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Abstract

A smart environment has the ability to securely integrate multiple technological so-

lutions to manage its assets, such as the information systems of local government de-

partments, schools, transportation networks, hospitals, and other community services.

They utilize low-power sensors, cameras, and software with Artificial Intelligence to

continuously monitor the system’s operation. Smart environments require appropriate

monitoring technologies for a secure living environment and efficient management.

Global security threats have produced a considerable demand for intelligent surveil-

lance systems in smart environments. Consequently, the number of cameras deployed

in smart environments to record the happenings in the vicinity is increasing rapidly. In

recent years, the proliferation of cameras such as Closed Circuit Television (CCTV),

depth sensors, and mobile phones used to monitor human activities has led to an ex-

plosion of visual data. It requires considerable effort to interpret and store all of this

visual data. Numerous applications of intelligent environments rely on the content of

captured videos, including smart video surveillance to monitor human activities, crime

detection, intelligent traffic management, human identification, etc.

Intelligent surveillance systems must perform unobtrusive human identification and

human action recognition to ensure a secure and pleasant life in a smart environment.

This research thesis presents various approaches using advanced deep learning technol-

ogy for unobtrusive human identification and human action recognition based on visual

data in various data modalities. This research thesis explores the unobtrusive identifica-

tion of humans based on skeleton and depth data. Also, several methods for recognizing

human actions using RGB, depth, and skeleton data are presented.

Initially, a domain-specific human action recognition system employing RGB data

for a computer laboratory in a college environment is introduced. A dataset of human

actions particular to the computer laboratory environment is generated using sponta-

neous video data captured by cameras installed in laboratories. The dataset contains

several instances of five distinct human actions in college computer laboratories. Also,

human action recognition system based on transfer learning is presented for locating

and recognizing multiple human actions in an RGB image.

Human action recognition systems based on skeleton data is developed and evalu-

ated on publicly available datasets using benchmark evaluation protocols and metrics.

The skeleton data-based action recognition mainly concentrates on the 3D coordinates

of various skeleton joints of the human body. This research thesis presents several ef-

ficient action representation methods from the data sequence in skeleton frames. A



skeleton data-based human action recognition system places the skeleton joints in a

specific order, and the distance between joints is extracted as features. A multi-layer

deep learning model is proposed to learn the features and recognize human actions.

Human gait is one of the most useful biometric features for human identification.

The vision-based gait data allows human identification unobtrusively. This research

thesis presents deep learning-based human identification systems using gait data in

skeleton format. We present an efficient feature extraction method that captures human

skeleton joints’ spatial and temporal features during walking. This specifically focuses

on the features of different gait events in the entire gait cycle. Also, deep learning

models are developed to learn these features for accurate human identification systems.

The developed models are evaluated on publicly available single and multi-view gait

datasets using various evaluation protocols and performance metrics.

In addition, multi-modal human action recognition and human identification sys-

tems are developed using skeleton and depth data. This presents efficient image rep-

resentations of human actions from the sequence of frames in skeleton and depth data

formats. Various deep learning models using CNN, LSTM, and advanced techniques

such as Attention is presented to extract and learn the features from image represen-

tation of the actions. Also, another work presents a method focusing on overlapping

sub-actions of action in depth and skeleton format for action representation and fea-

ture extraction. In addition, the image representation of the gait cycle in skeleton and

depth data, along with a deep learning model, is proposed. Multi-stream deep learning

models are proposed to learn features from multi-modal data for human action recogni-

tion and human identification. In addition, various score fusion operations are proposed

to merge the results from multiple streams of deep learning models to ensure efficient

performance. The developed systems are evaluated on publicly available multi-modal

datasets for human actions and human gait using standard evaluation protocols.

Keywords: Attention, CNN, Deep learning, Depth data, Human action recog-

nition, Human identification, LSTM, Multi-modal, Score fusion,

Skeleton data, Smart environments, Smart surveillance.
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Chapter 1

Introduction

A smart environment can securely integrate multiple technological solutions to man-

age its assets, such as schools, transportation systems, hospitals, and community ser-

vices. The smart environment contains contributions from eminent researchers describ-

ing techniques and issues related to its development and use in everyday life. It in-

cludes numerous components such as smart buildings, smart campuses, smart cities,

smart classrooms, smart parking lots, smart transportation systems, etc. They utilize

low-power sensors, cameras, and software with artificial intelligence to monitor the

system’s operation continuously. Proper monitoring technologies are needed to provide

the secure living conditions and efficient management of resources in smart environ-

ments. The role of Computer Vision (CV) in a smart environment is very significant as

it serves as the ‘eyes’ of the smart environment.

Several application services, such as parking systems, energy management, traffic

management, health monitoring, waste management, transportation, etc., must be auto-

mated to build a smart environment. Therefore, numerous researchers are developing

cutting-edge technologies to manage smart applications. Smart surveillance is one of

the integral components of smart environment applications.

Recently, the proliferation of cameras used to monitor human activities has resulted

in a massive amount of visual data. These cameras capture images in various formats.

It requires considerable effort to interpret and store all of this visual data. Numerous

applications rely on captured video content, including intelligent video surveillance to

monitor human activity, crime detection, intelligent traffic management, etc. The pri-

mary goal of video surveillance is to observe a scene and search for specific human

behaviour or action and incidences that may indicate emergence. Identifying individ-

uals via video/images is also critical for maintaining a safe living environment. The

traditional visual data analysis and content comprehension method require human re-

sources, which adds high cost and time to the process. It is generally accepted that

viewing video feeds requires a higher level of visual attention than the majority of daily

activities. Specifically, the capacity to maintain attention and respond to infrequently

occurring events is extremely demanding and error-prone due to attention lapses (Ham-

papur et al., 2003). As a result, sophisticated techniques for analyzing the visual data

captured by the cameras are required. As the demand for security, improved living con-
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ditions, and optimal resource utilization increases in smart environments, the challenges

associated with vision-based Human Activity/Action Recognition (HAR) and Human

Identification (HI) increase proportionately. Hence, thesis work mainly focus on two

important aspects of smart surveillance systems, namely: HAR, and HI.

1.1 Overview of Human Activity/Action Recognition

Human action is the movement pattern of various body parts, physically manifesting

the individual’s intentions and thoughts (Ramanathan et al., 2014). It is a collection

of movements of human body parts with a particular semantic meaning (Liang et al.,

2018). Examples of activities include walking, running, eating, hand waving, using a

keyboard, clapping, falling, drinking water, jumping, fighting, etc. HAR is a process

of recognizing the actions by analyzing the image sequence. The traditional way of

action recognition involves manually analyzing the video sequences captured by the

cameras, which is not only time-consuming but also needs more human resources. So,

researchers started working on developing a system to learn about action patterns from

the videos and use the knowledge gained to recognize the similar actions in other videos.

HAR is one of the challenging research topics which integrates computer vision,

machine learning, pattern recognition, human detection in image/video, human pose es-

timation, and human tracking. In recent years it has grabbed the attention of researchers

from academia, industry, and security agencies as it plays a key role in a wide range of

smart environment applications such as smart video surveillance and smart home mon-

itoring (Aggarwal and Ryoo, 2011; Ziaeefard and Bergevin, 2015), Human-Computer

Interaction (Pickering et al., 2007; Papadopoulos et al., 2014), video indexing, and re-

trieval (Jan C. van Gemert and Snoek., 2015; Ramezani and Yaghmaee, 2016), so on.

Figure 1.2 illustrates some of the applications of HAR in smart environments.

1.1.1 Categories of Human Actions

Human actions can be categorized into different groups (Vrigkas et al., 2015) depending

on the complexity. For instance, “Gestures” are considered to be primitive movements

of a person’s body parts that may correspond to a specific action performed by that

person. “Atomic actions” describe a specific person’s motion that may be a part of more

complex activities. “Human-to-object or human-to-human interactions” are actions that

involve two or more people or objects. “Group actions” are actions performed by a

group of people. “Human behaviors” are the outward manifestations of an individual’s

inner emotions, personality, and mental state. Finally, events are broad actions that
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Figure 1.1: Sample applications of HAR in smart environments.

characterize interactions between people and reveal something about their goals or roles

in society.

1.1.2 Categories of HAR Systems

The visual-data-based HAR systems can be categorized in different ways. Figure 1.2

shows the sample taxonomy of HAR systems. For example, depending on the number

of images used, it can be a still-image based or video-based HAR system. Still-image

based HAR system uses a single image for action recognition. For example, simple hu-

man actions like gestures and atomic actions can be recognized with this. Even though

it is cost-effective, all the actions cannot be recognized with a single image. There is

a need to consider the movement in the sequence of image frames. The video-based

HAR system uses a sequence of frames for interpreting the human action in the scene.

This extracts spatial and temporal characteristics from the image sequence to perform

the classification.

Another way of categorizing the HAR system is depending on the visual data modal-

ity. The visual data modalities can be Red Green Blue (RGB), skeleton, depth, infrared,
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Figure 1.2: Sample taxonomy of visual-data based HAR systems.

and pointcolud etc. The most common types of data used by the HAR system are RGB,

skeleton, and depth. There are several uni-modal HAR systems which use any one of

the said data modalities for HAR. Whereas, multi-modal systems use combination of

data modalities (Wang et al., 2020; Sun et al., 2023).

The RGB images recreate what the human eye sees and provide values for the red,

green, and blue components. They provide detailed information about the appearance

of the captured scene’s context. Skeleton data provides the coordinate positions of dif-

ferent body joints. The skeleton joints can be derived from RGB or depth images by

applying pose estimation algorithms. A vast number of skeleton data-based HAR sys-

tems are based on Three Dimension (3D) skeleton data provided by Kinect depth sensor.

Depth maps are images in which the pixel values depict the distance between a given

viewpoint and the scene’s points. The depth modality, which is frequently insensitive

to variations in colour and texture, provides accurate 3D structural and geometric shape

information of human subjects and can thus be used for HAR. The sample frames from

NTU RGB+D multi-modal human action dataset (Shahroudy et al., 2016) are shown in

Figure 1.3. The first row shows two frames from RGB video. Second row depicts the

depth and skeleton joints. RGB and skeleton data is shown in third row.

Based on the approach used for classification the HAR system can be either hand-

crafted feature based or Deep Learning (DL) model based. Handcrafted features for

action recognition are the features derived using some algorithms, from the information

available in videos or images. They capture human body movements, spatial and tem-

poral changes in the action video, and mainly used in machine learning algorithms for

action classification. Examples for handcrafted feature-based action representation are

image sequence based representation, the trajectory of skeleton joints based represen-

tation, etc.
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(a) (b)

(c) (d)

(e) (f)
Figure 1.3: Sample frame sequence taken from (Shahroudy et al., 2016). (a) and (b) RGB. (c)
and (d) Depth+Skeleton. (e) and (f) RGB+Skeleton.
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In the fixed camera scenario, the background subtraction technique is used to de-

termine the shape information from the RGB data. Spatio-Temporal Interest Points

(STIPs) detection is used to determine regions that have movement change and to rep-

resent action in the video (Laptev and Lindeberg, 2005). Some approaches are based

on capturing the trajectories (Wang et al., 2011). HAR, based on depth sequence, uses

changes in the depth map to represent action as work in (Yang and Tian, 2014; Rahmani

et al., 2014; Yang and Tian, 2017). The skeleton data-based HAR systems can be either

joint based or body part based methods (Li et al., 2018; Vemulapalli and Chellappa,

2016; Vemulapalli et al., 2014). They create feature vectors based on skeleton joints or

builds a human model from skeleton data and extracts features for classification. All

these modalities have several advantages and disadvantages. So, works are found by

combining the different modalities to compensate the shortcomings (Sun et al., 2023).

Table 1.1 explains the pros and cons of different data modalities.

Table 1.1: Advantages and disadvantages of different visual data modalities.

Modality Advantages Disadvantages

RGB

• Provides the detailed visual infor-

mation about the surrounding en-

vironment.

• Easy to collect and operate.

• Huge number of applications are

based on RGB data.

• Sensitive to viewpoint, back-

ground, and lighting condition of

the scene.

• Due to large data size, it demands

for high computational cost, more

resources.

Skeleton

• Provides the 3D structural data

regarding subject pose.

• Most informative and easy to use.

• Tolerant to viewpoint, back-

ground, color of cloth.

• Demands less computation and

resources.

• Absence of of appearance, shape

information.

• Noise.

Depth

• Provide 3D structural and geo-

metric shape information.

• Noise.

• Lack of color and texture infor-

mation.

• Restricted working distance.
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The use of DL models in computer vision is dramatically increasing due to the su-

perior performance in various classification tasks. So, building advanced DL models to

improve the HAR system is alluring to the researchers. The most widely used DL con-

cepts in HAR using different data modalities are Convolutional Neural Network (CNN),

Recurrent Neural Network (RNN), and its variants. The CNN has shown its superior

performance in learning the image features for the classification task. So, it is the most

widely used method in RGB and depth data-based approaches. In skeleton data-based

approaches, often the features from skeleton data are represented as images, and clas-

sification is done using CNN models. Since RNN and its variants proved that they are

efficient in capturing temporal features for time series tasks, researchers explored us-

ing Long Short-Term Memory (LSTM), RNN, and Gated Recurrent Units (GRU) for

video-based HAR.

1.2 Overview of Gait-based Human Identification

The number of cameras deployed to monitor people in today’s smart environments like

airports, shopping malls, university campuses, and workplaces has increased rapidly in

recent years in response to rising crime and terrorist threats. Finding a person from

these videos through manual analysis is time-consuming and laborious. Because of hu-

man factors like fatigue and boredom from keeping watch for long periods of time, lack

of interest, and distractions, there is a high chance of mistakes being made due to the

sheer volume of monitors that need to be checked. So, there is a demand for accurate,

remote human identification in a variety of embedded applications within intelligent

surveillance systems is rising dramatically in smart environments. A wide variety of

real-world applications benefit greatly from the use of such systems, including foren-

sics, monitoring for terrorist activity, crime prevention, and access control (Huynh-The

et al., 2020). In these contexts, the ability to quickly and accurately identify a sin-

gle person out of a large group using only their biometric characteristics is of critical

importance.

There are several existing approaches for HI, using several type of biometrics such

as fingerprint, face, iris scan, fingerprint, and voice etc. Due to limited field of view and

other factors, identifying individuals in video surveillance systems is difficult. Surveil-

lance systems that rely on human identification through face recognition are ineffec-

tive when the face is hidden by a mask, hand, or hat (Batchuluun et al., 2018; Sepas-

Moghaddam and Etemad, 2023). Gait-based human identification is currently a thriving

area of study as a means of surmounting these difficulties. Unlike these traditional ap-
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proaches, which require human attention for identification, the gait based human iden-

tification is non-intrusive. Human gait refers to locomotion achieved through the cyclic

movement of human limbs (Boyd and Little, 2005). In gait-based human identifica-

tion, both data collection and classification is done without the subject’s knowledge

(Khamsemanan et al., 2018). Gait-based human recognition is an emerging behav-

ioral biometric trait for intelligent surveillance monitoring because of its non-contact

and non-cooperation with subjects (Singh et al., 2018). Research on gait has drawn

the attention of several researchers due to the following key benefits (Tafazzoli and

Safabakhsh, 2010; Khamsemanan et al., 2018; Singh et al., 2018; Verlekar et al., 2018):

• Each individual has a unique gait.

• Gait of a person is impossible to hide.

• Imitating of another person’s walking style is not possible.

• Its unobtrusive nature, i.e., gait data are collected at a distance without the sub-

ject’s knowledge.

• It is much more difficult to continuously alter a person’s gait characteristics.

• Low-resolution video sequences can be analyzed for gait characteristics.

• Gait recognition still works well while features such as face images are hidden.

1.2.1 Gait Cycle Components

According to (Kastaniotis et al., 2016), the entire gait cycle consists of two phases:

Stance and Swing, with any leg serving as a reference point. The entire time that a foot

is on the ground constitutes the stance phase. The duration that the foot is in the air

is called swing phase. 60% of the gait cycle consists of the Stance phase, while the

remaining 40% consists of the Swing phase. These phases are subdivided into multiple

events. A gait cycle is formed by heel strike ‘Initial Contact (IC)’ of a leg to the floor

to subsequent heel strike ‘Terminal Swing (TSW)’ of the same leg. Consequently, a

gait cycle is composed of three successive heel strikes. During heel strike, the space

between person’s ankles will be greatest. Hence, based on peaks in ankle distances the

gait cycles in walking sequence are detected. Figure 1.4 displays the various events

and their relative proportion during a gait cycle. We adapted the timing distribution of
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the gait cycle’s various events based on the information found in (Webster and Darter,

2019). Stance phase of gait comprised of four events: Loading Response (LR), Mid

Stance (MST), Terminal Stance (TST), Pre Swing (PSW). Swing phase comprised of

three events: Initial Swing (ISW), Mid Swing (MSW), and TSW. Each of these have

fixed duration. All these events are defined by position of foot of person during walking.

Gait Cycle

Stance Phase 60% Swing Phase 40%

60-73%
Initial
Swing
(ISW)

73-87%
Mid-

Swing
(MSW)

87-100%
Terminal

Swing
(TSW)

0%
Initial

Contact
(IC) 

0-10%
Loading

Response
(LR)

10-30%
Mid-

Stance
(MST)

30-50%
Terminal
Stance
(TST)

50-60%
Pre

Swing
(PSW)

Stance Phase 60%

0%
Initial

Contact
(IC) 

0-10%
Loading

Response
(LR)

10-30%
Mid-

Stance
(MST)

30-50%
Terminal
Stance
(TST)

Figure 1.4: Gait cycle phases, events, and their timings.

1.3 Approaches for Gait Recognition

There are mainly two broad categories of gait recognition, namely: model-free, and

model-based (Chai et al., 2011; Singh et al., 2018; Rida et al., 2019).

Model-free Approaches

Features are extracted directly from the part of gait contour (Singh et al., 2018). These

approaches do not need the prior knowledge of the model. The majority of these meth-

ods based on silhouettes images of a person. Where, silhouette of a person is extracted

by background subtraction method.
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Model-based Approaches

A sequence of static or dynamic body parameters are obtained via modeling or tracking

body components such as limbs, legs, arms, etc., (Chai et al., 2011; Mahfouf et al.,

2018). In this a prior model is established to match real images. The gait features

like length of stride, angular measurement, anthropometric features, joint trajectories

are extracted from the structured body model by fitting the model to observed body of

the person. Most specifically human skeleton data and body structures form the basis

for classification in model-based gait recognition methods (Khamsemanan et al., 2018).

The work on model-based gait recognition is proliferated with the development of the

Microsoft Kinect depth sensors. The 3D skeleton data information provided by the

Kinect depth sensor eliminated the complex algorithm of building human model from

Two Dimension (2D) images. This thesis work focuses on HI using skeleton data based

gait features.

1.4 Motivation

Vision-based HAR and HI have the potential to play a crucial role in a variety of smart

environment applications, including smart buildings, smart cities, and smart campuses.

Global security threats have generated a substantial demand for intelligent surveillance

systems in smart environments to provide a secure living environment and efficient

management through appropriate monitoring technologies. Several surveillance cam-

eras are installed in smart environments to monitor people and maintain a safe and

comfortable living environment. These cameras generate vast quantities of video data,

which is manually analyzed in conventional surveillance. Due to humans’ limited

patience, manually analyzing vast amounts of video data is time-consuming, labor-

intensive, and prone to failure. Therefore, automated video analysis systems are re-

quired for smart environments to provide a better living environment. Thus there is

a demand for efficient HAR, and HI systems to support various applications of smart

environments.

The actions of humans vary in different application domains. Consequently, there

is a significant demand for developing application domain-specific action datasets and

real-time action recognition systems. In addition, an unobtrusive HI system is required

to provide a secure environment in which biometric data can be collected and processed

without the individual’s knowledge. Gait is one of the biometrics that can be remotely
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collected without the subject’s cooperation. Therefore, gait-based human identification

systems can potentially play a role in the forensics department of smart environments.

The advancement in camera technologies allows video data in different modalities with

pros and cons. As a result, the analysis of diverse video data in various modalities for

HAR and HI is gaining importance in the present day.

Human actions are diverse in nature. Different individuals can perform the same

action at different speeds. In addition, the movement of a person’s limbs during action

will vary slightly among individuals. Also, the same action appears differently from

multiple viewpoints. Various actions can be remarkably similar to one another. All of

these issues contribute to the poor performance of HAR systems. Consequently, there is

a demand for sophisticated HAR systems to improve system performance by addressing

these issues.

Human gait recognition is one of the most difficult and alluring fields in surveillance

applications. The more advanced camera technology provides data in different data

modalities. The advantages of 3D data, particularly skeleton data, are numerous. To

improve the performance of HI systems, work on skeleton data-based gait recognition

is therefore thriving.

1.5 Organization of Thesis

Figure 1.5 illustrates the details about the thesis organization including formulated re-

search objectives and the respective research contribution chapters. The remaining part

of this thesis is organized as follows.

• Chapter 2 - Literature Review
This chapter reviews the related work HAR systems with respect to different

modality of data, the approach of feature extraction and classification. In addition,

the HI systems based on gait biometric using 2D and 3D data. Specific emphasis

is placed on gait recognition based on skeleton data. In addition, the benchmark

3D datasets for HAR and skeleton-based gait recognition are described. Follow-

ing the outcomes of the literature review, the problem statement and research

objectives are framed.
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Figure 1.5: Thesis organization with respect to research objectives and contributions.

• Chapter 3 - Domain Specific HAR using RGB Data
This chapter provides a comprehensive description of a context-specific HAR

system utilizing RGB data for student action recognition in smart computer labs.

It provides information about the creation of a dataset, which is the action defined

for the said domain and also the performance of the proposed system in action

recognition.
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• Chapter 4 - HAR using Skeleton Data
This chapter describes a HAR system for single-view action recognition using 3D

skeleton data. This elaborates on a new tree representation of skeleton joints, and

traversal of nodes based on Depth First Search (DFS) method for feature extrac-

tion. Also provides information about the performance on one of the challenging

dataset using DL model.

• Chapter 5 - HI using Skeleton Data
This chapter discusses the two different approaches for HI based on skeleton-

based gait data. Here, novel gait-event-specific quantitative summaries of various

sets of features are described. Also, the advanced DL models based on LSTM

/ GRU, and Attention units are discussed. Further, the various experiments us-

ing benchmark single and multi-view datasets with state-of-the-art protocols are

discussed in detail.

• Chapter 6 - HAR and HI using Fusion of Skeleton and Depth Data
This chapter discusses the approaches for multi-modal HAR and HI using a com-

bination of skeleton and depth data, multi-stream DL models, and score fusion

operations. Two distinct approaches to multi-modal HAR are presented here.

The first work discusses the RGB image representation of action in skeleton data

streams and the spatio-temporal single image representation of human action in

depth frame sequences. In addition, a multi-stream DL model with temporal At-

tention is also described for learning features from these representations. The

second work discusses the investigation of sub-actions of human actions for ac-

tion representation and feature extraction from the skeleton and depth stream of

the action. In addition, a multi-stream DL model with spatial and temporal At-

tention is discussed for learning the features. Also, both works elaborate on the

various experiments utilizing single- and multi-view benchmark action datasets

with standard evaluation protocols.

This chapter also discusses a proposed HI system employing gait data in skeleton

and depth format. The proposed HI system describes the spatio-temporal image

representation of the gait cycle in skeleton and depth format. In addition, it de-

scribes a multi-stream DL model for training these images for gait recognition.

Finally, this section on HI system elaborates on the experimental findings on a

small-scale multi-modal gait dataset.
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• Chapter 7 - Conclusions and Future Directions
This chapter concludes the thesis by summarizing the thesis contributions and

highlighting possible future directions for unobtrusive HAR and HI systems to

support vision-based smart applications.

1.6 Summary

This chapter provided a detailed explanation of the requirements for vision-based in-

telligent surveillance systems. Concerning surveillance systems, the roles of HAR and

HI are highlighted. The fundamental concepts of data modalities of human actions are

elaborated upon. Also discussed are the various approaches to categorizing the HAR.

In addition, the fundamental concepts of human gait are presented. Furthermore, the

various approaches to gait recognition are discussed. In addition, the motivation for

this research and the thesis structure are presented. The subsequent chapter discusses

the comprehensive literature review, identified research gaps, problem statement, and

research objectives.
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Chapter 2

Literature Review

A comprehensive literature review was conducted to understand the work performed by

researchers in vision-based HAR and unobtrusive HI for supporting vision-based smart

applications in smart environments. In light of the potential benefits in various appli-

cations, vision-based HAR and HI have piqued the attention of researchers and smart

environment application builders. In this section, we provide an in-depth explanation

of the vast spectrum of significant existing works on vision-based HAR, HI systems,

the data modalities, and datasets for vision-based HAR, HI that have led to the devel-

opment of intelligent vision-based smart environment applications. We then discuss

the literature review findings, followed by the problem statement and primary research

objectives.

2.1 Human Action Recognition

The primary goal of HAR is to develop an automated system that would mimic the hu-

man visual system in understanding and describing the human actions in a given scene

(Abu-Bakar, 2019). It consists of data acquisition from the sensor, pre-processing, seg-

mentation, feature extraction, training, and classification (Khurana and Singh Kush-

waha, 2018). The sensors utilized by HAR may be visual or non-visual. Based on

visibility, data modalities can be roughly divided into two categories: visual and non-

visual (Sun et al., 2023). As this thesis work focuses on strengthening surveillance

systems for smart environments, hence we focus only on visual data modalities from

visual sensors such as depth sensors and RGB cameras.

From the perspective of complexity of human actions the HAR can be categorized

into still image-based HAR (Ko et al., 2015; Yan et al., 2017; Sreela and Idicula, 2018),

and video-based HAR (Yang and Tian, 2017; Liu et al., 2018; Kamel et al., 2019) sys-

tems. Simple human actions, such as Drinking, Using Mobile, etc., can be identified

from a single image frame. Recognizing a complex set of actions, such as walking,

running, etc., requires a sequence of image frames with temporal features. Traditional

spatio-temporal features cannot be used for action recognition in still images as they

provide only spatial information. Researchers have sought out various high-level cues

in still images to recognize actions better than using low-level features in the whole

image. The human body, body parts, action-related objects, human-object interaction,

and the entire scene or context are some of the most widely used high-level cues for
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still image-based action recognition (Guo and Lai, 2014). A complex action comprises

of temporal features between frames can be recognized with video-based HAR sys-

tems. In video-based HAR the temporal features from set of frames along with spatial

information is considered for accurate recognition of complex human actions.

Recently, the visual data can be captured and stored in different modalities. In

general, the visual modalities such as RGB, skeleton, depth data of a scene are most

“intuitive” for representing human actions. Accordingly from the perspective of data

modalities various number of approaches are proposed in the literature using RGB data

(Hoang et al., 2018; Angelini et al., 2019), skeleton data (Yang et al., 2019; Jiang et al.,

2020; Shao et al., 2021; Li et al., 2022) , and depth data (Yang et al., 2012; Xiao et al.,

2019). Also, nowadays HAR based on fusion of different data modalities is alluring

researchers (Dhiman and Vishwakarma, 2020; Yang et al., 2020). Below we discuss the

prominent contributions found in literature study for HAR using different visual data

modalities such as RGB, skeleton, and depth.

2.1.1 RGB Image-based HAR

HAR based on RGB images is a popular research topic in computer vision and pattern

recognition. Images and videos captured with RGB cameras that attempt to replicate

what human eyes see are often referred to as being in the RGB modality. RGB data

is typically simple to collect and contains substantial information regarding the scene

context. HAR from RGB data is challenging due to varying backgrounds, viewpoints,

scales of humans, and lighting conditions. Based on the number of frames used for

HAR, there are video-based and still image-based HAR systems using RGB data.

Most of the earlier works on HAR from still images are RGB data based. Many

spatio-temporal features and methods developed for traditional video-based action recog-

nition are inapplicable to still images (Guo and Lai, 2014). However, the computation

and resource requirements for still image-based HAR are significantly lower than those

for video-based HAR, due to the reduced number of features that must be processed

and stored. Numerous approaches (Delaitre et al., 2010; Yao and Fei-Fei, 2010; Yan

et al., 2017; Sreela and Idicula, 2018) were proposed in the literature for recognizing

human actions from still/static images. The work in (Delaitre et al., 2010) proposed

action recognition in still images by combining bag-of-features methods and the part-

based Latent Support Vector Machine (SVM). The method specifically investigates the

role of background scene context in HAR. Eventually, it combines the statistical and
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part-based representations and the individual detail with the scene context for action

recognition. (Rădulescu and Florea, 2021) presented and compared the performance

of three deep learning models with 2D, 3D kernel, and Temporal Convolutional Net-

work (TCN) units. The authors determined that a model with a 2D kernel is the quickest

but has poor performance. Alternatively, TCN performed better. The summary of key

existing works on RGB based HAR is reported in Table 2.1.

Table 2.1: Summary of key existing HAR works based on RGB data.

Authors Methodology Remarks

(Ko

et al.,

2015)

A two-layer classification model with

poselet-based features for HAR from

images. Two layers of Random For-

est (RF) based classification are applied

on the poselets to recognize actions.

Infers the relationship be-

tween context and poselets

among human actions. Miss-

classification in complex

background, and unclear

human poselet.

(Zhang

et al.,

2016)

Selective search is used to generate ini-

tial object proposals, which are then

disassembled into finer-grained object

parts for use in locating Human-Object

Interaction (HOI) zones. Actions are

predicted using HOIs.

Attempt to solve problems en-

countered by annotators. The

HOI extraction for various ac-

tions requires improvement.

(Yan

et al.,

2017)

CNN features for image patches are

generated using a region proposal algo-

rithm, and are used to encode the image

as a compact code that captures the im-

age’s fine-grained properties and global

context.

Better action recognition

from still images using local

patches and global context.

(Sreela

and

Idicula,

2018)

CNN features of the image are ex-

tracted using a residual neural network

and then classification using SVM clas-

sifier.

Achieved better performance

in recognizing certain actions

in the dataset. Must be en-

hanced to recognize all ac-

tions.
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Table 2.1 Continued from previous page.

Authors Methodology Remarks

(Ullah

et al.,

2018)

Using CNN model, features are ex-

tracted from every sixth frame of an

action video and then learned using

Bi-directional LSTM (DB-LSTM) for

HAR.

Capable of learning long term

complex sequences in videos.

Features from salient regions

of the frame need to consid-

ered for action recognition.

(Li

et al.,

2018)

In this, the authors presented a frame-

work to select the discriminative part in

the spatial dimension and used multiple

layers of a LSTM to learn temporal fea-

tures for HAR.

Enriches spatio-temporal in-

formation of action by com-

bining spatial and temporal

features. More structural fea-

tures are required for better

performance.

(Gnouma

et al.,

2019)

Silhouette images are extracted by de-

tecting the foreground. These images

are combined to create a History of

Binary Motion Image (HBMI), and

trained with an Artificial Neural Net-

work (ANN) for HAR.

Model is independent of the

style of the individuals as bi-

nary foreground masks are uti-

lized.

(Tu

et al.,

2019)

Aggregates action video features spa-

tially and temporally by encoding deep

features in both sub-actions spatially

and action-stages temporally. It divides

the local deep features into segments

and chooses the informative features

from each segment.

A method for accurately pre-

dicting the discriminative sig-

nificance of each frame by ig-

noring repetitive, unimportant,

or noisy frames that are less

useful or even detrimental to

the target action.

(Ji et al.,

2020)

Extracted semantic contexts with inter-

active objects, scenes, and body mo-

tions from action videos to construct

a context knowledge map, followed by

classification.

Using four existing models

to extract context information

could result in high computa-

tional cost.
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Many existing approaches to recognizing human actions in videos rely on classi-

fiers applied to sequences of RGB colour images. While these approaches performed

well in recognizing simple human actions like running and bending against a simple

background, they are highly sensitive to factors influencing RGB image quality. The

factors like complex backgrounds, illumination variation, and clothing colour, view-

points, and human scales make it challenging to segment the human body in all scenes.

