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Abstract

A long-standing goal of artificial intelligence in Computer Vision has been to de-

velop models capable of perceiving and comprehending the complex visual environ-

ment around us and communicating with us in natural language about it. Significant

progress has been achieved toward this goal over the last few years as a result of paral-

lel advancements in computing systems, data collection, and algorithms. Visual recog-

nition has advanced at a breakneck pace, with computers now capable of classifying

images, recognising them, and describing them in even longer words. They exceed

humans in various categories, even surpassing them in some instances. Despite tremen-

dous progress, the majority of improvements in visual recognition continue to occur

when an image is labelled with one or a few different labels and swiftly explained

in natural language. The majority of people find it straightforward to watch a brief

video and describe what occurred (in words). Machines have a difficult time extracting

meaning from video frames and generating a sentence description. Computer vision

research has long been focused on comprehending visual media, such as images and

videos. Additionally, a new issue within the scope of this study area, dynamic image

and video transcription, has sparked the interest of a large number of people. This re-

search presents models and methods for associating visual data with semantic labels

and visual data with natural language utterances, thereby simplifying translation be-

tween domain constituents.

Semantic segmentation is a fundamental component of object recognition models,

as it aims to classify things on a pixel-by-pixel basis. The primary goal of this re-

search is to classify an individual object within an image pixel by pixel. The provided

image is evaluated to ascertain the pixel-level properties that are present. Second, we

suggested an encoder-decoder architecture with a hybrid loss function that employs a

layered LSTM as the encoder and an LSTM model combined with an attention mecha-

nism as the decoder. Thirdly, we propose a unique framework for video captioning that

combines a bidirectional multi-layer LSTM encoder and a unidirectional decoder with

a temporal attention technique to produce superior global representations for videos.

Finally, we propose an efficient method for captioning videos using CNN in conjunc-

tion with a short-connected LSTM-based encoder-decoder model and a phrase context

vector.

Keywords: Computer Vision; Object Detection; Semantic Segmentation; Ob-

ject Recognition; Image/Video Captioning.
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Chapter 1

Introduction

Videos are an incredibly rich and sophisticated source of information, accounting for the

lion’s share of internet resources. The growth of multimedia on the Internet in recent

years has been astounding. For instance, around 95 million images are submitted to

Instagram daily (Ceci, 2021), while approximately 400 hours of video are uploaded to

YouTube every minute (Ceci, 2021). The exponential growth of visual data generated

by this phenomenon presents both a tremendous problem and an opportunity to develop

more intelligent computer algorithms for analysing and summarising the data.

For the majority of humans, multimedia content is intuitive, and images and videos

are frequently used to augment and enhance human connection and communication

(Bin et al., 2019; Olivastri et al., 2019; Zhao et al., 2019). When presented with a

video, humans can deduce a great deal from it and analyse and describe the material

in varied degrees of detail (Amirian et al., 2020). However, deciphering content from

photos and video frames is extremely difficult for computers. The goal of language and

vision research is to construct intelligent systems capable of autonomously analysing

and comprehending this complicated visual input, as well as interacting and commu-

nicating in natural language. These algorithms may aid in the indexing and search of

this visual data. A generic Artificial Intelligence (AI) system (Winston, 1992) would

require an algorithm capable of recognising and describing various objects and their

relationships in an image or video. This is a very intriguing and critical subject in the

field of Computer Vision (CV) and AI.

This thesis examines the problem of characterising the content of images and videos

from a fundamental standpoint. Semantic segmentation continues to be a significant

challenge in the context of image and video understanding, as does image and video

captioning, which combines CV and another branch of AI called Natural Language

Processing (NLP) to generate sentence descriptions of an image or video. Video re-

trieval based on content, video segmentation and segment indexing, textual summaries

of video clips, and video description for the partially sighted are just a few of the nu-

merous important applications that can be accomplished when images and videos can

be automatically translated into natural language.



1.1 Language and Vision

Both NLP and CV have advanced significantly in recent years, owing to revolution-

ary improvements in machine learning and the availability of large datasets. The two

domains are fast overlapping: language is increasingly concerned with ”grounding”

meaning in perception, while vision makes use of linguistic ontologies and attempts

to “tell a story” through images by connecting things, activities, people, and situations.

Until recently, there was a modest but growing corpus of work at the confluence of NLP

and cognitive science on topics such as relating words to images, describing images in

natural language, and interpreting natural language commands in terms of robot per-

ception and action. Recent years have seen a huge growth in image/video captioning

and retrieval efforts, owing to the availability of the MSCOCO (Lin et al., 2014) and

Flickr30k (Young et al., 2014) large image/video captioning (Xu et al., 2016) datasets.

Following this, datasets for image question answering were created. By comparison,

video description has progressed more slowly.

1.2 Early Progress in Video Captioning

Video description, in particular for large vocabulary and activities, presents unique

issues, such as modelling dynamics and actor-action-object correlations from sparse

training data and coping with polysemy and ambiguity. The results regarding activity

description in the video are limited to a small number of actions and objects. The major-

ity of work on large-vocabulary description has concentrated on nouns/adjectives; early

work on videos included metadata tagging and clustering captions and videos for re-

trieval tasks. Earlier work on video description relied on hand-crafted templates, gram-

mar, and rules and was restricted to relatively small domains. (Barbu et al., 2012) and,

(Yu and Siskind, 2013) for example, generate sentential descriptions for short videos

but recognize only a limited collection of (5–10) objects and activities and generate a

relatively narrow range of descriptive phrases using a manually engineered language.

Numerous prior approaches to sentence description generation divided the problem into

two sections. The initial step is content generation, during which they determine the

most important objects that require description. The second method is surface reali-

sation, in which they generate a sentence based on the content recognised. (Guadar-

rama et al., 2013) and (Krishnamoorthy et al., 2013), for example, employ a two-stage

pipeline that first identifies the semantic content (subject, verb, object) and then creates

a sentence from a template. (Krishnamoorthy et al., 2013) trained individual classifiers
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to identify candidate objects, actions, and scenes for the first time. They then employ

an n-gram language model to select the most appropriate subject-verb-object combi-

nation for describing a video. This information is then used to construct a sentence.

(Krishnamoorthy et al., 2013) examined a small number of videos having a subset of

twenty things. (Guadarrama et al., 2013) described the first “in-the-wild” videos with

extensive vocabulary. They demonstrated the benefit of linguistic expertise, but only

for “zero-shot activity recognition,” in which the right verb to describe the activity was

never seen during training.

1.3 Deep Neural Networks

A potential disadvantage of all early image and video description algorithms was that

scaling them required pre-selection and development of classifiers for a wide variety

of objects, activities, and scenes, as well as the development of methods for identify-

ing salient objects worth describing. Advances in deep learning, particularly in deep

Convolutional Neural Network (CNN) and Recurrent Neural Network (RNN), have

aided in the resolution of these issues. The approaches presented in this thesis are based

on both deep CNN and RNN. As a result, we provide a brief review of both CNN and

RNN based on their use in this thesis. Our proposed video description models are con-

structed using deep neural networks, specifically CNN for visual data modelling and

Long Short-Term Memory (LSTM) units for language modelling. While CNN excel

in object recognition, LSTM has lately exhibited higher performance on tasks such as

speech recognition, machine translation, and the more related task of generating phrase

descriptions for images. This section will provide an overview of CNN and RNN, more

specifically LSTM networks, with an emphasis on sequence modelling.

1.3.1 Convolutional Neural Networks

CNNs are specialised neural network architectures that are optimised for processing

and handling input with a fixed spatial topology, such as images or fixed-length word

sequences. A CNN’s purpose is normally to develop a spatially invariant representa-

tion of the input, which is advantageous for classification tasks. This is accomplished

through the use of neural net topologies comprised of convolutional and pooling lay-

ers, as detailed below. Layer of convolution: A convolutional layer’s objective is to

automatically learn the weights of convolutional filters that may be used to detect local

features such as edges and curvatures. Typically, a CNN’s input is a multi-dimensional

array (or a tensor). It would be a 256 × 256 × 3 tensor in the case of colour images.
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A filter is a collection of weights or parameters; for example, it could be 5 × 5 × 3.

The filter is convolved over the full input tensor (mathematically) to generate an acti-

vation map for the CNN to learn local features. Intuitively, the filter weights aid the

model in “learning” or “looking for” local features that (would appear in the activation

map and) could aid in subsequent tasks. Each convolutional layer learns a collection of

filters, not just one. Back-propagation is used to determine the weights and character-

istics of these filters. Pooling layer: Pooling layers are frequently employed in CNNs

to reduce the size of the convolutional layer’s learnt representation by implementing a

fixed down sampling operation. While spatial down sampling results in the loss of some

local spatial information, it ultimately aids the network in learning a decent condensed

representation of the input.

Input Image

...,

Convolution Pooling Convolution Pooling 

Fully Connected 
 Layers

...,

Output Layer

Feature Extraction Layers

Figure 1.1: CNN architectural preview.

The majority of CNN architectures begin with numerous convolutional layers and

end with a pooling layer. This pattern can be repeated indefinitely to generate stacks of

convolutional and pooling layers, culminating in fully linked layers and a final classi-

fication target, as illustrated in Figure 1.1. The activations could serve as a condensed

image representation just before the classification layer. Back-propagation is used to

train the network’s parameters.

1.3.2 Recurrent Neural Network

A RNN is a feed-forward neural network that generalises feed-forward neural networks

to sequences. Standard RNN learn to map a sequence of inputs (x1..., xt) to a sequence

of hidden states (h1, ..., ht), and then from the hidden states to a sequence of outputs

(z1, ..., zt), based on the following recurrences:

ht = f (Wxhxt +Whhht−1) (1.1)

zt = g (Wzhht) (1.2)

where, f and g are non-linear element-wise functions such as the sigmoid or hyperbolic

tangent, xt is a fixed-length vector representation of the input, ht ∈ RN is the hidden
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state withN units,Wij are the weights linking the layers of neurons, and zt is the output

vector.

1.3.3 Long Short-Term Memory

RNNs can be used to train to map sequences when the alignment of the inputs and

outputs is known in advance, it was unclear whether they could be used to solve situa-

tions where the inputs (xi) and outputs (zi) have changing lengths. This challenge was

handled by training an RNN to map input sequences to a fixed-length vector and then

mapping the vector to an output sequence using another RNN. This is often known as

the “encoder-decoder” framework in popular parlance. Another well-known issue with

RNNs is that training them to acquire long-range dependencies can be tough. However,

it is well established that LSTMs, which feature intentionally programmable memory

units, may learn long-range temporal relationships.

tanhsigmoid sigmoid sigmoid

tanh

ht-1 ht

xt

ct-1 ct

ft it
ot

Pointwise Multiplication

Vector Concatenation

Pointwise Addition

Figure 1.2: LSTM architectural preview.

The Figure 1.2, depicts the LSTM unit. The LSTM model is built around a memory

cell c that encodes each input, creating a condensed representation of the sequence of

observed inputs up to that point. The cell is modulated by sigmoidal gates with a range

of [0, 1] that are applied multiplicatively. The gates control whether the LSTM retains

(if the layer evaluates to 1) or discards the incoming value from the gate (if it evaluates

to 0). The three gates – input gate (i) which determines whether the LSTM considers its

current input (xt), forget gate (f), which allows the LSTM to forget its previous memory

(ct), and output gate (o), which determines how much memory to transfer to the hidden

state (ht) – all enable the LSTM to learn complex long-term dependencies. The LSTM

5



recurrences are therefore defined as follows:

it = σ(Wixxt +Wihht−1), (1.3)

ft = σ(Wfxxt +Wfhht−1), (1.4)

ot = σ(Woxxt +Wohht−1), (1.5)

ct = ft ⊙ ct−1 + it ⊙ ϕ(Wcxxt +Wchht−1), (1.6)

ht = ot ⊙ ϕ(ct), (1.7)

• W∗h : Weights that relate each gate in the LSTM to previous hidden states.

• W∗x : Weighing units that connect the current input to each gate.

• σ : Sigmoid nonlinear activation functions.

• ϕ : Hyperbolic tangent nonlinear activation functions.

• ⊙ : Represents the operation of element-by-element multiplication.

Thus, the LSTM’s gates enable it to represent a sequence through the acquisition of

long-term dependencies. Thus, LSTMs are capable of “encoding” a sequence of inputs

into a vector and “decoding” the vector to generate a sequence of outputs.

1.4 Semantic Segmentation

Semantic segmentation (Liu et al., 2019; Li et al., 2015) is the process of classifying

images at the pixel level, such that each pixel in an image is assigned to a distinct class

cluster. Since its introduction, deep learning semantic segmentation has been a criti-

cal field of image processing and CV research and application in a variety of domains.

While image segmentation recognises the boundaries between objects in an image by

categorising them using line and curve segments, instance segmentation classifies in-

stances of all possible classes in an image so that each object is identified as a distinct

entity. Nonetheless, semantic segmentation is distinct from conventional segmentation,

which, on the one hand, only expresses the dividing of an image into clusters without

making any attempt to comprehend or relate the partitioned clusters. On the other hand,

semantic segmentation attempts to describe semantically meaningful objects in an im-

age based on their well-defined relationship and comprehension.
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1.4.1 Challenges

Semantic segmentation is a critical issue in the field of CV today. Semantic segmenta-

tion is a high-level activity that lays the way for total scene comprehension. The fact

that an expanding number of applications rely on inferring knowledge from imagery

emphasises the importance of scene understanding as a fundamental CV problem. Self-

driving vehicles, human-computer interaction, and virtual reality are just a few of the

applications. The visual system of a human being is remarkable in its ability to display

a specific object in a scene readily. Additionally, it can provide a full description of a

scene’s contents based on a single glimpse at an image. For the last five decades, the

fundamental goal of vision task research has been to replicate the ability of the human

visual system. This has resulted in an exhaustive in-depth examination of challenges

based on the following:

• Identifying the object - Object Detection

• Recognizing image contents with attributes - Object Annotation

• Using the attributes to describe the object - Attribute prediction and association

1.4.2 Contributions
• Design and implementation of an encoder-decoder neural network architecture

that is paired with a novel technique for enhancing global label consistency, in
order to produce an enhanced semantic picture segmentation model.

• Design and implementation of a hierarchical model that combines specialised
local level methods with a global level procedure in order to accurately discover
numerous main objects with uninitialized parameters in a poorly labelled image.

• Design and implementation of a task for classifying a single object from an image
at the pixel level. The input image is processed to extract pixel-level information,
and the object in the image is then demarcated and segmented for identification
purposes.

1.5 Visual Captioning

When it comes to providing a decent caption for a video clip that is free of many seman-

tic errors or misconceptions, humans are pretty capable. Humans can easily explain it

and may be quite accurate in their portrayal. However, identifying the objects involved

and predicting their associated relationships is always a arduous task for computers. Im-

age captioning primarily started with traditional retrieval and template-based methods.
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However, though they remained reliable and accurate at that time, those methods may

not be too relevant nowadays. The reason is the advancement of deep learning and the

tremendous advantages of NLP (Amirian et al., 2020). With the advent of CNNs and

other their improved variants, it became significantly easier to analyse visual frames

and anticipate the most appropriate sentences.

Visual captioning, alternatively referred to as video/image captioning, is the pro-

cess of creating a description/caption for a video/image. The caption/sentence defines

the items and actions in the image or video succinctly and precisely. Combining CV

and NLP to generate video descriptions was previously considered a difficult task from

a vision standpoint. The goal of establishing a correlation between video content com-

prehension and textual prediction has been the focus of considerable study for the past

few years (Shorten et al., 2021; Aneja et al., 2018; Kiros et al., 2014; Krishna et al.,

2017; Amirian et al., 2020). The overall video captioning framework explained in Fig-

ure 1.3. Establishing a connection between visual stuff and text prediction is a relatively

simple task for humans. However, it has been viewed as a particularly difficult problem

for machines and a vital component of machine intelligence. It has a wide range of

applications, including video comprehension, video retrieval, and video subtitling.

Visual Model 
CNN+LSTM

Language  Model 
LSTM

A dog is jumping
into a washing

machine.

Generated CaptionInput Video Encoder-Decoder Model

Embeddings

Figure 1.3: The overview video captioning framework.

1.5.1 Image Captioning

Image captioning is a term that refers to the process of automatically generating the

textual description of an image (Karpathy and Fei-Fei, 2015). It is frequently used

interchangeably with image annotation. It entails the use of both CV and NLP tech-

niques to convert an image representation to a textual composition. Prior to the intro-

duction of deep learning, jobs such as captioning were nearly impossible; however, with

breakthroughs in complex algorithms, multimodal approaches, efficient hardware, and

a massive volume of datasets, such tasks are becoming doable.
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Image captioning can be used to solve a variety of real-world challenges, including

assisting the blind, autonomous vehicles, academic bots, and military objectives. To

a considerable extent, the majority of success in image captioning has come from the

supervised domain, in which massive volumes of data consisting of images and around

two to five label captions defining the activities of the images are provided. Thus, the

model is tasked with learning the images’ feature demonstration and mapping it to a

language model, with the eventual objective of generating a textual representation of

the image’s description. While it may appear uncomplicated and straightforward to

humans to characterise an image using words, it is far from simple to recreate in an

artificial system and involves extensive techniques to extract features from the images

as well as transfer the features to the relevant language model.

In general, CNNs are used to extract features, whereas RNNs are used to translate

training annotations to visual features. Apart from identifying and extracting the most

important and nuanced elements in an image, it is critical to understand the interactions

and semantic relationships between such items, as well as how to depict them properly

using appropriate tenses and sentence structures. Additionally, because the training

labels are texts and the image attributes are different, language model techniques are

necessary to examine the form, meaning, and context of a series of words. This process

becomes considerably more complicated when keywords are necessary to emphasise

the event or setting being described.

1.5.2 Video Captioning

Most individuals find it easy to describe a video in normal language, while machines

find it difficult. Methodologically, defining the models or algorithms is difficult since

it is hard to ascertain the contributions of the visual aspects and the accepted language

model to the final description. Image captioning can be applied to the video keyframes

and a tiny sample of the frames in-between the key frames to create video captioning

(Gao et al., 2017; Krishna et al., 2017).

There are two phases to automatically creating natural language sentences sum-

marising video information. The first stage is to comprehend the objects, actions, and

their associations in terms of video clip attributes. The video clip is delivered as a

succession of frames, which are interpreted as images. So, in each clip, we have a

succession of frames that are input images. The retrieved data from the video clip is

then placed in a conventional feature vector. The second step receives this vector. The
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second level is caption generation, which involves describing what has been retrieved

in a comprehensible natural language sentence, thereby mapping the items identified in

the first stage. The overall taxonomy for deep learning-based image/video captioning

methods (Hossain et al., 2019) is shown in Figure 1.4.

Deep neural network
based image/video

captioning

Supervised/Unsupervised
learning

Attention based and
semantic concept

based

Encoder-decoder/
Compositional based

architectures

Dense/Scene based
captioning

RNN/LSTM/
GRU/BiLSTM based

language models

Visual space/Multi-
modal feature mapping

Figure 1.4: Overall taxonomy of image/video captioning.

1.5.3 Attention Guided Captioning

Attention has become increasingly important, and as a result, benchmarks in a variety of

activities have improved, including machine translation, language modelling, and other

NLP tasks, as well as CV tasks (Xu et al., 2020). Indeed, attention has been shown

to connect the meaning of features, which aids in comprehending how such a feature

relates to another.

When this is incorporated into a neural network, it encourages the model to focus on

salient and significant features and ignore other noisy parts of the data space distribu-

tion. To approximate the concept of attention in image annotation, a model is trained to

focus its computation on the identified salient regions while simultaneously generating

captions utilising both soft and hard attention. The deterministic soft attention model

is trained using normal backpropagation by weighting the annotated vector of picture

features, but the stochastic hard attention model is trained by optimising a variational

lower bound, which is set to 1 when the feature is salient.
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Adaptive attention employed a hierarchical structure to merge high-level semantic

information with visual information from a picture to build intuitive representations .

The top-down and bottom-up methodologies are coupled through the use of seman-

tic attention, which defines attribute detectors that enable it to switch between ideas

dynamically. This enables the detectors to select appropriate candidates for attention

calculation based on the inputs given.

1.5.4 Challenges

The fundamental components of video description or captioning are object detection,

activity recognition, and sentence creation. The early research on natural language de-

scriptions of visual data was mostly concerned with static images. These depended on a

variety of algorithms and techniques for object recognition in images, as well as simple

template-based approaches for sentence generation. The difficult issue of object recog-

nition is related with identifying the objects, and describing the relationships between

them remains an open problem. Numerous models, on the other hand, have attempted

to bridge the divide between identifying the characteristics of images and relating them

to natural descriptions. However, achieving desirable results is an open task. The expo-

nential expansion and advancements in research facilitated a rapid change in the deep

CNN domain, and other optimal versions significantly aided in image captioning. How-

ever, video captioning is typically a different problem than image captioning due to the

complexity of identifying the numerous sets of objects and their relationships. Despite

additional research challenges in visual captioning, a few attempts are largely helped by

modern technology such as LSTM (Hochreiter and Schmidhuber, 1997) for expanded

word prediction, RNNs , and Gated Recurrent Unit (GRU). Due to the shortcomings

of current visual attention models, non-semantic and non-contextual subtitles mislead

visual comprehension. The video captioning model necessitates a semantic correlation

between seen contents and generated words, which is not taken into account in existing

methods. Finally, exploiting the advantages of various sentence representation embed-

dings with cutting-edge deep learning techniques is an unresolved topic in the domain

of picture and video captioning.

1.5.5 Contributions
• To that extent, the proposed framework’s primary contributions to the connection

of video and text are an encoder-decoder framework using a 2D-CNN model and
layered LSTM as the encoder and an LSTM model integrated with an attention
mechanism as the decoder with a hybrid loss function.
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• A unique multi-layer BiLSTM encoder and a multi-layer unidirectional decoder
are used to connect the video and text. Two levels of temporal soft attention are
used in both the encoder and decoder units. This emphasis on a comprehensive
global view of video segments imparts extra representational characteristics.

• A visual captioning system that combines a CNN and a short-connected LSTM-
based encoder-decoder model with sentence context vectors, word embeddings,
and multi-headed attention.

1.6 Word Embedding

The concept of word embeddings (Mikolov et al., 2013; Pennington et al., 2014; Joulin

et al., 2017; Peters et al., 2018), is a highly effective tool in deep learning science for

NLP applications. That is, a vocabulary’s set of word vectors is capable of capturing

the meaning of words and their relationship to their context. Word embeddings are vec-

tor representations that embed words in a feature space. As points in an n-dimensional

space, word embeddings exhibit a number of fascinating features, including the follow-

ing:

• An identifier (vector) for each word.

• Vectors are normally only a few hundred dimensions in length.

• In n-dimensional feature space, words with comparable meanings have similar
vector values and are consequently nearby.

• Semantic regularities are analogous to geometrical qualities.

The overall taxonomy of the word embeddings given in Figure 1.5.

Language
Representation

Models

Supervised

Transformers

Multi-Modal

Compositional

Count Based

Unsupervised

Employs explicit labels  
for specific task depends 

 on neural network

Representation employs 
fusion with additional  

information

Require huge  text  
dataset for training  

without labels

Representation depends  
on composing  
word vectors

Employs counting 
occurrences  without  
semantics and order

Depends on  
context-aware  

attention mechanism

Figure 1.5: Overall taxonomy of word embedding representations.
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1.7 Motivation
• The human visual framework is so complex that it can create a rich depiction of

scenes after a single look and quickly outline every object present.

• Image understanding and video captioning are the most widely used vision-based
innovations.

• Accuracy plays an important role in correctness of the model.

• Emergence of advance machine learning and robotics.

• Describing the images and videos in natural language descriptions.

• Video captioning has many applications such as video indexing, human-robot
interaction, assisting the visually disabled, automatic video subtitling, procedure
generation for instructional videos, video surveillance and understanding sign
language.

1.8 Overall Contributions

Inspired by deep image captioning models and the extensive use of that technology in

CV, we addressed the gaps in object semantic recognition, their associations in terms of

textual contents together with their application in real-life usage to describe the contents

of images and videos. The overall contributions of this research work are as follows:

1. Design and implementation of an Encoder-Decoder Neural Network Architecture
is combined with a novel strategy to improve global label consistency, to come
with an enhanced image segmentation model.

2. Design and implementation of a Bayesian Non-parametric (BN) approach to solve
the complex visual tasks using the non-parametric property with Chinese Restau-
rant Process Stacked with Weakly Supervised Markov Random Field (WS-MRF-
CRP), which uses Markov Random Field (MRF) for low-level and Chinese Restau-
rant Process (CRP) for high-level processing.

3. Design and implementation of model that uses superpixelization clustering. Then,
a Multi Heat Map Slices Fusion model produces an object seed heat map. A
Saliency-Edge-Colour-Texture(SECT) model generates pixel-level annotations us-
ing the PSPNet model to create the object’s final semantic segmentation.

4. Design and implementation of an encoder-decoder framework with a 2D-CNN
model and layered LSTM as the encoder and an LSTM model integrated with an
attention mechanism working as a decoder with a hybrid loss function.

5. Design and implementation of a novel video captioning framework that combines
a multilayer Bidirectional LSTM (BiLSTM) encoder and unidirectional decoder
with a framework of temporal attention to build superior global representations
for videos.
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6. Design and implementation of an approach for efficiently captioning videos that
combines a CNN and a short-connected LSTM-based encoder-decoder model
with a sentence context vector.

1.9 Organization of Thesis

This section outlines the organisation of the thesis. Chapter 2 presents a brief assess-

ment of the literature, research gaps, problem statements, and research objectives. The

proposed methodologies for achieving the research objectives are discussed in Chapters

3 and 4, followed by concluding remarks and future directions are described in Chapter

5. The overall organizaition of the report is depicted in Figure 1.6.
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Figure 1.6: Organization of the thesis in line with the research objectives and contributions.
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Chapter 2

Literature Survey

In this chapter, we examine relevant publications that assist position this dissertation

in the context of the sub-field of semantic segmentation and image/video captioning’s

entire development. Initially, a summary of pertinent research publications, the ma-

jority of which were either recent or contemporary to the methodologies discussed in

this dissertation. First, we will provide a quick overview of approaches to semantic

image segmentation that have served as the foundation for some of the efforts in this

dissertation (Chapters 3). Then, we examine innovations in image and video captioning,

including various categories of enhancements that expand upon the models presented

in Chapter 4 of this thesis. In addition, we will consider works that utilise external

knowledge to enhance image and video captioning. Finally, we examine strategies that

have been developed to address some of the difficulties associated with understanding

the image/video captioning techniques currently in use.

2.1 Semantic Segmentation

The human visual framework is so exquisite that it can instantly construct a rich por-

trayal of scenes and quickly outline each object present. A primary objective of CV

research has been to replicate the ability:

• Perceiving the scene’s objects

• Depicting them according to their characteristics

• Identifying the said objects

Semantic segmentation (Liu et al., 2019; Kirillov et al., 2019; Ban et al., 2018; Kang

and Nguyen, 2019), which attempts to classify objects at the pixel level, is a critical

component of object recognition models. In this, the goal is to classify a single object

in an image using only the image as input. Classification is performed at the pixel level.

