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Abstract

Quantum computing is a new edge technology developed over the principles of

Quantum Physics and mechanics. As these systems compute exponentially faster than

classical systems, researchers started to implement their applications in numerous do-

mains such as security, communication, networking etc. The fundamental unit of mea-

suring information in quantum systems is Quantum bits or qubits generated from the

electron/proton particles. As per the behaviour of a photon particle, it leads to noise

whenever the operations are performed with these particles. The currently developed

quantum systems are in the Noisy Intermediate Scale Quantum (NISQ) Level. The er-

ror rate in NISQ systems is exorbitant due to operational noise and decoherence. Thus,

developing an efficient Quantum Error Correction mechanism is inevitable to protect

the information from errors. As most of the existing QEC methods are symmetric, they

are implemented by assuming the probability of getting phase and bit flip errors as the

same. However, due to the fragility of the quantum particles, the possibility of getting

phase flip errors is more than the bit flip errors. Hence, the concept of Asymmetric

Quantum Error Correction has been introduced as a solution. In current scenario, there

is a lot of scope for significant improvements in Asymmetric Quantum Error Correc-

tion in terms of Fidelity, Quantum depth, Quantum cost, and Number of Qubits used

to perform error detection and correction efficiently. It has been observed from the lit-

erature that the entangled qubits play a significant role in Asymmetric Quantum Error

Correction to detect and correct the errors.

This thesis presents a novel and efficient Asymmetric Quantum Error Correction

method with Syndrome Measurement. In order to improve the efficiency of error cor-

rection, entangled qubits are used along with the original quantum information. When-

ever entangled qubits are used to perform any operation, it is essential to consider the

maximally entangled qubits to avoid errors or data loss. To address this challenge,

an efficient entanglement swapping-based purification protocol is proposed to distil the

maximally entangled qubits from the deficient entangled qubits. In order to quantify the

efficacy with respect to the Quantum Cost of the proposed model, an efficient Quantum

cost optimization algorithm is proposed with unit cost quantum gates to investigate and

optimize the Asymmetric Quantum Error Correction. Finally, the proposed Quantum

Error Correction method is used to develop a Quantum key distribution protocol for

secure data transmission. From the experimental results, it is observed that the pro-

posed algorithms outperform the existing state-of-the-art methods in terms of Fidelity,



Quantum cost, Quantum depth, and Communication efficiency when executed over a

real quantum system.

Keywords: Quantum Information; Quantum States; Qubits; Quantum Errors;

Entanglement Purification; Asymmetric Quantum Error Correc-

tion; Entanglement based Asymmetric Quantum Error Correction;

Quantum Cost; Quantum Depth; Quantum Cost Optimization;

Quantum Key Distribution.
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Chapter 1

Introduction

Quantum computing is a field of computer science that seeks to exploit the unique

properties of quantum systems. It performs computational tasks that are beyond the

capabilities of classical computers. Quantum computing was first introduced by Paul

Benioff in the early 1980s (Benioff, 1982). He implemented a Turing machine based

on quantum mechanical principles. Richard Feynman proved that quantum computers

are exponentially powerful compared to classical computers (Feynman, 1985). This

experiment was a big breakthrough and motivated many researchers to enact quantum

technology in various fields like chemistry, networking, security, communication and

more. In 1994, Peter Shor introduced an algorithm named Shor’s for integer factor-

ization (Shor, 1995). Shor’s algorithm has proved that the RSA algorithm can easily

breakable using a quantum computer. Most of the current security systems are imple-

mented based on the RSA algorithm. Due to this, the research in quantum computing

has increased. Many companies are working on the development of full-fledged Quan-

tum computers to overcome the issues of classical computers and to solve complex

problems in various fields.

Initially, all the quantum experiments were performed either mathematically or the-

oretically. With the existence of Quantum system, it is possible to perform experiments

on real quantum computers. With this, it is also possible to observe how the quan-

tum particle reacts to the various operations. Quantum particles are generated from the

photon/electron sources and are prone to errors due to noise. The noise is generated

when quantum particles interact with the external environment to perform the oper-

ations. Thus, the currently available quantum systems are in the Noisy Intermediate

Scale Quantum (NISQ) level with a high error rate (Singh Gill et al., 2020). With this,

the importance of error correction methods in quantum computing has been increased.

