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Abstract

Food security is threatening due to the exponentially growing global population. There

are many reasons for food scarcity, such as exponential population, environmental dis-

asters, climate change, the impact of COVID-19, and wars. Agriculture’s productivity

has decreased in the last decade due to climate change and inappropriate usage of wa-

ter, fertilizer, and pesticides, which stimulate plant diseases. Plant diseases and pests

are also the cause of reducing the production of food all over the globe. Plant diseases

cause around 20% to 40% loss in the production of agricultural products. Plant diseases

extensively impact agrarian production growth. It results in a price hike on food grains

and vegetables. Early detection of plant disease is essential to reduce economic loss and

predict yield loss. Early perception of pathogens and insinuating proper medications are

crucial to enhance crop yield and quality. Current plant disease detection involves the

physical presence of domain experts to ascertain the disease. As a result, timely plant

disease recognition entails sustained crop supervision from the start. Some research

works have contemporarily been proposed as curative control measures. However, such

an approach requires expensive equipment that is out of reach for small or middle-scale

yeoman.

Deep learning-based approaches vary in network architecture, and learning of the

features by each model varies from one another in some aspects. To take this as an ad-

vantage, this study proposed an ensemble-based deep learning approach using AlexNet,

ResNet, and VGGNet. Seven different plant disease dataset is used with the binary and

multiclass dataset. This ensemble-based approach enhances the classification result by

minimizing the miss-classification effect. It constructively perceives plant diseases by

analyzing plant leaf images. A broad set of experiments were conducted using differ-

ent plant leaf image datasets such as Cardamom, Cherry, Grape, Maize, Pepper, Potato,

and Strawberry to assess the agility of the proposed approach. Experiential results show

that the proposed method attained a maximal detection accuracy of 100% for binary and

99.53% for multiclass datasets.

Deep learning-based plant disease detection is proposed in this work by address-

ing some of the challenges. Precise plant disease detection is essential, where more

than one disease has similar symptoms and nature, and also to achieve excellent per-

formance in spite of the imbalanced data. This study proposed a Multilevel Feature

Fusion Network (MFFN), which combines the features learned at different levels of

the network and also uses the adaptive attention technique by employing channel and

pixel attention mechanism, which fabricates the network more robust by considering the
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deeper network features which are shown in different channels and also with the pixel

level features, with this the network is able to classify the diseases precisely on tomato

plant dataset. The proposed deep learning-based approach is trained and tested on a

tomato plant leaves dataset and achieved 99.36% training accuracy, 99.88% validation

accuracy, and 99.5% external testing accuracy. It outperformed the existing approaches

relevant to the tomato plant dataset. Further, this work also proposes a pesticide pre-

scription module that provides pesticide information based on the type of tomato leaf

disease.

Plant disease detection using a complex background and images captured in differ-

ent conditions is one of the challenges; this study proposed a cardamom plant disease

detection approach by collecting the images in a complex background using different

electronic gadgets. This study proposed a hybrid deep learning-based approach consist-

ing of two stages: the background removal stage and the classification stage. U2-Net

is used for the background removal task, and EfficientNetV2 is used for the classifica-

tion task. This makes the network more robust to handle the plant leaf images captured

in complex nature.A large number of experiments were conducted to evaluate the pro-

posed approach’s performance and compare it to other models such as EfficientNet and

Convolutional Neural Network (CNN). According to the experimental results, the pro-

posed approach achieved a detection accuracy of 98.26%.

The approaches proposed in this study are producing prominent results. This study

also suggested a pesticide prescription module for tomato plant leaf diseases. The pro-

posed solutions in this study contribute to the field of plant disease detection, which can

be adopted for real-time plant disease application. The overall aim of this study is to

provide an efficient and robust plant disease detection approach.

Keywords: Attention Mechanism; Climate Change; Deep Learning; Plant Dis-

ease; Pesticide Prescription.
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Chapter 1

Introduction

Farming production and quality are threatened by plant diseases, pests, and weeds, af-

fecting farmers’ production and economic loss. It signifies that around 15-25% food

production will decline in India (Mahlein et al., 2018) and India is the largest con-

tributor of undernourished people in the world, with around 194.4 Million people, or

14.37% of its population not receiving enough nutrition (Aditya, 2022) and around

720-811 million people were malnourished around the globe; it accounts for 9.9% of

the world population. Agriculture products and their security are one of the signifi-

cant anxieties of the world population. Food security is expected to be more than 9.7

billion population by 2050; expected 60% more food to be produced to feed such a

huge population (Nations (2015)). Food squandering happening majorly in developing

countries due to poor infrastructure and fewer investments in the production, harvest,

storage, post-harvest, and processing phases. Various causes are degrading the quality

and quantity of crops, such as implementing modern techniques, globalization, climate

change, modern cultivation techniques with huge chemical fertilizers, and many more.

However, the agriculture and food industries generally demand quality products. Cul-

tivating a quality agricultural crop is challenging. Climate change is one of the sectors

that affect plant diseases due to unusual behavior in the past few years, and it also affects

the agriculture activities such as harvest and post-harvest activities; it majorly affects

middle and small-scale farmers.

The emergence of plant diseases disquiets agricultural cultivation and production. If

vegetation disorders are not diagnosed in time, food scarcity will aggravate (Faithpraise

et al., 2013). Plant diseases and pest detection models need to be automated in agricul-

ture. Since disease and pest detection is essential, the automated structure monitors the

environmental conditions with various techniques and methodologies and minimizes

the effect of disease and pests when early detection happens. Detection and prevention

of diseases in an early stage is the most fundamental requirement to improve the pro-

duction and caliber of the nature of the crop. The fundamental practice of plant disease

is ascertained by domain expert involvement; this requires considerable human effort.

Further, it does not produce accurate results always. Consequently, imprecise detection

of disease guides to a humongous loss in the quality and quantity of the crop.
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1.1 Plant Disease

When some causal agent interferes with a plant’s normal structure, growth, function, or

other activities repeatedly, an abnormal physiological process frequently results. This

disruption of one or more essential physiological or biochemical processes in a plant

causes recognisable illnesses or symptoms. Generally speaking, the main cause of plant

diseases can be divided into infectious and noninfectious agents. Infectious plant dis-

eases are brought on by pathogenic organisms, such as fungi, bacteria, mycoplasma,

viruses, viroids, nematodes, or parasitic flowering plants. A contagious agent has the

ability to grow both inside and outside of its host and spread to other vulnerable hosts.

Non-infectious plant ailments are caused by adverse growing conditions, such as

temperature extremes, unfavourable oxygen-to-moisture ratios, toxic substances in the

soil or atmosphere, and an abundance or deficiency of a key mineral. Since they are

not living organisms that can reproduce inside of a host, non-infectious causal agents

cannot be transmitted.

Plant diseases are getting affected by various environmental factors. Temperature is

one of the factors; each disease has a certain temperature range for growth. Relative-

Humidity is another factor; most of the leaf and fruit fungi diseases depend on relative

humidity. Soil moisture affects root rot diseases. Excess watering with low oxygen and

high CO2 is more prone to root rot diseases. Soil pH also affects plant diseases; certain

pH scores need to be maintained depending on the type of crop. Soil fertility also

matters; the lower the certain nutrients, the higher the chances of contagious diseases.

1.2 Kinds of Diseases

The diseases are consequential and harmful to plants since they avoid the photosyn-

thesizes process of the plant life cycle; due to this, plants can not absorb the nutrients;

this affects the development of plants and leads to lower quality and yield, resulting

in economic loss and time (Lincy, 2021). The plants suffer from bacterial and fungal

diseases.

Fungi Diseases:

A variety of dangerous plant diseases are brought on by fungi, which make up the

majority of plant pathogens. Fungi are censured for the majority of vegetable plant

diseases. By damaging plant cells or stressing plants, they harm plants. Infected

seeds, soil, agricultural debris, neighboring crops, and weeds are sources of fungal

2



diseases. Through the movement of contaminated soil, animals, people, equipment,

tools, seedlings, and other plant material, as well as by wind and water splash, fungi are

spread. They penetrate plants through stomata, which are naturally occurring openings,

as well as wounds brought on by pruning, harvesting, hail, insects, various illnesses,

and mechanical harm(Rosa-Márquez et al., 2003)(Punja et al., 2004).

Bacterial Diseases: Numerous major vegetable illnesses are brought on by pathogenic

microorganisms. They must enter through wounds or organic plant holes since they can-

not penetrate plant tissue directly. Insects, other diseases, and tool damage can cause

wounds during tasks like trimming and plucking. Only when conditions are favorable

for their growth do bacteria become active and provide a threat. They have the capacity

to grow rapidly. High humidity, crowding, poor air circulation, plant stress brought on

by excessive, insufficient, or irregular watering, poor soil health, and an imbalance of

nutrients are a few reasons that can lead to infection (Rosa-Márquez et al., 2003)(M

et al., 2021).

Different bacterial disease strains, or pathovars, can harm different vegetable crop

kinds or cause several diseases in the same crop. For instance, pseudomonas syringae

pv. syringae and P. syringae pv. phaseolicola cause various illnesses in beans, while

Xanthomonas campestris pv. vitians and X. campestris pv. cucurbitae cause different

infections in lettuce and cucurbits, respectively (Rosa-Márquez et al., 2003).

Infected plants often show apparent signs or sores on plant leaves, trunks, stems,

roots, flowerets, or fruits. Figure 1.1 to Figure 1.6 shows some of the diseased plant

leaf images. Figure 1.1 shows the cardamom plant leaf images, Figure 1.2 shows the

cherry plant leaf images, Figure 1.3 shows the grape plant leaf images, Figure 1.4 shows

the maize plant leaf images, Figure 1.5 shows the pepper plant leaf images, Figure 1.6

shows the potato plant leaf images, and Figure 1.7 shows the tomato plant leaf images.

Diseases appear in the different parts of the plants depending on the nature of the plant

and climate. Some diseases are more prone to rainy and winter seasons, and some

are sunny. The majority of diseases appear in the leaf of the plant. Generally speaking,

each illness or insect environment creates a single visual archetype that can be utilised to

understand the anomalies. In general, plant leaves are a primary source of plant disease,

and the illness may first start to manifest itself on the leaves of the plant (Ebrahimi et al.,

2017).
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Figure 1.1: Diseased Cardamom Plant Leaf Images

Figure 1.2: Cherry Plant Leaf Images

Figure 1.3: Grape Plant Leaf Images
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Figure 1.4: Maize Plant Leaf Images

Figure 1.5: Pepper Plant Leaf Images

Figure 1.6: Potato Plant Leaf Images
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Figure 1.7: Tomato Plant Leaf Images

1.3 Deep Learning

Deep learning is a subset of Artificial Intelligence. The kind of data it uses and its

learning strategies set deep learning apart from traditional machine learning. Machine

learning algorithms utilise structured, labelled data to make predictions, therefore the

input data of the model is used to identify certain features that are then organised in

tables. This doesn’t mean that it doesn’t use unstructured data; rather, it means that

if it does, it usually goes through some pre-processing to organise it. Deep learning

eliminates some of the data pre-processing that is often required for machine learning.

By automating feature extraction and handling unstructured text and visual data, these

algorithms eliminate the need for human experts (Sarker, 2021).

To achieve an acceptable level of accuracy, deep learning systems require access to

vast volumes of training data as well as computing capacity. Programmers did not have

easy access to any of these resources prior to the era of big data and cloud computing.

Because deep learning programming can create intricate statistical models directly from

its own repetitive output, it can develop precise predictive models from vast volumes

of unlabeled, unstructured data. As the internet of things (IoT) grows, it will become

increasingly important because the vast majority of data produced by people and devices

is unstructured and unlabeled (Janiesch et al., 2021). Figure 1.8 describes the basic deep

learning architecture, consisting of input followed by a few layers of convolution and

sub-sample layers, then two fully connected layers, and finally, the output layer. The

complexity of the network varies from application to application with the corresponding

dataset (Sarker, 2021) (Janiesch et al., 2021).
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Convolution Subsample
Convolution

Subsample FC
FC

Output

Input Data

FC: Full Connection
Figure 1.8: Basic Deep Learning Architecture (LeCun (2015))

1.3.1 Working of deep learning

Deep neural networks consist of multiple layers of interconnected nodes, each of which

enhances the prediction or classification produced by the layer behind it. Calculations

flow through the network using a process known as forward propagation (FP). The

input and output layers of a deep neural network are the layers that are visible. The

final prediction or classification is carried out by the deep learning model in the output

layer after the data has been processed in the input layer (Sarker, 2021).

A different approach is called back propagation (BP), which calculates prediction

errors using methods like gradient descent before iteratively travelling back through the

layers to alter the weights and biases of the function in an effort to train the model. The

predictions depend on the FP and BP of the neural network, and FP and BP minimize

the errors accordingly. As the number of epochs increases, the neural network gradually

improves the accuracy for a certain number of epochs. This describes the fundamental

deep learning network in an unembellished way. The deep learning network varies in

terms of complexity based on the type of task, such as classification or clustering with

the precise application (Sarker, 2021)(Shrestha & Mahmood, 2019).

1.3.2 Role of hyperparameters in Deep Learning

A hyperparameter is a variable defined before the training of the Deep Learning Models

(DLM); it represents the structure of the DLM based on the number of hidden layers.

There are various hyperparameters, such as the number of neurons, different activation

functions, learning rate, batch size, and the number of epochs. All these hyperparame-

ters are tunable. The performance of the DLMs depends on these hyperparameters. To

enhance the performance of the DLM, tuning the hyperparameters is essential to build

a robust model. Selecting the correct hyperparameters is one of the challenges.

The performance of the DLMs varies with different datasets with different sets of

hyperparameters. There is no standard way or algorithm to fix the number of layers and
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neurons or which optimizer is eminent for a particular dataset. Tuning the hyperparam-

eters is discovering the prominent set of hyperparameters to build deep learning for a

particular dataset.

The number of layers is set to be small for simple problems, and more layers are

required for complex issues. Similarly, the number of neurons varies from layer to layer

or can be constant for all the layers; the number of neurons is generally more for com-

plex problems since, to solve the problem, the best features need to be extracted. Less

number of layers leads to underfitting, and more layers lead to overfitting (Srivastava

et al., 2014); choosing the correct number of layers is one of the limitations. To avoid

overfitting, insert the regularization layers in the network. Batch Normalization (BN)

and dropout are the regularizations; Batch Normalization (BN), normalizes the values

passed to it for each batch, and dropout drops the neurons as set by the dropout rate

(Tsai et al., 2020).

Various activation functions are available, and the input changes from one layer to

another based on the activation functions applied in each layer. Activation functions

determine the output for each input value; the corresponding output values are fed to

the next layer. This process continues till the last layer. The different activations are

Softmax, Tanh, ReLU, Sigmoid / Logistic, Softsign, ELU, Leaky ReLU, and Linear

function.

1.4 Plant Disease Detection using Artificial Intelligence

The onsite visual investigation is the primary method domain experts follow to detect

plant diseases, which requires a significant amount of human resources, time, and ex-

pensive devices. It may not produce fruitful results. Agriculturists with less knowledge

may misjudge and usage of pesticides or insecticides indiscriminately during the screen-

ing process, resulting in dispensable economic losses.To solve these problems, image

processing with automatic leaf disease diagnosis is crucial. Agrarian products must be

supervised and decisions made about them based on timely perception, which is the

foundation for efficient coercive measures and supervision of plant leaf diseases.

More accurate plant disease detection is essential to avoid loss in farm production

and improve crop quality. Various modern technologies, such as sensor-based and im-

age processing-based techniques, were employed to detect plant diseases (Bravo et al.,

2004)(Moshou et al., 2005). These techniques can recognize plant diseases relatively

fast, though they need expensive sensors (Lu et al., 2017).
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Deep Learning is the technology at the frontiers for the classification of the images

(Brahimi et al., 2017). The Deep Learning-based technique’s significant advantage is

that it spontaneously extracts the attributes. Deep Learning-based approaches have been

employed in several fields such as audio, video, signal processing, precision agriculture,

text-based classification, and plant image classification (Ji et al., 2020)(Liang et al.,

2019)(Kamal et al., 2019).

Deep learning is an emerging technique that fuses data analysis with images and

produces promising results. In recent studies, deep learning has been employed in nu-

merous applications such as signal (Deng & Yu, 2014), image (Krizhevsky et al., 2017),

video processing, object detection, medical image segmentation, biomedical image seg-

mentation, and remote sensing (Wang et al., 2018). Various agriculture applications also

employ deep learning, such as fruit classification, to categorize agricultural products

and recognize plant diseases (Dyrmann et al., 2016).

In a recent study, methods based on computer vision and machine learning were cre-

ated for the identification of plant leaf disease. The complexity of the background and

the severity of the disease as a result of the photos being captured in real-time scenarios

from the farm field are two major obstacles to real-time plant disease diagnosis.

Detection of plant diseases precisely with appropriate precaution measures is es-

sential, and complex background images encourage a more sophisticated approach that

helps the farmers detect the diseases by clicking the images of the plant. The result of

this enhances crop production, reduces the cost of production, and enhances the quality

of the crop. Which helps the farmers to become economically strong.

1.5 Challenges in Plant Disease Detection

Plant disease classification approaches using Deep Learning rely on plant leaf images

which have many challenges. The background of the image is one of the challenges;

segmentation of the Region of Interest (RoI) is another challenge that is very hard to

extract. Image capturing conditions is another challenge that is hard to control due to

environmental conditions. If the images are not captured in the same condition, they

may present different characteristics, which may significantly impact on identifying the

diseases. The image’s orientation is another challenge; a few lesion parts may be out of

bounds due to the capturing angle.

Segmentation of the disease symptoms is also a challenge. The most lesion does
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not have well-defined boundaries. So, the segmentation of disease symptoms is very

hard. Some parts of the lesion gradually disappear, which affects the performance of

the disease detection model.

Diseases have different stages, i.e., the initial stage to the final stage, and the lesion

size, color, and shape differ from stage to stage. Based on the expertise, an expert easily

identifies disease in any one of the stages accurately; however, it is difficult for a novice

to identify symptoms of diseases for all the stages. A symptom may have multiple

disorders; identifying such disorders is also a challenge. Different disorders may have

similar kinds of symptoms which is also another challenge. If two or more disorders

have similar symptoms, then it is tough to segment and separate disease symptoms.

Semi-supervised learning has a few challenges, such as limited data and imprecise

labeled data leading to further erroneous results; with this, developing a model becomes

computationally costly.

Unsupervised learning also suffers from limited data. Further, it will not extract the

relevancy and spatial features, and interpreting between classes is a complex task.

The performance of the DLMs relies on various hyper-parameters and combinations

of those. Selecting the best and most promising hyper-parameters is one of the chal-

lenges. Fine-tune the hyperparameters for DLMs precisely, and it is a very difficult

process to find the optimal hyperparameters for classification purposes.

The development of a real-time, cost-effective Deep Learning-based plant disease

detection model is an additional challenge. Since features of the lesion vary with the

geographic position, train, and test, the classification with a geography-specific dataset

may not be appropriate.

1.6 Research Outline

The fundamental architecture of the plant disease detection method is depicted in Fig-

ure 1.9. This method includes a stage referred to as the ”dataset preparation stage,”

which is responsible for collecting both primary and secondary datasets. The primary

datasets are produced by collecting photographs from farms, and the secondary dataset

is collected from the benchmark dataset. Finally, the most relevant dataset for the study

is chosen from among all of the datasets collected.

The second stage of processing is called preprocessing, and it involves applying a

variety of methods to the data that was obtained. At this point (stage three), choose
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Figure 1.9: General Plant diseases detection approach

the deep learning model that will be used for categorization. In the fourth step, multiple

types of performance measurements should be used to evaluate the deep learning model.

