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Abstract

Active suspension systems play a significant part in increasing the pas-

senger ride comfort and vehicle ride stability. In addition to the spring

and damping elements, active suspension systems have actuator that can

inject additional force into the system to improve the performance char-

acteristics. The performance of an active suspension system is determined

by a feedback control law that governs the output of the actuator as well

as the entire system. Design of a control law for active suspension system

is a challenging control problem. This is owing to the fact that the perfor-

mance objectives of increased ride comfort and stability while preserving

suspension deflection limitations are incompatible. To address this issue,

numerous control approaches have been developed and investigated in the

literature.

Interconnection and Damping Assignment Passivity Based Control (IDA-

PBC) is a popular passivity based control technique. The control law is

designed by shaping the closed-loop energy function of the system and

modifying the damping characteristics to a desired level required to im-

prove the performance of the system. Modelling of the system in Port-

Hamiltonian framework has an advantage when designing a control law

using IDA-PBC. This is because the system is represented by its physical

attributes in the port-Hamiltonian framework. The system can be repre-

sented by its inertia, stiffness, damping coefficients, and energy function,

especially in mechanical systems. Therefore, while designing the control

law using IDA-PBC, a Port Controlled Hamiltonian (PCH) model is typ-

ically used, particularly in mechanical systems where intrinsic physical

features can be employed in control design and performance analysis.

Quarter-car active suspension system is a Two-Degree-Of-Freedom (2DOF)

system representing a corner of a car. Although its capabilities are lim-

ited to solely vertical dynamics analysis and control, it can be utilised as

a basis for the design and analysis of active suspension system controllers.

IDA-PBC control law is designed for a quarter-car model of active sus-

pension system. Different cases of the controller emerge after designing a

general control law based on the structure of the desired inertia matrix.

The choice of desired inertia matrix has a big impact on the dynamics
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of the closed-loop system. As a result, a detailed analysis is carried out

by examining the control structure with various inertia matrix scenarios.

The results reveal that the design of the control law can be done using

a choice of inertia matrices depending on the priority of the performance

indices. The performance of a closed-loop system with various control law

instances is analysed and compared using simulations and experiments on

a bench scale prototype of an active suspension system.

On the quarter-car active suspension system, an observer design is devel-

oped and implemented. In general, a full-state feedback control law must

be implemented to achieve better results in terms of various objectives.

However, determining the unsprung mass states in the suspension system

necessitates the deployment of many sensors. Furthermore, measuring ve-

locities has been a long-standing issue in mechanical systems. A full-state

observer is intended for quarter-car active suspension system to overcome

these issues. The observer design is done to estimate the states of the

PCH system for ease of implementation of IDA-PBC in PCH framework.

On the experimental prototype, the performance of observer is evaluated.

Furthermore, utilising the state estimates derived from the observer de-

sign, full-state IDA-PBC is realised on the experimental configuration.

When state estimates are employed to execute the control law, the results

reveal that the performance of closed-loop system is comparable to the

case with full-state feedback.

Half-car active suspension is a Four-Degree-Of-Freedom (4DOF) system

that represents one half of a four-wheeler system. It captures the vertical

and pitch dynamics of the system. Complex analysis and the solution of

several equations are required when designing a control law for a half-car

active suspension system. The solution of partial differential equations is

difficult to acquire, especially when designing an IDA-PBC control law.

The IDA-PBC control law is designed using an algebraic method to over-

come this complexity. Two controller scenarios are constructed based

on the structure of the inertia matrix, and the performance of system is

evaluated using performance indices in simulation in terms of their peak

and RMS values, which show good improvement when compared to the

uncontrolled system.
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Since the development of engineering and technology in the automotive industry to

manufacture vehicles at a faster rate in the early 1900s, the use of commercial vehicles

has increased, with an estimated global use of 1.4 billion vehicles. The increase in the

commercial use of vehicles motivated the need to develop safe and comfortable trans-

portation systems, optimise the use of road and fuel resources, and create minimal

impact on the environment (Rajamani, 2011). These requirements are diverse and

often difficult for manufacturers to meet. To achieve these conflicting requirements,

automobiles are employed with electromechanical systems built with electronics, sen-

sors and actuators.

An automobile is a dynamic system whose performance is effected by several forces

acting on it when moving on road. It is a combination of large number of subsystems

interacting with each other to perform and control multiple tasks. These subsys-

tems can be broadly categorised as (a) driver assistance systems, (b) stability control

systems, (c) ride quality improvement, (d) traffic congestion solutions, and (e) fuel

economy and vehicle emissions (Rajamani, 2011).

In a broad sense, ride quality refers to the level of comfort experienced by the pas-

sengers onboard (Gillespie, 1992). Although it is difficult to distinguish the effects

of individual components of disturbances, forces resulting from vehicle acceleration,

braking, and cornering, internal vibrations from vehicle parts, and road unevenness

all contribute to the discomfort felt by passengers in a vehicle. While the majority of

the causes are attributable to driving circumstances and mechanical system design,

road unevenness is a significant external element that contributes to vehicle vibration.

Excitations to vibrations are caused by forces exerted on a vehicle’s tires as it travels

over a bumpy road. Road roughness is the difference in elevation of the road caused

by a variety of factors ranging from potholes to localised pavement failures. This

roughness causes ride vibrations by acting as a vertical input to the wheels. Through

the tire/wheel assembly and suspension, these ride vibrations are communicated to

the passengers (axle), producing discomfort. Vertical (heave) and horizontal (pitch,

roll, and yaw) movements are caused by these vibrations (Liu et al., 2013). While

the tire/wheel combination absorbs and attenuates some vibrations, the suspension

system is responsible for the majority of vibration isolation.
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1.1 Vehicle Suspension System

Suspension system connects the vehicle to the tires, and is responsible for isolating

the passengers from vibrations caused due to road disturbances. In addition to pro-

vide vibration isolation, it is also responsible for keeping the tires in contact with the

road while maintaining the rattle space requirements. Generally, suspensions can be

broadly classified into two categories: Solid axle and independent suspension systems.

Solid axle suspension systems are simple and inexpensive systems where the vertical

motions of wheels connected to the axle are dependent on each other. Apart from

being simple and inexpensive, they are strong and durable, due to which they are used

in trucks and rear portion of some cars. These suspensions work well for applications

where the ride comfort can be compromised, and are not suited well for improving

ride comfort as the effect of disturbance experienced on one tire is transferred to

another tire and their vertical movements cannot be controlled independently. These

disadvantages are overcome by independent suspension systems where the vertical

movement of tires is independent of each other. The vertical displacement at each

wheel can be controlled independently in case of independent suspensions and the

forces felt by one tire do not effect the movement of other tire. Other advantages of

independent suspensions are increased suspension deflection limit, reduced weight of

the vehicle due to relatively lighter suspension components. MacPherson strut and

SLA suspension are two examples of widely used independent suspensions in cars

(Gillespie, 1992).

Conventional suspension systems consist of a fixed spring (typically a coil, leaf or

an air spring) and a damping element (typically a hydraulic shock absorber) along

with other auxiliary components. The spring and damper are designed to achieve

trade-off between multiple factors like static weight bearing capability, road holding

and handling specifications. Due to the fixed nature of spring and damping prop-

erties of these components, the performance range of passive suspension is limited.

To improve the performance of suspension system, several methods have been in-

vestigated and developed in literature. The developments in sensors and actuators

led to the introduction of controllable elements into the automobiles. This led to

the development of what are called as controllable suspension systems (Liu et al.,

2013). Depending on the method of power induced/ dissipated from the suspension

system, controllable suspension systems may be broadly classified into two categories:
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Semi-active and active suspension systems. Semi-active suspension systems consist

of controllable elements whose properties can be modified by using external control,

and there is no external mechanical energy injected into the system. Few examples

of such devices are dampers with magnetorheological (MR) fluids, electrorheological

(ER) fluids, switchable shock absorbers, controllable springs etc. Active suspension

systems consist of an additional element in parallel along with the spring and damper

which is capable of injecting external mechanical energy into the system. This active

element is mostly a hydraulic/pneumatic cylinder whose response can be controlled

using electronic signal according to the desired ride behaviour. Active suspension

using linear motor is also developed by Bose corporation. An active suspension sys-

tem offers better performance characteristics compared to passive and semi-active

counterparts due to its force injection capability.

1.2 Modelling Of Active Suspension System

The actuator (force generating element) in the active suspension system is controlled

by processing signals from the sensors and generating a control signal and feeding it

to the actuator input. Therefore, it is a control engineering problem which requires

analysing the system dynamics and designing a control law to meet the performance

requirements. Existence of large number of complex subsystems which are nonlinear

makes the derivation of model of an exact system an impossible task. With mathe-

matical and simulation tools in hand, an analytical model of the system based on the

mechanics of interest can be used to understand the system properties and design a

control law. A control engineer requires a model which captures the required dynam-

ics and, at the same time simple enough to use it to design a controller (Rajamani,

2011).

When vehicle is moving on a road, all the components of the vehicle move together.

Therefore, it can be considered as a point object with its mass located at the center

of gravity. However, when analysing the vertical dynamics of a vehicle due to road

disturbances, it is necessary to consider the components influenced by the vertical

motion and components to be controlled to improve the performance. Some of the

major assumptions in modelling and control for suspension system are:

• To analyse the effect of dynamics experienced by the passengers, the chassis is

considered a separate lumped mass known as sprung mass.
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• The tire/wheel assembly and its auxiliary components together are considered

as a separate lumped mass termed as unsprung mass

• The mass of spring and damper are ignored while modelling the system.

• Tire is considered as a parallel combination of spring and damping elements.

• The wheel is always in contact with the road.

The suspension system consists of a spring, damper and a controllable force generator.

Based on the dynamics of interest, three models of suspension system are mainly used

for control design.

1.2.1 Full-Car Suspension Model

A full-car model consists of a sprung mass (vehicle body) supported by four unsprung

masses at each corner of the vehicle. The suspension system consisting of spring,

damper and an actuator connects the sprung mass to the unsprung masses. Full-car

model is a complex model with Seven-Degrees-Of-Freedom (7DOF), namely vertical

motions of four unsprung masses, heave (vertical motion), pitch and roll motions of

sprung mass.

1.2.2 Half-Car Active Suspension Model

Based on the symmetry and design requirement, a full-car model can be decoupled into

either pitch oriented or roll oriented Four-Degree-Of-Freedom (4DOF) half-car model.

A pitch oriented half-car model of active suspension system is illustrated in figure

1.1. Terms mb and Iφ represent the vehicle’s body mass and pitch moment of inertia,

respectively. φ represents pitch angle, and lf and lr denote the distances of the front

and rear axles from the centre of mass, respectively.The stiffnesses of the front and rear

suspension springs are expressed by ksf and ksr, respectively. The damping coefficients

of the front and rear suspensions are represented by bsf and bsr, respectively. uf

and ur represent the front and rear actuator force components, respectively. The

unsprung mass on the front and rear wheels is denoted by mwf and mwr, respectively.

The tire is represented as a combination of a spring and a damper, with ktf and btf

representing the front tire stiffness and damping coefficients, respectively, and ktr and

btr representing the rear tire stiffness and damping coefficients. Variables xc, xbf ,
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Figure 1.1: Pitch oriented Model of half-car active suspension system

and xbr indicate the vertical displacements of the centre of mass, front and rear body

displacements, about their respective mean locations. The vertical displacements

of the front and rear tires around their equilibrium positions are denoted by the

symbols xwf and xwr, respectively. The front and rear terrain height displacements

are denoted by xrf and xrr, respectively. The above model consists of a single sprung

mass representing vehicle body with heave (vertical) and pitch freedoms of motion

and two unsprung masses denoting front and rear wheels with vertical freedom of

motion. The vertical displacements of the sprung mass are related as follows:

xbf = xc + lf sinφ

xbr = xc − lr sinφ (1.1)

and lf + lr = l. sinφ can be approximated as sinφ ≈ φ since the pitch angle is modest

enough. Therefore, equation (1.1) becomes xbf = xc + lfφ and xbr = xc − lrφ.
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1.2.3 Quarter-Car Active Suspension Model

The quarter-car model is a bench-scale model which represents one-quarter of a car.

Although its scope is limited to study of vertical dynamics only, it can be used to

study the effect of road disturbances on the sprung mass, and design the controller

at the basic level. Quarter-car model has Two-Degree-Of-Freedom (2DOF): sprung

and unsprung mass vertical motions.

Figure 1.2 depicts a model of a quarter-car active suspension system. Mass mb rep-

Figure 1.2: Quarter car model of active suspension system

resents one-fourth of the mass of the chassis which is supported by spring ks, damper

with damping coefficient bs and an active force element us. The cumulative mass of

the wheel, rim, brake and other linkage elements is represented by mw. The road

input xr acts on the wheel whose stiffness and damping coefficients are represented

by kt and bt respectively. xb and xw represent the displacements of chassis and wheel

from their equilibrium points respectively.
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1.3 Performance Requirements And Constraints

Of Suspension System

1. Ride Comfort: Ideally, passengers must be isolated from the road disturbances

to experience best ride. Practically, it is not possible to completely isolate the

passengers from the effect of road disturbances. A good suspension system

must be able to minimise the vibratory forces transmitted to the passengers.

The vibratory forces on the sprung mass results in the acceleration of the sprung

mass, which can be taken as the measure of ride comfort. The peak and RMS

values of accelerations must be minimised to improve the ride comfort.

• For half-car suspension model, heave and pitch accelerations of sprung

mass ẍc and φ̈ in Figure 1.1 are taken as a ride comfort performance indices.

• For quarter-car suspension model, vertical acceleration ẍb in Figure 1.2 is

taken as a ride comfort performance index.

2. Good Road holding: Unevenness of the road surface results in vertical dis-

placement of the vehicle causing it to lose contact with the road surface. This

causes vehicle to lose grip on road and deteriorates the stability. For good road

holding, the dynamic tire load must always be less than the static tire load.

Relative dynamic tire load (RDTL), which is a ratio of dynamic tire load to

static tire load is taken as a measure of road holding.

• For half-car suspension model,

RDTLf =

∣∣∣∣∣ktf (xwf − xrf ) + btf (ẋwf − ẋrf )
Fwf

∣∣∣∣∣ ≤ 1 (1.2a)

RDTLr =

∣∣∣∣∣ktr(xwr − xrr) + btr(ẋwr − ẋrr)
Fwr

∣∣∣∣∣ ≤ 1 (1.2b)

where Fwf and Fwr are the front and rear tire static loads, respectively.

Fwf + Fwr = (mb +mwf +mwr)g (1.3a)

Fwf (lf + lr) = mbglr +mwfg(lf + lr) (1.3b)

Fwr(lf + lr) = mbglf +mwrg(lf + lr) (1.3c)
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where g refers to the acceleration due to gravity.

• For quarter-car suspension model,

RDTL =

∣∣∣∣∣kt(xw − xr) + bt(ẋw − ẋr)
Fw

∣∣∣∣∣ ≤ 1 (1.4)

where Fw is the tire static load.

Fw = (mb +mw)g (1.5)

3. Suspension stroke limits: The suspension stroke (deflection between sprung

and unsprung masses) must be maintained within the designed limits to prevent

the damage of the mechanical structure.

• For a half-car system,

|xbf (t)− xwf (t)| ≤ SSmax (1.6a)

|xbr(t)− xwr(t)| ≤ SSmax (1.6b)

• For a quarter-car suspension system,

|xb(t)− xw(t)| ≤ SSmax (1.7)

1.4 Port-Controlled Hamiltonian Systems

Dynamics of lumped-parameter physical systems can be represented by their Port-

controlled Hamiltonian with Dissipation (PCHD) models where the system is rep-

resented in terms of their interconnection structure, damping structure and energy

storage function called Hamiltonian (Ortega et al., 2002). A linear time invariant

active suspension system can be represented as follows:

ẋ = [J−R]∇H(x) + gu (1.8a)

y = gT∇H(x) (1.8b)

where x ∈ Rn is the state vector of the system which contains the energy variables,

H(x) known as Hamiltonian is the total energy stored in the system, u,y ∈ Rm
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are the input and output ports respectively, through which the power is exchanged

to external inputs. The product 〈u,v〉 represents the power exchanged with the

external input vector u. The matrix J = −JT ∈ Rn×n is the interconnection matrix

which represents the energy exchange between the storage elements in the system,

R ∈ Rn×n defines the dissipative structure of the system, where R = RT ≥ 0, and

g ∈ Rn×m is a full (column) rank matrix. The time derivative of the energy function

can be written as,
d

dt
H(x) = ∇TH(x).ẋ (1.9)

Substituting equation (1.8) in equation (1.9) results in

d

dt
H(x) = ∇TH(x)

{
[J−R]∇H(x)+gu

}
(1.10a)

= ∇TH(x)J∇H(x)−∇TH(x)R∇H(x) +∇TH(x)gu (1.10b)

= −∇TH(x)R∇H(x) + yTu (1.10c)

Integrating equation (1.10) gives,

[H(x(t))−H(x(0))]︸ ︷︷ ︸
Energy stored

= −
∫ t

0

∇TH(x(s))R∇H(x(s)) ds︸ ︷︷ ︸
Energy dissipated

+

∫ t

0

uT (s)y(s) ds︸ ︷︷ ︸
Energy supplied

(1.11)

Equation (1.11) represents the energy balance, which says that a passive system

(system with no active inputs) cannot store more energy than supplied to it by the

external environment, and the difference between the suppled and stored energies is

the dissipated energy. Typical example of passive systems are electrical systems where

energy is dissipated as heat in resistors and mechanical systems where the energy is

dissipated by friction.

1.4.1 Example: 1DOF Mass Spring Damper System With

Base Excitation

Figure 1.3 illustrates a one-degree-of-freedom mass-spring-damper system with actua-

tor. A base excitation is considered for analysis of the system, since vehicle suspension

system is a base excited mechanical system. If we define q , x − xr(t), q describes

the deflection of the spring. The kinetic and potential energies τ(q̇) and ν(q) can be
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Figure 1.3: 1DOF Mass Spring Damper System

written as

τ(q̇) =
1

2
m(q̇ + ẋr)

2 and ν(q) =
1

2
kq2 (1.12)

The Lagrangian of the system, in this case is a difference between kinetic and potential

energies can be written as,

L(q, q̇) = τ(q̇)− ν(q) (1.13a)

=
1

2
m(q̇ + ẋr)

2 − 1

2
kq2 (1.13b)

Taking the derivative with respect to q̇,

∇qL = m(q̇ + ẋr) = mẋ = p (1.14)

If we define a function H which describes the total energy stored in terms of the

displacement and velocity states p and q respectively,

H(p, q) = τ(p) + ν(q) (1.15a)

=
1

2

p2

m
+

1

2
kq2 (1.15b)

=
1

2
pTm−1p+

1

2
qTkq (1.15c)
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where τ(p) corresponds to the kinetic energy and ν(q) corresponds to the potential

energy of the system.The force experienced by the mass is ṗ,

ṗ = −kq − bq̇ + u (1.16)

rate of change of spring displacement q̇ can be deduced from equation (1.14) as,

q̇ = m−1p− ẋr(t) (1.17a)

= ∇pH − ẋr(t) (1.17b)

Substituting above equation in force equation,

ṗ = −kq − b(m−1p− ẋr(t)) + u (1.18a)

= −∇qH − b∇pH + bẋr(t) + u (1.18b)

Rewriting equations in state-space form,[
ṗ

q̇

]
=

[
−b −1

1 0

][
∇pH

∇qH

]
+

[
b 1

−1 0

][
ẋr(t)

u

]
(1.19)

The vertical velocity ẋr(t) and actuator force u act as external inputs to the system.

