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Abstract

In modern warfare, electronic countermeasure (ECM) approaches have gained much

importance as electronic technology and military intelligence has improved signifi-

cantly. The common forms of ECM are noise jamming and deception jamming. Noise

jamming is an ECM technique, in which the target radar sends a stronger noise sig-

nal at the operational frequency of the radar, blending the target’s signature entirely

with the interference. Deception jamming techniques, on the other hand, such as

range gate pull-off (RGPO) and velocity gate pull-off (VGPO), are the most effective

of all ECM techniques for creating false targets to misguide the target tracking sys-

tems. RGPO ECM intercepts the radar signals and retransmits a deception signal

with a progressive time delay, pulling the range gate of the radar target tracker further

away from the actual target over time. The main focus of this research work is to

combat the range deception ECM using the effective electronic counter countermea-

sure (ECCM) technique. Further, the research is focused on passive radars, which

have the advantage of covertness and cost-effectiveness and are useful in military and

civilian applications. Furthermore, the secondary objective of this research work is

to comprehensively analyze the performance of existing illuminators of opportunity

(IOO) and propose a good IOO for passive radars.

Primarily, the first objective proposes a sequential fusion-based approach for de-

tecting the range deception ECM and estimating the RGPO deception parameter of

the deceived local track in a networked radar system (NRS). In NRS, each radar has

a local tracker that provides local estimates (updated state and covariance), which

are subsequently forwarded to the fusion node. Following that, a track-to-track asso-

ciation (T2TA) at the fusion node is formed to detect the deceived tracks utilizing all

accessible local tracks. For the deceived track, the pseudo-measurements are created

using the inverse Kalman filter-based tracklets. Further, the reference measurements

are created by sequentially fusing all the undeceived local tracks. Next, the recursive

least squares estimator (RLSE) is used to estimate the range deception parameter of

the deceived track using the pseudo-measurements and the reference measurements.

Furthermore, the proposed deception parameter estimation algorithm is also analyzed
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for single and multiple RGPO ECM scenarios. Moreover, the Cramer Rao Lower

Bound (CRLB) is derived for the proposed estimation algorithm. Also, Position Root

Mean Square Error (PRMSE), CRLB, innovation test, normalized estimation error

squared (NEES) test, and confidence interval are used to quantify the results. The

simulation results highlight that the proposed estimation algorithm provides improved

performance in the presence of RGPO ECM. Besides, it is evident from the results

that estimator efficiency is falling below the 5% tail probability of the chi-square

distribution.

Another contribution of the thesis is to carry out the feasibility study of the 5G

New Radio (5G NR) waveform as an IOO for passive radar. The investigation results

show the possibility of utilizing the 5G NR waveform as a suitable IOO for target

detection in passive radar applications. For the 5G NR waveform, parameters like

range resolution and velocity resolution are determined, and a comparison is made

with the LTE waveform. The simulation results reveal that the 5G NR waveform pro-

vides better range resolution and velocity resolution than the LTE and other IOOs.

Further, Significant recent radar research has been focused on knowledge-aided signal

processing, waveform design, detection, and target-tracking applications. The knowl-

edge related to the illuminator of opportunity (IOO) selection, spectrum sensing, and

diversity technique can predominantly improve the received signal strength (RSS) at

the passive radar receiver. In addition, this work proposes a conceptual framework to

build knowledge-aided passive radar systems (KA-PRS) based on spectrum sensing,

IOO selection, and spatial diversity.

Finally, this research investigation proposes a comprehensive analysis of losses in-

curred by the IOOs during their propagation in the surveillance environment. The dif-

ferent IOOs considered in this investigation are Frequency Modulated (FM) waveform,

Digital Video Broadcasting (DVB) waveform, Long Term Evolution (LTE) Waveform,

and 5G NR waveform, etc. The atmospheric losses (such as path loss, rain loss, gas

loss, fog loss, and foliage loss) are analyzed for various IOOs. Further, signal-to-noise

ratio analysis for 5G NR waveform at FR1 and FR2 frequencies is carried out in the

presence of atmospheric losses. The simulation results show that the high frequency

5G NR FR2 waveform (26 GHz to 50 GHz) suffers significantly higher losses than

other IOOs, even though it provides improved range and velocity resolution. Specif-
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ically, the 5G New Radio waveform for FR1 and FR2 frequencies has 10% and 20%

more losses than the LTE waveform. On the other hand, the FM waveform suffers

insignificant losses compared to other IOOs despite the poor range and velocity reso-

lution. Additionally, the penetration loss for common building materials such as clear

glass, plywood, and tile for the 5G NR FR1 frequency, LTE signal frequency, and

Wi-Fi is measured using the Texas Instruments AFE7950 radar sensor. Further, the

results obtained in this contribution can be a valuable reference for passive bistatic

radar as the comprehensive analysis includes all IOOs along with the newly proposed

5G NR waveform.

Overall, this thesis proposes a potential ECCM technique to overcome the effect

of range deception ECM in the target tracking framework. Further, the feasibility of

utilizing 5G NR for passive radar is carried out along with the comprehensive study

of losses for various IOOs.
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Chapter 1

Introduction

1.1 ECM Background

1.1.1 ECM

Electronic countermeasures inject signals into an enemy’s electronic defense system,

degrading its functionality. ECM signals include jamming and deception. Jamming

is the intentional emission or reflection of electromagnetic energy with the intent of

interfering with an enemy’s protection system. Deception is the intentional broadcast

or re-transmission of electromagnetic energy signals to deceive an enemy system’s

interpretation or use of information received. While simple noise ECM techniques are

still utilized, most current tracking radars require more complex deception approaches

to be defeated. As a result, noise ECM should not always be seen as a realistic or

preferable alternative for modeling jamming situations in a tracking investigation.

ECM strategies are usually adapted to the flaws of the particular radar under attack.

ECM approaches were traditionally built for end-game, one-on-one battles to pro-

tect against a dedicated radar. Multi-target (multi-function) electronic scan tracking

radars controlled by advanced tracking algorithms are used in modern air defense mis-

sile systems. The tracking algorithm designers must understand ECM phenomenol-

ogy to construct and incorporate ECCMs into the target tracking framework. Much

research has been done to design robust algorithms to manage target motions and

clutter. The tracking algorithm developers must implement effective ECM-handling

algorithms to tackle deception jamming and propose efficient ECCM approaches to

neutralize these counter measures.
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1.1.2 Noise Jamming

Noise ECM is generated by modulating, filtering, and amplifying an RF noise source in

open-loop and transponder ECM systems. The bandwidth of wideband or "barrage"

noise is around 100-500 MHz, whereas the bandwidth of narrow band or "spot" noise

is approximately 10 MHz. When several victim radars must be jammed at the same

time, or when the specific victim radar RF is unknown, barrage noise is utilized. When

the RF is precisely known or easily traced, spot noise is utilized to assault a single

radar. Narrow band noise is preferable in terms of efficacy since a more significant

proportion of the noise energy is directed toward the radar’s reception band. Set-

on spot noise is when a transponder’s analysis receiver finds the victim’s radar and

instructs the spot noise jammer to "set on" the radar’s operational frequency. Further,

many contemporary radars use pulse compression waveforms and ultra-low side lobe

antennas to mitigate the impacts of noise ECM techniques. As a result, the jammer

finds it difficult to inject enough noise energy to damage radar performance.

1.1.3 Range Gate Pull Off (RGPO)

RGPO ECM is a type of countermeasure that attempts to deceive or trick the track-

ing radar in range. RGPO techniques are different from other range false-target

techniques in that they presume the target is first tracked and that the tracker’s

range gate must be "pulled" off the target return. When the tracker has moved away

from the actual target, it is "dropped," causing the radar to reacquire the target. By

requiring the radar to reacquire the target periodically, the radar can be stopped from

obtaining the track quality required to launch a missile. A transponder or a repeater

ECM system can be used to generate the RGPO ECM. The RGPO approach is used

by first creating a fake target that coincides with the true target return. To further

alter the real range position, the ECM system may utilize a cover pulse (a broad pulse

that overlaps the true target). To make the fake target more appealing, the amplitude

of the false target might be modified to be greater than that of the true target. The

false target is then walked away from the true target in range. A delayed version of

each radar pulse is used to generate this walk-off target (the delay corresponds to the

range translation).
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1.1.4 Electronic Counter Counter Measures (ECCM)

While ECM has been used to destroy radar-guided missile systems for years, radar de-

signers have built counter-ECM measures inside the radar. These counter-measures,

known as ECCMs, will "automatically" reduce the jamming signals, potentially lim-

iting the conditions in which the tracking algorithm must work. Tracking algorithm

developers should be aware of various ECCM approaches and understand that some

ECM strategies will not cause issues due to ECCM characteristics already included

on the radar. On the other hand, developers should be aware that some automated

ECCM approaches may mistakenly suppress readings that might indicate actual tar-

gets.

1.1.5 Networked Radar System (NRS)

Networked radar has been very prominent in recent years for the abundant resources

it can use, specifically in target tracking applications. A networked radar system

(NRS) connects several heterogeneous radar systems geographically located at dif-

ferent locations to a fusion center to jointly detect and monitor targets in a large

surveillance region (Geng 2020). Since an NRS can significantly boost the precision

of detection and monitoring targets, it finds various applications, such as air traffic

control, military intelligence, autonomous vehicles, etc. Further, radar networks are

widely adopted in civilian and military infrastructures, and ECM attacks may pose a

significant challenge to national security and the economy (Yang et al. 2018).

1.2 Basic Target Tracking

1.2.1 Estimation and Tracking

The process of inferring the value of a quantity of interest from noisy data or observa-

tions is known as an estimation. That is, estimating may be thought of as the process

of selecting a point from a continuous space. The quantity of interest may be the

state of dynamic systems, which is often a vector including kinematic and feature-

related data. Tracking is the assessment of the state of a moving object. Tracking

is processing data or observations collected from targets of interest to keep them in

their present state. This state typically consists of the followings:
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• Position, velocity, acceleration, turn rate, and other kinematic components.

• Radiated signal intensity, radar cross-section, target categorization, and so on

are some of feature components.

• Constant or slowly varying parameters such as aerodynamic parameters etc.

Data or measurements are observations about a target’s state corrupted by noise.

These observations could be: bearing from the radar sensor; range, azimuth, and

elevation; time difference of arrival, the direction of arrival, and range rate (Doppler),

etc.

1.2.2 Basic terminology

• Target: A moving or stationary object (ex. car or airplane).

• Sensor: Device that observes the environment by reception of some signals (ex.

radar or sonar or lidar).

• Time stamp: The time to which a detection pertains.

• Observation: refers to acquired measurements at sensor (ex. range, azimuth

are measurements of 2D radar sensor).

• State: refers to stacked parameters of interest pertaining to target (ex. position,

velocity, and acceleration)

• Gating The purpose of gating is to exclude the measurements that are highly

unlikely to have originated from a particular target.

• Association The process of associating measurements to existing tracks or

existing tracks to measurements is known as association.

• Hypothesis A hypothesis is a partitioning the measurements based on their

origin, individual existing targets, false detections, and new targets.

• Sensor Fusion Sensor fusion is the process of combining the data from multiple

sensors so as to reduce the amount of uncertainty.
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• Bistatic Radar Radar in which the receiver is physically separated from the

transmitter, so that the echo signal does not follow the same path as the trans-

mitted signal.

• Multi-static Radar A radar system consisting of multiple spatially separated

radars with a common coverage area.

• Networked Radar System Radar system connecting several heterogeneous

radar systems geographically located at different locations to a fusion center for

target detection and tracking.

1.3 Passive Radar Background

1.3.1 Passive Radar Systems

Most modern radars are active, meaning they explicitly transmit radio signals to carry

out their sensing objective. In contrast, the passive radars do not transmit radio-

frequency signals; instead, they utilize ambient radio-frequency illumination provided

by transmitters such as television, radio, cellular telephone towers, and active radars.

Further, passive radar offers some advantages over the active radar, particularly in

a covert operation, and does not clutter the scarce radio spectrum resources with

added transmissions (electromagnetically green) (Millet and Klein 2011). As quoted

prior, passive radars utilize the electromagnetic signals transmitted by other sources,

referred to as “illuminators of opportunity” (IOO). Examples include signals from

other radars, communication systems, and broadcast systems. Further, the princi-

ple of operation of passive radar is based on preprocessing the signal received di-

rectly (IOO) from a transmitter of Opportunity with its reflections from a target and

cross-correlating both the signals. Then, appropriate signal processing and filtering

techniques are utilized to detect and track the targets (Kuschel et al. 2019a).

Fig. 1.1 depicts a simple representative diagram of the passive bistatic radar

system. From Fig. 1.1, it can be inferred that in most cases, the reflected echo signal

from the target will be masked by the direct signal unless Doppler separates it. There

is no further attenuation of the direct signal since it travels a shorter distance than

the target reflected echo. Thus, for the proper detection of the targets, additional
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Figure 1.1: Passive radar in its simplest form

processing is necessary at the passive radar for processing direct signals since it may

suppress the echo. Generally, two separate channels are required at passive radar

site, one dedicated to the collection of the direct signal and referred to as reference

channel (e.g., this receiving channel connected to an antenna in line of sight towards

the illuminator of opportunity), and other channel which collects target echo signals

referred as surveillance channel. Eventually, the surveillance channel can be multi-

channel, thus increasing the overall capabilities of the passive radar system (Griffiths

and Baker 2017a).

The reference receiver channel usually is a single dedicated channel for receiving

the reference signal as clean as possible because the transmitted signal is not known

as a priory. It is generally positioned in line-of-sight to the transmitter and requires a

highly directional antenna to avoid multipath. This is an essential requirement when

analog (broadcast) IOO signals are adopted, which do not offer a reconstruction of the

transmitted signal from signal synchronization features. The most important signal

processing step at the passive radar is the suppression of the direct signal since its
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correlation with side lobes might mask weak target echoes (Kuschel et al. 2019a).

Direct signal suppression can be achieved by filtering the received signal spatially

or in the time domain. Further, the received signal strength at the passive radar

receiver is mainly affected by external factors like noise, interference, atmospheric

factors, and other sources. Hence, there is a need to improve the signal quality at the

passive radar receiver. Also, the overall target detection and tracking performance

are entirely dependent on the availability of the IOO signal and the features of the

IOO signal being adopted. Therefore, the comprehensive study of the available IOOs

is of prime importance prior to adopting them for specific applications.

1.3.2 Advantages and Disadvantages of passive radars

Advantages

• Passive radars provide broader coverage since most of the broadcast and com-

munication system transmitters are sited in high locations.

• The cost of a passive radar is comparatively lesser than conventional radar, and

it does not have licensing issues since it adopts existing transmitters.

• The passive radar receiver is undetectable until the receive antenna is incon-

spicuous, and it is covert since the receiver does not transmit any signal.

• Countermeasures against passive radar are challenging to implement. Any jam-

ming will have to be distributed in a wide range of directions and frequencies,

weakening its impact.

• Passive radar can be considered ’green radar’ because it does not require any

additional spectrum (Kuschel et al. 2019a).

• A vast range of transmissions can be adopted by passive radar, and almost any

transmission can be used as the IOO for passive radar.

Disadvantages

• The IOO waveforms utilized by passive radar are not optimized for radar pur-

poses, so the suitable waveforms are to be selected and processed optimally.
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• In most cases, the transmitting source is not under the control of the passive

radar.

• At the passive radar receiver, significant signal processing must be used to sup-

press the direct signal and multi-path to detect weak target echoes.

• The range resolution, velocity resolution, and Doppler resolution are poor if the

targets are very close to the line connecting the IOO transmitter and passive

receiver.

1.4 Contributions of the Thesis

In this thesis, an effective electronic counter countermeasure technique has been pro-

posed to combat RGPO and further estimate the range deception parameter using an

efficient target tracking framework. Further, a comprehensive study of illuminators

of opportunity for passive radar has been carried out. The main contributions of the

thesis are as follows:

1. Proposed a framework for estimating the deception parameter at the fusion

center in a Networked radar system to provide an efficient ECCM to the RGPO

ECM technique.

2. Proposed the upcoming 5G New Radio waveform (5G NR) as an IOO for passive

bistatic radar, analyzed and compared the radar parameters with the existing

IOOs.

3. Presented a conceptual framework of Knowledge Aided Passive Radar System

(KA-PRS) to improve the received signal strength at the passive radar receiver.

4. Presented the comprehensive simulation study of external losses affecting the

propagation of IOOs utilized by the passive radars.

5. An experimental study of penetration losses has been carried out using real

radar system in an indoor environment.
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1.5 Overview

The following chapters of the thesis are organized as follows: Chapter 2 presents the

literature review of ECCM techniques against RGPO, transmitters of opportunity for

passive radar, and the losses incurred by the IOOs during their propagation. Chapter 3

deals with the deception parameter estimation algorithm to counter RGPO ECM in

a networked radar scenario. Further, Chapter 4 discusses the feasibility study of a

5G NR signal waveform as an IOO for passive radar. Further, Chapter 4 presents a

conceptual framework of KA-PRS to improve the received signal strength in a passive

radar receiver. Chapter 5 elaborates on the study of various losses incurred by IOOs’

in a passive radar system. Additionally, Chapter 5 presents an experimental study of

penetration losses for building materials (such as clear glass, plywood and tile) using

Texas Instruments radar system in an indoor environment. Finally, the conclusion

and future work are presented in Chapter 6.
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Chapter 2

Literature review

2.1 Range Gate Pull-Off ECM

Electronic countermeasures are the key techniques in modern warfare, with recent

advances in electronic technology and military intelligence. Many ECM techniques

have been presented in the literature, such as noise jamming, Stand-Off Jamming

(SOJ), Self Screening Jamming (SSJ), RGPO, and VGPO (Kirubarajan et al. 1998]).

In noise jamming, the radar transmits a noise signal with higher strength at the op-

position radar’s operating frequency so that the target detection is entirely affected

by interference. Also, in the SOJ technique, the high-power jamming signal is trans-

mitted from the enemy radar at a more considerable distance than the maximum

range at which the targeted radar can detect the targets. Further, in SSJ, jamming

equipment is carried out for self-protection, and efficient jamming geometry between

victim radar and jammer is always maintained. Deception jamming techniques like

RGPO and VGPO are the most effective of all the ECM techniques that generate fake

targets to deceive target tracking systems (Farina and Skolnik 2008). RGPO ECM is

a type of ECM that intercepts radar signals and retransmits a deception signal with

a progressive time delay, pulling the range gate of the radar target tracker further

away from the actual target over time (Zhou et al. 2021). On the other hand, VGPO

is employed by injecting a frequency-shifted replica of the received radar signal; the

frequency of the false return is slowly altered to interfere with the true Doppler shift

(Deng et al. 2013). Digital radio frequency memory (DRFM) devices are generally

used to store and regenerate captured radar signals to confuse hostile radars (Berger

2003a). In addition, because of advances in computing capability and hardware ar-
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chitecture, the DRFM can simultaneously process multiple captured signals, allowing

a modern repeater to deploy deception jamming on multiple-radar devices (Berger

2003b).

Electronic Counter Countermeasures (ECCM) are broadly classified into signal

processing based techniques and target tracking based techniques. In signal process-

ing based approaches, most radar systems are provided with ECCM capabilities to

combat deception jamming. The ECCM techniques such as pulse diversity, polar-

ization character, motion function, DRFM quantization error, and target detection

system in the presence of interference ensure that no single radar is tricked (Berger

2003b, Liu et al. 2013, Huang et al. 2013, Greco et al. 2005, Rao et al. 2012, 2010). In

(Wang et al. 2020), an efficient ECCM approach for countering the very high-power

ECM using an orthogonal frequency division multiplexing (OFDM) radar is presented

and analyzed. Here, the phase codes of the sub-carriers belonging to the OFDM pulses

are tuned to limit the jamming strength to suppress range deception and combined

range-velocity deception jamming (Wang et al. 2020).

Most sensors may not know the ECM techniques; however, they are resolved using

efficient target tracking. The effect of RGPO on radar target tracking with bench-

mark targets is studied in (Blair et al. 1998) and (Blair et al. 1995). In particular,

controlling the beam pointing of phased array radar for benchmark target tracking

problems in the existence of RGPO and false alarms is investigated in (Blair et al.

1998, 1995). The impact of target amplitude variations, beam shape, missed detec-

tions, false alarms, finite resolution, target motions, and track loss was included in

the test-bed simulation described in (Blair et al. 1998). Further, in (Slocumb et al.

1995), the solution for the second Benchmark problem of tracking a maneuvering

target in the existence of RGPO using variable state dimension Kalman filter is pre-

sented. Authors in (Slocumb et al. 1995) have deployed adaptive waveform selection

and dwell revisit time selection methods and track filter coasting for handling the

uncertainties introduced by false alarms, missed detection, maneuvers, and RGPO.

Further, for tracking highly maneuvering targets, a comprehensive framework is pre-

sented in (Kirubarajan et al. 1998) in the presence of false alarms, SOJ, and RGPO.

Mainly, the algorithms for track generation and maintenance, adaptive target revisit

interval selection, waveform selection, and detection threshold; and neutralizing ECM
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approaches were discussed in depth in (Kirubarajan et al. 1998). The interacting

multiple model (IMM) estimator, in combination with the probabilistic data asso-

ciation (PDA) technique, is utilized for tracking the targets in (Kirubarajan et al.

1998). Additionally, authors in (Blackman et al. 1999) have suggested the solution

to the benchmark target tracking, which addresses the efficient resource allocation

in the presence of ECM. The resource allocation problem is solved using interacting

multiple model/multiple hypothesis tracking (IMM/MHT) tracker along with target

tracking (Blackman et al. 1999).

In (Lu et al. 2011), to counter RGPO and Range Gate Pull-In (RGPI) jamming,

an ECCM approach based on loss of balance in the range tracking loop is presented

and analyzed. Further, using adaptively updated bias weight in every range tracking

interval according to the error signal, which balances the energy of the early and

late gates concerning the target and continues to track the target with insignificant

track loss is presented in (Lu et al. 2011). Furthermore, memory tracking and narrow

gate monitoring were used to propose and assess a novel ECCM approach against

deception jamming in (Xiongjun Fu et al. 2009). In addition, authors in (Xiongjun

Fu et al. 2009) have concluded that the proposed method provides significant efficacy

while countering all types of RGPO. In (Xiong et al. 2016), the spatial filtering tech-

nique using trilinear decomposition to overcome the effect of deception jamming is

presented and analyzed. Further, authors in (Zhao and Liu 2017) have proposed a

composite approach to estimate the location of the target and deception range for dis-

tinguishing between false targets and true targets. The data fusion-based approaches

are proposed to distinguish false targets using data correlation algorithms and local

radar measurements (range, angle, and Doppler information). On the other hand,

signal fusion-based techniques explore the ECCM abilities of multiple-radar systems

by utilizing amplitude and phase information of the target echoes to provide efficient

countermeasures (Zhao et al. 2016). The most generic and systematic approach for

mitigating the effect of RGPO on target tracking is Decomposition and Fusion (DF),

where the deception measurements have virtually the same angles as that of true

measurements (Li et al. 1999, Slocumb et al. 2000). The fundamental steps involved

in the DF technique are decomposition of validated measurements using hypothesis

testing, track filtering for range deception measurements, conventional filtering, and
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performing a fusion of these estimates.