In the subsequent step, the deep learning model will be put through its paces using

testing photos; finally, the outcome will be visualized, and recommendations will be

made regarding possible preventative measures.
1.6.1 Motivation

The climate crisis is threatening global food security; according to Food and Agricul-

ture Organization report 2020, 189.2 million people were undernourished in India. By

this measure, 14% of the population is undernourished in India (Nations, 2015). Due

to climate change and modern cultivation with huge chemical fertilizers used in agri-

culture, there is an increase in plant diseases. Plant diseases are another factor, along

with climate change, for declining food production globally. Plant diseases damage /

degrade the crop’s quality, affecting the farmers economically. Damages in the crops

/ low-quality crops affect the country’s agricultural exports, which also economically

hits farmers. A huge amount of farmers’ economy is spent on plant disease protection

and their management. Detection of plant diseases precisely with appropriate precau-

tion measures is essential, and complex background images encourage a more sophis-
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ticated approach that helps the farmers detect the diseases by clicking the images of

the plant. The result of this enhances crop production, reduces the cost of production,

and enhances the quality of the crop. Which helps the farmers to become economically

strong.

1.6.2 Research Contributions

This study presents an overview of several different approaches to the identification of

plant diseases that make use of deep learning. On the other hand, deep learning-based

systems automatically extract the features and produce results that are superior to those

obtained by more conventional methods. Transfer learning enables individuals to com-

plete specific tasks with a more manageable amount of data. This study considered 160

different research works in plant disease detection or classification. It also has differ-

ent plant disease datasets and various deep-learning models for plant disease detection

or classification. Based on the review of different plant disease detection approaches

framed some of the research gaps and challenges. Which lays the foundation for further

study.

As a preliminary work, proposed a multi-convolutional layer based CNN. This study

conducted an empirical study on plant disease detection three different binary datasets

to analyze the effect of epoch sizes of CNN model in plant disease detection and under-

stand the working of CNN model, and hyper-parameters.

A detection method for plant leaf diseases using ensembles of deep learning mod-

els is proposed. In the suggested method, the base models employed were AlexNet,

ResNet50, and VGG16. This is due to the fact that each base model has a distinct

manner in which it classifies the images, and each model extracts independent charac-

teristics. The proposed method’s primary purpose is to reduce the number of incorrect

classifications as much as possible; this is accomplished by utilizing the aforemen-

tioned three distinct Deep Learning-based models; the ultimate classification result is

determined by taking into account the outcomes of the majority of the classifiers. This

research used a dataset containing information about cardamom plants to meet the dif-

ficulty of image-capturing settings and compare the results of experiments conducted

with those of existing methods. When applied to the cardamom plant dataset, the new

method achieved a higher level of precision than the existing EfficientNetV2 model,

which had been utilized in previous research. This study also takes into account the

classification time, which is an essential component for demonstrating how quickly the
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suggested method classifies the provided input data in the context of real-time opera-

tions. Tomato and cardamom plant datasets also are used in this study to analyze the

working of the ensemble model.

This study collected a cardamom plant dataset with three classes in the farm field,

where the images are acquired using various mobile phones against a complex back-

ground. This was done to stimulate disease detection on noisy or low-resolution pho-

tographs with complex environments. In this study, a cardamom plant dataset with three

classes was obtained. In order to identify plant diseases in farm fields, it is vital to have

a plant leaf disease detection method that is efficient. In this regard, the cardamom

plant leaf disease detection approach is provided, in which the cardamom plant leaf

dataset was obtained from a field with a complicated background. Because the images

are related to other characteristics such as the background of the image, environmental

factors such as illumination, and the angle of the capturing conditions, segmenting and

identifying diseases in real-time photos is a tough process. This is because the images

themselves are associated with other aspects.

The proposed method uses the U2-Net architecture to get rid of the complicated

background. This method generates results without degrading the quality of the original

image; hence it is an improvement over the existing methods. In this work, CNN, Effi-

cientNet, and EfficientNetV2 models were trained for classification rather than utilizing

the pre-trained weights for EfficientNet and EfficientNetV2. Experiments covering a

wide range of scenarios were carried out on the CNN, EfficientNet, and EfficientNetV2

models. In terms of performance, the EfficientNetV2-S and EfficientNetV2-L models

were superior to the others. The grape dataset was also employed in this work to assess

the workings of the proposed models and the performance of those models.

A classification strategy for the leaves of the tomato plant is proposed in this pa-

per. It does this by employing a Multilevel Feature Fusion Network, which searches for

and extracts the essential elements needed to categorize photos of tomato plant leaves.

An Adaptive Attention Mechanism (AAM) with channel, spatial, and pixel attention

is used, emphasizing the information inside each channel to reduce the amount of per-

ceptual loss. By utilizing the inter-spatial interaction of features, spatial attention is

utilized in order to concentrate one’s attention on the specific position of the relevant

features. Utilizing pixel attention allows for the extraction of the important elements

that contribute to increased potential learning.
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The proposed method additionally includes a pesticide prescription module that out-

lines the various pesticides that can be used to treat the tomato plant’s identified ailment.

A number of experiments are carried out in order to determine whether or not the pro-

posed method is capable of classification. In comparison to other methods, it achieved

the maximum possible level of categorization accuracy. To analyze the working of the

proposed model on different datasets, grape and cardamom plant datasets also used in

this work.

1.7 Outline of the thesis

The rest of the thesis is organized as follows: Chapter 2 presents a Literature review on

various plant disease detection using different approaches. Chapter 3 describes Ensem-

ble deep learning-based plant disease detection and analyzes the effect of epochs sizes

on CNN. Chapter 4 addresses complex background leaf images in plant disease detec-

tion. Chapter 5 describes tomato plant leaf detection with appropriate precautionary

measures. The conclusion and future work are discussed in Chapter 6.
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Chapter 2

Literature Survey

The most common traditional methods that are followed to detect plant leaf disease are

visual inspection and biotic techniques1 2. Since traditional methods require manpower

and a huge number of sensor equipment, modern technologies such as computer vision

works like a human; so, the various tasks that can be performed by computer vision

are a) object recognition or classification, b) classification and localization, c) object

detection, and d) image segmentation.

Various Deep Learning-based approaches are described in Figure 2.1, which are

used in various plant disease classification and they are classified as supervised and

unsupervised models. Supervised learning is a task where the machine learns from

a training dataset with supervision (i.e., pre-existing labels). In contrast, unsupervised

learning is a task where the machine learns the pattern without supervision (i.e., without

pre-existing labels).

Deep Learning Models

Supervised Models Unsupervised Models

Classic Neural Networks
(Multilayer Perceptrons)

Convolutional Neural
Networks (CNNs)

Boltzmann MachinesRecurrent Neural Networks
(RNNs)

Self-Organizing
Maps (SOMs)

LeNet

AutoEncoders

AlexNet VGGNet GoogleNet ResNet ResNeXt RCNN ShuffleNet DenseNet YOLO

VGG 16

VGG 19

ResNet 50

ResNet 101

ResNet 152

Fast RCNN

Faster RCNN

YOLO v2

YOLO 9000

YOLO v3

YOLO v4

YOLO v5

Classification
Result

Plant Dataset

Figure 2.1: General Classification of Deep Learning Models

Classic Neural Network is a multilayer perceptron that consists of at least two

layers, which can be used for data visualization, compression, and data encryption.

Recurrent Neural Network (RNN) is a neural network that utilizes sequential infor-

mation to recognize the patterns such as speech recognition, text, and the like. The most

1Biological Indicators: Certain indicator plants are susceptible to specific diseases.
2Microbial Detection:Utilizing specific microbes or microbial products to detect the presence of

pathogens or disease-causing agents in the plant.
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Figure 2.2: Disease Detection System

common RNN is Long Short Term Memory. Convolutional Neural Network is a neu-

ral network that consists of convolution and pooling operations with different activation

functions. Self-Organizing Maps is an unsupervised model which mainly works for

dimensionality reduction and for knowledge gain regarding the dataset where output

was not known. Boltzmann Machines is an unsupervised model; it does not move in a

defined direction. Unlike other DLMs in this, all the nodes are connected in a circular

fashion. Since it learns to regulate, it can be used to monitor specific systems. Auto-
Encoders (AE) automatically encode the input data so as to reduce the dimensionality

of the input data into lower dimensions and reconstruct the output from the compressed

input. Various types of AE are available such as sparse AE, denoising AE, contractive

AE, and stacked AE.

Plant disease classification using Deep Learning methods overcomes the limita-

tions of traditional methods. Various CNN architectures are available such as LeNet,

AlexNet, VGGNet, DenseNet, GoogleNet, ResNet, etc.

Figure 2.2 describes the plant disease classification system based on Deep Learning

techniques. Deep Learning-based plant leaves detection approaches that are categorized

based on internal architecture are shown in Figure 2.3. It broadly classifies the proposed

approaches into Single Network-based and Hybrid models.

2.1 Single Network-based approaches

This section provides a systematic study of various deep learning-based plant leaf dis-

ease detection approaches that use color images. Most of the work focused on single

plant leaf disease detection, and few studies concentrated on multi-plant leaves with

various diseases.

Apple Leaf Disease Detection: Jiang et al. (2019) proposed a recognition of ap-

ple plant leaf disease. Rainbow Concatenation (RC) Single-Shot Multi-box Detector

(SSMD) is used to detect the type of object and coordinates of the corresponding bound-

ing boxes. RC is used to enhance the recognition of smaller objects which are not
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Figure 2.3: Taxonomy of Deep Learning Models

recognized by SSMD alone. Deep CNN (DCNN) was employed, which extracted the

eminent features to classify five different diseases of the apple plant. The limitation of

this work is the two-stage process; a system developed is not end-to-end. After com-

pletion of the first stage, the second stage trains the Deep CNN. The number of images

used in this work is very less, which has only 2029 images for five classes; the authors

used a data augmentation Technique (AT) to enhance the dataset.

One of the studies (Zhong & Zhao (2020)) proposed a method for apple plant leaf

disease detection by employing Deep Learning. The authors used DenseNet-121 with

three combinations; DensNet-121 with regression attained 93.51% detection accuracy,

DensNet-121 with multilabel classification attained a detection accuracy of 93.31%, and

DensNet with focus loss function achieved 93.71% detection accuracy. As mentioned

earlier, the authors infer that the methods overcome oversampling and undersampling.

Based on RC SSMD, the authors have developed an Inception and Rainbow (INAR)

SSMD, where it has three parts, pre-network, attribute extraction, and fusion structure.

The authors have developed a VGG-INCEP model by using a combination of VGGNet

and Inception, where Inception is used to enhance the feature extraction. The limitation

of this work is the images used in this work were taken in the laboratory. The authors
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have used pre-trained models.

Elfatimi et al. (2022a) proposed beans disease detection using MobileNetV2. Eval-

uated the performance of the hyperparameters such as optimizers, learning rate, and

batch sizes on the beans dataset. The optimizers used in the study are Adam, Nesterov

Momentum Adam, Stochastic Gradient Descent (SGD), RMSprop, and Adagrad. The

learning rate used in the study is 0.001, 0.0001, and 0.00001. The different batch sizes

used in the study are 32, 64, and 128. This empirical work compares the different hyper-

parameters such as batch size, learning rate, and optimizers using a pre-trained model.

Abed et al. (2021) worked on beans disease detection, segment the leaf images with the

background using UNet, and then conducted a empirical study on five different deep

learning models. DenseNet121 outperformed the other models.

Banana Leaf Disease Detection: Seetharaman & Mahendran (2022) proposed ba-

nana leaf disease detection by employing Region-Based CNN (R-CNN). Preprocess the

collected images with a histogram-based pixel localization approach which minimizes

the training time. Then segmentation is performed using the region-based edge normal-

ization technique, which minimizes the data complexity, further extracting the features

using Gabor-based binary patterns with CNN. For classification, authors have used dif-

ferent approaches, such as R-CNN, CNN, DCNN, K-Nearest Neighbours (KNN), and

Support Vector Machine (SVM). R-CNN attained an accuracy of 98% among other clas-

sifiers. The system has three independent stages, such as localization, feature extraction,

and classification, with different approaches, which makes the system more complex.

The dataset size is very small, which consists of 1875 images with four classes.

Citrus Leaf Disease Detection: Syed-Ab-Rahman et al. (2022) proposed citrus

plant disease detection by employing a deep learning approach. Preprocess the dataset

by employing a histogram-based equalization approach which manages all the images

into a single intensity range and applies different data augmentation to enhance the

dataset size. ResNet101 is used for feature extraction and to find the RoI, and region

proposals are generated to train the network end-to-end anchor-based approach Region

Proposal Network (RPN) was utilized. The dataset used in this study is small and

does not use data AT to enhance the dataset. The two-stage process makes the system

computationally costly.

Coffee Leaf Disease Detection: Esgario et al. (2020) have proposed a coffee plant

leaf disease detection and severity estimation system using Deep Learning-based tech-

18



niques. The multi-task approach was used with various Deep Learning models. In the

multi-task model independent, Fully Connected (FC) layers were added in parallel to

the classifier. The limitation is the shallow representative of the dataset, which considers

the prime biotic stresses of the coffee leaves, and other diseases with a more enhanced

dataset required.

Cucumber Leaf Disease Detection: Symptom-wise cucumber plant leaf disease

classification approach was proposed by a few researchers (Ma et al. (2018a)), and ex-

periments were conducted by using a dataset that consists of four different types of

symptoms such as Leaf Spot (LS), Downy Mildew (DM), anthracnose, and Powdery

Mildew (PM). This approach segments the symptom images using the comprehensive

color feature (CCF) with region growing. The CCF comprises three components: ex-

cess red index, H from HSV (Hue, Saturation, Value), and b* from CIELAB color

space, which discriminates the backgrounds of the disease spots. For symptom image

segmentation, the region growing method was used on the color features.The limita-

tion of this work, it is a two-stage; the first stage is for segmenting the diseased part of

the leaf, then training and testing using CNN. This affects the computational cost and

deteriorates the classification result.

Zhang et al. (2019) proposed a cucumber plant leaf disease detection approach us-

ing a Global Pooling Dilated CNN (GPDCNN) by incorporating the convolution with

global pooling. Widened convolution was added instead of the kernel of an AlexNet;

it intensifies the feature extraction ability and recovers the spatial resolution. To min-

imize the numerous training parameters and steer clear of overfitting global pooling

layer was employed. Multiscale convolutional kernels were used to take out the multi-

scale attributes from the input image. This approach improved the detection accuracy

and robustness of the model. The limitation is that this approach could enhance the

performance by exploring the crucial role of probabilistic graphical models.

Zhang et al. (2020a) proposed an approach to classify the cucumber plant leaf dis-

eases which has a complex background and which have high similarities, such as PM

and DM, by employing EfficientNetB4 with ranger optimizer; the ranger optimizer is a

combination of RAdam and Lookahead optimizer and attained 96% detection accuracy.

The limitation is that the system was not tested in farmland.

Grape Leaf Disease Detection: Research (Cruz et al. (2019)) proposed Grapevine

Yellows (GY) in grapevine (Vitis vinifera L) recognition using 6 CNN models such as
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AlexNet, SqueezNet, GoogleNet, Inception v3, ResNet-50, and ResNet-101 with leaf

clipping images of Vitis vinifera. The authors concluded that the ResNet-101 model

outperformed as compared to ResNet-50, and SqueezNet showed the least performance

among all the models. The limitations are that this is a comparative study with different

pre-trained DLMs. This research could consider the different leaves occlusion and light

illumination; further, this study considers the state-of-the-art approach for segmenta-

tion. The dataset used in this study was imbalanced.

Zinonos et al. (2021) proposed grape plant disease detection using deep learning

with IoT. Employed Long Range (LoRa), which is a wireless modulation technique for

low power and low data rate applications. Farmers send images from their farmland

using LoRa nodes; six such nodes are deployed in the different farmlands; the farthest

is 600 meters away. All the images collected from the LoRa are resized to 255× 255.

DLMs such as MobileNetV2 and ResNet50 were employed to detect the diseases. LoRa

has a limitation that the node can be active for a maximum of 36 sec/hour; capturing

the grape leaf image and sending it to the backend is challenging through LoRA due to

its 1% duty cycle.

Shantkumari & Uma (2022) proposed an approach by employing CNN and im-

proved KNN to detect the grape plant diseases. It has three stages; in the first stage,

minimizing the noise by utilizing histogram-based gradient patterns is used to enhance

the detection accuracy; these obtained features are depicted with the pixel encoding

approach. In the second stage, segmenting the lesions in the leaf is done by the Adap-

tive Snake Algorithm (ASA) approach. In the third stage, to classify the images, CNN

and improved KNN were employed. The limitation is that the features extracted using

different feature extraction techniques, further ASA for lesion segmentation, and KNN

classifier are independent systems; this approach is not suitable for in-farm plant disease

detection.

Andrushia & Patricia (2020) proposed a grape plant diseases detection; two-stage

preprocessing was done, leaf background subtraction was used, then applied histogram-

based equalization approach was used to remove the noise. Artificial Bee Colony (ABC)

is employed to extract prominent features such as color, texture, and shape. 110 features

were selected to train and test the proposed SVM classification method. The limitation

is that the authors have used just 350 images, in that 175 images with four classes for

training the model.
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Greengram Leaf Disease Detection: Kumar et al. (2020) proposed IoT based

green gram plant disease detection approach by employing sensor data and Multi-Layer

Perceptron (MLP). Sensor data such as humidity, moisture, and temperature; satellite

data such as rain, pressure, wind speed, etc., then fuse the sensor and satellite data.

Artificial Neural Network (ANN) with ReLU activation, binary cross-entropy as loss,

and adam optimizer is the work proposed by the authors. The number of sensors used

in this work is less, and spatial information’s not considered to detect plant diseases.

Maize Leaf Disease Detection: LeNet-based DCNN-based maize plant leaf disease

classification approach was proposed (Ahila et al. (2019)). The maize leaf is influenced

by various factors caused by bacteria and fungi. Bacterial diseases are northern leaf

blight and gray LS, and fungal disease is common rust. All the raw images were resized

to 64× 64; then, Principal Component Analysis (PCA) was employed on the resized

images to make the features less correlated. The authors concluded that the proposed

approach obtained a detection accuracy of 97.89% with a kernel size of 3× 3. The

images used for the study are from a conditioned environment.

Haider et al. (2021) proposed a wheat disease detection approach by employing a

multimodel dataset. The dataset consists of an image with the bunt, sooty mold, and

fusarium blight disease samples. The authors collected the images on the farmland

and used crowdsourcing, where 200 farmers from different regions shared the wheat

plant disease and healthy images. Conducted an empirical study by considering various

DLMs such as AlexNet, VGGNet, ResNet50, and sequential CNN. This approach could

be enhanced for early detection of the diseases of the crop and also could utilize the

UAV to monitor the crop for early detection in in-farm to take timely action.

Yu et al. (2021) proposed an improved DLM by employing K-means, VGG19, and

CNN to detect the three corn diseases. K-means is used as a preprocessing; each pixel is

split into different clusters such as 4, 8, 16, 32, and 64, and each time the cluster center

is updated until all the pixels passed; further proposed a CNN model by considering

0th,5th,10th,19th, and 28th layers of VGG19 to extract the features and softmax as an

activation function in the classification layer. The authors could consider the different

kinds of diseases with different conditions. The performance could further improve

with state-of-the-art optimization approaches such as Swarm Optimization (SO) with

cross-fold validation.

Amin et al. (2022) proposed an approach to extract the most efficient features by
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employing EfficientNetB0 and DenseNet121 to detect corn plant diseases. In DLMs,

the first few layers extract the global features, and the deeper layers extract the local

features. Each DLM extracts different features to enrich the feature set and enhance the

classification result, fusing the features extracted by EfficientNetB0 and DenseNet 121.