Input due to actuator and road disturbance can be written separately, which leads to

the representation of the form[
ṗ

q̇

]
︸︷︷︸

ẋ

=

{[
0 −1

1 0

]
︸ ︷︷ ︸

J

−

[
b 0

0 0

]
︸ ︷︷ ︸

R

}[
∇pH

∇qH

]
︸ ︷︷ ︸
∇H(x)

+

[
1

0

]
︸︷︷︸

g

u+

[
b

−1

]
︸ ︷︷ ︸

d

ẋr(t) (1.20)

The above equation can be written in generalised form as:

ẋ = [J−R]∇H(x) + gu+ df (1.21)

where f = ẋr(t) is the input from the road, and u is the input from actuator.
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1.4.1.1 Case (i): Conservative System

We first consider an undamped case with external inputs set to zero. In this case, the

system is assumed to be initially excited. Then the PCH form reduces to[
ṗ

q̇

]
=

[
0 −1

1 0

]
︸ ︷︷ ︸

J

[
∇pH

∇qH

]
(1.22)

The change in systems energy can be found by taking time derivative of H, which is

Ḣ = (∇pH)ṗ+ (∇qH)q̇ =
[
∇pH ∇qH

] [ṗ
q̇

]
(1.23)

Ḣ =
[
∇pH ∇qH

] [0 −1

1 0

]
︸ ︷︷ ︸

J

[
∇pH

∇qH

]
= 0 (1.24)

The above equation suggests that the change in the system energy is zero, which means

that the energy present in the system is exchanged between the storage elements mass

and spring, whose energy exchange is captured by the interconnection matrix J.

1.4.1.2 Case (ii): System With Damping

The dynamics are given by, [
ṗ

q̇

]
=

[
−b −1

1 0

]
︸ ︷︷ ︸

J-R

[
∇pH

∇qH

]
(1.25)

If we see the change in the systems energy,

Ḣ =
[
∇pH ∇qH

] [ṗ
q̇

]
(1.26a)

=
[
∇pH ∇qH

]{[0 −1

1 0

]
︸ ︷︷ ︸

J

−

[
b 0

0 0

]
︸ ︷︷ ︸

R

}[
∇pH

∇qH

]
(1.26b)

= −(∇pH)b(∇pH) (1.26c)
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The change in the systems energy is negative, which means that the damping element

dissipates the systems energy. The resistive/ damping properties of the system are

captured by the resistive matrix R, where R ≥ 0.

1.4.1.3 Case (ii): System With External Inputs

The system equations are given by,[
ṗ

q̇

]
=

[
−b −1

1 0

][
∇pH

∇qH

]
+

[
1

0

]
u+

[
b

−1

]
ẋr(t) (1.27)

The change in the systems energy is given by,

Ḣ = −(∇pH)b(∇pH)︸ ︷︷ ︸
power dissipated by damper

+ (∇pH)u︸ ︷︷ ︸
Power input by actuator

+ (∇pH)bẋr(t)− (∇qH)ẋr(t)︸ ︷︷ ︸
power input due to road excitation

(1.28)

For the system to be stable in presence of the road disturbance, the change in en-

ergy Ḣ(t) must be negative. This can be done by adding active damping (actuator

generating force similar to damper). Additionally, the systems characteristics can be

shaped using actuator force to get the desired response and meet the performance

requirements.

1.5 Interconnection And Damping Assignment Pas-

sivity Based Control

Interconnection and Damping Assignment Passivity Based Control (IDA-PBC) is

one of the the popularly used passivity based control (PBC) techniques to design

the control law for PCH systems. The control law is designed based on the physical

properties of the system where the state feedback is chosen by shaping the kinetic

and potential energies while assigning the desired damping such that the closed-loop

port-Hamiltonian structure is preserved. The closed-loop dynamics of the system are

described below:

ẋ = (Jd −Rd)∇Hd(x) (1.29)
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where Jd ∈ Rn×n is the desired or closed-loop interconnection and Rd ∈ Rn×n is the

desired dissipative matrix, such that Jd = −JT
d and Rd = RT

d ≥ 0. The function

Hd(x) : Rn → R+ is the desired energy function which must be continuously differ-

entiable. It must be noted that Hd(x
∗) = 0 with x∗ strict (local) minimizer of Hd.

If g⊥ : Rn → R(n−m)×n represents the full rank left annihilator of the matrix g,

i.e., g⊥g = 0 for all x ∈ Rn and rank(g⊥) = (n − m), the classical solution of the

IDA-PBC design problem depends upon the solution K : Rn → Rn of the so-called

matching equation, namely the system of equations

g⊥[(J−R)∇H(x)− (Jd −Rd)(∇H(x)+K(x)] = 0 (1.30)

where ∇Hd(x) = ∇H(x) + K(x) denotes the gradient vector of the desired en-

ergy function Hd. Note that the mapping K must satisfy the condition ∂K/∂x =

(∂K/∂x)T , thus ensuring integrability of K (Nunna et al., 2015).

1.5.1 Example: Control Of 1DOF Mass Spring Damper Sys-

tem With Base Excitation Using IDA-PBC

The closed-loop kinetic and potential energies of the system can be shaped by mod-

ifying the inertia and stiffness terms. If the desired total energy of the system is

considered as,

Hd(p, q) = τd(p) + νd(q) (1.31a)

=
1

2
pTm−1

d p+
1

2
qTkdq (1.31b)

where md > 0 is the desired inertia (mass) to shape the desired kinetic energy τd(p)

and kd > 0 is the desired stiffness coefficient used to shape the potential energy νd(q).

The velocity term q̇ in equation (1.17) can be now rewritten as,

q̇ = m−1p− ẋr(t) (1.32a)

= m−1mdm
−1
d p− ẋr(t) (1.32b)

= m−1md∇pHd − ẋr(t) (1.32c)
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To maintain the skew-symmetric nature of Jd and Rd = RT
d ≥ 0, they are chosen as,

Jd =

[
0 −mdm

−1

m−1md 0

]
, Rd =

[
dd 0

0 0

]
(1.33)

Therefore, the closed-loop dynamics of the system can be written as,[
ṗ

q̇

]
=

[
−dd −mdm

−1

m−1md 0

][
∇pHd

∇qHd

]
+

[
b

−1

]
ẋr(t) (1.34)

The corresponding state feedback law is given by,

u = −dd∇pHd −mdm
−1∇qHd + b∇pH +∇qH (1.35a)

= −(ddm
−1
d − bm

−1)p− (mdm
−1kd − k)q (1.35b)

From the above equations (1.31), (1.34) and (1.35), it can be seen that the closed-loop

dynamics can be modified by shaping the kinetic energy using md, potential energy

by choice of kd, and dissipation can be modified by using dd. From the perspective

of the closed-loop physical system, md can be understood as the desired mass, while

kd can be assumed as the stiffness, and dd the damping coefficient of the closed-loop

system. From equation (1.34), it can be noted that the change in the desired inertia

modifies the interconnection structure Jd, which effects the overall system properties.

1.5.2 Effect Of Control Parameters On The Performance In-

dices And Constraints

From the closed-loop dynamics of the system, it is obvious that the desired character-

istics of the system can be obtained by proper choice of closed-loop inertia, stiffness

and damping coefficients md, kd and dd, respectively. Therefore, it is necessary to

study the effect of these parameters on the performance indices, namely acceleration

of the sprung mass, suspension deflection and dynamic load.

Figure 1.4 illustrates the frequency responses of the acceleration ẍ with respect

to the road displacement xr, for change in kd, dd and the uncontrolled (passive)

cases of 1DOF system respectively. The passive system has a resonant frequency

of ≈ 3Hz. The desired stiffness and damping of the system can be modified by

adjusting the values of gains corresponding to the states q and p, respectively, in
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Figure 1.4: Frequency response of Sprung mass acceleration to road displacement

the feedback law (1.35). With reduction in the desired stiffness of the system, the

resonant frequency shifts to the left side and attenuation in the gain at the resonant

frequency, and in the frequency range ≈ (1 − 10Hz) is observed. Increase of the

closed-loop damping coefficient dd reduces the gain around the resonant frequencies.

Thus, by modifying the closed-loop stiffness and damping coefficient kd and dd, the

reduction in acceleration can be observed over a range of frequencies indicating overall

improvement in the ride comfort.

1.6 Research Motivation

Results of 1DOF active suspension system suggest that by suitable choice of closed

loop energy function parameters kd,md, and damping coefficient dd, the performance

of the closed-loop system can be altered. However, 1DOF is a fully actuated mechan-

ical system. Quarter-car and half-car active suspension systems are under-actuated

mechanical systems with more than one degree-of-freedom. The design and choice

of the control parameters for quarter and half-car models is a challenging task since

improvement of one control objective may lead to deterioration the other perfor-

mances. Moreover, incase of quarter-car and half-car systems, which happen to be

under-actuated mechanical systems, solving PDEs to obtain closed-loop energy func-

tion and state feedback law is a difficult task. The choice of the desired inertia matrix
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changes the control structure and behaviour of the closed-loop system.

1.7 Thesis Organization

The whole thesis is organized into six chapters as follows,

Chapter 1: This chapter includes quarter-car and half-car active suspension system

models, Port-Controlled Hamiltonian (PCH) Framework, Interconnec-

tion and Damping Assignment Passivity Based Control (IDA-PBC).

Chapter 2: State-of-the-art related various popular active suspension control tech-

niques, Passivity Based Control methods, identified research gaps and

research objectives are discussed in this chapter.

Chapter 3: Design and analysis of an IDA-PBC controller for quarter-car active

suspension system is presented in this chapter. Various cases of the

controller arising from the choice of desired inertia matrix are discussed

in detail. Experimental results of the control implemented on a bench

scale model of active suspension system are presented.

Chapter 4: Design of an observer for estimating the states of the quarter-car active

suspension system modelled in port-Hamiltonian form for implementing

IDA-PBC full-state feedback law is presented in this chapter. Experi-

mental results of the IDA-PBC control law implemented on the bench

scale model of active suspension system using state estimates resulting

from observer design are detailed.

Chapter 5: This chapter presents the design and analysis of an algebraic IDA-PBC

controller for half-car active suspension system. Various cases of the

control arising from the choice of the desired inertia matrix, and their

effect on the performance indices is analysed with the help of simulation

results.

Chapter 6: This chapter concludes the contributions of the proposed research work

and also discusses about scope for the possible future works.
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1.8 Summary

This chapter presents a brief introduction to vehicle suspension systems, and different

models of vehicle suspension systems relevant to the control of vertical dynamics. Per-

formance requirements of suspension system are presented for half-car and quarter-car

models of active suspension systems. PCH framework and IDA-PBC are introduced

with the help of a 1DOF active suspension system.
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An good suspension system must improve the ride quality of the system while

ensuring the ride stability and maintaining rattle space requirements. These multiple
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requirements are often contradictory. Active suspension systems consist of an elec-

tronically controlled actuator whose characteristics can be modified by designing a

control law using the feedback from several sensors present on the system. Therefore,

active suspension control is a control engineering problem.

Numerous control strategies have been proposed to address the problem of perfor-

mance improvement of active suspension systems in the literature. Depending on

the perception of the control engineer, the problem has been addressed in multiple

formats.

Some of the major contributions and ideas to this application are discussed in this

chapter.

2.1 Control Of Active Suspension Systems

2.1.1 Sliding Mode Control

Sliding mode control (SMC) is a model based control law which is characterised by a

discontinuous feedback control structure that switches as the system crosses certain

manifold in the state space to force the system states to reach, and subsequently

to remain on a specified surface within the state space called sliding surface. It is a

model based control law which can guarantee the invariance for matched uncertainties

and disturbances having a known bound (Deshpande et al., 2014). Active suspension

control using SMC has been explored vastly in literature.

A disturbance observer based SMC intended to reduce the sprung mass acceleration

is proposed in (Deshpande et al., 2014), where the effect of road disturbance, non-

linearities of spring and damper are estimated and negated using the control law.

Further, the control law is designed to obviate the need of unsprung mass sensor.

SMC in combination of inertial delay observer and controller is designed and experi-

mentally validated in (Gupta et al., 2016). In this method, all the states of the system

are estimated along with uncertainties, and control law is designed to address the un-

certainties and reduce the sprung mass acceleration with only sprung mass position

measurement.

The disadvantage of SMC is that it suffers from chattering (high frequency switching).

A higher order SMC using Super Twisting Algorithm (STA) is applied and experi-

mentally evaluated to improve the performance characteristics of Active suspension
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system in (Ozer et al., 2018). The results obtained are observed to be superior than

conventional SMC.

Presence of delay in data acquisition would lead to deterioration of the system per-

formance, sometimes even making it unstable if the delay is very high. An SMC is

designed considering data acquisition delay and input control disturbance in (Alves

et al., 2014). This work also addresses and compares the SMC design in discrete and

continuous time modes.

Different physical structures of active suspension models are available in vehicles.

One such structure is double-wishbone structure. An equivalent 2DOF model of dou-

ble wishbone active suspension system considering suspension kinematic structure

and rubber properties, is derived, and the equivalent 2DOF model parameters are

estimated. SMC is designed for the system and the control law is compensated for

double wishbone structure variables. The results are experimentally validated on a

bench scale model (Qin et al., 2020a).

SMC with disturbance observer for nonlinear 2DOF system combined with skyhook

model is proposed on active suspension in (Qin et al., 2020b). A skyhook model is

considered as reference for the sprung mass displacement to improve the convergence

of suspension deflection to zero in finite time.

Terminal SMC is proposed and experimented on 2DOF prototype in (Pan et al., 2015)

to improve the convergence rate of the system while considering the hard constraints

such as dynamic tire load and suspension spaces. A second-order sliding mode algo-

rithm is designed to address the problem of chattering and designing smooth switching

control law.

A hydraulic actuator is generally used in the vehicle active suspensions which is con-

trolled by an input voltage or current signal generated using feedback control law.

The dynamics of the actuator play an important role in the design of control law.

Output feedback based Terminal SMC is proposed on quarter-car active suspension

systems in (Rath et al., 2016) where the actuator dynamics are also considered in

the control law design. Using only suspension deflection as the measurable output, a

high gain observer is designed to estimate the remaining states, thus addressing the

complexity of sensor placement in unsprung mass, and the control law is designed

using the state estimates.

SMC in combination with Fuzzy logic control (FLC) has been studied in recent liter-

ature for control of active suspension system in (Lian, 2012) and (Pang et al., 2020)
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to minimise the dependence on the accuracy of the model, designing a better sliding

surface with lower control gains, and designing fault tolerant control methods.

2.1.2 H∞ Control

H∞ Control is a method where the objective is expressed as a mathematical opti-

misation problem and solved. These methods have been widely explored for design

of active suspension since it can be treated as a optimisation problem. Controlling

multiple states and outputs whose performances are contradictory can be formulated

as an optimisation problem.

Constrained H∞ control design for active suspension control of quarter-car (2DOF)

and half-car models (4DOF) is proposed in (Chen and Guo, 2005) and (Chen et al.,

2005), respectively. The state feedback control law is designed for the constrained H∞

problem by formulating the problem in linear matrix inequality (LMI) optimisation

framework and multi-objective control. The sprung mass acceleration which defines

the ride comfort is measured in terms of H∞ performance for an assumed bounded

value of maximum disturbance energy, while the remaining outputs (suspension stroke

and road holding) and inputs (actuator forces) are analysed in terms of time domain

signal responses. The design of constrained H∞ control for half-car active suspension

system where the non-linear dynamics of the actuator are considered in (Ma and

Chen, 2011). In this work, first a state feedback H∞ control law is designed for linear

subsystem to improve the ride performance in terms of H∞ norm and considering

the time domain constraints of suspension stroke and dynamic tire load, and then

backstepping technique is applied to deal with the non-linear actuator dynamics.

In (Sun et al., 2011), a finite frequency H∞ control design is proposed for quarter-car

active suspension system, where the designed is targeted to improve the ride comfort

in a fixed frequency range (4-8Hz) where the response of the human body to vibra-

tions is more sensitive. Further, the design also considers a fixed delay in the actuator

input to improve the performance of the designed control law.

Multi-objective H∞ control for quarter-car active suspension with time-varying ac-

tuator delay is proposed in (Li et al., 2012). In this work, a probability distributed

actuator delay is considered, and the system is converted into a stochastic system to

design the control law using stochastic stability theory. Controller design using H∞

method for half-car active suspension system is presented in (Du and Zhang, 2008)

23



where both the actuators suffer from a time delay which is bounded and equal. The

validity of the proposed method is verified using simulation results, and the proposed

method gives better results compared to the conventional method for the systems

which possess delay in the control input.

An output feedback H∞ control design is presented in (Li et al., 2013a) where the

control design considers a variable, bounded delay in actuator. The output feedback

controller was designed to minimise the H∞ norm of sprung mass acceleration to dis-

turbance transfer function mainly in the frequency range of 4-8Hz.

A problem of uncertainties in the actuators is addressed in (Li et al., 2013b) where a

non-fragile H∞ control design which is insensitive to the gain changes in the feedback

control is proposed for a half-car active suspension system. A non-fragile H∞ control

design for quarter-car system is designed considering uncertainties in time varying

actuator delay and experimental validation of the proposed method is presented in

(Li et al., 2019), which showed a better performance compared to the conventional

H∞ design.

A memory state feedback H∞ controller is proposed to improve the H∞ performance

of the quarter-car and half-car active suspensions suffering from input-control delay

in (Afshar et al., 2018) and (Karim Afshar and Javadi, 2019). The authors present a

new formula to obtain a prediction vector from the dynamics of the system, and the

controller is deigned using prediction vector such that the effect of time-delay on the

system performance of the closed-loop system is minimised.

H∞ controller integrated with PID controller is designed and tested on a quarter-car

experimental set-up by (Erol and Delibaşı, 2018). In this work, the H∞ norm of the

transfer function between vertical acceleration and input disturbance is minimised.

In this work, a non convex solution region is reduced to a convex region by an inner

LMI approximation technique.

2.1.3 Backstepping Control

Backstepping control is a popular technique to design controllers to stabilise dynam-

ical systems based on the idea of Lyapunov function. This design can be applicable

to a special class of dynamical systems with strict feedback form or lower triangular

form. Backstepping control of active suspension systems has been widely explored in

literature.
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Adaptive backstepping controller design is presented for quarter-car and half-car ac-

tive suspension models in (Sun et al., 2014) and (Sun et al., 2012). The controller

design considers nonlinearities in the spring and damping coefficients of the suspen-

sion system, and a virtual control law is design for a lower order subsystem to stabilise

asymptotically. Then, an adaptive control law is designed such that the error between

the actual control signal tracks the desired or virtual control signal in presence of the

uncertain parameters. Controller design presented in (Sun et al., 2012) is extended

in (Sun et al., 2015) where the dynamics of electrohydraulic actuator are considered

in the controller design. Backstepping controller design often requires calculating

derivatives of the lower order terms in the virtual control law, which is difficult to

obtain. This paper uses proposes a filter design to estimate the derivatives without

the need to differentiate the terms.

The problem of actuator delay in quarter-car active suspension is addressed in (Pang

et al., 2019a), where, first estimate of uncertainty in sprung mass is done using a

projector-operator based adaptive control law, and the control law is design using

backstepping control technique.

A disturbance observer based output feedback backstepping control law is proposed in

(Yilmaz and Basturk, 2019) where an observer is designed to estimate the disturbance

and the unknown states, assuming that only the knowledge of sprung mass states is

known. However, this work assumes that the sprung mass velocity is measurable,

which is generally difficult.

Backstepping controller in combination with neural networks is proposed in (Al Aela

et al., 2022) for nonlinear quarter-car system, and an adaptive control law is used to

estimate the uncertainties in the actuator parameters. The results presented show

overall improvement in the frequency response of the sprung mass acceleration against

the road frequency, when compared to that of passive system.