The input image is processed to determine the pixel-level properties contained within,

and then the object in the image is delimited and segmented for identification purposes.

2.1.1 Traditional Methods

Prior to the advent of artificial neural networks, the majority of techniques to segmenta-

tion and semantic segmentation were based on unsupervised thresholding and clustering



algorithms (Sezgin and Sankur, 2004). In the majority of circumstances, traditional se-

mantic segmentation approaches (Ban et al., 2018; Kang and Nguyen, 2019) require

less time to compute the model. Additionally, the majority of methodologies (Zhao and

Wang, 2018; Cao et al., 2018) require less data than what is required in the present era

of artificial neural networks and deep learning. There are even more advanced thresh-

olding techniques that involve additional classes and are frequently classified as his-

togram shape-based, entropy-based, object attribute-based, and spatial-based (Sezgin

and Sankur, 2004).

2.1.2 Region-Based Models

Regions are first taken from an image and defined using their constituent features in

the region-based semantic segmentation design (Girshick, 2015; Ren et al., 2015; Li

et al., 2017; Chen et al., 2017). Then, using a trained region classifier, the pixels per

region with the highest incidence are labelled. The region-based techniques (Girshick

et al., 2015) employ the divide and conquer strategy, in which numerous properties are

recorded at multiple scales and then integrated to produce a whole.

2.1.3 Fully Convolutional Network Based Models

Fully Convolutional Network (FCN) models (Badrinarayanan et al., 2017; Shelhamer

et al., 2016; Long et al., 2015) lack dense layers, as do other conventional CNN models;

instead, they are constructed of 1 × 1 convolutions that provide the function of dense

or fully connected layers. Additionally, a FCN accepts images of specific size as input

and delivers outputs with the same spatial dimensions. This model is based on the

encoder-decoder model in that it classifies pixels in an image into predetermined classes

by extracting features using a convolution network in the encoder and lowering the

dimensionality of the feature maps before they are upsampled by the decoder.

2.1.4 Refinement Network

Due to the resolution loss introduced by the encoder models (Chen et al., 2014, 2017;

Wu et al., 2019) in the conventional FCN-based model, the decoder is able to produce

fine-grained segmentation, particularly at the boundaries and edges. Though this prob-

lem has been addressed by the incorporation of skip connections, the addition of global

information, and other ways, it is far from solved, and some algorithms (Chen et al.,

2014; Li et al., 2019; Xiang et al., 2019) have incorporated several features or, in some

situations, certain postprocessing functions to identify alternate solutions.

16



2.1.5 Weakly Supervised and Semisupervised Approaches

While the majority of models (Pinheiro and Collobert, 2015; Khoreva et al., 2017; Pa-

pandreou et al., 2015) require a significant number of images and their annotated la-

bels, the process of manually annotating labels is quite daunting and time intensive,

and hence semantic segmentation models have been attempted using weakly super-

vised approaches (Li et al., 2019; Dai et al., 2015). Given weakly annotated image

data, the model was trained to provide a larger weight to pixels containing a class label.

Trained on a subset of the ImageNet dataset (Deng et al., 2009), the networks focus on

recognising essential pixels associated with previously identified single-class objects

and inferring their class. Table 2.1 reports the summary of key existing works on image

segmentation.
Table 2.1: Summary of key existing works of image segmentation.

Authors Methodologies Limitations

(Badrinarayanan

et al., 2017)

Authors presented a novel and prac-

tical deep fully convolutional neu-

ral network architecture for seman-

tic pixel-wise segmentation termed

SegNet. This core trainable seg-

mentation engine consists of an en-

coder network, a corresponding de-

coder network followed by a pixel-

wise classification layer

End-to-end learning of deep

segmentation architectures is

a harder challenge

(Li et al.,

2015)

In this paper, authors investigate the

learned features from ConvNets-

VGG16 and propose a novel al-

gorithm called Region Consistency

Activation (RCA) for scene la-

belling.

Failed to achieve more global

label consistency of a scene

labelling system

(Ren et al.,

2015)

This paper uses Multi instance lin-

ear framework, which is able to

learn an object localization model

from large-scale data without us-

ing bounding box annotations using

pre-trained convolutional network.

Problem arises for inaccurate

box prediction, where only

part of the true object is

captured or too much back-

ground is covered.
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Table 2.1 Summary of key existing works on image segmentation (Contd.)

Authors Methodologies Limitations

(Xiao and

Zhong, 2019)

Proposed method combines dilated

convolution with multi-scale fea-

ture fusion to form a convolutional

neural network for image semantic

segmentation tasks.

Fails to achieve target detec-

tion during semantic segmen-

tation to distinguish different

individuals.

(Feng and

Wang, 2019)

Used weakly supervised approach

for semantic segmentation, and

adopt the mini-batch k-means ap-

proach to cluster the massive train-

ing samples with image level labels

and use the clustering centers as the

initial value of the base matrix.

It performed well with uncor-

related clusters, but it cannot

distinguish correlated clus-

ters.

(Zhou et al.,

2018)

In this paper, Weakly supervised

segmentation is carried out with

image-level labels, instead of ex-

pensive pixel-level masks. Used a

Peak Response Maps(PRMs) to en-

able a classification network for in-

stance mask extraction with help of

convolutional network.

It is for weakly-supervised

systems, so the PRMs can

be misled by noisy co-

occurrence patterns and

sometimes it struggles to tell

the difference between object

parts and multiple objects.

2.2 Visual Captioning

Visual captioning, also known as video/image captioning, is the process of providing a

written description/caption for a video/image (Gao et al., 2017; Amirian et al., 2020).

The caption/sentence briefly describes the objects and actions depicted in the image

or video. Combining CV and NLP to generate video descriptions was traditionally

thought to be a vision-intensive operation. For the last few years, much research has

been devoted to establishing a correlation between video content understanding and

textual prediction.

Two major causes have fueled growth in image captioning research: 1) advance-

ments in deep neural networks and 2) the availability of enormous corpora of images

with text descriptions. Deep neural network models (Simonyan and Zisserman, 2015;
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Cao et al., 2019) have grown in popularity because to their performance and ability to

do end-to-end training in CV and NLP. The most of the attempts are also popular due to

the combination of the CNN and RNN. (Shorten et al., 2021; Aneja et al., 2018; Kiros

et al., 2014; Krishna et al., 2017; Amirian et al., 2020) . These captioning models begin

by encoding an image with a CNN into a fixed-length feature vector, and then generate

a description by either conditioning text generation on image features or by embedding

image features and previously generated words into a multimodal space before predict-

ing the next word. RNN has been a popular choice for caption generating in particular

(Sutskever et al., 2014; Schuster and Paliwal, 1997). Numerous researchers generated

the description using a simple RNN. Others employed LSTM, which did better on the

task than ordinary RNN (Bin et al., 2019; Li et al., 2019; Yang et al., 2018). However,

several works have favoured log bilinear and maximum entropy language models as

well. For the visual representation, the majority of models use an intermediate repre-

sentation from a convolutional neural network (such as the activations of the fully con-

nected layer just before classification), because these features, while trained for object

recognition, generalise well to other tasks. Nevertheless, a few models express images

as a confidence vector across a finite number of visual concepts. This style is especially

advantageous when the domain is clearly defined. Almost always, the visual pipeline’s

parameters are initialised using weights learned from the ImageNet Large Scale Visual

Recognition Challenge (Russakovsky et al., 2015). A very interesting variation on the

visual representation in image captioning is the addition of ”attention,” in which the

model does not learn a single fixed representation of the image, instead learns a spa-

tially weighted representation of the image that focuses on different locations in the

image as it generates each word of the description.

2.2.1 Deep Neural Networks

CNN (Alzubaidi et al., 2021) is a type of neural network that has gained popularity

in recent years. It is a type of neural network that is specifically designed for im-

age/video captioning. However, video captioning is more complex than image caption-

ing and cannot be performed only through the usage of CNN. The CNN has proved

enormously successful in practical applications and has been incorporated into a vari-

ety of architectures for image identification, object detection, and object segmentation

(Alzubaidi et al., 2021). By integrating numerous blocks and employing small filter

sizes, CNN learns a detailed representation of the input, outperforming all other stan-

dard approaches in image-related tasks.
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2.2.2 Recurrent Neural Network

RNN is a neural network that can process sequential data. While CNNs are usually

used to process data with a fixed grid of values, such as images, RNNs are mostly used

to analyse data with temporal dependencies (data input changes over time). RNNs can

theoretically tolerate arbitrary input and output sizes, allowing for the development of

highly adaptable neural network models. RNN recently has been applied to a number of

tasks, including speech recognition, language modelling, image captioning, and video

description. The article by (Venugopalan et al., 2014) discusses how two stacked RNNs

are used to decode video frame information into a mapping space that is then utilised for

captioning. The authors (Karpathy and Fei-Fei, 2015) have also employed bidirectional

RNNs in video captioning, where they are used to learn the relationship between video

frames and English sentences and to add word embedding.

2.2.3 Long Short-Term Memory

The vanishing gradients and exploding gradients are a common issue while training

RNN models. Because derivatives propagate through several time steps, repeated mul-

tiples of values less than one gravitate to zero, whereas repeated multiples of values

greater than one explode. RNN requires repeated multiplication of derivatives over

time steps, making them prone to vanishing and exploding gradients. LSTM has been

presented to address the problem of vanishing and exploding gradients.

Image and video captioning are the most widely used vision-based innovations, ad-

dressing a variety of real-world issues such as retrieving relevant videos, enabling visu-

ally impaired persons to comprehend real-world events, and visualising and analysing

recordings(Bin et al., 2019; Olivastri et al., 2019; Zhao et al., 2019) . The older ap-

proaches, such as template-based and retrieval-based, appear to be out of date, notwith-

standing their use to some extent. The recent interest and advancements in this field

include neural image caption generation using deep learning (You et al., 2016; Lin and

Zhang, 2021).

Most of the initial work focused on image captioning, then eventually broadened

to incorporate video captioning. (Vinyals et al., 2014) built a deep-generative model

for autonomously creating captions for images by combining CNN and RNN. (You

et al., 2016) incorporate top-down and bottom-up methods for extracting additional

characteristics of the image and coupling them with an RNN capable of selectively

attending to semantic features identified in the image.
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(Lin and Zhang, 2021) presented a sequence-to-sequence framework of CNN and

RNN with an added attention module, as well as an additional memory unit for the en-

coder and decoder to supplement the memory of the RNN. However, in this approach,

only the RNN component is used for training. The author (Zhang et al., 2021) sug-

gested a graph-based partitioning and summarization technique, as well as two distinct

types of GCN-LSTM interaction modules. However, the research coupled with graph

represenations to explore the word relationships.

(Gao et al., 2020) developed a novel layered technique with adaptive attention that

explicitly addresses the spatial or temporal attention necessary for picking certain re-

gions or frames for word prediction. Additionally, the strategy emphasised low-level

visual cues and high-level verbal contexts. However, the strategy may perform even

better when numerous hLSTMat-based models are used in an ensemble.

(Liu et al., 2021) devised a new sibling convolutional encoder that encodes videos

concurrently using a dual branch architecture. This combined semantic extraction model

is coupled with ”soft attention” and fed into an RNN-based decoder unit. However, the

RNN decoder has a limited memory capacity; other deep networks such as LSTM and

GRU have been shown to be more successful. (Xu et al., 2018) constructed an attention

network to investigate attention fusion in both a hierarchical and end-to-end fashion. It

also contains a sizable number of encoder and fusion attention modules.

For future time step decoding, (Bin et al., 2019) presented the BiLSTM, which pro-

cesses videos in either forward or reverse orientations. It also develops a conceptual

framework for soft attention that focuses on items with specified probabilities. (Song

et al., 2019) introduced MS-RNNs, an end-to-end architecture that embraces stochastic

variables to cater for data uncertainty. (Yang et al., 2018) annotate the videos using

Generative Adversarial Network (GAN). The caption generator provides captions for

recordings, however the discriminator determines if words are accurate or made up.

(Zheng et al., 2020) introduced a interface that identifies actions by associating to both

the subject and video dynamics. Their behaviour is then translated using both the sub-

ject’s embedding and the video’s temporal properties.

2.2.4 Attention Mechanism

The attention mechanism (Bahdanau et al., 2014; Shen et al., 2018) is one of the most

significant accomplishments in the last decade of deep learning research. It has pro-

duced a slew of recent innovations in NLP, including Google’s Bidirectional Encoder
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Representations from Transformers (BERT) (Devlin et al., 2018) and the transformer

architecture. A neural network is said to be an attempt to simplify the actions of the

human brain. Attention mechanism is another attempt to replicate the same behaviour

of selecting focusing on a few important things while ignoring others in deep neural

networks.

Machine translation, a fundamental problem in NLP, tries to automate the transla-

tion of human languages. Neural machine translation has established itself as a highly

successful paradigm for learning features directly from data, resulting in amazing ad-

vances in machine translation. However, the widely used encoder-decoder model ar-

chitecture in neural machine translation has encountered difficulties with effectiveness

and training. Almost all models of neural machine translation at the state-of-the-art

are based on attention mechanisms. Attention models (Vaswani et al., 2017a; Xu et al.,

2015) assist in relating input sequence units regardless of their spatial and temporal sep-

aration, hence increasing the parallelizability of sequence data processing. As a result,

adding attention significantly enhances the Neural Machine Translation (NMT) model

(Xu et al., 2020) .

By explicitly attending to all signals, attention mechanisms enable the model to bet-

ter reflect long-range contextual dependency regardless of their position in the input

or output sequence. The attention-enabled NMT model does not need encoding the

entire source sentence into a single fixed-length feature vector. Rather than that, it con-

verts the source text to a series of feature vectors. At each decoding step, the attention

model searches for a collection of positions containing the most important information,

and then the decoder constructs a translation word using the context vector, which is a

weighted sum of feature vectors from selected positions.

Additionally, the attention mechanism can be classified into soft and hard attention

based on the range of selection (Shen et al., 2018). In soft attention (also known as

global attention), an overall position distribution is calculated. The generated probabil-

ity represents the relative relevance of each position and is utilised as a weight in the

context vector generation process. Due to the fact that soft attention is fully differen-

tiable, it is simple to train using a gradient-based technique. Unlike soft attention, the

hard attention mechanism compelled the NMT model to focus exclusively on a portion

of the input sequence that was deemed most relevant and ignore the remainder. Due

to the random nature of selection in hard attention, it cannot be easily taught by back-

propagation. Local attention is a hybrid method that incorporates both hard and soft
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attention (Shen et al., 2018). It takes a subset of the input sequence at random and

computes a distribution over the subsequence.

(Zhao et al., 2019), the soft attention module selectively selects the most pertinent

frames and the proper location of objects within each frame. Additionally, the authors

proposed an attention module that would focus on the most comparable phrases in order

to exploit more precise language descriptions.

More precisely, in soft attention, a softmax layer can calculate the probability distri-

bution at each decoding step using the energy function of the sequence of feature vec-

tors. Following the probability distribution calculation, the context vector is a weighted

point sum of feature vectors, with each feature vector’s weight equal to its likelihood.

The energy function in additive attention is a single-layer neural network that utilises

the current and previous positions’ feature vectors. The energy function in multiplica-

tive attention is the Mahalanobis distance or the simple dot product of distinct feature

vector pairs.

Transformer is a model (Tan and Bansal, 2019; Li et al., 2019) that is entirely based

on attention mechanisms and so requires substantially less training time than a recurrent

model. Transformers encode symbol positions in a significantly different way than the

recurrent model does. It augments the input embedding at the bottom of the encoder

and decoder with position encoding. In a transformer, there are two types of atten-

tion mechanisms: single-head attention and multi-head attention. Multi-head attention

(Voita et al., 2019) can be thought of as a collection of concurrent single-head attention

models. The output of multi-head attention is simply the sum of the outputs of each

single-head attention. Because the transformer does not directly accept embeddings as

inputs, its attention is also referred to as key-value attention. Typically, transformers

accept key-value pairs and queries as inputs. Queries originate from earlier levels in an

encoder-decoder architecture, while key-value pairs originate from encoder outputs.

2.2.5 Word Embedding

NLP is a term that refers to computer systems that are programmed to comprehend

human language. Human language, like English or Hindi, is composed of words and

sentences, and NLP aims to extract information from these sentences. A word embed-

ding is a type of learnt text representation in which words with the same meaning are

represented equally. Individual words are represented as real-valued vectors in a prede-

termined vector space using word embeddings. Each word is associated with a vector,
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and the vector values are discovered in a manner similar to that of a neural network. As

a result, the approach is frequently grouped with deep learning.

When working with word embeddings, one can either employ pre-trained word vec-

tors or train new vectors based on specific requirements or objectives. By and large, one

straightforward method to use word embeddings is to work with pre-trained ones. For

this purpose, it is intuitive that word embeddings are not all the same, and that there are

an infinite number of ways to generate them. Certain types perform better than others,

frequently depending on how they are used in specific activities. There are numerous

pre-trained embeddings available, including Word2vec (Mikolov et al., 2013), Glove

(Pennington et al., 2014), FastText (Joulin et al., 2017), Embeddings from Language

Models (ELMo) (Peters et al., 2018), and BERT. Utilizing these pre-trained vectors is

rather straightforward: all that is required is to download the vectors package, or in cer-

tain cases, to load a pre-trained version of the model that will provide the user with the

requisite word embeddings. The latter situation is valid for embeddings that require the

production of highly contextualised word embeddings (such as ELMo and all variations

of BERT). Certain language models that include pre-trained embeddings can also be

used to generate representations for sentences or longer sequences. This is especially

true for models like as BERT and its expansions.

2.2.5.1 Count Based Techniques

The majority of these strategies are statistical in nature, and one of the most well-known

is the well-known Bag of Words (BoW) (Harris, 1954).

2.2.5.2 Compositional Methods

The key tenet of this particular form of symbolic approach is the concept of composi-

tionality (Mitchell and Lapata, 2008).

2.2.5.3 Unsupervised Methods

The characteristic of unsupervised approaches (Mikolov et al., 2013) for producing

vectors representing long text sequences is their reliance on unstructured data, which

frequently examines unlabeled plain text.

2.2.5.4 Supervised Methods

To tackle specific tasks, supervised methods (Lai et al., 2015) are used, and the training

phase is defined by the use of a labelled dataset created by human annotators. Addi-
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tionally, these approaches are characterised by the presence of textual representations

in the last layers preceding the prediction.

2.2.5.5 Transformer Based Methods

The transformer structure makes use of many multi-headed attention layers (Tan and

Bansal, 2019; Li et al., 2019), which enables the model to concentrate on certain areas of

the analysed text. This is done so that the model may focus on the relevant elements of a

sentence, while ignoring the less important ones, and capture long-range dependencies

that earlier models were unable to grasp.

2.2.5.6 Multimodal Approaches

The emphasis is on a novel method of information fusion that goes beyond word em-

beddings and makes use of multi-modality (Bergsma and Goebel, 2011). The fusion

approaches are defined by the use of simple operations to perform a combination of

features, the multi-task methods are defined by the presence of multiple terms in the

loss function and the use of a multi-task learning approach, and the final group is de-

fined by the use of the attention mechanism. Table 2.2 provides summary of key existing

works on video captioning.
Table 2.2: Summary of key existing works of video captioning.

Authors Methodologies Limitations

(Shekharet al.

, 2020)

The video captioning model pro-

posed by the authors use a fusion

of different type of features such

as spatial features from a 2D-CNN,

spatio-temporal features from a 3D-

CNN and semantic features.

The decrease in CIDEr score

may be because of using only

the domain-specific seman-

tic features. The ability to

predict cross-domain seman-

tic words is reduced.

(Xu et al.,

2020)

The authors proposed a temporal-

spatial and channel attention mech-

anism that enables the model to take

advantage of various video features

and ensures the consistency of vi-

sual features between sentence de-

scriptions to enhance the effect of

the model.

Though the model utilizing

spatial and temporal atten-

tions, it lacks in performance.
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Table 2.2 Summary of key existing works of video captioning (Contd..)

Authors Methodologies Limitations

(Bin et al.,

2019)

A novel video captioning frame-

work, which integrates BiLSTM

and a soft attention mechanism to

generate better global representa-

tions for videos as well as enhance

the recognition of lasting motions

in videos proposed

1. exploring object-level

spatial–temporal dependency,

which is analogous to hu-

man visual understanding and

2. reasoning relationships

among different objects at the

same time (spatial reasoning)

or the same object at a dif-

ferent time (temporal reason-

ing).

(Venugopalan

et al., 2015)

Authors proposed a novel end-to-

end sequence-to-sequence model to

generate captions for videos. They

used RNNs, specifically LSTMs,

which have demonstrated state-of-

the-art performance in image cap-

tion generation.

No attention mechanism are

involved.

(Yan et al.,

2020)

Authors proposed the use of a novel

Spatial-Temporal Attention mech-

anism (STAT) within an encoder-

decoder neural network for video

captioning. The proposed STAT

successfully takes into account both

the spatial and temporal structures

in a video, so it makes the decoder

to automatically select the signif-

icant regions in the most relevant

temporal segments for word predic-

tion.

Authors draw a conclusion

that temporal and spatial cues

are complementary. When

both attention mechanisms

are utilized simultaneously, it

will achieve the best perfor-

mance
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Table 2.2 Summary of key existing works of video captioning (Contd..)

Authors Methodologies Limitations

(Nabati and

Behrad,

2020b)

The proposed architecture com-

prises two LSTM layers and a word

selection module. The first LSTM

layer has the responsibility of en-

coding frame features extracted by

a pre-trained deep CNN. In the

second LSTM layer, a novel archi-

tecture is used for video caption-

ing by leveraging several decoding

LSTMs in a parallel and boosting

architecture

In the proposed architecture,

several LSTMs are succes-

sively added to the network

during the training phase

by using a particular type

of Adaptive Boosting (Ad-

aBoost) algorithm.

2.3 Research Gaps Identified
• The majority of the work is done on strongly supervised images rather than

weakly supervised.

• The lack of an object+attribute model learned from weakly labeled data, i.e.,
images with object and attribute labels but neither their associations nor their
locations in the form of bounding boxes or segmentation masks.

• Early work on natural language description of visual data primarily focused on
static images, and there is less emphasis on understanding dynamic video data
and producing its description.

• Recognizing the fine characteristics of visual contents and the interconnections
between objects is a difficult endeavour. The most difficult aspect of this situation
is the subtlety of the action units.

• Need to build semantic context oriented model using latest deep learning techn-
ques to provide efficient visual descriptions.

• Learning mid level representations between the visual and natural language do-
mains is a crucial problem in visual-to-text techniques.

• By leveraging transformative advancements in deep learning and integrating them
with cutting-edge approaches in CV and NLP, we will be able to develop more
efficient and scalable systems for natural language video description.

• Even if we were able to distinguish many semantic features that appear through-
out the visual data, it is difficult to rank their importance in line with the image or
video’s theme in order to provide more pertinent written descriptions. In addition,
it is required to consider linguistic complexity to be employed.
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2.4 Problem Statement

This thesis attempts to solve the research based on an analysis of the gaps uncovered in

a survey of earlier works in visual image and video analysis. The goal of this research

is to suggest a method for a more accurate analysis of visual images and video to inter-

pret its content in terms of natural language descriptions. In light of this, the research

problem addressed in this work is stated as follows:

“To design and develop a comprehensive region-based semantic composition
framework for visual image and video event specification.”

2.5 Research Objectives

The following objectives were formulated in light of the identified research gaps and

the stated problem.

• To design an effective technique for enhancing and analyzing the pixel/image-
level label accuracy of visual data.

• To design and implement a semantic context-driven framework for captioning
images and videos by utilizing a visual captioning dataset.

• To create a framework for effective visual description generation using conceptual
attention-guided captioning.

• To develop and implement a comprehensive captioning model with merged sen-
tence and image feature vectors in order to improve the prediction accuracy of
natural language descriptions.
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Chapter 3

Visual Image Data Analysis using Semantic

Segmentation

Semantic segmentation is a critical component of object recognition models, as it at-

tempts to classify objects at the pixel level. In this connection, the research work ini-

titially was concentrated at recongnition of images at the pixel levels. Initially, this

chapter discusses the tasks involved in classifying a single object from an image at the

pixel level. The input image is processed to extract pixel-level information, and the

object in the image is then demarcated and segmented for identification purposes. To

begin, a Chinese Restaurant Process Stacked with Weakly Supervised Markov Ran-

dom Field (WS-MRF-CRP) is created, which employs Markov Random Fields (MRF)

(Wang and Zhao, 2017) for low-level operations and Chinese Restaurant Process (CRP)

(Blei and Frazier, 2011) for high-level operations. The second model begins with su-

perpixelization, which is accomplished by Simple Linear Iterative Clustering (SLIC).

A Multi Heat Map Slices Fusion (MSF) model generates an object seed heat map and a

Saliency Edge Color Texture (SECT) from which pixel-level annotations are generated.

Finally, the Pyramid Scene Parsing network (PSPNet) model is used to construct the

object’s final semantic segmentation. Additionally, this chapter explores another model

for developing an enhanced image segmentation model using an Encoder-Decoder neu-

ral network architecture in conjunction with a novel strategy for improving global label

consistency.

3.1 Image Segmentation using Encoder-Decoder Architecture and RCA

In this research, an encoder-decoder neural network architecture is merged with a unique

technique for enhancing global label consistency and an image segmentation model to

create an encoder-decoder neural network architecture. The work investigates and ap-

plies label distribution predictions drawn from the SegNet network (Badrinarayanan

et al., 2017) to image labelling. To increase global label consistency, an approach

called RCA (Li et al., 2015) is used. The RCA algorithm is based on a revolutionary

transformation of the Ultrametric Contour Map (UCM) (Arbelaez et al., 2011) to the

Probability of Regions Consistency (PRC) (Li et al., 2015). Proposed method achieved



superior performance when compared to state-of-the-art approaches. The following are

the most significant contributions made by the proposed work.

• Proposed a novel SegNet encoder-decoder neural network architecture for image
labelling in the first step.

• Then implemented an algorithm called RCA to improve the global label consis-
tency.

• RCA is based on a novel transformation from UCM to PRC.

• The RCA which utilizes the PRC, yields an improvement in the performance of
the scene labelling system for global label consistency is implemented.

3.1.1 Methodology

Scene labelling, also known as semantic segmentation, is a critical step toward high-

level picture interpretation since it assigns a specific object category to each pixel in an

image. Due to the intra-class variances and mutual occlusions of objects in the image,

scene labelling becomes a very difficult operation. Two essential difficulties in a scene

labelling system are accurately identifying each pixel in an image and ensuring global

label consistency throughout the entire image.

The initial step is to explore the SegNet encoder-decoder neural network architec-

ture for image labelling. The global label consistency was then enhanced with the RCA

method. It is based on the UCM’s revolutionary transformation into the PRC. The

Figure 3.1 depicts a block diagram of the proposed architecture for scene labelling.

The model is constructed using two distinct input image representations. The first one

generates the pixel-by-pixel label distribution representation. This representation was

generated using the SegNet architecture. The UCM of the image input is the second

image representation. Both of these representations are coupled utilising the RCA ap-

proach to produce an improved label consistency in the final image labelling.