Furthermore, each person has their own unique way of moving their body when accom-

plishing the same task semantically. However, if two separate actions share a similar

motion path, it becomes more challenging to recognize them. Recognizing the action,

especially when performed in the camera’s direction, can be difficult if depth cues are

absent in RGB images. In addition, RGB videos typically have large data sizes, re-

sulting in high computational costs when modeling the spatiotemporal context for HAR

(Sun et al., 2023). Recent human action recognition technologies have considered using

depth cameras to provide 3D data in skeleton and depth data to overcome the limitations

mentioned above.

2.1.2 HAR using Skeleton Data

The skeleton data provides the 2D/3D coordinates of various joints in human bodies for

each frame of the action video, compared to the entire image frame. Thus, it drasti-

cally reduces the storage and computation requirements and consequently, the resource

requirements. The trajectories of the body’s joints, which are recorded in the skeleton

sequences, provide the most useful information about human motion, making the data

suitable for HAR. Skeleton data has many benefits for HAR, such as pose information,

a simple and informative representation, scale in-variance, and resistance to variations

in clothing textures and backgrounds. These benefits, combined with the accessibility

of high-quality, low-cost depth sensors, have piqued the interest of the scientific com-

munity in skeleton-based HAR. Numerous works utilizing skeleton data, particularly

3D skeleton data, have been reported in the existing literature on HAR. Many of the

earliest HAR research efforts concentrated on hand-crafted spatial and temporal fea-

tures from skeleton sequences (Aggarwal and Xia, 2014; Zhang et al., 2016). In past

few years because of its superior feature-learning ability, DL has quickly become the

method of choice for skeleton-based HAR.

The handcrafted feature extraction may focus on joint based or body-part based fea-

tures for HAR (Li et al., 2018). (Ofli et al., 2014) developed a method for selecting most

informative skeleton joints for HAR. Selecting a key joint and then extracting features
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from the remaining joints in relation to that joint is the basis of the proposed methods

in (Yang and Tian, 2012) and (Vemulapalli et al., 2014). A compact representation of

postures was proposed by (Xia et al., 2012), which characterised human postures as his-

tograms of 3D joint locations within a spherical coordinate system. In body-part based

approaches, the human body parts are used to model the human’s articulated system.

These body parts are typically represented by rigid cylindrical shapes connected at their

joints. (Vemulapalli and Chellappa, 2016) used relative 3D rotations between joints as

feature for HAR. (Amor et al., 2016) suggested a comprehensive framework for action

analysis with skeleton shape evolution.

The DL methods are based on RNN (and its gated variations like LSTM), CNN,

and Graph Convolutional Network (GCN). RNN and its variations showed its superior-

ity in learning the temporal dependencies in sequential data. Consequently, these have

been applied and adapted in a number of different ways (Zhang et al., 2018; Liu et al.,

2018) to effectively model the temporal context features within the skeleton sequences

for HAR. (Liu et al., 2018) introduced DL model based on LSTM to analyze the 3D

coordinates of skeleton joints at each frame and processing step. Furthermore, a skele-

ton tree traversal method that uses the adjacency graph of body joints can accurately

capture the data and boost the performance. Using a global context memory cell, (Liu

et al., 2018) focused attention to the most informative joints in human action for more

accurate HAR. (Jiang et al., 2020) proposed a spatial-temporal skeleton transformation

descriptor that is learned with an LSTM network.

CNNs have achieved great success in the field of 2D image analysis due to their

superior ability to learn features in the spatial domain. However, when dealing with

skeleton-based HAR, it becomes difficult to model spatio-temporal data. Numerous so-

phisticated methods have been suggested, such as using temporal convolution on skele-

ton data (Kim and Reiter, 2017) or representing skeleton sequences as images that are

then fed to regular CNNs for HAR (Wang et al., 2018). (Hou et al., 2018) represented

the spatio-temporal features in a sequence of skeleton frames as colour images , fol-

lowed by CNN model to learn the features for action classification. (Wang et al., 2018)

proposed encoding of joint trajectories and their dynamics into color images, and a

CNN model to learn the discriminative features for HAR.

Recently, numerous methods for HAR based on GCN have been proposed, which

treat skeleton information as edges and nodes in the graph (Ahmad et al., 2021). (Yan

et al., 2018) proposed a spatial temporal GCN for HAR from skeleton data. The model
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constructs a set of spatial temporal graph convolutions on the skeleton sequences to

extract motion information. (Zheng et al., 2022) used bone and joint streams of skeleton

data and proposed a two-stream GCN for HAR from skeleton data.

Spatio-temporal graph routing to adaptively learn the intrinsic high-order connec-

tivity relationships for physically apart skeleton joints is proposed in (Li et al., 2019).

This consists of two components: a spatial graph router for tracing the connectivity re-

lationships between the joints and a temporal graph router for analysing structural data.

There are different approaches to tackle different issues related to skeleton based HAR.

In this we primarily focus on DL models based on CNN and RNN variants for HAR

from skeleton data. The summary of key existing works on skeleton data-based HAR

which inspired this thesis work is given in Table 2.2.

Table 2.2: Summary of key existing HAR works based on skeleton data.

Authors Methodology Remarks

(Du

et al.,

2016)

The human skeleton is divided into five

major regions based on the physical

structure and fed to RNN-based DL

models.

Appearance features can be

combined with the temporal

features to enhance the perfor-

mance.

(Wang

and

Wang,

2018)

HAR is based on primitive geometries

such as joints, edges, and surfaces of

skeleton data. The RNN-based DL

model with a viewpoint transformation

layer was introduced for classification.

Shown the benefits of incor-

porating multiple geometric

primitives. For enhanced per-

formance, geometric relation-

ships and temporal skeleton

dynamics can be investigated.

(Ke

et al.,

2018)

Each channel of the 3D coordinates of

a skeleton sequence is converted into a

clip containing the spatial and tempo-

ral information of the series of skele-

tons. Also, Multitask Convolutional

Neural Network (MTCNN) is proposed

to learn these clips for HAR.

Considers both spatial and

temporal features of HAR.

Needs more computations as

there are three parallel CNNs.
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Table 2.2 Continued from previous page.

Authors Methodology Remarks

(Liu

et al.,

2019)

DL model is used to model the context

and dependency information in spatio-

temporal dimension.

Main contribution is a large

scale dataset. Use of multi-

modal features can increase

recognition performance.

(Li

et al.,

2019)

Accurate HAR is achieved by con-

structing three views in the spatial do-

main using enhanced joint trajectory

maps and feeding them to a stack of

CNN, and LSTM networks to learn

spatio-temporal data.

Uses temporal and spatial in-

formation together in learning

the features for better perfor-

mance.

(Pham

et al.,

2019)

Action is represented as a RGB im-

age by dividing the skeleton into five

parts, and normalizing the 3D coordi-

nates. These are trained using CNN

model for HAR.

Better performance at low

computation power. Fur-

ther evaluation is required on

multi-view datasets.

(Agahian

et al.,

2020)

HAR framework uses pose representa-

tion and encoding. Defined a pose de-

scriptor with normalized skeleton joint

coordinates, displacement information

relative to temporal offset, and previ-

ous timestamp.

Considers all joints to generate

features. Focus on most dis-

criminative features improves

the performance.

(Shao

et al.,

2021)

Proposed a new perspective on view-

invariant action recognition from skele-

ton data. The descriptors of actions

are derived from their skeleton self-

similarities and trained with a multi-

stream DL model.

Multiple CONVNets and

LSTM captures the spatio-

temporal information from

multiple views leads to good

performance, with more

computation requirement.

(Ding

et al.,

2021)

The dynamic skeleton data from a se-

ries of frames are represented in a

3D grid structure capturing the inter-

dependencies between body parts. A

dual-stream 3D CNN model is used to

learn the features for HAR.

Model demands for more

computational resources. The

action representation could be

improved, which would result

in improved performance.
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Table 2.2 Continued from previous page.

Authors Methodology Remarks

(Sameem

et al.,

2021)

Proposed an action descriptor based

on 3D skeleton joint’s angle, dis-

tance and frame-frame interrelation-

ships, followed by classification.

Can investigate DL models to

enhance performance. Experi-

ments on view-invariant HAR

are required.

(Liu

et al.,

2022)

The action in a sequence of skeletons is

converted into a spatial-temporal graph

structure and an image depicting skele-

ton motion. Followed by a GCN to

learn the action representation.

Performed feature fusion of

dual streams. The score fu-

sion of different streams from

multi-view features may fur-

ther improve the performance.

(Ng

et al.,

2022)

Each skeleton is initially divided into

different groups. After that, the

auto-encoder-based DL is proposed for

HAR. The purpose of the attention

mechanism is to concentrate on more

informative body parts.

Performance need to be im-

proved by exploring different

Attention mechanisms and us-

ing different types of data.

2.1.3 HAR using Depth Data

The depth modality can be used for HAR because it reliably captures the 3D structural

and geometric shape of human subjects despite variations in colour and texture (Sun

et al., 2023). Converting 3D data into a 2D image is the crux of depth map construc-

tion. In the existing literature, there are several works on HAR based on depth data of

the scene. The majority of these techniques relied on depth maps generated by inex-

pensive sensors such as Kinect (Li et al., 2010; Yang and Tian, 2012; Oreifej and Liu,

2013; Yang and Tian, 2014). The majority of existing depth-based action recognition

techniques rely on global features such as space-time volume and silhouette data (Wang

et al., 2020). The existing depth-based approaches can be broadly classified as either

DL-based or handcrafted feature-based methods (Yang and Tian, 2014).

Various handcrafted feature-based methods have been proposed in the literature.

(Oreifej and Liu, 2013) introduced the use of a histogram representing the distribution

of the surface normal orientation in the space of time, depth, and spatial coordinates

for representing the action in depth data. (Yang and Tian, 2014) proposed clustering

hyper-surface normals in a depth sequence to create the poly-normal, which is then
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used to jointly characterize the local motion and shape features required for HAR. (Xia

and Aggarwal, 2013) introduced a filtering technique for extracting STIPs from depth

videos that effectively suppress noisy measurements. Further, a depth cuboid similarity

feature is used to characterize the local 3D depth cuboid surrounding the depth STIPs

with an adjustable supporting size. (Rahmani et al., 2016) proposed the extraction of

the histogram of oriented principal components descriptor by directly processing the

point-clouds to solve issues arising from noise, viewpoint, and action speed variations.

DL based methods demonstrated better performance in HAR based on depth data.

There are several approaches on HAR using DL and depth data (Rahmani and Mian,

2016; Shi and Kim, 2017; Zhang et al., 2018), proposed for HAR using DL and depth

data. Due to the success of handcrafted Depth Motion Maps (DMM), a weighted hi-

erarchical DMM in a DL framework is proposed by (Wang et al., 2016). Using seg-

mented sequence of depth maps, (Wang et al., 2018) developed three effective repre-

sentations of depth sequences, namely: dynamic depth images, dynamic depth normal

images, and dynamic depth motion normal images for both isolated and continuous ac-

tion recognition. These descriptors are learnt by a CNN-based DL model for accurate

HAR. To automatically encode spatio-temporal patterns from depth sequences without

pre-processing a 3D CNN model is proposed by (Sanchez-Caballero et al., 2022). A

ConvLSTM -based DL model for learning spatio-temporal features from sequence of

raw depth maps is introduced in (Sanchez-Caballero et al., 2020). The summary of key

depth-based HAR works is described in Table 2.3.

Table 2.3: Summary of key existing HAR works based on depth data.

Authors Methodology Remarks

(Yang

et al.,

2012)

Project depth maps onto three orthog-

onal planes and accumulate global ac-

tivities across video sequences to cre-

ate the DMM. Histograms of Oriented

Gradients (HOG) are computed from

DMM to represent action.

The compact and discrim-

inative representation cap-

tures global activities from

front/side/top views.

(Song

et al.,

2014)

Proposed local depth map feature de-

scribing action’s spatio-temporal de-

tails.

A feature that is approxi-

mately object-centered, mak-

ing it more tolerant of varia-

tions. Robust to view varia-

tions.
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Table 2.3 Continued from previous page.

Authors Methodology Remarks

(Liang

et al.,

2016)

Extracts a multilayered depth motion

feature and applies a multi-scale HOG

descriptor to capture the local tempo-

ral change of human motion and action

spatial structure

Effective for small HAR sam-

ple sizes. This method makes

the sparse coding coefficients

sufficiently discriminatory for

classifying actions that are

similar.

(Yang

and

Tian,

2017)

To jointly characterise local motion and

shape information, surface normals are

extended to poly-normal by assembling

local neighbouring hyper surface nor-

mals from a depth sequence. Adaptive

spatio-temporal pyramid subdivides a

depth video into space-time cells to

capture spatio-temporal features.

The framework can be easily

adapted for use in any depth

sequence that is aligned with

a joint trajectory. When there

are large variations in both

space and scale, this approach

works well.

(Ahmad

et al.,

2019)

Raw depth maps are processed using

CNN model.

As entire set of depth maps are

used, thus needs more compu-

tations.

(Weiyao

et al.,

2019)

A Multilevel Frame Select Sampling

(MFSS) method is proposed to gen-

erate three levels of temporal samples

from the input depth sequences. The

motion and static mapping, method is

applied to generate the representation

of MFSS sequences.

Three temporal levels can

achieve better recognition

Accuracy when compared

with other temporal levels.

Need to test with large-scale

data set.

2.1.4 Multi-modal HAR

The availability of visual data in multiple modalities has led to the creation of HAR sys-

tems based on the fusion of data modalities. (Fan et al., 2020) proposed a method that

combines RGB and skeleton data, in which context-aware cross-attention module to ex-

tract joints that are closely relevant to the context information and are more insightful.

The context information branch contains two branches that are applied to RGB data.

(Gu et al., 2020) proposed a method for HAR that utilizes both low-level characteristics
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and high-level contextual information. Moreover, this utilizes data in three modalities:

skeleton, depth, and RGB, to extract the required data for HAR. (Kamel et al., 2019)

suggested a deep CNN-based model with score fusion operations using depth and skele-

ton data. Two action descriptors were introduced as images to support HAR from the

front view. (Romaissa et al., 2021) proposed fusion of RGB, depth, and skeleton data,

further the LSTM model is used to learn the spatio-temporal features for HAR. The

summary of most significant multi-modal works on HAR is reported in Table 2.4.

Table 2.4: Summary of key existing HAR works based on multiple data modalities.

Authors Modality Methodology Remarks

(Kamel

et al.,

2019)

Skeleton,

Depth

The action descriptors based on

skeleton and depth data are trained

with 3 channel CNN, followed by

fusion operations.

Scope for improving

the performance by

focusing on more im-

portant features.

(Yang

et al.,

2020)

Skeleton,

Depth

Attempt to reduce the redundancy

in depth maps and captures spatial

motion states. Generated action de-

scriptor using skeleton data.

The method estab-

lishes an inherent

relationship between

the labels.

(Fan

et al.,

2020)

RGB,

Skele-

ton

Used attention mechanism to select

informative joints. It is combined

with context information extracted

from RGB data.

Using entire RGB

data for context

information needs to

process huge data.

(Singh

et al.,

2020)

Depth,

RGB

A depth and RGB sequence consti-

tuting the action video is used to

generate dynamic images. Using a

multi-stream CNN model with score

fusion, these dynamic images are

learned.

Performance can be

improved by focusing

on to the most impor-

tant period during an

action.

(Romaissa

et al.,

2021)

Skeleton,

Depth,

RGB

Using a sequence of RGB, depth,

and skeleton frames, separate dy-

namic images are constructed to rep-

resent the action. These dynamic im-

ages are trained with a DL model

comprised of CNN, and LSTM.

Utilizing three dis-

tinct data modalities

for action recognition

is computationally in-

tensive.
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Table 2.4 Continued from previous page.

Authors Modality Methodology Remarks

(Cheng

et al.,

2022)

Depth,

RGB

A powerful 2D-CONVNet model

with a cross-modality compensation

module to discover complementary

discriminative features from two

modalities is introduced.

Feature fusion

improved the per-

formance, however

RGB data demands

more resources.

2.1.5 Datasets for HAR

Several datasets are made publicly available for research on HAR. This thesis work

mainly focuses on RGB, skeleton, and depth modality datasets for HAR. As, one of

the task is domain specific we used custom RGB dataset. Rest of the works are carried

using publicly available datasets captured using Kinect depth sensor. The statistics of

some of the benchmark datasets for HAR are listed in Table 2.5.

Table 2.5: Datasets for Human Action Recognition.

Dataset Authors
Data

Modality
Samples Classes Subjects Views

MSRAction-

3D

(Li et al.,

2010)

Depth,

Skeleton
567 20 10 1

UT-Kinect
(Xia et al.,

2012)

RGB,

Depth

Skeleton

200 10 10 4

SBU-

Kinect

Interac-

tion

(Yun et al.,

2012)

RGB,

Depth,

Skeleton

300 8 7 1

MSRDaily

Activ-

ity3D

(Wang

et al., 2012)

RGB,

Depth,

Skeleton

320 16 10 1

N-UCLA
(Wang

et al., 2014)

RGB,

Depth,

Skeleton

1494 10 10

Variety

(3

cam-

eras)
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Table 2.5 Continued from previous page.

Dataset Authors
Data

Modality
Samples Classes Subjects Views

UTD-

MHAD

(Chen

et al., 2015)

RGB,

depth,

skeleton

861 27 8 1

NTU-

RGB+D

(Shahroudy

et al., 2016)

RGB,

Depth,

Skeleton,

IR

56880 60 40

80 (3

cam-

eras)

NTU-

RGB+D120

(Liu et al.,

2019)

RGB,

Depth,

Skeleton,

IR

114480 120 106

155

(3

cam-

eras)

This work is conducted on two single-view datasets, namely: MSRAction3D and

UTD-MHAD, and one multi-view dataset: NTU RGB+D using skeleton and depth

data. Tables 2.6, 2.7, and 2.8 gives the action labels in MSRAction3D, UTD-MHAD,

and NTU RGB+D, respectively.

Table 2.6: Actions in MSRAction3D.

Sl.
No. Label Sl.

No. Label Sl.
No. Label Sl.

No. Label

1
High arm

wave
2

Horizontal arm
wave

3 Hammer 4 Hand catch

5
Forward
punch

6 High throw 7 Draw cross 8 Draw tick

9 Draw circle 10 Hand clap 11
Two-hand

wave
12 Side boxing

13 Bend 14 Forward kick 15 Side kick 16 Jogging

17
Tennis
swing

18 Tennis serve 19 Golf swing 20
Pic-up and

throw
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Table 2.7: Actions in UTD-MHAD.

Sl.
No. Label Sl.

No. Label Sl.
No. Label

1
Right arm swipe to

the left
2

Right arm swipe to
the right

3 Right hand wave

4 Two hand front clap 5 Right arm throw 6
cross arms in the

chest

7 Basketball shoot 8 Right hand draw x 9
right hand draw
circle-clockwise

10
Right hand draw

circle-counter
clockwise

11 Draw triangle 12 Bowling right hand

13 Front boxing 14
Baseball swing from

right
15

Tennis right hand
forehand swing

16 Arm curl two arms 17 Tennis serve 18 Two hand push

19
Right hand knock

on door
20

Right hand catch an
object

21
Right hand pick up

and throw

22 Jogging in place 23 Walking in place 24 Sit to stand

25 Stand to sit 26 Forward lunge 27 Squat

2.2 Human Identification

Automatically identifying a person from a group of people is one of the most important

tasks for ensuring a comfortable and safe life in the era of smart environments. Vision-

based gait recognition identifies a person by analysing camera-collected visual data of

a pedestrian’s walking pattern. Several methods, such as (Zhang et al., 2019; Vrigkas

et al., 2015), can be found in the literature for Human Identification; however, each

of these methods relies on human cooperation for identification. In unobtrusive human

identification systems, the features are collected from the human without his/her knowl-

edge. Vision-based gait features can be collected from far without the subject’s aware-

ness (Khamsemanan et al., 2018; Singh et al., 2018; Sepas-Moghaddam and Etemad,

2023). So HI plays an important role in smart surveillance systems.

There are two kinds of conventional gait identification algorithms, namely: model-

free (Han and Bhanu, 2006; Huang and Boulgouris, 2012) and model-based (Tafazzoli

and Safabakhsh, 2010; Li et al., 2020; Liao et al., 2022; Zheng et al., 2022). Model-

free techniques are often known as appearance-based techniques. In contrast, model-

based methods aim to reconstruct a person’s three-dimensional model. Here, gait data
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Table 2.8: Actions in NTU RGB+D.

Sl.
No. Label Sl.

No. Label Sl.
No. Label

1 Drink water 2 Eat meal/snack 3 Brushing teeth

4 Brushing hair 5 Drop 6 Pickup

7 Throw 8 Sitting down 9 Standing up

10 Clapping 11 Reading 12 Writing

13 Tear up paper 14 Wear jacket 15 Take off jacket

16 Wear a shoe 17 Take off a shoe 18 Wear on glasses

19 Take off glasses 20 Put on a hat/cap 21 Take off a hat/cap

22 Cheer up 23 Hand waving 24 Kicking something

25 Reach into pocket 26 Hopping 27 Jump up

28
Make a phone

call/answer phone
29

Playing with
phone/tablet

30
Typing on a

keyboard

31
Pointing to

something with
finger

32 Taking a selfie 33 Check time

34
Rub two hands

together
35 Nod head/bow 36 Shake head

37 Wipe face 38 Salute 39
Put the palms

together

40 Cross hands in front 41 Sneeze/cough 42 Staggering

43 Falling 44 Touch head 45 Touch chest

46 Touch back 47 Touch neck 48
Nausea or vomiting

condition

49
Use a fan /feeling

warm
50

Punching/slapping
other person

51
Kicking other

person

52
Pushing other

person
53

Pat on back of other
person

54
Point finger at the

other person

55
Hugging other

person
56

Giving something to
other person

57
Touch other

person’s pocket

58 Handshaking 59
Walking towards

each other
60

Walking apart from
each other
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is streamlined into a known structure such as skeletons or body structures before the

extraction of features. Prior to the development of sensor devices, model-based ap-

proaches had not been used extensively (Khamsemanan et al., 2018). This situation

has changed as a result of new technologies, specifically the development of Microsoft

Kinect and its SDK (Zhang, 2012). This thesis primarily concentrates on HI based on

gait data captured using depth sensors. Below we discuss some of approaches using 2D

silhouette images.

2.2.1 2D Gait-based Human Identification

Here, the human identification is made based on the features constructed from the image

sequence of human walking. In (Yoo et al., 2008) used a model-based approach wherein

the human body points from the gait are used to model the human body as 2D stick

figures. A number of existing approaches used image silhouettes for feature extraction

such as (Li et al., 2008; Liang Wang et al., 2004; Wan et al., 2018). Gait Energy Image

(GEI) (Han and Bhanu, 2006) is a model-free gait recognition method that employs

the average silhouette image as gait features. It is regarded as a standard algorithm

for model-free gait recognition and is one of the most popular due to its simplicity

and efficacy. The GEI used by (Ma et al., 2017) for feature extraction and followed

by neural network based classification. Where as (Ju Han and Bir Bhanu, 2006) used

similarity measurement of GEI for human identification. In (Li et al., 2008), human

silhouette image is divided into seven parts and mainly studied the contribution of each

part for gait recognition. (Liang Wang et al., 2004) segmented human body into fourteen

parts and used joint angle trajectories for human identification. (Tang et al., 2017)

suggested gait recognition using 3D parametric body models are morphed by pose and

shape deformation from a template model using 2D gait silhouette sequence.

2.2.2 3D Gait-based Human Identification

Among 2D model-based gait recognition, most of the methods established skeleton

model using image sequence but it is affected by illumination, clothing, etc. (Wang

et al., 2016). So, in recent years with the development of 3D cameras, 3D gait recog-

nition also started gaining importance as they have better performance in view variance

and further, the data need to be processed is less compared to 2D. 3D skeleton joint

data provided by Kinect depth sensor eliminates the need for complex procedures of

building a model from visual data streams (Deng and Wang, 2019).
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Several works (Choi et al., 2019; Khamsemanan et al., 2018; Deng and Wang, 2019;

Bari and Gavrilova, 2019; Limcharoen et al., 2020) have been proposed for 3D skeleton-

based gait recognition by exploiting various static and dynamic gait-specific features.

Some techniques extracted features from raw skeleton data using direct deep learning

models. In contrast, some methods employ a separate step for feature extraction. In

addition, these features are classified using machine learning or deep learning models.

Below are examples of works that fall under both of these categories. (Yang et al., 2016)

generated a set of features using relative joint distances. Then, the distance features and

anthropometric features are combined to create the final feature vector. Additional K-

Nearest Neighbors (KNN) and majority voting are used for HI. A deep neural network

with joint relative cosine similarities and triangle areas based 3D gait recognition is pro-

posed in (Bari and Gavrilova, 2019). (Sun et al., 2018) created a feature set comprising

of the length of specific skeletons and swing angles of limbs and further used Nearest

Neighbor (NN) classification. (Choi et al., 2019) performed person identification by

frame-level discriminative scores, but the time required to identify the person increases

with number of frames. (Li et al., 2017) proposed a LSTM model to learn raw skele-

ton data from the sequence for person’s identification. However, there is a possibility

that performance will suffer if the skeleton is noisy. (Hosni and Amor, 2020) proposed

a geometric deep CNN encoding-decoding framework for 3D gait recognition. LSTM

model is proposed to learn skeleton information from each frame. (Li et al., 2017). This

method used raw data without accounting for gait-specific features. The summary of

key works on HI using 3D data inspired this thesis work is given in Table 2.9.

Table 2.9: Summary of key existing HI works based on data from Kinect depth sensors.

Authors Modality Methodology Remarks
(Haque et al.,

2016)

Depth Proposed a recurrent attention

model to identify the important

spatio-temporal regions for the

person identification problem from

depth video of walking sequence.

Use of attention

gives importance

to discriminative

features.
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Table 2.9 Continued from previous page.

Authors Modality Methodology Remarks
(Karianakis

et al., 2017)

Depth Proposed reinforced temporal at-

tention on frame-level features to

capture the temporal information

from video sequences for person

re-identification from depth data.

The reinforced Tem-

poral Attention unit

is independent of

the network archi-

tecture and focuses

on discriminative

features for person

identification.

(Wu et al.,

2017)

Depth,

Skele-

ton

Exploited depth information for in-

variant body shape and skeleton in-

formation regardless of illumina-

tion and color change. Also, used a

kernelized implicit feature transfer

scheme to estimate the Eigen depth

from RGB image.

Used a kernelized im-

plicit feature transfer

scheme to estimate

the Eigen depth from

RGB image in the ab-

sence of depth image.

(Khamsemanan

et al., 2018)

Skeleton The posture-based features of each

frame are classified using Machine

Learning (ML) techniques, and the

probability score of each frame is

combined to make a final decision.

An attempt to handle

varying viewpoint-

related issues. The

classification results

of noisy frames affect

the performance.

(Bari and

Gavrilova,

2019)

Skeleton Two view-invariant geometric fea-

tures, joint relative cosine dissim-

ilarity and triangle area are ex-

tracted from the frames in the gait

cycle and trained using a neural

network model.

Complex deep learn-

ing model, which

has more trainable

parameters thus need

more computation.

(Liu et al.,

2019)

Skeleton Two separate deep learning models

with LSTM and CNN are proposed

to capture spatial and temporal in-

formation by processing skeleton

gait energy image and joint angles.

Can improve the per-

formance by focusing

on to most discrimi-

native features.
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Table 2.9 Continued from previous page.

Authors Modality Methodology Remarks
(Limcharoen

et al., 2020)

Skeleton Focused on multi-viewpoint chal-

lenges in gait recognition. Feature

vectors contain the joint replace-

ment coordinates using a set of

selected frames and a CNN-based

DL model is proposed.

Few local joint move-

ments were consid-

ered. To improve the

performance, there is

a need to consider

the entire body move-

ment data.

(Huynh-The

et al., 2020)

Skeleton Extracts geometric distance and

orientation features. A CNN

model is proposed for feature

learning and classification.

Features are accumu-

lated over multiple

frames to compute

gait sequence statis-

tics.

(Xu et al.,

2021)

Skeleton Proposed Local Graphical Skele-

ton Descriptor (LGSD) for extract-

ing the geometrical patterns of the

skeleton sequence. These are pro-

cessed using Dual-stream CNN-

based DL model for classification.

Used only the lo-

cal descriptors of the

skeleton. It can be

improved further by

learning the end-to-

end features.

(Limcharoen

et al., 2021)

Skeleton It targets the rhythm of move-

ments in 22 different regions of the

human body using region-specific

LSTM models. Outputs from these

22 LSTM models are combined to

learn the relations among regions.

Captures the relation

among different

regions effectively.

Increased computa-

tional complexity as

22 different models

are used.

2.2.3 3D Gait Datasets for Human Identification

Several datasets are made publicly available for research on HI. This thesis work fo-

cuses on skeleton data based gait sequences. The details about some of the benchmark

datasets used in this work for HI are listed in Table 2.10.
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Table 2.10: Summary of skeleton-based benchmark gait datasets.

Dataset UPCV1 UPCV2 KGBD KS20 IAS-lab

Authors
(Kastaniotis

et al.,
2015)

(Kastaniotis
et al.,
2016)

(Andersson
and

Araujo,
2015)

(Nambiar
et al.,

2017a)

(Munaro
et al.,
2014)

Subjects 30 30 164 20 11

Samples 150 300 822 300 11+11+11

Multi-
View No No No Yes No

Walking
Direction

straight
line

straight
line

semi
circular

straight arbitrary

2.3 Outcome of Literature Review

Existing research has established the importance of smart surveillance systems in smart

environments such as smart cities, smart campuses, etc. In addition, HAR and human

identification systems are two essential functions of intelligent surveillance systems in

providing a secure and comfortable living environment. Numerous studies have been

conducted on HAR and HI to address various problems. Based on the extensive litera-

ture review, the following research gaps are identified.

Research Gaps

• Every day, surveillance cameras generate massive amounts of video data. Conse-

quently, analyzing and storing data for future use is extraordinarily challenging.

Vision-based surveillance systems have no efficient way of storing video data

based on interpreting human actions in the scene.

• Most existing works have focused on recognizing single human actions from im-

ages depicting one human action. However, in reality, an image may contain

multiple actions. Consequently, precise localization and recognition of multiple

human actions in a scene are challenging.
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• There is no widely adopted architecture for localization and recognition of mul-

tiple human actions in images and videos.

• Most of the human actions are application domain-specific. Consequently, it is

crucial for surveillance system applications to utilize domain-specific human ac-

tion data. For instance, no established datasets for student actions on campus is

found in the literature.

• There is diversity in the way different people perform the same action, for in-

stance, in terms of speed, duration, and so on. The subject (person) independent

HAR needs to be improved for effective people monitoring.

• Human actions appear differently from different viewpoints, and there is no ro-

bust method that can handle variation in viewpoints for HAR.

• Vision-based surveillance systems require unobtrusive identification of humans.

Human gait is biometric that can be used for unobtrusive identification. The gait

of a person appears differently from different viewpoints. There is a need for

effective methods to improve gait-based human identification.

• The works on a smart surveillance system in the smart environment are still in the

infancy stage.

• Varying light conditions and occlusions can affect both human actions as well as

human appearance features, and they are not explored much in the existing works

related to HAR and Human identification.

• Vision-based surveillance systems require unobtrusive identification of humans.

Human gait is biometric that can be used for unobtrusive identification. The gait

of a person appears differently from different viewpoints. There is a need for

effective methods to improve gait-based human identification.

• The recognition of complex human actions from video and identifying humans

from their gait requires more resources than approaches based on still/single im-

ages. There are no methods for effectively reducing the number of features and,

in turn, the demand for resources without sacrificing performance.

• Various modalities of video-based gait and human action data have recently been

generated. The works that exploit the benefits of combining data modalities for

HAR and HI are yet to be extensively investigated.
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2.4 Problem Statement

An unobtrusive automated analysis of videos for interpreting the content and identify-

ing the people in the scene is a crucial requirement for providing a safe, high-quality,

and comfortable living in smart environments. Based on the literature review in this

direction and the research gaps identified, the research problem is stated as follows:

“Design and develop a vision-based unobtrusive context-aware Human
Identification and Action Recognition system for smart environments using
deep learning techniques.”

2.5 Research Objectives

The following four research goals are addressed in this thesis based on the identified

research gaps and problem statement:

1. To design and develop a context-aware, view-invariant Human Action Recogni-

tion system based on RGB data captured spontaneously.

