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Abstract

The problem of spectral congestion considers radar and communication system (Rad-

Comm) spectrum sharing as an inevitable solution. As these systems share the spec-

trum, they cause interference to one another. Many researchers started suggesting

various solutions to address the in-band interference. Towards this step, addressing

the problem from the radar perspective, this thesis makes two primary contributions.

The first one is detecting the target-reflected radar signals in the presence of inter-

ference from an in-band cyclostationary digital modulated wireless communication

signal. The Neyman-Pearson (NP) based optimum detection rules have been derived

for the equalization of the interference from in-band communication systems. Sub-

optimum detection structures are also derived with the assumption that the in-band

interference is a white stationary time-invariant Gaussian process. Further, consid-

ering the equalization, modified CFAR receiver structures are also presented. By

considering the mathematical models for cyclostationary or periodic in-band interfer-

ence, the performances of the optimum, sub-optimum and modified CFAR detectors

are quantified analytically in terms of detection and false alarm probabilities. The

resulting receiver operating characteristic (ROC) curves are analysed as a function of

the signal-to-interference ratio (SIR).

Another important contribution considered in this research investigation is target

tracking performance of a radar system in the presence of in-band wireless commu-

nication transmitters (IWCTs). The distributed radars present in the surveillance

region surrounded by multiple in-band wireless communication transmitters (IWCTs)

scenario is considered. A new measurement model is proposed by considering both

radar returns and returns due to IWCTs. The tracking performance is evaluated using

the global nearest neighbour (GNN) tracker with an extended Kalman filter (EKF)

for the received measurement set. The track-to-track association (T2TA) is performed

to identify the true target track on multiple tracks produced owing to the presence

of IWCTs. The track-to-track fusion (T2TF) is carried out to improve the true tar-

get estimates. The position root mean square error (PRMSE) is used to quantify

the target estimation accuracy. The posterior Cramer–Rao lower bounds (PCRLBs)

i



quantifying the achievable estimation accuracies are also presented. The simulation

results reveal that the T2TA of tracks from multiple radars identify the true target

track, and T2TF improves the PRMSE.

As an additional third contribution, the spectrum sharing radar (SSR) is consid-

ered that uses the total available bandwidth (BW) for both radar-based sensing and

communication. Unlike traditional radar, the SSR divides the total available BW into

radar-only and mixed-use bands. Taking such BW sharing into account, this research

investigates the performance of SSR in an information-theoretic sense. To evalu-

ate performance, mutual information (MI), spectral efficiency (SE), and capacity (C)

metrics are used. Initially, a clean environment (no multipath) is considered in order

to evaluate performance metrics in the mixed-use band with and without successive

interference cancellation (SIC). The MI and SE are calculated in the mixed-use band

with and without successive interference cancellation (SIC). Also, the performance

metrics are extended to account for the multipath environment. In addition, the MI,

SE, and C of traditional radar and communication systems are taken into account to

compare the performance of SSR.

Furthermore, this research presents target estimation performance improvement

in the cooperative RadComm spectrum sharing system model. Due to cooperation,

target returns results from the communication transmitter are also exploited to im-

prove the target estimation performance. The Cramer-Rao lower bound (CRLB)

is considered as a metric to evaluate the target estimation performance. The co-

operative system model is compared with the non-cooperative RadComm spectrum

sharing operation and stand-alone radar system operation. Simulation results reveals

that the cooperative RadComm spectrum sharing system model provides improved

performance compared to non-cooperative and stand-alone operations.

ii
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Chapter 1

Introduction

1.1 Radar and communication system (RadComm)
spectrum sharing

Due to rapid advances in information and communication technologies during the

last decade, the available spectrum has become congested, and there are demands

for higher radio frequency (RF) spectrum for upcoming 5G, 6G and other commu-

nications. Further, the increase in the usage of various wireless technologies yielded

spectrum scarcity (Forecast et al., 2019). Due to this, wireless users’ accommoda-

tion and providing good quality of service as per their requirements are becoming

extremely difficult. The significant portion of RF spectrum reserved for radar sys-

tems dedicated to sensing applications. There is a need to explore a way to utilize/

share the existing radar bands for communication system purposes. This necessity has

created huge interest among radar engineers to explore this further. Sharing the un-

derutilized, permanently allocated, and a large amount of available radar bandwidth

with the communication systems serves the wireless user demands and improves the

effective utilization of the spectrum (Blunt and Perrins, 2018).

A radar system transmits a known signal and detects target reflected signals in a

wireless environment (Richards et al., 2010). In contrast, the main aim of a commu-

nication system is the transfer of information from one node to another via a wireless

channel with known or estimated characteristics (Lathi and Ding, 2018). As these

two functionalities conflict with each other, these systems are designed in isolation by

imposing constraints from regulatory authorities in respective countries (Paul et al.,

2017). This isolated approach does not inherently afford to exploit the mutual benefits
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of separate radar and communication systems or mitigate the interference between

them.

The spectrum sharing between radar and communication system (RadComm) is

becoming inevitable because of increased wireless usage (Forecast et al., 2019; Blunt

and Perrins, 2018; Paul et al., 2017; Zhang et al., 2021a). The RadComm spectrum

sharing research is broadly categorized into two sub-topics: radar-communication

coexistence (RCC) and dual-functional radar-communication (DFRC) system design

(Blunt and Perrins, 2018). In RCC, the radar and communication systems work

independently in a cooperative/ non-cooperative manner within the same frequency

band. As these systems operate in the same frequency band, they cause interference

to each other. On the other hand, in DRFC systems, a single system possesses both

radar and communication system functionalities. Since radar and communication

are accommodated within the same system, interference occurs. The first category

of research aims to develop efficient interference management techniques so that the

two systems can operate without undue interference. Alternatively, DFRC techniques

focus on designing joint systems that simultaneously perform wireless communication

and remote sensing. This benefits both sensing and signalling operations via real-time

cooperation, de-congests the RF environment and allows a single hardware platform

for both functionalities.

Thus, owing to the spectrum scarcity, the radar and communication system sharing

a joint spectrum or operating in the same band finds increasing impetus and poses

exciting challenges to radio frequency (RF) engineers.

1.2 Literature review

Multiple techniques have been proposed in the literature to address the problems re-

sulting from the spectrum sharing of radar and communication systems and make it a

reality. These approaches address the problem from the communication system point

of view (Nartasilpa et al., 2018; Zheng et al., 2018; Carrick et al., 2019), from the radar

system point of view (Zilz and Bell, 2018; Shajaiah et al., 2015; Zilz and Bell, 2019),

and by considering the joint dual function radar and communication system (Liu

et al., 2018; Khawar et al., 2018; Qian et al., 2018). Some other architecture-oriented
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algorithms address the same problem from the transmitter side (null projection, opti-

mal waveform design and time division scheduling (Kuan-Wen Huang et al., 2015; Shi

et al., 2018; Cheng et al., 2018)), from the receiver side (spatial, temporal and spec-

tral based processing (Paisana et al., 2018, 2017; Herschfelt and Bliss, 2018)), and by

developing a joint system (dual-function system, joint waveform and joint detection

(Ahmed et al., 2018; Hassanien et al., 2016)).

Nevertheless, in literature, the RadComm spectrum sharing research seems to exist

in two different directions (Munir et al., 2022). The first category of research addresses

the problems arising from the independent operation of radars and communication

devices in the same spectrum in a cooperative/ non-cooperative manner (Zheng et al.,

2019). The second direction contributes to developing a joint system with radar

and communication functionalities (Hassanien et al., 2019; Ma et al., 2020). This

section outlines these two research directions to place this dissertation in the context

of existing work. Also, this section reviews the literature on radar target detection

and tracking algorithms to maintain relevance to the work carried out.

1.2.1 Radar-communication coexistence (RCC)

The effect of an unmitigated radar system interference on a communication system

receiver is evaluated in (Nartasilpa et al., 2018) in terms of bit error rate (BER).

Apart from that, to minimize the BER, complex constellation designs are also pro-

posed in (Nartasilpa et al., 2018). A spatial processing technique that mitigates

the in-band main lobe wireless interference is proposed in (Geng et al., 2015). This

beamforming technique uses the principle of orthogonality in a coherent multi-input

multi-output (MIMO) radar. Taking advantage of an array of antennas at the receiver

end and signal processing from a combined temporal, spectral and spatial perspec-

tive, a multi-domain collaborative-based filter (MDCBF) is proposed in (Mao et al.,

2016). Exploiting the concept of cognitive radio (CR) and taking advantage of a

MIMO radar structure, the theoretical feasibility of interference mitigation between

spectrum-sharing radar and communication systems is shown in (Deng and Himed,

2013). The effect of interference in RCC, from a communication system perspective,

is presented in (Nartasilpa et al., 2016). Besides, in (Bică and Koivunen, 2019) it is

assumed that the radar and communication system are located apart; the target time
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delay parameter is estimated by designing the optimal waveform for the radar system,

with a constraint on Cramér–Rao lower bound (CRLB). Also, it is demonstrated that

using additional constraints like transmitted power and subcarrier power ratio (SPR)

while designing the optimized radar waveform reduces delay ambiguities. In (Carrick

et al., 2019), using the concept of cyclostationarity, a time-varying frequency shift

(TV-FRESH) filter is proposed to decode orthogonal frequency division multiplexing

(OFDM) signals in the presence of additive linear frequency modulated (LFM) pulsed

radar interference. Moreover, the efficacy of the proposed filter was shown in the form

of BER curves.

Furthermore, the statistical model for in-band wireless communication interfer-

ence and its effect on the adaptive threshold-based detector at the radar receiver is

analysed in (Zilz and Bell, 2018). The results in (Zilz and Bell, 2018) show that

interference follows non-Gaussian statistics, and the detection of targets using a cell

averaging detector provides inadequate performance in identifying the target and

demands for alternative and efficient detection schemes. A novel whitening filter

followed by matched filter detector is proposed to detect the radar targets in the

presence of in-band communication interference (Zilz and Bell, 2019). In (Martone

and Amin, 2021), considering the RadComm spectrum sharing in a cooperative and

non-cooperative manner, a thorough literature survey and future research directions

are presented.

1.2.2 Dual-functional radar-communication (DFRC)

A comprehensive survey of RadComm spectrum sharing is provided in (Paul et al.,

2017; Zhang et al., 2021a), and (Zhang et al., 2021b). The (Hassanien et al., 2016)

and (Sahin et al., 2017) discuss using a single radar waveform that can embed the com-

munication symbols for communication purposes and vice-versa. Especially in (Sahin

et al., 2017), a novel continuous phase modulation (CPM) based information-bearing

waveform is proposed, without degrading the spectral characteristics, for improv-

ing radar target detection and maintaining high power with constant envelope con-

straint for long-range target visibility. In another communication, the single-input

single-output (SISO) and multi-input multi-output (MIMO)-based architectures for

the joint RadComm have been investigated (Qian et al., 2018). The system design
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in (Qian et al., 2018) is based on the maximization of signal-to-interference-plus-noise

ratio (SINR) at the radar receiver. Further, in (Qian et al., 2018), by maintaining

the achieved SINR at the radar receiver, the maximization of communication rate

constraint is additionally imposed for communication purposes. Authors in (Bliss,

2014) have derived the novel estimation and information rate bounds for a DFRC

system, and its performance is evaluated using the derived bounds. Besides, the ex-

tension of joint performance bounds with clutter is presented in (Chiriyath and Bliss,

2015). In addition, the same performance bounds have been extended for the case of

frequency-modulated continuous-wave (FMCW) radar (Paul and Bliss, 2015).

Further, in (Tian et al., 2019b), a joint RadComm is considered, where overall

bandwidth is shared among the radar and communication system in an independent

coexistence, and a partial band coexistence manner is presented. In an independent

coexistence, the overall BW of is split into two subbands one for radar only operation

and other for communication system operation. Whereas in partial band coexistence,

the joint RadComm system can operate radar and communication functions in the

same band. Moreover, in (Tian et al., 2019b), the performance is analysed in terms of

mutual information (MI) and communication data rate. In (Tian et al., 2019a), the

performance is evaluated in the form of a localization estimation rate and commu-

nication data rate by considering the three different cases (isolated sub-band (ISB),

communication isolated sub-band (CIB), and radar isolated sub-band (RIB) situa-

tion). Here, the localization estimation rate is analogous to the data information rate

of the communication system. In (Sneh et al., 2022), a software prototype implemen-

tation of IEEE 802.11ad based joint RadComm transceiver has been provided and its

performance is analysed. Using tools from stochastic geometry (SG), in (Ram et al.,

2022) the network optimization of joint RadComm system is performed to increase

the system’s throughput.

The DFRC system design for automotive applications has been studied in (Zhang

et al., 2021c; Tang et al., 2021). The joint transmit waveform design and receiver

design for the DFRC system are studied in (Tsinos et al., 2021). In contrast to other

works, in (Tsinos et al., 2021), the radar performance is optimized without know-

ing a predetermined radar beam pattern. In (Tian et al., 2019), the performance

of the DFRC systems is analysed in terms of radar mutual information (RMI) and
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communication data rate (CDR) for radar and communication systems. The analysis

assumes that the DFRC system transmits/receives the radar and communication sig-

nals on the isolated bands (isolation-based scheme) and the same band (sharing-based

scheme). Further, in (Tian et al., 2019) for an isolated-based scheme, the RMI/CDR

maximization of the DFRC system is solved independently with the constraint on

optimal power allocation solutions. At the same time, the joint maximization of

RMI/CDR for the DFRC system is solved for a sharing-based scheme (Tian et al.,

2019). An ultra-wideband chaotic radar with wireless synchronization command is

proposed in (Wang et al., 2020) for target localization and tracking.

1.2.3 Target Detection and Tracking

The detection and location of an object/ target by means of a return signal is the ma-

jor purpose of a radar system. The Constant-False-Alarm Rate (CFAR) detector is an

important detection criteria in radar applications. CFAR sets an adaptive threshold

(in contrast to fixed threshold Neyman-Pearson (NP) detector) to identify a radar

target buried in unwanted interference (Richards, 2014). The CFAR threshold is esti-

mated from the data in the neighbouring cells by maintaining the desired false alarm

probability. Different CFAR detectors are present in the literature cell-averaging

(CA), Smallest-of CA-CFAR, Greatest-of CA-CFAR, trimmed mean (TM) or cen-

sored (CS) CFAR, order statistic (OS) CFAR (Richards, 2014; Richards et al., 2010;

Levanon, 1988). The detection performance of the CA-CFAR detector is presented

in (Hansen and Ward, 1972). The performance of the linear-law-based CA-CFAR is

evaluated in (Raghavan, 1992), and it is compared with the square-law-based detector.

In (Rohling, 1983), the CFAR threshold schemes to identify the multiple targets in

clutter background is presented. To identify the targets in non-homogeneous clutter

environments, an intelligent, dynamic threshold calculation based variability index

CFAR is developed (Smith and Varshney, 2000). To improve the safety of low-flying

objects equipped with millimeter-wave radar, a first-order difference (FOD)-CFAR

method is proposed in (Jiang et al., 2016).

Target tracking is an essential requirement, where one or more sensors are em-

ployed to estimate the time-varying kinematics of targets within the given surveillance

region. The measurements are from diverse sources such as the targets of interest,

6



clutter, etc. The main objective of target tracking is to partition the received mea-

surements and form tracks for the targets of interest by estimating parameters like

position, velocity, acceleration, turn, intensity, etc. Target tracking typically con-

tains filtering, data association, and track management. The Kalman filter (KF) pro-

vides an optimal estimate under the considerations of linearity and Gaussian distribu-

tion (Bar-Shalom et al., 2004). Whereas, converted Kalman filter, extended Kalman

filter (EKF), cubature Kalman filter (CKF), unscented Kalman filter (UKF), and

particle Kalman filter (PKF) (Bar-Shalom et al., 2004), Interactive multiple models

(IMM), etc.. (Bar-Shalom et al., 2011) are widely used to address the non-linearity.

When it comes to the data association, nearest neighbour (NN) and global near-

est neighbour (GNN) are traditional association methods, which use a single mea-

surement out of all available measurements falling within the validation gate (Sinha

et al., 2012). In contrast, the probabilistic data association (PDA) method applies the

weighted sum of all the measurements within the validation gate (Bar-Shalom et al.,

2009). The optimal approach for target tracking was demonstrated using a multiple

hypothesis tracker (MHT) under the assumption of propagating all the hypotheses

into tracks (Blackman, 2004). Logic-based track maintenance and quality-based track

maintenance are popularly used for track management (Jiang et al., 2014).

The target tracking can be performed by using single/multiple sensors either in

centralized or distributed configurations (Bar-Shalom et al., 2011). In distributed

target tracking, track-to-track association (T2TA) is an important block to distin-

guish and assign the tuples corresponding to the targets (Bar-Shalom, 1981). The

tuples of tracks reported by the T2TA module are fused to attain the global esti-

mates. Generally, track-to-track fusion (T2TF) is classified into correlation free and

correlation-based fusion approaches (Smith and Singh, 2006). The correlation-based

fusion technique requires the exact cross covariances among the local tracks of the

same target. Hence, a large amount of information exchange is required between the

fusion centre (FC) and the local trackers, making this method realizable for practi-

cal scenarios (Bakr and Lee, 2017). Theoretically, information matrix fusion (IMF)

or centralized tracking provides an optimal estimate/fused track (Bar-Shalom et al.,

2011). The correlation-free fusion-based algorithms work independently of cross co-

variances, which allow the fusion to be performed at any local tracker without the
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participation of the fusion centre. The ellipsoidal intersect (EI) (Sijs et al., 2010), co-

variance intersect (CI) (Chen et al., 2002), sampling covariance intersect (SCI) (Tian

et al., 2010) etc., comes under the correlation free fusion methods. Besides, these

three methods provide the fused estimate by approximating the intersection region

of individual ellipsoids. Among them, the EI, CI works better for two sensor-based

fusion. On the other hand, the SCI has more flexibility to fuse the data from more

sensors.

1.3 Motivation and research objectives

Most of the literature in RadComm spectrum sharing primarily focuses on detec-

tion, waveform design perspective, and deriving the theoretical bounds. The target

tracking-based contributions in RadComm spectrum sharing are rarely reported. To

realize efficient spectrum sharing RadComm systems, there is a need to further ex-

plore and develop alternative and effective detection and tracking algorithms. In this

connection, there is a necessity to provide improved detection schemes to address the

problem of in-band communication interference in RadComm spectrum sharing. In

addition, there is a strong requirement to design and evaluate the performance of

target tracking algorithms in the presence of in-band wireless communication trans-

mitters (IWCTs). Furthermore, the dual functional RadComm systems, capable of

utilizing the same BW for both radar and communication purposes are becoming

popular, there is a need to analyse the performance of such systems. With this mo-

tivation, the proposed research intends to develop alternative and efficient detection

and tracking algorithms suitable for the RadComm spectrum sharing scenario. Based

on this, the objectives of the proposed research are as follows:

• Detection of radar targets in the presence of in-band wireless communication

system interference.

• Tracking of radar targets with in-band wireless communication system interfer-

ence.

• Performance analysis/ improvements in radar and communication system spec-

trum sharing scenario.
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1.4 Proposed approaches for each identified research
objective

1.4.1 Detection of radar targets in the presence of in-band
wireless communication interference

This research work addresses the problem of in-band interference in RadComm spec-

trum sharing at the detection level from a temporal radar signal processing perspec-

tive. This work considers the problem of detection of target reflected radar signal

by exploiting the cyclostationary features of in-band wireless communication inter-

ference. Instead of detecting the cyclostationary signals in additive noise (Gardner

et al., 2006; Karami et al., 2015), this work addresses the problem of detecting target-

reflected radar signals in the presence of cyclostationary wireless communication inter-

ference. First, with three different assumptions that the target-reflected radar signal

is a) deterministic, b) with a random phase, and c) random, the Neyman-Pearson

(NP) based optimum, missynchronized, and sub-optimum detection rules are derived,

and their structures are presented. The optimum detector is the one where proper

equalization is made to compensate for the interference component by passing through

the equalizer/whitening filter and further processed for detection. If the equalization

to the interference component is improper/ missynchronized, it is treated as missyn-

chroized detection. Next, instead of equalizing/ compensating the interference, if it

is treated as white Gaussian and further proceeded for detection, then it is called

the sub-optimal detection. Second, in each case, the performance metrics such as

detection and false alarm probabilities are derived. Third, in each case, a thorough

performance analysis is conducted for the new detection structures. Fourth, for the

detection of random signals with in-band interference, a modified CFAR detector is

proposed, and it has been compared with the NP based detector. The development

follows a similar signal processing/detection structure as presented in (Zilz and Bell,

2019), where the main focus is to derive an equalizer/whitening filter with the de-

terministic target return signal assumption. In contrast, the focus is not on deriving

an equalizer/whitening filter. In this work, given the equalizer/whitening filter pa-

rameters, the detection structures are developed, and their performance analysis is

conducted.

9



1.4.2 Tracking of radar targets with in-band wireless commu-
nication interference in RadComm spectrum sharing

A RadComm spectrum sharing scenario is considered, where multiple mono-static

radars are present over a surveillance region to detect the radar targets and are sur-

rounded by multiple in-band wireless communication transmitters (IWCTs). Even

though a single target is present in the scenario, the radar receives multiple measure-

ments owing to IWCTs. Hence, there is a need to distinguish true target measure-

ments from all the evolved measurements. Regarding, this research work considers

the effect of in-band wireless communication interference on target tracking in Rad-

Comm spectrum sharing. A new measurement model is proposed for multiple radars

surrounded by the multiple IWCTs scenario. This new measurement model con-

siders all the measurements evolved due to radar, IWCTs, and false alarms. This

research work proposes to use distributed radars with a local tracker by considering

all the available measurements and performing target tracking using the extended

Kalman filter (EKF) and global nearest neighbour (GNN) association. The work sug-

gests considering all the local tracks evolved from all sensors and performing an S-D

assignment-based track-to-track association (T2TA) to identify the true target tracks

rather than falsified tracks evolved due to the presence of IWCTs. Once the actual

tracks are separated from all the grown tracks using T2TA, the track-to-track fusion

(T2TF) is performed to achieve the global tracks. Here, the correlation-free fusion

algorithms (ellipsoidal intersect (EI), covariance intersect (CI), and sampling covari-

ance intersect (SCI)) are used for fusion. The target estimation accuracy is quantified

using position root mean square error (PRMSE) and compared with its achievable

theoretical lower bounds (PCRLBs).

