λLc1 for θM1

15: θEMA−M1 ← αθEMA−M1 + (1− α)θM1

16: PM2
= f

θM2
2 (X), PEMA−M2

= f
θEMA−M2
2 (X + η)

17: Compute losses LS2
(PM2

, Y ), Lc2(PM2
, PEMA−M2

)
18: Minimize the loss LS2 + λLc2 for θM2

19: θEMA−M2 ← αθEMA−M2 + (1− α)θM2

20: Save θpreM1
= BestVal (θpreM1

, θM1
, θEMA−M1

)
21: Save θpreM2

= BestVal (θpreM2
, θM2

, θEMA−M2
)

22: end for
23: # Stage 2:
24: θM1 , θEMA−M1 ← θpreM1

25: θM2
, θEMA−M2

← θpreM2

26: for iter = 1, . . . , itermax do
27: Sample (Xl, Y ) ∼ Dl, Xu ∼ Du

28: X = Xl ∪Xu

29: PM1 = f
θM1
1 (X), PEMA−M1 = f

θEMA−M1
1 (X)

30: YEMA−M1
= Argmax (PEMA1

)

31: PM2 = f
θM2
2 (X), PEMA−M2 = f

θEMA−M2
2 (X)

32: YEMA−M2
= Argmax (PEMA2

)
33: Compute losses LS1

(PM1
, Y ), Lcps1(PM1

, YEMA−M2
)

34: Minimize the loss LS1
+ λoLcps1 for θM1

35: θEMA−M2
← αθEMA−M2

+ (1− α)θM2

36: Compute losses LS2(PM2 , Y ), Lcps2(PM2 , YEMA−M1)
37: Minimize the loss LS2 + λoLcps2 for θM2

38: θEMA−M2
← αθEMA−M2

+ (1− α)θM2

39: Save θres = BestVal(θres, θM1
, θEMA−M1

, θM2
,

θEMA−M2
)

40: end for
41: return θres =0
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network type. This manner of cross-teaching by enforcing consistency between the out-

puts of the models and transfers knowledge between them. Once training is completed,

we choose the best-performing model on the validation set as our resultant model.

The loss functions for the the second stage are defined below- LS1 and LS2 are the su-

pervised losses on labeled data Dl for models M1 and M2 with the same definition as in

Eqns. 4.1-4.2. Lcps1 and Lcps2 (Chen et al., 2021) are cross pseudo supervision losses

on unlabeled data defined by Eqns. 4.6-4.7.

Lcps1 =
DuX

LCE(PM1 , YEMA−M2) (4.6)

Lcps2 =
DuX

LCE(PM2 , YEMA−M1) (4.7)

LDice, LCE above respectively mean Dice loss and Cross Entropy Loss. The overall

objective for stage 2 is given by Eq. 4.8.

LStage2 = (LS1 + λo Lcps1) + (LS2 + λo Lcps2) (4.8)

where λo is used as the constant parameter that determines balance between labeled and

unlabeled losses. A λo value of 0.1 was used in this fine-tuning stage. In Algorithm 3,

we present the pseudo-code to illustrate the training procedure of the proposed method.

4.2 Results and Analysis

This section briefly describes the hardware details, evaluation metric, training method-

ology, datasets, and the discussion investigating the qualitative and quantitative analy-

sis.
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4.2.1 Hardware details

The proposed method is implemented in the PyTorch framework. All the experiments

were conducted and evaluated on Ubuntu 18.04.5 LTS having 251 GB RAM facilitated

with Tesla 4×V100 DGXS 32GB GPU, Intel(R) Xeon(R) CPU E5-2698 v4 @ 2.20GHz

CPU with NVIDIA driver 460.32.03, and CUDA 11.2.

4.2.2 Evaluation Metrics

We quantitatively evaluate the performance of all the methods considered in the study

using the Dice Similarity Coefficient to measure the overlapping of the predictions with

the corresponding ground truth (the higher it is, the better the performance). Further-

more, we adopted the 95 Hausdorff distance (95HD) to calculate the distance (mm)

between the boundary of the prediction and the ground truth (the lower it is, the better

the performance). We also use Average Surface Distance, which computes the aver-

age of the distances (mm) between the boundaries of the segmentation output and the

ground truths, and vice versa, to evaluate the performance (the lower it is, the better the

performance).