2.1.4 Linear Quadratic Regulator

Linear Quadratic Regulator (LQR) is an optimal control approach aimed to design a

closed-loop control system by generating optimal feedback control gains to improve

the performance of the dynamical system at minimum cost. The state feedback gains

are obtained by minimising a quadratic function known as cost function. The cost

function is a function of system states and input weighted appropriately to maximise
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the performance and minimise the cost or input.

Active suspension control using LQR has been vastly explored in literature. Design

and control of LQR for half-car active suspension system is presented in (Taghirad

and Esmailzadeh, 1998). A detailed analysis of LQR method for quarter-car ac-

tive suspension system, and the effect of the weighting functions on the performance

indices is compared in (Rajamani, 2011) using the frequency responses of the perfor-

mance indices. The results suggest that the performance of the closed-loop system

completely depends on the choice of the weights in the quadratic function.

2.2 Port-Hamiltonian Systems And Passivity Based

Control Methods

Classical control design approaches are mainly based on the signal processing view-

point, where the plant and controller are viewed as signal processing devices which

transform certain inputs to outputs. Many a times, complex dynamical systems may

be studied by decomposing them into simpler subsystems and treating them as en-

ergy transformation devices. These subsystems, upon interconnection, add up their

energies and define the behaviour of overall system. Further, the controller can also

be considered as another energy transformation device, whose actions can be inter-

preted in terms of additional interconnection to the system and its contribution to

the energy and behaviour of the system. This perspective allows the control problem

to be recast as finding a closed loop dynamical system whose overall energy func-

tion is modified by the controller to take the desired form. Passivity-based control

(PBC), a well-known controller design method in mechanical systems, is based on

this “energy-shaping” approach. Passivity-based control (PBC) is a form of system

control that involves shaping the physical energy of the system with the help of a

feedback structure Ortega et al. (2001). Several variations in the concept of PBC

have evolved with the advancement of control theory and modelling techniques, lead-

ing to various control techniques in this direction. Application of PBC to electrical,

mechanical and electromechanical systems modelled in Euler-Lagrangian formulation

have been discussed in detail manner in Ortega et al. (2013). A vision based three

dimensional target tracking based on PBC is discussed in Fujita et al. (2006), which

is one of the noted works in PBC for tracking systems. Interested readers can refer to

26



Pare Jr (2001), (Venkatraman, 2010), Van Der Schaft and Jeltsema (2014), (Ryalat,

2015), and other references.

When designing a controller based on the energy and physical properties of the sys-

tem, incorporating the prior information in terms of its energy parameters makes

it easier to design the closed-loop system and control law. Modelling of dynamical

systems in terms of their interconnection structure, resistive structure, and energy

storage (Hamiltonian) function is well defined by port-controlled Hamiltonian (PCH)

framework, which makes it suited for carrying out basic steps of PBC, i.e, modifying

the energy function and adding dissipation (SCHAFT, 2000). This structure is well-

established formulation, and it has been used to build many PBC techniques (Ortega

et al., 2002), Van Der Schaft and Jeltsema (2014), Ortega et al. (2008), (Nageshrao

et al., 2015),(Zhang et al., 2017), (Alkrunz and Yalçın, 2019).

2.2.1 Interconnection And Damping Assignment Passivity

Based Control

Interconnection and damping assignment passivity based control (IDA-PBC) is one

of the eminent control techniques of PBC which was introduced to control physical

systems modelled in PCH structure (Ortega et al., 2002). The design process of IDA-

PBC consists of assigning energy function to the closed-loop system, and modifying

the interconnection and damping structures while preserving the PCH structure of

the controlled system. The design procedure comprises of designating desired inter-

connection and damping structures, and solving a set of partial differential equations

(PDE) known as matching equation to obtain the closed-loop energy function and

static state-feedback law. This approach is appealing in that the system can be in-

terpreted in terms of its physical parameters such as spring stiffnesses, dampers, and

inertias, and the control structure can be realised in terms of adjusting the physical

structure of the system by incorporating virtual springs and dampers to achieve the

desired behaviour (Nunna et al., 2015).

Numerous applications of IDA-PBC in various fields including electrical, mechanical,

aerospace and other branches have been reported in the literature since its intro-

duction. Few recent works in electrical engineering applications include control of

PMSM (Yu et al., 2013), Suppression of low frequency oscillations in traction net-
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works(Liu et al., 2018),control of grid connected inverter interfacing a photovoltaic

system,(Barman et al., 2018),control of DC/DC converters (Pang et al., 2019b), con-

trol of dual active bridge converter for microgrid aplications (Cupelli et al., 2019),

three phase rectifier control for stable interfacing of AC and DC microgrids (Lapique

et al., 2022), to name a few.

Few recent noted applications of IDA-PBC for mechanical systems include control of

quadrotor unmanned aerial vehicle (Yüksel et al., 2019), motion control of 2DOF self-

balancing robot(Gandarilla et al., 2019), vibration suppression of mechanical systems

(Cornejo and Alvarez-Icaza, 2012), (Aoki et al., 2016), control of vehicle suspension

systems (Renton et al., 2012), (Xiao and Zhu, 2014) and (Hao et al., 2022).

2.2.2 Recent Trends In IDA-PBC

Several developments in IDA-PBC have been proposed in the literature, sometimes

combining it with other control procedures. Model reference adaptive control based

IDA-PBC is proposed to improve the robustness of under-actuated mechanical sys-

tems suffering from matched disturbances (Haddad et al., 2018). The proposed

method, when demonstrated to stabilise on an inertia wheel pendulum shows im-

proved results when compared to the preliminary design. An adaptive IDA-PBC

is designed for underactuated mechanical systems with constant matched and un-

matched disturbances in (Franco, 2019). In this method, an estimate of disturbance

is found out, and an additional term is added in the IDA-PBC design to compensate

the disturbance. An integral action is added to the IDA-PBC design (Ferguson et al.,

2017) to improve the robustness of IDA-PBC for systems which preserves the PCH

structures and rejects the unknown disturbances for large class of systems. An IDA-

PBC design along with an integral action is used for output voltage reference tracking

of boost converter in micro-grid application (Montoya et al., 2021), and micro-grid

connected inverter control to deal with the uncertain system dynamics in (Khefifi

et al., 2019) .

A relation between IDA-PBC and LQR is for LTI systems is studied in (Vu and

Lefèvre, 2018), showing how the optimal design can be used in the design of IDA-

PBC. The problem of time delay in the actuator while designing IDA-PBC for linear

time invariant systems is addressed in (Mattioni et al., 2020). The design is proposed

assuming that the solution of the IDA-PBC exists without time-delay, and the results
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suggest improved performance when compared to the controller designed without the

time delay in the actuator.

2.2.3 On The Obstacle Of Solving Matching Equation

The design of IDA-PBC involves shaping the closed-loop energy function to find the

feedback control law, requires solves a set of PDEs known generally known as match-

ing equation. Solving matching equation is a barrier in the design procedure, and has

attracted lot of attention of the researchers. Various methods have been suggested in

the recent past to overcome this obstacle.

A coordinate transformation method is proposed in (Viola et al., 2007) to simplify

the solution of PDE for mechanical systems in IDA-PBC design, where the need for

positive definiteness of the kinetic energy of inertia matrix is obviated. This method

is verified on a pendulum on a cart system where the inertia matrix is a function

of displacement coordinates. A new constructive procedure for shaping the energy

of port-Hamiltonian systems is proposed in (Borja et al., 2016) which obviates the

need to solve the PDEs. However, the closed-loop structure does not preserve the

PCH structure in closed-loop. Nunna et al. (2015) propose a constructive IDA-PBC

method for PCH systems, by using algebraic method. In this method, first a dynamic

control law is used to stabilise the desired equilibrium of the closed-loop system, which

does not preserve the closed-loop structure. Then, an additional dynamic control law

which allows the preservation of PCH structure of closed-loop extended system cor-

responding to an auxiliary energy function, interconnection and damping matrices is

designed.

Stabilisation of a roll balancing system is presented using IDA-PBC in (Donaire et al.,

2016), where the need to solve PDEs is eliminated by using a two stage procedure.

In the first stage, a partial feedback linearisation is performed, which preserves the

Hamiltonian structure, and then an energy function like Lyapunov energy-like candi-

date function is designed to stabilise the system. An algebraic IDA-PBC is proposed

for a class of systems in (Cieza and Reger, 2018) where there is no need to solve

PDEs. The conditions are solve using semi-definite programming. A newly devel-

oped method to solve the matching equations is proposed in (Harandi and Taghirad,

2021b), where the matching equations are transformed into what are called Pfaffian
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differential equations. The effectiveness of the proposed method is demonstrated by

designing controller to standard systems like magnetic levitation system and a cable

driven robot system. A procedure for shaping the kinetic energy of an underactuated

mechanical systems is proposed to simplify the solution of PDEs in (Harandi and

Taghirad, 2021a). This is applicable to large class of nonlinear mechanical systems

where the inertia is matrix is nonlinear, and the degree of underactuation is one.

2.3 Observer Methods For PCH Systems

State observers or estimators are important for many reasons. Many a times, con-

troller requires a full state feedback control law for achieving best results. However,

full state feedback may not always by possible due to unavailability of the sensors,

complexity in the placement of sensors, noise entering into the sensors etc,. Numerous

techniques are available in literature for state estimation.

Most of the control techniques available in literature for control of active suspension

systems demand full states for implementing the state feedback. However, measure-

ment of all the state, especially unsprung mass states may not be easy due to place-

ment of sensors. In case of mechanical systems, measurement of velocities or momenta

states is a long standing problem Astolfi et al. (2010). Implementing state-observers

can help solve this problem. Using observers to implement the control algorithm pro-

vides the added benefit of reducing measurement noise entering into the controller

Yaghmaei and Yazdanpanah (2018). This state-of-art related to the observer design

in port-Hamiltonian systems is presented in this section.

An augmented and feedback observer is proposed in (Wang et al., 2005) for a large

class of PCH systems, which is adaptive with respect to perturbations in the param-

eters. This observer design is integrated to implement a H∞ controller for a power

system application. However, this observer design is based on measurable passive

output, which may not always be possible. An observer design for a class of underac-

tuated mechanical systems is presented in (Venkatraman et al., 2008), where the well

know immersion and invariance method is used to estimate the momenta states under

the assumption that the displacement states are measurable. This may not be well

suited for suspension system state estimation, since measurement of tire displacement

is difficult due to complexity in placement of sensors. A full order observer design is

designed for a more general class of system modelled in PCH form in (Venkatraman
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and Van der Schaft, 2010). This work proposes a globally stable full order observers

designed based on passivity property. (Biedermann et al., 2018) proposed a passivity

based observer design which resembles feedback stabilization of systems by IDA-PBC

for PCH systems. This method is applicable for large class of state affine systems.

Yaghmaei and Yazdanpanah (2018) proposed an observer design for large class of

port-Hamiltonian systems based on the contraction analysis., which is applicable to

large class of electromechanical and mechanical systems. The observer design process

involves solving matching equation which is similar to the controller design process

of IDA-PBC. This method can be considered as a equivalent of IDA-PBC for state

estimator design. One of the major advantages of this method is that the output of

the system is not equal to the passive output, which represents velocity in mechanical

systems, while the measurable outputs would be displacements and velocities.

2.4 Summary Of Literature Survey

The prospect for designing a controller to improve the performance of active suspen-

sion systems has been a line of research since the introduction of automotive systems.

Several methods have been proposed and analysed using simulation and experimental

results. Based on the technique used, the approaches addressed in the literature can

be classified into different categories. H∞ control improves performance by minimis-

ing system norms while confining time domain signals, whereas LQR reduces the cost

function of the desired performance indices. Recursive methods like backstepping

have been intensively examined, as have robust control methods like SMC, which

are built based on variable structure to approach the equilibrium point. Most of the

control techniques discussed in the literature for active suspension control are based

on signal conditioning properties or asymptotic stabilisation or error dynamics.

Due to its essential notion of altering the energy and physical properties of the closed-

loop system, passivity-based control, a control approach based on the passivity prop-

erties of the systems, has found diverse applications. Because the design is based on

the physical properties of the system, the structure-preserving properties of IDA-PBC

for PCH systems have received a lot of attention. The control law can be designed

and investigated for mechanical systems such as active suspension systems by shap-

ing the total energy of the closed-loop system and designing and tweaking the control

parameters in terms of physical qualities such as stiffness and damping coefficients.
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2.5 Identified Research Areas

Although IDA-PBC has been a great topic of research, and explored on variety of

systems including electrical, mechanical and electromechanical systems, the effective-

ness and advantages of the control technique in improving the performance of active

suspension system properties have not been explored in detail. Based on the priorities

of the performance requirements, the control design can be chosen by changing the

modifying the structure of the closed-loop energy function.

It is observed that to achieve the desired performance characteristics of the active

suspension system, control law demands a full state feedback, which is often not pos-

sible due to inability to measure or sense all the states. In case of active suspension

systems, measuring the tire and unsprung mass states is difficult due to complexity

in placement of sensors. Several observer design have been proposed and used in the

literature in this regard. However, implementation of IDA-PBC for active suspension

systems modelled in port-Hamiltonian form remains incomplete.

The IDA-PBC design technique entails determining the necessary interconnection and

damping structures, as well as solving a set of partial differential equations (PDEs)

known as the matching equation to synthesise the closed-loop energy function and

static state-feedback rule. PDE solutions are notoriously difficult to find, which has

been a research difficulty in the development of the IDA-PBC approach. Half-car

active suspension is a higher-order, underactuated complicated mechanical system

that requires solving multiple (two) PDEs with a bigger number of states (four) to

obtain a solution for closed-loop or desired potential energy. The difficulty can be

simplified by selecting the appropriate inertia matrix. However, selecting the desired

inertia matrix is a challenging task that has a significant impact on the closed-loop

system’s behaviour. A decision of inertia matrix can be made based on the notion of

quarter-car controller design. According to the author’s knowledge, no half-car active

suspension system control employing IDA-PBC has been attempted in the literature.

2.6 Research Objectives

After thorough literature survey on Active suspension system control, this work aims

to design and analyse static feedback control law for quarter-car and half-car models

of active suspension systems using IDA-PBC. The proposed research objectives of
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this work are:

1. Design a state feedback control law using IDA-PBC for a quarter-car model of

active suspension system. Modifying the structure of the inertia matrix and its

effect on the stiffness and damping coefficients will be used to analyse the per-

formance of the closed-loop system. Experimental evaluation and comparison

of the results produced by choosing different control topologies on a bench size

model of a quarter car active suspension system.

2. Design of an observer for quarter-car active suspension system assuming that

only suspension stroke as the measurement available. Implementation of a full

state IDA-PBC control law on the system using state estimates acquired with

observer, and comparison of performance to a design with all states available

for feedback.

3. Design a state feedback IDA-PBC control law for half-car model of active sus-

pension system. Based on the choice of inertia matrix, derive the closed-loop

potential energy function, and the corresponding state-feedback law. Analyse

and compare the performance of the closed-loop system with the derived control

topologies.

2.7 Summary

A detailed literature review of numerous methods for control of quarter-car and half-

car active suspension systems is presented in this chapter. Recent developments in

IDA-PBC and its applications to various systems are briefed to show its versatility.

Major contributions in the literature to solve the problem of matching equation in

IDA-PBC design are highlighted. A brief discussion on the observer design methods

available in literature for PCH systems are presented.
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Chapter 3

Design and performance

comparison of IDA-PBC for

vibration suppression in Active

suspension systems
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In this chapter, design of an IDA-PBC controller is presented for a quarter-car ac-

tive suspension system. The control law is designed considering an arbitrary bounded

disturbance in acceptable limits. Four cases of the controller are chosen based on the

structure of the desired inertia matrix, and simulation and experimental results for

these cases are presented in terms of time and frequency responses.

3.1 System Description

Figure 3.1: Double mass-spring damper used to model active suspension experiment

Figure 3.1 depicts a model of a quarter-car active suspension system. Mass mb rep-

resents one-fourth of the mass of the chassis which is supported by spring ks, damper

with damping coefficient bs and an active force element us. The cumulative mass of

the wheel, rim, brake and other linkage elements is represented by mw. The road

input xr acts on the wheel whose stiffness and damping coefficients are represented
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by kt and bt respectively. xb and xw represent the displacements of chassis and wheel

from their equilibrium points respectively.

3.1.1 Port-Hamiltonian Model Of Active Suspension System

This section presents a port-controlled Hamiltonian model of a quarter-car active

suspension system. Detailed derivation of the model is given in Appendix A. The

displacement coordinates of the system are defined as q1 = (xw − xr) and q2 =

(xb − xw). The momenta coordinates are derived as p1 = mwẋw + mbẋb and p2 =

mbẋb. Defining xT =
[
pT qT

]
, where pT =

[
p1 p2

]
and qT =

[
q1 q2

]
, the port-

Hamiltoian model of the active suspension system in Figure 3.1 is given by:

ẋ = [J−R]∇H(x)+gus+df (3.1)

where J =

[
0 −I

I 0

]
, R =

[
D 0

0 0

]
, and I represents the identity matrix. The energy

function H(x) is defined as

H(x) = τ(p) + ν(q) =
1

2
pTM−1p +

1

2
qTKq (3.2)

where τ(p) and ν(q) denote the kinetic and potential energies of the system, respec-

tively. The matrices M and K are the inertia and stiffness matrices of the system

given by

M =

[
mw +mb mb

mb mb

]
K =

[
kt 0

0 ks

]
(3.3)

The Hamiltonian H(x) can be written as a quadratic function in terms of a positive

definite matrix Q as,

H(x) =
1

2
xTQx (3.4)

where

Q =

[
M 0

0 K

]
(3.5)

The term D represents the damping matrix consisting of the damping coefficients of

the system

D =

[
bt 0

0 bs

]
(3.6)
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The remaining matrices are defined as g =
[
GT 0

]T
where GT =

[
0 1

]
, dT =[

bt 0 −1 0
]

and f = ẋr(t). The performance requirements of the closed-loop

system can then be written in terms of state variables as:

3.1.2 Control Objectives

• Minimising the force ṗ2, which is a function of sprung mass acceleration ẍb to

improve the passenger ride comfort.

• Minimising the tire deflection and velocity q1 and q̇1, respectively, which are the

main factors contributing to dynamic tire load, to improve the contact forces

between tire and road, resulting in improved road holding and stability.

• Restricting the suspension deflection q2 within the allowable maximum limits,

that is, |q2| ≤ |q2max|.

In addition, the control design must be such that the amplitude of the actuator force

us lies within the feasible actuator limits, that is, |us| ≤ |usmax|.