1.4.3 Performance analysis/ improvements in RadComm spec-
trum sharing scenario

This work considers spectrum sharing radar (SSR), assuming that the total BW is

split for radar-only and mixed-use purposes. The SSR performance is analysed us-

ing MI and SE metrics from the radar perspective in an information-theoretic sense

and capacity (C) metric is considered from communication perspective. First, the

MI of SSR is evaluated for the allocated radar-only BW. Next, the MI of SSR in
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a mixed-use band is evaluated in two cases, with SIC and without SIC. Hence, the

total MI is calculated as a summation of MI in radar-only and mixed-use bands. In

addition to MI, the SE metric is introduced to evaluate the spectral utilization of the

SSR. In contrast to MI and SE, the communication C is calculated for the mixed-use

band (since it is the only band, which carries communication system information).

To comprehensively look into the problem, the multipath environment between the

target-to-receiver of SSR is also incorporated and evaluated the SSR performance

pertaining to MI, SE, and C. Finally, the performance of the SSR is compared with

the traditional radar and communication system. Further, the cooperative RadComm

spectrum sharing system model is considered. With the cooperation, the complete

statistics of the communication signal are shared with the radar. It helps radar in

using the target reflected signals due to the communication transmitter, which in

turn improves the target estimation performance. This research work presents the

target estimation performance in terms of Cramer-Rao Lower Bound (CRLB) as a

performance metric. To show the efficacy of the cooperative nature, the target estima-

tion performance is also calculated for the non-cooperative nature of the RadComm

spectrum sharing case and stand-alone radar system operation case.

All the results in this research work are obtained using MATLAB R2020b on a

computer with 16 GB RAM Intel(R) Xeon(R) @ 3.50GHz.

1.5 Contribution of the thesis

In this thesis, some of the important problems associated with radar and communi-

cation system (RadComm) spectrum sharing are addressed from a radar perspective

at the detection and tracking level. The key contributions of the thesis are as follows:

• Detection of radar targets with in-band communication interference

– A new Neyman-Pearson (NP) based optimum, missynchronized, sub-optimum,

and modified CFAR detection structures are proposed to detect radar tar-

gets in the presence of in-band communication interference.

– The detection and false alarm probabilities are derived considering the

target-reflected radar signal as deterministic, signal with a random phase,

and completely random signal cases.
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– The performance of the proposed detectors is analysed in terms of receiver

operating characteristic (ROC) curves.

• Tracking of radar targets with in-band communication interference

– A new measurement model is proposed for multiple radars surrounded by

the multiple IWCTs scenario and performed distributed tracking.

– An S-D assignment-based track-to-track association (T2TA) is formulated

to identify the actual target tracks.

– The track-to-track fusion (T2TF) is performed using the correlation free

fusion algorithms ellipsoidal intersect (EI), covariance intersect (CI), and

sampling covariance intersect (SCI) to improve the target estimation accu-

racy.

• Performance analysis/ improvements in RadComm spectrum sharing

– The spectrum sharing radar (SSR) is considered assuming the available

bandwidth is split for radar-only use and mixed-use of both radar and

communication purposes. Also assumed that there exists a multipath be-

tween the target-to-radar receiver channel.

– The performance of the SSR is analysed using MI and SE metrics from

the radar perspective, the capacity (C) metric from the communication

perspective.

– The overall MI of SSR is calculated as a summation of MI in radar-only

band plus MI in mixed usage band. The mixed usage band MI is further

evaluated using with/without SIC. The metric is compared against the

traditional radar.

– Similar to MI, the overall SE of the SSR is also calculated and compared

with traditional radar.

– The capacity metric of SSR is also calculated in mixed-use band and com-

pared with traditional communication system.

– The target estimation performance improvement is shown by considering

the new cooperative RadComm spectrum sharing system model in terms
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of CRLB as a performance metric.

1.6 Overview

The rest of the thesis is organised as follows. Chapter 2 presents the detection of

radar targets in the presence of in-band wireless communication interference. Chap-

ter 3 deals with the target tracking part. Even though a single target is present

in the surveillance, the problem of receiving multiple tracks at the radar receiver

owing to in-band wireless communication transmitters (IWCTs) is addressed. Chap-

ter 4 presents the performance analysis of spectrum sharing radar (SSR). Here, the

SSR shares the bandwidth (BW) among the radar-only and mixed-use of both radar

and communication purposes is considered, and the performance is analysed in an

information-theoretic perspective. While Chapter 5 discusses the target estimation

performance improvement in cooperative RadComm spectrum sharing. Finally, the

concluding remarks and future research directions are presented in Chapter 6.

Further, in this thesis, all the scalar variables are represented with regular font,

vectors with bold font small characters and matrices with bold font upper case char-

acters.
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Chapter 2

Detection of Radar Targets in the
Presence of In-band Wireless
Communication System Interference

This chapter presents the detection of target-reflected radar signals in the presence

of in-band wireless communication system interference. Considering the three differ-

ent cases of target-reflected radar signals, namely, deterministic signals, signals with

random phase, and completely random signals, the optimum detection rules are de-

rived, and the corresponding receiver structures for the equalization of the interfering

signal are presented. Further, considering the equalization, modified CFAR receiver

structures are also presented. The results are quantified using detection, false alarm

probabilities, and corresponding receiver operating characteristic (ROC) curves.

2.1 Motivation and system model

In this section, the motivation for this study and the system model assumed therein are

presented. Figure 2.1 illustrates the in-band operation of a radar and communication

system with RadComm spectrum sharing. In Figure 2.1, where the radar is trying

to detect the targets of interest (radar system functionality), a mobile station (MS)

and a base station (BS) are communicating with each other (communication system

functionality) in in-band. As these systems operate in the same band, they cause

interference to one another, which provides the motivation for this study. As the

primary interest of this research is from a radar perspective, Figure 2.2 shows the

radar receiver structure for the RadComm spectrum sharing system model.

The received signal at the radar receiver, shown in Figure 2.2, consists of the sig-
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Figure 2.1: System model (in-band operation of radar and communication systems).
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Figure 2.2: Radar receiver structure for a spectrum-sharing radar.

nal of interest, in-band interference and noise. The problem of detecting the radar

signal, corrupted by in-band cyclostationary digital modulated wireless communica-

tion and noise, can be modelled as a conventional hypothesis testing problem. Un-

der hypothesis H1, the received signal (denoted by r(t)) consists of the signal of

interest (denoted by s(t)), with additive in-band cyclostationary digital modulated
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wireless communication interference (denoted by sI(t)), and noise (denoted by w(t)).

Whereas, under hypothesis H0, the received signal consists of only the interference

plus noise. The mathematical equivalent of this conventional hypothesis testing prob-

lem is given by

r(t) =

 s(t) + sI(t) + w(t), underH1,

sI(t) + w(t), underH0,
t ∈ T (2.1)

where T is the period of observation of r(t).

The in-band wireless communications interference sI(t) can be interpreted as the

sum of N independent communication sources, with each source emitting M data

symbols. This allows us to write sI(t) as (Proakis and Salehi, 2007; Zilz and Bell,

2018)

sI(t) =
∑
N

∑
M

sIn(mTm)g(tn −mTm) (2.2)

where Tm is the pulse duration of the mth symbol and g(.) is the shaping waveform,

which can be a rectangular pulse or intersymbol interference (ISI) tolerable raised

cosine pulse (Proakis and Salehi, 2007).

As the intensity of sI(t) is much higher than the noise level (Zilz and Bell, 2018),

in general, the conventional hypothesis testing problem given in (2.1) can be reduced

to

r(t) =

 s(t) + sI(t), underH1,

sI(t), underH0,
t ∈ T (2.3)

By multiplying the received signal r(t) with a known time-varying factor ⟨sI0 ⟩
sI0 (t)

, the

cyclostationary time-varying intensity sI(t) is converted into the optimum detection of

a white stationary process s̃I(t) with time-invariant intensity ⟨sI0⟩ =
∫
T
sI0(t)dt. Here,

sIT̃ (t) = sI(t+ T̃ ), T̃ = T, 2T, . . ., T is the period and sI0(t) represents for the initial

period. The time-varying factor can be found by training (e.g., switch-off the radar

transmitter and sense/listen to the in-band wireless communication interference) the

radar receiver for some period of time (Zilz and Bell, 2019). The process of multiplying

r(t) with a known time-varying factor ⟨sI0 ⟩
sI0 (t)

can be interpreted as an output of an

equalizer/whitening filter. The equivalent hypothesis testing problem is

r̃(t) =

 s̃(t) + s̃I(t), underH1,

s̃I(t), underH0,
t ∈ T (2.4)
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where r̃(t) is defined as

r̃(t) =

(
1

a(t)

)
r(t), (2.5)

and a(t) is defined as

a(t) ≜
sI0(t)

⟨sI0⟩
, (2.6)

while s̃(t) and s̃I(t) can be defined similarly. After passing through the equaliz-

er/whitening filter, the optimum detection of the conventional hypothesis testing

problem defined in (2.1) is equivalent to the detection of a signal of interest in white

stationary process of time-invariant intensity given in (2.4) because there exists a

one-to-one mapping between r(t) and r̃(t).

The sub-optimum detection of the conventional hypothesis testing problem defined

in (2.1) is given by

r(t) =

 s(t) + s̃I(t), underH1,

s̃I(t), underH0,
t ∈ T (2.7)

which means that the sub-optimum detector does not apply any equalization to the

received signal r(t). Instead, it interprets r(t) as a summation of the target sig-

nal and the white stationary time-invariant Gaussian interference (under H1). The

time-varying cyclostationary interference sI(t) can be replaced with its time-average

constant value ⟨sI0⟩. This, in turn, replaces the time-varying autocorrelation of sI(t)

with the time-invariant autocorrelation of s̃I(t), given by

Rs̃I s̃I (τ) = E [sI(t1)sI(t2)] = ⟨sI0⟩δ(τ) (2.8)

In this work, assuming the three cases for return signal as a) deterministic, b)

with random phase, and c) random, for each case, the optimum, missynchronized,

and sub-optimum detectors are presented. The optimum detector is the one where

proper equalization is made to compensate for the interference component by pass-

ing through the equalizer/whitening filter and further processed for detection. If the

equalization to the interference component is improper/ missynchronized, it is treated

as missynchroized detection. Next, instead of equalizing/ compensating the interfer-

ence, if it is treated as white Gaussian and further proceeded for detection, it is called

the sub-optimal detection. The sub-optimal detection is considered because it is the

traditional method (composite signal consisting of the intended signal component plus
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white Gaussian noise) considered in the radar target detection process and to com-

pare with the proposed optimal detector. In optimum detection, it is proposed that

the interference is compensated by passing through the equalizer, but compensation

need not be perfect all the time. Sometimes, it may be improper/missynchronized, to

quantify its effect, and to compare with the optimal and sub-optimal detectors, the

missynchroized detection scheme is also considered.

The hypothesis testing problem for optimum, missynchronized detection is given

by (2.4), and for sub-optimum detection is given by (2.7). To derive the decision rules

for the assumed cases, the Neyman-Pearson (NP) criterion based minimization of the

probability of miss detection for a tolerable false alarm value is used (Kay, 1998). For

the assumed NP criterion, the test is to compare the likelihood ratio to the threshold

(Kay, 1998; Poor, 2013; Van Trees et al., 2013). Therefore, for each assumed case of

target reflected signal, the detection rule follows

Λ[{r(t) : t ∈ T}]
H1

≷
H0

γ, (2.9)

where Λ[.] is the likelihood ratio or sufficient statistic, defined in (2.10), and γ is

the threshold that depends on the false alarm probability values and the signal-to-

interference ratio (SIR) levels. Then,

Λ[{r(t)}] ≜
fR/H1(r/H1)

fR/H0(r/H0)
, (2.10)

where f(.)(.) denotes the corresponding conditional density function.

The performance of the receiver/detector is evaluated in terms of detection and

false alarm probabilities, PD, PFA, respectively. The probability of miss detection

PM = 1−PD can also be used as a measure of evaluation in place of PD. Also, a mod-

ified CFAR receiver structure is proposed, and its performance analysis is presented.

Further, the performance of the modified CFAR detector is compared with NP based

detector.

2.2 Detection of target reflected radar signals and
performance analysis

In this section, the detection rules are derived, and their structures are presented for

the three different assumed cases of target reflected radar signals. The performances
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of the resulting detection structures are thoroughly analysed in terms of PD, PFA,

and receiver operating characteristic (ROC) curves.

2.2.1 Case I: Deterministic signals

The detection of completely deterministic signals in an in-band communication inter-

ference, which is unrealistic and assumed only to demonstrate the derivation process,

is considered. The hypothesis testing for the scenario considered is given in (2.1) with

s(t) being defined as

s(t) = A cos

(
2πMt

T

)
, t ∈ T (2.11)

where M is a positive integer, A is the known amplitude and T is the time period.

Therefore, the optimum detector for (2.1), which is equivalent to (2.4), is given by

(2.9) with

Λ[{r(t)}] =
∫
T

{[s(t)]/a(t)}r(t) dt (2.12)

γ = ⟨sI0⟩ ln(λ) +
∫
T

{[s2(t)]/a(t)} dt (2.13)

where s(t) is given in (2.11), a(t) is given in (2.6) and λ is a deterministic quantity with

prior probabilities. Equation (2.12) represents a whitening filter/equalizer followed

by a correlator/matched filter receiver. Based on (2.12), the receiver structure for

the case of detecting deterministic signals with an in-band interference is shown in

Figure 2.3. The corresponding equivalent mathematical form of the receiver structure

is shown in Figure 2.4.

Correlator/

matched filter

Threshold

comparator

Equilizer/

whitening Filter
Decision

Figure 2.3: Optimum receiver structure for a deterministic signal buried in in-band
wireless communication interference.

The performance of the receiver in (2.12) is specified by the ROC curves (Richards,

2014). Define the weighted energy as

Ea ≜
∫
T

[s2(t)]/a(t) dt (2.14)
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Figure 2.4: Mathematical form of an optimum receiver structure for a deterministic
signal buried in in-band wireless communication interference.

As per the NP criterion, the threshold γ in (2.13) is determined from the proba-

bility density of Λ[{r(t)}], defined in (2.12). From (2.12), we have

E (Λ|H0) = 0, E (Λ|H1) = Ea and Var (Λ) =
⟨sI0⟩Ea

2
(2.15)

where E(.) denotes the expectation operation, Var(.) denotes variance, and Ea is given

in (2.14). Hence, the performance of the receiver is given by (Whalen, 2013)

PFA =
1√
2π

∫ ∞

u

exp{−x2/2} dx (2.16)

PD =
1√
2π

∫ ∞

u−αa

exp{−x2/2} dx (2.17)

where

u ≜ γ

(
2

⟨sI0⟩Ea

)1/2

(2.18)

α2
a ≜

2Ea
⟨sI0⟩

(2.19)

αa in (2.19) is interpreted as the SIR value.

Further, (2.16) and (2.17) is written as

PFA =
1

2
erfc

(
u√
2

)
(2.20)

PD =
1

2
erfc

(
u− αa√

2

)
(2.21)

From (2.20) and (2.21), the PD as a function of PFA is given by

PD =
1

2
erfc

(
erfc−1 (2PFA)−

αa√
2

)
(2.22)

The sub-optimum detector for the hypothesis testing problem defined in (2.1) for

the case of s(t) given in (2.11) will replace sI0(t) with ⟨sI0⟩ in (2.12) and (2.13). The

sub-optimum detector structure follows a similar structure as the optimum detector
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shown in Figure 2.4, with a(t) = 1 or no equalization/whitening effect . The perfor-

mance equations for the sub-optimum detector are given in (2.16) and (2.17), with u

and αa being replaced with ũ√
J

and α1√
J
, respectively. Then, ũ is given by

ũ ≜ γ

(
2

⟨sI0⟩E1

)1/2

(2.23)

where E1 is equal to Ea given in (2.14) with a(t) = 1. That is,

E1 = Ea

∣∣∣
a(t)=1

=

∫
T

{s2(t)} dt (2.24)

and

J ≜

∫
T
[s2(t)]a(t)dt∫
T
[s2(t)]dt

=
E1/a

E1

(2.25)

Here, α1 is given by

α1 =

√
2E1

⟨sI0⟩
(2.26)

where E1 is given in (2.24).

In general, for the sub-optimum detector, J is always equal to 1. The J is interpreted

as a tuning factor, which in turn relates to the SIR value given in (2.19). With these,

the detection and false alarm probabilities for the sub-optimum detector, P̃D and P̃FA,

respectively, written as

P̃FA =
1

2
erfc

(
ũ√
2J

)
(2.27)

P̃D =
1

2
erfc

(
ũ− α1√

2J

)
(2.28)

Similar to (2.22), from (2.27) and (2.28), we can write

P̃D =
1

2
erfc

[
erfc−1

(
2P̃FA

)
− α1√

2J

]
(2.29)

The SIR boost B, which is required to make the performance of the optimum and

sub-optimum detectors equal in the presence of cyclostationary interference. For a

given PFA, to make PD = P̃D, the required value of B that is given by

B ≜
Jα2

a

α2
1

=
JEa
E1

(2.30)

Lemma 1. The value of the SIR boost B defined in (2.30) is always greater than or

equal to 1.
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Proof. From (2.30), using (2.19), (2.25), (2.26), we can write

B =
EaE1/a

E2
1

(2.31)

From the Cauchy–Schwarz inequality (Steele, 2004), we can write[∫
T

s2(t)dt

]2
≤
∫
T

[s2(t)]a(t)dt

∫
T

[s2(t)]
1

a(t)
dt (2.32)

which leads to E2
1 ≤ EaE1/a. Thus confirming that the SIR boost B is always greater

than or equal to 1 (i.e., B ≥ 1 always).

The mathematical model for the wireless communication interference sI(t) is con-

sidered below.

A Example: Cyclostationary/periodic square wave interference intensity

Consider sI(t) as a periodic square wave over one period, which is given by

sI(t) =

 ⟨sI0⟩l 0 ≤ t ≤ nT,

⟨sI0⟩m nT ≤ t ≤ T.
(2.33)

For self-consistency, assume

l = n−1(1−mn), 0 < m,n ≤ 1 (2.34)

Over one period, this kind of interference is expected if there is substantial inter-

ference for some time and less interference for the remaining time.

From (2.14), (2.24), (2.25) for s(t) and sI(t) given in (2.11) and (2.33), respectively,

we have

E1 =
A2

2
T (2.35)

Ea = E1

{
n

l
+

1− n

m
+

[
mn− ln

4πMlmn

]
sin(4πMn)

}
(2.36)

J =

{
ln+m(1− n) +

[
ln−mn

4πMn

]
sin(4πMn)

}
(2.37)

While from (2.30), using (2.35), (2.36), (2.37), B is written as

B =

{
n+

l(1− n)

m
+

[
mn− ln

4πMmn

]
sin(4πMn)

}
×{

n+
m(1− n)

l
+

[
ln−mn

4πMln

]
sin(4πMn)

}
(2.38)
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For time-symmetric sI(t) given in (2.33)
(
i.e., for n = 1

2

)
, from (2.38), (2.34), we have

B = [m(2 − m)]−1. From (2.34), as m lies between 0 and 1, B is always positive,

which supports the previously mentioned Theorem 1. For smaller values of m, the

value of B is very large, which means that even if there is a high interference over

a shorter interval, the optimum detector compensates its effect, whereas the sub-

optimum detector does not.

From (2.22), (2.29), (2.30), (2.35), (2.36), (2.37), the detection and false alarm

probabilities of the optimum and sub-optimum detector as a function of SIR and SIR

boost are written as

PD =
1

2
erfc

[
erfc−1 (2PFA)−

√
B

2
α1

]
(2.39)

P̃D =
1

2
erfc

[
erfc−1

(
2P̃FA

)
− α1√

2

]
(2.40)

B The penalty due to missynchronization

In practice, a meaningful performance comparison between the optimum and sub-

optimum detectors in the presence of in-band wireless communication interference

can be found by comparing the PD and PFA of the missynchronized optimum detector

with the corresponding sub-optimum detector. Denote â(t) as the missynchronized

whitening/equalizing factor. Also define P̂D and P̂FA as the detection and false alarm

probabilities of the missynchronized optimum detector, respectively. The equations

for P̂FA, P̂D are given by (2.16), (2.17) with u and αa being replaced with û√
Ĵ

and
αâ√
Ĵ
, respectively. Then, û is given by

û ≜ γ

(
2

⟨sI0⟩Eâ

)1/2

(2.41)

where Eâ is given in (2.14) by replacing a(t) with â(t) and Ĵ is defined as

Ĵ ≜

∫
T

{
[s2(t)]

(
a(t)
â2(t)

)}
dt∫

T

{
[s2(t)]

(
1
â(t)

)}
dt

=
Eâ2/a
Eâ

(2.42)

The missynchronized SIR αâ =
√

2Eâ

⟨sI0 ⟩
. Therefore, it follows from (2.16), (2.17),

(2.41), (2.42) that
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P̂FA =
1

2
erfc

(
û√
2Ĵ

)
(2.43)

P̂D =
1

2
erfc

(
û− αâ√

2Ĵ

)
(2.44)

Similar to (2.22), from (2.43) and (2.44), the P̂D is written as

P̂D =
1

2
erfc

[
erfc−1

(
2P̂FA

)
− αâ√

2Ĵ

]
(2.45)

Similar to (2.30), the SIR boost is given by

B̂ =
ĴEa
Eâ

=
Ĵα2

a

α2
â

=
EaEâ2/a
E2
â

≥ 1 (2.46)

Thus, from (2.45) and (2.46), it follows that

P̂D =
1

2
erfc

[
erfc−1

(
2P̂FA

)
− αa√

2B̂

]
(2.47)

For the signal s(t) given in (2.11), with interference characteristics given in (2.33),

the performance of the missynchronized optimum detector is analysed here. Missyn-

chronization is mathematically modeled as

â(t) = a

(
t+ϖ

T

2

)
, 0 ≤ ϖ ≤ 1 (2.48)

For mathematical simplicity, it is assumed that n = 1
2
. Then, from (2.33), the sI(t)

is written as

sI(t) =

 ⟨sI0⟩l 0 ≤ t ≤ T
2
,

⟨sI0⟩m T
2
≤ t ≤ T.

(2.49)

where l = (2−m) and 0 < m ≤ 1.