4.2.3 Datasets

We evaluate the performance of the proposed method on the ACDC and LA datasets,

which is explained in Section 3.3.3 of Chapter 3. In addition, we evaluate the perfor-

mance on the ISIC-2018 datasets. A brief description of ISIC-2018 dataset is given

below.

ISIC-2018 Dataset: 1 ISIC-2018 challenge datasets deal with the diagnosis of melanoma

from dermoscopic images. We chose the lesion segmentation challenge to evaluate the

performance of the proposed method. The dataset consists of 2594 RGB images for

1https://challenge2018.isic-archive.com//
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training and 100 images for validation, which have been resized to 224× 224. We ran-

domly divided 2594 samples into 80 : 20 ratios to form exclusive training and testing

sets.

4.2.4 Training Methodology

The implementation was carried out using the PyTorch library (Paszke et al., 2019),

extending the open-source SSL implementation given in (Luo, 2020). All the architec-

tures follow similar configurations in terms of depth, the number of layers, kernels, etc.,

to maintain uniformity (Note: We used UNet (Ronneberger et al., 2015) as the baseline

segmentation architecture). Before feeding the data into the training, it is is normalized

to the [0 − 1] range. All the experiments use an input shape of 256 × 256 except the

method in (Luo et al., 2021a) and the proposed method, which uses 224 × 224. Every

batch consists of an equal proportion of labeled and unlabeled samples that are fed onto

the teacher and student network simultaneously. A stochastic gradient descent optimizer

is employed, and every model is trained till convergence. The learning rate procedure

follows 1− iter
itermax

power
, where the initial learning rate value and power are set to

0.01, 0.9 and updated at regular intervals. An iteration-dependent ramp-up function is

used to regulate the supervised and unsupervised losses, facilitating the precedence of

unsupervised losses in the latter part of the training procedure and thus effectively using

unlabeled data while minimizing the overall loss to improve the performance.

4.2.5 Discussion

This section elucidates the quantitative and qualitative analysis of all the methods con-

sidered in the study. Following the norms of the SSL evaluation technique, we divided

the datasets into various fragments of labeled and unlabeled proportions to evaluate

the performance of various SSL techniques and the proposed method against the fully-

supervised baselines. Furthermore, we present the ablation analysis to demonstrate the
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Figure 4.2: Qualitative analysis of the proposed model on the ACDC (4%) dataset
with 2 samples. For each sample, both a 2D input slice overlayed with the
prediction and a 3D rendering of the segmentation is visualized. The first
column corresponds to the ground truth, followed by the predictions made
by the other models.

Figure 4.3: Qualitative analysis of the proposed model on the Left Atrial dataset (6%)
with 2 samples. For each sample, both a 2D input slice overlayed with the
prediction and a 3D rendering of the segmentation is visualized. The first
column corresponds to the ground truth, followed by the predictions made
by the other models.

effectiveness of different stages involved in the training process.

We compare our proposed method with 6 other SSL methods. The methods consid-

ered in the comparison were chosen based on their relevance to the proposed method

and their code availability. Other methods in literature with additional modules, do-
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Figure 4.4: Qualitative analysis of the proposed model on the ISIC-2018 (5%) dataset
with 4 samples. The first column corresponds to the input image, followed
by the ground truth and the predictions made by the other models.

main adoption, and complex training methods without source code are not included.

Although we have compared the proposed method with highly competitive methods

such as Cross-Teach (Luo et al., 2021a) and CPS (Chen et al., 2021) to demonstrate

its superiority. In Table 4.2 of the manuscript, we furnish the quantitative analysis ob-

tained on the ACDC dataset by comparing the proposed method against the competing

SSL methods. We divided the dataset into 4% (3 subjects) and 10% (7 subjects) la-

beled data, with the rest as unlabeled data in the respective cases. In the 4% labeled

case (upper half of Table 4.2), the proposed model showed a massive improvement of

2.45% in DSC against the second-best performing model (Luo et al., 2021a). Simi-

larly, in the 10% labeled data (lower half of Table 4.2), we can observe a significant

improvement of 3.34 mm, 0.79 mm, and 0.53% in 95HD, ASD, and DSC, respectively,

over (Luo et al., 2021a). Furthermore, in both the 4% and 10% labeled cases there

is a substantial improvement in the proposed method when compared to other meth-

ods (Tarvainen and Valpola, 2017), (Yu et al., 2019), (Zhang et al., 2017), (Luo et al.,