To be precise, we cannot imagine a quantum system without an error correction mech-

anism. Before discussing about quantum error correction, it is necessary to know about

the basics of quantum computation like superposition, entanglement, etc., and various

quantum gates which are required in chapter 4, 5, 6, 7. A detailed discussion on these

topics is given in section 1.1.

1



1.1 Fundamentals of Quantum computation

In classical computing, the information is measured in terms of binary bits 0 and 1.

These can be in any one of the states at a time. In quantum computing, the information

is measured in terms of qubits where qubit is a superposition of quantum states |0⟩ and

|1⟩. A qubit can be in both states at a time (De Ronde, 2018). Thus it can perform 2n

operations at a time with n qubits, whereas in classical computation we can perform

only one operation at a time. The property of superposition made quantum computers

exponentially powerful compared to classical computation.

1.1.1 Superposition

A qubit’s superposition is graphically represented using the Bloch sphere (Bloch, 1946)

as shown in Figure 1.1.

Figure 1.1: Bloch Sphere. The arbitrary representation of a Quantum State |ψ⟩ with respect to
the X, Y and Z basis

For instance, a quantum state |ψ⟩ is present in a 3-dimensional Hilbert space H as

shown in Figure 1.1. Hilbert space represents the complex vector space of a quantum

system with an inner product (Young, 1988). It represents the exact position of a quan-

tum state by measuring the phase and length by performing the inner product. The inner

product is a process of multiplying two or more vectors to produce a scalar result. The

operations will be performed on the quantum state if and only if it lies in Hilbert space.

Let us assume the state |ψ⟩ lies on one axis and makes an angle (θ, ϕ) with the remain-

ing two axes as represented in Figure 1.1. According to this, the equation to measure a
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quantum state can be represented as follows.

|ψ⟩ = cos(
θ

2
)|0⟩+ eiϕ sin(

θ

2
)|1⟩ (1.1)

Where θ, ϕ are real numbers and 0≤ θ ≤ π, 0≤ ϕ ≤ 2π. Bloch Sphere represents

the quantum states |0⟩, |1⟩, which are known as spin-up and spin-down of a photon.

The new pure state of a photon can be measured based on its position. As shown in

Figure 1.1, a new quantum state |ψ⟩ which is making an angle θ with Z-axis and ϕ

with Y-axis can be measured using the equation 1.1. Here the value of cos(θ/2) gives

the possibility of state |ψ⟩ becoming |0⟩ and the value of eiϕ sin(θ/2) represents the

possibility of becoming |1⟩. The final state of |ψ⟩ will be measured based on the higher

probability. The equation 1.1 is further simplified as follows for performing operations.

|ψ⟩ = α|0⟩+ β |1⟩ (1.2)

Where α, β are the probabilities of state |0⟩ or |1⟩ such that |α|2+|β|2 = 1. Initially,

a quantum state is in a superposition of both the states but once we measure it then it

will be lost into any one of the states based on the maximum probability. Quantum

states are also called basis vectors because these states are represented mathematically

using vectors as |0⟩=
(
1
0

)
and |1⟩=

(
0
1

)
. The operations will be performed on multiple

quantum states using the tensor product. For example, to implement a two-qubit state

|00⟩, the tensor operation will be performed on states |0⟩ and |0⟩. Which is expressed

as follows.

|0⟩ ⊗ |0⟩ =

(
1

0

)
⊗

(
1

0

)
=


1

0

0

0

 = |00⟩ (1.3)

1.1.2 Entanglement

Quantum entanglement (Horodecki et al., 2009) is another special property of a qubit.