Scene labelling aims to turn a raw image X into a label space L : L = f(X; ξ),

where ξ represents the parameters of this transformation. The above process is decom-

posed into two steps. In the first step, X is transformed into a label probability distribu-

tions space Y : Y = g(X; (W ; b)). Where, W and b denote the trainable parameters of

ConvNets (Krizhevsky et al., 2012). X is represented by a series of pixels that need to

be labeled by the CNN : X = [x1;x2; ..;xn]. These pixel representations are bounding
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Figure 3.1: Architecture of the proposed approach for scene labelling using UCM, PRC, and
RCA.

boxes of different sizes centered on every pixel. For each representation xi, we trans-

form it into the label probability distribution space: Yi = g(xi; (W ; b)). The final label

probability distribution is obtained by combining all the label probability distributions

together: Y = [y1; y2; ..; yn]. The second step is to transform the label probability dis-

tributions into final labels: L = h(Y ;ψ). Where, ψ denotes the hyperparameters of the

threshold.

An image X is represented by a series of pixels xi in the framework. Each of the

pixels is a candidate for training or testing with ConvNets. The ith layer of the ConvNets

is denoted as Hi. Ho is the input of the feature learning system. If the ith layer is a

convolution layer, it has trainable parameters Wi and bi, where Wi is the shared weight

vector of convolution kernels and bi is the bias vector. The output of the convolution

layer can be described as:

Hi = f(Wi.Hi−1 + bi) (3.1)

For a pooling layer Hi, the pooling process can be written as:

Hi = pool(Hi−1) (3.2)

We assume Y denotes the output of ConvNets, which is the probability distribution

of the different classes:

Y (i) = P (L = li|Ho; (W ; b)) (3.3)

The target of training is to minimize the negative log-likelihood of the ConvNets. In
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order to avoid overfitting, L2 regularization is used. Thus, the final loss function:

E(W, b) = −
|y|∑
i=1

logYi +
λ

2
W TW (3.4)

The hyperparameter, λ called weight decay, is used to control the regularization effect.

In the training process, we minimize E(W ; b) by updating the trainable parameters of

ConvNets (Krizhevsky et al., 2012) using Stochastic Gradient Descent (SGD) (LeCun

et al., 1998). Instead of a single column of ConvNet, heterogeneous multi-column

ConvNets are employed. ConvNets of different structures are trained separately. We

fused all the predictions from ConvNets with a sliding window fusion process to achieve

higher accuracy in the test process.

The SegNet architecture is a convolutional encoder-decoder network. This network

is topologically identical to the 13 convolutional layers in the VGG16 (Simonyan and

Zisserman, 2015) network. The role of the decoder network is to map the low-resolution

encoder feature maps to full input resolution feature maps for pixel-wise classification.

There is a decoder layer for every encoder layer. The final output will be the label dis-

tributions of every pixel used for the final RCA algorithm and the UCM representation.

UCM’s contour detector combines multiple local cues into a globalization frame-

work based on spectral clustering. A threshold is applied to the UCM, and unless their

probability is higher than that threshold, all the boundaries are ignored. This produces

a segmentation map of the image. We assume that regions have a more substantial

label consistency when they are in an over-segmented map compared with the under-

segmented ones. Therefore, the relationship between the PRC and the threshold applied

to UCM is described using the following equation:

Probability of Region Consistency
• Threshold is applied to the UCM and ignore all the boundaries unless their prob-

ability is higher than that threshold, which produces a segmentation map of the
image.

• We apply different threshold levels to UCM.

• The relationship between the PRC and the threshold applied to UCM is described
using the Equation (3.5).

PRC = ¬αlog(threshold). (3.5)
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The hyperparameter α describes the intensity of the inverse relationship between

threshold and PRC.

Region Consistency Activation

Two parameters, PRC and label probability distributions P of a region produced from

UCM are required to activate label probability distributions of all the pixels in the im-

age. Two ingredients are considered to activate label probability distributions of all the

pixels in the image - (1) PRC and, (2) Label probability distributions P of a region

which is produced from UCM. The Equation (3.6) shows the computation of P for

region R.

P =

∑
i∈R Y (i)

sum(
∑

i∈R Y (i))
(3.6)

The label distributions of a region R is the average of all the label distributions of the

pixels in that region. The label distributions of each pixel is activated using the the

Equation (3.7).

Y (i, j) = Y (i, j) + PRC × P (j) (3.7)

Where, i and j are the indices of pixel and labels. The RCA algorithm iteratively applies

the Equation (3.7) to all the regions which are generated from UCM. The Algorithm

for RCA is given below.

3.1.2 Experiments, Results and Discussion

3.1.2.1 Dataset

The proposed model was experimented using the images from CamVid dataset (Bros-

tow et al., 2008), (Brostow et al., 2009) to measure the effectiveness in labelling scheme

for this research work. From this dataset we used 600 RGB images of road traffic. The

data was split into the training and testing parts using a 70 - 30% split of the original

data.

3.1.2.2 Experiments

The SegNet architecture was built in Python using the Keras library that works on top

of the Theano deep learning framework. This architecture was trained using the dataset
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Algorithm 1: Algorithm for Region Consistency Activation (RCA)
Input: X: Label probability distributions;
UCM: Ultrametric contour map;
T: Thresholds vector;
α: Hyperparameter defined in Equation (3.5);
Output: Y : Label probability distributions after RCA;
The number of classes: cla← size(X; 3);
The number of thresholds :scales← size(T ; 2) Y ← X

1 ; for i = 1← scales do
2 Create a segmentation from UCM:
3 S ← UCM > T (i)
4 Calculate the number of regions: N ← count(S)
5 Calculate PRC of scale i, Equation (3.5):
6 PRC = −αlog(T (i))
7 end
8 for j = 1← N do
9 Find pixel locations within region S(j):

10 L← S(j)
11 Initialize label probability distributions of S(j):
12 P = zeros(cla)

13 end
14 for k = 1← cla do
15 for c = 1← count do
16 P (k)← P (k) +X(L(1; c);L(2; c); k)
17 end
18 end
19 Equation (3.6): P ← P = sum(P ) for k = 1← cla do
20 for c = 1← count do
21 Equation (3.7), consistency activation
22 M denotes Y (L(1; c);L(2; c)k) :
23 M ← M + PRC × P(k)
24 end
25 end

mentioned before to output the label distributions of all pixels in the image. This label

distribution of the image is used in the RCA algorithm that is being implemented in

the paper. The images are also hierarchically segmented using the UCM method. This

segmentation was implemented using the skimage library in Python. This library has

very convenient support for generating RAGs and performing hierarchical merging of

regions based on these graphs. The images were segmented using the following thresh-

old values: threshold = [0:05; 0:2; 0; 5; 0; 7; 0:9]. The experiment was repeated for
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all the above thresholds, and results were noted. The above two image representations

were further combined using the RCA algorithm.

3.1.2.3 Performance Analysis

Table 3.1: Performance of the proposed method for scene labelling with and without RCA.

Thresholds Without RCA With RCA
0.05 80.3 82.6
0.2 80.3 81.4
0.5 80.3 83.9
0.7 80.3 81.3
0.9 80.3 82.5

Table. 3.1 clearly shows an improvement in labelling accuracy when the RCA al-

gorithm is used, with the biggest gain occurring between 0.4 and 0.6. Additionally, we

observed accuracy gains ranging from 1% to 3% when utilising the RCA algorithm ver-

sus not using it while using the standard dataset. This demonstrates the critical nature

of global pixel label consistency.

Time Complexity Analysis

The proposed model consists of three components: SegNet model, UCM, and RCA. So,

the overall complexity of this work is the combination of the complexities of these three

components. But, a major contributor here is the deep learning model. The SegNet is

used as a feature extractor. Hence, the estimated overall complexity is approximately

Complexity of(CNN model) + Complexity of UCM)+ Complexity (RCA). The time

complexity of SegNet is roughly equal to the number of parameters (30m) based on

(Yi et al., 2019). Therefore, the time complexity is O(N), where N is the number of

parameters in SegNet.

3.1.3 Summary

This research work is to investigate the learnt features from ConvNets and to construct

a scene classification technique called RCA. Experiments demonstrate that the RCA

algorithm effectively enhances a scene labelling system’s global label consistency.
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3.2 Weaklier-Supervised Semantic Segmentation with Pyramid Scene Parsing

Network

Semantic image segmentation is the essential task of CV. It requires dividing visual

input into different meaningful interpretable categories. In this work image attribution

and segmentation approach is proposed. It can identify complex objects present in an

image. The proposed model starts with superpixelization using SLIC (Achanta et al.,

2012). A MSF model (Li et al., 2019) produces an object seed heat map, and a SECT

model (Li et al., 2019) generates pixel-level annotations. Lastly, the PSPNet model

(Zhao et al., 2017) for developing the final semantic segmentation of the object. The

proposed model was implemented, and compared with the earlier works, it excelled the

performance score. The significant contributions of the proposed work are:

• Colloboartion of different compactness levels of superpixels in the SLIC model
to determine the optimal superpixel size for improved accuracy of the model.

• Use of the PSPNet model for objet segmentation.

• Deploying Class Activation Mapping (CAM) model (Tagaris et al., 2019) to vi-
sualize the discriminative region used in the recognition process.

• Generating pseudolabel annotations using SECT methodology.

3.2.1 Methodology

The proposed model divides the input image into superpixels, or non-overlapping groups

of pixels with similar features. The technique used to accomplish this is called SLIC.

The super-pixelated image is then sent into the MSF model. When an image is supplied,

a heat map corresponding to the image is generated using the CAM model, which ex-

presses the pixel level reaction of each item class across superpixels. The generated

heat map is ineffective in determining the object’s outline or true structure. Thus, a

SECT model is used for the pixel-level annotations. By merging the results of MSF

and SECT, we effectively generate pseudo-supervised annotations for images. A LAB

colour and texture diagram are created by merging the outputs of MSF and SLIC. The

image’s saliency-edge modification results in the suppression of noisy pixels. Simul-

taneously, color-texture edge-based inference is employed to mine sections of objects

that are distant from seeds. The semantic segmentation network’s supplied framework

learns numerous object features from the images and accurately delineates them based
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on all the pixel-level weaklier supervised annotations collected. The suggested model

accomplishes this by utilising a PSPNet. The use of PSPNet enables the aggregated

representation of all distinct regional settings.

Original	Image

SLIC
Superpixelization

1	×	1
Slices

2	×	2
Slices

3	×	3
Slices	

CAM	

CAM	

CAM	

Heatmap
Fusion

Multi	Heatmap	Slice	Fusion	(MSF)	Framework

LAB	Color	LBP
Textures	Edge

Maps

Saliency	Edge
Maps

Annotation

SECT
Framework

PSPNet

Segmented	Image

Figure 3.2: Workflow in the proposed approach for weaklier-supervised semantic segmentation.

Given a dataset with N(Ns + Nm) samples and c object categories, here two parts

have been created depending on how many object categories are present. Those images

that contain a single category have been considered as Ns, while images that have mul-

tiple object types are considered as Nm. ResNetCAM-Keras (ResNet-50) model (Zhou

et al., 2016), which is pre-trained on ImageNet (Russakovsky et al., 2015) provides the

image as well as pixel-level priors to describe each dataset image, is used to generate

the class activation map as feature expressions.

The proposed workflow for image segmentation is shown in Figure 3.2. First, the

input images are over segmented into superpixels by using SLIC; next, a low-level

analysis is done for low-level attributes of the objects in the image by combined heat

maps. Pseudo annotations are generated with the MSF model combined later with the

SECT modification methodology. Finally, accurate object-level annotation is obtained

from pseudo annotation with iterative feature learning by employing the PSPNet model.

Figure 3.3 depicts how an input image would appear at every stage, namely: a) Input

image, b) SLIC, c) SLIC slices, d) and e) heatmaps, f) LAB color and texture, g) edge
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maps, and h) final output.

a b c

d

e

f

g

h

Figure 3.3: System flow diagram with input image through different steps of proposed weaklier-
supervised semantic segmentation: a) Input image, b) SLIC, c) SLIC slices, d) and e) heatmaps,
f) LAB color and texture, g) edge maps, h) final output.

3.2.1.1 Class Activation Mapping Model for Visual Interpretation

A typical choice for an object classification task is the CNN model, rehashed squares of

convolution and max-pooling layers, trailed by at least two densely associated layers.

The last layer is the dense layer with a softmax activation function and a node for every

potential object class. The CNN models have the risk of overfitting to the training

dataset due to many intermediate layers. So to avoid overfitting, dropout layers are

used. In the last few years, experts have started employing Global Average Pooling

(GAP) (Lin et al., 2013) to minimize overfitting. GAP layers help reduce the overall

spatial dimensions of any 3D tensor, such as the layer that performs max pooling. GAP

performs a very extreme level of dimensionality reduction compared to others.

ResNet-50 CAM-Keras (ResNet-50) is pre-trained on ImageNet, and it provides

pixel level, image level prior description for every image. It is used to generate a class

activation map as feature expressions. In this model, the GAP layer is included, then
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the softmax activation function is used as a densely connected layer, and it has 2048

activation maps of 7× 7 dimensions each. Let the kth activation map be represented as

fk where, k ∈ {1, . . . , 2048}.

...
,

G
A
P

f1
f2

f2048

D
e
n
s
e

X

...
,

X

+

w1

w2048

ResNet50 ...
,

Input Image
Class Activation Map

Figure 3.4: Architecture of ResNet-50 CAM model.

The average pooling, 2D GAP layer diminishes the former layer’s size (1,1,2048)

as it considers the average value of all the given feature maps. The inputs are merely

flattened due to the next flatten layer, without changing any information contained in the

previous GAP layer. The single node in the final dense layer is connected to each node

present during the last flatten layer. The weight connecting the kth node is considered

Wk in the flatten layer concerning every output node and matching image category. The

class activation map are obtained using Equation (3.8).

w1 × f1 + w2 × f2 + . . . ,+w2048 × f2048 (3.8)

Figure 3.4 shows the workflow in Resnet-50 CAM (Zhou et al., 2016). Many class

enactment maps for pictures are obtained to investigate the segmentation capacity of

ResNet-50. Bilinear upsampling is utilized to resize every activation map to 224× 224.

This brings about a class activation map having the size 224× 224.

A weighted activation map is constructed for each image in a CAM. It aids in iden-

tifying the region that a CNN examines when classifying a picture. CAMs are trained

unsupervised rather than supervised. This means that the objects do not need to be la-

beled manually, and the localization is a form of ”free” learning. The only change to

the architecture is to remove the completely connected dense layers at the end to keep

the spatial information confined in the output of the last convolution layer. Following

that, a global average pooling layer is created. This layer is typically used for regulari-

sation to prevent overfitting in the network. Finally, the output softmax layer is added,
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with as many neurons as classes to categorize. Implementing the class activation map

technique depends on the addition of global average pooling layers following the fi-

nal convolutional layer to spatially reduce the image dimensions and lower parameters,

hence limiting over-fitting.

3.2.1.2 Accurate Superpixelization of Images

A superpixel may be defined as a group of pixels with common characteristics (such

as pixel distance, pixel intensity, pixel color). SLIC is employed for superpixel gener-

ation. It accepts as its input a certain arbitrary number N of K superpixels, which are

similar in size, almost equal. It generates superpixels based on specific similarity mea-

sures, such as pixel distance, pixel intensity, or pixel color. The reason for our choice

was simple, though it was a deviation from the base paper (Li et al., 2019), which em-

ploys a contour-based detection algorithm for the same. As the original SLIC (Achanta

et al., 2010), outputs compact superpixels that are regular and nearly uniform, with the

minimum possible computational overhead, all while achieving excellent segmentation

quality. This will be useful for more accurate results in the further steps. At the onset

Algorithm 2: General structure of Super-pixelization algorithm
Input : An Image with N pixels
Output : Labeled pixels
1 Initialize cluster centers Ck = [lk, ak, bk, xk, yk]

T by sampling pixels at regular
grid steps S.

2 Perturb cluster centers in an n× n neighborhood, to the lowest gradient
position.

3 do
4 for each cluster center Ck do
5 Assign the best matching pixels from a 2S × 2S square neighborhood

around the cluster center according to the distance measure.
6 Compute new cluster centers and residual error E ( L1 distance between

previous centers and recomputed centers)
7 while E > threshold;
8 Enforce connectivity.

of the SLIC algorithm, at regular grid intervals S, K superpixel cluster centers are cho-

sen, where Ck = [l − k, ak, bk, xk, yk]. The value of k ranges from k = [1, K]. The

approximate size of any given superpixel would be N/K, and the area covered, or its

spatial extent would be almost S2. Based on the above, it is easy to say that any given
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pixel associated with given Ck lies in an area that is 2S × 2S around Ck.

The distance measure used is defined by the Equation (3.9) as a normalized distance

Ds to be used.

Ds = dlab + (m/S) ∗ dxy (3.9)

where, dlab =
√
(lk − li)2 + (ak − ai)2 + (bk − bi)2, dxy =

√
((xk − xi)2 + (yk − yi)2)

and Ds is the sum of the xy plane distance (dxy) and the lab distance (dlab), normalized

by the grid interval S. In order to control the compactness of the superpixels, m, a new

variable, Ds is introduced. The greater is the chosen value of m, the more compact

is the cluster. Here, we experimented with the different compactness values to check

which size of superpixel cluster ensure the best and most accurate outputs for our object

annotations. By varying the value of m, our experiments showed a significant variation

in the experimental results. Figure 3.5 explains the SLIC output with K = 100 and

different m values. The image (a) being the orininal image and (b), (c), (d), and (e) are

SLIC output images with different m values.

(a) (b) (c)

(d) (e)

Figure 3.5: SLIC output for an image with K=100 and varying values of m: (a) Original image
(b) m=1 (c) m=4 (d) m=10 (e) m=18
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Once this is done, noisy pixels are removed as K evenly placed cluster centers are

sampled such that the lowest gradient position can be found in a 3×3 region surrounding

it. The centers are moved to new locations accordingly. The next step is image gradient

computation and is computed using Equation (3.10).

G(x, y) = ∥I(x+ 1, y)I(x− 1, y)∥2 + ∥I(x, y + 1)I(x, y − 1)∥2 (3.10)

Where, the bracketed term is the L2 normalization, and I(x, y) is the lab vector corre-

sponding to the pixel at position (x, y). This accounts for both the color as well as the

intensity of the pixels. After this, every cluster center Ck is tied to the closest image

pixels, where an overlap is found between the search area and every pixel of the image.

Once the algorithm has iterated through each image pixel and completed the associa-

tion, the average lab XY vector of all the pixels belonging to the cluster is assigned as

the new cluster center Ck. This association and recomputation are repeated until con-

vergence is arrived upon. The remainder stray pixels are associated with joining disjoint

segments with the largest neighboring cluster in the last step.

Once an accurate superpixelization of the images is completed, object labelling be-

comes a multi-label classification problem where the superpixels formed would have

multiple attribute labels and an object label.

3.2.1.3 Generation of Multi Heat Map Slices Fusion

The image classification approach MSF provides fine coarse object details. An im-

age from the PASCAL VOC2012 dataset (Everingham et al., 2012) containing k object

categories is considered, and each class’s pixel-level response is expressed in k corre-

sponding heat maps generated as part of CAM model. The response center ⃗Vcentc is

selected, based on the discriminated category c. This is the result of the classification

stage, and the dimensions are sorted in descending order of response values. Top m

features dimensions are selected out of 1524, and corresponding m heat maps are gen-

erated. The value of threshold less than 1 is considered to choose the combinations of

features to express object category c; other features are considered noise and removed.

A weighted average calculation is performed for m obtained heat maps hi. To gen-
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erate final heat map Horic for category c we followed Equation (3.11).

Horic(x, y) =
m∑
i=1

vi × hi(x, y) (3.11)

(x, y) is the representation of pixel in heat map and the response value vi of hi is set as

weight.

Figure 3.6: MSF flow diagram with input image, where (a) shows input image, (b) shows 1× 1,
2 × 2 and 3 × 3 slicing, (c) shows 1 × 1, 2 × 2 and 3 × 3 fusion heatmaps, (d) shows the final
combined heatmaps from MSF.

The MSF method is proposed to be the CAM model. The objects in an image with

high and low scales will be descrimated in the process of gerearating heatmaps. In MSF,

the original image is divided into 13 (i.e., 2× 2 and 3× 3) slices based on their original

position and generated heat maps for each slice. Then we generate two heat maps H22c

and H33c with the same size of Horic . The weights for each slice and Horic are assigned

before the slicing process. This weights are utilized to compute the confident score of

the response vector n and category c. The genearted heat maps for the highest intensity

of pixels with the component Hmapc of category c as seen in Equation (3.12).

Hmapc(x, y) = max(Horic , H22c , H33c) (3.12)
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The normalized heatmaps obtained with a maximum of 1. The method of utilizing

more slices achieve better response value and inaccuarte regions are eliminated. A flow

diagram of the entire MSF process with an input image is shown in Figure 3.6.

3.2.1.4 Saliency-Edge-Color-Texture

The fusion of multiple heat map slices provides heat for each category c asHmapc . It has

highlighted all the key components in addition to focusing on the fuselage. Even though

it highlights all main aspects, it does not provide useful information on the overall

structure and outline of object regions in the image. To overcome this problem, we have

used the modification to add SECT methodology. The saliency map is more of changing

an image’s representation into image segmentation for more authentic learning.

In the proposed work, we have used the binarized saliency map to get a better result.

The use of an Edge map helps in determining the outline of the object region. The

model has used the Canny edge detection method for determining the edge of object

regions. Color helps determine the region covered by the object and provides useful

information about the object region’s overall structure. We have converted RGB images

to the LAB coloring scheme to get better results about structure. Lastly, the texture

provides information in the spatial distribution and arrangement of colors or intensities

in an image. For getting texture similarity, we have encoded the Local Binary Pattern

(LBP) texture.

Figure 3.7: LAB color conversion of the image.

Figures 3.7, 3.8, 3.9, and 3.10 shows the LAB color conversion (Mokrzycki and

Tatol, 2009), LBP texture mapping (Mokrzycki and Tatol, 2009), Canny Edge Map-

ping (Eshaghzadeh and Salehyan, 2016), and Binarized Saliency Map generation (Es-
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Figure 3.8: LBP Texture mapping of the image.

Figure 3.9: Canny edge mapping of the image.

Figure 3.10: Binarized saliency map generation of the image.

haghzadeh and Salehyan, 2016), respectively, of the input image. The SECT modifica-

tion provides pixel-level similarity analysis. It is based on low-level imaging attributes.

The results were later combined with a heat map generated in MSF. The combination

yields a pseudo supervised annotation. This way, we get the advantage of implementing

a network learning method with different patterns via different strategies.
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Other than components of SECT method, superpixalized image and heat map gen-

erated from MSF are key attributes in generating pseudo annotations. The superpixels

have been generated using SLIC method. It divided image i into s superpixel regions

spi(i= 1, 2, 3, ..., s). Then for these superpixel regions, we define average heat map as

Hmapc(spi), average saliency map as Smapc(spi) and average color-texture as Fmapc(spi).

Also Erel(spi, spj) for each pair of superpixels spi and spj on edge map is defined,

which states corresponding edges appearing on the line connecting two superpixels.

Based on above definitions, similarity measures have been defined based on color-

texture-edge correlation and saliency-edge correlation, as in Equations (3.13), and (3.14):

Sims(i, j) =
(exp(−we.Erel(spi, spj)))

(1 + ws.∥Smapc(spi)− Smapc(spj)∥22)
(3.13)

Simct(i, j) =
(exp(−we.Erel(spi, spj)))

exp(wct.∥Fmapc(spi)− Fmapc(spj)∥22)
(3.14)

Sims(i, j), and Simct(i, j) gives the similarity measure between superpixel spi and

spj . we, ws, and wct are the weights of different imaging attributes, which are set as 3.5,

10, and 10. The value of the weights are obtained from different experiments conducted

on the similarity measures till we got the satisfied result.

Using the above similarity measures, we have generated a weighted contribution of

the global heat map, which provides an updated result of the superpixels response value.

It is defined as Equation (3.15).

mapc
new(spi) =

s∑
j=1

Sim∗(i, j).Hmapc(spj) (3.15)

After completion of update for all superpixels, value of Hmapc(spi) is replaced by

Hnew
mapc(spi). We have used two measurements using the Color-Texture-Edge method

first, while the Saliency-Edge method performs the next operation to obtain the fi-

nal heat map. The first operation mines the object region more effectively while later

achieves noise suppression. This way, we achieve a more accurate object outline and

higher precision for pseudo annotation image.

The confident score Sfc calculated at image classification stage is used in generating
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pseudo annotation along with three thresholds, which are category confident score ths,

foreground partition threshold thfg and background partition threshold thbg. We also

calculate h(x, y), the maximum response value among the k heat maps generated for

an image containing k categories, which are weighed by the confident score Sfc. The

pseudo-label annotation Lmap is defined using Equation (3.16):

Lmap(x, y) =


c(x, y) h(x, y) > thfg ∧ Sfc ≥ ths

0 h(x, y) < thbg

255 else

(3.16)

Here c(x, y) is defined as the corresponding category, 0 is used for background value,

and 255 is used for the ignored region. We achieve different values of ths, thfg and

thbg based on different experiments. Figure 3.11 shows the overall architecture of the

proposed PSPNet and their different modules with input and output image.

Input	Image	
(SECT	Output) Final	Segmentation

Output
Feature	Map Pyramid	Pooling	Module

Pretrained
ResNet

C
O
N
V

Text

(a)

(b) (c)

(d)

Figure 3.11: PSPNet Model: (a) input image, (b) feature is extracted using ResNet with diluted
network, (c) After pooling for each feature, dimension reduction is done and after upsampling
them concatenation is performed, (d) output image (Zhao et al., 2017).

The pseudo-label annotations Lmap with image i are processed through PSPNet for

semantic segmentation part. PSPNet is ‘Pyramid Scene Parsing Network,’ ranked first

place in ImageNet Scene Parsing Challenge 2016. It provides a superior framework for

pixel-level prediction tasks and effectively produces good quality results on the scene

parsing task. The PSPNet has trained on PASCAL VOC 2012 dataset based on the
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images and pseudo-label annotations. This trained model has used later to find the

object region’s semantic segmentation present in the image.

In this work, ResNet50 (He et al., 2016) is used as a CNN model. It takes an image

as input and extracts its features, and Global pooling has been highlighted to gener-

ate a single feature. The feature map generated is passed through a pyramid parsing

module with four-level different pyramid scales to get sub-region average pooling, each

with size 1 × 1, 2 × 2, 3 × 3, and 6 × 6, respectively. After each pyramid level, the

1×1 convolution layer reduces the dimension of the different levels with representation

N ×N to N × 1 in global feature weight. Then features are fused under different pyra-

mid scales. This fusion provides us with dimensionally reduced feature map regions,

which are processed for upsampling. After which, they are concatenated for context

aggregation. Finally, a convolution layer will output the final segmentation.

