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Abstract

Transportation plays a significant role in the global economy, and its energy re-
quirement has increased tremendously to reach 29 %, with massive growth in the
past decade. Meanwhile, the transportation industry has consumed almost 2/3rd

of oil demand and nearly 1/4th of global carbon dioxide emissions from fossil fuel
combustion. Moreover, a hike in fossil fuel costs and their reduced availability
are other major issues that motivated the development of a green and clean mode
of transportation. In that context, vehicles with an alternative energy source are
essential.

This highly motivated the development of battery electric vehicles and hybrid
electric vehicles. Researchers have focused on investigating innovations with EVs.
Although EVs are developed with improved performance and comfort, certain is-
sues hinder their wider adoption. The Lithium-ion battery is one of the primary
energy sources for electrified transportation. The battery performance of BEVs
is affected by variations in different driving profiles and conditions. Vital factors
that decide the performance of the EVs are 1) Battery life, 2) Range or mileage 3)
Battery capacity fade costs. Hence investigation of these parameters is necessary
for analyzing BEVs performance.

Considering the recent advanced BEV technologies, the performance parame-
ters are not up to the mark. Battery life - Battery degradation affects the max-
imum power handling capability of the BEV battery, thus leading to poor per-
formance of the vehicle. It reduces the life cycle of the battery and may initiate
battery replacement. Range anxiety - The EV’s range or mileage decides the user’s
anxiety. A reduced range creates range anxiety while driving since the charging
stations are not ubiquitous. Capacity fade cost - This is an after-effect of battery
life depletion. However, these are not similar for all users. It differs based on
different driving conditions such as 1) Vehicle (starting, velocity, acceleration,
and braking), 2) Driver (driving behaviors, route selection, charging, and usage
patterns), 3) Environment (irradiance, ambient temperature, wind speed, road,
and traffic conditions). Whenever the battery’s capacity reaches less than 75%,
it is called the battery’s end of life. The battery fade costs must be reduced to
increase the popularity of BEVs. The solution to such impacts on the BEVs high-
lights the usage of hybrid sources in EVs.

A supercapacitor coupled with a battery handles the transient load current
of the EV traction. The SC response time and power density are higher than
batteries; thus, it can ensure battery safety. Moreover, the regenerative braking
energy can be recuperated in the SC, which improves energy efficiency. The en-
ergy utilization of the transportation industry is increasing tremendously. 2/3rd
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of total energy consumption will be occupied by renewable energy (wind, solar,
bioenergy, geothermal, and hydro energy) by the end of 2050. Electrified trans-
portation combined with renewable energy sources reduces emissions by 60 %.
Utilizing renewable sources in the vehicle ensures a green, clean, and sustainable
transportation sector. Developing countries with higher solar insolation can em-
ploy solar panels to charge the EV sources during the daytime. They can achieve
their daily commute with less number of charging from the grid. Therefore the
contribution of Hybrid Source Electric Vehicles (HSEV) will be a significant step
toward a sustainable future.

The SC and PV are the auxiliary sources coupled with the Lithium-ion bat-
tery in a proposed hybrid source system in EVs. An Intelligent Hybrid Source
Energy Management Strategy (IHSEMS) employing a fuzzy logic-based controller
is successfully introduced to overcome the issues and drawbacks of the existing
electric vehicle systems ensuring an optimal source operations. The proposed al-
gorithm ensures absolute energy sharing among each source and diminishes the
impact of varying driving and environmental conditions. The proposed energy
management strategy for HSEV improves the battery charge levels, increases the
vehicle range, eliminates high C-rate instants, avoids frequent charge and dis-
charging (fluctuations) in battery current profile, and improves the battery life.
Moreover a modified energy management algorithm (EMA) is proposed for a high
energy-dense SC and high conversion efficient PV panels based on a new hybrid
energy vehicle. Investigations on different locations with varying driving and en-
vironmental conditions are conducted to highlight the significance of the proposed
hybrid source model. A detailed techno-economic assessment shows the signifi-
cance of the proposed hybrid models and respective proposed energy management
algorithms compared to BEVs and existing EMSs. Moreover, in countries with
underdeveloped grid infrastructure, Solar PV in electric vehicle applications can
be highly beneficial.

iv



Contents

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi
List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x
List of Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii
List of Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Issues in Battery Electric Vehicles . . . . . . . . . . . . . . . . . . . 3
1.3 Characteristics of Hybrid Sources . . . . . . . . . . . . . . . . . . . 4

1.3.1 Lithium-ion battery . . . . . . . . . . . . . . . . . . . . . . . 4
1.3.2 Supercapcitor . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3.3 Solar Photovoltaic . . . . . . . . . . . . . . . . . . . . . . . 6
1.3.4 Future significance of PV and SC . . . . . . . . . . . . . . . 7

1.4 Motivation for the Work . . . . . . . . . . . . . . . . . . . . . . . . 9
1.5 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.6 Outline of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Literature Review on Hybrid Sources in Electric Vehicles 11
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Hybrid Energy Source System . . . . . . . . . . . . . . . . . . . . . 13
2.3 DC-DC Converter Topologies . . . . . . . . . . . . . . . . . . . . . 14

2.3.1 Passive topology . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.2 Semi-active topology . . . . . . . . . . . . . . . . . . . . . . 16
2.3.3 Full-active topology . . . . . . . . . . . . . . . . . . . . . . . 17

2.4 Hybrid Energy Management Strategies . . . . . . . . . . . . . . . . 20
2.4.1 Rule-based EMS . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4.1.1 Deterministic-based energy management strategy . 22
2.4.1.2 Fuzzy logic-based energy management strategy . . 24

2.4.2 Optimization based EMS . . . . . . . . . . . . . . . . . . . . 26
2.4.2.1 Offline optimization based EMS . . . . . . . . . . . 26
2.4.2.2 Online optimization based EMS . . . . . . . . . . . 31

2.4.3 Learning-based EMS . . . . . . . . . . . . . . . . . . . . . . 34
2.4.3.1 Reinforcement learning . . . . . . . . . . . . . . . . 34

v



2.4.3.2 Neural network . . . . . . . . . . . . . . . . . . . . 36
2.5 Identified Research Gaps . . . . . . . . . . . . . . . . . . . . . . . . 39
2.6 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3 Proposed Intelligent Energy Management Strategy for Hybrid
Electric Vehicle 41
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.2 Electric Vehicle Modeling . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2.1 Dynamics of electric vehicle . . . . . . . . . . . . . . . . . . 43
3.3 Proposed Hybrid Source Model . . . . . . . . . . . . . . . . . . . . 45
3.4 Proposed Energy Management Strategy . . . . . . . . . . . . . . . . 52

3.4.1 Technical evaluation . . . . . . . . . . . . . . . . . . . . . . 58
3.4.2 Economy evaluation . . . . . . . . . . . . . . . . . . . . . . 62

3.5 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.5.1 Impact of PV power . . . . . . . . . . . . . . . . . . . . . . 65
3.5.2 Techno-economic analysis . . . . . . . . . . . . . . . . . . . 69

3.5.2.1 Technical performance comparison of EMSs . . . . 70
3.5.2.2 Economy analysis of EMSs . . . . . . . . . . . . . 74

3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4 Proposed SC-PV Hybrid Electric Vehicle 77
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.2 Proposed Hybrid Source Model . . . . . . . . . . . . . . . . . . . . 78
4.3 Proposed Energy Management Algorithm . . . . . . . . . . . . . . . 78
4.4 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.4.1 Cases of EV run under varying PV irradiance . . . . . . . . 83
4.4.2 Cases of EV run under varying driving locations . . . . . . . 91
4.4.3 Cases of sudden load demand fluctuations in EV drive . . . 99
4.4.4 Technical parametric analysis . . . . . . . . . . . . . . . . . 101

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5 Conclusion and Future Scope 105
5.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
5.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
5.3 Future Scope of Work . . . . . . . . . . . . . . . . . . . . . . . . . . 107

A Resistive Forces Opposing Electric Vehicle Motion 109
A.1 Frictional Force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
A.2 Aerodynamic Drag Force . . . . . . . . . . . . . . . . . . . . . . . . 109
A.3 Grading Force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
A.4 Acceleration Force . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

Bibliography 112

Publications based on the thesis 131

vi



List of Figures

1.1 Characteristics of energy sources - Ragones plot . . . . . . . . . . . 4

2.1 Topology classification of hybrid sources for powering EV. . . . . . 15
2.2 Schematic of the passive topology of hybrid sources in electric vehicles. 16
2.3 Schematic of the semi-active converter topology of HPSS (a) SC-

battery (b) Battery-SC. . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4 Schematic of the fully-active converter topology of HPSS (a) series

(b) parallel (c) multi-input type. . . . . . . . . . . . . . . . . . . . . 18
2.5 Primary targets of EMS in EV, HEV, PHEV. . . . . . . . . . . . . 20
2.6 Classification of EMS employed in hybrid source EVs. . . . . . . . . 21
2.7 Algorithm for battery-SC hybrid source system using Rule-based

EMS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.8 Fuzzy logic control (FLC) based EMS for battery-SC hybrid source

powered EV. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1 Overall block diagram of hybrid source system in electric 3W. . . . 42
3.2 Dynamics of electric 3W vehicle. . . . . . . . . . . . . . . . . . . . 44
3.3 Velocity profile of NYCC, Artemis Urban, and WLTP class-1. . . . 44
3.4 Circuit diagram of proposed EMS of hybrid source electric vehicle. . 46
3.5 Irradiance (blue), ambient temperature (red)(March). . . . . . . . 47
3.6 Perturb and Observe (P & O) MPPT algorithm. . . . . . . . . . . 48
3.7 Input and output membership functions of fuzzy controller (a) Ab-

solute low frequency energy (b) Absolute high frequency energy (c)
SC SOC (d) Battery cell temperature (e) Cut-off frequency of LPF 53

3.8 Flowchart of absolute energy sharing algorithm. . . . . . . . . . . . 55
3.9 System controller block diagram. . . . . . . . . . . . . . . . . . . . 58
3.10 Absolute energy sharing profiles. . . . . . . . . . . . . . . . . . . . 63
3.11 Cut off frequency derived for the CDP. . . . . . . . . . . . . . . . . 64
3.12 Comparison of battery,SC,PV and load power(BEV) with IHSEMS. 65
3.13 Comparison of source energy consumption of IHSEMS under CDP. 65
3.14 PV energy generation (kWh). . . . . . . . . . . . . . . . . . . . . . 66
3.15 Power allocation of IHSEMS for sudden variation in solar irradiance

(a), zero PV power (b) under NYCC driving cycle. . . . . . . . . . 68
3.16 Comparison of BEV, SMC, FDS, and IHSEMS in terms of battery

current (a), battery capacity loss (b) under NYCC driving cycle. . . 70

vii



3.17 Comparison of BEV, SMC, FDS and proposed IHSEMS under NYCC
driving cycle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.18 Comparison of SCSOC with SMC, FDS, and IHSEMS under NYCC
driving cycle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.19 Comparison of DCBV F bus voltage fluctuations with SMC, FDS
and IHSEMS under NYCC driving cycle. . . . . . . . . . . . . . . 73

3.20 Comparison of DCBV F bus voltage fluctuations with SMC, FDS
and IHSEMS under NYCC driving cycle. . . . . . . . . . . . . . . 74

4.1 Complete schematic structure of hybrid source energy management
in Electric-3W . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.2 Algorithm of proposed energy management strategy for SC-PV hy-
brid system in EV(modify the algorithm further) . . . . . . . . . . 81

4.3 Control block diagram of the SC reference current calculation under
proposed modified EMS . . . . . . . . . . . . . . . . . . . . . . . . 82

4.4 Combined 34 repeated IDC test profile . . . . . . . . . . . . . . . . 84
4.5 Energy consumption comparison for varying PV irradiance cases

under 34 IDC cycles (a) Case-I (b) Case-II (c) Case-III. . . . . . . . 85
4.6 Power flow analysis for varying PV irradiance cases under 34 IDC

cycles (a) Case-I (b) Case-II (c) Case-III . . . . . . . . . . . . . . . 86
4.7 SOC comparison for varying PV irradiance cases under 34 IDC

cycles (a) Case-I (b) Case-II (c) Case-III. . . . . . . . . . . . . . . . 87
4.8 Capacity loss comparison for varying PV irradiance cases under 34

IDC cycles (a) Case-I (b) Case-II (c) Case-III. . . . . . . . . . . . . 89
4.9 DC bus voltage comparison for varying PV irradiance cases under

34 IDC cycles (a) Case-I (b) Case-II (c) Case-III. . . . . . . . . . . 90
4.10 PV energy generation (kWh) and standard driving profile (WLTP

class-1) in New South Wales, Australia (31.2532° S, 146.9211° E). . 92
4.11 PV energy generation (kWh) and standard driving profile (IDC) in

Bangalore, India (12.9716° N, 77.5946° E). . . . . . . . . . . . . . . 93
4.12 PV energy generation (kWh) and ECE driving profile in Scotland

(56.4907° N, 4.2026° W). . . . . . . . . . . . . . . . . . . . . . . . . 94
4.13 EV Performance analysis of BEV and SC-PV vehicle at New South

Wales, Australia under WLTP class-1 driving cycle (a) Energy con-
sumption (b)Source SOC (c) Source capacity loss (d) DC bus voltage. 95

4.14 EV Performance analysis of BEV and SC-PV vehicle at Bangalore,
India under Indian driving cycle (a) Energy consumption (b)Source
SOC (c) Source capacity loss (d) DC bus voltage. . . . . . . . . . . 96

4.15 Performance analysis of BEV and SC-PV vehicle at Scotland un-
der ECE driving cycle (a) Energy consumption (b)Source SOC (c)
Source capacity loss d) DC bus voltage. . . . . . . . . . . . . . . . . 96

4.16 Power flow analysis for varying driving locations cases (a) NSW (b)
Bangalore (c) Scotland. . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.17 Comparison of BEV and SC-PV vehicle under sudden load fluctu-
ations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

viii



4.18 Comparison of source capacity loss for BEV and SC-PV vehicle
under unexpected load demand fluctuations . . . . . . . . . . . . . 101

ix



List of Tables

1.1 Characteristics of source systems that can be utilized in EV, HEV . 5
1.2 Comparison of EV sources . . . . . . . . . . . . . . . . . . . . . . . 8

2.1 Analysis of different topologies of coupling battery-SC hybrid system 19
2.2 Summary of EMS in EV with significant merits and demerits . . . 38

3.1 Design parameters of electric vehicle. . . . . . . . . . . . . . . . . . 43
3.2 Parameters of hybrid sources . . . . . . . . . . . . . . . . . . . . . . 45
3.3 Coverter design parameters of hybrid sources . . . . . . . . . . . . . 51
3.4 Controller parameters and specifications of hybrid source system. . 58
3.5 Performance and economy analysis of EMSs. . . . . . . . . . . . . . 67
3.6 Performance and economy analysis of EMSs. . . . . . . . . . . . . . 73

4.1 Operating modes and reference currents . . . . . . . . . . . . . . . 80
4.2 Cases of electric vehicle drive . . . . . . . . . . . . . . . . . . . . . 84
4.3 Performance analysis of EMSs under various locations . . . . . . . . 102
4.4 Economic analysis of energy storage in electric vehicle [Eaton, 2022] 102

A.1 Reference values for the rolling resistance coefficient . . . . . . . . . 110

x





List of Abbreviations

AESA Absolute energy sharing algorithm
Ah Ampere hour throughput
BEVs Battery Electric vehicles
BIR Battery di/dt reduction
BDC Battery degradation cost
BMS Battery management system
BLSI Battery life span improvement
DP Dynamic programming
DOD Depth of discharge
EV Electric vehicle
EC Electricity cost
ECR Energy consumption rate
EM Energy Management
EMA Energy management algorithm
EMS Energy management strategies
ECMS Equivalent consumption minimization strategy
EJ Exajoule
FCEVs Fuel cell electric vehicles
FDS Frequency decoupling strategy
FLC Fuzzy logic controller
GA Genetic algorithm
HESS Hybrid energy source system
HPSS Hybrid Power Source System
HSEV Hybrid source electric vehicles
IHSEMS Intelligent Hybrid Source Energy Management Strategy
LPF Low pass filter
MPPT Maximum power point tracking
MPC Model predictive control
NDC Nationally Determined Contribution
NYCC Newyork city cycle
N Battery cycle number
OCV Open circuit voltage
PSO Particle swarm optimization
P& O Perturb and observe
PV Photovoltaic
RES Renewable energy sources
RMS Root mean square
SMC State machine control
STEPS Stated Policies Scenario
SC Supercapacitor
SDS Sustainable Development Scenario
3W Three-wheeler

xii



TOC Total operation cost
WLTP Worldwide Harmonized Light Vehicles Test Procedure

xiii



List of Symbols

M Gross weight
g Acceleration due to gravity
alpha Gradeability
lambda Air density
V Velocity of vehicle
fr Rolling resistance coefficient
CD Drag coefficient
etaR Regenerative braking efficiency
etaHESS Efficiency of hybrid system
etaT Transmission efficiency
etaM Motor drive efficiency
etaT Transmission efficiency
etaPV PV panel efficiency
npBc Number of parallel cells
nsBc Number of series cells
BC Nominal capacity of battery pack
CBc Nominal capacity of battery cell
VB Nominal voltage of battery pack
VBc Nominal voltage of battery cell
RB Resistance of battery pack
BSOC Battery state of charge
BSOC0 Initial battery state of charge
SCSOC SC state of charge
Cr Charge/discharge rate
DOD Depth of discharge
BQloss Battery capacity loss
CSC Nominal capacitance of SC module
VSC Nominal voltage of SC module
VSc Nominal voltage of SC cell
CSc Nominal capacity of SC cell
CSC Nominal capacitance of SC module
RSc Resistance of SC cell
RSC Resistance of SC module
D Minimum EV driving range
USC Working voltage of SC module
VPV Output voltage of PV module
IPV Output current of PV module
IPH Photo current
IRS Reverse saturation current
VTH Diode thermal voltage
RS Series PV resistance

xiv



RSH Shunt PV resistance
Wp Maximum PV panel output
LECDay Load energy consumption per day
ECDc Energy consumption per driving cycle
NDc Number of driving cycles per day
BECM Battery energy consumption per month
TECM Total energy consumption per month
EPVM PV energy per month
EPV day PV energy per day
PVRange PV range per day
PH Hybrid power
PL Load demand power
PB Battery power
PSC SC power
PPV PV power
PC Combined battery and SC power
IC Combined battery and SC current
TC Battery cell temperature
Abs EHF High-frequency absolute energy
Abs ELF Low-frequency absolute energy
Abs EL Load absolute energy
ILoad Load current
ILF Low frequency current
IHF High frequency current
PLF Low frequency power
PHF High frequency power
fc Cut-off frequency
BP Battery peak power of BEV
BPEMS Battery peak power of hybrid EMSs
BPPR Battery peak power reduction
BCL Battery capacity loss
BCR Battery capacity reduction
di/dt Rate of change of battery current
BRI Battery RMS current
BRIR Battery RMS current reduction
DCBV F DC bus voltage fluctuation
BδQloss Instantaneous battery capacity loss
BCEMS Battery capacity of hybrid EMS
Imax Discharging peak battery current
Imin Charging peak battery current
tmax Imaxtimeinstant
tmin Imintimeinstant
di/dtEMS Battery di/dt ratio of EMS
di/dtBEV Battery di/dt ratio of BEV
IRMSEMS Battery RMS current under EMS

xv



IRMSBEV Battery RMS current under BEV
z Power law factor-0.828
Ah Ampere hour throughput
BLS Battery lifespan in years
BLSI Battery life span improvement
N Battery cycle number
Ts Sampling interval-1S
QlossD Capacity loss at each distance
DDay Average travelled distance in a day (km)
Vmax Maximum DC bus voltage
Vmin Minimum DC bus voltage
BOS Optimum battery size
R Gas constant- 8.314 J/mol K
T Absolute temperature in Kelvin

xvi





Chapter 1

Introduction

Contents
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Issues in Battery Electric Vehicles . . . . . . . . . . . . 3

1.3 Characteristics of Hybrid Sources . . . . . . . . . . . . 4

1.3.1 Lithium-ion battery . . . . . . . . . . . . . . . . . . . . 4

1.3.2 Supercapcitor . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3.3 Solar Photovoltaic . . . . . . . . . . . . . . . . . . . . . 6

1.3.4 Future significance of PV and SC . . . . . . . . . . . . . 7

1.4 Motivation for the Work . . . . . . . . . . . . . . . . . . 9

1.5 Problem Statement . . . . . . . . . . . . . . . . . . . . . 9

1.6 Outline of the Thesis . . . . . . . . . . . . . . . . . . . . 9

The current chapter introduces the thesis, including background, research
overview, features, and drawbacks of existing electric vehicles and energy man-
agement. Moreover, the organization of the thesis as chapters is given.

1.1 Background

Oil resource depletion, fuel cost hikes, and environmental pollution from poisonous
gases are major issues in the transportation industry. It contributes more than
26% of total CO2 across the globe. The increase of private transport modes in the
growing economy plays a significant contribution creates a fast increment in such
issues to the environment. [Subhash and Reinhard, 2016]. An alternative mode
of transportation is essential and handles the recent trends in the automotive
sector. Electric vehicle (EV) plays a significant role by setting themselves as an
excellent mode of transportation that can solve those problems [Boulanger et al.,
2011]. This leads to improved technologies in EVs, which emphasizes them in
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the transportation industry. It focuses on improving energy utilization, comfort,
vehicle life, and an eco-friendly environment. Recent trends and technologies
towards EV are improving year by year [Chan et al., 2009] .

The energy requirement for transportation has increased tremendously to
reach 29 %, with massive growth in the past decade [Jia et al., 2021a]. Mean-
while, the transportation industry has contributed almost 2/3rd of oil demand
and nearly 1/4th of global carbon dioxide emissions from fuel combustion [IEA-
REA, 2019] By 2050, renewable energy will occupy 2/3rd of total energy con-
sumption. By incorporating renewable electricity with electrified transportation,
carbon emissions can be reduced by 60 % in 2050 and ensure a sustainable and
green mode of transportation [GE0, 2020]. For the next two decades, the energy
demand for road transport is expected to double in the STEPS. Moreover, increas-
ing two/three-wheeled vehicles indicates such policies toward less energy-intensive
options. [Sonali et al., 2021]. A shift towards electrification limits the growth in
oil demand to less than 1 mb/d under the SDS [IEA-Oil and Gas, 2020]. In SDS,
additional capital of $1.4 trillion above the level in the STEPS needed for clean
energy technologies to 2040 [Peter et al., 2018]. India’s clean energy transition
lays the foundation for energy security.

In the present scenario, an energy predicament and environmental pollution
are critical issues caused due to the acceleration in global energy demand. En-
ergy utilization has doubled in India since 2000, and the 80% share is still from
coal, oil, and biomass [IEA, 2020]. The significance of alternate sustainable and
green energy sources is essential due to fossil fuel energy’s exhausting resource and
environmental impacts. India’s ambitions in energy policy are to reach a target
of 450 GW of renewable energy by 2030 with a surplus improvement in battery
energy storage and cost-competitiveness in solar PV. By 2040, India expects to
have the largest battery capacity globally, 140 GW in the Stated Policies Scenario
and 200 GW in the Sustainable Development Scenario [IEA-World, 2021]. The
intensity of emissions in India’s economy is projected to improve by 40 % from
2000 to 2030. The electricity generation capacity from non-fossil fuels is expected
to reach around 60 % and above the Nationally Determined Contribution of 40
%. India leads in expanding clean energy technologies and exhibits in its market
for solar PV, wind turbines, and lithium-ion battery equipment to over $40 billion
per year by 2040 [IEA-India, 2021]. This tremendous growth enables India to be a
highly sustainable nation with industrial and commercial opportunities from clean
energy that are even more prominent in the future.

The transition of transportation mode is highly essential where Lithium-ion
batteries are the widely used energy source in battery electric vehicles due to their
higher energy density (250 – 400 Wh/kg), high energy efficiency (90 % – 95 %),
wide operating temperature range (- 20°C – 60°C), and low self-discharge (0.5%
– 2%) per month [Agrawal and Pandey, 2008] [Amin et al., 2017] [Schuster et al.,
2017]. Although BEVs are developed with improved performance and comfort,
specific issues with lithium-ion batteries hinder their wider adoption. As per the
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research, 30-50% of consumers today are interested in purchasing BEVs. However,
the adoption rate remains low due to various barriers. High and fluctuating C-
rates (IB/CB), cell temperature, number of discharge and charge cycles, and depth
of discharge cause depletion of the battery life cycle and still exists as a significant
issue in lithium-ion batteries [Pedro et al., 2019]. The severity of these battery
issues is not similar for all users and varies based on the different driving and
environmental conditions [Zhang et al., 2020]. Battery management systems limit
such issues to an extent by monitoring and ensuring the safety of battery packs
[Bonfiglio and Roessler, 2009]. The automotive industry’s strategy to increase
range is with the addition of battery packs but, in return, increases the weight,
the need for high-power charging stations, and increases CO2 emissions. The
requirement for a high-power charging station needs infrastructure and heavily
constrains the adoption of electric vehicles. Since the battery is the single source
to handle sudden and fluctuating load demands in BEVs due to varying driving
profiles, alternate strategies are necessary to ensure optimal battery operation [Sun
et al., 2017].

1.2 Issues in Battery Electric Vehicles

Batteries are the typical electrical energy source utilized in EVs. Lithium-ion
types are widely used in EVs compared to all the other types of batteries (lead-
acid, Ni-Cd batteries) due to their lifespan, safety, energy, and power density
advantages [Agrawal and Pandey, 2008] [Amin et al., 2017] [Schuster et al., 2017].
However, alternate sources must be considered for sustainable transportation due
to the numerous disadvantages of high battery degradation, higher maintenance
and replacement costs, slow response, higher charging time, and harmful mate-
rials deposited in landfills (like cobalt and lithium) [Yuqing et al., 2021]. The
most significant drawback of batteries is the response toward sudden peak power
demands. Operating the battery under small charge/discharge currents is recom-
mended, and as a consequence, peak sudden power demands adversely affect the
battery life span [Amin et al., 2017]. Even though BEVs are designed with high-
performance source systems, specific challenges hinder the wider adoption of EVs.
The deterioration of li-ion cells occurs due to the effect of fluctuating peak C-rates
(IB/CB), cell temperature, number of discharge and charge cycles, and depth of
discharge [Pedro et al., 2019]. The reduction in battery life varies from user to
user and highly depends on the driving and environmental conditions across the
globe [Zhang et al., 2020]. The battery management system has limitations in
solving the issues since the battery is the only source in BEV. Therefore, a hybrid
source system is essential to handle the varying load conditions [Sun et al., 2017].
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Figure 1.1: Characteristics of energy sources - Ragones plot

1.3 Characteristics of Hybrid Sources

Characteristics of sources are significant for the lifespan, performance, and com-
fort of EV users. Understanding the major issues lithium-ion batteries face due
to the varying driving and environmental conditions, the relevant characteristics
of hybrid sources are discussed in the below subsections. Figure 1.1 shows the
Ragones plot which briefs the energy and power density of each sources. Each
sources in the hybrid system must handle the drawbacks or shortcomings of other.
Table 1.1 shows the parameters of each source (Lithium-ion battery, Superca-
pacitor (SC), Superconducting magnetic energy storage (SMES), Compressed Air
Energy Storage (CAES), Fuel cell (FC), Flywheel energy storage (FES)) and the
details characteristics, response, energy and power capability of each source.