3.2 Controller Design

In this section, the control law us is designed such that the system properties are

modified using the desired energy function while maintaining the PCH structure of

the closed-loop system. The desired energy function Hd(x) is chosen as

Hd(x) = τd(p) + νd(q) =
1

2
pTM−1

d p + νd(q) (3.7)

where τd(p) is the desired closed-loop kinetic energy profile, which can be modified

using the desired inertia matrix Md = MT
d , and νd(q) is the desired potential energy

function. The closed-loop dynamic system is defined as

ẋ = [Jd −Rd]∇Hd(x) + df (3.8)

where Jd and Rd are defined as,

Jd =

[
Ja −MdM−1

M−1Md 0

]
,Rd =

[
Dd 0

0 0

]
(3.9)
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Equating the open-loop and closed-loop system dynamics, we obtain

[J−R]∇H(x) + gus + df = [Jd −Rd]∇Hd(x) + df (3.10)

From equation (3.10), we can find that the disturbance term f is present on both

sides, implying that the control law modifies the closed-loop system properties based

on the desired energy function Hd(x), and renders the closed-loop system tight to

bounded arbitrary disturbance f . Rearranging equation (3.10),

gus = [Jd −Rd]∇Hd(x)−[J−R]∇H(x) (3.11)

The fourth order quarter-car active suspension system is controlled by a single actu-

ator, resulting in the following constraint:

g⊥([Jd −Rd]∇Hd(x)−[J−R]∇H(x)) = 0 (3.12)

where g⊥ is the left annihilator of g, that is g⊥g = 0, and rank(g⊥) = 3. If the

condition (equation (3.12)) is satisfied, the control force us can then be calculated by:

us = (gTg)−1gT([Jd −Rd]∇Hd(x)−[J−R]∇H(x)) (3.13)

Substituting for J,R,Jd,Rd,Hd,H and g, equation (3.12) redues to

G⊥(D∇pH+(Ja −Dd)∇pHd +∇qH−MdM−1∇qHd) = 0 (3.14)

where G⊥ is the left annihilator of G, i.e., G⊥G = 0, and rank(G⊥) = 1. Because

the two-degree-of-freedom (2DOF) quarter vehicle system is controlled by a single

actuator, the constraint (equation(3.14)) emerges as a result of the system being

under-actuated. Choosing the structure of νd(q) to be

νd(q) =
1

2
qTKdq (3.15)

where Kd is the stiffness matrix used to shape the desired potential energy νd(q)

of the closed-loop system. Equation (3.12) can be split into terms independent on

powers of p, terms dependent on D and Dd, and terms dependent on power of p,
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respectively.

G⊥(Kq−MdM−1Kdq) = 0 (3.16)

G⊥(JaM
−1
d p) = 0 (3.17)

G⊥(DM−1p−DdM−1
d p) = 0 (3.18)

The control objective is to choose Kd = KT
d > 0, Md = MT

d > 0, Dd = DT
d > 0, and

Ja = −JT
a such that equation (3.16), equation (3.17) and equation (3.18) are satisfied.

In this work, additional interconnection matrix Ja is chosen as zero to simplify the

control design. Parameterising Md and Dd as

Md =

[
a1 a2

a2 a3

]
, Dd =

[
b1 0

0 b2

]
(3.19)

Solving equation (3.16), the desired potential energy function is obtained as (Renton

et al., 2012),

νd(q) =
1

2
qTKdq =

1

2
qT

 ktmw

a1 − a2

+ α2kz αkz

αkz kz

q (3.20)

where α =
a1mb − a2(mw +mb)

mb(a1 − a2)
, and kz is a free parameter used to modify the desired

potential energy function. Solving equation (3.17) and equation (3.18), coefficients of

Dd are

b1 =
bt
mw

(a1 − a2) (3.21)

and b2 is a free parameter representing suspension damping coefficient in the closed-

loop. The closed-loop energy function Hd(x) can be written as a quadratic storage

function

Hd(x) =
1

2
xTQdx (3.22)

where Qd is given by

Qd =

[
Md 0

0 Kd

]
(3.23)
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The closed-loop Hamiltonian Hd(x) is chosen as the Lyapunov function for stability

analysis. Taking the time-derivative of Hd(x), we obtain

Ḣd = (∇Hd(x))T ẋ (3.24)

Substituting equation (3.8) in equation (3.24) we get,

Ḣd = xTQdJdQdx− xTQdRdQdx + xTQddf (3.25)

Due to the skew-symmetric property of Jd, Ḣd is reduced to

Ḣd = −xTQdRdQdx + xTQddf (3.26)

Now consider the term N = (xTQdd− fT ). Then we can write,

NNT = (xTQdd)(dTQdx)− xTQddf − fTdTQdx+fTf (3.27)

Rearranging the terms in equation (3.27),

xTQddf + fTdTQdx = (xTQdd)(dTQdx)+fTf −NNT (3.28a)

2xTQddf = (xTQdd)(dTQdx) + fTf −NNT (3.28b)

=⇒ xTQddf ≤ (xTQdd)(dTQdx) + fTf (3.28c)

Substituting equation (3.28c) in equation (3.26), we get the inequality

Ḣd ≤ −xTQdRdQdx + (xTQdd)(dTQdx)+fTf (3.29)

which can be written as,

Ḣd ≤ −xTQ
1/2
d (Q

1/2
d RdQ

1/2
d )Q

1/2
d x + xTQ

1/2
d (Q

1/2
d ddTQ

1/2
d )Q

1/2
d x+fTf (3.30)

If the disturbance f is assumed to be bounded such that fTf ≤ fmax, and defining ε =

(2λ1min−2λ2max) where λ1min corresponds to minimum eigen value of (Q
1/2
d RdQ

1/2
d )

and λ2max corresponds to maximum eigen value of (Q
1/2
d ddTQ

1/2
d ), the equation

(3.30) can be written as

Ḣd ≤ −εHd + fmax (3.31)
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If Qd, and Rd are chosen such that ε > 0, then the decay of Hd(t) can be guaranteed,

and solution of equation (3.31) is given by

Hd(t) ≤
{(
Hd(0)− fmax

ε

)
e−εt +

fmax
ε

}
= κ(t) (3.32)

Therefore, trajectories of states with initial conditions x(0) in the region defined by,

x(t) ={x(0) ∈ Rn|Hd(t) ≤ κ(t)} (3.33)

will stay inside the ellipsoid, which is the region of attraction, which proves the

stability of the closed-loop system (equation(3.8)).

3.3 Simulation And Discussion

In this section, the validity of the proposed control law is tested on a bench-scale

model of quarter-car suspension system. The specifications of the active suspension

experimental setup are listed in Table 3.1.

Based on the choice of the control variables a1, a2, a3, kz and b2, four cases of the

control law are presented in the following sections. Desired inertia matrix Md is

chosen by varying the value α from 0 to 1 using parameter a2. The free parameters

a1 and a3 are set as a1 = mw +mb and a3 = mb, which are same as that of open-loop

inertia matrix M. Simulation results for these different cases are shown when the

system is excited by a road profile shown in Figure 3.2.

Table 3.1: Quarter-Car Active Suspension System System Parameters

Parameter Value
Body mass (mb) 2.45 kg
Suspension stiffness (ks) 980 N/m
Inherent suspension damping constant (bs) 7.5 N.s/m
Tire mass (mw) 1 kg
Tire stiffness (kt) 2500 N/m
Inherent tire damping constant (bt) 5 N.s/m
Suspension travel range q2max 3.8× 10−2 m
Maximum disturbance xrp−p 3× 10−2 m
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Figure 3.2: Road profile for simulation analysis

Figure 3.3: Frequency response of ẍb(s)/xr(s) with varying b2

3.3.1 Controller 1: Active Damping Injection (ADI)

In this case, the kinetic and potential energy functions are chosen to be same as that

of the open-loop system, and only closed-loop damping is varied using free parameter

b2. This is obtained by choosing Md = M and kz = ks. By choosing kz equal to

ks, the resulting stiffness matrix becomes Kd = K. The closed-loop desired damping

matrix Dd takes the form,

Dd =

[
bt 0

0 b2

]
(3.34)

Comparing the open-loop damping matrix D (3.6) with the closed-loop damping

matrix Dd (3.34), it can be seen that the free variable b2 represents the closed-

loop suspension damping coefficient. The actuator acts like an additional damper

connected between xb and xw with the damping coefficient (b2 − bs). By varying the
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Figure 3.4: Time responses of ADI Controller design: (a) Sprung mass force,(b) Suspen-
sion deflection, (c) RDTL

value of b2, power dissipation in the system can be controlled. For higher value of

b2, the power dissipation increases and the system settles faster, but the suspension

becomes hard as the controller tries to minimise the suspension deflection q2, and the

propagation of vibrations from the road to the passenger increases thus reducing the

ride comfort. In contrast, choosing very low value of b2 would make the suspension

softer and improve the ride comfort. But this makes the suspension deflection very

high. Frequency response of the body acceleration for different values of b2 is shown

in figure 3.3. The frequency response of the body acceleration ẍb for different values

of b2 is shown in figure 3.3. Increasing the value of b2 reduces the gain at the resonant
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(a) (b)

Figure 3.5: Frequency response of ẍb(s)/xr(s) for PESADI

peaks, but increases the gain at higher frequencies. Therefore, with Active damping

injection, improvement in the ride comfort is limited. For very high values of b2,

the performance of the system degrades compared to the uncontrolled system. Time

responses of the sprung mass force ṗ2, suspension deflection q2 and RDTL are shown

in figure 3.4 for b2 = 60. The response of the closed-loop system shows considerable

reduction in peak value of suspension deflection when compared to the uncontrolled

system, whereas there is no improvement in peak values of sprung mass force ṗ2 and

RDTL.

3.3.2 Controller 2: Potential Energy Shaping And Damping

Injection (PESADI)

In this case, the closed-loop system is controlled by shaping the desired potential

energy function via free parameter kz in the closed-loop stiffness matrix Kd and

power dissipation is shaped using free parameter b2 in the closed-loop damping matrix

Dd. Desired inertia matrix is chosen as Md = M. The resulting closed-loop stiffness

matrix is given by,

Kd =

[
kt 0

0 kz

]
(3.35)

Comparing open-loop and closed-loop stiffness matrices (3.3) and (3.35), the term kz

represents the closed-loop suspension stiffness of the system. The closed-loop desired
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damping matrix Dd takes the form

Dd =

[
bt 0

0 b2

]
(3.36)

where b2 is a free variable which represents closed-loop suspension damping coefficient.

The frequency response of the body acceleration for variation in kz and b2 is shown

in figure 3.5. Lower values of kz shift the resonant frequencies to lower frequencies

and reduces the gain as seen in figure 3.5(a). To isolate the sprung mass from road

disturbances, lower values of kz must be chosen, which improves the ride comfort,

as seen in the time response of the sprung mass force ṗ2 in figure 3.6(a). However,

reducing the suspension stiffness increases the suspension stroke, which is controlled

by increasing b2. Figure 3.6(b) illustrates the time response of suspension stroke with

PESADI. In this control scenario, a good improvement can be seen in the RDTL of

the system in figure 3.6(c). However, improvement in the dynamic tire load cannot

be directly achieved using this case, and the improvement is an indirect consequence.

PESADI controller behaves like a PD controller with suspension deflection as the

feedback, proportional gain (ks − kz), and derivative gain (bs − b2).

3.3.3 Controller 3: Energy shaping and damping injection

with coupled stiffness (ESDICS)

This is a general case where closed-loop kinetic energy function τd(p) using the desired

inertia matrix Md. The variable a2 can be written as a function of α as

a2 =
(mw +mb)mb(1− α)

mw +mb(1− α)
(3.37)

The closed-loop stiffness matrix in this case is given by,

Kd =

[
kt
mw+mb(1−α)

(mw+mb)
+ α2kz αkz

αkz kz

]
(3.38)

From matrix Kd in (3.38), it can be seen that a coupling is created between the

spring elements due to kinetic energy shaping, which is a function of α. The desired

45



0 0.5 1 1.5 2 2.5 3 3.5 4

Time [s]

-15

-10

-5

0

5

10

15

p
2'
 [

k
g
.m

/s
2
]

Uncontrolled

α=0, k
z
=294,b

2
=b

s

α=0, k
z
=294,b

2
=21

(a)

0 0.5 1 1.5 2 2.5 3 3.5 4

Time [s]

-0.02

-0.01

0

0.01

0.02

q
2
 [

m
]

Uncontrolled

α=0, k
z
=294,b

2
=b

s

α=0, k
z
=294,b

2
=21

(b)

0 0.5 1 1.5 2 2.5 3 3.5 4

Time [s]

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

R
D

T
L

Uncontrolled

α=0, k
z
=294,b

2
=b

s

α=0, k
z
=294,b

2
=21

(c)

Figure 3.6: Time responses of PESADI Controller design: (a) Sprung mass force,(b)
Suspension deflection, (c) RDTL

damping matrix is given by,

Dd =

[
bt

(mw+mb)
mw+mb(1−α)

0

0 b2

]
(3.39)
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(a) (b)

Figure 3.7: Frequency response of ẍb(s)/xr(s) for ESDICS

From the closed-loop damping matrix Dd in (3.39), it can be observed that the

effective tire stiffness is increased when α in varied from zero to one. Figure 3.7

illustrates the frequency responses of the closed-loop system with α = 0.5 for varying

kz and b2. This case modifies the overall structure of the system and requires a full-

state feedback law to be implemented. The time responses of the ESDICS controller

for square wave input are shown in figure 3.8.

3.3.4 Controller 4: Energy shaping and damping injection

with inertial decoupling (ESDIID)

Inertial decoupling corresponds to a case where α = 1, resulting in a diagonal inertial

matrix Md given by,

Md =

[
mw +mb 0

0 mb

]
(3.40)

The matrix Kd is given by

Kd =

[
kt

mw
mw+mb

+ kz kz

kz kz

]
(3.41)

The free variable kz represents the suspension stiffness in the closed-loop system. The

damping matrix Dd

Dd =

[
bt
mw+mb
mw

0

0 b2

]
(3.42)
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Figure 3.8: Time responses of ESDICS Controller design: (a) Sprung mass force,(b)
Suspension deflection, (c) RDTL
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(a) (b)

Figure 3.9: Frequency response of ẍb(s)/xr(s) for ESDIID

Table 3.2: Values of control variables for different cases of IDA-PBC

Controller a1 a2 a3 α b1 b2 kz
Uncontrolled (equivalent) 3.45 2.45 2.45 0 5 7.5 980
ADI 3.45 2.45 2.45 0 5 60 980
PESADI 3.45 2.45 2.45 0 5 21 294
ESDICS 3.45 1.9 2.45 0.5 7.75 60 490
ESDIID 3.45 0 2.45 1 17.25 135 2000

The values of kz and b2 must be chosen very high to make the suspension harder to

isolate the road disturbance from the body. The frequency responses of the system

with varying kz and b2 for (α = 1) are shown in figure 3.9. From the frequency

response, it can be seen that gain at both the resonant frequencies is reduced consid-

erably, and ride comfort is improved over a wide range of frequencies.

From the time responses of ESDIID controller with kz = ks and b2 = bs, consider-

able improvement in the RDTL is observed in this case due to increased effective tire

stiffness and damping (see figure 3.10). This choice of kinetic energy shaping directly

effects the road holding ability of the system. This also improves the ride comfort by

isolating the sprung mass from the road disturbance and restricting the disturbance

at the tire itself. To improve the suspension deflection and settling time, kz and b2

are tuned accordingly.

Table 3.2 lists various control parameters chosen for different cases discussed.The

results of the proposed controller are compared with that of Linear Quadratic Regu-

lator.
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Figure 3.10: Time responses of ESDIID Controller design: (a) Sprung mass force,(b)
Suspension deflection, (c) RDTL
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3.3.5 Linear Quadratic Regulator (LQR)

The state space model of the system can be written as

ẋt = Axt + Bu+ wf (3.43)

where

xt =


ẋw

ẋb

q1

q2

 B =


− 1

mw
1

mb

0

0

 w =


bt
mw

0

−1

0


.

A =


−bt + bs

mw

bs
mw

− kt
mw

ks
mw

bs
mb

− bs
mb

0 − ks
mb

1 0 0 0

−1 1 0 0


The matrix B is related to the control input u = us, and the matrix w relates to road

disturbance acting on the system f = ẋr(t).

Linear Quadratic Regulator (LQR) is an optimization method used to find the state

feedback controller gains. The main idea of the LQR is that it calculates the optimum

gains by minimizing the quadratic cost function J given below.

J =

∫ ∞
0

xT
t Qcxt + uTRu (3.44)

where Qc = QT
c ∈ Rn×n is a positive semi-definite matrix, which is a cost structure

that determines the importance of the states and R = RT ∈ Rm×m weighing gain

for the control input u. The cost function J minimises the suspension deflection q2,

tire deflection q1, tire velocity ẋw and body velocity ẋb which are the system states

through the weighing matrix Qc. The control input us is penalised through R. The

weighing matrix Qc is given by
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Qc =


c1 0 0 0

0 c2 0 0

0 0 c3 0

0 0 0 c4

 (3.45)

The gains are chosen as c1 = 0.01, c2 = 30, c3 = 5, c4 = 450 and R = 0.01 (Alves

et al., 2014). The state feedback equation for LQR is given by

us = −Kgxt (3.46)

where Kg =
[
k1 k2 k3 k4

]
, and the corresponding feedback gains are given in

Table 3.3.

Table 3.3: Controller gains

Control law k1 k2 k3 k4
LQR 3.85 48.71 3.79 22.70
ADI -52.50 52.50 0 0
PESADI -13.50 13.50 0 -686
ESDICS -16.04 39.55 -574.88 -355.16
ESDIID 7.50 127.50 224.64 1020

The performance of different cases of controllers arising from the choice of various

control parameters in IDA-PBC control law are presented in terms of their peak and

Table 3.4: Performance comparison of simulation results

Type of suspension Acceleration in m/s2 Suspension RDTL
deflection in m

peak rms peak peak rms
Uncontrolled 5.3728 2.1531 0.0139 0.4541 0.1462
LQR 2.4542 0.4761 0.0134 0.2894 0.0470
ADI 4.5187 0.9235 0.0071 0.4324 0.0895
PESADI 2.4023 0.4697 0.0125 0.3082 0.0508
ESDICS 2.4233 0.4657 0.0128 0.2838 0.0459
ESDIID 2.3856 0.4381 0.01297 0.2953 0.0471
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RMS values is tabulated in Table 3.4. Validity of the proposed controllers is tested

experimentally on a bench-scale model for three different road profiles, and the results

are presented in the next section.

3.4 Experimental Validation

3.4.1 Hardware Description

The proposed IDA-PBC control is tested on a bench-scale model of quarter-car ac-

tive suspension system from Quanser. The model consists of a quarter-car test rig,

data acquisition and output modules, and a power amplifier. This quarter-car test rig

comprises of three plates which can move independently in the vertical direction. The

bottom plate represents the road and can be moved using a servomotor, which gener-

ates different road profiles for the system. The middle plate represents the unsprung

mass mw of the vehicle and linked to the bottom plate through a linear spring kt rep-

resenting tire stiffness. The friction between the bearing connected provides inherent

damping, which is considered as tire damping bt. The top plate mb represents the

vehicle body, which is connected to the middle plate through spring with suspension

stiffness ks and a linear motor through a capstan which acts as an actuator. The in-

herent damping due to bearing of the sprung mass represents suspension damping bs.

The bottom plate displacement xr(t), suspension deflection (xb − xw) and top plate

displacement xb are measured using three optical encoders. Acceleration of the vehicle

body is measured using a dual-axis accelerometer mounted underneath the top plate.

The data acquisition board consists of Quanser1 Q1-cRIO NI-9024, which acquires

the data from the optical encodes and accelerometer through Q1-cRIO data acquisi-

tion module and sends it to the computer. Quanser rapid control prototyping toolkit

using LabVIEW2 software was used for implementing the control algorithm. The

control output and road input signals obtained from the computer through CRIO are

amplified by a power amplifier fed and to the actuator and road simulation Brushed

servomotor. The experimental setup is shown in Figure 3.11 and the Implementation

scheme of hardware setup is shown in Figure 3.12.

1Quanser Consulting Inc, 119 Spy Court, Markham, ON L3R 5H6 Canada
2LabVIEW, National Instruments, 11500 N Mopac Expwy, Austin, USA.
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3.4.2 Experimental Results

To verify the effectiveness of the designed controller, experiments have been performed

on the quarter-car test rig and three road profiles shown in Figure 3.13 have been

considered for trials.