Considering the above review of the literature, most of the existing contributions

have addressed the effect of RGPO ECM in either signal or target tracking perspec-

tive. Further, there are insignificant research works that focus on countermeasures to

RGPO ECM in a networked radar from a target tracking and fusion perspective. This

motivated us to carry out the research work to propose an efficient target tracking

framework to combat range deception ECM in a networked radar scenario.

2.2 Transmitters of Opportunity for Passive Radar

The ambient radio-frequency illumination provided by transmitters such as television,

radio, cellular telephone towers, and other active radars in the given surveillance

area is used by passive radar instead of transmitting radio-frequency signals. Passive

radar has some advantages over the active radar, especially in terms of covertness

and spectrum utilization. Since it uses the existing waveforms, it is named green

radar (Kuschel et al. 2019b). The concept behind passive radar is to cross-correlate

the signal received directly from a transmitter with its reflections from a target. The

passive radar uses IOOs to locate the target. The correct detection or tracking of the

target depends mainly on the availability of good quality IOO.

The passive radar can use signals from broadcast communication systems, mo-

bile signals, and signals from other active radars. The most commonly used earth-

bound IOOs are Frequency Modulation(FM), Digital Audio Broadcasting (DAB),

Digital Video Broadcasting (DVB), and Long Term Evolution (LTE) for long-distance

surveillance applications. Whereas, for indoor localization, WiFi signals are adopted

by passive radars. Among the space-borne IOOs, the Global Positioning System

(GPS), Global Navigational Satellite System (GNSS), and DVB-Satellite (DVB-S)

signals are typically utilized for long-range tracking applications by the passive radar.

The available transmitters of opportunity are classified as indicated in Fig. 2.1. The

FM is an analog signal. The adequate instantaneous bandwidth of an FM signal is

highly dependent on the program being broadcasted. Constant signal features, such

as constant bandwidth and desired range resolution, Doppler resolution, and side-lobe

characteristics are guaranteed by digital broadcast services such as DAB and DVB-T.
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On the other hand, Digital modulation systems have a problem due to periodicities

in the signal structure which may introduce artifacts in the passive radar processing

(Coleman et al. 2008).

GSM cellular phone networks are strong candidates for IOO for passive radar

due to their broad coverage area. Global Navigation Satellite System (GNSS) sys-

tems provide broad coverage when considering the satellite class of illuminators of

opportunity. However, the Equivalent Isotropically Radiated Power (EIRP) of GNSS

is typically inadequate for Passive Coherent Locator (PCL) systems (Griffiths et al.

2002). In brief, a good IOO for passive radar should provide a stable continuous

transmitted signal over time, with a substantial EIRP. Furthermore, digital trans-

missions are typically more favorable than analog transmissions such as FM. So, the

EIRP of IOO under consideration should be uniform. The choice of physical layer

Figure 2.1: Illuminator of Opportunity Classification

waveform for 5G is an essential important thing. Third generation partnership project

(3GPP) carrying out the standardization activity for the 5G system in 5G New Radio

(NR). Based on the release of 3GPP 38.211, the most significant difference between

5G NR and LTE is that 5G NR uses Cyclic Prefix Orthogonal Frequency Division

Multiplexing (CP-OFDM) for downlink and CP-OFDM or Discrete Fourier Trans-

form Spread OFDM (DFT-s-OFDM) for up-link depending on the use case (Kongara

et al. 2019). CP-OFDM is a multi-carrier modulation technique that maps the sym-
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bols into orthogonal subcarriers. The cyclic prefix inserted at the end is appended to

the beginning to ensure the circularity of the OFDM symbol. The main advantage of

CP-OFDM is that it has lower implementation complexity and lower cost, even for

wideband applications (Lin et al. 2019).

In 3GPP, there are approximately two frequency ranges defined in 5G NR. The first

is what we call (sub 6 GHz), and the second is millimeter-wave (Henry et al. 2020).

The maximum bandwidth and subcarrier spacing differ depending on the ranges.

The maximum bandwidth in the sub-6 GHz range is 100 MHz, while the maximum

bandwidth in the millimeter-wave range is 400 MHz. Some subcarrier spacing (15,

30 kHz) is only available in the sub-6 GHz range, whereas others (120 kHz) are only

available in the millimeter-wave range (ShareTechNote). Some subcarrier spacing (60

kHz) is used both in sub 6 GHz and millimeter wave range (Gerzaguet et al. 2016).

In (Vorobev et al. 2016), the feasibility of adopting digital video broadcasting

terrestrial (DVB-T) as a transmitter of opportunity is carried out empirically. The

signal-to-noise ratio (SNR), signal-to-interference ratio (SIR), and the ambiguity func-

tions are analyzed for the DVB-T signal. The usefulness of LTE signal for target

tracking with passive radar is discussed in (Salah et al. 2013). The range resolution,

Doppler resolution, velocity resolution, and ambiguity function analysis are carried

out. Passive radars can use the signals from other radars for tracking or detection ap-

plications. In (Samczynski et al. 2015), the conceptual analysis of using pulsed radar

signals from other active radars for passive radar application is presented. Recently,

the pseudo-noise signal analysis for utilizing as an IOO has been discussed in (Fang

et al. 2019). The signal processing aspects of Pseudo noise signals, which aid passive

radar in tracking applications, are studied empirically. The above-mentioned (Salah

et al. 2014, Fang et al. 2019, Liu et al. 2018, Vorobev et al. 2016, Samczynski et al.

2015) works motivated us to explore the features of 5G NR waveform, as a candidate

IOO for passive radar in target detection and tracking applications.

2.3 Impact of Losses on IOOs

For air space observation and air traffic control, passive radar systems are used as

an alternative solution to active radar systems (Rai et al. 2021). Broadcast networks
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and third-party networking systems are available in many parts of the world. They

efficiently illuminate the given surveillance space for passive bistatic radar (Kuschel

et al. 2019b). Frequency Modulation (FM), Digital Audio Broadcasting (DAB), Dig-

ital Video Broadcasting Terrestrial (DVB-T), Long Term Evolution (LTE), Digital

Video Broadcasting Satellite (DVB-S), Global System for Mobile (GSM) communica-

tion, Global Positioning System (GPS), Global Navigational Satellite System (GNSS),

WiFi and signals from other active pulsed radars are the frequently adopted IOOs

for bistatic passive radars (O’Hagan et al. 2017). Besides, constant signal features,

such as higher signal strength, constant bandwidth, improved range resolution, en-

hanced Doppler resolution, and lower side-lobe characteristics, are expected from a

good quality IOO for passive bistatic radar (Salah et al. 2013, Berger et al. 2010,

Howland et al. 2008). In (Salah et al. 2013, Samczynski et al. 2015, Salah et al. 2014,

Wang et al. 2010, Oyedokun 2011, Liu et al. 2018,and Fang et al. 2019) authors inves-

tigated the feasibility of LTE signal, WiMax signal, DTV signal, OQAM signal and

Pseudo Noise (PN) signal as an IOO for the passive bistatic radar by ignoring the at-

mospheric effects on the signal propagation. Since the IOO signal propagates through

the medium, it undergoes various losses due to atmospheric effects. Specifically, the

IOO signal gets attenuated due to absorption, reflection, refraction, scattering, and

fading as it passes through the ionosphere. Further, IOO signal energy diminishes as

a result of absorption, clouds, rain attenuation, and attenuation due to snow, hail,

and fog in the troposphere and stratosphere (Mason 2010).

At frequencies above 10 GHz, rain is the most frequent source of attenuation

(Barott et al. 2018). The interaction of free electrons, ions, and molecules in the

atmosphere with the IOO signal is highly affected by frequency and is termed gas

attenuation (Rosenberg et al. 2020). Air gases attenuate at microwave and millimeter

wave (mmWave) frequencies due to oxygen and water vapor absorption. Besides,

oxygen and water vapor in the lower atmosphere directly induce path attenuation at

higher frequencies, precisely at 22 GHz and 60 GHz (Zubair et al. 2011). Moreover,

the refraction of the signal lead to changes in propagation velocity and direction of

the wave (Amirabadi and Tabataba Vakili 2018). The temperature and moisture

changes along the transmission path also induce local signal refraction, resulting in

signal degradation and increased noise. Further, in a foggy, atmospheric condition,
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where the droplets of water are suspended in the air attenuates the propagation of

the IOO signal, which can be considered fog loss (Etinger et al. 2020). Furthermore,

the attenuation of the IOO signal due to vegetation obstructing the propagation of

the EM wave is termed foliage loss.

The losses in the wireless propagation due to atmospheric gases, clouds, and rain

at mmWave and terahertz frequencies have been studied through simulations and

experiments in (Siles et al. 2015). The authors claimed that the signal suffers from

significant rain attenuation below 90 GHz and becomes constant above 90 GHz. It

is further evident from the results of (Siles et al. 2015) that the attenuation due

to gas and cloud are accountable at frequencies around 60 GHz. In (Erdoğan and

Ilgin 2018), the atmospheric effects (loss, rain loss, and gas losses) on millimeter

frequency bands from 24 GHz to 86 GHz has been studied and analyzed at 500

m. Similarly, the effect of atmospheric absorption on mmWave frequencies for 5G

networks is simulated and analyzed in (Banday et al. 2019). In (Banday et al. 2019),

along with gas and rain losses, the foliage effects have been studied at 28 GHz, 39

GHz, 50 GHz, and 60 GHz and observed that the path loss increases as the frequency

increases. In (Golovachev et al. 2020), the analysis of atmospheric effects is performed

on orthogonal frequency division multiplexing (OFDM) transmission schemes, and it

is noticed that the amplitude and phase changes occur owing to atmospheric effects.

Further, the simulation study in (Golovachev et al. 2020) considered the channel

model for mmWave frequencies, particularly 5G NR FR1 and FR2 specifications with

200 MHz bandwidth, and observed that the error rate is increased in the presence

of atmospheric effects. The authors in (Zhang et al. 2019) proposed the propagation

model for 28 GHz millimeter wave in the coniferous forests using high-resolution

LiDAR for measurements and compared the three empirical foliage models, namely

the attenuation factor (AF) model, International Telecommunication Union Radio

communication (ITU-R) woodland model, and Weissberger’s model. In addition,

in (Kim et al. 2020), diffraction loss models for mmWave propagation at 28 GHz,

32.4 GHz, and 38 GHz have been analyzed. Interestingly, the experimental results

showed higher losses than the Knife Edge Diffraction (KED) model with large Fresnel-

Kirchhoff diffraction parameters.

Most of the above recent research articles (Siles et al. 2015, Erdoğan and Ilgin
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2018, Banday et al. 2019, Golovachev et al. 2020, Zhang et al. 2019, Kim et al. 2020

and Lingadevaru et al. 2021) have presented the mathematical models for the simu-

lation of the various losses owing to propagation of high-frequency signals. Although

the majority of these works have highlighted the losses incurred by the mmWave prop-

agation, there is a minimal research study on the effects of atmospheric losses and

receiver system losses for various IOOs ranging from VHF to mmWave frequencies

from a passive radar perspective. Moreover, most of the IOO signal feasibility studies

for passive bistatic radar conducted in (Salah et al. 2013, Berger et al. 2010, Howland

et al. 2008, Samczynski et al. 2015, Salah et al. 2014, Wang et al. 2010, Oyedokun

2011, Liu et al. 2018, Fang et al. 2019) have ignored the losses. Therefore, there is

a strong need to incorporate various losses into the analytical study of the different

IOOs for the passive radar framework to address the problem properly. Further, there

is also further necessity to find the effect of atmospheric and signal processing losses

on different IOOs. Besides, the effect of diffraction and foliage loss is also significant.

Hence this motivated us to comprehensively study the impact of various losses on

different IOOs.

2.4 Motivation

The range deception jamming is the most effective of all the ECM techniques that

generate fake targets to deceive target tracking systems and is the major threat to the

target detection and tracking systems. In RGPO, the target senses the radar pulse

and repeats it with a control delay. The amplified, repeated/delayed pulse results

in a false range measurement with a signal-to-noise (S/N) ratio larger than the real

target range measurement confusing the radar/target detection and tracking process.

Accordingly, there is a need for countermeasure against the range deception jamming

for efficient target detection and tracking.

Further, one of the biggest problems encountered while detecting targets using

passive radars is the difficulty in detecting the weak echo signal reflected from the

target due to external noise and environmental factors (rain, fog, gases, foliage, etc.),

and intentional jammers. Further, the waveforms utilized by passive radars are not

optimized for radar purposes which may affect the target detection and tracking per-
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formance. Furthermore, in common with all bistatic radars, the resolution in range

and Doppler is poor for targets on or close to the baseline between transmitter and

receiver.

In view of the wide range of passive radar applications, it is essential to overcome

the major drawbacks associated with them through appropriate IOO signal selection

and effective signal processing. This is the key motivation to carry out the feasibility

study for adopting the 5G NR waveform as an illuminator of opportunity and further

carry out a comprehensive external loss analysis for commonly adopted IOOs.

2.5 Research Objectives

The main focus of this research is to investigate efficient algorithms to combat the

range deception jamming in target tracking applications. Further, the research work

concentrates on analysing the illuminators of opportunity for passive radar. The

objectives of the research are as follows:

1. To present efficient target detection and tracking algorithm for Networked Radar

System (NRS) in the presence of RGPO ECM.

2. To investigate and analyze 5G NR waveform as an illuminator of opportunity

for target detection using passive radars.

3. To propose a conceptual framework for KA-PRS to improve the received signal

strength in a passive radar system.

4. Comprehensive analysis of the impact of various losses on illuminators of op-

portunity for passive radars.

5. To carry out real time experimentation to measure the penetration losses using

practical radar system in the indoor environment.
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Chapter 3

Estimation of Range Gate Pull-Off
Parameter using Sequential Fusion
based approach: An ECCM algorithm

3.1 Preamble

In this research objective, an effective ECCM technique based on a sequential fusion

approach has been proposed to combat range deception ECM using a networked radar

system that is tracking a single target in the given surveillance area. The primary

assumption is that there are inadequate signal processing based ECCM techniques

deployed, and measurements are corrupted by RGPO ECM. Further, it is assumed

that a simple target tracking algorithm is working, and the tracks being reported by

the tracker are falsified due to RGPO ECM. The radars in the NRS contain a local

tracker to estimate the updated state and covariance of a target. These local tracks

are available at the fusion center and performed a T2TA to detect the RGPO ECM

attack. It is important to note that the detection alone is inadequate unless mitiga-

tion measures are provided. Hence, this motivated us to carry out this investigation

to estimate the deception parameter (∆r) of each local track. To construct equivalent

measurements of the deceived track, one requires a Kalman gain, which is unavailable

from the local tracker. Hence, a tracklet based framework is adopted to re-create a

Kalman gain followed by pseudo-measurements and pseudo-measurement covariance.

Similarly, all the available local tracks except the deceived track are compensated

with the estimated deception parameter and further generated a reference measure-

ment using a sequential fusion algorithm. The pseudo-measurements and reference

measurement are then used in the recursive least squares framework to estimate the
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deception parameter (∆r) of the deceived track.

3.2 Problem Formulation

Local
Tracker-1

Local
Tracker-2 Local

Tracker-3

Local
Tracker-i

Local
Tracker-N

Track-to-track association based
ECM detection

Proposed deception parameter
estimator

RGPO ECM

Figure 3.1: Networked radar system tracking a single target and a single local
tracker is deceived by RGPO ECM

Consider a surveillance region monitored by NRS consisting of more than two

radars. Assume that all the radars are synchronized and provide the measurements

related to the targets. The measurement space of the radar is range and azimuth. An

RGPO deception jammer is placed in the same surveillance area and sends deceptive

signals to mislead either one or more radars of NRS. The RGPO ECM technique

corrupts the measurements at one or more radars. The scenario of NRS in which one

of the radars is deceived by a single RGPO jammer, as shown in Fig. 3.1. In the

first case, a single radar sensor, as shown in Fig. 3.1, is assumed to be affected by

the RGPO ECM and results in deceived track, as shown in Fig. 3.2. In the second
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case, multiple radar sensors are considered to be affected by RGPO ECM and lead to

multiple deceived tracks, as shown in Fig. 3.3.

3.2.1 State Model

The target state model is expressed as,

x(k + 1) = Fx(k) + Γxv(k), (3.1)

where x(k) is mx dimensional state vector consisting of position and velocity of the

target at the discrete time instant k. F is the state transition matrix which follows

constant velocity (CV), constant turn (CT), and constant acceleration (CA) depend-

ing on the state dynamics. Γx is noise gain matrix (Bar-Shalom et al. 2004) and v(k)

is the process noise that follows Gaussian PDF with covariance,

Qx = E[v(k)v(k)T ]. (3.2)

Here E[.] and [.]T indicates the expectation and transposition operator respectively.

The measurement model without the impact of RGPO ECM is given by,

zi(k) =

ri(k) + wri(k)

θi(k) + wθi(k)

 ; i = 1, . . . .N, (3.3)

where zi(k) is the measurement vector of mz dimension (which contains range (ri)

and azimuth (θi) corresponding to the target). wri(k) and wθi(k) follows Gaussian

PDF with zero mean and standard deviation σ2
ri

and σ2
θi

respectively.

The equivalent representation of (3.3) is,

zi(k) = Hxi(k) +wi(k); i = 1, . . . .N. (3.4)

where H is the mz ×mx measurement transition matrix and wi(k) follows Gaussian

PDF with zero mean and covariance Rz that can be expressed as,

Rz = E[wi(k)wi(k)
T ] (3.5)

As shown in Fig. 3.1, in the presence of ECM the above measurement model is as

given in (Yang et al. 2018),

zi(k) =

ri(k) + ∆ri(k) + wri(k)

θi(k) + wθi(k)

 ; i = 1, . . . .N. (3.6)
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Here, it is assumed that the target range information deceived by the jammer and as

a result ith radar true range is displaced by a value due to RGPO deception ∆ri(k).

The measurement in the presence of RGPO ECM can be represented as,

zi(k) =

ri(k)
θi(k)

+ ci(k)∆ri(k) +

wri(k)
wθi(k)

 ; i = 1, . . . .N, (3.7)

where, ci(k)
∆
=
[
1 0

]T
. The polar measurements are converted to Cartesian be-

cause most trackers work in Cartesian coordinates. Also, it is further assumed that

the conversion will not introduce any bias.

For Unbiasedness, the following condition (3.8) should be satisfied.

riσ
2
θi

σ2
ri

≪ 0.4. (3.8)

Further, ith radar has the measurements

zi(k) = H(k)xi(k) +Bi(k)ci(k)∆ri(k) +wi(k), (3.9)

where, the state vector x(k) = [x(k) ẋ(k) y(k) ẏ(k)]T and

H(k) =

1 0 0 0

0 0 1 0

 ∆
= H. (3.10)

The matrix Bi(k) is a nonlinear function with the true range and azimuth. Using

the the measured azimuth θmi (k) and range rmi (k) from radar i, Bi(k) can be written

as given in (Rao et al. 2010),

Bi(k) =

cos θmi (k) −rmi sin θmi (k)

sin θmi (k) rmi cos θmi (k)

 . (3.11)

In the above, superscript m indicates measured value. Finally, the new covariance

matrix of the measurements in Cartesian coordinates (omitting index k in the mea-

surements for clarity) can be written as,

Rzi =

r2i σ2
θi
sin2 θi + σ2

ri
cos2 θi (σ2

ri
− r2i σ

2
θi
) sin θi cos θi

(σ2
ri
− r2i σ

2
θi
) sin θi cos θi r2i σ

2
θi
cos2 θi + σ2

ri
sin2 θi

 .

However, one can use the observed range and azimuth as well.
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The above given model in (3.6), is equivalent to the established RGPO measure-

ment model presented in (Slocumb and West 2000) and is represented as,

rd(k) =

{
r(k), tk ≤ t0 + Tca

r(k) + ∆r(k), tk > t0 + Tca
(3.12)

where, rd(k) is the deceived false range of the target from the radar, r(k) is the actual

range, and ∆r(k) = c∆tk
2

is the deviation in the range due to the influence of RGPO

ECM. Here, ∆tk is the time delay in the ECM delay line as presented in (Slocumb

and West 2000). Further, t0 is the start time of the range deception, c is the speed of

light and, Tca represents the length of time that the false target should evolve.

Further, the jamming to signal ratio can be obtained as derived in (Richards et al.

2010). The received power at the radar can be expressed as,

Prx =
PtxGtxGrxλ

2
xσx

(4π)3R4
xLs

(3.13)

where, Ptx is the peak transmitted power in watts, Gtx is the gain of the transmit

antenna, Grx is the gain of the receive antenna, λx is the carrier wavelength in meters,

σx is the radar cross section of the target in square meters, Rx is the range from the

radar to the target in meters, and Ls is the total receiver system losses.

The total power received at the radar from the jammer can be written as,

Pjr =
PjxGjxGjrλ

2
x

(4π)2R2
jLjr

(3.14)

where, Pjx is the peak transmitted jammer power in watts, Gjx is the gain of the

jammer antenna, Gjr is the gain of the radar antenna in the direction of the jammer,

λx is the carrier wavelength in meters, Rj is the range from jammer to the radar in

meters, and Ljr is the total jammer related losses.

Considering the ratio of jammer power (Pjr) to radar received power (Prx), the

jamming to signal ratio (JSR) can be expressed as,

JSR = 4π ∗ PjxGjxGjrR
4
xLs

PtxGtxGrxσxR2
jLjr

(3.15)

Generally, the jamming power will be much higher than the radar signal power,

which helps the jammer deceive the radar. Several signal processing based techniques

like the waveform diversity method and singular spectrum analysis for countering the

RGPO ECM are presented in (Zhang et al. 2009, Lu et al. 2016). On contrast, this

work considers the measurement level processing for countering the RGPO ECM.
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3.2.2 Preliminary observations

Local Track-1

Local Track-2

Local Track-N

...
Local Track-i

Figure 3.2: ith local track is deceived by the RGPO ECM in single-target using
multiple-radar case.

From Fig. 3.2 it can be seen that the range measurement of radar-i is deceived.

This deception results in a false track, as shown in Fig. 3.2, after performing the

distributed tracking. The primary objectives proposed in this research work are:

1. The local tracker processes the measurements and provides the local estimates

(estimated state and covariance). At the fusion center, only local estimates are

available, and no other data is available from the radar or tracker. Hence, the

measurements are to be recreated at the fusion center by using the local tracks.

This recreation of measurements is possible by evaluating the tracklets (He et al.

2020).

2. One needs to formulate a method to associate the local tracks corresponding to

the same target so that those tracks can be utilized as a reference to estimate

the deception occurrence in other tracks. This association can be formulated as

a track-to-track association and solved using S-Dimensional (S-D) assignment

(Popp et al. 1998).
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3. The deception parameter of the RGPO ECM track is to be estimated by using

undeceived local tracks. These undeceived local tracks can be fused to generate

a reference measurement.

Local Track-2

Local Track-N

.
.
.

Local Track-i

Local Track-1

Figure 3.3: All local tracks deceived by the RGPO ECM in single-target
multiple-radar case.