1.3.1 Lithium-ion battery

Li-ion batteries are modeled as equivalent circuit models (ECM) and electrochem-
ical models [Wang et al., 2021]. A second-order RC ECM implements the dy-
namics of a Li-ion battery, considering the computational complexities and ac-
curacy [Tremblay et al., 2007]. Series and parallel cell arrangements develop the
battery with energy density, voltage, and current ratings needed for the EV by
the cell-to-module combinations [Amine et al., 2020].

To evaluate battery degradation, which is a significant aspect of EV batteries,
an aging model of Li-ion batteries is implemented based on Arrhenius Law [John
et al., 2011]. The lithium-ion battery’s parameters are shown in Table 1.1. The
higher energy density of Li-ion batteries enables EV makers to choose it as the
primary source of BEV. The least-square fit method was used to calibrate the
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Table 1.1: Characteristics of source systems that can be utilized in EV, HEV

Parameters Li-ion battery SC SMES CAES FC FES

Rated power (MW) 0-0.1 0-0.4 0.1-10 100-300 0-50 0-0.25

Typical discharge time mins-hours ms - mins ms - 10 s 1-2 days s-days s-hr

Power density (W/kg) 10-100 1000-10000 500-2000 NA 500W/L 400-1600

Energy density (Wh/kg) 10-100 0.1-20 0.5-5 30-60 500-3000 5-150

Response time ms ms ms mins ms-mins ms-s

Lifetime (years) 10 15 NA 20-40 25 20

Cycle lifetime (years) 600-1200 105-106 NA NA 103-104 104-107

aging model equations based on the experimental data, and the capacity loss is
shown in equation 1.1 [Ziyou et al., 2015]:

BQloss(k) = 0.0032. exp(
(−15162 + 1516. Crate(k))

R. (T + 273)
. Ah(k)z; (1.1)

where BQloss is the capacity loss of the Li-ion battery, R is the gas constant
(8.314472 J/(mol·K), T is the absolute temperature (298.15 K), Ah is the ampere
hour throughput. Instantaneous capacity loss (BδQloss

) is evaluated with Equation
1.2 to derive the battery degradation cost (Equation 1.3)

BδQloss(k) = 9.78x10−4.(
Abs(IB,k). Ts. exp

(−15162+1516.Crate,k)

(0.849.R.T ) .Q−0.1779
loss,(k−1)

3600
) (1.2)

where IB is the battery current, Ts is the sampling time = 1s, Crate is the
charge-discharge rate (IB/BC).

BDC =
BC .VB. P riceBAT . BδQloss(k)

(1000). (0.2)
(INR) (1.3)

where BC is the battery capacity,VB is the battery rated voltage, PriceBAT is the
battery price in India per kWh = INR. 12,000/-.

1.3.2 Supercapcitor

SC’s higher power density and response time play a significant role in electric
vehicle applications. Rint capacity model with mathematical equations (open-
circuit voltage, internal resistance (RSc) and capacitance (CSc)) is adopted to show
the SC response and dynamics behavior considering accuracy and less complexity
of the model [Abdul et al., 2022]. Since the life cycles of SC are very high (approx.
500,000 cycles), most of the research works that involve SC in EV applications
lack analysis on SC degradation and capacity loss.The proposed work performs
the comparison of battery and SC degradation under similar driving scenarios. An
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Arrhenius law with the SC model is employed for the analysis, which shows the
impact of using SC during fluctuating and peak loads. Temperature, voltage, and
current accelerates the SC degradation and are employed in the model [Kreczanik
et al., 2014]. The degradation of SC is evaluated in the model using equations 1.4,
1.5, 1.6 [Abdul et al., 2022] [P K Singha et al., 2021].

SCdeg =
1

t0
.

∫ tend

tini

exp( V (t)
V (0)

+ ( θ(t)
θ(0)

) + ( ISCRMS)
ISCRMS0)

tend − tini
dt (1.4)

where SCdeg represents the speed of degradation in % s−1, θ is the SC temper-
ature, ISCRMS is the SC RMS current and ISCRMS0 = (30/(ln (2))) A.

Cdeg =
n∑

n=1

(0.2 .C0)
1

t0
.

∫ iT

(i−1)T

exp(
V (t)

V (0)
+ (

θ(t)

θ(0)
) + (

ISCRMS

ISCRMS0

) dt (1.5)

where Cdeg represents the loss in capacitance (End of life if Cdeg is higher than
20%),

Rdeg =
n∑

n=1

(R0)
1

t0
.

∫ iT

(i−1)T

exp(
V (t)

V (0)
+ (

θ(t)

θ(0)
) + (

ISCRMS

ISCRMS0

) dt (1.6)

where Rdeg represents the increase in (equivalent series resistance) ESR, and
End of life (EOL) of SC occurs during a decrease of 20% in the capacitance and
an increase of 100% in the ESR),

1.3.3 Solar Photovoltaic

The technology that converts solar energy to electrical energy under the photo-
voltaic effect of semiconductors constitutes PV power generation. A PV array
is a group of PV modules connected in series and parallel [Djamila et al., 2014].
Equation 1.7 shows the nonlinear V-I characteristics of the photovoltaic cell:

IPV = np.IPH − np.IRS.

[
exp

(VPV +IPV .RS)

(VTH.ns)
−1

]
− (VPV + IPV .RS)

RSH

(1.7)

where VPV and IPV represent the output PV voltage and current of the mod-
ule, np and ns are the number of parallel and series connected panels. IPH is
the photo-current, IRS is the module reverse saturation current, VTH is the diode
thermal voltage and RS, RSH are the series and shunt resistance respectively. The
highly fluctuating nature of PV irradiance and ambient temperature affects power
generation and stability in supporting an energy system. The MPPT algorithm
extracts maximum power during such high fluctuations. Equation (1.8) shows
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the PV peak power (WP ), load energy calculations of the HSEV, and Monthly
battery energy consumption (BECM) ( Eq.1.8) shows the impact of PV energy in
EV [Solar, 2020].

WP =
Ir.APV .ηPV

100
;LECDay = ECDC .NDc;BECM = TECM − EPVM (1.8)

where Ir is peak irradiance, APV is area of PV panels,etaPV is PV conversion
efficiency, LECDay is daily load energy consumption, ECDC is energy consumption
under single driving cycle, NDc is number of driving cycles in a day, TECM is total
monthly load energy consumption and EPVM is monthly PV energy consumption.

1.3.4 Future significance of PV and SC

As per the implementation of the Paris Agreement sustainable development goals,
the position of PV power in transportation systems will be extreme. All nations
are planning strategies to reduce the global peak of greenhouse gases to achieve
zero emissions by 2050 [GE0, 2020]. Further research in the improvement of PV
module conversion efficiency and reduction in PV cell cost can enhance the EV
energy efficiency to a large extent [Elia et al., 2021]. Table 1.2 compares the
size and performance parameters of the battery, SC, and PV cells and details
the research improvements undergoing in respective energy sources [Abdul et al.,
2022]; [P K Singha et al., 2021]; [PV-NREL, 2022]. However, cells with an energy
density higher than 100 Wh/kg are under development in research to utilize SC as
an efficient energy storage device in electrified transportation. Higher energy-dense
SC is achieved by Aowei Technology’s UCK42V6800C [Supercapacitor-AOWEI,
2022] [Wanlu et al., 2022]. IEC 62576-2009 standards certify and confirm the test
procedure and performance of the SC cell. The cycle life of SC is approximately
100 times more when compared to a battery. Moreover, SC is less deteriorated
to high C-rate operations, and its charging speed is higher compared to a battery
[Supercapacitor-AOWEI, 2022]. The major disadvantage of using SC in large-
scale energy applications is the cost. However, cheaper SC technologies (2500
USD/kWh) are developed as per the NREL data, which makes it economical in
the long run (10-20 years of usage). Roy et al. conducted an economic comparison
(calendar and cyclic cost) of battery and SC systems for wave energy harvesting,
which identified that an SC-based system is less costly than a Li-ion battery
system [P K Singha et al., 2021]. Abdul et al. summarize SC and Li-ion battery
capital costs and depicts that SC’s energy capital cost (cost/kWh) shows a reduced
trend. Moreover, the power capital cost (cost/kW) is significantly lower for SC
when compared to the battery due to its higher power density. [Abdul et al., 2022].

Future improvements in SC can enable it to be the main source considering its
long life cycle, lower maintenance, high power density, and lower charging time.
Researchers are working to improve the energy density of SC by synthesizing the
electrodes with different chemical compositions [Abdul et al., 2022] [Ying et al.,
2020] [Wanlu et al., 2022]. The discharge and charge response characteristics of the
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Table 1.2: Comparison of EV sources

Parameters Li-ion battery cell SC cell PV cell

Energy density (Wh/kg) 10-100 1-100 10-100

Power density (W/kg) 1,000 10,000 20

Mass (kg) 0.5 0.125 0.4

Efficiency (%) 70-80 85-98 15-50

Charge time 1-5 h 0.3-30 s na

Discharge time 0.3-3 h 0.3-30 s na

Operating temperature (°C) -20°C to 45°C -40°C to 70°C -40°C to 85°C

Projected cycle life 2,000 5,00,000 na

Projected lifetime (years) 3-5 10-20 25-30

Energy capital cost INR./kWh 15,000 2,02,500 na

Power capital cost INR./kW 20,000–45,000 10–20 32,000

battery and SC with ratings are mentioned in Table 1.2. The charging time of SC
compared with lithium-ion batteries under similar conditions is low due to its high
power density and faster response time. SC can handle higher and sudden charging
currents from the high-rated charging stations with lower deterioration. This
can significantly reduce the charging time of the EVs [Abdul et al., 2022] [Ying
et al., 2020]. As the focus of the work does not consider the charging station
analysis, only a brief of available charging stations for battery and SC are only
discussed. Gemamex Motion Co. implements a charging station for the battery
and SC with a maximum of 200A DC through the CCS2 interface and 550 A
DC through the pantograph, respectively [Charging Stations-Gemamex., 2022].
Moreover, the advanced charging station scenarios in office buildings focus on
intelligent models to control the EV fleet charging to minimize electricity usage and
maximize self-consumption. Such intelligent algorithms handle the fluctuations in
PV, EV energy demands, and user behavior [Brida et al., 2021].

Another aspect of concern is the conversion efficiency of PV cells. As per
NREL research, the increment of a PV cell with a conversion efficiency year by
year to land at 47.1 % (Four-junction) is under research, showing the significance of
PV and its emergence in the transportation/grid energy sector [PV-NREL, 2022].
Reduction in the cost of PV cells from 2010-2022 (INR.68 to INR. 25 per Watts)
indicates the role of RES in a sustainable mode of transportation [Ranganath and
Debasis, 2021]. Similarly, battery prices fell from 1100 USD in 2010 to 132 USD
in 2022, hinting that energy source prices declined with increased production,
market, and improved technologies. However, due to the shortage of lithium and
the high requirement for Li-ion battery manufacturing for EVs, the cost share of
cathode materials increased by 6.7 % in one-year [Lithium ion Battery cost, 2022].
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Considering such factors, SC manufacturing research and the market is achieving
their peak in the coming 5-10 years. Hence by 2035, a fall in SC’s initial price
and improving energy density can ensure the SC-based vehicles in the market with
less maintenance and replacements, thus eliminating the dumping of e-wastes from
EVs. It also ensures the fastest recharging, like ICE vehicle fuel filling, and an
accelerated complete EV adoption.

1.4 Motivation for the Work

Hybrid sources are employed in electric vehicles as Lithium-ion batteries are
severely deteriorating due to varying driving and environmental conditions. In-
corporating green and renewable energy sources in EVs is a tremendous vision
focusing on net zero emissions by 2050. Hybrid source energy management is
essential, which manages the power allocation among each source based on the
fluctuations in driving and environmental conditions. Moreover, optimal source
operations are ensured with energy management strategies. The exhaustive liter-
ature survey on energy management systems and strategies with power converter
topologies, modeling, analysis, and algorithms for hybrid sources in electric vehicle
applications need to investigate, and present the findings.

1.5 Problem Statement

To design and develop hybrid source systems incorporating renewable energy
sources is a crucial step in the electrified transportation sector. Moreover, im-
plementation of an efficient energy management strategy for the optimal power
allocation among each source in a hybrid source system for Electric Vehicles with-
out any complex modeling and data compilation.

1.6 Outline of the Thesis

The whole thesis is organized into six chapters as follows,

Chapter 1: A brief introduction to the energy economy and the impact
of electrified transportation. Major issues of battery electric vehicles with an
overview of introducing the hybrid source models and its energy management
strategies in electric vehicles are discussed in this chapter.

Chapter 2: An extensive literature survey of the hybrid source energy man-
agement strategies along with various DC-DC converter topologies, identified re-
search gaps and research objectives are discussed in this chapter.

Chapter 3: Absolute energy sharing based energy management strategy us-
ing fuzzy controller with an optimal energy sharing scheme are discussed in this
chapter. Moreover, a techno-economic assessment is performed by comparing the
proposed control scheme with existing EMSs and BEVs.
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Chapter 4: The hybrid combination of high-efficiency PV panels coupled with
high energy dense Supercapcitor for the Hybrid Source Electric Vehicle model with
an improved Energy management algorithm (EMA) is discussed in this chapter
with a Techno-economic analysis at different locations.

Chapter 5: This chapter concludes the contributions of the proposed research
work and also discusses the scope for possible future works which can enhance the
energy economy, longevity, and efficiency of the green mode of transportation.
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Chapter 2

Literature Review on Hybrid
Sources in Electric Vehicles

Contents
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Hybrid Energy Source System . . . . . . . . . . . . . . 13

2.3 DC-DC Converter Topologies . . . . . . . . . . . . . . . 14

2.3.1 Passive topology . . . . . . . . . . . . . . . . . . . . . . 15

2.3.2 Semi-active topology . . . . . . . . . . . . . . . . . . . . 16

2.3.3 Full-active topology . . . . . . . . . . . . . . . . . . . . 17

2.4 Hybrid Energy Management Strategies . . . . . . . . . 20

2.4.1 Rule-based EMS . . . . . . . . . . . . . . . . . . . . . . 22

2.4.2 Optimization based EMS . . . . . . . . . . . . . . . . . 26

2.4.3 Learning-based EMS . . . . . . . . . . . . . . . . . . . . 34

2.5 Identified Research Gaps . . . . . . . . . . . . . . . . . . 39

2.6 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

The current chapter presents an extensive literature survey on the background
of the research work, including an overview of features and drawbacks of exist-
ing electric vehicles, hybrid source electric vehicles, their topologies, and energy
management strategies. Finally, the research gaps are summarized, and the main
objectives of this research work addressing those identified gaps are given in this
chapter.

2.1 Introduction

The current situation of fossil fuels considering their cost, increase in demand, com-
prehensive utilization, harmful effects on the environment, and non-availability of
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resources, initiated the usage of an alternative solution that can resolve these is-
sues [Boulanger et al., 2011]. This led to the development of a clean, reliable, and
highly efficient solution that has attracted researchers’ attention to improve the
transportation, energy, and environment sectors [Chan et al., 2009]. Development
of innovations in electrifying transportation is explored with electric vehicle (EV),
hybrid electric vehicle (HEV), and plugin electric vehicle (PHEV), which has been
raised as an environmentally friendly and effective solution. More than 40% of the
energy is lost in conventional ICE vehicles as heat via exhaust, causing severe en-
vironmental pollution [Tie and Tan, 2013]. EVs convert more than 70% of energy
for their operation and accessories, which reduces wastage of energy and assures
clean power with lower emission [Zhu et al., 2018]. The US, China, India, and a
few European countries have imposed different policies to improve the popularity
of EVs [Martinez et al., 2017] [Dhar et al., 2017]. This shows that the recent trends
in EV usage have increased by 60% from the last decade [Global EV, 2020]. The
attraction toward EVs have improved significantly with different types of charging
structures (Level I, Level II, DC fast charging), EVs interconnection grid (V2G),
vehicle-to-infrastructure (V2I), and vehicle-to-vehicle (V2V) applications [Capasso
and Veneri, 2015] [Rahbari et al., 2017] [Fazelpour et al., 2014].

EV, PHEV, and HEV have different powertrain configurations based on their
structure. The significant designs include series, parallel, series-parallel, and hy-
brid [Wu et al., 2015]. The ICE and electric motor are employed in different pat-
terns depending on the vehicle’s application, considering cost and performance.
An optimal power train is selected for vehicles and is followed by fixing the sys-
tem’s main components: energy storage system [Hemmati and Saboori, 2016],
electric motors [Singh et al., 2019] [Vishnu and Kashyap, 2020] power electronic
interface [Gao, 2005]. Energy management strategies (EMS) are another essential
aspect of EV technology. EMS’s role is highly crucial since it ensures fuel and en-
ergy economy, motor performance to meet the required power demand [Xi et al.,
2014] [Song et al., 2014a]. All these individual factors are essential for the design
and development of the EV. Each aspect must be highly effective and optimal
to solve IC Engine vehicle issues and compete with its different variants, attract-
ing new transportation innovations. EV mainly uses batteries as the source to
power the EV motor to meet the driving demands. However, the driving power
demand conditions vary at different routes, primarily based on traffic, driver’s
behavior, etc. Thus, battery vehicles can undergo severe issues due to such load
changes [Lu et al., 2013], which can even deplete the performance and life of the
vehicle and battery. One of the significant issues is the range anxiety of battery
electric vehicles (BEV), which adversely affects EV’s popularity. Other problems
include battery lifetime, battery capacity reduction, less availability of charging
stations, and a considerable charging time of EVs [Sun and Xiong, 2015] [Dougal
et al., 2002] [Ahmadi et al., 2014]. These aspects are the main focus of researchers
towards EV research.

Further gaps are analyzed in this review that considers the performance of
EV batteries and its impacts on battery life. Highly fluctuating (frequent charge-
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discharge cycles) and high current (C-rate) power demands are typical in vehicle
driving profiles which highly affect the battery life and reduces its capacity [Ud-
din et al., 2016]. This leads to the replacement or frequent maintenance of EV
batteries which will be an extra burden for the users since the battery is the most
expensive part of EV (40%-50% of total EV cost) [EV Battery, 2020]. Varying
driving profiles, driver behaviors, traffic conditions, road types, etc., highly affect
battery capacity and life. This also causes a reduction in mileage and capacity af-
ter a certain period of use [Zhang et al., 2020] [Vukajlović et al., 2020] [Hao et al.,
2020]. Improvement in vehicle performance without affecting its battery life and
capacity considering all such parameters develops an effective EMS. These factors
motivate the research and highlight the necessity of the work. Thus, research
gaps include vehicle performance considering the issues in acceleration, hilly ar-
eas, etc. The battery life and range of EVs is still a critical issue since it affects
EV users in terms of financial and anxiety aspects, respectively [Lu et al., 2013].
Influencing factors that affect energy consumption, battery life, performance, and
range of EVs are classified as. 1. Vehicle-related (velocity, acceleration, brak-
ing energy). 2. Driver-related (driving patterns/ behaviors, route planning). 3.
Environmental-related factors (temperature, wind, road terrain). Such aspects
are not considered in existing research works. These factors highly affect the C-
rate, depth of discharge (DoD), and internal resistance of the battery [Zhang et al.,
2020]. It eventually reduces the vehicle’s battery capacity, range, and performance.
Battery life depletion and mileage vary for different users, their driving styles, and
the type of roads [Vukajlović et al., 2020] [Hao et al., 2020]. The utilization of
hybrid sources with different characteristics handles the issue of range anxiety of
an EV. Figure 1.1 shows the energy and power densities of different storage de-
vices [Xie et al., 2018a]. This plot proves the application of various sources based
on their energy and power densities. The battery has a high energy density and
can smoothly drive continuous power demand for a longer time. Since the battery
has low power density, it cannot handle sudden power demand on urban roads
during peak time [Lu et al., 2013]. This reduces the battery life and even fails to
develop the required torque in the EV motor, which reduces vehicle performance.
A single power source cannot meet such power demand during acceleration, brak-
ing, hill climbing, etc. Hence, deploying multiple power sources is significant to
power EVs.

2.2 Hybrid Energy Source System

Energy sources are highly significant in the present energy scenerio. Energy sources
utilized for powering EVs are categorized as mechanical, electrical, and chemical.
A hybrid energy source system (HESS) employs two or more multiple sources
coupled together to ensure the vehicle’s efficient performance by managing the
demands at any driving condition [Xiong et al., 2018b] [Kouchachvili et al., 2018]
[Fathabadi, 2018]. All these types have different performance characteristics and
are chosen based on the driving demand requirements. It is clearly explained
in Table 1.1 and shows that the response time of the compressed energy storage

13



system (CES), battery, and fuel cell are slower when compared to the fast response
of SC, flywheel, and superconducting magnetic energy storage (SMES) [Sellali
et al., 2019a]. Hence, each source is used to help others diminish their drawbacks
and improve the system’s efficiency. Different topologies are used for the Hybrid
Power Source System (HPSS) assigned to the couple to power EV: battery, SC, fuel
cell, SMES, and CES to power EV. By analyzing Ragone’s plot (Figure 1.1) and
Table 1.1, it is clear that a significant focus is required on the SC characteristics
since it suits to combine with battery to develop a hybrid source system for EV [Xie
et al., 2018a].

Range is improved with a single full charge since different power sources
such as supercapacitor (SC) [Kouchachvili et al., 2018] [Song et al., 2014b] fuel
cell, [Fathabadi, 2018], renewable energy sources (solar, wind, etc.) [Jing et al.,
2018] are combined with battery form hybrid topologies for powering EV. Energy
management strategy (EMS) utilizes advantages of each source and avoids its dis-
advantages while meeting the power demand [Akar et al., 2017]. SC is used as an
auxiliary source with the battery since SC achieves high power density. SC can
easily handle sudden changes in power and acceleration and even consume regener-
ative power during braking. This improves the vehicle’s performance and protects
the battery from exposure to sudden current variations [Song et al., 2014b] [Akar
et al., 2017]. Fuel cells are suitable to deliver constant power and can be used to
cruise vehicles with battery and SC. Thus, battery SoC and lifetime are highly
improved [Fathabadi, 2018].The implementation of fuel cell setup can increase the
weight and cost of the vehicle to a large extent. Such drawbacks allow fuel cell
vehicles to limit their development only to heavy-duty vehicles and not passenger
vehicles. Utilizing renewable energy sources and other sources can improve the
overall system’s energy efficiency [Jing et al., 2018]. Power from renewable energy
sources charges the EV battery. The range of EVs is extended to a high rate, and
battery life is improved.

DC-DC converter topologies and EMS of EV are two major aspects that im-
prove the efficiency of EV [Geetha and Subramani, ]. EMS with higher SC uti-
lization considering its SoC, can improve energy efficiency and extend EV battery
life [Alobeidli and Khadkikar, 2018]. The major topologies utilized for battery and
SC includes (a) passive (b) semi-active (c) full active type DC-DC converters [Cao
and Emadi, 2012] [Song et al., 2015b]. Full active topology serves the hybrid
source integration with EV motor and proves to be the efficient structure among
all three types, but converter complexity is very high. Even though its ability to
utilize SC with the protection of battery from peak current demand makes it more
attractive [Trovao et al., 2013].

2.3 DC-DC Converter Topologies

Hybrid source systems are used in EVs to power their motor to meet the required
driving demand. Different sources can be coupled to power the EVs since a single
source is not recommended to meet the EV driving demand, including sudden
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power fluctuations and high C-rate operations. It causes a reduction in battery
life and accelerates its aging [Lu et al., 2013]. Different types of sources can be
integrated to power the EVs to form hybrid power sources. Battery and fuel
cells constitute the chemical energy storage systems. SC and SMES are electrical
energy storage systems, and mechanical energy storage systems include flywheel
and compressed air energy storage systems [Xiong et al., 2018b,Kouchachvili et al.,
2018,Fathabadi, 2018,Song et al., 2014b,Li et al., 2015]. EV powered using battery
and SC hybrid sources is discussed with their importance [Kouchachvili et al.,
2018]. It briefs about the topologies used in the energy management of EVs.
The major topologies are as follows: (a) passive (b) semi-active, (c) full active
with a bidirectional DC-DC converter to perform power conversion from bus to
source during braking and reverse during driving conditions [Song et al., 2015b]
[Trovao et al., 2013]. Each topology, conversion efficiency, cost, and adaptability
are analyzed in this section. Figure 2.1 shows the structure of topologies used for
battery-SC coupled hybrid source systems. Different DC-DC converters for hybrid
sources are classified based on their converter structure and detailed in the figure.

HYBRID POWER 

SOURCE SYSTEMS

PASSIVE
SEMI 

ACTIVE

FULLY 

ACTIVE

BATTERY-SC

SC-BATTERY

SERIES

PARALLEL

MULTI INPUT

Figure 2.1: Topology classification of hybrid sources for powering EV.

2.3.1 Passive topology

The passive topology is shown in Figure 2.2. Hybrid battery-SC passive topology
is the cheapest topology since it is directly connected to the DC bus. The DC-DC
converter is not included in this topology, and power is distributed among the
battery and SC based on internal resistances [Cao and Emadi, 2012]. HPSS is
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not controlling the power flow between the battery and SC, battery ratings are
higher to meet the DC bus ratings, and battery current undergoes high-frequency
currents and peaks during accelerations. During braking and deceleration, the
battery sometimes gets overcharged due to the direct connection with the DC
bus. SC utilization is least managed, and thus battery stresses are higher when
compared with other topologies [Hu et al., 2016]. SC and battery advantages
are not appropriately exploited. Therefore, it is used very rarely in EV energy
management systems.

SCBATTERY

DC-AC 

INVERTER
EV MOTOR

Figure 2.2: Schematic of the passive topology of hybrid sources in electric vehicles.