2. To design and develop an action representation and classification model for rec-

ognizing human actions based on single-view skeleton data.

3. To design and develop an efficient feature extraction and classification system

for human identification using skeleton-based gait data from single-/multi-view

scenarios and novel deep learning models.

4. To design and develop an effective representation of spatio-temporal features of

‘human action’ & ‘human gait cycle’, and classification model for single-/multi-

view ‘human action recognition’ & ‘human identification’ using skeleton & depth

data fusion and deep learning models.
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2.6 Summary

This chapter discussed current state-of-the-art techniques for HAR and gait-based HI.

The various uni-modal and multi-modal approaches for HAR based on visual data are

presented in detail. In addition, numerous HI approaches employing gait data for un-

obtrusive identification of a person with an emphasis on visual data in skeleton format

are discussed. Further, information regarding the benchmark datasets for HAR and HI

is provided.

Based on the literature review findings, the challenges in the fields of HAR and HI

are articulated. In addition, the problem statement and research objectives based on the

outcome of literature review are presented in detail. In the following chapters, HAR and

HI-specific solutions are provided for the challenging issues raised in this chapter. The

next chapter describes a domain-specific HAR system for smart computer laboratories.
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Chapter 3

Context-aware Human Action Recognition System for

Computer Laboratories of Smart Campus

People engage in a variety of actions in their daily lives. Most of these actions have

strong ties to the context or environment in which they are carried out. This thesis work

aims to recognize the human actions performed in a computer laboratory of a smart

campus environment using the RGB image data.

3.1 Smart Campus

Smart campus is defined as an integrated system with cooperation and self-adjustment

capabilities, based on the Internet of Things (IoT), that enables a wise, intelligent teach-

ing, learning, and living environment suitable for teaching, scientific research, and

management, among other applications (Du et al., 2016). The specifications and im-

plementation of a smart campus are tailored to each institution’s particular needs. The

advancements in IoT technology, DL, and ML, a smart campus allows campus staff

to concentrate on their primary responsibilities while automating as many processes as

possible to aid in decision-making.

Several methods utilizing image and video analysis have been proposed to decode

the student’s mood, level of interest, and concentration on learning. (Candra Kirana

et al., 2018), for example, proposed a method for facial emotion recognition in a learn-

ing environment based on the Viola-Jones algorithm. A facial expression database is

being compiled in online learning environments to meet the needs of automatic aca-

demic emotion inference (Bian et al., 2019). (Whitehill et al., 2014) proposed facial

expression-based methods for automatically detecting the student’s interest. (Bosch

and D’Mello, 2019) developed a video-based, facial-features-based mind-wandering

detector for classroom and laboratory use.

There has been a dramatic increase in the number of people enrolling in college

courses in recent years. Students’ activities must be monitored to create a more con-

ducive campus teaching and learning environment. In the conventional method of cam-

pus surveillance, human resources are typically utilized. In the past few years, cam-
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puses typically installed a large number of surveillance cameras in both indoor and

outdoor environments for a variety of reasons. The campus can use the footage from

these cameras for safety, management, and planning. These cameras can produce vast

and intricate amounts of video data. There is a need for system that automates the

interpretation of human actions in these videos.

Contributions:

To ensure the most efficient use of resources in the computer lab, we require a monitor-

ing system for student activities within the lab. This work mainly focuses on locating

and recognizing the students’ actions inside the computer lab environment in Indian

context. The primary contributions of this work are as listed below.

• Created a dataset containing five distinct student actions for multiple students

within a single image frame using the video captured by Closed Circuit Television

(CCTV) cameras in computer science laboratories.

• Recognizing and localizing multiple human actions in a single RGB image frame

using a DL model based on a transfer learning approach.

• Implemented a frame reduction strategy for analyzing video captured by CCTV

cameras installed in computer labs to monitor students as efficiently and precisely

as possible.

3.2 Proposed Methodology

The architecture of the proposed method for the localization and recognition of multiple

student actions in computer laboratories using RGB image frames is depicted in Figure

3.1. It primarily consists of the following three subsystems:

• Dataset Preparation

• Training Deep Learning Model

• Action Recognition

The ‘Dataset Preparation’ subsystem creates a new dataset STUDENT ACTION for

the proposed work. In the next subsystem, transfer learning is applied to the pre-trained

YOLOv3 (Redmon and Farhadi, 2018) model for the proposed work. Finally, the newly
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trained model is used in the ‘Action Recognition’ subsystem to aid in student’s action

recognition. Since the content of consecutive image frames from a video are similar, we

also proposed a method for reducing the total number of image frames to be processed in

a video captured by CCTV camera. A detailed explanation of each of these subsystems

is given in the following subsections.
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Figure 3.1: Proposed architecture for student’s action recognition using RGB data.
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3.2.1 Dataset Preparation

To ensure that the proposed system can effectively track student’s actions inside the

smart campus computer laboratory, we initially need to define a dataset that adequately

characterizes these actions. Below is a detailed description of the steps involved in

creating the STUDENT ACTION dataset.

3.2.1.1 Collect Images with Human Actions

Image frames are extracted from videos captured by CCTV cameras. To identify human

actions from static images by analyzing factors such as gestures, posture, head position,

and objects near the human, we focused on only those images which contain human

actions for preparing the dataset.

3.2.1.2 Image Pre-processing

Because students’ actions are the primary focus of the proposed system, the portion

of the image is cropped to eliminate the parts along the image’s four sides that do not

contribute to student’s activity. Then, each image is scaled to precisely 416×416 pixels.

3.2.1.3 Image Augmentation

Table 3.1: Data augmentation techniques applied in the dataset.

Augmentation
Technique Description

Gaussian Blur
It is a type of image-blurring filter that uses a Gaussian
function for calculating the transformation to apply to

each pixel in the image.

Median Blur
The central element of the image is replaced by the

median of all the pixels in the kernel area.

Bilateral Filter
Intensity of each pixelis replaced with a weighted

average of intensity values from nearby pixels.

Dilation Morphological image transformation.

Changing Contrast Image with modified contrast value.

The image data augmentation techniques listed in Table 3.1 are used to increase

the number of images in the dataset to improve the performance of the DL model in

localization and recognition of student’s actions.
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3.2.1.4 Data Annotation

Since the primary purpose of the proposed system is the localization and recognition of

student’s action, the data annotation consists of two primary tasks: labeling the human

actions and determining the bounding box coordinates for each action in the image. In

this instance, we must be able to detect actions, identify the type of action being carried

out, and pinpoint the exact location within the image where the action is occurring. A

single image can contain multiple actions in different parts of the image. Therefore, all

such actions in images are identified and annotated manually. The method described

in (Gu, 2019) is used to generate action labels and bounding boxes corresponding to

the identified actions. The action label and the coordinates of associated bounding

boxes are recorded in the annotation text file for each frame. The dataset stores the text

file containing annotations and the corresponding image frame. The following is an

illustration of the format used for annotations in the proposed method:

One row for one image;

Row format: image-file-path box1 box2 ... boxN

Box format: xmin,ymin,xmax,ymax,action label

3.2.2 Training Deep Learning Model

The YOLOv3 (Redmon and Farhadi, 2018) model has been configured for the proposed

work. Using the pre-trained weights of YOLOv3, and the newly created dataset, the

model for the proposed action recognition task is trained and fine-tuned. The proposed

method employs the newly generated weights for the ‘Action Recognition’ subsystem.

During training, the K-fold cross-validation method is employed to test each sample in

the dataset.

3.2.2.1 Overview of YOLOv3

YOLOv3 is one of the most rapid and effective object detectors, with excellent real-

time performance. YOLOv3 initially represents an improvement over YOLO (Redmon

et al., 2016). YOLO partitions the image input into an S×S grid, where, each grid cell

associated with a single object. It can predict a fixed number of bounding boxes, with

a box confidence score associated with each bounding box. Therefore, the information

to be predicted for each bounding box consists of 5 values: (x, y, w, h, box confidence
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Figure 3.2: YOLOv3 feature extractor (Darknet-53) (Redmon and Farhadi, 2018)

score), where, the (x, y) coordinates represent the centre of the box relative to the grid

cell location and (w, h) are the box dimensions, and the box confidence score indicates

the likelihood that the box contains an object and the precision of the bounding box.

The final step involves in calculating the class confidence score for each prediction box

as the product of the box confidence score and the conditional class probability.

Figure 3.2 illustrates the architecture of the YOLOv3 feature extractor. The model

employs 3 and 1 × 1 convolutional layers in succession. YOLOv3 employs various

layers, including convolutional layers, shortcut layers, route layers, and the YOLO de-

tection layer. Where the shortcut layer provides the skip connection, the up-sampling

layer increases the resolution of the previous layer’s feature maps. Route layer has

a layer attribute with one or two values; if it has one value, outputs feature maps of

the layer indexed by the value; otherwise, concatenated feature maps of layers indexed

by its values. Finally, the detection layer of YOLOv3 specifies the anchors (bounding

boxes by default) used during detection.

3.2.3 Action Recognition

This subsystem is responsible for analyzing the CCTV footage captured by computer

labs’ surveillance cameras and identifying and locating the student’s actions. Since the
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YOLO model prioritizes both speed and efficiency, it is well-suited for real-time ap-

plications. The trained YOLOv3-based model has the ability to recognize and localize

student’s actions within a single image frame. As successive image frames in a video

are highly similar, in the proposed work to accelerate video analysis, the number of

frames to be processed is reduced by employing a technique called template matching.

Algorithm 3.1: Algorithm for Action Recognition Subsystem
Input: Video Stream from CCTV camera
Output: Image frames with action labels and bounding boxes around detected

student’s actions
1 Initialize: flag = True

Extract first image frame from video stream
Pre-process the image frame and set it as keyframe and current frame

2 while flag do
3 if keyframe and current frame are same then
4 Detect actions in current frame using fine tuned action detection model

Display image along with detection labels and bounding boxes around
recognized actions
if end of video stream then

5 flag = False
6 else
7 find Template Match between keyframe and current frame and set to C

if C ≤ threshold then
8 keyframe = current frame
9 else

10 skip current frame
Extract and pre-process next frame and set it as current frame

11 end
12 end
13 end

Initially, this computes the template match between two frames. If the template

match exceeds the threshold, the frame is skipped, and the next frame is read. The tem-

plate matching threshold in the proposed system is set to 0.997%. Experiments reveal

that the time required for template matching is less than the time required to process the

frame for action detection. Template matching consumed an average of 0.099 seconds

in the system where experiments are conducted, whereas action detection requires 0.90

seconds. Additionally, it is observed that actions from skipped frames are present in

non-skipped frames. This drastically reduces the number of frames to be processed for
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video analysis. Algorithm 3.1 describes the steps involved in action recognition. Algo-

rithm 3.1 can be executed in O(n) time, where n is the number of video image frames.

Template matching is determined using the Equation (3.1) in Algorithm 3.1 according

to the method described in (Vision, 2019).

R(x, y) =

∑
x′,y′(T (x

′, y′) · I(x+ x′, y + y′))√∑
x′,y′ T (x

′, y′)2 ·
∑

x′,y′ I(x+ x′, y + y′)2
, (3.1)

Where I , T , and R represent the image, template, and result, respectively. The param-

eters (x, y) denote the pixel positions. x′ ranges from zero to the width of the template,

and y′ ranges from zero to the height of the template. In the proposed algorithm, I

and T represent the current keyframe and resents the current frame extracted from the

video, respectively.

3.3 Details about Dataset

As the proposed system is intended to monitor student’s actions in the computer lab of a

smart campus, initially a data set that best describes student’s actions in the specified do-

main is constructed. The STUDENT ACTION dataset was created using image frames

extracted from videos captured (during 2017 and 2018) by CCTV cameras installed in

computer laboratories at the Department of Information Technology, National Institute

of Technology Karnataka. The STUDENT ACTION dataset includes the action labels

associated with Indian engineering college laboratory standards. The dataset consists

of five distinct action labels, which are all described in Table 3.2. Initially, the dataset

was constructed using 688 original image frames captured by different CCTV cameras.

To enhance the recognition performance of the proposed methodology, the model is

trained using images of varying quality. The number of images in the dataset has been

increased to 6,500 through the use of various augmentation techniques. Figures 3.3,

and 3.4 show the sample original and augmented images in the dataset.

Each frame captured by the CCTV cameras installed in computer labs depicts vari-

ous human actions dispersed throughout the image. The number of samples for action

label “Engaged” is extremely high because the vast majority of students in the labo-

ratory will be engaged in activities such as using computers or reading books. The
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Table 3.2: Actions in RGB image-based STUDENT ACTION dataset.

Action Label Definition

Discussion
Two or more persons sitting or standing together and

facing to each other.

Engaged
A person looking at book or person looking at monitor or

looking at keyboard and hands in keyboard.

Sleeping
A person bent towards the computer table and kept head on

the table.

Eating
A person holding something in hand close to mouth or

holding bottle in hand or near the mouth.

Using Smart Phone A person looking at smartphone in hand.

Table 3.3: Distribution of actions among the frames.

Action Label No. of Samples

Discussion 5034

Engaged 40052

Sleeping 6916

Eating 2092

Using Smart Phone 768

total number of samples collected for the various action labels applied to the images is

presented in Table 3.3.

The dataset was constructed from spontaneous videos. Multiple actions are deter-

mined from a single image frame. To circumvent potential dataset biases the annotation

is done by three distinct annotators. The domain-specific expertise of the annotators

was diverse. Also, Kappa Coefficient (Cohen, 1960) is utilized to determine the level

of agreement between the annotators.

3.4 Experiments, Results, and Analysis

This section describes the specific observations made during the training and testing of

the proposed model. The proposed model is trained utilizing the K-fold cross-validation

method. The entire dataset is divided into ten folds, with 650 images in each fold. Each

fold is tested, while the remaining nine are utilized for training.
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(a)

(b)

Figure 3.3: Sample of original images used in STUDENT ACTION dataset.
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(a) (b)

(c) (d)

Figure 3.4: Sample of augmented images in STUDENT ACTION dataset.

3.4.1 Testing

Figure 3.5 shows the ground-truth information of the set of frames in one of the fold

used for testing. This testing fold in the best model has 650 frames with a total of 3984

Engaged, 511 Discussion, 706 Sleeping, 218 Eating, and 64 Using Smart Phones.
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Figure 3.5: Action sample distribution in one of the fold in 10− fold− Cross− V alidation

Figure 3.6 depicts the two sample input test images captured spontaneously and the

corresponding output obtained from the proposed system. Here, the students are per-

forming several actions inside the computer laboratory. The proposed system detected

several Engaged, two Sleeping, and two Discussion actions. The output image displays

the detected actions along with the score of action detection.

3.4.1.1 Intersection over Union

We also considered IoU, which stands for intersection over union, when evaluating the

system. The proposed system must recognize and localize all actions within a single

image frame. Intersection over Union (IoU) is an evaluation metric used to determine

the correctness of an object detector. For the IoU measurement process, we consider

both the ground truth bounding boxes and the predicted bounding boxes. The IoU can

be mathematically described as Equation (3.2).

IoU =
Area of Overlap of Two Bounding Boxes

Area of Union of Two Bounding Boxes
(3.2)
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(a) (b)

(c) (d)

Figure 3.6: Sample input and the corresponding output images.

3.4.1.2 Kappa Coefficient

To gauge inter-rater agreement, (Cohen, 1960) first proposed using a Kappa coefficient.

In the proposed system, the Kappa coefficient was used to evaluate the degree to which
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annotators agreed upon identifying and localizing the actions depicted in the dataset’s

image frames. The Kappa statistic can take on any value from 0 to 1. In this case, a

value of 1 indicates that all annotators agree, while a value of 0 indicates no consensus.

The Kappa coefficient is computed using Equation 3.3 based on (E, 2020):

K =
N
∑n

i=1 mi,i −
∑n

i=1 Gi ∗ Ci

N2 −
∑n

i=1Gi ∗ Ci

(3.3)

Where, Gi and Ci indicate true values and predicted values belonging to class i. Vari-

able m indicates the confusion matrix.

i is the total number of action labels.

N is the total maximum of the total number of annotations by both annotators. mi,i is

the number of values both annotators annotated as action label i.

Ci is the number of values belonging to action label i according to Annotator1.

Gi is the number of values belonging to action label i according to Annotator2.

Table 3.4: Interpretation of Kappa statistic

Kappa Value Level of Agreement

<0.00 Poor

0.00-0.20 Slight

0.21-0.40 Fair

0.41-0.60 Moderate

0.61-0.80 Substantial

0.81-1.00 Almost Perfect

In the proposed methodology for comparing annotations by different annotators,

initially, C and G are considered to be Annotator1 and Annotator2 annotations, respec-

tively. For Annotator3, C represents the mean of annotators 1 and 2, and G represents

Annotator3. The Kappa Coefficient of annotations was found to be 0.65 according to

the findings. The interpretation of various Kappa values is shown in Table 3.4 based

on (Landis and Koch, 1977). Here, the range of 0.61 to 0.80 indicates that the two

observers are in substantial agreement. The obtained Kappa Coefficient value is 0.65,

indicating substantial agreement among the annotators and that the dataset is less bi-

ased, albeit not a perfect one.
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3.4.1.3 Analysis of Detected Actions

Figure 3.7 depicts the detection result of the proposed system with IoU = 0.45. Table

3.5 details the True Positive (TP) and False Positive (FP) results for each action label

obtained during testing.

Figure 3.7: Information about detected actions.

Table 3.5: TP and FP found for action labels while testing.

Action Label Ground Truth Total Detected True Positive False Positive

Discussion 511 360 341 19

Engaged 3984 3796 3677 119

Sleeping 706 687 679 8

Eating 218 214 208 6

Using Smart Phones 64 39 39 0

Precision/Recall Curves:

Precision and recall are the two key metrics used to evaluate classifier’s effectiveness.

Precision is the proportion of relevant instances within the total number of instances

retrieved. Recall is the proportion of retrieved relevant instances in relation to the total
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number of relevant instances. The Precision and Recall are computed as shown in

Equations (3.4) and (3.5), respectively.

Precision =
True Positive

True Positive+ False Positive
(3.4)

Recall =
True Positive

True Positive+ False Negative
(3.5)

Precision-Recall (PR) curves provide a more accurate depiction of an algorithm’s

performance with highly skewed datasets (Davis and Goadrich, 2006). It summarises

the trade-off between the true positive rate and the positive predictive value for a pre-

dictive model employing different probability thresholds, and it is preferable to use this

in cases of moderate to substantial class imbalance (Brownlee, 2018). As in (Cartucho,

2018) and (Cartucho et al., 2018), we obtain PR curves for all five actions by mapping

each detection to a ground-truth class instance. Figure 3.8 depicts the various PR curves

obtained during testing for the five distinct actions. The average precision for Engaged,

Sleeping, Eating, Discussion, and Using Smart Phones is 91.54%, 95.86%, 94.77%,

65.39%, and 60.94%, respectively. Using Average Precision (AP) for all action classes

and the mean Average Precision (mAP), the performance of the proposed model is de-

termined. Figure 3.9 depicts the AP and mAP obtained during testing for each action.

The mAP determined through testing is 81.70%.

Finally, we used template matching in the action recognition subsystem to process

the video in a timely manner. Algorithm 3.1 outlines the procedure that needs to be

followed. Numerous experiments led to an empirical determination that a threshold

of 0.97 was optimal for template matching. In cases where the current frame is very

similar to the keyframe, the current frame is ignored, and only the actions from the

keyframes are used.

Table 3.6 displays the evaluation results of three videos captured by CCTV cameras.

The outcome demonstrates that template matching is faster than action detection. When

comparing keyframes and skipped frames, there is also a small difference in the number
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Figure 3.8: Precision/recall curves obtained for different actions.
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Figure 3.9: mAP obtained during testing.

of added or removed actions. The impact of cut or added actions is also minimal in the

video. As a result, it drastically cuts down on time necessary to process the entire video.

Consequently, by omitting extraneous frames, the final size of the stored video can be

drastically decreased. Information about the time it took to process the full video with

and without template matching on the computer system we used for testing, as well as

the percentage of other actions, added and actions missed, can be found in Table 3.6.

The experiments showed that the time required for template matching in keyframe

selection is very less (0.03 seconds per frame). But for action recognition, it was quite

high (0.9 seconds per frame). The experiments showed that few actions are added or

deleted while applying the keyframe selection. However, when the entire video is con-

sidered, the variations in the number of actions appear negligible. No more than 3% of

total activities were changed between the first two keyframes. So, regarding both speed

and accuracy, the proposed system demonstrated encouraging real-time performance.
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Table 3.6: Comparison of video processing with and without template matching.

Name T1.mp4 T2.mp4 T3.mp4

Total number of frames 500 650 1001

Number of skipped frames with template
matching

429 298 982

Number of frames considered for action
detection with template matching

71 352 19

Average time for action detection per frame
(seconds)

0.9 0.9 0.9

Average time for template matching per frame
(seconds)

0.03 0.03 0.08

Total time taken to process video with template
matching (seconds)

84.30 352.59 108.18

Total time taken to process video without
template matching (seconds)

464.35 610.86 955.41

Extra actions added w.r.t first keyframe (%) 0 1 0

Extra actions added w.r.t second keyframe (%) 3 0 0

Actions deleted w.r.t first keyframe (%) 3 0 2.04

Actions deleted w.r.t second keyframe (%) 1.5 0 0

3.4.2 Limitations of the Work

Although the proposed system achieves promising results in detecting and localizing

student’s actions, the proposed model can recognize a few actions correctly. Within

the various categories, there were instances of improper classification. In addition, it

has been discovered that the model can efficiently identify and localize specific types

of actions. The imbalance impacts the proposed model’s performance in the dataset.

Further, the proposed model can recognize only simple actions and cannot recognize

complex actions that involve temporal cues.
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3.5 Summary

A potential solution for a real-time student action recognition system based on trans-

fer learning and YOLOv3 is proposed in this work. The proposed model enables the

recognition and localization of students’ actions within the computer laboratory on the

university campus, and the results are encouraging. The model also demonstrates that

a specific set of human actions can be recognized from a single image frame. By re-

ducing the total number of frames that needed to be processed, the proposed model was

able to reduce the amount of time required to perform video analysis. Consequently,

the proposed system can be utilized for real-time monitoring of computer laboratory

activities. The RGB data is computationally intensive.

The initial model was trained to identify objects. Therefore, there is a domain shift

when it is used in the laboratory for target action recognition tasks. So, transfer learning

is applied by loading the weights of the original deep learning model trained to detect

objects and modifying the classification layer. In addition, action recognition is carried

out in still images using only spatial features. Further, the proposed models’ robustness

in recognizing actions in other domains can be verified by constructing similar domain-

specific action datasets.

The availability of depth sensors provides data in different modalities like depth and

skeleton. Based on the literature review, the skeleton and depth require fewer resources.

The next chapter discusses the skeleton data based HAR for the single-view scenario.

58



Chapter 4

Single-view Human Action Recognition System using

Skeleton Data

An action is defined by a series of human body movements that involve multiple body

parts simultaneously. Human Activity/Action Recognition (HAR) plays a crucial role

in a vast array of applications, such as smart video surveillance (Liu et al., 2018),

home monitoring systems (Foroughi et al., 2008), intelligent human-machine interfaces

(Ramezani and Yaghmaee, 2016), and many others. Due to the complexity of human

body movement, while performing an action, HAR is one of the most challenging re-

search topics in computer vision. The way in which a person’s body moves while per-

forming the same action varies from person to person. In addition, it is challenging to

accurately represent the spatio-temporal features of actions when various environmental

factors, such as the lighting condition, are considered (Nie et al., 2019).

As inexpensive depth sensors like Microsoft Kinect have become more widely avail-

able, the rate at which new skeleton data is being produced has accelerated (Firman,

2016). Instead of storing each video frame, the joint coordinates of the human body are

stored in skeleton data. Therefore, much less space is required to store skeleton data

when compared to other data modalities. The coordinates remain unchanged regard-

less of the observer’s position, making skeleton data stable across viewpoint changes

(Nguyen et al., 2018). Due to its robustness to changes in the background, such as light-

ing, clothing condition, and more efficient computation, skeleton-based action identifi-

cation gained popularity (Fan et al., 2020).

The human skeleton is composed of numerous joints. This thesis work represents

the skeleton data as a graph consisting of skeleton joints as vertices and connections be-

tween these vertices as edges. Since the human skeleton data is represented as a graph,

the various graph geometries can be considered for the target task using skeleton (Wang

and Wang, 2018). Geometries can include distance, surface area, angle, etc. The dis-

tance between human skeleton joints varies depending on the action being performed.

Likewise, the angle between the joints varies depending on the action. This thesis work

focused on the distance and angle between 3D coordinates of skeleton joints for HAR.
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The proposed model attempted to reduce the computation cost without degrading the

performance by limiting feature extraction to the joints involved in actions.

Most informative joints provide crucial data for action recognition in the skeleton

model. For this reason, this work considered the most informative distance and the angle

between the joints when building the feature set, as suggested by (Nguyen et al., 2018).

Recently, DL models have shown promising results in classification tasks. Thus, we

proposed a DL model consisting of Dense and Softmax layers for HAR. The significant

contributions of this thesis work are listed below.

Contributions:

• A new tree representation of skeleton joints in skeleton data.

• Efficient feature extraction method to extract most informative distance and angle

features from new representation of skeleton data.

• A deep learning model with Dense and Softmax layers followed by score fusion

method to improve overall performance of HAR system while considering the

complete video.

4.1 Proposed Methodology

Figure 4.1 depicts the proposed architecture for the action recognition task. The pro-

posed system comprises three subsystems: Feature extraction and fusion, the DL model,

and Score fusion. Given a skeleton sequence of an action video with N frames, where

each frame has m 3D skeleton joint coordinates fi = j1, j2, ....jm, the proposed frame-

work extracts features from skeleton joint information from each skeleton frame of the

action video. The newly developed neural network model is trained with extracted fea-

tures and generates a score of action recognition for each frame in the action video.

The score fusion model recognizes the final action in the video by combining the scores

in each skeleton frame in an action video. Detailed descriptions of each step are as

follows.

4.1.1 Feature Extraction and Feature Fusion

Most skeleton-based human action recognition systems extract features using informa-

tion from all joints (Wint Cho et al., 2018). However, the degree to which each joint is
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Figure 4.1: Proposed framework for 3D human action recognition using skeleton data.

involved in an action depends on the action being performed. Depending on the action

performed, various body joints will contribute in various ways. For feature extraction,

the proposed method utilized the most frequently used skeleton joints during action ex-

ecution. To accomplish this, we proposed a new representation of the skeleton joints in

a skeleton frame. The skeleton’s joints are depicted as a tree, with the hip-center joint

serving as the tree’s root. The subtrees of the tree are then determined by traversing the

joints from the hip-center joint using the Depth First Search (DFS) method. The skele-

ton joint data obtained from Kinect v1 depth sensor and its proposed tree representation

of joints are depicted in Figures 4.2 (a) and 4.2 (b), respectively.

D =
√
(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2, (4.1)

Θ = cos−1

(
A⃗B.C⃗B

∥A⃗B∥∥C⃗B∥

)
, (4.2)

A significant correlation exists between the action and the distance and angle be-

tween the joints of a skeleton model. This thesis work computes the distance between

every other pair of 3D joints, ignoring the joint that comes immediately after the joint

under consideration. In addition, the proposed method uses the angles that provide the
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Figure 4.2: Original skeleton format and new representation. (a) Skeleton joint data from Mi-
crosoft Kinect v1. (b) New tree representation of skeleton joints.
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most information between the 3D joints. The Euclidean distance between any two 3D

joint coordinates A = (x1, y1, z1) and B = (x2, y2, z2) is calculated using the Equation

(4.1). Similarly, given three 3D joint coordinates A = (x1, y1, z1), B = (x2, y2, z2), and

C = (x3, y3, z3), the angle Θ = ∠ABC is computed using Equation (4.2). After the

distance and angle features have been extracted, they are combined to create a feature

vector with a size of 36 for each frame in the action video.

4.1.2 Neural Network Model

The proposed deep learning model with Dense layer and ReLU activation function,

and Softmax layers is trained for action recognition using the extracted features. The

proposed model used Adam optimizer with learning rate of 0.001 during training. Based

on its computation, the model assigns a probability score to each action in each frame.

4.1.3 Score Fusion

This subsystem considers each frame’s probability score of recognition in an action

video and outputs an action that has been recognized. For each frame, the proposed

model considers the top three scores and the action labels associated with them. Later

the sum of the score for each action label is calculated. The action with the highest sum

is considered a recognized action from the video.

Algorithm 4.1: 3D HAR System using Skeleton Data.
Input: Skeleton sequence of each frame in a action video
Output: Action label of recognized human action

1 while not end of frames in action video do
2 Extract 3D joint coordinates of the skeleton found in an image frame.
3 Arrange the joints coordinates in a tree representation.
4 Extract the required distance and angle features.
5 Input features into a neural network to generate a score of each action

recognition.
6 end
7 for each skeleton with recognition score do
8 Sort the recognition score in the descending order.
9 Select the first three scores and corresponding actions in each frame say

s1, s2, s3 and ai, aj, ak.
10 end
11 Find the sum of scores for each action al where l = 1 to N where, N is the

number of actions by considering all image frames in action video.
12 Select the action with the highest sum of the score as the recognized action.
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Algorithm 4.1 depicts the overall procedure of the proposed HAR system using

skeleton data. Algorithm 4.1 shows the main steps involved in the overall procedure

including feature extraction to action classification.

4.2 Experiments, Results, and Analysis

4.2.1 Dataset

The proposed system is evaluated using the MSRAction3D benchmark dataset for 3D

human action recognition, which is publicly available (Li et al., 2010). Due to the simi-

larity of many actions, it is among the more challenging datasets for action recognition

(Li et al., 2016). The dataset contains human actions captured using a Kinect depth

sensor. There are 20 human actions in the dataset, performed twice or thrice by ten

subjects. It provides skeleton data in the form of twenty joint coordinates. There are

567 action sequences in total, but the ten with the most background noise were filtered

out. The proposed system will incorporate the remaining 557 sequences.

Table 4.1: Three groups of actions AS1, AS2, and AS3.

AS1 AS2 AS3

horizontal arm wave high arm wave high throw

hammer hand catch forward kick

forward punch draw x side kick

high throw draw tick jogging

hand clap draw circle tennis swing

bend two hand wave tennis serve

tennis serve forward kick golf swing

pickup and throw side boxing pickup and throw

The actions in the dataset are organized into three overlapping sub-sets (groups)

of eight classes belonging to the action groups, namely: AS1, AS2, and AS3. Each

group’s action labels are shown in Table 4.1. AS1 and AS2 categorize actions that share

similar motions, while AS3 contains actions with more complex movements. Several

evaluation protocols are suggested in the literature for evaluation of HAR system on

MSRAction3D dataset. Two tests are conducted to evaluate the proposed system’s per-
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formance, each utilizing the evaluation protocols described in (Li et al., 2010; Presti

and La Cascia, 2016). The evaluation protocols are listed below.

• Protocol P-1: 3-Fold Cross-validation with 1/3 of the data is used for testing and

the remaining 2/3 for training.

• Protocol P-2: 3-Fold Cross-validation with 2/3 of the data is used for testing and

the remaining 1/3 for training.

4.2.2 Experiments and Results

The proposed systems’ performance is evaluated on three action groups AS1, AS2,

AS3, and the entire dataset, using both evaluation protocols mentioned earlier. The

sample distribution among testing and training is as shown in Table 4.2.

Table 4.2: Data sample distribution among testing and training in P-1 and P-2.

AS1 AS2 AS3 Entire Dataset

P-1
Training 146 152 147 371

Testing 73 77 74 186

P-2
Training 73 77 74 186

Testing 146 152 147 371

The proposed neural network model was trained using two distinct methods for both

evaluations. The first strategy (M-1) divides the training data into a training dataset

and a validation dataset with a ratio of 8:2 between the two. Further, the developed

model was evaluated using the dataset’s test subset. For the second method (M-2), we

employed the K-fold cross-validation (James et al., 2013) technique. Here, all ten folds

are validated by splitting the training data into ten subsets (folds) and training the model

on nine folds. On the test segment of the dataset, the constructed model is evaluated.