A pair or group of quantum particles are said to be entangled if they are generated with

similar properties and cannot be described independently. If the state of an entangled

qubit is modified then it affects the other. With this, the data can be transmitted from one

place to another without using any physical medium. Bell states are used to represent

the entangled qubits. The total possible bell states with two entangled qubits (|0⟩, |1⟩)
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in three-dimensional Hilbert space which are represented with the following equations

and vector representations.

|ψ+⟩ = 1√
2
(|0⟩A|0⟩B + |1⟩A|1⟩B) =

1√
2


1

0

0

1

 (1.4)

|ψ−⟩ = 1√
2
(|0⟩A|0⟩B − |1⟩A|1⟩B) =

1√
2


1

0

0

−1

 (1.5)

|ϕ+⟩ = 1√
2
(|0⟩A|1⟩B + |1⟩A|0⟩B) =

1√
2


0

1

1

0

 (1.6)

|ϕ−⟩ = 1√
2
(|0⟩A|1⟩B − |1⟩A|0⟩B) =

1√
2


0

1

−1
0

 (1.7)

As represented in the above equations, there are four possible ways for generating en-

tanglement by keeping both the entangled qubits in same states with positive (|ψ+⟩) or

negative (|ψ−⟩) phases as in equation (1.4) and (1.5) or in opposite states with positive

(|ϕ+⟩) or negative (|ϕ−⟩) phases as in equation (1.6) and (1.7).

Entanglement plays a key role in various applications like secure communications,

Quantum Key Distribution (QKD), etc. Moreover, it is a principal resource for quantum

teleportation (Bouwmeester et al., 1997).

1.1.3 Quantum Teleportation

Quantum teleportation is a process of transmitting quantum information from one place

to another using entangled qubits and classical communication. The process of telepor-

tation is depicted in Figure 1.2.

As in Figure 1.2, for instance, if Sender (Alice) wants to share a piece of infor-
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Sender Receiver
|ψ-⟩ |ψ-⟩

Classical Information

Entangled Qubits

Third party / Intruder

Classical Channel

Impossible to measure the
information

Figure 1.2: The process of Quantum Teleportation

mation with the Receiver (Bob) using a classical channel then there is a possibility of

an attacker who can observe and modify the information. But suppose they use the

entangled qubits for sharing the information by placing one entangled qubit at Alice’s

side and the other at Bob’s side. In that case, there is no possibility for an attacker to

observe or modify the quantum information due to the no-cloning theorem (Wootters &

Zurek, 1982) and decoherence (Hornberger, 2009). According to these, if a person tries

to measure the quantum state then its actual state will get disturbed and leads to errors

or data loss. Thus it is impossible to copy the quantum data. Hence the data which is

transmitted in the form of qubits are highly secured.

1.2 Reversible Operations

In classical computation, the operations which are performed are irreversible. i.e., if in

case the input information is lost then it cannot be retrieved from the produced outputs.

In irreversible operations, there will be n number of inputs and a single or less number

of outputs (Li et al., 1998). According to Launder’s principle (Landauer, 1961), the

data loss with irreversible operations leads to the ln2kT Jouls of heat energy. Where

k is Boltzmann constant, ln2 is the natural logarithm of 2 and T is temperature. i.e.,

the loss of every bit of information produces energy loss which in turn increases power

consumption. To overcome this problem, Bennett (Bennett, 1973) has come up with

a solution named reversible computation. In reversible computation, the number of

inputs and outputs will be equal and each output is represented with a unique input

combination. Even if we lose the information that can be easily retrieved from the

output and leads to low power consumption. By taking this as an advantage, quantum

performs reversible operations with quantum gates. There are various single and multi-
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qubit gates which are available to perform the operations in quantum computation. A

detailed discussion of all these gates is presented in the following section.

1.3 Reversible Quantum gates

Quantum logic gates are used to implement the quantum logic circuits in order to per-

form the operations in quantum computing (Zulehner et al., 2018). The fundamental

quantum gates with matrix representation are as follows.

1.3.1 Single qubit gates

Single-Qubit gate plays a vital role in quantum circuit implementation. These gates

operate on a single qubit i.e., it accepts a single input and produces single output [14].