2.3.2 Semi-active topology

A bi-directional DC-DC converter couples the battery and SC with a DC bus.
Semi-active topology is of two types. SC is connected to the DC bus with a
DC-DC converter, and the battery is connected directly (SC-battery topology,
Figure 2.3 (a)). The other is that a DC-DC converter connects the battery with
the DC bus, and SC is connected directly to the DC bus (Battery-SC topology,
Figure 2.3 (b)) [Song et al., 2015b]. Figure 2.3 shows the schematic structure of
both semi-active topologies. DC bus is directly connected with the battery in SC-
battery topology; hence, bus voltage fluctuation is crucial to ensure battery safety.
High fluctuations affect battery lifetime. Defects of this structure are briefed,
and the performance of Battery-SC topology is analyzed [Trovao et al., 2013].DC
bus fluctuations are allowed to a specified range since the battery is not directly
connected to the DC bus. DC-DC bidirectional buck-boost converter improves the
utilization of SC since it can handle high-frequency power demands, which protect
the battery [Min HT, 2017]. Experimentation results in Reference [Min HT, 2017]
prove that energy efficiency is improved, and consumption is reduced by 7% in
SC-battery topology compared to the other one. SC is effectively used to reduce
battery stress in such a topology. Battery ratings are scaled down in the battery-
SC topology since the DC-DC converter processes the required power that the
battery can handle considering their SoC.
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Figure 2.3: Schematic of the semi-active converter topology of HPSS (a) SC-
battery (b) Battery-SC.

2.3.3 Full-active topology

Full active topology uses DC-DC conversion for both battery and SC power. This
helps the HPSS to support each other during lower SoC conditions. Figure 2.4
shows the schematic of full active topology with battery and SC. Three different
structures of the same are described. Series complete active (Figure 2.4 (a)) topol-
ogy in which both SC and battery are connected to DC bus with separate DC-DC
converters. A converter is between the battery and SC and another is between
SC and DC bus. This helps the system to make the battery voltage, and DC bus
voltage stable with reduced fluctuations, and separate control is done considering
the SoC of each source [Song et al., 2015b]. Figure 2.4 (b) shows the structure
of parallel full active topology, which is the effective structure in which different
sources are controlled separately and are connected in parallel with the DC bus,
which develops DC bus voltage with fewer fluctuations [Trovao et al., 2013].A
multi-input type structure of full active topology is shown in Figure 2.4 (c). This
arrangement allows the magnitude of both SC and battery voltage less than DC
bus voltage and can even reduce the fluctuations [Cao and Emadi, 2012]. But the
control scheme of this type is elaborate and can increase the losses.
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Figure 2.4: Schematic of the fully-active converter topology of HPSS (a) series (b)
parallel (c) multi-input type.

The full active type topology is highly stable, and converter efficiency is high
since both sources are decoupled and controlled separately. The summary of
different topologies based on significant characteristics is mentioned in Table 2.1.
It is essential to note the DC bus fluctuations depicted in the table for passive and
SC/battery semi-active topologies. The voltage fluctuations should be allowed
in a minimal range since the battery is directly connected to the DC bus, and
continuously fluctuating voltage can affect the lifetime of the battery. Even though
DC bus voltage fluctuations can be entitled to a wide range in full active topology.
It is highly stable and improves the EV motor’s performance. This is achieved in
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full dynamic topology since both sources are decoupled from the DC bus. Overall,
the section’s discussion deals with the topologies utilized to power the EV using
hybrid sources. The review majorly focuses on the battery-SC hybrid combination
to power the EV. The existing topologies can undergo a similar structure for fuel
cell-based EVs (FCEVs) with a unidirectional DC-DC converter connected with
the fuel cell side and a bidirectional converter with the battery or SC side. The
topologies discussed in this section with previous literature further have some
drawbacks. Modifications on such converter structures result in an improvement
in energy efficiency and the lifetime of sources. Moreover, charge and discharge
between the battery and SC can be implemented considering the conditions of
power demand and driving conditions. Those aspects need to be considered to
achieve improved performance of the overall EV system. The topology enables
reduced voltage ratings for the sources since they are individually controlled by the
topology. It ensures the best performance among all the different topologies. Even
though, certain drawbacks exist in power loss, cost, and the number of components
for this topology. Considering the advantages in maximum utilization of each
source and its ease in controlling separately strictly based on the EMS algorithm
makes it a suitable option for hybrid sources in electric vehicles.

Table 2.1: Analysis of different topologies of coupling battery-SC hybrid system

Characteristics Passive Battery/SC SC/Battery Full active

Efficiency of converter very low medium medium high

Charge-Discharge performance of battery very low high medium high

Charge-Discharge performance of SC very low medium medium high

Allowable DC bus voltage

fluctuations no medium-range short-range wide-range

Usage of semi-conductor switches very low medium medium high

Complexity and cost low medium medium high
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Figure 2.5: Primary targets of EMS in EV, HEV, PHEV.

2.4 Hybrid Energy Management Strategies

As mentioned in the previous section, EVs utilizing a battery and SC as a hybrid
source improves lifetime, energy utilization, etc. This is an excellent alternative
source system for EV since the improvement in efficiency and lifetime of sources
plays a significant role in EV’s overall performance. Improved coordination among
these sources to meet the power demand is the key role of an energy management
system. In other words, EMS needs more attention where power of both sources
are efficiently allocated, considering the charge states and other driving conditions.

Improvement in energy consumption, reduced emissions and efficient power
flow among different source systems are highly dependent on the selected topology
and the type of EMS used in EVs. EV, HEV, PHEV utilizes a strategy to control
the power flow among the different power trains and sources. The design depends
on the type of conditions that vehicles need to overcome. Different topologies of
the hybrid sources in EV are discussed in the previous section. The main aims that
can be considered for developing an EMS are mentioned in Figure 2.5. Significant
aspects that need attention during the control of EMS include fuel consumption
improvement and less emission in the case of HEV, PHEV, and consideration of the
state of charge of all sources during all modes of operation, lifetime improvement,
and safety sources for pure EV. Researchers use various driving profiles for analy-
sis and testing purposes (NEDC, US06, IUDC, and HWDC) [US-EPA, 2019]. The
ICE and power sources used in HEV and PHEV effectively split the power demand
for different driving profiles is the crucial function performed by EMS achieves the
aspects mentioned above to improve overall energy and cost-efficiency. However,
real driving conditions are not exactly similar to these profiles and varies its power
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requirement and energy consumption based on different factors related to the ve-
hicle, driver, and environmental conditions. EMS plays a vital role in pure EV
powered with a hybrid source system. Different power sources have variations in
their current handling capability, time response, power, and energy density. Thus,
EMS in pure EV focuses on achieving control by considering different characteris-
tics of power sources used in the EVs. Typically, battery-based EVs are supported
by SC, Fuel cell, SMES, and FCEV coupled along with battery and SC [Xiong
et al., 2018b] [Kouchachvili et al., 2018] [Fathabadi, 2018] [Song et al., 2014b] [Li
et al., 2015] [Li et al., 2016].

Rule based Optimization based Learning based

Offline

Online
•Reinforced Learning

•Neural Network

Energy Management 

Strategies (EMS)

Deterministic rule based 

•Condition based

•Frequency based

Fuzzy rule based

•Adaptive fuzzy

•Predictive fuzzy

•DynamicProgramming

•PMP

•Quadratic Programming

•Linear programming

•Genetic Algorithm

•Particle swarm optimization

•ECMS

•Model predictive control

Figure 2.6: Classification of EMS employed in hybrid source EVs.

Over the last decade, a lot of research is continuing to improve the EMS of EVs.
This work is focused on vehicles powered by pure electric sources. General classifi-
cations on EMSs for pure EV are of three types: Rule-based, Optimization-based
and Learning-based. The detailed classification of EMSs is depicted in Figure 2.6.
A battery- SC hybrid combination of power sources is considered to explain the
strategies. SC, with its high-power density and fast response, is utilized during
acceleration and for storing regenerative energy from the vehicle during braking.
The battery meets the average power demand, which is nearly constant during EV
cruising. SoC of sources is a significant factor in deciding the amount of energy
that each source can manage. Overcharging and deep discharging of the source
can accelerate aging by reducing capacity and performance [Lu et al., 2013] [Ud-
din et al., 2016]. Thus, EMS should be designed with various modes of operation,
considering the SoC condition of power sources. SC also effectively meets the
high frequency charging and discharging during the city driving cycle, where the
traffic condition is conjusted [Uddin et al., 2016]. High-frequency operations can
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affect the battery lifetime [Tran et al., 2020]. The behavior of the driver is also
an essential factor for high-level EMS. Rule-based EMS is further classified into
deterministic and fuzzy logic-based strategies [Tran et al., 2020] [Marzougui et al.,
2017] [Florescu et al., 2015]. Optimization-based EMS is classified into offline
and online modes. Offline modes consist of DP, PSO, Pontryagin’s minimiza-
tion principle (PMP), and GA [Song et al., 2015a] [Wieczorek and Lewandowski,
2017] [Chen et al., 2016]. Online modes include ECMS and model predictive con-
trol (MPC), respectively [Golchoubian and Azad, 2017] [Li et al., 2017a]. They
require a model of the whole system, which is very complicated. Learning-based
EMS reduces the complexity of the strategies but needs high quality and many
data sets for the control, which is a measure of its accuracy. It utilizes historical
data for the learning process. It is an effective EMS and shows its scope with
online data-based approaches such as artificial intelligence and machine learning
techniques [Zhang et al., 2021]. The combination of multiple EMS can improve
fuel economy and energy efficiency. Table 2.2 briefs the different types of EMS
with their merits and demerits. The importance of each strategy can be clearly
identified in the table.

2.4.1 Rule-based EMS

Rule-based (RB) EMSs operate with human experiences and instincts. The main
advantage of this method is that knowledge of the driving cycle is not required
to handle. It is feasible and straightforward for real-time implementations. Cali-
bration is necessary to update the control parameters for a specified range of any
driving profile. Since this EMS is based on the rules designed, its major drawback
is applying the same algorithm to different power trains and source architectures.
Other methods can be combined with a rule-based approach to improve the ef-
ficiency of the overall EV system. Deterministic and fuzzy logic-based controls
are the different subsystems of rule-based EMS. Their simplicity in real-time im-
plementations make it a better competitor among EMS’s. Figure 2.7 shows the
algorithm for a normal battery-SC HPSS for powering the EVs with rule-based
EMS [Tran et al., 2020]. This gives the basic idea of the strategies of complete
rule-based EMS. SoC of SC is considered in the explained rule-based approach,
which can assure the source’s safety. SC gets charged as per the assigned rule in
the algorithm, and maximum utilization of SC can achieve reduced stresses to the
battery to meet the desired driving profiles.

2.4.1.1 Deterministic-based energy management strategy

The EMS develops different rules based on previous experience of the behavior
of the system. The primary task of the EMS is to distribute the demand power
among the other powertrains (HEV, PHEV) and various sources in HPSS based
EV. The rules for power allocation among various sources are defined based on
previous situations. Frequency-based decoupling control is used to split the power
among the sources. Low-frequency power is handled by a battery in the case of
a battery-SC hybrid system in EV [Kouchachvili et al., 2018], and the fuel cell
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Figure 2.7: Algorithm for battery-SC hybrid source system using Rule-based EMS.

manages this with an improved life cycle in fuel cell EVs [Fathabadi, 2018].30
High frequency and peak power are allocated to SC, which has faster dynamics
and compensates for such power demands. Figure 2.7 explains the deterministic
rule-based algorithm derived from the previous experience and shows the battery-
SC hybrid system’s energy management. The SoC of an SC is considered in the
rules to decide the ratio of power splitting. When an SC SoC is lower than its
minimum value and power demand is high, power is met by the battery to support
the SC. In these works, the frequency of the filter which splits the power demands
among sources is constant. [Kouchachvili et al., 2018] [Fathabadi, 2018]. This
reduces the adaptability of the EV control system.

Similarly, other cases are also defined in the algorithm, which guarantees the
protection of sources. But the optimal solution cannot be determined with this
EMS. Rule-based strategy combined with filter control improves the power split-
ting among sources. The filter splits the high and low-frequency power demands
to allocate for sources. Generally, a low-pass filter performs this task to divide the
power considering the power characteristics of the battery and SC. A battery man-
ages low-frequency power demand and high-frequency component is taken care by
SC. A rule-based system, along with a filter, can improve efficiency [Blanes et al.,
2013]. The limitation of this strategy is observed in the adaptability and flexibil-
ity of the overall system since the filter frequency is fixed, and there is a chance
to affect the safety of the sources. A rule-based strategy is proposed by Song
et al. [Song et al., 2015a] for pure EV in which tuned DP parameters are uti-
lized to achieve optimal solutions. Sellali et al. [Sellali et al., 2019b] developed a
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fuzzy-based EMS combined with a rule-based strategy with experimental study
and discussion on the combined strategy’s effectiveness. ECMS-based work is
performed by Hemi et al. [Hemi et al., 2013] with a rule-based strategy, and the
improvement in results is briefed. Results prove that integrated methods can im-
prove the system’s efficiency compared to rule-based EMS. The combination of
rule-based and optimization-based EMS improves the optimality of the solution.
Thus, it can attain both real-time implementation and high optimal solution, and
the energy efficiency of the hybrid source system in EV can be improved greatly.
However, drawbacks of these work can be identified in the performance of the ve-
hicle. Such a strategy does not assure performance as the charge availability of SC
is not considered in the control strategy during the overall drive. The EMS must
focus on scheduling of SC charge-discharge profile considering the status of the ac-
celeration profile of the vehicle. This is highly effective in terms of energy economy
and battery life [Vukajlović et al., 2020] [Madhusudhanan and Na, 2020] [Hegde
et al., 2020]. Parameters that affect EV battery life and capacity (such as driving
profiles, driver’s behaviors, road terrain, load conditions, etc.) must be considered
in the strategy to enhance the power allocation among the sources [Vukajlović
et al., 2020] [Hao et al., 2020].Easiness of operating in real-time and its simplicity
in control strategy are the major merit points of this control strategy. However,
adaptivity is an essential factor for EV energy management since its load demand
varies at each instant. Control parameters need an update based on the load
demands, source charge, and vehicle driving conditions.

2.4.1.2 Fuzzy logic-based energy management strategy

Fuzzy logic controller (FLC) is basically bound by a set of fuzzy rules, input
and output. Human knowledge and reasoning on a solution for the problem are
derived from condition rules. It includes input membership functions, fuzzy quan-
tization, fuzzy rule set, defuzzification, and output membership functions. Fuzzy
rules decide the accuracy of the control. Tuning is done very easily in the FLC.
Rules are designed based on the experience of the user. The fuzzy controller han-
dles problems occurring in nonlinear, time-varying problems in EV energy man-
agement. Trov ao et al proposed a fuzzy-based energy and power split manage-
ment algorithm for a battery SC-based hybrid-powered pure electric three-wheeler
(3W) [Trovão et al., 2017]. This work depicts FLC’s importance in EVs energy
management and compares the work with the battery-only system. Reduction
in battery RMS current by 12% eventually increases lifetime and reduces battery
cost. HIL real-time simulations confirm the improvement in energy consumption
of the proposed FLC system. Battery RMS current reduction can improve the life
cycle of 3W batteries. The performance of the vehicle to achieve required accel-
eration during overtaking, hill climbing, and utilization of braking energy during
deceleration are not considered in this work. This gap is addressed in our study
and highlights the importance of SC utilization considering any driving profile
and behaviors to enhance EV performance without compromising battery life cy-
cle and capacity [Zhang et al., 2020] [Jafari et al., 2018]. A fuzzy super twisting
control is implemented by Sellali et al. for a battery-SC powered EV. Different
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modes are introduced in FLC to achieve the controller’s highly accurate perfor-
mance, considering the state of voltage in SC [Sellali et al., 2019a]. The controller
neglects the requirement of additional controllers to regulate the DC bus and SC
voltage. The defined fuzzy rules decide the reference powers of both sources and
guarantee better power for EMS in EVs. The strategy discussed by Sellali et al.
lacks the power demand conditions for varying driver behaviors, temperature, and
road terrains, which affects the life cycle of the battery [Vukajlović et al., 2020].
Figure 2.8 shows the FLC-based schematic control diagram for EMS in EV.

Optimal results are not developed with the conventional type. FLC is divided
into optimized fuzzy, adaptive fuzzy, and forecasting FLC. Optimization is utilized
with the FLC in the first type, thus achieving improved optimal solutions utilizing
various optimization techniques. Controller parameters are optimized and tuned
in FLC through an optimization algorithm to attain the control objectives (SoC
improvement, battery life improvement, etc.). FLC is improved by introducing
an optimization algorithm to optimize both the membership functions and fuzzy
rules using PSO, [Chenghui et al., 2007] GA [Eckert et al., 2020], and DP [Song
et al., 2015a]. Optimization improves the fuzzy control strategy, but optimizing
battery life with varying driving conditions and behaviors are not addressed. This
affects the life and capacity of EV battery [Song et al., 2015a] [Eckert et al.,
2020] [Chenghui et al., 2007].

Adaptive algorithms are introduced into fuzzy strategy with a motive to over-
come the demerit in self-adaption. Power split among the battery and SC in a
hybrid source-powered EV is discussed. Yin et al proposed an adaptive fuzzy-
based EMS that effectively splits the power demand in EV for city and highway
driving profiles. The control strategy ensures better performance compared to the
conventional schemes with reduced battery current variation [Yin et al., 2016].
Adaptive fuzzy-based EMS enhances system reliability and performance. How-
ever, the control strategy lacks the behavior of the system on the degradation of
EV batteries due to the effects of varying driver behaviors. Hussain et al. pro-
posed two adaptive controllers for the energy management of battery SC powered
EV [Hussain et al., 2019]. Adaptive FLC performs the optimal power sharing
among the sources considering the SoC of SC. The second adaptive control is
performed by FLC to achieve an adaptive PI control for protecting the SC from
deep discharging and overcharging. Predictive FLC utilizes future states of the
vehicle, generating real-time control signals for optimal power sharing. But it lim-
its its prediction accuracy due to the non-inclusion of aspects of driver behavior
and road conditions in the strategy. These parameters highly reduce the battery
capacity [Jafari et al., 2018]. Wang et al. proposed a strategy using a Markov
chain for power prediction, which is essential for the system with a fully EV pow-
ered with battery and SC [Wang et al., 2019]. The Markov chain improved the
demand power when implemented along with fuzzy logic due to high prediction
accuracy. Various parameters that affect the EV performance and battery life are
not highlighted in the power prediction using Markov chain [Jiquan et al., 2018].
This issue limits the reliability and flexibility of the EV.
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Usually, most FLC is used as a joint control strategy to combine with other
EMS to improve the optimal operating conditions and to adapt different driving
behaviors of EV. Gao et al improved the traditional FLC by implementing opti-
mization results for a pure EV utilizing battery - SC hybrid system [Gao et al.,
2016]. At the same time, Dusmez et al modified a similar EV with a wavelet trans-
form (WT) and improved the adaptivity of the control system [Dusmez and Kha-
ligh, 2014]. SC utilization can improve the performance of hybrid source systems.
SoC of SC plays an essential role in the optimal control in this direction. Both
works utilizes SC to reduce the stress on battery but failed to discuss the effect
of driver behaviors and road terrain on the energy consumption of EV batteries.
The control strategy must consider battery capacity loss in the control algorithm
to avoid anxiety issues [Vukajlović et al., 2020]. He et al. proposed a FLC-based
management to allocate power among sources considering SC SoC with varying
driving conditions [He et al., 2013]. Zhou et al. depicted an adaptive membership
function based on FLC, which operates on the previous information [Zhou et al.,
2014]. This work achieves an update of the fuzzy control function, and improve-
ment in energy management is analyzed. This improves the adaptability of the
system, but it does not consider the driving style, road conditions, temperature,
and load states, etc., which causes severe damage to the battery performance. Ma-
chine learning is utilized in optimization with more improved results. Murphey
et al. used a machine learning algorithm for optimizing the hybrid source system
for EV [Murphey et al., 2011]. This increases the computation cost and makes
the system more complex without any significant improvement in battery life due
to insufficient datasets. The fuzzy control strategy is highly adaptive and reliable
since it can update the control parameters using optimization. Prediction-based
fuzzy algorithms are seeking high interest in the present scenario, and it can be
easily implemented in online applications. Driving conditions need to be predicted,
and the interval based on the update of control parameters improves the control
horizon and makes the system more reliable.

2.4.2 Optimization based EMS

It optimizes the solution by minimizing a cost function that improves system effi-
ciency and performance.EMS in EV used to find the optimal control values satis-
fying all the constraints (SoC of sources, power limit, etc.) refers to optimization-
based EMS control strategies. This scheme aims to minimize the cost function
(Fuel consumption in HEV, energy efficiency, maintenance of source SoC in EV,
power loss, hydrogen consumption in fuel cell EV) and achieve an optimal solution
that controls the system. Based on its level of control and applications, it can be
divided into offline and online strategies.

2.4.2.1 Offline optimization based EMS

This optimization strategy requires knowledge of previous conditions and needs
different driving cycles for processing its control. They are not utilized in online
applications due to the requirements of EV driving cycles. It is used to get a
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Figure 2.8: Fuzzy logic control (FLC) based EMS for battery-SC hybrid source
powered EV.

benchmark to compare with other online strategies. Modified optimization strate-
gies are used in online applications. Optimization problems for different types of
vehicles differ based on their powertrain architecture and converter configurations
for hybrid sources. For series HEV, optimization can be done to solve a problem
to minimize the energy consumed. In contrast, in parallel HEV, it can be done
to reduce fuel utilization and reduction in emission of gases. Major optimization
objectives focus on reducing energy losses, peak or RMS battery current, and
maintaining the SoC of sources. Different constraints that guarantee the system’s
safety must also be satisfied. Algorithms for optimization are the next important
aspect following the problems and limitations. Researchers perform different al-
gorithms to solve the EMS of EVs using optimization. They are grouped into
direct, indirect, gradient-based, and derivative-free. They are divided based on
their process to optimize the specific problem. Discretization of the problem and
solving it as a static optimization is done directly (DP). Optimization based on the
calculus of variations is termed under indirect type (PMP). Several derivative-free
algorithms (GA, PSO) are utilized in problems where derivative information is un-
available or difficult to develop. The algorithm uses a stochastic search to produce
the optimal global solution. Dynamic programming DP requires knowledge of the
EV driving cycle and is mostly used to solve EMS problems. It can be general-
ized and termed deterministic dynamic programming (DDP). The optimization
problem is divided into minor issues by discretizing the overall time. This is the
logic behind DDP. The cost function is minimized in each discrete sample time
utilizing DP techniques. The DDP applications are explained and performed by
Masih- Tehrani et al. to improve energy management performance for pure EV
with hybrid sources [Masih-Tehrani et al., 2013]. Consideration of varying driv-
ing behaviors, traffic, and load conditions, which is a vital factor that determining
battery life, is missing in the work and can be highlighted as a drawback of the sys-
tem. Sundstrom and Stefanopoulou, in their work, performed DDP-based EMS
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for fuel cell battery EV minimized the hydrogen usage and maintained battery
SoC at specified levels but not focusing on the battery energy consumption dur-
ing varying conditions of the driving environment [Sundstrom and Stefanopoulou,
2006]. This highly affects the range and battery performance. Santucci et al.
applied DDP in pure EV with hybrid sources (battery-SC) and improved battery
life [Santucci et al., 2014]. The effects of battery performance at low temperatures
are discussed by Song et al. and proposed a DP-based HESS management control
for EV [Ziyou et al., 2015]. The battery degradation model is utilized to identify
the temperature effects at different discharge levels and optimizes the HESS sys-
tem with optimal solutions. The solution to reduce the effects that accelerate the
battery life depletion is not mentioned and limits the real ability of the strategy.

Significant challenges faced by DDP include (a) driving cycle requirement
(b) high computational cost (c) not suited for real-time implementations. The
popularity of DDP is not widespread in EMS of EV since it is not achieving an
optimal solution for all driving cycles. The time consumption of DDP is also
high and unable to implement a feedback solution directly. This challenge is
overcome in stochastic DP (SDP) based work proposed by Romaus et al. and
depicts the energy management for nickel-metal hydride (NiMH) or lithium-ion
(Li-ion) batteries-based hybrid power source fed pure EV [Romaus et al., 2010].
The optimization is achieved, considering the stochastic influences of traffic and
drivers. Drawback on the performance of EV is a concern; frequent sudden load
demands can also reduce battery life. Lin et al. proposed a DP utilizing Markov
chain as a driving profile demand and turned as stochastic DP (SDP) [Lin et al.,
2004]. Random driving profiles are selected to optimize the EMS to improve the
reliability of the optimization strategy. This method also faces several drawbacks.
An optimal solution for the problem cannot be developed for different Markov
chain models, which are not mentioned. Time consumption and cost of tuning
parameters are very high in SDP. DP-based strategies are not used in online
applications since they require prior driving cycle information to achieve optimal
solutions. It lacks the adaptivity in control strategy during real-time application.
Additional adaptive tuning algorithms can increase the complexity of the system.

Pontryagin’s minimum principle (PMP): It is an indirect algorithm that
is processed with a calculus of variations. Global optimization problems are solved
using PMP, which Lev Pontryagin derives. The problem’s optimal solutions are
provided using PMP consisting only of necessary conditions, and the Hamilton
equation provides sufficient conditions. Several small Hamilton minimization
problems are developed, which is reduced from constrained global optimization
problems and are the essence of PMP. The initial costate of all Hamilton prob-
lems are identified with the iterative process using a predetermined driving cycle.
Since different driving profiles are available, the initial costate also differs. Due
to all this data, the computational cost of PMP is high. It is not well suited to
real-time applications. Adaptive and accurate adjustments of costate value can
improve the performance of PMP strategy. Nguyen et al. depict the optimal
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control behavior of PMP-based strategy to control the power flow among battery-
SC EV [Nguyen et al., 2014] . This strategy gains attraction since it’s suitable
for real-time applications. Optimal solutions are easily achieved by employing a
feedback loop and reducing time consumption. However, Nguyen et al. proposed
a PMP-based EMS for a battery-SC powered EV. The work focuses on develop-
ing a real-time PMP strategy without utilizing any additional mechanism for the
costate variable [Nguyen et al., 2017]. Simulations presented in the method show
improvement in battery life. This lacks improvement in EV performance since it
focuses on improving the lifetime of EV batteries. The ability of EVs to achieve
improved acceleration performance is also a factor considering the popularity of
EVs. PMP provides an optimal solution near to DP strategy. Recently researchers
are modifying the PMP to utilize in real-time applications. Bernard et al. im-
plemented a PMP global optimization strategy to improve the power allocation
of fuel cells and the battery-SC hybrid system in an FCEV, which also focused
on reducing hydrogen consumption [Bernard et al., 2006]. However, the control
strategy does not discuss the battery life cycle depletion, which is a drawback of
the system. PMP and Markov chain joint control strategy utilized by Hemi et
al. shows the solution derived for EMS in FC-SC hybrid vehicles [Hemi et al.,
2015]. The method improves HESS’s real-time efficiency since the Markov chain
improves the global optimization horizon with different driving profiles. Nguyen
et al. proposed a PMP-based adaptive real-time strategy for a HESS (battery-
SC) powered EV [Nguyen et al., 2019]. PMP is simplified to utilize the proposed
system in real-time and avoids additional adaptive mechanisms. Battery RMS
current is reduced by 50% when compared with the conventional methods. The
utilization of SC can be further improved to enhance energy efficiency and reduce
battery stress. Jiang et al. proposed a 2D Pontrygin’s minimum principle and
discussed a motive to reduce energy consumption [Jiang et al., 2019]. It is utilized
to achieve an optimal fuel cell/battery/SC hybrid power source vehicle strategy.
Knowledge of the future driving cycle is acquired by combining intelligent trans-
portation, GPS, and GIS with the PMP strategy to correct the initial costate.
This can handle the initial costate effects on SoC variations.