3.2.2 Experiments, Results and Discussion

3.2.2.1 Dataset

For the implementation of weaklier supervised semantic segmentation model, we con-

sider PASCAL VOC2012 (Everingham et al., 2015) and ImageNet, which is available

on PASCAL VOC2012 official site with various object and attributes. ResNetCAM-

Keras (ResNet-50) is pre-trained on ImageNet, gives global and local image level de-

scription and generates class activation maps as feature descriptions. The split up of

1464, 1449, and 570 images are utilized for training, validation, and testing, respec-

tively.

3.2.2.2 Experiments

Every original test image in the dataset goes through various steps to produce image

maps to generate pseudo-label annotations. The image maps generated from the original

image are heat maps through MSF and CAM, LAB color, LBP Texture, Saliency and

Edge maps, and the image’s superpixel version. The selected image from the dataset is

passed through SLIC to generate superpixels in the image. The same image was sliced

into 2 × 2 and 3 × 3 slices. Each slice and the original image go through the CAM

model to generate heat maps for the given image. This heatmap is fused with the full

operation to generate the MSF result. The same image is used to generate LBP texture,
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LAB color scheme, Canny edge map, and Saliency map. The LAB, LBP, and Edge

map are combined with MSF results to produce a slight annotation combined with a

saliency-edge map and superpixalized image to produce the pseudo annotation.

The Color-Texture-Edge and Saliency-Edge maps are combined separately using

the similarity measures discussed above. These processes are done sequentially and

using the three threshold values, ths=0.15, thfg=0.5 and thbg=0.05. These values are

selected based on experiments conducted while generating annotations. The pseudo

annotation along with the original image processed through PSPNet.

PSPNet model with CNN as the backbone is trained with pseudo annotation and

original image PASCAL VOC 2012 train dataset with 1449 images. The dataset is

split bach-wise, each with size 2. The images are resized into 448 × 448 pixels. The

dataset is then set to train on the CPU device with learning rate 0.01, the momentum

of 0.9, maximum epochs of 10, and used standard per-pixel Softmax Cross-Entropy

Loss to train PSPNet and then finally assigns weights to the layers and stored check-

points. The trained PSPNet model provides a segmented image while clearly showing

the object region and the outline.

3.2.2.3 Performance Analysis

The Intersection over Union (IoU) and Pixel Accuracy is the evaluation measures used

to measure and analyze the performance of proposed models with the existing model.

IoU defined in Equation (3.17) is an essential performance metrics to quantify the over-

lap percentage between the target mask and the prediction output. This metric measures

overlapping factors between pixels.

IoU =
target ∩ prediction
target ∪ prediction

(3.17)

We calculate the IoU score for each class and then averaged over all classes to provide

a mean IoU [mIOU] score of our PSPNet model. The proposed work performs image

level segmentation and compared with existing work (Li et al., 2019). .

Table 3.2 represents the IoU score for each class and mean IoU score for the PAS-

CAL VOC2012 test dataset calculated for existing and proposed model i.e., Baseline

and PSPNet model, respectively. The results from PSPNet have mIoU accuracy of
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Table 3.2: Comparison of proposed method for weaklier semantic segmentation using SLIC,
MSF, SECT, and PSPNet with the state-of-the-art method.

Class Labels IoU Baseline (Li et al., 2019) IoU Proposed
(Background) 82.7 85.6
(Aeroplane) 70.1 72.1

(Bicycle) 28.2 27.4
(Bird) 48.5 51.6
(Boat) 37.0 41.3

(Bottle) 51.1 55.2
(Bus) 71.1 75.8
(Car) 69.8 71.9
(Cat) 56.4 17.2

(Chair) 10.1 42.7
(Cow) 46.8 34.4

(Dining Table) 36.9 52.8
(Dog ) 39.0 40.3
(Horse) 47.5 61.7

(Motorbike) 73.8 45.7
(Person) 49.3 74.9

(Potted Plant) 36.7 43.6
(Sheep) 67.0 54.1
(Sofa) 30.7 31.8
(Train) 47.1 67.4
(TV) 36.0 53.5

(mIoU) 49.3 52.4

52.4% on PASCAL VOC 2012 test dataset, which is better than the Baseline with mIoU

accuracy of 49.3%. The proposed approach achieved state-of-the-art performance.

Pixel Accuracy is a part of performance metrics to report the percent of pixels in the

correctly classified image. Here the pixel accuracy is commonly noted for image class

separately for the dataset. The Pixel Accuracy calculated using Equation (3.18).

Pixel Accuracy =
TP + TN

TP + TN + FP + FN
(3.18)

The True Positive (TP) in the Equation (3.18) represents a pixel that belongs to the

given class. The True Negative (TN) represents a pixel that does not belong to the given

class, a False Positive (FP) indicates a predicted output had no associated target mask

and a False Negative (FN) indicates a target mask had no associated predicted output.
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The trained PSPNet model provides us with a segmented image while clearly show-

ing the object region and the outline. Some results obtained for PASCAL VOC2012 test

dataset from PSPNet with Pixel Accuracy are shown in Figure 3.12 and Figure 3.13.

Each figure comprises the input image, predicted output, and ground truth, respectively.

(a) (b) (c)

Figure 3.12: Pixel Accuracy for the given input-1 is 0.673. (a) input image (b)predicted output
(c) ground truth

(a) (b) (c)

Figure 3.13: Pixel Accuracy for the given input-2 is 0.629. (a) input image (b)predicted output
(c) ground truth

Time Complexity Analysis

The complexity of training a neural network model for each epoch is defined by TE =

NbTfb (Justus et al., 2018), where Nb, and Tfb are the number of batches and approxi-

mate time required to backward and forward passes. Tfb is proportional to the number of

parameters in the deep learning model. The proposed approach has three components.

Hence, the complexity is defined by SLIC, three parallel CAM models, and training a

PSPNet model (an extension of CAM). For CAM, we have used ResNet50. Therefore,

the overall complexity is O(complexity of (SLIC)+3∗O(complexity of (CAM))+

e∗Nb∗O(complexityof PSPNet). This is approximately equal toO(N)+3∗O(P )+
e ∗ Tb ∗ Nb ∗ O(P ), where N , P , e, Nb, and Tb represent the number of pixels in the

image, parameters in ResNet50, epochs, batches, and time estimation for forward and

backward passes, respectively.
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3.2.3 Summary

This work’s main objective was to learn the appearance of an object present in it with

the proposed image attribution and segmentation model. First, superpixelization of

the image is done through SLIC. A MSF model produced an object seed heat map,

and a SECT model does the pixel level annotation. Object features are learned, and

semantic segmentation is carried through the iterative PSPNet model. We also deployed

a CAM model to visualize the images. The proposed model outperformed for class level

semantic segmentation against some of the existing models. The proposed approach

achieved state-of-the-art performance on the benchmark dataset. Further, this model can

be improved to yield an object-level semantic segmentation and developed to identify

sharp edges more clearly in the segmented image.

3.3 Weakly Supervised Image Annotation and Segmentation

The many components of image processing, such as object identification, object cat-

egorization, image segmentation, and attribute learning, are inextricably linked. This

research work suggested a BN technique (Hanea et al., 2015) for solving complicated

visual tasks by utilising the non-parametric property to constrain the model. We build a

MRF-CRP that employs MRF (Kato and Pong, 2006; Venmathi et al., 2019) at the low

level and CRP (Blei and Frazier, 2010) at the high level. The suggested approach auto-

matically discovers and incorporates associations between distinct object and attribute

classes. The input image is clustered into individual components using the MRF, and

then the components are merged, and the image-attribute association is generated using

the CRP. Experiments on the Berkeley Segmentation dataset (Arbelaez et al., 2011)

demonstrated that the proposed model outperforms other weakly supervised models

already available. The following are the most significant contributions made by the

proposed work.

• Instead of building the model for a specific type of dataset, the objective of this
work is to increase the robustness of the proposed model for multiple datasets.

• In this proposed approach, we tried to identify the association between objects
and attributes rather than just detection of objects and attributes.

• Accurately detecting the multiple main objects with non-initialized parameters
present in a weakly-labeled image.
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• A hierarchical model that stacks a specific local-level method with a global-level
method.

• Training the model for object and attribute annotation from weak image-level so
that the model learns to describe the object-attribute association.

3.3.1 Methodology

The architecture of the proposed approach for image segmentation is shown in Fig-

ure 3.14. It consists of the three stages between the weakly annotated image and the

final segmented image with the object-attribute association and are listed below.

• The first stage consists of Speeded Up Robust Feature (SURF) (Bay et al., 2006)
+ Color Algorithm for feature extraction.

• The second stage consists of model selection in order to constraint the regulation
of the model.

• The third stage is the final stage which results in object-attribute association using
a hierarchically stacked model.

A detailed explanation of above mentioned three stages are given in the subsequent

sections.

Figure 3.14: Architecture of the proposed WS-MRF-CRP model for weakly supervised image
segmentation.

3.3.1.1 Feature Extraction

All the 500 images one by one are decomposed into different super-pixels that are the

segmented patches of the image, which generally contain the objects of interest that
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makes the further process easy. This is done using the algorithm known as Hierarchi-

cal Segmentation. Each segment can be represented using two normalized features of

the histogram:- SURF (Bay et al., 2006) and color. Each image (i) from the Berkeley

Segmentation Dataset (BSD500) from the training dataset is firstly decomposed into

N(i) super-pixels using the algorithm of hierarchical segmentation. Further, the major

problem of joining the object with its attribute is narrowed down to the simple problem

of multi-label classification for each super-pixel. The SURF feature extraction process

is shown in Figure 3.15.

Figure 3.15: SURF feature extraction.

The Algorithm (Ordóñez et al., 2018) for the keypoint detection is shown in Algo-

rithm 3:

3.3.1.2 Model Selection

In the traditional clustering methods, a fixed number of clusters present in the data. It

addresses the first objective of building a model with growing parameters. The reason

for the need for a non-parametric model is to increase the robustness of the model so that

we don’t have to pre-define the number of clusters present in the image. The meaning

of non-parametric is a model that has a growing/infinite number of parameters. The

Bayesian is a stochastic probability distribution model, helps with the probability of the

parameters given the input data.

P (parameters|data) ∝ P (data|parameters)P (parameters) (3.19)

The reasons considered while selecting the model are to reduce the expensive com-

putations and prevent underfitting and overfitting. The computation cost of Bayesian

Non-parametric is less as compared to others. Also, a well-specified don’t have an is-

sue of overfitting and, being a non-parametric model having a growing amount of data
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Algorithm 3: Algorithm for the keypoint detection
Input: Set of selected bands for images.
Output: A set of keypoints K for each selected band.

1 Parameters: Numbers of sublevels Nsub

Calculate octaves Noct according to image size
Upsample images to get images whose size is divisible by number of octaves
Noct.
for <band b in images> do

2 Upsample band using bilinear interpolation.
Build pyramidal space space.
Smooth using Gaussian filter.
Compute contrast factor k from gradient histogram of smoothed band.
for o← 1, Nsub do

3 Subsample last sublevel image by factor of 2.
for s← 1, Nsub do

4 Use Gaussian filter for smoothing.
Compute conductivity g .
Discretized nonlinear diffusion equation.

5 end
6 end
7 Locate keypoints in scale space.

Compute determinant of Hessian matrix.
Detect keypoints by searching for points that are maxima of their
neighbourhood← Kb

1, K
b
2.

Refine position and scale of each keypoint.
8 end

prevents overfitting.

In Bayesian Non-parametric, there are various classes, but the one used extensively

is the Dirichlet Process (DP) (Wang and Zhao, 2017). The DP gives the probability

distributions over probability measures. G is the distribution over probability measure

provided by Equation (3.20).

G ∼ DP (α,G0) (3.20)

For the partitions over the space (A1, ..........An) shown in Figure 3.16 is given by

Equation (3.21).

(G(A1), ..., G(AK)) ∼ Dirichlet(αG0(A1), ..., αG0(An)) (3.21)
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Figure 3.16: Finite partition using Dirichlet (Wang and Zhao, 2017)

The DP has following two parameters:

1. G0- which is the base distribution of DP

2. α- which is the inverse variance of DP which is given by

V [G(A)] = G0(A)(1−G0(A))/(α + 1) (3.22)

Figure 3.17: Graphical model of Dirichlet process (Guimarães et al., 2012)

The Figure 3.17 represents graphical view of DP. Here, G0 is the base distribution,

α is a scalar hyperparameter, G a random distribution over parameter space, and θi is

a parameter vector that is drawn from the G distribution, and it is an element of space

(Guimarães et al., 2012).

Thus, the DP is a class of Bayesian Non-Parametric is the most suitable for our applica-

tion considering the fact that the number of parameters is not fixed and always growing.

Also, the various ways of representing BN, including CRP, gives the user an easy way

to implement the model.
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3.3.1.3 Object-Attribute Association and Image Segmentation

Chinese Restaurant Problem

The CRP is one of the representation forms of the DP(Wang and Zhao, 2017). The

various representation of the DP examines the problem from different points of view

resulting in different formulation but are mathematically equivalent. CRP makes use of

a Chinese restaurant analogy, which tells the probability which table will be occupied

by a new customer. The probability of the table chosen by ith customer:

p(yi = k|y1:(i−1), α) ∝

nk, for k ≤ K

α, for k = K + 1
(3.23)

where nk : number of customers seated at table k

K : number of tables occupied by the i-1 customers

α :Dispersion value of DP

Whenever a new customer comes, he/she can sit at a new table or a previously oc-

cupied table. As the number of seated customer increases the probability of the new

customer seating on an occupied table increase. The model used the distance between

the observed data items to cluster data in a non-parametric manner. A new customer

chooses an occupied table according to the familiarity. Combining this with MRP ad-

dress the 2nd objective of building a hierarchical model. The CRP acts as a higher

level method for clustering in the hierarchical model. Figure 3.18 gives an illustration

Figure 3.18: Illustration of CRP (Blei and Frazier, 2010)

of CRP. The approach operates with, customer selects either another customer or no

customer. In our approach, the clusters are equivalent to the tables and customer is

equivalent to the integers. This helps in clustering at the global level where clusters act

like tables and help in global level clustering.

Markov Random Field

MRF gives the conditional probability in neighbourhood of each variable
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p(yi|y−i) = p(yi|y∂i) (3.24)

y−i gives the vertices configuration without i and ∂ gives the set of neighbouring ver-

tices of i. The probability of the configuration is obtained by

p(y1:N) =
1

Z
exp

(
−
∑
µ∈U

Vµ(y1:N)

)
(3.25)

where Z is normalisation constant, V is clique potential function, and U is the cliques

set. However in most application we only consider first and second order clique shown

in Figure 3.19. The first-order checks whether the data item matches with the corre-

sponding neighbours and second-order smooth prior of the model.

(a) (b)

Figure 3.19: The representation graph of 1st and 2nd order clique (Kato and Pong, 2006; Ven-
mathi et al., 2019)

This property of MRF helps in the local level clustering that is the first level of

clustering and it’s output is used as an input for global clustering at global level using

CRP. It address the 2nd objective of building a hierarchical model.

3.3.1.4 Combined Hierarchical Model

The proposed approach is a hierarchical model which uses MRF for local clustering

and CRP for global clustering with infinite number of tables(clusters). In this case, to

have an infinite number of clusters depending on the endless number of latent features,

we choose CRP over Indian Buffet Process (IBP) (Griffiths and Ghahramani, 2011) due
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to its efficient working in finding the infinite clusters analogous to the limitless tables

in the Chinese Restaurant. The proposed approach uses objects and attributes as latent

factors and helps capture their correlations within it and across the super-pixels. The

CRP instead of the IBP so as to have better accuracy in the detection of the infinite

latent features and their association with the objects. The data’s input image is initially

clustered into the lower level, then the higher level CRP can be used to merge all various

components into the larger clusters.

This clustering of different objects and attribute cluster at the global level addresses

the 3rd objective of the object-attribute association. The building of a hierarchical model

helps build a model that can find the association between objects and attributes using

the global clustering using CRP. The relation in the hierarchical model is shown in

Figure 3.20: Relation between the component representation and the representation of cluster
assignment in the hierarchical models (Kato and Pong, 2006; Venmathi et al., 2019)

the Figure 3.20. The components that are formed previously are mapped to the cus-

tomers like the final mapping of the clusters to the tables. The model has the CRP at

the higher level and then the MRF at the lower level. The output of the MRF algorithm

is basically a clustering at the local level. To form a reasonably big cluster, an extra

layer of global CRP is used to the group of the already clustered at MRF to achieve

even better results. The main aim is to associate each image/super-pixel with the corre-

sponding latent factor vector which will then basically correspond to the other objects,

the attributes/unannotated attribute present in that image using MRF-CRP.
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3.3.2 Experiments, Results and Discussion

3.3.2.1 Dataset

2D Images of the BSD500 (Arbelaez et al., 2011) are used to evaluate the performance

of the proposed approach. The dataset has 500 natural images and ground-truth annota-

tions made by people. The data is clearly split into different sets called train, validation,

and test. For training and validation, the original 300 images are used, and for testing,

200 new images and human annotations are added. On average, five different people

”segmented” each image.

3.3.2.2 Experiments

The proposed approach describes briefly the different objective from the original image

to the final segmented image with object-attribute association i.e., to extract the features,

associate the objects with various different attributes and then finally the clustering of

the objects with the similar attributes in the same color so as to semantically segment it.

SURF is used to extract the features from all the 2D images. It does its operations

by using the box filters. It is used for feature extraction for which, it uses the Hessian

matrix approximation. The BN is used to identify the relation and is a probabilistic

model, which is eventually represented using CRP. We can use this in the MRF stacked

with CRP to form the clusters of the objects with similar attributes. Once the clusters

are formed, they merge together to form even bigger clusters which can directly be used

for the semantic segmentation.

Figure 3.21: An image segmented into 100, 150, 200 segments by super-pixeling

Figure 3.21 shows the different super-pixels of an image from the BSD500 dataset.

This is done using the Hierarchical Segmentation algorithm. Initially, every image is

decomposed into its various different super-pixels that are the segmented patches of the

image which generally contain the objects of interest and makes further process easy.
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The major problem of joining the object with their attribute is basically narrowed down

to the simple problem of multi-label classification for each of the super-pixel. On the

left column, the image has 100 super-pixels, 150 in the middle, and 200 super-pixels

in the last column of Figure 3.21. We can see that other than multiple segments of the

horse, but a segment only consists of either the horse, grass, or the fence, and does not

combine two or more objects.

In Figure 3.22, SURF has been applied to the image. The second image shows the

feature points detected by the approach, and the third image shows the vector points of

all the features and their magnitude. The larger the radius of the circle, the greater is the

magnitude of the vector point. The vector point to the direction of the feature change

to map out the exact number of good features that can be used to predict the different

points present in the image later on to be segregated into different segments based on

their attributes.

Figure 3.22: The stages of SURF algorithm

CRP is a type of BN method without the exact number of latent features. The latent

features are binary. An object either does or does not possess a feature. It works well

for an infinite number of clusters. MRF model provides a simple and effective way

to model the spatial dependencies in image pixels. It is used to model the connection

between two neighbor pixels.

Figure 3.23 shows us the intermediate stages of the proposed approach. The image

of the left is the original image from the BSD500 dataset. For the given image initially

SURF is applied to extract out all the features. The Hierarchical algorithm, including

CRP and MRF, is used stacked to each other from the object-attribute association. It

does this by segmenting the image into various different clusters. As seen in the second
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Figure 3.23: Sample images of different stages of proposed MRF-CRP model for weakly super-
vised image segmentationSegmentation

image of the Figure 3.23, it has 61 segments in the picture. These clusters are formed

depending on the super-pixel-values. The clusters merge into each other to form bigger

clusters, and eventually, when no such merging is possible, each cluster is colored dif-

ferently to show the semantic segmentation. The 61 clusters in the second image merge

together to form only 13 segments in the third image of Figure 3.23 and then finally

coloring different clusters to get the final output which is semantically segmented as

shown in the fourth image of Figure 3.23.

Figure 3.24: Result of SIFT + Colour

Figure 3.25: Result of SURF + Colour

As observed through the above images, SURF+Colour does a much accurate job

than SIFT (Lowe, 2004) + Colour at finding the key points and their vectors. SURF +
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Colour has been implemented using the OpenCV framework in Python. Since both of

these algorithms are comparatively slow, we used Threading to reduce the time taken

to detect features in the image. This has resulted in significant improvement in their

performance.

Time was measured for each of the feature detection algorithms by applying thread-

ing (2 threads in separate processes) and without threading on a video of 2 mins 48 secs.

The result obtained is shown in Table 3.3.

Table 3.3: Comparison of the performance of SIFT and SURF with and without threading

SIFT + Color
without Thread-
ing

SIFT + Color
with Threading

SURF + Color
without Thread-
ing

SURF + Color
with Threading

12 mins 26 secs 9 mins 56 secs 8 mins 17 secs 6 mins 13 secs

84 features per
frame

84 features per
frame

154 features per
frame

154 features per
frame

The final result of the proposed approach is shown in Figure 3.26. The original

image is given as an input on the left side, and the final output image on the right side of

Figure 3.26 consists of the object-attribute association. The intermediate stages of the

processing and the proposed approach is shown in Figure 3.23. SURF was used over

Scale Invariant Feature Transform (SIFT) for the purpose of feature extraction from

the image because the performance and the time taken by SURF was better than that

of SIFT. CRP was used over the MRF in the hierarchy as it was found to have better

performance, as shown in the Table 3.4. The clusters formed in the intermediate stages

merge together to form bigger clusters depending on their association as given by the

Bayesian Probabilistic model, which tells about the association between the objects and

the attributes by clustering using CRP.

As can be seen from the Figure 3.27 the difference in segmentation when using IBP

and CRP. The segmentation performed in CRP is better due to the better clustering

as compared to the IBP. As proved later by the performance analysis Table 3.4 the

Probabilistic Rand Index (PRI) of MRF-CRP is 0.79 while it is 0.75 for MRF-IBP. PRI

is a measure of the similarity among the clusterings of the data. It basically calculates

the number of correct decisions made by the proposed approach, since the score of CRP

is better than that of IBP, CRP with MRF is better than IBP with MRF.
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Figure 3.26: Objects and their attributes shown together in the same color

Figure 3.27: Comparison between IBP and CRP.
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Figure 3.28: Semantic Segmentation of the image with and without the CRP. First column on
the left is the actual picture from the dataset, second one is without CRP and then the last is our
actual methodology.

As seen in the Figure 3.28, MRF stacked with CRP works better for the clustering

of the images and the segmentation performed is much better. Without the CRP the

clustering is not good and hence the segmentation is not very good which is better

when CRP is used.

The 2nd image from the Figure 3.28 also shows the output of the image with only

using the MRF algorithm. From the results shown in Figure 3.28, it can be noticed

and seen that our proposed approach without using the CRP algorithm, basically over-

segmented the images into a large number of components to be assured of the accuracy

of the local level clustering while the overall model i.e. shown in the third image.

MRF-CRP has segmented the images into proper and very meaningful regions. It can

be seen as being blurry and having some segments which are not very well defined.

That’s why the CRP algorithm is used to enhance the segments and hence improve the

segmentation.
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3.3.2.3 Performance Analysis

The performance of the proposed approach is compared to the other existing methods

used for the semantic segmentation on the parameters like PRI, F1-measure and the

global consistency error. The algorithms to which proposed approach is compared are

MRF without CRP, DD-CRP (Blei and Frazier, 2010) and MRF with IBP as shown in

Table 3.4. The comparison clearly indicates that the proposed approach works the best

in all the 3 parameters. The dataset used for performance analysis in the Table 3.4 is

the BSD500.

Table 3.4 compares parameters PRI , F1-measure and Global Consistency Error

(GCE) respectively. The PRI calculation is as shown in Equation (3.26). Where,

(3.26), TP is the true positive, TN is true negative, FP is false positive and FN is

false negative. PRI calculates the number of correct decisions made by the algorithm,

since the score of MRF-CRP (0.79) is better than that of any other methodology i.e.

MRF(0.72), DD-CRP (0.69), MRF-IBP (0.75), proposed approach is the most efficient.

The higher value of the PRI is indicative of the fact that MRF-CRP is most efficient.

PRI =
TP + TN

TP + TN + FN + FP
(3.26)

F1-measure is the measurement of the accuracy of the test images. It involves both

the calculation of Recall as well as the Precision. Having higher F-measure is evidence

of having an efficient algorithm. The F-measure of the proposed approach i.e. MRF-

CRP is 0.71 is the higher as compared to all the other algorithms which have scores

0.66, 0.57, 0.67. The expression to calculate the F1-measure is as follows:

F1−measure = (1 + β2) ∗ true positive
((1 + β2) ∗ true positive) + (β2 ∗ false negative) + (false positive)

(3.27)

The GCE makes an assumption that one of the segmentation is a refinement for

the another one. It measures the extent to which one of the segmentation is seen as a

betterment of the other. Segmentation is basically the distribution of different pixels in

different sets.
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First, we introduce the local refinement error E(S1, S2, pi), which assesses the de-

gree to which two segmentations S1 and S2 agree at pixel p. Let R(S, p) represent the

group of pixels in segmentation S that belong to the same segment as pixel p. Where |.|
represents cardinality and . \ . represents set difference. This quantity is defined in two

directions per pixel, hence it is not symmetric. E(S1, S2, pi) is 0 when S1 is a complete

refinement of S2 and 1 otherwise.

E(S1, S2, pi) =
(|R(S1, pi) \R(S2, pi)|)

|R(S1, pi)|
(3.28)

GCE(S1, S2) =
1

n
min

{∑
i

E(S1, S2, pi),
∑
i

E(S2, S1, pi)

}
(3.29)

Segmentation here measures the error the two segmentations S1, S2. It takes S1,

S2 as the input parameter and outputs anything in the range [0,1]. In order to avoid the

GCE, all local refinements must point in the same direction, namely from one segmen-

tation to the subsequent.

Table 3.4: Comparison of the performance of proposed approach with other methods.

Algorithms
Probabilistic Rand

Index
F1-measure

Global Consistency
Error

MRF-CRP (ours) 0.79 0.71 0.23

MRF 0.72 0.66 0.19

DD-CRP 0.69 0.57 0.23

MRF-IBP 0.75 0.67 0.18

The experimental results obtained for the proposed approach are compared with

other methods shown in Table 3.4. The GCE metric can be used to evaluate the consis-

tency of a pair of segmentations. The measure is designed to be tolerant to refinement,

that is, if subsets of regions in one segment consistently merge into some region in the

other segmentation the consistency error should be low. To better understand how the

GCE error metrics work, it is interesting to consider what the metrics report on two

extreme cases: A completely under-segmented image, where every pixel has the same

label (i.e. the segmentation contains only one region spanning the whole image), and
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a completely over-segmented image in which every pixel has a different label. From

the definitions of the GCE ,we can see that both measures evaluate to 0 on both of

these extreme situations regardless of what segmentation they are being compared to.

The reason for this can be found in the tolerance of these measures to refinement. Any

segmentation is a refinement of the completely under-segmented image, while the com-

pletely over-segmented image is a refinement of any other segmentation.