The performance of this missynchronized optimum receiver is evaluated using

(2.47). For the worst-case (100%) analysis of missynchronized optimum receiver,

the ϖ = 1 is assumed. From (2.46), (2.49), we have

B̂ =
l2

m(l +m)
=

(2−m)2

2m
(2.50)

and from (2.19), (2.26), (2.49), we also have

αa = α1

√
l +m

2lm
=

α1√
(2−m)m

(2.51)
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Thus, from (2.47), (2.50), and (2.51), we have

P̂D =
1

2
erfc

[
erfc−1

(
2P̂FA

)
− α1

(2−m)3/2

]
(2.52)

Similarly, for the 50% missynchronization case (ϖ = 1/2), from (2.46)

B̂ =
1

2

{
1 +

l2

m(l +m)

}
=

1

2

{
1 +

(2−m)2

2m

}
(2.53)

Thus, from (2.47)

P̂D =
1

2
erfc

erfc−1
(
2P̂FA

)
− α1√

(2m−m2)
(
1 + (2−m)2

2m

)
 (2.54)

2.2.2 Case II: Signals with random phase

In this subsection, the signal used for the hypothesis testing problem defined in (2.1)

is

s(t) = s(t, ϕ) = A cos

(
2πMt

T
+ ϕ

)
, t ∈ T (2.55)

where M is a positive integer, and ϕ is a uniformly distributed random variable over

the interval 0 to 2π. The probability density function (PDF) of ϕ is given by

f(ϕ) =

 1
2π
, ϕ ∈ [0, 2π],

0, elsewhere.
(2.56)

The (2.55) can also be represented in its complex envelope form, given by

s(t, ϕ) = Re

{
A exp

[
j

(
2πMt

T
+ ϕ

)]}
, t ∈ T (2.57)

The likelihood ratio defined in (2.10) is generalized for the s(t) defined in (2.55) as

Λ[{r(t)}] ≜ Eϕ
[
fR/H1(r/H1)

fR/H0(r/H0)

]
(2.58)

where Eϕ[.] denotes the expectation operation.

The optimum detector for the hypothesis testing problem defined in (2.1) for the s(t)

given in (2.55) having Λ[{r(t)}] as (2.58) is given by (2.9) with

Λ[{r(t)}] ≜
∫
ϕ

exp

{
2

⟨sI0⟩

∫
T

[
s(t, ϕ)

a(t)

]
r(t) dt

}
f(ϕ) dϕ, (2.59)

γ ≜ λ exp

{
1

⟨sI0⟩

∫
T

s2(t, ϕ)

a(t)
dt

}
, (2.60)
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where f(ϕ) is defined in (2.56).

The likelihood ratio defined in (2.59) is written for the s(t, ϕ), defined in (2.55)

as (Whalen, 2013)

Λ[{r(t)}] = I0

(
2Aq

⟨sI0⟩

)
(2.61)

where I0(.) in (2.61) is the modified Bessel function of the first kind of order zero

(Abramowitz and Stegun, 1948) and q is defined as

q =
1

2

∣∣∣∣ ∫
T

r(t)

a(t)
exp

(
−j 2πMt

T

)
dt

∣∣∣∣ (2.62)

In this case, from (2.61) the hypothesis test is

I0

(
2Aq

⟨sI0⟩

)
H1

≷
H0

γ (2.63)

Since, the Bessel function I0(.) is a monotonically increasing function, the test is

carried out by comparing q to threshold γ′, i.e.,

q
H1

≷
H0

γ′ (2.64)

For mathematical convenience, the test is carried out with q2 as

q2
H1

≷
H0

γ′′ (2.65)

This test is called the quadrature/square law detector (Whalen, 2013) for the problem

defined in (2.1), when the signal has an unknown/random phase (for the s(t) given

in (2.55)). The receiver structure for the detection equation in (2.65) is shown in

Figure 2.5.

The correlation operation in (2.62) is also represented as the sample output of the

matched filter, with the impulse response as

h(t) = exp

(
−j 2πM(T − t)

T

)
(2.66)

In terms of h(t) given in (2.66), (2.62) is rewritten as

q =
1

2

∣∣∣∣r(t)a(t)
∗ h(t)

∣∣∣∣ (2.67)

where ∗ represents the convolution operation.

The detection equations in (2.62), (2.67) are the base-band level representations,

that are appropriate for a digital receiver. For analog processing, the same manipu-

lations can be carried out at the band pass level or at any convenient radio frequency
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Square law

 detector

Square law

 detector

Figure 2.5: Optimum receiver structure for a known signal with random phase
buried in in-band wireless communication interference.

(RF) band, to which the RF signals are down-converted (e.g., intermediate frequency

(IF) band) (Whalen, 2013). The receiver structure for the matched filter based de-

tection equation in (2.67) is shown in Figure 2.6.

Envelope

detector

Figure 2.6: Matched filter form of the optimum receiver structure for a known signal
with random phase buried in in-band wireless communication interference.

Now, the performance of the detector represented in (2.64) is evaluated in-terms of

PD and PFA. For this, the density function of the test statistics q under two hypothesis

H1,H0 is required, given by (Whalen, 2013)

fH1(q) =
q

σ2
a

exp

[
−q

2 + ζ2a
2σ2

a

]
I0

(
qζa
σ2
a

)
(2.68)

fH0(q) =
q

σ2
a

exp

[
− q2

2σ2
a

]
(2.69)

where

σ2
a =

⟨sI0⟩
2

∫
T

cos2
(
2πMt
T

)
a(t)

dt (2.70)

and

ζa =
A
∫
T

1
a(t)

dt

2
(2.71)

The detailed proof to obtain fH1(q), fH0(q) is availabel in Appendix A.1.
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Under H1 and H0, the density functions of the sufficient statistics q given in

(2.68) and (2.69), represent the Rician and Rayleigh densities, respectively. Using the

detection statistics defined in (2.64), the probability of false alarm PFA is obtained as

PFA =

∫ ∞

γ′
fH0(q) dq = exp

(
− γ′2

2σ2
a

)
(2.72)

Then, it is rewritten as
γ′

σa
=
√

−2 ln(PFA) (2.73)

Using (2.68), the probability of detection PD is

PD =

∫ ∞

γ′
fH1(q) dq = QM

(
ζa
σa
,
γ′

σa

)
(2.74)

where QM(.) is the Marcum Q-function (Nuttall, 1975; Proakis and Salehi, 2007).

The sub-optimum detector for the hypothesis testing problem, as given in (2.1),

s(t) defined in (2.55) is given in (2.9), where Λ [r(t)] and γ are given in (2.59) and

(2.60), respectively, with a(t) = 1. Its structure is similar to the one in Figure 2.5,

without the 1
a(t)

block (i.e., a(t) = 1). Similar to (2.63), the detection statistics for

the sub-optimum detector is given by

I0

(
2Aq̃

⟨sI0⟩

)
H1

≷
H0

γ (2.75)

Since the Bessel function is monotonic, the sufficient statistic is

q̃
H1

≷
H0

γ′ (2.76)

with q̃ as

q̃ =
1

2

∣∣∣∣ ∫
T

r(t) exp

(
−j 2πMt

T

)
dt

∣∣∣∣ (2.77)

Similarly, from (2.72) and (2.74), the performance equations for the sub-optimum

detector are given by

P̃FA = exp

(
− γ′2

2σ2
1

)
(2.78)

P̃D = QM

(
ζ1
σ1
,
γ′

σ1

)
(2.79)

where σ1 and ζ1 are similar to the forms (2.70) and (2.71), respectively, with a(t) = 1.

For the performance analysis, an example for the sI(t) is considered below.
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A Example

For a square wave sI(t) expressed in (2.33), from (2.70) and (2.71), we have

ζa =
AT

2

(
n

l
+

1− n

m

)
(2.80)

σ2
a =

⟨sI0⟩T
4

{
n

l
+

1− n

m
+

[
mn− ln

4πMlmn

]
sin(4πMn)

}
(2.81)

Therefore,
ζa
σa

=

(
ζ2a
σ2
a

) 1
2

=

√
2E1

⟨sI0⟩
c (2.82)

where E1 is defined in (2.35) and c some constant, given by

c =

(
n
l
+ 1−n

m

)2{
n
l
+ 1−n

m
+
[
mn−ln
4πMlmn

]
sin(4πMn)

} .
It is conventional to define the ratio in (2.82) as the signal-to-interference ratio (SIR)

(Whalen, 2013), given by

αa(dB) = 20 log

(
ζa
σa

)
= 10 log

(
2E1

⟨sI0⟩
c

)
(2.83)

Therefore, from (2.74) in conjunction with (2.82) and (2.83), we have

PD = QM

(√[
2E1

⟨sI0⟩
+ c

]
(dB),

√
−2 ln (PFA)

)
(2.84)

Similarly, for the sub-optimum detection, from (2.79)

P̃D = QM

(√[
2E1

⟨sI0⟩

]
(dB),

√
−2 ln

(
P̃FA

))
(2.85)

For a given PFA, from (2.84) and (2.85), c is interpreted as the SIR boost.

2.2.3 Case III: Random signals

In Case II, the signal s(t) specified in (2.55) has a deterministic complex envelope

A exp
[
j
(
2πMt
T

)]
, with random phase ϕ. While this is an acceptable model in some

scenarios, a more realistic model is a signal that has both, random amplitude and

phase. The emitted RF signal undergoes refraction, reflection, diffraction, absorption,

polarization and scattering over the wireless medium (Seybold, 2005; Jordan and
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Balmain, 1968). Thus, in contrast to the first two cases, the signal s(t) that has been

considered here is a more realistic signal, with random amplitude and phase. Here,

s(t) is given by

s(t) = As(t, ϕ) = A cos

(
2πMt

T
+ ϕ

)
, t ∈ T (2.86)

where M is a positive integer, the phase ϕ is a uniformly distributed random variable

and amplitude A follows the Rayleigh density, whose PDF is given by

fA(a) =
A

σ2
A0

exp

(
−A2

2σ2
A0

)
u(A) (2.87)

with density parameter

σ2
A0

=
EA (A2)

2
(2.88)

where E(.) denotes the expectation operation, and u(A) is the unit-step function.

The assumption of (2.87) is valid due to the fact that the received signal is the

coherent summation of all the reflected signals from small scattering elements on a

large object (i.e., target) (Whalen, 2013; Richards, 2014). Therefore, for the s(t) de-

fined in (2.86), the optimum detection rule for the hypothesis testing problem defined

in (2.1) is given by (2.9) with

Λ[{r(t)}] ≜
∫
ϕ

∫
A

exp

{
2

⟨sI0⟩

∫
T

[
As(t, ϕ)

a(t)

]
r(t) dt

}
fA(a) f(ϕ) dA dϕ (2.89)

γ ≜ λ exp

{
1

⟨sI0⟩
EA
(∫

T

As2(t, ϕ)

a(t)
dt

)}
(2.90)

From (2.89) and (2.90), after taking the expectation, the optimum detector becomes

independent of the unknown random variables A and ϕ. Then, the optimum detector

is given by q > γ (under H1), where q is defined in (2.62). The detector structure

follows a similar structure as in Case II (only random phase), as shown in Figure 2.5.

However, in contrast to Case II, the performance equations (i.e., PD, PFA) depends

on A. Using (2.74) and (2.87), the detection probability PD is given by

PD = EA [PD (A)] = EA
[
QM

(
ζa
σa
,
γ

σa

)]
(2.91)

where EA(.) denotes expectation operation with respect to A, whose PDF is given in

(2.87), and the remaining parameters follow (2.74).
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After taking the expectation, the closed-form expression for PD is given by (Grad-

shteyn and Ryzhik, 2014)

PD = exp

{
− 2γ2[

σ2
A0
T 2g2 + 4σ2

a

]} (2.92)

where

g =

(
n

l
+

1− n

m

)
(2.93)

The sub-optimum detector for the s(t) defined in (2.86), with the hypothesis test-

ing problem defined in (2.1), follows (2.89) and (2.90) with a(t) = 1. The receiver

structure also follows a similar structure as the optimum detector, as shown in Fig-

ure 2.5, without the a(t) block. Similar to (2.92), the detection probability for the

sub-optimum detector is given by

P̃D = exp

{
− 2γ2

σ2
A0
T 2 + 4σ2

1

}
(2.94)

Here, PFA and P̃FA are similar to those in (2.72) and (2.78), respectively. Closed-form

expressions for the detection and false alarm probabilities are given by considering

some examples for interference.

A Example

For a square wave sI(t) expressed in (2.33), from (2.70), we have

σ2
1 =

⟨sI0⟩T
4

(2.95)

σ2
a = σ2

1h (2.96)

where

h =

{
n

l
+

1− n

m
+

[
mn− ln

4πMlmn

]
sin(4πMn)

}
(2.97)

As the amplitude of s(t) defined in (2.86) is random, we define the average energy

Eavg rather than the instantaneous energy E, which is given by

Eavg = EA(A2)
T

2
= σ2

A0
T (2.98)

where σ2
A0

is defined in (2.88).

The average SIR is defined as

α2
avg =

2Eavg
⟨sI0⟩

=
σ2
A0
T 2

2σ2
1

(2.99)
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For the optimum detector, from (2.73), we have

γ2 = −2σ2
a ln (PFA) (2.100)

From (2.92), (2.99) and (2.100), we can write

PD = P

(
1+

α2
avg
2

c

)−1

FA = P

(
1+

Eavg
⟨sI0 ⟩ c

)−1

FA , (2.101)

where

c =
g2

h
, (2.102)

whose g and h are defined in (2.93) and (2.97) respectively.

Similarly, for the sub-optimum case, from (2.78), we have

γ2 = −2σ2
1 ln
(
P̃FA

)
(2.103)

From (2.94), (2.99) and (2.103), we can write

P̃D = P̃

(
1+

α2
avg
2

)−1

FA = P̃

(
1+

Eavg
⟨sI0 ⟩

)−1

FA (2.104)

By looking at (2.101) and (2.104), the term c is interpreted as an SIR boost that has

been achieved by the optimum detector to compensate for the effect of the interference

and to get a better PD compared to the sub-optimum one.

2.2.4 Constant-False-Alarm Rate (CFAR) detector

This sub-section presents the detection of random signals in an in-band communi-

cation interference using the cell-averaging CFAR detector. The NP detector sets a

fixed threshold based on the known initial interference power statistics and desired

PFA. It does not adapt its threshold for the change in interference power (Richards,

2014). Also, knowing the interference statistics is impossible, and calculating the

threshold is difficult. To overcome this problem, the CFAR calculates the interference

power from its neighbouring cells and sets the threshold adaptively, and maintains

the constant desired PFA (Richards, 2014; Richards et al., 2010). Here, the in-band

wireless communication transmitters (IWCTs) inject direct interference of higher val-

ues (Blunt and Perrins, 2018), applying the CFAR directly on the received data may

lead to miss detection of the target (Zilz and Bell, 2018; Sanders et al., 2006). Further,
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the threshold in the cell-averaging CFAR is calculated as the average of the neigh-

bouring cells, which also contains the interference that sets the threshold higher. In

this chapter, CFAR refers to cell-averaging based CFAR, unless specified. So, using

CFAR as a detector in RadComm spectrum sharing scenarios demands some kind

of preprocessing to nullify the in-band interference. In this research work, a modi-

fied CFAR detector is considered, where the received data is first passed through the

equalizer/whitening filter followed by the CFAR detector and a decision-maker. It

is assumed that the equalizer/whitening filter compensates for the interference and

makes it white Gaussian. The modified CFAR receiver structure is shown in Fig-

ure 2.7. The received signal for the hypothesis testing problem given in (2.1) with

the modified CFAR receiver follows (2.4) (after preprocessing). The signal considered

here are random signals and follow Rayleigh voltage, given by (2.86). The samples

received after passing through the equalizer and A/D converter are stored in the data

window.

CFAR 

Detector

Equilizer/

whitening Filter

A/D 

Converter

Figure 2.7: Modified CFAR receiver structure.

Figure 2.8 shows the architecture of the CFAR detector. The CFAR window

consists of a cell under test (CUT), lagging, leading reference windows, and guard

cells. The CUT is the resolution cell to which the CFAR threshold is applied. With

the assumption that target may be present in the neighbouring cells of the CUT, a

fixed number of cells surrounding the CUT are treated as guard cells (r̃1G , . . . , r̃NG
),

the data in the guard cells is excluded for threshold calculation. This CFAR window

slides over the data window to detect the target presence. The CFAR detector makes

the decision of whether the target is present (Hypothesis H1) or not (Hypothesis

H0), by comparing the square law output of the CUT data sample (r̃CUT), with the

adaptive threshold, and it is calculated using the N neighbouring cells (r̃1, . . . , r̃N).

The decision rule is given by

Decision =


H1, |r̃CUT|2 > k 1

N

N∑
n=1

|r̃n|2,

H0, |r̃CUT|2 ≤ k 1
N

N∑
n=1

|r̃n|2.
(2.105)
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Here, constant k is called proportionality CFAR constant and is a function of desired

PFA.

CFAR Constant

CFAR Window

Data Window

Lagging Leading

Guard cells

Decision

Figure 2.8: The Constant-False-Alarm Rate (CFAR) detector architecture.

Here the performance of the modified CFAR detector is evaluated in terms of PD

and PFA. After the equalization, the interference statistics become white Gaussian,

and the target return signal follows Rayleigh voltage statistics. Hence the probability

density of the square law output of the received signal z = |r̃|2 under H0 and H1

hypothesis follows exponential distribution (Levanon, 1988), which is represented as

fH0(z) =

{
1
σ2
a
exp

(
−z
σ2
a

)
, z ≥ 0

0, z < 0
(2.106)

fH1(z) =

{
1

ζ2a+σ
2
a
exp

(
−z

ζ2a+σ
2
a

)
, z ≥ 0

0, z < 0
(2.107)

Here, σa, ζa are defined in (2.70), and (2.71) respectively.

The (2.107) is rewritten in terms of SIR as

fH1(z) =

{
1

σ2
a(1+SIRa)

exp
(

−z
σ2
a(1+SIRa)

)
, z ≥ 0

0, z < 0
(2.108)

where SIRa =
ζ2a
σ2
a
.

For a square wave sI(t) expressed in (2.33), using (2.70), and (2.71), the SIRa is given
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by

SIRa =
2Eavg
⟨sI0⟩

× c, (2.109)

where Eavg, c are defined in (2.98), (2.102).

For the decision rule given in (2.105), using the (2.106), (2.108), the average PD

and PFA is given by (Richards et al., 2010)

PD =

1 +
k/N

1 +
(

2Eavg

⟨sI0 ⟩

)
c

−N

PFA =

(
1 +

k

N

)−N

(2.110)

To plot the ROC curves, (2.110) is rewritten by eliminating the CFAR constant k as

2Eavg
⟨sI0⟩

∣∣∣∣∣
CFAR

=
(PD/PFA)

1/N − 1

c
(
1− P

1/N
D

) (2.111)

Since CFAR compares the square law output to the adaptive threshold for decision,

the square law NP detector is considered for comparison. The PD and PFA for square

law NP detector is given by

PD =exp

(
−T

σ2
a(1 + SIRa)

)
PFA =exp

(
−T
σ2
a

)
(2.112)

where, SIRa is defined in (2.109), T is NP threshold.

Similar to (2.111), (2.112) is rewritten by eliminating the threshold T as

2Eavg
⟨sI0⟩

∣∣∣∣∣
NP

=
1

c

[
ln (PFA)

ln (PD)
− 1

]
(2.113)

The ROC curves for the modified CFAR and NP detectors are plotted using (2.111)

and (2.113).

2.3 Numerical results and discussions

Based on the theoretical analysis presented in Section 2.2, this Section presents the

numerical results and discussions. Figures 2.9–2.14 show the receiver performance

for the completely deterministic case considered in Section 2.2.1 with varying de-

grees of interference intensity (given by parameter m) and varying degrees of non-

stationarity/symmetry (given by parameter n). Figures 2.9 and 2.10 show the receiver
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performance in terms of detection probability as a function of SIR with a fixed proba-

bility of false alarm. Figures 2.11 and 2.12 show the receiver operating characteristic

(ROC) curves for the same case. Figures 2.13 and 2.14 show the receiver performance

due to missynchronization. Figures 2.15–2.16 show the receiver performance for the

moderately acceptable random phase case considered in Section 2.2.2. In particular,

Figure 2.15 shows the detection performance in terms of detection probability as a

function of SIR for a fixed false alarm probability, while Figure 2.16 shows the corre-

sponding ROC curves. The rest of the figures show the receiver performance for the

realistic case random amplitude and phase considered in Section 2.2.3.

For the unrealistic deterministic signals case in Section 2.2.1, based on (2.39) and

(2.40), Figure 2.9 shows the detection probability of the receiver as a function of

SIR
(

2E1

⟨sI0 ⟩

)
with varying degrees of interference intensity (m) for a fixed probabil-

ity of false alarm (PFA = 10−2) and a fixed degree of non-stationarity/symmetry(
n = 1

2

)
. With the assumed square wave interference defined in (2.33), the interpre-

tation of m and n is as follows: The value of n defines the non-stationarity/symmetry

of the square wave, whereas the value of m defines the amplitude/intensity of the

square wave interference. For example, for one period T and n = 1
2
, m = 1

4
means

that the square wave interference is symmetric, the first-half amplitude/intensity(
which is equal to l = n−1(1−mn) = 7

4

)
of the square wave is higher, and that the

next-half intensity/amplitude (which is equal to m = 1
4
) is lower.

With the assumptions made, from Figure 2.9, it is observed that the detection

probability as a function of SIR decreases as the degree of interference intensity (m)

increases (for the symmetric assumption
(
i.e., n = 1

2

)
and for a fixed probability of

false alarm). Further, it is seen that as m increases, the optimum detector perfor-

mance approaches the sub-optimum detector performance. Because, for n = 1
2
, as m

increases, the interference intensity over the two half-widths of the square wave inter-

ference becomes equal, the equalization/whitening is not effective when compared to

the large amplitude difference between the two half-widths of the square wave. Be-

sides, at lower values of m, one finds a significant difference that the optimum detector

brings with equalization/whitening compared to the sub-optimum one. Furthermore,

it is observed that for SIR = 5 dB, the detection probabilities of the optimum detec-

tor with m = 1
4
, 2
4
, 3
4

and for the sub-optimum detector are 0.8541, 0.6009, 0.4932 and
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0.4640, respectively.
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Figure 2.9: Receiver performance for the unrealistic deterministic case: Detection
probability as a function of SIR with varying degrees of interference intensity (m).

Figure 2.10 shows the detection probability of the receiver for the unrealistic deter-

ministic signal case as a function of SIR with varying degrees of non-stationarity/symmetry

(n), fixed probability of false alarm (PFA = 10−2) and degree of interference intensity(
m = 1

2

)
based on (2.39) and (2.40). It is observed that, for the assumed equal degree

of interference intensity/amplitude
(
i.e., m = 1

2

)
, as n increases, the detection proba-

bility as a function of SIR decreases and approaches that of the sub-optimum detector.