Genetic algorithm (GA): In a system where the derivative is not available,
it is challenging to solve the problem. Hence a derivative-free algorithm (DFA) is
developed, which provides a global solution. One significant type of DFA is GA.
It is a search method based on evolution related to genetics developed in 1975 by
Holland. The vital phases of GA constitute reproduction, crossover information,
and mutation. Different types of optimization problems solved using GA include
nonlinear, multi-model, and intermittent time-based problems. Tashakori Abke-
nar et al. proposed a power management strategy for all-electric ships powered
with FC and battery as the sources [Tashakori Abkenar et al., 2017].A GA is uti-
lized to regulate the FC output voltage within a specific range and achieve high
performance at different ship operating conditions. Apart from that, it also guar-
antees reduced hydrogen consumption and also avoids sudden power fluctuation of
FC. However, a study on the battery life cycle is not considered and this affects its
life during frequent sudden power demands [Vukajlović et al., 2020]. Addition of
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SC as an auxiliary source can further improve overall energy efficiency as SC can
handle higher C-rate requirements. Correa et al. developed a GA-based EMS for
battery-SC-powered EV [Correa et al., 2017]. It achieves improvement in energy
efficiency with optimal sizing of sources without affecting the range of EVs. But
the availability of SC during varying driving scenarios to support the battery is
a huge concern. SC energy must be utilized based on the varying driving condi-
tions which can improve the battery life. Guang et al. proposed an EMS for an
FC-SC powered EV utilizing improved GA [Guang et al., 2017]. An FLC-based
strategy is implemented in the work, and GA acts to optimize the parameters
of membership functions to minimize the voltage and current variation of FC.
Improvement in the lifetime of the FC stack can be guaranteed since SC carries
sudden power fluctuations. Multi-objective optimization for minimizing the size
of hybrid sources and maximizing the range of the EV is implemented using GA.
This work does not guarantee improvements in the battery life cycle. Parameters
that affect the battery life cycle and safety of sources are not highlighted which is
a major drawback of the work. The work proposed by Eckert et al. combines GA
with FLC for a dual hybrid energy source system (battery-SC) powered EV [Eck-
ert et al., 2020]. Results prove the importance of optimizing the HESS size and
improving the driving range. The control strategy lacks the parameters to improve
the performance of the vehicle.

Particle swarm optimization (PSO): is also a derivative-free algorithm
and is utilized to optimize the problems where it is impractical to get the deriva-
tive. The operation of PSO is similar to the movement of an organism in a group.
All the members are in connection with each other. They can update their individ-
ual best position achieved and conclude with an optimal solution by selecting the
group’s best solution. The swarm particles move in the direction of the updated
place which is the best location. It is like an ant colony. This relation is exploited
to achieve an optimized solution. Hegazy et al. detailed the PSO-based algorithm
for optimal power flow among fuel cell-based hybrid EV with battery and SC as
the secondary source [Hegazy et al., 2012]. Battery stresses and their effects on
capacity fading are not explored in the strategy. This increases the battery degra-
dation cost and affects the safety of sources. A Particle The swarm-Nelder-Mead
optimization algorithm is coupled with a rule-based strategy which optimizes the
control parameters of the rule-based control as depicted by Mesbahi et al. [Mesbahi
et al., 2017] Battery power stress and the life cycle is improved with the proposed
strategy and compared with the rule-based and battery-powered system. How-
ever, achieving the availability of SC energy during all acceleration intervals is not
assured in the strategy. This affects the vehicle’s performance during an unknown
driver’s behavior, driving profile, or road conditions. Lin et al. achieved bet-
ter fuel economy and improved battery energy efficiency for a PHEV using PSO.
The neural network is implemented to train the optimized results from PSO [Lin
et al., 2010]. Driving behaviors, road traffic, road conditions, and temperature
are not utilized effectively in the control strategy and may accelerate the battery
life cycle depletion. Energy consumption and ampere hour throughput for similar
driving routes vary considering these factors. PSO-based strategy is utilized for
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optimization of HESS sizing for SC and fuel cell in FC-SC-based EV [Hegazy and
Van Mierlo, 2010].

2.4.2.2 Online optimization based EMS

The strategy behaves as local optimization since it does not utilize knowledge
about driving cycles as optimization-based offline systems require. Thus, online-
type algorithms are not ensuring optimal solutions for EMS problems in real-
time. Global optimization problems are not suited for real-time applications due
to the low memory and computational time of the real-time environment and are
formulated as online strategies. Significant types of such methods are ECMS and
MPC, which are commonly used.

Equivalent consumption minimization strategy: PMP is formulated
into ECMS and is utilized in a two-stage energy management for a fuel cell-based
vehicle by Geng et al. [Rodatz et al., 2005] The focus of this work is to improve
the fuel cell life, and the minimization principle effectively performs the task. The
drawback of the work is a compromise on battery life to improve the fuel cell
life. Reduction in battery performance can be observed with the control strategy.
Rodatz et al. proposed a real-time ECMS strategy to control the distribution of
power flow among FCSC- based EV [Pei and Leamy, 2013]. The strategy’s focus is
to minimize the consumption of hydrogen fuel for any stage of the driving scenario.
The availability of SC to act throughout the driving cycle is not ensured and can
affect the fuel cell life. ECMS is a local problem of the PMP by reducing fuel
consumption. The equivalent fuel factor is identified by ECMS develops the actual
energy consumption required for recharging batteries and regenerative energy. The
equivalence factor (EF) behaves precisely like a costate in PMP and holds similar
functions to manage. Many studies have been developed to estimate the EF, which
comprises a detailed analysis of the SoC of the battery, charge or discharge current,
and driving cycle information. There are two types of estimation that are highly
used for this purpose: (a) offline using optimization methods mentioned in the
previous section and (b) online by updating the EF in each step. Information on a
complete driving profile is required to develop the optimal EF in offline estimation
methods. This can be created using different algorithms. Optimization-based
algorithms are well known in this DP [Pei and Leamy, 2013], GA [Sinoquet et al.,
2011]. Recalibration is essential for each driving cycle to get an optimal value. EF
needs to get updated based on certain factors in an online estimation method which
is already mentioned in the section. Battery SoC change occurs continuously; the
EF optimal value from offline estimation is added with a correction term for the
SoC deviation, which is an important aspect. However, factors other than the
driving cycle need to be utilized in the offline estimation to improve the flexibility
of the control strategy. Temperature effects on capacity fading are higher and
accelerate the battery degradation [Hao et al., 2020]. For an FCEV, the reduction
of hydrogen fuel usage is a vital improvement. ECMS is developed to reduce
hydrogen usage. Battery and SC are utilized to reduce hydrogen consumption
during sudden peak demands, which cannot be handled by fuel cells. This ECMS-
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based work is discussed by Garćıa et al. employs fuel cells to manage constant
energy demands and battery SC to handle peak power demands to improve fuel
economy [Garćıa et al., 2013]. Control strategy does not explain the effect of
unknown driving behavior and profile on the battery life cycle. Li et al. proposed
an ECMS-based EMS for fuel cell EV [Li et al., 2017a]. The strategy is explained
with efficient power management among the hybrid sources, which guarantees
a reduction in fuel cell degradation. Li et al. also studied a novel (Quadratic
program) QP-based ECMS scheme for fuel cell-battery-SC-based vehicles. The
increase in the lifetime of sources and reduction in hydrogen fuel consumption is
considered as the main aim of the work, and it achieves those when compared with
a rule base control strategy and hybrid ECMS strategy [Li et al., 2018a]. Verifying
the influence of driving style, road, and environmental conditions, etc on battery
capacity and life cycle serves as a major factor to improve the overall performance
and efficiency of EVs which is a drawback of the work. Fu et al. worked on a similar
kind of EV powered by battery-FC-SC [Fu et al., 2019]. An ECMS combined with
a low pass filter-based strategy is utilized for efficient power allocation among
the sources. The low pass filter-based EMS keeps the SoC of SC under desired
limits and ensures SC handles peak powers, reduce the stress on battery and FC,
and achieves higher SC utilization. Meanwhile, the ECMS scheme is implemented
to split the power between the battery and FC considering the improvement in
the lifetime of sources and reducing hydrogen consumption. ECMS performance
improvement is observed by Li et al. analyzed ECMS and it shows a reduction in
hydrogen consumption compared with a rule-based strategy [Li et al., 2019]. It
proves the real-time control ability of ECMS in a fuel cell-based SC-battery hybrid
source vehicle.

Model predictive control (MPC): The issues of DP algorithms in terms of
inability to online implementation due to its requirement for knowledge on future
driving cycles, road profiles, and vehicle states. A new predictive-based control
strategy is utilized to tackle those issues in global optimization-based DP and
called MPC. It is a receding horizon control with the development of a model
of a whole system that undergoes online optimization to improve real-time ap-
plications. It mainly operates on three schedules: (a) Optimal input calculation
inside a horizon, satisfying the constraints. (b) Implementing the inputs to the
plant. (c) Shifting of the entire prediction horizon and again performing from
first step. In a hybrid source-based energy management system, an update of
real-time control parameters is essential; thus, MPC is famous in the EMS of
EV. Prediction accuracy and optimization are the two primary tasks of MPC.
Unlike global optimization, which is an infinite horizon based optimization, MPC
solves optimal control problems in each predicted horizon, and control parame-
ters are obtained on rolling of the horizon. Prediction-based control strategy in
HPSS which predicts the vehicle’s driving conditions have improved the efficiency
and performance of real-time optimization control of the overall system. Vehicle
communication technologies are utilized to achieve maximum prediction accuracy.

Adaptive MPC (AMPC) is utilized to formulate the cost function as a stan-
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dard DP algorithm [Zhang et al., 2017]. MPC toolbox in MATLAB is used for
power prediction and proposes a control algorithm to allocate the power among
HESSs [Hredzak et al., 2014]. It is essential to represent the system using a
complex nonlinear system to show the control algorithm’s effectiveness and accu-
racy [Laldin et al., 2013]. Computational complexity of complex models is high
and is tested by Golchoubian and Azad [Golchoubian and Azad, 2017] utilizing
battery-SC HESS based EV. Nonlinear MPC is derived and compared to the HESS
performance with RB strategy and linear MPC. This work proves the improve-
ment and importance of the scenario. However, it considers constant values for
battery and SC resistances, efficiencies of the motor, and the DC/DC converter,
which affects the performance of the control strategy. Also, the computational
cost is high and it lacks considerations on battery life cycle improvement for vary-
ing driving profiles and behaviors. MPC is highly complex, and its effectiveness in
control makes it more popular. Hredzak et al. developed a low-order MPC model
that can separately control different HESS sources and multiple models of such
type to improve the performance with reduced complexity [Hredzak et al., 2015].
Prediction accuracy of the model is less and SC is not utilized effectively since it
only aims to reduce the complexity. Many researchers have reduced the complex
model to a nonlinear one that minimizes the computational cost and improves the
prediction accuracy of MPC [Gomozov et al., 2017]. This utilizes a non-uniform
sampling time to ensure improved performance. Nonuniform sampling time pro-
vides improved results in reducing peak battery power and maximum utilization
of SC when compared to long and short prediction horizons. But sudden and
unexpected driving behaviors due to traffic variations and driver behavior reduces
the control performance and even affect the battery life. Thus, the importance of
predicting the real driving pattern comes into the picture. Liu et al. proposed
an MPC based EMS for EV powered from the battery-SC hybrid source. The
strategy enhances the service life of the battery [Liu et al., 2016]. This highlights
the improvement in life but SC availability to meet sudden accelerations and recu-
perate energy during braking is not guaranteed for varying driver behavior which
increases the stress on batteries. Li et al. explain the predictive model for vehicle
dynamics and hybrid sources (battery-SC), which initiates the MPC strategy and
ensures a reduction in battery power variation and maintaining SC SoC within
the desired range [Li et al., 2018b]. Power performance and battery lifetime are
improved with the combined adaptive and MPC scheme. However, the inclusion of
states such as road profile, driving styles, driving behaviors, and optimized sizing
of sources in the control strategy can further improve the performance and EV
battery lifetime. Syahbana and Trilaksono proposed an EMS for battery-FC-SC
hybrid power sources [Syahbana and Trilaksono, 2019]. The EV operates with
the power demand by sharing power among each source. Filter-based strategy is
combined with MPC and achieves an effective switching strategy with minimum
switching losses. The potential of HESS might not be fully utilized because the
prediction horizon was not updated with the varying conditions. Filter frequency
is not adaptive to varying driving conditions and behaviors which develops severe
effects on the battery life cycle. A varying predictive horizon is explained by Xie et
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al. to improve the velocity prediction accuracies. DP algorithm is utilized to solve
the MPC optimization [Xie et al., 2017]. Similar works with the DP algorithm
are proposed by Sun et al and Xie et al respectively [Sun et al., 2015] [Xie et al.,
2018b]. All these works face issues due to the huge calculation burden of the DP
algorithm is inevitable and impedes the online application of the strategy.

He et al. in their work proposed an EMS based on MPC for a fuel cell-based
hybrid system [He et al., 2020]. FC’s power variations and temperature changes
are considered in MPC to meet the objective function of reducing hydrogen fuel
usage and improving the SoC profile of the battery. Since the MPC problem is
formulated under constraints on power fluctuations to reduce hydrogen consump-
tion and achieve higher fuel cell service life. This smoothens the fuel cell power
profile but sometimes exposes batteries with larger power output due to the speed
of change or variations in load power. Wang et al. explain that the (AMPC)
with cost function is selected to enhance the battery life span and system effi-
ciency [Wang et al., 2020]. Energy loss, current battery rate, and SC energy are
set as the cost function and show better results than PI and MPC methods. This
shows an improved strategy compared to other MPC strategies. The inclusion of
additional factors (varying driving behaviors, road conditions, and load conditions)
to this model may reduce the effect on battery capacity fading and degradation
which further enhances the adaptability of the control strategy.

2.4.3 Learning-based EMS

Real-time implementations are essential in EMS control for EVs, and thus learn-
ing algorithms are attaining popularity. Learning-based algorithms utilize data
analysis for acquiring real-time details of vehicle conditions, driving patterns, etc.
Model accuracy is highly critical with MPC-based control, as depicted in the previ-
ous section. The size and structure of data are crucial in deciding the performance
of these algorithms; hence, the complexity and time consumption are high for de-
veloping an exact database. This algorithm can efficiently operate with different
driving profiles by its control laws, which are highly adaptive due to the massive
data loaded into the algorithm. Machine learning methods can handle such large
datasets with high performance. Model-based approaches are also utilized for tun-
ing the parameters. The tuning is done with optimization, and thus, the system
can behave with improved performance for different driving profiles, threshold
values, and driver’s driving attitudes and styles. Other types of learning-based
algorithms are discussed in EMS for EV, classified as their type of knowledge,
including reinforcement learning, and neural network learning.

2.4.3.1 Reinforcement learning

The significant components of reinforced learning are an agent and environment,
and the learning agent does the interaction with the environment. The learning
agent receives an observation at each interval, and it shows the states. Action
is selected by the learning agent and provided to the ground. A new state is
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achieved corresponding to the selected action and feedback is given to the agent
in the form of a reward. Agent receives instant rewards with each state change,
and control is developed to map the present state to optimal action up to that
state. Based on the control policy agent acquires the decision at each step. Finally,
the cumulative reward within the time is learned after the required training. The
total prize is maximized by considering the best series of selected actions based on
the learning agent’s optimal policy. An RL-based algorithm is developed to reduce
the hydrogen consumption in work proposed by Hsu et al. which is used to FCEV
with battery [Hsu et al., 2016]. An RL-based EMS learns optimal policy without
any predictions, which is based on the input data. Zou et al. discusses learning
based EMS for an HEV [Zou et al., 2016]. Reinforced learning is utilized in those
works and shows better optimal solutions. Li et al. adopted an RL method to
define the optimal control logic with an Actor-Critic way [Li et al., 2017b]. An
RL-based nested structure is implemented by Lin et al which is operated with two
loops. The inner loop reduces the operating cost, and battery SoH improvement
is made with the outer circle [Lin et al., 2015].

A deep network combined with an RL to form deep reinforcement learning
(DRL). Hu et al. developed an EMS for a PHEV which utilizes a deep system
with a fixed target [Du et al., 2022]. The proposed DRL receives an action from
the driving state. Producing continuous movement is the critical problem faced
by both RL and DRL, which is satisfied in all the recent works discussed in this
section. A real-time EMS that exploits RL for the HESS in an HEV is proposed
by Liu et al. [Liu et al., 2015] Simulation results of both RL and DP strategies
are compared and prove the performance of the RL-based real-time EMS. Bat-
tery lifetime and temperature variations in HESS are considered to be forgetting
factors for the EMS based on the RL strategy discussed by Xiong et al. for a
PHEV [Xiong et al., 2018a]. Compared to a rule-based approach, the RL-based
algorithm results showed a reduction of 16.8% in energy loss. Learning of varying
driving profiles, road terrains, temperature effects and driver behavior using RL
strategy can develop higher flexibility to the EV source system. This adaptively
varies the policy by identifying the behavior or pattern of load conditions to guar-
antee a higher range of EV with an improved battery life in the long run. Sun
et al. proposed multi-EMS combined to improve FC’s fuel efficiency and extend
battery and SC life span [Sun et al., 2020]. An adaptive fuzzy filter strategy is ap-
plied to reduce the complexity of controlling all sources and an ECMS to optimize
a multiobjective problem. Finally, the Q-learning algorithm splits the power de-
mand among the authorities. Shen et al. developed a partially observable Markov
decision process-based EMS combined with a convex optimization algorithm for
action selection [Shen et al., 2020]. The FC-battery hybrid source powers are al-
located based on the selected driving schedule and prove reduced computational
time and energy efficiency improvement. Lee et al. proposed a Q learning-based
energy management for an HEV that learns the driving conditions and updates
the policy adaptively [Lee et al., 2020]. This is achievable by developing a separate
control structure for power train and driving environment models. Velocity and
energy consumption predictions are depicted by Hegde et al and are well-suited
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for EMS application of EV. Data are identified utilizing sensor technologies and
V2X infrastructures [Hegde et al., 2020]. Moreover, factors such as temperature,
drive behavior, and instant road and traffic conditions can be utilized to highlight
the performance enhancement of control strategy at any input conditions. Recent
strategies are mainly focused on learning-based control due to its effective power
allocation capability. It can learn the model based on the driving conditions and
behaviors to update the control policies instantly.

2.4.3.2 Neural network

The process that is modeled and resembles its characteristics like thinking and
computing a human brain and developed like neurons of the brain is called neural
network learning. Nodes are the objects in a neural network that are analogous to
real brain neurons. It consists of multiple inputs and outputs, like synapses in real
neurons. Interconnecting different neurons form structures, and these networks are
utilized to model other behaviors. NN learning can be improved by undergoing
enough optimal training and massive datasets. NN’s learning is repeated learning
and modifying the weights of neurons in many instances. Changing the values
is done by the learning process and distributed to achieve a stable range. The
amount and quality of training data decide the optimality of NN [Koziel and
Yang, 2011]. Major characteristics that are highlights of NN are (a) a high degree
of the nonlinear global role, (b) a high degree of parallelism, (c) fault tolerance
and memory, (d) adaptive and learning ability.

Moreno et al proposed a NN based EMS experimental implementation for a
lead-acid battery-SC hybrid source EV. Introducing SC in the vehicle improves
the range by 5.3%, and the NN scheme increased it to 8.9% [Moreno et al., 2006].
However, it is not a highly optimized control strategy as it lacks optimized results
for training. Optimal solutions can further improve the prediction accuracies of the
control strategy. ANN-based EMS also utilizes optimization algorithms to train
the optimized data results and improve the optimality. A DP-based optimization
algorithm is developed for the EMS of battery-SC EV by Shen et al. which
exploits neural networks for training the EMS. NN-based real-time controllers
are developed for certain driving profiles offline, the effect on control strategy
might be affected due to any changes in driving profiles due to the uncertainties
in traffic, driver behavior, etc [Shen and Khaligh, 2015].Also, the availability of
SC is not assured during the whole trip, which can eventually enable batteries
toward frequent higher C-rates. This affects the life cycle and capacity of the
battery [Vukajlović et al., 2020]. Zhou et al proposed a nonlinear autoregressive
neural network (NARNN) to predict FC-battery EV’s driving cycle [Zhou et al.,
2017]. Future velocity states of the vehicle are expected for short or medium
time range with this strategy. Predicted driving data can be utilized for effective
online energy management. The drawback of this strategy can be highlighted by
considering its accuracy in velocity prediction for different driving cycles. This can
be improved by introducing input data sets of different classes which are related
to vehicle, driver, environments that have a major impact on EVs. Alobeidli and
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Khadkikar described a new EMS strategy for a battery- SC-based vehicle, which
focuses on regulating the SC energy at acceleration and allowing SC to meet the
whole range of EVs, making SC available for an extended period [Alobeidli and
Khadkikar, 2018]. Two-stage ANN is implemented where the first stage sustains
the SC energy and the second stage regulates the depletion rate considering battery
SoC. It reduces the energy losses by 20% when compared with the RB approach.
External factors related to the environment, driver, and vehicle that accelerate
battery capacity and deplete its life cycle are not discussed and are a drawback of
this model. Zhang et al. utilized the NN strategy for driving pattern recognition
in a fuzzy optimal EMS for FC-SC vehicles. Pattern recognition improves the
response and accuracy of a fuzzy-based control scheme [Zhang et al., 2019]. NN-
based EMS for multi-source EVs with battery, SC, and fuel cells as the power
sources are derived. Yavasoglu et al proposed the NN model to derive an optimal
solution to the multi-objective energy management problem and compare it with
the other optimization methods [Yavasoglu et al., ].
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Table 2.2: Summary of EMS in EV with significant merits and demerits

Type of algo-
rithm

EMS Merits Demerits Application
mode(References)

Rule-based Deterministic Simple, robust Online calibra-
tion not accurate

Online application [Kouchachvili
et al., 2018] [Fathabadi, 2018]
[Trovao et al., 2013]

Fuzzy logic
control

Adaptive and
predictive

Requires adap-
tive corrections
for different
profiles

Online application [Sellali et al.,
2019a] [Masih-Tehrani et al., 2013]
[Nguyen et al., 2014]

Optimization-
based (Offline)

DP Global opti-
mal solutions,
multi-object
and non-linear
problem solving

Complex com-
putation, future
driving profile
information is
essential

Offline application only
[Tashakori Abkenar et al.,
2017] [Correa et al., 2017] [Guang
et al., 2017] [Song et al., 2015a]

PMP Highly optimal
control with a
global trajectory

Approximation
of modeling
is necessary
to reduce the
computational
cost

Typically suitable offline applica-
tion [Li et al., 2018a] [Li et al.,
2019] [Hredzak et al., 2015] [Liu
et al., 2016]

QP Computation is
faster

Derivative infor-
mation is essen-
tial and is com-
plex

Offline application only [He et al.,
2020] [Zhang et al., 2017] [Hsu
et al., 2016]

GA Driver behaviour
can be included
to improve
the solution,
derivative-free
processing.

Computation
is involved, not
recommended for
multi-objective
and non-linear
problems

Offline application only [Ziyou
et al., 2015] [Li et al., 2017b] [Liu
et al., 2015] [Sun et al., 2020]

Optimization-
based (Online)

ECMS Online and real-
time implemen-
tations

Highly sensitive
to driving pro-
files

Online applications [Blanes
et al., 2013] [Sellali et al.,
2019b] [Chenghui et al.,
2007] [Hussain et al., 2019] [Wang
et al., 2019] [Dusmez and Khaligh,
2014]

MPC High accuracy
online applica-
tions, Improved
adaptivity and
predictivity

Accurate pre-
diction of the
driving cycle and
highly sensitive
to it, The ne-
cessity of high
accuracy model

Online application [Golchoubian
and Azad, 2017] [Lin et al., 2004]
[Bernard et al., 2006] [Jiang et al.,
2019] [Lin et al., 2010] [He et al.,
2013] [Hegazy and Van Mierlo,
2010]

Learning-based NN Low computa-
tional cost and
high adaptivity

Extensive and
high-quality
training data
required

Online application [Alobeidli and
Khadkikar, 2018] [Xiong et al.,
2018a] [Shen et al., 2020] [Koziel
and Yang, 2011] [Zhou et al., 2017]

RL Real-time and
efficient online
control, system
modeling is not
required

High computa-
tional time

Online application [Pei and Leamy,
2013] [Sinoquet et al., 2011] [Fu
et al., 2019] [Gomozov et al., 2017]
[Sun et al., 2015]
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2.5 Identified Research Gaps

After the thorough literature survey, some vital problems are identified which can
be rectified and thus improve the overall performance of electric vehicles. The
varying driving and environmental conditions affect the BEVs to a large extent by
accelerating battery depletion, increasing the chances of battery replacement, and
frequent maintenance requirements. From the literature survey, it is observed that
the Hybrid source systems in EVs handle such issues of batteries. However, in the
hybrid source EMS with battery and SCs, the availability of SC is not ensured
by existing strategies in the literature. The battery is forced to handle high (high
C-rate) frequency/sudden load currents. Moreover, the higher DC bus voltage
fluctuations affect the electric vehicle motor drive efficiency and increase losses.
Therefore, it is worth investigating and developing new hybrid source systems,
the optimal EMSs, and investigating the techno-economic assessments of EMSs in
hybrid source EVs.

2.6 Objectives

The main objective of this research is to develop various models of hybrid sources in
electric vehicles and to design and develop optimal energy management strategies.
In this regard, the following objectives are set:

1. Allocation of low frequency power demands towards the battery, ensuring
maximum utilization of supercapacitor irrespective of driving conditions.

2. Minimization of DC bus voltage fluctuations with varying load current de-
mands in a real driving scenario.

3. Techno-economic assessment that includes performance and economic pa-
rameters of proposed Energy management strategy with existing strategies.

4. Implementation of EMS in new hybrid energy vehicle and investigating its
major significance and feasibility at different locations.
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3.1 Introduction

The literature survey in Chapter 2 shows that the optimum power allocation in the
hybrid system significantly improves vehicle performance. The EMS controls the
system’s overall performance with reduced fuel and energy consumption [Vuka-
jlović et al., 2020] [Niu et al., 2022], which improves battery longevity, driving
range, Etc. The proposed work focuses on the EMS of the hybrid sources. A
combination of Battery, SC, and PV are utilized as Hybrid sources in the pro-
posed HSEV. Table 3.2 shows the parameters of each source, and the details
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power-sharing description of each source follows in this section. The overall block
diagram is shown in Figure 3.1. EV power demand generation system includes
an EV model which derives the load power demand based on varying test driving
profiles. The multi-input fully active bidirectional buck-boost converter intercon-
nects the DC bus with Battery, SC, and the DC-DC boost converter connects the
Solar PV with an MPPT control algorithm constituting the Hybrid source electric
vehicle (HSEV). EMS optimizes the battery’s energy consumption by optimizing
the energy management in the system, considering the driving and environmental
conditions, and is carried out by Fuzzy based absolute energy sharing algorithm
(AESA). The regulation of assigned power from each source is handled by the dou-
ble loop controllers (inner current and outer voltage). Both EMS and converter
controllers combines to form Energy management system (Figure 3.1). Further-
more, the ratings, weight, life, and other technical (Section 3.4.1) and economic
(Section 3.4.2) parameters of the battery compared with BEV and existing EMSs.