2020), (Chen et al., 2021). In Fig. 4.2, we see that in the qualitative analysis on the

ACDC dataset, our model shows a high degree of overlap with ground truth in both 2D

and 3D visualization, depicting the superiority of the proposed method. Table 4.3 por-

trays the outcome of the quantitative analysis on the left-atrial dataset by evaluating the
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Table 4.2: Performance comparison of the proposed method on ACDC dataset with
varying number of labeled and unlabeled samples.

Labeled Method DSC↑ 95HD↓ ASD↓
3 (4%) Fully-Supervised 56.09 – –

MT 60.47 – –
UA-MT 61.62 22.07 5.85
DAN 56.76 – –
DTC 54.82 – –
CPS 63.27 – –
Cross-Teach 73.03 – –
Proposed 75.48 – –

7 (10%) Fully-Supervised 81.27 6.67 2.14
MT 83.32 8.40 2.38
UA-MT 83.73 7.54 2.61
DAN 83.69 9.34 2.78
DTC 85.00 7.01 2.12
CPS 85.61 8.73 2.77
Cross-Teach 86.74 5.79 1.53
Proposed 87.27 2.42 0.74

performance of the proposed method with other related methods. The dataset is split

into 6% (4 subjects) and 11% (8 subjects) labeled cases, with the remaining samples as

unlabeled cases. It is apparent that in the 11% labeled case (lower half of Table 4.3),

the proposed outperformed the second-best (Luo et al., 2021a), by a substantial margin

of 3.38%, 5.1 mm, 1.79 mm in DSC, 95HD, and ASD, which is remarkable. Also, in

the 6% labeled case (upper half of Table 4.3), the proposed model achieved a slight

improvement of 0.51%. Furthermore, it is worth noting that the proposed method has

recorded sufficiently superior performance in both cases across all the methods con-

sidered for comparison (Tarvainen and Valpola, 2017), (Yu et al., 2019), (Zhang et al.,

2017), (Luo et al., 2020), Chen et al. (2021). Fig. 4.3 represents the qualitative inspec-

tion of the performance of the proposed method on the left-atrial dataset. It is apparent

that the proposed method performs superior to other SSL methods. A similar trend

can be observed in ISIC-2018 data, which we demonstrated in Table 4.4. In this case,

we randomly chose 5% and 15% labeled samples, with the remaining serving as the
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Table 4.3: Performance comparison of the proposed method on Left Atrial dataset
with varying number of labeled and unlabeled samples.

Labeled Method DSC↑ 95HD↓ ASD↓
4 (6%) Fully-Supervised 66.36 – –

MT 65.82 21.64 4.52
UA-MT 63.92 – –
DAN 67.94 24.41 7.59
DTC 72.40 22.73 6.47
CPS 72.79 21.88 5.90
Cross-Teach 77.16 – –
Proposed 77.67 – –

8 (11%) Fully-Supervised 72.08 13.13 4.22
MT 70.83 13.54 4.23
UA-MT 71.23 16.40 5.33
DAN 78.17 27.24 8.47
DTC 76.88 11.54 3.86
CPS 80.14 16.60 4.85
Cross-Teach 85.18 11.99 3.88
Proposed 88.56 06.89 2.09

unlabeled samples. It is evident that in the 5% labeled case (upper half of Table 4.4),

the proposed model achieved an improvement of 1.86%, 5.8 mm, 2.01 mm over DSC,

95HD, and ASD metrics by outperforming the second-best model (Luo et al., 2021a).

Furthermore, in the 15% labeled case (lower half of Table 4.4), the proposed model

achieved a considerable improvement of 1.82% in DSC over the second-best model

(Luo et al., 2021a) with highly competitive results on ASD and 95HD. The superior

qualitative performance of the proposed method on the ISIC-2018 is portrayed in Fig.

4.4.