Time Complexity Analysis

The proposed approach has three modules, namely: SURF, MRF, and CRP. The over-

all time complexity is the contribution of these three modules. Hence the overall

complexity is defined as O(Complexity of (SURF )) + O(Complexity of (MRF ))

+O(Complexity of (CRP )). The time complexity of SURF is O(mn + k) (Drews

et al., 2011), where m, n, and k denote image width, height, and the number of key

points, respectively. The estimated complexity of MRF is O(LVE) (Schwarz et al.,

2012). Where L, V , and E denote the number of labels, number of vertices, and

number of edges, respectively. The time complexity of CRP is O(L), where L is the

number of labels (clusters). Hence, the estimated time complexity is approximately

O(mn+ k) +O(LVE) +O(L) .

3.3.3 Summary

In this work, the proposed approach has been segmented in three different levels. It

uses the selective advantages of the MRF on low level and better performance of CRP

on high-level. To increase the robustness of the proposed approach, BN is used. The

three different segments are detection of the objects in the image, attribute prediction

and association, and semantic segmentation. The first and the most important task is

to detect the different objects. We have compared the SIFT feature detection algorithm

with the SURF feature detection algorithm and found that performance of SURF better

as shown in Table 3.3. The second objective is achieved by using the BN. The third ob-

jective of semantic segmentation and object-attribute association is achieved by making

clusters using MRF stacked CRP. For the local level, MRF starts clustering by forming

set of components. After low-level, these components are merged into larger clusters

using the high level CRP. The model can be used for 3D images with edge detection

technique for improving the efficiency will be perceived in future.
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Chapter 4

Visual Video Data Analysis using Captioning

4.1 Semantic Context Driven Language Descriptions of Videos using Deep Neu-

ral Network

The tremendous addition of data to the Internet in the form of text, photos, and videos

complicated CV jobs in the vast data domain. Recent advances in video data exploration

and visual information captioning have proven a difficult task in CV. The ability to cre-

ate visual captions is due to the integration of visual information with natural language

descriptions. This work offers an encoder-decoder architecture that utilises a 2D-CNN

with layered LSTM as the encoder and an LSTM combined with an attention mech-

anism as the decoder with a hybrid loss function. Spatial features are captured using

visual feature vectors taken from video frames using a 2D-CNN. To collect temporal

information, the visual feature vectors are input into the layered LSTM. The attention

mechanism enables the decoder to detect and focus on relevant objects and to corre-

late the visual context and language content in order to generate semantically accurate

captions. The decoder uses the visual features and Global Vectors for word represen-

tation (GloVe) word embeddings (Pennington et al., 2014) to build natural semantic

descriptions for the videos. The core contributions of the proposed framework are as

follows:

• Using GloVe word embeddings, specifically used 100-dimensional GloVe de-
pending on the size of the vocabulary in the dataset.

• A layered LSTM encoder trials with visual feature extractor networks for extract-
ing the temporal features to understand the activities in videos.

• A hybrid loss function was used to bridge the gap between semantic context of
video and word prediction.

• Testing the efficiency of proposed framework with eight well known performance
evaluation metrics.

4.1.1 Methodology

The proposed framework consists of encoder-decoder for generating an appropriate cap-

tion for a video as shown in Figure 4.1. The pre-processing stage focuses on preparing



the image frames derived from the input video to match the dimension requirements

of pre-trained CNN. The visual encoder combines CNN-based visual features and the

stacked LSTM. The decoder part is defined as a combination of attention and a single

LSTM layer. To select the significant features, the Soft Attention has been used. The
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Figure 4.1: Proposed context driven video captioning framework.

advantage of Neural Architecture Search Network (NASNet) and stacked LSTM is that

a varying number of convolutional cells and the number of filters in the convolutional

cells yields better accuracy than the traditional methods. Another view is that nonlinear-

ity, and careful selection of connections among neurons together add to better results.

Although two stages search the feature space created by two types of cells, stacked

LSTM predicts the best captions.

The deeper layers in stacked LSTM are understood to combine the learned represen-

tation from previous layers to create new representations at high levels of abstraction.

This adding depth is a type of representation optimizations.

In the proposed framework, the visual language model called encoder-decoder was

used with NASNet (Zoph et al., 2018), InceptionV3 (Szegedy et al., 2016), VGG16

(Simonyan and Zisserman, 2015). The decoder consists of the attention mechanism to

address long sequences in machine translation—this action of selectively concentrating

on a relevant word to be predicted while ignoring others in succession. Each sub-

components of the proposed framework are described in detail in following subsections.
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4.1.1.1 Preprocessing

In the preprocessing stage, extraction of frames are done. The extracted frames are re-

sized to meet the input dimensions of deep learning models, namely VGG16, NASNet,

and InceptionV3. Primarily, feature vectors are extracted, which are a high-level repre-

sentation of videos, using three distinct models with varying dimensions.

NASNet Large

The NASNet is a convolutional network originally used for image captioning. It takes

331 × 331 image size as input and resulting feature vector dimension of 4032 per frame.

The NASNet architecture is defined as the blocks or cells, and these blocks are defined

as the feature map with normal and reduction dimension. The blocks are called as

Normal Blocks and Reduction Blocks. The Normal Block usually measures the feature

map from the respective layer, and the Reduction Cell/Block reduces the feature map

by a factor of 2. The controller decoder finds these Normal and Reductions Blocks

information.

InceptionV3

Google developed this deep learning model for image captioning. The input image

size should be 299 × 299. It results in a vector of dimension 2048 per frame. This

model consisting of an “inception cell” working in parallel and then ultimately give the

concatenated results. The kernel size in this model uses 1 × 1 convolutions to reduce

the input channel depth. Each cell consists of different kernels with 1 × 1, 3 × 3, 5 × 5

dimensions, which learn to extract features from the input. Max pooling and padding is

used to retain the dimensions for concatenation.

VGG16

Oxford developed VGG16 deep neural network. It takes an input image of size 224

× 224 pixels. The output feature vector is of size 4096. This deep neural network’s

advantage is using a small receptive field with a kernel size 3 × 3 dimension. The

smallest possible size kernel captures the abstract information within frames through

traversal all along the image grid’s directions. The potential smaller values as the kernel

with 11 dimensions act as a linear transformation of the input. The process is followed

by a ReLU unit.
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Given a video as a sequence of frames V = {F1, F2, ..., Fn}, where the video V has

n frames and Fi represents ith frame of the video. The Feature Extractor generates set

of feature vectors FV = {FV1, FV2, ..., FVn}.

4.1.1.2 Visual Encoder

The visual encoder is a stacked/layered approach. Visual features are further processed

using stacked LSTM to capture temporal information. LSTM units’ output is merged

and then send to the decoder.

Single LSTM Unit

The LSTM network introduced in (Hochreiter and Schmidhuber, 1997). Architecture

of single LSTM unit based on (Sha et al., 2016) is given in Figure 4.2, and relation is

defined in Equation (4.1).

Figure 4.2: LSTM unit (Sha et al., 2016).

it = σ(Wxixt +Whiht−1 + bi)

ft = σ(Wxfxt +Whfht−1 + bf )

ot = σ(Wxoxt +Whoht−1 + bo)

C̃t = tanh(Wxgxt +Whght−1 + bg)

Ct = ft ∗ Ct−1 + it ∗ C̃t

ht = ot ∗ tanh(Ct)

(4.1)

Where, it, ft, and ot denotes input, forget, and output gates respectively. xt, Ct, and ht

represent the current input, cell state, and hidden states, respectively. Ct−1 and ht−1 are

the input from preceding timestep. The symbol * represents the element wise multipli-
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cation. Wxi, Whi, Wxf , Whf , Wxo, Who, Wxg, Whg, bi, bf , bo, and bg are the parameters.

Stacked LSTM With Dropout

The use of the stacked LSTM visual encoder is to encode the spatial CNN feature vec-

tors and to exploit temporal information of the frames in the videos. To improve deep

learning model performance and avoid overfitting, the dropout layer is induced on the

feature vectors to randomly switch off few cells during the training. The implementa-

tion is also tried with multiple layers of LSTM and finally, the output of the layers are

merged, and the result is given to the next layers. The output of layer i is defined as in

Equation (4.2).

o
(i)
t , h

(i)
t = LSTM (i)(xt, h

(i)
t−1) (4.2)

The output of each previous LSTM layers are concatenated to obtain the output vector

o
(f)
t of the encoder as shown in Equation (4.3).

o
(f)
t =

n∑
t=0

o
(1)
t + o

(2)
n−t (4.3)

The proposed stacked LSTM unit is depicted in Figure 4.3. The network length is the

measure of the time span of a training set. The ht, ct and xt denotes the output of

last moment, current cell state and, current input respectively. The experimental result

showed that 2-layered LSTM with combinations of NASNet, attention, and embedding

is better than 3-layered LSTM. Though the 3-layered LSTM seems better in abstract

representation, overall better performance has resulted in 2-layered stacked LSTM be-

cause of different combinations.

4.1.1.3 Decoder

The decoder takes the feature vector from the encoder and utilized give best match to

the original input using attention and GloVe vectors.

Attention Mechanism

The output context vector from the encoder is fed to the decoder and generates a se-

quence of words describing the video. Training the model and giving the input se-

quence with a very long text sequence is not good. This sort of single, less contextual

information from the encoder does not give the decoder excellent semantic and specific
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Figure 4.3: Proposed framework of stacked/layered LSTM unit.

information. The attention approach gives more contextual meaning to the used de-

coder. The decoder learned how much semantic “attention” it should give to each input

word at every decoding step.

The encoder output (o(f)t ) fed to the decoder which is more contextually meaningful.

The decoder’s last hidden state and encoder hidden states are combined to calculate

attention weights. A feed-forward neural network learns these weights.

The value for context vector ci for the output word yi is determined using Equa-

tion (4.4).

ci =
n∑

j=1

αijo
(f)
j (4.4)

The value for weights αij is computed by using a standard softmax function given

by the Equation (4.5).

αij = exp(eij)/
n∑

k=1

exp(eik) (4.5)

eij is the calculated output score for the input at j and output at i using Equa-

tion (4.6).

eij = a(si−1, o
(f)
j ) (4.6)
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Attention Based LSTM

The decoder is an attention-based LSTM network. Attention mechanism combined with

LSTM to focus on input sequence when predicting specific output sequence with more

contextual understanding. Hence, the proposed decoder attention helps in selecting

salient features for producing output sequence using a layer of LSTM.

In the proposed framework, every word in the caption encoded using GloVe. The

vector representation model GloVe is used as an unsupervised learning technique to en-

able word representations of the given input word sequence. This model’s training stage

gives a cumulative global word-word co-occurrence representation from an input word

corpus. The resulting vector depicts more informative and exciting linear structures of

the word vector space. These embeddings are passed to the last layer to generate the

sequence.

The previous hidden states ht−1, the previous predicted word wt−1, and the present

context vector are combined to form the LSTM’s (Venugopalan et al., 2014) hidden

state. During each time step context vector is adjusted so that decoder selectively at-

tends the input sequence. Hence, the output of the decoder is given by Equation (4.7).

ot, ht = LSTM([wt−1 + Attention[ht−1; o
(f)
t−1]], ht−1) (4.7)

Loss Functions

The approach used here is an attention-based LSTM. The main idea of using two loss

functions is to ensure the contextual relationship between words generated and the se-

mantic relations between the video features and the descriptions to be developed for the

video’s respective scene. The process maintains a simultaneous check between video

translation and semantic efficiency.

Loss 1 : Translation From Videos To Words

Cross entropy loss is used for calculating the cost of translation and is given in Equa-

tion (4.8).

Loss1 = − 1

N

N∑
n

y ln a+ (1− y) ln(1− a) (4.8)
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Where, N = represents number of training examples, y indicates actual values, and

a denotes predicted values.

Loss 2 : To Bridge The Semantic Gap

Mean squared error loss helps bridge the semantic gap by estimating how far off the

average predicted value is from the ground truth value. Thus, minimal value sees the

close relationship between an estimated and actual value and ensures higher semantic

similarity. The relation is defined in Equation (4.9).

Loss2 = − 1

N

N∑
n

c∑
k

(ynk − ank)2 (4.9)

Where, N represents number of training examples, c indicates dimension of output

vector, y denotes actual values, and a represents predicted values.

Combined Loss

The combined loss measure is given in Equation (4.10).

NewLoss = λLoss1 + (1− λ)Loss2 (4.10)

Where, λ is a hyperparameter between 0 and 1.

4.1.2 Experiments, Results and Discussion

4.1.2.1 Evaluations Metrics

The video and image captioning method is a result of collaboration between deep neural

network and advancement in NLP techniques. The NLP-related benchmark measures

that are often used to evaluate automatically created captions and reference captions

explained in the subsequent subsections. All of these indicators were applied to the

aforementioned standard datasets.

The performance of the proposed framework was evaluated on different metrics.

The BLUE (Papineni et al., 2002) algorithm evaluates the quality of the text, consid-

ered to be the matching between machines output and that of reference. The score

is always between 0 and 1. This score indicates how similar the machines predicted

output to that of reference with values closer to one representing more similar texts.
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The Metric for Evaluation of Translation with Explicit ORdering (METEOR) (Baner-

jee and Lavie, 2005) is evaluating the machine translation output based on the harmonic

mean of unigram precision and recall. The Semantic Propositional Image Caption

Evaluation (SPICE) (Anderson et al., 2016), is to alleviate the limitations of existing

n-gram based metrics. This method uses the semantic propositional context component

of caption evaluation. The Consensus-based Image Description Evaluation (CIDEr)

(Vedantam et al., 2014) metric measures the similarity of generated text against human-

generated sentence. This measure uses grammaticality, saliency, and accuracy inher-

ently captured. The Recall-Oriented Understudy for Gisting Evaluation (ROUGE) (Lin,

2004) is similar to BLUE compares predicted text with reference sentence.

BLEU

The Bilingual Evaluation Understudy Score (BLEU), is a score that is calculated by

matching a predicted machine translation against human generated reference. Although

BLEU was intended for machine translation, it may be used to analyse text output for

a variety of NLP jobs. An ideal match will have score of 1.0, but a perfect mismatch

is valued 0.0. Basicaly comparison based on lexical count of words in the candidate

translation (predicted words) with reference text, where if n=1 then it corresponds to a

token and a n=2 corresponds to a word pair. Order of the words is not considered while

comparison. The BLEU score is skeptical of syntactical accuracy. It is just concerned

with the total count of terms that match the reference or actual caption. Mathematically,

the above metric is defined in Equation ( 4.11).

BLEU = min

(
1, exp

(
1− reference-length

output-length

))
︸ ︷︷ ︸

brevity penalty

(
4∏

i=1

Precision i

)1/4

︸ ︷︷ ︸
n-gram overlap

(4.11)

Where, Precision is defined in Equation (4.12): The value, CW represents the total

number of correct words in generated sentences. The value, TW signifies the total num-

ber of words in the generated sentence.

Precision =
CW

TW
(4.12)
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METEOR

METEOR was presented as a solution to BLEU’s difficulties. METEOR substituted

semantic matching for the exact lexical matching required by BLEU. METEOR makes

use of the English lexical database WordNet to account for a range of match types, in-

cluding exact word, stemmed word, synonymy, as well as paraphrase matching. METEOR

scores for predicted and reference sentences are determined by calculating using uni-

gram Precision P and unigram Recall R, as described in Equations (4.13) and (4.14),

respectively.

P =
UGPR

UGP

(4.13)

where UGPR, the count of unigrams in the predicted and reference sentences and UGP

is the count of unigrams in the predicted sentence. Further, the Recall is defined in the

Equation (4.14).

R =
UGPR

UGR

(4.14)

where, UGR denotes the total number of unigrams in the reference. The mean harmonic

index (F) is derived using precision and recall are defined in Equation (4.15).

Fmeasure =
10PR

R + 9P
(4.15)

For longer matches, containing non-adjacent mappings between the predicted and ref-

erence sentences, a penalty is designed and implemented. Penalty Pn relation is defined

as depicted in Equation (4.16):

Pn = 0.5 ∗ C

UM
(4.16)

Where, C denotes the count of chunks as well as UM stands for the number of matched

unigrams. Consequently, the METEOR index for a certain alignment can be calculated

using the following Equation (4.17):

METEOR = Fmean (1− Pn) (4.17)

78



The higher the METEOR score, the more closely it is associated with human judgement.

ROUGE

The ROUGE metric was developed to evaluate text summaries. It uses n–grams to

determine the recall score of the generated phrases that correspond to the reference

sentences.

Recall and Precision is calculated for the longest common subsequence in Equa-

tions (4.18) and (4.19) respectively.

RLCS =
LCS (Rs, Ps)

Lr

(4.18)

PLCS =
LCS (Rs, Ps)

Lp

(4.19)

The F-measure score in Equation (4.15) can be calculated using LCS for predicted

summary Ps of length Lp and reference summary Rs of length Lr as depicted in Equa-

tion (4.20).

ROUGELCS(Rs,Ps) = FLCS =
(1 + β2)RLCSPLCS

RLCS + β2PLCS

(4.20)

Here, the value LCS (Rs, Ps) denotes the longest common subsequence of Rs and Ps.

β is the ratio of LCS-Precision to LCS-Recall.

CIDEr

CIDEr is an analysis method for human consensus-based image description. This met-

ric’s primary purpose is to compare a predicted caption to a single or set of human-

annotated reference captions for the image. It stems and converts all candidate and

reference sentence words to their root forms. Each phrase is regarded by CIDEr as a

collection of n–grams containing between one and four words. It calculates the number

of n-grams that exist in both the predicted and reference phrases to encode the consen-

sus between them. N-grams, which are extremely prevalent in reference phrases, have

been given a reduced weight using the Term Frequency Inverse Document Frequency

technique (TFIDF). The CIDErn score is computed as in Equation (4.21):
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CIDErn (ci, Si) =
1

m

∑
j

gn (ci) · gn (sij)
∥gn (ci)∥ · ∥gn (sij)∥

(4.21)

In this, gn (ci) is a vector representing all n–grams with length n and ∥gn (ci)∥ rep-

resents magnitude. Same is true for gn (sij).

4.1.2.2 Dataset

Microsoft Video Description (MSVD) (Chen and Dolan, 2011) dataset, which is a

benchmark dataset for video captioning. The dataset consists of a total of 1,970 short

video clips from YouTube and 41 descriptions in English for each video. It also con-

tains 80,000 clip-description pairs in different languages. For the proposed framework,

English captions and dataset split in (Venugopalan et al., 2014) used.

4.1.2.3 Experiments

Training Parameters

Figure 4.4: Plot of training loss versus number of epochs.: (a) 2-layered LSTM (b) 3-layered
LSTM

Using the dataset split up mentioned earlier, proposed framework was trained for

600 epochs. The proposed framework performed well with the following training pa-

rameters: batch size=128, learning rate=0.001, and optimizer=Adam. Figure 4.4 is a

plot of training loss against the number of epochs trained for 2-layered and 3-layered,

LSTM respectively. One can observe that the loss decreases drastically, up to 100

epochs, and then decrease gradual. The proposed framework got stabilized between
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400 and 600 epochs.

Sample Results With Built Models

In this work, three models proposed based on the different pre-trained models for fea-

ture extraction in the visual encoder part. Proposed Model 1 utilizes VGG16 based

visual Feature Extractor, Model 2 uses InceptionV3 to extract features, and Model 3

uses NASNet as Feature Extractor. All these models used GloVe embedding and atten-

tion in the decoding part.

Figure 4.5: Test samples: (a) Sample-1 (b) Sample-2 (c) Sample-3 (d) Sample-4 (e) Sample-5.

Figure 4.5 shows some frames of five different test samples. The corresponding

ground-truth and generated captions by three models are given in Table 4.1. The best
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Table 4.1: Sample input and output of proposed framework.

Figure
No. Ground-truth Model 1 Model 2 Model 3

Figure 4.5
(a)

{A girl is riding a horse and
jumping barriers}, { A girl is
riding a horse}, {A woman is
riding a horse in an outdoor
arena and she makes a jump},
{ A woman is riding a horse},
{A person riding a horse is
jumping hurdles}.

{a man is
riding a
horse}.

{a man is
riding a
horse }.

{a girl is
riding a
horse}.

Figure 4.5
(b)

{A baby is playing}, {A baby
is playing with a pacifier}, {A
baby plays on a bed}, {a baby
is sucking on a soother and
watching the camera}, {The
toddler put the pacifier in and
out of his mouth}.

{a man is
slicing a
potato}.

{a baby
is play-
ing with
toys}.

{3a baby
is playing
with a
camera}.

Figure 4.5
(c)

{A cat is playing with a
bunny}. ; {A cat is play-
ing with a rabbit}, {A kitten
is playing with a rabbit},{a
white cat playing with a white
bunny}, {A kitten and a rabbit
are playing}.

{ a kitten
is trying
to climb a
tree}.

{a cat is
playing}.

{ a white
kitten is
playing}.

Figure 4.5
(d)

{A woman is cutting some-
thing},{A woman cuts up
some worms},{someone show
how to prepare the japanese
food},{a person coking},{ a
women is making dish}.

{A
woman is
preparing
a dish}

{The
woman is
mixing in-
gredients
in a bowl}

{A
woman
is mixing
some
eggs}.

Figure 4.5
(e)

{A person is driving a car},{
the man is drive the car on
the road and seeing the place},
{Someone is driving a car},
{A car is driving down a road},
{A car is moving}.

{a man is
running in
the water}

{a man is
driving a
car}.

{a man is
driving a
car }.
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result with Proposed model 3 is due to the approach used here is an attention-based

LSTM along with NASNet feature extractor. Further, the idea of using two loss func-

tions is to ensure the contextual relationship between words generated and the semantic

relations between the video features and the descriptions to be developed for the video’s

respective scene. The process maintains a simultaneous check between video transla-

tion and semantic efficiency.

Deeper networks, such as VGG16, InceptionV3, exhibit a slower decline in efficacy.

This could be because those networks have a more complex structure, which gives them

more room to learn attributes of the images that are unaffected by noise. The blurring,

noise, or fogy produces a tiny shift in the filter responses in the primary convolutional

layer. However, the penultimate convolutional layer exhibits significant variations in

the filter responses. This modifies the first layer reaction, resulting in more or less

significant alterations at the higher layer. The deviations in the results of this model

would have been avoided by making some layers trainable and non-trainable. The other

options that use SGD optimizer to make the model converge play with the hyperparam-

eters, like setting the learning rate very low. The reason is in VGG16, the parameter

space is huge, and to deal with this issue, it doesn’t have any sophisticated techniques

like BatchNorm used in later models.

Obtained experimental results shows that Model 3 performed well in identifying

the objects in the images and the semantic consistency than the other two models. For

test samples in Figures 4.5 (a) and (c), Model 3 gave captions close to the ground-truth

captions than other two models. In test sample Figure 4.5 (b), Model 1 identified a non-

existing object. For test samples in Figures 4.5 (d) and (e) all the models gave almost

similar captions to the ground-truth captions.

Comparison of Models Performance

Table 4.2: Evaluation of 2-layered and 3-layered LSTM in proposed framework using BLEU
metrics.

Models

MSVD

2 Layer Stacked LSTM 3 Layer Stacked LSTM

BLEU1 BLEU2 BLEU3 BLEU4 BLEU1 BLEU2 BLEU3 BLEU4

VGG16 + Stacked LSTM + GloVe (Model 1) 69.1 50.1 38.2 27.0 68.1 48.8 37.0 25.58

InceptionV3 + Stacked LSTM + GloVe (Model 2) 74.3 60.1 49.7 40.2 73.6 59.8 49.5 38.5

NASNet + Stacked LSTM + GloVe ( Model 3) 78.4 64.8 54.2 43.7 78.2 65.3 55.1 44
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Table 4.2 shows the BLEU (Papineni et al., 2002) performance metrics evaluated

for the proposed framework with 2-layered and 3-layered LSTM on the MSVD dataset.

The model with NASNet extracted features, GloVe, and 2-layered LSTM almost per-

formed equally compared to the 3-layered NASNet model. But, this NASNet model

with 2-layered and 3-layered almost outperformed other proposed frameworks with

VGG16 and InceptionV3 as NASNet identifies videos’ objects more accurately with

the help of more abstract representations from layered LSTMs.

In stacked LSTM, a level of abstractions of temporal input observations is also

added. The GloVe represents words in n-dimensional space with unique meaning in

each dimension. It captures a correlation between other words, which helps the stacked

LSTM map from videos to descriptions correctly. The overall observations with this

level of experiment and values conclude that Model 3 with a 2-layered approach is

optimal and less costly, considering the BLEU metrics of all three models.

The suggested framework outperforms other current methodologies in terms of

overall model performance. NASNet’s LSTM and GloVe embedding are unusual in

their two-layered structure. There are fewer floating-point operations and parameters in

NASNets than in competing designs. To create a cell with the optimum performance,

NASNet uses a controller RNN to identify the best combination of operations from a set

of operations, rather than creating the block by hand. The input values to the network

are fed through many levels of LSTM and propagate over time within a single LSTM

cell with two layers of LSTM. Consequently, the parameters are well spread throughout

several layers of the system. As a result, each time step has a complete set of inputs.

While Word2Vec relies solely on local statistics (such as the context in which words

are used), GloVe takes into account global data (such as the co-occurrence of terms) in

order to produce word vectors.

To further validate the model’s performance, we added an additional LSTM layer

than the suggested framework, demonstrating the critical role of LSTM and its proper-

ties in producing superior outcomes to the two-layered strategy. As a result, proposed

Model 3 outperformed the other two methods in the combinations indicated.

Table 4.3 provides performance achieved by the proposed three models with 2-

layered and 3-layered stacked LSTM with four standard metrics mentioned and are
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Table 4.3: Evaluation of 2-layered and 3-layered LSTM in proposed framework using ME-
TEOR, ROUGE, CIDEr and SPICE.

Models

MSVD

2 Layer Stacked LSTM 3 Layer Stacked LSTM

METEOR ROUGE CIDEr SPICE METEOR ROUGE CIDEr SPICE

VGG16 + Stacked LSTM + GloVe (Model 1) 24.7 60.7 32.4 3 24.1 60.9 29.6 3

InceptionV3 + Stacked LSTM + GloVe (Model 2) 33.3 66.6 58.4 4.8 31.1 67.0 64.4 4.9

NASNet + Stacked LSTM + GloVe ( Model 3) 32.3 68.8 70.7 5.1 31.8 67.5 71.4 4.9

compared. We observe 2-layered Model 3 result compared to the 3-layered counter-

part outperforms the latter with efficient utilization of NASNet cells and connections.

Though the results seem to be significantly closer considering all three models with dif-

ferent LSTM levels and different performance metrics, 2-layered proposed framework

slightly have an edge on their 3-layered counterparts. In general, Model 3 consider

being more efficient in utilizing inherent features of that models to give the best result.

While the additional strength garnered by the more deeper architecture in LSTMs

is not fully understood theoretically, it has been observed empirically that deep RNNs

may perform better than shallower ones on certain tasks and datasets. Generally, two

layers of LSTMs have been demonstrated to be sufficient for detecting more compli-

cated features (Bin et al., 2019; Salman et al., 2018). Additional layers make training

more difficult due to increased layering results in information saturation, and increased

complexity and also may lead to poor performance. As a result of our trials, it is clear

that two-layered LSTM performed admirably across all measurement parameters.