Figure 3.1: Overall block diagram of hybrid source system in electric 3W.

In this chapter, the EV mathematical modeling is detailed, which generates
the varying load power demand based on the real-world driving conditions, the
proposed hybrid source EV power train with its Intelligent Hybrid Source Energy
Management Strategy (IHSEMS) which includes the Absolute Energy Sharing
Algorithm (AESA) is briefly discussed, and a comparative techno-economic as-
sessment is conducted with the simulation result analysis.

3.2 Electric Vehicle Modeling

The driving-related issues which are mainly based on driver behavior, route se-
lections, road type, etc. Further discussions can be more connected once the
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relationship between electric vehicles and such aspects is clear. This section dis-
cusses the mathematical model of electric vehicles under longitudinal motion. All
the resistive forces which oppose the vehicle motion are discussed in detail (in-
cluded in Appendix A) to implement the EV model, which generates the required
power demand.

Table 3.1: Design parameters of electric vehicle.

Sl No Parameters Symbols Values

1 Vehicle category L5M auto

2 Seating capacity Driver + 3 seaters

3 Kerb weight M0 450 kg

4 Gross weight (with full capacity) MT 800 kg

5 Gradeability α 10°
6 Average velocity V 40 km/hr

7 Frontal area AF 2 m2

8 Rolling coefficient fr 0.01

9 Drag coefficient CD 0.5

10 Air density ρ 1.225 kg/m3

11 Roof area AR 5 m2

12 Acceleration due to gravity g 9.81 m/s2

13 Efficiency of hybrid system (%) ηHESS 95

14 Transmission efficiency (%) ηT 90

15 Motor drive efficiency (%) ηM 85

3.2.1 Dynamics of electric vehicle

The longitudinal vehicle motion and its modeling with the dynamic equation is
shown in Figure. 3.2. Table 3.1 shows the parameters considered for the electric
three-wheeler to calculate load demand [Trovão et al., 2017] [NPTEL:, 2018]. The
hybrid source has supplied the required load demand estimated using a dynamic
equation. The load demand during traction (PL1) and braking (PL2) intervals
are depicted in Eq. 3.1 – 3.2, respectively [Niu et al., 2022]. The PLT (Eq. 3.3)
is the total load power demand, includes different resistive forces such as rolling
resistance (friction on tire), aerodynamic drag (air resistance on the vehicle), and
Grade (opposes the motion during a road slope). These combined forces oppose
the vehicle motion during the drive and support it during braking. Moreover, the
motor power overcomes the resistive force and accelerates the vehicle with the
desired velocity.
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Figure 3.2: Dynamics of electric 3W vehicle.

PL1 =
(M.g.fr.cos(α) +

1
2
.ρ.Af .CD.V

2 +M.g.sin(α) + λ.M.dV
dt
).V

ηHESS.ηT .ηM
(3.1)

PL2 = (M.g.fr.cos(α) +
1

2
.ρ.Af .CD.V

2 +M.g.sin(α) + λ.M.
dV

dt
).V.ηR (3.2)

PLT = PL1 + PL2 (3.3)

where M is the gross weight of the vehicle, g is the acceleration due to gravity,
fr the rolling resistance coefficient, α the gradeability, ρ the air density, Af the
frontal area of the vehicle, CD the drag coefficient, V the velocity of the vehicle, λ
the rotational inertia constant ηR is the regenerative braking efficiency, ηHESS is
the hybrid system efficiency, ηT is the transmission efficiency, and ηM is the motor
drive efficiency.
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Figure 3.3: Velocity profile of NYCC, Artemis Urban, and WLTP class-1.
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Standard driving profiles are employed to mimic the actual driving conditions
in the EV model. A combination of three standard driving profiles performs as
the best test bench for any EV - NYCC (Newyork city cycle), Artemis Urban,
and WLTP-1 (Worldwide Harmonized Light Vehicles Test Procedure). Figure.
3.3 shows the combined driving profiles (CDP), where NYCC and Artemis Urban
cycles fluctuate highly, and the WLTP class-1 cycle has fewer fluctuations [USEP-
Agency, 2022]. This varying driving condition of CDP highlights the importance
of EMS.

3.3 Proposed Hybrid Source Model

The multi-input fully active bidirectional buck-boost converter interconnects the
DC bus with Battery, SC, and the DC-DC boost converter connects the Solar PV
with an MPPT control algorithm, as shown in Figure. 3.4. EMS optimizes the
energy consumption of each source employing AESA and ensure optimal battery
operation. Furthermore, the other technical (Section 3.4.1) and economic (Section
3.4.2) parameters of the proposed hybrid source system are compared and analysed
with BEVs and existing EMSs.

Table 3.2: Parameters of hybrid sources

Sl no Components Parameters Symbol Values

1 Lithium-ion battery Cell type 3.2V, 2.6 Ah, LFP cell

2 Battery capacity CB 5.4 kWh

3 Rated voltage VB 36 V

4 Specific energy eB 151Wh/kg

5 Battery inductance LBAT 80 µH
5 Supercapacitor Module ratings 32 V, 250 F

6 Maximum current ISCmax 1900 A

7 Specific energy eSC 3.65 Wh/kg

8 SC inductance LSC 64 µH
9 DC bus capacitance CBUS 23 mF

10 Solar PV PV array power 965.6 W

11 Voltage at maximum power VPV 34 V

12 Current at maximum power IPV 28.4 A

13 Total panel area APV 4.8 m2

Lithium-ion cells are arranged in series and parallel to achieve high energy
density and ensure normal battery pack operation. An open circuit voltage (OCV)
- internal resistance equivalent circuit battery model is considered in the further
analysis [Kouchachvili et al., 2018] [Nguyen et al., 2021]. The equation for battery
cells and pack is mentioned in Eq. 3.4, [Pedro et al., 2019]. Lithium-ion batteries
are the primary source of the proposed EV. Table 3.2 shows the parameters of
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Figure 3.4: Circuit diagram of proposed EMS of hybrid source electric vehicle.

the lithium-ion battery pack. The battery function in the hybrid EV system is
to provide a long driving range. Due to their high energy density, batteries can
support the vehicle during average power demands.

BC = npBc.CBc;RB = nsBc.RBc/MB;VB = nsBc.VBc (3.4)

where npBc and nsBc represent the number of batteries cells in parallel and series,
BC and CBc are the nominal capacity, RB and RBc are the internal resistances, vB
and VBc are the voltage of the battery pack and battery cell respectively.

The high power density of SC plays a significant role in electric vehicle appli-
cations. SC module is designed mainly to reduce the stress of the primary source
in the hybrid system (i.e., battery) by handling the sudden peak power demands
and absorbing the regenerative braking energy. The proposed work combines a
12-series configuration of MAXWELL 3000F, 2.7 V cell to form the SC module.
The parameters of the SC module are related to the SC cells as mentioned in Eq.
3.5, [Sun et al., 2017]. The behavior of the SC pack can be represented by a first-
order electrical element, which constitutes an open-circuit voltage (OCV), internal
resistance (RSc), and capacitance (CSc). The capacitance in parallel with an inter-
nal resistance represents leakage of SC model [Mellincovsky et al., 2014] [Raman
et al., 2021]. Parameters of SC are shown in Table 3.2. Due to the long life cy-
cle (1,000,000 cycles), the degradation of SC is considered to be very low in the
analysis. [Vukajlović et al., 2020].
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CSC = npSc.CSc/nsSc;RSC = nsSc.RSc/npSc;VSC = nsSc.VSc (3.5)

where npSc and nsSc represent the number of SC cells in parallel and series,
CSC and CSc are the nominal capacity, VSC and VSc are the nominal voltage and
RSC and RSc are the internal resistances of the SC module and SC cell respectively.

Figure 3.5: Irradiance (blue), ambient temperature (red)(March).

Figure. 3.5 shows the high fluctuating irradiance and ambient temperature
environmental conditions to exhibit the system’s response. Solar energy is highly
recommended for electric vehicles to improve energy efficiency. Photovoltaic (PV)
panels are employed to trap the solar energy. A PV array is a group of PV
modules connected in series and parallel. Table 3.2 shows the parameters of PV
panels employed in this work. The area of solar panels is selected based on the
vehicle roof area as listed in Table 3.1 [Sunrunmotors, 2022]. The Maximum Power
Point Tracking (MPPT) algorithm extracts maximum power during irradiance and
temperature fluctuation. PV supports the primary source battery to meet the
required energy demand which improves the energy efficiency. The output current
of the PV module is depicted in Eq 3.6. The PV peak power and load energy
calculations of the HSEV are as follows in Eq.(3.7) [Solar, 2020]. The impact of
PV power is reflected in BECM ( Eq.3.7), which shows the reduction in battery
energy consumption per month with the inclusion of PV panels over the vehicle.

IPV = np.IPH − np.IRS.

[
exp

(VPV +IPV .RS)

(VTH.ns)
−1

]
− (VPV + IPV .RS)

RSH

(3.6)

where VPV and IPV represent the output PV voltage and current of the mod-
ule, np and ns are the number of parallel and series connected panels. IPH is
the photo-current, IRS is the module reverse saturation current, VTH is the diode
thermal voltage and RS, RSH are the series and shunt resistance respectively.
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WP =
Ir.A.ηPV

100
;LECDay = ECDc.NDc;BECM = TECM − EPVM (3.7)

where WP is the Installed peak PV panel power, ηPV is the PV conversion
efficiency. LECDay represents the Load energy consumption per day, ECDc is
the energy consumption per driving cycle, NDc is the number of driving cycles
needed to complete the total expected drive per day. BECM , TECM , and EPVM

are the battery energy consumption, total energy consumption, and PV energy
consumption per month, respectively.

MPPT algorithm maximizes the power by modifying the duty cycles of switches
in the DC-DC converter to achieve maximum power points at each irradiance lev-
els. Various algorithms are already existing. In proposed system a Perturb and
Observe (P& O) MPPT algorithm is used to generate the switching pulses for PV
boost converter [Zineb et al., 2021].The flow chart of the P & O algorithm are
shown in figure 3.6 where the duty ratio, D keeps varied at difference is present
P(k) and previous output power (P(k-1)). Voltage and current of PV boost con-
verter is monitored and the algorithm is developed based on algorithm in 3.6 and
the equation 3.8.
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P(k)=V(k)*I(k)
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ΔP = 0

ΔP > 0

ΔV < 0 ΔV < 0

D=D + Δd D=D - Δd D=D + Δd

D

D=D - Δd

Yes

No

Yes

Yes No Yes No

1

1

SOC BAT, V BUS

SOC BAT < 95 %

Duty ratio = D
Duty ratio = 

Equation (3.8)

Return

NoYes

No

Figure 3.6: Perturb and Observe (P & O) MPPT algorithm.

Duty ratio = (VBUSREF − VBUSREF ).(KPpv +
KIpv

s
) (3.8)

where KPpv and KIpv are the proportional and integral gains for the PV duty ratio
controller, ∆ d is the perturbation step-size.
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The modes of operations of each converters of respective sources in figure 3.4
are detailed with their equations in the section. The battery side buck-boost
converter operates in two modes, namely battery discharge, and charge modes.
The discharge mode of the converter is the boost converter operation. Switch
Q1B, Q2B are controlled with the PWM signals derived from the EMS of the
system based on the fluctuations in load current and SoC of the battery. Table
3.2, and Table 3.3 shows the design parameters of battery and respective DC-
DC converter. The discharge mode model of the battery side converter circuit is
derived as Equation 3.9.

diBAT

dt
=

−RBAT

LBAT

.iBAT +
1

LBAT

.VBAT − (1−D1B)

LBAT

.VDC (3.9)

where RBAT and LBAT are converter resistance and inductance, D1B is the
duty cycle of switch Q1B, VBAT , IBAT are the battery voltage and current. Charge
mode of battery side converter operation is expressed with Equation 3.10.

diBAT

dt
=

−RBAT

LBAT

.iBAT +
1

LBAT

.VBAT − (D3)

LBAT

.VDC (3.10)

where D2B is the duty cycle of switch Q2B, combination of both the modes of
battery operation can be expressed as:

diBAT

dt
=

−RBAT

LBAT

.iBAT +
1

LBAT

.VBAT − (D23)

LBAT

.VDC (3.11)

where

D12B =

1−D1B, if Discharge mode

D2B, Charge mode

Supercapacitor side DC-DC buck-boost converter also undergoes in two modes
of operation similar to battery side converter. Proposed EMS controls the switch
Q1SC and Q2SC considering the charge levels of SC and load current. Table 3.2
and Table 3.3 shows the design parameters of SC and respective DC-DC converter.
Discharge and charge modes of operations can be combined into a single equation
3.12, which is equivalent to Equation 3.11 of battery side converter.

diSC
dt

=
−RSC

LSC

.iSC +
1

LSC

.VSC − (D12SC)

LSC

.VDC (3.12)
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where RSC and LSC are converter resistance and inductance, VSC , ISC are
the supercapacitor voltage and current. D12SC is the duty cycle combination of
both the switches Q1SC and Q2SC .

D12SC =

1−D1SC , if Discharge mode

D2SC , Charge mode

PV power is fluctuating and needs to be maintained at its maximum power
for higher energy efficiency. This is achieved by a DC-DC boost converter with an
MPPT algorithm. VPV , IPV are the PV panel voltage and current. DPV is the
duty cycle derived from the perturb and observe MPPT algorithm to control the
boost converter. Two states of the boost operation can be evaluated (QPV ON
and QPV OFF intervals). Table 3.2 and Table 3.3 shows the design parameters of
PV and MPPT boost converter. The average model of the PV side DC-DC boost
converter is shown by Equation 3.13.

diPV

dt
=

−RPV

LPV

.iPV +
1

LPV

.VPV − (1−DPV )

LPV

.VDC (3.13)

Battery, super capacitor and PV sources are explained with their characters,
advantages and mathermatical equations in previous section. Converters design
plays a crucial role in managing the power between the sources. The design of
DC-DC converters for respective sources are explained below.

Design of battery side buck-boost converter
Inductor ripple current, ∆iL = 10 % (IL)
Considering Vin = 40 V
D40V = Vout / (Vin + Vout) = 0.545
Average inductor current, IL = (Vout.Iout) / Vin = 270 A
∆iL = 10 % (IL) = 0.1(270) = 27 A
L40 = Vin . D40V /(∆iL.Fs) = 80.74 µH
Similarly, D24V = 0.67
IL = 450 A
∆iL = 45 A
L24 = 35.73 µH
LBAT = 80 µH to satisfy whole range of inputs.

Design of Supercapacitor side buck-boost converter
Inductor ripple current, ∆iL = 7 % (IL)
Considering Vin = 32 V
D32V = Vout / (Vin + Vout) = 0.6
Average inductor current, IL = (Vout.Iout) / Vin = 438 A
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Table 3.3: Coverter design parameters of hybrid sources

Sl no Components Parameter Symbol Values

Lithium-ion battery

1 Input voltage Vin 24 V – 40 V

2 Output voltage Vout 48 V

3 Output current Iout 225 A

4 Switching frequency Fs 10 KHz

5 Supercapacitor

6 Input voltage Vin 16 V – 32 V

7 Output voltage Vout 48 V

8 Output current Iout 292 A

9 Switching frequency Fs 10 KHz

10 Solar PV

11 Input voltage Vin 34 V

12 Output voltage Vout 48 V

13 Output current Iout 20.11 A

14 Switching frequency Fs 5 KHz

∆iL = 7 % (IL) = 0.07 (438) = 30 A
L32 = Vin . D40V /(∆iL.Fs) = 64 µH
Similarly, D16V = 0.75
IL = 876 A
∆iL = 61.32 A
L24 = 19.56 µH
LSC = 64 µH to satisfy whole range of inputs.
Output voltage ripple, ∆V out /Vout = 2 %
CBUS = (Dmax )/(R.(∆V out /Vout).Fs ) = 0.75 /(0.16 . 0.02 . 10000) = 23.43 mF

Design of Solar PV side boost converter
Inductor ripple current, ∆iL = 20 % (IL)
Considering Vin = 34V
DPV = 1 - (Vin / Vout) = 0.291
Average inductor current, IL = (Vout.Iout) / Vin = 28.40 A
∆iL = 20 % (IL) = 0.2(28.40) = 5.68 A
LPV = Vin . DPV /(∆iL.Fs) = 348 µH
LPV is 352 µH to satisfy whole range of inputs.
Output voltage ripple, ∆V out /Vout = 2 %
CBUS = (Dmax )/(R.(∆V out /Vout).Fs ) = 0.5 / (2.38 . 0.02 . 5000 = 2.1 mF
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3.4 Proposed Energy Management Strategy

This section examines the challenges in several EMSs approaches. A hybrid source
system follows the deterministic rule-based strategy for easiness in real-time op-
eration, which limits the source performance [Wang et al., 2022]. The vehicle
needs an adaptive and flexible control strategy under varying driving conditions.
If EMS does not consider the driving profile and source parameters into account
may lead to an unstable system. This affects the battery’s performance and life
as mentioned in Section 3.4.1 on technical and 3.4.2 on economic aspects. The
two standard EMSs, 1) SMC [S. Njoya Motapon and Al-Haddad, 2014] and 2)
FDS [Cabrane et al., 2020], have been considered to illustrate the significance of
the proposed EMS. The SMC includes eight states to control energy management
using hysteresis switching, which delays the system’s response during sudden load
changes [S. Njoya Motapon and Al-Haddad, 2014]. The FDS performs the energy
management by providing low-frequency load demands to the battery and high
frequency to SC using a fixed frequency low pass filter, which reduces adaptivity
and flexibility during varying driving conditions [Cabrane et al., 2020]. A more
detailed comparison of EMSs has been given in Section 4.4.4.

The proposed EMS ensures each source’s effective utilization by considering
the impact of varying driving conditions. The energy generated from each source
is used in the algorithm and allocated in an optimal ratio to meet load power
demand. The main optimization parameter is the absolute energy of low and
high-frequency components. Present research highlights the significance of the
proposed absolute energy sharing scheme (as in Eq. 3.18-3.19). The variation
in low and high-frequency absolute energy is monitored throughout the driving
cycle. The control algorithm is assigned to modify the energy management ratio
between the sources by optimizing the source absolute energies. An intelligent
fuzzy logic strategy enables absolute energy sharing of sources as membership
functions, therefore, named an Intelligent Hybrid Source Energy Management
System (IHSEMS). The function of the proposed EMS is not limited to hybrid
source energy management, moreover maintains SCSOC , as mentioned in Section
3.5.2.1. The proposed EMS improves the EV’s long-term economy by providing
SC throughout the driving cycle and reducing battery capacity losses and stress.

The fuzzy control strategy makes the control process more realistic, especially
suitable for controlling nonlinear systems [Wang et al., 2022]. An intelligent fuzzy
logic control strategy improves the battery’s range, performance, safety, and life
cycle. The proposed control strategy focuses on monitoring the charging lev-
els (source conditions), load current fluctuations (driving conditions), maximum
current (C-rate), and Irradiance (environmental conditions) and outcomes an op-
timum cut-off frequency for the lowpass filter to ensure an effective power-sharing
strategy. In EV, the load current is continuously varying. Fuzzy logic works to
split the combined power PC between the battery and SC while changing the
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cut-off frequencies. The fuzzy system consists of four inputs and one output pa-
rameter, the Low-frequency absolute energy (Abs ELF ), High-frequency absolute
energy (Abs EHF ), SC state of charge (SCSOC), Battery cell temperature (TC)
and the cut-off frequency (FCUTOFF ), respectively. Further, the above fuzzy pa-
rameters are defined into three membership functions: Low, Medium, and High,
as shown in the Figure. 3.7.
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Figure 3.7: Input and output membership functions of fuzzy controller (a) Ab-
solute low frequency energy (b) Absolute high frequency energy (c) SC SOC (d)
Battery cell temperature (e) Cut-off frequency of LPF

IHSEMS allocates the load power among each source based on various driving
conditions. Eq. (3.14) explains the total power the hybrid sources handle.

PT = PB + PSC + PPV = PC + PPV = PLT (3.14)
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where PT is the total power from hybrid sources. PB, PSC , and PPV are battery,
SC, and PV power, respectively. PC is the combined power of the battery and
SC. Eq. (3.15) shows the battery’s and SC’s combined power.

PC = PB + PSC = PLT − PPV (3.15)

The adaptive low pass filter (LPF) separates the load fluctuations into low
and high reference currents. The battery and SC handle low (steady-state) and
high (transient) frequency load current, respectively, as mentioned in Eq. (3.16).
The total current supplied from hybrid sources is mentioned in Eq. (3.17).

ILF = IC .
(2.π.fc)

(s+ 2.π.fc)
; IHF = IC − ILF (3.16)

IT = ILF + IHF + IPV (3.17)

where, ILF , IHF are low frequency and high-frequency current, fc is the cut-
off frequency of LPF. IC is the total current demand. IT is the sum of current
from the battery, SC, and PV to meet the load current. Eq. (3.18) explains the
absolute energy of low and high-frequency currents. Abs (ELF ) and Abs (EHF )
are the absolute energy generated by the battery and SC, respectively. A fuzzy
controller limits the cut-off frequency , to satisfy an effective absolute energy-
sharing between the sources. This sustains SC’s participation (SC handles the
high-frequency power) during sudden peaks, fluctuating power, and regenerative
braking energy intervals. The absolute energy of the high-frequency component
is higher than the low-frequency components of the load power Eq. (3.19). The
flowchart of the absolute energy sharing algorithm (AESA) is explained in Figure
3.8, where the cut-off frequency optimizes the energy sharing among each source,
considering the fluctuations in driving and source conditions.
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Figure 3.8: Flowchart of absolute energy sharing algorithm.

Abs(ELF ) = Abs(

∫
(PLF )dt;Abs(EHF ) = Abs(

∫
(PHF )dt (3.18)

Abs(EHF )− Abs(ELF ) > 0 (3.19)

where, PLF and PHF are the low and high-frequency load power components.

As shown in Figure 3.1, the controller consists of the outer voltage and inner
current control loop for the battery and SC, which satisfies the battery’s and SC’s
dynamics. The inner SC current loop operates faster than the outer voltage control
loop to ensure the stability of the overall control system [Cabrane et al., 2020].
The outer voltage loop operates to stabilize constant DC bus voltage [P K Singha
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et al., 2021]. IHSEMS generates the reference power for each source and utilizes
a controller to generate the switching pulses required for the DC-DC converters.
Thus IHSEMS ensures efficient power flow respective to absolute energy sharing.
The PI controllers of each loop provide the desired phase margin at the required
bandwidth for ensuring system stability based on frequency domain specifications
[Cabrane et al., 2020]. The small-signal modelling (SSM) of the converter system
generates PI values of each controller loop using the MATLAB SISO tool [Erickson
and Maksimovic, 2007]. PI controllers reduce the error of reference versus actual
source current. PWM derives the duty ratio for converters and generates the
switching pulses for each converter DBAT and DSC .

The double loop voltage (outer) and current (inner) loop controller is designed
for controlling the full active bidirectional buck-boost converter for both Battery
and SC. The voltage controller maintains or stabilize the bus voltage at the DC
bus. The inner current loop for both battery and SC regulates the actual currents
to match the reference currents designed by the proposed EMS. The controller is
designed based on the converter transfer functions which are derived using state
space averaging techniques.

Voltage control transfer function (Gvdx) for the converter is designed as:

Gvdx =
vox(s)

dx(s)
=

(1−Dx).VO − ILx.Lx.s

Lx.Cox.s2 +
Lx

RL
.s+ (1−Dx)2

(3.20)

The current control transfer function (Gidx) of the converter is designed as:

Gidx =
iLx(s)

dx(s)
=

Cox.VO.s+ 2.(1−Dx).ILx

Lx.Cox.s2 +
Lx

RL
.s+ (1−Dx)2

(3.21)

Output impedance transfer function (Gvix) of the converter is designed as:

Gvix =
vox(s)

iLx(s)
=

(1−Dx).VO − ILx.Lx.s

Cox.VO.s+ 2.(1−Dx).ILx
(3.22)

The controller block diagram is shown in figure 3.9. An accurate SSM model
is essential for the controller design. An inner battery current loop with slower
dynamics and a SC inner current loop with fast dynamics. The outer voltage loop
is to stabilize the DC bus voltage constant. These criteria are considered in order
to achieve a stable system operation and better transient response at various oper-
ating points. The controller parameter design is performed using MATLAB/SISO
tool based on the frequency domain specifications. The bandwidth and phase
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margin of each loop are selected based on that criteria to achieve a stable system
and the design consideration with the PI gains for each loop are as shown in Table
3.4.

Inner current loop of battery controls the charge-discharge currents of battery
side converter. Bandwidth of battery loop is selected lower than SC loop to
considering the response characteristics of battery. Open loop transfer function of
battery inner current loop is utilized to determine the compensation parameters.
BW of 1.1 KHz at a phase margin of 60 degree is selected to determine the PI
control parameters. Open loop and closed loop transfer function of SC inner
current loop is as shown below. SSM representation with the transfer functions
of the battery control loop is shown in figure 3.9.The input current controller
equations (GibDB

) are derived from Equation 3.21 and are shown as below:

GibDB
=

iLBAT (s)

dBAT (s)
=

(CBUS).VBUS.s+ 2.(1−DBAT ).ILBAT

LBAT .C.s2 +
LBAT

R
.s+ (1−DBAT )2

(3.23)

Supercapcitor inner current control loop stabilizes the charging and discharg-
ing of SC considering the stable system operation. Bandwidth of SC loop is
selected higher than other loops to ensure the immediate response of the control
loop towards the system stability. Open loop transfer function of SC inner cur-
rent loop is utilized to determine the compensation parameters. BW of 1.7 KHz
at a phase margin of 60 degree is selected to determine the PI control parameters.
Open loop and closed transfer function of SC inner current loop is as shown below.
SSM representation with the transfer functions of the SC control loop is shown
in figure 3.9. The input current controller equations (GiSCDSC

) are derived from
Equation 3.21 and are shown as below:

GiSCDSC
=

iLSC(s)

dSC(s)
=

(CBUS).VO.s+ 2.(1−DSC).ILSC

LSC .C.s2 +
LSC

R
.s+ (1−DSC)2

(3.24)

Bandwidth of outer voltage loop is lower than other loops to ensure the re-
sponse of the system during sudden load changes. Open loop transfer function
of outer voltage loop is utilized to determine its compensation parameters. BW
of 100 Hz at a phase margin of 60 degree is selected to determine the PI control
parameters. Open loop transfer fucntion of outer voltage loop is as shown below.
SSM representation with the transfer functions of outercontrol loop is shown in
figure 3.9. The outer voltage loop controller generates the input reference cur-
rent and EMS processes it to derive the battery and SC reference currents. The
outer voltage controller loop equations(Gvi) are derived from Equation 3.22 and
are shown as below:

Gvi =
vBUS(s)

iBUS(s)
=

(1−DSC).VO − ILSC .LSC .s

CBUS.VO.s+ 2.(1−DBUS).ILSC
(3.25)
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Figure 3.9: System controller block diagram.