The single qubit gates which are used to produce superposition and to perform bit and

phase shifts, etc are discussed as follows.

Hadamard Gate

It is the fundamental method for creating the superposition of a qubit. It performs the

operation on a single Qubit i.e., it takes a single input and produces a single output. It

represents the input state which is either |0⟩ or |1⟩ to a superposition of |0⟩ and |1⟩ with

equal probabilities to become states 0 and 1. It plays a major role in many quantum

circuits to generate superposition. It is graphically represented with the symbol H.

Hadamard operation on a single qubit system with quantum states |0⟩ and |1⟩ can be

represented as H = |0⟩±|1⟩√
2

for both positive and negative phases. Its matrix depiction is

as follows.

H =
1√
2

(
1 1

1 −1

)
(1.8)

Pauli gates

Pauli gates are represented based on the π angle rotation around the x, y, and z axis in

the Bloch sphere. Based on the rotation over the axis, these gates are divided into three

types Pauli X, Y, and Z gates which are explained along with these lines.

Pauli X gate

Pauli X gate performs the operations on a single Qubit. It is the same as a NOT gate

in a classical computation hence it is also called a Quantum NOT gate. It is visually

represented with the symbol X. If the input is given as |0⟩ then X gate converts it into
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|1⟩ and |1⟩ will be converted to|0⟩〉. Hence it can also be called as a bit-flip gate. Its

matrix representation is given below.

X =

(
0 1

1 0

)
(1.9)

Pauli Y Gate

This gate accepts a single input and produces a single output. It represents state |0⟩ to

state i|1⟩ and state |1⟩ to state −i|0⟩. It is pictorially represented with the symbol Y. Its

matrix depiction is as follows.

Y =

(
0 −i
i 0

)
(1.10)

Pauli Z Gate

This gate performs operations on a single Qubit. After applying this gate on a qubit will

not change the state if the input is |0⟩, but if it is |1⟩ then it will be modified to -|1⟩. Due

to this, it can also be called a phase shift/phase flip gate. It is pictorially represented

with the symbol Z and its matrix representation is given below.

Z =

(
1 0

0 −1

)
(1.11)

Phase Gates

Phase gates are used to represent the phase shifts while performing the operations.

These are also single qubit gates. A phase gate is represented with the symbol P.

If the phase gate is applied on a qubit with |0⟩ then it will be in the same state. But if

the input is |1⟩ then it will be modified to eiΦ|1⟩. It means, it only modifies the phase of

a qubit but the probabilities of |0⟩ and |1⟩ will not be modified. It changes the phase of

a qubit along the Z-axis. The matrix representation of the phase gate with phase Φ is as

follows.

P(Φ) =

(
1 0

0 eiΦ

)
(1.12)

Based on the phase (Φ) value the phase gates are divided into Z, S, and T gates. If
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a P gate is applied on a qubit then it rotates along Z-axis with phase Φ = 2π. If Φ = π

phase gate acts as a Z gate which is also called a Pauli Z gate.

S Gate

Phase gate acts as an S gate for Φ = π
2
. Its matrix representation is as follows.

S gate =

(
1 0

0 e
iπ
2

)
(1.13)

If the phase is negative i.e., for Φ = −π
2
, then it is represented as S† and termed as

S-dagger gate. Its matrix representation is as follows.

S†gate =

(
1 0

0 e−
iπ
2

)
(1.14)

T Gate

Phase gate acts as a T gate for Φ = π
4
. Its matrix representation is as follows.

T gate =

(
1 0

0 e
iπ
4

)
(1.15)

If the phase is negative i.e., for Φ = −π
4
, then it is represented as T † and termed as

T-dagger gate. Its matrix representation is as follows.

T †gate =

(
1 0

0 e−
iπ
4

)
(1.16)

U Gate

U gate also performs the operation on a single qubit and it is also called a parameterized

gate. Till now we have discussed single qubit gates with two parameters δ,Φ, but the U

gate is represented with three parameters δ,Φ, γ. Hence initially it is termed a U3 gate.

Its matrix representation is as follows.