The performance of proposed method on MSRAction3D dataset using both evalua-

tion protocols is reported in Table 4.3. The results show that with the entire dataset taken

into account, the proposed model achieves an accuracy of 90.86% using the method M-

2 and evaluation P-1. On AS1, using P-1 we achieved the best Accuracy of 95.83%,

and P-2 achieved 95.17% Accuracy. On AS2, P-1 and P-2 achieved the best Accuracy

of 89.61% and 87.58%, respectively. On AS3, P-1 and P-2 achieved the best Accuracy

of 98.63% and 96.62%, respectively.
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Table 4.3: Action recognition Accuracy of the proposed model for HAR using skeleton data.

Data Method Protocol Accuracy
(%)

Entire Dataset

M-1
P-1 87.09

P-2 85.12

M-2
P-1 90.86

P-2 88.40

AS1

M-1
P-1 95.83

P-2 91.72

M-2
P-1 95.83

P-2 95.17

AS2

M-1
P-1 84.92

P-2 84.96

M-2
P-1 89.61

P-2 87.58

AS3

M-1
P-1 94.52

P-2 95.94

M-2
P-1 98.63

P-2 96.62

Figure 4.3 depicts the confusion matrix obtained while considering the entire dataset

with P-1. The labels 0 to 19 denote the identifiers for action labels. It shows that 15

actions were recognized with more than 90% Accuracy. The overall accuracy obtained

is 90.86%. Figure 4.4 depicts the confusion matrices for the best results of AS1, AS2,

and AS3, respectively. For AS1, the Figure 4.4 shows the results of P-1, in which all

the actions are recognized with above 90% Accuracy. It also demonstrates that, in AS2,

five actions were recognized with above 90% Accuracy, and two actions with above

80% Accuracy using evaluation protocol P-1. In AS3, seven actions were recognized

with 100% Accuracy and one with 90% Accuracy using evaluation protocol P-1.
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Figure 4.3: Confusion matrix using evaluation protocol P-1 for the entire dataset.

Further, the performance of proposed system is also evaluated using Precision,

Recall, and F − Score measures. Table 4.5 reports the average Precision, aver-

age Recall, and F − Score obtained from the proposed model over AS1, AS2, AS3,
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Figure 4.4: Confusion matrices. (a) AS1. (b) AS2. (c) AS3.
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and entire dataset with best combination of training approach and evaluation protocol.

Precision and Recall for each label in each set of data are calculated using Equations

(3.4), and (3.5), respectively. F − Score is computed using Equation (4.3). The pro-

posed model demonstrated the highest Avg(Precision), Avg(Recall), F − Score of

98.86%, 98.75%, 98.80%, respectively over set AS3 on protocol P-1 with M-1.

F − Score = 2× Precision×Recall

Precision+Recall
(4.3)

The Avg(Precision) and Avg(Recall) are computed using Equations (4.4) and

(4.5), respectively. Where, N , and i denotes the number of action labels, and the action

label, respectively.

Avg(Precision) =

∑N
i=1 Precisioni

N
(4.4)

Avg(Recall) =

∑N
i=1Recalli

N
(4.5)

Table 4.4: Precision, Recall and F − Score obtained for HAR using skeleton data.

Evaluation Metrics AS1 AS2 AS3 Entire Dataset

Average Precision (in %) 97.61 89.60 98.86 85.14

Average Recall (in %) 95.43 89.44 98.75 87.84

F − Score (in %) 96.5 89.51 98.80 86.47

While considering the most informative joints, the proposed approach used the gen-

eral perspective. Though there are variations in the speed at which the body part moves

during the action, there are similarities in how body parts move. The proposed approach

performs frame-wise classification of the actions and then performs score fusion to find

the action to which the maximum number of frames belong in an action video to com-

pensate for the difference in people acting and make it generalized across individuals.
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The experimentation shows that, though the proposed approach showed robust per-

formance in recognizing a greater number of actions, there are few exceptions. For

example, considering Figure 4.3 the confusion matrix obtained considering the entire

dataset, the proposed approach is robust in recognizing 12 different types of actions

accurately irrespective of the individuals performing the action.

4.2.3 Comparison with Existing Works

The proposed systems’ performance is compared with the baseline methods using the

same evaluation protocols on AS1, AS2, and AS3 action subsets of MSRAction3D.

Table 4.5 reports the comparison results. The proposed work’s performance is better

than those obtained by (Li et al., 2010). The proposed model achieved an average

accuracy of 94.69% when using P-1 and 93.12% when using P-2.

Table 4.5: Comparison of Accuracy (in %) of the proposed work with baseline methods.

Protocol AS1 AS2 AS3 Average

(Li et al., 2010)
P-1 93.4 92.9 96.3 94.2

P-2 89.5 89.0 96.3 91.6

(Yang and Tian, 2012)
P-1 97.3 98.7 97.3 97.7

P-2 94.7 95.4 97.3 95.8

(Devanne et al., 2013)
P-1 93.4 93.9 98.9 95.4

P-2 90.3 91 98 93.1

Proposed Method
P-1 95.83 89.61 98.63 94.69

P-2 95.17 87.58 96.62 93.12

4.2.4 Computational Cost Analysis

The proposed method’s computational cost analysis involves the complexity of feature

extraction, DL model, and score fusion operation. For feature extraction, the majority

of existing methods take into account all skeleton joints. For instance, if a method
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takes into account the distance between all 3D joints in a skeleton model with M joints,

then the computational complexity for the feature extraction step is O(M2.N), where

N is the number of frames in an action video. Using only the most informative joints,

the proposed method constructs a 36-element feature vector from each frame of an

action video. The estimated complexity of the feature extraction step is O(N) times the

number of features, where N is the number of frames in an action video. Thus, the cost

of computation is drastically reduced. The complexity of DL model is approximately

equal to the number of parameters in it. So, we can estimate the complexity of DL

model as O(W ), where W denotes the number of parameters. Finally, the score fusion

operation involves sorting the probability scores and picking top-3 actions from each

frame. The estimated computations of this step will be O(m log m), where m is

the number of action labels in the dataset. Thus, the estimated complexity of overall

procedure is as shown in Equation (4.6).

O(N) +O(W ) +O(m log m) (4.6)

4.3 Limitations

Even though the proposed method extracts frame-wise features and performs initial

frame-wise classification, the total number of features for HAR is significantly reduced.

However, the approach needs to be more efficient to capture the temporal aspects of

human action effectively. Therefore, it is possible that the proposed method will not

reveal the differences between the actions in an efficient manner if the actions involve

more similar movements.

4.4 Summary

This chapter proposed a novel skeleton representation for efficient feature extraction.

Further, a deep neural network model was developed for 3D HAR using the skeleton

data. The proposed approach reduced the number of computations by constructing the

feature set using only the most relevant joint information. The extracted features are

then learned with the help of an DL model that contains Dense layers. Two different
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benchmark evaluation protocols are utilized to assess the proposed method’s effective-

ness on the benchmark publicly available 3D human action dataset MSRAction3D.

During this work it is found that the position of the body joints varies in the time

domain as action is performed. Tracking this variation of features is essential in rec-

ognizing complex human actions. Based on the literature review, it is clear that the

variants of RNN models are widely used to capture temporal aspects in addition to

spatial features (Du et al., 2015; Jiang et al., 2020). Several researchers are working

on extracting different kinds of temporal aspects for accurate action recognition. In

longer-duration action, there is a dependency on how the body parts move in the time

domain to accomplish the task. So, there is a need to capture the temporal aspects of

human actions. Recognizing longer-duration actions accurately with the help of tem-

poral aspects demand for more resources but will be useful in real-time scenarios. The

next chapter gives a detailed explanation of HI system using 3D skeleton data-based

gait-event specific features and DL models.
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Chapter 5

Human Identification System using Single-/ Multi-view

Skeleton-based Gait Data

In many embedded applications of intelligent surveillance systems in smart environ-

ments, reliable identification of humans at a distance without physical contact is gain-

ing importance. These systems play a major role in many practical applications like

forensics, terrorist monitoring, crime prevention, and access control (Huynh-The et al.,

2020). Identifying humans with video surveillance systems is challenging for several

reasons, including poor camera perspectives and environmental constraints. In surveil-

lance systems, HI based on face recognition fails when the face is obscured by a mask,

hand, or hat (Batchuluun et al., 2018; Sepas-Moghaddam and Etemad, 2023). Gait-

based HI is gaining importance as a means of overcoming these challenges.

Gait is the series of coordinated, rhythmic movements that allow humans to move

from one location to another (Boyd and Little, 2005). During gait recognition, we in-

tend to assess human activity as a whole instead of analyzing individual body parts.

Individuals’ gait data can be collected at a distance without their knowledge or coop-

eration, making gait-based HI unobtrusive (Ye et al., 2020). (Kastaniotis et al., 2016)

explained that the gait cycle comprises two phases: Stance and Swing, with any leg as

a reference point. The Stance phase comprises sixty percent of the gait cycle, while

the Swing phase accounts for the remaining forty percent. Multiple events occur during

these gait phases. The gait cycle officially begins when the Stance phase’s IC occurs,

and the Swing phase’s Terminal Swing concludes. Table 5.1 displays the various events

and their relative proportion during a gait cycle based on (Webster and Darter, 2019).

This thesis work focuses on extracting gait event-specific features and developing

novel DL models for HI based on these features. This work introduces two approaches

for HI based on feature extraction and DL model. The developed systems are evalu-

ated using benchmark evaluation protocols on both single and multi-view benchmark

datasets using Accuracy, Precision, Recall, F −Score, and Cumulative Match Char-

acteristic (CMC) curves.
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Table 5.1: Gait cycle events and duration.

Gait Event Duration
Loading Response (0-10%)

Mid Stance (10-30%)
Terminal Stance (30-50%)

Pre Swing (50-60%)
Initial Swing (60-73%)
Mid Swing (73-87%)

Terminal Swing (87-100%)

For the most part, over the years, video-based methods have been proposed to aid

in gait recognition. These video-based methods can be divided into two categories:

model-free and model-based (Kumar et al., 2021). Model-free methods focus on di-

rectly extracting static and dynamic features from images of walking sequence. Most

of these techniques obtain gait data by analyzing silhouette image-based human body

features. Model-based approaches analyze the shape and kinematics of human body

parts in order to recognize gait. Most of these model-based gait recognition techniques

focused on human body joint distances or angles for feature extraction (Wan et al.,

2018). Recent advancements in 3D visual depth sensors, such as Microsoft Kinect

(Zhang, 2012), have led to an exponential increase in the number of 3D model-based

approaches. The 3D skeleton joint data provided by the Kinect depth sensor obviates

the need for complex procedures for building a model from visual data streams (Deng

and Wang, 2019). In recent years, many skeleton-based gait recognition systems have

been proposed (Choi et al., 2019; Khamsemanan et al., 2018; Deng and Wang, 2019;

Bari and Gavrilova, 2019; Limcharoen et al., 2020). In addition, the success of DL

(Goodfellow et al., 2016) models on image/video-based classification tasks prompted

researchers to conduct new DL-based research on video-based HI systems.

Despite the vast literature on HI based on gait, the event-level features of gait for

HI from walking have received insufficient attention. Because of issues like occlusion,

differences in clothing, and the temporal aspects of various features while in motion,

etc., gait recognition remains one of the most challenging tasks in computer vision.

Here, we present two key works that utilize gait event-specific features and DL models

for HI.
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5.1 LSTM Model-based HI System using 3D Skeleton-based Gait Data

A method for minimizing the influence of noisy and occluded joints on gait recognition

is proposed. In addition, a DL model trained on gait events for gait cycle classification,

followed by a fusion operation for individual identification, is proposed in this study.

The key contributions of this thesis work are listed below.

Contributions:

• Represented each gait event as a timestamp in the entire gait cycle. Also, pro-

posed a set of gait event-level features to capture the spatial-temporal information

of the gait cycle.

• Formed a quantitative summary of various features extracted from frames in each

timestamp to minimize the effects of noise and the occlusions. As a result, the

proposed HI system’s total computational cost is significantly reduced.

• Proposed a DL model based on LSTM (Hochreiter and Schmidhuber, 1997) to

efficiently recognize the gait cycle using features extracted from the sequence of

gait events.

5.1.1 Proposed Methodology

The primary goal of the proposed system is to recognize a human from their walking

pattern. Figure 5.1 shows the overall workflow of the proposed system for HI using

skeleton based gait data. The overall workflow is separated into two distinct phases,

known as the training and identification phases. During the training phase, a DL model

trained to identify the gait cycles. The DL model developed during the training phase

is used to obtain gait cycle-matching probability scores during the identification phase.

The few initial subsystems within the training and identification phases share a com-

mon set of operations. Each phase begins with the detection and extraction of gait

cycles from a person’s walking sequence, followed by the extraction of features from

individual gait events to produce a final feature vector representing the entire gait cycle.

The extracted features are then used to train the proposed LSTM-based DL model to

identify gait cycles. In the final step of the identification phase, the score fusion method

combines the gait cycle recognition probability scores obtained from the trained LSTM

model. Each subsystem of the proposed system is discussed as follows.
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Figure 5.1: The workflow of the proposed human identification system using 3D skeleton-based
gait features and the LSTM model.

5.1.1.1 Pre-processing

When a still camera is used to record the walking sequence, the distance between the

subject and the camera shifts as the walk progresses. The Kinect depth sensor generates

three-dimensional skeleton data at various scales, depending on the position of the sub-

jects within the data collection environment. Therefore, in the beginning, a few steps

are taken to align the skeletons in a new global coordinate system. The specifics of this

process are as follows.

Align Skeleton Data in New Global Coordinate System

Consider a sequence of skeleton frames, F = {f1, f2, ..., fn} where, n is the number

of frames in the entire walking sequence. Each frame contains information about a set

of P 3D joint coordinates of the skeleton, J = {j1, j2..., jP}. Each joint includes the

three coordinates (x, y, z). Figure 5.2 depicts the skeleton joints captured by the Kinect

depth sensor v1 and v2. As the person moves, these coordinate values of skeleton joints
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Figure 5.2: Skeleton joints captured by Kinect depth sensor. (a) 20 skeleton joints by Kinect v1.
(b) 25 skeleton joints by v2.

will change. Initially, a new global coordinate system Gc is created by making the hip-

center the origin and fixed at (0, 0, 0). The subsequent steps translate all other joints to

the new global coordinate system.

Let (hx, hy, hz) be the hip center joint coordinate values along x, y, and z axes,

respectively, and represented as a column vector:


hx

hy

hz

. To translate this joint as the

origin


0

0

0

 of the global coordinate system, the translation distances are defined as

tx = −hx, ty = −hy and tz = −hz. Then all joints ji for all i = 1 to P , in the original

3D coordinate system, are transformed to the new global coordinate system using the
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transformation matrix as shown in Equation (5.1).
x

′
i

y
′
i

z
′
i

1

 =


1 0 0 tx

0 1 0 ty

0 0 1 tz

0 0 0 1




xi

yi

zi

1

 , (5.1)

Where, (xi, yi, zi) are the initial 3D coordinate values of iih joint and (x
′
i, y

′
i, z

′
i) are

its new coordinate values in Gc.

Data Normalization

The skeleton data is normalized to reduce the impact of the variations in coordinate

values. Each skeleton joint ji = (xi, yi, zi) from a skeleton frame Sf is normalized

using Equation (5.2).

j
′

i =
ji − cmin

cmax − cmin

∗ 10,∀ji ∈ Gc (5.2)

Where, j ′
i is the normalized skeleton joint. The parameters cmin, and cmax denote the

minimum and maximum coordinate values, respectively, that are computed with respect

to the coordinate values in entire dataset.

5.1.1.2 Gait Cycle Extraction

Walking consists of a series of repetitive limb movements that propel the body forward.

Each gait cycle begins with the IC ‘Heel Strike’ of one leg and concludes with the same

leg’s TSW ‘Heel Strike’. The ‘Heel Strike’ is the moment in the gait cycle when the

foot heel makes initial contact with the ground. So, the gait cycles can be considered by

taking any leg as the reference point. During ‘Heel Strike’, the person’s left and right

ankles will be the farthest apart. The three consecutive ‘Heel Strikes’ make a complete

gait cycle in which the first and third ‘Heel Strike’ are of the same leg, and the second

‘Heel Strike’ is of another leg. The first 60% of the gait cycle is the Stance phase,

while the remaining 40% is the Swing phase. Further, researchers have identified seven

different events in the gait cycle, as shown in Figure 1.4. In each of these events, limbs

are positioned in specific ways to exhibit characteristics that aid in gait recognition.
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(a)

(b)

Figure 5.3: Gait cycle extraction steps: (a) Original and smoothed ankle distance-vector (b)
Peaks in smoothed ankle distance-vector.
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In the proposed work, the Euclidean distance between the left and right ankles in

each frame is calculated, and the distance vector AD is used to record the peaks. The

proposed research investigates the gait cycle starting with both legs. Further, the dis-

tance vector AD is smoothened using Savgol filter (Savitzky and Golay, 1964). To

determine gait cycles, only local peaks with a height greater than T × max peak are

considered. Where, T is a dataset-dependent threshold. The set of frames that do not

contribute to any gait cycle are discarded based on this distance vector. Figure 5.3 de-

picts the plots of ankle distances versus frame number, as well as the ankle distance

peaks detected. The blue lines represent the initial curves. The smoothed curves are

represented by red curves. Where maxpeak represents the maximum distance between

the ankles at the peak of the walking sequence.

5.1.1.3 Gait Event Frame Grouping

During different phases of the gait cycle, the human gait exhibits distinct limb move-

ments. The authors of (Choi et al., 2019) and (Khamsemanan et al., 2018) demonstrated

that each gait cycle frame contributes to the gait feature vector. The gait cycle events are

also distinct for each person. Therefore, the proposed system for HI treats gait events

as timestamps and extracts gait event-specific features. Figure 1.4 illustrates the timing

distribution for each gait event in the entire gait cycle. The initial distribution of frames

comprising a gait cycle is based on the duration of the gait event. Next, feature vectors

of equal size are extracted from each group. The proposed work calculates multiple

sets of inter and intra-frame joint distance and angle features for each group. To reduce

the impact of occluded joints in the frame, we used the mean and standard deviation

of corresponding features collected within the frame group rather than the raw features

collected from the frames. The following subsections discuss the feature extraction.

5.1.1.4 Feature Extraction

During walking, each individual exhibits distinctive upper and lower limb movements.

As limbs move, the distance and angle between the 3D joint coordinates of the skeleton

change. The proposed work extracts a set of inter and intra-frame Euclidean distances

and angles between three-dimensional joint coordinates. To reduce the impact of oc-

cluded joints in the frame, we used the mean and standard deviation of corresponding

features collected within the frame group rather than the raw features collected from
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the frames. The Euclidean distance between any two 3D joints and angle Θ = ∠ABC

where A, B, and C are three 3D joints are computed using Equations 4.1 and 4.2,

respectively.

Body Part Length Features (BpLF)

In the proposed work, seven body part lengths were considered as features. The lengths

of the various body parts considered are depicted in Figure 5.4 (a). The variance in

these lengths must be minimal in a series of frames. So, initially, the body part length

is computed for each frame fi in a gait event, and then the mean of each of these body

part lengths from frames in the gait event is computed.

Joint Distance Features (JDF)

As a person walks, the relative distance between body joints dramatically changes. Con-

sequently, the mean and standard deviation of body joint distances from frames in a gait

event are calculated. Figure 5.4 (b) depicts the joint distances used to feature construc-

tion. Altogether 18 mean and 18 standard deviation features are extracted from each

gait event.

Joint Angle Features (JAF)

In the proposed work, focus on the 15 joint angles shown in Figure 5.4 (c) to better

understand how the body’s joints interact while a person walks. As a part of analyzing

gait events, we calculate the mean and standard deviation of the joint angle i from

frames in each gait event. As a result, this adds 30 new features to the feature pool.

Inter-Frame Joint Distance Features (InJDF)

These are proposed to monitor the relative change in a joint position between succes-

sive frames. The Inter-Frame Joint Distance Features (InJDF) is calculated using the

Equation (5.3). Where, InD is the inter-frame joint distance of skeleton joint i between

the kth and (k + 1)th frames in a gait event, and k = 1, 2, ..., n − 1, where, n is the

number of frames in the gait event. Finally, these distances’ mean and standard devi-

ation are computed for each joint i considered during each gait event. Figure 5.4 (d)

illustrates the sixteen inter-frame joint distances considered in this study. This adds 32

characteristics to the feature vector.
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Figure 5.4: Extracted features. (a) BpLF. (b) JDF. (c) JAF. (d) InJDF.
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InD =

√
(xk

i − xk+1
i )2 + (yki − yk+1

i )2 + (zki − zk+1
i )2, (5.3)

Inter-Frame Joint Angle Features (InJAF)

To track the change in joint angle between consecutive frames, the Inter-Frame Joint

Angle Features (InJAF) features are proposed. To begin, in each frame, the joint angles

shown in Figure 5.4 (c) are calculated. After that, we consider subsequent frames to

calculate the angular disparity. Equation (5.4) describes the entire process. Where A,

B, and C are 3D joints in the skeleton, k is the number of frames in the gait event, and

InAB is the difference between ∠ABC in the kth and (k + 1)th frames. Ultimately,

we calculate the average and standard deviation of the angles that differ during the gait

event. It adds 30 features to the feature vector.

InAB = cos−1

(
⃗Ak+1Bk+1. ⃗Ck+1Bk+1

∥ ⃗Ak+1Bk+1∥∥ ⃗Ck+1Bk+1∥

)
− cos−1

(
⃗AkBk. ⃗CkBk

∥ ⃗AkBk∥∥ ⃗CkBk∥

)
, (5.4)

5.1.1.5 LSTM Based Deep Learning Model

Gait events occur in a specific order in a gait cycle. We proposed a DL model with

two layers of LSTM to efficiently learn the temporal features of a gait cycle for gait

recognition. Figure 5.5 depicts the proposed LSTM-based DL model. The proposed

LSTM-based DL model is a sequential model implemented in Keras (Chollet, 2015).

The full model consists of two LSTM layers, a Dense layer with N units and tanh acti-

vation function, two Batch Normalization (BN) layers, and a Softmax layer. Since each

gait cycle is divided into seven discrete events, the input data is structured accordingly.

One-hot encoding is used to feed the neural network the labels used for HI. Features

from gait cycles were reshaped into (7, N), where N is the number of features from

each gait cycle event before being provided to the first LSTM layer. The first BN layer

is applied to the output of the first LSTM layer to control the overfitting of the network.

The normalized output of the first BN layer is processed by the second LSTM layer. In

addition, the output of the second LSTM layer is processed by the Dense layer, which

in turn improves recognition performance. With the second BN layer placed before the
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Figure 5.5: Proposed LSTM based deep learning model.

Softmax layer, training time is reduced by standardizing the output of the Dense layer.

A probability score from the Softmax layer then provides the classification score of gait

cycles. The optimum weights are calculated using the Adam optimizer (Kingma and

Ba, 2014).

5.1.1.6 Long Short-Term Memory and Gated Recurrent Unit

LSTM (Hochreiter and Schmidhuber, 1997) is effective in combating the vanishing

gradient problem of RNN and has been demonstrated its potency in learning temporal

features. The schematic diagram of LSTM cell is depicted in Figure 5.6. Input gate It,

forget gate Ft, output gate Ot, hidden state ht, and memory cell state ct are the various

vectors that define the LSTM at each time step t. Equations (5.5) through (5.9) define

each of these vectors.

It = σ(WxiXt +Whiht−1 + bi) (5.5)

Ft = σ(WxfXt +Whfht−1 + bf ) (5.6)
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Figure 5.6: Structure of LSTM unit.

Ot = σ(WxoXt +Whoht−1 + bo) (5.7)

ct = Ft ⊙ ct−1 + It ⊙ tanh(Wxcxt +Whcht−1 + bc) (5.8)

ht = Ot ⊙ tanh(ct) (5.9)

Where, the F , I , and O determine which information will be discarded, collected, or

outputted. Also, Wxi, Wxf , and Wxo represent the weight matrices that are updated

during training. In addition bi, bf , and bo represent the bias.

(Cho et al., 2014) created GRU as a gating mechanism for RNN. Comparable to

LSTM, the GRU lacks an output gate and thus has fewer parameters. GRU uses ‘update

gate’ and ‘reset gate’ to solve the standard RNN problem of vanishing gradients. These

two vectors essentially determine which data is passed to the output. The structure of a

GRU unit is depicted in Figure 5.7. The vectors in GRU are mathematically defined as

follows from Equations (5.10) through (5.11).

zt = σ(WxzXt +Whzht−1 + bz) (5.10)
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rt = σ(WxrXt +Whrht−1 + br) (5.11)

h
′

t = tanh(WxhXt + rt ⊙Whhht−1 + bh) (5.12)

ht = (1− zt)⊙ ht−1 + zt ⊙ h
′

t (5.13)

Where, zt, rt, h
′
t, ht, W and b represent the update and reset gate, a candidate

activation vector, output vector, weights, and bias, respectively.

5.1.1.7 Score Fusion

The final Softmax layer in the proposed DL model computes the probability score vector

P = {p1, p2, ..., pL} for gait cycle classification. Combining these scores, as shown in

Equation (5.14), yields the final identification prediction considering gait cycles in the

entire walking sequence.

Pid = argmax(

g∑
i=1

pi1,

g∑
i=1

pi2...,

g∑
i=1

piL), (5.14)
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Where, g, L, pi, and Pid are the number of gait cycles extracted from the walking

sequence, the number of subjects in the dataset, a score of identification in ith gait cycle

for a person, and the person identified from the walking sequence, respectively. The

function argmax gives the position of the maximum score. The overall steps in the

proposed system is described in Algorithm 5.1.

Algorithm 5.1: Human identification from skeleton data based gait dataset
1 Function Human identification (W );

Input : A set of walking sequences of people W
Output: Person identified Pid

2 foreach walking sequence w ∈ W do
3 Extract sequence of skeleton frames F
4 N= Number of frames in F
5 Align skeleton data from each frame in a global coordinate system using

Equation (5.1).
6 Normalize the skeleton data from each frame using Equation (5.2).
7 Extract a set of gait cycles G from F based on distance between ankles as

given in Section 5.1.1.2 (Page No. 78).
8 foreach gait cycle g ∈ G do
9 Group frames in g under different gait events:

E = {LR,MST, TST, PSW, ISW,MSW,TSW} based on
proportion of frame distribution as mentioned in Table 5.1.

10 Assign Gait cycle feature vector GFE = []
11 foreach gait event e ∈ E do
12 Assign gait event feature vector FE = []
13 //Perform feature extraction
14 Extract BpLF , JDF , JAF , InJDF , and InJAF features using

the procedure given in Section 5.1.1.4 (Page No. 80)
15 FE = [BpLF, JDF, JAF, InJDF, InJAF ]
16 GFE = [GFE,FE]

17 Partition the feature vectors into train and test sets based on specifications of
Evaluation Protocol.

18 Train the proposed LSTM based DL model.
19 Feed feature vector of test set to fitted proposed LSTM based DL model.
20 if Score fusion required based on Evaluation Protocol then
21 Perform Score fusion as given in Equation (5.14).
22 Return Person Identified Pid.

23 else
24 foreach gait cycle g ∈ test do
25 Return Person identification label which obtained highest score.
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5.1.2 Experiments, Results, and Analysis

To investigate how various features contribute to gait recognition, the LSTM model is

trained with various feature combinations during the training phase. The fitted LSTM

model is utilized during the identification stage for gait cycle recognition. Next, based

on its suitability for evaluation protocols, the proposed score fusion is applied to the

Softmax layer’s output. In some evaluation protocols, score fusion is omitted because

it serves no purpose. A series of experiments are conducted on all the datasets using

various classification algorithms, including KNN, SVM, RF, two-layer ANN, and GRU

(Cho et al., 2014).

5.1.2.1 Datasets

The proposed system’s performance is assessed using four publicly available bench-

mark 3D skeleton-based gait datasets, namely: Kinect Gait Biometry Dataset (KGBD)

(Andersson and Araujo, 2015), University of Patras Computer Vision-1 (UPCV1) (Kas-

taniotis et al., 2015; Kastaniotis et al., 2013), University of Patras Computer Vision-

2 (UPCV2) (Kastaniotis et al., 2016), and VisLab Multi-View Kinect Skeleton (KS20)

dataset (Nambiar et al., 2017a,b).

Kinect Gait Biometry Dataset (KGBD)

The KGBD is a compilation of the 3D skeleton-based gait data from 164 subjects.

Kinect v1 was positioned in the center of a semicircle with a spinning dish to track

the subject’s movement. The subjects were directed to walk in a semicircular path

during data collection. The majority of walking sequences are comprised of 500 to

650 frames. Each participant, with a few exceptions, has five walking sequences. Each

frame includes the 3D coordinates of 20 joints. The number of gait cycles extracted per

walking sequence is between 8-29.

UPCV1

Using the Kinect v1 depth sensor, the UPCV1 gait dataset is collected. It includes five

walking sequences from 15 male and 15 female participants. Each person walks in a

straight line. The number of frames in the walking sequence ranges from 50 to 120.

Most walking sequences are comprised of two gait cycles.
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UPCV2

The UPCV2 gait dataset was collected using a Microsoft Kinect v2 depth sensor, and

each skeleton has 25 joints. It contains ten recordings of 30 individuals walking in a

straight line (17 males and 13 females). The majority of walking sequences consist of

three gait cycles.

KS20 VisLab Multi-view Kinect Skeleton Dataset

It is a dataset of gait captured from multiple views with the Microsoft Kinect v2 depth

sensor. The walking sequences of 20 subjects were captured from five different views

(‘left-lateral’→0◦, ‘left-diagonal’→ 30◦, ‘frontal’→ 90◦, ‘right-diagonal’→ 130◦, and

‘right-lateral’→ 180◦). Three samples are taken from each viewpoint per subject, with

each sample containing a single gait cycle.

5.1.2.2 Evaluation Protocols

Single-view Dataset

The performance of proposed system on three single-view datasets KGBD, UPCV1,

and UPCV2 is evaluated using the following two benchmark evaluation protocols.

• Protocol − 1 (Leave − one − sequence − out): Human identification using

the walking sequence based on the approach of (Khamsemanan et al., 2018). The

dataset is divided into K distinct folds based on the number of walking sequences

for each individual. Therefore, 5-fold cross-validation is employed on KGBD

and UPCV1 datasets and 10-fold cross-validation on the UPCV2 dataset. Each

person’s walking sequence is distributed across multiple folds so that each fold

contains gait cycles of one walking sequence. Then, K models are constructed

iteratively using the ith fold as the testing fold in the ith iteration.

• Protocol − 2 (Five − fold − cross − validation): The protocol described in

(Bari and Gavrilova, 2019) is used to assess the performance of the proposed

system in recognizing the gait cycle. As the score fusion subsystem plays no role

in gait cycle recognition, it is omitted in the experiments. Again, we employed

the K-fold cross-validation method, with K equal to 5. Contrary to Protocol−1,

where all gait cycles extracted from a walking sequence fall into the same fold,

in Protocol− 2, the gait cycles extracted from a walking sequence are randomly
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distributed across all five folds. Five models are iteratively created with ith fold

for testing in the ith iteration.

Multi-view Dataset

The proposed system is tested on a multi-view gait dataset using the following two

evaluation protocols.

• Random− split: Randomly selected two samples from each viewpoint are used

for training, and the remaining one from each viewpoint is used for testing.

• Cross−view−split: Test on all samples from each viewpoint while considering

samples from remaining viewpoints for training.

5.1.2.3 Evaluation Metrics

The effectiveness of the proposed work is evaluated using four metrics: Accuracy,

Precision, Recall, and F−Score. The Precision reflects the proportion of accurately

predicted positives. Recall quantifies a model’s capability to predict positive outcomes.

The F − Score quantifies the harmonic mean of Precision and Recall. All these

metrics are defined using the Equations (5.15) to (5.18). Where TP , TN , FP , and

FN represent TruePositive, TrueNegative, False Positive, and FalseNegative,

respectively. Additionally, the capability of the proposed system at various Rank levels

is evaluated using the CMC. CMC is a plot of cumulative recognition performance

across various Rank levels.