Table 3.4: Controller parameters and specifications of hybrid source system.

Sl No Parameters Symbols Values

1 SC inductance LSC 64 µH
2 Bandwidth of inner current SC loop BWSC 10700 rad/sec

3 Phase margin of inner current SC loop PMSC 60 °
4 Controller gains of SC current loop KP = 0.013 ,KI = 61.5

5 Battery inductance LBAT 80 µH
6 Bandwidth of inner current Battery loop BWBAT 6900 rad/sec

7 Phase margin of inner current Battery loop PMBAT 60 °
8 Controller gains of Battery current loop KP = 0.0098 ,KI = 25.7

9 DC bus capacitance CBUS 23 mF

10 Bandwidth of outer voltage loop BWV 630 rad/sec

11 Phase margin of outer voltage loop PMV 64.80 °
12 Controller gains of outer voltage loop KP = 12,KI = 5380

3.4.1 Technical evaluation

(a) Battery peak power reduction (BPPR) : The peak battery power demand
(BP ) increases the battery C-rates (IB/CB) and reduces the life (Eq. 3.34
) [Pedro et al., 2019] [Niu et al., 2022]. The percentage reduction in battery
peak power is expressed as follows:

BPPR (%) =
(BP − BPEMS

BP

).100 (3.26)

where BPEMS is the peak battery power with hybrid EMS. The EMS en-
sures optimal battery operation to enhance the longevity of the battery cells.
Battery downsizing (reduction in battery size) can be possible by reducing
the peak power demand by employing the suitable EMS [Samad et al., 2015].

(b) Battery capacity reduction (BCR) : Describes the percentage reduction in
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battery capacity (BC) [Samad et al., 2015].

BCR (%) = (
BC − BCEMS

BC

).100 (3.27)

where BCEMS is the battery capacity of Hybrid EMS. Reduction in battery
capacity could be achieved by utilizing SC and PV as hybrid sources in
HSEV to share the power demand.

(c) Battery di/dt reduction(BIR) : Rate of change of battery current (di/dt) and
the percentage reduction are expressed in Eq. (3.28) and (3.29), respectively,
which determines the stress on the battery.

di/dt (A/s) =
Imax − Imin

tmax − tmin

(3.28)

BIR (%) = (
di/dtBEV − di/dtEMS

di/dtBEV

).100 (3.29)

where Imax and Imin are the maximum and minimum battery current.Tmax

and Tmin are the respective time instants of maximum and minimum battery
current. di/dtBEV and di/dtEMS are the di/dt ratio of BEV and EMS,
respectively. Battery internal stress directly depends on the C-rates, and
the battery’s current fluctuation rate [Rui et al., 2020]. Higher and sudden
variations in battery current cause the development of Li+ concentration
more non-uniform and steeper gradients in the film [Jangid et al., 2019].

(d) Battery RMS current reduction (BRIR) : Battery RMS current reduction
% can be calculated using Equation (3.30) and its reduction extends the
battery life [Demircali and Koroglu, 2022]. RMS current is a vital factor
that affects battery life and gives a rough estimation of the battery ohmic
losses [Hussain et al., 2019]. The system’s overall losses and efficiency highly
depend on the RMS current. BRIR by employing the suitable hybrid source
in EV decelerates battery capacity degradation.

BRIR(%) = (
BRI − BRIEMS

BRI

).100 (3.30)

where BRIR is the battery RMS current reduction percentage, BRI is the
battery RMS current and BRIEMS is the battery RMS current with EMS.

(e) Battery capacity loss (BCL) : Instantaneous battery capacity loss, the bat-
tery capacity loss, and the total capacity losses are evaluated from with Eq.
(3.31), (3.32), and (3.33), respectively, [Song et al., 2018], [Niu et al., 2022].
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BδQloss(k) = 9.78x10−4.(
Abs(IB,k). Ts. exp

(−15162+1516.Crate,k)

(0.849.R.T ) .Q−0.1779
loss,(k−1)

3600
)

(3.31)

BQloss
= F (Crrate.T.Ah.N.DOD) = B(Crate).exp

(−Ea(Crate))
(R.T ) .(Ah(N))z

(3.32)

BQloss(k) = 0.0032. exp(
(−15162 + 1516. Crate(k))

R. (T + 273)
. Ah(k)z; (3.33)

where IB is the battery current, Ts is the sampling interval, BδQloss is the
instantaneous battery capacity loss, BQloss is the battery capacity loss, R is
the gas constant (J/mol K), T is the absolute temperature (K), Ah is the Ah-
throughput, z is the power-law factor (0.828), Crate the battery charge/dis-
charge rate, DOD is the battery depth of discharge.

The capacity loss of a lithium-ion battery determines the life of the battery.
Reduction in capacity from the initial capacity (100%) must be less than
20 % to achieve optimal battery operation for EV applications. A battery’s
end of life (EOL) is reached whenever the battery capacity reaches less than
80 % of its initial capacity [key, ]. Arrhenius degradation model depicts the
battery degradation [John et al., 2011]. The model explains how the battery
temperature, Depth of Discharge (DOD), Current rate Crate, RMS current
and BIR (di/dt) highly deteriorate the battery life and increases the BDC
Eq. (3.40) [Demircali and Koroglu, 2022] [Pedro et al., 2019].

(f) Battery lifespan(BLS) : The significant impact on battery life is due to the
battery capacity loss, as expressed in Eq. (3.34) for a lithium-ion battery
[Niu et al., 2022].

BLS = (
20%

QlossD. Dday. 365
) (3.34)

where QlossD is the capacity loss at each distance, Dday is the average trav-
eled distance per day. The highly fluctuating NYCC cycle was selected to
analyze extreme battery degradation and life. However, the present analysis
thoroughly studies EV battery LS for different hybrid EMSs versus BEVs
under uniform environmental conditions. In a Li-ion battery, the capacity
loss exceeds 20%, or the capacity goes below 80% of the nominal capacity is
unsuitable for EV application. Battery lifespan improvement (BLSI) derives
the battery life extension for the hybrid EMS compared to BEV.
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(g) DC bus voltage fluctuations(DCBV F ) : Eq.(3.35) expresses the percentage
variation of the peak-to-peak DC bus voltage fluctuation [P K Singha et al.,
2021] as follows:

DCBV F (%) = (
Vmax − Vmin

Vbus

).100 (3.35)

where Vbus is the DC bus voltage. Vmax and Vmin are the maximum and
minimum DC bus voltage. The difference gives the peak-to-peak value of
the bus voltage. DC bus voltage fluctuations have severe impacts on the
EV motor performance [Wen et al., 2012]. The difference between the max-
imum and minimum DC bus voltage gives the peak-to-peak value of the bus
voltage. DC-DC converter with optimal EMS ensures a stabilized DC bus
voltage.

(h) Optimum battery size (BOS) : The battery size provides a standard driving
range to run a vehicle without PV irradiance for a day. The nsBc and npBc

are selected as 10 and 58, respectively, to meet the required average power
demand and nominal voltage.

BOS, nsBc.npBc >=
(ρ.Af .CD.V

2 + 2.M.g.fr).D

2.ηHESS.ηT .ηM .3600.CBc.VBc − (2.MBc.g.fr)
(3.36)

where D is the minimum EV driving range in km, MBc is the mass of the
battery cell in kg.

The battery size of HSEV could be reduced by 26.72 % compared to BEV
available in the market, as shown in Table 3.2. The derived battery size
from Eq. (3.1) and expressed in Eq. (3.36) would provide the standard
driving range even under adverse conditions. Also, the proposed vehicle can
accommodate a PV panel. The output power ratings of PV are analyzed
analytically in Section 3.5.1, considering different weather conditions.

(i) Battery State of charge (BSOC) : Charge levels in the battery are decided by
the SOC. Improvement in energy economy is reflected in the battery SOC
levels [Song et al., 2018].

BSOC = BSOC0 −
∫

IB
BC

(3.37)

where BSOC0 is the initial battery SOC, IB and BC are the battery current
and capacity.

(j) SC State of charge (SCSOC) : SC operates with higher efficiency at higher
SOC. In order to achieve a better SC performance, SOC should not go below
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40 % and over 100%. The relationship between SCSOC and voltage is shown
in Eq. (3.38) [Zhang et al., 2020].

SCSOC = (USC/VSC)
2 (3.38)

where USC and VSC are the working voltage and nominal voltage of the SC
module, respectively.

(k) PV range (PVR) : As per the Indian electric 3W standard test case, the
average driving range is 100 km per day [key, 2019]. PV energy per day
directly impacts both the range and battery energy savings.

PVRange =
EPV day

ECR
(3.39)

where ECR is the energy consumption rate in Wh/km, EPV day is PV energy
per day in Wh and PVR is the total PV range.

3.4.2 Economy evaluation

(a) EV Battery degradation cost (BDC) : is the measure of battery replacement
and maintenance cost from its capacity and instantaneous capacity loss (Eq.
(3.31)) [Spotnitz, 2003] [Niu et al., 2022].

BDC =
BC .VB. P riceBAT . BδQloss(k)

(1000). (0.2)
(INR) (3.40)

(b) EV Electricity cost (EC) : is the cost associated with energy utilized (Esource)
during the battery’s charging. EC depends on the per unit cost(kWh), the
battery size (Ah), and SOC(%) as expressed below [Jiahao et al., 2022]:

EC =
Esource. P ricekWh

(1000)
(INR) (3.41)

(c) EV Total operation cost (TOC) : describes the cost associated with bat-
tery degradation with time and energy usage. The battery degradation cost
(BDC) and electricity cost (EC) of EVs determine the total operation cost
of the vehicle [Niu et al., 2022].

TOC = BDC + EC(INR) (3.42)

where PriceBAT is the per kWh battery price in India, PricekWh is the average
price of electricity cost per kWh, BC is the battery capacity, VB is the battery
voltage. BδQloss is evaluated from with Equation 3.31.
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3.5 Simulation Results

The proposed energy management system (Section 3.4) of the HSEV disengages
the battery from the effects of driving conditions 1) vehicle-related (accelera-
tion, deceleration, braking), 2) driver-related (driving pattern, route planning),
3) environmental-related (temperature, irradiance, wind, road terrain) factors.
Hence improves the battery’s longevity and avoids frequent battery replacement
or maintenance [Akar et al., 2017].

Proposed IHSEMS are detailed in this section with the outcomes that manage
the effective power allocation among the hybrid sources for varying CDP. Table 3.6
assesses a detailed comparison between the IHSEMS versus BEV, SMC, and FDS.
In this work, an electric three-wheeler exhibits the significance and effectiveness of
IHSEMS. Figure.3.3 shows an NYCC, Artemis Urban, WLTP class-1 CDP serves
to test the IHSEMS since their driving conditions match with the three-wheeler’s
average velocity. The average velocities and distances covered by each profile are
11.4 km/h and 1.90 km (NYCC), 17.7 km/hr and 4.874 km (Artemis Urban), 25
km/h and 8.091 km (WLTP class-1), respectively. The following initial conditions
for the initial BSOC0 = 50 %, and SCSOC = 86 %, are considered for test. The
PV irradiance and temperature remain highly fluctuating to indicate the varying
environmental conditions. The conversion efficiency of the PV panels is selected
at 20 % as per the availability in the market. [Jia et al., 2021b, Shemin et al.,
2022]. IHSEMS allocates the power among battery, supercapacitor, and solar PV
and is implemented in MATLAB/Simulink environment. Moreover, the effects
of variation in solar irradiance are mitigated by SC and regulate the bus voltage
with reduced fluctuations, as discussed in the section 3.5.1. In sections 3.5.2.1, the
technical and sections 3.5.2.2 economic parameters are detailed with the impact
of driving conditions on EV [Zhang et al., 2020].

0 500 1000 1500 2000 2500

Time (s)

0

500

1000

1500

A
b

s
o

lu
te

 e
n

e
rg

y
 (

W
h

) Abs E
L

Abs E
HF

Abs E
LF

Abs E
PV

Figure 3.10: Absolute energy sharing profiles.

Figure.3.10 shows the absolute energy sharing of battery, SC, and PV energy
towards the load energy demand. Energy sharing among each source ensures
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that SC is available throughout the vehicle journey to handle the high-frequency
load and regenerative energy. IHSEMS manages the energy, assigning SC with
higher absolute energy and ensuring maximum utilization at any driving conditions
considering the SOC. Hence the system adaptively varies the power allocation,
such as low fluctuating highway drive and high fluctuating city drive. An absolute
energy-sharing algorithm reflects the impact and ensures stress-free and optimal
battery operation of the HSEV.
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Figure 3.11: Cut off frequency derived for the CDP.

Figure.3.11 describes the load power versus cut-off frequency adaption. The
cut-off frequency and load power for the CDP are analyzed to show the significance
of the proposed IHSEMS. NYCC and Artemis Urban cycle show city driving cases
with higher load fluctuations due to traffic conditions. Since the load fluctuations
are higher during NYCC and Artemis Urban cycle, the cut-off frequency is opti-
mized to ensure SC energy availability and the battery achieves optimal operation
throughout the cycle. SC manages the sudden and peak load power demands in
this driving interval and thus, in return, ensures a safe battery operation. The
lower cut-off frequency during the WLTP class-1 cycle, where the fluctuation is
low compared to the other two cycles. The battery can manage such low fluc-
tuations with the selected cut-off frequency, and SC is used for the subsequent
high-fluctuating driving intervals. Figure. 3.11 shows reduced cut-off frequency
during the WLTP cycle to satisfy the energy optimization condition (Eq. 3.19) for
varying driving conditions. The primary task of IHSEMS is to ensure an optimal
power allocation among each source, as shown in Figure. 3.12 – 3.13. Figure.
3.12 shows the battery discharge power kept under 5 kW throughout the driving
period. SC handles peak load power during t=212 s, 1140 s, which helps drop the
battery C-rates. Most of the regenerative energy [time = 1130s – 1160s, 2275s –
2375s] absorbs by SC, which reduces the battery’s recurring charge and discharges
to extend its life. Figure. 3.13 shows the energy sharing of the proposed IHSEMS
where the SC energy is reserved for transient load conditions throughout the CDP
based on the varying driving conditions. Moreover, the battery contributes more
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Figure 3.12: Comparison of battery,SC,PV and load power(BEV) with IHSEMS.

to smooth energy consumption during time interval t=2200s – 2500s (under WLTP
class-1) by assigning SC to handle even minor fluctuations in the load demand, as
shown in Figure. 3.13. Overall, smooth battery energy consumption enables the
stress-free operation of the battery during a sudden fall or rise in PV power.
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Figure 3.13: Comparison of source energy consumption of IHSEMS under CDP.

3.5.1 Impact of PV power

PV energy is chosen based on energy consumption from actual locations with
real environmental conditions. Figure. 3.14(a) and 3.14(b) show the map of
the selected location for the analysis (Bangalore-12.9716° N, 77.5946° E) and the
monthly PV energy generation of Bangalore (India) throughout the year, respec-
tively [European, 2022]. The PV energy generation considers an installed peak PV
power [Wp] of 965.6 W (Eq. 3.7) for an area of 4.8 m2 [Sunrunmotors, 2022], [Eu-
ropean, 2022]. It is evident from Figure.3.14(b) that PV energy generation is
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(a) Map of selected location for the analysis
(Bangalore-12.9716° N, 77.5946° E).

(b) PV energy generation (kWh) at Banga-
lore, India throughout the year.

Figure 3.14: PV energy generation (kWh).

highest during March (143.63 kWh) and lowest during November (103.12 kWh).
The yearly average PV energy production at Bangalore is 1455.07 kWh under
a fixed panel arrangement. However, PV energy consumed by vehicles is signif-
icantly low due to the shading on roads and parking spaces which reduces the
solar irradiance. Centeno et al., 2021 reported the annual average irradiance loss
of 20% and 50% during driving and parking due to shadings, respectively [Euro-
pean, 2022]. Three cases with different PV irradiance and vehicle drive conditions
are examined to show the significance of PV energy in HSEV. Scheduling of the
daily NYCC driving cycle of electric 3W energy management is shown in Table
3.5. The daily standard 100 km driver’s driving cycle needs to drive 53 times of
NYCC driving cycle [Niu et al., 2022].

This section explores the varying environmental conditions like sudden irradi-
ance change. PV power constantly fluctuates due to the varying Irradiance and
temperature. An MPPT supports achieving maximum power at each irradiance
level. An increase in Irradiance from 0 to 1000 W/m2 at t = 221s and a decrease
from 1000 to 0 W/m2 at t = 257s verify sudden PV power variations. The power
allocation of IHSEMS describe in Figure. 3.15(a) includes the load power, battery
power, SC power, and PV power. IHSEMS takes care of the load demand at t
= 221s, where PV irradiance and regenerative braking excess power at the bus.
SC consumes this excess power at that instant by consuming more power (-ve rise
shows the sudden increase in SC charge power) to avoid disturbances in battery
power. At t = 257s, the PV irradiance suddenly reduces to zero, and traction
operation demands dip power at the bus. SC delivers more power (+ve rise shows
the sudden increase in SC discharge power) to avoid fluctuations in battery power.
This strategy ensures a smooth battery operation during rising and falling PV ir-
radiance and load variations. Similarly, Figure. 3.15(b) is with the same load
fluctuation as discussed in Figure.3.15(a). However, the PV power is considered
zero to analyze the impact of energy management during the same load fluctua-
tions but with different environmental conditions. Under zero PV irradiance, SC
is not taking additional charge or discharge currents which exists in the case of
Figure. 3.15(a). Three different driving cases are considered based on the instant
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of the driving time in a day and are as follows:

1. Case-I: Where a daily average PV Irradiance is available for charging

2. Case-II: Where half of a daily average PV Irradiance is available for charging

3. Case-III: Where zero daily average PV Irradiance is available for charging

In the first case, an average drive of a 3W is 100 km under a full sunshine hour
(PV power = full). The driving schedule scenario and energy consumption of
case 1 are shown in Table 3.5. 20 % additional energy consumption for varying
driving profiles (driver/route/road terrain Etc.,) is considered in the analysis. In
the second case, an average drive of a 3W is 100 km under a half sunshine hour
(PV power = half). In the third case, an average drive of a 3W is 100 km during
night time (PV power = 0 ).

Table 3.5: Performance and economy analysis of EMSs.

Parameters Case-I Case-II Case-III

Daily energy demand (Wh) 3,445 3,445 3,445

Monthly energy demand (Wh) 1,24,020 1,24,020 1,24,020

Monthly PV energy generation (Wh) 63,600 31,800 0

Monthly Battery energy consumption (Wh) 60,420 92,220 1,24,020

Daily 3W EV drive distance(km) 100 100 100

Daily PV range (km) 60 30 0

Table 3.5 summarizes different cases, and it is clear that when compared with
a BEV, a Hybrid EV with PV, battery, and SC can achieve higher vehicle perfor-
mance and energy efficiency with lower battery size. Further, case-II is selected
for further analysis at half sunshine hour and a half outside. The half sunshine
hour is due to shading obstacles during driving, parking, and variations in seasons
may cause losses in Irradiance (nearly 60 – 70 % losses) [Shemin et al., 2022]. In
order to match the actual scenario, all the environmental and driving conditions
are considered in this thesis. In tropical countries where Irradiance is very high
throughout the year, the battery charging from the grid could be reduced. Further,
PV could manage the daily commute of the vehicle, and the battery could be used
as an emergency source. PV saves charging time and shifts the attitude of EV
users who are inhibited towards EVs due to the shortage of EV charging stations
and high charging time. In the future, the position of PV power in transportation
systems will be high because, according to the Paris Agreement, all countries will
reduce the global peak of greenhouse gas emissions as soon as possible to achieve
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(a) Power comparison with PV irradiance variations.
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Figure 3.15: Power allocation of IHSEMS for sudden variation in solar irradiance
(a), zero PV power (b) under NYCC driving cycle.
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global climate change by 2050 [GE0, 2020]. Further, an increase in PV module
conversion efficiency and a reduction in PV cell cost can improve the EV energy
efficiency to a large extent [Elia et al., 2021].

3.5.2 Techno-economic analysis

The comparison of technical parameters and economy analysis exhibits the signif-
icance of the hybrid sources EMSs strategy. Various EMSs strategies:

1. (1) IHSEMS,

2. (2) SMC [S. Njoya Motapon and Al-Haddad, 2014],

3. (3) FDS [Cabrane et al., 2020] and

4. (4) BEV

have evaluated for a fair and guaranteed comparison. The analysis also presents
BEV configuration to highlight the superiority of Hybrid source EVs. An NYCC
cycle shows the best urban driving profile, as shown in Figure 3.3. Therefore it
was selected for technical and economic comparison of EMSs [Niu et al., 2022] in
the below sections (3.5.2.1 and 3.5.2.2).
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Figure 3.16: Comparison of BEV, SMC, FDS, and IHSEMS in terms of battery
current (a), battery capacity loss (b) under NYCC driving cycle.

3.5.2.1 Technical performance comparison of EMSs

This subsection compares specific performance parameters of BEV, existing EMSs,
and proposed EMS. Figure. 3.16 illustrates the battery current and capacity loss
performance under the NYCC cycle for three different hybrid EMS. Battery-only
(BEV ) configuration is also analyzed to illustrate the significance of hybrid sources
in EVs. It is clear from Figure. 3.16(a) that FDS and IHSEMS appear similar.
However, FDS fails to reduce the average battery current at t=300s – 350s, 400s –
450s, and 520s – 560s, which eventually reflects in the battery degradation, and the
IHSEMS performs better in reducing battery capacity loss than all strategies, as
shown in Figure. 3.16(b). IHSEMS reduces frequent battery charging events and
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thus achieves a decelerated battery degradation. Hence, the battery capacity loss
is reduced by 48.10 % in comparison with the BEV under the NYCC cycle, where
the capacity loss is evaluated with Eq. (3.31) and depicted in Section 3.4.1(e).
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Figure 3.17: Comparison of BEV, SMC, FDS and proposed IHSEMS under NYCC
driving cycle.

Figure. 3.17(a) and 3.17(b) illustrate two different time intervals for peak load
power and sudden fluctuations in the battery power profile. The SC absorbs the
transient conditions and prevents the battery from higher C-rates and fluctuations.
During time interval 543s – 549 s in Figure. 3.17(a) IHSEMS, SMC, and FDS
reduce the respective peak battery power by 50.20 %, 48.33 %, and 27.12 %
compared to BEV as per Eq. (3.26). The effective control of C-rates in peak
power instants has been found in the proposed strategy compared to the existing
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EMS and BEVs. Similarly, as shown in Figure. 3.17(b) during interval t = 400s
– 440s, the proposed strategy effectively reduces power fluctuations compared
to the other EMSs. The BIR, as discussed in Section 3.4.1(c) and evaluated
in Eq. (3.29), reduces to 76.2 % for IHSEMS compared to BEV. Hence, it is
evident that battery stresses are minimized. Similarly, during t=450s – 495s, PV
power fluctuations are higher and reflected in the battery power of SMC and FDS
strategies. However, the proposed EMS removes the fluctuations, making the
battery power profile much smoother and decelerating the battery’s degradation.
Moreover, RMS current reduction detailed in Section 3.4.1(d) and expressed in
Eq.(3.30) shows the IHSEMS achieves a reduction by 46.60 % compared with
BEV, 37.88 % compared with SMC, and 17.03 % compared with FDS.
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Figure 3.18: Comparison of SCSOC with SMC, FDS, and IHSEMS under NYCC
driving cycle.

The IHSEMS reduces the battery capacity loss and can plan the availability
of SC. Figure. 3.18 shows the comparison of SOC of SC under the NYCC cycle
for SMC, FDS, and IHSEMS. In NYCC (urban cycle), the IHSEMS initially con-
trols SC to utilize maximum and later charges through the battery and braking
energy, which was impossible through FDS and SMC EMSs. In the IHSEMS, the
final value of SCSOC maintains at 85 % for the smooth operation of (charging and
discharging) future driving cycles. Since other EMSs charge SC to its maximum
SOC, which increases the battery deterioration. Capacity loss of battery for the
NYCC cycle is very low for IHSEMS compared with other EMSs and evaluated as
discussed in Section 3.4.1(e). The performance parameters for BEV, SMC, FDS,
and IHSEMS are explained in Table 3.6. Section 3.4.1(b) depicted the BCR and
evaluated as per Eq. (3.27) and is 26.72% for IHSEMS compared to BEV. The
higher fluctuations in the NYCC driving profile provide an extreme environment
for battery degradation and reduce the battery life span. To analyze the bat-
tery lifespan for BEV and hybrid EMSs, repeated NYCC cycles were tested and
analyzed. Life span discussed in Section 3.4.1(f), and evaluated using Eq.(3.34)
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shows that a battery life span improvement (BLSI) of 6.91 %, 45.50 %, and 92.68
% is achieved for the hybrid EMSs SMC, FDS, and proposed IHSEMS respectively
compared to the BEV (Table 3.6).
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Figure 3.19: Comparison of DCBV F bus voltage fluctuations with SMC, FDS and
IHSEMS under NYCC driving cycle.

The bus voltage constantly fluctuates due to the sudden variations in EV
load current. Section 3.4.1(g) describes the DCBV F adversely affecting EV motor
performance. However, the controller brings back the system stability with a fast
response. Figure. 3.19 shows the comparison of DCBV F with BEV, SMC, FDS,
and IHSEMS under the NYCC cycle. DCBV F of BEV is higher compared to SMC,
FDS, and IHSEMS and is 13.19%, 10.90% and 5.20%, and 2.05 %, respectively
and are tabulated in Table 3.6. Proposed EMS reduces the DCBV F as evaluated
using Eq.(3.35) by maximum utilization of SC during sudden load changes. The
lower DCBV F (nearly 2 % ) in IHSEMS highly recommends an efficient motor
drive system.

Table 3.6: Performance and economy analysis of EMSs.