3.3 Distributed Tracking and Track-to-track Associ-
ation

3.3.1 Distributed Tracking

All radars are deployed with local trackers as shown in Fig. 3.1. The radar is ignorant

about the measurements corresponding to the target, whether it is a true measurement

or false measurement due to RGPO ECM. The tracker works with the converted

measurements. For the acquired measurement, the local tracker provides the local

estimates (estimated state and covariance). Given the previous state estimate x̂i(k|k),

the KF state prediction for i = 1, . . . .N radars is written as,

x̂i(k + 1|k) = Fx̂i(k|k), (3.16)
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where k is the discrete time instant and F is a state transition matrix. Similar to

the state prediction, for the given covariance P(k|k) at the kth instant, the predicted

covariance at the k + 1th instant is represented as,

Pi(k + 1|k) = FPi(k|k)FT + ΓxQxΓ
T
x , (3.17)

where Qx is the process noise covariance and Γ is the noise gain matrix as given in

(Zhang et al. 2020).

The measurement prediction is,

ẑi(k + 1) = H(k + 1)x̂i(k + 1|k) (3.18)

The innovation of the filter is,

νiz(k + 1) = zi(k + 1)−H(k + 1)x̂i(k + 1|k) (3.19)

The updated state is designated as,

x̂i(k + 1|k + 1) = x̂i(k + 1|k) +Wi(k + 1)νiz(k + 1), (3.20)

where, Wi(k + 1) is the Kalman gain and is computed as,

Wi(k + 1) = Pi(k + 1|k)H(k + 1)TSi(k + 1)−1, (3.21)

where, Si is the innovation covariance and is represented as,

Si(k + 1) = H(k + 1)Pi(k + 1|k)H(k + 1)T +Ri
z. (3.22)

Here Rz is the measurement covariance matrix. Finally, the updated covariance

matrix is given by,

Pi(k + 1|k + 1) = Pi(k + 1|k)−Wi(k + 1)Si(k + 1)Wi(k + 1)T . (3.23)

In a single RGPO ECM case, out of all the local tracks, only one track (local track-

i) is falsified by the RGPO ECM, as illustrated in Fig. 3.2. Here, we can see that

the local track corresponding to local track-i is deviated by ∆ri from its true position

as comprehensively derived in (Yang et al. 2016). One has to perform track-to-track

association to all local tracks, and it should report that all local tracks correspond to

same-origin except ith track. In another case, if N jammers are employed to deceive

all the local tracks, the local tracks appear as Fig. 3.3. In this case, one should

report that all the tracks are from a different origin. The track-to-track association

is presented in the subsequent section to address this issue.
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3.3.2 Track-to-track Association (T2TA)

The fusion of target tracks from multiple sensors is an essential block in the sensor

fusion field. The information from multiple sensors has the potential to significantly

improve tracking accuracy and target acquisition rates. Out of all the variants of track-

to-track associations (La Scala and Farina 2002), the hypothesis-based track-to-track

association is popular. It can improve tracking accuracy even with less target detection

probability and high false alarm rates. The N radars will have their own number of

tracks in the form of target estimate x̂ini
with their errors distributed as zero-mean

Gaussian with covariance Pi
ni

. The i = 1, 2, . . . , N , represents radar number and

ni = 1, 2, . . . , T represents number of tracks that the each radar generates. To find

out the tracks that represents the same target, it is required to perform the likelihood

ratio test, given by

χ(H1
n1,n2,...,nN

: H0
n1,n2,...,nN

) =
Λ(H1

n1,n2,...,nN
)

Λ(H0
n1,n2,...,nN

, (3.24)

where, Λ(H1
n1,n2,...,nN

) represents the likelihood hypothesis of tracks having the com-

mon origin, Λ(H0
n1,n2,...,nN

) represents the likelihood hypothesis of tracks coming from

the different origin.

Calculating the likelihood hypothesis of tracks having a common origin is as fol-

lows:

Λ(H1
n1,n2,...,nN

) = p(x̂NnN
, . . . , x̂1

n1
|H1

n1,n2,...,nN
). (3.25)

The (3.25) can also be written conditioned on the track estimate of the first radar,

given by,

Λ(H1
n1,n2,...,nN

) = p(x̂NnN
, . . . , x̂2

n2
|H1, x̂1

n1
)p(x̂1

n1
|H1). (3.26)

The p(x̂1
n1
|H1) is independent of H1

n1,n2,...,nN
, hence it can be relaxed. Also, it is

assumed to follow uniform distribution, which is a valid assumption in the presence

of lack of information. i.e.,

p(x̂1
n1
|H1

n1,n2,...,nN
) = p(x̂1

n1
) =

1

C
. (3.27)

Substituting, (3.27) into (3.26) results in

Λ(H1
n1,n2,...,nN

) =
1

C
p(x̂NnN

, . . . , x̂2
n2
|H1, x̂1

n1
). (3.28)
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Consider the two radar (i, j) case having two tracks (ni, nj) as common target

origin. Under the Gaussian assumption, if the tracks x̂ini
and x̂jnj

at radar i and radar

j results from the same target, the likelihood function of the two tracks is given by,

Λ(Hn1,n2) =
1

C
N(x̂ini

− x̂jnj
; 0, P i

ni
+ P j

nj
− P i,j

ni,nj
− (P i,j

ni,nj
)T ), (3.29)

where, N(x; x̄, P ) represents Gaussian distribution of variable x has mean and covari-

ance as x̄, P , respectively.

Similar to (3.29), the generalized likelihood function of all the common tracks (zero

error tracks) n1, n2, . . . , nN for all N radars is given by

Λ(H1
n1,n2,...,nN

) =
1

C
N(x̂, 0, P ). (3.30)

Here,

x̂ =
[
x̃21, x̃31, . . . , x̃N1

]T
, (3.31)

where, x̃ij represents the difference of the estimates resulted from the same target at

ith and jth radar, given by

x̃ij = x̂ini
− x̂jnj

. (3.32)

The diagonal elements of P is given by,

Pi−1,i−1 = E[x̃i1x̃i1′|H1
n1,n2,...,nN

],

= P1
n1

+Pi
ni
−P1,i

n1,ni
− (P1,i

n1,ni
)′ i = 2, . . . , N (3.33)

where x̃ij is defined in (3.32).

The diagonal elements of P is given by,

Pi−1,j−1 = E[x̃i1x̃j1′|H1
n1,n2,...,nN

],

= P1
n1

−P1,j
n1,nj

− (P1,i
n1,ni

)′ +Pi,j
ni,nj

, i, j = 2, . . . , N (3.34)

Similar to (3.30), the likelihood hypothesis of tracks coming from different origins

follows the same procedure as above, given by

Λ(H0
n1,n2,...,nN

) = p(x̂NnN
, . . . , x̂2

n2
|H0, x̂1

n1
)p(x̂1

n1
|H0)

=
N∏
i=2

p(x̂ini
|H0, x̂1

n1
)p(x̂1

n1
|H0) (3.35)

30



Similar to (3.27), the p(x̂1
n1
|H0

n1,n2,...,nN
) is assumed as diffuse prior given by,

p(x̂1
n1
|H0

n1,n2,...,nN
) = p(x̂1

n1
) =

1

C
, (3.36)

whereas, p(x̂NnN
, . . . , x̂2

n2
|H0, x̂1

n1
) is assumed to follow Poisson distribution in the state

space having the spatial density λ. Therefore, substituting (3.36) into (3.35) yields

Λ(H0
n1,n2,...,nN

) =
1

C
λN−1. (3.37)

Finally, from (3.24), (3.30), (3.37), the likelihood ratio test is given by,

χ(H1
n1,n2,...,nN

: H0
n1,n2,...,nN

) =
1
C
N(x̂, 0, P )
1
C
λN−1

=
N(x̂, 0, P )

λN−1
, (3.38)

For T2TA, let us define the track-to-track assignment algorithm of assigning the

Ni tracks resulted from N radars representing the same target. For that, define the

binary assignment variable

ψi1,i2,...,iN =

{
1; tracks i1, i2, . . . , iN from same target
0; from different target

The multidimensional (S-D) track to track assignment algorithm of finding the

most likely hypothesis is the result of the constrained optimization problem given

below

min
ψi1,i2,...,iN

T1∑
i1=0

T2∑
i2=0

. . .

TN∑
iN=0

ci1,i2,...,iNψi1,i2,...,iN (3.39)

subject to
T2∑
i2=0

. . .

TN∑
iN=0

ψj,i2,...,iN = 1, j = 1, 2, . . . , T1

T1∑
i1=0

T3∑
i3=0

. . .

TN∑
iN=0

ψi1,j,i3,...,iN = 1, j = 1, 2, . . . , T2

...
T1∑
i1=0

. . .

TN−1∑
iN−1=0

ψi1,...,iN−1
= 1, j = 1, 2, . . . , TN

and

ψi1,...,iN ∈ {0, 1},

i1 = 0, 1, . . . , T1,

...

iN = 0, 1, . . . , TN
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The cost function ci1,i2,...,iN in (3.39) can be calculated as

ci1,i2,...,iN = − lnχ(H1 : H0). (3.40)

where, χ(H1 : H0) is the likelihood ratio given in (3.38)

3.3.3 Observations

After performing the Track to Track Association (T2TA), two cases are possible:

1. In the first case, out of all N local tracks, M local tracks are affected by the

ECM as shown in Fig. 3.2, where N −M ≥ 2. That means at least two local

tracks are uninfluenced by the ECM. In this case, the unaffected local tracks

are fused to form a reference track. This reference track can be further used

to estimate the deception parameter of other radars. However, this solution is

sub-optimal since there is a constraint on the number of deceiving local tracks,

and fusion is limited to N −M local tracks. By considering only N −M local

tracks, we are losing the valuable information available in M local tracks.

2. In the second case, all the local tracks are affected by RGPO ECM, as shown in

Fig. 3.3. All the reported local tracks are different, and none are associated. In

this case, the tracks are first compensated by the previously estimated deception

parameter and fused to form a reference track. Thereafter, the deception pa-

rameter of other local tracks is calculated. This algorithm provides a generalized

solution irrespective of the number of RGPO jammers.

3.4 Deception Parameter Estimation Algorithm

The block diagram for the overall flow of the proposed algorithm is shown in Fig. 3.4.

As observed in the previous section, in case of all the local tracks are deceived, there

is no availability of local tracks to fuse and form a reference track. In the first step of

the algorithm, measurement recreation is carried out for deceived track in the track-

lets framework. On the other hand, the tracklets are computed for the rest of the

tracks. These tracklets are compensated using previously estimated deception param-

eters (In Fig. 3.4 the feedback of previous estimates is shown in dotted lines). Next,

the sequential update algorithm is applied to the compensated local tracks to obtain
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the fused states and covariance. Using the fused states, the fused measurement (ref-

erence measurement) is recreated. Further, perform RLSE by utilizing the recreated

measurement of deceived track and the reference measurement.

Track-to-track association

Tracklets-1 Tracklets-2 Tracklets-3 Tracklets-N

Measurement
recreation-1

Deception parameter Correction

Sequential Update Meas Covariance

Measurement
recreation-1*

Recursive LS

Figure 3.4: The block diagram representation of overall flow of the proposed
deception parameter estimation algorithm

3.4.1 Measurement Recreation of Deceiving Track

The local tracker provides the updated states and covariances. However, the measure-

ments are corrupted by the deception parameter. Hence, one needs to recreate the

measurements. Once the measurement covariance is known or estimated (i.e. R̂z),

we can rewrite the Kalman gain (3.21) as,

Ŵ(k + 1) = P(k + 1|k)H(k + 1) (3.41)

· [R̂z(k + 1) +H(k + 1)P(k + 1|k)H(k + 1)T ]−1.
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The (3.21) can be rewritten as,

x(k + 1|k + 1)− Fx(k|k) = Ŵ[y(k + 1)−HFx̂(k|k)], (3.42)

where, y(k + 1) is the recreated measurement. Here on the right hand side, gain

matrix should be taken to the left side and perform the pseudo inversion as,

Ŵ(k + 1)−1 = (Ŵ(k + 1)TŴ(k + 1))−1Ŵ(k + 1)T , (3.43)

Upon rearranging, the recreated measurement can be found as,

y(k + 1) = W(k + 1)−1[x̂(k + 1)− (I −W(k)H(k))F(k)T x̂(k)] (3.44)

At this stage, to successfully recreate the measurements, we need R̂z. To estimate

the R̂z, we are using Tracklets framework (Zhu et al. 2015). This method constructs

the approximately uncorrelated equivalent measurements and the associated covari-

ance matrices from the local tracks. The inverse Kalman filter-based tracklet method

from (Drummond 2002) is used. Based on this method, the equivalent measure-

ment vector u(k + 1, k) and measurement covariance U(k + 1, k) can be found using

Algorithm-1.

Algorithm 1 Measurement recreation using tracklets
1: inputs:x(k|k),P(k|k),x(k + 1|k + 1),P(k + 1|k + 1)
2: At time k
3: Compute Predictions

x(k + 1|k) = Fx(k|k)

P(k + 1|k) = FP(k|k)FT +Qx

4: Compute

A(k + 1, k) =P(k + 1|k)[P(k + 1|k)
−P(k + 1|k + 1)]−1

5: Compute pseudo-measurement

u(k + 1, k) =x̂(k + 1|k) +A(k + 1|k)[x̂(k + 1|k + 1)

− x̂(k + 1|k)],

6: Compute pseudo-measurement covariance

U(k + 1, k) = [A(k + 1, k)− I]P(k + 1|k).
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The detailed derivation of the tracklets is presented in the (Taghavi et al. 2013)

and (Sun et al. 2016). We constructed equivalent measurement vector u(k+1, k) and

its error covariance matrix U(k + 1, k). Note that, in order to calculate u(k + 1, k)

using x̂f (k + 1|k) and Pf (k + 1|k), one needs the estimated target state x̂(k|k) and

its covariance matrix P(k|k).

3.4.2 Correction of Deception Parameter among All Tracks

Consider a case where N RGPO ECM jammers are employed to perform RGPO ECM

to all the N local tracks and to result in N deceived local tracks. Here, all tracks get

altered due to RGPO ECM, and the deception parameter for each track has to be

estimated. In this case, the track-to-track association reports all the tracks are unique

and not from a common origin. Therefore, each track is to be first compensated with

the estimated range deception parameter (∆ri) obtained in the previous scans and

fuse the compensated tracks to get a fused state and covariance.

The equivalent measurement is û = [x̂, ŷ]. Since the equivalent measurement is in

Cartesian, one can get the measurement in polar by applying the transformation.

Therefore, compensate the range in the converted equivalent measurement as

rc(k + 1) =

√
(x̂(k + 1))2 + (ŷ(k + 1))2 −∆r(k) (3.45)

Here, ∆r(k) is the previous estimate and c indicates the corrected measurement.

θc(k + 1) = arctan

(
ŷ(k + 1)

x̂(k + 1)

)
(3.46)

These corrected polar measurements can be again transformed to Cartesian by stan-

dard coordinate conversion without bias as

xm(k + 1) = b−1rc(k + 1) cos(θc(k + 1))

ym(k + 1) = b−1rc(k + 1) sin(θc(k + 1))

where, b ≜ e−σ
2
θc
/2. Now these xm and ym serve as the local tracker information

without being effected by the ECM. Hence in this case, to find the deception of track-

i, all the tracks are compensated except ith track. Therefore, the sequential fusion

runs for N − 1 tracks.
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Algorithm 2 Sequential update algorithm

1: inputs:{x̂j(k|k),Pj(k|k)}N−1
j=1

2: At time k
3: Compute x̂f (k + 1|k) and P̂f (k + 1|k) using

x̂f (k + 1|k) = Fx̂f (k|k)

P̂f (k + 1|k) = FP̂f (k|k)FT +Qx

4: Initialize
x̂0(k + 1|k + 1) ≜ x̂jf (k + 1|k)

P0(k + 1|k + 1) ≜ Pj
f (k + 1|k)

5: for j=1:N-1 do
6: The state update is given by,

x̂j(k + 1|k + 1) = x̂j−1(k + 1|k + 1) +Wj(k)xj(k + 1)

−Hj(k + 1)x̂j−1(k + 1|k + 1)

7: The gain is given by,

Wj(k + 1) = Pj−1(k + 1|k + 1)Hj(k + 1)T [Hj(k + 1)

Pj−1(k + 1|k + 1)Hj(k + 1)T +Rj
z(k + 1)]−1

8: The covariance is given by,

Pj(k + 1|k + 1) = Pj−1(k + 1|k + 1)−Wj(k + 1)

Sj(k + 1)Wj(k + 1)T

9: end for
10: The final updated state estimate and covariance values are

x̂f (k + 1|k + 1) = x̂N−1(k + 1|k + 1)

Pf (k + 1|k + 1) = PN−1(k + 1|k + 1)
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3.4.3 Constructing the Reference Measurement

The goal is to create reference measurement by fusing N − 1 tracks, which are com-

pensated by the previously estimated deception parameters. The sequential update

algorithm is performed in the fusion step. Although it is not an optimal approach

for fusing the local tracks, it is computationally inexpensive than the parallel up-

date method (Bar-Shalom et al. 2011). In addition, it is independent of previous

equivalent measurements at time instant k. Therefore, the index for sequential fusion

is j = 1, . . . .N − 1/i. This means j runs for all tracks rather than affected track

i. After calculating the equivalent measurements for all the (N − 1) local tracks,

we get {u(k + 1)j,U(k + 1)j}N−1
j=1 . This tracklet computation uses Algorithm-1. It

is assumed that fused state and covariance at kth instant is available as x̂f (k|k) and

P̂f (k|k) respectively. The sequential update algorithm is presented in Algorithm-2. In

the algorithm, all N−1 local tracks are sequentially updated to provide xf (k+1|k+1)

and Pf (k+1|k+1). One of the advantages of this sequential fusion approach is that

in each “for loop” (step-5 in Algorithm-2), only a low dimensional Kalman filter that

is independent of the size of the stacked RGPO vector and the number of the sensors

is needed. Furthermore, the fusion of local tracks can be accomplished by adding one

sequential update for the latest corrected measurement of sensor j to the previously

fused track. In the sequential fusion algorithm, it is also important to note that there

is no constraint on the rate at which local tracks are being received from the individual

sensors. Further, the sequential fusion approach avoids measurement augmentation

for updating the estimates step by step by using the current sensor measurement data.

3.4.4 Deception Parameter Estimation Algorithm

The algorithm for estimating the deception parameter is presented in Algorithm-3.

Also, the block diagram representation of deception parameter estimation is shown in

Fig. 3.4.
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Algorithm 3 Deception parameter estimation algorithm
1: for i = 1 : N do
2: Recreate measurements: The tracklets for the deceived track are computed

and then recreate the measurements corresponding to local tracks-i using (45),we
obtain yi as

yi(k + 1) =Wi(k + 1)−1[x̂i(k + 1|k + 1)−
(I −Wi(k + 1)H(k + 1))FT x̂i(k|k)]

3: Fused state and covariance: Compute the tracklets for N − 1 tracks using
Algorithm-1 and compensate them using Subsection-3.4.2. For the compensated
tracks, perform sequential update using Algorithm-2, to get fused state x̂f (k +

1|k + 1) and fused covariance P̂f (k + 1|k + 1).
4: Fused measurement covariance:

Rf (k + 1) =H(k + 1)

[
N−1∑
j=1

(Uj(k + 1, k))−1

]−1

H(k + 1)T

5: Calculate the fused weight as

Wf (k + 1) =Pf (k + 1|k)H(k + 1)T[H(k + 1)

Pf (k + 1|k)H(k + 1)T +Rf (k + 1)]−1.

6: Reference measurement Therefore, by providing the fused covariance in
(3.44), we get yi∗ as

yi∗(k + 1) =Wfk(k + 1)−1[x̂f (k + 1|k + 1)−
(I −Wf (k + 1)H(k + 1))FT x̂f (k|k)]

7: Compute RLSE: The new measurement using reference measurement and
re-created track is

y(k) = yi(k)− yi∗(k)

= Hi(k)xi(k) +Bi(k)ci(k)∆ri(k)+

wi(k)−Hi∗(k)xi∗(k)−wi∗(k)

= H(k)∆r(k) +wi(k)−wi∗(k)

= H(k)∆r + w̃(k)

recursively solve using the last updates in recursive least squares estimation
(RLSE) framework (Bar-Shalom et al. 2011).

8: end for
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3.5 Performance evaluation of proposed algorithm

3.5.1 Innovation test

Innovation test is used for testing the efficiency of RLS estimator. The measurement

is given by,

y(k) = H(k)∆r(k) + w̃(k) (3.47)

where, H(k) measurement transition matrix and the measurement noise covariance is

R(k) = Ri(k) +Ri∗(k).

The innovation covariance is represented as,

S(k) = H(K)Σ(k)H(k)T +R(k) (3.48)

The gain and the residual is calculated as

G(k) = Σ(k)H(k)T [H(k)Σ(k)H(k)T +R(k)]−1 (3.49)

Γ(k) = y(k)−H(k)∆r̂(k) (3.50)

The range gate estimate and its covariance are,

∆r̂i(k) = ∆r̂i(k − 1) +G(k)Γ(k) (3.51)

Σ(k) = Σ(k − 1)− Σ(k)H(k)T (3.52)

· [H(k)Σ(k)H(k)T +R(k)]−1

·H(k)Σ(k)

The innovation test (Ivanov et al. 2014) is given as,

Γ(k)S(k)−1Γ(k) ≤ ξ2nr
(1− q) (3.53)

where, ξ2nr
(1−q) is the chi square value with nr degree of freedom and tail probability

of q.
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3.5.2 Cramer Rao Lower Bound

The Cramer Rao Lower Bound (CRLB) on the mean square error of unbiased estima-

tor is a frequently used metric for determining the correctness of parameter estimation

based on a set of data (Meir and Routtenberg 2021). The CRLB of the algorithm

provides the criterion to know the minimum value of error that the algorithm can

achieve.

From the measurement equation of the RLS estimator,

yi(k) = H(k)∆ri(k) + w̃i(k) (3.54)

where ∆ri(k) is the range gate vector to be estimated and the measurement noise

covariance of wi(k) is given as Ri(k) = Ri(k)+R∗
i (k) where Ri(k) is the measurement

noise of ith local track and R∗
i (k) is the measurement noise obtained by fusing rest of

the local tracks.

The covariance matrix of an unbiased estimator is bounded as below (Bar-Shalom

et al. 2004) and (Van Trees and Bell 2007):

E
{
(∆r̂i(k)−∆ri) (∆r̂i(k)−∆ri)

′} ≥ Jz(k)
−1 (3.55)

Here, E is the estimation operator and Jz is the Fisher Information Matrix(FIM)

and is given as

Jz(k) = E
{
[∇ lnp(y(k) | ∆r(k))]

[∇ ln p(ȳ(k) | ∆r(k))]
′}

∆r(k)=∆rt
(3.56)

where, ∆rt is the true value of the range gate parameter and ∇ is the gradient

operator. Also, p(y(k) | ∆r(k)) is the likelihood function, which is given as below:

p(y(k) | ∆r(k)) = 1√
2π|R(k)|

.

exp
{−1

2
[y(k)−H(k)∆r(k)]′R(k)−1[y(k)−H(k)∆r(k)]

} (3.57)

Substituting λy = − ln p(z(k) | ∆r(k)),

λy = C+
−1

2
[y(k)−H(k)∆r(k)]′R(k)−1[y(k)−H(k)∆r(k)] (3.58)

Upon further simplification,

∇∆rλy = H(k)′R(k)−1(y(k)−H∆r(k)) (3.59)
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which gives,

Jz(k) = H(k)′R(k)−1H(k) (3.60)

The FIM at K is also the recursive form of CRLB is represented as,

Jz(K) =
K∑
k=1

Jz(k) (3.61)

3.5.3 NEES test and Confidence Interval test

In simulation frameworks, the normalised estimation error squared (NEES) test can

be used to determine if the estimator is efficient, that is, whether the error matches the

covariance provided by the CRLB (Govaers et al. 2013). The error matrix provided by

the CRLB is Jz. For an estimated deception parameter ∆r̂(k), there exist a ground

truth r(k). The estimation error is given by,

∆r̃(k) = ∆r(k)−∆r̂(k) (3.62)

The NEES value for the parameter ∆r is written as,

∆r̃T (k)Jz(k)∆r̃(k) ≤ ξ2nr
(1− q) (3.63)

The confidence interval of a deception parameter is evaluated for ∆r(k). The

squared norm of the error should be constrained by the estimate if the estimator is

efficient (Chi et al. 2006).