As n increases, the optimum detector appears to relax the non-stationarity constraint

and moves towards the assumption of stationary interference. It is also observed that

for SIR = 5 dB, the detection probabilities for the optimum detector with n = 1
4
, 2
4
, 3
4

and for the sub-optimum detector are 0.7903, 0.6009, 0.4860 and 0.4640, respectively.

Figure 2.11 shows the receiver operating characteristic (ROC) curves for the un-
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Figure 2.10: Receiver performance for the unrealistic deterministic signal case:
Detection probability as a function of SIR with varying degrees of

non-stationarity/symmetry (n).

realistic deterministic signals case with varying m, fixed SIR (5 dB) and n = 1
2
, based

on (2.39) and (2.40). It is observed that, for the symmetric assumption
(
i.e., n = 1

2

)
and fixed SIR, the ROC curves trail one another, as the degree of interference inten-

sity (m) increases. The reason for this is similar to the one that is presented in the

observations of Figure 2.9. Further, it is observed that the optimum detector has a

better probability of detection for some false alarm probability values, when compared

to the sub-optimum one. Besides, it is also observed that for a false alarm probability

of 0.05, the detection probability of the optimum detector with m = 1
4
, 2
4
, 3
4

and for

the sub-optimum detector is 0.9587, 0.8257, 0.7468 and 0.7228, respectively.

Figure 2.12 shows the ROC curves for the unrealistic deterministic signals case with

varying n, fixed SIR (5 dB) and m = 1
2
, based on (2.39) and (2.40). It is observed that,

for the equal interference intensity/amplitude assumption
(
i.e., m = 1

2

)
and for fixed

SIR, the ROC curves trail one another, as the degree of non-stationarity/symmetry

(n) increases. Besides that, for a particular false alarm probability value, the optimum
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Figure 2.11: Receiver performance for the unrealistic deterministic signal case:
Receiver operating characteristic (ROC) curves with varying degrees of interference

intensity (m).

detector has a better probability of detection, when compared to the sub-optimum

one. Further, it is also observed that for a false alarm probability of 0.05, the detection

probabilities for the optimum detector with n = 1
4
, 2
4
, 3
4

and the sub-optimum detector

are 0.6320, 0.4953, 0.4224 and 0.4088, respectively.

If there is missynchronization in the equalization/whitening stage, based on (2.52),

(2.54) and (2.40), Figure 2.13 shows the detection probability of the receiver for the

unrealistic deterministic signals case as a function of SIR with varying degrees of

interference intensity (m), fixed probability of false alarm (PFA = 10−2) and degree

of non-stationarity/symmetry
(
n = 1

2

)
. It is observed that, for the lower values of

m, where there is a significant difference in the interference intensity/amplitude be-

tween the two half-widths of the square wave interference, the performance of the

missynchronized optimum detector is below that of the sub-optimum detector. It is

also observed that as m increases, even though there is a missynchronization, the

optimum detector is performing nearly equal or just above the sub-optimum detec-
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Figure 2.12: Receiver performance for the unrealistic deterministic signal case:
Receiver operating characteristic (ROC) curves with varying degrees of

non-stationarity/symmetry (n).

tor. It is because of the fact that, as m increases, the interference intensity becomes

flat, the missynchronization does not impact much on the detection probability. Fur-

thermore, it is observed that the worst-case 100% missynchronization performance is

below the 50% missynchronization case. Moreover, it is observed that for SIR = 5

dB, the detection probabilities of the 100%, 50% missynchronized optimum detectors

with m = 1
4
, 2
4
, 3
4

and the sub-optimum detector are 0.1684, 0.2962, 0.2726, 0.3818,

0.4746, 0.4838 and 0.4640, respectively. In addition, Figure 2.13 shows that for the

same SIR and for m = 1
2
, when compared to perfect synchronization case (i.e., Fig-

ure 2.9), the performance of the 100% and 50% missynchronization case is reduced

by approximately 54.6% and 36.5% respectively.

Based on (2.52), (2.54), and (2.40), Figure 2.14 shows the missynchronized receiver

performance of the unrealistic deterministic signals case in terms of ROC curves, with

varyingm, fixed SIR (5 dB), and n = 1
2
. It is observed that, for the symmetric assump-

tion
(
i.e., n = 1

2

)
, fixed SIR, and the ROC curves of the missynchronized optimum
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Figure 2.13: Receiver performance for the unrealistic deterministic signal case with
missynchronization: Detection probability as a function of SIR with varying degrees

of interference intensity (m).

detector are below the sub-optimum one at lower values of m and nearly equal or just

above the sub-optimum one at higher values of m. Besides, the 100% missynchro-

nization ROC curves are below the 50% missynchronization ROC curves, i.e., perfect

(100%) missynchronization is always worse than imperfect (50%) missynchronization.

Further, it is observed that for a false alarm probability of 0.05, the detection prob-

abilities of the 100%, 50% missynchronized optimum detectors with m = 1
4
, 2
4
, 3
4

and

the sub-optimum detector is 0.3902, 0.5581, 0.5305, 0.6483, 0.7318, 0.7392 and 0.7228,

respectively.

For the moderately acceptable signals with random phase case (Section 2.2.2),

based on (2.84) and (2.85), Figure 2.15 shows the detection probability of the receiver

as a function of SIR with varying degrees of interference intensity (m), fixed proba-

bility of false alarm (PFA = 10−2) and degree of non-stationarity/symmetry
(
n = 1

2

)
.

Even in this case, for the symmetric assumption
(
i.e., n = 1

2

)
and the fixed probability

of false alarm, the detection probability as a function of SIR decreases as the degree
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Figure 2.14: Receiver performance for the unrealistic deterministic signal case with
missynchronization: Receiver operating characteristic (ROC) curves with varying

degrees of interference intensity (m).

of interference intensity (m) increases. The significant difference in terms of detection

probability that the optimum detector brings with the equalization/whitening effect

is seen, when compared to the sub-optimum one. It is observed that for SIR = 5

dB, the detection probabilities for the optimum detector with m = 1
4
, 2
4
, 3
4

and for the

sub-optimum detector are 0.5267, 0.3633, 0.2934 and 0.2734, respectively.

Figure 2.16 shows the receiver operating characteristic (ROC) curves for the mod-

erately acceptable random phase signals, with varying m, fixed SIR (5 dB), and

n = 1
2
, based on (2.84) and (2.85). It is observed that, with the symmetric assump-

tion
(
i.e., n = 1

2

)
and fixed SIR, the ROC curves trail one another as the degree of

interference intensity (m) increases. In addition, the optimum detector has a better

probability of detection for a particular false alarm probability when compared to the

sub-optimum one. It is also observed that for a false alarm probability of 0.05, the de-

tection probabilities of the optimum detector, with m = 1
4
, 2
4
, 3
4

and the sub-optimum

detector, are 0.75, 0.6027, 0.5271, and 0.5037, respectively.

43



4 6 8 10 12 14 16 18 20

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 2.15: Receiver performance for the moderately acceptable random phase
case: Detection probability as a function of SIR with varying degrees of interference

intensity (m).

For the more realistic, completely random signals case, based on (2.101) and

(2.104), Figure 2.17 shows detection probability of the receiver as a function of

SIR, with varying degrees of interference intensity (m), fixed probability of false

alarm (PFA = 10−2) and degree of non-stationarity/symmetry
(
n = 1

2

)
. In Section

2.2.3, (2.101) and (2.104) indicate the performance for SIR as E1

⟨sI0 ⟩
, rather than 2E1

⟨sI0 ⟩
.

Nonetheless, for uniformity with the convention in Sections 2.2.1 and 2.2.2, this study

continues to use the latter. From Figure 2.17, it is observed that, with the sym-

metric assumption
(
i.e., n = 1

2

)
and fixed probability of false alarm, the detection

probability as a function of SIR decreases as the degree of interference intensity (m)

increases. The significant difference that the optimum detector brings is seen with

the equalization/whitening effect, when compared to the sub-optimum one, in terms

of detection probability. Further, it is observed that for SIR = 5 dB, the detection

probabilities of the optimum detector with m = 1
4
, 2
4
, 3
4

and the sub-optimum detector

are 0.5036, 0.3455, 0.2848, and 0.2683, respectively.
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Figure 2.16: Receiver performance for the moderately acceptable random phase
case: Receiver operating characteristic (ROC) curves with varying degrees of

interference intensity (m).

Figure 2.18 shows ROC curves for the realistic completely random signals case

with varying m, fixed SIR (5 dB) and n = 1
2
, based on (2.101) and (2.104). It is

observed that, for the symmetric assumption
(
i.e., n = 1

2

)
and fixed SIR, the ROC

curves fall behind one another, as the degree of interference intensity (m) increases.

Further, it is observed that the optimum detector has a better probability of detection

for a particular false alarm probability, when compared to the sub-optimum one.

Furthermore, it is also observed that, for a false alarm probability of 0.05, the detection

probabilities of the optimum detector with m = 1
4
, 2
4
, 3
4

and the sub-optimum detector

are 0.6401, 0.5009, 0.4471, and 0.4249, respectively.

Table 2.1 shows the comparison of results of the three cases for a fixed SIR of

5dB, PFA = 10−2 and degree of cyclostationarity, degree of interference intensity of

0.5. The performance degradation is seen from the simplest deterministic case to the

most realistic random signal case. This is because of the lack of information, as we

move from the completely deterministic assumption to the completely random signal

45



4 6 8 10 12 14 16 18 20

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 2.17: Receiver performance for the realistic random signal case: Detection
probability as a function of SIR with varying degrees of interference intensity (m).

Table 2.1: Comparison of three cases for a fixed SIR = 5dB, PFA = 10−2 and
m = n = 1

2
.

Case Opti PD Sub-opti PD

Sync Deterministic case 0.6009 0.4640

100% Missync Deterministic case 0.2726 0.4640

50% Missync Deterministic case 0.3818 0.4640

Signal with random phase 0.3633 0.2734

Completely random signal 0.3455 0.2683

assumption. Also, the optimal detector has better PD than the sub-optimal one in

all three cases. In contrast, the missynchronized detector performance falls behind

the sub-optimal one. Therefore, improper equalization of interference may cost the

performance degradation in the detection process.

Figure 2.19 shows the performance of the modified CFAR and NP detector with

46



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 2.18: Receiver performance for the realistic random signal case: ROC curves
with varying degrees of interference intensity (m).

varying degree of interference intensity and fixed PFA = 10−2. Also, it compares with

standard CFAR and NP detectors, where the equalization to the in-band interference

is ignored. The number of reference cells considered in CFAR is 16. These performance

curves for modified CFAR and NP are based on (2.111) and (2.113). Whereas, for

the standard CFAR and NP, the curves are plotted based on the same equations

without considering the equalization (i.e., a(t) = 1, which inturn results c = 1).

Figure 2.19 reveals that the proposed modified detectors (both CFAR, and NP) are

outperforming the standard detectors for different interference intensity levels. For

m = 1/2, where interference intensity is treated higher, with the proper equalization,

the modified detectors have better PD. As m increases, the interference intensity

becomes flat, both modified and standard detectors have comparable performance.

Further, it is noted that for a specific value of m, the CFAR (either modified or

standard) performance falls behind the NP detector. It is because of the fact that

the CFAR adapts the threshold for a small change in the interference and demands
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Figure 2.19: Modified CFAR and NP Receiver performance with varying degrees of
interference intensity (m).

a higher SIR to get the same PD as that of the NP detector. For a fixed PD, the SIR

difference between two curves is treated as CFAR SIR loss. The CFAR SIR loss can

be improved by considering a large number of reference bins (i.e., with the increase

in N) for threshold calculation.

A simple example is considered to evaluate the performance of the CFAR detector,

with and without equalizer, by incorporating the in-band communication interference.

A single target embedded in independent noise, with in-band interference having an

average SINR of 12 dB, is examined. A data window of 1000 range cells is considered.

It is assumed that the target is present at the 500th range cell. A CFAR detector is

considered with 20 guard cells, 40 training cells, and a desired PFA of 10−3. The output

of the CFAR detector without equalizer and with considering equalizer block is shown

in Figure 2.20 and 2.21, respectively. In both the figures, the solid red line indicates

the CFAR threshold, black dashed line indicates NP fixed threshold. Also, the Y-

axis represents dB values. It is evident from Figure 2.20 that the standard CFAR
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Figure 2.20: Standard CFAR output (without equalizing the in-band interference).

detector is unable to detect the target. On the other hand, Figure 2.21 illustrates

the proposed modified CFAR is able to detect the presence of the target. This is

because, in standard CFAR, the equalization to the interference is not performed; the

in-band interference is present in all the cells. The CFAR calculates the threshold

using the neighbouring cells to set a higher threshold that yields the target buried

under interference. In contrast, in a modified CFAR detector, the received signal

is first passed through the equalizer, which eliminates the in-band interference that

provides the target detection. Furthermore, in both the Figures 2.20 and 2.21, for a

given PFA, the CFAR threshold is higher than the NP, indicating the higher SINR

requirement, as a result of CFAR loss.
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Figure 2.21: Modified CFAR output (equalizing the in-band interference).
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Chapter 3

Tracking of Radar Targets with
In-band Wireless Communication
System Interference

In this Chapter, considering the distributed radars surrounded by multiple in-band

wireless communication transmitters (IWCTs), a new measurement model is proposed.

The new measurement model incorporates both radar returns and returns due to

IWCTs. The tracking performance is evaluated using the global nearest neighbour

(GNN) tracker with an extended Kalman filter (EKF) for the received measurement

set. A large number of tracks are resulted due to IWCTs, and identifying the actual

target track is ambiguous. The track-to-track association (T2TA) is performed to

resolve the ambiguity and identify the true target track on multiple tracks produced

owing to the presence of IWCTs. Once the true target tracks from each radar are

identified, using the T2TA, the track-to-track fusion (T2TF) is carried out to improve

the estimates of the true target. The results are quantified with position root mean

square error (PRMSE) and the posterior Cramer–Rao lower bound (PCRLB). The

simulation results reveal that the association and fusion of tracks from multiple radars

identify the true target track with good accuracy. Further, the results disclose that,

as the number of radars increases, the T2TA and fusion improved the PRMSE.

3.1 Problem formulation

A radar and communication system (RadComm) spectrum sharing scenario is con-

sidered, where N mono-static radars are present over a surveillance region to detect

the radar targets and are surrounded by M in-band wireless communication trans-
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mitters (IWCTs). The radar static locations are {xrn}Nn=1 and IWCTs locations are

{xcm}Mm=1, as shown in Figure 3.1. Due to the in-band operation of IWCTs, the radar

system receives the target echoes from both the mono-static emission and in-band

transmitter emission. Also, it receives direct path signals from wireless transmitters.

These two directions of signal reception are referred to as surveillance channels and

reference channels. In Figure 3.1, the thick lines and dotted lines indicate surveillance

and reference channels, respectively. Therefore, the received signal at the nth radar

receiver, for a given target surrounded by M IWCTs, is given by

snr (t) =


N∑
n=1

srn(t) +
M∑
m=1

srcm(t) + w(t) = srsurn (t)

M∑
m=1

srcdm (t) + w(t) = srrefn (t).

(3.1)

Here, srn(t) is the target return from nth radar and srcm(t) is the target echo from

the mth surrounding communication system transmitter. In addition, srcdm (t) is the

direct path signal from the surrounding mth IWCT and w(t) is the receiver noise.

Further, srsurn (t), srrefn (t) are the received signals, received through surveillance and

reference channel of the nth radar, respectively.

Radar

In-band Communication Tx

Reference Channel

Surveillance Channel

Figure 3.1: System model illustrating RadComm spectrum sharing scenario.

For simplicity, a single radar and a single in-band transmitter in a clean environ-

ment (unity target detection probability, zero false alarms) is assumed. The corre-
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Figure 3.2: Reduced system model with single in-band transmitter and the
corresponding correlator output.

sponding geometry is depicted in Figure 3.2a. The received signal is processed with

matched filter-based receiver (Richards et al., 2010). The correlator output at the

receiver, depicts peaks at τr and τc, as shown in Figure 3.2b. This is because the

radar receiver correlates the received signals with its own transmitted signal and the

direct path reference signals received from IWCTs. The τr is the delay owing to the

radar only return, and the corresponding range is given by cτr
2

. In contrast, τc is due

to communication signal return. However, the radar assumes it as its own return (be-

cause of inadequate knowledge about the presence of IWCTs), and the corresponding

range is calculated as cτc
2

. Here, c is the speed of light in free space. Hence, the

presence of a single target and a single in-band transmitter in a given region results

in two measurements at the radar receiver. As shown in Figure 3.2a, if R1 is the dis-

tance from radar (xr) to a target (x), R2 is the distance between the in-band wireless
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transmitter (xc) to target (x), the τr and τc is given by

τr =
2R1

c
and

τc =
(R1 +R2)

c
, (3.2)

respectively. It is assumed that radar also receives the bearing information, apart

from the range information. However, the bearing information is the same for both

cases because the direction of arrival of target returns are in the same direction.

Even though a single target is present in this scenario, the radar receives multiple

measurements owing to IWCTs. Hence, there is a need to distinguish true target

measurements from all the evolved measurements. This research proposes to analyse

the target tracking performance for the above-stated problem.

3.2 Target tracking

This section briefly discusses the measurement model, state model, and GNN tracker

for evaluating tracking performance in the RadComm spectrum sharing scenario. The

radars work in distributed configuration and estimate the target kinematics using a

local tracker. This section presents the tracking of nth radar. However, the subscript

n has been removed for better reading and deriving the generalized mathematical

model.

3.2.1 Measurement model

The measurement set received by the radar n at time k is

Z(k) = {zi(k)}qki=1 . (3.3)

The measurement set obtained at kth time instant contains qk measurements, in which

nk measurements corresponds to mono-static radar, mk measurements corresponds to

IWCT, and ek false alarms. i.e., qk = nk+mk+ek. In the given surveillance, the pres-

ence of {xtl}Ll=1 true targets, and {xcm}Mm=1 IWCTs result in L+L×M measurements

at each radar. The measurement model is given by

zi(k) = h(x(k)) +wi(k), (3.4)
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where x(·) represents the state vector of the target at scan k, h(·) is a non-linear

function to map the state space in Polar to the Cartesian state.

The measurements not only pertain to the target originated but also from the false

alarms. These false alarms are independent and follow Poisson distribution (Bar-

Shalom et al., 2011), given by

P(e) = exp (−E)(E)
e

e!
, (3.5)

where E is the number of cells under consideration over a volume V . The spatial

density of false alarm is given by

λ =
E

V
. (3.6)

The probability of having qk measurements in a given volume V is

p(qk) =

{
(1− pD)P(0); qk = 0,

(1− pD)P(qk) + pDP(qk − 1); qk > 0,
(3.7)

where pD is the target probability detection.

The measurements that originate at nth mono-static radar, due to the presence of L

targets, and M surrounding IWCTs, is represented as

{zi(k)}qki=1 =



[
Rl
n +N (0, σ2

r)

θ +N (0, σ2
θ)

]
;

l = 1, · · ·L;
radar return[

Rl
n +Rl

m +N (0, σ2
r)

θ +N (0, σ2
θ)

]
;

l = 1, · · ·L,
m = 1. · · ·M ;

due to in-band Tx
ek ; false alarms

(3.8)

Here, Rl
n is the Euclidean distance between radar location xrn and target location xtl ,

and is given by

Rl
n =

√
(xrn − xtl)

2 + (yrn − ytl )
2. (3.9)

Similarly, the Rl
m is the Euclidean distance between the target xtl and in-band wireless

transmitter xcm, is given by

Rl
m =

√
(xtl − xcm)

2 + (ytl − ycm)
2. (3.10)

Here, θ is the same for radar and in-band returns because the direction of arrival of

target returns are in the same direction. It is given by

θ = arctan

(
yrn − ytl
xrn − xtl

)
. (3.11)
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The noise components in range and azimuth are mutually independent and follow

the white Gaussian distribution with mean zero and standard deviation σr and σθ,

respectively. The stacked vector of range and azimuth measurement noises is w(k)

and its measurement noise covariance is given by

R(k) = E{w(k)w(k)′}. (3.12)

3.2.2 State model

The state transition model follows additive white Gaussian noise (Bar-Shalom et al.,

2004) and is given by

x(k + 1) = F(k)x(k) + v(k), (3.13)

Here, x(k) is the four dimensional state vector constructed by stacking the position

and velocity of the target as [x(k), ẋ(k), y(k), ẏ(k)]′, v(k) is a zero-mean white Gaus-

sian process noise vector and its covariance matrix is

Q(k) = E[v(k)v(k)′]. (3.14)

The F(k) represents the state transition matrix; for the constant velocity (CV) model,

the state transition is given by

F(k) =


1 ts 0 0

0 1 0 0

0 0 1 ts

0 0 0 1

, (3.15)

where ts is a sampling time.

Since the focus of this work is on evaluating the target tracking performance in the

presence IWCTs, a simple CV model is considered to define the motion of a target.

3.2.3 Filtering

The EKF is used as a filtering algorithm. The filter involves three main steps, namely

predictions, gain calculation, and updation. The predicted state and covariance are

given by (Bar-Shalom et al., 2004)

x̂(k + 1|k) = Fx̂(k|k) and (3.16)
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P(k + 1|k) = FP(k|k)F′ +Q(k), (3.17)

respectively. The measurement prediction is represented as

ẑ(k + 1) = Hx̂(k + 1|k). (3.18)

Here, H is a linearized form of measurement transition matrix and is given by

H ≈

 ∂r
∂x

∂r
∂ẋ

∂r
∂y

∂r
∂ẏ

∂θ
∂x

∂θ
∂ẋ

∂θ
∂y

∂θ
∂ẏ

 . (3.19)

The innovation is given by

γ = z(k + 1)− ẑ(k + 1|k), (3.20)

where ẑ(k + 1|k) is determined by the data association module.

The Kalman gain K is computed as

K(k + 1) =P(k + 1/k)H(k + 1)′

[H(k + 1)P(k + 1/k)H(k + 1)′ +R]
−1
, (3.21)

where R is the measurement covariance matrix.

The updated state and covariance are given by

x̂(k + 1|k + 1) = x̂(k + 1|k) +K(k + 1)γ(k + 1) and (3.22)

P(k + 1|k + 1) = P(k + 1|k)−K(k + 1)H(k + 1)K′(k + 1) (3.23)

respectively.