Our experimental analysis shows that some SSL methods performed worse in a

few cases than the fully supervised benchmark. Examples include MT (Tarvainen and

Valpola, 2017) (LA-6%, LA-11%, ISIC-15%), UA-MT (Yu et al., 2019) (LA-6%, LA-

11%, ISIC-5%) and DTC Luo et al. (2020) (ACDC-4%, ISIC-5%). While in some other

cases, these methods only show improvement that is not too significant. This points to
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Table 4.4: Performance comparison of the proposed method on ISIC-2018 dataset
with varying number of labeled and unlabeled samples (Note: Some 95HD
and ASD values in ACDC-4% LA-6% and ISIC-5% are ’–’. These values
could not be computed as the model’s prediction on some test sample is a
non-binary object).

Labeled Method DSC↑ 95HD↓ ASD↓
103 (5%) Fully-Supervised 82.57 – –

MT 82.80 – –
UA-MT 81.17 26.51 10.96
DAN 82.64 24.38 9.73
DTC 81.54 – –
CPS 83.09 23.45 9.32
Cross-Teach 84.34 21.50 8.58
Proposed 86.20 15.70 6.57

311 (15%) Fully-Supervised 82.95 22.13 9.07
MT 82.39 22.20 9.14
UA-MT 83.48 21.26 8.80
DAN 83.36 22.29 9.11
DTC 83.69 21.35 8.80
CPS 83.85 19.44 7.96
Cross-Teach 85.02 15.26 6.23
Proposed 86.84 15.20 6.46

an instability in the performance of these methods under the severely low labeled to un-

labeled data ratio used in our experiments. However, the SSL methods CPS (Chen et al.,

2021), Cross-Teach (Luo et al., 2021a) and the proposed method are stable even in the

low-sampled labeled data space and produce significant improvements over the super-

vised baseline. An additional point of note is that the proposed model and the method

in (Luo et al., 2021a) show a significant improvement in the performance over the other

SSL approaches in our experimental setup. Fig. 4.5 depicts the graphical representa-

tion that upholds the above-made assumption, wherein the methods versus performance

(DSC) of various techniques considered in the study are plotted for ACDC (4%), LA

(6%) and ISIC-2018 (5%) datasets. It is apparent that in the ACDC (4%) dataset, CPS

(3rd best among the 6 methods) (Chen et al., 2021) achieved a DSC of 63.27%, whereas

cross-teach (Luo et al., 2021a) achieved a DSC of 73.03% with a huge improvement.
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Furthermore, the proposed method achieves a DSC of 75.48%, with a significant im-

provement of 2.45% over cross-teach (Luo et al., 2021a). In the ISIC-2018 dataset,

CPS (3rd best among the 6 methods) (Chen et al., 2021) achieved a DSC of 83.09%

whereas cross-teach (Luo et al., 2021a) and the proposed method achieved a DSC of

84.34% and 86.20%. Furthermore, the consistent improvement is also evident in 95HD

and ASD metrics. A similar trend can be observed in the LA (6%) dataset, wherein CPS

(Chen et al., 2021) (3rd best among the 6 methods) achieved a DSC of 72.79%; on the

other hand, cross-teach (Luo et al., 2021a) and the proposed method achieved a DSC of

77.16% and 77.67%. This could be mainly due to the impact of the theory of consensus

(Xu et al., 2013) achieved through a CNN and a ViT, which provides a practical way

of getting benefit from the networks of different learning strategies. Given this con-

text, achieving better performance than cross-teach (Luo et al., 2021a) is a challenging

task. However, the proposed method showed great potential to significantly push the

performance bars against cross-teach (Luo et al., 2021a) across the datasets of varied

labeled-unlabeled proportions, thus exhibiting the remarkable potential of the proposed

method.

4.2.6 Ablation Study

This section will quantitatively demonstrate the effectiveness of individual training

stages of the proposed dual-stage training approach. We independently train stage-1

(data consistency stage) and stage-2 (network consistency stage) networks across the 3

datasets, namely ACDC (4% labeled case), LA (6% labeled case) and ISIC-2018 (5%

labeled case). We chose to go with a low-sampled labeled case, as this is where the

actual effectiveness of SSL methods is being tested. Table 4.5 demonstrates the ex-

perimental outcome. The proposed method outperforms stage-1 and stage-2 by a huge

margin of 10.62% and 2.81% on ACDC, 2.79% and 0.72% on LA, and 1.53% and

2.05%, on ISIC-2018 datasets, respectively, exhibiting the superiority of the proposed

method. We argue that this is mainly due to the effective incorporation of 2 types of
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Table 4.5: Ablation analysis of the proposed method on ACDC, LA and ISIC-2018

datasets.