The confidence for the parameter ∆r(k) is,

∆r̃T (k)Σ−1(k)∆r̃(k) ≤ ξ2nr
(1− q) (3.64)

which follows chi square distribution with degree of freedom equal to nr.

3.6 Results

3.6.1 Case-1: Single radar sensor deceived by RGPO ECM

In this scenario, among the three radars in the surveillance area, consider that a single

radar sensor is deceived by RGPO ECM. All the radars are static and synchronous

in time with ts = 1s. The radars are located at rs and θs with reference to the origin.

The range and azimuth measurements are corrupted with the noise with a standard
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deviation of σr and σθ, respectively. In the surveillance region, a single target is

considered, and all radars have a local tracker to provide local estimates about the

target. In this simulation, a single jammer influences the single radar equipped with

local tracker-1. Since the local track-1 generated from the tracker-1 is deceived with

the RGPO ECM measurements, this results in a range displacement of ∆r1. The

positions, measurement standard deviation, and deception parameters are tabulated

in the Table 3.1. Moreover, the scenario is depicted in Fig. 3.5. The target is located

at a range of 3000m and the azimuth of 1.5 rad from the origin. The target moves with

a speed of 40m/s, and 80deg heading throughout the simulation time of 1000s. The

target follows a constant velocity model, and the state transition matrix is represented

as,

F =


1 ts 0 0

0 1 0 0

0 0 1 ts

0 0 0 1

 .

Figure 3.5: Scenario of the static radars and target.
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Table 3.1: Radar parameters for single radar jamming case

Sensor-1 Sensor-2 Sensor-3

Range (rs in m) 30000 30000 30000

Azimuth (θs in rad) 1 3 5

Std of range (σr in m) 20 20 20

Std of azimuth (σθ in rad) 1m 1m 1m

Sampling time (ts in s) 1 1 1

Deception (∆r in m) 1000 - -

A Tracking Accuracy

A Global Nearest Neighbor (GNN) association based extended Kalman filter (EKF)

filter is used for target tracking. Two-point initialization method (Mallick and SCALA

2008) is used to initialize the filter. The range-azimuth measurements r(0) and θ(0)

at zero instant are considered to form the converted measurements as x(0) and y(0).

Similarly, the first instant measurements are used to form the converted measurements

as x(1) and y(1). Hence, the two-point initialization is given by,

x =
[
x(1) x(1)−x(0)

ts
y(1) y(1)−y(0)

ts

]
The measurement conversion follows the unbiased conversion by using,

x(1) = λ−1r(1) cos(θ(1))

y(1) = λ−1r(1) sin(θ(1))

Here λ = exp
(
−σ2

θ

2

)
. This unbiased conversion is valid for initialization, since it

follows the necessary criteria of rσ2
θ

σr
≪ 0.4. The covariance is initialized using,

P (1 | 1) =


Rxx(1)

Rxx(1)
ts

0 0

Rxx(1)
ts

2Rxx(1)
t2s

0 0

0 0 Ryy(1)
Ryy(1)

ts

0 0 Ryy(1)

ts

2Ryy(1)

t2s


where,

Rxx =(λ−2 − 2) (r(1))2 cos2(θ(1))

+
((r(1))2 + σ2

r)

2

(
1 + λ4 cos 2θ(1)

)
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Ryy =(λ−2 − 2) (r(1))2 sin2(θ(1))

+
((r(1))2 + σ2

r)

2

(
1− λ4 cos 2θ(1)

)
The tracking is carried out with the aid of an EKF. The tunable parameters such as

process noise covariance (Qx) and measurement noise covariance (Rz) are represented

as,

Qx = 0.08


1
3
∗ (t3s) 1

2
∗ (t2s) 0 0

1
2
∗ (t2s) ts 0 0

0 0 1
3
∗ (t3s) 1

2
∗ (t2s)

0 0 1
2
∗ (t2s) ts


and

Rz =

Rxx Rxy

Ryx Ryy


where,

Rxy = Ryx =

[
λ−2(r)2

2
+

((r)2 + σ2
r)λ

4

2
− ((r)2

]
sin 2θ.

The tracking performance is evaluated using the position root mean square error

(PRMSE). The tracking performance of all the local trackers is depicted in Figs. 3.6(a)-

(c).

It can be observed from Fig. 3.6(a) that the local track-1 PRMSE is approximately

around 1000 ± 8m because of the range deception of 1000m affected by the RGPO

ECM jamming. Moreover, the PRMSE of the local track-2 and local track-3 are also

depicted in the Fig. 3.6(b) and Fig. 3.6(c). The PRMSE of local track-2 and local

track-3 is lesser compared to local track-1 since the RGPO jamming is un-influencing

local track-2 and local track-3. This tracking performance can be directly reflected in

the fusion module.

B Tracking performance after Sequential Fusion

The sequential fusion is performed on the compensated equivalent measurements. The

correction is applied at k in the polar coordinates by adopting the estimated deception

parameter at k − 1 time instant. For the time stamp of k = 1, since there are no

previously fused estimates are available, the local track’s updated state is considered

as the fused state estimate i.e., xf (k|k) = x(k|k) and Pf (k|k) = P(k|k) at k = 1. It

is evident from the Figs. 3.6 (d)-(f) that, the PRMSE of local track-1 fused estimate
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is equal to the PRMSE of local track-1 for the initial scan. After that, the deception

parameter estimation converges over time and improves the PRMSE of the sequential

fusion block. Therefore, we observed that, the local track-1 fusion PRMSE decreases

over time, and the similar procedure holds true for local track-2 and local track-3

performance. Since the deception parameter is kept at 1000m for local track-1, the

sequential fusion PRMSE starts at 1000m and finally diminishes to 10m accuracy.

The sequential fusion provides sub-optimal solution, but it is a significant technique

importance due to its reduced computational requirement. It is also worth noting that

the sequential fusion is only dependent on the compensated equivalent measurements

to compute the fused state and covariance estimates at a given scan.
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Figure 3.6: (a-c) Target Tracking performance of the individual radar sensor before
the proposed algorithm, (d-f) Target tracking performance after Sequential fusion

C Deception Parameter Evaluation

The deception parameter is calculated in the RLSE framework. In this framework,

measurement i corresponds to the deceived local track i. whereas, the reference mea-

surement is generated by the compensation and fusion of all local tracks except i.

That is the sequential fusion block runs for i∗ ∈ 1, · · ·N/i. The initial state and

covariance of the RLSE is ∆r(0|0) = 0 and Σ(0|0) = 10002. There is no prior infor-
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mation regarding the deception parameter and its associated covariance at k = 0. The

deception parameter of the deceived local track-1 is estimated, and its corresponding

PRMSE is plotted in Fig. 3.7.
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Figure 3.7: Deception parameter of local track-1.

Initially, the deception is considered as zero, and hence PRMSE at initial state

is equal to 1000m which is the deception created by the RGPO ECM. Along with

the estimated deception parameter, we also plotted the Batch CRLB (
√
B − CRLB),

Recursive CRLB (
√
R− CRLB) and the diagonal of the covariance estimate (

√
Σ).

From Fig. 3.7, it can be observed that the estimator is working effectively, and the

estimated deception parameter is coming closer the CRLB value. We have plotted

on logy scale for better visualization, keeping the deception parameter changing from

103 to unity.
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D Performance evaluation of the proposed algorithm

The performance of the proposed algorithm is validated using the NEES test, inno-

vation test, and confidence interval test. In all three tests chi-square distribution as

χ2
b(1−q) where q is tail probability is considered. The q is taken as 1% and 5% and is

plotted in the Fig. 3.8. It is evident from the results that the NEES values are falling

within the chi-square distribution with a tail probability of 5% which infers that the

proposed estimator is efficient. The NEES for the estimator along with the chi-square

distribution is shown in Fig. 3.8(a). Further, it can be observed from Fig. 3.8(b) that

the innovation test is inbound with the Raleigh distribution, and it is falling within

the 95% confidence interval of the chi-square distribution with a degrees of freedom

equal to two. Further, the confidence area of the parameter to associated confidence

interval, which intuitively specifies whether the estimated parameter is examined and

the estimated parameter covariance are agreeing with each other. From Fig. 3.8(c)

it is evident that the confidence region of the estimated parameter is well within the

specified range which indicates that the estimated covariance and R-CRLB are al-

most equal. Hence, one can state that the proposed estimator neither optimistic nor

pessimistic.
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Figure 3.8: Performance evaluation of the proposed deception parameter estimation
algorithm for radar sensor-1 deceived by RGPO ECM scenario

3.6.2 Case-2: Multiple radar sensors affected by Jamming

In this scenario, we considered three radars present in the surveillance region and

all are affected by RGPO ECM. All the three radars are assumed to be static and

synchronous in time. The radars are located at rsi and θs with respect to origin.
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Table 3.2: Sensor parameters for multiple sensor jamming case

Sensor-1 Sensor-2 Sensor-3

Range (rsi in m) 30000 30000 30000

Azimuth (θsi in rad) 1 3 5

Std of range (σri in m) 50 100 150

Std of azimuth (σθi in rad) 1m 2m 3m

Sampling time (ts in s) 1 1 1

Deception (∆ri in m) 1000 1500 2000

The range and azimuth measurements are corrupted with white Gaussian noise with

zero mean and standard deviations of σri and σθi respectively. A single target is

considered, and all local trackers provide updated state and covariance to the fusion

center. Unlike the single jammer three jammers are considered, and this yields a

range displacement of ∆ri to each local track. The locations, standard deviation of

measurements, and deception parameters of each of the local track are tabulated in

Table 3.2.

A Tracking Accuracy

A two-point initialization method is utilized to initialize the filter, and the EKF is

used to filter the measurements. The tracking PRMSE of all the three local tracks is

depicted in Figs. 3.9(a)-(c). Since all the three local tracks are deceived by the RGPO

ECM, it can be observed that the local track-1 PRMSE is around 1000m; this is as

a result of range deception parameter of 1000m affected the local track. Similarly,

the PRMSE of local track-2 and local track-3 are 1500m and 2000m, respectively.

Corresponding to the range deception, since all the tracks are deceived, this results

in hypothesis H1 in T2TA. Meaning that the T2TA model reports that all the tracks

are of separate origin, despite all the tracks belonging to the same origin.

B Tracking performance after Sequential Fusion

Each track is compensated with the estimated range deception parameter ∆ri, and

then the sequential fusion is performed. Similar to the single jammer case, the initial-

ization of the fused track is performed by using local tracks i.e, xf (k|k) = x(k|k) and
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Figure 3.9: (a-c) Target Tracking performance of deceived radar sensors before
proposed algorithm, (d-f) Target Tracking Performance after Sequential fusion

Pf (k|k) = P(k|k) at k = 1. It can be seen from Figs. 3.9(d)-(f) that, for all the local

tracks fused estimate is equal to the tracking PRMSE of the initial scan at k = 1.

Similar to the single jammer case, we observed that all the local track’s fusion PRMSE

decreases over time. This indicates that, the deception parameter compensation fol-

lowed by sequential fusion brings all the fused tracks together. Since the deception

parameter is 1000m for local track-1, 1500m for local track-2, and 2000m for local

track-3, the sequential fusion PRMSE starts around the same value and finally reduces

to minimum value. Henceforth, one can visualize that the local tracks converges to a

single track over time, after performing the deception parameter compensation.

C Deception Parameter Evaluation

The deception parameter of all the local tracks is estimated, and its corresponding

PRMSE is plotted in Fig. 3.10. Initially, the deception parameter is zero, and hence

PRMSE at k = 1 is higher and equal to the value of the deception parameter. Along

with the estimated deception parameter, the
√
B − CRLB,

√
R− CRLB and

√
Σ

are plotted. Here, it can be observed that the estimator is working effectively, and

the estimated deception is approaching closer to the CRLB value.
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Figure 3.10: Range deception parameters evaluation in multiple jammers scenario

D Estimator Performance Evaluation

To evaluate the performance of the estimator the similar tests are conducted as that

of single sensor RGPO ECM case. Figs. 3.11(a)–(c) provide the plots corresponding

to the innovation test, whereas Figs. 3.11(d)–(f) depicts the NEES test, and finally

Figs. 3.11(g)–(i) shows the plots corresponding to the confidence interval test. From

the plots, it is evident that the value of the estimated parameter falls within chi-square

distribution of 5% tail probability which indicates the correctness of the proposed

algorithm.

Overall, this work presents a deception parameter estimation algorithm to combat

RGPO ECM in a networked radar scenario. The RGPO ECM is detected, and the

range gate deception parameter is estimated for the deceived local track. A track-to-

track association is formulated at the fusion node to detect the deceived tracks using

all the available local tracks. Once the attack is detected, the weight matrix, pseudo-

measurement, and pseudo-measurement covariance at the fusion center are recreated

by utilizing the tracklet framework. Moreover, all the local tracks except deceived

tracks are compensated and sequentially fused to create a reference measurement.

The deception parameter of the deceived track is estimated by deploying a recur-

sive least squares framework with the help of the pseudo-measurement and reference

measurement. Further, the proposed algorithm was analyzed for single and multiple

RGPO ECM scenarios and is validated by using tracker accuracy, fusion accuracy, and

estimator accuracy. Besides, the estimated deception parameter is in agreement with

the achievable CRLB. Furthermore, the results are quantified with a Position Root

Mean Square Error (PRMSE), CRLB, innovation test, NEES test, and confidence

interval. In addition, the simulation results demonstrate that the proposed estimator
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Figure 3.11: (a–c) Innovation test, (d–f) NEES test, and (g–i) Confidence interval
test for multiple local trackers deceived by RGPO ECM scenario

efficiency is below the 5% tail probability of the chi-square distribution. Moreover, it

is evident from the results that the proposed technique is efficient for both single and

multiple RGPO ECM cases.

3.7 Conclusion

Chapter 3 dealt with proposing an efficient ECCM approach to combat RGPO ECM

in a networked radar system. This approach can further be extended and can be

incorporated in passive radar systems. The next chapter (Chapter 4) focuses on

evaluating the feasibility of 5G NR waveform as a suitable IOO for passive radar

system. In addition, Chapter 4 also proposes a conceptual framework to improve the

strength of the received signal at passive radar receiver.

51



52



Chapter 4

Feasibility study of 5G NR waveform
as an IOO and RSS improvement

4.1 Preamble

Passive radars utilize the IOO signals available in the surveillance environment for

target detection and tracking. The working and accuracy of target detection mainly

rely on the availability of good quality IOO. Also, specific IOO signals suites relevant

applications based on the signal features. The selected IOO signal must give good

range and velocity resolution for detecting multiple and slow-moving targets. Accord-

ingly, in this objective, the feasibility of adopting a 5G NR waveform as an IOO for

passive radar is carried out. Further, the propagation environment affects the IOO

signals, which lowers the received signal strength at the passive radar. In this context,

a simple and effective approach to opt for an appropriate IOO based on application

and improving the signal strength at the receiver is proposed.

4.2 5G NR Waveform

The continuous-time OFDM signal is represented as,

xi(t) =
1

N

N−1∑
k=0

ak,i exp

(
j2πkt

T

)
, (4.1)

and the discrete baseband OFDM signal as,

bn,i =
1

N

N−1∑
k=0

ak,i exp

(
jπkn

N

)
, 0 ≤ n ≤ N − 1, (4.2)

where a0,i, · · · , aN−1,i are a vector of modulated symbols which modulates N subcar-

riers in i-th symbol period. The time-domain representation and the spectrum of the
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Cyclic Prefix – Orthogonal Frequency Division Multiplexing (CP-OFDM) waveform

used for the 5G NR waveform as per the FR1 specifications are shown in Fig. 4.1(a)

and Fig. 4.1(b) respectively.

(a) Time domain signal (b) Spectrum of the signal

Figure 4.1: The CP-OFDM signal in time domain and its spectrum

The power spectrum of the OFDM signal Sx(f) is,

Sx(f) = E
{
|a|2
}N−1∑
k=0

|Xk(f)
2|

T
, (4.3)

where |Xk(f)
2|

T
is the power spectrum of kth subcarrier.

Further, for the 5G NR waveform, the FR1 specifications are the bandwidth per

carrier varies from 5MHz to 50MHz with a subcarrier spacing of 15KHz. The maxi-

mum number of carriers considered is 3300 with 4096 point Discrete Fourier Transform

(DFT). The Quadrature Phase Shift Keying (QPSK) modulation is considered with

a radio frame length of 10ms. For these specifications, the bistatic radar parameters

like SNR, range resolution, velocity resolution, and other radar basic parameters are

calculated and analyzed.

4.3 Bistatic Radar Parameters

4.3.1 Bi-static geometry

The Fig. 4.2 shows the two-dimensional view of the bi-static geometry of passive

radar system. The transmitter (Tx) and receiver (Rx) are located at xTx and xRx

respectively. The line between Tx and Rx is denoted by ρ =| xTx − xRx |. The
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target is located at xt in the same space. The range between transmitter-to-target is

ρt =| xTx − xt |. Similarly, the range between target-to-receiver is ρr =| xt − xRx |.

Figure 4.2: Bi-static geometry indicating the IOO waveform transmitter (Tx)
located at XTx, Passive Radar Receiver (Rx) located at XRx and time-varying

dynamic targets present at X t & X t′ in 2D Cartesian coordinate system.

The angle between the Tx and Rx denoted by β

β = sin−1

(
ρ cos θr
ρt

)
, (4.4)

where θr is the angle sustained by the receiver, IOO is transmitting the 5G NR wave-

form with wavelength (λx), and bandwidth (B). The illuminated signal is used to get

the detections from the target. In Fig. 4.2, another target-2 is considered, and ranges

are depicted with dotted lines to distinguish target-1 and target-2. Corresponding

to target-2, the ranges are ρ′t and ρ′r for transmitter-to-target and target-to-receiver

respectively. The motive to consider the second target in the vicinity for the given

scenario is to verify the range resolution using 5G NR waveform.
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4.3.2 Maximum Range

The bi-static maximum range (Kuschel et al. 2019b) is given by,

(ρtρr)max =

[
PtGtGrλ

2
xσF

2
t F

2
r

(4π)3 kTrBn

(
S
N

)
LtLr

] 1
2

, (4.5)

where Pt is transmitted power, Gt is transmitting antenna gain, Gr is receiving an-

tenna gain, σ is radar cross section, Ft is transmitter-to-target pattern propagation

factor, Fr is target-to-receiver pattern propagation factor, k is Boltzmann’s constant,

Tr is Rx noise temperature, Bn is Rx noise bandwidth,
(
S
N

)
is minimum SNR, Lt is

losses corresponding to Tx, and Lr term corresponds to losses of receiving system.

Here, (ρtρr)max is bi-static maximum range product. This term is analogous to R4 in

mono-static systems (Kuschel et al. 2019b).

4.3.3 Bistatic Range resolution

The bistatic radar’s range resolution is defined as the minimal distance necessary

between two independent targets in order to detect them as two targets. The radar

can identify them apart by analyzing the corresponding returns. The range resolution

is measured in meters. The range resolution ∆ρ is given by (Kuschel et al. 2019b),

∆ρ =
c

2B cos
(
β
2

) , (4.6)

where c is a speed of light, B is the processed transmitted signal bandwidth and, β

is the bistatic angle formed at the target due to transmitter and receiver.

4.3.4 Bistatic Doppler

The Bistatic Doppler is defined as the bistatic range rate over time normalized by the

carrier wavelength λx (Teo). That is

fb =
1

λx

[
∂ρb
∂t

]
=

1

λx

[
∂ρt(t)

∂t
+
∂ρt(t)

∂t

]
. (4.7)

In the above equation, the bistatic Doppler comprises two contributions. The first

one is the relative radial motion between transmitter-to-target, and the other is the

relative motion between target-to-receiver. However, in the majority of the cases in
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passive radar, both Tx and Rx are stationary, and Doppler depends on the target

motion. The final Doppler frequency (Kuschel et al. 2019b) is represented as,

fb =
2V

λx
cosα cos

(
β

2

)
, (4.8)

where V is the modulus of the target velocity vector, α is the orientation of V con-

cerning bistatic angle and, β is the bistatic angle.

4.3.5 Doppler Resolution

The Doppler Resolution indicates the ability of the radar to distinguish between two

closely moving targets and associated Dopplers, it depends on coherence integration

time (NT) as given by,

∆fd =
1

NT
. (4.9)

where N is the number of pulses integrated and T is the pulse repetition interval

of the waveform.

4.3.6 Velocity Resolution

The velocity resolution indicates the ability of the radar to distinguish between two

targets moving with different velocities, it depends on coherence integration time (NT)

(Richards 2014), wavelength and, bistatic angle as given by,

∆v =
λ

2NT cos
(
β
2

) . (4.10)

4.3.7 Maximum unambiguous PRF

The maximum unambiguous PRF is given by,

(PRF )u =
c√

ρ2 + 2ζ(1 + cos β)
. (4.11)

4.3.8 Ovals of cassini

Oval of cassini is defined as the locus of points whose product of distance from

fixed point is constant. In Eqn. 4.5, substituting ζ = (ρtρr)max and keeping K =
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[
PtGtGrλ2xσF

2
t F

2
r

(4π)3kTrBnLtLr

]
as a constant yields to

K = ζ2
(
S

N

)
. (4.12)

N
N

Figure 4.3: Passive bistatic radar geometry in polar coordinates (N indicates the
earths north).

On solving the above equations by transforming the geometry into polar coordi-

nates as given in Fig. 4.3, the final signal to noise ratio derived as given in (Kuschel

et al. 2019b) results to

S

N
=

K(
ρ2p +

ρ2

4

)
− ρ2pρ

2 cos2 θp
. (4.13)

Here ρp and θp are range and bearing in polar coordinates. Here, to analyze the ovals

of Cassini, the distance between Tx and Rx (ρ) and product of ranges (ζ) provides the

plot assuming the signal to noise ratio as a constant. If ρ > 2
√
ζ, then two separate

ellipses enclosing Tx and Rx arises, and the mathematical model of ellipse area (A)

is given by,

A = πζ

[
1−

(
1

64

)(
L4

ζ2

)
−
(

3

16384

)(
L8

ζ4

)]
. (4.14)

In the scenario of ρ < 2
√
ζ, a singe continuous ellipse occurs and the ellipse area is

given by,

A =
2πζ2

L2

[
1 +

(
2ζ2

L4

)
+

(
12ζ4

L8

)
+

(
100ζ6

L12

)]
. (4.15)
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on the other hand, for ρ = 2
√
ζ, a lemniscate cup arise at origin and the ellipse area

is given as,

A = 2ζ. (4.16)

The ovals of cassini analysis is particularly useful for determining the maximum cov-

erage area that given sensors can cover in a passive bistatic scenario.