U(δ,Φ, γ) =

(
cos(δ/2) −eiγsin(δ/2)

eiΦsin(δ/2) ei(Φ+γ)cos(δ/2)

)
(1.17)
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U gate with parameters (0, 0, γ) acts as a P gate and with parameters (π
2
, 0, π) acts as a

Hadamard Gate.

1.3.2 Multi qubit gates

As of now, we discussed the gates which operate on a single qubit. To perform opera-

tions on multi qubits we need multi-qubit gates. Hence this section explains the various

quantum gates which operate on two or more qubits.

Swap Gate

Swap gate is used to swap the qubits. It operates on two qubits i.e., it accepts two inputs

and produces the two outputs as shown in Figure 1.3. If the inputs (In1, In2) of Swap

gate are |0⟩ and |1⟩ then the outputs of this gate are |1⟩ , |0⟩.

In1

In2

In2

In1

Figure 1.3: Graphical representation of SWAP Gate

Controlled-NOT Gate

This gate is also referred as CNOT gate and Feynman gate. It operates on two qubits i.e.,

it accepts two inputs called control and target inputs and produces two outputs called

control and target outputs. For an example, consider the inputs of this gate as (In1, In2)

and outputs as (Ot1, Ot2) as shown in Figure 1.4.

Controlled NOT
(CNOT) Gate

In1

In2

Ot1 = In1

Ot2 = In1 ⊕ In2

Figure 1.4: Graphical representation of CNOT Gate

As shown in Figure 1.4, the outputs can be retrieved from the equations Ot1 =

In1, Ot2 = In1 ⊕ In2. The output of CNOT gate depends on the control input In1. If the

In1 is |0⟩ then the outputs are the same as the inputs. Otherwise, if In1 is |1⟩ then the

output Ot1 is same as In1 and Ot2 is complement of In2.

Similarly, there are various multi-qubit quantum gates like Double Feynman gate,
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Peres gate, Toffoli gate, TR gate, and Fredkin gate are available to implement various

quantum circuits.

1.4 Quantum Errors

The error rate is high in current NISQ-level quantum systems due to the noise and

decoherence. The errors in classical and quantum computing are different because in

classical, the possible errors are bit flip errors only but in quantum, the possible errors

are three types Bit flip, Phase flip, and Bit & Phase flip which are explained as follows.

1. Bit flip errors: These errors are the same as classical bit-flip errors. When a bit
flip error occurs in QIP, it modifies the actual quantum state. For an instance, the
information need to be transmitted is α|0⟩+β |1⟩. While transmitting it if any bit
flip occurs then it converts the actual state into α|1⟩+β |0⟩, where the qubits are
modified.

2. Phase flip errors: Phase flip errors modifies the actual phase of the quantum
state, i.e. if the quantum state is in a positive phase upon the occurrence of phase
error, it will modify into a negative phase. For instance, the information needs to
be transmitted is α|0⟩+β |1⟩. While transmitting it if any phase flip occurs then it
converts the actual state into α|0⟩-β |1⟩, where the qubit phase is modified.

3. Bit and Phase flip errors: This error modifies both bit and phase of the actual
quantum state. For instance, the information need to be transmitted is α|0⟩+β |1⟩.
While transmitting it if any phase flip occurs then it converts the actual state into
α|1⟩-β |0⟩, where the qubit and phase are modified.

Errors are mathematically represented with state matrices. Usually, the quantum

states are represented with the state matrices with the combination of complex state

vectors. The possibility of errors in quantum computing is high due to the delicacy of

the quantum states. It results in noise and decoherence. In general, Quantum states

are represented with a state matrix. A state matrix is a combination of complex state

vectors. Let us assume ρ, |ϕ⟩ are the representations of a state matrix and a state vector.

A new pure quantum state of these state matrices and vectors can be represented with

the outer product of the state vectors as ρ = |ϕ⟩⟨ϕ|. But after performing the operations

on qubits, a pure quantum state will be modified as a mixed state due to the interaction

with the external environment. This can be represented with the following equation.