Inception has inception layers and fewer parameters than VGG16, which is merely

a simple array of convolutional max-pooling layers with dropouts added at the outset

for speed optimization. Also, these dropouts effectively handle the model’s overfitting

issues by dynamically flipping connections with the activation layer. For regularisation,

there is additionally an auxiliary classifier. A complicated collection of filters within a

‘cell’ can considerably improve outcomes in InceptionV3. The NASNet model outlines

creating such a cell as an optimization process and then stacks numerous copies of the

best cell to create a large network. NASNet has designed a new optimized architec-

ture that employs a controller RNN module to choose the top-performing cells. As we

see the unique combinations, all of these structural modules performed on the MSVD
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dataset more effectively.

When other indicators such as METEOR, ROUGE, CIDEr, and SPICE are eval-

uated, the proposed Model 3 with two-layered LSTM outperforms the ROUGE and

SPICE scores. This implies that the SPICE score always takes the textual dataset’s se-

mantics into account, as well as the association of an additional attention layer in our

model. Whereas ROUGE is similar to BLUE and has a higher score, it makes logical

that Model 3 constantly outperforms all other measures, as we demonstrated in other

measurements. The Model 3 with three LSTM layers outperformed the CIDEr score

because the more abstract level of information learned by the third layer automatically

captures better grammaticality, saliency, and accuracy.

Failure cases

Figure 4.6: Failure cases: (a) Sample-1 (b) Sample-2 (c) Sample-3

Table 4.4 shows an inappropriate predicted output, which is not very close to the

ground truth for all three models, which has considered the 2-layer LSTM stack. Though

the failure cases ascertain, Model 3 is slightly better in giving results than the other two

models. In this, Figure 4.6 (a) depicts a sample input image featuring ground truth

captions. The output is slightly near the ground truth with the combination of attention

and the stacked LSTM in the proposed Model 3, due to the more in-depth learning of

parameters without convergence and the increased focus on the required captions ap-

propriate for the image locations. The model with NASNet has fewer parameters than
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Table 4.4: Failure cases: sample input and output given by the framework

Figure
No. Ground-truth

Model 1
pre-
dicted
caption

Model 2
pre-
dicted
caption

Model 3
pre-
dicted
caption

Figure 4.6
(a)

{A car running from the po-
lice},{A guy is riding too fast
in his bike.},{A man is driv-
ing backward and spins the
car around.}

{a man is
playing a
guitar}

{a car is
going up
}.

{a car is
chasing a
car}.

Figure 4.6
(b)

{A dog climbed into a clothes
washing machine.}, {A bull
dog is jumping into a wash-
ing machine.}, {The puppy
went into the dryer.}, {The
dog crawled into the dryer.}

{a man
is putting
some
vegeta-
bles in a
pan}

{a man is
beating a
concrete
into a
water}

{a man is
making
a fancy
dish}.

Figure 4.6
(c)

{ Airoplane in the Air}, {The
plane took off from the run-
way.},{An airplane is taking
off.},{the person going on the
airplane}

{a man is
riding a
bike}.

{a
woman is
pushing a
rock}.

{a
woman is
running
in the air
}

the other conventional networks, but it makes the best use of the features to accurately

predict over half of the ground truth words, outperforming some of the existing ap-

proaches. Model 1 fared poorly, as there were no matches because VGG16 entirely

misread the words due to insufficient learning. Model 2 predicted the terms as accu-

rately as Model 3 but with a better score than Model 1. This is due to the inception

modules, composed of smaller filters, technically known as pointwise convolutions, ac-

companied by convolutional layers with various filter sizes applied concurrently. This

enables Inception networks to learn more complicated features and predict words with

a high degree of accuracy compared to the ground truth. In Figures 4.6 (b) and 4.6

(c), all models failed to forecast accurately due to the complicated nature of the frames,

which prevented them from learning all the features precisely due to an abundance of

complex textures.
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Single Loss vs Hybrid Loss

Figure 4.7 depicts the variation in BLUE4 and CIDEr metrics’ performance while using

single and hybrid loss during training. It is observed that the proposed NASNet Feature

Extractor model performed well in the hybrid loss since single loss focus on only trans-

lation loss whereas hybrid loss, considers the semantic gap between video and captions.

Hence, hybrid loss proved to work better for the proposed framework.
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Figure 4.7: Single loss versus hybrid loss.

Table 4.5: Evaluation of Model 3 using different λ hyper parameter.

Lambda Values

Model 3

BLUE Score Other Metrics

BLEU1 BLEU2 BLEU3 BLEU4 METEOR ROUGE CIDEr SPICE

λ = 0.1 78.4 64.8 54.2 43.7 32.3 68.8 70.7 5.1

λ = 0.3 76.1 62.1 50.9 39.7 31.3 66.9 67.5 4.9

λ = 0.7 74.9 60.7 49.7 38.9 30.9 66.6 63.3 4.8

λ = 0.8 75.2 61.4 50.7 40.3 31.2 67.1 66.9 5.0

λ = 0.9 75.2 61.3 50.4 39.9 30.8 66.6 64.1 4.9

Table 4.5 shows the different performance scores experimented for hyperparameter

λ with different values. We observe different performance values are corresponding to

the different λ values. The best performance score has resulted with λ = 0.1 for the

proposed 2-layered Model 3.

The values of λ, one of the tweaking factors relating with hybrid loss. Overfitting

occurs in any model primarily as a result of the model learning even the slightest details
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contained in the data. Thus, after learning all conceivable patterns, the model performs

admirably on the training set however fails to deliver satisfactory results during the

testing phase. It crumbles when confronted with previously unknown data. To avoid

overfitting, the model’s complexity should be reduced. This applies a regularisation

parameter λ. As a result, comparatively simple models are less prone to overfitting than

complicated models. In this context, a simple model is one in which the dispersion of

hyperparameters has a low entropy, and hence many possibilities are attempted. We

discovered that the optimal value is 0.1.

Comparison with Existing Works

Table 4.6: Comparison of proposed layered LSTM method with existing video captioning meth-
ods.

Method BLEU1 BLEU2 BLEU3 BLEU4

S-VC (Li et al., 2015) - - - 35.1

SA (Yao et al., 2015) - - - 40.3

MM-VDN (Xu et al., 2015) - - - 37.6

LSTM-E (Pan et al., 2016) 74.9 60.9 50.6 40.2

HBNEVC (Baraldi et al., 2017) - - - 42.5

LVMVP (Nian et al., 2017) - - - 40.1

LSTM-GAN (Yang et al., 2018) - - - 42.9

SE-GRU (Hao et al., 2020) - - - 42.9

BPLSTM (Nabati and Behrad, 2020b) 78.4 64.8 53.8 42.9

UTS (Sah et al., 2020) - - - 43.00

STAT LOC V (Yan et al., 2020) - - - 43.2

STAT LOC L (Yan et al., 2020) - - - 42.9

p-RNN(VGGNet) (Yu et al., 2016) 77.3 64.5 54.6 44.3

Model 3 (Proposed) 78.4 64.8 54.2 43.7

Table 4.6 compares the obtained experimental results of the proposed NASNet Fea-

ture Extractor, Model 3 with some of the existing state-of-the-art video captioning

works on the MSVD dataset. The proposed NASNet model gave better results for

BLEU1, BLEU2, BLEU3, and, BLEU4 metrics. The reason behind this is because

BLEU score calculation searches for the same words in the text. The combination of

NASNet with layered approach betters the representation and prediction.
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Table 4.7: Comparison of proposed framework with the state-of-the-art methods w.r.t METEOR
and CIDEr score.

Method METEOR CIDEr

S-VC (Li et al., 2015) 29.3 -

SA (Yao et al., 2015) 29.6 51.7

S2VT (Venugopalan et al., 2015) 29.2 -

S2VT[VGGNet+Optical flow] (Venugopalan et al., 2015) 29.8 -

MM-VDN (Xu et al., 2015) 29.0 -

MP-LSTM (Venugopalan et al., 2014) 29.1 -

LSTM-E[VGGNet] (Pan et al., 2016) 29.5 -

LSTM-E[C3D] (Pan et al., 2016) 29.9 -

LSTM-E[VGGNet+C3D] (Pan et al., 2016) 31.0 -

LSTM-GAN (Yang et al., 2018) 30.4 -

p-RNN[C3D] (Yu et al., 2016) 30.3 -

p-RNN[VGGNet] (Yu et al., 2016) 31.1 -

LVMVP (Nian et al., 2017) 29.9 51.1

BPLSTM (Nabati and Behrad, 2020b) 32.0 62.20

HRNE (Pan et al., 2016) 32.1 -

HBNEVC (Baraldi et al., 2017) - 63.5

SE-GRU (Hao et al., 2020) - 62.3

STAT (Tu et al., 2017) - 67.5

MA-LSTM (Xu et al., 2017) - 70.4

UTS (Sah et al., 2020) 33.20 71.10

STAT LOC V (Yan et al., 2020) 30.5 62.8

STAT LOC L(Yan et al., 2020) 31.0 62.5

Model 3 (Proposed) 32.3 70.7
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Though the p-RNN (Yu et al., 2016) outperforms our Model 3 in BLEU3 and

BLEU4 attributed to the fact that their RNN model is not compelled and video features

are generally fed into the multilayer, our model outperforms all of the other approaches

listed in Table 4.6 due to the inclusion of soft attention in the decoder and a contextual

vector generated for the captions. The results in (Nabati and Behrad, 2020b) are iden-

tical in BLEU1 and BLEU2 because the measure is a just lexical matching of words

between reference[input sentence] and candidate sentence[predicted sentence]. When

it comes to BLEU3 and BLEU4 the proposed model is bettered due to the contextual

understanding of preceding and succeeding words of the any target word. Moreover

the proposed model is attached to an attention mechanism, which finds the lexical and

semantics of the words surrounded whereas the method in (Nabati and Behrad, 2020b)

is not with attention mechanism.

Table 4.7 shows the obtained experimental results of the proposed framework using

NASNet with some of the existing static frame-level approaches on video captioning

works on the MSVD dataset. The proposed NASNet framework gave better results

for METEOR metrics because it first compares tokens, synonyms, and paraphrases.

Some of the existing baseline papers having multiple different features on the same

video dataset. We observe that 2-layered Model 3 shows better performance. Table 4.7

also compares the CIDEr metrics and the proposed framework gave better results over

the existing works because CIDEr uses lengthier n-grams to capture the grammatical

properties and higher semantics of the text.

Experimentation Environment Details

All studies are done on a machine configured with an Intel Core i7-10750H CPU run-

ning at 2.60GHz, 2592Mhz, six cores, twelve logical processors, sixteen gigabytes of

RAM, and an NVIDIA GeForce GTX 1650 GPU. Keras with TensorFlow is used as the

backend.

Advantages

Real-world applications like automatic video subtitling, surveillance footage, text-based

video retrieval affordability for blind users, video comprehension, multimedia recom-

mendation is made possible by video and image captioning advances. These include

helping people with various degrees of vision disability, self-driving vehicles, sign in-
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terpretation, human-robot interaction, and intelligent video subtitling. Various 2D-CNN

models are experimented with layered LSTM to obtain the suitable model to extract

spatio-temporal features from the video in the proposed work. Also, the attention mech-

anism captures the contextual information to predict the best phrases for the videos. The

experimental results have also proven the same and made the proposed approach prac-

tically applicable in various real-world scenarios mentioned above.

Limitations

While our approach is capable of producing a sentence for video and has demonstrated

promising outcomes, it has significant drawbacks. The majority of our failures result

in an inaccurate object name being used in phrases, for example, when small objects

with similar shapes or appearances are confused. As a result, reliably finding correct

objects in images, including those that are hazy or obscured, and anticipating associated

captions would remain an open topic. Video and Sentential data goes unidirectionally

down to the next level via the visual encoder. As a result, utilising the Bidirectional

LSTM, erroneous information can still be eliminated. While we built a sentence vector

with GloVe, the model can still incorporate the most recent embeddings such as BERT

(Devlin et al., 2018).

Time Complexity Analysis

The proposed approach consists of a CNN feature extractor followed by a layered

LSTM model. So, the total complexity of the system comprises the complexity of CNN

model used and the complexity of training the layered LSTM model. This is approxi-

mately equal to O(CNNmodel)+O(LSTMmodel). Thus the overall complexity can

be defined as O(N) + e ∗ b ∗ Tb ∗ O(L). Where N , e, b, L, and Tb, denote the number

of parameters in CNN feature extractor, epochs, batches, parameters in layered LSTM

model, and time estimation of backward and forward passes, respectively.

4.1.3 Summary

The proposed framework fully explores the spatial and temporal information among

the video frames’ whole sequence. In this work, an efficient and new framework is

proposed by integrating multiple LSTM, different Feature Extractors, Soft Attention,

hybrid loss functions and GloVe embedding mechanism at the decoding stage. The
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visual encoder is a combination of CNN-based visual features and the layered LSTM.

The decoder part is defined as a combination of attention and a single LSTM layer. To

select the significant features, the Soft Attention has been used. This work induced the

hybrid loss to focus on semantic consistency.

Based on the experiments, the framework achieved approximately 24.5 % more than

S-VC, 9% more than LSTM-E, and 2% more than BPLSTM in BLUE score criteria.

Further, the proposed model outperformed SA by 9% and 36% in terms of METEOR

and CIDEr, respectively. Thus, the suggested model outperformed the majority of cur-

rent studies in terms of a variety of evaluation metrics.

In the future, we improve proposed model to work with domain-specific datasets,

such as movies and documentaries, and to extend the architecture to incorporate GAN.

Additionally, we would like to experiment with techniques such as beam search, which

is used to determine the optimal word combination for a caption.

4.2 A Novel Multi-Layer Attention Framework for Visual Description Prediction

Using Bidirectional LSTM

The massive inflow of data to the internet in the form of text, images, and videos has

recently exacerbated the difficulties of computer vision-based tasks in the world of big

data. Integrating visual content with natural language to create visuals or video expla-

nations has proven to be a difficult task for many years. However, recent experiments in

image/video captioning that make use of LSTM have piqued researchers’ interest in its

possible usage in video captioning. The proposed work describes the development of a

unique video captioning framework that combines a multilayer BiLSTM encoder and a

unidirectional decoder with a temporal attention framework in order to create superior

global representations for videos. The following are the most significant contributions

made in this research work.

• The proposed framework makes use of a novel multi-layer BiLSTM encoder and
a multi-layer unidirectional decoder.

• Both the encoder and decoder units employ two layers of temporal soft attention.
This emphasis on the complete global view of video segments adds additional
representational features.

• Additionally, to ascertain the superiority of the proposed framework, three vari-
ants of the models are examined.
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• Additional trials on two benchmark video captioning datasets demonstrate pro-
posal’s superiority over other existing standard methodologies.

4.2.1 Methodology

4.2.1.1 Preprocessing Unit

Video Preprocessing

In order to lessen the computational cost, we take 30 frames from each video that are

evenly spaced. In this step, the VGG-16 model is used to extract the features from video

frames, which is then fed into the encoding unit to provide a global view of the videos.

Text Preprocessing

In order to clean up the corpus, deleting any unnecessary spacing and special symbols

that were there. We eliminate sentences with fewer than three words and more than

30 words since more than 90 percent of the sentences have lengths larger than three

words and fewer than 30 words, respectively. The < BOSs > and < EOS > tokens

are added at the beginning and end of each phrase, respectively, to mark the beginning

and end of sentences. When a batch of these sentences is formed, a token < pad >

is added to ensure that all of the sentences are of the same length, which increases the

computational speed of the batch.

4.2.1.2 Proposed Multi-layer Attention Model

The proposed framework results are obtained by coupling a state-of-the-art notion called

attention with a variation of the RNN, particularly the LSTM network, which is capa-

ble of learning long-term dependencies. We are attempting to determine the impact

of normalisation and model size on BiLSTM in terms of efficiency, performance, and

accuracy, as well as gain a better understanding of the reasons for these outcomes.

The proposed multi-layer attention framework for video description generation is

depicted in Figure 4.8. Architectures for encoder and decoder are used in conjunction to

create the framework under consideration. There are 1024 hidden units in the encoder,

which is made up of a BiLSTM. The encoder generates a 2048-byte output since this

concatenates the BiLSTM’s forward as well as backward LSTM outputs in a single

operation.
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Figure 4.8: Proposed multi-layer attention framework

The decoder is constructed using a single direction layered LSTM unit. To achieve

higher performance, this unit is merged with 2048 hidden units, a 1024-node attention

layer, a 256-node embedding layer, and a fully - connected layers with nodes matching

to the vocabulary of the corpus. Additionally, the decoder is composed of a fully con-

nected layers with nodes representing the vocabulary of the corpus. The decoder LSTM

has a concealed size that is twice as large as the encoder LSTMs, which is a significant

advantage.

LSTM encoders are bidirectional, which means that their output is double the size
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of their hidden layer, as explained above. Utilizing a decoder of above mentioned size

enables us to take advantage of the encoder’s hidden states in the LSTM decoder, which

is a considerable advantage. This permits the encoder’s overall video content interpre-

tation to be propagated to the decoder’s global video representation.

The encoder BiLSTM is used to generate a global representation of the input video

from each video that has been processed once it has been obtained after preprocessing.

This data is kept in order to make it available to the decoder’s attention layer at each

and every time step of the usual decoding stage. When a end of the time step is reached,

the attention unit delivers a context vector that contains the encoder output and the

decoder’s hidden state. When a sentence is input, the decoder goes over each word and

produces the next word in the sentence. At the input stage, each word is fed into the

decoding embedding unit, and the decoder embedding’s output is fused with the context

vector received from the attention layer. As input, this combined vector is passed to the

LSTM decoder, which decodes it. The output of the LSTM is sent to a fully connected

layers, which generates a vector with a length equal to the vocabulary size of the corpus

and including information about the next term.

Sequential Model Using LSTM-Based Neural Network

To use a single input sequence, conventional RNN can theoretically take account of

arbitrary long-term relationships in word sequence. When utilising LSTM units as

RNNs, the vanishing gradient problem is partially solved due to fact that LSTM units

ensure gradients to continue to flow unchanged or unmodified. Initially, a video clip

V = (F1, ..., FN), is used, with Ft denoting the video’s tth frame as the initial starting

point for the captioning task. In this case, the primary goal is to encode video with

words and express the result as a feature vector Vfeature. The repeating nature of each

frame must be considered in order to emphasise the time dependence of the frames’

content. The RNN variation maps the input word sequence X = (x1, ..., xt) to an

output word sequence Z = (z1, ..., zt), which can be expressed as

ht = ϕ(Whxxt +Whhht−1), (4.22)
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zt = ψ(Woht), (4.23)

Where

• X = (x1, ..., xt) :specifies input sequence at each step

• Z = (z1, ..., zt) : determines the order of the outputs at each step

• Wh∗ : Weights that are related to previously hidden states / the present input.

• Wo translates the hidden states between the hidden and output spaces.

• ht−1 and ht : represent the RNN’s hidden states at t− 1 and t, respectively.

• ϕ and ψ represent nonlinear, two functions, respectively.

tanhsigmoid sigmoid sigmoid

tanh

ht-1 ht

xt

ct-1 ct

ft it
ot

Pointwise Multiplication

Vector Concatenation

Pointwise Addition

Figure 4.9: LSTM Architectural Preview.

While traditional RNNs suffer from the gradient vanishing or explosion problem, an

upgraded RNN stores information in a memory cell and uses numerous control gates to

have read-write operation from and to the memory unit or cell respectively, resulting in

improved performance when leveraging extremely long temporal dependency relation-

ships. Refer to Figure 4.9 for an illustration of the core LSTM architecture, and all of

the gate information can be logically stated as follows:

it = σ(Wixxt +Wihht−1), (4.24)

ft = σ(Wfxxt +Wfhht−1), (4.25)
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ot = σ(Woxxt +Wohht−1), (4.26)

ct = ft ⊙ ct−1 + it ⊙ ϕ(Wcxxt +Wchht−1), (4.27)

ht = ot ⊙ ϕ(ct), (4.28)

• W∗h : Weights that relate each gate in the LSTM to previous hidden states.

• W∗x : Weighing units that connect the current input to each gate.

• σ : depicts the sigmoid nonlinear activation functions.

• ϕ : depicts the hyperbolic tangent nonlinear activation functions.

• ⊙ : represents the operation of element-by-element multiplication.

Bidirectional LSTM

CNNs have entirely independent inputs and outputs, but in some cases, the model may

need to recollect prior meaningful words in order to choose the next relevent word. For

example, you might be watching a video clip and pausing to estimate the finish; your

guess will be based on already watched portion of clips and what interpretation has

come to mind so far. RNN recalls the previous event and tries to predict the next word

in this way. This way it tunes to solve the CNN problem by introducing a hidden units

as a layer into the network.

LSTM

LSTM

xt-1

σ

yt-1

LSTM

LSTM

xt

σ

yt

LSTM

LSTM

xt+1

σ

yt+1

Forward Pass

Backward Pass

ht-1 ht ht+1

htht-1 ht+1

σσσ σ

Figure 4.10: Bidirectional LSTM architecture.

An LSTM recalls every piece of information over the course of time, just as it re-

members prior inputs. It is advantageous in the prediction of time series. Bidirectional
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RNNs connect two RNNs together, allowing them to provide information on both the

forward and backward sequences. LSTM provides stronger sequence processing capa-

bilities and has the capacity to detect lengthy dependencies in sequences. LSTM-based

networks are used to analyse the temporal feature for video and, the framework uses

them to do so. It does this by mapping the video-level activity into the language model,

which results in word-for-word video descriptions.

Whilst employing unidirectional LSTM, only past data may be used as inputs; thus,

only previous data can be preserved. Alternatively, when employing BiLSTM, inputs

can be processed in either direction: forward or backward. This strategy is far more

effective at any moment in time, because it allows you to obtain knowledge from both

the future and the past by combining two latent states.

In BiLSTM, contextual information is processed in both the forward and backward

directions, allowing for the retention of information from both the past and the future.

According to recent study, bidirectional RNNs produce better results when relying on

sequential voice recognition processing and image captioning for a lengthy period of

time. The Bidirectional LSTM architecture used in our proposed framework depicted

in Figure 4.10.

Temporal Attention

The study in recent past on neural deep learning network has made extensive use of

the attention mechanism, particularly in domains requiring vision, such as video/image

captioning and machine translation. The basic notion is to increase the emphasis on a

specific section of an image or video frame. A mechanism of attention that placing a

greater emphasis on essential or crucial video frames with objectivity and their associ-

ations such as human actions, as opposed to its spatial mechanism, which promotes on

the image’s more semantically significant components.

Temporal attention can be viewed as a context set of visual elements with a window

of visuals. Depending on the context, these visual features are referred to as regions

or frames. At each discrete time step, the attention vector in Equation (4.29) can be

created in conjunction with the dynamic weights for each visual element. The value

in Equation (4.30) is appropriately accommodated by the dyanamic weights. For each

visual element along the last concealed state shown in Equation (4.31), a relevancy

99



score is produced.

sat =
m∑
i=1

αt
ivci, (4.29)

m∑
i=1

αt
i = 1, (4.30)

γti = Wreltanh(Wavci + Uaht−1 + ba), (4.31)

Equation (4.32) used to standardise the acquired relevance ratings.

αt
i = exp(γti)/

m∑
j=1

exp(γtj), (4.32)

• FOV : Field of View

• vci : Represents ith element of context set.

• V C = (vc1, ..., vcm) : Denotes visual context set.

• αt
i :Signifies dynamic activation weights for each element in context set.

• sat : Generated attention vector.

• γti : Context set relevance score.

• Wrel : relevance parameter for Context set .

• Wa :Context element parameter.

• Ua : Hidden state learning parameter.

The approach, soft attention attempts to replicate the attention allocation cycle for

a given field of vision. By integrating forward and backward passes with temporal

attention and applying temporal attention in the process, the current framework con-

structs sentences word by word in two phases. The approach produces a context set

for each specific situation by utilising CNN highlights of edges and other latent infor-

mation states in the merging layers. Moments after the production of a word, temporal

attention directs the language model’s focus to explicitly wordly locations that are more

semantically significant. When the input word sequence is combined with the output, it

is advantageous to consider the attention vector with the input, as illustrated in the base

model, Figure 4.11.

100



Feature Extraction Using
Pretrained CNN (VGG16)

...,

...,

...,

...,

Context Vector

<BOS>      <a>         <man>        <is>     <driving>

Soft Attention

...,

  <a>         <man>      <is>     <driving>    <EOS>

...,

Input Video

     Visual Encoder Language Model
(Decoder)

Merge Unit

Backward Unit

Forward Unit

Sentense Unit

Figure 4.11: Base line model architecture

Batch Normalization’s mathematical model

When training a deep neural network with multiple layers, the outcomes may differ

due to factors such as the learning algorithm’s design and the initial random weights.

Due to the fact that the weights are updated after each mini-batch, the distribution of

inputs to the network’s deep layers differs with each mini-batch. They can make it more

challenging for the model to acquire new skills by following a moving object. A deep

neural network’s ”internal covariate shift” refers to a change in the proportion of inputs

to layers due to the shift in the internal covariate dispersion of a network. Large neural

network models that have a large number of inputs are standardised batch-by-batch us-

ing a technique known as batch normalization. This strategy significantly decreases the

number of epochs necessary for training while simultaneously stabilising the model’s

learning process. During training, batch normalisation can be accomplished by com-

puting the mean and standard deviation of each input parameter for each mini-batch.

Finally, these results are employed to restore the network’s representational capacity;

a transformation logic is established. The mini batch mean is calculated using Equa-

tion (4.33),
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E[x]B =
1

m

m∑
i=1

xi, (4.33)

where xi is values of x over a minibatch, B = x1....m.

The mini bacth variance can be defined with help of Equation (4.34),

Var[x]2B =
1

m

m∑
i=1

(xi − E[x]B)
2 , (4.34)

Now, for a layer with d-dimensions, x =(x1...xd), each dimensions of its input can

be normalized using, Equation (4.35),

x̂ki =
xki − E[x]kB√
Var[x]

k2

B + ϵ

, (4.35)

where k ∈ [1, d] and i ∈ [1,m]. The ϵ is an arbitrary small constant for numerical

staility. The final transformation is logically defined in Equation (4.36),

yki = γk.x̂ki + βk, (4.36)

The γ and β are learnable parameter during the optimization process. By default, γ

elements are set to 1 and β elements to 0.

Stacked LSTMs

Figure 4.12 depicts the organisation of layers in a hierarchical manner for stacked

LSTM, which is comparable to that of a straightforward feed-forward network. The

reason for this is to increase the complexity of the model. By stacking LSTMs, it is

possible to define more complicated patterns in each layer of the model. However, it is

not yet known how effective stacking LSTMs is theoretically, but it has been demon-

strated empirically that deep RNNs perform better in some circumstances (Goldberg,

2016) when compared to shallower RNNs.
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Figure 4.12: Stacked LSTM model architecture

Multi-Layer Attention

Following preprocessing in this proposed framework, each video is transmitted onto

the encoder BiLSTM, which produces a global representation of the original video.

During each time step, the encoder’s output is kept in order to be fed into the decoder’s

attention (Bahdanau et al., 2014) layer. During each time step, the attention unit receives

the encoder output from the decoder as well as the hidden state and returns a context

vector. When a sentence is input, the decoder takes each word in turn and produces the

following word in the sentence.