3.2.4 Data association

The data association makes the decision to associate the obtained measurements at k

to the established tracks at k−1 and update the track at k. GNN is a 2D assignment

that matches the qk measurement list to the predicted Tk−1 tracks list by formulating

the global optimization problem. The optimization minimizes the overall cost (C) of

the measurement-to-track as

C =

qk∑
i=0

Tk−1∑
t=0

a(i, t)c(i, t) (3.24)
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subjected to
qk∑
i=0

a(i, t)c(i, t) = 1, t = 1, 2, · · ·Tk−1

Tk−1∑
t=0

a(i, t)c(i, t) = 1, i = 1, 2, · · · qk

The a(i, t) is a binary assignment variable such that

a(i, t) =

{
1; measurement i associated with target t
0; otherwise

(3.25)

Here, all the measurements are indexed in i, and all the tracks are indexed in t to

form a 2D matrix. Whereas, c(i, t) is the cost of associating the measurement i to

track t; which is equal to the distance between predicted measurement Hx̂(k + 1|k)

and measurement zi(k + 1). The above optimization is solved using the Munkres

algorithm (Bourgeois and Lassalle, 1971).

3.2.5 Track management

Total available tracks are classified into tentative tracks and confirmed tracks. Tenta-

tive tracks are the ones that have fewer measurements associated, than the required

number of measurements, over a specified time limit. In contrast, confirmed tracks

are the tentative tracks that receive more associated measurements and are promoted

to be confirmed ones. Also, if an inadequate number of measurements are associated

with the tentative track within the specified time, the tentative tracks are deleted.

For track maintenance, the logic-based rule (Jiang et al., 2014) is used, given by

1. For track initialization: out of the lastNinit measurement frames, if at leastMinit

measurements are associated together, then form a track and mark it tentative;

otherwise, do nothing.

2. For a tentative track: out of the last Ntent measurement frames, if at least

Mtent measurements are associated to the track, then promote it as confirmed;

otherwise, delete the track.

3. For a confirmed track: out of the last Nconf measurement frames, if at least

Mconf measurements are associated to the track, then do nothing; otherwise,

delete it.
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3.3 Track-to-track association and fusion

The presence of IWCTs produces more tracks at the radar receiver, even though a

single target is present in the surveillance region. More than one radar present in

the same surveillance region is to be considered to determine the actual target track.

Once the tracks are received from all radars, track-to-track association and fusion

of tracks are required to identify the true track precisely. Accordingly, this section

presents the track-to-track association and track fusion concepts for the generalized

scenario, where N number of radars are looking for a target in a surveillance region

surrounded by M IWCTs.

3.3.1 Track-to-track association (T2TA)

The N radars have their own number of tracks in the form of target estimate x̂ξii ,

with their errors are distributed as zero-mean Gaussian with covariance Pξi
i . The

i = 1, 2, . . . , N , represents radar number and ξi = 0, 1, 2, . . . , Ti represents number of

tracks that the each radar generates. To find out the tracks corresponds to the same

target, it is required to perform the likelihood ratio test, given by

χ(H1
ξ1,ξ2,...,ξN

: H0
ξ1,ξ2,...,ξN

) =
Λ(H1

ξ1,ξ2,...,ξN
)

Λ(H0
ξ1,ξ2,...,ξN

)
, (3.26)

where Λ(H1
ξ1,ξ2,...,ξN

) represents the likelihood hypothesis of tracks that have common

origin, Λ(H0
ξ1,ξ2,...,ξN

) represents the likelihood hypothesis of tracks that have different

origin.

Calculating the likelihood hypothesis of tracks that have a common origin is as follows

Λ(H1
ξ1,ξ2,...,ξN

) = p(x̂ξNN , . . . , x̂ξ11 |H1
ξ1,ξ2,...,ξN

). (3.27)

The (3.27) is also be written, conditioned on the track estimate of the first radar,

given by

Λ(H1
ξ1,ξ2,...,ξN

) = p(x̂ξNN , . . . , x̂ξ22 |H1, x̂ξ11 )p(x̂
ξ1
1 |H1). (3.28)

The p(x̂ξ11 |H1) is independent of H1
ξ1,ξ2,...,ξN

, hence it can be relaxed. Also, it is assumed

to be a uniform distribution, which is a valid assumption in the case of a lack of

information. i.e.,

p(x̂ξ11 |H1
ξ1,ξ2,...,ξN

) = p(x̂ξ11 ) =
1

C
. (3.29)
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Substituting (3.29) into (3.28) results

Λ(H1
ξ1,ξ2,...,ξN

) =
1

C
p(x̂ξNN , . . . , x̂ξ22 |H1, x̂ξ11 ). (3.30)

Consider the two radar (i, j) case that has two tracks (ξi, ξj) as common target origin.

Under the Gaussian assumption, if the tracks x̂ξii , x̂ξjj at radar i, and radar j result

from the same target, the likelihood function of the two tracks is given by (Bar-Shalom,

1981)

Λ(Hξi,ξj) =
1

C
N (x̂ξii − x̂

ξj
j ; 0,P

ξi
i +P

ξj
j −P

ξi,ξj
i,j − (P

ξi,ξj
i,j )′), (3.31)

where N (x; x̄,P) represents Gaussian distribution of variable x with mean and co-

variance as x̄, P, respectively.

Similar to (3.31), the generalized likelihood function of all the common tracks (zero

error tracks) ξ1, ξ2, . . . , ξN for all N radars is defined as

Λ(H1
ξ1,ξ2,...,ξN

) =
1

C
N (x̂; 0, P ). (3.32)

Here

x̂ =
[
x̃21, x̃31, . . . , x̃N1

]′
, (3.33)

where x̃ij represents the difference of the estimates resulted from the same target at

ith and jth radar, given by

x̃ij = x̂ξii − x̂
ξj
j . (3.34)

The diagonal elements of P are represented as

Pi−1,i−1 = E[x̃i1x̃′
i1|H1

ξ1,ξ2,...,ξN
],

= Pξ1
1 +Pξi

i −Pξ1,ξi
1,i − (Pξ1,ξi

1,i )′ i = 2, . . . , N (3.35)

where x̃ij is defined in (3.34).

Off-diagonal elements of P are given by

Pi−1,j−1 = E[x̃i1x̃′
j1|H1

ξ1,ξ2,...,ξN
],

= Pξ1
1 −P

ξ1,ξj
1,j − (Pξ1,ξi

1,i )′ +P
ξi,ξj
i,j , i, j = 2, . . . , N (3.36)

Similar to (3.32), the likelihood hypothesis of tracks having different origins follows

the same procedure as above, specified as

Λ(H0
ξ1,ξ2,...,ξN

) = p(x̂ξNN , . . . , x̂ξ22 |H0, x̂ξ11 )p(x̂
ξ1
1 |H0)

=
N∏
i=2

p(x̂ξii |H0, x̂ξ11 )p(x̂
ξ1
1 |H0) (3.37)

60



Similar to (3.29), the p(x̂ξ11 |H0
ξ1,ξ2,...,ξN

) is assumed to be diffuse prior, given by

p(x̂ξ11 |H0
ξ1,ξ2,...,ξN

) = p(x̂ξ11 ) =
1

C
, (3.38)

whereas, p(x̂ξNN , . . . , x̂ξ22 |H0, x̂ξ11 ) is assumed to follow Poisson distribution in the state

space, with a spatial density λ (Bar-Shalom et al., 2011). Therefore, substituting

(3.38) into (3.37) yields

Λ(H0
ξ1,ξ2,...,ξN

) =
1

C
λN−1. (3.39)

Finally, from (3.26), (3.32), (3.39), the likelihood ratio test is given by

χ(H1
ξ1,ξ2,...,ξN

: H0
ξ1,ξ2,...,ξN

) =
N (x̂; 0,P)

λN−1
, (3.40)

For T2TA, the track-to-track assignment algorithm of assigning the ξi tracks that

result from N radars representing the same target is defined. For this, the binary

assignment variable is defined as

ψξ1,ξ2,...,ξN =

{
1; tracks ξ1, ξ2, . . . , ξN from same target
0; from different target

(3.41)

The multidimensional (S-D) track-to-track assignment algorithm of finding the most

likely hypothesis is the result of the constrained optimization problem given below

min
ψξ1,ξ2,...,ξN

T1∑
ξ1=0

T2∑
ξ2=0

. . .

TN∑
ξN=0

cξ1,ξ2,...,ξNψξ1,ξ2,...,ξN (3.42)

subject to
T2∑
ξ2=0

. . .

TN∑
ξN=0

ψξ1,ξ2,...,ξN = 1, ξ1 = 1, 2, . . . , T1

T1∑
ξ1=0

T3∑
ξ3=0

. . .

TN∑
ξN=0

ψξ1,ξ2,ξ3,...,ξN = 1, ξ2 = 1, 2, . . . , T2

...
T1∑
ξ1=0

. . .

TN−1∑
ξN−1=0

ψξ1,...,ξN−1,ξN = 1, ξN = 1, 2, . . . , TN (3.43)

and

ψξ1,...,ξN ∈ {0, 1},

ξ1 = 0, 1, . . . , T1,

...

ξN = 0, 1, . . . , TN (3.44)
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The cost function cξ1,ξ2,...,ξN in (3.42) is calculated as

cξ1,ξ2,...,ξN = − lnχ(H1 : H0). (3.45)

where χ(H1 : H0) is the likelihood ratio, given in (3.40).

3.3.2 Correlation free fusion

This subsection considers the covariance intersection (CI) method for track-to-track

fusion (T2TF). As it is a memoryless algorithm, cross-covariance among the local

tracks is not utilized. Two algorithms are considered in the CI method; one is the

original CI algorithm, and the other is sampling CI (SCI). The SCI is considered;

because of its computational feasibility in fusing the more number of tracks.

A Original covariance intersection (CI) algorithm

Suppose the T2TA algorithm reveals TN independent tracks of N radars representing

the same target, which needs to be fused, the approximate CI of thoseN non-Gaussian

uncertainties is given by (Tian et al., 2010)

P−1
CI = ωT1P

−1
T1

+ ωT2P
−1
T2

+ . . .+ ωTNP
−1
TN
, 0 ≤ ωTi ≤ 1 and

N∑
Ti=1

ωTi = 1. (3.46)

The fused state estimate is represented as

P−1
CI x̂CI = ωT1P

−1
T1
x̂T1 + ωT2P

−1
T2
x̂T2 + . . .+ ωTNP

−1
TN

x̂TN . (3.47)

For the above (3.47), a closed form solution for lower dimensional matrix is presented

in (Reinhardt et al., 2012).

B Sampling covariance intersection (SCI) algorithm

The fused estimate, in the case of the SCI method of fusing the TN independent tracks

of N radars representing the same target, is given by (Tian et al., 2010)

P−1
0 =

N∑
Ti=1

P−1
Ti
, (3.48)

x̂SCI = P0

(
N∑

Ti=1

P−1
Ti
x̂Ti

)
. (3.49)
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To prevent the covariance becomes optimistic, the following procedure is used to

adjust the size of the covariance matrix. The S number of random samples xj =

N (0,P0), j = 1, . . . , S are generated. Next, the rmax and rmin is found using

rmax = max
j=1,2,...,S

x′
jP

−1
0 xj

max
Ti=1,2,...,N

x̂′
Ti
P−1
i x̂Ti

, (3.50)

rmin = min
j=1,2,...,S

x′
jP

−1
0 xj

max
Ti=1,2,...,N

x̂′
Ti
P−1
i x̂Ti

. (3.51)

Finally, the fused covariance SCI is set as

PSCI =
P0

urmin + (1− u)rmax
, u ∈ [0, 1], (3.52)

where u is used to adjust the performance of the SCI algorithm (Tian et al., 2010).

3.4 Posterior Cramer-Rao Lower Bound (PCRLB)

In this section, to compare the simulation performance of the proposed framework,

the Posterior Cramer-Rao Lower Bound (PCRLB) is considered. The PCRLB is the

theoretical lower bound, which quantifies the estimation accuracy (Bar-Shalom et al.,

2011). Let x̂k+1 be the estimate of the state vector xk+1 conditioned on measurement

set z1:k+1. The PCRLB (Tichavsky et al., 1998) on the covariance Pk+1 is the inverse

of the Fisher information matrix (FIM) Jk+1, given by

Pk+1 ≜ E
[
(x̂k+1 − xk+1) (x̂k+1 − xk+1)

′] ≥ J−1
k+1. (3.53)

The FIM Jk+1 is evaluated recursively by

Jk+1 = D22
k −D21

K (Jk +D11
k )−1D12

k , (3.54)

where

D11
k = F′

kQ
−1
k Fk,

D12
k = D21

k = −F′
kQ

−1
k ,

D22
k = Q−1

k + Jz,k+1. (3.55)

Here, Jz,k+1 corresponds to measurement contribution, given by (for brevity, subscript

k + 1 for x is omitted here):

Jz,k+1 = b(pD, λV, g)
{
[▽xh(x)]

′R−1
k+1 [▽xh(x)]

}
, (3.56)
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where, b(.) is the information reduction factor (IRF), accounting for the reduction of

information due to false alarms and the measurements due to IWCTs in the available

measurements. Which is a scalar quantity, depends on detection probability (pD),

false alarm density (λ), volume of the surveillance region (V ), and gated volume

(g). The expansion and the numerical evaluation of IRF is presented in (Hernandez

et al., 2006; Kirubarajan et al., 2001; Meng et al., 2009). The value of IRF b(.) is

approximately equal to pD. The ▽xh(x) in (3.56) is the Jacobian matrix, given by

▽xh(x) =

 (xtl−x
r
n)

Rl
n

0
(ytl−y

r
n)

Rl
n

0

−(ytl−y
r
n)

(Rl
n)

2 0
(xtl−x

r
n)

(Rl
n)

2 0

 , (3.57)

where Rl
n is defined in (3.9).

Using matrix inversion Lemma, using (3.55), the FIM recursion (3.54) is deduced to

Jk+1 =
[
Qk + FkJ

−1
k F′

k

]−1
+ Jz,k+1. (3.58)

The initial value of FIM is, J0 = (P0)
−1.

In this work, multiple radars (N) are used to identify the true target, and the

information is fused to get a better estimate. So, to compare the estimation accuracy

of the fused estimate, there is a need to calculate the fused FIM over the multiple

radars. Therefore, the fused PCRLB follows (3.53) by replacing J with summation of

all the FIMs from all the radars, given by

E
[
(x̂k+1 − xk+1) (x̂k+1 − xk+1)

′] ≥ { N∑
i=1

Jik+1

}−1

, (3.59)

where J
(.)
k+1 for each radar is given in (3.58). Further, in this work, the position root

mean square error (PRMSE) is used as quantifying metric; the square root is applied

over the positional terms of PCRLB given in (3.59). Also, in this chapter, PCRLB

corresponds to the square root PCRLB of the positional terms unless specified.

3.5 Results and discussion

The results and discussion are presented in this section. A single radar case and

multiple radar cases are considered to illustrate the ambiguity of target tracking in

the presence of IWCTs and to mitigate its effect.
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3.5.1 Single radar case

In this case, a single radar, single target, and multiple IWCTs are considered to

exemplify the problem of target tracking.

A Scenario generation

The simulation scenario considered is that the radar and IWCTs are assumed to be

static in a given surveillance region of 12000 × 12000m2 with a maximum range at

which radar can detect the targets is 12000m. First, the simulations are considered

for the case of existence of a single radar present at the origin [0, 0]′ and four in-band

static transmitters; their locations are presented in TABLE 3.1 (near-geometry refers

to nearby IWCTs to radar, and far-geometry refers to IWCTs are located far from

radar). Only a single target is considered with constant velocity (CV) model; the

initial state of the target is

x(0) = [x, ẋ, y, ẏ]′ = [1000, 30, 1000, 0]′. (3.60)

The target protuberance in both position and velocity components is modeled as

process noise, follows additive white Gaussian pdf, and is considered as

v =
[
N (0, 0.052),N (0, 0.022),N (0, 0.052),N (0, 0.022)

]′
. (3.61)

The values of process noise are chosen with an intent to focus the target tracking per-

formance with the measurements resulted owing to IWCTs, not on model mismatches.

The target starts at 1s and ends at 100s. The sampling time of the radar is 1s. On

the other hand, the radar receives the range and azimuth measurements and are cor-

rupted with the additive Gaussian noise; and the measurement noise vector is given

by

w =
[
N (0, 102),N (0, 0.032)

]′ (3.62)

B Tracker

The EKF framework is used in the tracker; the tunable parameters like process noise

covariance and the measurement noise covariance in (3.17) and (3.21) are tuned to

Q = diag([0.052 0.022 0.052 0.022]) (3.63)

R = diag([102 0.032]) (3.64)

65



Table 3.1: In-band wireless communication transmitters location for single radar
case.

near-geometry far-geometry

In-band

transmitter
x (m) y (m) x (m) y (m)

1 300 1700 6000 3000

2 1500 1500 500 8000

3 2000 1500 5000 500

4 1700 1800 3000 5000

0 1000 2000 3000 4000 5000 6000

x (m)

0

1000

2000

3000

4000

5000

6000

7000

8000

y
 (

m
)

Figure 3.3: Scenario generation for a single radar case, where the circle indicates
radar location, squares represent in-band transmitters (red color for far-geometry
and blue color for the near-geometry scenario), and the black line replicates the

target trajectory.

For track initialization, single point track initialization method (Musicki and Song,

2013) is used with maximum velocity, Vmax = 30m/s. A GNN association-based EKF,
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with a CV model, is deployed in the tracking framework. A gating technique is used

to validate the measurements, which follows a chi-square distribution χ2
d(1−tp), where

d is the degree of freedom and tp is the tail probability. Here, the logic-based track

maintenance (He et al., 2013) is opted to confirm or delete the tracks. Once the

tracks are initialized, based on the number of measurements being assigned in the

given frames, the tracks are either confirmed or deleted. The track confirmation is

based on 7/10 logic, and track termination/deletion is based on 4/10 logic.
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Figure 3.4: Tracking in state space for near-geometry scenario.

In a single radar case, near and far geometry scenarios are examined to evaluate

the tracking performance. For the near-geometry scenario, the IWCTs are close to

both the radar and target; the simulation scenario is shown in Figure 3.3. After the

measurements are processed with the GNN tracker, it is observed from Figure 3.4 that

ten tracks are reported by the tracker, in which two tracks are full-length tracks, and

the rest are partial tracks. Since the target is moving in the given surveillance, the

acquired measurements change over time and may not fit in the predefined models
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like CV, constant acceleration (CA), and coordinated turn (CT). This wrong mea-

surement to track association leads to track breakages and, in turn, results in track

termination over time. It is observed that track-2, track-3, and track-4 are terminated

at k = 27, k = 38, and k = 33 respectively. Whereas track-1 is the false track that oc-

curred throughout the simulation. Interestingly, the track due to monostatic returns

is preserved and is reported as a full track with the ID of track-5. The unassociated

measurements corresponding to terminated tracks give birth to new tracks as track-6,

track-7, track-8. The track-6 evolved at k = 21 and continued till k = 100, whereas

track-7, track-8 are evolved at k = 26, k = 31 and continued till k = 62, k = 59 and

then terminated. They gave birth to new tracks (track-9, track-10) that evolved at

k = 53, k = 56 and are confirmed till the end. It is noticed that track-2 and track-6

belong to the same track. Also, track-3, track-8, and track-9 belong to the same track.

Further, track-4, track-7, and track-10 belong to the same track and correspond to

the same in-band transmitter. Sometimes, the overlapping of tracks is due to the last

five predictions of the tracks before termination. Hence, the presence of IWCTs near

both the radar and target results in more tracks with track breakages.

The simulation scenario for the far-geometry case, where IWCTs are located far

from the target and radar, is depicted in Figure 3.3. In this scenario, it is observed

from Figure 3.5 that the GNN tracker has reported five tracks. All the reported five

tracks are of full length i.e., from k = 1 to k = 100. Among the five tracks, only

track-5 is the true track; the rest corresponds to the measurements arising from the

IWCTs. Compared to the near geometry case, the track reports and track breakages

are less. Although, in both cases, IWCTs produce false tracks, making the tracker

ambiguous to decide which track belongs to the true target. Further, the confirmed

false tracks report that more targets are present in the given surveillance region. It is

hard to distinguish the true track from all the available tracks. Hence, in this research,

it is proposed to use the local tracks obtained from multiple radars and resolve the

ambiguous tracks.

3.5.2 Multiple radar case

This subsection examines the case of distributed radars and in-band transmitters.

Initially, two radars (R1, R2) and four IWCTs (C1, C2, C3, and C4) are considered
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Figure 3.5: Tracking in state space for far-geometry scenario.

in the surveillance region. Next, this case is extended for four radars (R1, R2, R3,

R4). It is assumed that both radars and IWCTs are static. In contrast, the target

is dynamic and follows the CV model. The locations of both radars and in-band

communication transmitters are tabulated in Table 3.2 and are depicted in Figure 3.6.

Since the distributed tracking followed by fusion is deployed, each radar provides

its local tracks. The track-to-track association is performed on the local tracks as

presented in Section 3.3.1. In this process, the overall optimization provides the

tuples of tracks. Among them, only one track is quantified by performing a chi-

square distribution test. Once the true track associated with each radar is known,

these quantified local tracks are fused at the fusion centre to yield a global estimate,

using the various correlation-free fusion algorithms are presented in Section 3.3.2.

Figure 3.7 shows the obtained local tracks of R1 and R2 sensors in a clean environ-

ment (unity target detection probability and zero false alarm density). It is observed

that even though there exists a single target in the surveillance, multiple tracks result
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Table 3.2: The locations of Radars and In-band wireless communication
transmitters for multiple radar case.

Radar (R) In-band transmitter (C)

S.No. x (m) y (m) x (m) y (m)

1 5000 2000 500 500

2 500 2000 500 8000

3 700 9000 5000 500

4 6000 7000 6000 8000
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Figure 3.6: Scenario generation for multiple radar case.

at each sensor. Only two local tracks represent the actual target tracks pertaining

to sensor-1 and sensor-2. The rest of the tracks fall apart within the surveillance

due to the additional time delay introduced by the IWCTs. Further, if the IWCTs

are co-located in the vicinity of the radar, then the false local track corresponding to

IWCTs also appears near the true trajectory locations. In this case, due to the spatial

deployment of IWCTs, it is observed that the local tracks are spatially separated. It
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is worth noting that one local track from the track set of each radar represents the

true target. In the case of low target detection probability, the above condition of

one local track from the target set becomes unrealistic. In addition, with the T2TA,

the overlapped tracks appeared as a tuple. Even with the increase in the number of

radars, a single track from the track set represents the actual target track, and it is

easily be quantified by using T2TA.
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Sensor-1 tracks

Sensor-2 tracks

Figure 3.7: Illustration of local tracks pertain to R1 and R2 with unity pD and zero
false alarm density.