3.4.2.1 Case 1: Square Wave Input

A square wave of frequency 0.2 Hz and a peak value of 0.01 m shown in Figure 3.13(a)

is applied as the road profile, and the responses of the system are shown in Figures

3.14(a) and 3.14(b). The performance indices of the controllers in terms of peak and

RMS values are tabulated in Table 3.5. In case of ADI, peak and RMS values of body

acceleration are almost the same as those of the uncontrolled system. However, ADI

gives the best performance in terms of minimising the suspension deflection. PESADI

improves ride comfort, but increases the suspension deflection of the system. ESDICS

delivers better performance in terms of control objectives, that is reducing the body

acceleration, suspension deflection, and tire deflection when compared with ADI and

ESDI. ESDICS is tuned in such a way that it has a comparable control effort to that

of LQR. It can be observed that in case of ESDIID, the body acceleration is reduced

and there is a considerable improvement in minimising the suspension deflection as

well as RMS value of dynamic tire load.

From the time responses for step input, it can be observed that the settling time of the

system reduces as α is varied from zero (ADI) to one (ESDIID). The body acceleration

Figure 3.11: Experimental setup
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Figure 3.12: Implementation scheme of hardware setup.

reduces and the vibrations die out faster as α is increased from zero to one, which can

be observed from Figures 3.14(a) and 3.14(b). The peak value of suspension deflection

is minimum in ADI compared with all the cases, and with the increase in α, it can

be seen that the peak value is increased at the instant of occurrence of disturbance

but settles faster, as seen in 3.14(c) and 3.14(d). Dynamic tire load is higher and

more oscillatory with two overshoots in ADI, implying poor road holding capacity

of the vehicle, which can be observed from Figure 3.14(e), whereas in ESDICS, the

peak value of tire deflection is less and settles faster than other cases, which shows

that the road holding capacity improves as α is increased. The time responses of tire

deflection for PESADI, ESDICS, and ESDIID can be seen in Figure 3.14(f).

From Figures 3.15(a) and 3.15(b), it can be easily observed that as we go from α = 0

(ADI) to α = 1 (ESDIID), the overshoot in the body deflection is clearly reduced, and

in case of ESDIID, xb follows the road disturbance input xr(t). This clearly shows

that the increase in α attenuates the disturbance near the tire itself.
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Figure 3.13: Road profiles: (a) Square wave ,(b) Bump and (c) Random disturbance

3.4.2.2 Case 2: Bump Input

The road profile is given by

xr(t) =

{
0.015(1− cos 8πt); 0.5 ≤ t < 0.75

0 else
(3.47)

This profile mimics a realistic case of transient bump disturbance which can occur

on the road. This profile is taken similar to that of a profile used in (Li et al., 2019)

and (Alves et al., 2014). A peak value of 0.03m, which is the maximum value of

disturbance xr(t) considered for the design of the controller, is considered as the input
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to test the performance of the controller. Figures 3.16 and 3.17 shows acceleration,

body displacement, suspension deflection, tire deflection, and actuator force plots for

the uncontrolled system, with LQR and IDA-PBC. The comparison of peak and RMS

values of ẍb, (xb−xw), and us for all the controllers is given in Table 3.6. From Figure

3.16(c) and (d), the suspension deflection is the least with ADI, but the improvement

in ride comfort is minimal compared with other cases, which is evident from the peak

and RMS values of ẍb. Peak and RMS values of ẍb for PESADI are comparable to

those of LQR, but the suspension deflection in PESADI is the highest compared with

all the cases. Suspension deflection and RMS values of ẍb of ESDICS are comparable

to those of LQR. ESDIID gives the best performance in terms of minimising the

sprung mass acceleration ẍb as well as reducing the suspension deflection, and a good

improvement in road holding compared to uncontrolled system.

Table 3.5: Performance comparison of experimental results for square wave input

Type of Acceleration Suspension Control effort RDTL
suspension (m/s2) deflection(m) (N)

peak rms peak peak rms peak rms
Uncontrolled 3.2824 0.8332 0.0107 - - 0.4028 0.1083
LQR 1.9435 0.4041 0.0139 8.2545 1.3781 0.3790 0.0837
ADI 3.6147 0.7289 0.0070 9.1510 1.4934 0.4197 0.1001
PESADI 2.5578 0.4068 0.0133 9.6791 1.4854 0.3802 0.0767
ESDICS 1.9067 0.3815 0.0139 9.9886 1.7011 0.3420 0.0780
ESDIID 2.4895 0.4136 0.0123 14.2624 1.9344 0.4043 0.0811

Table 3.6: Performance comparison of experimental results for bump input

Type of Acceleration Suspension Control effort RDTL
suspension (m/s2) deflection(m) (N)

peak rms peak peak rms peak rms
Uncontrolled 10.6249 1.6834 0.0263 - - 0.7450 0.2684
LQR 3.9336 0.6889 0.0247 14.8346 1.9338 0.6402 0.1502
ADI 7.4752 1.2193 0.0197 19.5971 2.4600 1.1006 0.2221
PESADI 3.3368 0.5862 0.0309 21.8412 2.4698 0.5226 0.1208
ESDICS 6.6551 0.6715 0.0252 18.1963 2.0355 0.6429 0.1139
ESDIID 3.3176 0.6587 0.0198 23.5119 2.4374 0.6598 0.1292
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Figure 3.14: Experimental results for square wave input: (a, b) Body acceleration ,(c, d)
Suspension deflection, (e, f) Relative Dynamic Tire Load
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Figure 3.15: Experimental results for square wave input: (a, b) body displacement and
(c, d) actuator force
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Figure 3.16: Experimental results for bump input: (a, b) Body acceleration ,(c, d) Sus-
pension deflection, (e, f) Relative Dynamic Tire Load
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Figure 3.17: Experimental results for bump input: (a, b) body displacement and (c, d)
actuator force

61



0 2 4 6 8 10

Time [s]

-2

-1

0

1

2

x
b
"

 [
m

/s
2
]

Uncontrolled

LQR

ADI (α=0)

(a)

0 2 4 6 8 10

Time [s]

-2

-1

0

1

2

x
b
"

 [
m

/s
2
]

PESADI (α=0)

ESDICS (α=0.5)

ESDIID (α=1)

(b)

0 2 4 6 8 10

Time [s]

-0.01

-0.005

0

0.005

0.01

(x
b
-x

w
) 

[m
]

Uncontrolled

LQR

ADI (α=0)

(c)

0 2 4 6 8 10

Time [s]

-0.01

-0.005

0

0.005

0.01

(x
b
-x

w
)

PESADI (α=0)

ESDICS (α=0.5)

ESDIID (α=1)

(d)

0 2 4 6 8 10

Time [s]

-0.2

-0.1

0

0.1

0.2

R
D

T
L

Uncontrolled

LQR

ADI (α=0)

(e)

0 2 4 6 8 10

Time [s]

-0.2

-0.1

0

0.1

0.2

R
D

T
L

PESADI (α=0)

ESDICS (α=0.5)

ESDIID (α=1)

(f)

Figure 3.18: Experimental results for Continuously varying input: (a, b) Body accelera-
tion ,(c, d) Suspension deflection, (e, f) Relative Dynamic Tire Load
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Figure 3.19: Experimental results for Continuously varying input: (a, b) body displace-
ment and (c, d) actuator force
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3.4.2.3 Case 3: Continuously Varying Input

The road profile is given by Gupta et al. (2016).

xr(t) = 0.015 cos(2πt) sin(0.6πt) (3.48)

This profile represents a rough and continuously varying road disturbance with a

peak value of 0.015m. Responses of the system for the disturbance are shown in

Figures 3.18 and 3.19. The performance indices for the same are listed in Table 3.7.

Comparing the peak and RMS values of ẍb, ESDIID gives the best performance in

terms of reduction in acceleration, thus improving the ride comfort and minimising

the suspension deflection. Similar to case 1 and case 2, it is observed that the suspen-

sion deflection is minimum in ADI compared with all the cases. PESADI improves

the ride comfort, that is reduces the acceleration ẍb considerably but increases the

suspension deflection. From the discussions, it is evident that based on the choice

of desired damping, stiffness, and inertia matrices, which effectively shape the dissi-

pation, potential, and kinetic energy profiles of the system respectively, the general

control law of IDA-PBC in equation (3.13) assumes a different structure. ADI shapes

the dissipative structure of the system and controls the system’s damping, and the

controller tries to minimise the suspension deflection but does not contribute much

in the improvement of ride comfort, that is reduction in ẍb. The structure of ADI

is similar to that of a derivative controller and can be implemented with suspension

deflection as the feedback term. On the other hand, PESADI shapes the potential

energy and damping of the system. This improves the ride comfort by reducing the

Table 3.7: Performance comparison of experimental results for continuously varying input

Type of Acceleration Suspension Control effort RDTL
suspension (m/s2) deflection(m) (N)

peak rms peak peak rms peak rms
Uncontrolled 1.5181 0.5314 0.0035 - - 0.1759 0.0690
LQR 1.0549 0.4273 0.0063 5.4896 2.3317 0.1479 0.0633
ADI 1.2692 0.5277 0.0027 1.8435 0.5984 0.1684 0.0717
PESADI 1.2479 0.4918 0.0065 4.5457 2.0007 0.1982 0.0685
ESDICS 1.3937 0.4342 0.0054 5.0013 3.3462 0.1287 0.0602
ESDIID 0.8887 0.3682 0.0064 6.9692 2.7421 0.1442 0.0628
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body acceleration ẍb but increases the suspension deflection due to soft closed-loop

stiffness characteristics. PESADI is a PD controller with suspension stiffness as the

state feedback term. To reduce the suspension deflection in the PESADI, more control

effort is needed. From the practical implementation point of view, ADI and PESADI

are easy to implement as they do not require the information of the tire deflection,

which is generally not easy to measure. ESDICS and ESDIID are full-state feedback

controllers which require all the four states for implementation. From the results, it is

apparent that ESDICS and ESDIID give better results in terms of reduction in accel-

eration, tire deflection, and minimising the suspension deflection. The disadvantage

of ESDICS and ESDIID is that they require tire deflection measurement, and verti-

cal velocities of sprung and unsprung masses for feedback to the control law, which

increase the complexity in implementation. However, because of their advantages,

these can be used for controlling the system, and state estimation methods can be

used for their implementation. It can be concluded from the discussion that, to obtain

best results in terms of control objectives, that is improving the ride comfort, road

holding, and keeping the suspension deflection within the limits for the maximum

bounded disturbance, apart from shaping the damping and potential energy profiles,

kinetic energy must also be shaped, which can be achieved by modifying the inertia

matrix Md.

3.5 Summary

In this chapter, interconnection and damping assignment passivity-based control was

designed for control of a quarter-car active suspension system. Detailed analysis of the

controller is performed by varying the desired damping, stiffness, and inertia matrices

Dd, Kd, and Md respectively. Based on the choice of the structure of these matrices,

different control configurations were obtained, and their performance comparison is

demonstrated in terms of their time and frequency responses to give better clarity

on the choice of variables. The proposed controllers were validated experimentally

on a bench-scale model of a quarter-car system with different road profiles. The

performance indices of the controller for different conditions ensure that the controller

is able to improve the ride comfort and road holding effectively while constraining

the suspension deflection within the allowable limits. The study describes ways to

tune the different controller parameters based on their physical meaning. Finally, the
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study gives a detailed discussion on the relative merits and demerits of the proposed

control configurations in terms of control and implementation issues.
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Chapter 4

Design and Implementation of

Port-Hamiltonian Observer for

Active Suspension System

Contents

4.1 Observer Design . . . . . . . . . . . . . . . . . . . . . . . . 68

4.1.1 Choice Of Observer Parameters For Active Suspension Ob-

server Design . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.2 Results and Discussion . . . . . . . . . . . . . . . . . . . . 71

4.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

This chapter presents an observer design for active suspension system modelled

in port-Hamiltonian form, which estimates the states of the system directly in port-

Hamiltonian form for the purpose of controller implementation. A novel observer is

designed using suspension stroke as the only measurable output and implemented for

active suspension system to minimise the error dynamics in presence of a bounded

disturbance input.
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4.1 Observer Design

Port-Hamiltonian model of the active suspension system is defined in section 3.1.1 is

given by:

ẋ = [J−R]∇H(x) + gus + df (4.1)

with H(x) defined in terms of a positive definite matrix Q as,

H(x) =
1

2
xTQx (4.2)

The measurable output are defined as

y = Cx (4.3)

where x ∈ Rn, y ∈ Rr and C ∈ Rr×n is a full rank (row) constant matrix. The fol-

lowing theorem from Yaghmaei and Yazdanpanah (2018) is used for observer design.

TheoremYaghmaei and Yazdanpanah (2018): Consider the port-Hamiltonian system

(equation (4.1), equation (4.2)) with f = 0, the pair (C, (J−R)Q) detectable (Ob-

servable), and there exist Jo = −JT
o , Ro = RT

o ≥ 0, Qo > 0 and C⊥ such that the

condition (equation (4.4)) is satisfied:

(Jo −Ro)QoC⊥ = (J−R)QC⊥ (4.4)

where C⊥ is a right annihilator matrix of C, i.e., CC⊥ = 0, and rank(C⊥) = (n− r),
Then the observer dynamics are given by

˙̂x = (Jo −Ro)Qo(x̂−Cey)+(J−R)QCey + gus (4.5)

where Ce is defined as Yaghmaei and Yazdanpanah (2018),

Ce = CT(CCT)−1 (4.6)

Proof: To prove this theorem, Lemma 10 is used from Yaghmaei and Yazdanpanah

(2018) which states that any asymptotically stable linear system ẋ = Ax + Bu can be

written as ẋ = (Jo −Ro)Qox + Bu where Jo = −JT
o ,Ro = RT

o ≥ 0 and Qo = QT
o > 0.
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Consider the observer of the dynamical system to be a function of measurement y as

˙̂x = (Jo −Ro)Qox̂ + ĝus−Ly (4.7)

where ĝ is the input matrix of the observer. Defining the error between state and

estimate:

e = x− x̂ (4.8)

Derivative of e with respect to time can be written as:

ė =
{

(J−R)Qx + gus
}
−
{

(Jo −Ro)Qox̂ + ĝus−Ly
}

(4.9)

rearranging equation (4.9) in terms of e and x,

ė = (Jo −Ro)Qoe + (g − ĝ)us+((J−R)Q− (Jo −Ro)Qo + LC)x (4.10)

Now for the error to decay to zero asymptotically for any input and state,

ĝ= g

(Jo −Ro)Qo = (J−R)Q + LC (4.11)

multiplying by C⊥ on both sides of equation (4.11), we get the relation (equation

(4.4)). Now, equation (4.11) can be reframed as:

LC = (Jo −Ro)Qo − (J−R)Q (4.12)

Multiplying (4.12) by Ce on both sides, L can be written as

L =
(

(Jo −Ro)Qo − (J−R)Q
)
Ce (4.13)

Substituting equation (4.13) in equation (4.7), the observer for system defined by

equation (4.1) and equation (4.2) with f = 0 is obtained as equation (4.5), which

proves the theorem. The error dynamics with road disturbance f can then be written

as,

ė = (Jo −Ro)Qoe + df (4.14)
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The error dynamics decay asymptotically to zero with f = 0 if the matrix (Jo −Ro)Qo

is Hurwitz. In presence of disturbance f , the error dynamics are bounded by maxi-

mum value of disturbance Yaghmaei and Yazdanpanah (2018), and can be minimised

by proper choice of Jo,Ro and Qo.

4.1.1 Choice Of Observer Parameters For Active Suspension

Observer Design

Suspension deflection q2 of the system is taken as the measurable state. The output

(measurable) equation for the system (equation (4.1)) is given by,

y = Cx

C =
[
0 0 0 1

]
(4.15)

The objective is to design an observer of the form given in equation (4.5). Choosing

the Ho(x) as:

Ho = H +
1

2
k1q

2
1 +

1

2
k2q

2
2 (4.16)

The Quadratic function Qo given by

Qo =


1
mw

− 1
mw

0 0

− 1
mw

mb+mw
mbmw

0 0

0 0 (kt + k1)

0 0 0 (ks + k2)

 (4.17)

Further, parameterising Jo and Ro as

Jo = J,Ro =


b1o 0 0 0

0 b2o 0 0

0 0 b3o 0

0 0 0 b4o

 (4.18)

Using the condition (4.4), we can obtain the constraints as k1 = 0, b1o = bt, b2o = bs

and b3o = 0. The observer is given in terms of suspension deflection and control input
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by
˙̂p1

˙̂p2

˙̂q1

˙̂q2

 =


− bt
mw

bt
mw

−kt 0
bs
mw

−bsmb+mwmbmw
0 −(ks + k2)

1
mw

− 1
mw

0 0

− 1
mw

mb+mw
mbmw

0 −b4o(ks + k2)



p̂1

p̂2

q̂1

q̂2

+


0

k2

0

b4o(ks + k2)

 q2 +


0

1

0

0

us
(4.19)

where k2 and b4o are free parameters to tune the observer dynamics.

4.2 Results and Discussion

The observer design is tested on an active suspension laboratory scale setup from

Quanser. The details of the experimental setup is given in Chapter 3. A road profile

mimicking an isolated bump on a smooth surface is taken as a test input for analysis,

which is mathematically defined as:

xr(t) =

{
0.0075(1− cos 8πt); 0.5 ≤ t < 0.75

0 else
(4.20)

The observer gains are chosen as k2 = 1 and b4o = 0.1.

The time responses of the system when excited with road input signal in equation

(4.20) without control input are presented in Figure 4.1. From the results, it can

be observed that the measured and observed responses of the suspension deflection

q2 in Figure 4.1(a) are almost identical, indicating that the observer output is close

to the measurement. The road disturbance input f(t) directly effects the terms ė1

and ė3 in the error dynamic equation (4.14), which correspond to observer outputs p̂1

and q̂1. Due to the unmodelled road input acting directly on these observer outputs,

the error between the observed and actual states of q1 and p1 in Figure 4.1(b) and

Figure 4.1(d) is slightly higher when compared to the errors of states q2 and p2 in

Figure 4.1(a) and Figure 4.1(c). The momenta coordinates p1 and p2 are obtained by

measuring the deflections using high resolution optical encoders and differentiating

and filtering the signals. The error between p̂2 and p2 is negligible, whereas p̂1 shows

a delayed response compared to p1.

The proposed full-state observer is used to implement the IDA-PBC controller on
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Figure 4.1: Experimental results of observer in open-loop

Figure 4.2: Configuration of proposed controller with observer

active suspension system. The configuration of the closed-loop system with proposed

controller and observer is shown in Figure 4.2. Energy Shaping and Damping Injec-

tion with Inertial Decoupling controller (ESDIID) developed in Chapter 3 is used to

test the closed-loop performance of the system with observer states in the feedback

control law. The controller parameters are chosen as a1 = 3.45, a2 = 0, a3 = 1, α = 1,

b1 = 17.25, b2 = 135, kz = 2000. An observer with suspension deflection q2 as the
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measurable signal is designed using equation 4.19. Time responses of the system
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Figure 4.3: Experimental results of observer in closed-loop

when the state feedback law is implemented using the estimated states are shown in

Figure 4.3. Similar to the case of the uncontrolled system, the error between q2 and q̂2

in closed-loop is negligible, whereas the error between measured and observer states

in case of q1 and p1 is high and oscillatory, which decays to zero after some time. The

performance of the observer is tabulated in terms of Integral Square Error (ISE) and

Integral Time Absolute Error (ITAE) in Table 4.1. From Figure 4.4, it is clear that

with controller implemented using full state measurement improves the ride comfort

more efficiently when compared to the control law implemented using observer in the

feedback. However, implementation with help of full measurement requires accurate

measurement of tire deflection and velocities of sprung and unsprung masses, which

is not relatively easy on a real vehicle. Even with the observer on an IDA-PBC con-

troller, the RMS value of the vehicle body acceleration is lowered by 54% compared

an uncontrolled system, which is a considerable reduction.Table 4.2 gives the RMS

values of ẍb for all the three cases. The peak value of suspension deflection of the

system in closed-loop is observed to be ≈ 0.01m in Figure 4.3(a), which is well within
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Figure 4.5: Experimental results of actuator force

the prescribed limits of the system. Comparing Figure 4.1(b) and Figure 4.3 (b),

the peak value of tire deflection is reduced in closed-loop system and stabilises at

a faster rate, which guarantees an improvement in ride stability of the closed-loop

system when compared to uncontrolled system. The actuator force in Figure 4.5 is

much less than the saturation limit of the actuator, which is 35N. From the above

discussion and results, active suspension using IDA-PBC with observer performs ef-

fectively in terms of improving ride comfort and ride stability, which is verified using

experimental results and performance indices.