ρ =
∑
n

Pn|ϕn⟩⟨ϕn| (1.18)
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Where Pn is the probability of quantum state |ϕn⟩. |ϕn⟩⟨ϕn| represents the vector inner

product.

If we consider a quantum gate on a single qubit, the operation Op will be performed

with a unitary group of 2 states. Whenever the operations are performed on two states,

the possible Pauli errors for all 4(2x2) states will be represented as follows.

Op = EIΓI + EXΓX + EZΓZ + EY ΓY (1.19)

Here ΓI ,ΓX ,ΓY ,ΓZ represents the Pauli operators named identity, qubit shift, phase

shift, qubit & phase shift. The matrix representation for these operators is given below.

ΓI =

(
1 0

0 1

)
,ΓX =

(
0 1

1 0

)
,ΓY =

(
0 −i
1 0

)
,ΓZ =

(
1 0

0 −1

)

EI , EX , EY , EZ are the probabilities with real and complex numbers such that |EI |2 +
|EX |2 + |EY |2 + |EZ |2 = 1

For error calculation, only X and Z errors will be considered. By considering these

two we can also cover Y errors because of Y = XZ (McClean et al., 2020).

1.5 Error Correction mechanism in Quantum Computing

Quantum Computing has great potential compared to classical computing (Feynman,

1985). For example, the Shors factorization algorithm is exponentially faster than the

efficient classical algorithms. Hence it is very important to ensure the accuracy of

Quantum information processing. The theory of Quantum Error Correction(QEC) has

been developed to protect the information from noise (Criger et al., 2012). With Quan-

tum theory and practice development, Quantum circuits and experimenting with QEC

approaches are achievable on platforms such as IBM Qiskit (Qiskit, 2019). Quantum

Information Processing contains three steps in Quantum Computing. These are encod-

ing the information, transmitting it through the Quantum channel, and finally decoding

the information.

In Quantum computers, Quantum states can be easily affected by external noise;

hence errors can occur at any time so the QEC techniques should protect the information

while processing. Redundancy is added at the encoding side in the original information

to handle the noise in advance. An error will be generated if the noise occurs during the

information transmission. On the decoding side, the errors have to be corrected, hence
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the QEC technique has to perform encoding procedures in reverse order to correct the

errors. This procedure contains error detection and recovery of the original information.

The QEC techniques should satisfy two points, which are

i) Low Error Correction cost

ii) High Error Correction accuracy.

In QEC techniques ancilla qubits are used to protect the information. If fewer ancilla

qubits are used, the error correction cost will be reduced.

1.6 Ancilla Qubits

The operations performed in a quantum computer are unitary transformations that con-

serve the inner product. It represents that the inner product of the vector must be unique

before and after transformation. All the quantum operations are performed by imple-

menting quantum circuits. While performing the operations, partial results will be gen-

erated. Due to the reversible operations, other than input and output we need extra

qubits which can be used to perform the operations and store the partial results. Espe-

cially in Quantum error correction, to detect and correct the syndromes extra qubits are

required. These extra qubits are called ancilla qubits or garbage qubits (Criger et al.,

2012). Once the operations are completed, the ancilla qubits will be deleted. It will not

increase the total number of qubits and does not affect the actual qubits. Ancilla qubits

are initially represented with state |0⟩. It reaches the same state after performing the

operations. Ancilla qubits are used in various QEC techniques which are discussed in

the next chapter.

1.7 Motivation

The features of quantum mechanics pave a path toward various approaches for trans-

mitting information. The main problem observed in quantum computation is noise

which is caused by unwanted interaction with the external environment. Therefore er-

ror correction methods play a crucial role in the quantum information process (QIP).