This work could also use augmentation approaches with different DLMs and feature

fusion techniques.

Singh et al. (2022) proposed maize plant disease detection approach by employing

AlexNet. It has 11 layers with convolutional, batch normalization, max-pooling layers,

ReLU activation function for intermediate layers, and softmax activation for the classifi-

cation layer. Conducted an empirical study with 25, 50, and 100 epochs and attained an

accuracy of 99.16% for 100 epochs, and the performance is better than Artificial Neural

Network, SVM, and VGGNet. The limitation is that this study is a comparative study

using a pre-trained AlexNet with two kinds of diseases. This could be explored with all

the diseases of maize, and the authors could use state-of-the-art DLMs to classify the

images.

Mango Leaf Disease Detection: Singh et al. (2019) proposed mango leaf Anthrac-

nose disease detection using Multilayer CNN (MCNN). This work initially classifies

the input image as a mango leaf or not, then recognizes the mango leaf as either healthy

or diseased. For this study, the authors used two classes of mango leaf and two classes

of other plant leaf datasets. The limitation is initially the images are checked with

mango leaf or not, for this authors have used only one set of other plant leaf images,

this could be extended with many other plants, then the authors have used to detect only

Anthracnose disease of mango leaf, this also could be extended with all the diseases of

the mango tree.

Rao et al. (2021) proposed mango and grape leaf disease detection by employing

Transfer Learning (TL) using AlexNet with ReLU activation function, SGD as an opti-

mizer, learning rate with 0.0001, and dropout layers to avoid the overfitting and attained

99.03% detection accuracy. The dataset used in this study is a self-acquired dataset. In

this work, the authors have trained the model with just eight epochs, the early detection

of the disease is not handled, and the images used in this experiment are captured in

controlled conditions, which do not have external factors.

Mia et al. (2020) proposed mango leaf disease detection based on SVM and attained

80% detection accuracy. The authors have developed the model using a neural network
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with an ensemble approach using a self-acquired dataset. The model has not achieved

good performance with respect to accuracy and has not used any image segmentation

techniques since the images were captured by UAV. Saleem et al. (2021) proposed a

mango leaf disease detection using CNN to extract the features; the authors have ex-

tracted the features based on the structure of the mango leaf vein, further classified the

images using 10 different Machine Learning classifiers, and attained a 99.5% detection

accuracy with SVM. The authors have collected 135 images with three classes. The

dataset size is very tiny to train the deep learning model.

Peach Leaf Disease Detection: Zhang et al. (2019) proposed peach leaf disease

classification by employing TL-based on AlexNet (TLAlexNet). This method was com-

pared with other Machine Learning algorithms such as K-Nearest Neighbors, SVM, and

Backpropagation. The t-Distributed Stochastic Neighbor Embedding (t-SNE) algorithm

visualizes the attributes of the convolutional first and the last layer. The authors have

used only one disease of the peach plant, and the dataset size is very small to use the

Deep Learning approaches.

Pepper Leaf Disease Detection: Ahmad et al. (2021) proposed pepper plant dis-

ease detection by addressing class imbalance and overfitting issues. The authors have

employed data synthesis and Generative Adversarial Networks (GAN) data argumenta-

tion to address the class imbalance since class imbalance deteriorates the model’s per-

formance. The authors have proposed a step-wise TL; instead of freezing out the layers,

if the loss saturates, un-freeze the layers and train the model for a certain number of

epochs. The authors observed the best result at 60% frozen layers. For the experiment,

various DLMs were employed; MobileNetV3 performed better compared to other mod-

els. The number of images per class is not mentioned in the article. This work further

improved with UAV images with a cloud approach and state-of-the-art Deep Learning

approaches with an image segmentation approach to handle the complex images and

detect the diseases in the farmland.

Mathew & Mahesh (2022) proposed a pepper disease detection approach by em-

ploying YOLOv5. Used pepper dataset from PlantVillage (PV) for training and the

model has been tested by using the images collected from farmland. YOLOv5 is an

object detection model; it builds a bounding box for the detected object. Augmenta-

tion Technique (AT) was employed, such as scale, color, and mosaic, where mosaic

augmentation fuses the images with a specific ratio, which resolves the issue of small

object detection. This work used only the disease of pepper; this could be enhanced
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with all the diseases of the pepper plant.

Rice Leaf Disease Detection: A DCNN-based paddy plant leaf disease- detection

approach was proposed by another study (Lu et al. (2017)) to ascertain 10 common

rice plant diseases; its motivation is to provide a simple system to detect the diseases

in early-stage. The DCNN extracts the attributes automatically from the raw input

images by using the sparse Auto Encoder (AE). The limitation is that this work further

improved with state-of-the-art object detection algorithms such as Boltzmann Machine

and also trained the model with unlabelled images.

Some studies proposed an optimized DNN for detecting and classifying paddy plant

leaf disease (S & Vydeki (2020)). It uses K-Means Clustering (KMC) to segment the

images into healthy parts and diseased parts. Extract the color and texture features by

employing HSV and Gray-Level Co-Occurrence Matrix (GLCM), respectively. Then,

classify the data using optimized DNN, where DNN updates the weights by setting a

threshold. When an attained classification result is unsatisfactory, then the feedback is

sent back to the segmentation stage. The weight updating task is tedious; this takes

several rounds when the dataset is huge.

Joshi et al. (2022) proposed rice leaf diseases classification by employing CNN.

The authors have collected 442 images from the farmland belonging to healthy, bac-

terial, and fungal classes. The authors proposed two superficial convolutional layers

with batch normalization and max-pooling followed by three FC layers and a softmax

activation function. The limitation is that the images used in this work were very few,

with 442 images with three classes.

Patil & Kumar (2022) proposed rice leaf disease detection by employing CNN with

IoT to extract the data such as moisture, nitrogen, potassium, and phosphorus details.

Along with soil and environmental details, 3200 RGB images were collected using the

camera. The authors have proposed the fusion network model by employing an MLP

network for sensor input and CNN for RGB data, then fusing the feature extracted

in two different models to detect the rice disease. This work could further improve

by collecting hyperspectral images using sensors and UAV images which makes the

system more robust. To the best of our knowledge, the details such as temperature and

humidity, and soil moisture details not provide information to detect the diseases in the

plant.

Soybean Leaf Disease Detection: Wu et al. (2019) proposed a Deep Learning-
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based soybean plant leaf disease recognition approach by using a data AT. The effect of

batch size and the number of iterations on the classification capability of the proposed

approach is also discussed. The observation is that this is a comparative study to mea-

sure the performance of the model with different hyperparameters variation, such as the

number of iterations and different batch sizes.

Strawberry Leaf Disease Detection: Shin et al. (2021a) proposed strawberry plant

leaf disease detection approach, state-of-the-art Deep Learning approaches were em-

ployed with the strawberry dataset, and the strawberry plant leaf images were captured

from Baltimore Farm, Millen Farms, USA. The limitation of this study is that it consid-

ers the infected images, not specific to plant is affected by what kind of diseases; this

work improved with different diseases of Strawberry plant with complex images.

Sugar-Beat Leaf Disease Detection: Updated Faster R-CNN (FR-CNN) approach

was employed to classify the plant leaves spot disease in sugar-beet (M & Adem (2019)).

The authors claim that FR-CNN could not segment the diseased part of the leaf as a dis-

ease and the healthy part as healthy. Consequently, some of the healthy parts were

segmented as a disease due to shadow, and also, all the disease parts are not recognized

correctly; so, there is a need to change the parameters of the CNN by updating the

FR-CNN. The changes were made in CNN parameters in accordance with the input im-

ages.The limitation is that the number of images used in this study is very small, which

consists of 155 images for four classes to train the DLM.

Nagasubramanian et al. (2021) proposed an approach by employing CNN and en-

semble SVM with IoT to detect sugar beet diseases. The authors used various sensors

to collect information such as temperature, humidity, soil moisture, etc. The authors

have collected 600 hyperspectral images by using HySpexHD. To classify the diseases

of sugar beat, ensemble SVM is used, which is non-linear with multilayer classifiers,

and also CNN is used. The authors did not disclose the number of images collected

and used for training and testing the model. This model further improved to find the

nutritional deficiency of the plant using various sensors to collect the soil, climate, and

environmental information.

Tomato Leaf Disease Detection: Deep Learning-based approach is proposed to

classify and visualize the symptoms of tomato disease (Brahimi et al. (2017)) by consid-

ering the PV dataset (Hughes & Salathé (2015)) that consisted of 14,828 tomato leaf im-

ages with nine different diseases. Two CNN models, such as AlexNet and GoogleNet,
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were used with the intention of refining plant disease detection. Pre-processing steps

are applied to avoid the background influence on detection accuracy; thus, the back-

ground of the image was replaced with black color, and all the original images were

re-scale to 256×256. The feature extraction step was used to extract the features using

wavelet moment, Gabor wavelet transforms, and color moment. The occlusion method

is used to visualize the symptoms of the disease. The authors have used a pre-trained

model for training the model, this can be improved using state-of-the-art algorithms to

minimize the size of the trained model and computational cost, and the images used in

this study are taken in a conditioned environment.

Abbas et al. (2021a) proposed tomato plant disease detection approach based on tun-

ing the hyperparameters of DenseNet121 with softmax as an activation function with a

learning rate of 0.0001; two new convolutional layers were added to the DenseNet121

just before the FC layer with ReLU activation. Employed conditional generative ad-

versarial network to enhance the dataset. Limitations of this work are, used the images

taken in a conditioned environment, and the different stages of the plant diseases are

not considered.

Vadivel & Suguna (2022) proposed a tomato plant disease detection approach by

using a PV dataset and fast-enhanced CNN with the mask, extracting the RoI with

pixel-wise and further align the RoI to segment the boundaries of each RoI. To retain

the spatial information, used 3×3 convolutional channel with one pixel. The proposed

enhanced CNN has five layers with max-pooling in each layer and softmax as the acti-

vation function. The limitation is images used in this study are taken in a conditioned

environment.

Zhou et al. (2021a) proposed a Restricted Residual Dense Network (RRDN) to de-

tect ten tomato diseases. DenseNet cumulative all the previous and subsequent layers,

enhancing the network’s capability with fewer parameters. The residual network re-

solves the gradient vanishing issue by skip connections; the Residual Dense (ResDense)

network takes the benefits of both the Residual and DenseNet; ResDense generously ex-

tracts deeper features. Further, Optimizing ResDense Network, then trained to detect

the tomato diseases with 95% detection accuracy. This work could be further improved

with IoT and sensors to collect other information and detect leaf diseases with nutri-

tional deficiencies.

Chug et al. (2022) proposed a hybrid approach to detecting tomato plant diseases.
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Preprocess the images by employing a bilateral filtering approach to remove the noise

and background, then segment the plant leaf by employing K-means clustering. Extract

the features using EfficientNetB0-B7 and then feed these extracted features in different

combinations to classify using Machine Learning classifiers such as Linear Regression,

KNN, Random Forest (RF), AdaBoost (ADB), and SGB. EfficientNetb3 with ADB and

Stochastic Gradient Boosting (SGB) attained the best accuracy of 100%. The limitation

is that the dataset is small, with 155 images for two classes.

Ashwinkumar et al. (2022) proposed a tomato plant disease detection approach by

employing Optimal MobileNet-based CNN (OMCNN). Preprocess the tomato leaf im-

ages with bilateral filtering and a Kapur threshold-based approach to segment the im-

ages to get the RoI. MobileNet is used for feature extraction to enhance the model’s

performance, which optimizes the hyperparameters by employing emperor-penguin-

optimizer, another extreme learning machine used as a classifier, and attained the best

precision of 0.985. The dataset used in this study is imbalanced, and in class, it has just

60 images; this makes the DLM poorly trained.

Few works considered Unmanned Ariel Vehicles (UAV) images for the plant leaf

disease classification. Research (Kerkech et al. (2018)) proposed a model for grapevine

disease classification in vineyards using UAV images with CNN and color information.

In the proposed method, the authors have used the LeNet-5 with different color spaces.

Vegetation Indices (VI) with the different fusion of color spaces and different color

spaces with VI were used to obtain the related fusion of feature spaces that steer to

improve the accuracy. The resulting model was used for the detection and classification

of the diseased area. This work used less labelled dataset; this work also could be

enhanced by a UAV multispectral image dataset.

Tea Leaf Disease Detection: UAV images were used for tea leaf disease detection

by using a low shot learning method proposed by a few researchers (Hu et al. (2019)),

to generate the different types of disease spot images, Conditional Deep Convolutional

Generative Adversarial Network (CDCGAN) with conditional labels were used, and

VGG-16 to detect the disease. The limitation is, Tea is a plantation crop, where a broad

area covers the plantation; a UAV-based plant disease detection approach is essential;

this could be done with more images to train the model.

Wheat Leaf Disease Detection: A Deep Learning-based infield automatic wheat

disease detection approach was proposed by a study (Lu et al. (2017)). Deep and multi-
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ple instances learning-based supervised learning framework for wheat disease detection

was proposed, which can work in complex background infield wheat images.

Another study (Picon et al. (2019)) proposed Residual Neural Network-based DCNN

for wheat disease detection by developing a mobile application. It is able to produce

classification results within 5 seconds, and it also stores the captured image in the server

for posterior statistical analysis.

Multi-plant Leaf Disease Detection: Most of the existing work considered datasets

with multiple plants for their research. In the following, discuss the works which con-

sidered multiple plant leaf images. CNN-based plant leaves disease detection method

is proposed by some researchers. (Ferentinos (2018)). Further, the author has used five

different DLMs in their work, such as AlexNet, AlexNetOWTBn, GoolgeNet, Over-

Feat, and VGG. The AlexNetOWTBn and VGG models achieved the highest detec-

tion accuracy; additionally, the authors experimented with original images by training

AlexNetOWTBn and VGG models with more epochs.

Jiang et al. (2021a) proposed a multi-task method by sharing the multiple related

parameters for each task to detect the paddy leaf disease detection using VGG-16 and

attained 97.99% and 97.56% detection accuracy for paddy and wheat, respectively. This

approach used only 360 paddy leaf images with three classes and 240 wheat leaf images

with two classes. The dataset used in the study was very small, not considering all the

diseases of the plants.

A DCNN-based plant leaves detection approach was proposed by some studies (G

& Arun (2019)), in which the image transformation is applied to reduce the overfitting.

A total of 55,448 images were created for training, and 61,486 images were created

using data augmentation. The DCNN was trained separately using two datasets; one

with augmentation and another one without augmentation. The images used in this

study are taken in a conditioned environment; complex images could be used.

Multi-functional-based plant leaves disease detection approach called Plant Disease

Diagnosis, and Severity Estimation Network (PD2SE-Net) was proposed (Liang et al.

(2019)). It uses the union of the residual network and Shuffle-NetV2. The ShuffleNet-

V2 is used to minimize the computational convolution. It engages the shuffle-V2 chan-

nel of the residual block so as to split the channels; this, in turn, recognizes the plant

species, classifies the diseases, and estimates the severity of the disease. This work

could be further explored with an application on smart devices.
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One study proposed (Kamal et al. (2019)) a Depth-wise Separable Convolutional

(DSC) approach to classify various plant leaf diseases with Reduced-MobileNet, Mod-

ified MiobileNet, and MobileNet DLMs. The study used DSC, which employs each

kernel filter channel with only one input channel, and the resulting output channels

were mixed by a PointWise Convolution (PWC). This approach further explored the

diseases that affected the other parts of the plants, such as the stem, roots, etc.

Delnevo et al. (2021) proposed an IoT-based Deep Learning approach to detect var-

ious plant diseases. The authors employed IoT devices and mobiles to gather informa-

tion such as soil moisture, temperature, and solar rays and also employed crowd gather-

ing to collect the images and also the labeling, where the user takes the leaf image and

uploads it to the cloud-based system by using the app which is developed for disease

detection. The authors collected six user feedback by setting a few questionnaires. For

classification purposes, DenseNet121, MobilaNet, MobileNetV2, and NasNetMobile

utilized and attained 94.58% detection accuracy with MobileNetV2. This work used

limited dataset used for training; not gathering the large dataset by using IoT could

be addressed. Further, this approach used the pre-trained models, and this could be

analyzed with various different hyperparameters.

Chouhan et al. (2021a) proposed an IoT- based Deep Learning approach to detect

plant diseases. Scale-Invariant Feature Transform (SIFT) was employed to extract the

features from the plant leaf images and then employed Fuzzy-Based Function Network

(FBFN) with an if-then rule to detect the diseases. This work could consider the hyper-

spectral images using sensors, and also this work could make it more realistic using IoT

to collect the images using IoT devices.

Few works considered the multi-plant leaf such that those plants belong to the same

family and cultivate in the same season. These crops are affected by similar kinds

of diseases. Accordingly, a study proposed (Khamparia et al. (2020)) early stages of

seasonal Kharif crops disease detection by using CNN. The authors used CNN models

to extract the features and then detect the diseases based on CNN and Artificial Neural

Network and also applied other Machine Learning classifiers such as KNN and SVM.

The number of images used for this study was very less, with 600 images, which is very

small to train a DLM. This work can be further enhanced by employing a deep stack

approach and also with belief-network.

Aravind & Raja (2020) experimented with various DLMs such as AlexNet, VGG-
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16, VGG-19, GoogLeNet, ResNet-101, and DenseNet-201 on diverse plant datasets

such as eggplant, beans, ladies finger, and citrus and attained the best detection accuracy

of 90% with VGG-16 and all other models performance was low in comparison to

VGG-16. The authors observed that the cercospora of brinjal and canker of citrus were

miss-classified since these two diseases share similar visible features. The limitation is

that the model was trained with just 20 epochs with a limited dataset; the experimental

result further improved with a larger dataset and more epochs.

Barburiceanu et al. (2021) proposed a CNN with a Machine Learning classifier to

detect the various plant diseases on the Outex-TC-00013 and PV datasets. Extracted

the texture features with the AlexNet, VGGNet, and ResNet by removing the FC layer;

further employed SVM with Radial Basis Function (RBF) as a classifier for disease

detection using the weights generated by the models. The authors have concluded that

this approach performed better than TL with AlexNet, VGGNet, and ResNet. The

PlantVillage dataset is used for image segmentation, which does not have a complex

background; this work can extend with complex background images with more data.

Zhao et al. (2021) proposed plant disease detection by employing Double GAN.

Wasserstein GAN was used to obtain the 64× 64 images output of this fed to super-

resolution GAN to obtain 256×256 images; both are connected serially. Double GAN

ensures that the obtained images have more clarity and more information than im-

ages generated by Deep convolution GAN. For classification, various DLMs were used.

DenseNet121 performed better than other DLMs by attaining average detection accu-

racy of 99.7%. The authors have trained the model with laboratory-conditioned images,

and the model is not tested with the images taken in farm due to the unavailability of

the real scenario images.

Hassan & Maji (2022) proposed a CNN model modifying the InceptionNet by em-

ploying DSC and PWC. DSC is for filtering, and PWC is to combines the output gen-

erated by DSC. Further, DSC independently maps the channel and spatial dimension to

improve the efficacy and then de-couples channel and spatial correlation. The proposed

approach outperformed the other DLMs. The limitation, this work could be explored

with state-of-the-art unsupervised clustering techniques.

Liu et al. (2021) proposed a three-staged DLM to detect 271 different plant diseases

with 220,592 images. The first stage is Lesion re-weighting based on clustering, which

considers all the patches of the image and assigns the unique weight for each patch while
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performing clustering. During the second stage, assigns the weight to every loss. In the

third stage, the features extracted from the second stage and corresponding weights

from the first stage are combined to get the weighted features by employing LSTM.

The model is slow due to the clustering process prior to training; this approach further

extends to analyze the random patches present in the images and handles an unbalanced

dataset.