Data Labeled Method DSC
ACDC 3 (4%) Stage-1 64.86

Stage-2 72.67
Proposed 75.48

LA 4 (6%) Stage-1 74.88
Stage-2 76.95
Proposed 77.67

ISIC-2018 103 (5%) Stage-1 84.67
Stage-2 84.15
Proposed 86.20

perturbations (data and network) with a model pre-training approach.

Table 4.6: Ablation analysis of the proposed method on ACDC, LA and ISIC-2018

datasets with Ensemble Approach.

Data Labeled Method DSC
ACDC 3 (4%) Ensemble 72.67

Proposed 75.48
LA 4 (6%) Ensemble 77.14

Proposed 77.67
ISIC-2018 103 (5%) Ensemble 85.63

Proposed 86.20

In Table 4.6 we investigate the performance of the proposed method against an

ensemble of stage-1 and stage-2 networks. The two networks were ensembled with

weights x and (1 - x) as multipliers to the stage-1 and stage-2 predictions, respectively.

The best-performing ensemble model was chosen after trying out all x values in the

range 0 to 1 with a step of 0.1, i.e., (0, 0.1, 0.2, . . . , 1.0). The proposed model beat out

the ensemble model by 2.81%, 0.53%, and 0.57% on the ACDC, LA, and ISIC-2018
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Figure 4.5: Performance analysis (Dice Similarity Coefficient) of the proposed model
against popular SSL benchmarks on ACDC (4%), LA (6%), and ISIC-
2018 (5%) datasets.

datasets. This indicates that our pre-training approach is superior to an ensembling

approach in incorporating data and network consistency into a single model.

Generalization of the proposed framework In this study, we presented one of the

straightforward approaches in the space of dual-stage pre-training procedures. We

used mean-teacher for data consistency with model pre-training, followed by cross-

supervision with networks of different learning dynamics for network consistency. How-

ever, this could be extended in multiple ways, depending upon the problem. To achieve

data consistency, one could adopt cross-consistency training (CCT), cross-pseudo-supervision

(CPS), or any network in general. Similarly, network-level consistency with networks

of different learning principles can be extended to recurrent networks, ConvNext, or

capsule networks.

4.3 Summary

This study presents a consistency-regularization-based dual-stage semi-supervised train-

ing approach for medical image segmentation, focusing on low-sampled labeled data.

This training procedure takes account of data consistency in the first stage, followed
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by network consistency with a pre-trained approach using networks of unique learning

paradigms. Furthermore, the proposed method can efficiently encode local and global

semantic relationships, forming a rich feature space. We extensively validated the per-

formance of the proposed method on 3 public datasets to achieve superior results, espe-

cially on the low-sampled labeled data. Also, we shed light on analyzing the behavior

of various SSL techniques with varying proportions of labeled and unlabeled samples

along with the ablation analysis. We believe this study will play a significant role in the

SSL realm, thus alleviating the dependency on labeled data in the medical domain.

81





CHAPTER 5

CONCLUSIONS AND FUTURE WORK

5.1 Conclusions

Deep convolutional neural networks have shown superior performance in medical im-

age segmentation in supervised learning. However, this success is predicated on the

availability of large volumes of pixel-level labeled data, making these approaches im-

practical when labeled data is scarce. In this regard, we adopted and explored capsule

networks and semi-supervised paradigms to improve segmentation performance.

From extensive literature, we deduced that capsule networks are highly susceptible

to parameter inflation, leading to increased computational complexity and performance

degradation. To alleviate this, we presented the Dilated Residual Inception and Capsule

Pooling (DRIP) mechanism. DRIP caps feature at the deeper layer of the segmentation

architectures, where the parameters start inflating exponentially. We extensively ana-

lyzed the performance of the proposed method by conducting numerous experiments

on the Central Serous Chorioretinopathy (CSCR) dataset to demonstrate the superior-

ity. We also demonstrated the superiority of capsule networks with limited labeled data,

making it a candidate framework for handling deep learning with limited supervision.