Error detection and correction in quantum computation is a difficult task. Because as

per the no-cloning theorem, copying quantum information is not possible. If one tries

to do that, its actual state will be disturbed which leads to errors. As a solution to

this, researchers working on developing quantum error correction techniques. From the

literature, we observed that many of the existing works are symmetric in nature. The

symmetric quantum error correction methods are implemented by considering the prob-
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ability of getting bit and phase flip errors as the same but it is not the case. Furthermore,

the probability of getting phase flip errors is more compared to the bit flips. Even after

implementing the error correction methods, many authors (Shor, 1996; Tornberg et al.,

2008; Riste et al., 2015; Wootton & Loss, 2018) concentrated on detecting and correct-

ing only one error, i.e. either bit flip or phase flip at a time. However, it is important

to find all the errors for efficient quantum error correction. In earlier days, the authors

used to perform mathematical and theoretical operations to implement quantum archi-

tectures (Shor et al., 1998; Knill et al., 2000; Chiaverini et al., 2004; Cai et al., 2021).

Due to the inbuilt noise of the quantum system, there will be differences between math-

ematical and quantum system outcomes. We can observe that by performing operations

directly on quantum systems. Furthermore, optimized quantum circuits need to be im-

plemented to design cost-effective quantum architectures. Hence these points motivated

us to address the following issues:

• Efficient method for asymmetric quantum error correction to detect and correct
bit and phase errors.

• Advantage of entanglement in quantum error correction to achieve better results.

• Effective and efficient utilization of cost-effective quantum circuits to develop
Quantum cost optimization models.

• Designing and developing quantum algorithms on quantum systems to observe
the exact outcome of the developed algorithms.

• Requirement of quantum error correction in various applications to overcome the
drawbacks of classical computing.

Thus, the research in this thesis focuses on asymmetric quantum error correction

by taking advantage of entanglement and developing optimized quantum architectures

with the help of cost-effective quantum gates.

1.8 Summary

In this chapter, we discussed the fundamental concepts of quantum information such

as superposition, entanglement, and teleportation. Further, the various single-qubit and

multi-qubit quantum gates along with the concept of reversibility have been discussed.

Also discussed the impact of various quantum errors on quantum information while

transmitting in the form of quantum states. The importance of error correction in quan-

tum computing and the role of ancilla qubits in detecting errors is presented as well.
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1.9 Organization of the Thesis

The rest of the thesis is organized as follows.

In Chapter 2, an extensive literature review on existing quantum error correction

methods and the observed research gaps are illuminated. Based on the outcome of the

existing works, the problem statement and objectives are defined.

In Chapter 3, the scope of the proposed work and the research contributions are dis-

cussed, and also a brief description of the proposed methodologies for all the objectives

is provided.

Chapter 4 presents a novel method for Entanglement Purification using Entangle-

ment Swapping along with the result analysis of the proposed method with the existing

state-of-the-art methods.

Chapter 5 presents an efficient method for Asymmetric Quantum Error Correction

with Syndrome Measurement with and without using Entangled qubits. The result anal-

ysis with existing methods is also elucidated.

Chapter 6 presents the Quantum cost optimization model for the proposed asym-

metric quantum error correction method along with the result analysis.

Chapter 7 presents the error correction in Quantum key distribution using the pro-

posed method with result analysis.

Chapter 8 presents the concluding remarks of the presented research work and high-

lights the future research directions in this area.
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Chapter 2

Literature Survey

In the previous chapter, we discussed in detail the fundamental concepts of Quantum

computing like Superposition, Entanglement, Quantum errors and etc. The following

chapter gives a detailed overview of the existing state-of-the-art methods on Quantum

Error Correction, Entanglement Purification, Quantum Cost Optimization and Quan-

tum Key distribution methods. The observed gaps from the detailed literature and the

proposed problem statement along with the research objectives are also presented in

this chapter.

2.1 Quantum Computing and Error Correction

Quantum computing is an advanced computation process that performs operations based

on quantum mechanical principles. These principles made quantum computers expo-

nentially more powerful, cost-efficient and energy-efficient than classical computers.

According to the Church-Turing Principle (Church, 2003), Quantum computers can

solve complex problems in exponentially less time than classical computers. It has

been proved with Quantum Supremacy (Arute et al., 2019) by factoring integers in just

200 seconds, whereas the world’s best supercomputer will take its lifetime to solve it.