Parameters BEV SMC FDS IHSEMS

Battery Peak Power (kW) 10.93 7.96 5.64 5.44

Battery capacity (kWh) 7.37 5.4 5.4 5.4

Battery di/dt (A/s) 113 98 61 26.8

Battery RMS current (A) 64 54.95 41.14 34.13

Battery Capacity Loss 4.20 X 10−5 3.92 X 10−5 2.88 X 10−5 2.18 X 10−5

Battery Life Span Improvement (%) - 6.91 % 45.50 % 92.68%

DC bus voltage fluctuations (%) 13.19% 10.40% 5.20% 2.05%

Total Operational Cost (INR.) 18.54 12.942 9.50 7.25

73



33.07

964.60
997.67

17

676.28 693.28

16.40

492.90 509.30

15.76

375.24 391

EC BDC TOC
0

200

400

600

800

1000
C

o
s
t 

(I
N

R
\1

0
0
 k

m
)

BEV SMC FDS PROPOSED

Figure 3.20: Comparison of DCBV F bus voltage fluctuations with SMC, FDS and
IHSEMS under NYCC driving cycle.

3.5.2.2 Economy analysis of EMSs

Battery’s technical parameters reflect the impact on economic analysis discussed
in Section 3.5.2.1. Section 3.4.2(c), (b), and (a) estimates the total operation cost
(TOC), including the sum of Electricity cost (EC) and Battery Degradation Cost
(BDC) of the EV. Figure. 3.20 illustrates the comparative results of EC, BDC,
and TOC of the SMC, FDS, BEV, and IHSEMS for a 100 km drive. The proposed
IHSEMS reduces the electricity cost by 52.4 % (INR. 17.31/100 km) compared to
BEV. Moreover, BEV experiences a higher battery degradation cost and, in turn,
a higher chance of replacement or maintenance. Comparison of economic analysis,
in terms of TOC, is included in Table 3.6. Compared to the BEV, SMC, and FDS,
the IHSEMS strategy reduces the total operation cost by 60 %, 43.9 %, and 23.68
%, respectively.

3.6 Summary

Globally, witness to a sustainable economy depends on the rapid development of
renewable energy applications. In this context, a hybrid source with a renewable
background plays a crucial position in the transportation sector. The present
work highlights the importance of EMS for hybrid source EVs with the design
and simulation modelling. The proposed IHSEMS allocates the load power to
enhance the performance of the EV. The IHSEMS effectively manages the effects
of varying driving conditions by employing an absolute energy-sharing algorithm
(AESA). Incorporating solar and supercapacitors with existing BEVs improves
battery life and energy efficiency. The SMC and FDS strategies are analyzed in
the comparative study. Significant contributions and highlights of the proposed
EMS are:

• The battery’s stress reduces in IHSEMS by reducing RMS current 46.60 %,
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37.88 %, and 17.03 % compared with BEV, SMC, and FDS methods.

• The battery peak power reduces in IHSEMS by 50.2 %, 30.74 %, and 3.71
% compared with BEV, SMC, and FDS methods.

• Compared to BEV, the battery capacity reduces in IHSEMS by 26.72 %
(7.37 kWh to 5.4 kWh).

• The IHSEMS exhibits a reduction in battery peak power, RMS current, and
continuous charge-discharge cycles, which improves the battery lifespan by
92.68 %, 80.22 %, and 32.40 % compared with BEV, SMC, and FDS EMSs,
respectively.

• Economy analysis of IHSEMS shows a reduction of 60 %, 43.9 %, and 23.68
% in total operation cost compared to BEV, SMC, and FDS, respectively.

Moreover, using solar energy in electric vehicles enhances the economy of energy
sustainability. Solar prices drop daily, providing insight into improving the tech-
nologies of solar-powered vehicles. Increased PV panel efficiency improves the
energy economy of the transportation system.
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Chapter 4

Proposed SC-PV Hybrid Electric
Vehicle

Contents
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.2 Proposed Hybrid Source Model . . . . . . . . . . . . . . 78

4.3 Proposed Energy Management Algorithm . . . . . . . 78

4.4 Simulation Results . . . . . . . . . . . . . . . . . . . . . . 83

4.4.1 Cases of EV run under varying PV irradiance . . . . . . 83

4.4.2 Cases of EV run under varying driving locations . . . . 91

4.4.3 Cases of sudden load demand fluctuations in EV drive . 99

4.4.4 Technical parametric analysis . . . . . . . . . . . . . . . 101

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.1 Introduction

This chapter introduces an EV-integrated PV system with a high energy and power
density supercapacitor for an EV-3W and analyzed using technical and economic
parameters. One of the main aims is to develop an EMA that operates with the EV
load demand, and the PV energy consumption during the drive from real-world
data and to maximize EV self-sufficiency. The PV power fluctuations from solar
irradiance and driving route variations (shading and obstacles) are not reflected
in the DC bus using the Energy Management (EM) among the source and load.
An Energy management algorithm (EMA) is proposed to control the electrical
power flows between the PV, SC, and EV load. The proposed system and control
strategy utilizes the SC effectively and manages it for short transient periods
whenever PV irradiance is available. Also, EM modes ensure the protection of
SC from overcharging and over-discharging. The investigated solution reduces the
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power losses, protects the sources, minimizes the DC bus voltage fluctuation, and
enhances the overall system performance.

This chapter details the significance of the proposed HSEV with the techno-
economic comparison with BEV. Overall, a hybrid source-powered EV is designed
to improve energy efficiency and enhance the goal of sustainable transportation.

4.2 Proposed Hybrid Source Model

Hybrid sources in EVs improve energy efficiency. However, the power flow among
each source must be regulated to improve the source performance characteristics.
This section deals with the discussion on performance and lifetime models of each
source discussed in the literature. Moreover, EMA monitors and manages the
effective power sharing among each source in the power train to enhance energy
efficiency, EV performance, and battery longevity [Vukajlović et al., 2020] [Xie
et al., 2018a]. The overall structure of the proposed HSEV plays a significant role,
as shown in Figure 4.1. A parallel connection of Photovoltaic (PV) panels over
the EV roof and Supercapacitor modules connected to the DC bus with DC-DC
converters. DC-AC inverter interconnects the motor with the DC bus to provide
traction by coupling towards the rear wheels via mechanical transmission.

4.3 Proposed Energy Management Algorithm

This section deals with the proposed energy management of the SC-PV hybrid
system in the electric 3W. EMS’s primary function is keeping the SC in safe op-
erating conditions and monitoring and controlling SC charge-discharge profiles to
meet the required EV load demand. The block diagram of the proposed EMS is
shown in Figure 4.1, which performs both the functions mentioned earlier. The
proposed HSEV EMS structure is divided into section 3.2.1) Power demand, 3.3)
Hybrid source, and 3.4) the energy management system (Figure 4.1).The power
demand profile consists of the driver (accelerator and brake) and load (EV motor
power), and environmental condition (wind speed) as expressed in the mathemat-
ical equations(Eq. 3.1-3.2). A hybrid source supports the power demand profile,
and the contributions of each source are detailed in section 3.3.

In addition, the proposed EMS optimizes the energy flow of the whole system
by considering the fluctuations on the DC bus from variations in PV power and
driving conditions. The EMS handles the power flow among PV and SC to meet
the EV load demand, and regenerative braking energy is fed back to the SC
from the motor.The proposed EMS assigns SC to absorb the power fluctuations
due to the varying driving and environmental conditions to ensure smooth load
currents. The sudden drop and fall in PV power cause a shortage or additional
power at the DC bus, which may affect the operation of the motor drive. However,
the proposed EMS ensures an optimal power flow throughout the drive by the
maximum utilization of SC. The EMS utilizes fast response and high power density
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of SC without affecting the lifespan. Moreover, the EMS controls the overcharging
of SC from PV during parking. Figure 4.2 shows the algorithm of the proposed
EMS in a hybrid SC-PV source system.

Figure 4.1: Complete schematic structure of hybrid source energy management in
Electric-3W

The algorithm focuses on the availability, utilization of SC by reducing the
peaks and fluctuations in EV demand.To achieve increased self-sufficiency in the
EV, the load demand must be mostly satisfied by the PVs and SC (discharging,
supplying the remaining required power). Therefore, the idea is to provide power
to the EV load from the PVs (if available during sunlight) and/or the SC to
support the peak demands. The PV power throughout the sunshine hour with a
highly fluctuating profile is shown in Figure 3.5, which is considered in work to
analyze the significance of the proposed EMS. Sudden variations in the PV power
reflect the importance of eliminating the fluctuations without affecting the DC
bus. EMS monitors the PV power and segregates the high-frequency components
towards the SC by modifying the control strategy as discussed in the equation 4.3.
The load power is managed by the high energy-dense SC and the proposed EMS
allocates the energy sharing considering the PV power, source charge states, and
driving conditions. Total power handled by the hybrid source in the EV during
EV drive and parking are explained in Eq. (4.1) and Eq. (4.2).

PT = PSC + PPV = PL (4.1)

where PT , PSC , PPV , PL represents the total power, SC power, PV power, and
load power, respectively. During the parking time, the charging power PC is the
total power handled by the SC and is shown in Eq. (4.2).

PC = PPV (4.2)
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The flowchart in Figure 4.2, depicts the proposed EMS for the charging/dis-
charging of the hybrid SC-PV source system. Two different modes are described
as (1) Surplus Power Mode (SPM) and (2) Deficit Power Mode (DPM). The op-
eration during which the generated PV power is higher than the required EV load
power enables to charge the SC represents the SPM. SOCSC is monitored under
this mode to limit the over-charging of SC. However, DPM is the operation mode
during which the PV power is lower than the required EV load power. Under
this mode, SOCSC is monitored to keep the SC under optimal operation and to
avoid deep discharging. The flow chart depicts that the state of each mode de-
cides the buck or boost operation of the SC bidirectional converter. Whenever
the SPM mode is set(SPM=1), the converter is under buck mode of operation
(charging), and when DPM mode=1, the converter is under boost operation (dis-
charging). Similarly, considering the availability of SC, two additional sub-modes
(Overcharge and Over-discharge) are defined concerning the safe operation of the
EV. During SPM, if the SC is above 95 % sub-mode Overcharge (OC) = 1 (set)
and there is no chance of charging in the SC, and this mode initiates the turn off of
the PV boost converter switch and the buck mode switch in bidirectional DC-DC
converter of the SC. Similarly, during DPM, if the SC is below 40 % sub-mode
Over-discharge (OD) = 1 (set) and SC lacks the energy for further EV drive, and
this mode initiates the turn off of the boost mode switch in the bidirectional DC-
DC converter of the SC which denies the vehicle without recharging the SC. Both
the sub-modes provide additional protection and ensure optimal operation of the
SC. Table 4.1 shows the different modes of operation and respective SC reference
currents.

Table 4.1: Operating modes and reference currents

Case Conditions Modes Submodes Reference currents

1 PPV > Pload SPM=1 OC=OD=0 I∗SCR atI∗T > 0

SOCSC >= SOCSCmax DPM=0 OC=1,OD=0 0 at I∗T <= 0

2 PPV > Pload SPM=1 OC=0,OD=1 0 at I∗T > 0

SOCSC <= SOCSCmin DPM=0 OC=OD=0 I∗SCR atI∗T <= 0

3 PPV <= Pload SPM=0 OC=OD=0 I∗SCR atI∗T > 0

SOCSC >= SOCSCmax DPM=1 OC=1, OD=0 0 at I∗T <= 0

4 PPV <= Pload SPM=0 OC=0, OD=1 0 at I∗T > 0

SOCSC <= SOCSCmin DPM=1 OC=0, OD=0 I∗SCRatI
∗
T <= 0

The EMS for the hybrid source system in EV is responsible for monitoring the
generated PV power, the SC SOC, and the load power to manage the supplied/ab-
sorbed EV load power and increase EV performance. The closed-loop controller
designs the regulation of voltage and current from the sources. A dual voltage and
current loop regulate the DC bus voltage and SC currents, respectively. Figure
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Figure 4.2: Algorithm of proposed energy management strategy for SC-PV hybrid
system in EV(modify the algorithm further)

4.3, shows the control block diagram of the hybrid system. Bus voltage regulation
is achieved by employing an outer voltage loop where the PI controller defines the
total reference current required to stabilize the bus voltage and meets the load
demand (Equation 4.3). The reference current for SC is evaluated from the dif-
ference of total reference current (I*T ) and PV current, (IPV ) as in Eq. (4.3). SC
reference current (I*SCR) is compared to the actual SC current (ISC) (Equation
4.4). The remaining error current (eSC) passes through a PI controller to generate
the appropriate reference signals that derive duty cycle (DSC) for the semicon-
ductors of the SC bidirectional converter using PWM (Equation 4.4. However,
a novel switching strategy is introduced in the proposed work where the switch-
ing of Q1SC is only allowed during the boost mode and remaining time instants
it is made off and the Q2SC is provided with duty ratio only during buck mode
when regenerative braking appears in the bus.The modified control strategy en-
sures the reduction of the switch stresses and eventually minimizes the switching
losses. The PI controllers of each loop provide the desired phase margin (PM) at
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the required bandwidth (BW) for ensuring system stability based on frequency
domain specifications [Cabrane et al., 2020]. PI controller parameter design is im-
plemented using the MATLAB SISO tool with the small signal model equations
for the converter [Erickson and Maksimovic, 2007]. P & O MPPT algorithm gen-
erates switching pulses for PV boost converter [Zineb et al., 2021]. The stability
analysis is analyzed with the bode and phase plots, where the gain margin and
phase margin are selected to ensure the system’s stability which is followed from
literature [Arunkumar et al., 2022]. However, the criterion of the PI design in the
proposed work is to fasten the current control loop of SC so that the fluctuations
in the load and PV side must not disturb the stability of the DC bus. Hence the
BW and PM are selected as 50 krad/sec and 62.1° for the SC current loop and 4.7
krad/sec and 63° for the outer voltage loop. The SC reference current generation
equations are shown in Equation 4.3 Finally, the total current (IT ) supplied by
the hybrid sources is shown in Equation 4.5.

Figure 4.3: Control block diagram of the SC reference current calculation under
proposed modified EMS

I∗T = (VBUSR − VBUS).(Kpv +
Kiv

s
); I∗SCR = I∗T − IPV (4.3)

where KpV and KiV are the parameters of proportional and integral constants
of the outer voltage loop, VBUSR =48V, and VBUS are reference and actual DC
bus voltage.

eSC = I∗SCR − ISC ;DSC = eSC .(KpSC +
KiSC

s
).GidSC (4.4)

where KpSC and KiSC are the parameters of proportional and integral constants
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of SC current loop, GidSC is the duty to control transfer function of SC.

IT = IPV + ISC (4.5)

4.4 Simulation Results

The EMA of the proposed EMS for HSEV is detailed in Section 3.4. The proposed
algorithm ensures a stabilized and optimal operation of the hybrid source system
that exhibits EMA’s significance in ensuring high energy-dense SC’s availability
during sudden fluctuations due to three different conditions. The first condition
is the varying irradiance cases throughout the drive detailed in section 4.4.1. The
next condition discussed in section 4.4.2 investigates the variations in load power
demand under different road terrain (locations), and the last condition considers
the varying driving behavior or style, which is discussed in section 4.4.3. The
EMA handles the impacts of varying driving and environmental conditions on the
EV. Hence the result analysis is described with various initial conditions. Three
different driving profiles are selected to test the proposed system response to-
wards fluctuating load power (varying driving conditions), and shown in Figure
4.10b, 4.11b, 4.12b. Investigation of varying PV irradiance describes three cases
of EV runs considering the different locations (varying environmental conditions).
The following initial conditions of the proposed work (SCSOC = 85 %). The PV
irradiance and temperature remain highly fluctuating, indicating the varying en-
vironmental conditions. The conversion efficiency of the PV panels is considered
as 60 %, as per the discussions in section 3.2.1. A three-wheeler’s daily average
driving distance is 100 km with the varying sunshine hour. The proposed EMA
allocates the power between SC and solar PV considering the variations in driving,
environmental, and source conditions and is realized with MATLAB/Simulink en-
vironment. Moreover, the effects of variation in solar irradiance and driving fluctu-
ations are mitigated by SC and regulate the bus voltage with reduced fluctuations.
Overall discussion and analysis on proposed HSEV and BEV are included in the
section 4.4.1-4.4.3. In sections 4.4.4, the technical and economic parameters are
detailed with the impact of driving conditions on EVs.

4.4.1 Cases of EV run under varying PV irradiance

Different cases are considered to analyze the effect of varying environmental con-
ditions throughout the day. Three PV irradiance conditions are chosen for the
hybrid system analysis. Based on the energy consumption patterns from each
case [European, 2022], the parameters of each case are shown in Table 4.2. The
PV panels are installed over the EV and experience losses during the vehicle run
and parking in shades [Shemin et al., 2022]. Centeno et al. 2021 depicted the
driving and parking irradiance losses as 20% and 50%, respectively, which is fol-
lowed in this work [Brito et al., 2021]. Repeated driving cycles are used for the
analysis to effectuate a daily standard average distance of 100 km per day [Niu
et al., 2022] and different cases are classified as: 1) Case-I: Daily average PV
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Irradiance is available for charging.2) Case-II: Half of a daily average PV Irradi-
ance is available for charging. 3) Case-III: Zero daily average PV Irradiance is
available for charging.

In the first case, an average drive of a 3W is 100 km under a full sunshine
hour (PV power = Wp = 2.88 kW). The driving schedule scenario and energy
consumption of case 1 are shown in Table 4.2. 20 % additional energy consumption
for varying driving profiles (driver/route/road terrain Etc.,) is considered in the
analysis. In the second case, an average drive of 100 km under a half sunshine hour
(PV power = 0.5 Wp = 1.44 kW). In the third case, an average drive of 100 km
during night time (PV power = 0 ). Table 4.2 summarizes different cases, and it
is clear that when compared with a BEV, the proposed HSEV can achieve higher
vehicle performance and energy efficiency with a lower main source size utilizing
the PV energy. All the environmental and driving conditions considered in this
work satisfies the actual EV scenario.

Table 4.2: Cases of electric vehicle drive

Parameters Case-I Case-II Case-III BEV

Daily energy demand (Wh) 3,100 3,100 3,100 3,100

Monthly energy demand (additional 20% load changes) (Wh) 1,11,600 1,11,600 1,11,600 1,11,600

Monthly PV energy generation (Wh) 95,478 47,739 0 0

Monthly source energy consumption (Wh) 16,122 63,861 1,11,600 1,11,600

Monthly electricity cost (INR) 161.22 638.61 1,116.00 1,116.00

Monthly source capacity loss (%) 0.0012 0.00053 0.0004 0.335

Daily 3W EV drive distance(km) 100 100 100 100

Daily PV range (km) 85 42 0 0

Monthly grid charging instants 6 22 30 20
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Figure 4.4: Combined 34 repeated IDC test profile
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Figure 4.5: Energy consumption comparison for varying PV irradiance cases under
34 IDC cycles (a) Case-I (b) Case-II (c) Case-III.
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Figure 4.6: Power flow analysis for varying PV irradiance cases under 34 IDC
cycles (a) Case-I (b) Case-II (c) Case-III .
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Figure 4.7: SOC comparison for varying PV irradiance cases under 34 IDC cycles
(a) Case-I (b) Case-II (c) Case-III.

Comparison results of the proposed SC-PV vehicle and BEV run under varying
irradiance cases are illustrated in figure 4.5-4.9 for each case under similar driving
conditions (IDC). AIS-039 (Rev1):2015 details the application of 34 cycles of IDC
(108 sec each) to evaluate the electrical energy consumption for the L category of
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vehicles followed in the analysis. Figure 4.4 shows the combined driving velocity
profile of 34 repeated test IDC cycles. Hence a total drive distance of 22.372
km (34 IDC cycles-1.02 hours of vehicle run) is considered the test drive for the
analysis of each case [consumption ARAI, 2021]. Energy consumption (EC) of the
primary source, i.e., Li-ion battery in BEV and SC in SC-PV vehicle, during the
three different cases are shown in Figure 4.5. The average energy consumption
of the main source SC in SC-PV vehicle is reduced by 85.56 % and 42.78 %
compared to the Battery in BEV for Case-I and II, respectively. The utilization
of PV energy is significant for EVs and is clear from the analysis. Figure 4.6
shows an analysis of the BEV and SC-PV vehicle’s power flow and highlights the
importance of the proposed EMA in SC-PV vehicles. In each case, the EMA
achieves the impact of PV energy with the adaptive variation of SC power usage
considering the irradiance conditions. In case I, PV power contributes a high
portion of the load power, improving the SC-PV vehicle range, and in case III, SC
handles a major portion of load power since PV power is lower. The EMA ensures
the availability of SC during the peak and sudden variations in environmental
conditions (irradiance), as discussed in this section. The SPM and DPM modes
are switched throughout the drive, exhibiting the significance of EMA. The range
of the vehicle is detailed with the SOC plots in figure 4.7. SOC of the battery
(BEV) and SC (SC-PV) are discussed, and the final SOC of the proposed HSEV
is improved for case-I (initial SOC=92%) and II (initial SOC=86%) by 11.21
% and 4.5 %. Due to the non-availability of PV energy during case-III (initial
SOC=86%), the final SOC of the SC-PV vehicle is reduced by 4.4 % compared to
BEV.
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Figure 4.8: Capacity loss comparison for varying PV irradiance cases under 34
IDC cycles (a) Case-I (b) Case-II (c) Case-III.
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Figure 4.9: DC bus voltage comparison for varying PV irradiance cases under 34
IDC cycles (a) Case-I (b) Case-II (c) Case-III.

Moreover, the lower SC capacity loss is the significant impact of employing
SC as the primary source in EV. Battery capacity loss is higher than the SC due
to the chemical compositions in the battery. The battery Arrhenius model and
SC degradation model are employed for the analysis of capacity losses (Section
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1.3.1, 1.3.2). Degradation of battery and SC for each case are discussed in figure
4.8. For all the cases, SC experiences lower capacity losses. Due to the higher
fluctuations in PV energy in case-I and case-II, SC capacity loss is the lowest in
case-III. Similarly, DC bus voltage fluctuations for each case are explained in figure
4.9. Bus voltage fluctuations of the proposed SC-PV vehicle are lower compared
to BEV. All the comparative analysis with BEV and proposed HSEV is tabulated
in Table 4.2. The study on varying irradiance cases exhibits the significance of
PV energy and SC in the EV source and highlights the role of hybrid sources in
future sustainable transportation modes.

4.4.2 Cases of EV run under varying driving locations

In tropical countries with high irradiance throughout the year, the EV source
charging from the grid could be reduced. As a real-world analysis of each irradiance
case, EV drives at different locations/terrains (driving profiles) are selected, which
display the significance of the proposed EMS. EMA manages the energy manage-
ment of hybrid sources based on the varying driving conditions (terrain/profiles).
The locations are selected based on the variations in PV energy generation and
the driving conditions (terrain/profiles). Firstly the energy generation is selected
from New South Wales, Australia (31.2532° S, 146.9211° E) under a WLTP class-1
driving profile, Bangalore, India (12.9716° N, 77.5946° E) under an Indian driving
cycle (IDC) and finally Scotland, Europe (56.4907° N, 4.2026° W) under ECE driv-
ing profile. Monthly PV energy generation of real locations with their maps and
respective driving profiles are shown in figure 4.10-4.12 respectively. The yearly
average PV generation from New South Wales is 5040 kWh. An average monthly
PV energy generation is expected to be 420 kWh in New South Wales. Similarly,
Bangalore, India, and Scotland generate monthly PV generation of 360 kWh and
155 kWh, respectively.
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(a) Monthly PV energy generation (kWh) at New South Wales
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(b) Velocity and load power under WLTP class-1 driving profile

Figure 4.10: PV energy generation (kWh) and standard driving profile (WLTP
class-1) in New South Wales, Australia (31.2532° S, 146.9211° E).
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(a) Monthly PV energy generation (kWh) at Bangalore, India

0 20 40 60 80 100

Time (s)

-40

-20

0

20

40

60

80

100

V
e

lo
c

it
y

 (
k

m
/h

)

-4

-2

0

2

4

6

L
o

a
d

 p
o

w
e

r 
(k

W
)

(b) Velocity and load power under IDC

Figure 4.11: PV energy generation (kWh) and standard driving profile (IDC) in
Bangalore, India (12.9716° N, 77.5946° E).
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(a) Monthly PV energy generation (kWh) at Scotland, Europe
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(b) Velocity and load power under ECE driving profile

Figure 4.12: PV energy generation (kWh) and ECE driving profile in Scotland
(56.4907° N, 4.2026° W).
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Figure 4.13: EV Performance analysis of BEV and SC-PV vehicle at New South
Wales, Australia under WLTP class-1 driving cycle (a) Energy consumption
(b)Source SOC (c) Source capacity loss (d) DC bus voltage.

Result analysis of the proposed SC-PV vehicle and BEV are illustrated in fig-
ure 4.13-4.16 for each location (Australia, India, Scotland) under respective differ-
ent driving conditions (WLTP class-1, IDC, ECE) selected based on the locations.
Battery degradation under varying driving behaviors and terrains is discussed in
this section. Table 4.3 tabulates all the result analyses in this section with varying
driving locations. The BEV is selected as a benchmark to compare with SC-PV
vehicle in each location with similar charge states and driving conditions. Pro-
posed EMA is significant and ensures an optimal operation of the HSEV under
selected driving conditions based on locations. The results show the impact of the
control algorithm by switching the hybrid source system operation into different
modes (SPM and DPM).

The degradation models for battery and SC discussed in (Section 1.3.1, 1.3.2)
are employed in the proposed work. The capacity loss of battery (BEV) and SC
(SC-PV vehicle) for each location are discussed in figure 4.13c, 4.14c and 4.15c and
exhibit the significance of using the proposed vehicle for varying conditions under
different locations with their respective terrains and driving profiles. SC capacity
is least affected due to the varying load conditions, and there is less chance of
replacement and maintenance than the battery, which reflects positive effects in
the economic and environmental aspects of the proposed vehicle. The EC of the
primary source, i.e., Li-ion battery in BEV and SC in SC-PV vehicle, under Aus-
tralia, India, and Scotland are shown in Figure 4.13a, 4.14a and 4.15a respectively.
PV energy is highest under New South Wales, and EC from the primary source
is 40 % less compared to the BEV under a single WLTP class-1 driving cycle,
which enables the proposed vehicle to get recharged from the grid less frequently.
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Figure 4.14: EV Performance analysis of BEV and SC-PV vehicle at Bangalore, In-
dia under Indian driving cycle (a) Energy consumption (b)Source SOC (c) Source
capacity loss (d) DC bus voltage.