Accuracy = (TP + TN)/(TP + TN + FP + FN) (5.15)

Precision = TP/(TP + FP ) (5.16)

Recall = TP/(TP + FN) (5.17)

F − Score =
2 ∗ Precision ∗Recall

(Precision+Recall)
(5.18)
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5.1.2.4 Training Parameters

Each model is trained for 150 epochs with a batch size of 64 and an initial learning rate

of 0.001. The learning rate is decreased by 0.001 based on observed validation loss,

resulting in a more stable model. The model is trained with Categorical Cross-Entropy

loss function, and Adam optimizer (Kingma and Ba, 2014).

5.1.2.5 Experiments on Single-view Dataset

This section elaborates on the observed results in various experiments conducted on

single-view datasets using Leave− one− sequence− out (Protocol− 1) and Five−
fold− cross− validation (Protocol − 2) evaluation protocols.

Leave-one-sequence-out

Table 5.2 demonstrates the Rank-1 performance of the HI system employing the entire

walking sequence with various feature combinations and the proposed LSTM-based

DL model on three benchmark datasets. The LSTM model is created with four dif-

ferent combinations of features. The number of gait event features utilized indicated

between brackets. The combination of body part length and additional features yielded

an Accuracy of greater than 95% across all three datasets. Additionally, the GRU-based

DL model with 105 features performed admirably on all datasets.

Table 5.2: Rank-1 recognition performance (in %) of the proposed HI system using leave −
one− sequence− out in various experimental setups (Best results are in bold).

Experimental
Setup Gait Dataset

KGBD UPCV1 UPCV2

Accuracy Precision Recall F1-Score Accuracy Precision Recall F1-Score Accuracy Precision Recall F1-Score

InJDF (30
Features) + LSTM

72.9 63.2 73 65.8 59.99 49 60 52.4 80.32 72.3 80.5 74.7

InJDF + InJAF (62
Features) + LSTM

91.32 87.4 91 88.4 59.99 48.8 60 52.4 88.32 83.3 88.5 84.8

BpLF+JDF+ JAF
(73 features) +

LSTM
97.56 96.6 97.6 96.66 95.9 94 96 94.8 98.33 97.5 98.4 97.9

BpLF+JDF+
InJDF+JAF (105
Features)) + GRU

98.53 97.8 98.6 98 95.99 94 96 94.8 97.33 96 97.4 96.6

BpLF+JDF+
InJDF+JAF (105

Features)) +
LSTM (Proposed)

98.54 97.6 98.6 97.8 98.00 97 98 97.4 98.33 97.5 98.5 98
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Without the Body-part Length Features (BpLF) in the feature combination, the per-

formance of the proposed system is drastically diminished. Using 105 features, the

LSTM model achieved 98.54%, 98.00%, and 98.33% Accuracy in the KGBD, UPCV1,

and UPCV2 datasets, respectively. Moreover, the performance of the model trained

with 73 features across all datasets is promising. However, the LSTM model with 105

features consistently recorded the highest value for all evaluation metrics. The LSTM

models with 62 and 30 features did not achieve satisfactory performance. It is observed

that the 105-feature GRU model almost matched the 105-feature LSTM model’s per-

formance on KGBD but fell short on the other two datasets. Figure 5.8 illustrates the

proposed system’s performance in all K folds of the dataset. Despite a small variance

in values, the model performed nearly identically across all test folds.

Cumulative Match Characteristic (CMC) Curve

Before identifying the criminal, investigation agencies must consider a group of suspi-

cious people. The CMC test is performed to assess the proposed system’s performance

in different Ranks. Figure 5.9 depicts the CMC curves of the proposed system for

three datasets. It compares the Accuracy of LSTM and GRU-based DL models at dif-

ferent Ranks. The proposed system with LSTM demonstrated 98.53%, 98.00% , and

98.33% Rank-1 Accuracy on KGBD, UPCV1, and UPCV2, respectively. Further, on

KGBD, at Rank-2 itself, it reached 99.27% Accuracy. On UPCV1, the Rank-3 recog-

nition Accuracy is 100%. On UPCV2, the proposed system achieved the recognition

Accuracy 99.67% at Rank-3. Overall, the proposed system achieved recognition rates

of over 99% within the top three Ranks, making it suitable for real-world applications.

Five-fold cross-validation

The effectiveness of the proposed system at recognizing the gait cycle is determined

through a Five−fold−cross−validation evaluation. Due to its irrelevance, score fu-

sion has been omitted in this. Table 5.3 demonstrates the performance of Rank-1 gait cy-

cle recognition Accuracy in various experimental setups utilizing Five−fold−cross−
validation on the KGBD, UPCV1, and UPCV2 datasets. The proposed DL model with

105 features performs the best in all three datasets. The 105-feature LSTM-based DL

model achieved 97.12%, 96.30%, and 99.46% Accuracy on the KGBD, UPCV1, and

UPCV2 datasets, respectively. This model also scored the highest Precision, Recall,
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(a)

(b)

(c)

Figure 5.8: Rank-1 recognition performance of the proposed HI system using Leave − one −
sequence− out in K folds. (a) KGBD. (b) UPCV1. (c) UPCV2.
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(a)

(b)

(c)

Figure 5.9: The CMC curves obtained using Leave−one−sequence−out evaluation protocol.
(a) KGBD. (b) UPCV1. (c) UPCV2.
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and F1 − Score. Several experiments were conducted to compare the performance

of these 105 features to other ML classification methods, including KNN, RF, SVM,

and 2-layer ANN model. None of these techniques surpassed the performance of the

proposed LSTM model with 105 feature combinations. In addition, the performance of

the 2-layer ANN model was significantly inferior to that of the proposed LSTM model.

On the UPCV2 dataset, the GRU-based DL model performed similarly to the LSTM

model, whereas it performed marginally worse on the KGBD and UPCV1 datasets.

Thus, the proposed system demonstrated the classification efficacy of the proposed fea-

tures in combination with LSTM-based DL model. In addition, the LSTM model with

all 135 features performed worse than the LSTM model with 105 features on KGBD

and UPCV1. However, this performance is nearly identical on UPCV2. Also, the 135

features will add more complexity to the DL model than 105 features. Thus, it has been

demonstrated that the proposed LSTM model trained with 105 features demonstrates

superior performance in recognizing gait cycles.

Cumulative Match Characteristic (CMC) Curve

Figure 5.10 depicts the CMC test curves of the proposed system utilizing Five−fold−
cross − validation evaluation protocol. Also, the Accuracy of the proposed LSTM-

based system is compared to the Accuracy of the GRU-based system at various Ranks.

The proposed system achieved a 97.12%, 99.3%, and 99.86On UPCV1 dataset, the

Rank-1, Rank-3, and Rank-10 Accuracy are 96.30%, 97.85%, and 99.38%, respec-

tively. On UPCV2, the CMC test reported recognition Accuracy of 99.46%, 99.68%,

and 99.89% for Rank-1, Rank-2, and Rank-3, respectively. The CMC test revealed

that the proposed system with 105 features achieved recognition Accuracy greater than

99.9% at lower-level ranks.

Comparison with State-of-the-art Existing Works

Tables 5.4, 5.5, and 5.6 compare the Rank-1 Accuracy of the proposed work using

Leave−one−sequence−out evaluation protocol to state-of-the-art existing works on

the KGBD, UPCV1, and UPCV2 datasets, respectively. Table 5.4 report that the pro-

posed system outperformed five existing works on KGBD. Proposed system showed

1.15%, 1.04%, 1.98%, 3.14%, and 10.84%, better Accuracy than (Liu et al., 2019),

(Khamsemanan et al., 2018), (Li et al., 2017), (Yang et al., 2016), and (Andersson and

95



Table 5.3: Rank-1 recognition performance of the proposed HI system with different feature
combinations using Five− fold− cross− validation (in %) (Best results are in bold).

Experimental
Setup Gait Dataset

KGBD UPCV1 UPCV2

Accuracy Precision Recall F1-Score Accuracy Precision Recall F1-Score Accuracy Precision Recall F1-Score

BpLF+JDF+
InJDF+JAF (105
Features)+ RF

53.2 59 53.2 53.6 76.6 76 76.6 73.6 94.2 94.6 94.2 93.8

BpLF+JDF+
InJDF+JAF (105
Features)+ KNN

64.8 67.6 64.8 64.6 77.4 78.6 77.4 75.2 91.2 92.8 91.2 91.4

BpLF+JDF+
InJDF+JAF (105
Features)+ SVM

84 84.6 83.8 83.8 88.2 88.4 88.2 86.6 97.2 97.8 97.2 97.5

BpLF+JDF+
InJDF+JAF (105

Features)+ 2 Layer
ANN

88.25 88.6 88.4 88.4 12.8 6.2 12.8 6.2 90.6 91.2 90.6 90.2

InJDF ( 30
Features) + LSTM

28.49 27.4 28.4 27 57.33 55.8 57.4 53.6 74.19 76.2 74.4 73.6

InJDF + InJAF (62
Features) + LSTM

49.29 49.2 49.2 49 54.76 54.6 54.6 51.2 82.25 84.8 82.2 82.2

BpLF+JDF+ JAF
(73 Features) +

LSTM
96.39 96.6 96.4 96.4 93.84 95.6 93.8 93.4 99.02 99.4 98.8 98.8

BpLF+JDF+
InJDF+JAF+ InJAF

(135 Features) +
LSTM

96.78 96.8 96.6 96.6 93.22 95.6 93.2 92.8 99.44 99.8 99.2 99.2

BpLF+JDF+
InJDF+JAF (105
Features) + GRU

96.36 96.8 96.2 96.2 94.14 95.4 94 93.6 99.46 99.8 99.2 99.2

BpLF+JDF+
InJDF+JAF (105

Features) + LSTM
(Proposed)

97.12 97 97 97 96.30 97.2 96.2 96 99.46 99.8 99.2 99.2

Table 5.4: Comparison of Rank-1 Accuracy of the proposed HI system using Leave − one −
sequence− out protocol with existing methods on KGBD. (Best result is in bold).

Human Identification Methods Accuracy (%)

(Andersson and Araujo, 2015) 87.7

(Yang et al., 2016) 95.4

(Li et al., 2017) 96.56

(Khamsemanan et al., 2018) 97.5

(Liu et al., 2019) 97.39

Proposed System (with 105 features + LSTM) 98.54

Araujo, 2015), respectively. Table 5.5 reports the comparison of Accuracy on UPCV1

with four existing works. On this dataset, the performance of the proposed work im-

proved by 2.33%, 4.67%, 4.71%, and 10.2% relative to the works of (Kastaniotis et al.,
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(a)

(b)

(c)
Figure 5.10: The CMC curves of the proposed system using Five−fold−Cross−V alidation.
(a) KGBD. (b) UPCV1. (c) UPCV2.
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Table 5.5: Comparison of the proposed HI system’s Rank-1 Accuracy using Leave − one −
sequence− out to existing methods on UPCV1. (Best result is in bold).

Human Identification Methods Accuracy (%)

(Ince et al., 2017) 87.8

(Kastaniotis et al., 2015) 93.29

(Rahman and Gavrilova, 2017) 93.33

(Kastaniotis et al., 2016) 95.67

Proposed System (with 105 features + LSTM) 98.00

Table 5.6: Comparison of the proposed HI system’s Rank-1 Accuracy using Leave − one −
sequence− out to existing methods on UPCV2. (Best result is in bold).

Human Identification Methods Accuracy (%)

(Bobillo et al., 2017) 89.03

(Hosni and Amor, 2020) 92.41

(Kastaniotis et al., 2016) 97.05

Proposed System (with 105 features + LSTM) 98.33

2016), (Rahman and Gavrilova, 2017), and (Kastaniotis et al., 2015), respectively. The

comparison with three existing works on the UPCV2 dataset is shown in Table 5.6, and

it reports that the proposed system achieved 1.28%, 5.92%, and 9.3% higher Accuracy

than (Kastaniotis et al., 2016), (Hosni and Amor, 2020), andv(Bobillo et al., 2017),

respectively.

The results of the proposed system using Five−fold−cross−validation protocol

is are compared to those found in (Bari and Gavrilova, 2019). Tables 5.7, and 5.8 report

the comparison of Rank-1 Accuracy on KGBD and UPCV1, respectively. On KGBD,

although the proposed model’s Rank-1 Accuracy is slightly lower than the existing

method, it reached more than 99% in Rank-2 and 99.86% in Rank-10. At the same time,

(Bari and Gavrilova, 2019) achieved above 99% and 99.64% recognition Accuracy in

Rank-3 and Rank-10, respectively, which is slightly lower than the proposed work. In

addition, the Rank-1 Accuracy achieved by the proposed system on UPCV1 is superior

to the existing work. According to (Bari and Gavrilova, 2019), the existing system

scored more than 99% Accuracy in Rank-7, whereas the proposed system scored more

than 99% Accuracy in Rank-5.
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Table 5.7: Comparison of the proposed HI system’s Rank-1 Accuracy using Five − fold −
cross− validation to state-of-the-art-works on KGDB. (Best result is in bold).

Gait Cycle Recognition Methods Accuracy (%)

(Bari and Gavrilova, 2019) 98.08

Proposed System (with 105 features + LSTM) 97.12

Table 5.8: Comparison of the proposed HI system’s Rank-1 Accuracy using Five − fold −
cross− validation to existing methods on UPCV1. (Best result is in bold).

Gait Cycle Recognition Methods Accuracy (%)

(Bari and Gavrilova, 2019) 95.30

Proposed System (with 105 features + LSTM) 96.30

5.1.2.6 Experiments on Multi-view Dataset

Random-split

We performed a series of experiments on the multi-view skeleton-based gait dataset

KS20 to demonstrate the effectiveness of the proposed system in view-invariant scenar-

ios. The samples in the dataset comprise a single gait cycle. To increase the number

of gait cycles per sample, data augmentation is performed. As previously explained, a

gait cycle consists of three successive peaks in ankle distances. Therefore, in addition

to the gait cycle provided by the data sample, an additional gait cycle beginning with

a different leg is created by inserting the frames between the first and second peaks

immediately after the third peak. After the translation and normalization steps outlined

in Section 5.1.1.1 (Page No. 76), the number of gait cycles is increased by rotating all

skeleton joints in both gait cycles about different axes. The augmented gait cycles are

used only for training the DL model. Again, score fusion part was excluded during ex-

perimentation as they do not play any role in Random−split and Cross−view−split

evaluation protocols.

With the same training parameters as the single-view datasets, a series of experi-

ments were conducted on a multi-view dataset to understand the proposed system bet-

ter. Table 5.9 displays the Rank-1 results obtained with various feature combinations

on the Random − split evaluation protocol. The experiment that used a combination

of 105 features and LSTM to recognize people by their gait achieved the best results.
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Table 5.9: Rank-1 recognition performance of the proposed HI system on KS20 using
Random− split protocol (in %) (Best result is in bold).

Experimental Setup Accuracy Precision Recall F1-Score

BpLF+JDF+ InJDF+JAF (105 Features)+
KNN

47 52 47 47

BpLF+JDF+ InJDF+JAF (105 Features)+ RF 48 50 48 45

BpLF+JDF+ InJDF+JAF (105 Features)+
SVM

65 68 65 64

BpLF+JDF+ InJDF+JAF (105 Features)+ 2
Layer ANN

12 2 12 3

InJDF ( 30 Features)+LSTM 31 29 31 29

InJDF + InJAF (62 Features)+LSTM 36.25 37 36 35

BpLF+JDF+ JAF (73 features)+LSTM 86 87 86 86

BpLF+JDF+ InJDF+JAF+ InJAF (135
Features)+LSTM

86 88 86 86

BpLF+JDF+ InJDF+JAF (105 Features)+ GRU 84 87 84 84

BpLF+JDF+ InJDF+JAF (105
Features)+LSTM (Proposed) 88 89 88 88

Cumulative Match Characteristic Curve

Figure 5.11 depicts the CMC curve obtained using Random−split evaluation protocol.

From this it is clear that the proposed system achieved more than 95% Accuracy in

Rank-5 itself.

Comparison with State-of-the-art Existing Works

Table 5.10 compares the proposed system for view-invariant gait recognition to state-of-

the-art existing works employing Random − split evaluation protocol. The proposed

system performed better than the majority of existing methods.

Cross-view-split

Table 5.11 provides the Rank-1, Rank-5, and Rank-10 Accuracy obtained using Cross−
view − split with 105 features and the proposed LSTM model. In addition, it reports

the comparison of Rank-1 Accuracy with existing methods on all views. The proposed

system achieved higher recognition Accuracy in two distinct views than existing meth-

ods. The results of (Liao et al., 2020) are based on published results from (Rao et al.,

2021).
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Figure 5.11: CMC test curve obtained in Random− split method on KS20.

Table 5.10: Comparison of Rank-1 Accuracy to state-of-the-art works on KS20 dataset using
Random− split protocol. (Best result is in bold).

Human Identification Method Accuracy (%)

Pose Gait (Liao et al., 2020) 70.5

Context Unware (Nambiar et al., 2017a) 79.33

3D spatial-temporal (Huynh-The et al., 2020) 87.63

Context Aware (Nambiar et al., 2017a) 88.67

Self-Supervised (Rao et al., 2021) 92

BpLF+JDF+ InJDF+JAF (105 Features)+LSTM (Proposed) 88

5.1.2.7 Ablation Experiments

Several ablation experiments are carried out to determine the importance of layers in

the proposed DL model for identifying gait cycles. The models are evaluated using

Five − fold − cross − validation for single-view datasets and Random − split for

multi-view datasets. Table 5.12 displays the results obtained by removing layers from

the proposed DL model on three datasets. The results suggest that omitting any layer

from the proposed model has a discernible effect on performance.

101



Table 5.11: Accuracy (in %) of proposed HI system on KS20 dataset using Cross − view −
split protocol and comparison with existing methods.

View Pose Gait (Liao et al.,
2020)

Self-Supervised (Rao
et al., 2021)

Proposed System

Rank-1 Rank-1 Rank-1 Rank-5 Rank-10

0◦ 24.6 48.8 25 46.67 76.67

30◦ 19.1 53.6 45 75 91.67

90◦ 29.7 54.9 73.33 93.33 98.33

130◦ 27.3 44.5 78.33 95 100

180◦ 25 57.5 36.67 78.33 90

Table 5.12: Ablation experiments results.

Excluded Layers

Dataset

KGDB UPCV1 UPCV2 KS20

Accuracy (%) Accuracy (%) Accuracy (%) Accuracy (%)

Second LSTM 94.14 92 97 75

First BN 92.96 95.45 99 84

Second BN 94.86 93.85 98.82 75

First Dense 95.95 93 98.65 77

5.1.2.8 Statistical Analysis

Statistical analysis is performed on features, to determine the influence of features in

gait recognition. Also, analysis is done on results obtained from different folds using

various combinations of features and the proposed DL model to investigate the features

chosen and the methodology employed.

Feature Set Analysis

According to Analysis of Variance (ANOVA) theory, a large F-value indicates a high

capacity for discrimination (Semwal et al., 2017). A three-stage process is used to ana-

lyze the extracted features. At first, the F-value is calculated for each of the 135 features

using the ANOVA test. Next, the F-values of the features in each feature category are

summed up. The last step in choosing the discriminative features is to sort the feature

group F-values. The analysis of variance revealed that InJAF features are the least infor-

mative across all datasets. The experimental outcomes reflect the same pattern. Figure

5.12 compares the total F-values of feature groups for each gait event across datasets.
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Figure 5.12: Comparison of total F-Value of feature groups in gait events. (a) UPCV1. (b)
KGBD (continued in the next page).
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Figure 5.12: Comparison of total F-Value of feature groups in gait events (continued from the
previous page). (c) UPCV2. (d) KS20 (130◦).
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Analysis of Statistical Significance of the Proposed System

One-way analysis of variance test is performed on the results obtained by different

experimental settings based on Five − fold − cross − validation from K-folds on

KGBD, UPCV1, and UPCV2 as in (Semwal et al., 2017) to determine the statistical

significance of all the different experimental settings with different classifiers. One-way

analysis of variance yields P−value of 1.227e-25 for UPCV1, 9.2523e-27 for UPCV2,

and 4.967e-53 for KGBD. The KS20 dataset was also subjected to this analysis, with the

results obtained using Cross− view− split, and resulted in P − value of 0.0034. The

null hypothesis H0 is considered as “average recognition Accuracy across all classifiers

are equal”. The results show that P − V alue < alpha, with alpha = 0.05, for all

datasets. As a result, the null hypothesis H0 cannot be true.

5.1.2.9 Computational Cost Analysis and Discussion

Three components—feature extraction, score fusion, and an LSTM-based DL model

contribute to the overall computational cost of the proposed system. The proposed

system extracted gait event-specific features from a single frame and two frames that

were consecutive. The complexity of feature extraction in terms of time is estimated

to be O(n), where n is the number of frames in the walking sequence. Estimated time

complexity of score fusion is O(L), where L represents the number of labels in the

dataset. According to (Justus et al., 2018), Equation (5.19) gives the total execution

time per epoch for a DL model.

E = pTb, (5.19)

Where, p is the total number of batches and Tb is the total estimated time to perform

forward and backward passes on a single batch using the formula in Equation (5.20).

Tb =
l∑

i=0

bM(i), (5.20)

Where, l, bM(i), and M(i) denote the number of layers, ith layer estimated batch execu-

tion time, and type of layer i, respectively.

The proposed DL model is comprised of two LSTM, BN, one Dense, and Soft-

max layers. The LSTM is spatially, and temporally local (Hochreiter and Schmidhu-
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ber, 1997). Consequently, input length does not affect network storage requirements

(Tsironi et al., 2017). Hence, the estimated time complexity per timestamp per weight

is O(1). Thus the total time complexity per timestamp is O(WL), where WL denote total

weights that are approximately equal to total parameters in the LSTM layer. The BN pri-

marily entails determining the mean and variance of each minibatch. Each operation’s

approximate time complexity per batch is O(b), where b denotes input length. Simi-

larly, the number of computations in a Dense layer is also proportional to its weights,

and it is approximate O(Wd), where Wd denotes the count of weights. Thus employing

Equations (5.19) and (5.20), the total time required for forward and backward passes on

a single epoch is estimated as defined in Equation (5.21).

Est = p ∗ (2 ∗O(WL) + 2 ∗O(b)) + 2 ∗O(Wd)), (5.21)

The Leave− one− sequence− out evaluation protocol employs all three subsystems.

So the estimated time for e epochs is defined in Equation (5.22).

Estpt1 = O(n) + (p ∗ (2 ∗O(WL) + 2 ∗O(b)) + 2 ∗O(Wd))) ∗ e+O(L), (5.22)

The Five−fold−cross−validation, Random−split, and Cross−view−split

evaluation protocols does not involve score fusion. So, the total estimated time for e

epochs is defined in Equation (5.23).

Estpt1 = O(n) + (p ∗ (2 ∗O(WL) + 2 ∗O(b)) + 2 ∗O(Wd))) ∗ e, (5.23)

The total number of computations needed is highly sensitive to both the feature count

and the DL model parameters in these evaluation methods. The proposed LSTM-based

DL model uses a significantly smaller number of parameters than other state-of-the-art

methods. The DL model proposed in (Bari and Gavrilova, 2019) has 4494592 parame-

ters, whereas the proposed system has only 189210 parameters, thereby decreasing the

computational cost by approximately 24 times.
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5.2 Attention-guided Residual Deep Learning Model and Gait Event-specific Fea-

tures for Human Identification from Skeleton-based Gait Data

This study employs gait-event-specific features to analyze the temporal behavior of

human limbs across various gait events to recognize human gait. Residual connections

in the DL model are used in a wide variety of applications at the present time. In

addition, the DL model uses several Attention models to focus on the most relevant

aspects of a classification problem. Thus, this work proposes an improved DL model

for HI, which uses residual connections and an Attention module. The key contributions

of this thesis work are listed below.

Contributions:

• Concentrating feature extraction efforts on the individual gait event streams con-

stituting the gait cycle.

• Proposed novel, robust features of gait events contributing to the whole gait cycle.

We also use a quantitative summary of the features to reduce the total number of

features drastically.

• Proposed novel Attention-guided residual LSTM/GRU-based DL models that ef-

fectively capture the most discriminant gait event features for gait recognition.

• Primary emphasis on reducing the computation complexity of the overall ap-

proach by reducing the number of features and complexity of the DL model with-

out sacrificing the system performance.

• Evaluated the performance of the proposed method using benchmark evaluation

metrics and protocols on single and multi-view skeleton-based gait datasets and

compared it to state-of-the-art approaches.

5.2.1 Proposed Methodology

As part of the proposed work, the gait cycles of a walking sequence are detected and pre-

processed. Then, the features of each gait event are extracted. Moreover, an Attention-

guided residual LSTM/GRU-based DL model is proposed to learn the extracted features

and identify the person. In addition, the human is identified by combining the results

of gait cycle recognition and a score fusion operation. The various phases of the pro-

posed work are depicted in Figure 5.13. Pre-processing, Feature Extraction, and Person
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Identification are the primary subsystems of the proposed system. Following are the

specifics of each subsystem.

Figure 5.13: Proposed human identification system using gait event-specific features and resid-
ual DL model with Attention.
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5.2.1.1 Pre-processing

This involves primarily gait cycle extraction, an optional data augmentation. In addi-

tion, all the skeleton joints are transformed into a global coordinate system and normal-

ized. The details of all these sub-tasks are already explained in subsection 5.1.1.1.

5.2.1.2 Feature Extraction

This work proposes three gait-event-specific features, namely: Mean Length of Bones

(MLB), Distance covered by Joint (DistJ), and Mean of Distance between Joints in Left

and Right body part (MJDLR). The features considered are shown in Figure 5.14.

For MLB feature extraction, the length of each bone in the skeleton frame belonging

to a gait event is initially determined. As bone length must be static, the next step

is to compute the mean of each bone’s length over the gait event. MLB contributed

19 features to the feature vector (Figure 5.14 (a)). DistJ computes the total distance

covered by each joint during the gait event and contributes 19 features to the feature

vector (Figure 5.14 (b)). For MJDLR, the whole skeleton is vertically partitioned into

three parts. As the distance between joints in the body’s left and right parts varies, we

initially computed this distance. Next, we determined the average distance between

each joint on the left side of the body and each joint on the right side. Figure 5.14

(c) depicts the distance between the left shoulder and all right-side joints. As a result,

102× 7 features were extracted for each gait cycle.

5.2.1.3 Person Identification

This subsystem begins by partitioning the feature set according to the evaluation meth-

ods. The proposed DL model is used to train the features for gait cycle classification.

Score fusion is performed based on the requirements of evaluation methods.

Proposed Residual DL Model with Attention

This section discusses the Attention-guided residual LSTM/GRU based DL model pro-

posed to learn the temporal relationship between extracted features. Attention mech-

anism is used in the proposed model so that it focuses primarily on the essential gait

features. The proposed DL model is illustrated in Figure 5.15.

109



1

2

3

5

7

9

4

6

8

10

11

12
13

15

17

19

14

16

18

20

1 Head

2 Shoulder Center

3 Shoulder Right

4 Shoulder Left

5 Elbow Right

6 Elbow Left

7 Wrist Right

8 Wrist Left

9 Hand  Right

10 Hand Left

11 Spine

12 Hip Center

13 Hip Right
14 Hip Left

15 Knee Right

16 Knee Left

17 Ankle Right

18 Ankle  Left

19 Foot Right

20 Foot Left

(a)

(0,0,0)

f1 fi

(b)

1

2
3

5

7

9

4

6

8

10

11

12
13

15

17
19

14

16

18

20

Left  
Part

Right  
Part

(c)
Figure 5.14: Features extraction. (a) MLB. (b) DistJ. (c) MJDLR.
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Figure 5.15: Proposed Attention guided residual LSTM.

Attention Mechanism

Attention is added after the final LSTM/GRU layer to focus on more important features.

In the proposed method, a variant of the Self-Attention algorithm is used to generate the

context-specific feature representation by correlating the temporal features extracted by
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LSTM/GRU. Typically, the Attention unit receives three input vectors: Queries (Q),

Keys (K), and Values (V). The Attention unit maps the Q and a set of Key-Value (K-

V) pairs to an output sequence. Attention computes the weighted sum of the Values

as the output, where the weight assigned to each V is determined by an alignment

function between Q and K. In the proposed approach, the “Scaled Dot-Product Atten-

tion” (Vaswani et al., 2017) function is used to direct the residual LSTM/GRU model

to prioritize context-specific temporal gait features. At first, the “Scaled-dot-product”

Attention computes the dot products of Q and K and divides it by the scaling factor
√
dk to prevent an excessively large result. Here, dk represents the dimension of the

query and key vectors. A Softmax function is then applied to normalize the result and

the normalized result is multiplied by V to gather weights on values. The overall com-

putation procedure is as shown in Equations (5.24) and (5.25). This section discusses

the proposed Attention-guided residual LSTM/GRU DL model to learn the temporal

relationship between extracted features. Attention mechanism is used in the proposed

model so that it focuses primarily on the essential gait features.

Attention(Q,K, V ) = Softmax(α)V (5.24)

α =
QKT

√
dk

(5.25)

Further, two Dense layers with tanh activation process the concatenated context

vector from the Attention unit and the output ht of the final LSTM/GRU layer. BN

layer normalizes Dense layer output. Dropouts are added after the BN layer to prevent

network over-fitting. A Softmax layer calculates the probability score for matching

processed features to person Ids.

Probability Score Fusion

An optional probability score fusion function combines the probability matching score

of gait cycles from the same walking sequence to identify the person based on all their

scores. The proposed method followed score fusion operation discussed in Section

5.1.1.7 (Page No. 86) to combine the gait cycle recognition scores from entire walking

sequence to identify the person.
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5.2.2 Experiments, Results, and Analysis

Several experiments were performed using the residual 3-Layer, 2-Layer, and 1-Layer

LSTM and GRU models with and without Attention units. In addition, we tested a

variety of machine learning-based classification models including KNN, SVM, and RF,

using the same set of features.

5.2.2.1 Dataset

The proposed approach is evaluated based on five 3D skeleton-based gait datasets,

UPCV1, UPCV2, KGBD, IAS-Lab RGBD-ID (IAS-Lab) (Munaro et al., 2014; Nanni

et al., 2016), and KS20 dataset. Four of these datasets are the single view, and the fifth

dataset is multi-view. The details of UPCV1, UPCV2, KGBD, KS20 are already given

in Section 5.1.2.1 (Page No. 88). The additional dataset used in this work is IAS-Lab.

IAS-Lab (Munaro et al., 2014) is a multi-modal gait dataset consisting of 11 in-

dividuals. In this work, only the 3D skeleton data provided by the dataset was uti-

lized. ‘Training’, ‘TestingA’, and ‘TestingB’ are the three subsets of data provided by

the dataset. Sequences of ‘TestingA’ were recorded with participants wearing distinct

clothing than ‘Training’. Whereas, ‘TestingB’ was collected in a separate room while

wearing the same clothing as ‘Training’. The statistics of all these datasets are provided

in Table 5.13.

Table 5.13: Statistics of skeleton-based gait dataset used in the proposed work.

UPCV1 UPCV2 KGBD KS20 IAS-Lab
No. of Subjects 30 30 164 20 11

No. of Video
Sequence 150 300 822 300 11+11+11

Multi-View No No No Yes No

5.2.2.2 Evaluation Protocols and Metrics

The evaluation protocols mentioned in Section 5.1.2.2 (Page No. 89) are used to eval-

uate the proposed work. They are namely: Leave − one − sequence − out, Five −
fold−cross−validation on UPCV1, UPCV2, and KGBD, and Cross−view−split,

Random − split on KS20. For IAS-Lab, as the dataset provides separate training and

testing sets, the same is used for evaluation.
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The same set of evaluation metrics, namely: Precision, Recall, Accuracy, F −
Score, and CMC test curves, are used to evaluate the proposed work. The details of

these are already given in Section 5.1.2.3 (Page No. 90).

5.2.2.3 Training Parameters

The models are trained for 200-450 epochs based on dataset requirement. We employed

a 64-batch size and a learning rate of 0.001 to train the models. In addition, the learning

rate is reduced by a factor of 0.70 to improve model’s performance. The model is

trained with Categorical Cross-Entropy loss function, and Adam optimizer.