4.3 Summary

In this chapter, an observer design for quarter car active suspension modelled in port-

Hamiltonian form are presented. Suspension deflection, which is an easily measurable

signal is used as the output in the design of the observer. Performance of the proposed

observer is evaluated experimentally with road disturbance input mimicking a sudden

bump, and proven to be effective in minimising the error dynamics in presence of road

disturbance. Using the observer states in the feedback, a full-state IDA-PBC control
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Table 4.1: Performance Indices of observer (Experimental Values)

Parameter ISE ITAE

p̃1 (Uncontrolled) 1.85× 10−2 0.1895
p̃1 (IDAPBC) 1.09× 10−2 0.1197

p̃2 (Uncontrolled) 6.1× 10−3 0.1534
p̃2 (IDAPBC) 3.6× 10−3 0.1028

q̃1 (Uncontrolled) 1.76× 10−6 0.0012
q̃1 (IDAPBC) 1.55× 10−6 0.0011

q̃2 (Uncontrolled) 6.72× 10−7 0.0094
q̃2 (IDAPBC) 6.82× 10−7 0.0071

p̃1 = (p1 − p̂1), p̃2 = (p2 − p̂2), q̃1 = (q1 − q̂1), q̃2 = (q2 − q̂2)

Table 4.2: RMS values of Acceleration (Experimental Values) ẍb

Case ẍb(m/s
2)

Uncontrolled 1.4791
Controller 0.4748
Controller+Observer 0.6779

law is implemented, and compared with the case of control where all the states are

available for measurement. Experimental results of the controller implemented using

the designed state observer show good improvement in the ride comfort, ride stability

and suspension stroke of the active suspension system, which proves the effectiveness

of the proposed port-Hamiltonian observer in terms of minimising the error dynamics.
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Chapter 5

Control Of Half-Car Active

Suspension System Using

Algebraic Interconnection And

Damping Assignment Passivity

Based Control
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This chapter is purposed to design IDA-PBC controller for half-car active sus-

pension system modelled in port-Hamiltonian framework. Half-car active suspension

system is a higher order, underactuated complex mechanical system, which involves

the challenge of solving multiple PDEs comprising of larger set of states to obtain

a solution for closed-loop or desired potential energy. The novelty of this work lies

in circumventing this problem by employing an algebraic method to construct the

closed-loop energy function, and state-feedback law. First, the closed-loop kinetic

energy function is shaped with the help of desired inertia matrix, and the associated

closed-loop stiffness matrix which defines the closed-loop potential energy function is

constructed with the help of matrix properties.

5.1 System Description: Half Car Active Suspen-

sion System

Figure 5.1 portrays a linear time invariant model of a half-car active suspension sys-

tem. Terms mb and Iφ represent the vehicle’s body mass and pitch moment of inertia,

respectively. φ represents pitch angle, and lf and lr denote the distances of the front

and rear axles from the centre of mass, respectively.The stiffnesses of the front and

rear suspension springs are expressed by ksf and ksr, respectively. The damping coef-

ficients of the front and rear suspensions are represented by bsf and bsr, respectively.

uf and ur represent the front and rear actuator force components, respectively. The

unsprung mass on the front and rear wheels is denoted by mwf and mwr, respectively.

The tire is represented as a combination of a spring and a damper, with ktf and btf

representing the front tire stiffness and damping coefficients, respectively, and ktr and

btr representing the rear tire stiffness and damping coefficients. Variables xc, xbf ,

and xbr indicate the vertical displacements of the centre of mass, front and rear body

displacements, about their respective mean locations. The vertical displacements of

the front and rear tires around their equilibrium positions are denoted by the sym-

bols xwf and xwr, respectively. The front and rear terrain height displacements are

denoted by xrf and xrr, respectively. The above model consists of a single sprung
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Figure 5.1: Model of half car active suspension system

mass representing vehicle body with vertical and pitch freedoms of motion and two

unsprung masses denoting front and rear wheels with vertical freedom of motion. The

vertical displacements of the sprung mass are related as follows:

xbf = xc + lf sinφ

xbr = xc − lr sinφ (5.1)

and lf + lr = l. sinφ can be approximated as sinφ ≈ φ since the pitch angle is modest

enough. Therefore, equation (5.1) becomes xbf = xc + lfφ and xbr = xc − lrφ.

5.1.1 Port-Hamiltonian Model Of Half Car Active Suspen-

sion System

The PCH model of half-car active suspension system shown in Figure 5.1 is derived

in Appendix B. The model of the system is given by

ẋ = [J−R]∇H(x) + gua + df (5.2)
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where x = (p,q) ∈ Rn (n = 8) is the state vector, and ua = (uf , ur) ∈ Rm (m = 2)

is the actuator input vector. Road velocity input to the system is represented by

f = (ẋrf (t), ẋrr(t)) ∈ R2. Vectors q ∈ R4 and p ∈ R4 represent the generalised

displacement and momenta coordinates, respectively, defined as

q =


q1

q2

q3

q4

 =


xbf − xwf
xbr − xwr
xwf − xrf
xwr − xrr

 (5.3a)

(5.3b)

p =


p1

p2

p3

p4

 =



mb
lr
l
ẋc +

Iφ
l
φ̇

mb
lf
l
ẋc −

Iφ
l
φ̇

mb
lr
l
ẋc +

Iφ
l
φ̇+mwf ẋwf

mb
lf
l
ẋc −

Iφ
l
φ̇+mwrẋwr


(5.3c)

The Hamiltonian H(x) = H(p,q) is the energy stored in the system, written in terms

of its kinetic and potential energies, τ(p) and ν(q), respectively as,

H(x) = τ(p) + ν(q) =
1

2
pTM−1p +

1

2
qTKq (5.4a)

=
1

2

[
pT qT

] [M−1 0

0 K

][
p

q

]
=

1

2
xTH̄x (5.4b)

From equation (5.4), it can be seen that the kinetic energy is a function of the inertia

matrix M, which is obtained as

M =


m1 m3 m1 m3

m3 m2 m3 m2

m1 m3 (m1 +muf ) m3

m3 m2 m3 (m2 +mur)

 (5.5)
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where m1 =
mbl

2
r + Iφ
l2

, m2 =
mbl

2
f + Iφ

l2
and m3 =

mblf lr − Iφ
l2

. Potential energy ν(q)

is a function of stiffness matrix K, consisting of spring stiffness coefficients, given by,

K =


ksf 0 0 0

0 ksr 0 0

0 0 ktf 0

0 0 0 ktr

 (5.6)

Matrices J and R represent the interconnection and dissipative structures, respec-

tively.

J =

[
0 −I

I 0

]
and R =

[
D 0

0 0

]
(5.7)

The term D is the damping matrix, consisting of damping coefficients of the system

D =


bsf 0 0 0

0 bsr 0 0

0 0 btf 0

0 0 0 btr

 (5.8)

The matrices g and d are defined as g =
[
GT 0

]T
, and d =

[
GT

1 GT
2

]T
where

G,G1 and G2 are given by

G1 =


0 0

0 0

btf 0

0 btr

 ,G2 =


0 0

0 0

−1 0

0 −1

 ,G =


1 0

0 1

0 0

0 0

 (5.9)

The term ṗ1 represents the force on front portion of chassis mb(lr/l) due to vertical

acceleration ẍc and angular acceleration φ̈, whereas the force on rear component of

chassis mb(lf/l) due to vertical and angular accelerations is given by ṗ2. The front

and rear suspension deflections are denoted by state variables q1 and q2 respectively.

The tire deflections are represented by q3 and q4, and their velocities are given by q̇3

and q̇4 respectively. Therefore, the performance requirements of active suspension in

terms of the state variables can be written as follows:
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5.1.2 Control Objectives In Terms Of PCH Variables

1. Ride comfort: Minimise the forces ṗ1 and ṗ2 by isolating road disturbance input

from chassis mb.

2. Road holding: Minimise q3, q4, q̇3 and q̇4 which are the components contributing

to the dynamic tire loads RDTLf and RDTLr.

3. Suspension travel: Controller must be tuned such that the state variables q1

and q2 must not exceed the maximum prescribed limits.

5.2 Interconnection And Damping Assignment Pas-

sivity Based Control

Consider the port-controlled Hamiltonian system with dissipation of the form,

ẋ = [J−R]∇H(x) + gu (5.10)

where x(t) ∈ Rn is the state vector and u(t) ∈ Rm is the control input. J,R ∈ Rn×n

are the interconnection and dissipative matrices, respectively, where J = −JT and

R = RT ≥ 0. H(x) : Rn → R is a continuously differentiable Hamiltonian, and

g ∈ Rn×m is a full (column) rank matrix.The objective of the IDA-PBC design is

to find a control input u such that a desired equilibrium point x∗ of the closed-loop

system is (asymptotically) stable and the closed-loop system is characterised by

ẋ = [Jd −Rd]∇Hd(x) (5.11)

where Jd and Rd are the desired interconnection and desired dissipative matrices

belonging to Rn×n such that Jd = −JT
d , and Rd = RT

d ≥ 0, and Hd(x) : Rn → R+ is

the desired energy function. The desired energy must be continuously differentiable

and such that Hd(x
∗) = 0 with x∗ a strict (local) minimizer of Hd. If g⊥ : Rn →

R(n−m)×n represents the full rank left annihilator of the matrix g, i.e., g⊥g = 0 for

all x ∈ Rn and rank(g⊥) = (n − m), the classical solution of the IDA-PBC design

problem depends upon the solution K : Rn → Rn of the so-called matching equation,
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namely the system of equations

g⊥[(J−R)∇H(x)− (Jd −Rd)(∇H(x) + K(x)] = 0 (5.12)

where ∇Hd(x) = ∇H(x) + K(x) denotes the gradient vector of the desired energy

functionHd. Note that the mapping K must satisfy the condition ∂K/∂x = (∂K/∂x)T ,

thus ensuring integrability of K.

5.2.1 Algebraic Solution Of Matching Equation

Consider the energy function H(x) of the PCH system represented by equation (5.10).

If the system is linear time invariant, then the Hamiltonian can be defined as

H(x) =
1

2
xTH̄x (5.13)

Definition 1 Nunna et al. (2015): Consider the PCH system in equation (5.10) and

fix Jd = −JT
d and Rd = RT

d ≥ 0. A matrix P̄ ∈ Rn×n, P̄ = P̄T for all x ∈ Rn is said

to be algebraic solution if

1. The matrix H̄ + P̄ is positive definite

2. The condition

g⊥[(J−R)H̄x− (Jd −Rd)(H̄ + P̄)x] = 0 (5.14)

holds for all x ∈ Rn. Then P̄ is said to be an algebraic solution of equation

(5.12).

Definition 2 Nunna et al. (2015): Consider the PCH system defined in equation

(5.10) and the function H(x) in equation (5.13). Let Jd = −JT
d , Rd = RT

d ≥ 0 be

such that Jd −Rd is invertible and a matrix λ ∈ Rm×n be such that the following

hold.

1. The matrix (Jd −Rd)−1[(J−R)H̄− gλ] is positive definite.

2. The matrix (Jd −Rd)−1[(J−R)H̄− gλ] is Symmetric provided H̄ is symmet-

ric.
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Then the matrix P̄ defined as

P̄ = (Jd −Rd)−1[(J− Jd −R + Rd)H̄− gλ] (5.15)

is the algebraic solution of equation (5.12), and K(x) = P̄x.

5.2.2 Controller Design For Half-Car Active Suspension Sys-

tem

In this section, a general control law is designed using algebraic IDA-PBC method

which can be used to modify the closed-loop system characteristics. The closed-loop

structure is chosen to be in the form

ẋ = [Jd −Rd]∇Hd(x) + df (5.16)

where the structure of Jd and Rd is given by

Jd =

[
Ja −MdM−1

M−1Md 0

]
,Rd =

[
Dd 0

0 0

]
(5.17)

Ja = −JT
a is the additional interconnection matrix, and Md = MT

d > 0 is the desired

inertia matrix used to shape the desired kinetic energy profile. The closed-loop energy

function Hd(x) = Hd(p,q) is desired to be

Hd(x) = τd(p) + νd(q) =
1

2
pTM−1

d p + νd(q) (5.18)

where νd(q) is desired potential energy of the close-loop system. If we assume that the

desired potential energy is in the form νd(q) = 1
2
qTKdq, then Hd(x) can be written

as

Hd(x) =
1

2

[
pT qT

] [M−1
d 0

0 Kd

][
p

q

]
=

1

2
xTH̄dx (5.19)

Equating the open-loop (5.2) and closed-loop (5.16) to design the control law,

[J−R]∇H(x) + gua + df = [Jd −Rd]∇Hd(x) + df (5.20)
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The system is underactuated, i.e., rank(g) = m < n, and the matching equation can

be found by rearranging equation (5.20) as,

g⊥[(J−R)∇H(x)− (Jd −Rd)∇Hd(x)] = 0 (5.21)

∇H(x) and ∇Hd(x) can be derived from equations (5.4) and (5.19), respectively, and

substituted in equation (5.21)

g⊥[(J−R)H̄x− (Jd −Rd)H̄dx] = 0 (5.22)

Now, considering a real matrix P̄ = P̄T such that,

H̄d = H̄ + P̄ (5.23)

substituting for H̄d in equation (5.22),

g⊥[(J−R)H̄x− (Jd −Rd)(H̄ + P̄)x] = 0 (5.24)

Equation (5.24) is the matching equation of the system free from partial differential

terms, and the equation takes the form of equation (5.14). Since H̄d = H̄T
d > 0, from

Definition 1, P̄ is the solution of the matching equation, which is given by equation

(5.15) in Definition 2. Rearranging terms in equation (5.15),

H̄d = (H̄ + P̄) = (Jd −Rd)−1[(J−R)H̄− gλ] (5.25)

In equation (5.25), λ ∈ Rm×n is a matrix of static feedback gains, i.e., λ ∈ R2×8.

Parameterising λ as λ =
[
λp λq

]
where,

λp =

[
λ11 λ12 λ13 λ14

λ21 λ22 λ23 λ24

]
(5.26a)

λq =

[
λ15 λ16 λ17 λ18

λ25 λ26 λ27 λ28

]
(5.26b)
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where λp and λq are the state-feedback gains corresponding to states p and q, respec-

tively, and the state-feedback law is given by,

ua = −λx = −λpp− λqq (5.27)

Inverse of the matrix (Jd −Rd) is computed using Theorem 2.1.(i) in Lu and Shiou

(2002) as,

(Jd −Rd)−1 =

[
0 M−1

d M

−MM−1
d (MM−1

d )(Ja −Dd)(M−1
d M)

]
(5.28)

Substituting for λ and (Jd −Rd)−1 from equation (5.26) and equation (5.28), respec-

tively, in equation (5.25), H̄d is derived as in equation (5.29).

H̄d =

[
M−1

d 0

MM−1
d

(
DM−1 + (Ja −Dd)(M−1

d M)M−1 + Gλp

)
MM−1

d K + MM−1
d Gλq

]
(5.29)

Comparing equations (5.19) and (5.29), following conditions in (5.30) can be imposed

for H̄d to be symmetric and positive definite,

Md = MT
d > 0 (5.30a)

MM−1
d (DM−1 + (Ja −Dd)(M−1

d M)M−1 + Gλp) = 0 (5.30b)

(MM−1
d K + MM−1

d Gλq) = (MM−1
d K + MM−1

d Gλq)T > 0 (5.30c)

Comparing equations (5.19) and (5.29), it can be found that the closed-loop stiffness

matrix Kd is

Kd(λq) = MM−1
d K + MM−1

d Gλq (5.31)

Equation (5.30b) can be reduced and rewritten as

Gλp = −DM−1 − (Ja −Dd)M−1
d (5.32)

The state-feedback gain matrix λp corresponding to states p is obtained from equation

(5.32)

λp = G‡(−DM−1 − (Ja −Dd)M−1
d ) (5.33)
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where G‡ = (GTG)−1GT. The particular solution, which gives relation between Dd,

Ja and Md can be obtained by solving

G⊥(−DM−1 − (Ja −Dd)M−1
d ) = 0 (5.34)

According to equation (5.33), the state-feedback gains λp corresponding to momenta

coordinates are a function of Md,Ja and Dd. Equation (5.34) gives the structure

of the closed-loop damping matrix Dd, which changes depending on the structure of

Md. Equation (5.31) shows that the closed-loop stiffness matrix Kd is a function of

state-feedback gains λq, which correspond to displacement coordinates. As a result,

after constructing the desired kinetic energy profile, which is a function of the desired

inertia matrix Md, the closed-loop potential energy νd(q), which is a function of the

closed-loop stiffness matrix, can be produced so that Kd = KT
d > 0.