Figures 3.8-3.10 show the PRMSE and the corresponding achievable lower bound

(PCRLB) of the fused tracks and the associated radar tracks for two radar case,

by choosing different pD and false alarm density. The ellipsoidal intersect (EI) (Sijs

et al., 2010) and CI fusion methods have been used for a two radars case to find

the fused state estimates. The ellipsoidal method uses the mutual information-based

mean and covariance, which are derived using two initial estimates, to calculate the

final fused mean and covariance (Sijs et al., 2010). On the other hand, CI uses trace
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or determinant minimization to determine the fused covariance. This minimization

becomes a nonlinear convex optimization problem. The solution is found using the

well-known polynomial root-finding problem, which allows closed-form solutions to

find the final fused covariance.
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Figure 3.8: PRMSE of two radar case with unity pD and zero false alarm density.

In particular, Figure 3.8 shows the PRMSE for clean environment. Since the

tracker is initialized with a one-point initialization, with Vmax = 30 and converted

measurement, the PRMSE is very high at k = 0. During the time period of k ∈ [1, 20],

the filter settles its covariance, and it is visualized that the PRMSE is decreasing over

time. After a certain time, k = 40, the filter is settled, and the settled PRMSE values

are observed. Interestingly, the fused estimate with EI agrees with the CI method till

k = 40, and its performance begins to degrade after a few scans. This is due to the

unsettled covariance of any of the tracks. It is the main drawback of the ellipsoidal

method. The fusion with the CI method provides improved performance compared

72



to the EI and has less fused PRMSE values.
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Figure 3.9: PRMSE of two radar case with pD 0.9 and false alarm density as
1× 10−7.

Figures 3.9 and 3.10 show the PRMSE of the two radar case having false alarm

density 1 × 10−7 with pD as 0.9 and 0.8, respectively. It is observed from Figure 3.9

that the PRMSE of the associated tracks has a higher value in comparison with Fig-

ure 3.8. It is because the decrease in pD increases the measurement ambiguity. Since

the track termination rule follows 4/10, it indicates that a continuous track exists even

though there is an absence of measurement for three consecutive scans. During the

unavailability of measurement in a given scan, the tracker uses the predicted estimate

as an updated estimate. The prediction state cannot withstand the error due to the

process noise, which in turn raises the PRMSE values for these scans. In the pres-

ence of measurement origin uncertainty, the continuous track can be achieved with

degraded accuracy by increasing the track termination rule. Even though PRMSE of

the associated tracks has a noticeable degrade with the decrease in pD, the fused esti-
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Figure 3.10: PRMSE of two radar case with pD 0.8 and false alarm density as
1× 10−7.

mate has less performance degradation. Similar statements hold true for Figure 3.10.

Further, from Figures 3.8-3.10, it is noted that the estimation PRMSE values are in

agreement with the PCRLB values.

Generally, the fusion of individual local estimates leads to a better estimate. As-

suming that four radars (R1, R2, R3, R4) are present in a surveillance region, the

Figures 3.11-3.13 show the PRMSE of the four radar case for different values of pD

and pFA. The PRMSE is also quantified with PCRLB. The locations of the radars are

provided in Table 3.2 and are depicted in Figure 3.6. In contrast to two radar case,

the SCI method is deployed here to fuse the associated tracks; as the EI is limited to

two sources, the CI is computationally expensive for more sources. In contrast to CI,

the SCI first fuses the local track estimates with an assumption that they are indepen-

dent. After that, the covariance size of the fused track estimate is modified through a

sampling process. The fuser weight parameter plays a critical role in estimating the

mean in SCI. For a given unity fuser weight, the fuser is pessimistic. Whereas, for a

74



0 10 20 30 40 50 60 70 80 90 100

k

0

20

40

60

80

100

120

140

160

180

200
P

R
M

S
E

SCI fused track

Sensor-1 associated track

Sensor-2 associated track

Sensor-3 associated track

Sensor-4 associated track

Fused PCRLB

Sensor-1 PCRLB

Sensor-2 PCRLB

Sensor-3 PCRLB

Sensor-4 PCRLB

Figure 3.11: PRMSE of four radar case with unity pD and zero false alarm density.

zero fuser weight, the fuser is optimistic. The fuser weight of 0.5 provides the best

consistency (Tian et al., 2010). Henceforth, in this simulation, the fuser weight value

is set to 0.5.

It is observed from Figures 3.11-3.13 that, since a single point initialization is

used (Mallick and La Scala, 2008), the PRMSE for initial time stamps is higher.

Once the covariance of the filter is settled, the PRMSE decreases with the increase in

time. Further, the PRMSE values of Figure 3.12 and 3.13 are higher when compared

to the clean environment, shown in Figure 3.11. The decrease in pD increases the

measurement ambiguity at the radar, which in turn increases the PRMSE. Besides, it

is worth noting from Figures 3.11-3.13 that, the four radar fusion estimate provides

improved PRMSE compared to the two radar case of Figures 3.8-3.10. Also, from

Figures 3.8-3.13, it is noted that, the increase in the number of radars considered

for fusion further improves the estimation PRMSE values and meets with the fused

PCRLBs.

75



0 10 20 30 40 50 60 70 80 90 100

k

0

20

40

60

80

100

120

P
R

M
S

E

SCI fused track

Sensor-1 associated track

Sensor-2 associated track

Sensor-3 associated track

Sensor-4 associated track

Fused PCRLB

Sensor-1 PCRLB

Sensor-2 PCRLB

Sensor-3 PCRLB

Sensor-4 PCRLB

Figure 3.12: PRMSE of four radar case with pD 0.9 and false alarm density as
1× 10−7.

To clearly show the efficacy of fusing the information from multiple radars, Fig-

ure 3.14 shows the PRMSE of the four radar case and two radar case for different

values of pD. Further, to clearly distinguish the difference in PRMSE, Figure 3.14 is

plotted with X-axis on a linear scale and Y -axis on a logarithmic scale. It is worth

noting that the PRMSE of the four radar fusion estimates is always less when com-

pared to two radar fusion for various values of pD. For example, for pD= 0.9, the four

radar case PRMSE is lower than the two radar case and holds true for other values

of pD. The four radar case fusion provides a two-fold performance compared to two

radar case fusion. Therefore, the deployment of more radars not only benefits the

elimination of false tracks but also provides improved target tracking performance.

Further, fusing the information from more sensors improves the estimation accuracy,

with PRMSE values much closer to PCRLBs.

76



0 10 20 30 40 50 60 70 80 90 100

k

0

20

40

60

80

100

120

140

160

180

P
R

M
S

E

SCI fused track

Sensor-1 associated track

Sensor-2 associated track

Sensor-3 associated track

Sensor-4 associated track

Fused PCRLB

Sensor-1 PCRLB

Sensor-2 PCRLB

Sensor-3 PCRLB

Sensor-4 PCRLB

Figure 3.13: PRMSE of four radar case with pD 0.8 and false alarm density as
1× 10−7.
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Chapter 4

Information Theory Based
Performance Analysis of Spectrum
Sharing Radar

This chapter presents the performance analysis of the radar and communication sys-

tem (RadComm) spectrum sharing scenario. The analysis is carried out by consid-

ering the spectrum sharing radar (SSR), capable of detecting the radar targets and

simultaneously acting as a communication receiver. To evaluate performance, mu-

tual information (MI), spectral efficiency (SE) and capacity (C) metrics are used.

The MI and capacity results show that using the successive interference cancellation

(SIC) scheme in a mixed-use band yields performance comparable to traditional radar

and communication system. In terms of SE, the SSR with SIC scheme outperforms

traditional radar and communication system.

4.1 Problem formulation

The spectrum sharing radar (SSR) capable of detecting the radar targets and simul-

taneously acting as a communication receiver is considered, as shown in Figure 4.1. It

is assumed that total available bandwidth (BSSR) of the SSR split among radar only

sub-band with bandwidth (Br) and mixed-use bandwidth (Bmix). Here, mixed-use

refers to both radar and communication purposes. The SSR is capable of extracting

the target information from the radar-only sub-band. Meanwhile, the mixed-use band

is for both target information and communication data. Since this study analyses the

performance from the radar perspective, Figure 4.2a illustrates the radar target chan-

nel model of SSR from the information-theoretic viewpoint. The radar transmitted
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Spectrum Sharing Radar In-band CommunicationTransmitter

Communication Signal

Figure 4.1: System model of a Spectrum sharing radar.

waveform x(t) impinges on the target and gets scattered by it. The scattered signal

with additive noise is received at the SSR receiver and further processed to extract

the target information from radar-only and mixed-use bands. The target-to-receiver

channel equivalent mathematical model is shown in Figure 4.2b, where x(t) is the

radar transmitted waveform, with duration T having the energy Ex. The g(t) is the

target scattering characteristics model/ impulse response; h(t) is the resulting target

scattered signal. The w(t) is the zero-mean white Gaussian noise having the power

spectral density Pww, which is independent of x(t) and g(t). The w(t) is represented

with an intent that the overall SSR system bandwidth (BSSR = Br + Bmix) is influ-

enced by the same noise. The ϵ quantifies the loss of target information in the received

signal owing to in-band communication interference for the mixed band system oper-

ation. The received signal/ measurement model at the radar receiver from the radar

only sub-band is given by (Bell, 1993; Bliss, 2014)

zr(t;Br) = f(h(t), x(t), g(t)) + w(t)

=
√
Prsr(t− τ) + w(t). (4.1)

Here, f(·) represents the non-linear function and t represents the time, Pr is radar

received power due to target return. Whereas the received signal/ measurement model
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from the mixed-use sub-band is represented as (Bell, 1993; Bliss, 2014)

zr(t;Bmix) = f(h(t), x(t), ϵ, g(t)) + w(t)

=
√
Prsr(t− τ) +

√
Pcsc(t) + w(t), (4.2)

where Pc is radar received power, owing to in-band wireless communication transmit-

ter (IWCT), ϵ is a Bernoulli random variable, which quantifies the effect of the target

information reduction in mixed-use sub-band. The ϵ is equal to zero, when there is

no target information is extracted in mixed-use-band, ϵ takes the value to unity when

the target information is extracted.

For the mixed-use sub-band, two cases have been assumed: with successive inter-

ference cancellation (SIC) and without SIC. It is assumed that when the SIC method

is used, the received signal at the radar receiver will get suppressed with predicted

communication symbols. Hence, it cancels the in-band interference effect in mixed-

use band (Patel and Holtzman, 1994; Bliss, 2014). Therefore, the received signal with

SIC in mixed band from radar perspective is given by

zrSIC
(t;Bmix) = f(h(t), x(t), ϵ, g(t)) + w(t)

=
√
Prsr(t− τ) +

√
Pc
(
sc(t)− scpre(t)

)
+ w(t)

=
√
Prsr(t− τ) + wint+n(t), (4.3)

where wint+n(t) = wresidual(t) + w(t). Here, "int" refers to in-band interference, "n"

refers to noise. Whereas, mixed-use band without SIC will not predict and suppress

the in-band communication symbols, results in strong in-band interference effect,

which nullifies target information in that particular sub-band. Therefore, the received

signal without SIC in mixed band is same as (4.3) with wint+n(t) =
√
Pcsc(t) + w(t).

Similar equation holds true from communication perspective in mixed-used band by

interchanging the radar and communication signals in (4.3).

The received signals zr(t;Br), zr(t;Bmix) given in (4.1) and (4.2) are processed

to extract the target information. Let IBr(t) and IBmix
(t) be the extracted target

information from radar only sub-band and mixed-use sub-band, respectively. It is

assumed that these are additive and there is no overlap exist in the information

received. So, the overall target information ISSR(t) from both the sub-bands is the

summation of IBmix
(t) and IBr(t).
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(a) Block diagram

(b) Mathematical representation

Figure 4.2: Spectrum sharing radar target-to-receiver channel model.
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To make the target-to-receiver channel model more realistic, it is also assumed

that there exists multipath between the target-to-receiver channel, as shown in Fig-

ure 4.1. The mathematical representation of the multipath model of SSR in radar

only band is shown in Figure 4.3. A similar figure holds true for the mixed-use band,

and ϵ exists. N number of paths between the target-to-receiver are depicted in Fig-

ure 4.3. These multipaths are effected by noise w(t) = f(w1(t), . . . , wn(t)). Here,

w1(t), w2(t), . . . wn(t) are the individual path noise components represented for math-

ematical convenience and are jointly contributing to a single noise component w(t).

Further, for simplicity, it is assumed that all the multipaths have a unity channel gain.

By imposing subscript i to the (4.1), (4.2), results in received signal of ith path. The

overall received signal at the radar receiver due to multipath from the radar only and

mixed-use sub-band, is given by

zr(t;Br) =
N∑
i=1

zri(t;Br),

zr(t;Bmix) =
N∑
i=1

zri(t;Bmix). (4.4)

Here, it is worth noting that zri(t;Br), zri(t;Bmix) are equivalent to (4.1) and (4.2)

for single path.

For the RadComm spectrum sharing scenario considered, there is a strong need

to quantify the target information available at the radar for a given transmitted

waveform. Besides, SSR is also capable of acting as a communication receiver. Here,

there is a strong requirement to estimate the information rate at the SSR. Similarly,

it is essential to quantify how efficiently the SSR utilizes the spectrum. Given this,

the performance analysis of SSR is carried out using three metrics, namely, mutual

information (MI), spectral efficiency (SE), and capacity (C). MI is considered for

target-to-receiver channel for a given transmitted waveform to quantify the target

information that is available at the radar. The SE is adopted in this study to quantify

how efficiently the spectrum is being utilized with the SSR. Finally, the capacity (C)

metric is introduced to quantify the communication information rate at SSR.

The following, Sections 4.2 and 4.3, present the performance analysis of the SSR in a

clean and multipath environment.
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Figure 4.3: Multipath target-to-receiver channel model of spectrum sharing radar in
radar only band.

4.2 Performance analysis in a clean environment

In this section, the performance analysis of SSR in a clean environment is presented

using MI, SE, and C metrics.

4.2.1 Mutual Information (MI)

The total MI between the the target characteristics g(t) and the received signal at

the radar receiver zr(t) over a bandwidth BSSR is the summation of the MI in radar

only band IBr(t) and the MI in mixed-use band IBmix
(t). Here BSSR=Br +Bmix.

A MI in radar-only band

Let x(t) is the radar transmitted waveform with the energy Ex and period T . The

MI (IBr (zr(t); g(t) | x(t))) between the target-to-receiver in the presence of additive

Gaussian noise (with Pww(f) as a one sided power spectral density) is maximized by

x(t) with magnitude squared spectrum (Bell, 1993)

|X(f)|2 = max [0, A− r(f)] , (4.5)
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where

r(f) =
Pww(f)T

2σ2
G(f)

, (4.6)

σ2
G(f) is spectral variance of g(t), and A is the solution of the equation

Ex =

∫
Br

max [0, A− r(f)] df, (4.7)

with r(f) defined in (4.6).

The resulting maximum MI ImaxBr
(zr(t); g(t) | x(t)) over the radar only band interval

Br = [fc, fc +Br] is given by (Bell, 1993; Woodward, 2014; Cover and Thomas, 2012)

ImaxBr
(zr(t); g(t) | x(t)) = T

∫
Br

ln

[
1 +

2|X(f)|2σ2
G(f)

Pww(f)T

]
df

= T

∫
Br

max [0, lnA− ln r(f)] df

= TBr lnA− T

∫
Br

ln r(f) df (nats). (4.8)

Here, 2|X(f)|2σ2
G(f)

Pww(f)T
represents the signal to noise ratio (SNR) in radar only sub-band,

represented as

SNRBr =
|X(f)|2σ2

G(f)/T

Pww(f)/2
(4.9)

B MI in mixed-use band

The MI in the mixed-use sub-band follows the similar procedure of radar-only band,

except that, one needs to take the expectation over the variable ϵ, which incorpo-

rates the effect of in-band communication system interference. Therefore, the MI

ImaxBmix
(zr(t); g(t) | x(t)) over the mixed-use band interval Bmix = [fc, fc +Bmix] is

given by

ImaxBmix
(zr(t); g(t) | x(t)) = E

ϵ

[
ImaxBmix

(zr(t); g(t) | x(t), ϵ)
]

= 0× p(ϵ = 0)ImaxBmix
(zr(t); g(t) | x(t), ϵ = 0)

+ 1× p(ϵ = 1)ImaxBr
(zr(t); g(t) | x(t), ϵ = 1)

= p(ϵ = 1)ImaxBr
(zr(t); g(t) | x(t)) . (4.10)

Here, p(ϵ = 1) represents the mean value of ϵ, takes the values between zero to one. It

can be interpreted as an information reduction factor in the mixed-use band compared
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to the radar-only sub-band.

Similar to (4.8), the general MI in mixed-use sub-band is given by

ImaxBmix
(zr(t); g(t) | x(t)) ∝ ln (1 + SINRBmix

) (4.11)

Interpreting (4.10), (4.11), utilizing expressions (4.8) and (4.9), the mean ϵ can be

defined as the ratio of signal to interference plus noise ratio (SINR) in mixed-use sub-

band (SINRBmix
) to the SNR in radar-only sub-band (SNRBr). However, in contrast

to SNRBr , the SINRBmix
takes two forms. One without using the SIC scheme and

the other is using the SIC scheme in mixed-use band (Tian et al., 2019b). Similar to

(4.9), the SINRBmix
without using SIC scheme is given by

SINRwithout SIC
Bmix

=
|X(f)|2σ2

G(f)/T

Pww(f)/2 + |Sc(f)|2
, (4.12)

where |Sc(f)|2
(
Pc =

∫
Bmix

|Sc(f)|2df
)

denotes the in-band wireless communication

transmitter power component. In contrast to (4.9), the additional term |Sc(f)|2 in

the denominator of (4.12) denotes the direct interference component.

Using the SIC scheme in mixed-use band subtract the received signal with pre-

dicted communication component (as represented in (4.3)). Hence, the resultant

SINRBmix
using SIC scheme in mixed-use band is given by

SINRwith SIC
Bmix

=
|X(f)|2σ2

G(f)/T

Pww(f)/2 + |Sresc (f)|2
, (4.13)

where |Sresc (f)|2 = |Sc(f) − Scpre(f)|2 represents the residual communication power

component.

Using (4.12) and (4.9), the ratio of SINRwithout SIC
Bmix

to SNRBr is assumed as ϵ̄1,

given by

ϵ̄1 =
Pww(f)

Pww(f) + 2|Sc(f)|2
. (4.14)

Here, the denominator of ϵ̄1 has the direct interference component of high value com-

pared to noise, it is approximately equal to zero. It is in fact true that for a fixed value

of noise power Pww, (4.14) becomes ϵ̄1 = constant
constant+high value ≈ 0. Which indicates the

minimum information retrieval in mixed-use band when SIC scheme is not adopted.

Also, the ratio of SINRwith SIC
Bmix

to SNRBr is assumed as ϵ̄2, given by

ϵ̄2 =
Pww(f)

Pww(f) + 2|Sresc (f)|2
, (4.15)
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which is approximately equal to one because the denominator will only have residual

interference component of less value compared to noise. Therefore, without loss of

generality, using (4.10), (4.14), and (4.15) the MI in the mixed-use band is given by

ImaxBmix
(zr(t); g(t) | x(t)) (4.16)

=


ϵ̄1

(
TBmix lnA− T

∫
Bmix

ln r(f) df
)

without SIC scheme

ϵ̄2

(
TBmix lnA− T

∫
Bmix

ln r(f) df
)

with SIC scheme

Finally, the MI of the SSR is the sum of individual MI’s in their respective sub-bands,

is given by

ImaxBSSR
(zr(t); g(t) | x(t)) = ImaxBr

(zr(t); g(t) | x(t)) + ImaxBmix
(zr(t); g(t) | x(t)). (4.17)

Here ImaxBr
and ImaxBmix

are defined in (4.8) and (4.16), respectively.

To show the comparison of the SSR with the traditional radar, MI of the traditional

radar having BW (BT ) (Bell, 1993) is given by

ImaxBT
(zr(t); g(t) | x(t)) = T

∫
BT

max [0, lnA− ln r(f)] df(nats), (4.18)

where r(f) and A have the similar form of (4.6) and (4.7), by replacing Br with BT .

4.2.2 Spectral Efficiency (SE)

In this subsection, the SE performance metric for SSR is presented. The SE is defined

as a ratio of maximum MI between target-to-receiver of the SSR over the available

bandwidth (Deng et al., 2013; Chiriyath et al., 2017). Therefore, the SE of the SSR

is given by

SESSR =
Imax
BSSR

BSSR
, (4.19)

where Imax
BSSR

is given in (4.17) and BSSR is the bandwidth (BW) used by SSR, defined

as BSSR = Br +Bmix.

To show the advantage of SSR over the traditional radar in-terms of SE, the SE

of the traditional radar is also defined and is given by

SET =
Imax
BT

BT +Bmix

, (4.20)
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where Imax
BT

is given in (4.18). The additional BW Bmix to the BT is considered in the

denominator instead of taking the 2BT . Because, in traditional radar and communi-

cation system operation, where the spectrum sharing is not considered, a BW of Br

is used for radar purpose alone, and an extra BW of Bc is used for communication

operation. Here, in SSR, the Bmix is the portion of BW which contains the communi-

cation information. Therefore, the net effective BW is BT +Bmix with the condition

that Br = BT , and Bc = Bmix.

It is to be noted that the (4.19) shows the SE of SSR from the radar perspective.

However, apart from radar target information, the SSR also receives the communica-

tion information in mixed-use band. Therefore, the SE of SSR from communication

system perspective also needs to be quantified. It is known that the SE of communi-

cation system is the ratio of Capacity (C) to the BW used (Cover and Thomas, 2012),

the SSR does not use any additional BW (zero Bc) for communication information

retrieval, results into a infinite SE.

4.2.3 Capacity (C) in mixed-use band

In this subsection, the channel capacity calculation for SSR is presented. As, the

mixed-use band of SSR consist of communication information apart from radar related

information, therefore the capacity metric needs to be evaluated in this band. In

general, the bandlimited Gaussian channel capacity with a BW B, noise power spectral

density of Pww/2 watts/Hz, and power Pc watts is defined as (Cover and Thomas,

2012)

C = B ln

(
1 +

Pc
PwwB

)
(4.21)

In SSR, Bmix is the amount of BW which carries the communication information.

Hence, the capacity of traditional communication system with a BW Bmix is taken

for comparison purpose, it follows (4.21) by replacing B with Bmix.