Zhai et al. (2022) proposed an enhanced DLM; it has two stages. In the first stage,

train the network with the original noisy labels; in the second stage, integrate the meta-

learning with improved components to enhance the lenity of noise with various simu-

lated small subsets with spurious labels for training. Further, apply the high penance for

higher loss and less for less loss to avoid overfitting. This approach provides a robust

model for the large dataset with noisy labels. The limitation is that this work used the

PV dataset with various noise; this could be done with noisy images to make it more

realistic.

Paymode & Malode (2022) proposed a multi-crop plant disease detection approach

by employing VGG16 on grape and tomato plant datasets. To avoid overfitting, utilized

data augmentation techniques such as GAN, and Neural Style transfer. Color, texture,

and shape information is extracted to detect diseases. VGG16 outperforms the other

models by attaining 98.40% for the grape and 95.71% for the Tomato plant dataset.

This work could be further extends with complex images and an extended dataset which

minimizes the use of AT.

Gajjar et al. (2021) proposed a hybrid model, the first model classifies the leaf, and

the second is to detect the disease in the leaf. PV was employed to train leaf classifi-

cation and disease detection models. Data AT, such as flip, brightness, and cropping,

were used to enhance the size of the dataset. For classification single shot detector with

MobileNet was employed, and for disease detection CNN model was used. This work

could be extended with UAV images, and adapting IoT in the work results in a more

robust system. This work also could use image segmentation approaches to remove the

background noise.

Sai Reddy & Neeraja (2022) proposed a plant disease detection by employing the

DenseNet model; it has three stages; in the first stage, train the model with apple, grape,

potato, and strawberry datasets and attain 100% training accuracy. In the second stage,

detect the disease on the testing dataset. The third stage suggests an appropriate precau-
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tionary measure for the detected diseases. Experimented with different ratios of train

and test split such as 30:70, 40:60, 50:50, 60:40, and 70:30 for training and testing,

respectively, and attained 100% training accuracy for 50:50, 60:40, and 70:30 for train

and test ratio. The limitation is that the images used in this study are taken in controlled

conditions, and the complex images could be used for training with state-of-the-art

Deep Learning approaches.

Alguliyev et al. (2021) proposed a hybrid model; in the first stage, extracted the

features using the CNN model with RMSprop as an optimizer, batch size 100, learning

rate 0.001, and 10 epochs. The second stage is for classification by employing GRU,

which has two layers, first with ten neurons second with ten neurons, followed by a

fully-connected layer with softmax as an activation function. The limitation is to test

the model for only two classes; it could consider all the diseases of the cucumber plant.

Hua et al. (2022) proposed a hybrid model with a multi-feature fusion approach to

detect plant diseases. The authors used the Gabor filter and color detection indepen-

dently to extract the features and fuse the obtained features for decision-making and

further employed R-CNN for the detection. To enhance the result, a membership clas-

sification retrieval system was used.

Cristin et al. (2020) proposed a hybrid model to detect various plant diseases. It has

three stages. In the first stage, preprocess the images using fuzzy C-means to segment

the lesions of the plant leaf, then in the second stage, extract the features using Infor-

mation gain, entropy, and histogram-based gradient. The third stage is the training of

the classification model; in this, Rider-Chokoo Search Algorithm (R-CSA) based Deep

Belief Network (DBN) was trained and tested on different plant datasets. This work

can be further extended to in-farm plant leaf images and an in-filed disease detection

approach.

Kharif crops used in the experiments were soya, rice, and corn. In the experiments,

image dimensions were reduced, minimizing the training time. The proposed model

achieved better disease detection accuracy, faster generalization, and convergence po-

tentiality than the other Machine Learning models.

Some studies proposed (Khamparia et al. (2019)) Deep Convolutional Encoder Net-

work (DCEN) to detect the diseases of seasonal crops. In this work, researchers used

the encoder to extract the useful features of 3 different plants and five kinds of diseases;

this technique achieved 100% detection accuracy with 3×3 filter size. This model out-
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performed as compared to conventional techniques. Seasonal crops which were used in

this work were potato, tomato, and maize.

Autoencoder convolution with regularizing the deep clusters was proposed by Gokul-

nath & Gandhi (2021); in this method, features extracted from a maize leaf image be-

long to a different category by employing the autoencoder with local preservation and

regularization approach. It has two phases; in the first phase, it extracted the hierarchi-

cal features using the stacked convolutional layers and autoencoder, then applied the FC

layers. In the second phase, regularize the network by employing the Kullback–Leibler

divergence, which assists in forming the cluster by avoiding the outliers to form an inde-

pendent cluster. This work uses the learning rate as 0.01, which lacks the tiny features,

and the dataset used does not have complex factors.

Qi et al. (2022a) proposed enhanced YOLOv5 for classifying tomato plant diseases.

To make the work more realistic, the authors collected the images with a complex back-

ground and applied Zero-mean Gaussian noise and AT, such as rotation and mirroring,

to avoid overfitting. To enhance the detection accuracy, detect the objects in the images

by applying a bounding box and extracting features by applying spatial and channel at-

tention. The spatial attention mechanism is used to extract the local features, and chan-

nel attention is used to gain knowledge of features associated with each feature channel

and attain the weights associated with them. The attention mechanism approach can

further be optimized and segmented the images using state-of-the-art methods to mini-

mize the missclassification.

Ji & Wu (2022) proposed pixel-level severity identification of black grape measles

by employing DeepLabV3 for segmentation purposes and ResNet50 as a base model

to extract the most prominent features. Encoder and decoder used in DeepLabV3, an

encoder is used to extract the semantic information and minimize the feature maps and

conceptual knowledge; the decoder is used to retrieve the spatial expertise with the help

of keen edges of the object.This work could be further improved with complex and

complex images and also can be further extended with UAVs.

Kendler et al. (2022) proposed a multi-patch approach to classify the barley, potato,

and wheat diseases by employing various Deep Learning techniques. The authors col-

lected images in farmland by considering illumination, intensity, different pixel, and ge-

ometric conditions. The multi-patch approach splits the image into numerous patches;

this improves the dataset size by retaining the spatial information and makes the dataset
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more realistic to get a robust model with the generalized result. The multi-patch ap-

proach improves the classification result of the unseen images taken from other areas

of the same crop. This work can be further extended with UAV and airborne images to

make the system more realistic and can adopt for UAVs.

Transfer learning is a procedure that makes use of the knowledge acquired by the

system for solving one problem with varied yet related problems. This enhances the

results in prediction rate and shortens the training time. TL was also used in various

plant disease detection systems, such as peach (Zhang et al. (2019)).

Fine-tuning the DLM such as Inception v4, VGG-16, ResNet, and DenseNet121 for

plant disease detection was compared by one of the studies (Too et al. (2019)); in this

study, the PV dataset was used with 80% and 20% train, test split, respectively. This

is a comparative study of the performance of the pre-trained models. SGD optimizer

was used with a learning rate set to 0.001. This study is a comparative study, perfor-

mance of the models were not tested with external testing data. TL based on GoogleNet

was used to detect different plant diseases (Barbedo (2019)). To overcome the lack of

suitable datasets, the authors used only the independent lesions and spots for detection

purposes instead of using the whole leaf image since every lesion has its feature. The

mutability of the data was enhanced without the additional images using this technique.

The authors used the patches to enhance the dataset and detect the diseases; this can be

further extended with a larger dataset generated in farmland with whole leaf images.

TL with VGG-16 was used for feature extraction in Millet crop images, which was

pre-trained from the ImageNet (Coulibaly et al. (2019)). It had three main steps, image

acquisition, feature extraction using a pre-trained model, and disease classification. The

employed method steers clear of overfitting by early stopping technique with less val-

idation loss. This work could be further improved with the state of the Deep Learning

approaches and algorithms for image segmentation and classification.

2.2 Single Network-based approaches with hyperspectral images

A study proposed (Park et al. (2018)) a DNN-based Marssonina blotch or blot disease

detection approach for Apple Leaf hyper-Spectral (ALHS) images. Minimum redun-

dancy and maximum relevance attribute selection approach were employed to extricate

the pivotal bands from hyperspectral images of apple leaf. It demonstrated better detec-

tion accuracy than RGB images using DNN for disease classification. This work could

analyze the other Dimensionality Reduction Techniques (DRT) available.
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3D Deep Learning soybean plant disease classification by employing hyper-spectral

stem images was proposed (Koushik et al. (2019)). 3D CNN was the potential for

spatial-temporal features, and it considers spatial and spectral correlations concurrently.

They also discovered the most tactful wavelengths that were used for categorizing in the

near-infrared region. The authors broaden the conviction of saliency maps to visualize

the pivotal spectral bands for classification. 3D CNN achieved 95.73% detection accu-

racy. This work could use state-of-the-art DRT to select the pivotal spectral bands.

Pérez Roncal et al. (2022) proposed an approach to classify the esca disease of

grapes using hyperspectral images, and the authors collected 72 images infected by

Esca with a 900-1700nm spectral range. Preprocess the data using mean centering,

smoothing, multiplicative scatter correction, standard normal variate, first and second

derivatives, and PCA for dimensionality reduction. PWC with Partial Least Squares

Discriminant Analysis (PLS-DA) approach was employed; further, variable importance

in projection and selectivity ratio was employed to enhance the selection of best wave-

lengths for classification of Esca. This work could be further extended to analyze the

spectral data to handle the images with similar symptoms; some plant diseases might

have similar symptoms further, and this can be extended to other parts of the plant.

Bagheri et al. (2018) proposed pear leaf disease classification using hyperspectral

images with Soft Independent Modeling of Class Analogy (SIMCA). The authors have

collected 106 hyperspectral images infected by fire blight with different bandwidth

ranges and applied PCA for dimensionality reduction. Further, VI and Near-infrared

imaging (NIR) were utilized for detection, which helps to observe the color changes

in the leaf periodically. NIR is more reliable for recognizing early disease detection.

The limitation is that the dataset used was very small, with 106 images, and could use

state-of-the-art DRT to select the suitable bands for classification.

Furlanetto et al. (2021) proposed soybean disease detection by using hyperspectral

images. The authors have collected various stages of the soybean rust disease images

with a spectral range of 350 to 2500nm. To monitor the variance of the reflections,

PCA was used. To avoid preprocessing the images, a plant probe device was used;

the plant-probe device avoids illumination interference and collects the data with re-

flectance spectral without noises, scattering, or attenuation with the environment and

device. The stepwise and DISCRIM model was utilized to select the useful bands; ulti-

mately, 87 bands were selected. This work considers only one disease of the soybean;

this could be extended to all the diseases of the soybean plant.
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2.3 Hybrid Deep Learning approaches

Combining different network models for the classification of the plant diseases, such

as combining the features learned by different models and sharing the weights of the

different models, is called a dual network model.

An ensemble model by employing Kuan Filtered Hough Transformation (KFHT)

with Re-weighted Linear Program Boost Classifier(RLPBC) for plant disease detection

was proposed by Deepa & Nagarajan (2021). KFHT is a noise remover; noise asso-

ciated with each pixel that diverges from the mean is removed and further enhances

the caliber of the images. RLPBC act as a classifier on the PV dataset. RLPBC finds

the weak learners, ensembles the results, and weights further re-weighted those weak

learners for the corresponding training error.

A lightweight hybrid model with fewer parameters was proposed by modifying the

Inception model; the authors achieved fewer parameters by replacing the sequential

convolutional layers of the Inception model with DSC and PWC. BN has pertained to all

the layers except the hybrid part of the model, which enhances the model’s performance

and concatenates the modified Inception model (Tuncer (2021)). This work could be

further enhanced the with state of the art DLMs and compared them with other state-

of-the-art models.

Nandhini et al. (2022) proposed Gated Recurrent CNN (GR-CNN), a combination

of RNN and CNN, to detect banana diseases. Banana images are taken for the research

and preprocessed the images by employing a gated recurrent unit. GRU is faster than

LSTM since it has fewer tensors and three gates each for an update, reset, and memory.

Update the gate to add or remove the information, and reset the gate to forget past

knowledge. Batch re-normalization is employed in the first layer of the network instead

of BN to perform shifting and scaling, and it uses the samples individually to normalize

the data. This work can be further enhanced to tune the best hyperparameters and

optimization algorithms to make the system more robust and lightweight.

Li et al. (2022a) proposed Fast-Wide and Deep Feature Extraction Block (FWD-

Block) to enhance the dataset size with better quality, extracted depth, and global fea-

tures by employing ResNet and Inception-V1, respectively, with DCGAN. To minimize

the computational cost of the training model, DSC with discriminator and Selu activa-

tion was applied. DSC has two layers, first with a single channel filter and second with

point by point convolutional layer; further, to improve the efficacy, DSC independently
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maps the channel and spatial dimension and then de-couples channel and spatial cor-

relation; further, for classification, Both channel Residual Attention Network (B-RAN)

was employed. The GAN approaches need some attention to find the appropriate de-

grees and styles to enhance the dataset such that the dataset minimizes redundant data.

Turkoglu et al. (2021) proposed an ensemble Deep Learning approach by employing

six different DLMs to detect 15 classes of different plant diseases of Turkey-PlantDataset,

which consists of 4447 images. Shape, texture, and color-based features are extracted

and ensemble the AlexNet, GoogleNet, ResNet18, 50, 101, and DenseNet201, further

applying the majority voting with SVM as a classifier to detect the diseases. This work

can be further extended with a combination of other State of the art Deep Learning

approaches, further analyzing and selecting the feature reduction approaches to choose

the most prominent features.

.

Multi-network model for apple plant disease detection was proposed by Turkoglu

et al. (2019), employed SVM, CNN, and LSTM model with Ensemble majority voting,

and achieved an accuracy of 99.2%. This model outperforms the pre-trained models,

such as AlexNet with RMSProp, GoogleNet with Adam, and DenseNet with RMSProp.

The authors have used apple leaf images captured by considering various categories

such as light illumination, size, area of the disease, and complex background.

Astani et al. (2022) employed an ensemble approach; the authors designed an ap-

proach that consists of four different approaches to preprocess the images. The first

model employs K-Means clustering for segmentation, and the second model enhances

the contrasts and extracts the features by utilizing the wrapper. The third model is for re-

moving the shadow in the image and extracting the feature by utilizing SIFT. The fourth

model is for the background removal task and extracting the features using GLCM and

GWT techniques. This work is computationally costly, and the testing time is more

as it takes 44 minutes. It can be examined with different classifiers by eliminating the

identical process and also examining with an ensemble combination.

Sathiya et al. (2022) proposed a three-staged hybrid model for herb-plant disease de-

tection. In the first stage, the multi-swarm coyote optimization technique was employed

for segmentation purposes. Enhanced Chan-Vese snake optimization with a Gaussian

kernel was employed in the second stage to extract the most dominant features and to

reduce the dimensions of such features. Fitness-distance balance DNN was employed
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with normalized fitness, and distance value was utilized to classify the leaf and diseases.

The size of the dataset used in the work is very small, with 70 images per class to train

the DLM. The authors have used 700 images to train for ten classes. It can also be

further improved by using hybrid approaches to enhance the performance.

Zhao et al. (2022) proposed Dual Transfer Learning (DTL) by employing Squeeze

and Excitation Network (SENet) and ResNet for various plant disease classifications.

SENet consists of three stages. In the first stage, it squeezes the data by applying H×
W ×C; in the second stage, it uses the unique weights of each channel and develops the

dependencies with them, and in the third stage, it adds the new weights generated from

the excitation by applying multiplication. The second approach is DTL, employing

channel and spatial attention mechanisms to get the most efficient features with ResNet.

This work can be further extended to train the model with complex images and then

connect with IoT devices to detect in the real scenario.

Fan et al. (2022) proposed a CNN model to classify the apple and coffee plant dis-

eases by extracting the semantic information. Extract the different features parallelly by

independently employing Deep Learning and histogram of gradient techniques, fusing

those features to extract the local spatial texture features. To minimize the illumination

histogram of gradient, normalize the image by using Gamma correction; further, to ex-

tract the local features, it calculated the gradient and amplitude of each pixel in the cell

and finally fused all the features generated. This work could be further extended with

a larger dataset with complex images and can analyze the state-of-the-art augmentation

approaches.

Chen et al. (2020a) proposed an approach to detect tomato plant diseases by employ-

ing Binary Wavelet Transform (BWT) with retinex to preserve the texture information

and enhance the image. BWT is to splits the high and low-frequency features; first,

it gathers the low and high-frequency features, and process the obtained features, then

inversely transformed the elements to get the final components. Gaussian convolution

is used as a denoiser. ABC approach is used to segment the tomato leaf, and the B-RAN

model is applied to detect the diseases of the tomato leaf. The images used in this work

are captured in a conditioned environment. This work can be further enhanced with

state-of-the-art image segmentation and noise removal approaches.

Cucumber plant disease detection was proposed by Wang et al. (2021a), DeepLabV3+,

and UNet were employed to separate the complex background and noise of the cucum-
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ber plant images and attained 92.85% detection accuracy. The authors used cucumber

plant leaf images taken from farmland with complex backgrounds. The cucumber plant

dataset has PM disease. Since this method uses two stages to segment the leaf image,

this consumes considerable time; hence segmentation time needs to be reduced.

Khan et al. (2022) proposed a lightweight apple leaf disease detection model; this

has two stages; in the first stage, the model classifies the image either as healthy or

diseased; in the second stage, the classification of the diseases is developed. as part

of the research, the authors collected 5201 apple leaf images with ten classes. For the

classification, EfficientNet, FR-CNN, and YOLOv4 were used and attained an mAP of

42.5% using the YOLOv4 model. The authors have not used a background removal

approach; the dataset is a class imbalance dataset, and some classes have very few

images. The system is 2 stage approach; due to two different stages, the computational

cost is more.

Zhao et al. (2022a) proposed a plant disease detection approach on corn, potato, and

tomato by employing Convolutional Block Attention (CBA) technique with Residual

Inception Network (RI-Net). RI-Net increases the computational complexity of the

network by merging the residuals into the Inception of the CNN; this increases the

number of parameters and enhances the localization of the disease spots by employing

the CBA. CBA utilizes the channel and spatial attention approach to extract the most

prominent features by considering global and local features. The authors have not used

complex images to train the model.

Segmentation can also be used for agriculture-based applications such as harvesting,

vegetable disease detection, and pest detection. Pérez-Borrero et al. (2020) proposed

instance segmentation based on mask-R-CNN to harvest strawberry fruits by segment-

ing ripe fruits and background. Coconut tree leaf diseases and pests were recognized

by employing watershed and KMC-based segmentation approaches and further applied

various Deep Learning approaches for classification (Singh et al., 2021). The mask R-

CNN is considerably a slow process; this would lag in farmland disease detection; this

could be improved with state-of-the-art approaches.

A hybrid model with the Internet of Things (IoT) makes plant disease detection

more efficient and robust. A hybrid plant disease classification approach by employing

neural network model with IoT proposed by (Mishra et al., 2021) to detect the plant

diseases. Images were collected using IoT, and sensors are complex, with more noise.
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The model processed such images by such images by employing a median filter which

extracts the leaf structure, and a segmentation approach, which segments the leaf shades

on a pixel basis. The model extracted the features using pixel-level and segment-level

feature extraction approaches. Finally, employed Ride-NN for classification. This work

is to classify whether the leaf is diseased or healthy; this could be extended to find the

diseases specific with the improved dataset.

Table 1 describes the contrast with the existing plant leaf disease detection ap-

proaches with the following parameters: DLM, dataset, plant name, accuracy, and im-

age types such as RGB, Hyper-Spectral (HS), and Fold Cross-Validation (FCV) used.

The selected parameters are the most commonly used parameters, which directed the

way toward identifying some of the research gaps. Deep Learning is an emerging tech-

nique for plant leaf disease classification. The main limitation of Deep Learning is that

it needs a large amount of input data to train the model.