In semi-supervised learning, we use the consistency regularization approach, which

mainly differs in how perturbations are added to the input data and how we estimate

the consistency of the output for both perturbed and non-perturbed data. Most methods

introduce random perturbations to the input and enforce consistency. However, random

perturbations may lead to lazy student phenomena, depleting the overall performance.

We came up with a semi-supervised consistency method based on an interpolation strat-

egy coupled with geometric constraints that enforces coherence between the predictions



of a student model for unlabeled images and the predictions of the teacher model for

the images generated by a mixup of unlabeled images. We evaluated the performance

of the proposed method on the benchmark ACDC and LA datasets to achieve supe-

rior performance in comparison with other related methods. In order to design a more

generalizable semi-supervised framework, we proposed a dual-stage approach for semi-

supervised learning. This method takes account of data consistency in the first stage,

followed by network consistency with a pre-trained approach using networks of unique

learning paradigms. Also, the proposed method can encode both local and global se-

mantic relationships efficiently, creating a rich feature space. We extensively validated

the performance of the proposed method on three public datasets, namely ACDC, LA,

and ISIC-2018, to showcase the superiority. We believe these methods will play a criti-

cal role in alleviating the need for labeled data.

5.2 Discussion and Future Work

Although capsule networks are superior to traditional CNN-based approaches in data

representation, their performance against complex datasets (such as images with small

ROI, homogeneous regions, and low contrast regions) is subpar. There could be mul-

tiple reasons for this; we have listed a few potential reasons behind the fall of capsule

networks.

1. Complex datasets requiring deeper architecture may lead to parameter inflation,
hence the computation complexity.

2. The inefficiency of routing algorithm in complex datasets.

3. Gradient saturation due to the complexity of capsule network architecture.

All these limitations lead to the development of a more profound capsule network

architecture for segmentation capable of routing pertinent information by reducing com-

putation complexity on complex datasets.
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Recently, there has been a drastic surge in research related to semi-supervised learn-

ing. Numerous methods have been proposed, with consistency regularization, entropy

minimization, and adversarial techniques as the major disciplines. Below, we list the

possible scope of improvement to the methods discussed in the thesis.

1. Firstly, in the case of a structure-aware mixup-driven consistency approach, we
can have an ”informed mixup mechanism” that gives control over the selection of
samples over the random approach.

2. The dual-stage training approach can be extended in the following ways: 1) sub-
stituting the naive mean-teacher with other competitive versions and 2) including
networks with more than two learning dynamics.

3. Most of the methods in the literature have evaluated the performance of their
respective methods on standard benchmark datasets. An extensive experimental
review needs to be conducted to evaluate the performance of SSL methods across
different datasets in a real-time scenario.
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Bonheur, S., D. Štern, C. Payer, M. Pienn, H. Olschewski, and M. Urschler, Matwo-
capsnet: A multi-label semantic segmentation capsules network. In International Con-
ference on Medical Image Computing and Computer-Assisted Intervention. Springer,
2019. 18

Cao, H., Y. Wang, J. Chen, D. Jiang, X. Zhang, Q. Tian, and M. Wang (2021).
Swin-unet: Unet-like pure transformer for medical image segmentation. arXiv preprint
arXiv:2105.05537. 45, 66

Chaitanya, K., E. Erdil, N. Karani, and E. Konukoglu (2021). Local contrastive loss
with pseudo-label based self-training for semi-supervised medical image segmentation.
arXiv preprint arXiv:2112.09645. 42

Chen, J., H. Yu, R. Feng, D. Z. Chen, et al., Flow-mixup: Classifying multi-labeled
medical images with corrupted labels. In 2020 IEEE International Conference on Bioin-
formatics and Biomedicine (BIBM). IEEE, 2020. 47

Chen, L.-C., G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille (2017).
Deeplab: Semantic image segmentation with deep convolutional nets, atrous convo-
lution, and fully connected crfs. IEEE transactions on pattern analysis and machine
intelligence, 40(4), 834–848. 2

Chen, X., Y. Yuan, G. Zeng, and J. Wang, Semi-supervised semantic segmentation
with cross pseudo supervision. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition. 2021. 44, 45, 66, 70, 74, 75, 77, 78

Chollet, F. et al. (2015). keras, github. GitHub repository, https://github.
com/fchollet/keras. 31
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