4.4 Results for the feasibility study

The 5G NR waveform (CP-OFDM) for down-link under consideration has: The center

frequency is 6 GHz, the bandwidth per carrier is 5 MHz to 100 MHz, the modulation

technique is QPSK, and the FFT size 4096. The transmitted power is 15dBW, the

transmitter Gain is 30, the center frequency is 6GHz, receiver Gain is 30 dB, receiver

noise temperature is 300K, receiver Noise Bandwidth is 60MHz, and bistatic RCS is

10dBsm. The Ft = Fr = −3.5dB and Lt = Lr = 1dB. In the passive bistatic radar

geometry considered, the distance of transmitter to target is 210Km, and the distance

of the target to receiver is 140Km. For the above mentioned geometry as shown in

Fig. 4.2, the bistatic angle is computed as 24.43o.

For these values the bistatic range product(ρtρr) is 14.206km2, the bistatic radar

constant (k) is 202x1012, and the maximum unambiguous PRF is calculated to be

3.996 kHz. The minimum SNR versus bistatic range product for various waveforms

is plotted in Fig. 4.4

From Fig. 4.4, we can observe that the rightmost curve corresponds to FM, which

is very much pruning to variation in SNR. This shows that usage of FM signals

degrades the performance of the radar. In contrast, the leftmost curve in Fig. 4.4 is a

5G NR waveform, which claims that even with the variation in SNR, the corresponding

variation in maximum range product is very low, which signifies that the waveform

is suitable to get detection. The lower value of the maximum range product signifies

the accuracy of detection. The LTE stands next to the 5G waveform in the SNR

analysis. Moreover, the relationship between minimum SNR and range product is

directly related to range and velocity resolutions. We can infer that the 5G NR

waveform outperforms all the existing waveforms for a decent change in minimum

SNR from the comparison plot.
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Figure 4.4: Signal to noise ratio versus Maximum Range Product for various IOO
waveforms

For the bistatic angle 24.43o, the range resolution versus bandwidth is plotted as

shown in Fig. 4.5. The range resolution for the 5G NR waveform is compared with

the LTE waveform in the given frequency ranges. The operating frequency bandwidth

for LTE is swept from 1.4MHz to 20 MHz, and for 5G NR, it is swept from 5MHz

to 100MHz. From Fig. 4.5, the maximum achievable range resolution for LTE is

7.5m at 20 MHz bandwidth. As per the specifications of 5G, it can be tuned from 5

MHz to 100 MHz which gives us improved range resolution as we move significantly

away from 20 MHz compared to LTE. However, during the interval of BW ∈ [5− 20]

MHz, both LTE and 5G NR waveform gives the comparable performance. Hence the

benefit of using 5G NR waveform in bistatic radar application is only to visualize the

performance if bandwidth exceeds 20 MHz. Theoretically, at 100 MHz bandwidth

the 5G NR waveform can achieve a 1.5m range resolution. From these results we can

infer that the 5G NR waveform provides better range resolution than LTE due to a

higher operating frequency and higher bandwidth. Therefore the 5G NR waveform

can be adopted at very high bandwidth values for precisely detecting very closely

spaced targets in the passive bistatic scenario.

The velocity resolution for the given geometry and targets is evaluated by varying
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Figure 4.5: Range Resolution in meters for LTE and 5G NR waveforms plotted for
wide range of bandwidth

the center frequency and coherence integration time (NT). The LTE is operated in

the range of frequencies from 1 GHz to 2.6GHz. In comparison, the 5G NR waveform

is proposed to use at 6GHz. Theoretically, we swept the frequency of the 5G NR

waveform from 2 to 8GHz to see the velocity resolution performance. For NT =

0.2, the maximum operating frequency of LTE is 2.6 GHz, and it achieves a velocity

resolution of 0.13 m/s. Whereas for 5G NR at the operating frequency of 6GHz, the

velocity resolution obtained is 0.11 m/sec. Moreover, the coherent integration time is

a radar parameter of tunability in the range of 0.2sec to 0.5sec is considered. Therefore

we have plotted the velocity resolution for different values of NT {0.2, 0.3, 0.5}. For

different coherent Integration Time (CIT) values of 0.2sec, 0.3sec, and 0.5sec, the

velocity resolution for LTE and 5G NR waveform, is plotted as depicted in Fig. 4.6.

For better Doppler resolution, the CIT should be higher. For the given CIT of 0.5,

with a 5G NR waveform, the passive radar can identify a velocity of 0.11m/sec. Hence

the 5G waveform may be a very useful candidate for detecting slow-moving targets.

The detection contour plot is as shown in Fig. 4.7 for 5G NR waveform. The Ovals

of Cassini illustrate the contour plots for SNR values of 69dB, 72dB, 75dB and 78dB

for 5G NR waveform specifications. From the contour plot, it is clear that there is no

lemniscate cup at the origin, and it provides a huge coverage area.

The comparative analysis of bistatic radar parameters for LTE and 5G NR wave-
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Figure 4.7: Ovals of Cassini for 5G NR waveform

form specifications is as tabulated in the Table 4.1.
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Table 4.1: Comparison of passive bistatic radar parameters

Parameter LTE 5G NR

Frequency(GHz) 2.6 6

Maximum Range Product(km2) 6.5 14.06

Bistatic Radar Constant 42.7x1012 202x1012

Maximum Unambiguous PRF(kHz) 58.86 40

Range Resolution(m) 7.5 3

Velocity Resolution(m/sec) 0.13 0.11

The 5G NR waveform gives approximately two-fold performance for range resolu-

tion and better performance for velocity resolution compared to the LTE waveform.

Ovals Of Cassini provide higher area visibility without any lemniscate cup than that

of LTE and other waveforms. Overall this simulation study highlighted the feasibility

of adopting the 5G NR waveform as the potential transmitter of opportunity for target

detection for passive bistatic radar applications. The radar-specific parameters (range

resolution, Doppler resolution, velocity resolution etc) are calculated for standard 5G

NR waveform specifications, and comparative analysis is carried out with the LTE

waveform.

4.5 Conceptual framework to improve the perfor-
mance of passive radar system

Consider the passive radar system scenario as shown in Fig. 4.8, it contains N IOOs,

O1 and O2 obstacles, and T1 and T2 targets in the environment. The passive radar

system has two main blocks, one for the reception of the signals and the other for pro-

cessing the received signals with aided knowledge to improve the radar’s performance.

The path A indicates the direct signal path from IOO to the passive radar’s reference

channel. B represents the IOO signal reflected from the target and received at the

surveillance receiver. The IOO signals reflected due to obstacles are C and D. Out of

the N IOOs, some IOOs transmit different distinct frequencies based on the intended

purpose they are being deployed for, and others transmit the same frequencies. Hence,

there is a need to choose the proper IOO for the given application.
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Direct

channel

Surveillance channel

Smart passive radar system

Figure 4.8: Multi static Passive radar scenario having N IOOs

In this multi illuminator passive radar scenario, the proposed smart knowledge

aided passive radar system (KA-PRS) aims to follow the below steps:

1. Select the appropriate IOO based on the application and frequency bands.

2. Sense the propagation environment through appropriate spectrum sensing tech-

nique.

3. Adopt suitable diversity technique and combining technique to maximize the

SNR and provide the countermeasure to jamming.

4.6 Proposed Knowledge Aided Passive Radar Sys-
tem

The cognitive radar defined in (Haykin et al. 2012) briefs that the cognitive radar must

possess sequential sensing ability, quick scanning ability, and intelligent and robust

signal processing capability. Likewise, the proposed KA-PRS has the above-listed

three steps (step-1, step-2, and step-3). In step 1, we continuously sense the radio

propagation environment. The appropriate IOO selection for the given range of the

target and frequency is chosen in step 2. Finally, in the maximization step (step-3),
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spatial diversity is achieved with a maximum ratio combiner technique. Here, the

sense and select steps can be interchangeable depending on the context. Fig. 4.9

shows the hierarchy of the overall processing in the KA-PRS. The passive radar re-

ceiver system assumes that it possesses information about IOOs (waveform-specific

parameters and radar-specific parameters) and the environment (examples like clutter

and noise interferences). The parameters like operating frequency, bandwidth, range

of the IOO, and the range resolution play a key role in choosing the appropriate IOO

for the particular application. Apart from knowing the IOO features and the envi-

ronment, the receiver has to possess sufficient signal processing hardware, including

software-defined radio to scan and sense the frequency band of interest and process

the received signal in time.

In brief, the passive radar receiver system with knowledge about the various IOOs

in the environment uses the software-defined radio to sense, scan, and choose the IOO

that suits the detection application. Further, boost the received signal strength using

diversity techniques to combat various interferences.

Spatial

 sensing

Energy 

detection

IOO

 selection

Frequency

band

Range

application

Maximize &

secure

Spatial

diversity

Frequency

diversity

Figure 4.9: The basic processing steps for the smart passive radar system (SPRS).
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4.6.1 Spectrum Sensing using Energy detection

Spectrum sensing assists the radar receiver decide whether the signal strength of the

IOO of interest is above the functional level. Assume that H0 indicates only noise, and

H1 indicates the IOO signal’s presence. Hence, the received signal can be expressed

as

H0 :z(k) = wz(k) (4.17)

H1 :z(k) = Sx(k) + wz(k), (4.18)

where z(k) represents the received signal and wz(k) represents Gaussian noise with

zero mean and covariance σ2. Whereas Sx(k) is the transmitted signal and k denotes

the sensing time index. Spectrum sensing techniques like energy detection matched

filtering and cyclo-stationary sensing can detect the IOO in the radio environment.

Among many spectrum sensing techniques, energy detection requires less-computation

time, is lower cost, has minimum power, and does not require any prior information

about the IOO signal. These metrics have driven KA-PRS to select the energy de-

tection sensing technique. Let Pfa be the probability of false alarm, and Pd is the

probability of detection, then

Pfa =p (H0 | H1) (4.19)

Pd =p (H1 | H1) (4.20)

A/D
K-point

FFT

Average over

N samples
Detector

Threshold level(     )

Sensing

decision

Figure 4.10: Steps for energy detection based Spectrum Sensing

The necessary steps in energy detection are shown in Fig. 4.10. In the Energy

detection technique, the received samples’ energy calculates and compared with a
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Table 4.2: Parameters of Illuminators of opportunity

IOO Fc B ∆ρ

FM 94.4 MHz 50 KHz 3 Km

DAB 219.4 MHz 220 KHz 0.682 Km

DVB-T 505 MHz 6 MHz 25 m

GSM-900 947.5 MHz 81.3 KHz 1.845 Km

WiFi 2.437 GHz 20 MHz 7.5 m

WiMax 2.118 GHz 20 MHz 7.5 m

LTE 2.635 GHz 20 MHz 7.5 m

5G NR(FR1) 6 GHz 50 MHz 1.5 m

predefined threshold level (γz). If the received signal’s energy is more significant than

the threshold, the signal received is considered sufficient signal strength; otherwise,

the only noise is present (Arjoune and Kaabouch 2019).

The energy of the received signal is given as,

ESx =
1

K

K∑
k=1

| z(k) |2 (4.21)

where K denotes the total number of received samples, z(k) is the kth received sample.

Mathematically, {
ESx ≥ γz; IOO signal strength is good
ESx < γz;Only noise is present

(4.22)

Here, γz is the dynamic threshold, and it depends on the frequency band to be scanned

and the radio propagation environment.

4.6.2 Selection of IOO for Passive Radar System

The available IOOs for the passive radars target different applications based on their

coverage area, frequency of operation Fc, bandwidth B, range(R), and range reso-

lution ∆ρ. Table- 4.2 summarizes the different parameters for various IOOs. The

approximate range is considered based on the coverage area of the specific IOO, and

the range resolution can be calculated by (4.6). The bi-static radar range resolution is

the minimum distance required between two targets to resolve them as two separate

targets.
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4.6.3 Spatial diversity to improve the SNR

Spatial diversity uses multiple antennas to improve the quality of the signal received.

Signal Combining techniques for integrating the received signals are selection combin-

ing, equal gain combining, and maximum ratio combining. Here, the maximum ratio

combining technique is adopted to improve the SNR at the passive radar receiver.

The structural representation of maximum ratio combining is shown in Fig. 4.11.

Consider the received signal model as rx = h(Sx) + n, where h is channel impulse

response, Sx is the transmitted signal. Whereas n is the additive white Gaussian noise.

All K signals are scaled according to the weights (wi) and combined to maximize the

output SNR. Here, we assume that the channel impulse responses (hk) are known to

the receiver (Sankar).

R
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n
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Weights

Figure 4.11: Maximum ratio combining for spatial diversity based receiver system
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Let wk = hk and k = 1, . . . , K, the output of the combiner is

Z =
K∑
k=1

w∗
krxk = WHhSx + wHn (4.23)

=
(
|h1|2 + |h2|2 + · · · |hK |2

)
Sx + n (4.24)

=
K∑
k=1

|hk|2 + n (4.25)

The output SNR after combining is

SNRout =
K∑
k=1

E
{
|Sx|2

}
|hk|2

σ2
x

(4.26)

where σ2
x is the variance of the noise. Finally

SNRout =
K∑
k=1

SNRk (4.27)

Maximum ratio combining results in weighted average of received signals. The SNRout

is sum of the individual SNRs of received signals.

4.7 Discussion on improving received signal strength

KA-PRS adopts the energy detection method for the spectrum sensing step because

of its inherent advantages like bandwidth, prior information about the IOO, computa-

tional load, the time required for sensing, the cost for implementation, and the power

consumption.

The power spectral density plot for the energy detection-based spectrum sensing

is shown in Fig. 4.12. For the simulation purpose, we have generated five IOOs with

frequencies of 100 MHz, 200 MHz, 300 MHz, 400 MHz, and 500 MHz with user-defined

amplitudes. The IOOs are made to pass through the Additive White Gaussian Noise

(AWGN) channel. The power spectral density is calculated by choosing the Nyquist

sampling frequency for each signal. The plot highlights the presence of the IOO signal

at 100 MHz.

For the simulation, we have considered binary phase-shift keying modulated wave-

form for an AWGN channel. The SNR varies from -16 dB to -4 dB, and the signal

passes through the AWGN channel. The threshold for detection (γz) is adaptive con-

sidering the number of samples, noise variance, and the probability of false alarm
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Figure 4.12: Power spectral density in dB/Hz vs frequency in MHz

(Pfa). The simulations are quantified for a hundred Monte Carlo runs. The proba-

bility of detection (Pd) versus SNR ratio is depicted in Fig. 4.13. It is evident from

the results that, for a given Pfa, the probability of detection increases with an SNR

increase. Hence, it can be inferred that by choosing an appropriate IOO which gives

good signal strength, one can attain better detection. The selection step chooses the

appropriate IOO based on the application.

In Fig. 4.14, the importance of high SNR for the given propagation environment is

presented. From the plot, we can infer that with the increase in SNR, the probability

of false alarm decreases, considering all other parameters as constant. So, there is

a requirement for improving the SNR at the passive radar receiver. The KA-PRS

maximizes the SNR using the appropriate signal combining technique.

As explained in the previous section, the receiver knows all the IOOs in the surveil-

lance area. It has features about the radio environment like clutter, noise, and jam-

ming. The range and the range resolution are the vital parameters for selecting

a particular IOO. Further, if the surveillance environment has clutter and jammer,

then the digital waveforms like DAB and DVB-T is chosen by considering the range

as the secondary criteria.

The IOO selection by the KA-PRS is as follows:
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Figure 4.13: Probability of detection vs signal to noise ratio in energy detection

• Depending on the approximate range of the target, the system selects the IOO

signal. For example, to detect a huge target ( aircraft, ship) at a distance up

to 100 Km, the system selects FM waveform. Whereas, for small targets (car,

truck, drone) at a lesser distance, the system selects a DVB-T waveform.

• For multi-target cases, the passive receiver chooses a waveform with good range

resolution. From Table- 4.2, we can infer that higher bandwidth signals produce

improved range resolution. Depending on the range at which the targets are

present, the receiver chooses a waveform that gives better range resolution for

long-range targets.

• If the target range is vast, then the IOO with global coverage will be used

(GNSS). For maritime and other imaging, short-range applications DVB-T

waveform gives better detection performance. Whereas for indoor applications,

WiFi signals are of choice.

• If the propagation environment is noisy or barrage jammer is present, the passive

receiver will choose digital waveforms like DAB and DVB-T instead of FM

signal.
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Figure 4.14: Probability of false alarm vs signal to noise ratio in energy detection

• In Table- 4.2, the frequency, bandwidth, and range resolution for the upcoming

5G NR waveform are also provided. For a very high range resolution application,

the receiver system can opt for a 5G NR waveform.

Concluding, the KA-PRS adopts an IOO based on the type of the application,

range of the targets, number of targets to be detected, range resolution, and the

propagation environment.

For simulation, K passive receiver antennas and one IOO (transmit antenna) is

considered. The channel is assumed to be Rayleigh fading, and each receive antenna

has independent channel noise characteristics. The IOO is assumed to be transmit-

ting binary phase-shift keying modulated waveform. The Gaussian noise is added

and assumed to have zero mean and variance zero dB in a particular channel. For

simplicity, the weights in the maximum ratio combiner are equal to unity. The output

SNR versus antenna elements number are plotted as shown in Fig. 4.13. The number

of antenna elements is varied from 1 to 15. From Fig. 4.15, we can infer that the

overall SNRout increases as the number of antenna elements in the maximum ratio

combiner increases.

The simulation study carried out for KA-PRS in this work highlights the advantage

of choosing the favorable IOO based on the range and range resolution for the passive
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Figure 4.15: Signal to noise ratio improvement using maximum ratio Combining

radar receiver system. The sense (step-1) and select (step-2) steps help the receiver

choose the appropriate IOO based on the application. Further, in the maximize

step (step-3), the received signal’s output SNR can be improved by applying the

maximum ratio combining technique, which is illustrated by the simulation. Overall,

by combining the sense (step-1), select (step-2), and maximize (step-3) steps in a

structured manner, improved detection performance can be accomplished in KA-PRS.

As a future work incorporating frequency diversity at the receiver helps to combat

deception jamming.

4.8 Conclusion

This chapter proposed a feasibility study of the 5G NR waveform as an IOO for passive

radar. Further, this chapter also proposed a conceptual framework using KA-PRS to

improve the received signal strength at the passive radar. In addition, there is a need

to understand the losses incurred by several IOOs, when they pass through various

atmospheric conditions. Therefore, a comprehensive study of atmospheric losses has

been carried out in Chapter 5. Further, it is necessary to measure penetration losses in

an indoor environment. Hence, experimental analysis has been performed to measure

the penetration losses using a real radar system and is presented in Chapter 5.
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Chapter 5

Impact of various losses on
Illuminators of Opportunity

5.1 Preamble

Passive radar offers significant advantages in detecting stealthy targets, as well as

other advantages such as covertness and efficient spectrum utilization. Significant

advantages of the passive radar in the detection and tracking of targets have been

demonstrated in recent literature. However, the received signal power depends on var-

ious losses (atmospheric losses and receiver signal processing losses) incurred during

the transmission and reception of the RF waveform. This work proposes a comprehen-

sive analytical study of various losses for the IOOs commonly adopted by the passive

bistatic radar. The different IOOs considered in this investigation are FM waveform,

DVB waveform, Long Term Evolution Waveform and 5G NR waveform, etc. The

atmospheric losses considered in this work are path loss, rain loss, gas loss, fog loss,

foliage loss, etc. From the simulation results, it is evident that the high frequency

5G NR FR2 waveform (26GHz to 50GHz) suffers significantly higher losses compared

to other IOOs even though it provides improved range and velocity resolution. On

the other hand, the FM waveform suffers from insignificant losses compared to other

IOOs in spite of having poor range and velocity resolution. Furthermore, the results

obtained in this contribution can be a useful reference for passive bistatic radar as

the analysis is comprehensive that includes all IOOs along with the newly proposed

5G NR waveform. Additionally, an experimental study has been carried out using the

Texas Instrument AFE7950 radar sensor for the measurement of penetration losses

for common building materials.
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5.2 Passive Radar Scenario and Propagation Envi-
ronment

FOG and SNOW

GAS and HEAT

LOW RAIN

HEAVY RAIN

Passive

Radar

Ground Moving

Target

Wifi

FM

DVB-T

GNSS

Target

Figure 5.1: Passive multistatic radar scenario

Fig. 5.1 shows a passive radar scenario, where different IOOs are considered for

detecting the targets in the surveillance area. Here a single multi-band passive radar

is shown for the reception of the waveforms and detection of targets. There may be

more than one passive radar site in real-time. The waveform from an IOO transmitter

hits the target, and a copy of the signal scattered from the target will be received at

the passive radar. The signal is further processed based on the frequency of operation

for target detection. Different impairments like rain, fog, gas, and foliage may affect

the wave propagation at specific frequencies is shown.

For the scenario shown in Fig. 5.1, we are considering the transmitter-target-

passive radar receiver as a passive bistatic radar system. Also, for analysis, we presume
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that the electromagnetic signal from IOO travels from the transmitter of opportunity

to the target and the target to the receiver. Along the path of traversal, it follows

Frii’s free space wave propagation model (Haslett 2008).

This work aims to investigate the effect of path loss on different IOOs, considering

the frequency and power density of the corresponding IOO. The rain loss suffered by

individual IOOs shall be computed by taking rain rate as the key parameter. Further,

the effect of fog and gases in the atmosphere on the propagation and reception of

different IOOs will be analyzed. Moreover, the diffraction loss using an appropriate

mathematical model for different IOOs will be analyzed. In addition, considering

the atmospheric losses along with the signal processing losses, the total losses can be

computed, which helps the passive radar to have an estimate of the total losses that

will be incurred during its transit from the transmitter to the receiver. Finally, the

signal-to-noise ratio for individual IOOs are calculated and plotted using the bistatic

passive radar equation.

5.3 Assumptions and Mathematical Modelling for Pas-
sive Bistatic Radar and Losses

5.3.1 Passive Bistatic Radar Geometry

Fig. 5.2 shows the basic structure of the bistatic arrangement of passive receiver

system. The transmitter (Tx), which is an IOO and receiver (Rx), which is a passive

radar receiver system are situated at xTx and xRx correspondingly. The distance of

separation between the IOO and receiver is given by ρx =| xTx−xRx |. The object to

be detected (target) is located at xt. The distance of separation between transmitter

and target is considered as ρtx =| xTx − xt |. Furthermore, the distance between

target and passive receiver is ρrx =| xt − xRx |. The angle formed at the target by

lines joining the transmitter and receiver denoted by βx is given as,

βx = sin−1

(
ρx cos θrx

ρt

)
(5.1)

where θrx is the angle subtended at the receiver with respect to the base line. The

transmitter (IOO) is assumed to transmit the physical waveform at center frequency

(fc), and bandwidth (Bx) with transmitted power and gain product (PtxGtx) as indi-

cated in the Table 5.1. The waveform reflected off the target is utilized to find the
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detections of the target. While analysing the atmospheric effects, and other losses all

the commonly existing IOO waveforms and the newly proposed 5G NR waveform are

considered. Majority of the losses depends on center frequency and, bandwidth of

operation. Furthermore, the atmospheric losses due to rain, fog, gas, cloud, refraction

from earth, and other causes is studied for passive bistatic radar system (Lingadevaru

et al. 2021, Griffiths and Baker 2017b).