5.2.2.4 Experiments Considering Single-view Scenario

In this, we considered the entire dataset and divided the samples into training and testing

based on evaluation protocols. The direction of data capture is not considered in the

partition process.

Table 5.14: Performance of proposed residual deep learning model on KGBD, UPCV1, and
UPCV2 based on Five− fold− cross− validation.

Approach Methods

Dataset

KGBD UPCV1 UPCV2

Precision Recall F-Score Accuracy Precision Recall F-Score Accuracy Precision Recall F-Score Accuracy

DL

Models

1 layer LSTM +
Attention

96.6 96.2 96.2 96.28 93.8 95.2 94 95.28 100 99.4 99.4 99.67

2 layer LSTM +
Attention

96.2 96 96 96.092 93.6 94.6 93.4 94.70 100 99.4 99.4 99.67

3 layer LSTM +
Attention

97 96.8 96.8 96.88 95.6 97 96.2 97.06 100 99.6 99.6 99.78

1 layer GRU +
Attention

96.2 95.6 95.6 95.82 92.6 94.6 93.2 94.7 99.8 99.4 99.4 99.56

2 layer GRU +
Attention

95.4 95.4 95.4 95.37 92.8 94.6 93.2 94.69 99.8 99.4 99.4 99.56

3 layer GRU +
Attention

95.8 95.2 95.2 95.49 94 95.8 94.6 95.87 100 99.2 99.2 99.56

ML

Approaches

SVM 91.6 91.2 91.2 91.2 77.8 82.6 79 82.6 97.6 97.4 97.4 97.4

KNN-1 80.2 79.2 78.4 79.2 83.4 86.8 84 86.8 94.4 93.8 93.6 93.8

KNN-5 76.4 72.8 72 72.8 56 61.4 55.4 61.4 90.6 90 89.6 90

RF-10 70.2 66.4 66.4 66.4 73.2 78.6 74 78.6 96.2 95.6 95.6 95.6

RF-5 60 49.2 50.2 49.2 59.6 64.2 59.4 64.2 92 90.8 90.6 90.8
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The results obtained for KGBD, UPCV1, and UPCV2 using both DL models and

ML classifications based on Five − fold − cross − validation are shown in Table

5.14. On both KGBD and UPCV1, the proposed model with 3-Layer residual LSTM

and Attention performs better than other models. On UPCV2, the performance of all

DL models was nearly identical, with minor variations. On each of the three datasets,

classifications based on machine learning performed poorly. In KNN and RF, we re-

peated the experiment with different K values and estimator counts.

Table 5.15: Performance of proposed residual deep learning model on KGBD and UPCV2 using
Leave− one− sequence− out protocol.

Method

Dataset

KGBD UPCV2

Precision Recall F-Score Accuracy Precision Recall F-Score Accuracy

1 layer LSTM
+ Attention

100 98 98.6 97.92 100 99.4 99.6 99.33

2 layer LSTM
+ Attention

100 98.4 99 98.4 100 99.7 99.8 99.66

3 layer LSTM
+ Attention

100 98 98.8 98.04 100 99.4 99.6 99.33

1 layer GRU
+ Attention

100 98.2 98.6 98.29 100 99.7 99.8 99.66

2 layer GRU
+ Attention

100 98.4 99 98.4 100 99.7 99.8 99.66

3 layer GRU
+ Attention

100 97.8 98.6 97.8 100 99.4 99.6 99.33

Table 5.15 reports the results obtained for Leave− one− sequence− out protocol

on KGBD and UPCV2. As we use probability scores to perform score fusion, we did

not conduct ML algorithm-based experiments. The outcomes demonstrate that 2-Layer

GRU and LSTM models with Attention outperformed other models.

Table 5.16 displays the results obtained on KS20 by employing the Random −
split protocol. It is observed that the proposed 3-Layer residual LSTM with Atten-

tion achieved a 91% Accuracy. With an Accuracy of 92%, the 3-Layer GRU model

is superior. Other models, meanwhile, performed poorly. In addition, the ML mod-

els did not produce the expected outcomes. Table 5.16 also reports the results on

IAS-Lab ‘TestingA’ and ‘TestingB’. With a score of 58.33%, 2-Layer GRU with Atten-
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tion demonstrated the highest Accuracy on ‘TestingA’. Comparatively, the Accuracy

of the 3-Layer LSTM with the Attention model was 56.25%. On ‘TestingB’, 3-Layer

residual LSTM with Attention secured the highest Accuracy of 60%. However, machine-

learning-based models demonstrated poor performance.

Table 5.16: Performance of proposed residual deep learning model on KS20 using Random−
split protocol, and on IAS-Lab the testing results on ‘TestingA’ and ‘TestingB’

Approach Methods

Dataset

KS20 IAS-TestA IAS-TestB

Precision Recall F-Score Accuracy Precision Recall F-Score Accuracy Precision Recall F-Score Accuracy

DL

models

1 layer LSTM
+ Attention

83 78 78 77.89 59 50 48 50 43 49 44 48.88

2 layer LSTM
+ Attention

85 81 81 81 54 44 43 43.75 50 56 49 55.55

3 layer LSTM
+ Attention

93 91 91 91 64 56 54 56.25 53 60 54 60

1 layer GRU
+ Attention

80 79 79 78.95 55 54 50 54.16 48 53 49 53.33

2 layer GRU
+ Attention

86 83 83 83 74 58 59 58.33 42 47 43 46.6

3 layer GRU
+ Attention

93 92 92 92 49 52 49 52.08 54 53 47 53.33

ML

approaches

SVM 74 71 70 71 30 31 30 31 46 42 38 42

KNN-1 61 56 55 56 36 25 26 25 37 36 32 36

KNN-5 52 50 47 50 30 21 21 21 31 29 25 29

RF-10 47 41 39 41 29 29 27 29 49 49 45 49

RF-5 59 58 57 58 29 27 26 27 49 49 45 49

Comparison of proposed work with existing methods

Table 5.17 shows the comparison of Rank-1 Accuracy of proposed models with state-

of-the-art works employing the same evaluation protocols. The first four rows’ results

are based on those published in (Bari and Gavrilova, 2019). The proposed 3-Layer

residual LSTM with Attention outperformed all other works on the UPCV1 dataset. On

the other hand, the proposed work on KGBD demonstrated 1.18%, 2.43% less Rank-1

Accuracy than (Bari and Gavrilova, 2019), and (Bari and Gavrilova, 2022) respectively.

However, the method (Bari and Gavrilova, 2019) is computationally intensive with a DL

model with extremely high neural network parameters, i.e., 4494592 total parameters,

without considering the Softmax layer. Also, (Bari and Gavrilova, 2022) has 471902,

480612 total parameters on UPCV1 and KGBD, respectively. In contrast, the proposed

deep learning model with 3-Layer residual LSTM and Attention (the proposed model

with the highest number of parameters) has only 335172 total parameters without con-

sidering the Softmax layer. As the proposed 3-layer residual LSTM model with Atten-
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tion has 335172 total parameters when compared to that of (Bari and Gavrilova, 2019)

which has 4494592 total parameters, hence the overall computational cost is reduced

by approximately 14 times.

Table 5.17: Comparison of Rank-1 Accuracy (%) with state-of-the-art-works on Five−fold−
cross− validation.

Method
Dataset

KGBD UPCV1

Unsupervised Clustering (Ball et al., 2012)a 37.55 57.0

Gait-Skeleton. (Preis et al., 2012)a 75.46 78.0

Viewinvariant-Skeleton. (Sun et al., 2018)a 79.76 82.67

Relative distance (Yang et al., 2016)a 94.88 86.67

ANN (Bari and Gavrilova, 2019) 98.08 95.30

KinectGaitNet (Bari and Gavrilova, 2022) 99.33 96.91

3 Layer Residual LSTM + Attention (Proposed) 96.9 97.06

a Are based on published results in (Bari and Gavrilova, 2019).

Table 5.18 provides the detailed comparison results of proposed work with state-

of-the-art works using the same evaluation protocol. On the IAS-Lab, the results of

‘TestingA’ and ‘TestingB’ are compared to those of a number of other studies. The

proposed work achieved 1.7%, and 2.5% lower Rank-1 Accuracy on ‘TestingA’ and

‘TestingB’, respectively, compared to (Rao et al., 2021). In contrast to (Rao et al., 2021),

the proposed work achieved superior performance on KS20 using the Random− split

protocol. Using the Leave−one−sequence−out protocol, the proposed work achieved

7.8% greater Rank-1 Accuracy than (Rao et al., 2021) on KGBD. The performance

is 0.4% better than the best performance recorded in (Li et al., 2017) on KGBD. In

addition, on UPCV2 using the Leave − one − sequence − out evaluation protocol,

the proposed approach demonstrated superior performance in comparison with existing

state-of-the-art works. Overall, the proposed work outperformed several state-of-the-art

works on various datasets based on various evaluation protocols.

5.2.2.5 Experiments Considering Multi-view Scenario

Table 5.19 gives the details about the results obtained by the proposed work on the

KS20 dataset in the Cross− view − split evaluation protocol. In addition, Table 5.19
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Table 5.18: Comparison of Rank-1 Accuracy (%) of proposed work with state-of-the-art works:
on IAS-Lab: two testing sets ‘TestingA’ and ‘TestingB’, on KS20: Random− split, on KGBD
and UPCV2: Leave− one− sequence− out

Method
Id Method IAS-TestA IAS-TestB KS20 KGBD UPCV2

S 1 Gait Anthro (Andersson and Araujo, 2015) - - - 87.7 -

S 2 Skeleton +single LSTM (Haque et al., 2016) 20.0 19.1 - - -

S 3 Information Fustion (Kastaniotis et al., 2016) - - - - 97.05

S 4 Context aware (Nambiar et al., 2017a) - - 88.67 - -

S 5 Context unaware (Nambiar et al., 2017a) - - 79.33 -

S 6 Posture based gait (Khamsemanan et al., 2018) - - - 97.5 -

S 7 Dynamic LSTM (Li et al., 2017) - - - 96.56 -

S 8 SKeGEI+DA+CNN-LSTM (Liu et al., 2019) - - - 97.39

S 9 joint distance+angle+CNN (Huynh-The et al., 2020) - - 87.63 99.65

S 10 PoseGait (Liao et al., 2020) 41.4 37.1 70.5 90.6 -

S 11 gait encoding (Rao et al., 2020) 56.1 58.2 - 87.7 -

S 12 Geometric ConvNet (Hosni and Amor, 2020) - - - - 92.41

S 13 Self Supervised (Rev. Rec) (Rao et al., 2021) 60.1 62.5 86.9 86.9 -

S 14 Self Supervised (Rev. Rec.Plus) (Rao et al., 2021) 59.1 62.2 92.0 90.6 -

S 15 Adversarial Adversarial (Chen et al., 2022) 61.1 63.9 88.0 87.4 -

S 16 3 Layer LSTM + Attention (Proposed) 56.25 60 91 98.04 99.33

S 17 2 Layer LSTM + Attention (Proposed) 43.75 55.55 81 98.4 99.66

S 18 3 Layer GRU + Attention (Proposed) 52.08 53.33 92 97.8 99.33

S 19 2 Layer GRU + Attention (Proposed) 58.33 46.6 83 98.4 99.66

Method Id S 16 to S 19 are the part of proposed work

compares the Rank-1 Accuracy with several other existing works. In this (Liao et al.,

2020) results are based on (Rao et al., 2021). The proposed work achieved superior

performance on three different views than the existing works. Also, the overall average

among all the views achieved by the proposed work is greater than all other published

results of the existing state-of-the-art works.

5.2.2.6 Ablation Experiments

As part of the ablation study, numerous experiments were conducted. The importance

of the Attention module is demonstrated by conducting several experiments without
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Table 5.19: Rank-1 Accuracy (%) on KS20 using Cross− view − spilt and comparison with
state-of-the-art works.

Method 0◦ 30◦ 90◦ 130◦ 180◦ Average

Pose Gait, (Liao et al., 2020) 24.6 19.1 29.7 27.3 25 25.14

Self Supervised (Rev.Rec) (Rao
et al., 2021)

44.4 54.9 55.0 41.9 53.4 49.92

Self Supervised (Rev.Rec.Plus)
(Rao et al., 2021)

48.8 53.6 54.9 44.5 57.5 51.86

1-Layer LSTM + Attention
(Proposed)

35.59 50.84 83.05 69.49 50.84 57.962

2-Layer LSTM + Attention
(Proposed)

33.89 59.32 81.35 72.88 40.67 57.622

3-Layer LSTM + Attention
(Proposed)

35.59 62.71 84.75 71.18 55.93 62.032

1-Layer GRU + Attention
(Proposed)

37.28 55.9 84.75 74.57 42.37 58.96

2-Layer GRU + Attention
(Proposed)

37.28 52.45 83.05 76.27 44.06 58.62

3-Layer GRU + Attention
(Proposed)

37.28 62.71 83.05 76.27 42.37 60.33

Table 5.20: Rank-1 Accuracy (%) of the different residual DL models without Attention mod-
ule using Five− fold− cross− validation.

Method
Dataset

KGBD IAS-TestA IAS TestB KS20 UPCV1 UPCV2

2-Layer LSTM 96.2 47.91 51.1 80 93.52 99.4

3-Layer LSTM 96.03 54.17 40 87 93.52 99.6

2-Layer GRU 95.7 52.08 51.1 88 94.09 99.3

3-Layer GRU 95.5 50 44.4 81 92.35 99.0

Table 5.21: Rank-1 Accuracy (%) of the different residual deep learning model on KS20 using
Cross− view − split protocol without Attention module.

Method 0◦ 30◦ 90◦ 130◦ 180◦ Average

2-Layer LSTM 37.28 54.24 77.97 67.8 38.98 55.25

3-Layer LSTM 37.28 49.15 77.97 69.49 45.76 55.93

2-Layer GRU 38.98 57.63 86.44 72.88 45.76 60.33

3-Layer GRU 35.59 57.63 84.7 69.49 37.29 56.94

the Attention module. Table 5.20 details the gait recognition performance of various

models lacking an Attention unit on the KGBD, UPCV1, UPCV2, KS20, and IAS-Lab
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Table 5.22: Rank-1 Accuracy (%) of proposed residual DL model on KS20 without data aug-
mentation.

Method Random-split
Cross-view-split

00 300 900 1300 1800 Average

2-Layer LSTM +
Attention

63 32.2 54.23 83.05 76.27 44 57.95

3-Layer LSTM +
Attention

70 28.81 59.32 83.05 62.71 40.67 54.91

2-Layer GRU +
Attention

62.1 33.89 49.15 86.44 62.71 38.98 54.23

3-Layer GRU +
Attention

66 37.28 61.017 74.57 64.4 38.98 55.25

datasets. In addition, Table 5.21 displays the outcomes of the KS20 Cross − view −
split. Compared to the results of the proposed work discussed earlier with Attention,

the models without Attention performed significantly worse.

In addition, several experiments were conducted on KS20 without the use of aug-

mented data. As the walking sequence of the KS20 dataset only contains a single gait

cycle, the proposed data augmentation increases the training data size of the KS20

dataset. Table 5.22 shows the Rank-1 results obtained using the Random − split and

Cross − view − split evaluation protocols. It is revealed from the experiments that

those without augmentation got a lower average Rank-1 Accuracy than their counter-

parts with augmentation shown in Table 5.19 for the Cross − view − split evaluation

protocol. However, the model with 2-Layer LSTM with Attention without augmented

data showed a small higher Accuracy by 0.3% than its counterpart in Table 5.19. As

shown in Table 5.22, the experiments without augmentation for the Random − split

protocol yielded inferior results compared to their counterparts with augmentation. The

proposed data augmentation has proven its efficacy in gait recognition.

The ablation experiments were conducted on the feature set as well. To illustrate

the importance of each feature type in gait recognition in the proposed approach, we

conducted a series of experiments using both individual features and various combi-

nations of features. Table 5.23 displays the Rank-1 gait recognition Accuracy for the

IAS-Lab, KS20 with Random − split, and KGBD, UPCV1, and UPCV2 with 5-Fold

cross-validation with the various feature set combination. The Rank-1 Accuracy for

the KS20 Cross− view− split protocol with various feature sets is displayed in Table
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5.24. It is observed from Tables 5.23 and 5.24 that optimal performance is achieved

by combining all three types of features. However, we did find an outlier on ‘Test-

ingB’ of IAS-Lab. In this 3-Layer Attention-based residual LSTM, the MJDLR feature

type achieved 62.22% Rank-1 Accuracy, while combining three features yielded 60%

Accuracy. Furthermore, the MJDLR obtained 54.16% on ‘TestingA’ and 57.77% on

‘TestingB’ when using 3-Layer residual GRU with Attention. In contrast, when all fea-

ture types are used together, the results are only modest (52.08% on ‘TestingA’ and

53.33% on ‘TestingB’). Similarly, we found that the average Accuracy across all views

is better with the combination of all the feature sets, despite slightly poor performance

on some views on KS20 using the Cross− view− split protocol using all the features.

Table 5.23: Rank-1 Accuracy (%) using different feature combinations using Five − fold −
cross− validation

Feature Set Method
Dataset

KGBD IAS-TestA IAS-TestB KS20 UPCV1 UPCV2

MLB

3-Layer LSTM

+ Attention

62.7 31.25 33.33 73 63.52 98.26

DistJ 32.35 35.41 17.77 20 59.40 83.99

MJDLR 91.85 56.25 62.22 74.74 92.34 99.43

MLB+DistJ 84.47 35.41 26.66 73 87.64 99.45

MLB+MJDLR 96.34 56.25 17.77 80 94.70 99.56

DistJ+MJDLR 93.41 52.08 53.33 75.79 93.52 99.45

MLB+DistJ+MJDLR 96.88 56.25 60 91 97.06 99.78

MLB

3-Layer GRU

+Attention

60.22 29.17 31.11 73 67.05 97.72

DistJ 33.01 31.25 15.55 76.84 55.29 82.7

MJDLR 90.40 54.16 57.77 22 90.58 99.23

MLB+DistJ 84.13 33.33 20 61.05 85.87 99.34

MLB+MJDLR 95.63 41.66 42 77 94.11 99.34

DistJ+MJDLR 93.04 47.91 46.66 78.95 94.69 99.45

MLB+DistJ+MJDLR 95.8 52.08 53.33 92 95.87 99.56

5.2.2.7 Cumulative Match Characteristic Curve

The CMC curves obtained on gait recognition are shown in Figure 5.16. The Fig-

ures 5.16 (a), (b), and (c) illustrate the CMC curves obtained on KGBD, UPCV1, and

UPCV2, respectively using Five − fold − cross − validation. It is observed that
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Table 5.24: Rank-1 Accuracy (%) on different feature combinations on KS20 using Cross −
view − Split

Feature Set Method 0◦ 30◦ 90◦ 130◦ 180◦ Average

MLB

3-Layer LSTM

+ Attention

25.42 50.4 64.4 64.4 37.8 48.38

DistJ 20.33 13.55 18.64 20.33 16.94 17.95

MJDLR 30.5 54.23 71.18 83.05 33.89 54.57

MLB+DistJ 16.94 45.76 64.4 54.23 27.11 41.68

MLB+MJDLR 30.5 59.32 81.35 83.05 37.08 58.3

DistJ+MJDLR 28.81 61.01 79.66 71.18 38.98 55.92

MLB+DistJ+MJDLR 35.59 62.71 84.75 71.18 55.33 62.03

MLB

3-Layer GRU

+Attention

16.95 47.46 66.1 62.71 38.98 46.44

DistJ 15.25 16.95 16.95 22.03 22.03 18.64

MJDLR 35.59 52.54 79.66 79.66 42.37 57.96

MLB+DistJ 18.64 49.15 72.88 55.93 45.76 48.47

MLB+MJDLR 30.05 55.93 83.05 79.66 42.37 58.30

DistJ+MJDLR 35.59 61.01 86.44 74.57 37.28 58.97

MLB+DistJ+MJDLR 37.28 62.71 83.05 76.27 42.37 60.33

among all these, the proposed 3-Layer LSTM with Attention scored the highest Rank-

1 Accuracy than others. Figures 5.16 (d) and (e) are the CMC curves obtained for

‘TestingA’ and ‘TestingB’ of IAS-Lab dataset. Figure 5.16 (e) depicts the CMC curve

for KS20 on Random − split. Here, the 2-layer LSTM Rank-1 Accuracy is slightly

lower than the GRU model. Overall, proposed 2 and 3-Layer GRU and LSTM models

with Attention achieved higher accuracy (more than 99%) in lower ranks itself. Also,

it is observed that the 3-Layer residual LSTM with Attention is superior in most of the

experimental setups.

5.2.2.8 Further Statistical Analysis

The statistical significance of the proposed DL model is evaluated by conducting ANOVA

test on the recognition Accuracy from set of folds as described in (Semwal et al., 2017).

With significance level α = 0.05 and null hypothesis H0 is assumed as “The averages of

Rank-1 Accuracy obtained on K folds in all experiments are equal”, and the ANOVA

test yielded P-values of 0, 0, and 1.22125e-15 for KGBD, UPCV2, and UPCV1, re-
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(a)

(b)

(c)

Figure 5.16: CMC curves obtained. (a) KGBD. (b) UPCV1. (c) UPCV2 (continued in the next
page).
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(d)

(e)

(f)

Figure 5.16: CMC curves obtained (continued from the previous page). (d) IAS-Lab TestingA.
(e) IAS-Lab TestingB. (f) KS20.
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spectively. The measured P-value is less than the significance threshold α. The null

hypothesis H0 is therefore rejected.

5.2.2.9 Computational Complexity Analysis

The proposed system extracts a quantitative summary of three types of gait event-

specific features. The complexity of extracting MLB, and DistJ is O(N × V ). To

extract MJDLR, we initially extracted the distance between each skeleton joint in the

left and right parts of the body. Hence, the computational complexity is O(N × (V
2
)2).

But, the number of skeleton joints considered is a constant (20). Thus, the overall com-

putations required for feature extraction is 3 × O(N). Where, N denotes the count

of frames that make up one gait cycle. In this overall time complexity of the the pro-

posed approach is estimated considering the proposed residual DL model comprising

three LSTM layers with skip connection, two Dense layers with dropout and Batch-

Normalization, and an Attention unit followed by a Softmax layer. Referring to Equa-

tions (5.19) and (5.20), for each epoch, the computation complexity is estimated by

using the Equation (5.26).

Tfb = Nb ∗ (3 ∗O(WL) + 2 ∗O(Ib) +O(Wa) + 3 ∗O(Wd)), (5.26)

Thus, for E epochs, the time complexity of the proposed residual DL model based

on LSTM and Attention is defined by the Equation (5.27). Where, WL is the total count

of weights from LSTM layers that roughly equals to count of parameters, Ib denotes the

length of the batch input, Wd denotes the count of weights in Dense layer, and Wa is

the total parameters in Attention.

Estpt1 = O(N) + E ∗ (Nb ∗ (3 ∗O(WL)+

2 ∗O(Ib) +O(Wa) + 3 ∗O(Wd))),
(5.27)

5.3 Limitations

The proposed approaches compute the quantitative summary of various inter and intra-

frame distances and angles between the joints as the feature vector. This effectively

eliminates the effect of incorrect angles or distances derived from frames with occluded
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or noisy joint data. Simultaneously, the quantitative summarizing process may suppress

the benefits of the correct frames and have a minor impact on performance.

5.4 Summary

In both approaches, we proposed novel gait event-specific features contributing to the

gait cycle. The methods relied on a succinct quantitative summary of the features,

drastically cutting down on the features processed by classification models. In addition,

novel DL models with LSTM/GRU units were created to evaluate the temporal relation-

ship between gait event characteristics. In the second study, the Attention unit demon-

strated the efficacy of the DL model in concentrating on the most dominant features for

gait recognition. The experimental evaluation of multiple datasets using various evalu-

ation protocols revealed superior performance. The next chapter discusses single/multi

view HAR system using multi-modal data and DL model.
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Chapter 6

Single-/ Multi-view Human Action Recognition and

Human Identification using Fusion of Data Modalities

HAR, which has many uses in surveillance and monitoring, relies heavily on RGB

video data (Sun et al., 2023). Some of the earliest approaches on HAR presented in

the literature rely on using conventional RGB videos (Bobick and Davis, 2001; Laptev

et al., 2008). Recently, the widespread availability of low-cost depth sensors like the

Microsoft Kinect (Han et al., 2013; Zhang, 2012) has resulted in multi-modal action

data, which consists of RGB, depth, skeleton, and so on (Wang et al., 2020). There are

benefits and drawbacks to each of these data formats. Due to their sensitivity to factors

that affect the quality of RGB images, such as a complex background, illumination

variation, and clothing colour, RGB-based methods make it challenging to segment

the human body in certain scenes. Furthermore, the most important information for

action recognition is provided by 3D data, whereas RGB data does not contain. With

depth information, foreground objects in a busy background can be separated with much

greater precision than with just RGB data alone. Furthermore, depth data can accurately

recognize an action despite the subject’s attire. As a result, research is being conducted

to create a reliable action feature descriptor based on depth data for use in HAR systems.

However, as reported in (Mallick et al., 2014), noise remains in depth data for many

reasons. The use of skeletons to recognize actions has gained popularity due to the

method’s Accuracy and robustness against environmental factors like lighting changes.

Joint trajectories are recorded in the human skeleton. However, depth data captures the

3D structure and distance information and is thus widely used for HAR.

Due to its widespread use in various applications, there is a plethora of research on

developing techniques for HAR using different data modalities. During the past several

decades, researchers have examined HAR using a single modality (Ko et al., 2015;

Aggarwal and Ryoo, 2011). There are several existing works on HAR, and some are

based on skeleton data (Ke et al., 2017; Saggese et al., 2019), and some on depth data

(Yang and Tian, 2014; Wang et al., 2015, 2016). Researchers have focused on the fusion

of multiple data modalities and the transmission of information between modalities to

improve the Accuracy of HAR (Fan et al., 2020; Gu et al., 2020; Kamel et al., 2019).
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This thesis work proposes two methods for HAR that combine skeleton and depth

data modalities. Methods for efficiently representing human action using skeleton and

depth data are proposed. In addition, the use of DL models in classification tasks in-

spired us to propose DL models for capturing spatio-temporal features from action data

for accurate HAR.

Inspired by the existing works for HAR using combination of skeleton and depth

data, in this chapter, we propose not only HAR system but also HI system using fu-

sion of gait data in skeleton and depth modality. The subsequent sections provide a

comprehensive description of all these works with observed results.

6.1 Skeleton and Depth Data-driven Multi-stream DL Model for Single-view

HAR

In this, we propose HAR utilizing skeleton and depth data with the DL model. Follow-

ing is a summary of the primary contributions of this work.

Contributions:

• Proposed a multi-stream, multi-attention DL model for HAR that explicitly learns

spatio-temporal attributes of action from the depth and skeleton data.

• Conversion of the raw depth and skeleton sequence to image format, representing

the action spatially and temporally.

• Proposed multiple Attention blocks to concentrate on the most distinctive body

part movement while performing an action.

• Demonstrating the efficacy of the proposed system using standard evaluation pro-

tocols on two benchmark datasets with various proposed score fusions techniques.

6.1.1 Proposed Methodology

The proposed method’s overall architecture for HAR is depicted in Figure 6.1. The pro-

cess begins with pre-processing, followed by a CNN-based multi-stream DL model, and

eventually with score fusion. This section discusses each component of the proposed

model for HAR in detail.
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Figure 6.1: Proposed multi-stream multi-attention deep learning model for HAR.

6.1.1.1 Pre-processing

Each action contains a set of skeleton and depth frames, denoted by S = {s1, s2, s3, ..., sN}
and D = {d1, d2, d3, ..., dN}, where, N is the number of frames. A skeleton frame has

a set of three-dimensional coordinates corresponding to the skeleton joints. The pixel

value in the depth map signifies the distance between the camera’s viewpoint and the

scene object’s surface. In the pre-processing step, the sequences of frames are trans-

formed into a single image format that depicts the spatio-temporal features of the human

action present in that sequence.

Generate Skeleton Spatio-temporal Image (SSTI)

Processing raw skeleton joints directly using a DL model with fully connected layers

necessitates more computations due to the large number of data points in an action
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sequence. This work converts the series of skeleton frames S to an image format called

Skeleton Spatio-Temporal Image (SSTI) using the three steps below.

Step1:

The method described in (Pham et al., 2019) is applied to capture the spatio-temporal

postural features present in skeleton frames. All 3D coordinates are transformed into

a new space by a normalization function, which is then represented as an RGB image.

Consider a sequence of skeleton frames S in the space S1. All 3D joint coordinates in

space S1 are transformed into a new space S
′
1 by a normalization function to map them

into a range of 0 to 255 using Equation (6.1).

(xt
i)

′
= 255× xt

i −min{φ}
max{φ} −min{φ}

(yti)
′
= 255× yti −min{φ}

max{φ} −min{φ}

(zti)
′
= 255× zti −min{φ}

max{φ} −min{φ}

(6.1)

Where, i, t, max{φ}, and min{φ} represent the joint number, frame number,

dataset’s maximum and minimum coordinate values, respectively. The new coordi-

nate values are grouped according to the body part they correspond to: Left Hand (LH),

Right Hand (RH), Trunk (T), Left Leg (LL), Right Leg (RL). Finally, all frames in

the sequence are staked. Now, the new three coordinates are mapped as R, G, and B

components of the image representation.

Step2:

To determine the joint transition attributes between each frame’s joints the orientation

features are extracted using Equation (6.2).

P t
x = arccos

(xi)
t − (xj)

t

dist

P t
y = arccos

(yi)
t − (yj)

t

dist

P t
z = arccos

(zi)
t − (zj)

t

dist

(6.2)
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Where, i and j represent the joint number, t denotes the frame number, and dist is the

magnitude of vector between the joints. Followed by this, the orientation features are

normalized to the range 0 to 255 as shown in Equation (6.3).

(P t
x)

′
= 255× P t

x −min{δ}
max{δ} −min{δ}

(P t
y)

′
= 255×

P t
y −min{δ}

max{δ} −min{δ}

(P t
z)

′
= 255× P t

z −min{δ}
max{δ} −min{δ}

(6.3)

Where the max{δ}, min{δ} denote the maximum and minimum orientation features

obtained using Equation (6.2). These new features are grouped and stacked similarly to

Step1 and mapped to an image’s R, G, and B components.

Step3:

The images obtained in step1 and step2 are concatenated to create a single RGB image

representation of the sequence of skeleton frames named SSTI. After concatenating

two distinct types of features, the entire set of values is normalized to the range 0 to

255 using the highest and lowest values from the whole feature set. The final image is

resized to 224× 224 pixels.

Generate Depth Spatio-Temporal Image (DSTI) representation

The series of depth frames D is transformed into an image as defined by Equation (6.4).

DSTI(i, j) = min(D I(i, j, t)) +max(D I(i, j, t)) (6.4)

Where, i and j indicate the pixel position that ranges from 0 to the width and height

of the depth frame, t denotes the frame number. Finally, images are resized to 224×224.

The sample SSTI and Depth Spatio-Temporal Image (DSTI) of two actions are shown

in Figure 6.2.

6.1.1.2 Attention-guided Multi-stream CNN + LSTM Model

Figure 6.1 illustrates the proposed multi-stream multi-attention DL model. Primar-

ily three DL streams are built with CONV block, LSTM, and Attention. The SSTI,
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(a)

Text

Right hand circle draw  
( counter clockwise)

Right hand pick  
up and throw)

(b)
Figure 6.2: Sample DSTI and SSTI of actions. (a) MSRAction3D. [Top: DSTI, Bottom: SSTI]
(b) UTD-MHAD. [Top: DSTI, Bottom: SSTI]

and DSTI are processed by Stream1, and Stream3, respectively. The second stream

Stream2 processes both SSTI and DSTI using two sub-streams. Figure 6.1 also depicts

the layers of the CNN utilized in CONV block.
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Certain joints and frames in skeleton sequences were particularly distinguishable

and informative for recognizing actions. For example, in the “waving hands” action,

the arms’ joints provide more information. These informative joints and frames con-

stitute “crucial stages” in action. Various body parts contribute uniquely to every hu-

man action. Certain body parts play an essential role in the performance of the action.