The desired storage function Hd(p,q) is considered as the candidate Lyapunov func-

tion for stability analysis. Ḣd can be written down as,

Ḣd = (∇Hd(x))Tẋ (5.35)

Substituting equation (5.16) in equation (5.35) we get,

Ḣd = xTH̄dJdH̄dx− xTH̄dRdH̄dx + xTH̄ddf (5.36)

Due to the skew-symmetric property of Jd, Ḣd is reduced to

Ḣd = −xTH̄dRdH̄dx + xTH̄ddf (5.37)

Now consider the term N = (xTH̄dd− fT). Then we can write,

NNT = xTH̄dddTH̄dx− xTH̄ddf − fTdTH̄dx + fTf (5.38)
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Rearranging the terms in equation (5.38),

xTH̄ddf + fTdTH̄dx = xTH̄dddTH̄dx + fTf −NNT (5.39a)

2xTH̄ddf = xTH̄dddTH̄dx + fTf −NNT (5.39b)

=⇒ xTH̄ddf ≤ xTH̄dddTH̄dx + fTf (5.39c)

Substituting equation (5.39c) in equation (5.37), we get the inequality

Ḣd ≤ −xTH̄dRdH̄dx + xTH̄dddTH̄dx + fTf (5.40)

which can be written as,

Ḣd ≤ −xTH̄
1
2
d (H̄

1
2
dRdH̄

1
2
d )H̄

1
2
dx+xTH̄

1
2
d (H̄

1
2
dddTH̄

1
2
d )H̄

1
2
dx + fTf (5.41)

If the disturbance f is assumed to be bounded such that fTf ≤ fmax, and defining

ε = (2λ1min−2λ2max) where λ1min corresponds to minimum eigen value of (H̄
1
2
dRdH̄

1
2
d )

and λ2max corresponds to maximum eigen value of (H̄
1
2
dddTH̄

1
2
d ), the equation (5.41)

can be written as

Ḣd ≤ −εHd + fmax (5.42)

If H̄d, and Rd are chosen such that ε > 0, then the decay of Hd(x(t)) can be

guaranteed, and solution of equation (5.42) is given by

Hd(x(t)) ≤
{(
Hd(x(0))− fmax

ε

)
e−εt +

fmax
ε

}
= κ (5.43)

Therefore, trajectories of states with initial conditions x(0) in the region defined by,

x(t) = {x(0) ∈ Rn|Hd(t) ≤ κ} (5.44)

will stay inside the ellipsoid, which is the region of attraction, which proves the sta-

bility of the closed-loop system (equation(5.16)).
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5.3 Case Studies

Two controller scenarios are shown in this section to demonstrate the versatility of

the proposed approach. In each scenario, a distinct Md is chosen, and the associated

closed-loop stiffness matrix Kd is built based on structure of Md. The effect of Md

on the closed-loop damping matrix Dd, as well as its dependence on the additional

interconnection matrix Ja, is also highlighted. The relation between Md, Dd and Ja

can be deduced from equation (5.34). For this purpose, Ja and Dd are parameterised

as follows,

Ja =


0 −ja1 −ja2 −ja3

ja1 0 −ja4 −ja5

ja2 ja4 0 −ja6

ja3 ja5 ja6 0

 (5.45)

and

Dd =


d1 d2 d3 d4

d2 d5 d6 d7

d3 d6 d8 d9

d4 d7 d9 d10

 (5.46)

5.3.1 Controller-I: Potential Energy Shaping and Damping

Injection (PESADI)

In this scenario, the desired inertia matrix is selected as Md1 = M, suggesting that

energy shaping is accomplished solely by modifying potential energy. Desired poten-

tial energy νd(q) is a function of Kd, which must be Positive definite and symmetric

is constructed using equation (5.31), and is given by

Kd1 =


ksfd1 α1ksc1 0 0

α1ksc1 ksrd1 0 0

0 0 ktf 0

0 0 0 ktr

 (5.47)

where ksc1 = (ksfd1.ksrd1)
1
2 and 0 ≤ α2

1 < 1. The state-feedback gain vector λb

corresponding to displacement vector q can be deduced from equation (5.47). Closed-

loop potential energy νd(q) can be shaped by varying the free parameters ksfd1, ksrd1
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and α1 in the closed-loop stiffness matrix Kd1. In this case, there is no direct control

over tire stiffnesses, and cannot be altered explicitely, and can be seen by comparing

diagonal entries k33 and k44 of K with kd133 and kd144 of Kd1. The desired damping

matrix Dd1 is given as

Dd1 =


d1 d2 d3 d4

d2 d5 d6 d7

d3 d6 d8 d9

d4 d7 d9 d10

 =


d1 ja1 ja2 ja3

ja1 d5 ja4 ja5

ja2 ja4 btf ∗
ja3 ja5 ∗ btr

 (5.48)

where Dd1 > 0. From D and Dd1 in equation (5.8) and equation (5.48), d1 and d5

correspond to the closed-loop front and rear suspension damping coefficients, respec-

tively, with Ja terms acting as coupling between various velocity states q̇. The tire

damping coefficients cannot be modified and remain the same as that of open-loop

structure, as seen in terms Dd1ii
and Dii, with i = 3, 4. The free parameters to tune

the closed-loop damping matrix are d1, d5, ja1, ja2, ja3, ja4 and ja5. The term d9 repre-

sents the coupling between front and rear tire damping coefficients, which cannot be

modified, and hence represented by ∗ notation.

5.3.2 Controller-II: Inertial Decoupling

The inertia matrix Md is chosen such that the coefficients in the inertia matrix which

couple the unsprung mass momenta p3 and p4 to the sprung mass momenta p1 and

p2 in the kinetic energy τd(p) are zero. The desired inertia matrix Md2 is given by

equation (5.49).

Md2 =


m1 m3 0 0

m3 m2 0 0

0 0 (m1 +mwf ) m3

0 0 m3 (m2 +mwr)

 (5.49)
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Corresponding stiffness matrix Kd2 is then constructed as,

Kd2 =


ksfd2 α2ksc2 ksfd2 α2ksc2

α2ksc2 ksrd2 α2ksc2 ksrd2

ksfd2 α2ksc2 ksfd2 + β1ktf α2ksc2 − β3ktf

α2ksc2 ksrd2 α2ksc2 − β3ktf ksrd2 + β2ktr

 (5.50)

where ksfd2 > 0, ksrd2 > 0 and 0 ≤ α2
2 < 1 are free variables that can be used to modify

νd(q), and ksc2 = (ksfd2.ksrd2)
1
2 . The terms β1, β2 and β3 are system parameters given

by

β1 =
mwf (m2 +mwr)

(m1 +mwf )(m2 +mwr)−m2
3

(5.51a)

β2 =
mwr(m1 +mwf )

(m1 +mwf )(m2 +mwr)−m2
3

(5.51b)

β3 =
m3mwr

(m1 +mwf )(m2 +mwr)−m2
3

(5.51c)

From matrix Kd2 in equation (5.50), it is evident that the effective (virtual) stiffness

of all the springs in the system can be modified using this structure. Closed-loop

damping matrix Dd2 is given by

Dd2 =



d1 ja1 ja2 −
btfm1

mwf

ja3 −
btrm3

mwr

ja1 d5 ja4 −
btfm3

mwf

ja5 −
btrm2

mwr

ja2 −
btfm1

mwf

ja4 −
btfm3

mwf

btf (m1 +mwf )

mwf

∗

ja3 −
btrm3

mwr

ja5 − btrm2

mwr
∗ btr(m2 +mwr)

mwr


(5.52)

where the dissipative power can be shaped using free parameters d1, d5, ja1, ja2, ja3, ja4

and ja5.

The proposed half car controller cases are compared with controller designed by de-

coupling the half-car model into two quarter-car models, and designing IDA-PBC for

front and rear systems independently.
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5.3.3 Quarter-Car IDA-PBC Method (QCAR IDA-PBC)

The half-car system is decoupled into two quarter-car models whose mass sprung

mass is distributed as:

mbf = mb
lr

lf + lr
, mbr = mb

lf
lf + lr

(5.53)

The PCH models of the front and rear systems are given by

ẋi = [Ji −Ri]∇Hi(xi) + giui + difi (5.54)

where, in this section, (i=f) corresponds to front, (i=r) corresponds to rear quarter-

car system, xi = (pi,qi) ∈ Rn (n = 4) is the state vector, and ui ∈ Rm (m = 1)

is the actuator input vector. Road velocity input to the system is represented by

fi = ẋri(t) ∈ R. Vectors qi ∈ R2 and pi ∈ R2 represent the generalised displacement

and momenta coordinates, respectively, defined as

qi =

[
q1i

q2i

]
,

[
xbi − xwi
xwi − xri

]
(5.55a)

pi =

[
p1i

p2i

]
=

[
mbixbi

mbixbi +mwixwi

]
(5.55b)

The Hamiltonian Hi(xi) = Hi(pi,qi), written in terms of its kinetic and potential

energies, τi(pi) and νi(qi), respectively as,

Hi(x) = τi(pi) + νi(qi) =
1

2
pT
i M−1

i pi +
1

2
qT
i Kiqi (5.56a)

=
1

2

[
pT
i qT

i

] [M−1
i 0

0 Ki

][
pi

qi

]
=

1

2
xT
i H̄ixi (5.56b)

where the inertia and stiffness matrices Mi and Ki are given by,

Mi =

[
mbi mbi

mbi mbi +mwi

]
, Ki =

[
ksi 0

0 kti

]
(5.57)
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The interconnection and dissipative structures Ji and Ri are given by,

Ji =

[
0 −I

I 0

]
and Ri =

[
Di 0

0 0

]
(5.58)

Damping matrces Di are defined as

Di =

[
bsi 0

0 bti

]
(5.59)

The matrices gi and di are defined as gi =
[
1 0 0 0

]T
, and di =

[
0 bti 0 −1

]T
.

The closed-loop control system design for the Quarter car is not shown here, and can

be derived using the algebraic method proposed in previous sections, or conventional

method of solving PDEs, which is shown in chapter 3. The structure of the closed-loop

system for quarter-car models is given by

ẋi = [Jdi −Rdi]∇Hdi(xi) + difi (5.60)

where Jdi and Rdi is given by

Jdi =

[
Jqi −MdiM

−1
i

M−1
i Mdi 0

]
,Rdi =

[
Ddi 0

0 0

]
(5.61)

The closed-loop energy functions of the quarter car systems are denoted as:

Hdi(xi) =
1

2

[
pT
i qT

i

] [M−1
di 0

0 Kdi

][
pi

qi

]
=

1

2
xT
i H̄dixi (5.62)

The closed-loop inertia and stiffness matrices for the quarter-car active suspension

design are chosen from case of ESDIID in chapter 3 as follows,

Mdi =

[
mbi 0

0 mbi +mwi

]
(5.63)

Kdi =

kzi kzi

kzi kti

(
mwi

mbi +mwi

)
+ kzi

 (5.64)
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Ddi =


b1i jqi − bti

mbi

mwi

jqi − bti
mbi

mwi

bti

(
mbi +mwi

mwi

)
 (5.65)

where kzf ,kzr, b1f ,b1r, jqf and jqr are the free parameters to tune the closed-loop front

and rear quarter car models.

(a)

(b)

Figure 5.2: Control configurations (a) for PESADI, Inertial decoupling (b) QCAR IDA-
PBC
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5.4 Simulation and Discussion

In this section, the effectiveness of the proposed method is discussed using an illus-

tration example. The half car parameters are taken from Liu et al. (2016), given as

mb = 1200 kg, mwf = mwr = 100 kg, Iφ = 600 kg.m2 , ksf = ksr = 15000 N/m,

bsf = bsr = 1500 N.s/m, ktf = ktr = 200000 N/m, btf = btr = 2000 N.s/m, lf = 1.5 m

and lr = 1.2 m. The suspension deflection limit SSmax is considered as 0.1 m. The

maximum force deliverable by the actuators is limited to 5 kN. Road profile given in

Ma and Chen (2011) is used for analysis, which is mathematically expressed as,

ẋrf (t) =


πV A

L
sin

2πV

L
t 0 ≤ t ≤ L

V

0 t >
L

V

(5.66)

where A is height of the bump, V is the forward velocity of the vehicle, and L is the

length of the bump. The road input for rear tire ẋrr(t) is considered same as that

of front tire, except that it is delayed in time by L
V

. The parameters of the road

profile are chosen as L = 5m, A = 0.1m and V = 45kmph, representing an isolated

bump on a smooth road surface when vehicle is moving with a forward velocity of

V = 45kmph. The closed-loop parameters for PESADI are chosen as follows:

• Md = Md1 = M, ksfd1 = 15, ksrd1 = 15, α1 = 0.9, d1 = bsf = 1500, d5 = bsr =

1500, ja1 = 0, ja2 = 0, ja3 = 0,ja4 = 0, ja5 = 0.

In PESADI, the virtual tire stiffnesses of tires in the closed-loop cannot be altered, as

seen from the stiffness matrix Kd in equation (5.47). Lower values of the closed-loop

suspension stiffness coefficients ksfd1 and ksrd1 are used while the damping coefficients

remain unchanged. This makes the suspension softer and isolates the chassis from

road disturbances by reducing the force on chassis due to road excitations. This can

be confirmed by comparing the uncontrolled system time responses of the forces ṗ1

and ṗ2 with the responses using PESADI, shown in Figure 5.3. Front and rear sus-

pension strokes can be controlled by tuning the corresponding closed-loop damping

coefficients d1 and d5, respectively, along with the other coefficients in the matrix Dd

in Equation (5.48). However, the tire responses cannot be altered directly as there

are no control parameters directly influencing their performances. The corresponding

RDTLs of front and rear tires are shown in Figure 5.8.

The closed-loop control parameters of the proposed Inertial decoupling controller are
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Figure 5.3: Time responses of PESADI Controller design: (a) ṗ1 ,(b) ṗ2

given as: ksfd2 = 300000, ksrd2 = 480000 and α2 = −0.5, d1 = 66000, d5 = 75000,

ja1 = 15000, ja2 = 12000, ja3 = 9000, ja4 = 4279 and ja5 = 6000.

The process of energy shaping and damping injection for controller design is shown

in Figure 5.4. Set1 corresponds to the case of kinetic energy shaping via selection of

desired inertia matrix Md2, and setting the closed-loop free parameters in the desired

stiffness and damping matrices Kd2 and Dd2 same as the of the uncontrolled param-

eters. The change in structure of Md increases the effective tire damping in this case.

This can be observed by comparing the coefficients D33,D44 of the damping matrix in

equation (5.8) with closed-loop damping matrix coefficients Dd233 ,Dd244 in equation

(5.52). Increase in the effective tire stiffnesses is also observed by comparing the tire

stiffness matrices K and Kd2, along with coupling between the stiffness coefficients

in Kd2. Increase in the tire stiffness and damping coefficients results in reduction in

tire deflections and velocities, resulting in significant improvement in RDTLs of the

system, whose responses are shown in Figures 5.5(a) and 5.5(b). Disturbance is at-

tenuated at unsprung mass and sprung mass is isolated from the effect of disturbance,

which can be seen from the time response of the forces ṗ1 and ṗ2 in Figure 5.5(c) and

Figure 5.5(d).

Increased suspension strokes of front and rear suspensions as a result of higher tire

stiffness and damping coefficients in set1 are controlled by shaping the closed-loop

potential energy via free parameters ksfd, ksrd and α in matrix Kd1. Front suspension

stroke can be modified by tuning the parameter ksfd, while ksrd is used to control

rear suspension stroke. The parameter α acts as coupling coefficient between front

and rear suspension strokes, which can alter the vertical and angular displacements

xc and φ of the sprung mass. Time responses of the suspension strokes for set1 and
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Figure 5.4: Sequence of Inertial decoupling controller tuning
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Figure 5.5: Time responses of Inertial decoupling Controller design: (a) RDTLf , (b)
RDTLr, (c) ṗ1 ,(d) ṗ2, (e) q1 and (f) q2
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Figure 5.6: Simulation results for Acceleration: (a) Heave acceleration and (b) Pitch
acceleration
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Figure 5.7: Simulation results for Suspension deflection: (a) front and (b) rear

set2 conditions are presented in Figure 5.5(e) and Figure 5.5(f). Finally, the power

dissipation is shaped by tuning free variables in damping matrix Dd1 in Equation

(5.52) to improve the overall response and settling time of the system.

Figure 5.6 illustrates the comparison of responses of vertical and angular ac-

celerations of the uncontrolled system and the proposed control method. Results

of the closed-loop system designed by decoupling the half car model into quarter

car model and designing IDA-PBC for front and rear actuators are also shown for

comparison purposes. Both PESADI and Inertial decoupling controller minimise the

peak value of accelerations and settling times, thus improving the ride comfort of

the closed-loop system. Significant improvement can be seen in the angular acceler-

ation with PESADI when compared to performance of inertial decoupling controller.

However, control over RDTL is limited with PESADI, as there are no direct control

parameters associated with RDTL in PESADI. Whereas in inertial decoupling, the

98



0 0.5 1 1.5 2 2.5 3

Time [s]

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

R
D

T
L

f

Uncontrolled

QCAR IDAPBC

PESADI

Inertial decoupling

(a)

0 0.5 1 1.5 2 2.5 3

Time [s]

-0.4

-0.2

0

0.2

0.4

R
D

T
L

r

Uncontrolled

QCAR IDAPBC

PESADI

Inertial decoupling

(b)

Figure 5.8: Simulation results for Relative dynamic tire load: (a) front and (b) rear
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Figure 5.9: Simulation results for Actuator forces: (a) front and (b) rear

Table 5.1: RMS values of performance indices

Type of Controller Acceleration Suspension deflection
Heave Pitch front rear

ẍc (m/s2) φ̈ (rad/s2) q1(m) q2(m)

Uncontrolled 0.5831 1.8848 0.02 0.0308
QCAR IDAPBC 0.2859 0.3908 0.0207 0.0207
PESADI 0.2797 1.1475 0.0151 0.0208
Inertial decoupling 0.2072 1.1159 0.0179 0.0189
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Table 5.2: RMS values of performance indices

Type of Controller RDTL Actuator force
front rear front rear

ratio ratio uf (N) ur(N)

Uncontrolled 0.1017 0.0990 - -
QCAR IDAPBC 0.1173 0.0558 332.52 388.47
PESADI 0.0927 0.0752 226.74 311.96
Inertial decoupling 0.0785 0.0813 277.69 320.05

change in structure of Md directly effects the RDTL, thus giving control over the

ride stability. Then the ride comfort can be improved by appropriate selection of free

parameters in stiffness and damping matrices. Therefore, PESADI can be considered

as a ride comfort improvement oriented method, whereas inertial decoupling can be

considered as ride stability improvement method, as the controller tuning in inertial

decoupling method starts with improvement in RDTL. The suspension deflections

can be minimised in both inertial decoupling and PESADI methods by tuning the

control parameters as explained in the previous sections, and the time responses of

the same are shown in Figure 5.7. Comparison of RDTLs of the closed-loop system

with proposed controller along with uncontrolled system are illustrated in Figure 5.8,

which show good improvement with proposed method. The actuator responses of the

system are plotted for different control structures in Figure 5.9, which are well within

the allowable limits, and there RMS values can be found in Table 5.1. From the time

responses of performance indices in Figures 5.6-5.9, it is seen that the performance of

QCAR IDA-PBC, which is designed by decoupling half car model model into front

and rear quarter car models is comparable to that of the proposed method. However,

the major disadvantage QCAR IDA-PBC is that when the control gains are tuned

independently for front and rear systems, and combined to control half car model,

stability of the overall system cannot be guaranteed. Moreover, this approach loses

the importance of designing the closed-loop system using physical parameters of the

system as overall system is not considered while tuning the control gains.

The above discussions suggest that the performance of the half car active suspen-

sion system can be significantly improved using the proposed IDA-PBC technique.
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Moreover, the proposed algebraic IDA-PBC method reduces the design complexity

by avoiding the necessity of solving PDEs, which generally is a complex task. By

proposer choice of desired inertia matrix Md, the orientation of control design can

be changed to either ride comfort oriented or ride stability oriented, based on the

type of vehicle. The change in structure of Md gives more flexibility and control over

performance requirements. The choice of desired inertia matrix plays a crucial role

in modifying the structure of the controller, and the system can be understood in

terms of how the controller effects the physical parameters like inertia, damping and

stiffness by comparing the open-loop and closed-loop matrices in each case, which is

the main idea behind IDA-PBC in mechanical systems.

5.5 Summary

In this chapter, an interconnection and damping assignment passivity-based control

system for a half car active suspension system was presented. The control law is

designed using a port controlled hamiltonian model, which characterises the system

in terms of its physical properties. By translating the problem into matrix equations

and obtaining an algebraic solution, the general challenge of solving partial differen-

tial equations to determine the state-feedback law is avoided. The efficiency of the

proposed controller is proved through case studies in which two specific situations

are obtained by selecting the desired inertia matrix and constructing the associated

effective stiffness and damping matrices for these cases. The simulation results for

these scenarios are analysed and given in terms of time responses and RMS values. It

is demonstrated that the suggested control law effectively meets the design objectives

of increasing the active suspension system’s ride comfort and ride stability.
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Chapter 6

Conclusions and Future scope

Interconnection and Damping Assignment Passivity Based Control is designed for per-

formance improvement of Active suspension systems. The proposed control method is

designed for two systems, namely quarter-car and half-car active suspension systems.

The control law is designed by shaping the closed-loop energy function and modify-

ing the system’s interconnection and damping structures. The main requirements of

active suspension system, which are improvement in ride comfort and stability, while

adhering to the limitations of suspension stroke are met by modifying the closed-

loop system’s physical properties. Using the port-Hamiltonian framework to model

the system, physical parameters of the open-loop and closed-loop systems, such as

inertia, stiffness, and damping coefficients, are used in the controller design. The con-

tributions, main conclusive remarks and the future scope of this thesis are presented

below.