IOO

Target

Passive
radar

Signal Processing losses

Atmospheric losses

T
o

tal lo
sses

Figure 5.2: Passive bistatic radar consisting of the IOO transmitter (Tx) situated at
XTx, Passive Radar Receiver (Rx) situated at XRx and the target located at X t.

The Signal to Noise Ratio (Griffiths and Baker 2017b) for the bistatic passive

radar is given by (
S

N

)
=

[
PtxGtxGrxλ

2
xσF

2
txF

2
rx

(4π)3 kTrBn (ρ2txρ
2
rx)L

]
, (5.2)

where Ptx is the transmitted power, Gtx is the gain of the transmitting antenna (IOO),

Grx is gain of the passive radar receiver antenna, λx indicates wavelength of the IOO

waveform, σ is radar cross section of the object to be detected, Ftx is the propagation

factor from IOO to the target, Frx propagation factor from the target to passive radar

receiver, k is Boltzmann’s constant, Tr is the noise temperature of passive receiver,

bandwidth Bn indicates the passive receiver noise bandwidth,
(
S
N

)
is the signal to
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noise ratio, L indicates the sum of all the losses incurred by passive receiver system.

Here, (ρtxρrx)max is bistatic maximum range product (Kuschel et al. 2019b).

The range resolution, velocity resolution and other bistatic radar parameters can

be defined and calculated by the equations given in section 4.3.

5.3.2 Illuminators of Opportunity

The IOOs for analyzing the effect of atmospheric losses on the radar-specific parame-

ters are as shown in Table 5.1 (Salah et al. 2013, 2014, Henry et al. 2020). The center

frequency (fc), bandwidth (Bx) the transmitted power and gain (PtxGtx) of the var-

ious IOOs under consideration for analysis are as mentioned. While calculating the

various losses, we have considered this Equivalent Isotropic Radiated Power (EIRP)

(PtxGtx) as reference. For calculating the path loss, the paths from the transmitter

(IOO) to the target and the target to the passive receiver are considered, and both

the paths are assumed to have atmospheric losses and are affected by other external

factors. The aim is to compare the losses incurred by the individual IOOs.

The 5G NR waveform is specified in two frequency ranges: the 6 GHz band,

which is termed FR1, and the higher millimeter wave band, which is named FR2,

which ranges from 24.25GHz (FR2-Lower) to 52.6GHz (FR2-Upper). The operative

bandwidth varies from 20MHz to 100MHz for the 5G NR FR1 waveform, and the

spacing between the subcarriers is nearly 15KHz to 30KHz. Whereas bandwidth for

the 5G NR FR2 waveform ranges from 100MHz to 400MHz, and the spacing between

the sub-carriers is 120KHz. In some cases, sub-carrier spacing of 60 kHz is used both

in FR1 and FR2 waveforms (ShareTechNote).

5.3.3 Various Losses incurred by an IOO

Fig. 5.1 shows the pictorial representation of propagation scenario for an IOO utilized

by the passive bistatic radar under various losses incurred.

A Path Loss (Lp)

The attenuation of the IOO waveform along it’s traversal path towards the target and

then passive receiver is known as path loss which uses a point-to-point connection.

The mathematical model to calculate path loss (in dB) is given by (Grecu et al. 2015),
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Table 5.1: Key specifications for the IOOs

Waveform (IOO) fc in GHz Bx in MHz PtxGtx

FM 0.0944 0.050 250 kW

DAB 0.2194 0.220 10 kW

DVB-T 0.505 6.0 8 kW

GSM-900 0.9475 0.0813 100 W

WiFi 2.437 20 100 mW

WiMax 2.118 20 20 W

LTE 2.635 20 69 W

5G NR(FR1) 6.0 50 20 W

5G NR(FR2) 24.25 - 52.6 100 20 W

Lp = 20 log
4πd

λx
(5.3)

where d is the distance of separation from the IOO transmitter and passive radar

receiver, and λx is the wavelength of the transmitted waveform. The above equation

(6) can be rewritten in terms of frequency of the transmitted waveform as,

Lp = 32.4 + 20 log fc + 20 log d (5.4)

B Rain Loss (Lr)

The wireless propagation is affected by the rain and depends on the rain rate in the

given area. The basic rain attenuation ηR (dB/km) can be computed from the rain

rate R (mm/h) by utilizing the power law relationship:

ηR = kRαr (5.5)

The values of k and αr are functions of frequency in the range of 1 to 1000 GHz and

can be calculated by using the following expressions:

log10 k =
4∑
j=1

(
aj exp

[
−
(
log10(fc)− bj

cj

)2
])

+mk log10(fc) + ck (5.6)

αr =
5∑
j=1

(
aj exp

[
−
(
log10(fc)− bj

cj

)2
])

+mα log10(fc) + ca (5.7)
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where, the values of k, αr, mk, mα, bj, and cj are specified for horizontal and vertical

polarizations of the received EM wave and theses values can be obtained from the

rain tables of ITU-R specifications (Ononiwu et al. 2015).

C Gas Loss (Lg)

For the frequencies at gigahertz range the uncondensed water vapour and oxygen

act as highly absorptive. Besides, the gas loss attenuation is mainly because of dry

air and water vapour in the atmosphere which mainly attenuates the microwave and

mmWave frequencies. The specific gaseous attenuation is expressed as,

γ = γox + γwa (5.8)

= 0.1820fN ′′(f) dB/km (5.9)

= 0.1820f(N ′′
oxygen(f) +N ′′

watervapour(f)) dB/km (5.10)

where, γox and γwa are attenuations because of dry air (oxygen) and water vapour.

Whereas, N ′′(f) is an imaginary component of frequency dependent complex refractiv-

ity for oxygen and water vapour. Further, the values of N ′′
oxygen(f) and N ′′

watervapour(f)

are as given below:

N ′′
Oxygen (fc) =

∑
j( Oxygen )

SjFj +N ′′
D(fc)

N ′′
Water Vapour (fc) =

∑
j( Water Vapour )

SjFj
(5.11)

where, Sj is the strength of the jth oxygen or water vapour line, Fj is the shape

factor of oxygen or water vapour line which are formulated under gas loss of ITU-R

specifications (Al-Ansari et al. 2001) and N ′′
D(fc) is the dry continuum because of

pressure-induced nitrogen absorption. The shape factor value for a given pressure,

humidity and temperature in atmosphere is calculated as given in ITU-R specifications

(Al-Ansari et al. 2001). The value of the shape factor for oxygen and water vapour

can be calculated by,

Sj = a1 × 10−7pθ3 exp [a2(1− θ)] for oxygen

= b1 × 10−1eθ3.5 exp [b2(1− θ)] for water vapour
(5.12)

where, p is the dry air pressure in hectopascal (hPa), e is the partial pressure of

the water vapour in hPa, θ = 300/T , and T is the temperature in K.
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D Fog Loss (Lf)

Fog is made up of tiny water droplets floating in the air near the earth’s surface.

These droplets act on the high frequency signals to scatter them and induce losses.

The Rayleigh estimate is accurate for frequencies below 200GHz for clouds or fog

composed solely of small scale droplets, usually their size is lower than 0.01cm, and

the attenuation can be expressed in terms of total water content per unit volume

(Nagaraj 2018). As a result, a cloud’s or fog’s particular attenuation can be written

as:

γfc = KfcM (5.13)

where γfc is the specific attenuation expressed in dB/Km inside the cloud, Kfc is the

specific attenuation coefficient in (dB/m)(g/m3), and M is the liquid water density in

the cloud in g/m3. Fog attenuation may be important at frequencies on the order of

100GHz and higher. For moderate fog (visibility of the range of 300m), M is generally

about 0.05 g/m3, whereas thick fog (visibility of the range of 50 m) has a value of M

= 0.5 g/m3.

For frequencies up to 1000GHz, a statistical formula grounded on Rayleigh scat-

tering that adopts a double-Debye model for the complex dielectric permitivity ϵ(f)

of water shall be utilized to measure the value of Kfc given by:

Kfc =
0.819fc

εn (1 + η2)
(5.14)

where fc is the frequency in GHz and η depends on complex permitivity of the water.

E Foliage Loss (Lfl)

Attenuation due to trees and other vegetation is one of the most significant obstacles

in wireless propagation. Randomly dispersed leaves, tree segments, tree trunks, and

twigs make up the various elements of the foliage. Because of multipath propaga-

tion, diffraction, and reflection, the waveforms traversing the foliage environments

like plantations and forests diminish their signal strength. The key factors influencing

the actual attenuation by foliage are the depth of foliage, the existence of wind, and

humidity (Meng and Lee 2010). The smaller wavelength (high frequency) waveforms

are more prone to blockage due to foliage obstruction.
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Weissberger modified exponential decay (WMED) model can be used to calculate

the foliage loss. Mathematically WMED model can be written as follows (Zhang et al.

2019):

Lfl(s) =

{
0.45 f 0.284

c df (s), if 0 < df (s) ⩽ 14

1.33 f 0.284
c d0.588f (s), if 14 < df (s) ⩽ 400

(5.15)

where fc is the center frequency of the IOO, and df (s) is the foliage depth in

meters along the line of sight path for the passive radar receiver location s. The

model identifies locations with df (s) > 14 separately from those with lower foliage

depth.

F Diffraction Loss (LDiff)

The field strength in the shadowed region can be computed by the vector combina-

tion of various signals arriving from alternate paths. The knife edge diffraction (KED)

model is commonly applied to calculate diffraction loss, which presumes that a single

sharp edge separates the IOO transmitter and the passive radar receiver. The propa-

gation loss because of the diffraction in the knife edge model is dependent on Fresnel

diffraction Parameter. The diffraction parameter indicates the depth at which the

passive receiver is within the shadowed region. The KED model is appropriate when-

ever the clutter is flat and thin, like a knife. Because of the ease of calculation, the

KED model can be adopted extensively in most clutter scenarios. The KED model

computes the diffraction loss using the sum of all the diffracted waves from different

path lengths using the Fresnel integral. Then, the field strength generated by the

total diffracted waves is computed using,

F (vx) =

∣∣∣∣1 + j

2

∫ ∞

vx

e−j
π
2
t2dt

∣∣∣∣ (5.16)

Here the electric field induced by diffraction is represented by F (vx). Further, the

Fresnel-Kirchhoff diffraction parameter is represented by vx and is expressed as

vx = 2

√
∆

λx
(5.17)

where the wavelength is denoted by λx, and the difference in the lengths between

a direct line-of-sight path and a diffracted wave path is indicated by ∆. In case of
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absence of the clutter vx is −∞ and F (vx) is 1.

For simplifying the calculation, an approximated model for the diffraction loss is

given in (ITU 2018), and can be expressed as,

LDiff = 6.9 + 20 log
(√

(vx − 0.1)2 + 1 + vx − 0.1
)

(5.18)

LDiff indicates the loss because of diffraction.

G Signal Processing Losses (Lsp)

The significant signal processing effects that put up to the system losses are beam

shape loss, straddle loss, and automatic detection constant false alarm rate (CFAR)

loss (Richards et al. 2010). The radar range equation is formulated using the peak

antenna gain by assuming that the target is in the middle of the beam pattern, which

results in beam shape loss. The accurate value of beam shape loss is dependent on the

particular shape of the beam and the scan time, but the average beam shape loss for

a typical case is about 1.6dB. Further, a target is not always in the center of a range

bin or a Doppler filler, which causes Straddle loss. Further, it is possible that the

received pulse/spectrum is halfway between two range bins and halfway between two

Doppler fillers, lowering the target signal strength in one bin. Oversampling in range

and Doppler can minimise straddle loss, and the estimated average loss is roughly

1dB (Cann 2002).

L = La + Lsp (5.19)

= Lp + Lr + Lg + Lf + Lfl + LDiff + Lsp (5.20)

Most existing radars are intended to detect targets in the presence of receiver noise,

intentional interference (noise jamming), electromagnetic interference, and clutter.

Besides, a CFAR processor might be used to evaluate the presence of a target due

to the unpredictability of the interfering signals. Due to the external factors and

the interference, the probability of false alarm becomes high, which lowers the target

detection probability. To overcome this, SNR is increased to optimize the probability

of detection, which is considered CFAR loss. The typical value of the CFAR loss is

of the order of 1to2 dB. Further, the fluctuation loss is considered to be the result
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of swerling models of radar cross-section of the target. Usually, the fluctuation loss

(for a high probability of detection of 0.99) would be approximately 8dB for Swerling

1 targets with the number of integrated pulses equal to 50 (Swerling 1997). Hence,

the total signal processing loss can be considered as 10dB to 12.6dB approximately.

Further, the overall system loss (L) in (5.19) is considered as the sum of all the

atmospheric losses (La), and the signal processing losses (Lsp).

5.4 Results and Discussions

In this work, we simulate and study the effects of atmospheric losses, foliage loss and

diffraction loss on receiving an IOO signal by a passive bistatic radar. Various wireless

propagation losses like path loss, rain loss, fog loss, diffraction loss, foliage loss, gas

loss, and signal processing losses are calculated and analysed for specific frequencies

corresponding to the IOOs. The propagation path is considered as the bi-static range.

The parameters for the IOO waveform propagation are frequency of operation (center

frequency for specific IOO), the range (1 Km bi-static range for comparison work),

rain rate (0.25 − −50mm/h), liquid water density (0.05 − −0.5 g/m3), water vapor

density (7−−21.9g/m3), foliage depth (10−−50 m), path difference (100− 1000m),

dry air pressure (at 101300 Pa), temperature(at 15oC) and horizontal polarization of

the EM wave. At the receiver end, the total signal processing loss is 12.6dB for SNR

analysis. For computing the total losses the critical values of the above parameters

are given in Table 5.2.

5.4.1 Radar Parameter Analysis for IOOs

The range resolution and velocity resolutions’ are the key parameters that are calcu-

lated for all the IOOs using respective equations and are tabulated in Table 5.3. The

FM waveform can be used to detect the targets at longer range but for the detection of

multiple targets it gives inaccurate results, since the range resolution for FM signal is

nearly 3Km. Most commonly used waveform for detecting and tracking the multiple

targets is DVB-T waveform is adopted that provides good range resolution of 30m.

For the detection and tracking of multiple targets, the passive radar can adopt the

waveform, which gives a better range resolution to detect the closely moving targets.
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Table 5.2: Parameters for Loss Analysis and SNR Calculation

Parameter Value

Rain Rate 20 mm/h

Liquid Water Density 0.2 g/m3

Water vapor density 15 g/m3

Foliage depth 10 m

Path Difference 100 m

Dry air pressure 101300 Pa

Ft = Fr -3.5 dB

Receiver Noise Temperature 288.15 k

Receiver Gain 30 dB

Bistatic RCS 1 m2

Bistatic Angle 24.43o

Receiver Noise Bandwidth 60 MHz

Further, the waveform with a lesser velocity resolution detects and tracks the slow-

moving targets. The 5G NR FR2 waveform gives a good range resolution of 1.5m

and a velocity resolution of 0.055m/sec, making it a suitable candidate for detecting

slow-moving and closely-spaced targets.

5.4.2 Path loss analysis

The free space path losses (in dB) are calculated as a function of propagation distance

and frequency. The path loss corresponding to various IOOs is presented in Fig. 5.3.

For comparing the path loss for all the nine IOOs we have considered the bistatic

range of 1Km while calculating the path loss analysis, total loss computation and

SNR analysis. From the plot, we can infer that path loss increases as the frequency

of IOO increases. For a given range the 5G NR FR2 waveform suffers more path loss

compared to other IOOs.

For further investigating the path loss specific to the IOOs based on the maxi-

mum range of individual IOO is applied. For a passive bistatic radar using an FM

signal as an IOO, the path loss is approximately 107.5dB for a maximum range of
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Table 5.3: Range and Velocity Resolution for IOOs

IOO(Waveform) Bandwidth ∆ρ in m ∆v in m/sec

FM 50 KHz 2990 3.5

DAB 220 KHz 680 1.5

DVB-T 6 MHz 30 0.6

GSM-900 81.3 KHz 1850 0.35

WiFi 20 MHz 7.5 0.2

WiMax 20 MHz 7.5 0.18

LTE 20 MHz 7.5 0.13

5G NR(FR1) 50 MHz 3 0.11

5G NR(FR2) 100 MHz 1.5 0.055
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Figure 5.3: Path Loss in dB for various illuminators of opportunity

50Km. The DAB and DVB signals suffer a path loss of 116.66 dB for the maximum

range of 70Km and 123.06dB for a maximum range of 60Km, respectively. Since the

WiFi signals operate at shorter distances for indoor and outdoor applications, their
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path loss is nearly 80.18dB at a 100m bistatic range. The WiMax signal for a non-

line of sight condition pertains to a loss of 118.96dB at the bistatic range of 10Km.

Moreover, the LTE signal comparatively operating at high frequency suffers a path

loss of 111dB for a range of 3.2Km. For the upcoming 5G NR waveforms for FR1

and FR2 frequency specifications, the path loss is approximately 108dB and 120.4dB,

respectively, for 1Km maximum range. Since the transmitted EIRP for 5G NR wave-

form is small, this gives substantial path losses and results in smaller received signal

strength. Appropriate signal processing techniques are to be incorporated in the 5G

NR waveform to improve the signal strength at the receiver. Since the miniaturized

radars and the 5G waveform are upcoming technology, this leads to bistatic config-

urations based vehicle localization and vehicle collision avoidance applications in the

automotive industry. In contrast, the FM and DVB signals are commonly used for

long-range applications.

5.4.3 Rain loss

Free space path loss only represents a portion of signal attenuation; however, the IOO

signals interact with airborne ions and lose their energy in the process of propagation.

Besides, different conditions, such as pressure, temperature, and water density, affect

the propagation. Rain, particularly when the operating frequency is above 5 GHz, can

be a major hurdle for the passive radar systems. According to the ITU-R specifications

(ITU-R P.838-3, 2005), the rain attenuation mainly depends on rain rate. The rain

rate will vary from less than 0.25mm/h for light rain to more than 50mm/h for heavy

rain. Further, Rain loss is also a function of EM wave polarization due to the form

of the rain drop and its relative size compared to the RF signal wavelength.

Fig. 5.4 depicts the rain loss for various IOOs for different values of rain rate.

We assumed that the tilt angle and polarization as zero and horizontal, respectively.

Further, it is also assumed that the waveform propagates parallel to the ground, with

an elevation angle of 00.

Further, from Fig. 5.4 we can infer that the low-frequency IOOs like FM, DAB,

DVB-T, and GSM signals are less prone to rain attenuation. As the operating fre-

quency increases beyond 2GHz, the rain attenuation becomes significant compared to

lower frequencies. In addition, the LTE signal and 5G NR FR1 waveform undergo
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Figure 5.4: Rain Loss in dB/Km versus Rain Rate in dB/Km plotted for various
frequencies corresponding illuminators of opportunity

rain loss of 0.0223dB/km and 0.4487dB/km, respectively, for a higher rain rate of

45mm/h. The rain loss is very high at the operating frequencies from 24.25GHz to

52.6GHz (5G NR FR2) compared to all other low frequency IOOs. Further, we can

infer that the 5G NR FR2 waveform suffers from higher rain attenuation. Therefore,

for detecting targets in heavy rainfall conditions, the rain loss has to be taken in

to account while computing the received signal power at the passive bistatic radar

receiver using various IOOs.

5.4.4 Fog loss

The fog is formed with the water droplets whose size is much smaller compared to rain

droplets. The fog loss is calculated using the mathematical model defined in ITU-R

P.840-3 specification. The fog loss mainly depends on the liquid water density, whose

values range from 0.05 − −0.5 g/m3. Lower values of liquid water density indicates

less fog and similarly higher values of liquid water density corresponds to heavy fog.

Fig. 5.5, presents liquid water density in g/m3 versus fog loss in dB/Km at various

frequencies for different IOOs operating at the center frequencies as indicated in the
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Figure 5.5: Fog Loss in dB/Km versus Liquid Water Density in g/m3 for various
frequencies

Table 1. The liquid water density is swept from 0.05 g/m3 to 0.5 g/m3 at a temperature

of 15oC. The major observation from the plot is that, the fog loss is negligible for all

the frequencies below 10 GHz. Hence, most of the IOOs will not suffer from fog loss

except the proposed 5G NR waveform operating from 24.25 GHz to 52.6 GHz. The

highest fog loss for 5G NR FR2 waveform at the center frequency of 52.6 GHz for the

liquid water density of 0.5 g/m3 is 0.755 dB/Km.

5.4.5 Gas loss

The atmosphere contains many gases that affect the IOO propagation. The loss due

the gases present in the atmosphere is considered as gas loss. The gas loss depends

on the dry air pressure, oxygen and, the water vapour density at given temperature

as per ITU-R P.676-11 specifications. Fig. 5.6 shows water vapour density in g/m3

versus gas loss in dB/Km for various IOOs. The water vapour density is varied from

7 g/m3 to 20.5 g/m3 to investigate the effect of gas loss at different frequencies.

From Fig. 5.6, we can infer that for the frequencies below 2 GHz, the gas loss

is approximately zero. Further, the losses due to atmospheric gases is small for the
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Figure 5.6: Gas Loss in dB/Km versus Water vapour Density in g/m3 for various
frequencies

frequencies up to 10 GHz. So, for all the IOOs whose center frequency is less that 10

GHz (FM, DAB, DVB-T etc) the effect of gas loss is insignificant. But for 5G NR

FR2 specification at 52.6 GHz center frequency, the gas loss is 1.4071 dB/Km for the

water vapour density 20.5 g/m3. On the other hand for the LTE signal, the highest

gas loss for the water vapour density of 20.5 g/m3, the gas loss is 0.0086 dB/Km

which is negligible.

5.4.6 Diffraction loss

The diffraction loss is a critical factor in wireless propagation in the urban environ-

ment. In the case of multipath, in an urban environment, the diffraction loss is defined

as the increase in path loss induced by building impediments. Diffraction Loss de-

pends on the diffraction parameter (v), path difference (∆), and the frequency of the

IOO. The diffraction loss is calculated and plotted for three different values of path

difference for all nine IOOs, as shown in Fig. 5.7. For the 5G NR waveform at FR1

frequency, the loss is -51.98 dB for a path difference of 100 m, and the diffraction loss

is about -61.4 dB for the FR2 specified mmWave waveform for a path difference of
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Figure 5.7: Diffraction Loss in dB versus various frequencies of the illuminator of
opportunity for different path difference values

5.4.7 Foliage loss

The foliage loss is due to vegetation present in the wireless propagation environment.