Similar to (4.16), the capacity of SSR in mixed-use band is given by

CBmix
=


ϵ̄1 Bmix ln

(
1 + Pc

PwwBmix

)
without SIC scheme

ϵ̄2 Bmix ln
(
1 + Pc

PwwBmix

)
with SIC scheme

.

(4.22)
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Here, ϵ̄1 and ϵ̄2 are different from MI calculations of the radar case that are presented

in section 4.2.1 B. As the communication perspective is considered here, the radar

component is treated as an interference. Therefore, similar to (4.14) and (4.15), the

corresponding ϵ̄1 and ϵ̄2 is given by

ϵ̄1 =
Pww

Pww + 2Pr
, ϵ̄2 =

Pww
Pww + 2P res

r

. (4.23)

Here, Pr = |X(f)|2σ2
G(f)/T radar power component, P res

r = Pr − Prpre represents

the residual radar power component using SIC scheme in the mixed-use band. In

addition, the ϵ̄1 is approximately equal to zero, as the denominator component has the

higher interference (radar power) value compared to the noise power. Which provides

reduction in the capacity in mixed-use band, when SIC scheme is not deployed. In

contrast, ϵ̄2 is approximately equal to one, because the denominator component consist

of insignificant interference residual component compared to noise power.

4.3 Performance analysis in a multipath environment

In this section, the performance analysis of SSR is presented by considering the mul-

tipath. For mathematical simplicity, assume only two paths i.e., i = 1, 2. Then

the reduced channel model has paths with w1(t), w2(t) as noise components. Noise

components w1(t), w2(t) are jointly Gaussian with zero mean and covariance Kw = σ2
w ρσ2

w

ρσ2
w σ2

w

. Where σ2
w = Pww(f)

2
, ρ is the correlation coefficient.

4.3.1 MI in a multipath environment

In this subsection, the multipath is considered in the derivation of MI of the SSR.

A MI in radar-only band

For the radar transmitted waveform x(t), the MI between the target that has re-

sponse characteristics g(t) and the receiver with the reduced multipath model that

has w1(t), w2(t) as jointly Gaussian in radar only band is given by (Cover and Thomas,

2012)

IBr (zr(t); g(t) | x(t)) =
1

2
ln

[
1 +

2P

σ2
ww(1 + ρ)

]
, (4.24)
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where P is the power component which represents the target information, is given by

P =
|X(f)|2σ2

G(f)

T
. After substituting P and σ2

ww in (4.24), the resulting MI is given by

IBr (zr(t); g(t) | x(t)) =
1

2
ln

[
1 +

4|X(f)|2σ2
G(f)

Pww(f)T (1 + ρ)

]
. (4.25)

Using (4.25), the resulting MI IBr(zr(t); g(t) | x(t)), over the radar only band interval

Br = [fc, fc +Br], with multipath effect, is given by

IBr (zr(t); g(t) | x(t)) = T

∫
Br

ln

[
1 +

4|X(f)|2σ2
G(f)

Pww(f)T (1 + ρ)

]
df(nats). (4.26)

Similar to (4.8), the maximum MI of IBr(zr(t); g(t) | x(t)) in multipath case, with the

constraint on transmitted waveform energy Ex, is given by

ImaxBr
(zr(t); g(t) | x(t)) = TBr lnD − T

∫
Br

ln

[
r(f)

(
1 + ρ

2

)]
df (nats). (4.27)

The detailed proof of obtaining the maximum IBr(zr(t); g(t) | x(t)) is provided in

Appendix A.2.

For different values of correlation coefficient ρ = 0, 1,−1, the resulting MI is given by

ImaxBr
(zr(t); g(t) | x(t)) =


TBr lnD − T

∫
Br

ln
[
r(f)
2

]
for ρ = 0

TBr lnD − T
∫
Br

ln r(f) for ρ = 1

∞ for ρ = −1

. (4.28)

Here, for ρ = −1, the MI = ∞ does not mean that one gets the infinite amount

of information. Instead, it means that the true/ overall target information has been

received. It is true that for ρ = −1 case, the noise components w1(t) and w2(t) cancel

out each other. At the receiver, one has only the true information of the target.

B MI in mixed-use band

MI in a mixed-use band with multipath holds a similar procedure of MI in a clean

environment. The only difference is, instead of using MI of the radar-only band in

a clean environment, MI of the radar-only band with multipath defined in (4.27) is

used here. The resulting MI similar to (4.16) is given by

ImaxBmix
(zr(t); g(t) | x(t)) (4.29)

=


ϵ̄1

(
TBmix lnD − T

∫
Bmix

ln
[
r(f)

(
1+ρ
2

)]
df
)

without SIC scheme

ϵ̄2

(
TBmix lnD − T

∫
Bmix

ln
[
r(f)

(
1+ρ
2

)]
df
)

with SIC scheme
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Finally, the MI of the SSR with multipath effect is given by

ImaxBSSR
(zr(t); g(t) | x(t)) = ImaxBr

(zr(t); g(t) | x(t)) + ImaxBmix
(zr(t); g(t) | x(t)). (4.30)

Here ImaxBr
and ImaxBmix

are defined in (4.27) and (4.29) respectively.

Similar to (4.18), the MI of the traditional radar with multipath is given by

ImaxBT
(zr(t); g(t) | x(t)) = TBT lnD − T

∫
BT

ln

[
r(f)

(
1 + ρ

2

)]
df (nats), (4.31)

where D, r(f) is defined in (A.20) and (4.6) respectively.

4.3.2 SE in a multipath environment

The SE of the SSR and traditional radar with multipath is same as (4.19) and (4.20),

respectively. The main difference is that Imax
BSSR

, Imax
BT

defined in (4.30), (4.31) is used

here, instead of (4.17), (4.18). i.e.,

SESSR =
Imax
BSSR

BSSR
and SET =

Imax
BT

BT +Bmix

, (4.32)

where Imax
BSSR

, Imax
BT

are defined in (4.30), (4.31).

4.3.3 Capacity (C) in a multipath environment

In this subsection, the channel capacity of SSR in mixed-use band is calculated by

considering the multipath effect between the in-band communication transmitter to

SSR receiver. The bandlimited Gaussian channel capacity with a BW Bmix, effected

with w1(t), w2(t) jointly Gaussian noise components with zero mean and covariance

Kw =

 σ2
w ρσ2

w

ρσ2
w σ2

w

, σ2
w = Pww

2
, correlation coefficient ρ, and power Pc watts is given

as Cover and Thomas (2012)

C = Bmix ln

(
1 +

2Pc
PwwBmix(1 + ρ)

)
. (4.33)

Using (4.33), similar to (4.22), the capacity of SSR in multipath environment is given

by

CBmix
=


ϵ̄1 Bmix ln

(
1 + 2Pc

PwwBmix(1+ρ)

)
without SIC scheme

ϵ̄2 Bmix ln
(
1 + Pc

PwwBmix(1+ρ)

)
with SIC scheme

.

(4.34)
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4.4 Results and discussion

In this section, the numerical results are presented based on the analysis presented

in Section 4.2 and 4.3. In this framework, it is assumed that the SSR is operating at

3000MHz with BW of 10MHz. Also, it has the effective antenna area Ae of 2m2, and

line of sight towards the target at 10km range. The radar transmitter power varies

from 50W to 1000W, and pulse duration varies from 0.1ms to 100ms. Here, the target

scattering impulse response g(t) has a Gaussian characteristics with spectral variance

of σ2
G(f) = B exp{−δf 2}. Here, B and δ are constant, characterize the magnitude

and the rate of decrease of σ2
G(f) (Bell, 1993). The SSR uses 50% of available BW for

radar only operation and the rest for mixed-use purpose, unless specified. The additive

noise w(t) is white Gaussian having one-sided power spectral density Pww(f) = N0 =

kTs, with Boltzmann constant k = 1.381 × 10−23J/K and system noise temperature

Ts = 300K. The communication system power varies from 5 W to 1000 W. From

(4.14), (4.15), and (4.23), followed by the analysis there deduces the values of ϵ̄1, ϵ̄2

information reduction factors without using the SIC scheme and with using the SIC

scheme Tian et al. (2019b), respectively in mixed-use band. Further, it is apparent

that the ϵ̄1 ≈ 0 and ϵ̄2 ≈ 1. The same can also be verified for the values considered

herein for the noise power, communication power and radar power. For the sake of

analysis, ϵ̄1 and ϵ̄2 are considered as 0.1 and 0.9 respectively.

4.4.1 Clean environment - using equal BW sharing

The MI of the traditional radar and SSR are plotted in Figure 4.4, as a function of

radar average power and pulse duration using (4.17) and (4.18). The power is varied

from 50–1000W with a step size of 100W. Similarly, the pulse duration is varied from

0.1 ms to 100 ms with a step size of tenfold. In this analysis, 50% of total BW is

allocated for the radar-only band and the rest for the mixed-use band. The MI is

observed to increase with the increase in radar transmitted power and radar pulse

duration. For a pulse duration of 100ms, it is observed that MI outperforms the other

smaller pulse duration values. Similarly, it is observed that, for a given pulse duration,

as the average power increase, the MI increases. This is because the higher the power

impinges on the target, the more the information received. Further, it is evident from
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the results that MI of the traditional radar is always higher than the SSR due to the

flexibility of using total available BW for radar-only purpose. Furthermore, in SSR,

the influence of using the SIC scheme in the mixed-use band is also depicted in the

same Figure 4.4. It is also observed that the MI of SSR, with the SIC, is almost equal

to that of the traditional radar because the SIC scheme in the mixed-use band cancels

the in-band interference and ensures the maximum information retrieval in that band.

Whereas in the absence of the SIC scheme, the target information retrieval becomes

less and results in degraded MI of SSR, as shown in the Figure 4.4. This is because of

the loss of the target information from the mixed-use band, for an SSR radar, when

the SIC scheme is not adopted.
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Figure 4.4: MI of SSR as a function of radar power and pulse duration assuming
Bmix = 50% of BSSR.

Figure 4.5 shows the SE of the traditional radar and SSR as a function of radar

average power and pulse duration with Bmix = 50% of BSSR. The analysis is based on

(4.19) and (4.20). It can be observed from Figure 4.5 that the SE is proportional to
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the radar transmitted power and radar pulse duration for a given BW. Even though

the traditional radar MI is higher than the SSR (refer to Figure 4.4), in the case of

SE, the SSR with SIC stands higher than that of traditional radar. This is because

the traditional radar accounts for an additional BW of Bmix than the SSR for the

same amount of information that needs to be obtained. Further, it is observed that

the SE of the SSR without SIC is less compared to other schemes, owing to its poor

information retrieval in a mixed-use band.
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Figure 4.5: SE of SSR as a function of radar power and pulse duration assuming
Bmix = 50% of BSSR.

4.4.2 Clean environment - using unequal BW sharing

Figure 4.6 shows the MI of the traditional radar (always the BW is 100%) and SSR

with unequal allocated BW (ex. radar band 30% and mixed band 70%). In this

analysis, rather than varying the pulse duration, it is fixed to 1 ms, and the figures

are plotted using (4.17) and (4.18). Three different BW allocations are considered,

namely low mixed band BW (radar band 70% and mixed band 30%), equal BW
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Figure 4.6: MI of SSR as a function of radar power and Bmix with a fixed pulse
duration of 1ms.

(radar band 50% and mixed band 50%), and high mixed band BW (radar band 30%

and mixed band 70%). From Figure 4.6, it is observed that MI of traditional radar

outperforms when compared to other cases due to the availability of total BW, and

there is no in-band interference exists. Whereas, MI of SSR with the SIC scheme is

higher than the MI of SSR without SIC scheme in all the unequal BW sharing cases

since the use of SIC scheme in mixed band retrieves more information. As the Bmix

increases, the MI decreases and vice-versa. In support of this statement, it is clearly

observed from Figure 4.6, that the SSR with/without SIC having Bmix of 70% attains

lesser MI, compared to other cases. It is also worth noting that SSR with SIC also

varies dominantly by changing the Bmix. But, this is not properly being visualized in

the figures due to the log − y scale. The rate of decrease of MI of SSR, with respect

to Bmix, is less comparable in the case of SSR with the SIC scheme. At the same

time, a comparable decrease is found in the case of SSR without the SIC scheme. It

is a fact that using larger Bmix and not using the SIC scheme in the mixed-use band
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leads to more information loss.
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Figure 4.7: SE of SSR as a function of radar power and Bmix with fixed pulse
duration of 1ms.

Similar to MI of Figure 4.6, the SE analysis is also carried out for traditional radar

and SSR, as a function of average radar power, and Bmix, with a fixed pulse duration

of 1 ms. Figure 4.7 shows the SE with unequal BW allocation, and is obtained based

on (4.19) and (4.20). For the Bmix = 30%, 50%, 70% of BSSR, the denominator

of (4.20) becomes 1.3BT , 1.5BT , and 1.7BT respectively. It is observed that the

SE of SSR, with the SIC scheme, is higher than the traditional radar case and SSR

without the SIC case. In all the three proportions of mixed-use BW allocation (for

Bmix = 30%, 50%, 70% of BSSR), the order of the SE follows SE with SIC > SE

of traditional radar > SE without SIC. The SE without SIC scheme falls below the

other two cases (SE with SIC and traditional radar) in their corresponding proportion

of allocated mixed-use BW. Further, it is noted that the allocation of more amount

of BW (Bmix = 70% of BSSR) to the mixed-use band leads to the less SE of SSR
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without SIC case. Because the allocation of a high portion of total available BW

for the mixed-use band and not being able to use the SIC scheme will result in

considerable information loss, which inturn reflects on SE.

4.4.3 Impact of multipath in SSR

In the above Subsections, 4.4.1 and 4.4.2, the case of a clean environment is considered,

and a detailed discussion is given on the impact of radar power, pulse duration, and

allocation of unequal BW in SSR. The results obtained (Figures 4.4 to 4.7) in those

sections hold true for multipath case. Hence, the Figures are avoided and summarize

the results about multipath cases. In summary, the MI and SE increase with average

radar power and pulse duration in multipath cases. Similarly, MI of traditional radar

is higher than the SSR configuration, and SE of SSR is higher than the traditional

radar. These results are not plotted again for the multipath case to eliminate the

redundancy. Instead, the comparison results of clean environment and multipath

environment are provided.

Figure 4.8 depicts the comparison of MI in a clean and multipath environment

for both traditional and SSR, based on (4.17), (4.18), (4.30), and (4.31). Here, the

Bmix = 50% of BSSR, and a fixed pulse duration of 1ms is considered. The impact

of the correlation coefficient ρ is analysed. It is observed that the MI of traditional

radar and SSR with ρ = 0 is dominating compared to ρ = 1. This domination of

SSR is theoretically true. Because, for ρ = 0, the jointly Gaussian noise components

w1(t), w2(t) of two paths act as independent paths. Hence, the multipath target-

to-receiver channel act like two looks Gaussian channel (Cover and Thomas, 2012).

Therefore, the receiver has additional target information from multiple paths. Next,

the MI of traditional and SSR in a multipath environment for ρ = 1 is equal to that

of a clean environment. For ρ = 1, the multipath target-to-receiver channel acts

like a single look Gaussian channel, same as the clean environment target-to-receiver

channel model.

Figure 4.9 shows the comparison of SE of SSR and traditional radar in both clean

and multipath environment having Bmix = 50% of BSSR and a fixed pulse duration

of 1ms. The results are obtained using (4.19), (4.20), (4.32). Similar to Figure 4.8,

it is observed that SE of traditional and SSR for ρ = 0 is higher compared to ρ = 1.
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Figure 4.8: Comparison of MI of SSR for clean and multipath environment
(Bmix = 50% of BSSR and T = 1ms).

Similarly, the SE for ρ = 1 case is equal to the SE of clean environment. Since the

SE is directly proportional to MI, the change in MI directly reflects in SE.

Figure 4.10 shows the performance analysis of SSR from communication point of

view by considering the capacity as a metric for performance evaluation. It shows

the comparison between the capacity of SSR and the capacity of traditional com-

munication system in both clean and multipath environment having Bmix = 50% of

BSSR. The results are obtained using (4.22) and (4.34). Similar to Figure 4.8, 4.9, it

is observed that the capacity of traditional communication system and SSR mode of

operation for ρ = 0 is higher compared to ρ = 1. Because, for ρ = 0, both the paths

become independent and contribute to the capacity constructively. Similarly, the ca-

pacity for ρ = 1 case is equal to the capacity of clean environment. Unlike MI and

SE, the capacity of SSR with SIC and without SIC are considerably separated due to

suppression of the interference by the SIC scheme. It is because the communication

system capacity is only available in the mixed-use band. However, for the MI and SE
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Figure 4.9: Comparison of SE of SSR for clean and multipath environment
(Bmix = 50% of BSSR and T = 1ms).

metrics, both radar only band and mixed-use band contribute the target information.

Figure 4.11 shows the comparison of MI, SE, and capacity (C) of SSR with tradi-

tional systems by varying the mean ϵ. This figure also shows the impact of residual

and direct interference components on the performance metrics MI, C, and SE. The

Figure 4.11 is based on the generalized MI of SSR represented in (4.10) and its similar

forms for SE and C. Let mean ϵ ≈ 0 is the SSR without SIC region or ϵ̄1 region or

direct interference region. Let mean ϵ ≈ 1 is the SSR with SIC region or ϵ̄2 region

or residual interference region. The region between these two direct and residual in-

terference regions can be interpreted as a transition region. From (4.14), (4.15), and

(4.23), the ϵ̄1, ϵ̄2 are related to direct and residual interference components, varying

these quantities or observing the performance of SSR in the corresponding regions

automatically quantifies the effect of direct and residual interference. It is observed

that, the performance of the SSR without SIC region falls short when compared to

traditional systems. However, it align with the traditional system with SIC region
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(Bmix = 50% of BSSR)

for MI and C metrics. It is because, the SSR without SIC region is the region where

the direct interference will be present (referencing to (4.14) and (4.23)), which in

turn deteriorates the information retrieval. Whereas in ϵ̄2 region, the SSR uses the

SIC scheme, results into the residual interference (referencing to (4.15) and (4.23)),

which allows the better information reception. Further, the SSR provides improved

performance for SE metric. The SE of SSR in without SIC region is similar to the

SE of traditional system and SE of SSR with SIC scheme is superior compared with

traditional systems.
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Chapter 5

Target Estimation Performance
Improvement in Cooperative Radar
and Communication System
Spectrum Sharing

Considering the cooperative radar and communication system (RadComm) spectrum

sharing systems (which use the target reflected signals due to communication transmit-

ters), this Chapter presents the target estimation performance in terms of Cramer-Rao

Lower Bound (CRLB) as a performance metric. To show the efficacy of the coopera-

tive nature of RadComm spectrum sharing, the target estimation performance is also

evaluated for the case of non-cooperative RadComm spectrum sharing and stand-

alone radar system operation case. Results show that the cooperative RadComm

spectrum sharing provides an improved performance compared to non-cooperative

and stand-alone operations.

5.1 Cooperative RadComm spectrum sharing sys-
tem model

The system model of cooperative RadComm spectrum sharing is shown in Figure 5.1,

where a mono-static radar is detecting the targets present in its surveillance is con-

sidered. The radar target surveillance region also has coverage with spectrum sharing

communication system transmitter is illustrated. For simplicity, a single communica-

tion transmitter and a single target are considered. Along with the target reflections

from the radar transmission, the radar also receives the direct and the target reflected
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signals, owing to the in-band communication transmitter. The cooperation between

the radar and communication system allows them to share the transmit signal infor-

mation and location, which helps the radar receiver decode the communication signals

and extract the target information contributed by both radar and communication sys-

tems.

Figure 5.1: Cooperative radar and communication system model.

Let, STR(k), STC (k) are the transmitted signals by the radar and communication

system at time instant kTs, given by

STR [k] = aRsR(kTs), (5.1)

STC [k] = aCsC(kTs), (5.2)

where a(·) is the amplitude, and is equal to the square root of energy of the corre-

sponding signal
(
i.e., a(·) =

√
E(·)
)
, k = 1, 2, . . . K is the sampling index and Ts is the

sampling time.
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5.1.1 Received Signal Model

Due to the presence of spectrum sharing communication transmitter, the received

signal at the radar receiver, at time instant kTs, is given by

SRR
[k] = σt,RaRsR(kTs − τt,R) + σt,CaCsC(kTs − τt,C)

+ aCsC(kTs − τC) + w[k]. (5.3)

The first two terms in (5.3) represent the target returns due to radar and communi-

cation transmitter, whereas the last terms correspond to direct signal from a commu-

nication transmitter. The τt,R, τt,C , and τC represent the corresponding time delays.

The σt,R, σt,C are the target reflection coefficients, contributed by radar and com-

munication transmitters. The w[k] indicates the noise component and is assumed as

zero-mean Gaussian, with covariance Qw.

The overall received signal vector at the radar receiver is

SRR
= (SRR

[1], SRR
[2], . . . , SRR

[K])′

= Ut,Rst,R + Ut,Cst,C + UCsC +w, (5.4)

where

Ut,R = σt,RaR, Ut,C = σt,CaC , Uc = aC ,

st,R = [sR(Ts − τt,R), sR(2Ts − τt,R), . . . , sR(KTs − τt,R)]
′,

st,C = [sC(Ts − τt,C), sC(2Ts − τt,C), . . . , sC(KTs − τt,C)]
′,

sC = [sC(Ts − τC), sC(2Ts − τC), . . . , sC(KTs − τC)]
′,

w = [w[1], w[2], . . . , w[K]]′.

5.2 Target estimation performance in terms of CRLB

This section presents the CRLB derivation for cooperative, non-cooperative Rad-

Comm spectrum sharing and stand-alone radar system operation.

5.2.1 Cooperative case

The target state assumed is two dimensional, having a state vector x = [x y]′ and the

task of the radar is to estimate its position. The cooperation between the commu-

nication and radar system allows the communication system to share the complete
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statistics of the communication signal (i.e., sC = [sC [Ts], sC [2Ts], . . . , sC [KTs]]
′) with

the radar. This helps the radar to utilise the target reflected signals, owing to the

communication transmitter to detect target statistics, which improves the target esti-

mation performance. The likelihood function based on the received signal (5.4), with

the assumption that the communication signals are decoded, is given by

p(SRR
|x, sC) =

1

πKdet(Qw)
exp{−ZHQ−1

w Z}, (5.5)

where

Z = SRR
− Ut,Rst,R − Ut,Cst,C − UCsC (5.6)

The corresponding log-likelihood function of (5.5) is

ln{p(SRR
|x, sC)} ∝ −ZHQ−1

w Z (5.7)

Therefore, the maximum likelihood (ML) estimate of the target state x is obtained

using

x̂ = arg max
x

ln {p(SRR
|x, sC)} (5.8)

To compute the CRLB, an intermediate vector Θ is defined as

Θ = [τt,R, τt,C , θt,R, θt,C ], (5.9)

where (τt,R, θt,R), and (τt,C , θt,C) is the target range, angle information corresponds

to radar and communication system, given by

τt,R ∝
√
(x− xR)2 + (y − yR)2 = rR, (5.10)

τt,C ∝
√

(x− xR)2 + (y − yR)2 +
√

(x− xC)2 + (y − yC)2 = rR + rC , (5.11)

θt,R = θt,C = arctan

(
y − yR
x− xR

)
. (5.12)

Here, (xR, yR), (xC , yC) are radar and communication system transmitter locations,

respectively, and are assumed to be known.