2.4 Gaps in the litearture
• Plant leaf disease detection is essential where developing countries like India.

Farmers can quickly get the diseases in plants, if any, in the farmland by captur-
ing images of the plant leaves in the farmland itself; this helps the users to take
precautions in the early stage and on time.

• DLMs require a vast amount of processing power since the vast amount of images
is used to train the model. These DLMs can be deployed only on the server, and
users can make use of this through the Internet. These DLMs cannot deploy on
smartphones since the processing power and memory is very less in these sys-
tems. Lightweight DLMs are required such that it can function on smartphones.

• To enhance the prediction results of the disease, make use of the multi-network
model. It can be used for feature extraction. In feature extraction, different mod-
els extract the features separately; it gives the most valuable features, and a multi-
network model can be used for the final prediction of the result; again, each DLM
predicts different outcomes. Only limited works concentrated on integrating mul-
tiple Deep Learning Networks.

• Various image types can be used in the DLMs for plant leaf disease detection,
such as color, grayscale, white and black, and hyperspectral images. Most of the
works considered color images. Hyperspectral images provide more information
as compared to color images.

• Many existing models are designed for large-scale commercial farming, but there’s
a need for tailored solutions that can be applied to small-scale farming contexts
prevalent in developing countries.
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Table 2.1: Comparison of existing Plant Leaf Disease Detection Approaches

Sl.No Authors
Learning
Model Dataset

Plant
Name

Accuracy
(%)

1 Amin et al. (2022)
Feature
Fusion PV Multiple 98.56

2 Arun & Umamaheswari (2022)
PWC
CNN PV Multiple 98.14

3 Astani et al. (2022) Ensemble PV Tomato 95.98
4 Ashwinkumar et al. (2022) OMNCNN PDDB Tomato 98.8p
5 Elfatimi et al. (2022a) MobileNetV2 Beans Beans 92

6 Hassan & Maji (2022) CNN
PV
Rice
Cassava

Multiple
99.39
99.66
76.59

7 Ji & Wu (2022) DeepLabV3+ PV Grape 97.75
8 Joshi et al. (2022) CNN Self Rice 93.25
9 Li et al. (2022a) B-RAN PV Tomato 98.75

10 Mathew & Mahesh (2022) YOLOv5
Self
PV Pepper 0.907 mAP

11 Nandhini et al. (2022) GR-CNN Banana Banana 93.6
12 Patil & Kumar (2022) CNN with IoT Self Rice 93.6

13 Paymode & Malode (2022) VGG16 PV
Grape
Tomato

98.40
95.71

14 Pérez Roncal et al. (2022) PLS-DA Self Grape 97.17
15 Qi et al. (2022a) SE-YOLOv5m Self Tomato 91.07
16 Kendler et al. (2022) CNN Self Multiple 95.4
17 Khan et al. (2022) YOLOv4 Self Apple 88
18 Sai Reddy & Neeraja (2022) DenseNet PV Multiple 97
19 Seetharaman & Mahendran (2022) R-CNN Self Banana 98

20 Shantkumari & Uma (2022)
CNN
KNN PV Grape

96.60
98.07

21 Syed-Ab-Rahman et al. (2022) CNN
Citrus
Kaggle Multiple 94.37

22 Vadivel & Suguna (2022) CNN PV Tomato 99.5
23 Zhai et al. (2022) CNN PV Multiple 94.58

24 Abed et al. (2021)
UNet
DenseNet121 Self Beans 98.31

25 Alguliyev et al. (2021)
CNN
GRU PV Multiple 91.19

26 Chouhan et al. (2021a)
IoT with
FBFN Self Multiple 90.18
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Table 2.1. Comparison of existing Plant Leaf Disease Detection Approaches contd.

Sl.No Authors
Learning
Model Dataset

Plant
Name

Accuracy
(%)

27 Delnevo et al. (2021)
IoT
with CNN Self Multiple 94.58

28 Gajjar et al. (2021)
Hybrid
with CNN PV Multiple 96.68

29 Gokulnath & Gandhi (2021)
Autoencoder
with CNN PV Maize 90.08

30 Haider et al. (2021)
DT
and CNN Self Wheat 97.2

31 Liu et al. (2021)
SeNet154
ResNet152
LSTM

PDD-271 Multiple 90.01

32 Jiang et al. (2021a) VGG-16 UCI Rice 97.22

33 Mishra et al. (2021)
Ride-NN
with IoT PV Multiple 91.56

34 Nagasubramanian et al. (2021)
CNN
with IoT Self Sugar beet 80.1

35 Shin et al. (2021a) ResNet50 Strawberry Strawberry 95.59
36 Singh et al. (2021) CNN Coconut Coconut 96.94
37 Tuncer (2021) Inception PV Multiple 98.88
38 Turkoglu et al. (2021) Ensemble Turkey Multiple 97.56
39 Wang et al. (2021a) DeepLabV3+ Cucumber Cucumber 92.85

40 Yu et al. (2021)
K-means
Deep Learning AI Challenger Corn 93

41 Zhou et al. (2021a) RRDN AI Challenger Tomato 95

42 Zinonos et al. (2021)
LoRa
Deep Learning PV and Self Grape 99.77

43 Chen et al. (2020a) ABC Tomato Tomato 89
44 Zhang et al. (2020a) EfficientNet Cucumber Cucumber 96
45 Andrushia & Patricia (2020) ABC Grape Grape 93.01

46 Chen et al. (2020)
VGGNet
Inception

Rice
Maize

Rice
Maize 92

47 Cristin et al. (2020) R-CSA PV Multiple 87.7

48 Esgario et al. (2020) ResNet 50 Coffee
Arabica
Coffee 97

49 Ji et al. (2020) United Model PV Grape 98.57

50 S & Vydeki (2020)
DNN with
Jaya algorithm Paddy Leaf Paddy 98.90

42



Table 2.1. Comparison of existing Plant Leaf Disease Detection Approaches contd.

Sl.No Authors
Learning
Model Dataset

Plant
Name

Accuracy
(%)

51 Khamparia et al. (2020) DCNN
Kharif
Crops Multiple 93.70

52 Mia et al. (2020) NN Self Multiple 80
53 Aravind & Raja (2020) TL Self Multiple 97.3

54 Zhong & Zhao (2020) DenseNet-121
AI challenger
Global
AI Contest

Apple 93.71

55 Coulibaly et al. (2019) VGG-16 Self Millet 95.00

56 Cruz et al. (2019)
ResNet-50
ResNet-101

Grapevine
Yellows
PV

Grape 99.33

57 Liang et al. (2019) PD2SE-Net
AI challenger
Global
AI Contest

Multiple 98.00

58 M & Adem (2019) FR-CNN Sugar Beat Sugar beat 95.48
59 Pourazar et al. (2019) RF Self Citrus 95.58

60 Hu et al. (2019)
C-DCGAN
and VGG-16 Tea Leaf Tea 90.00

61 Wu et al. (2019) ResNet Self Soybean 94.29
62 Koushik et al. (2019) 3DDCNN Soybean Stem Soybean 95.73
63 Ahila et al. (2019) LeNet PV Maize 97.89
64 G & Arun (2019) DCNN PV Multiple 96.46
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• Capturing the images in farmland are more prone to noise. Training the model
and classifying the plant leaf diseases on noisy input images is challenging.

• Research should focus on optimizing models to run on resource-constrained de-
vices like smartphones or edge devices to facilitate on-site disease detection.

• Precaution measures or prescriptions for plant diseases are essential, which can
be suggested with the classification result.

2.5 Problem Statement and Objectives

2.5.1 Problem Statement

Plant leaf disease detection in real-time is highly essential for farmers to take appropri-

ate action in real-time. Aim of this research work is to propose a plant leaf disease
detection approach

2.5.2 Research Objectives

• Propose an enhanced / modified Deep Learning-based plant leaf disease detection

approach.

• Experimental study on existing noise removal techniques and use best noise re-

moval techniques with proposed approach to measure the detection ability.

• Evaluate the proposed approach by considering two/three plant leaf image dataset.

Use performance metrics such as Accuracy, Precision, Recall, F-Score, and de-

tection time to evaluate the performance of the proposed approach.

In the subsequent chapters, this study tries to solve the research objectives. It starts

with an empirical study on plant disease detection using CNN, then proceeds with an

ensemble-based approach, followed by an adaptive attention mechanism, background

removal, and the EfficientNet method.
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Chapter 3

Plant Disease Detection using Deep Learning Model

The performance of the deep learning model varies with different datasets with different

sets of hyperparameters. There is no standard way or algorithm to fix the number of

layers and neurons or which optimizer is influential for a specific dataset. Tuning the

hyperparameters results in finding the prominent set of hyperparameters to build deep

learning for a particular dataset. In the following sections, plant disease detection based

on Multi Convolutional Layer-based Convolutional Neural Network is explained, and

further, Ensemble DL-based plant leaf disease detection approach is proposed.

3.1 Multi Convolutional Layer-based Convolutional Neural Network

Healthy	and	Diseased
Leaf	Images

Image	Resizer

Multi	Convolutional
Layer-based

Convolutional	Neural
Network

Trained	Classifier

Healthy	or	Diseased
Leaf	Images

Dataset Input	Image

Image	Resizer

Trained	Classifier

Predicted	Class

Training	Phase Testing	Phase

Figure 3.1: Multi Convolutional Layer-based Convolutional Neural Network Classifier

The Multi Convolutional Layer-based Convolutional Neural Network (MCLCNN)

classifier used in this work is shown in Figure 3.1. It consists of training and testing

phases. The training phase is used to train the MCLCNN. This involves Dataset, Image

Resizer, Multi Convolutional Layer-based Convolutional Neural Network, and Trained

Classifier. The trained MCLCNN classifier is used in the testing phase to measure its

classification ability.

The classifier trained with images of smaller size takes less time to get trained.
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However, the classifier is unable to learn several significant features than the one trained

with images of larger size. Thus, the MCLCNN is trained with images of size 224×
224. The MCLCNN used in this study demands that all input images be of the same

size. However, generally raw input images are of distinct sizes. To convert raw images

of different sizes into a pre-defined size 224× 224, Image Resizer is used, and it is

implemented using the Keras package called keras.preprocessing.

There are several hyperparameters available such as the epoch, batch size, dropout,

learning rate, and various activation functions such as Binary step function, Linear func-

tion, Sigmoid, Tanh, ReLU, Leaky ReLU, and Softmax. These hyperparameters are

used to solve complex image classification problems. Epochs are used to train the Deep

Learning-based classifiers with the training dataset. Batch size refers to each pass using

the number of training examples; batch size has three options: batch mode, mini-batch

mode, and stochastic batch mode. Dropout is a regularization technique wherein, dur-

ing the training phase, the randomly selected neurons are dropped or ignored. Further,

this process enables the contribution of these dropped neurons to be removed in the

interim during the forward pass; consequently, the weights don’t get updated during the

backward pass. The use of dropout in the network enables better generalization and

avoidance of the overfitting problem. The learning rate tells the amount of weight up-

dated during the training phase and is one of the pivotal hyperparameters. If the learning

rate is high, the network converges quickly in local optima; however, the process may

get stuck for a low learning rate. The activation function decides whether the neuron

should be activated, i.e., the intelligence received by the neuron is relevant to the given

task or ignored.

Figure 3.2 shows the internal components of the MCLCNN used in this work. It

consists of four convolutional layers with ReLU as an activation function. The first

convolutional layer is set with 32 kernels, followed by a batch of normalization layers.

Batch normalization is used to normalize the output of the previous layer. The second

convolutional layer is set with 32 kernels, followed by the batch normalization layer,

max pooling, and dropout layer. The Max pooling layer takes the maximum value of

each kernel. A dropout layer is used to prevent overfitting, which ignores the randomly

selected neurons. The third convolutional layer is set with 64 kernels, followed by

the batch normalization layer and dropout layer. The fourth convolutional layer is set
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Figure 3.2: Components of Multi Convolutional Layer-based Convolutional Neural Network

with 128 kernels, followed by batch normalization, max pooling, and dropout layer.

The MCLCNN has three fully connected layers; firstly, two fully connected layers use

ReLU as an activation function with 512 and 128 neurons, respectively. The last fully

connected layer acts as an output layer with a Softmax activation function.

3.1.1 Experimental Setup

All experiments were implemented using the Python programming language and exe-

cuted on an NVIDIA DGX Station server with 4X Tesla V100 and 500 TFLOPS.

3.1.2 Dataset Description

In this empirical work, three different plant leaves datasets of PlantVillage dataset

(Hughes & Salathé, 2015) were used, and each dataset consisted of two types of im-

ages: as being diseased and healthy. PlantVillage dataset consisted of 54284 leaf im-

ages, with 14 distinct plants and 26 distinct diseases. All of them were RGB images

of size 256×256. In this experimental work, three distinct datasets of a total of 6,697

images were used, and their details are mentioned in Table 3.1.
Table 3.1: Dataset description

Sl.No Plant Name Class Number of Images Total Number of Images

1 Peach
Bacterial spot 2,297

2,657
Healthy 360

2 Pepper
Bacterial spot 997

2,475
Healthy 1,478

3 Strawberry
Healthy 456

1,565
Leaf scroch 1,109
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3.1.3 Experimental Results

All the original images of size 256×256 were resized into 224×224 using Image Re-

sizer. Each dataset was split into a training dataset and a testing dataset with proportions

of 70% and 30%, respectively, and the same proportion was maintained to conduct all

experiments. Each dataset was used individually to train and test the performance of

the MCLCNN classifier.

A set of experiments was conducted with three different datasets: Peach, Pepper,

and Strawberry. For each of these datasets, experiments were carried out for different

epochs, such as 50, 75, 100, 125, and 150, with a kernel size of 3×3.

The performance metrics used in this empirical study are Accuracy, Precision, Re-

call, and F1-Score (Brahimi et al. (2017), Ji et al. (2020), G & Arun (2019), Wu et al.

(2019), Ma et al. (2018a)). Accuracy is defined as the number of correctly classified

images to the total number of images used.

Classification Accuracy, Precision, Recall, and F1-Score achieved by the MCLCNN

classifier for the first set of experiments shown in Table 3.2. The MCLCNN classi-

fier achieved a minimum accuracy of 87.47% for the Peach dataset with 50 epochs.

The experiments demonstrated that accuracy also slightly increased as the number of

epochs increased. Accordingly, the maximum accuracy attained was 99.25% with 150

epochs. The Pepper plant leaf dataset achieved a minimum of 94.89% and a maxi-

mum of 98.38% accuracy, respectively. The Strawberry plant leaf dataset achieved a

minimum of 94.04% and a maximum of 98.09% accuracy, respectively. The obtained

experimental results show that the MCLCNN classifier performed well, and accuracy

did not fall below the minimum accuracy achieved in the experiments, irrespective of

the number of epochs. MCLCNN performed well by attaining the highest accuracy of

99.25% for the Peach dataset with the 3×3 kernel size.

3.2 Ensemble Deep Learning-based Approach

Plant diseases are the most crucial factors that reduce crop yield. It is essential to

recognize plant diseases in the early stages with a cost-effective approach. None of the

works considered multi-models for plant disease detection to the best of our perception.

An Ensemble DL-based plant leaf disease detection technique is proposed.

48



Table 3.2: Performance evaluation of the MCLCNN for three different dataset with 3×3 kernel
size

Sl.No. Performance Metrics # Epochs
Dataset Name

Peach Pepper Strawberry
50 87.47 95.29 97.66
75 90.60 94.89 95.32

1 Accuracy 100 98.87 95.15 94.04
125 94.24 97.44 98.09
150 99.25 98.38 97.45
50 0.77 0.96 0.98
75 0.91 0.95 0.96

2 Precision 100 0.99 0.95 0.96
125 0.96 0.98 0.98
150 0.99 0.98 0.98
50 0.87 0.95 0.98
75 0.91 0.95 0.95

3 Recall 100 0.99 0.95 0.94
125 0.94 0.97 0.98
150 0.99 0.98 0.97
50 0.82 0.95 0.98
75 0.91 0.95 0.95

4 F1-Score 100 0.99 0.95 0.94
125 0.95 0.97 0.98
150 0.99 0.98 0.97

Figure 3.3 describes the generic view of the proposed Ensemble DL-based plant

leaf disease detection approach. This has many advantages, such as minimizing the

spread in a prediction model’s average skill and increasing the average classification

performance of every contributing model, minimizing the classification errors made by

the individual models, and enhancing the performance of the Ensemble model.

The proposed approach consists of two stages: the training and testing stages. The

input images of different sizes cause problems extracting the image’s relevant features

by the DL-based Models (DLM); some require a similar input size for all input images.

Hence, the image resizer is used in the proposed work.

Each DLM is trained separately during the training phase with labeled plant leaf

images (training dataset). Each DLM learns the features automatically from the input

images, and each DLM hyper-parameters are set to meet the model’s expected robust-

ness. Each trained DLM produces the classification output separately for each input

image, either as a healthy or an unhealthy. The final classification result is based on
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the outcome of all DLMs, such as DLM1, DLM2, ..., DLMN . To infer the final result,

used a majority voting ensemble, which computes the output of each DLM, and the

final prediction outcome is based on the majority of the outcomes of all the DLMs as

per Equation 3.1.

Output = Mode(χA(C j(Z) = i)) (3.1)

The proposed approach is implemented as shown in Figure 3.4, in that AlexNet

(Krizhevsky et al., 2012), ResNet50 (He et al., 2016), and VGG16 (Simonyan & Zis-

serman, 2014) pre-trained model weights are used and establish the new network by

modifying the final layers of the model by stacking the fully connected layer on top of

the pre-trained model with the softmax activation function, and batch size was set to 32.

Further, finetuning each pre-trained model with the dataset Z and corresponding labels

K with the loss function, which is expressed in Equation 3.2.

L(W) =− 1
m

m

∑
Zi=1

K

∑
k=1

[ZiklogP(xi = k)+(1−Yik)log(1−P(Zi = k))] (3.2)

where W indicates weight matrix, m represents training instants, K is class labels, and
P is the predicted probability.

All these models were trained and tested independently. Eight different datasets

were used, Cardamom, Maize, Grape, Potato, and Tomato datasets were used as mul-

ticlass datasets, and Cherry, Pepper, and Strawberry datasets were used as binary class

datasets. All the datasets were taken from the PlantVillage dataset (Mohanty et al.,

2016a). All the images are colored (RGB) of size 256×256; images were given to the

model as per the model’s requirement, and each model expects the input in a different

dimension.

3.2.1 Effects of Base Models:

The proposed study considers AlexNet, VGG16, and RestNet50; since each model ex-

tracts the features differently, each model has a unique technique to extract the features

and classify the image. AlexNet utilizes the local response normalization by normaliz-

ing the local pixel amplifying the stimulated neuron, and it also addresses the outfitting

issues by employing dropout layers. VGG16 replaces the comprehensive kernel filters
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with collective 3×3 kernel filters; this enhances the model’s depth, which encourages

extracting the complex features. ResNet50 resolves the vanishing gradient issue, and

ResNet50 extracts the features once, and it does not try to extract the features again;

instead, it tries to extract newer features. The Ensemble DL approach utilizes all three

models’ unique features and enhances the classification rate, and minimizes the miss-

classification rate.

3.2.2 Experimental Setup

NVIDIA–DGX-Station server with 4X–Tesla–V100 and 500–TFLOPS was used to ex-

ecute all the experiments and train the models, and Python version 3.7.0 was used for

implementation. Input image size for AlexNet architecture was 227× 227× 3; for

ResNet50 and VGG16 architecture, the input image size was 224× 224× 3. 90% of

the dataset was adopted for training, and 10% of the dataset was utilized for external

testing. All the experiments are trained with 100 epochs.