The framework proposes adding two layers of LSTM and two attention layers shown

in Figure 4.8. The outcome of the framework is discussed in the result section. The

intent behind the framework as based on earlier research by (Schuster and Paliwal,

1997; Karpathy and Fei-Fei, 2015; Ullah et al., 2017). The performance of bidirec-

tional LSTMs is always significantly superior than the performance of unidirectional

models, which has been found in a variety of fields such as image captioning, speech

recognition, and action recognition. Adding another layer of attention allows for a
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more in-depth examination of the results of both layers of attention. The addition of

two layers of attention to the framework can help it to optimise the results even more

effectively.

4.2.2 Experiments and Results

4.2.2.1 Dataset

MSVD

This standard dataset called MSVD (Chen and Dolan, 2011) corpus, is comprised of

1970 videos and additional 80000 captioning sentences. Each video clip is between

eight and twenty-five seconds long. Each sentence has roughly seven words, and each

video contains approximately 43 sentences total for the duration of the video. The

dataset contained 1970 videos, which was utilised in this research work. The dataset

divided into two groups of 80 percent training and 20 percent test sets, respectively.

MSRVTT

The Microsoft Research Video to Text (MSR-VTT) (Xu et al., 2016) corpus has ten

thousand video clips with twenty descriptive text for each clip. The dataset categorises

videos broadly, including ”music,” ”TV shows,” and ”tourism.” Each clip lasts between

10 and 30 seconds. The dataset contains about 20,000 unique words, with an average

of around ten words per description. The framework was built using a dataset split into

6513, 497, and 3000 rows for train, validation, and test, respectively.

4.2.2.2 Experiments

Inspire by the base line (Bin et al., 2019), in this work we present a total of four frame-

works, one of which being the base model. The following paragraph summarises and

lists all of the models.

• Base line model: This design is backed up by research outlined in (Bin et al.,
2019). The encoder and decoder, respectively, are made up of one BiLSTM and
one unidirectional LSTM, as indicated in the Figure 4.11.

• Base line model with Batch-Normalization: A batch normalisation layer at the
encoder’s output and another batch normalisation layer at the decoder’s LSTM
output were incorporated in this model.

• Stacked LSTM: Two BiLSTMs are layered together for the encoder in this archi-
tecture, while two unidirectional LSTMs are stacked together for the decoder as
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depicted in Figure 4.12. The attention layer makes use of the encoder’s second
BiLSTM output at every time interval, as well as the hidden state of the decoder’s
second LSTM. However, the hidden states of both language model LSTMs were
initialised with the hidden states of the visual model.

• Multi-layer attention model :The encoder and decoder are constructed by stack-
ing two BiLSTMs for the visual model and two unidirectional LSTMs for the
language model, respectively. The following step is to use the output of the first
BiLSTM of the visual encoder at each time step, as well as the hidden unit of
the first LSTM of the langauge model, for the first attention layer. The second
attention layer is formed using the outcome of the second BiLSTM of the visual
encoder at every sampling interval, as well as the hidden unit of the second LSTM
of the word embedding. To preconfigure the hidden states of either the LSTMs
in the langauge model, they must first be populated using the visual encoder’s
hidden units. This proposed architecture is shown in Figure 4.8.

The fundamental distinction between the Base line model and Stacked LSTM mod-

els is that the Stacked LSTM model’s encoder and decoder are built of two layered

LSTMs, as previously described and illustrated in Figure 4.12. Similarly, the second

LSTM output is considered while building the soft attention mechanism in the encoder,

and it is used to output one word at a time when developing the word output mechanism

in the decoder. Due to the fact that the Stacked LSTM Model has two LSTM across

both the visual encoding as well as language model stages, it is twice as large as the

Baseline. It is imperative to highlight between the Stacked and Multi-Layer Attention

Models because the Multi-layer attention model incorporates an additional attention

layer interconnecting the encoder’s first BiLSTM and the decoder’s first LSTM, as de-

picted in Figure 4.8.

Implementation Details

The work took into account both the dataset video-sentence as well as a sample. When

an input sentence sequence is fed further into the decoder, a new word is produced

alongside the original word. The proposed models were optimised using an Adadelta

(Zeiler, 2012) and initial learning parameters. The additional hyperparameters are de-

fined as follows: ρ with a value of 0.9 and ϵ with a value of 10−6, respectively. In

this instance, a mini-batch of size 64 was employed to train the model. The framework

trained iteratively until the best results.

• MSVD : To train these models using the dataset, the framework was created
using open source Google Colab. Each epoch took 570 seconds, 800 seconds,
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and 1040 seconds, respectively, for the Base Model, the Stacked LSTM model,
and the Multi-Layer Attention model.

• MSR-VTT : To train these models using the dataset, the framework was cre-
ated using open source Google Colab. Each epoch lasted 1156, 1520, and 1940
seconds, respectively, for the Base Model, Stacked Model, and Multi-Attention
Model.

A word was constructed by initialising the global video interpretation with the <

BOS > token and then outputting the following word using the decoder’s output. The

framework includes the previous output word as an input word for that video’s caption

until the decoder outputs a < EOS > token or the maximum count of words possible

for that video’s caption. Regardless of whether the model accurately captions a video,

if the amount of words in the reference sentences exceeds the number of words in the

caption, the model’s BLUE (Papineni et al., 2002) and METEOR (Banerjee and Lavie,

2005) scores are dropped, respectively. To obtain the required results, the framework

determines the maximum count of words to output as the average count of words in the

reference collection for that individual video clip.

Results and Analysis

The metrics BLEU and METEOR are two of the most commonly used in video/image

captioning. METEOR performance metric pulls from the source documents and evalautes

the precise steming, paraphrasing, and synonym matching. It makes use of the Word-

Net database (Feinerer and Hornik, 2020) and determines similarity scores at sentence

level, allowing it to capture all semantic components of a sentence.

When comparing a candidate sentence to numerous reference sentences, BLEU-n

uses modified precision, the ratio of the number of candidate n-grams in the corpus to

the total number of candidate n-grams.

The BLEU score assesses textual and lexical coherence but not semantic coherence.

Because METEOR is more robust than BLEU in our research, we used METEOR as our

prominent metric and BLEU as a supplementary metric to evaluate model variations.

Table 4.8 contains information about the performance of all the models on the

MSVD and MSR-VTT datasets. When compared to the Base line model, the Base line

model with (Batch-Normalisation) outperforms the Base line on the test set by a sig-
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Table 4.8: Performance of proposed multi-layer attention models on MSVD and MSR-VTT
datasets.

MODEL
MSVD MSR VTT

BLEU1 BLEU2 BLEU3 BLEU4 METEOR BLEU1 BLEU2 BLEU3 BLEU4 METEOR

Base line model 66.01 49.42 38.69 27.19 48.14 57.75 37.49 29.50 16.05 36.25

Base line model with BN 62.07 40.28 27.07 16.61 39.30 63.09 38.84 26.99 14.02 35.82

Stacked LSTM 67.49 51.98 41.90 31.23 49.19 58.18 41.41 32.02 17.61 37.88

Multi-layer attention(Proposed) 70.50 56.62 49.60 33.07 51.77 60.33 43.72 34.12 19.61 39.47

nificant margin. Stacked LSTM model performance exceeds both the Base Model and

the Base Model with (Batch-Normalisation). It regularly generates high-quality results.

When both models are trained to the exact count of epochs, it outperforms the Base line

model considerably. In comparison to the Base line model, the Stacked/layered LSTM

model is twice as large and hence capable of incorporating more detailed semantics

from the video clips than another two models.

Figure 4.13: MSVD training loss at each epoch

The Figure 4.13 depicts the training loss curve for the developed framework using

the MSVD dataset. This demonstrates that the model loss dropped steadily and sta-

bilised around the 50-60 range epochs. The best findings have been selected and are

given in Table 4.8. The proposed Multi-layer attention model outperforms the other

three models in terms of overall performance. However, even though the proposed

framework size is the same as that of the Stacked LSTM model and the training loss of

both models is virtually the same, the proposed framework outperforms both models on

the test datasets, demonstrating that the first attention layer has an impact. When com-

paring the Stacked LSTM model to the Multi-layer attention model, the latter model

benefits from the additional layers of attention.
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Figure 4.14: MSRVTT training loss at each epoch

The Figure 4.14 displays the MSR-VTT dataset’s training loss curve. This illustrates

that the model loss decreased gradually and stabilised around the 40-50 epoch range.

The performance results of all the model measured on the MSR-VTT dataset is also

summarised in Table 4.8. The proposed Multi-layer attention model outperforms all

three of the other variations in terms of performance by a wide margin. For this reason,

relevant words have been focused by soft attention at each layer, allowing them to be

predicted.

All of the variants in the proposed framework were evaluated using the performance

metric METEOR, which was then compared to some of the existing video captioning

state-of-the-art works on both datasets, as shown in Table 4.9. As a result of semantic

attention being paid at both the encoding and decoding stages in our implementations,

all of the variations on both standard datasets that were used exceeded all of the other

findings. The adoption of BiLSTM has also been shown to have a considerable impact

on the performance of the models in question.

Table 4.10 displays the performance metric BLUE score, BLEU4, for all variations

of our proposed framework when compared to some existing state-of-the-art video cap-

tioning works on both datasets. To the best of our understanding, the suggested frame-

work surpassed practically most of the existing video captioning results that have been

listed. In contrast to this, a satisfactory result on the bigger dataset MSR-VTT does not

indicate that, even though sufficient semantics are involved in the proposed framework,

further fine-tuning of parameters will result in a positive result.
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Table 4.9: Performance comparison of METEOR score with state-of-art-methods

MODEL
METEOR

MSVD MSRVTT

LSTM(Pan et al., 2016) 26.9 23.4

LSTM-E[VGG] (Pan et al., 2016) 29.5 -

LSTM-E[C3D] (Pan et al., 2016) 29.9 -

MM-VDN (Xu et al., 2015) 29.0 -

LK (Venugopalan et al., 2016) 30.3 -

S2VT-unidirectional (Venugopalan et al., 2015) 29.6 25.2

S2VT-bidirectional (Venugopalan et al., 2015) 29.7 25.6

S2VT-reinforced (Venugopalan et al., 2015) 29.9 25.9

S2VT-VGG (Venugopalan et al., 2015) 29.2 -

S2VT-VGG+Flow(Alexnet) (Venugopalan et al., 2015) 29.8 -

DVWA-uni (Bin et al., 2019) 29.6 25.7

DVWA-BiLSTM (Bin et al., 2019) 29.8 26.1

DVWA-ReBiLSTM (Bin et al., 2019) 30.3 26.2

DVWA-uni SA (Bin et al., 2019) 30.2 25.9

DVWA-BiLSTM SA (Bin et al., 2019) 30.5 26.2

DVWA-ReBiLSTM SA(shortcut) (Bin et al., 2019) 30.7 26.4

DVWA-ReBiLSTM SA(attention) (Bin et al., 2019) 30.9 26.6

Base line model 48.14 36.25

Base model with BN 39.30 35.82

Stacked LSTM 49.19 37.88

Multi-layer attention model (Proposed) 51.57 39.47

As a part of ablation study we performed several other experiments. The outcomes

of suggested framework with dropout parameters (Srivastava et al., 2014) are presented

in Table 4.11. The results indicate that the framework discovers more value when nodes

are not dropped than when nodes are dropped. This could be because two-layer atten-

tion strategy is connected with layered bidirectional encoders and unidirectional de-

coders. Due to the framework’s two-layered attention, it intelligently selects the best

fragments or visual frames from which to learn and anticipate new values without in-

terfering with the growth or reduction of network nodes.

In addition to VGG-16, the proposed system is evaluated using another feature vec-
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Table 4.10: Performance comparison of BLUE-4 Score with state-of-the-art-methods.

MODEL
BLEU4

MSVD MSRVTT

STAT (Yan et al., 2020) 52.0 39.3

SpatioTempo(Aafaq et al., 2019) 47.9 38.3

LSTM (Pan et al., 2016) 31.2 -

LSTM-E[ALEX](Pan et al., 2016) 38.9 -

LSTM-E[C3D](Pan et al., 2016) 41.7 -

FGM (Xu et al., 2015) 13.68 -

LSTM-YT (Venugopalan et al., 2014) 31.19 -

MP-LSTM (Venugopalan et al., 2014) 33.3 -

Base line model 27.19 16.05

Base model with BN 16.61 14.02

Stacked LSTM 31.23 17.61

Multi-layer attention model (Proposed) 33.07 19.61

Table 4.11: Performance score with tuned parameters.

MODEL
MSVD MSR VTT

BLEU1 BLEU2 BLEU3 BLEU4 METEOR BLEU1 BLEU2 BLEU3 BLEU4 METEOR

Multi-layer attention (Proposed) without dropout 70.50 56.62 49.60 33.07 51.77 60.33 43.72 34.12 19.61 39.47

Multi-layer attention (Proposed) with dropout 67.79 52.29 45.36 30.36 50.59 58.02 41.30 31.82 16.99 38.35

tor named NASNet Feature Extractor (Zoph et al., 2018). Table 4.12 summarises the

findings. As demonstrated in Table 4.12, this Feature Extractor explored with and with-

out a drop layer. Our model fared better when no drop out is included in the BLUE per-

formance metric, however METEOR performs better when a drop layer and NASNet

feature extractor are included. This illustrates that, as previously demonstrated, the

Multi-attention framework optimises to select the best segments or frames, resulting in

a high METEOR score.

Time Complexity Analysis

The proposed approach consists of a CNN feature extractor followed by a BiLSTM

based encoder-decoder model. So, the total complexity of the system comprises the

complexity of CNN model used and the complexity of training the residual BiLSTM
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Table 4.12: Performance score with different Feature Extractor

MODEL
MSVD

BLEU1 BLEU2 BLEU3 BLEU4 METEOR

Multi-layer attention model (Proposed)

without dropout and

NASNet Feature Extractor

60.10 41.27 34.36 19.81 39.40

Multi-layer attention model (Proposed)

with dropout and

NASNet Feature Extractor

58.29 38.87 31.65 17.16 42.37

model. This is approximately equal to O(CNN model) +O(BiLSTM model). Thus,

the overall complexity can be defined as O(N)+ e∗ b∗Tb ∗O(BL). Where N , e, b, BL,

and Tb, denote the number of parameters in CNN feature extractor, epochs, batches,

parameters in layered BiLSTM model, and time estimation of backward and forward

passes, respectively.

Limitations

The experimental studies revealed that the proposed model performed admirably on the

training part of the standard dataset used. However, the outcome on the test portion

is less than the result on the training portion. Though the framework earned a higher

METEOR score than any previous study, it fell short of achieving a superior BLUE

score. Whereas appropriate measures must be taken to increase the BLEU score. The

proposed model takes into account the average length of phrases used during training.

As a result, it may exclude some critical terms from the sentences. Additional study in

this area may help improve the model’s performance.

4.2.3 Summary

It is proposed in this research work to use a novel Multi-layer attention-based model

for video captioning that is both efficient and effective, and it is then compared to other

modifications of the base model. The framework makes use of two LSTM networks:

one for the visual encoder and another for the language model.

The visual encoder is implemented using stacked BiLSTMs on resampled video data

in order to maintain input at every time interval for attention. The encoder’s hidden

states are then used to create a global perspective of the video, which is subsumed

into the language model. The decoder unit, which was utilised to convert the video
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captions into sentences word for word. The framework’s implementation was carried

out on the MSVD and MSR-VTT datasets, respectively. To the best of our knowledge,

the proposed approach surpassed practically most of the existing state-of-the-art visual

captioning results that have been published and listed. The best way to increase the

effect in the future is to modify it even further in order to achieve the best outcome on

a larger dataset.

4.3 Video Captioning using a Sentence Vector-enabled Convolutional Frame-

work with a Short-Connected LSTM.

The primary goal of video/image captioning is to convey in plain natural language the

dynamics of a video clip. For this aim, the most widely used design paradigm is the

groundbreaking structurally enhanced encoder-decoder architecture. Recent advances

emphasise the importance of utilising a variety of novel structural alterations to increase

efficiency while also establishing their viability in real-world applications. Encoder-

decoders are increasingly using well-known and well-researched technology develop-

ments such as deep CNN and Sentence Transformers. In this research work, a strategy

for efficiently captioning videos by combining a CNN and a short-connected LSTM-

based encoder-decoder model with a sentence context vector. This sentence context

vector emphasises the relationship between the video and text spaces. The attention

mechanism, inspired by the human visual system, is utilised to selectively focus on the

context of the essential frames. Additionally, a contextual hybrid embedding block for

connecting the two vector spaces formed during the encode and decode stages. The

proposed architecture is designed using well-established CNN architectures and a vari-

ety of word embeddings. It is evaluated using two benchmark datasets for video cap-

tioning, MSVD and MSR-VTT, and conventional assessment metrics such as BLEU,

METEOR, ROUGE, and CIDEr. The following are the most significant contributions

made in this research method.

• The proposed model was motivated by efforts to extract features using a range
of deep neural trained networks, including NASNet Large (Zoph et al., 2018),
Inception-v4 (Szegedy et al., 2017), ResNet152 (He et al., 2016), and VGG-16
(Simonyan and Zisserman, 2015).

• The framework experimented with various combinations of recent word embed-
dings such as BERT (Devlin et al., 2018), ELMo (Peters et al., 2018), and GloVe
(Pennington et al., 2014) and compared the results to proposed neural networks.
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• Proposed a model adapted with a novel notion of Residual Connection Net-
work (RCN), which overcomes the concerns of vanishing gradients and accuracy
saturation.

• The proposed framework also experimented to use the novel Contextual Hybrid
Embedding Network (CHEN) to augment the model with additional contextual
data.

• The framework augmented with extra attention to the decoding stage by using
multi-headed attention.

• Trials on two real-world video captioning datasets have been conducted to demon-
strate the proposed model’s superiority to existing state-of-the-art approaches.

• The model’s outcomes were measured using a variety of conventional perfor-
mance indicators, including BLUE (Papineni et al., 2002), METEOR (Banerjee
and Lavie, 2005), ROUGE (Lin, 2004), and CIDEr (Vedantam et al., 2014).

4.3.1 Methodology

To begin, model extracts frames from the videos during the preprocessing stage. Ad-

justments are made to the retrieved frames to make them compatible with the input

dimensions of pre-trained CNN models, notably VGG-16((Simonyan and Zisserman,

2015)), NASNet-Large((Zoph et al., 2018)), Inception-v4 ((Szegedy et al., 2017)), and

ResNet-152 ((He et al., 2016)). The proposed framework’s objective is to generate

a summary of the videos in English-like sentences. To do this, this research work

proposed a unique encoder-decoder system based on the encoder’s CHEN and RCN.

The proposed framework takes as input information extracted using a pretrained CNN

model and encodes them in order to acquire the video’s spatial and temporal features.

Figure 4.15 illustrates the proposed approach.

4.3.1.1 Preprocessing

Successive frames in a video have a lot in common, therefore they have the same num-

ber of characteristics. We chose a set of essential frames from the video to decrease

the number of features. The extraction of key frames is based on a template matching

scheme. Equation (4.37) is used to compute the template match score.

TScore(x, y) =

∑
x′,y′(Temp(x

′, y′) · I(x+ x′, y + y′))√∑
x′,y′ Temp(x

′, y′)2 ·
∑

x′,y′ I(x+ x′, y + y′)2
(4.37)
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Figure 4.15: The proposed video captioning framework.

Where I , Temp, and TScore denote, respectively, the image, the template, and the tem-

plate match score. (x, y) specifies the pixel coordinates. The parameter x′ can be any

value between 0 and the width of the template, while y′ can be any value between 0 and

the height of the template. In the proposed system , we compute a similarity between

two frames, I and Temp. Where I denotes the current keyframe and Temp denotes

the next frame in the sequence. If the TScore value is greater than the threshold, the

frame Temp is skipped due to its similarity to the keyframe I , and the next frame in the

sequence is set as Temp. If the TScore is less than the threshold, the key frame Temp is

chosen, and the process continues until the end of the frame sequence.

4.3.1.2 Feature Extraction

Starting with pre-trained neural networks, the proposed system extracts feature and

generates matching feature vectors from videos. It is necessary to enlarge and scale

the video clips to fit the input requirements of pre-trained deep learning models, which

are used to represent the majority of videos. The pre-processed images are fed into a

CNN model sequentially. With the proposed architecture, we attached and deployed the

following networks: NASNet-Large, Inception-v4, ResNet-152, and VGG-16.
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Algorithm 4: Algorithm for selecting key frames using template matching
Input: Input video V; Threshold T
Output: Set of key frames F extracted from video V

1 Initialize: F ← ∅
Extract first frame f from V
kf ← f
cf ← f
while cf ̸= last frame in video do

2 if kf == cf then
3 F = F ∪ kf

4 else
5 C ← Template Match between kf and cf using Equation (4.37)

if C ≤ T then
6 kf = cf
7 else
8 discard cf

cf ← next frame in the sequence
9 end

10 end
11 end

NASNet-Large

NASNet-Large accepts as input, a video frame with a resolution of (331 × 331) and

generates a feature vector with a resolution of 4032 per frame. While the fundamen-

tal concept of NASNet-Large has been predefined, similar to (Zoph et al., 2018), the

building blocks or cells have not yet been determined. Alternately, they are examined

using a reinforcement learning search strategy in which the number of iterations and

convolutional filters are treated as scalable free parameters. It associates the normal and

reduction cell types to generate the feature vector.

VGG-16

VGG-16 was created in Oxford (Visual Geometry Group). It accepts as input images

with a resolution of 224 × 224 pixels. The length of the resulting feature vector is 4096

bytes. The convolutional layers of VGG-16 use a 3 × 3 receptive field, the smallest size

capable of capturing all features. Additionally, there are 1 × 1 convolution filters that

linearly transform the input before passing it to a ReLU unit. VGG-16 consists of three

interconnected layers, and ReLU activates all of the hidden layers.
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Inception-v4

Inception-v4 is a CNN architecture that improves upon earlier incarnations of the In-

ception family by simplifying the architecture and employing more inception modules

than Inception-v3. It consists of 22 layers (27, including the pooling layers). At the con-

clusion of the last inception module, it employs global average pooling. Obviously, it is

a really sophisticated classifier. As with any extremely deep network, it is susceptible

to the problem of vanishing gradients.

ResNet-152

ResNet-152 is capable of forming a 152-layer dense network by using residual rep-

resentation functions rather than signal representation directly. ResNet-152 provides

skip connections (or shortcut connections) to match the input of the previous layer to

the input of the next layer without altering the input. By avoiding a connection, you

can construct a larger network. ResNet-152 introduced the notion of residual learning,

in which the subtraction of a feature’s input is learned by shortcut connections. It has

been shown that residual learning can improve model training performance, particularly

when the model incorporates a multilayer perceptron with much more than 20 layers,

and can also solve the problem of deep network accuracy degradation.

4.3.1.3 Terminology and Notation

The concept of representing video clips that require captioning, mathematically can

be expressed as, V = {v1, v2, v3...., vn}, where n is frame count value. As explained

earlier, the visual features extracted from video V with the help of pre-trained models

can be visualized with the following details. The F = {f1, f2, f3, ..., fn} ϵRdi∗n, where

di represents dimensional view of the feature vector for a single frame. The feature

vector of the caption is visualized by the symbol WϵRdw∗c, where dw represents the

size of a word embedding and c represents the caption’s word count. The overall view

of model’s captioning relationships can be viewed as W ′ϵRdw∗c.

4.3.1.4 Encoder-Decoder

The presented model’s encoder is a two-layered LSTM made of short connections or

residual layers that impose non-linearity on the data processing. This unit permits

and absorbs temporal characteristics extracted at the frame level during the prepara-
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tory stage from the two-dimensional pre-trained CNN data. LSTMs attempt to limit

saturation inaccuracy by converting a series of frames to a fixed-dimensional vector

representation.

The primary focus of the decoding stage is to develop the ability to guess the caption

based on the video data. Each word in the caption is created separately and predicted

with a proper contextual understanding of the surrounding words of the generated word.

Thus, given an input sequence and the encoder’s output, the decoder anticipates the

caption’s next word. The model is binded with attention that operates with separate

heads called multi-head that incorporates the encoder result and the decoder state to

pay attention to some areas of the encoded output that impact the final decoding unit

output. The loss function used to represent the translation of videos to words is shown

in Equation (4.38).

loss1 = −
Nw∑
t=1

logP (wt|E,w1, w2, ..., wt − 1) (4.38)

The value of, Nw depicts the caption word count. The Equation (4.39) signifies the

likelihood of the predicted word wt being formed given the previously generated words

w1, w2, ..., wt−1 and the output from the encoding unit E.

P (wt|E,w1, w2, ..., wt−1) (4.39)

4.3.1.5 Contextual Hybrid Embedding Network (CHEN)

This proposed novel unit converts the feature map F from the video created during the

preliminary stage to a 768-Dimension feature map using an LSTM layer. The resulting

feature map was then compared to the hidden state of an LSTM autoencoder trained

on the caption set during the training phase. The autoencoder uses the regenerated

contextual caption vector with a fixed dimension to anticipate the next word to the

decoding stage. As the contextual caption vector summarises the captions we termed it

as sentence vector.

Now we assume, if the language model’s sentence vector is SV and the sentence

vector from CHEN is SV ′ , then the loss is determined as given in Equation (4.40).
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loss2 =
dw∑
k=0

ek (4.40)

Where, ek defined in Equation (4.41).

ek =


1
2
(svk − sv′k)2 for |svk − sv′k| ≤ δ

δ|svk − sv′k| − 1
2
δ2 Otherwise

(4.41)

4.3.1.6 The Proposed Multi-head Attention Mechanism

The proposed model is motivated by the concept of multi-head attention, which cycles

through an attention mechanism many times in parallel. Multiple attention heads, in-

tuitively, enable distinct elements of the sequence to be attended to differently. The

attention unit achieves training stability by enhancing consistent performance improve-

ments above conventional attention.

The proposed framework’s encoding stage always provides detailed information

about the video. This contextual information is also contingent on the model’s com-

prehension of the frames. However, for the decoding stage to predict the next caption

term being given the current term, just a subset of contextual data attributes must be se-

lected. Thus, scalar dot product attention (Vaswani et al., 2017b) enables the decoding

stage to focus exclusively on a portion of the encoding unit data. Take the following

into account: Equation (4.42), Q, The value field stores data about the encoder’s output,

whereas the K field stores data about the decoder’s previous state. The encoder output is

weighted for various regions, depending on the current state of the decoder, in order to

build a context vector for the following word. This is one of the heads of the attention

system’s several heads. Multiple heads enable the decoder to simultaneously attend

to data from the encoder at various points in heterogeneous representational spaces.

Equation (4.42) provides the mathematical definition for single-head attention.

Attention(Q,K, V ) = softmax(
QKT

√
dn

)V (4.42)

Equation (4.43) visualises the concept of envisaged multi-head attention.
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(Q,K, V ) = (RdW
Q, ReW

K , ReW
V ) (4.43)

The representational values Rd signifies the decoder output states, Re symbolizes

the encoder output states, {WQ,WK ,W V } ϵRdi∗dn are the defined weights for multiple

attention heads.The key notion di represents the dimension of the attention input and dn

depict the count of units in an attention head.