The Fisher information matrix (FIM) for the target estimate of x is

FIM = (▽xΘ)′J(Θ)(▽xΘ), (5.13)
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where,

▽xΘ =

∂τt,R
∂x

∂τt,R
∂y

∂τt,C
∂x

∂τt,C
∂y

∂θt,R
∂x

∂θt,R
∂y

∂θt,C
∂x

∂θt,C
∂y

 =
(
C D

)
(5.14)

and

J(Θ) = ℜ
(
∂(Ut,Rst,R + Ut,Cst,C)

′

∂Θ
Q−1
w

∂(Ut,Rst,R + Ut,Cst,C)

∂Θ

)
, (5.15)

where ℜ{·} represents real operator.

From, (5.10), (5.11), (5.12), and (5.14), the C and D are calculated as

C =

 x−xR
rR

y−yR
rR

−(y−yR)

r2R

x−xR
r2R

 (5.16)

D =

x−xR
rR

+ x−xC
rC

y−yR
rR

+ y−yC
rC

−(y−yR)

r2R

x−xR
r2R

 (5.17)

Using (5.15) and (5.14), (5.13) is written as

FIM = C′Jt,RQ
−1
w J′

t,RC+D′Jt,CQ
−1
w J′

t,RC

+C′Jt,RQ
−1
w J′

t,CD+D′Jt,CQ
−1
w J′

t,CD. (5.18)

Here,

Jt,R =
∂(Ut,Rst,R)

∂τt,R
∝ σt,R

√
ER (5.19)

Jt,C =
∂(Ut,Cst,C)

∂τt,C
∝ σt,C

√
EC (5.20)

In Jt,R, Jt,C , only amplitude components are considered, with the assumption that

the focus is not on waveform design; therefore, without loss of generality, signal com-

ponents are assumed to be one.

Finally, from (5.18), the CRLB for the case of cooperative RadComm spectrum

sharing is given by (Bar-Shalom et al., 2004)

CRLB = FIM−1. (5.21)
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5.2.2 Non-cooperative case

From (5.4), the received signal at the radar receiver is given by

SRR
= Ut,Rst,R + Ut,Cst,C + UCsC +w. (5.22)

Owing to the non-cooperative nature of RadComm spectrum sharing, the radar sys-

tem receiver cannot interpret and make use of target reflected signals from the commu-

nication transmitter and assumes it as an additional noise component and processes

further. Therefore, (5.22) is modified to

SRR
= Ut,Rst,R +wC +w. (5.23)

Here, it is assumed that wC is also a zero-mean Gaussian with covariance QC . The

assumption of Gaussianity is made based on the principle of Central limit theo-

rem (Abramowitz and Stegun, 1948).

Similar to (5.5), the likelihood function for this case is

p(SRR
|x) = 1

πKdet(QC +Qw)
exp{−ZH(QC +Qw)

−1Z}, (5.24)

where

Z = SRR
− Ut,Rst,R (5.25)

The corresponding log likelihood function is

ln{p(SRR
|x)} ∝ −ZH(QC +Qw)

−1Z (5.26)

The corresponding target estimate follows

x̂ = arg max
x

ln {p(SRR
|x)} (5.27)

The FIM follows the similar form of (5.13), with changes in Θ, ▽xΘ, J(Θ), given by

(since the contributions from the communication system have not been exploited due

to its non-cooperative nature, the terms contributed by the communication transmit-

ter are removed in comparison with the cooperative case)

Θ = [τt,R, θt,R], (5.28)
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▽xΘ =

∂τt,R
∂x

∂τt,R
∂y

∂θt,R
∂x

∂θt,R
∂y

 = C, (5.29)

and

J(Θ) = ℜ
{
∂(Ut,Rst,R)

′

∂Θ
(QC +Qw)

−1∂(Ut,Rst,R)

∂Θ

}
, (5.30)

Using (5.30) and (5.29), similar to (5.18), the FIM follows

FIM =C′Jt,R(QC +Qw)
−1J′

t,RC. (5.31)

Here,

Jt,R =
∂(Ut,Rst,R)

∂τt,R
. (5.32)

Finally, the CRLB for the case of non-cooperative RadComm spectrum sharing is

given by (Bar-Shalom et al., 2004)

CRLB = FIM−1, (5.33)

where FIM is given in (5.31).

5.2.3 Stand-alone case

In this case, it is assumed that radar does not share any spectrum with the communi-

cation system and operates in a stand-alone fashion. Similar to (5.4) and (5.23), the

received signal model for this case is given by

SRR
= Ut,Rst,R +w. (5.34)

The corresponding target estimate follows the similar form of (5.27), with a modified

log-likelihood function, given by

ln{p(SRR
|x)} ∝ −ZHQ−1

w Z, (5.35)

where Z is defined in (5.25).

Similar to (5.21) and (5.33), the CRLB for the case of stand alone radar system

operation is given by

CRLB = (C′Jt,RQ
−1
w J′

t,RC)−1, (5.36)
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where C is defined in (5.29), Jt,R is given in (5.32), Qw is the covariance of the noise

component.

For the case of the target in motion, the CRLB at a particular instant is equal

to the inverse of the summation of all the FIMs up to that instant, defined as (Bar-

Shalom et al., 2004)

CRLB[KTs] =

(
K∑
k=1

FIMk

)−1

. (5.37)

To compare the target estimation performance of all the three cases, the square

root CRLB (SRCRLB) is used, given by

SRCRLB =
√
Tr(CRLB), (5.38)

where Tr(·) represents the trace of a matrix, CRLB for the three cases is given in

(5.21), (5.33), and (5.36).

5.3 Results and discussion

A monostatic radar is considered to detect a target over a surveillance region of

7000 × 7000m2, with a maximum detectable range of 7000m. Also, a spectrum-

sharing communication transmitter is present in the surveillance region. Both the

radar and communication system are assumed to be static and located at (500, 700)m

and (2000, 2000)m, respectively. A single target is assumed in the surveillance region,

with the initial position at (1100, 1700)m and travels with a velocity of 100m/s in

both x and y directions. The simulation scenario is shown in Figure 5.2. Assume

that the total energy of E is split between the radar and communication system

with a parameter α as ER = αE, EC = (1 − α)E. Also, the target radar cross-

section (RCS) looked by the radar and communication system varies with parameter

β as σt,R = βσ2, σt,C = (1 − β)σ2. The α ∈ [0, 1] and β ∈ [0, 1]. The α and β

values quantify the target estimation performance with respect to transmit energy

and target reflection coefficient, respectively. The RCS of the target is assumed to be

2m2. The covariances Qw and QC are assumed to be equal. The range and azimuth

are corrupted with white Gaussian noise, with standard deviation 10m and 10−3rad,

respectively. For the assumptions made, based on (5.21), (5.33), (5.36), (5.37), and

(5.38), the Figures 5.3 and 5.4 compare the static target estimation performance for
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all three cases, with varying α and β. Whereas Figure 5.5 shows the dynamic target

estimation performance in terms of square root CRLB. For static target assumption,

(5.21), (5.33), (5.36) is used and SRCRLB is calculated using (5.38). For the target

in motion, (5.37) is considered before proceeding to (5.38) of SRCRLB evaluation.
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Figure 5.2: Scenario generation (The red circle indicates the radar transmitter, the
blue square represents the communication system transmitter, and the black plus

symbols mimic the target path).

It is observed from Figure 5.3 by varying the α; the SRCRLB is improved in all

three cases. It is because increasing α increases the radar transmitter power, which

in turn improves the target return information, which leads to a decrease in the

SRCRLB. The cooperative radar configuration provides nearly twofold improvement

compared to that of non-cooperative configuration. At the same time, the standalone

configuration outperforms the non-cooperative configuration for all the values of α.

This is because of the presence of unintended information in the non-cooperative

mode. Interestingly, the cooperative and standalone provide the same performance
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at α = 1 because the cooperative RadComm system operates at its maximum radar

transmitting power.
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Figure 5.3: The static target estimation performance with varying α.

From Figure 5.4, it is observed that as β varies from 0 to 1, the SRCRLB is

improved in all three cases. The increase in β increases the RCS of target return seen

by radar, which improves the target estimation performance. The cooperative case

provides more than twofold improvement, compared to that of the non-cooperative

case, until β = 0.5, and thereafter the values are constant and comparable. Whereas

the standalone radar operation outperforms the non-cooperative case, for all the values

of β, this is because of the unused information present in the non-cooperative mode.

The cooperative and standalone case provides the same performance after β = 0.5,

with no parameter influence.

Figure 5.5 shows the target estimation performance improvements that the coop-

eration between the radar and the communication system is bringing in RadComm
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Figure 5.4: The static target estimation performance with varying β.

spectrum sharing scenario in terms of CRLB. The cooperation between the radar and

the communication system allows the radar to use target reflected signals results from

the communication transmitter and improve the target estimation performance. The

target state is assumed to be dynamic, starts at 1 s and ends at 50 s. The sampling

time of the radar assumed is 1 s. Since the FIM accumulates over time, the esti-

mation accuracy increases in all the classes. These results agree with that of target

tracking principles, where the filter is designed with the assumption of the Markov

process. Moreover, it is worth noting that the cooperative case provides better results

compared to the other two cases.

From all the Figures 5.3-5.5, it is observed that the cooperative case of RadComm

spectrum sharing has a better performance when compared to non-cooperative and

stand-alone cases. Due to the cooperative nature of the RadComm system, the target

information received by the radar is improved owing to its own target returns and

the returns due to the presence of the surrounding communication transmitter. Also,
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Figure 5.5: The dynamic target estimation performance.

it is observed that the target performance of the stand-alone case is higher than the

non-cooperative case. It is true that, due to the presence of spectrum sharing com-

munication transmitter, lack of cooperation and without adoption of any mitigation

techniques makes, the radar is unable to use the target information results from the

communication transmitter and treats it as additional noise.
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Chapter 6

Conclusions and Future Directions

This Chapter presents the concluding remarks to the work described in this thesis.

Also, it presents future research directions related to this work.

6.1 Concluding remarks

In this thesis, new detection structures are presented to detect radar targets in the

presence of an in-band cyclostationay digital modulated wireless communication in-

terference. The performances of the proposed detection rules have been thoroughly

analysed by considering the target-reflected radar signals as deterministic, with ran-

dom phase and with completely random amplitude and phase. Compared to the

traditional sub-optimum detectors, performance results suggest that the proposed

Neyman-Pearson (NP) based optimal detection structures achieve better performance

in terms of probability of detection and probability of false alarm in all three cases.

Also, a modified CFAR receiver structure is presented and compared with the modified

NP based detector (optimal) and with standard detection (sub-optimal) methods. The

results show that the modified structures provide better performance. As spectrum-

sharing becomes more prevalent due to spectrum congestion, the proposed detection

rules and receiver structures can be incorporated into existing systems rather than

investing massive amounts in changing the complete hardware.

Further, this thesis presents a new measurement model for the radar and com-

munication system (RadComm) spectrum sharing scenario and evaluates the target

tracking performance. The new measurement model incorporates the radar returns

and returns due to in-band wireless communication transmitters (IWCTs). Due to
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the presence of IWCTs, a huge number of measurements are available in a given scan.

For the obtained measurement set, the measurement to track association is carried

out using GNN, whereas, for the filtering performance, EKF is considered in the

tracker. The GNN-EKF based tracker is used to evaluate the tracking performance

with metrics like false tracks, track breakages, and PRMSE. To provide the theoretical

lower bound on the estimation accuracy, the PCRLB is considered for the proposed

framework. Single radar and multiple radar cases are considered in the simulation

scenario. Two different geometry frameworks are considered in a single radar case,

where IWCTs are located near and far from the target and radar. The simulation

results demonstrate that, in the presence of IWCTs, a huge number of tracks and

track breakages are reported for the near geometry case. On the other hand, a few

tracks are reported in the far geometry case. However, both cases have reported false

tracks, which creates a delusion that more targets are present in the given surveil-

lance. Multiple radar case is employed to eliminate the false tracks and determine the

true target track. All the tracks reported by the multiple radars are first associated

to find the true target track from each radar. Once the true target track of each radar

is identified, T2TF is performed to determine an improved estimate of the true tar-

get track. In a RadComm spectrum sharing, for the multiple radar case, simulation

results reveal that by performing T2TA and T2TF, the true target track is estimated

with enhanced accuracy. It is evident from the results that the RMSE of the target

estimates agrees with PCRLBs.

In addition, in this research work, spectrum sharing radar (SSR) is considered,

assuming that a portion of the bandwidth is allocated for radar-only purposes and

the rest for mixed-use of radar and communication purposes. The performance of the

SSR has been analyzed in terms of mutual information (MI), spectral efficiency (SE),

and capacity (C) metrics. These metrics are derived mathematically in a clean envi-

ronment (no multipath) by considering SSR in the mixed-use band with and without

a successive interference cancellation (SIC) scheme. Allocating a higher BW to the

mixed-use band and employing the SIC scheme result in MI comparable to traditional

radar. Similarly, for higher BW allocation to mixed-band, the SE of SSR outperforms

conventional radar. The capacity of SSR in mixed-used and using SIC scheme re-

flects in comparable performance of traditional communication system. Later, the
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multipath environment is considered between the target and receiver channels and

mathematically modified the MI, SE, and C metrics to account for it. The influence

of the correlation coefficient ρ has also been investigated. The numerical results of the

SSR in a clean and multipath environment are plotted in terms of MI, SE, and C and

compared with the traditional radar and communication system. Results reveal that

the MI and C of the SSR using the SIC scheme in the mixed-use band is comparable

to that of traditional radar and communication system, respectively. However, the

SE of the SSR with the SIC scheme is improved. Further, results reveal that the per-

formance metrics of SSR with correlation factor zero dominates the unity correlation

factor in multipath environment. Furthermore, the results show that not using the

SIC scheme in a mixed-use band degrades SSR performance compared to traditional

systems. These findings and analyses serve as a guideline for SSR designers.

Moreover, a new cooperative RadComm spectrum sharing system model is consid-

ered to improve target estimation performance. The spectrum sharing radar received

signal consists of target reflections due to both radar and communication transmitter

being taken into account. The cooperation between the radar and the communication

system allows the radar to use target reflected signals results from the communication

transmitter and improve the target estimation performance. The target estimation

performance is quantified with CRLB. Further, the impact of transmit signal energy

and target reflection coefficient on the target estimation performance has been stud-

ied. The results reveal that the cooperative RadComm spectrum sharing provides an

enhanced target estimation performance than the non-cooperative case of RadComm

spectrum sharing and stand-alone radar system operation case.

The following section provides a summary of future research directions that may

be carried out based on this study.

6.2 Future work

This thesis has limited the discussions to the theoretical performance analysis of the

proposed detection structures for detecting radar targets in a RadComm environment.

In the future, one can focus on the practical implementation of the proposed struc-

tures. This research assumed that the equalization/whitening filter parameters are
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known. Thus, more work remains in the development of equalization/whitening fil-

ters for RadComm systems (Zilz and Bell, 2019). Further, this work can be extended

to develop optimized detection rules by considering spectrum-sharing waveforms into

account (Chiriyath et al., 2019). Furthermore, this work can be extended by Swer-

ling based radar cross section (RCS) reflection models and including the propagation

effects etc..

This research identifies the true track of the target by considering the multiple

radars. Further, it eliminates the information from IWCTs in a RadComm spectrum

sharing scenario. Future studies can develop more sophisticated target tracking al-

gorithms, where a single radar alone can identify the true targets in the RadComm

spectrum sharing scenario. This work can also be extended by incorporating the infor-

mation/ measurements received from surrounding IWCTs and improving the target

estimation performance.

The performance analysis of spectrum sharing radar (SSR) work has optimized

MI, SE and C performance metrics individually. This can be extended for the joint

optimization of all performance metrics. In addition, one can work on multiple target

scenarios of SSR, with targets having different target waveform response character-

istics, introducing electronic countermeasures. Also, this work can be extended for

the optimization of bandwidth, transmit powers and other quantities for trading the

performance of radar and communication system.

The performance improvements in cooperative RadComm spectrum sharing work

assume that the communication system shares the information that allows the radar to

use target reflected signals, owing to communication transmitters. In the future, the

work can be extended to achieve improved estimation performance, even in the case

of non-cooperative RadComm spectrum sharing. Further, this work can be extended

by incorporating the propagation effects between the target to receiver channel.
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Appendix A

A.1

Define

fH1(q) = Eϕ {fH1(q/ϕ)} , (A.1)

fH0(q) = Eϕ {fH0(q/ϕ)} (A.2)

as the probability density functions of the test statistics q under the hypotheses H1

and H0, respectively, where E(.) is the expectation operator and ϕ is the uniform

random variable over a period 0 to 2π.

With

g =
1

2

∫
T

r(t)

a(t)
exp

(
−j 2πMt

T

)
dt = x+ jy, (A.3)

we have

q = |g| =
√
x2 + y2 (A.4)

We seek the densities of x and y to find the density of g defined in (A.3), which in

turn results in the density of q defined in (A.4).

From (A.3), we have

E (x/ϕ,H1) =
1

2

∫
T

Re

{
E
(
r(t)

a(t)

)
exp

(
−j 2πMt

T

)}
dt

=
1

2

∫
T

Re

{
s(t)

a(t)
exp

(
−j 2πMt

T

)}
dt

=
A

2

∫
T

cos(ϕ)

a(t)
dt

=
Aυ

2
cos(ϕ) (A.5)

where the complex envelop form of s(t) defined in (2.57) is used and υ is given by

υ =

∫
T

1

a(t)
dt (A.6)
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Similarly, we have

E (y/ϕ,H1) =
Aυ

2
sin(ϕ) (A.7)

Also,

E (x/ϕ,H0) = E (y/ϕ,H0) = 0 (A.8)

with the assumption that the interference statistic sI(t) has zero mean.

Also, we have

σ2
a = Var (x/ϕ,H1)

=
⟨sI0⟩
2

∫
T

cos2
(
2πMt
T

)
a(t)

dt

=
⟨sI0⟩
2

∫
T

sin2
(
2πMt
T

)
a(t)

dt

= Var (y/ϕ,H1) (A.9)

where Var(.) is the variance.

With the constraint that x, y are independent, we have

Cov (f(x), g(x)) ≜ E {[f(x)− E(f(x))] [g(x)− E(g(x))]} (A.10)

fH1(x, y) =
1

2πσ2
a

exp

{
− [(x− x̄)2 + (y − ȳ)2]

2σ2
a

}
(A.11)

where x̄ and ȳ are the means of x and y defined in (A.5), (A.7), respectively, and σ2
a

given in (A.9).

Similarly, under hypothesis H0, we have

fH0(x, y) =
1

2πσ2
a

exp

{
− (x2 + y2)

2σ2
a

}
(A.12)

From (A.4), we have q = |g| and, for some arbitrary phase angle β, we can write

g = x+ jy = q cos(β) + j q sin(β) (A.13)

From the transformation of random variable (DeGroot and Schervish, 2012; Menden-

hall et al., 2012; Rohatgi and Saleh, 2015), we can write

fH1(q, β/ϕ) = qfH1(x, y)

=
q

2πσ2
a

exp

{
−q

2 + (x̄2 + ȳ2)− 2q(x̄ cos(β) + ȳ sin(β))

2σ2
a

}
(A.14)
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To get fH1(q) from (A.14), it needs to be integrated first over β and then over ϕ. For

x̄ and ȳ given in (A.5) and (A.7), respectively, using (A.14) becomes

fH1(q/ϕ) =
q

σ2
a

exp

{
−q

2 + A2υ2/4

2σ2
a

}
I0

(
Aυq

2σ2
a

)
(A.15)

where I0(.) is the modified Bessel function of the first kind of order 0 (Abramowitz

and Stegun, 1948).

Define

ζa =
Aυ

2
(A.16)

Finally, using (A.16) in (A.15), one can obtain fH1(q), fH0(q), as given in (2.68),

(2.69), respectively.

A.2

To maximize the IBr (zr(t); g(t) | x(t)) with respect to transmit waveform energy con-

straint
∫
Br

|X(f)|2df = Ex, form an objective function using the Lagrange multiplier

theorem (Bertsekas, 2014) as

Ψ
(
|X(f)|2

)
= T

∫
Br

ln

[
1 +

4|X(f)|2σ2
G(f)

Pww(f)T (1 + ρ)

]
df − λ

(∫
Br

|X(f)|2df − Ex

)
(A.17)

The equivalent/ reduced objective function which needs to be maximized with respect

to |X(f)|2 is

ψ
(
|X(f)|2

)
= T ln

[
1 +

4|X(f)|2σ2
G(f)

Pww(f)T (1 + ρ)

]
− λ|X(f)|2 (A.18)

For maximization, the partial differentiation of (A.18) with respect to |X(f)|2 is taken

and equated it to zero. It results,

|X(f)|2 = D −
(
Pww(f)T

2σ2
G(f)

)(
1 + ρ

2

)
, (A.19)

where D = T
λ

is some constant.

Using the energy constraint of |X(f)|2 and (A.19), the value of D is given by

D =
1

Br

[
Ex +

∫
Br

(
Pww(f)T

2σ2
G(f)

)(
1 + ρ

2

)]
(A.20)
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Using (4.6), (A.19), the maximum of IBr (zr(t); g(t) | x(t)) is

ImaxBr
(zr(t); g(t) | x(t)) = T

∫
Br

ln

[
1 +

4|X(f)|2σ2
G(f)

Pww(f)T (1 + ρ)

]
df

= T

∫
Br

ln

[
1 +

D −
[
r(f)

(
1+ρ
2

)]
r(f)

(
1+ρ
2

) ]
df

= T

∫
Br

lnD − ln

[
r(f)

(
1 + ρ

2

)]
df

= TBr lnD − T

∫
Br

ln

[
r(f)

(
1 + ρ

2

)]
df (nats), (A.21)

where D is defined in (A.20).
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