Moreover, a particular duration plays a vital role throughout the action. Consequently,

additional highly informative joints/body parts, joint/body part movement, and sets of

frames are especially pertinent for action in the total skeleton and depth data set. In the

proposed model, CNN extracts the image representation’s features. The LSTM layer

captures the temporal features from output of CONV block. Multiple Attention mod-

ules were incorporated into the proposed DL model to focus on the movement of the

most significant joints/body parts and frames. Each stream in the proposed DL model

includes an Attention module (including sub-streams). Below the Attention module is

described in detail.

Attention Module

The mechanism of (Luong et al., 2015) is followed in the Attention module of the

proposed DL model. Let {Ht = h1, h2, ..., hn} be the output of the LSTM layer, where,

n denotes the length of Ht. Ht is fed to the Attention module, which computes the

context-specific feature vector ct by computing a weighted sum, as defined in Equation

(6.5).

ct =
n∑

t=1

∆tht (6.5)

Where, ∆t denotes the Attention weight calculated using a Softmax function as shown

in Equation (6.6).

∆t =
eWt∑n
t=1 e

Wt
(6.6)

Where, the Wt is obtained as a alignment function over the output vector Ht as shown

in Equation (6.7).

Wt = tanh(Ht) (6.7)

The Attention scores are finally concatenated with the CNN output and further pro-

cessed with a Dense layer. At the end Softmax layer generates the probability score of

recognizing the action.
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6.1.1.3 Score Fusion

To enhance the recognition performance of the proposed system, we proposed several

score fusion techniques that exploit the capabilities of each CNN and LSTM stream.

The various score fusion operations carried out on these scores are shown in Table

6.1. The Softmax scores of Stream1, Stream2, and Stream3 are denoted as SM 1,

SM 2, and SM 3, respectively. The fusion with the highest performance determines

the performance of the proposed system.

Table 6.1: Score fusion operations.

Score Fusion Operation

SM 1 Skeleton input Stream1 Softmax

SM 2 Depth input Stream3 Softmax

SM 3 Fusion input Stream2 Softmax

Fusion 1 Mean(Product(SM 1, SM 2), Sum(SM 1, SM 2))

Fusion 2 Mean(Product(SM 1, SM 2, SM 3), Sum(SM 1, SM 2, SM 3)

Fusion 3 Mean(Product(SM 2, SM 3), Sum(SM 2, SM 3)

Fusion 4 Mean(Product(SM 1, SM 3), Sum(SM 1, SM 3)

Final Maximum(Fusion 1, Fusion 2, Fusion 3, Fusion 4)

6.1.2 Experiments, Results, and Analysis

The proposed model is a multi-stream, context-aware, DL model with multiple At-

tention units. Each stream is equipped with a Softmax layer that calculates the clas-

sification probability. Following is a comprehensive discussion of the observation of

experiments on two datasets.

6.1.2.1 Datasets

Two publicly available benchmark datasets of human actions captured with the Kinect

depth sensor, namely: MSRAction3D (Li et al., 2010), and UTD Multimodal Human

Action Dataset (UTD-MHAD) (Chen et al., 2015), are used to evaluate the performance

of the proposed method. Chapter-4, Section 4.2.1 explains MSRAction3D in greater

depth.

UTD-MHAD (Chen et al., 2015) was built using depth and inertial sensors and

consists of 27 types of human actions performed by eight individuals. The Kinect depth
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sensor was mounted on a tripod approximately 3 meters in front of the subject to capture

images of the subject’s entire body during data creation. The actions are performed four

times by each individual. After removing corrupted sequences, the dataset consists of

861 samples. Due to the following factors, this dataset demonstrates significant intra-

class variation: 1) The subject carried out the same action at varying speeds across

trials. 2) The heights of the subjects are different. 3) The same action was repeated

in a natural manner, thereby making each trial unique. Four modalities of data were

provided, including RGB video, depth video, skeleton joints, and an inertial sensor

signal. In this work, we utilized depth and skeleton data of human action videos.

6.1.2.2 Evaluation Protocol and Metrics

The performance of the proposed HAR system is evaluated using Accuracy. To ensure

a fair comparison, the MSRAction3D dataset was evaluated using the well-established

assessment technique known as the Cross-Subject (C − S) protocol. Here, subjects

with odd numbers (1, 3, 5, 7, and 9) are used for training, whereas subjects with even

numbers (2, 4, 6, 8, and 10) are used for testing. In addition, the dataset is divided

into three groups: AS1, AS2, and AS3, according to the baseline (Li et al., 2010). On

UTD-MHAD, the assessment protocol is identical to the previous one in that it entails

training with odd subjects (1, 3, 5, 7) and testing with even subjects (2, 4, 6, 8).

6.1.2.3 Experiments and Results

A series of experiments were conducted with SSTI and DSTI independently, as well

as in conjunction with the different streams of the proposed multi-stream DL model.

Table 6.2 summarises the Accuracy of the proposed system in various experimental

setups utilizing a C − S evaluation method on the MSRAction3D and UTD-MHAD

datasets. Table 6.2 demonstrates that the proposed model (CNN + LSTM + Attention)

outperformed the CNN model without LSTM and Attention.

LSTM networks are exceptionally effective at capturing temporal characteristics.

We used LSTM in conjunction with CNN to capture these features, as human action

involves constantly changing features over time. Considering all of the temporal fea-

tures, the movement of a specific body part at a particular duration best describes the

action performed. Thus, Attention is employed to focus on a particular set of character-

istics. Combining multiple Attentions with LSTM demonstrated their effectiveness in
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Table 6.2: Recognition Accuracy (in %) of the proposed system on MSRAction3D and UTD-
MHAD.

Model Fusion Score

Dataset

MSRAction3D
UTD-MHAD

AS1 AS2 AS3

CNN+LSTM +Attention SM 1 81.1 82.3 85.7 87.2

SM 2 90.6 74.3 90.2 58

SM 3 89.7 78.8 91.1 87.9

Fusion 1 88.7 81.4 90.1 78.6

Fusion 2 91.5 82.3 89.3 90.0

Fusion 3 93.4 78.8 93.8 77.0

Fusion 4 92.3 81.4 92.0 90.7

Final 93.4 82.3 93.8 90.7

CNN SM 1 76.4 81.4 83.9 86.4

SM 2 88.7 73.5 89.3 54.4

SM 3 86.8 80.5 90.1 85.8

Fusion 1 87.7 81.4 91.1 77.7

Fusion 2 88.8 81.5 89.3 85.8

Fusion 3 87.7 81.4 92.0 76.0

Fusion 4 89.6 80.5 91.1 88.6

Final 89.6 81.45 91.1 88.6

capturing the most important spatio-temporal data necessary for accurately recognizing

human actions.

The confusion matrices for MSRAction3D and UTD-MHAD are depicted in Fig-

ures 6.3 and 6.4, respectively. The confusion matrices of AS1, AS2, and AS3 are de-

picted in Figures 6.3 (a), 6.3 (b), and 6.3 (c), respectively. The majority of actions are

perfectly recognized in both datasets.

6.1.2.4 Comparison with Existing Works

The proposed system demonstrated superior recognition performance on these two

datasets compared to various prior works. In Tables 6.3 and 6.4, the Cross− Subject

protocol comparisons between the proposed HAR system and various base-line works

on datasets: MSRAction3D and UTD-MHAD are detailed.
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Figure 6.3: Confusion matrix obtained for MSRAction3D. (a) AS1. (b) AS2. (c) AS3.
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Figure 6.4: Confusion matrix obtained for UTD-MHAD.

Table 6.3: Proposed system comparison with existing methods on MSRAction3D.

Methodology AS1 AS2 AS3 Overall

Bag of 3D (Li et al., 2010) 72.9 71.9 79.2 74.7

HODJ (Xia et al., 2012) 87.98 85.48 63.46 78.97

EigenP (Yang and Tian, 2012) 74.5 76.1 96.4 82.3

FVSQ (Evangelidis et al., 2014) 88.39 86.61 94.59 89.8

Proposed Method 93.4 82.3 93.8 89.83
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Table 6.4: Proposed system comparison with existing methods on UTD-MHAD.

Method Accuracy

Kinect and Inertial (Chen et al., 2015) 79.10

JDMS (Li et al., 2017) 88.10

SDSR (Annadani et al., 2016) 86.12

SOS (Hou et al., 2018) 86.97

JTM (Wang et al., 2018) 87.90

DCNN (Kamel et al., 2019) 88.14

DSIEMM (Yang et al., 2020) 88.37

Proposed Method 90.7

6.2 Multi-stream Attention-guided Deep Networks with Skeleton and Depth Data

from Overlapping Sub-actions for Single-/Multi-view HAR

Inspired by the advantages of using multi-modal data, this work proposes a DL-based

method with Attention units for HAR employing skeleton and depth data. Furthermore,

the studies of human actions have shown that each action is actually made up of a

number of smaller sub-actions (Liang et al., 2020). The action of “throwing a ball”, for

instance, consists of a series of smaller actions, such as “move hand toward ball,” “pick

ball,” “hold ball in hand and move hand up,” “move hand to front,” and so on. The

number of sub-actions depends on the complexity of the action. So, we represented the

actions by exploring a range of sub-actions’ worth of data, based on the skeleton and

depth information. Furthermore, we employed a number of Attention blocks to focus

on crucial spatio-temporal features for HAR. The key contributions of the proposed

work are given below.

Contributions:

• A method for exploiting the features of overlapping sub-actions is proposed.

• Developed a novel depth-based action descriptor that combines the sub-actions in

action video, thereby reducing the number of features to be processed.

• Extraction of summarised features from overlapping sub-actions in a sequence of
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skeleton frames by partitioning the human body into five regions, which substan-

tially reduced the number of features to be processed.

• Proposed a multi-stream Attention-based deep neural network model for effi-

ciently learning the spatio-temporal characteristics from multi-modal data.

6.2.1 Proposed Methodology

This study proposes two distinct pre-processing procedures for action videos in two

data modalities. As a human action is a series of overlapping sub-actions, we at-

tempted to describe it using sub-action features. Moreover, a multi-stream DL model

with Attention is proposed to learn the spatio-temporal features of these overlapping

sub-actions. We combine features from two modalities and scores from multiple deep-

learning streams to achieve optimal performance. Figure 6.5 depicts the workflow for

the proposed work. More in-depth explanation of the proposed work is given below.
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S_Feature

D_Feature

D_Score

BN and
Dropout

Dense Layer with
Dropout and BN

Softmax
Layer

C_Score

Action recognized
based on final score

Multi-modal data processing stream (S3)

Skeleton Data
Processing
Stream (S1)

Skeleton Data
Processing

Stream (sb1)

Depth Data
Processing

Stream (sb2)

Depth Data
Processing
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Preprocess
Skeleton

data

Preprocess
Depth data

Score
Fusion

Concatenation

Figure 6.5: Work flow architecture of the proposed HAR system.
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6.2.1.1 Pre-processing

To effectively represent action data, we pre-process a series of depth images and 3D

skeleton data of human movements during an action. Consider a series of skeleton

frames F = {f1, f2, f3..., fN}, and depth frames D = {d1, d2, d3..., dN} from a given

N-frame human action video.

Skeleton Data

We conduct a quantitative summary of skeleton data to reduce the effect of noisy joints

on the overall performance of the proposed system. In turn, it is an attempt to reduce the

number of features and computations. Since the proposed method considers the multi-

view human action dataset, the data from different view points are merged into a single,

view-independent global pool by transforming the skeleton data’s 3D coordinates into

a global coordinate system centered on (0, 0, 0). With this transformation, as shown in

Equation (6.8), the hip center (hx, hy, hz) becomes the origin with coordinate values

(0, 0, 0). Similar methods are employed for the single-view data set.
x

′
i

y
′
i

z
′
i

1

 =


1 0 0 −hx

0 1 0 −hy

0 0 1 −htz

0 0 0 1




xi

yi

zi

1

 , (6.8)

Where, (xi, yi, zi) represents original 3D coordinate values of iih joint, and (x
′
i, y

′
i, z

′
i)

denotes the corresponding 3D coordinate values in global pool. (−hx,−hy,−hz) is the

translation vector used to translate hip center to (0, 0, 0).

To effectively exploit the sub-actions, the skeleton frames of an action video are

grouped into overlapping sets of ten sub-actions, as shown in Figure 6.6.

As given in Figure 6.7, the skeleton joints are organized into five regions: G1, G2,

G3, G4, and G5. Considering the skeleton frames in each of the ten sub-actions, the

average coordinate values for each joint are computed. Consequently, the number of

joint coordinates that must be analyzed for action recognition is drastically decreased.

Using the proposed region-based residual LSTM models, the average 3D coordinate

values of a sequence of sub-actions are learned for action recognition.
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Figure 6.6: Arranging sequence of frames into overlapping sub-actions.
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G5: {J11, J12, J13, J15, J17, J19}

Figure 6.7: Human skeleton joints considered and five regions

142



Depth Data

The depth frame sequence D is organized into four distinct, overlapping sub-actions.

To effectively capture the spatial and temporal information from a sequence of depth

frames, we downsample these sequences into a single image, a Multiple Sub-action

Enhanced Depth Motion Map (MS-EDMM). The procedure for generating MS-EDMM

from four sub-actions: DS1, DS2, DS3, and DS4, is outlined below.

At first, for each sub-action Enhanced Depth Motion Map (EDMM) is generated

as follows: Let depth frames in sub-action DMi be {d0, d1, d2, d3, ...dt}. To begin

with, the Depth Motion Energy (DME) is estimated for each sub-action as the absolute

difference between two consecutive depth maps, in contrast to (Yang et al., 2012). Then,

Sub-action Depth Motion Map (SDMM) is computed by adding together DME images

encompassing the entire depth maps of a sub-action, as shown in Equation (6.9).

SDMM =
t∑

i=1

|di − di−1| (6.9)

Where, |di − di−1| denotes the DME image produced by two consecutive depth maps

di and di−1, and i indicates the frame number. The SDMM is further improved by

applying Equation (6.10) to obtain EDMM.

EDMM = 255−
(

SDMM −min(SDMM)

max(SDMM)−min(SDMM)
∗ 255

)
(6.10)

Concatenation of EDMM images from four sub-actions, namely: DS1, DS2, DS3,

and DS4 produced MS-EDMM of the given action. The sample MS-EDMM generated

for various actions taken from UTD-MHAD, and NTU RGB+D dataset are depicted in

Figures 6.8 and 6.9, respectively.

6.2.1.2 Multi-stream Attention-based Deep Neural Network Model

This work proposes a multi-stream DL model with CNN, residual LSTM, and Attention

units to train pre-processed action video skeleton features and depth descriptors. The

proposed DL model consists of three streams labeled S1, S2, and S3. Skeleton data
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(a) (b)

(c) (d)

Figure 6.8: Sample MS-EDMM images generated for actions from UTD-MHAD dataset.
(a) Boxing. (b) Sit to stand. (c) Stand to sit. (d) Lunge.
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(a) (b)

(c) (d)

Figure 6.9: Sample MS-EDMM images generated for actions from NTU RGB+D dataset: (a)
Hand waving. (b) Rub two hands. (c) Take off a shoe. (d) Cheer up
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from five different body parts are used to train five separate region-based LSTM mod-

els, each with a temporal Attention unit, in Stream S1. The spatio-temporal features

from MS-EDMM are processed by CNN+Spatial Attention and residual LSTM with

temporal Attention in Stream S2.

The features from multiple data streams are combined with a stream S3, which

consists of two sub-streams, sb1 and sb2. Where, sb1 and sb2 are the replicas of S1 and

S2, respectively, except the classification layer. The proposed streams S1 and S2 are

depicted in Figures 6.10 and 6.11, respectively.
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 Layer
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with Attention

Block

Residual LSTM with
Attention Block

Residual LSTM with
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Figure 6.10: Skeleton data processing stream (S1).

Skeleton Data Processing Stream (S1)

Five regional residual LSTM with temporal Attention are used to process the pre-

processed skeleton data, which consists of the mean coordinate values for each skeleton

joint in ten separate sub-actions from five different regions: G1, G2, G3, G4, and G5.

The spatio-temporal features from these five LSTM blocks are combined and further

processed by a Dense layer with ‘ReLU’ activation function and produces the trained

feature set called ‘S Feature’. Finally, the Softmax layer generates the recognition score
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Figure 6.11: Depth data processing stream (S2).

‘S score’. In the S1 stream, the residual LSTM with Attention block consists of three

residual LSTM layers with 18 units and a temporal Attention block to focus on more

dominant features for action recognition as shown in Figure 6.12. Finally, The Softmax

layer computes the score of recognition S Score using the skeleton data.

It has been demonstrated that LSTM (Hochreiter and Schmidhuber, 1997) effec-

tively addresses the vanishing gradient issue of the RNN. The proposed model incorpo-

rates a residual connection between the LSTM layers, which was inspired by the idea of

attaching a skip connection among adjacent layers, which has shown promising results

for training DL models (Wu et al., 2016) (He et al., 2016). The detailed view is shown

in Figure 6.12. Where, let xi
t, h

i
t be the input and hidden state output, respectively, of

ith LSTM layer at time t. Then the input to (i+1)th layer will be the element-wise sum

of input to and output from the ith layer as defined in Equation (6.11).

x
(i+1)
t = xi

t ⊕ hi
t (6.11)
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Figure 6.12: Proposed residual LSTM with Attention block.

Attention Unit (Temporal Attention)

The Attention unit improves the performance of the system by focusing on the most

important context-specific features in the data streams. We employed a variation of the

Self-Attention algorithm called “Scaled Dot-Product Attention” (Vaswani et al., 2017)

as temporal Attention unit to produce the context-specific features from the features

generated by residual LSTM layers. The technical concept of “Scaled Dot-Product

Attention” is already explained in Chapter-5, Section 5.2.1.3 (Page No. 111).

Depth Data Processing Stream (S2)

The proposed depth data processing stream (S2) is used to learn MS-EDMM images

generated from depth images. Figure 6.11 shows the details of S2. As MS-EDMM
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is a combination of four images, the Spatial Attention (Woo et al., 2018) is applied to

focus on more important features in the image to generate the Spatial Attention Map

SAM for the image using Equation (6.12). Then, the original image is multiplied with

the SAM to focus on important regions in the image. The generated output matrix is

further processed using the proposed CONV block. The features from this CONV block

are trained using the residual LSTM with Attention block to focus on more significant

spatio-temporal features for action recognition.

SAM = σ
(
C7×7×16[AvgPool(I);MaxPool(I)]

)
(6.12)

Where, I , C represent the MS-EDMM image, and CNN layer.

The detailed view of the CONV block is shown in Figure 6.13. Here, there are

five CNN layers with ’ReLU’ activation. After each CNN layer, Batch Normalization

(BN) and Dropout of 0.2 is used to avoid over-fitting and stabilize the network during

training. The Residual LSTM with Attention block is the same as the one used in

stream S1, except the number of units used here is 9. Following the residual LSTM

with Attention block, a Dense layer is used before the Softmax layer. The Dense layer

generates the final feature output D Feature. The number of units in Dense layers is

fixed as four times the number of labels in the dataset. The Softmax layer produces the

score of recognition D Score using the depth data.

Multi-modal Data Processing Stream (S3)

The proposed DL model has a third stream that uses both skeleton and depth informa-

tion. Hence, it is comprised of two sub-streams: sb1 and sb2, which are replicas of

streams: S1 and S2 (excluding Softmax). In the end, feature fusion of S Feature, and

D Feature is performed. The combined feature is learned with a Dense layer, and

finally, the Softmax layer computes the score of action recognition C Score.

6.2.1.3 Score Fusion

In the proposed DL model, the score fusion of multiple streams is performed to com-

pensate for the shortcomings of various data modalities and actually focus on their

strengths. S Score, D Score, and C Score represent the Softmax scores: S1, S2, and

S3, respectively. The various fusion operations carried out on these are shown in Table
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Figure 6.13: CONV block in proposed depth data processing stream.

6.5. The optimal performance fusion operation is considered as the proposed system’s

performance.

Table 6.5: Score fusion operations.

Score Fusion Operation

S Score S1 Softmax

D Score S2 Softmax

C Score S3 Softmax

Fusion 1 Product(S Score,D Score)

Fusion 2 Sum(S Score,D Score)

Fusion 3 Product(S Score, C Score)

Fusion 4 Sum(S Score, C Score)

Fusion 5 Product(D Score, C Score)

Fusion 6 Sum(D Score, C Score)

Fusion 7 Product(S Score,D Score, C Score)

Fusion 8 Sum(S Score,D Score, C Score)
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6.2.2 Experiments, Results, and Analysis

The performance of the proposed HAR system is evaluated using benchmark evaluation

protocols on the small-scale (single-view) dataset: UTD-MHAD (Chen et al., 2015) and

large-scale (multi-view) dataset: NTU RGB+D (Shahroudy et al., 2016).

6.2.2.1 Dataset

The details about the single-view dataset is given in Section 6.1.2.1 (Page No. 134).

The NTU RGB+D dataset (Shahroudy et al., 2016) is a large-scale RGB+D dataset

collected for HAR using three Microsoft Kinect v2 depth sensors. This provides data in

different modalities including RGB frames, depth sequences, skeleton data, and infrared

frames. It constitutes 56880 action samples and four million frames. Forty individuals

in the dataset perform sixty distinct human actions. During data capture, three depth

sensors were simultaneously deployed at the same height from three different horizontal

angles: -45◦, 0◦, and +45◦. The subject performed each action twice, facing either

the left or right sensor. Adjustments were made to the height of the sensors and their

distances from the subject to obtain additional viewpoint variations. Therefore, there

are 80 distinct viewpoints. The dataset includes several types of actions, including daily

actions, medical conditions, and mutual actions. As data is captured using Kinect v2, it

provides information about 25 joints per skeleton. The proposed work uses 20 joints as

given by Kinect v1 and discards other joints.

6.2.2.2 Evaluation Protocols and Metrics

The proposed system is evaluated on UTD-MHAD using C − S protocol as explained

in Section 6.1.2.2 (Page No. 135). The NTU RGB+D has two standard evaluation pro-

tocols, namely: C − S and Cross-View (C − V ), as described in the (Shahroudy et al.,

2016), to assess the performance. In the C − S protocol, samples from 20 subjects are

used for training the network, while samples from the remaining 20 subjects are used

for testing. The subjects used for training are: 1, 2, 4, 5, 8, 9, 13, 14, 15, 16, 17, 18, 19,

25, 27, 28, 31, 34, 35, and 38. Whereas, in C − V protocol, the samples from Cameras

2 and 3 are used for training the network and tested using the samples from Camera 1.

The performance of proposed system is measured using Accuracy. Also, F −Score is

utilized to compare the performance among the set of action labels.
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6.2.2.3 Experiments and Results

A range of experiments were conducted on UTD-MHAD and NTU RGB+D datasets to

test the efficiency of proposed HAR system using skeleton and depth data.

Training Parameters

The proposed multi-stream neural network for HAR is trained using Categorical cross-

entropy loss function and Adam optimizer (Kingma and Ba, 2014) with initial learning

rate set to 0.005. The learning rate is decreased by the factor of 0.1, and 0.5 if no im-

provement found in validation loss for 10 epochs in NTU-RGB+D, and UTD-MHAD,

respectively. Also we stopped the training if there is no improvement found in valida-

tion Accuracy for 75, and 25 epochs in UTD-MHAD, and NTU RGB+D, respectively.

Also, based on experimental observations the dropout for last layer is increased to 0.5

while training the UTD-MHAD actions. In addition, l2 regularization of 0.0001 and

0.01 for CNN layers in CONV net on NTU RGB+D and UTD-MHAD, respectively.

Experiments

Several experiments were conducted to determine the significance of the number of

layers in residual LSTM networks in action recognition by varying the number of layers

in residual LSTM model.

Table 6.14 reports the experimental results in terms of Accuracy on UTD-MHAD

dataset using C − S protocol. Tables 6.7 and 6.8 shows the Accuracy obtained on

three streams, and on different score fusion operations on NTU RGB+D dataset using

C − S and C − V evaluation protocols, respectively. As part of the ablation study, the

experiments are conducted using residual LSTM without Attention block. In addition,

we conducted a series of tests employing GRU (Cho et al., 2014) layers in place of

LSTM.

The NTU-RGB+D dataset is much larger than the UTD-MHAD and contains data

from multiple viewpoints collected using three depth sensors. It is evident from the

Tables 6.14, 6.7, and 6.8 that the fusion of features results in a significant increase

in the Accuracy of the multi-modal stream (F Score) for all combinations in both

C − S and C − V protocols. In addition, the various score fusion operations result

in improved performance compared to a single Softmax score. It is observed that the
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Table 6.6: HAR Accuracy (in %) of proposed DL model and results of score fusion operations
on UTD-MHAD dataset using C − S protocol. [TA indicated Temporal Attention, Best results
are in bold]
Model S Score D Score C Score Fusion 1 Fusion 2 Fusion 3 Fusion 4 Fusion 5 Fusion 6 Fusion 7 Fusion 8

3 layer
LSTM
+TA

86.51 78.37 87.9 88.6 88.37 88.13 88.6 89.06 88.6 88.37 89.76

2 layer
LSTM
+TA

83.02 75.11 83.95 85.81 86.51 84.88 88.83 88.83 87.67 88.37 87.67

1 layer
LSTM
+TA

83.02 77.9 81.62 88.13 85.34 81.39 83.02 84.88 84.18 87.9 87.44

3 layer
LSTM

86.5 64.65 85.3 87.9 85.34 85.81 86.74 84.88 84.18 87.9 87.9

2 layer
LSTM

82.32 77.2 81.39 86.74 83.95 83.95 84.18 85.81 84.88 88.13 87.44

1 layer
LSTM

85.11 74.65 84.18 87.9 87.6 85.34 85.34 85.34 84.88 87.67 87.44

3 layer
GRU
+TA

84.18 80 86.04 87.67 85.58 86.04 86.04 86.74 85.81 88.6 87.67

2 layer
GRU
+TA

82.55 77.67 84.18 88.6 85.34 85.81 85.81 86.74 86.04 88.13 88.6

1 layer
GRU
+TA

80 68.13 81.86 83.48 82.09 81.39 81.16 84.18 82.55 84.88 83.95

3 layer
GRU

85.81 74.65 85.34 89 87.9 87.67 87.67 87.67 85.34 89.5 88.3

2 layer
GRU

84.88 73.9 85.34 86.27 86.04 85.11 85.81 87.2 86.04 87.67 87.9

1 layer
GRU

86.04 73.9 86.97 88.37 86.74 88.37 88.13 86.97 87.44 88.83 88.6

Fusion 7 yields the best performance for both C − S and C − V evaluation on NTU

RGB+D. Where as, for UTD-MHAD the Fusion 8 showed optimal performance. The

set of experiments with varying numbers of LSTM layers concluded that three layers of

residual LSTM with Attention blocks achieved the optimal performance on both single-

view and multi-view datasets on different evaluation protocols. Tables 6.14, 6.7, and

6.8 also demonstrates that the use of Attention in LSTM has a very important role in

recognizing the actions.

Figures 6.14, and 6.15 depict the confusion matrix obtained for Fusion 7 on 3-

layer residual LSTM with Attention on NTU RGB+D dataset using C − S and C − V

protocol, respectively. From the figures, it is clear that around 15 and 17 actions are

recognized with 95% and more Accuracy, respectively, in C − S and C − V proto-
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Table 6.7: HAR Accuracy (in %) of proposed DL model and results of score fusion operations
on NTU RGB+D dataset using C − S protocol. [TA indicates Temporal Attention, Best results
are in bold]
Model S Score D Score C Score Fusion 1 Fusion 2 Fusion 3 Fusion 4 Fusion 5 Fusion 6 Fusion 7 Fusion 8

3 layer
LSTM
+TA

69.3 73.55 79.51 82.69 80.48 80.15 79.87 81.83 81.33 83.8 82.82

2 layer
LSTM
+TA

67.57 73.08 78.96 82.21 79.79 79.68 79.22 81.72 81.15 83.15 82.21

1 layer
LSTM
+TA

65.6 72.96 78.82 81.31 79.16 79.05 79.17 81.38 80.68 82.43 81.73

3 layer
LSTM

68.3 73.11 79.26 82.58 80.13 79.49 79.25 82.31 81.56 83.42 82.49

2 layer
LSTM

67.45 72.77 79.05 82.03 79.92 79.49 79.23 81.44 81.06 82.96 81.98

1 layer
LSTM

65.96 72.95 79.25 81.72 79.22 79.18 79.06 81.58 80.89 82.9 82.02

3 layer
GRU
+TA

68.28 73.57 79.35 82.47 80.36 79.78 79.37 82.36 81.56 83.72 82.84

2 layer
GRU
+TA

67.56 73.25 79.4 82.24 80.07 79.73 79.51 81.67 81.11 83.41 82.53

1 layer
GRU
+TA

65.39 73.64 78.64 81.47 79.42 78.97 78.85 81.24 80.79 82.65 81.78

3 layer
GRU

68.39 73.64 78.64 81.84 79.42 78.97 78.85 81.24 80.79 82.65 81.78

2 layer
GRU

67.73 73.2 79.18 82.02 80.17 79.67 79.44 81.41 81.16 83.01 82.41

1 layer
GRU

66 73.11 79.31 81.84 79.74 79.63 79.39 81.57 80.76 82.66 82.1

cols. Around half of the actions are recognized with minimum of 90% Accuracy. The

proposed model performed poorly in recognizing only a few actions, such as reading,

writing, check time, etc., and greatly affected the overall performance of the proposed

work.

Figure 6.16 shows the confusion matrix for the UTD-MHAD dataset. In this, 19

actions were recognized with more than 93% Accuracy (16 with 100% Accuracy).

The ‘wave’ (A 3) action is recognized poorly. Most times it is very much confused

with ‘draw circle CCW’ (A 10) and ‘knock’ (A 19) actions. So, the proposed model

achieved excellent performance in recognizing the majority of the actions, but the poor

performance in recognizing one action has a significant effect on the overall perfor-

mance of the proposed approach.
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Table 6.8: HAR Accuracy (in %) of proposed DL model and results of score fusion operations
on NTU RGB+D dataset using C − V protocol. [TA indicates Temporal Attention, Best results
are in bold]
Model S Score D Score C Score Fusion 1 Fusion 2 Fusion 3 Fusion 4 Fusion 5 Fusion 6 Fusion 7 Fusion 8

3 layer
LSTM
+TA

74.62 77.14 86.81 88.06 85.98 87.2 87.24 88.19 87.88 89.75 89.15

2 layer
LSTM
+TA

73.01 77.09 86.8 87.46 85.28 87.19 87.01 87.88 87.55 89.08 88.64

1 layer
LSTM
+TA

70.47 76.98 85.53 86.59 84.13 85.95 85.87 86.7 86.22 88.34 87.82

3 layer
LSTM

73.23 76.89 87.69 87.67 85.38 87.48 87.39 88.27 88.06 89.6 89.28

2 layer
LSTM

73.35 76.41 86.75 86.99 84.77 87.13 86.93 87.84 87.42 89.26 88.74

1 layer
LSTM

70.44 76.96 86.8 86.51 84.21 86.9 86.79 87.32 87.16 88.7 88.31

3 layer
GRU
+TA

72.49 76.9 86.6 87.13 84.97 86.84 86.74 87.74 87.48 89.09 88.52

2 layer
GRU
+TA

72.32 77.05 86.34 86.84 84.68 86.65 86.47 86.87 86.64 88.79 88.3

1 layer
GRU
+TA

69.68 76.9 86.22 86.16 83.65 86.41 86.42 86.95 86.8 88.66 88.07

3 layer
GRU

74.13 76.44 87.28 87.24 84.93 87.26 87.26 88.17 87.88 89.42 88.82

2 layer
GRU

73.28 76.9 86.66 87.01 84.84 86.86 86.86 87.75 87.44 89.21 88.6

1 layer
GRU

70.6 76.98 86.62 86.48 84.1 86.62 86.59 87.06 87.06 88.54 88.31

We also performed analysis on statistics of individual actions in terms of F−Score.

Tables 6.9 and 6.10 report the top and bottom five scores in F − Score along with

labels for both C − S and C − V protocol on NTU RGB+D and UTD-MHAD datasets,

respectively. IN UTD-MHAD dataset 12 actions were recognized with F −Score of 1.