4.3.1.7 Training-Phase

To initiate, the model is trained using the language model to generate the relevant sen-

tence vector for all captions in the datasets. Additionally, as illustrated in Figure 4.15,

the proposed architecture is trained using hybrid loss built by merging loss1 and loss2

bridge the semantic gap between video and words. The hybrid loss defined in Equa-

tion (4.44).

loss = λloss1 + (1− λ)loss2 (4.44)

The variable λ symbolises a tuneable hyper-parameter with values ranging from 0

to 1.

4.3.2 Experiments, Results and Discussion

Numerous experiments with various parameter combinations are conducted, and perfor-

mance is evaluated using various benchmark evaluation metrics. Additionally, the pro-

posed system’s performance is compared to existing works using MSVD and MSR-VTT

datasets.

4.3.2.1 Experiments on MSVD Dataset

Data preprocessing

The videos in the corpus have an average duration of 10.2 seconds. As a result, we

sample 28 frames for every clip equally. Each frame is given to the NASNet-Large

CNN unit, which extracts a 4032-dimensional feature vector from it. Thus, for each

video we obtain a 28*4032-D feature vector. In this step each video contains at least

28 frames, therefore padding is unnecessary here. Captions for the clips are compiled

from a variety of sources and vary in length. As a result, we eliminate the punctuation
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from the captions, lower case them, and tokenize them. The vocabulary is refined to

eliminate misspelt and uncommon terms. Captions are lengthened to a maximum of

twenty characters. Any caption that exceeds the maximum length is clipped, whereas

captions with fewer than 20 tokens are padded. 768-D, 300-D, or 1024-D vectors are

created for each token utilising word embedding algorithms such as BERT, GloVe, and

ELMo. We assessed the efficiency of mentioned word embeddings using proposed

model in Results and Analysis section. The tokens bos and eos denote the start and end

of the caption, respectively. While pad and unk serve as padding and unknown words,

respectively.

The suggested approach is motivated by the need to validate video captioning using

datasets. The approach was initially validated using the MSVD dataset. The video to be

processed is represented by the 28*4032 feature vector. It is then transferred to the en-

coder stage, which is a two-layer LSTM with a residual layer or a few short connections.

It is believed that the LSTM contains 512 units. Thus, we acquire a 28*512-dimensional

vector from layer one and a 28*512-dimensional vector from layer two, resulting in a

28*1024-dimensional vector from the encoder. A single 768-unit LSTM layer and a

pre-trained LSTM autoencoder comprise the Contextual hybrid embedding block. The

unit count of the attention layers is set to 512. It is expected that the decoder stage

LSTM contains a total of 1024 units. For training, Adam Optimizer is employed with

an 10−4 learning rate and a batch size of 64. A beam search with a beamwidth of three

is used for testing.

Results and Analysis on MSVD

Numerous investigations were conducted using the proposed technique on the MSVD

dataset based on the train-validation-test split described in (Venugopalan et al., 2015).

Table 4.13 exhibits the effect of performance scores on the three embeddings with

pre-trained Feature Descriptors of our novel proposed approach. When BERT alone

considered, NASNet-Large exceeds all other models except for the METEOR score.

The advantage of this model is that it employs two convolutional cells, which aids

in obtaining the optimal output. It employs a controller to optimise performance by

utilising fewer parameters but also floating-point operations.
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Table 4.13: Performance comparison of proposed framework on MSVD.

Embedding CNN model BLEU1 BLEU2 BLEU3 BLEU4 METEOR ROUGH CIEDEr

ELMO

ResNet-152 79 66.9 57.2 46.6 32.7 69.2 71.6

VGG-16 77.2 63.7 52.8 42 31.2 67.4 63.6

Inception-v4 79.8 68.2 58.4 47.5 33.2 69.2 72.4

NASNet-Large 81.3 69.7 59.4 48.5 33.5 70 72.5

GLoVe

ResNet-152 77.1 65.5 55.2 44.9 30.6 67.6 70.1

VGG-16 76.1 63.7 51.3 41.9 30.5 64.7 65.4

Inception-v4 77.3 66.1 56.9 46.2 31.8 67.8 70.1

NASNet-Large 78.4 68.5 57.2 47 32.2 68.5 70.8

BERT

ResNet-152 79 67.1 57.5 48.4 34.4 69.6 72.5

VGG-16 77.8 64.3 53.9 43.6 31.4 67.2 63.7

Inception-v4 80.7 69.4 59.6 48.8 34.3 70 78.1

NASNet-Large 82 69.9 60.3 50.3 33.9 70.5 78.6

Table 4.13 also relates the ELMo embedding performance of all Feature Descrip-

tors. According to the statistics, the proposed model outperformed all other models.

The suggested model takes advantage of ELMo’s benefits in terms of syntax, seman-

tics, and polysemy notions in order to get superior outcomes. The obtained results also

provides an overview of proposed model with pre-trained all Feature Extractor with a

GloVe vector embedding. All other models were outperformed by the suggested Fea-

ture Extractor model. The reason for this is that both the encoding and decoding levels

are augmented by context-sensitive data. This reliably extracts the region and its associ-

ated captions from the embeddings. Additionally, the multihead attention considerably

improves the performance.

When the proposed model with NASNet-large alone is seen across all the three

embeddings, the BERT findings outperformed the results obtained with the other two

embeddings. The BERT makes use of the target word’s context by examining the sur-

rounding terms. This novel combination of the suggested NASNet and BERT word

embedding outperforms the others.

Table 4.13 also summarises the performance of three different embeddings while

using Feature Descriptor, Inception-v4 as a reference. The study demonstrates that

BERT with Inception-v4 outperforms other methods. Notable explanations for this

could include the increased number of inception modules on the encoding unit as well
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as the bidirectionally trained embedding, that provide a more accurate sense of language

context and flow than single direction language models.

Additionally, the experimental findings obtained using the Feature Extractor VGG-

16 and three-word embeddings followed a very similar pattern. While the results

are marginally different for all three, BERT retains the performance advantage. This

demonstrates how BERT works extremely consistently across nearly all Feature De-

scriptors.

The efficiency of Feature Descriptor ResNet-152 and its effectiveness on three em-

beddings is compared in Table 4.13. The score observation demonstrates that BERT

surpasses the other two embeddings, despite the small variation in outcomes. It is also

clear that the ResNet-152 performance score outperforms VGG-16 in practically ev-

ery parameter. BERT’s best feature is that it is extremely bidirectional and contextual.

Transformers are used in the BERT, while LSTMs are used in the other two variants.

The descriptor is a multi-layered method that, when used with the BERT, yields better

results because of its more detailed discoveries.

Table 4.14: Comparison of proposed approach with the state-of-the-art methods on MSVD.

Methadology B4 METEOR ROUGE CIDEr

STAT LOC V STAT LOC L (Yan et al., 2020) 42.9 31.0 - 62.5

UTS (Sah et al., 2020) 43.0 33.20 - 71.10

SE-GRU (Hao et al., 2020) 42.9 33.5 - 62.3

DM-TSC (Xu et al., 2020) 48.8 33.40 69.70 82.00

ELT-VC (Wei et al., 2020) 46.80 34.40 - 85.70

VC-BPLSTM (Nabati and Behrad, 2020b) 42.90 32.00 68.30 62.20

STD-SA (Aafaq et al., 2019) 47.90 35.0 71.50 78.10

BDE-DS(Chen et al., 2019) 44.10 32.12 - 70.10

NMB-SS(Lin and Zhang, 2021) 40.3 31.5 - -

MARN (Pei et al., 2019) 48.6 35.1 71.9 92.2

GS-VD(Yadav and Naik, 2021) 41.2 33.4 - -

Proposed Method 50.3 33.9 70.5 78.6
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On the MSVD dataset, Table 4.14 compares the performance of a proposed model

with other recent and state-of-the-art approaches. All other models were clearly outper-

formed by our suggested model with the Feature Descriptor NASNet-Large. We also

experimented with the other two Feature Descriptors and compared them to the sug-

gested model. The proposed model clearly outperformed in all performance criteria.

BLEU4, METEOR, ROUGE, and CIDEr scores are shown in the Table 4.14. The re-

sults show that suggested model was more accurate than the other models at recognising

the exact collection of words in the dataset, as measured by the n-gram hit ratio. Using

the CIDEr metric, the suggested model came in fourth place. The model received sig-

nificant ROUGE and METEOR ratings when compared to other models. Overall, the

results demonstrate that a model with a short encoder-to-contextual vector relationship

improves performance. In addition, the defined model combination learns a new set of

information for the encoder’s succeeding phases, as well as a collection of data from

the embeddings.

Figure 4.16: The predicted and reference samples of proposed approach.

Qualitative Analysis

Figure 4.16 samples shows a practical comparison of our novel developed framework

with ground truth captions. The video frames and original data captions from the

MSVD dataset are also shown in the Figure 4.16. The new method yielded a sufficient

number of video captions. In a few cases, however, the model incorrectly identifies the

composite action and objects. The proposed model, on the other hand, performed a

good job of identifying objects and activities. Further, model also makes advantage of

contextual hybrid embedding, which aids in the development of relevant phrases.
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4.3.2.2 Experiments on MSR-VTT

Let us suppose for convenience that the CNN feature extraction method and word em-

bedding are NASNet-Large and BERT, respectively. The video to be studied is repre-

sented by the 80*4032 feature vector. It is then supplied to the encoding and a two-layer

LSTM with either a short link or a residual layer. It is believed that the LSTM contains

512 units. Thus, we obtain an 80*512-D vector from layer one and another 80*512-D

feature vector from layer two, yielding an 80*1024-D vector from the encoding stage.

The contextual hybrid embedding block is composed of a single 768-unit LSTM layer

and a semantic sentence vector. The attention layers’ unit count is set to 512. It is ex-

pected that the Decoder LSTM contains a total of 1024 units. Adam Optimizer is used

for training, with an 8e-4 learning rate and a batch size of 64. During testing, a beam

search with a beamwidth of three is used.

Data preprocessing on MSR-VTT

The average duration of the videos in the corpus is 14.83 seconds. As a result, we

sample 80 frames equally for each clip. Each frame is sent into a pre-trained CNN

model, which generates an N-dimensional feature vector from it. N is 4032, 4096, 2048,

and 2048 for NASNet-Large, VGG-16, Inception-v4, and ResNet-152, respectively.

Thus, for each video from NASNet-Large, we have an 80*4032-D vector. The

videos’ captions are derived from a number of sources and range in length. As a con-

sequence, we remove all punctuation, lowercase, and tokenize the captions. The vo-

cabulary has been whittled down to eliminate misspellings and rare terms. Captions

are increased in length by a maximum of twenty characters. Captions that exceed the

maximum length are clipped, and captions that include fewer than twenty tokens are

padded. For each token, a 768-D, 300-D, or 1024-D vector is generated using methods

such as BERT, GloVe, and ELMo. In the Results section, we assess the performance of

our model to that of several word embedding. The bos and eos tokens denote the start

and the end of the caption, respectively, while pad serves as a padding token and unk is

used to forecast unknown phrases.
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Results and Analysis on MSR-VTT

The comparison of proposed method’s efficiency to that of state-of-the-art techniques

on the MSR-VTT dataset utilising BLEU, METEOR, ROUGE, and CIDEr metrics id

done. The experiment is repeated with the train-validation-test split as described in

(Xu et al., 2016). The results are then assessed qualitatively and quantitatively. The

qualitative outcome is depicted in Figure 4.16, which includes both the ground truth

captions as well as the captions obtained with the proposed model.

In the quantitative analysis, results are contrasted with the BLEU, METEOR, ROUGE,

and CIDEr scores to previously published studies. For feature extraction in this work,

four pre-trained CNN models are used: NASNet-Large, VGG-16, ResNet-152, and

Inception-v4. The proposed model with Inception-v4 as feature extractor surpasses

NASNet-Large, VGG-16 and ResNet-152 respectively.

Table 4.15: Performance of proposed video captioning using a Sentence Vector-enabled Convo-
lutional Framework with a Short-Connected LSTM system on MSR-VTT.

Embedding CNN model BLEU1 BLEU2 BLEU3 BLEU4 METEOR ROUGH CIEDEr

ELMO

ResNet-152 71.7 54.3 42.5 32.7 23.6 54.2 32.5

VGG-16 68.9 53.5 40.6 29.9 23.1 53.2 28.4

Inception-v4 72.1 57.8 45 36.4 26.2 56.4 38.3

NASNet Large 72.7 58.1 45.2 34.3 24.7 56.3 36.3

GLoVe

ResNet-152 70.1 54.3 42.5 32.7 23.6 54.2 32.5

VGG-16 67.2 51.9 39.8 28.4 21.6 52.7 27.8

Inception-v4 71.2 55.2 42.1 32.5 24.7 53.7 31.8

NASNet Large 70.2 54.1 40.3 30.6 23.2 52.7 29.5

BERT

ResNet-152 72.6 57.1 43.7 32.9 24.6 55.4 35.5

VGG-16 68.3 53.2 40.8 30.5 23.1 53.2 28.9

Inception-v4 73.6 59.4 46.6 39.2 27.8 59.3 40.5

NASNet Large 71.5 58.9 47.4 37 25.1 57.5 37.6

Three distinct word embedding approaches are used, including BERT, ELMo, and

GloVe. We compared the results of each feature extraction technique to BERT, ELMo,

and GloVe embedding. BERT embedding outdoes ELMo and GloVe in investiga-

tions. The same pattern is used to extract features from NASNet-Large, Inception-v4,
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ResNet-152, and VGG-16. Table 4.15 compares the performance of word embedding

for NASNet-Large features. We can see that BERT embedding produced superior out-

comes for all metrics.

Table 4.15 compares the performance of all pre-trained feature extractors in the

unique proposed framework discussed in our study. When BERT embedding was

utilised, it is clear that the Inception-v4 feature extractor topped all other models. The

strength of Inception-v4 is that it extracts features by utilising more inception modules

than most other models. The Inception-v4 model outperformed earlier versions due to

its capacity to learn additional parameters from big datasets such as the MSR-VTT and

its use of bidirectional embedding features.

When, Table 4.15 is considered for comparison, NASNet-Large’s with various em-

bedding strategies demonstrate that the BERT embedding composition is capable of

producing practically any performance statistic. As previously noted, for the MSVD

dataset, the NASNet equally performs better on larger datasets like MSR-VTT too.

Table 4.15 can also be viewed to compare an Inception-v4’s performance to practical

values derived from three embeddings. The model outperformed ELMo and GloVe

embeddings significantly. The learning capability of the network, along with parallel

max pooling and more inception modules on Inception-v4, improved the overall results.

Additionally, a comparative analysis of a simple ResNet-152 model to three different

embedding strategies is made. When BERT embedding was incorporated, the model

outperformed the other embedding scores. The boost in virtually all scores is due to

the addition of additional layers to learn complicated features, residual connections that

provide more information to each level of the hidden layers, and a context-sensitive

vector coupled to the encoding stage.

The observation is also noted in Table 4.15, a correlation between VGG-16 and

three-word embedding models. The model’s success with BERT demonstrates the crit-

ical nature of transformer-attached embeddings that fully comprehend the context of

words within the reference phrase. As a result, the next stage predicts better sentences

based on the first stage’s input word. By using all the experimental analysis, BERT out-

performed ELMo and GloVe with respect to all the feature extraction techniques and all

the evaluation metrics. The proposed model compared to several existing works on the
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MSR-VTT dataset, and the results are summarized in Table 4.16.

Table 4.16: Comparison of proposed approach with the existing method on MSR-VTT.

Models BLEU4 METEOR ROUGE CIDEr

VD-MB (Xu et al., 2020) 37.90 28.40 59.3 40.5

EL-TI(Wei et al., 2020) 38.50 26.90 - 43.70

Ms-VC(Nabati and Behrad, 2020a) 39.50 27.50 - 42.80

STAT LOC V (Yan et al., 2020) 35.1 24.6 - 36.9

STAT LOC V (Yan et al., 2020) 35.2 25.1 - 35.8

STAT LOC MotFeat (Yan et al., 2020) 36.5 25.4 - 39.9

M3-V (Wang et al., 2018) 35 24.6 - -

M3-C (Wang et al., 2018) 35.1 25.7 - -

M3-VC (Wang et al., 2018) 38.13 26.58 - -

LSTM-GAN (Yang et al., 2018) 36 26.1 - -

VGG-16(RGB) (Nabati and Behrad, 2020b) 34.5 25.8 57.2 36.1

GoogLeNet(RGB) (Nabati and Behrad, 2020b) 35.9 26.1 58 37.5

ResNet-152 (RGB) (Nabati and Behrad, 2020b) 36.6 27 58.7 40.5

GRU-EVEhft – (IRV2) (Aafaq et al., 2019) 32.9 26.4 57.2 39.2

GRU-EVEhft – (CI) (Aafaq et al., 2019) 36.1 27.7 59.9 45.2

DS-SCA [2D+3D+SEM] (Shekharet al. , 2020) 33.4 24.5 56.8 28.7

DS-SCA [VLAD+2D+3D+SEM] (Shekharet al. , 2020) 38.7 27.5 60.7 41.6

BDE-DS (Chen et al., 2019) 38.70 26.70 - 41.0

Proposed Method 39.2 27.8 59.3 40.5

Figure 4.17 is depicted with all the results comparison of four models and thier per-

formance metrics. The study shows that Inception-v4 outperforms all the other models

due to the fact that more inception modules associated and acheiveing greater accuracy.

Time Complexity Analysis

The proposed approach consists of a CNN feature extractor followed by a residual

LSTM model. So, the total complexity of the system comprises the complexity of

CNN model used and the complexity of training the residual LSTM model. This is ap-

proximately equal to O(CNN model) +O(residual LSTM model). Thus the overall

complexity can be defined as O(N) + e ∗ b ∗ Tb ∗ O(RL). Where N , e, b, RL, and

Tb, denote the number of parameters in CNN feature extractor, epochs, batches, param-
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Figure 4.17: Line chart comparison of pre-trained CNNs with BERT Embedding

eters in residual LSTM model, and time estimation of backward and forward passes,

respectively.

4.3.3 Summary

In this research work, we augumented a novel contextual hybrid embedding blocks

and short-connections in the video captioning encoder. It is critical to realise that

the contextual block, also called the semantic phrase vector, in the encoder is a rep-

resentation of the video in the caption space. It assists the decoder in optimising

the model’s overall performance by supplying more information. We have validated

our technique and analysis by conducting experiments on the MSVD and MSR-VTT

datasets. The proposed framework compared to other standard existing methods. It

is found that, our methodology produced significantly better outcomes.The suggested

model is also being compared to other feature extraction techniques such as NASNet-

Large, VGG-16, Inception-v4, and ResNet-152. Several word embedding approaches,

such as BERT, ELMo, and GloVe, are used to assess the model’s performance. On the

basis of the experimental investigation, Inception-v4 feature extraction outperformed

VGG-16, ResNet-152, and NASNet-Large in terms of performance. When it comes to

word embedding strategies, BERT excels ELMo and GloVe by a wide margin.
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Chapter 5

Conclusions and Future Work

Over the last few years, the discipline of CV has advanced at a breakneck pace. Rather

than reducing chances for research in CV, progress on this central task has energised the

field and unlocked a wide variety of difficult problems that had previously eluded our

efforts but now appeared within the scope of research community. We proposed models

and strategies in this research work that push the boundaries of visual identification by

expanding the label space beyond a finite collection of categories to the space of natural

language utterances.

Specifically, this thesis work focused on building approaches for pixel-level image

understanding and on generating natural language descriptions of activities portrayed in

distinct video datasets. Additionally, this thesis work introduces strategies for substan-

tially extending study in semantic image segmentation and video captioning. Semantic

image segmentation is a fundamental component of object recognition models, as it

aims to classify things on a pixel-by-pixel basis. Chapter 3 examines the tasks involved

in identifying an image at the pixel level as a different object. The proposed contribu-

tions are aimed at classifying distinct items inside an image at the pixel level. The input

image is processed to extract pixel-level information, and the object in the image is then

demarcated and segmented for identification purposes.

In this research work, inititally focused primarily on three approaches to study the

object’s semantic limit and accuracy. The initial objective was to analyse the learnt fea-

tures from ConvNets and implement the RCA method for scene labelling. We observed

that learnt features are even more effective and can improve the labelling accuracy when

employing the RCA algorithm, with the maximum accuracy gain occurring between

0.4 and 0.6. Gains in precision range from 1 to 3 percent when the RCA algorithm

is utilised as opposed to when it is not. This demonstrates clearly the significance of

global pixel label consistency. In the second objective, the proposed strategy has been

separated into three different stages. It utilises the selective benefits of MRF at low lev-

els and the superior performance of CRP at high levels. BN is utilised to strengthen the

robustness of the proposed method. Object detection in an image, attribute prediction

and association, and semantic segmentation are the three distinct segments.



The first and most essential task is to detect the different objects. Comparing the

SIFT feature detection algorithm to the SURF feature detection technique, we discov-

ered that SURF performs better. Using the BN, the second objective is attained. The

final objective of semantic segmentation and object-attribute association is attained by

utilising MRF stacked CRP to create clusters. MRF begins clustering by constructing

a set of local-level components. After the low level, the high-level CRP is used to in-

tegrate these components into larger clusters. On the basis of parameters such as PRI,

F1-measure, and GCE, the performance of the proposed method is compared to that of

other existing semantic segmentation methods. With a PRI score of 0.79, an F-measure

of 0.71, and a GCE score of 0.23, the comparison suggests that the proposed method

performs the best in all three parameters.

The final objective of Chapter 3 was to learn the appearance of an object using

the image attribution and segmentation model. First, the image is superpixelized using

SLIC to accomplish the task. A MSF model created the object seed heat map, while an

SECT model annotates the pixel level. The iterative PSPNet model is used to learn ob-

ject characteristics and perform semantic segmentation. Additionally, we implemented

a CAM model to visualise the images. Class-level semantic segmentation was outper-

formed by our model relative to other current methods. The results from PSPNet show

a mIoU accuracy of 52.4% on the PASCAL VOC 2012 test dataset, which is superior

to the Baseline’s 49.3% mIoU accuracy.

Techniques for automatically describing images/videos should be capable of detect-

ing significant occurrences worth describing. They should be able to accurately describe

a wide variety of visuals that contains a diversified array of events, objects, scenes, and

other attributes. Chapter 4 explains the goal of video/image captioning, which is to por-

tray the dynamics of a video clip in simple natural language by utilizing the most fre-

quently used design paradigm and a pioneering structurally upgraded encoder-decoder

architecture. We demonstrated our techniques’ adaptability by assessing them against

open-domain benchmark image and video datasets. Despite recent significant advance-

ments in visual recognition, it is evident that many obstacles remain until machines can

detect the visible environment and communicate with us using natural language.

The first proposed framework in Chapter 4 investigates spatial and temporal infor-
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mation throughout the entire sequence of video frames. At the decoding step, the system

is implemented by merging multiple LSTM, different Feature Extractors, Soft Atten-

tion, hybrid loss functions, and a GloVe embedding mechanism. The visual encoder

is an amalgamation of visual features derived from CNN and the layered LSTM. The

decoder component is comprised of attention and a single LSTM layer. The framework

performed around 24.5 percent better than S-VC, 9 percent better than LSTM-E, and 2

percent better than BPLSTM based on experimental results. In terms of METEOR and

CIDEr, the proposed method outperformed SA by 9 percent and 36 percent, respec-

tively.

The second research strategy employs an innovative Multi-Layer Attention-based

strategy for video captioning. The framework makes use of two LSTM networks: one

for the visual encoder and one for the language model. To preserve input at every time

period for attention, the visual encoder is implemented utilising stacked BiLSTMs on

preprocessed video data. The encoder’s hidden states are then used to generate a global

view of the video, which is incorporated into the language model. The decoder unit was

used to transform the video captions into whole sentences. All of the framework’s vari-

ations were tested using performance measures. As a result of semantic attention being

paid at both the encoding and decoding stages in our implementations, all variations on

both standard datasets surpassed all other findings. It has also been demonstrated that

BiLSTM has a significant impact on the performance of the models in consideration.

In the third research study, the video captioning encoder complemented with a novel

contextual hybrid embedding blocks and short connections. In the encoder, the con-

textual block, also known as the semantic phrase vector, represents the video in the

caption space. It aids the decoder in optimising the overall performance of the model

by providing more information. In comparison to other current standard methodolo-

gies, the proposed framework delivered much superior results. Other feature extrac-

tion techniques, such as NASNet-Large, VGG-16, Inception-v4, and ResNet-152, are

compared to the proposed model. Several word embedding methods, including BERT,

ELMo, and Glove, are utilised to evaluate the performance of the model. In terms of

performance, Inception-v4 feature extraction outperformed VGG-16, ResNet-152, and

NASNet-Large. BERT significantly outperforms ELMo and Glove in terms of word

embedding methods.
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Language and vision is a rapidly growing field of current research. This thesis dis-

cussed ways for overcoming some of the difficulties encountered in this fast growing

domain. We hope that some of the concepts and insights discussed in this thesis will

prove valuable in further endeavours. As the future work, the approaches can be ex-

plored as

Describing video events in context

Almost all effort in video description has focused on developing descriptions for au-

tonomous events. Techniques for creating a brief description of an event were devel-

oped using short video captions. Even with longer video snippets, the emphasis was

primarily on describing a significant occurrence. While this approach to captioning

may be appropriate for some purposes, such as providing descriptions for the visually

handicapped, detecting and articulating many events in videos may also enable more

effective ways for video retrieval and may be video question answering. The difficulty

here is in identifying several events and producing consistent descriptions within the

context. The proposed video captioning models can be fine-tuned to give more effi-

cient context based solutions to describe the longer videos. The approaches may also

be useful for captioning the real time videos.

Generating textual summaries of long videos

From a description standpoint, an interesting option would be to provide textual sum-

maries of lengthy videos rather than using short videos. The approaches proposed in

the captioning models may be useful after little modifications.

Enhancing Movie Description

We may go beyond simple sentence descriptions of movies by using our successful

methods for character identification that result in more specific descriptions, including

character names and behaviours associated with characters.

Joint localization and description

One option to overcome our model’s shortcomings is to employ a multi-task network

in which the visual representation is trained using both temporal segmentation and de-

scription loss. Another approach to this challenge could be to present a single end-to-
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end model capable of concurrently identifying and describing regions in the image.

Paragraph descriptions for sequences in the video

Another approach for describing events in lengthy videos is to concentrate on the lan-

guage model in order to provide coherent descriptions of many events.

Domain specific dataset applications

The proposed methods can also be applied to domain-specific datasets, such as movies

and documentaries, and tested with techniques such as beam search, which determines

the ideal word combination for a caption.

Specific network models

Various feature extraction strategies, such as I3D. (Two-Stream Inflated 3D ConvNets),

GANs, and using a three-dimensional neural network in conjunction with two-dimensional

CNNs, may have been analysed to compare their outcomes.

Edge based analysis on images

The approaches proposed might have also been implemented using 3D images and edge

detection algorithms to enhance the perceived efficacy. In the future, the proposed seg-

mentation techniques will be employed to improve the outcomes of object-level seman-

tic segmentation and refined to find sharper edges in segmented images.
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