3.2.3 Dataset Description

PlantVillage dataset (Mohanty et al., 2016a) is a widely used dataset. It has 54,284

images of 38 different classes of several plant leaves. In this study, 3467 instances

of the Maize plant dataset were utilized for training, and 385 instances were used for

testing; 4018 and 446 instances of the Grape plant dataset were utilized for training and

external testing, respectively. 1937 and 215 instances of the Potato plant dataset were

utilized for training and external testing, respectively, and 1715 and 191 instances of the

Cherry plant dataset were utilized for training and external testing, respectively. 1970

and 219 instances of the Pepper plant dataset were utilized for training and external

testing, respectively, and 1408 and 157 instances of the Strawberry plant dataset were

utilized for training and external testing, respectively. 16344 and 1816 instances of the

Tomato plant dataset were utilized for training and external testing, respectively.

The cardamom plant dataset is used; it has a total of 1724 images. 1552 and 172

instances of the Cardamom plant dataset were utilized for training and external testing,

respectively. Table 3.3 explains the dataset used in this experiment.
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Table 3.3: Dataset used in Ensemble DL-based model
Sl.No Plant Class Number of Images

PlantVillage Dataset (Mohanty et al., 2016a)

1 Cherry
Healthy 854

Powdery-Mildew 1052

2
Grape

Black Measles 1383
Black Spot 1180

Healthy 423
Spot 1478

3 Maize

Blight 985
Healthy 1162

Rust 1192
Spot 513

4 Pepper
Healthy 997

Rust 1192

5
Potato

Early Blight 1000
Healthy 152

Late Blight 1000

6 Strawberry
Healthy 456
Scorch 1109

7 Tomato

Bacterial Spot (BS) 2127
Early Blight (EB) 1000

Healthy (H) 1591
Leaf Blight (LB) 1909
Leaf Mold (LM) 952

Mosaic Virus (MV) 373
Septoria Leaf Spot (SP) 1771

Target Spot (TS) 1404
Two Spotted Spider Mite (SM) 1676
Yellow Leaf Curl Virus (CV) 5357

8 Cardamom
Colletotrichum Blight 280

Healthy 781
Phyllosticta Leaf Spot 663

3.2.4 Results and Analysis

In this work, Accuracy, F1-Score, Precision, and Recall were used as performance eval-

uation metrics which are written from equation 3.3 to equation 3.6 respectively (Chen

et al., 2021a); (Abdu et al., 2020).

Accuracy =
TP + TN

FP + FN + TP + TN
×100 (3.3)

F1-Score is the harmonic mean of Precision and Recall, which provides information
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on the stability between Precision and Recall.

F1-Score = 2× Precision×Recall
Precision+Recall

(3.4)

Precision is the proportion of positive predictions that are true.

Precision =
TP

FP + TP
(3.5)

Recall is the proportion of literal positive which was predicted correctly.

Recall =
TP

TP + FN
(3.6)

TP: True Positive; TN: True Negative; FP: False Positive; FN: False Negative;

Table 3.4 describes the performance attained by the proposed model for the multi-

class dataset. The proposed model attained the highest accuracy, 97.75% for the Maize

dataset, 99.25% for the Grape dataset, and 99.53% for the Potato dataset. Table 3.4

also describes the performance achieved by the proposed approach for the binary class

dataset—99.59% accuracy for the Pepper dataset and 100% accuracy for the Cherry

and Strawberry datasets.

Table 3.4 also describes the performance achieved by the proposed model for the

Cardamom plant dataset; it attained a detection accuracy of 99.41%.

By utilizing the unique benefits of AlexNet, VGG16, and ResNet50, experimental

results showed by the proposed Ensemble approach infer that the miss classification

rate is significantly less with different datasets.

The Receiver Operating Characteristic (ROC) is a likelihood curve that evaluates

classification on various threshold settings. It is a plot of the True Positive Rate (TPR)

versus the False Positive Rate (FPR). The ROC curve is also used as the performance

evaluation metric in this work. Performance is evaluated by plotting the ROC curve

for all three DL-based models, such as AlexNet, ResNet50, and VGG16, and the pro-

posed Ensemble model for all the Eight datasets used in this experiment. The ROC
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Table 3.4: Performance Evaluation

Sl.No Plant Dataset
Performance

Metrics
Model

AlexNet ResNet50 VGG16
Proposed Approach
(Ensemble Model)

Performance Evaluation for Multiclass Dataset

1 Cardamom

Precision 0.96 0.98 0.98 0.99
Recall 0.95 0.98 0.98 0.99

F1-Score 0.95 0.98 0.98 0.99
Accuracy(%) 95.32 98.24 97.66 99.41

2 Grape

Precision 0.96 0.98 0.98 0.99
Recall 0.95 0.98 0.98 0.99

F1-Score 0.95 0.98 0.98 0.99
Accuracy (%) 95.01 98.50 97.75 99.25

3 Maize

Precision 0.92 0.95 0.94 0.96
Recall 0.92 0.95 0.94 0.96

F1-Score 0.92 0.95 0.94 0.96
Accuracy (%) 94.48 96.85 96.32 97.75

4 Potato

Precision 0.99 0.96 0.96 0.99
Recall 0.97 0.95 0.94 0.95

F1-Score 0.98 0.96 0.95 0.97
Accuracy(%) 99.06 98.59 98.12 99.53

5 Tomato

Precision 0.93 0.94 0.95 0.95
Recall 0.93 0.93 0.94 0.93

F1-Score 0.93 0.93 0.93 0.94
Accuracy(%) 93.24 93.41 93.61 94.41

Performance Evaluation for Binary Class Dataset

6 Cherry

Precision 1 1 1 1
Recall 1 1 1 1

F1-Score 1 1 1 1
Accuracy(%) 100 100 100 100

7 Pepper

Precision 0.99 0.98 0.99 0.99
Recall 0.99 0.98 0.99 0.99

F1-Score 0.99 0.98 0.99 0.99
Accuracy (%) 99.59 98.77 99.18 99.59

8 Strawberry

Precision 1 1 1 1
Recall 1 1 1 1

F1-Score 1 1 1 1
Accuracy(%) 100 100 100 100
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Table 3.5: Comparison of proposed Ensemble DL-based Model with State-of-the-art Methods

Sl.No Plant Techniques Model
Accuracy

(%)

1
Apple and Cucumber
(Zhang et al., 2018) Fusion of superpixel

K-means
clustering 92.15

2
Multiple plant

(Too et al., 2019)
Finetune the

hyperparameters DenseNet 99.75

3
Maize

(Ahila et al., 2019)
PCA and

Modified LeNet Deep CNN 97.89

4
Multiple

(Kamal et al., 2019)
Depthwise separable

convolution MobileNet 98.34

5
Cucumber

(Ma et al., 2018a)
Comprehensive

color feature Deep CNN 93.40

6
Cucumber

(Wang et al., 2021a) DeepLab-V3 UNet 92.85

7
Cucumber

(Zhang et al., 2019)
Dilated convolution

and spatial resolution
Global pooling
dilated CNN 95.18

8
Rice

(Lu et al., 2017) Sparse auto encoder CNN 95.48

9
Wheat

(Picon et al., 2019)
Super pixel

segmentation ResNet 96

10
Apple

(Jiang et al., 2019)
Single shot

multi box detector DNN 78.8

11
Coffee

(Esgario et al., 2020) Multitask framework CNN 97

12
Peach

(Zhang et al., 2019) Transfer Learning AlexNet 100

13
Grape

(Kerkech et al., 2018)
Color spaces and

Vegetation indices CNN 95.8

14
Multiple

(Khamparia et al., 2019) Encoder Network Deep CNN 100

15
Coffee

(Manso et al., 2019) Color Spaces
Extreme
Learning 99.09

16
Grape

(Cruz et al., 2019) Transfer Learning ResNet 99.33

17
Grape

(Gutiérrez et al., 2021) Color Spaces CNN 94.00

Proposed Ensemble Deep Learning-based Model
Cardamom 99.41

Cherry 100
Grape 99.25
Maize 97.75
Pepper 99.59
Potato 99.53

18

Strawberry

Proposed Ensemble Model Ensemble Model

100
Tomato 94.41
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Figure 3.5: ROC curves: a) ROC-curve for Cardamom dataset, b) ROC-curve for Grape dataset,
and c) ROC-curve for Maize dataset, d) ROC curves for Potato dataset

57



0.0 0.2 0.4 0.6 0.8 1.0
FPR

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

T
P
R

Tomato

VGG
ResNet
AlexNet
Ensemble

(a)

0.0 0.2 0.4 0.6 0.8 1.0
FPR

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

T
P
R

Cherry

VGG
ResNet
AlexNet
Ensemble

(b)

0.0 0.2 0.4 0.6 0.8 1.0
FPR

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

T
P
R

Pepper

VGG
ResNet
AlexNet
Ensemble

(c)

0.0 0.2 0.4 0.6 0.8 1.0
FPR

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

T
P
R

Strawberry

VGG
ResNet
AlexNet
Ensemble

(d)
Figure 3.6: ROC curves: a) ROC-curve for Tomato dataset, b) ROC-curve for Cherry dataset,
c) ROC-curve for Pepper dataset, and d) ROC-curve for Strawberry dataset
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Table 3.6: External testing time for 10% dataset of multiclass and binary class datasets
Sl.No Dataset Name Testing Time

Multiclass dataset
1 Cardamom 2 minutes, 2 seconds
2 Maize 5 minutes 26 seconds
3 Grape 4 minutes 25 seconds
4 Potato 2 minutes, 19 seconds
5 Tomato 50 minutes, 10 seconds

Binary class dataset
6 Cherry 16 milliseconds
7 Pepper 2 minutes, 29 seconds
8 Strawberry 1 minute, 47 seconds

curve exhibits that the proposed Ensemble model outperformed the other three DL-

based models. Figure 3.5a-3.5d and Figure 3.6 a) shows the ROC curve for multiclass

datasets such as the Cardamom, Grape, Maize, Potato, and Tomato plant datasets, re-

spectively. Figure 3.6b-3.6d shows the ROC curve for binary class datasets such as the

Cherry, Pepper, and Strawberry datasets, respectively. The X axis is FPR, and the Y

axis is TPR in both Figure. 3 and Figure. 4. The proposed approach outperformed

compared with state-of-the-art methods. Table 3.5 compares the proposed work with

other works using DL-based plant leaf disease detection; it shows that the proposed En-

semble DL-based plant disease detection approach performed better compared to other

state-of-the-art models.

None of the works consider the testing time for plant disease detection to the best

of our knowledge. The proposed Ensemble model’s external testing time for multiclass

datasets and the binary class dataset is shown in Table 3.6.

3.3 Summary

A robust, low-cost, and real-time plant disease detection approach is essential to as-

certain an early-stage plant disease. Selecting appropriate hyperparameters is one of

the challenges; this work proposed an empirical study on different plant datasets to

find the optimal epoch size to get a precise result. In this work, it is observed that the

performance of the MCLCNN is nearly the same with slight variation. Further, En-

semble DL-based plant leaf disease detection approach is proposed. It addressed the

challenges such as class miss-classification, image capturing conditions, and classifica-

tion time. AlexNet, ResNet50, and VGG16 were used as base models in the proposed
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approach since each base models are unique in nature to classify the images, and each

model extracts independent features. The main objective of the proposed approach is

to minimize the miss-classification rate; this is achieved by employing aforesaid three

different DL-based models; the final classification outcome is based on the majority of

the classifier’s outcomes. This work outperformed the state-art-of-art approaches with

100% and 99.53% detection accuracy for binary class dataset and multiclass dataset,

respectively.

In this work, the ensemble model is used with three different transfer learning mod-

els, which makes the model computationally costly, and it is essential to minimize the

computational complexity; the next chapter addresses this challenge by using the adap-

tive attention mechanism.
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Chapter 4

Plant Disease Classification using Multilevel Feature

Fusion with Adaptive Channel and Pixel Attention

Mechanism

Smart Agriculture is evolving; it has various activities such as marketing, weather de-

tails collections, climate information, soil fertility, water management, plant disease and

pest management, and many more. Adopting smart agriculture improves the quality and

quantity of the product; it saves the farmers time and minimizes irrelevant activities. In

this chapter, Tomato Plant Disease Classification using Multilevel Feature Fusion with

Adaptive1 Channel, Spatial and Pixel Attention Mechanism is explained.

4.1 Tomato Plant Disease Classification

The tomato plant dataset taken from PlantVillage (Hughes & Salathé, 2015) is imbal-

anced. The performance of the classifier deteriorates when the classifier is trained with

the imbalanced dataset. Another reason could be that diseases such as early blight and

leaf blight exhibit similar features; in such cases, the trained classifier may produce a

high miss-classification rate. Classification is defiant due to the imbalanced data, simi-

lar features with other classes, and contrasting information in the data. To cover these

limitations, in this work, the tomato plant disease classification approach is proposed

by using Multilevel Feature Fusion Network (MFFN) with Adaptive Channel and Pixel

Attention Mechanism (ACPAM), and Adaptive Channel, Spatial, and Pixel Attention

Mechanism (ACSPAM) as shown in Figure 4.1. Algorithm 4.1 describes the feature

extraction using the channel, spatial, and pixel attention approaches.

Firstly, the MFFN extracts the multilevel features, then combines them, afterwards

use the combined features for classification. To extract the features, adaptive selection

of kernel sizes is employed for dimensionality reduction and applied combined ReLU.

In the proposed approach, ResNet50 is used as the base model. Upon the base

1The term ”adaptive” in this context refers to the ability of the Channel, Spatial, pixel attention oper-
ation to adaptively and selectively focus on important features while discarding less relevant ones.
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Algorithm 4.1 Generating Channel Spatial and Pixel Attention Feature Map

Require: FeatureMap(FM) = [λ1,λ2,λ3, ...,λn]
Ensure: Channel Spatial and Pixel Attention Feature Map

Y ← ReLU(Global(Conv3×3(FM)))
X ← ReLU(Global(Conv1×1(FM)))
GF ← [GP(λ1),GP(λ2),GP(λ3), ...,GP(λn)]
for each Channel do

CWAF ←CWAF⊕Sigmoid(GF.W )
end for
for each Element do

EFM← EFM⊕CWAF⊗X
end for
for each Element do

CAFM←CAFM⊕EFM⊕Y
end for

SAFM← Sigmoid(Conv(AvgPool(CAFM);MaxPool(CAFM)))
PAFM← Sigmoid(Conv(ReLu(Conv(SAFM))))
for each Element do

AFM← AFM⊕CFAM⊗PAFM
End For

model, stacked five more layers to extract the local and global features by making use

of the stacked layers. The numbers on various Feature Maps (FM) in a neural network

represent the number of channels or depth dimensions in each feature map. The term

”feature map” refers to the output of a particular layer in the neural network, and each

feature map corresponds to a specific set of learned features or patterns detected by the

network. the increasing number of feature maps in deep neural networks is essential

for hierarchical feature learning, capturing complex representations, and increasing the

model’s capacity to learn from the data effectively. It allows the network to progres-

sively learn more abstract and informative features, leading to better performance on

various tasks, such as image classification, object detection, and segmentation.

In this work, initially, The FM generated by the base model are fed to the subse-

quent layer. In the first stage, the layer takes convolution layer kernel set as 3×3 with a

stride two and padding three, followed by Batch Normalization (BN), and pooling, the

output fed to the next stage. The FM generated by the subsequent stages from stage 2

is extracted on the basis of a layer separately and employs a Channel Attention Mecha-

nism (CAM) and Pixel Attention Mechanism (PAM) to exploit the Depthwise Separable
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Convolution (DSC) to create Adaptive Feature Maps (AFM). In DSC, the input tensor’s

spatial dimensions are convolved separately for each channel of the input. Instead of

applying a single 3D kernel across all channels, a 2D kernel is applied individually to

each channel. This process reduces the number of parameters required, as each channel

has its own small kernel, resulting in fewer computations. The adaptive nature of DSC

allows it to efficiently learn and represent complex patterns and features present in the

data, making it particularly useful in scenarios with limited computational resources.

This efficiency and adaptability make DSC a fundamental building block for design-

ing lightweight and efficient neural network architectures, especially for applications

on mobile and edge devices where resource constraints are a concern. The FM gener-

ated by stage 2 and all the AFM caused by the subsequent stages are fused and applied

pooling layer upon this, followed by a fully-connected layer with Softmax activation

function (Figure 4.1). The Feature Maps FM is represented by Equation 4.1.

FM = [λ1,λ2,λ3, ...,λn] (4.1)

where λn indicates the FM of the nth channel.

Figure 4.2 describes the CAM, it takes the input from the different stages of the

feature extraction module with the base model as ResNet50 in a multilevel approach.
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Global2 and local3 features of the image provide rich information that are required

for classification. Combining local and global features enhances classification perfor-

mance. Most of the features can be extracted from the superficial layers. Deeper the

network, the deeper features contain more ambiance knowledge.

Figure 4.3 describes the SAM, it takes the Channel Attention Features Maps (CAFM)

as input and applied AvgPoll and MAxPool parallelly then concatenated the output with

convolution, further applying sigmoid activation. Figure 4.4 describes the PAM, it takes

the input as feature maps and applies the convolution, ReLU, convolution, and sigmoid

in sequence, then, element wise multiplication is applied with the obtained results and

the feature maps.

The FM Y is obtained after applying max pooling on the original FM with 3× 3

convolution and ReLU activation function. This is generated to find saliency maps with

dilated convolution; this enhances the amenable area and retains the spatial information.

2After the depthwise convolution, the pointwise convolution combines the output of the depthwise
convolution across all channels using a 1× 1 kernel. This step enables the model to capture global
features by aggregating information from all spatial locations and channels. The pointwise convolution
effectively summarizes the local features into a more compact and informative representation, capturing
global context from the entire image.

3In attention process spatial information independently for each input channel. This allows the model
to capture local patterns, edges, and textures present in specific regions of the input image. The indepen-
dent processing of each channel helps the model identify and focus on local features in the data.
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The FM Y is calculated by using Equation 4.2.

Y = ReLU(Global(Conv3×3(FM))) (4.2)

The FM is used to generate two new FM with 1× 1 convolution. One is Global

Features (GF) by using global average pooling, and another one is max pooling with

ReLU activation function.

Each channel has unique information, the most valuable information to get the local

features of the image. To extract such information, first obtained the feature map GF

with 1×1 convolution.

X = ReLU(Global(Conv1×1(FM))) (4.3)

The Global Pooling (GP) is defined as follows

GP(λn) =
1

H×W

H

∑
i=1

W

∑
j=1

λn(i, j) (4.4)

The GF obtained as follows, by stacking all the Global pooling result

GF = [GP(λ1),GP(λ2),GP(λ3), ...,GP(λn)] (4.5)

GF has all the Global features of the image, to get more local features channel-

wise information, Channel Wise Attention Features (CWAF) are obtained from GF by

connecting all the layers with sigmoid activation as follows:

CWAF = Sigmoid(GF.W ) (4.6)

where W indicates the weight for each channel.

Next, obtain the Enhanced Feature Maps (EFM) by employing the element-wise

multiplication operation with X; it is denoted as follows
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EFM =CWAF⊗X (4.7)

where⊗denotes element wise multiplication.

CAFM are generated using the EFM and the Y with element-wise addition operation

as follows.

CAFM = EFM⊕Y (4.8)

where ⊕ denotes element wise addition.

Spatail Attention Mechanism (SAM) is applied on the feature maps obtained by

the CAM. Using the spatial relationships between features, create a spatial attention

map. In contrast to channel attention, which concentrates on what is informative, spa-

tial attention concentrates on information location. This applies AvgPool and Max-

Pool operations along the channel axis to create an effective feature descriptor before

concatenating them to calculate the spatial attention. It is demonstrated that applying

pooling operations along the channel axis effectively highlights informative regions.