The foliage loss is plotted against the foliage depth and is shown in Fig. 5.8. The

foliage depth is varied from 10 m to 50 m, and corresponding foliage loss is computed

for all IOOs. From Fig. 5.8, we can infer that, as the foliage depth increases, the loss

incurred due to foliage increases. Further, it is evident from the observations that the

high-frequency IOOs suffer high foliage loss compared to low-frequency IOOs. The

5G NR FR1 and FR2 IOO waveforms incur a foliage loss of 28.34 dB and 31.1 dB,

respectively, for a given foliage depth of 10 m. Furthermore, the results show that, as

the foliage depth and chosen IOO frequency increase, the foliage loss increases. For

a foliage depth of 400 m (highest theoretically considered value), the foliage loss for

the 5G NR FR2 waveform is approximately 41 dB.
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Figure 5.8: Foliage Loss in dB versus foliage depth in meter for different IOOs

5.4.8 Total losses and SNR analysis

Table 5.4 summarizes the atmospheric, diffraction, and foliage losses for various IOOs

at their respective operating frequencies and radar-specific parameters, as mentioned

in Table 5.1. The total loss is computed using (5.19). Table 5.4 highlights that the

FM signal is affected by the path loss, diffraction loss, and foliage loss but remains

unaffected by rain, fog, and gas losses. As inferred earlier, the FM signal may be

utilized to detect long-range targets even at variable atmospheric conditions. Further,

the total losses incurred by the DAB and DVB-T are more than that of the FM signal,

but they both offer better range and velocity resolutions. In addition, the WiFi and

WiMax signals undergo slight rain loss and gas loss along with other system losses.

However, both of the signals are useful for short-range target detection. On the other

hand the LTE waveform and 5G NR FR1 suffer from all the losses except fog loss

but provides an excellent range and velocity resolutions. Finally, the 5G NR FR2

waveform undergoes all the losses and slight fog loss, but it offers the best range

resolution of 2 m and a velocity resolution of 0.055 m/sec.

The total losses for all IOOs is calculated and plotted in Fig. 5.9 for high frequency

IOOs like LTE and 5G-NR signals and from the Table 4 it is evident that other IOOs

incur comparatively lesser total losses. Further, the total losses incurred increases with

93



Table 5.4: Comparison of atmospheric losses for various Illuminators of Opportunity

IOO Lp Lr Lg Lf LDiff Lfl

FM 72.0 0 0 0 -30.9 22.9

DAB 79.2 0 0 0 -34.6 24.0

DVB-T 86.5 0 0 0 -38.2 25.1

GSM-900 91.9 0 0 0 -40.9 25.9

WiMax 98.9 0.24 0.3518 0 -45.0 26.9

WiFi 100.1 3.59E-04 3.64E-04 0 -44.4 27.1

LTE 100.8 0.2474 0.2214 0 -45.4 27.2

5G(FR1) 108.0 0.1493 0.0194 0 -48.9 28.3

5G(FR2) 120.7 6.7474 0.2016 0.0344 -58.4 31.1

an increase in the range for a given IOO. At very high frequencies of 5G NR FR2

(greater than 20 GHz), rain loss, gas loss, foliage loss, and fog loss are significant.

Therefore, while opting for high-frequency IOOs like LTE and 5G NR waveforms,

cautiousness has to be taken by the passive radar by considering the total system

losses into account as well as desired range and velocity resolution.

For the given passive bistatic radar geometry in Fig. 5.2, the radar parameters

and the atmospheric parameters are given in Table 5.2. The signal-to-noise ratio

versus bistatic range for commonly adopted IOOs and proposed 5G NR waveform is

plotted in Fig. 5.10. The SNR is computed using (5.2) by incorporating the total

losses incurred during propagation. Besides, the respective power transmitted by the

individual IOO is considered as given in Table 5.1.

From Fig. 5.10, we can observe that, the SNR decreases as the bistatic range

increases. For the high-frequency IOOs, the atmospheric losses and the other system

losses are higher, resulting in lesser SNR. While opting for the particular IOO for the

passive radar, the total losses incurred by the waveform, SNR, and the other radar

parameters like range and velocity resolution play a vital role. Hence, whenever the

passive radar need to detect the target at longer range, it must choose for the IOO,

which provides long range and good SNR. Further, if the radar needs to detect and

track multiple targets, then it must adopt the IOO with a good range resolution. The

figures corresponding to the 5G NR waveform with FR2 specifications indicate that it
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Figure 5.9: Total Loss in dB for various ranges (under 15oC temperature, at
pressure 101300 hPa, with rain rate 20 mm/h, with water vapour density 7.5 g/m3,

and at liquid water density 0.1 g/m3

has incurred more losses than the other IOOs, but 5G NR FR2 offers the best range

and velocity resolutions out of all the available IOOs. Hence, by adopting good signal

processing and amplifying techniques, we can improve the SNR at the receiver for

passive bistatic radar.

5.5 Experimental study of building material attenu-
ation

Passive radars are adopted in indoor applications like through the wall human sens-

ing, e-Health monitoring, and Ambient Assisted Living. In most cases, the Wi-Fi

signal is utilized as IOO by the passive radar for indoor applications. In this work,

the study of short-range penetration loss for illuminator frequencies such as 2.4GHz

(Wi-Fi), 2.635GHz (LTE), and 6GHz (5G-NR FR1) using the Texas Instruments(TI)

AFE7900EVM general purpose radar sensor. The penetration loss for common build-
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Figure 5.10: Signal to Noise Ratio v/s Bistatic Range in m for various IOO
waveforms

ing materials such as clear glass, concrete tile, and wood for various IOO waveforms is

measured using TI-AFE7900EVM. This analysis is very useful in selecting the appro-

priate IOO for indoor applications and appropriately designing the passive receiver

system for uninterrupted sensor data processing.

5.5.1 Experimental setup

The experimental setup for the measurement of indoor penetration loss is as shown

in Fig. 5.11. The experiment is carried out in the presence of anechoic background

with absorbers. The required waveform at the desired center frequency is generated

and loaded to TI-AFE7950 radar using HSDC-Pro software. The transmitting and

receiving antennas are separated by a distance of 3m, the material under test (Clear

glass, wood, and tile) are placed exactly in the middle of the setup, and absorbers

are used below the material to avoid multipath reception. The double ridged broad

horn antenna with an operating frequency range of 800MHz to 18GHz is used for at
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the transmitter and receiver, which has a gain of 7.27dB to 13.06dB over a frequency

range of 1GHz to 7GHz.

Figure 5.11: Experimental setup for measurement of propagation loss and the
penetration loss

For the measurement, the overall distance between transmitter and receiver is

3.1m, and the material under test is placed exactly at the center. The dimensions

of the materials under test are as given in Table 5.5. Further, the dimension of the

absorbers used in the experimental setup is 60cm x 60cm, and the thickness is 5cm.

Table 5.5: The dimension of the material under test

Material Dimension Thickness

Clear glass 60 cm x 40 cm 0.5 cm

Tile 45 cm x 30 cm 0.8 cm

Wood 50cm x 45 cm 2 cm

The minimum distance distance of separation between transmitter to the materials

is determined based on the far field distance R and the dimension of the horn antenna.

It is calculated using,

R >
2D2

λ
, R ≫ D, R ≫ λ (5.21)
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Further, the penetration loss can be further obtained from the measured line of

sight power without blockage PLOS and the measured blocked received power Pblocked

at the same transmitter and receiver separation.

Penetration Loss(dBm) = PLOS − Pblocked (5.22)

The overall measurement set up using TI-AFE7950 configured as transmitter and

receiver is as shown in Fig. 5.12.

(a)
(b)

(c) (d)

Figure 5.12: (a) Overall measurement set up, (b) View of measurement of
penetration loss, (c) Receiver configured using TI-AFE7950, (d) Transmitter

configured using TI-AFE7950

The main hardware components used for the measurement are the TI-AFE7950

radar sensor, TSW14J56 data capture card, double ridged horn antennas, low noise

amplifier at the receiver side, and the spectrum analyzer. On the receiver side, the

HSDC Pro software gives the power spectrum plot in the host PC connected to the

TI-AFE7950 radar sensor. Further, the details of individual components and the

software used are presented in the following subsection.
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AFE7950EVM radar

The AFE7950 EVM is a frequency modulated continuous wave (FMCW) radar sensor

with high performance that operates in the 76 − 81GHz range as shown in 5.13. It

operates at wider bandwidth with multiple channel transceivers (four transmitters,

six receivers). With RF Frequency range operation up to 7.4GHz (5MHz to 7.4GHz),

AFE7950 enables direct RF sampling in the L, S, C, and X-band frequency ranges. It

mainly contains Digital Up Converters (DUC), Digital to Analog Converter (DAC),

Digital Step Attenuators (DSA), Digital Down Converters (DDC), and Phase Locked

Loop (PLL), and Serializer/Deserializer (SerDes) Data Interface used during different

operations.

Figure 5.13: The top view of the AFE7950 radar sensor

During Transmission (TX), the signal goes under interpolation and digital up-

conversion (DUC) that delivers up to 1200MHz of signal bandwidth for four trans-

mitters or 2400MHz for two transmitters. The output of the DUC’s given to a DAC

(digital to analog converter). The DAC output goes through a variable gain amplifier

called the Digital step attenuator (DSA) and is then transmitted.

The signal is sent through a DSA (Digital Step Attenuator) and then an ADC

(analog to digital converter) at the receiver end. Analog peak power detectors, digital

power detectors, RF overload detectors for device reliability protection, and exter-

nal or internal autonomous automatic gain controllers are present on each receiver

channel. The signal is then processed via Digital Down Converters (DDC), which
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offer adjustable decimation choices and optimize data capacity for four receivers up

to 1200MHz.

TSW14J56EVM data capture card

Data capture card TSW14J56 evaluation module (EVM) collects and analyzes ADC

data samples before sending the necessary test patterns to DAC and also it generates

test patterns.

TSW14J56EVM features an FMC interface that connects to the ADC and DAC

directly. An FPGA captures, deserializes, and formats high-speed serial data when

utilized with an ADC EVM. The data is subsequently written to an external DDR3

memory bank, allowing the TSW14J56 to hold up to 2 gigabytes of 16-bit data sam-

ples. The FPGA receives data from memory and transfers it via a high-speed 32-bit

parallel interface to a host PC to gather data. The FPGA interface is connected to

the host PC and GUI through an integrated high-speed USB 3.0 to parallel converter.

Figure 5.14: The top view of the TSW14J56EVM data capture card

The TSW14J56 generates the desirable test patterns for DAC under test in the

pattern generator mode. These patterns are delivered to the TSW14J56 from the

host PC through the USB port. The data received by the FPGA is stored in the

board’s DDR3 memory module. The data from memory is subsequently read by

the FPGA and sent through the interface connected to a DAC. The board has a

100MHz oscillator for generating the DDR3 reference clock and a 10-MHz oscillator
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for general-purpose usage.

Horn antenna

Two double ridged broad band antenna which can operate from 800MHz to 18GHz are

used at the transmitting and the receiving end respectively. The gain of the antenna

varies from 7.27dB to 13.06 dB for the operating frequency range 1.6GHz to 7GHz.

Low noise amplifier

Mini-Circuits ZX60 is an ultra-wideband low noise amplifier which provides a good

combination of low noise figure, and flat gain over a very wide frequency range. The

amplifier operates on a single 12V power supply and has compact uni body case.

HSDC Pro GUI Application Software

HSDC Pro includes the operational procedure for capturing ADC data and generating

DAC patterns. At the receiver side, ADC captures high-speed serial data and stores

it in a memory bank or directly inside the FPGA. To acquire data on a host PC, the

FPGA reads the data from memory and transmits it to Serial Peripheral Interface

(SPI), and further, an onboard high-speed USB-to-SPI converter bridges the FPGA

SPI interface to the host PC and GUI.

On the transmitter side, HSDC Pro generates the desired test patterns or loads

existing patterns to the DAC. Further, the patterns are sent from the host PC over the

USB interface to the data capture card. The FPGA stores the data received internally

or into board memory. The data is then read by the FPGA and transmitted to a DAC

across the connector.

5.5.2 Results and Discussions

Experimental setup shown in Fig. 5.12 is ultilized for the measurement of short range

penetration loss for clear glass, plywood and tile. The measurement is carried out for

the IOOs (5G NR FR1, LTE and Wi-Fi) which are suitable for indoor radar appli-

cations. Sinusoidal waveform and FMCW waveforms are used for the measurements.

The FMCW waveform with 64 chirps and a chirp duration of 1µsec is used. The

spectrum of the received signal for 5G NR FR1 (6GHz) for direct LOS signal recep-
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tion without material under test is as shown in Fig. 5.15(a) and the spectrum of the

received signal with clear glass as the material under test is as shown Fig. 5.15(b).

(a) (b)

Figure 5.15: (a) Spectrum of the LOS signal plotted using HSDC Pro (b) Spectrum
of the received signal with glass as material

The attenuation due to the material is computed using (5.22) after measuring

the received power without the material and with material at the receiver site. The

measured attenuation for the three materials considered for test are as given in the

Table 5.6. The TI-AFE7950 also provide the in-phase and quadrature phase data

Frequency Waveform Glass Plywood Tile

Wi-Fi (2.4 GHz) Sine 32.2 dBm 30.8 dBm 30.6 dBm

FMCW 32.4 dBm 31.2 dBm 30.9 dBm

LTE (2.635 GHz) Sine 32.5 dBm 30.6 dBm 30.5 dBm

FMCW 32.6 dBm 30.6 dBm 30.5 dBm

5G-NR (6 GHz) Sine 33.8 dBm 32.5 dBm 31.0 dBm

FMCW 34.0 dBm 32.8 dBm 31.4 dBm

Table 5.6: Attenuation for common building materials for three IOOs utilized for
indoor applications

which can also be processed to know the received power spectrum. From the mea-

surement data it is evident that the clear glass suffers from more penetration loss for

all the three considered IOOs (Wi-Fi, LTE, and 5G NR FR1). Further, at higher

frequencies penetration loss is more for short ranges. Also, the measured penetra-

tion losses are matching with the existing measurements carried out in the wireless

propagation environment (Lee et al. 2019).
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This work highlighted the usefulness of the study of various losses the IOOs incur

during their propagation in the surveillance environment. Further, the impact of var-

ious losses on the propagation of nine commonly adopted IOOs, including the 5G NR

waveform (at FR1 and FR2 specifications) for bistatic passive radar applications, was

presented. Here, the atmospheric losses and signal processing losses for various IOOs

were calculated. The results demonstrate that higher frequency IOOs are affected by

significant atmospheric losses than the low-frequency IOOs. However, the 5G NR FR2

waveform is a very useful IOO in providing enhanced range resolution and improved

velocity resolution, which is the desired property of an IOO for passive bistatic radar.

Moreover, it is observed that 5G NR FR2 frequencies are very much affected by rain

loss, fog loss, and gas loss. Further, the total loss for all the IOOs was calculated, and

it was found that the 5G NR waveform (for FR1 and FR2 specifications) suffers more

total losses than other IOOs. Overall, the analytical study aids in opting for the suit-

able IOO for the passive bistatic radar in the presence of various losses. Additionally,

the penetration losses for common indoor materials like clear glass, plywood, and tile

were measured using the TI-AFE7950 radar sensor, which is helpful while adopting

the IOO for indoor applications.

5.6 Conclusion

Chapter 5 focused on various atmospheric losses encountered when an IOO signal is

received by the passive radar receiver. In addition, it also focused on evaluating indoor

penetration losses for indoor localization applications. The final chapter (Chapter 6)

concludes the thesis with conclusion and future research work to be carried out in this

direction.
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Chapter 6

Conclusions and Future Directions

6.1 Conclusion

This thesis dealt with the deception parameter estimation technique using estimation

techniques. The results obtained in this research work accomplished better perfor-

mance when compared with existing approaches. Further, it added significant domain

knowledge in the area of passive radar with the following major contributions.

The first part of the research work presents a deception parameter estimation

algorithm to combat RGPO ECM in a networked radar scenario. The range decep-

tion ECM attack is detected using sequential fusion based approach, and the range

gate deception parameter is estimated for the deceived local track. A track-to-track

association is formulated at the fusion node to detect the deceived tracks using all

the available local tracks. Once the attack is detected, the weight matrix, pseudo-

measurement, and pseudo-measurement covariance at the fusion center are recreated

by utilizing the tracklet framework (using updated state and updated covariance from

the local tracker). Moreover, all the local tracks except deceived tracks are com-

pensated and sequentially fused to create a reference measurement. The deception

parameter of the deceived track is estimated by deploying a recursive least squares

framework with the help of the pseudo-measurement and reference measurement.

Further, the proposed algorithm was analyzed for single and multiple RGPO ECM

scenarios and is validated by using tracker accuracy, fusion accuracy, and estima-

tor accuracy. Besides, the estimated deception parameter is in agreement with the

achievable CRLB. Furthermore, the results are quantified with a Position Root Mean

Square Error (PRMSE), CRLB, innovation test, NEES test, and confidence interval.

105



In addition, the simulation results demonstrate that the proposed estimator efficiency

is below the 5% tail probability of the chi-square distribution. Moreover, it is evident

from the results that the proposed technique is efficient for both single and multiple

RGPO ECM cases.

Further, in the second part of the work, the feasibility of adopting the 5G NR

waveform (both FR1 and FR2 specifications) as a transmitter of opportunity for a

passive bistatic radar was carried out, along with the comprehensive study of various

losses on the IOOs’. The radar-specific parameters like range resolution, velocity

resolution, and signal-to-noise ratio at the receiver site were computed for the 5G NR

waveform and compared with the existing IOO waveforms. Furthermore, a simple

and effective three-step process, namely, sense, select, and maximize to improve the

received signal strength at the passive receiver, was proposed as a smart knowledge-

aided passive receiver system. Moreover, the passive radar utilizes the existing signals

of opportunity from the environment; hence the signal incurs various losses before

the reception. In this work, the major losses incurred by various IOO signals were

calculated and analysed comprehensively. This analysis aids the passive radar system

in choosing appropriate IOO based on the availability and the external factors affecting

the reception. Additionally, the experimental study of penetration losses for common

building materials (such as clear glass, plywood, and tile) has been carried out using

TI-AFE7950 based radar system for the indoor environment. This study is very much

useful while opting for an IOO by the passive radar system in the indoor propagation

environment.

6.2 Future Work

1. In networked radar systems, the radars are able to exchange information from

other radars and the fusion node. Therefore, once the deception parameter is

calculated at the fusion node, it can be sent back to the respective sensor to

correct the received measurements in the following scan. This can be taken up

as a future research problem.

2. In RGPO ECM, traditionally, the tracker reports this effect as a track breakage.

Therefore, one can look into the problem of associating the tracks before RGPO
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ECM and after RGPO ECM to declare the ECM attack. Moreover, the deviation

in the tracks can be further utilized to calculate the range deception.

3. In future, in addition to the range-azimuth measurement, one can consider the

signal attributes like received signal amplitude to declare the ECM attack and

then associate the tracks over the period of time in an S-D assignment framework

to mitigate this effect.

4. Further, this work considers a single target for simplicity, whereas, in the multi-

ple target case, the track-to-track association may yield the wrong associations.

Hence, one should look into the appropriate solution to address this issue as a

future work.

5. In future one can carry out the feasibility study of 6G waveform as an IOO for

passive radar. Further, KA-PRS can be taken up as a project to evaluate the

practical implementation of the conceptual framework.

6. In the loss analysis, the penetration losses are measured and analyzed using

TI-AFE7950 radar sensors for short range. Further, the measurement for long-

range applications by adopting the existing illuminators in real atmospheric

conditions can be carried out as a future work, which aids the feasibility of

adopting specific illuminators for passive radars. Additionally, the outdoor to

indoor penetration loss can be measured for specific IOO frequencies.

107



108



Bibliography

Kifah H Al-Ansari, P Garcia del Pino, JM Riera Salis, and Ana Benarroch. Experi-

mental attenuation by gases and clouds in madrid using italsat 50 ghz beacon. In

2001 Eleventh International Conference on Antennas and Propagation,(IEE Conf.

Publ. No. 480), volume 2, pages 830–834. IET, 2001.

M. A. Amirabadi and V. Tabataba Vakili. A new optimization problem in FSO

communication system. IEEE Communications Letters, 22(7):1442–1445, 2018.

Youness Arjoune and Naima Kaabouch. A comprehensive survey on spectrum sensing

in cognitive radio networks: Recent advances, new challenges, and future research

directions. Sensors, 19(1), 2019.

Yusra Banday, Ghulam Mohammad Rather, and Gh Rasool Begh. Effect of atmo-

spheric absorption on millimetre wave frequencies for 5G cellular networks. IET

Communications, 13(3):265–270, 2019.

Yaakov Bar-Shalom, X Rong Li, and Thiagalingam Kirubarajan. Estimation with

applications to tracking and navigation: Theory algorithms and software. John

Wiley & Sons, 2004.

Yaakov Bar-Shalom, Peter K Willett, and Xin Tian. Tracking and data fusion, vol-

ume 11. YBS publishing Storrs, CT, USA:, 2011.

W. C. Barott, K. M. Scott, and B. Himed. Effects of atmospheric refractivity and vari-

ability on passive radar performance prediction. In 2018 IEEE Radar Conference

(RadarConf18), pages 0987–0992, 2018.

Christian R. Berger, Bruno Demissie, JÖrg Heckenbach, Peter Willett, and Shengli

Zhou. Signal processing for passive radar using OFDM waveforms. IEEE Journal

of Selected Topics in Signal Processing, 4(1):226–238, 2010.

109



Scott Berger. Digital radio frequency memory linear range gate stealer spectrum.

Aerospace and Electronic Systems, IEEE Transactions on, 39:725 – 735, 05 2003a.

Scott D Berger. Digital radio frequency memory linear range gate stealer spectrum.

IEEE Transactions on Aerospace and Electronic Systems, 39:725–735, 2003b.

S. S. Blackman, R. J. Dempster, M. T. Busch, and R. F. Popoli. IMM/MHT solu-

tion to radar benchmark tracking problem. IEEE Transactions on Aerospace and

Electronic Systems, 35(2):730–738, 1999.

W. D. Blair, G. A. Watson, G. L. Gentry, and S. A. Hoffman. Benchmark problem

for beam pointing control of phased array radar against maneuvering targets in

the presence of ECM and false alarms. In Proceedings of 1995 American Control

Conference - ACC’95, volume 4, pages 2601–2605 vol.4, 1995.

W. D. Blair, G. A. Watson, T. Kirubarajan, and Y. Bar-Shalom. Benchmark for radar

allocation and tracking in ECM. IEEE Transactions on Aerospace and Electronic

Systems, 34(4):1097–1114, 1998.

A.J. Cann. Range gate straddling loss and joint probability with partial correlation.

IEEE Transactions on Aerospace and Electronic Systems, 38(3):1054–1058, 2002.

Chong-Yung Chi, Chii-Horng Chen, Chih-Chun Feng, and Ching-Yung Chen. Funda-

mentals of statistical signal processing. Blind Equalization and System Identifica-

tion: Batch Processing Algorithms, Performance and Applications, pages 83–182,

2006.

CJ Coleman, RA Watson, and H Yardley. A practical bistatic passive radar system

for use with DAB and DRM illuminators. In 2008 IEEE Radar Conference, pages

1–6. IEEE, 2008.

Xiaoying Deng, Jian Hu, and Haibo Liu. Tracking in the presence of RGPO or

VGPO using the kalman filter with a new modified PDA. In IET International

Radar Conference 2013, pages 1–4, 2013.

Oliver E Drummond. Track and tracklet fusion filtering. In Signal and Data Processing

110



of Small Targets 2002, volume 4728, pages 176–195. International Society for Optics

and Photonics, 2002.

Kürsad Erdoğan and Hakki Alparslan Ilgin. Analysis of atmospheric effects on mil-

limeter wave frequency bands for fifth generation mobile networks. In 2018 2nd

International Symposium on Multidisciplinary Studies and Innovative Technologies

(ISMSIT), pages 1–4, 2018.