6.1 Contributions

1. Design and Development of closed-loop control of Quarter-car and

Half-car active suspension systems in the PCH framework: Designed

and implementation of IDA-PBC was carried out for control of quarter-car and

half-car active suspension systems modelled in PCH framework. Improvement in

ride comfort and ride stability were achieved while constraining the suspension

stroke within the prescribed limits. Analysis of the performance of controller in

improving various requirements of the system with change in inertia matrix was

also carried out. A step-by step procedure for tuning the controllers based on
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time and frequency response characteristics is explained. The control algorithm

developed for a quarter-car system was implemented on hardware and the design

was verified.

2. Design of a state-observer in PCH framework: The design of the observer

is performed in the PCH framework to incorporate it in the quarter-car closed

loop control. Stability analysis was carried out on the observer and finally

implemented on the hardware. The performance of the controller in presence

of the state-estimation by the observer is demonstrated with hardware results.

3. Development of an algebraic solution for solving matching equation in

design of IDA-PBC for half-car suspension system: Solution of match-

ing equation was derived using an algebraic method, avoiding the obstacle of

solving complex PDEs to obtain the state feedback law. The controller design

is simplified into construction of a positive definite matrix which defines the

closed-loop potential energy function after shaping the closed-loop kinetic en-

ergy by choice of desired inertia matrix. The desired inertia matrix was chosen

based on the results derived from the quarter-car IDA-PBC design, which makes

the controller design intuitive and straight forward.

6.2 Conclusions and Remarks

6.2.1 Control Of Quarter-Car Active Suspension System

A good improvement in ride comfort, stability and suspension deflection is achieved

using the IDA-PBC. Choice of the closed-loop inertia matrix plays a very important

role in the control configuration of the closed-loop system. Structure of closed-loop

stiffness and damping coefficients depends on the structure of inertia matrix. As the

structure of closed-loop inertia matrix is varied using α from zero to one, the distur-

bance is attenuated at the unsprung mass itself. For improvement in ride comfort,

road holding and suspension stroke, it is required to modify the structure of inertia

matrix. With change in the structure of inertia matrix, the control configuration

requires all the states for implementation.

Port-Hamiltonian observer designed using only suspension deflection as the measur-

able output shows a good performance in terms of tracking the actual states in pres-
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ence of road disturbances. The effectiveness of the observer is experimentally verified

by implementing full-state IDA-PBC using the state-estimates obtained from the ob-

server design. The performance of the closed-loop system is effective and comparable

to that of the system controlled with full-state feedback.

6.2.2 Control Of Half-Car Active Suspension System

The algebraic solution proposed for solving the matching equation of IDA-PBC sim-

plifies the controller design effectively compared to the conventional method, which

requires solution of PDEs. The choice of the closed-loop inertia matrix, plays a very

important role in deriving the closed-loop stiffness and damping matrices in algebraic

IDA-PBC method. The choice of inertia matrix can be made for half-car system using

the notion of inertia matrix structure used for quarter-car active suspension system

controller design. This makes the controller design simple and effective. Based on the

choice of inertia matrix, the controller can be designed either in ride comfort oriented

or road holding oriented manner. The results of the proposed controller show good

improvement of the closed-loop system in terms of peak and RMS values.

6.3 Future Scope

Based on the research carried out in this thesis, the recommendations for future

research are presented.

• In the present study, the system is modelled as a linear time invariant system.

However, the actual system may include non-linearities and uncertainties. The

research can be extended to update the control law to address issues.

• Actual dynamics of the actuator are not linear. Research can be extended to

include the actuator dynamics in the design.

• Observer design considering non-linearities and uncertainties can be researched.

An extended observer design to estimate the disturbance effect can be attempted

to minimise the error dynamics and design the observer accurately.

• The algebraic IDA-PBC controller method proposed for half-car active suspen-

sion can be used to design and analyse the controller for full-vehicle system to

improve heave, pitch and roll dynamics.
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• The controller design can be carried out to address lateral, and longitudinal

dynamics of the vehicle.
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Appendix A

Port-Hamiltonian Model Of

Quarter-Car Active Suspension

System

A lumped-parameter model of the quarter-car active suspension system is shown in

figure 3.1.The coordinates xw and xb are the wheel and body displacements from their

respective equilibrium positions, and xr(t) is the time-varying road position. The

generalised coordinates q1 , xw − xr(t) and q2 , xb − xw. Using these coordinates,

the kinetic energy is given by

τ(q̇, t) =
1

2
mw(ẋr(t) + q̇1)2 +

1

2
mb(ẋr(t) + q̇1 + q̇2)2 (A.1)

The potential energy is given by

ν(q) =
1

2
ktq

2
1 +

1

2
ksq

2
2 (A.2)

The Rayleigh dissipation function D(q̇) represents the power lost to the environ-

ment by the dissipative elements.The power dissipated by the damper can be written

as

D(q̇) =
1

2
btq̇

2
1 +

1

2
bsq̇

2
2 (A.3)

The Lagrangian for the system without considering the external forces (conserva-
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tive system) is given by

L(q, q̇, t) = τ(q̇, t)− ν(q) (A.4)

L(q, q̇, t) = (
1

2
mw(ẋr(t) + q̇1)2 +

1

2
mb(ẋr(t) + q̇1 + q̇2)2)− (

1

2
ktq

2
1 +

1

2
ksq

2
2)(A.5)

The conjugate momenta are given by

p1
∆
=
∂L

∂q̇1

= mw(ẋr(t) + q̇1) +mb(ẋr(t) + q̇1 + q̇2) = mwẋw +mbẋb (A.6)

p2
∆
=
∂L

∂q̇2

= mb(ẋr(t) + q̇1 + q̇2) = mbẋb (A.7)

The Kinetic energy written in terms of the momenta is given by

τ(p) =
1

2
pTM−1p (A.8)

where

M =

[
mw +mb mb

mb mb

]
(A.9)

The Hamiltonian of the system which is the storage function is defined by

H(p,q) =
1

2
pTM−1p + ν(q) (A.10)

Generalised velocities q̇1 and q̇2 can be written in terms of the Hamiltonian as

q̇1 =
∂H

∂p1

− ẋr(t) (A.11)

q̇2 =
∂H

∂p2

(A.12)

Differentiating Rayleigh dissipation function with respect to generalised velocities,

∂D
∂q̇1

= btq̇1 = bt

(∂H
∂p1

− ẋr(t)
)

(A.13)

∂D
∂q̇2

= bsq̇2 = bs
∂H

∂p2

(A.14)
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The momenta dynamics are given by

ṗ1 = −∂H
∂q1

− ∂D
∂q̇1

(A.15)

ṗ1 = −∂H
∂q1

− bt
(∂H
∂p1

− ẋr(t)
)

(A.16)

ṗ1 = −∂H
∂q1

− bt
∂H

∂p1

+ btẋr(t) (A.17)

ṗ2 = −∂H
∂q2

− ∂D
∂q̇2

+ us (A.18)

ṗ2 = −∂H
∂q2

− bs
∂H

∂p2

+ us (A.19)

The equations A.11 to A.18 can be written in matrix forms as
ṗ1

ṗ2

q̇1

q̇2

 =


−bt 0 −1 0

0 −bs 0 −1

1 0 0 0

0 1 0 0



∂H
∂p1
∂H
∂p2
∂H
∂q1
∂H
∂q2

+


0

1

0

0

us +


bt

0

−1

0

 ẋr(t) (A.20)

Matrix equation A.20 represents the system in Port-Hamiltonian form with force

and velocity inputs,[
ṗ

q̇

]
=

[
−D −I

I 0

][
∇pH

∇qH

]
+

[
G

0

]
us +

[
G1

G2

]
ẋr(t) (A.21)

where, ṗ =
[
ṗ1 ṗ2

]T
,q̇ =

[
q̇1 q̇2

]T
, ∇pH =

[
∂H
∂p1

∂H
∂p2

]T
, ∇qH =

[
∂H
∂q1

∂H
∂q2

]T
,

G =
[
0 1

]T
, G1 =

[
bt 0

]T
and G2 =

[
−1 0

]T
. The matrix D is given by,

D =

[
bt 0

0 bs

]
(A.22)
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Appendix B

Port-Hamiltonian Model Of

Half-Car Active Suspension System

A lumped-parameter model of the half-car active suspension system is shown in figure

5.1. The open loop potential energy of the system is given by

ν =
1

2
ksf (xbf −xwf )2 +

1

2
ksr(xbr−xwr)2 +

1

2
ktf (xwf −xrf )2 +

1

2
ktr(xwr−xrr)2 (B.1)

Open loop kinetic energy is given by

τ =
1

2
mwf ẋ

2
wf +

1

2
mwrẋ

2
wr +

1

2
mbẋ

2
c +

1

2
Iφφ̇

2 (B.2)

Defining the generalised displacement coordinates q1 , (zsf − zuf ), q2 , (zsr − zur),
q3 , (zuf − zrf ) and q4 , (zur − zrr). If E(x) is a continuously differential function,

partial derivative of E, ∂E/∂x is denoted as ∇xE.

Some useful relations

• xbf = xc + lfφ

• xbr = xc − lrφ

• φ =
1

l
(xbf − xbr)

writing φ in terms of displacement coordinates

• φ =
1

l
[(q1 + q3 + xrf )− (q2 + q4 + xrr)]
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• xc =
lf
l
xbr +

lr
l
xbf =⇒ xc =

lf
l

[q2 + q4 + xrr] +
lr
l

[q1 + q3 + xrf ]

Writing potential energy in terms of displacement coordinates:

ν(q) =
1

2
ksfq

2
1 +

1

2
ksrq

2
2 +

1

2
ktfq

2
3 +

1

2
ktrq

2
4 (B.3)

kinetic energy τ(q̇),

τ(q̇, t) =
1

2
mwf (q̇3 + ẋrf )

2 +
1

2
mwr(q̇4 + ẋrr)

2

+
1

2
mb

[ lf
l

(q̇2 + q̇4 + ẋrr) +
lr
l

(q̇1 + q̇3 + xrf )
]2

+
1

2
Iφ

[1

l
(q̇1 + q̇3 − q̇2 − q̇4 + ẋrf − ẋrr)

]2

(B.4)

The Lagrangian is given by L(q, q̇) = τ(q̇, t) − ν(q). The conjugate momenta p

can be derived from Lagrangian as

p =


p1

p2

p3

p4

 =


∇q̇1L

∇q̇2L

∇q̇3L

∇q̇4L

 (B.5)

p1 = mb
lr
l

[ lf
l

(q̇2 + q̇4 + ẋrr)+
lr
l

(q̇1 + q̇3 + ẋrf )
]

+
Iφ
l

[1

l
(q̇1 + q̇3− q̇2− q̇4 + ẋrf − ẋrr)

]
= mb

lr
l
ẋc +

Iφ
l
φ̇ (B.6)

p2 = mb
lf
l

[ lf
l

(q̇2 + q̇4 + ẋrr)+
lr
l

(q̇1 + q̇3 + ẋrf )
]
− Iφ

l

[1

l
(q̇1 + q̇3− q̇2− q̇4 + ẋrf − ẋrr)

]
= mb

lf
l
ẋc −

Iφ
l
φ̇ (B.7)

p3 = mb
lr
l

[ lf
l

(q̇2+q̇4+ẋrr)+
lr
l

(q̇1+q̇3+ẋrf )
]
+
Iφ
l

[1

l
(q̇1+q̇3−q̇2−q̇4+ẋrf−ẋrr)

]
+mwf (q̇3+ẋrf )

= mb
lr
l
ẋc +

Iφ
l
φ̇+mwf ẋwf (B.8)

110



p4 = mb
lf
l

[ lf
l

(q̇2+q̇4+ẋrr)+
lr
l

(q̇1+q̇3+ẋrf )
]
−Iφ
l

[1

l
(q̇1+q̇3−q̇2−q̇4+ẋrf−ẋrr)

]
+mur(q̇4+ẋrr)

= mb
lf
l
ẋc −

Iφ
l
φ̇+mwrẋwr (B.9)

Therefore,

p =


p1

p2

p3

p4

 =


mb

lr
l
ẋc +

Iφ
l
φ̇

mb
lf
l
ẋc − Iφ

l
φ̇

mb
lr
l
ẋc +

Iφ
l
φ̇+mwf ẋwf

mb
lf
l
ẋc − Iφ

l
φ̇+mwrẋwr

 (B.10)

Now, the Kinetic energy can be written as a function of p as

τ(p) =
1

2
pM−1p (B.11)

The Hamiltonian H(p,q) which is the energy stored is written as

H(p,q) = τ(p) + ν(q) (B.12)

Now, we have to find M (inertia matrix), whose inverse is required to compute τ(p).

Consider a vector of velocity coordinates v, defined as v =
[
ẋc φ̇ ẋwf ẋwr

]T
.

Kinetic energy τ in B.2 can be written in terms of v as,

τ =
1

2
vTMTv =

1

2

[
ẋc φ̇ ẋwf ẋwr

]

mb 0 0 0

0 Iφ 0 0

0 0 mwf 0

0 0 0 mwr



ẋc

φ̇

ẋwf

ẋwr

 (B.13)

writing p from equation B.10 in terms of v,

p = Λv =


mb

lr
l

Iφ
l

0 0

ms
lf
l
− Iφ

l
0 0

mb
lr
l

Iφ
l

mwf 0

mb
lf
l
− Iφ

l
0 mwr



ẋc

φ̇

ẋwf

ẋwr

 (B.14)

=⇒ Λ−1p = v. Let Λ−1 = fT. Then equation B.13 can be written as
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τ =
1

2
vTMTv =

1

2
pTfTTMTfTp (B.15)

Comparing equations B.11 and B.15,

M−1 = fTTMTfT (B.16)

fT = Λ−1 =



1

mb

1

mb

0 0

lf
I

− lr
I

0 0

− 1

mwf

0
1

mwf

0

0 − 1

mwr

0
1

mwr


(B.17)

M−1 =



1

mb

+
l2f
Iφ

+
1

mwf

1

mb

− lf lr
Iφ

− 1

mwf

0

1

mb

− lf lr
Iφ

1

mb

+
l2r
Iφ

+
1

mwr

0 − 1

mwr

− 1

mwf

0
1

mwf

0

0 − 1

mwr

0
1

mwr


(B.18)

Inertia matrix M = (M−1)−1 = (fTTMTfT)−1 = f−1T M−1
T f−TT

M =



mbl
2
r + Iφ
l2

mblf lr − Iφ
l2

mbl
2
r + Iφ
l2

mblf lr − Iφ
l2

mblf lr − Iφ
l2

mbl
2
f + Iφ

l2
mblf lr − Iφ

l2
mbl

2
f + Iφ

l2

mbl
2
r + Iφ
l2

mblf lr − Iφ
l2

mbl
2
r + Iφ
l2

+mwf
mblf lr − Iφ

l2

mblf lr − Iφ
l2

mbl
2
f + Iφ

l2
mblf lr − Iφ

l2
mbl

2
f + Iφ

l2
+mwr


(B.19)
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Hamiltonian H(p,q) in terms of Inertia matrix,

H(p,q) =
1

2
pTM−1p + ν(q) =⇒ ∇pH = M−1p (B.20)

Defining state variables (p,q) : p =
[
p1 p2 p3 p4

]T
and q =

[
q1 q2 q3 q4

]T
.

From equation B.20,

∇pH = M−1p =


∇p1H

∇p2H

∇p3H

∇p4H

 =


q̇1

q̇2

q̇3 + ẋrf

q̇4 + ẋrr

 (B.21)

Therefore, 
q̇1

q̇2

q̇3

q̇4

 =


∇p1H

∇p2H

∇p3H

∇p4H

+


0 0

0 0

−1 0

0 −1


[
ẋrf

ẋrr

]
(B.22)

Dissipated power D by dampers,

D(q̇) =
1

2
bsf q̇

2
1 +

1

2
bsrq̇

2
2 +

1

2
btf q̇

2
3 +

1

2
btrq̇

2
4 (B.23)

Therefore,

∂D
∂q̇1

= bsf q̇1,
∂D
∂q̇2

= bsrq̇2,
∂D
∂q̇3

= btf q̇3,
∂D
∂q̇1

= btrq̇4 (B.24)

∇q̇D =


bsf 0 0 0

0 bsr 0 0

0 0 btf 0

0 0 0 btr



q̇1

q̇2

q̇3

q̇4

 (B.25)
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From equations B.22 and B.25,

∇q̇D =


bsf 0 0 0

0 bsr 0 0

0 0 btf 0

0 0 0 btr



∇p1H

∇p2H

∇p3H

∇p4H

−


0 0

0 0

btf 0

0 btr


[
ẋrf

ẋrr

]
(B.26)

Also

∇qH =


∇q1H

∇q2H

∇q3H

∇q4H

 =


ksf 0 0 0

0 ksr 0 0

0 0 ktf 0

0 0 0 ktr



q1

q2

q3

q4

 = Kq (B.27)

Hamiltonian model of a simple mechanical system with added velocity controlled dis-

sipation and external force inputs Renton et al. (2012) is given by,[
ṗ

q̇

]
=

[
0 −I

I 0

][
∇pH

∇qH

]
−

[
∇q̇D

0

]
+

[
G

0

]
u (B.28)

There are two kinds of input forces acting of the system

1. Road inputs xrf and xrr

2. Actuator forces uf and ur

Let f =

[
ẋrf (t)

ẋrr(t)

]
and ua =

[
uf

ur

]
. Define G1 =


0 0

0 0

btf 0

0 btr

, D =


bsf 0 0 0

0 bsr 0 0

0 0 btf 0

0 0 0 btr

,

G2 =


0 0

0 0

−1 0

0 −1

 and G =


1 0

0 1

0 0

0 0


Now, equation B.26 can be written as,

∇q̇D = D∇pH −G1f (B.29)
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Equation B.22 can be written as,

q̇ = ∇pH + G2f (B.30)

ṗ = −∇qH −∇q̇D + Gua (B.31)

Substituting equation B.29 in B.31

ṗ = −∇qH − [D∇pH −G1f ] + Gua (B.32)

= −∇qH −D∇pH + G1f + Gua (B.33)

Therefore, writing equations B.32 and B.30 in matrix form,[
ṗ

q̇

]
=

[
−D −I

I 0

][
∇pH

∇qH

]
+

[
G

0

]
ua +

[
G1

G2

]
f (B.34)

Equation B.34 is the PCHD form of Half car active suspension system, which can be

written in extended form as

ṗ1

ṗ2

ṗ3

ṗ4

q̇1

q̇2

q̇3

q̇4


=



−bsf 0 0 0 −1 0 0 0

0 −bsr 0 0 0 −1 0 0

0 0 −btf 0 0 0 −1 0

0 0 0 −btr 0 0 0 −1

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0





∇p1H

∇p2H

∇p3H

∇p4H

∇q1H

∇q2H

∇q3H

∇q4H


+



1 0

0 1

0 0

0 0

0 0

0 0

0 0

0 0



[
uf

ur

]
+



0 0

0 0

btf 0

0 btr

0 0

0 0

−1 0

0 −1



[
ẋrf

ẋrr

]

(B.35)

Equation B.34 can be written in general well known port-controlled Hamiltonian form

as

ẋ = [J−R]∇H(x) + gua + df(t) (B.36)

where x = (p,q) ∈ Rn (n = 8) is the state vector of displacement and momenta

coordinates. Matrices J and R represent the interconnection and resistive structures,
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respectively.

J =

[
0 −I

I 0

]
and R =

[
D 0

0 0

]
(B.37)

The matrices g and d are defined as g =
[
GT 0

]T
, and d =

[
GT

1 GT
2

]T
.
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shaping control of mechanical systems: simplifying the matching equations via

coordinate changes. IEEE Transactions on Automatic Control, 52(6):1093–1099.
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