SAFM = Sigmoid(Conv(AvgPool(CAFM);MaxPool(CAFM))) (4.9)

Pixel attention is added upon the features maps obtained from spatial attention

mechanism, since each pixel has certain features.

PAFM = Sigmoid(Conv(ReLu(Conv(SAFM)))) (4.10)

AFM = SFAM⊗PAFM (4.11)

where ⊗ denotes element-wise multiplication.

ACSPAM was used to generate the AFM. In supremacy with multilevel features,

ACSPAM, and multilevel feature extraction are combined. Features generated by AC-

PAM and the Multilevel Feature Fusion (MFF) are combined by employing combined
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Table 4.1: Tomato Plant Leaf Dataset
Sl.No Disease # of Images Total # of Images

1 Bacterial Spot (BS) 2127

18,160

2 Early Blight (EB) 1000
3 Healthy (H) 1591
4 Leaf Blight (LB) 1909
5 Leaf Mold (LM) 952
6 Mosaic Virus (MV) 373
7 Septoria Leaf Spot (SP) 1771
8 Target Spot (TS) 1404
9 Two Spotted Spider Mite (SM) 1676

10 Yellow Leaf Curl Virus (CV) 5357

ReLU, as shown in Equation 4.12.

MFF =CombinedReLU(Concat[FM2,AFM3,AFM4,AFM5]) (4.12)

where Concat denoted concatenation.

Global pooling is applied on MFF and applied fully connected layer upon it with

softmax activation function.

4.1.1 Experimental Study and Result Analysis

Dataset

In this work, ten classes of tomato plant leaf datasets are used, which are taken from

PlantVillage (Mohanty et al., 2016b). The dataset utilized in this study is described in

Table 4.1.

For the study, the dataset was split into 81% for training, 9% for validation, and 10%

for external testing. All the images that are used in this work are resized to 224× 224

to feed into the base model. All the experiments are executed with 100 epochs, batch

size of 4, with a learning rate set to 0.0003.

Results and Analysis

Figure 4.6a-4.6c shows the confusion matrix of the proposed CAM method with two

layers, three layers, four layers on tomato plant dataset for 10 classes. The proposed ap-

proach with 4 layers outperformed the other approaches with a classification accuracy
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Figure 4.5: Multilevel Feature Fusion with Different Layers
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Figure 4.5: Multilevel Feature Fusion with Different Layers Contd.

of 99.39%. Figure 4.7a-4.7c shows the confusion matrix of the proposed PAM method

with two layers, three layers, four layers on tomato plant dataset for 10 classes. The pro-

posed approach with 3 layers outperformed the other approaches with a classification

accuracy of 99.44%. Figure 4.8a-4.8c shows the confusion matrix of the proposed AC-

PAM method with two layers, three layers, and four layers on the tomato plant dataset

for 10 classes. The proposed approach with 4 layers outperformed the other approaches

with a classification accuracy of 99.50%., and the results are optimal for the class imbal-

ance dataset. Figure 4.9a-4.9c shows the confusion matrix for the proposed ACSPAM

method with two, three, and four layers on the tomato plant dataset for 10 classes. Fig-

ure 4.9d shows the confusion matrix for Cardamom plant dataset with ACSPAM, and

Figure 4.9e shows the confusion matrix for Grape plant dataset with ACSPAM

Figure 4.10 shows the accuracy and loss achieved during training and validation

of the proposed CAM-MFFN approach, Figure 4.10a refers the accuracy against num-

ber of epochs for CAM-MFFN with four layers, Figure 4.10b refers the loss against a

number of epochs for CAM-MFFN with four layers, likewise Figure 4.10c to Figure
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Figure 4.6: Confusion Matrix of the proposed CAM-MFFN Tomato Plant Leaf Classification
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(b) PAM-MFFN with 3 Layers
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(c) PAM-MFFN with 4 Layers
Figure 4.7: Confusion Matrix of the proposed PAM-MFFN Tomato Plant Leaf Classification
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(b) ACPAM-MFFN with 3 Layers
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(c) ACPAM-MFFN with 4 Layers
Figure 4.8: Confusion Matrix of the proposed ACPAM-MFFN Tomato Plant Leaf Classification
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Figure 4.9: Confusion Matrix of the proposed ACSPAM-MFFN Tomato, Cardamom, and Grape
Plant Leaf Classification
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(a) Accuracy for CAM-MFFN with 4 layers (b) Loss for CAM-MFFN with 4 layers

(c) Accuracy for CAM-MFFN with 3 layers (d) Loss for CAM-MFFN with 3 layers

(e) Accuracy for CAM-MFFN with 2 layers (f) Loss for CAM-MFFN with 2 layers
Figure 4.10: Accuracy and Loss of CAM-MFFN on Tomato Plant Dataset
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(a) Accuracy for PAM-MFFN with 4 layers (b) Loss for PAM-MFFN with 4 layers

(c) Accuracy for PAM-MFFN with 3 layers (d) Loss for PAM-MFFN with 3 layers

(e) Accuracy for PAM-MFFN with 2 layers (f) Loss for PAM-MFFN with 2 layers
Figure 4.11: Accuracy and Loss of PAM-MFFN on Tomato Plant Dataset
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(a) Accuracy for ACPAM-MFFN with 4 layers (b) Loss for ACPAM-MFFN with 4 layers

(c) Accuracy for ACPAM-MFFN with 3 layers (d) Loss for ACPAM-MFFN with 3 layers

(e) Accuracy for ACPAM-MFFN with 2 layers (f) Loss for ACPAM-MFFN with 2 layers
Figure 4.12: Accuracy and Loss of the proposed ACPAM-MFFN on Tomato Plant Dataset
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(a) Accuracy for ACSPAM-MFFN with 4 layers (b) Loss for ACSPAM-MFFN with 4 layers

(c) Accuracy for ACSPAM-MFFN with 3 layers (d) Loss for ACSPAM-MFFN with 3 layers

(e) Accuracy for ACSPAM-MFFN with 2 layers (f) Loss for ACSPAM-MFFN with 2 layers
Figure 4.13: Accuracy and Loss of the proposed Approach on Tomato Plant Dataset
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10f for CAM-MFFN with three layers and two layers. As shown the Figure 10a to

Figure 10f CAM-MFFN with four layers performs better as compared to the other two

approaches, since the validation accuracy improves with less fluctuation similarly, vali-

dation loss also minimizing as the number of epochs increases. But with CAM-MFFN

with three layers and two layers more fluctuation in the validation accuracy and vali-

dation loss, that too with only 2 layers the validation loss fluctuation is more. It shows

the training accuracy gradually increases as the number of epochs increases and is satu-

rated after 90 epochs, it also shows that loss also converged after 90 epochs. Similarly,

Figure 4.11 and 4.12 shows the accuracy and loss against the number of epochs for the

PAM-MFFN and ACPAM-MFFN approaches. Figure 4.13 shows the accuracy and loss

against the number of epochs for the ACSPAM-MFFN with two, three, and four layers.

As observed in Figures 10, 11, 12, and 13, ACSPAM-MFFN performed best, which has

fewer fluctuations in the validation accuracy and performed steadily in terms of train

and validation loss.

Table 4.2 analyses the proposed approach using performance metrics such as Accu-

racy, Precision, Recall, and F-Score. The results depict that, the proposed ACSPAM-

MFFN with 4 layers outperforms by achieving Precision, Recall, and F1-Score as 1.

Table 4.3 compares the results of all the above studies for tomato plant disease de-

tection. ACSPAM-MFFN with four layers outperforms other methods by attaining the

best external testing accuracy of 99.83%. Table 4.3 shows the proposed approach results

with state-of-the-art techniques on the tomato plant dataset and other plant datasets. The

results shown in Table 4.3 state the proposed approach outperformed the state-of-the-art

approaches, by attaining a validation accuracy of 99.88% and external testing accuracy

of 99.83%, by taking 501.42 seconds to generate the report for 1812 testing images.

The proposed approach atained bext testing accuracy of 99.26%, 99.42% and 99.83%

on Grape, Cardamom, and Tomato plant dataset respectively

4.1.2 Pesticide Prescription Module

To minimize crop loss and enhance the crop’s quality with good yield, proper precaution

measures need to be taken at the right time; as the classification models detect certain

diseases in the plant, further suggestions to control disease to be given. To the best

of our knowledge, most of the work in the literature focused on the classification of
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Table 4.2: Performance Evaluation of the proposed ACSPAM
Sl.No Plant Name Accuracy Precision Recall F-1Score
1 Tomato 99.83 1 1 1
2 Grape 99.26 0.99 0.99 0.99
3 Cardamom 99.42 0.99 1 0.99

plant disease; this work proposed tomato plant disease classification with a pesticide

prescription module. The trained ACSPAM-MFFN approach is tested externally. As a

test case, this work considers tomato plant leaf images taken from the test dataset.

In this work, we have collected the control measures for tomato plant leaf diseases

(NIPHM, 2014)(Marissa et al., 2021)(Bayer & Seminis., 2021), which are described in

Table 4.4.

4.1.3 External Testing Phase

The trained ACSPAM-MFFN performance is analyzed in the testing phase with tomato

plant leaf images. Once the trained model is loaded, the tomato plant leaf image from

the testing dataset is sent to the trained model. It classifies the tomato leaf image as

healthy or diseased. If the image is diseased, it sends the diseased name to the pesti-

cide prescription module to get the appropriate pesticide details for the detected tomato

plant disease. Figure 4.14 describes the test case results suggested by the pesticide pre-

scription module of the proposed approach. All the appropriate control measures for

tomato plant diseases are described in Table 4.4. Algorithm 4.2 describes the working

of testing the proposed approach with a prescription suggestion.

4.2 Summary

It is difficult to obtain a balanced dataset due to the unavailability of diseases in certain

stages, geographical diseases, etc. It is essential to produce a precise result with the

class imbalance dataset. In this regard, this work focused on to handle the class imbal-

ance dataset and also handling the diseases with similar symptoms. Proposed ACSPAM

with MFFN, which outperforms other models by obtaining the best validation accuracy

of 99.88% and testing accuracy of 99.83% for tomato plant dataset. Analyze the per-

formance of the proposed approach on cardamom and grape plant dataset, it attained

a testing accuracy of 99.42, and 98.76 respectively. Figure 4.15 describes the generic

in-farm testing of the plant disease detection approach.
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Table 4.3: Comparison of proposed Tomato Plant Leaf Classification with other state-of-the-art
approaches on Tomato and other plant datasets
Sl.No. Plant Name Method Accuracy (%)
1 Multiple (Arun & Umamaheswari, 2022) PC 98.14
2 Wheat (Rangarajan et al., 2022) DarkNet 19 100 (F1-Score)

3 Cucumber (Wang et al., 2021b)
DeepLabv3
and U-Net 92.85

4 Rice (Wang et al., 2021) DSC 94.65
5 Cucumber (Zhang et al., 2020b) EfficientNet 96
6 Multiple (Chen et al., 2021b) CNN 93.75
7 Strawberry (Shin et al., 2021b) ResNet50 98.11
8 Paddy (Jiang et al., 2021b) VGG16 97.22
9 Wheat (Jiang et al., 2021b) VGG16 98.75
10 Cucumber (Ma et al., 2018b) DCNN 93.4
11 Cucumber (Nanehkaran et al., 2020) CNN 75.59
12 Paddy (Jain & Dharavath, 2021) SVM 95
13 Beans (Elfatimi et al., 2022b) MobileNetV2 99.4

14 Multiple (Kour & Arora, 2019)
Particle SO
and SVM 95.2

Tomato Plant Disease Detection
15 Tomato (Li et al., 2022b) RAN 98.75
16 Tomato (Schor et al., 2016) PCA 95.2
17 Tomato (Wu et al., 2022) CNN 94.5
18 Tomato (Chen et al., 2020b) ABC and RAN 89
19 Tomato (Wu et al., 2020a) GoogleNet 94.33
20 Tomato (Zhou et al., 2021b) Residual Network 95
21 Tomato (Liu & Wang, 2020) DarkNet53 92.39
22 Tomato (Zhao et al., 2022b) CNN 95.20
23 Tomato (Qi et al., 2022b) Modified YOLOV5 91.07
24 Tomato (Abbas et al., 2021b) DenseNet121 97.11
25 Proposed Approach ACSPAM-MFFN 99.83

Grape Plant Disease Detection
26 Proposed Approach ACSPAM-MFFN 99.26

Cardamom Plant Disease Detection
27 Proposed Approach ACSPAM-MFFN 99.42
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Table 4.4: Tomato Plant Diseases and Control Measures.
Sl.No. Disease Name Prescription Dilution

1
Bacterial Spot
(NIPHM, 2014)

Streptomycin Sulfate 9% and
Tetracycline Hydrocholride 1%
SP

40-100ppm

2
Early Blight
(NIPHM, 2014)

Azoxytrobin 23% SC
Captan 50% WP
Copper oxycholride 50% WP

200ml in 200 L
1000gm in 100 to 200
1000gm in 300 to 400L

3
Mosaic Virus
(NIPHM, 2014)

1) Gather all the contaminated
leaves and plant parts,
then destroy them by fire.
2) Manoeuvre 4 to 5 insect sticky
or pest sticky traps for an acre,
such as yellow or blue pan.
3) Maneuver the light traps at
least one for an acre during
6 pm and 10 pm.

–

4
Late Blight
(NIPHM, 2014)

Mancozeb 35%
Mancozeb 75% WP
OR Zineb 75% WP SC

200ml in 200L
600 to 800gm in 300L

5
Leaf Mold
(NIPHM, 2014)

Benjovindiflutpr
Difenoconazle 10.5-13.5 fl.oz

6
Septoria Leaf Spot
(NIPHM, 2014) Mancozeb 75% WP 600-800gm in 300L

7
Target Spot
(Bayer & Seminis., 2021)

Products with Chlorothalonil,
Mancozeb, and
Copper Oxychloride

600-800gm in 300L

8
Spider Mite
(Bayer & Seminis., 2021)

Fenazaquin 10%
Spiromesifen 22.9% EC

500ml in 200L
250ml in 200L

9
Yellow Leaf Curl
(NIPHM, 2014)

Dimethoate 30% EC
Imidacloprid 17.8

396ml in 200-400L
60-70mll in 200L
80gm in 160L

Organic Treatment:
Neem Seed Kernel
extract 5% or Azadirachtin
5% SL

80gm in 160L
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(a) Bacterial Spot

(b) Early Blight

(c) Late Blight

(d) Leaf Spot
Figure 4.14: Testing Result and Suggested Prescription
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Algorithm 4.2 Testing and Pesticide Prescription Module
Require: Tomato plant leaf image
Ensure: Class name and suggested prescriptions

Step 1: Load the trained tomato plant disease detection model.
Step 2: Capture real-time Tomato plant leaf image.
Step 3: Send the real-time plant image to trained model.
Step 4: Pre-process the plant leaf image.
Step 5: Trained model produces the classification result.
if Healthy then

Send the result as Healthy.
else if Disease 1: then

Sends the prescription to the user for disease 1
else if Disease 2: then

Sends the prescription to the user for disease 2
.
.
.
,

else if Disease 9: then
Sends the prescription to the user for disease 9

end if

Trained and
Tested Model

Image
Preprocessor

Pesticide
Prescription

Module

 Classification
Result and

Prescriptions

Classification
Results

DiseaseHealthy

Prescription

Farmer / User

Figure 4.15: In-farm Tomato Plant Disease Diagnosis.
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The datasets used in this study are taken from PlantVillage, where images are cap-

tured in a controlled environment and have no complex background. It is essential to

collect the dataset in a complex environment, where the images should have some com-

plex background and low-resolution images. Addressing the limitations of controlled

environments, carefully curated diverse datasets from various sources, encompassing

challenging lighting conditions. Preprocessing techniques were applied to clean noisy

images and enhance quality. Findings underscore the importance of diverse data for

practical applications in complex scenarios, paving the way for advanced techniques in

a subsequent chapter.
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Chapter 5

Plant Disease Detection with Complex Background and

Noisy Images

The spice queen is cardamom. In the evergreen woods of Karnataka, Kerala, Tamil

Nadu, and the North-Eastern states of India, it is a native plant. The third-largest

producer of cardamom is India. In addition to being used as a flavour, cardamom is

frequently employed in allopathic and ayurvedic treatment (Manju et al., 2018). It is

a money mint crop; modern technology for agro production has been developed and

widely accepted in all cardamom growing territories in India. Still, the spread of vari-

ous pests and diseases remains a challenge that is considered as a significant production

barrier experienced by the cardamom sector. Small cardamom is affected by a host of

pathogenic bacteria, which seriously damages the crop and is often harmful. Diseases

infected with cardamom plants such as colletotrichum blight and leaf spot have emerged

dramatically in fields where crop management is not considered (Manju et al., 2018).

Detecting plant diseases is difficult since photos are captured in real-time settings from

farm fields, which has a complex background. A method for detecting cardamom plant

leaf disease utilising photos with complicated backgrounds is proposed in this article.

5.1 Dataset Description

Cardamom Dataset 2021: In this work 1724 cardamom plant leaf images of three

classes, such as Colletotrichum Blight and Phyllosticta Leaf Spot and healthy category

are collected. The Indian Cardamom Research Institute officers at Regional Station

Table 5.1: Dataset used in the proposed research
Sl.No Class # of Images Train/Test Split Total # of images

This research generated a dataset of cardamom plant leaves.
1 Colletotrichum Blight 280 252/28
2 Healthy 781 700/81 1724
3 Phyllosticta Leaf Spot 663 597/66

PlantVillage dataset (Grape) (Hughes & Salathé, 2015)
4 Black Rot 1180 1062/118
5 ESCA 1383 1245/138
6 Healthy 423 381/42
7 Isariopsis Leaf Spot 1076 968/108

4062
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Sakaleshpur in the state of Karnataka, a division of Spices Board India, assist in la-

belling these. From April to June 2021, all photographs are taken during the daylight

hours of 10 a.m. to 5 p.m. The Cardamom dataset collected during the year 2021 is

described in Table 5.1. The illnesses listed in Table 5.1 are common to the cardamom

plant and have an impact on the crop’s growth and productivity. In this work, each

image is additionally captured in a farm field scenario without the use of any technical

tools, maintaining all the archive information and removing the background from the

image. The original photos of cardamom plant leaves have a complicated background

with various dimensions and photographing circumstances. Images of three distinct

varieties of cardamom plant leaves are shown in Figure 5.1.

PlantVillage dataset (Hughes & Salathé, 2015): One of the commonly used and

openly accessible datasets in the field of classifying plant diseases is called PlantVillage.

It has approximately 54,284 photos, all of which have annotations. It is difficult to spot

unfavourable circumstances in these pictures, including the complicated background.

The Plant Village dataset’s grape dataset is used in this investigation. Table 5.1 provides

information on the dataset utilised in this experiment.

5.2 Proposed Method

This research suggested a method for detecting cardamom plant leaf illness by removing

the image’s complicated background and noise using U2-Net and EfficientNetV2 deep

learning-based models as a classifier.

5.2.1 Background Removal

Cardamom plant leaf images are of RGB, collected with a complex background with

different dimensions and resolution, and the leaf is surrounded by several other factors,

generally in the environment.

While in most cases, computer vision algorithms remove the background from an

image, such as image thresholding in OpenCV and grab hut techniques (Cruz et al.,

2019). These techniques help when the background color differs from the interesting

object; in such cases, it is easy to remove the background by utilizing green and blue

screens to eradicate the foundation and replace it with another scene.
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a). Cardamom colletotrichum leaf blight

c). Cardamom phyllosticta leaf spot

b). Cardamom healthy

Figure 5.1: Cardamom plant leaf images: a) Cardamom colletotrichum leaf blight, b) cardamom
healthy, c) Cardamom phyllosticta leaf spot
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Without intentional pre- or post-processing, removing a backdrop from an image

is a very stimulating exercise. It can be extremely difficult to get a correct form if the

object’s colour is really close to the background because of the soft edges or shadows.