Ariel Etinger, Yosef Golovachev, Ofir Shoshanim, Gad A. Pinhasi, and Yosef Pinhasi.

Experimental study of fog and suspended water effects on the 5G millimeter wave

communication channel. Electronics, 9(5), 2020.

Gao Fang, Jianxin Yi, Yangpeng Dan, Xianrong Wan, and Hengyu Ke. Pn signal as

a new illuminator of opportunity for passive radar applications. IEEE Geoscience

and Remote Sensing Letters, 17(1):67–71, 2019.

A Farina and M Skolnik. Electronic counter-countermeasures. Radar handbook, 2,

2008.

Zhe Geng. Evolution of netted radar systems. IEEE Access, 8:124961–124977, 2020.

R Gerzaguet, D Kténas, N Cassiau, and JB Doré. Comparative study of 5G waveform

candidates for below 6 GHz air interface. In Proceedings of the ETSI Workshop on

Future Radio Technologies-Air Interface, Sophia Antipolis, France, pages 27–28,

2016.

Yosef Golovachev, Gad A. Pinhasi, and Yosef Pinhasi. Atmospheric effects on OFDM

wireless links operating in the millimeter wave regime. Electronics, 9(10), 2020.

Felix Govaers, Alexander Charlish, and Wolfgang Koch. Covariance debiasing for the

distributed Kalman filter. 07 2013.

Maria Greco, Fulvio Gini, and Alfonso Farina. Combined effect of phase and RGPO

delay quantization on jamming signal spectrum. In IEEE International Radar

Conference, 2005., pages 37–42. IEEE, 2005.

111



Valentin Grecu, Valerică Bîndar, Simona Halunga, and Mircea Popescu. Comparative

analysis of propagation models used in making coverage predictions for TETRA net-

works. In 2015 International Symposium on Signals, Circuits and Systems (ISSCS),

pages 1–4. IEEE, 2015.

HD Griffiths, CJ Baker, J Baubert, N Kitchen, and M Treagust. Bistatic radar using

satellite-borne illuminators. 2002.

Hugh D. Griffiths and Christopher J. Baker. An Introduction to Passive Radar. Artech

House, February 2017a. ISBN 978-1-63081-431-1.

Hugh D Griffiths and Christopher J Baker. An introduction to passive radar. Artech

House, 2017b.

Christopher Haslett. Essentials of radio wave propagation, volume 91. Cambridge

University Press Cambridge, 2008.

S. Haykin, Y. Xue, and P. Setoodeh. Cognitive radar: Step toward bridging the gap

between neuroscience and engineering. Proceedings of the IEEE, 100(11):3102–3130,

2012.

Yuhang He, Xing Wei, Xiaopeng Hong, Weiwei Shi, and Yihong Gong. Multi-target

multi-camera tracking by tracklet-to-target assignment. IEEE Transactions on Im-

age Processing, 29:5191–5205, 2020.

S. Henry, A. Alsohaily, and E. S. Sousa. 5G is real: Evaluating the compliance of the

3GPP 5G new radio system with the ITU IMT-2020 requirements. IEEE Access,

8:42828–42840, 2020.

Paul E Howland, Hugh D Griffiths, Chris J Baker, and M Cherniakov. Passive bistatic

radar systems. Bistatic radar: emerging technology, page 394, 2008.

Can Huang, Zhuming Chen, and Rui Duan. Novel discrimination algorithm for de-

ceptive jamming in polarimetric radar. In Proceedings of the 2012 International

Conference on Information Technology and Software Engineering, pages 359–365.

Springer, 2013.

ITU. Propagation by diffraction. Recommendation ITU-R P.526-14, 2018.

112



Pavel Ivanov, Simo Ali-Löytty, and Robert Piché. Evaluating the consistency of

estimation. pages 1–5, 06 2014.

Kyung-Won Kim, Myung-Don Kim, Juyul Lee, Jae-Joon Park, Young Keun Yoon,

and Young Jun Chong. Millimeter-wave diffraction-loss model based on over-rooftop

propagation measurements. ETRI Journal, 42(6):827–836, 2020.

T. Kirubarajan, Y. Bar-Shalom, W.D. Blair, and G.A. Watson. IMMPDAF for radar

management and tracking benchmark with ECM. IEEE Transactions on Aerospace

and Electronic Systems, 34(4):1115–1134, 1998.

Gayathri Kongara, Cuiwei He, Lei Yang, and Jean Armstrong. A comparison of CP-

OFDM, PCC-OFDM and UFMC for 5G uplink communications. IEEE Access, 7:

157574–157594, 2019.

Heiner Kuschel, Diego Cristallini, and Karl Erik Olsen. Tutorial: Passive radar tu-

torial. IEEE Aerospace and Electronic Systems Magazine, 34(2):2–19, February

2019a. ISSN 1557-959X. doi: 10.1109/MAES.2018.160146.

Heiner Kuschel, Diego Cristallini, and Karl Erik Olsen. Tutorial: Passive radar tuto-

rial. IEEE Aerospace and Electronic Systems Magazine, 34(2):2–19, 2019b.

Barbara F La Scala and Alfonso Farina. Choosing a track association method. Infor-

mation Fusion, 3:119–133, 2002.

Young Chul Lee, Soon-Soo Oh, Hwa Choon Lee, Chul Woo Byeon, Sung Won Park,

Il-Yong Lee, Jong-Hyuk Lim, Jong-Il Lee, and Byung-Lok Cho. Measurements of

window penetration loss and building entry loss from 3.5 to 24 ghz. In 2019 13th

European Conference on Antennas and Propagation (EuCAP), pages 1–4, 2019.

X. Rong Li, Benjamin J. Slocumb, and Philip D. West. Tracking in the presence

of range deception ECM and clutter by decomposition and fusion. In Oliver E.

Drummond, editor, Signal and Data Processing of Small Targets 1999, volume

3809, pages 198 – 210. International Society for Optics and Photonics, SPIE, 1999.

Xingqin Lin, Jingya Li, Robert Baldemair, Jung-Fu Thomas Cheng, Stefan Parkvall,

Daniel Chen Larsson, Havish Koorapaty, Mattias Frenne, Sorour Falahati, Asbjorn

113



Grovlen, et al. 5G new radio: Unveiling the essentials of the next generation wireless

access technology. IEEE Communications Standards Magazine, 3(3):30–37, 2019.

Purushottama Lingadevaru, Bethi Pardhasaradhi, Pathipati Srihari, and GVK

Sharma. Analysis of 5g new radio waveform as an illuminator of opportunity for

passive bistatic radar. In 2021 National Conference on Communications (NCC),

pages 1–6, 2021.

Mingqian Liu, Junlin Zhang, and Bingbing Li. Feasibility analysis of OFDM/OQAM

signals as illuminator of opportunity for passive detection. In 2018 14th IEEE

International Conference on Signal Processing (ICSP), pages 793–796. IEEE, 2018.

N Liu, SS Zhao, and LR Zhang. A radar ECCM scheme based on full-rate orthogonal

pulse block. J. Comput. Inf. Syst, 9(24):9771–9779, 2013.

Gang Lu, Shuangcai Luo, Haiyan Gu, Yongping Li, and Bin Tang. Adaptive biased

weight-based RGPO/RGPI ECCM algorithm. 10 2011.

Y. Lu, M. Li, H. Chen, Z. Wang, and L. Zuo. Countering drfm range gate pull-off

jamming based on singular spectrum analysis. 38:600–606, 03 2016.

Mahendra Mallick and Barbara SCALA. Comparison of single-point and two-point

difference track initiation algorithms using position measurements. Acta Automatica

Sinica, 34:258–265, 03 2008.

P. Mason, Samuel. Atmospheric effects on radio frequency (RF) wave propagation

in a humid, near-surface environment, 2010. URL https://calhoun.nps.edu/

handle/10945/5353.

Elad Meir and Tirza Routtenberg. Cramér-Rao bound for estimation after model

selection and its application to sparse vector estimation. IEEE Transactions on

Signal Processing, 69:2284–2301, 2021.

Yu Song Meng and Yee Hui Lee. Investigations of foliage effect on modern wireless

communication systems: A review. Progress In Electromagnetics Research, 105:

313–332, 2010.

114

https://calhoun.nps.edu/handle/10945/5353
https://calhoun.nps.edu/handle/10945/5353


Nicolas Millet and Mathieu Klein. Passive radar air surveillance: Last results with

multi-receiver systems. In 2011 12th International Radar Symposium (IRS), pages

281–285, September 2011. ISSN: 2155-5753.

Pavithra Nagaraj. Impact of atmospheric impairments on mmwave based outdoor

communication. arXiv preprint arXiv:1806.05176, 2018.

Daniel W. O’Hagan, Hugh D. Griffiths, S. Martin Ummenhofer, and Stephen T.

Paine. Elevation pattern analysis of common passive bistatic radar illuminators

of opportunity. IEEE Transactions on Aerospace and Electronic Systems, 53(6):

3008–3019, 2017.

Gordon Ononiwu, Simeon Ozuomba, and Constance Kalu. Determination of the

dominant fading and the effective fading for the rain zones in the itu-r p. 838-3

recommendation. European Journal of Mathematics and Computer Science Vol, 2

(2), 2015.

Titus Oyedokun. Feasibility study of DTV based PCL radar in south africa. In 2011

8th European Radar Conference, pages 186–189. IEEE, 2011.

R.L. Popp, K.R. Pattipati, Y. Bar-Shalom, and R.R. Gassner. An adaptive m-best SD

assignment algorithm and parallelization for multitarget tracking. In 1998 IEEE

Aerospace Conference Proceedings (Cat. No.98TH8339), volume 5, pages 71–84

vol.5, 1998.

Prabhat Kumar Rai, Abhinav Kumar, Mohammed Zafar Ali Khan, and Linga Reddy

Cenkeramaddi. LTE-based passive radars and applications: a review. International

Journal of Remote Sensing, 42(19):7489–7518, 2021.

B Rao, Y-L Zhao, S-P Xiao, and X-S Wang. Discrimination of exo-atmospheric

active decoys using acceleration information. IET radar, sonar & navigation, 4(4):

626–638, 2010.

Bin Rao, Shunping Xiao, Xuesong Wang, and Tao Wang. Maximum likelihood ap-

proach to the estimation and discrimination of exo-atmospheric active phantom

tracks using motion features. IEEE Transactions on Aerospace and Electronic Sys-

tems, 48:794–819, 2012.

115



Mark A Richards. Fundamentals of radar signal processing. McGraw-Hill Education,

2014.

Mark A Richards, Jim Scheer, William A Holm, and William L Melvin. Principles of

modern radar. 2010.

Luke Rosenberg, Jeffrey D. Ouellette, and David J. Dowgiallo. Passive bistatic sea

clutter statistics from space-borne illuminators. IEEE Transactions on Aerospace

and Electronic Systems, 56(5):3971–3984, 2020.

AA Salah, RSA Raja Abdullah, A Ismail, F Hashim, and NH Abdul Aziz. Experi-

mental study of LTE signals as illuminators of opportunity for passive bistatic radar

applications. Electronics Letters, 50(7):545–547, 2014.

Asem A Salah, RSA Raja Abdullah, A Ismail, F Hashim, CY Leow, MB Roslee,

and NE Abdul Rashid. Feasibility study of LTE signal as a new illuminators of

opportunity for passive radar applications. In 2013 IEEE International RF and

Microwave Conference (RFM), pages 258–262. IEEE, 2013.

P Samczynski, P Krysik, and K Kulpa. Passive radars utilizing pulse radars as

illuminators of opportunity. In 2015 IEEE Radar Conference, pages 168–173. IEEE,

2015.

Krishna Sankar. Maximal ratio combining. URL http://www.dsplog.com/2008/09/

28/maximal-ratio-combining/.

ShareTechNote. 5g nr: Waveform specifications. URL https://www.sharetechnote.

com/.

Gustavo A. Siles, Jose Manuel Riera, and Padro Garcia-del Pino. Atmospheric attenu-

ation in wireless communication systems at millimeter and thz frequencies [wireless

corner]. IEEE Antennas and Propagation Magazine, 57(1):48–61, 2015.

B. J. Slocumb, P. D. West, T. N. Shirey, and E. W. Kamen. Tracking a maneuvering

target in the presence of false returns and ECM using a variable state dimension

kalman filter. In Proceedings of 1995 American Control Conference - ACC’95,

volume 4, pages 2611–2615, 1995.

116

http://www.dsplog.com/2008/09/28/maximal-ratio-combining/
http://www.dsplog.com/2008/09/28/maximal-ratio-combining/
https://www.sharetechnote.com/
https://www.sharetechnote.com/


Benjamin J. Slocumb, Philip D. West, and X. Rong Li. Implementation and analysis

of the decomposition-fusion ECCM technique. In Oliver E. Drummond, editor,

Signal and Data Processing of Small Targets 2000, volume 4048, pages 486 – 497.

International Society for Optics and Photonics, SPIE, 2000.

BJ Slocumb and PD West. ECM modeling for multitarget tracking and data asso-

ciation. Multitarget-multisensor tracking: Applications and advances., 3:395–458,

2000.

Xian Sun, Songhao Zhu, Dongliang Jin, Zhiwei Liang, and Guozheng Xu. Tracklet

association for object tracking. In 2016 Chinese Control and Decision Conference

(CCDC), pages 107–112, 2016.

P. Swerling. Radar probability of detection for some additional fluctuating target

cases. IEEE Transactions on Aerospace and Electronic Systems, 33(2):698–709,

1997.

Ehsan Taghavi, R. Tharmarasa, T. Kirubarajan, and Yaakov Bar-Shalom. Bias esti-

mation for practical distributed multiradar-multitarget tracking systems. In Pro-

ceedings of the 16th International Conference on Information Fusion, pages 1304–

1311, 2013.

Ching L Teo. Bistatic radar system analysis and software development. URL https:

//calhoun.nps.edu/handle/10945/6127.

Harry L. Van Trees and Kristine L. Bell. CramerRao lower bound for tracking multiple

targets, pages 828–833. 2007.

Evgenii Vorobev, Aleksey Barkhatov, and Vladimir Kutuzov. DVB-T2 passive coher-

ent location radar. In 2016 IEEE NW Russia Young Researchers in Electrical and

Electronic Engineering Conference (EIConRusNW), pages 470–474. IEEE, 2016.

Qing Wang, Chunping Hou, and Yilong Lu. An experimental study of WiMAX-based

passive radar. IEEE Transactions on Microwave Theory and Techniques, 58(12):

3502–3510, 2010.

117

https://calhoun.nps.edu/handle/10945/6127
https://calhoun.nps.edu/handle/10945/6127


Xinhai Wang, Gong Zhang, Xiangmin Wang, Qingqing Song, and Fangqing Wen.

ECCM schemes against deception jamming using OFDM radar with low global

PAPR. Sensors, 20(7), 2020.

Wei Xiong, Gong Zhang, Fangqing Wen, Yu Zhang, and Jiejun Yin. Trilinear

decomposition-based spatial-polarisational filter method for deception jamming

suppression of radar. IET Radar, Sonar & Navigation, 10(4):765–773, 2016.

Xiongjun Fu, Changyong Jiang, Zongbo Wang, and Meiguo Gao. Anti-vessel end-

guidance radar ECCM against deception jamming of range gate pull off. IET

Conference Proceedings, January 2009.

C. Yang, L. Feng, H. Zhang, S. He, and Z. Shi. A novel data fusion algorithm to

combat false data injection attacks in networked radar systems. IEEE Transactions

on Signal and Information Processing over Networks, 4(1):125–136, 2018.

Chaoqun Yang, Heng Zhang, Fengzhong Qu, and Zhiguo Shi. Secured measurement

fusion scheme against deceptive ECM attack in radar network. Security and Com-

munication Networks, 9(16):3911–3921, 2016.

Jindong Zhang, Xiaohua Zhu, and KErang Wang. A waveform diversity technique for

countering RGPO. In 2009 IET International Radar Conference, pages 1–4, 2009.

L. Zhang, D. Sidoti, A. Bienkowski, K. R. Pattipati, Y. Bar-Shalom, and D. L. Klein-

man. On the identification of noise covariances and adaptive kalman filtering: A

new look at a 50 year-old problem. IEEE Access, 8:59362–59388, 2020.

Yaguang Zhang, Christopher R. Anderson, Nicolo Michelusi, David J. Love, Ken-

neth R. Baker, and James V. Krogmeier. Propagation modeling through foliage

in a coniferous forest at 28 ghz. IEEE Wireless Communications Letters, 8(3):

901–904, 2019.

Shanshan Zhao and Ziwei Liu. Deception parameter estimation and discrimination in

distributed multiple-radar architectures. IEEE Sensors Journal, 17(19):6322–6330,

2017.

118



Shanshan Zhao, Linrang Zhang, Yu Zhou, Nan Liu, and Jieyi Liu. Discrimination

of active false targets in multistatic radar using spatial scattering properties. IET

Radar, Sonar & Navigation, 10:817–826, 2016.

Hongping Zhou, Chengcheng Dong, Ruowu Wu, Xiong Xu, and Zhongyi Guo. Feature

fusion based on bayesian decision theory for radar deception jamming recognition.

IEEE Access, 9:16296–16304, 2021.

Youqing Zhu, Shilin Zhou, Gui Gao, and Kefeng Ji. Emitter target tracking by tracklet

association using affinity propagation. IEEE Sensors Journal, 15(10):5645–5653,

2015.

Muhammad Zubair, Zaffar Janjua, Shahid Khan, and Jamal Nasir. Atmospheric

influences on satellite communications. Przeglad Elektrotechniczny, 87, 01 2011.

119



120



List of Publications

Journal Publications

1. Purushottama Lingadevaru, Bethi Pardhasaradhi, and Srihari Pathipati. “Se-

quential Fusion based Approach for Estimating Range Gate Pull-Off

Parameter in a Networked Radar System: An ECCM Algorithm.”

IEEE Access, vol. 10, pp. 70902 - 70918, 2022, doi: 10.1109/ACCESS.2022.3185240.

2. Purushottama Lingadevaru, Bethi Pardhasaradhi, Srihari Pathipati and Linga

reddy Cenkeramaddy. “Performance Evaluation of Various Illuminators

of Opportunity for Passive Bistatic Radar in the Presence of Losses”

Elesevier Computer Networks. (Under Review)

3. Purushottama Lingadevaru, Anil Kumar, Bethi Pardhasaradhi, Srihari Pathipati

and Linga reddy Cenkeramaddy. “A qualitative study of propagation of

illuminators of opportunity for passive radar sensor in the context of

indoor applications” Elesevier Computer Communications. (Under Review)

Conference Publications

1. Purushottama Lingadevaru, Bethi Pardhasaradhi, Srihari Pathipati, and GVK

Sharma. “Analysis of 5G New Radio Waveform as an Illuminator of

Opportunity for Passive Bistatic Radar.” 27th National Conference on

Communications (NCC-2021). 2021.

(Received IEEE ComSoc Bangalore Protsahan Award)

2. Purushottama Lingadevaru, Srihari Pathipati, Bethi Pardhasaradhi and Gun-

nery Srinath. “A Conceptual Framework for Knowledge Aided Passive

Radar System.” IEEE 7th International Conference on Electronics, Comput-

ing and Communication Technologies (IEEE CONECCT - 2021). IEEE, 2021.

(Awarded as Conference best paper of the CONECCT-2021 and Track level best

paper for "Sensors and Systems" track)

121



122



CURRICULUM VITAE

Purushottama T L

Sri Venkataramana Swamy Krupa,

2nd Cross, Kempegowda Nagara, Maraluru,

Tumakuru, Karnataka - 572105.

H : +91 8105491827

B : purushothama.t.l@gmail.com

About

Currently, working as an Assistant Professor in the Dept. of ECE at Siddaganga

Institute of Technology, Tumkur and have been deputed to pursue Ph.D. at National

Institute of Technology Karnataka, Surathkal in the Dept. of ECE since June 2017.

Educational background

Doctor of Philosophy (Ph.D.)

National Institute of Technology Karnataka, Surathkal 2017–Till date

Master of Technology (M.Tech)

BMS College of Engineering, Bangalore. 2005–2007

Branch : Electronics

Bachelor of Engineering (B.E)

Siddaganga Institute of Technology, Tumkur. 2001–2005

Branch : Electronics and Communication Engineering

Research interests

Passive radars, Radar signal processing, and Software defined radios.

Experience

I have more than ten years teaching experience in the Dept. of ECE, Siddaganga

Institute of Technology, Tumkur.

123


	List of Figures
	List of Tables
	Abbreviations and Nomenclature
	Introduction
	ECM Background
	ECM
	Noise Jamming
	Range Gate Pull Off (RGPO)
	Electronic Counter Counter Measures (ECCM)
	Networked Radar System (NRS)

	Basic Target Tracking
	Estimation and Tracking
	Basic terminology

	Passive Radar Background
	Passive Radar Systems
	Advantages and Disadvantages of passive radars

	Contributions of the Thesis
	Overview

	Literature review
	Range Gate Pull-Off ECM
	Transmitters of Opportunity for Passive Radar
	Impact of Losses on IOOs
	Motivation
	Research Objectives

	Estimation of Range Gate Pull-Off Parameter using Sequential Fusion based approach: An ECCM algorithm
	Preamble
	Problem Formulation
	State Model
	Preliminary observations

	Distributed Tracking and Track-to-track Association
	Distributed Tracking
	Track-to-track Association (T2TA)
	Observations

	 Deception Parameter Estimation Algorithm 
	Measurement Recreation of Deceiving Track
	Correction of Deception Parameter among All Tracks
	Constructing the Reference Measurement
	Deception Parameter Estimation Algorithm

	Performance evaluation of proposed algorithm
	Innovation test
	Cramer Rao Lower Bound
	NEES test and Confidence Interval test

	Results
	Case-1: Single radar sensor deceived by RGPO ECM
	Case-2: Multiple radar sensors affected by Jamming

	Conclusion

	Feasibility study of 5G NR waveform as an IOO and RSS improvement
	Preamble
	5G NR Waveform
	Bistatic Radar Parameters
	Bi-static geometry
	Maximum Range
	Bistatic Range resolution
	Bistatic Doppler
	Doppler Resolution
	Velocity Resolution
	Maximum unambiguous PRF
	Ovals of cassini

	Results for the feasibility study
	Conceptual framework to improve the performance of passive radar system
	Proposed Knowledge Aided Passive Radar System
	Spectrum Sensing using Energy detection
	Selection of IOO for Passive Radar System
	Spatial diversity to improve the SNR

	Discussion on improving received signal strength
	Conclusion

	Impact of various losses on Illuminators of Opportunity
	Preamble
	Passive Radar Scenario and Propagation Environment
	Assumptions and Mathematical Modelling for Passive Bistatic Radar and Losses
	Passive Bistatic Radar Geometry
	Illuminators of Opportunity
	Various Losses incurred by an IOO

	Results and Discussions
	Radar Parameter Analysis for IOOs
	Path loss analysis
	Rain loss
	Fog loss
	Gas loss
	Diffraction loss
	Foliage loss
	Total losses and SNR analysis

	Experimental study of building material attenuation
	Experimental setup
	Results and Discussions

	Conclusion

	Conclusions and Future Directions
	Conclusion
	Future Work

	Bibliography
	List of Publications