Similarly, the monthly energy consumption of the proposed vehicle under repeated
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Figure 4.15: Performance analysis of BEV and SC-PV vehicle at Scotland under
ECE driving cycle (a) Energy consumption (b)Source SOC (c) Source capacity
loss d) DC bus voltage.

driving cycles of IDC and ECE reduces the overall energy consumption by 25% and
10% in India and Scotland, respectively. The effect of energy efficiency is reflected
in the technical aspect (higher battery life) and economic aspect (fewer instants
of charging from the grid). Detailed improvements of each aspect are tabulated
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in Table 4.3. SOC of the battery and SC are discussed in figure 4.13b, 4.14b, and
4.15b, respectively, for each location. DC bus voltage regulation is shown under
various locations compared with BEV in figure 4.13d, 4.14d, and 4.15d. The pro-
posed HSEV reduces the DC bus voltage fluctuations under Australia, India, and
Scotland when compared to a BEV driving in the respective locations under same
conditions.A comparison of DC bus voltage fluctuations with BEV under similar
conditions are detailed in Table 4.3. The significance of SC response in handling
sudden variations in load power regulates the DC bus voltage. Figure 4.16 shows
an analysis of the BEV and SC-PV vehicle’s power flow and highlights the signifi-
cance of the proposed EMA. For each location, the PV power improves the energy
efficiency based on their respective irradiance. The proposed EMA manages the
power flow among PV and SC to meet the PL and SC absorbs the PV fluctuations
(charging or discharging) in quick instants, which does not allow the fluctuations
to affect the EV motor drive.
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Figure 4.16: Power flow analysis for varying driving locations cases (a) NSW (b)
Bangalore (c) Scotland.
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4.4.3 Cases of sudden load demand fluctuations in EV
drive

Electric vehicles are trending worldwide, and their sales shares are expected to
reach around 60 % by 2030 to reach the Net Zero CO2 in 2050 [IEA-EV, 2022].
The increasing adoption rate of EVs worldwide needs detailed investigations on
the energy management systems due to the highly varying nature of the driv-
ing conditions (vehicle-related, driver-related, and environmental-related [Vishnu
et al., ]. The significant concept to analyze is the sudden variation in driving
profiles under different road terrain (locations) and driving behaviors. Proposed
SC-PV vehicles exhibit an improved performance during varying or fluctuating
unexpected driving variations. An (Indian driving cycle) IDC is chosen as a base
driving cycle to investigate the sudden load demand fluctuations. The velocity
profiles tested under the unexpected load demand fluctuations with the standard
IDC profile are shown in figure 4.17a. The energy consumption of the main source
in BEV and the proposed vehicle is analyzed in figure 4.17b. The plot shows the
increase (50 % increase) in energy consumption due to unexpected load variations
in the IDC profile due to aggressive driving. Such sudden load variations increase
the C-rates and highly affect the battery capacity, as shown in figure 4.18. The
analysis exhibits the significance of the EMA by maximizing the utilization of SC
as the primary source in EVs during the peak and fluctuating load instants since,
in BEV, the battery gets sudden high C-rates and increased operating tempera-
ture, accelerating its deterioration. The control diagram of the proposed modified
EMS reduces the stress on switches of the converter and ensures the immediate
action of SC during a dip or rise in the load power demand due to the aggressive
driving scenarios. Such an effective control algorithm improves the performance
of the vehicle.
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Figure 4.17: Comparison of BEV and SC-PV vehicle under sudden load fluctua-
tions.
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Figure 4.18: Comparison of source capacity loss for BEV and SC-PV vehicle under
unexpected load demand fluctuations

4.4.4 Technical parametric analysis

The overall analysis of the proposed EV is summarized in the section, and a
comparison with BEV on technical and economic aspects is tabulated in Table 4.3.
Since the EV users are highly diverse, three different driving locations are selected
considering their location, terrain, and environmental conditions, as discussed in
the previous section 4.4.2 (Australia, India, and Scotland). Daily driving distance
of 100 km is considered for each location with repeated similar driving cycles (12
repeated (8.1 km per cycle) cycles of WLTP class-1, 154 repeated (0.65 km per
cycle) cycles of IDC, 99 repeated (1.01 km per cycle) cycles of ECE). Table 4.3
discusses the following technical parameters: Capacity, EC, Peak power under
respective driving cycles, Capacity loss (100 km run), Lifespan improvement, DC
bus voltage fluctuations, and Monthly grid charging instants. A reduction of 51.15
% in the capacity of the main source is achieved for similar performance BEV.
PV energy improves the energy efficiency of the proposed system. Total daily
(100 km run) energy consumption of the main source under each driving cycle for
respective locations shows a reduction of 86.79%, 57.91%, and 15.3% for Australia,
India, and Scotland, respectively, compared to BEV.

Capacity loss is a significant aspect since it is very low for the SC compared to
lithium-ion battery; hence, the former can easily handle varying charge-discharge,
road terrain, driving profile, and environmental conditions. Equations described
in section 1.3.2 and 1.3.1 are employed for the calculations. In the analysis of
100 km run (daily), the capacity loss of the main source under each location
(Australia, India, and Scotland) is detailed and lowest for the Australia case due
to the high energy contribution from PV and driving profile pattern. In turn, the
SC lifespan improvements are 1296, 143, and 129 times higher compared to BEV
under each location and profile. These huge improvements provide the edge for
SC in the longer run. Moreover, the DC bus voltage fluctuations are lowest for
SC-PV vehicles compared to BEV (5.2% and 1.16 %, 3.75% and 1.91 %, 5.15 %
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Table 4.3: Performance analysis of EMSs under various locations

Parameters BEV AUS IND SCO

Main source capacity (kWh) 7.37 3.6 3.6 3.6

Reduction (compared to BEV %) - 51.15 51.15 51.15

Daily source energy consumption (kWh) 2.12/3.16/3.8 0.28 1.33 3.225

Reduction (compared to BEV %) - 86.79 57.91 15.13

Source Capacity Loss (%) 0.85 e−3/1.77 e−3/0.64 e−3 6.6 e−7 1.23 e−5 4.95 X 10−6

Source Life Span Improvement (times) - 1296.87 143.54 129.41

DC bus voltage fluctuations (%) 5.2/3.75/5.15 1.16 1.91 2.28

Monthly grid charging instants (times) 10-19 3 13 32

and 2.28 %). PV energy in countries with higher solar irradiance can reduce EV
grid charging. In Australia, monthly grid charging to meet the repeated WLTP
cycle with the PV energy considered limits to 3. A daily commute with minimum
daytime drive can further reduce the intervals of grid charging.

Table 4.4: Economic analysis of energy storage in electric vehicle [Eaton, 2022]

Parameters BEV
SC-PV

SC PV

Energy source cost (INR-Lakhs.) 1.10 7.29 0.92

Energy storage replacement 2 0 0

Total maintenance cost for 10 years (INR-Lakhs.) 4.40 0 0

Annual efficiency losses (INR-Lakhs.) 2.22 0.66 0.046

Annual cooling costs (INR-Lakhs.) 0.44 0.067 0.01

Total efficiency Cost for 10 years (INR-Lakhs.) 26.71 7.30 0.56

Total operations cost for 10 years (INR-Lakhs.) 31.11 7.30 0.56

10-year total cost of ownership (INR-Lakhs.) 32.22 14.59 1.49

Economic analysis is essential for emerging energy technologies. Hence the
investigation is conducted for the total cost of ownership (TCO) for 10 years of
vehicle usage [Sharma et al., 2012] [Eaton, 2022]. The proposed SC-PV vehicle
is compared with the BEV, and all the parameters that need to be validated are
detailed in Table 4.4. The replacement and maintenance of a lithium-ion battery
is a critical issue that increases the cost of ownership in the longer run. The
reduction in capacity loss of SC discussed in Table 4.3 reflects the outcome in
the maintenance-free operation of SC. Similarly, the efficiency of SC is higher
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compared to the lithium-ion battery (Table 1.2) which reduces the efficiency cost
of SC. However total energy source cost of SC-PV vehicle includes that of both PV
and SC. Even though the initial cost of an SC-PV vehicle is higher when compared
with BEVs, the TCO analysis shows that in a long run, the cost of SC-PV vehicles
is less than half of that of the BEVs to operate in similar driving conditions.

4.5 Summary

In this work, a high energy dense SC and PV based HSEV is introduced with the
future trends of improvements in renewable energy sources and analyzing their
significance of sustainable transportation. The proposed EMS manages the power
flow among the hybrid source. It avoids the impacts of driving (load current) and
environmental fluctuations under various locations (Australia, India, Scotland)
and driving intervals (day, night). EMA is considered under two power modes 1)
Surplus Power Mode and 2) Deficit power mode considering the power flow in the
system. Modified dual loop controller reduces the stress and power loss of switches.
The degradation of SC is evaluated in work and compared with Battery (BEV)
to show the significance of the proposed HSEV structure. The results confirm the
proposed HSEV model’s effectiveness, which improves energy efficiency, reduces
source maintenance/ replacements, improves lifespan, and reduces DC bus voltage
fluctuations. Proposed HSEV exhibits a maximum impact in all aspects of the
analysis in Australia, where average PV energy generation is highest throughout
the year. Charging from the grid for the tested profile is reduced to 3 instants
which shows the significance of PV energy-based solar vehicles. The major result
analysis outcomes are as follows:

• The main source capacity of the proposed HSEV is reduced by 51.15 %
compared to BEV (7.37 kWh to 3.6 kWh) to achieve a minimum range of
100 km per day.

• The source capacity loss is reduced in the proposed HSEV as SC is least
affected by the fluctuating loads and thus does not requires any replacement
throughout the vehicle life.

• Source energy consumption is significantly reduced in the proposed HSEV
compared with BEV under similar driving conditions. It shows a reduction
of 86.79%, 57.91%, and 15.13% under Australia (WLTP), India (IDC), and
Scotland (ECE), respectively.

• DC bus voltage fluctuations are limited near to 2 % under all the driving lo-
cations and profiles considered, thus improving the motor drive performance.

• Analysis of unexpected driving variations due to terrain/traffic/driver be-
havior is discussed, and the proposed HSEV shows improved performance
compared to BEV.

• Technical and economic parameter assessments are conducted to highlight
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the significance of the proposed HSEV over the existing BEVs. The eco-
nomic comparison reveals that initial costs on hybrid source vehicles cross
the break-even point before half-life in a longer run.

The proposed HSEV concept enlights the following topics of EV research: 1)As
a future work, improvement in energy density and cost reduction in research for
SC manufacturing can speed up the SC-based EVs in the market. 2)Similarly,
improving PV cell conversion efficiency to higher levels can shift a complete trans-
formation of the transportation sector towards a sustainable and green mode.
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Chapter 5

Conclusion and Future Scope

The major share of the rise in CO2 emissions is from the transportation industry,
which accelerates global warming. Moreover, the rise in fossil fuel prices and
their shortage in availability are other major issues that enable the development
of a green and clean transportation mode. Transition to EVs from IC engine
vehicles can be achieved by developing accurate solutions to the current problems.
Recent implementation and development of intelligent transport systems into the
EV sector have improved the adoption of EVs. In the context of the expected
growth of EVs in the current scenario, keen attention must be invested in the
improvement of EV sources.

5.1 Conclusion

Globally, witness to a sustainable economy depends on the rapid development of
renewable energy applications. In this context, a hybrid source with a renewable
background plays a crucial role in transportation. The present work highlights
the importance of EMS for hybrid source EVs with the design and simulation
modeling. The proposed Intelligent Hybrid Source Energy Management Strategy
(IHSEMS) allocates the load power to enhance the performance of the EV. The
IHSEMS effectively manages the effects of varying driving conditions by using an
absolute energy sharing algorithm (AESA). Incorporating solar and supercapac-
itors with existing BEVs improves battery life and energy efficiency. The SMC
and FDS strategies are analyzed in the comparative study. With this thought,
the main contributions of this thesis are the proposal, investigation, and verifica-
tion of different hybrid source system models and respective energy management
strategies to ensure optimal source operations. The proposed energy manage-
ment algorithm outcomes an optimal and intelligent power allocation among each
source. A detailed technical and economic investigation is reported to validate the
reliability and significance of the proposed hybrid source EV system. The general
conclusion of each chapter has been collected as follows:
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Chapter 1 briefly introduced the current transportation scenarios where the
extensive background study is conducted. The issues of lithium-ion batteries due
to the varying driving and environmental conditions are detailed, followed by the
significance of hybrid sources in EVs. Moreover, the importance of renewable
energy sources in the current energy scenario is also highlighted. Energy manage-
ment plays a vital role in improving the performance of hybrid source EVs and
ensuring optimal source operations.

Chapter 2 comprehensively reviews the drawbacks of existing electric vehi-
cles, characteristics and comparison of hybrid sources, DC-DC converter topolo-
gies, and energy management strategies (EMSs). The significance and drawbacks
of each topology, EMSs, are detailed throughout the chapter. As an outcome, it
was learned that despite many solutions capable of efficient energy management
with complex modeling and huge data collections, an opportunity for developing
an alternative way of achieving the same endures with improved optimality and
safe operation of sources.

Chapter 3 proposed a hybrid source system with battery, SC, and PV as the
sources. An Intelligent Hybrid Source Energy Management Strategy (IHSEMS)
with an absolute energy sharing algorithm (AESA) is designed and developed to
optimize the energy sharing among each source considering the driving and envi-
ronmental conditions employing a fuzzy logic controller. The IHSEMS also ensures
the availability of SC during each instants of driving and braking to discharge and
charge respectively throughout the driving period. A techno-economic assessment
that includes battery capacity loss, battery life, DC bus voltage fluctuations, bat-
tery degradation cost, and total cost of operation is conducted, which compares
the existing EMSs (State machine control, Frequency decoupling strategy) and
BEVs to highlight the significance of the proposed hybrid model and IHSEMS.

Chapter 4 proposed a hybrid source combination with high energy-dense SC
and high conversion efficient PV panels. A modified Energy Management Algo-
rithm (EMA) considers various modes and sub modes to ensure the safety and
performance of the vehicle throughout the drive. A detailed techno-economic in-
vestigation is preformed with proposed hybrid EV and existing BEVs and the
impact of SC-PV vehicles are higher for tropical countries. It achieves high im-
provement in terms of source life time, vehicle performance and reduction in charg-
ing from grid and recharging time which eventually shifts towards a complete green
and sustainable transportation sector and improves the user interests respectively.
Moreover, the economic comparison reveals that initial costs on SC-PV vehicles
cross the break-even point before half-life in a longer run when compared to BEVs
of similar type.
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5.2 Contributions

This dissertation presents the modeling, design, and analysis of a hybrid source
energy management strategy with various hybrid source electric vehicle (HSEV)
models. The methodology of each proposed hybrid models and their respective
energy management algorithm are described in the dissertation. The main contri-
butions of this research are outlined as follows:

• A hybrid source system is proposed which includes Li-ion Battery,Supercapacitor
(SC), Photovoltaic (PV) panels for an Electric 3W which improves the en-
ergy efficiency, range, safety and life cycle of the sources.

• An intelligent absolute energy sharing algorithm (AESA) is developed to
allocate the power among each sources at varying driving and environmental
conditions without any complex modeling and data collection.

• The energy optimization is ensured along with the availability of SC to
support the battery throughout the driving interval by the AESA which
implemented using fuzzy logic controller.

• A new hybrid energy vehicle is proposed with a high energy dense SC and
high conversion efficient PV panels and an Energy Management Algorithm
(EMA) is developed to ensure the safety and energy efficiency of the sources.

• Techno-economic assessment is conducted for both the proposed hybrid
souce systems and EMSs for EVs and compared with BEVs and existing
EMSs that highlights the significance of proposed system.

5.3 Future Scope of Work

From this dissertation, the following are suggestions for future research.

• The next step of this work includes the extension of the proposed methodol-
ogy into larger vehicles to highlight the PV capabilities to adequately cover
the modern BEV’s energy needs under normal consumption conditions (200-
300 km per week).

• Hardware implementation of the proposed hybrid source electric vehicle and
testing the vehicle on the real drive.

• The key to the success of hybrid source in EVs is the combination of eco-
friendly driving behavior (e.g., smooth accelerations and decelerations, low
average speeds, daytime driving, parking, and charging outdoors) with the
use of marginally sufficient electric motors for the actual transportation
needs which require a fundamental change of the current automotive in-
dustry way of marketing and thinking.

• The future of electrified transportation is based on a smart city where mo-
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bility can be used as a service, connected vehicles, Advanced Driver As-
sistance Systems and automated driving system employing V2X infrastruc-
tures. Such intelligent aspects improves the level of energy management in
hybrid source electric vehicles (HSEV).
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Appendix A

Resistive Forces Opposing
Electric Vehicle Motion

Further analysis of the EV modeling discussed in Chapter 3 is presented here.
The longitudinal mathematical model of electric vehicles is discussed below with
necessary equations of motion and resistive forces. The longitudinal motion of the
vehicle in the forward direction with slope is illustrated in figure 3.2 in Chapter
3. The following are the resistive forces that need to be overcome by the vehicle
traction unit to achieve the required acceleration for the vehicle.

A.1 Frictional Force

Frictional forces, Froll occur due to the friction between the tire and the road.
Reference values of rolling coefficient fr vary for different road types as shown in
Table A.1. Therefore, the resistive force is expressed as in Equation A.1 [NPTEL:,
2018]:

Fad = MT .g.fr.cos(α) (A.1)

where MT is the gross weight of the vehicle, g is the acceleration due to gravity,
fr the rolling resistance coefficient, α the gradeability angle.

A.2 Aerodynamic Drag Force

The aerodynamic drag force, Fad is the resistive force due to wind opposition
during the motion. The force varies based on wind velocity, the frontal area Af

of the vehicle, and the drag coefficient, CD which varies for different vehicles. The
opposing force is expressed in terms of Equation A.2 shown below [NPTEL:, 2018]:
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Table A.1: Reference values for the rolling resistance coefficient .

Conditions Rolling resistance coefficient (fr)

Tire on smooth tarmac road 0.01

Tire on concrete road 0.011

Tire on a rolled gravel road 0.02

Tar macadam road 0.025

Unpaved road 0.05

Bad earth tracks 0.16

Loose sand 0.15-0.3

Truck tire on concrete or asphalt road 0.006-0.01

Wheel on iron rail 0.001-0.002

Froll =
1

2
.ρ.Af .CD.V

2 (A.2)

where ρ the air density, Af the frontal area of the vehicle, CD the drag coeffi-
cient, V the velocity of the vehicle.

A.3 Grading Force

The grading force, Fg is the resistive force that occurs during the uphill of the
vehicle on a slope road. It opposes the tractive force during the uphill slope and
aids during the downhill slope. The main parameter that defines grading force
is the angle of the uphill which varies based on road conditions or terrains. The
grading force is represented using the equation A.3, [NPTEL:, 2018]:

Fg = MT .g.sin(α) (A.3)

where MT is the gross weight of the vehicle, g is the acceleration due to gravity,
α the gradeability angle.

A.4 Acceleration Force

The acceleration force, Fa, is significant in moving the vehicle forward at the
required speed the driver decides. It varied with the driver behavior and expressed
as in equation A.4, [NPTEL:, 2018]:

Fa = λ.MT .
dV

dt
(A.4)
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where λ the rotational inertia constant, MT is the gross weight of the vehicle,
V the velocity of the vehicle.

The total resistive force which opposes the motion of the vehicle is the sum-
mation of all the forces as shown in Equation A.5. The motor must deliver the
power in order to overcome these opposing forces as discussed in Equation 3.1-3.3
in Chapter 3.

Fres = Froll + Fad + Fg + Fa (A.5)
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[Shemin et al., 2022] Shemin, S., Gonçalo, D., Diana, N., and Patricia, B. (2022).
Photovoltaic integrated electric vehicles: Assessment of synergies between solar
energy, vehicle types and usage patterns. Journal of Cleaner Production, 348.
https://doi.org/10.1016/j.jclepro.2022.131402.

[Shen et al., 2020] Shen, D., Lim, C.-C., Shi, P., and Bujlo, P. (2020). Energy
management of fuel cell hybrid vehicle based on partially observable markov
decision process. IEEE Transactions on Control Systems Technology, 28(2):318–
330.

[Shen and Khaligh, 2015] Shen, J. and Khaligh, A. (2015). A supervisory energy
management control strategy in a battery/ultracapacitor hybrid energy storage
system. IEEE Transactions on Transportation Electrification, 1(3):223–231.

[Singh et al., 2019] Singh, K., Bansal, H., and Singh, D. (2019). A comprehen-
sive review on hybrid electric vehicles: architectures and components. J Mod
Transport., 27:77–107.

[Sinoquet et al., 2011] Sinoquet, D., Rousseau, G., and Milhau, Y. (2011). Design
optimization and optimal control for hybrid vehicles. Optim Eng, 12:199–213.

[Solar, 2020] Solar, P, V. (2020). Solar photovoltaic power potential by country
(2020, july). https://www.worldbank.org/en/topic/energy/publication/solar-
photovoltaic-power-potential-by-country.

[Sonali et al., 2021] Sonali, G., Renu, S., and Akshay Kumar, R. (2021). A re-
view on barrier and challenges of electric vehicle in india and vehicle to grid
optimisation. Transportation Engineering, 4(2021):1–14.

[Song et al., 2015a] Song, Z., Hofmann, H., Li, J., Han, X., and Ouyang, M.
(2015a). Optimization for a hybrid energy storage system in electric vehicles
using dynamic programing approach. Appl Energy, 139:151–162.

[Song et al., 2015b] Song, Z., Hofmann, H., Li, J., Han, X., Zhang, X., and
Ouyang, M. (2015b). A comparison study of different semi-active hybrid energy

125



storage system topologies for electric vehicles. J Power Sources, 274:400–411.

[Song et al., 2014a] Song, Z., Hofmann, H., Li, J., Hou, J., Han, X., and Ouyang,
M. (2014a). Energy management strategies comparison for electric vehicles with
hybrid energy storage system. Applied Energy, 134:321–331.

[Song et al., 2014b] Song, Z., Li, J., Han, X., Xu, L., Lu, L., Ouyang, M., and Hof-
mann, H. (2014b). Multi-objective optimization of a semi-active battery/super-
capacitor energy storage system for electric vehicles. Applied Energy, 135:212–
224.

[Song et al., 2018] Song, Z., Li, J., Hou, J., Hofmann, H., Ouyang, M.,
and Du, J. (2018). The battery-supercapacitor hybrid energy storage sys-
tem in electric vehicle applications: A case study. Energy, 154:433–441.
https://doi.org/10.1016/j.apenergy.2020.115408.

[Spotnitz, 2003] Spotnitz, R. (2003). Simulation of capacity fade in lithium-ion
batteries. J. Power Sources, 113(1):72–80.

[Subhash and Reinhard, 2016] Subhash, K. and Reinhard, M. (2016). Co2 emis-
sion reduction potential assessment using renewable energy in india. Energy,
97:273–282.

[Sun et al., 2015] Sun, C., Moura, S. J., Hu, X., Hedrick, J. K., and Sun, F.
(2015). Dynamic traffic feedback data enabled energy management in plug-in
hybrid electric vehicles. IEEE Transactions on Control Systems Technology,
23(3):1075–1086.

[Sun and Xiong, 2015] Sun, F. and Xiong, R. (2015). A novel dual-scale cell state-
of-charge estimation approach for series-connected battery pack used in electric
vehicles. Journal of Power Sources, 274:582–594.

[Sun et al., 2020] Sun, H., Fu, Z., Tao, F., Zhu, L., and Si, P. (2020). Data-driven
reinforcement-learning-based hierarchical energy management strategy for fuel
cell/battery/ultracapacitor hybrid electric vehicles. Journal of Power Sources,
455:227964.

[Sun et al., 2017] Sun, L., Feng, K., Chapman, C., and Zhang, N. (2017). An
adaptive power-split strategy for battery–supercapacitor powertrain—design,
simulation, and experiment. IEEE Transactions on Power Electronics, 32:9364–
9375.

[Sundstrom and Stefanopoulou, 2006] Sundstrom, O. and Stefanopoulou, A.
(2006). Optimal power split in fuel cell hybrid electric vehicle with different
battery sizes, drive cycles, and objectives. In 2006 IEEE Conference on Com-
puter Aided Control System Design, 2006 IEEE International Conference on
Control Applications, 2006 IEEE International Symposium on Intelligent Con-
trol, pages 1681–1688. IEEE.

126



[Sunrunmotors, 2022] Sunrunmotors (2022). http://www.sunrunmotors.com/
(accessed on 02 november 2022).

[Supercapacitor-AOWEI, 2022] Supercapacitor-AOWEI, T. (2022).
http://www.aowei.com/en/program/product.html.

[Syahbana and Trilaksono, 2019] Syahbana, D. F. and Trilaksono, B. R. (2019).
Mpc and filtering-based energy management in fuel cell/ battery/ supercapac-
itor hybrid source. In 2019 International Conference on Electrical Engineering
and Informatics (ICEEI), pages 122–127. IEEE.

[Tashakori Abkenar et al., 2017] Tashakori Abkenar, A., Nazari, A., Jayasinghe,
S. D. G., Kapoor, A., and Negnevitsky, M. (2017). Fuel cell power management
using genetic expression programming in all-electric ships. IEEE Transactions
on Energy Conversion, 32(2):779–787.

[Tie and Tan, 2013] Tie, S. and Tan, C. (2013). A review of energy sources and
energy management system in electric vehicles. Renewable Sustainable Energy
Rev., 20:82–102.

[Tran et al., 2020] Tran, D.-D., Vafaeipour, M., El Baghdadi, M., Barrero, R.,
Van Mierlo, J., and Hegazy, O. (2020). Thorough state-of-the-art analysis of
electric and hybrid vehicle powertrains: Topologies and integrated energy man-
agement strategies. Renewable and Sustainable Energy Reviews, 119:109596.

[Tremblay et al., 2007] Tremblay, O., Dessaint, L., and Dekkiche., A. (2007). A
generic battery model for the dynamic simulation of hybrid electric vehicles.
IEEE Vehicle Power and Propulsion Conference, 43(2007):284–289.

[Trovao et al., 2013] Trovao, J., Pereirinha, P., Jorge, H., and Antunes, C. (2013).
A multilevel energy management system for multi-source electric vehicles-an
integrated rule-based meta-heuristic approach. Appl Energy, 105:304–318.

[Trovão et al., 2017] Trovão, J. P. F., Roux, M., Ménard, , and Dubois, M. R.
(2017). Energy- and power-split management of dual energy storage system
for a three-wheel electric vehicle. IEEE Transactions on Vehicular Technology,
66(7):5540–5550. doi: 10.1109/TVT.2016.2636282.

[Uddin et al., 2016] Uddin, K., Moore, A. D., Barai, A., and Marco, J. (2016). The
effects of high frequency current ripple on electric vehicle battery performance.
Applied Energy, 178:142–154.

[US-EPA, 2019] US-EPA (2019). Us epa dynamometer drive schedules [online].
https:// www.epa.gov/vehicle-and-fuel-emissions-testing/dynamometer drive-
schedules (accessed january 2019).

[USEP-Agency, 2022] USEP-Agency (2022). Dynamometer drive schedules.
4.1, https://www.epa.gov/ vehicle-and-fuel-emissions-testing/dynamometer-
drive-schedule.

127



[Vishnu and Kashyap, 2020] Vishnu, S. P. and Kashyap, Y. (2020). Brushless dc
hub motor drive control for electric vehicle applications. In First International
Conference on Power, Control and Computing Technologies (ICPC2T), pages
448–453. IEEE.

[Vishnu et al., ] Vishnu, S. P., Kashyap, Y., and Castelino, R. V. Adaptive intel-
ligent hybrid energy management strategy for electric vehicles. Energy Storage,
n/a(n/a):e436.
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