Background and noise elimination procedure used in this research is U2-Net (Qin

et al., 2020) and Figure 5.2 depicts it. It takes an input image, generates a mask of the

region of interest, and then performs a bitwise operation on the original image and the

mask generated by the U2-Net. Figure 5.3 depicts the U2-Net architecture as a twofold

interlaced U-structure. It is divided into three sections. The first component is a six-

staged encoder that employs ReSidual U-Block (RSU) (Equation 5.1):

HRSU =U(FM(x))+FM(x) (5.1)

Where x is input, FM is Feature Map, and U is U-structure.

In order to extricate local features, a convolutional input layer provides the inter-

mediate activation map FM(x). The next component of the RSU block is the encoder

decoder, which is similar to a U-Net and accepts FM(x) as input. The multiscale contin-

gent qualities U(FM(x)) are extracted and encoded. It extracts the multiscale features

from gradually downsampled activation maps to reduce the loss during direct up sam-

pling. By using incremental up sampling, concatenation, and convolution, it encodes

them into high-aspiration activation maps.

The profusion connection, which mixes local characteristic with multiscale charac-

teristics, is combined by residual connection. FM(x)+U(FM(x).

The five-stage decoder in the second component of the U2-Net design makes use of

the dilated form of RSU.

Finally, combine the encoder and decoder phases to create saliency probability

maps. Saliency maps display the special characteristics of each pixel. Using a saliency

map, you can separate the fascinating content from the backdrop.

5.2.2 Classification Models

CNN consists of various layers, such as convolutional, pooling, and fully connected

layers (Chen et al., 2020). The convolutional layer is an essential part of CNN since it
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Down sample the
features maps 

Extract the multiscale  features

Encoded into high
resolution feature maps 

U2 -Net

Bitwise
operation

Cardamom plant leaf image

Mask

Output

Figure 5.2: Background Removal by using U2-Net

Figure 5.3: U2-Net Architecture (Qin et al., 2020)
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Weight Layer

U-block

x

FM(x) relu

U(FM(x)+FM(x) relu

Figure 5.4: Residual U-block

extracts the detailed information of the input images using different convolution kernels.

Several convolutional layers extract the set of feature maps known as color and edges

of the input image. Feature map function is defined in Equation 5.2 (Chen et al., 2020).

FMi = f (FMi−1Wi +bi) (5.2)

FM denotes the Feature Map, W denotes the weight, b is the offset vector, and f(.)

defines the ReLu activation function defined in Equation 5.3 (Cruz et al., 2019).

ReLu(z) = Max(0,z) (5.3)

Where z is the input.

By reducing the spatial dimension and convolution, the pooling layer lowers the

likelihood of overfitting. It is specified in Equation 5.4. (Chen et al., 2020).

yl
i = down(yl−1

i ,s) (5.4)

yl
i indicates the feature vector, s defines the pooling size,

and down(.) indicates the down sampling.

Finally, the one or more fully connected layers defined, which flatten the network

by connecting all the previous layer neurons, final fully connected layer predicts the

class label, where Softmax activation function is used in the pre-trained models which
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Table 5.2: Performance comparisons of the proposed approach.

Sl.No
Plant
Name

Performance
Metrics CNN EN EN-V2-S EN-V2-M EN-V2-L

1 Cardamom

Accuracy (%) 91.30 94.10 95.59 88.44 98.26
F1-Score 0.91 0.94 0.96 0.88 0.98
Precision 0.91 0.94 0.96 0.88 0.98

Recall 0.91 0.94 0.96 0.88 0.98

2 Grape

Accuracy (%) 94.24 97.81 96.44 93.72 96.45
F1-Score 0.94 0.98 0.96 0.94 0.96
Precision 0.94 0.98 0.96 0.95 0.96

Recall 0.94 0.98 0.96 0.94 0.96
EN- EfficientNet

are used in this work. Softmax is defined in the Equation 5.5 (Chen et al., 2020).

Softmax(yi) =
exp(yi)

∑ j exp(y j)
(5.5)

Where y denotes input vector

exp(yi) denotes the exponential function for input vector.

exp(y j) denotes the exponential function for output vector.

In CNN, hyperparameters are chosen prior to training, whereas weights and bi-

ases are adjusted as the model is trained. Hyperparameters can be divided into two

categories: those that address network structure and those that address training. The

hyperparameters that deal with network structure include kernel sizes and the number

of layers in the model; kernel size affects feature extraction on a wide scale, and deeper

the layers had a greater classification rate. The hyperparameters batch size, learning

rate, and dropout are related to training. Equation 5.6 represents the loss function.

EfficientNet is a family of CNNs that was proposed by Tan & Le (2019); it scales

CNN parameters like as depth, or how many layers deep the network has, breadth,

or resolution, or how high an image’s resolution should be. EfficientNet increases the

CNN’s dimensionality by using a compound scaling algorithm. It scales up the baseline

network, mobile inverted bottleneck convolution (MBConv), to become EfficientNet.

Another member of the CNN family is EfficientNetV2, which has a lower learning

curve and higher performance efficacy. It uses Fused-MBConv, which is quicker than

previous models and up to 6.8x smaller, to improve training and efficacy (Tan & Le,

2021).
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Table 5.3: Performance evaluation on external testing for cardamom plant leaf dataset

Sl.No Category
Performance

Metrics CNN EN EN-V2-S EN-V2-M EN-V2-L

Cardamom plant dataset

1 Colletotrichum
Blight

Accuracy (%) 96.48 100 100 92.85 100
F1-Score 0.98 0.98 1.00 0.95 0.98
Precision 1.00 0.97 1.00 0.96 0.97

Recall 0.96 1.00 1.00 0.93 1.00

2 Healthy

Accuracy (%) 98.76 98.76 98.76 97.53 98.76
F1-Score 0.98 0.98 0.98 0.96 0.98
Precision 0.98 .0.98 0.98 0.95 0.98

Recall 0.98 0.99 0.99 0.98 0.99

3 Phyllosticta leaf
spot

Accuracy (%) 98.48 96.96 96.96 96.96 96.96
F1-Score 0.98 0.98 0.98 0.98 0.98
Precision 0.98 100 0.98 0.98 1.00

Recall 0.99 0.97 0.97 0.97 0.97
EN- EfficientNet

Table 5.4: Performance evaluation on external testing for grape plant leaf dataset

Sl.No. Category
Performance

Metrics CNN EN EN-S EN-M EN-L

Grape plant dataset

1 Black rot

Accuracy (%) 100 97.45 97.45 97.45 96.61
F1-Score 0.97 0.96 0.95 0.95 0.93
Precision 0.94 0.95 0.93 0.93 0.90

Recall 1.00 0.97 0.97 0.97 0.97

2 ESCA

Accuracy (%) 98.55 97.82 92.75 95.65 95.65
F1-Score 0.99 0.98 0.95 0.97 0.95
Precision 1.00 0.99 0.95 0.99 0.95

Recall 0.99 0.98 0.93 0.96 0.96

3 Healthy

Accuracy (%) 100 100 97.61 97.61 100
F1-Score 0.99 1.00 0.99 0.98 1.00
Precision 0.98 100 1.00 0.98 1.00

Recall 1.00 1.00 0.98 0.98 1.00

4 Leaf spot

Accuracy (%) 93.51 96.29 98.14 96.29 89.98
F1-Score 0.97 0.97 0.98 0.97 0.94
Precision 1.00 0.98 0.97 0.97 0.99

Recall 0.94 0.96 0.98 0.96 0.90
EN- EfficientNet
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Cardamom plant
leaf image dataset

Background removal
using U2-Net

Background removed cardamom
plant leaf dataset

Image resizer
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C
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result

Image processing Classification

Trained deep
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using U2-Net Image resizer

Training phase

Testing phase

Cardamom plant leaf image

Background removed cardamom
plant leaf  image

Figure 5.5: Proposed cardamom plant leaf disease detection approach

The proposed pipeline of cardamom plant leaf disease detection approach has four

stages. The first stage depicts the dataset preparation; in this stage, collected the noisy

cardamom plant leaf images from the cardamom plantation and labeled them. The

second stage is used to remove the background of the leaf image and noise.

The third stage is training the deep learning-based model from scratch using the

generated dataset. The next and final stage is the performance evaluation of the trained

model. The proposed approach is shown in Figure 5.5. This has two phases; the first is,

the training phase, which is used as the processing stage used to remove the complex

background from the input image by using U2-Net, background removed images are

further processed to resize the images using an image resizer and fed into the next stage.

The next stage is employed to train deep learning-based models such as CNN, Efficient-

Net, and EfficientNetV2. The different versions of EfficientNetV2 used in this work

are EfficientNetV2-S (Small with 22 Million Parameters), EfficientNetV2-M (Medium

with 54 Million Parameters), and EfficientNetV2-L (Large with 120 Million Parame-

ters). Finally, the trained model produces the classification results. In the testing phase,

the cardamom plant leaf image is fed to a trained deep learning-based model after com-

pletion of pre-processing operation such as background removal and resizing the image,

the trained deep learning-based model produce the classification results.
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a). Cardamom leaf  image b). Mask c). Output d). Resized cardamom leaf image

Figure 5.6: Background removal of cardamom plant leaf images: a). Cardamom plant leaf
images, b). Mask, c). Output, d). Resized cardamom plant leaf images.
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L(M) =−1
n

n

∑
Yi=1

C

∑
c=1

[YiclogP(xi = c)+(1−Yic)log(1−P(Yi = c))] (5.6)

where M is the weight matrix, n is training samples, C represents class labels, and P is
the predicted probability.

Table 5.5: Cross fold validation results (Accuracy (%))
Sl.No Plant Name CNN EfficientNet EfficientNetV2-L
1 Cardamom 87.59 87.02 91.42
2 Grape 94.60 96.00 94.62

5.2.3 Experimental Results

As discussed in Section 5.1 all the cardamom plant leaf images are captured in com-

plex background, and all of them are of different dimensions; to remove the complex

background from the image U2-Net is used (Qin et al., 2020). Figure 5.6 describes the

background removal of cardamom plant leaf images using U2-Net. Figure 5.6 a) shows

the original cardamom plant leaf images, Figure 5.6 b) shows the mask generated by

the U2-Net, and Figure 5.6 c). Output generated by the Background removal approach,

and Figure 5.6 d) shows the resized images using an image resizer.

Accuracy (Equation 3.3), Precision (Positive predictive value) (Equation 3.5), Re-

call (sensitivity) (Equation 3.6), and F1-Score(balanced F-score) (Equation 3.4) were

used as the performance metrics in this experiential study (Chouhan et al. (2021b);

Zhao et al. (2022b); Qi et al. (2022b)) .

All the original input images are resized to 224×224 for all the three deep learning-

based models used in this study. In the experiment, 90% of the dataset was used for

training and 10% for testing. A set of experiments was conducted to measure the per-

formance of the proposed approach for 100 epochs on the cardamom plant dataset.

The same set of experiments was conducted by using a publicly available grape dataset

to measure the performance of the proposed approach. Further, another set of exper-

iments was conducted by using other deep learning models such as CNN and Effi-

cientNet.The proposed approach’s performance evaluation is shown in Table 5.2. On

the cardamom plant dataset, CNN achieves a maximum detection accuracy of 91.30%,

while on the grape dataset, it achieves a maximum detection accuracy of 94.24%. On

the cardamom and grape plant datasets, EfficientNet achieved a maximum detection ac-

curacy of 94.10% and 97.81%, respectively. On the cardamom and grape plant datasets,
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Table 5.6: Comparison of the proposed model with state-of-the-art methods
Sl.No Plant Approach Accuracy (%)

1
Coffee

(Manso et al., 2019) Artificial Neural Network 95.8

2
Cucumber

(Zhang et al., 2017) K-means and sparse representation 85.7

3
Multiple

(Singh & Misra, 2017) Genetic Algorithm 96.7

4
Citrus

(Pourazar et al., 2019) Vision sensor and SVM 97

5
Multiple

(Hang et al., 2019) VGG16 and InceptionNet 91.7

6
Maize

(Sibiya & Sumbwanyambe, 2019) CNN 92.85

7
Strawberry

(Shin et al., 2021a) SqueezeNet 92.61

8
Tomato

(Karthik et al., 2020) CNN 98

9
Cucumber

(Zhang et al., 2019) CNN 95.18

10
Multiple

(Ma et al., 2018a) DCNN 93.4

11
Coffee

(Esgario et al., 2020) ResNet50 95.24

12
Soybean

(Wu et al., 2020b) ResNet 94.29

13
Apple

(Zhong & Zhao, 2020) DenseNet121 92.29

14
Paddy

(Jiang et al., 2021a) VGG16 97.22

15
Coconut

(Singh et al., 2021) MobileNet 82.10

Proposed Model
16 Cardamom EfficientNetV2 98.26
17 Grape EfficientNetV2 96.44
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Figure 5.7: Confusion matrix for cardamom plant dataset (external testing): a) EfficientNetV2-
S model, b) EfficientNetV2-M model, c) EfficientNetV2-L model
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Figure 5.8: Confusion matrix for grape plant dataset (external testing): a) EfficientNetV2-S
model, b) EfficientNetV2-M model, c) EfficientNetV2-L model
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EfficientNetV2-S achieved a maximum detection accuracy of 95.59% and 96.44%, re-

spectively. On the cardamom and grape plant datasets, EfficientNetV2-M achieved a

maximum detection accuracy of 94.10% and 97.81%, respectively. On the cardamom

and grape plant datasets, EfficientNetV2-L achieved a maximum detection accuracy of

98.26% and 96.45%, respectively.

The two types of testing are generally internal and external testing. Internal testing

divides the dataset into a train set and a test set. The training set is used to train the

model, and the test is used to assess the model’s performance in terms of accuracy,

precision, and recall. The trained model is tested externally using a dataset that was

obtained independently, i.e., a dataset that was not used for training or internal testing.

In order to demonstrate the generalizability of the model, external testing is a task that

requires the trained model to use other datasets that are distinct from the original dataset

used to train the model.

To understand the behavior of the trained models, external testing is essential; this

examine the dialects learned during training, and this helps to measure the performance

of the trained models. A set of external testing was conducted using trained models

such as CNN, EfficientNet, and EfficinetNetV2 models on cardamom plant and grape

plant dataset. Table 5.3 describes the performance evaluation on external testing for the

cardamom plant dataset. In the external testing, EfficientNetV2-S outperformed com-

pared to other models for the cardamom plant dataset. Figure 5.7 shows the confusion

matrix for external testing on trained EfficientNetV2 models for the cardamom plant

dataset. Table 5.4 describes the performance evaluation on external testing for grape

plant dataset. In the external testing. Figure 5.8 shows the confusion matrix for external

testing on trained EfficientNetV2 models for the grape plant dataset.

A set of experiments was conducted with cross-fold validation on CNN, Efficient-

Net, and EfficientNetV2-L models; Table 5.5 describes the cross-fold validation with

100 epochs for each fold on cardamom and grape plant leaf datasets. The efficientNetV2-

L model outperforms compared to the other two models for the cardamom plant dataset

with 91.42% detection accuracy.

A wide set of experiments was conducted on CNN, EfficientNet, and EfficientNetV2

models, and the results shown in Table 5.2 to Table 5.4 depicts that the EfficientNetV2
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model outperforms as compared with other models and attained almost consistent re-

sult on grape plant dataset, and EfficientNetV2-L attained a maximum result of 98.26%

cardamom plant dataset. Table 5.6 shows the comparison of the proposed approach

with state-of-the-art methods. Employing U2-Net with EfficientNetV2 outperforms car-

damom plant leaf disease detection with 98.26% detection accuracy.

5.3 Summary

To make it near real-time complex background images to be processed and handled.

In this regard, this work focused on leaf images taken in complex environments such

as noisy images and with background. Using U2-Net obtain the enhanced leaf images

without background and further applied a EfficientNetV2 for classification of the car-

damom plant leaf images. This work overcame the challenge of complex background

images for plant leaf disease classification, and outperformed compared to state-of-the-

art methods, and achieved 98.28% (EfficientNetV2-S model) detection accuracy for the

cardamom plant dataset on external testing.

This study shows the importance of the background removal of the images taken

on farmland, which is essential since the images taken in farmland contain unwanted

background, which deteriorates the results due to the foreign objects. After removing

the background and noise from the dataset or images, a classification model is applied

to classify the images. In this study, EfficinetNetV2 is used, and obtain the result as

98.28% detection accuracy.
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Chapter 6

Conclusions and Future Work

Plant diseases are a significant threat to crop quality and yield. It is indispensable to

detect the disease on time with a robust, low-cost plant disease detection approach and

suggest appropriate control measures.

6.1 Conclutions

Ensemble DL-based plant leaf disease detection approach is proposed. It addressed the

challenges such as class miss-classification, image capturing conditions, and classifica-

tion time. AlexNet, ResNet50, and VGG16 were used as base models in the proposed

approach since each base models are unique in nature to classify the images, and each

model extracts independent features. The main objective of the proposed approach is to

minimize the miss-classification rate; this is achieved by employing aforesaid three dif-

ferent DL-based models; the final classification outcome is based on the majority of the

classifier’s outcomes. In this work, external testing time is also considered for binary

and multiclass datasets. The Ensemble DL-based approach outperformed the state-of-

the-art methods by attaining maximum detection accuracy of 100% for the binary class

dataset and 99.53% for the multi-class dataset.

Tomato plant disease classification is proposed by using MFFN with ACSPAM. A

Series of experiments are conducted to measure the robustness of the proposed tomato

plant disease classification. In the classification of the diseases, the diseases with similar

symptoms and class-imbalanced data lead to poor performance of the classifier. To con-

template this, an ACSPAM with MFFN is used. It attained the best validation accuracy

of 99.88% and testing accuracy of 99.5% compared to state-of-the-art methods.

An efficient plant leaf disease detection approach is essential to detect plant dis-

eases with noisy images and complex backgrounds. In this regard, the cardamom plant

leaf disease detection approach is proposed, where the cardamom plant leaf dataset was

collected from farmland with a complex background. Segmenting and detecting dis-

eases in real-time images is a challenging task, as the images are associated with other

factors, such as the background of the image, environmental factors, such as lighting,

and the angle of the capturing conditions. In the proposed method, the U2-Net architec-
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ture is employed to remove the complex background, which produces results without

deteriorating the quality of the original image. For classification, in this work, CNN,

EfficientNet, and EfficientNetV2 models were trained instead of using the pre-trained

weights for EfficientNet, and EfficientNetV2. EfficientNetV2-S and EfficientNetV2-L

models outperformed the other models; EfficientNetV2-L achieved 98.26% detection

accuracy for the cardamom plant dataset, and EfficientNetV2-S achieved 98.28% de-

tection accuracy for the cardamom plant dataset on external testing.

To generalize to the specific model, Cardamom and Grape datasets are used in all

three approaches; all the approaches produce promising results, while ACSPAM-MLFF

performed better compared to all the models as observed with different datasets and U2-

Net is essential to remove the background and noise in the images taken in the farmland.

6.2 Future work

There are ample of opportunities to work on plant disease detection.

• Can be extended to detect plant nutrition deficiency.

• Can be strengthened to identify the plant disease’s severity, such as the early/middle/final
stage of the plant disease.

• Can be extended further to train the classification model such that it works for
real-time images and provide the prescriptions in real-time.

• Can be deployed in the cloud-computing environment so that farmers can use it
irrespective of time and place.

• This work can also be extended to detect the weeds in the agricultural lands and
control measures.
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