The lowest F − Score 0.32 obtained by the ’wave’ action. Where as, in NTU RGB+D

the lowest F − Score is 0.55 and 0.61 in C − S and C − V protocol respectively. In

C − V protocol 17 actions achieved more than 0.96 F − Score, and in C − S protocol

11 actions reported above 0.95 F − Score. This shows that the proposed system is a

promising HAR system for various applications depends on HAR.
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0.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.010.000.950.010.000.000.000.000.000.000.000.000.000.000.000.000.000.000.030.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.00

0.000.000.000.000.000.000.010.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.980.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.00

0.050.010.040.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.780.010.000.000.000.010.020.000.010.010.000.010.000.010.000.000.020.000.000.010.000.010.000.000.000.000.000.000.000.000.000.000.00
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0.000.010.000.000.000.000.000.000.000.010.010.000.010.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.900.010.000.000.000.000.010.010.000.000.000.000.000.000.000.000.000.000.000.000.000.010.000.000.000.000.000.00

0.000.000.000.000.000.000.000.000.000.160.010.010.010.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.020.000.000.000.010.690.000.000.000.000.040.010.000.000.000.010.000.000.000.000.010.000.000.000.000.000.000.000.000.000.000.00
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0.000.010.020.030.000.000.000.000.000.000.000.000.000.000.000.000.000.020.010.000.000.000.000.000.000.000.000.020.010.000.000.000.000.010.000.000.770.000.010.000.020.000.000.040.000.000.020.000.000.000.000.000.000.000.000.000.000.000.000.00

0.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.020.000.000.000.000.000.000.000.000.000.000.000.010.000.000.000.000.010.000.900.000.000.000.000.000.040.000.000.010.000.000.000.000.000.000.000.000.000.000.000.000.00

0.000.000.000.000.000.000.000.000.000.020.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.010.000.000.000.000.000.840.090.020.000.000.000.010.000.000.000.000.000.000.000.000.000.000.000.000.000.000.00

0.000.000.000.000.000.000.010.000.000.010.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.010.010.000.010.000.000.000.000.020.930.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.00

0.000.000.040.000.000.000.000.000.000.000.000.000.000.000.000.000.000.020.010.000.030.000.000.000.010.000.000.010.010.000.000.000.000.000.010.010.030.000.030.000.610.000.000.040.040.010.050.030.000.010.000.000.000.000.000.000.000.000.000.00

0.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.020.000.010.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.960.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.00

0.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.990.000.000.000.000.010.000.000.000.000.000.000.000.000.000.000.000.00

0.010.000.020.040.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.010.000.010.000.000.000.000.000.000.000.000.000.000.000.000.000.000.030.040.000.000.030.000.000.730.000.000.060.010.010.000.000.000.000.000.000.000.000.000.000.00

0.000.000.000.000.000.000.000.000.000.000.000.010.000.000.000.000.010.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.010.000.000.000.010.000.010.000.000.000.900.020.000.020.000.000.000.000.000.000.000.000.000.000.000.00

0.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.010.000.000.000.000.010.000.000.000.000.010.010.000.000.000.000.000.000.000.000.050.880.010.000.000.000.000.000.000.000.000.000.000.000.000.00

0.010.000.030.030.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.020.000.010.000.000.020.000.000.000.000.020.000.000.000.000.000.060.010.010.770.000.000.000.000.000.000.000.000.000.000.000.000.00

0.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.020.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.030.000.000.000.010.000.050.000.000.000.090.000.000.790.000.000.000.000.000.000.000.000.000.000.000.00

0.000.000.010.020.000.000.000.000.000.020.000.000.000.000.000.000.000.000.000.000.000.010.070.000.000.000.000.000.000.000.000.000.000.010.000.000.010.010.000.000.000.000.000.030.000.000.000.000.810.000.000.000.000.000.000.000.000.000.000.00

0.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.820.010.040.050.020.010.030.020.000.000.00

0.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.030.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.030.870.030.000.000.010.010.020.000.000.00

0.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.040.010.920.010.000.010.010.010.000.000.00

0.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.010.000.000.830.080.010.020.030.010.000.00

0.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.020.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.040.000.000.090.810.000.010.010.010.000.00

0.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.010.000.000.950.010.010.000.000.00

0.000.000.000.000.010.000.000.000.000.000.000.000.010.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.010.000.020.000.840.060.050.000.00

0.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.010.000.000.000.000.000.000.000.000.010.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.020.010.000.020.000.000.020.900.010.000.00

0.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.010.010.010.030.010.920.000.00

0.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.980.01

0.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.030.96

Confusion Matrix

0.0
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0.4
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Figure 6.14: Confusion matrix obtained for C − S protocol on NTU RGB+D
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Predicted Actions

A_1
A_2
A_3
A_4
A_5
A_6
A_7
A_8
A_9

A_10
A_11
A_12
A_13
A_14
A_15
A_16
A_17
A_18
A_19
A_20
A_21
A_22
A_23
A_24
A_25
A_26
A_27
A_28
A_29
A_30
A_31
A_32
A_33
A_34
A_35
A_36
A_37
A_38
A_39
A_40
A_41
A_42
A_43
A_44
A_45
A_46
A_47
A_48
A_49
A_50
A_51
A_52
A_53
A_54
A_55
A_56
A_57
A_58
A_59
A_60

A
ct

ua
l A

ct
io

ns
0.850.010.040.010.000.000.000.000.000.010.000.000.000.000.000.000.000.010.010.000.010.000.000.000.000.000.000.020.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.010.000.000.000.000.000.000.000.000.000.000.000.000.00

0.020.830.020.000.000.000.000.000.000.000.000.010.000.000.000.000.000.020.030.000.000.000.000.000.000.000.000.030.000.010.000.000.000.000.000.000.010.000.000.000.010.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.00

0.040.010.880.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.010.000.000.000.000.000.000.010.000.000.000.000.010.000.000.000.000.000.000.000.000.000.000.00

0.000.000.000.910.000.000.000.000.000.000.000.010.000.000.000.000.000.000.010.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.020.000.000.000.000.000.000.010.000.000.010.000.010.000.000.000.000.000.000.000.000.000.000.00

0.000.010.000.000.930.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.010.010.000.000.010.000.000.010.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.010.000.000.000.000.000.000.00

0.000.000.000.000.000.970.000.000.000.000.000.000.000.000.000.020.010.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.00

0.000.000.000.000.000.000.970.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.010.000.010.000.000.000.000.000.000.000.00

0.000.000.000.000.000.000.000.980.000.000.000.000.000.000.000.000.010.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.00

0.000.000.000.000.000.000.000.000.990.000.000.000.000.000.000.010.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.00

0.000.010.000.000.000.000.000.000.000.810.000.000.010.000.000.000.000.000.000.000.000.000.010.000.000.000.000.000.010.010.000.020.000.110.000.000.000.000.000.000.000.000.000.000.000.000.000.000.020.000.000.000.000.000.000.000.000.000.000.00

0.000.000.000.000.000.000.000.000.000.010.630.210.020.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.030.040.000.000.010.010.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.00

0.000.000.000.000.000.000.000.000.000.010.060.670.010.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.100.130.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.00

0.000.000.000.000.000.000.000.000.000.000.020.000.920.010.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.010.000.000.000.010.000.000.000.000.000.000.000.000.000.000.000.000.000.000.010.000.000.000.000.000.000.000.000.000.000.00

0.000.000.000.000.000.000.000.000.000.000.000.000.000.990.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.00

0.000.000.000.000.000.000.000.000.000.000.000.000.000.000.990.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.00

0.000.000.000.000.000.010.000.000.000.000.000.000.000.000.000.890.100.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.00

0.000.000.000.000.000.010.000.000.000.000.000.000.000.000.000.140.840.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.00

0.020.000.000.000.000.000.000.000.000.010.000.000.000.000.000.000.000.890.040.020.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.010.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.00

0.000.020.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.040.910.000.010.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.010.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.00

0.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.980.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.00

0.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.970.000.010.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.00

0.000.000.000.000.000.000.000.000.000.010.000.000.000.000.000.000.000.000.000.000.010.970.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.010.000.000.000.000.000.000.000.000.000.000.00

0.000.000.000.000.000.000.000.000.000.010.000.000.000.000.000.000.000.000.000.000.000.010.920.000.000.000.000.000.000.000.020.010.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.020.000.000.000.000.000.000.000.000.000.000.00

0.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.940.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.010.000.000.000.000.000.000.000.000.040.000.000.000.000.000.000.000.000.00

0.000.010.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.940.000.000.000.000.010.000.000.000.000.000.000.000.000.000.000.000.000.000.000.010.010.000.000.000.000.000.000.000.000.000.000.000.000.000.00

0.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.010.000.970.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.010.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.00

0.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.990.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.00

0.020.030.010.000.000.000.000.000.000.000.010.010.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.880.010.000.000.000.000.000.000.000.010.000.000.000.010.000.000.000.000.000.010.000.000.000.000.000.000.000.000.000.000.000.000.00

0.000.000.000.000.010.000.000.000.000.010.040.120.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.700.080.000.000.000.030.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.00

0.000.000.000.000.000.000.000.000.000.000.010.080.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.010.900.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.00

0.000.000.000.000.000.000.000.000.000.000.010.000.000.000.000.000.000.000.000.000.000.000.020.000.000.000.000.000.000.000.850.070.020.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.00

0.000.000.000.000.000.000.000.000.000.000.010.010.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.060.920.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.00

0.000.000.000.000.000.000.000.000.000.030.010.010.000.000.000.000.000.000.000.000.000.000.000.000.010.000.000.000.000.010.000.000.910.010.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.00

0.000.000.000.000.000.000.000.000.000.220.010.010.020.000.000.000.000.000.000.000.000.000.010.000.000.000.000.000.010.040.000.000.000.620.000.000.000.000.010.000.000.000.000.000.000.000.010.000.030.000.000.000.000.000.000.000.000.000.000.00

0.000.000.000.000.000.030.000.010.000.000.000.000.000.000.000.010.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.940.000.000.000.000.000.000.000.000.000.010.000.000.010.000.000.000.000.000.000.000.000.000.000.000.00

0.000.000.000.000.000.000.000.000.000.000.000.010.000.000.000.000.000.000.000.000.000.000.000.000.010.000.000.000.000.010.000.000.000.000.000.950.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.00

0.010.010.020.030.000.000.000.000.000.000.000.010.000.000.000.000.000.010.010.000.000.000.000.000.000.000.000.010.000.010.000.000.000.000.000.000.850.000.000.000.010.000.000.030.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.00

0.010.000.010.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.010.010.000.000.000.000.000.930.000.000.000.000.000.010.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.00
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Figure 6.15: Confusion matrix obtained for C − V protocol on NTU RGB+D.
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Figure 6.16: Confusion matrix obtained for C − S protocol on UTD-MHAD.

Ablation Experiments

Several experiments were conducted by removing the LSTM layers from the proposed

3-layer system. Also, experimented with the models without temporal Attention for

residual LSTM. Further, another variant of RNN called GRU layers with and without

temporal Attention are tried on recognizing the actions. The lower part of the Tables

6.14, 6.7, and 6.8 reports the results of same on UTD-MHAD, and NTU RGB+D using

C − S and C − V protocols. In addition, tested the significance of Spatial Attention in
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Table 6.9: Top and bottom five F − Score (in %) and corresponding actions recognized from
NTU-RGB+D.

C − S Protocol C − V Protocol

F-Score Action Labels F-Score Action Labels

Top 5

99 sit down, stand up, falling down 100 take off jacket, falling down

98 take off jacket, jump up 99 sit down, stand up, put on jacket, jump up

97 walking towards, waking apart 98 cheer up, hopping

96 put on jacket, put on hat, hopping 97
throw, put on hat/cap, take off a hat/cap,

staggering, pushing, hugging

95 hugging 96 pick up, walking towards, walking apart

Bottom 5

70 eat meal, headache 75 clapping

67 put on a shoe, sneeze/cough 73 play with phone/tablet

66
clapping, take off a shoe,

check time (from watch)
69 reading

61 play with phone/tablet 68 check time (from watch)

55 reading, writing 61 Writing

depth descriptor of the action. Table 6.11 reports D Score and C Score (Classification

scores from stream S2 and S3) obtained on all the evaluation protocols on UTD-MHAD

and NTU RGB+D datasets without Spatial Attention, and it is proved that it has a

significant role in improving the performance of the proposed approach.

6.2.2.4 Comparison with State-of-the-art Works

Finally, the performance of the proposed work is compared with various published

works. Table 6.12 reports the comparison of works on UTD-MHAD dataset. Based

on skeleton and depth data, the proposed work outperformed the multi-modal work

(Kamel et al., 2019) with same combination of data modalities.

Table 6.13 compares the Accuracy of the proposed system with various uni-modal

and multi-modal works on NTU RGB+D. The proposed work showed almost equal

and better performance than the existing works except (Wu et al., 2022). However, the
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Table 6.10: Top and bottom five F − Score (in %) and corresponding actions recognized from
UTD-MHAD.

F-Score Action Labels

Top 5

100

basketball shoot, Boxing, Baseball swing,

Arm curl, Tennis serve, Push, Pickup

and throw, sit to stand, stand to sit, squat

97 Draw X, Jog

93 Walk

91 Swipe left, Swipe right, Catch

89 Arm cross

Bottom 5

82 Push

81 draw triangle, tennis swing, draw circle CW

73 throw

62 draw cirlce CCW

32 wave

Table 6.11: Accuracy (in %) of depth and fusion stream without Spatial Attention

Models D Score C Score

UTD-MHAD without SA 42.79 57.44

UTD-MHAD with SA 76.51 85.34

NTU RGB+D (C − S Protocol) without SA 70.05 78.26

NTU RGB+D (C − S Protocol) with SA 73.55 79.51

NTU RGB+D (C − V Protocol) without SA 72.01 85.10

NTU RGB+D (C − V Protocol) with SA 77.14 86.81

data to be processed by these this approach is significantly higher than ours. Other two

multi-modal approaches, namely: (El-Ghaish et al., 2018) and (Fan et al., 2020) using

a skeleton and RGB data, showed almost equal performance to the proposed work. (El-

Ghaish et al., 2018) showed 0.5%, and 0.4% greater Accuracy in C − S and C − V

protocol, respectively, than ours. (Fan et al., 2020) achieved slightly less (by .4%) in

C − V and high (by .4%) Accuracy than ours. However, the use of RGB data may

incur more demand on resources and may get affected by the color of the context.
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Table 6.12: Comparison of proposed work’s recognition Accuracy (in %) on UTD-MHAD with
existing approaches

Method Modality Cross-Subject

3D histogram (Zhang et al., 2017) Depth 84.4

JDM-CNN (Li et al., 2017) Skeleton 88.1

JTM-CNN (Wang et al., 2018) Skeleton 87.9

D-CNN (Kamel et al., 2019) Skeleton+Depth 88.14

MLSL (Yang et al., 2020) Depth 88.37

EAC (Bulbul and Ali, 2021) Depth 88.37

SJ-ATP (Sima et al., 2022) Skeleton 86.37

SML-3DCNN (Wu et al., 2022) RGB+Depth 93.57

Proposed Work Skeleton+Depth 89.76

6.3 HI System using Fusion of Gait Data in Skeleton and Depth Modality

The fusion of data modalities to improve the performance of HAR systems by compen-

sating the shortcomings of individual data formats inspired us to propose a work for

HI systems by fusing gait data in skeleton and depth formats and DL model. The key

contributions of this thesis work are as follows.

Contributions:
• A RGB image representation of the human gait cycle in sequence of skeleton

data.

• A image representation of sequence of depth images of a gait cycle in depth data.

• A multi-stream CNN-based DL model to learn features from new representation
of gait cycle.

6.3.1 Proposed Methodology

The overall architecture of proposed method for HI system based on the fusion of gait

data in skeleton and depth modality is shown in Figure 6.17. The process begins with

pre-processing, in which the gait cycle in two different data modalities can be repre-

sented as image. Further, the image representations are trained using a multi-stream

CNN-based DL model. Finally, the scores from different streams are combined for the

final recognition.
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Table 6.13: Comparison of proposed work’s recognition Accuracy (in %) on NTU RGB+D
with existing approaches

Method Cross-Subject Cross-View Modality

JDM-CNN (Li et al., 2017) 76.2 82.3 Skeleton

JTM-CNN (Wang et al., 2018) 76.32 81.08 Skeleton

I-PPM (El-Ghaish et al., 2018) 84.3 90.4 Skeleton+RGB

TSSI+GLAN+SSAN (Yang et al.,
2019)

82.4 89.1 Skeleton

MV-Dynamic Images (Xiao et al.,
2019)

84.6 87.3 Depth

CACA (Fan et al., 2020) 84.2 89.3 Skeleton+RGB

DS-LSTM (Jiang et al., 2020) 77.80 87.33 Skeleton

TS-MSTD (Dhiman and
Vishwakarma, 2020)

79.4 84.1 RGB+Depth

PoT2I + Inception-v3 (Huynh-The
et al., 2020)

83.85 90.33 Skeleton

SSI (Shao et al., 2021) 81.9 88.7 Skeleton

SML-3DCNN (Wu et al., 2022) 91.13 94.31 RGB+Depth

M-Att (Li et al., 2022) 83.72 93.80 Skeleton

Proposed Work 83.8 89.75 Skeleton+Depth

6.3.1.1 Pre-processing

The sequence of skeleton and depth frames, denoted by S = {s1, s2, s3, ..., sN} and

D = {d1, d2, d3, ..., dN}, where, N is the number of frames, are pre-processed using

separate steps to convert them into image formats. A detailed explanation of each of

these transformation processes is given below.

Skeleton Frame Sequence

Each skeleton frame has a set of 3D coordinates of human body joints. The sequence

of skeleton frames is converted to RGB image considering the joint coordinate position

in each frame. For this, initially, all the joints from the set of frames are transformed

into a global coordinate system making the hip center as the center of the coordinate

system is already explained in Section 6.2.1.1 (Page No. 141). Further inspired by the
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Figure 6.17: Proposed multi-stream CNN-based deep learning model for HI.

GEI representation of a sequence of silhouette images of the gait cycle, we proposed

Color-coded Skeleton Gait Energy Image (CSGEI), where all the skeleton images are

combined into a single image frame. So, each skeleton is divided into five body parts,

namely: left leg, right leg, left hand, right hand, and trunk. Each of these body parts is

color coded with five different colors. The sample CSGEI images generated are shown

in Figure 6.18.

Depth Frame Sequence

The sequence of depth frames in a gait cycle can be transformed to a single image to

represent its spatio-temporal features. For this, the EDMM images are generated from

the depth frame sequence of a gait cycle using method described in Section 6.2.1.1

(Page No. 141). The sample EDMM images are shown in Figure 6.19.
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(a) (b)
Figure 6.18: Sample CSGEI images generated for gait cycles from IAS Lab gait dataset: (a)
Person-1. (b) Person-2.

(a) (b)

Figure 6.19: Sample EDMM images generated for gait cycles from IAS Lab gait dataset: (a)
Person-1. (b) Person-2.

6.3.1.2 Deep Learning Model

Figure 6.17 illustrates the proposed multi-stream CNN-based DL model. Primarily

three DL streams are built with CONV blocks. The CSGEI, and EDMM are processed

by S1, and S3, respectively. The second stream S2 has two sub-streams which are

replica of S1, and S3 to process both CSGEI, and EDMM images. The features from

two sub-streams are concatenated and further processed by Dense layer. The output of
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Dense layers are normalized using BN layer. Further the Softmax layer outputs SM1,

SM2, and SM3 of S1, S2, and S3, respectively and these are combined with various

score fusion operations.

6.3.2 Experiments, Results, and Analysis

6.3.2.1 Dataset

The experiments are conducted on multi-modal gait dataset IAS-Lab. The features of

IAS-Lab are already explained in Chapter 5, Section 5.2.2.1. In this we have used both

skeleton and depth data.

6.3.2.2 Experiments, and Results

Table 6.14: Accuracy (in %) of proposed multi-modal approach for HI and results of score
fusion operations on IAS Lab dataset. (Best results are in bold)

Data S Score D Score C Score Fusion 1 Fusion 2 Fusion 3 Fusion 4 Fusion 5 Fusion 6 Fusion 7 Fusion 8

Testing
A

37 14 22 24 27 24 27 10 16 33 31

Testing
B

17 15 7 11 13 7 4 7 4 4 4

The DL model is trained for 500 epochs with initial learning rate of 0.0001. We

have used various score fusion operations mentioned in Table 6.5 to combine Softmax

scores from different streams of DL model. Table 6.14 shows the results obtained on

‘TestingA’ and ‘TestingB’ part of IAS-Lab dataset on various score fusion operations.

The results obtained are not encouraging. In both ‘TestingA’ and ‘TestingB’ the skele-

ton stream S1 performed well as compared to S2 and S3. The main reason for this is

number of samples in the dataset. As we got few gait cycles (38 after augmentation by

flipping got 78 samples for training part), the DL model failed to learn the features.

6.4 Limitations

• Experimental results demonstrated that the proposed system performed excep-

tionally well in recognizing most actions. However, it demonstrated poor perfor-

mance when recognizing only a few actions. Most of the time, the analysis of

poorly performing actions revealed that they share a similar structure when sum-

marizing the data sequence. The variance in number of sub-actions in actions are

not considered. Adding multi-modal data not only improved the performance,

but also increased the computations required to manage the different data types
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in a multi-stream DL model significantly.

• The results on HI system are not encouraging. The main reason is the CNN-based

DL model is trained with few features. Also, the image representation of the gait

cycle may not perform well in representing spatio-temporal features.

6.5 Summary

Two different approaches are proposed for HAR using a combination of skeleton and

depth data of human action. In the first work, efficient action descriptors using skeleton

and depth data are formed and trained using the multi-stream DL model. Performance

is measured using two widely-used datasets for HAR. Additionally, several experimen-

tal setups established the importance of the Attention unit in accurate recognition. In

the second approach, we attempted to investigate the sub-actions comprising human

actions. To reduce the number of features to be processed with less number of com-

putations, we proposed the novel depth descriptor MS-EDMM, in which the spatio-

temporal features involved in sub-actions of action in depth sequences are summed and

represented as a single image. To process the skeleton data sequence, we categorized

the skeleton joints into five groups, aggregated them up, and trained with the proposed

multi-stream DL model. Using standard evaluation protocols, the proposed approach is

evaluated using the benchmark single-view and multi-view datasets. The experimental

results proved the efficiency of the proposed approach using the fusion of depth and

skeleton data for HAR.

The success in improving the performance of HAR system encouraged the use of

multi-modal gait data to propose the HI system. Further, this chapter proposes new im-

age representations of the gait cycles from skeleton and depth data. Also, the images are

trained with CNN-based multi-stream DL model. The experimental results on one pub-

licly available multi-modal gait dataset are not promising. As the dataset is small, the

proposed model failed to learn the features from images and hence we did not achieve

encouraging performance.
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Chapter 7

Conclusions and Future Directions

7.1 Conclusions

In recent years, the proliferation of smart environments, such as smart cities, smart cam-

puses, smart transportation, and smart parking, aims to provide people with a secure,

healthy, enjoyable, and comfortable life. This results in deploying and integrating var-

ious sensor types to automate various tasks. Ongoing research is being conducted in

various areas of smart environments for a variety of applications, including smart waste

management, smart energy management, etc. Smart surveillance is one of the most crit-

ical applications in smart environments, with a wide range of applications. The tasks of

a smart surveillance system include abandoned object detection, alert systems based on

events in the scene, monitoring of the activities of people, and so on.

To provide a secure environment, automating monitoring people’s activities entails

primarily two tasks: recognizing people’s actions and identifying people of interest in

the scene from a distance. Consequently, this thesis aims to strengthen the unobtrusive

HAR and HI systems. This requires content interpretation based on the analysis of

images/video captured by cameras. Due to advancements in camera technology, visual

data is now accessible in various modalities. Consequently, this work explored the

pros and cons of various visual data modalities for HAR and HI tasks. In addition, the

shortfalls of HAR and HI from various perspectives are also identified and discussed.

Vision-based HAR is one of the most alluring research areas in the current research

community. In addition to smart surveillance, it has a variety of other applications, in-

cluding sports analysis, entertainment, etc. This thesis examined the existing literature

on on HAR and HI through various data modalities and strategies. This thesis makes

contributions to the field of HAR and HI based on its review of the existing literature.

We conclude the salient features of all thesis contributions as follows.

• The first contribution of this thesis is on creating context-specific RGB data-

based HAR. Human actions vary from domain to domain. With this in mind, a

dataset of human actions is compiled to identify students’ actions within the com-

puter laboratories of smart campuses. Due to the need for unobtrusive monitoring
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of individuals, the dataset is comprised of image frames from spontaneous video

captures by CCTV cameras installed in various locations within computer labo-

ratories. We presented the DL model based on transfer learning and YOLOv3 for

recognizing student actions in computer laboratories. The model can identify and

localize multiple actions from RGB images. In addition, this work introduced a

technique for reducing the number of frames in a video based on selecting key

frames using a proposed template matching scheme. This significantly reduces

the number of frames that must be analyzed and stored for future use. This al-

lowed only the essential video content to be stored rather than the entire video.

The key limitations of this thesis work are as follows:

– It can recognize only simple actions.

– The method uses only spatial features, so, the actions with temporal features

cannot be recognized.

– The number of annotators are less.

• The second contribution of this thesis is the skeleton data-based HAR system.

In this effective tree-like representation of the skeleton joints making, the hip

center as the root and DFS traversal of nodes is introduced. The distance fea-

tures are computed from this new representation and processed using a DL model

with Dense layers. Finally, the identified actions are determined using a majority

voting scheme based on Softmax scores for every frame. The experimental evalu-

ation of skeleton-data-based HAR on a single-view dataset revealed its promising

performance. The key limitations of this work is as follows:

– The actions are recognized by frame-wise classifications, but temporal fea-

tures between the frames are not considered.

– The noisy frames will greatly effect the performance as initial classification

is based on frame level information.

• The third contribution of this thesis is unobtrusive human identification. Two

works on novel gait event-specific features and advanced DL models are pro-

posed. At first, the optimal sets of features are extracted based on inter/intra

frame skeleton joint distance and angles. The quantitative summary of features

is computed with an emphasis on reducing the effect of noise and occlusion on

recognition performance. This reduces the number of features that must be pro-

cessed compared to approaches that employ skeleton-wise features. As gait is
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a cyclical movement of human limbs with a unique pattern for each individual,

temporal characteristics within the sequence of gait events play a crucial role in

classification. Therefore, an LSTM/GRU-based DL model is proposed for learn-

ing the quantitative summary of features extracted from gait events. The proposed

DL model has significantly fewer total parameters than existing methods. In ad-

dition, evaluating the proposed system on benchmark single/multi-view datasets

using a variety of state-of-the-art evaluation protocols demonstrated its superior

performance in HI. The CMC test demonstrated that the proposed approaches

reached more than 95% Accuracy in lower level ranks on all the datasets. The

key limitations of this thesis work are as follows:

– Though there is advantage in considering the quantitative summary of fea-

tures, the benefits of features in correct frames are suppressed.

– The multi-view dataset is a small scale dataset. So, it must be tested in

large-scale multi-view dataset.

• The fourth contribution of this thesis is single/multi-view HAR and HI system

using multi-modal data. In this, two works are proposed using 3D skeleton and

depth data from Kinect depth sensors for HAR. Both works introduced novel

action representations and multi-stream DL models. In addition, a small work

is proposed for HI using fusion of gait data in skeleton and depth formats. The

first work on HAR maps the 3D coordinates and orientation features from a se-

quence of skeleton frames to single RGB image. Additionally, the motion in a

series of depth frames is condensed into a single image. Further, the multi-stream

DL model with CNN and LSTM with Attention units process the action repre-

sentations in image format. The test on two single-view human action datasets

proved its performance. The second work on HAR effectively explores the bene-

fit of using overlapped sub-actions. The sequence of depth frames is divided into

four sub-actions, and the depth maps of overlapping sub-actions are condensed

into a single image that represents the action. Similarly, the skeleton sequence is

grouped into ten overlapped sub-actions. Further, each skeleton is divided into

five regions. The quantitative summary of features from each region is extracted

for each sub-action. The extracted features are trained using multi-stream DL

model with CNN and spatial Attention, and LSTM/GRU with temporal Atten-

tion units. Proposed a set of score fusion operations that use the scores from DL

streams processing different data modalities to improve performance. Results
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demonstrated its superior performance on single and multi-view datasets.

In the proposed HI system based on the fusion of depth and skeleton data, we

initially represented the sequence of skeletons as a RGB image. Which combines

all the skeletons into one image. Also, the sequence of depth images of the gait

cycle is summarized into a single image. The two types of images are trained

with a multi-stream CNN-based DL model. The experiment on a small-scale

multi-modal gait dataset demonstrated poor performance. The key limitations of

this thesis work are as follows:

– The number of sub-actions in different actions varies, but same number of

sub-actions are considered for all actions.

– The overall performance of the system is greatly affected by few actions

which has similar movement when observed from far.

– The number of samples used to train the multi-stream DL model is much

less in the proposed multi-modal HI system, leading to poor performance.

– The proposed image representations for HAR/HI system must be improved

to capture spatio-temporal features of the gait cycle.

7.2 Future Directions

This research work carried out in thesis has a number of future directions that can be

pursued to enhance the work in both HAR and gait-based HI domains to support smart

applications. The details are as follows.

Human Action Recognition Systems

• As human actions vary based on context, developing domain-specific datasets and

RGB-based HAR systems is necessary.

• Generate a domain-specific dataset of abnormal actions and HAR systems so that

it can be used in alert systems to alert individuals/authorities about abnormal

activities.

• Create a domain-specific dataset of human action videos and develop HAR sys-

tems capable of learning temporal aspects of various actions.
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• Develop an HAR system capable of recognizing and localizing/segmenting the

various actions in large videos.

• Utilize the context information of the scene to improve the performance of the

RGB-based HAR system by identifying the objects in the scene for action recog-

nition at a finer level of detail.

• The skeleton data-based action recognition can be enhanced by defining an action

representation that takes temporal aspects of the skeleton sequence into account.

There is a need of defining classification models that can learn the dynamics

present in an action’s representation, and also developing DL models that focus

on the most important features of human actions. Additionally, these models are

to be tested using multi-view action data.

• The multi-modal HAR system can be improved by defining action descriptors

that can capture spatio-temporal features that can differentiate between extremely

similar actions.

• The number of sub-actions varies from action to action. Therefore, rather than

a fixed number of sub-actions, methods should be developed for automatically

locating the sub-action regions in an action video.

• If contextual features available in RGB data are integrated for feature extraction,

then the performance may be enhanced despite increased computing and resource

requirements.

• Develop systems to continuously recognize actions and summarize the observed

actions for future use by integrating HAR systems with natural language process-

ing in a context where there is an abundance of visual data that is difficult to

analyze and summarize.

• In addition, using federated learning approach, implement and test both HAR

using different data modalities to make them suitable for the evolving needs of

smart-environments. Use the evolutionary DL model for HAR to optimize the

computations further. Also, create and test lightweight models for HAR to make

it suitable for use in resource constraint scenarios.

• Develop advanced HAR systems to recognize more complex actions like actions

involving group of people and events.
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Human Identification Systems

• The HI systems with the skeleton-data based gait can be further enhanced in sev-

eral ways. Generate more effective set of gait-event specific features. Addition-

ally, combine gait-event-specific features with global features that pertain to the

entire gait cycle in order to boost the performance.

• Utilize various types of Attentions at both the global and event levels to further

enhance performance.

• Create multi-modal 3D large scale dataset, so that multi-modal systems can be de-

veloped using advanced DL models for multi-view HI to support current scenario

in smart environments.

• Develop new representation of gait cycles which can capture spatio-temporal fea-

tures of gait cycle from arbitrary views in different modalities.

• Improve the performance of depth data based gait recognition by developing ap-

proaches for view independent representations.

• Create and test lightweight models for HI to make it suitable for use in resource

constraint scenarios.

• Use federated learning approach, implement and test HI systems for the evolving

needs of smart-environments.

• Predict the intention of human based on action analysis
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