Even though Quantum computing has many advantages over classical computing but

at the same time, it has some limitations due to the physical properties of Quantum

particles. When we try to measure Qubit, it behaves like a particle and like a wave

when it is not observed. Due to the dual property of a quantum particle, it is difficult to

maintain coherence while performing the operations in a Quantum system. This leads

to decoherence and noise which in turn leads to errors or data loss (Steane, 1996b). As

a solution to these problems, error correction methods are to be implemented.

Quantum Error Correction plays an essential role in large-scale Quantum systems.

Especially in the current NISQ era of quantum systems, the error rates are very high

and the coherence time is very less due to the delicacy of the quantum particles. This

makes building a Quantum computer with an error correction mechanism essential. The

process of Quantum Error Correction(QEC) is different when compared to Classical

Error Correction due to the following reasons.

• A Quantum bit is subjected to bit flip errors and to phase flips due to the fluctua-
tions in its actual phase.
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• As per the no-cloning theorem, it is impossible to copy the Quantum states.

• Measuring a qubit to detect the error will immediately destroy the Quantum
states.

In classical computing, the data can be copied and measured but quantum informa-

tion cannot be copied. Moreover, the information stored in the qubit may be lost if we

try to measure it. This makes Quantum error correction a very challenging one. There

are total three types of errors namely bit flip, phase flip and bit & phase flip errors as

discussed in section 1.4. These errors frequently occurs in Quantum Information Pro-

cess (QIP). QIP is a process of transmitting quantum information from one place to

another. The significant steps to transmit the quantum information in QIP are depicted

in Figure 2.1.
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Figure 2.1: Steps in Quantum Information Process

Figure 2.1 shows three major steps in Quantum Information Process. The first step

is encoding in which a logical qubit is protected by appending multiple physical qubits.

The logical qubit is an actual qubit that needs to be transmitted from one end to another.

It is difficult to find if any error occurs on the logical qubit as the actual qubit will

be corrupted. In order to overcome this, we use extra qubits named as physical qubits

which will be appended along with the logical qubit to protect the information as well as

to detect and correct the errors. Once the data is encoded, it will be transmitted through

the quantum channel. In a quantum system, optical fibre is used as a quantum channel.

When the encoded data is transmitted through this channel, it has to interact with the

external environment which results in errors. The resulting errors will be detected and

corrected, the encoded data will be decoded into the original logical data by performing

decoding operations. By following these steps, the authors developed quantum error

correction methods using various approaches. A detailed discussion on the existing

state-of-the-art quantum error correction methods are presented in section 2.2. The

usage of entangled qubits in Quantum Error Correction leads to more accurate results
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and reduces the error rate. To apply entangled qubits, it is necessary to check whether

the entanglement between qubits is maximal or not. If the entanglement is weak, it

leads to more errors or data loss. In order to overcome this problem, entanglement

purification techniques need to be performed. The detailed discussion on entanglement

purification and the existing methods with merits and demerits are presented in section

2.3. In the current NISQ era of quantum systems, the requirement of cost and power-

efficient quantum architectures are very high. Here the cost represents quantum cost.

Quantum cost is measured based on the number of single and multi-qubit quantum gates

used in the architecture. The usage of lowest-cost quantum gates to develop a quantum

architecture leads to a reduction in overall cost which in turn leads to a reduction in

power consumption. The detailed discussion on quantum cost optimization models,

and the existing methods with advantages and disadvantages are presented in section

2.4.

2.2 Various approaches in Quantum Error Correction

Initially, the researchers (Bennett & Brassard, 1984; Peres, 1985) thought to apply clas-

sical error correction codes to perform error correction in quantum systems. The major

challenge they observed here is the no-cloning theorem and orthogonality. In classi-

cal computing, multiple copies of the data can be maintained to protect it from errors.

Even if an error occurs, it will be detected and corrected easily. But in quantum, it is

not possible to maintain multiple copies of the data (Wootters & Zurek, 1982). Another

essential property of quantum states is orthogonality. The quantum states must be or-

thogonal and normalized in order to maintain coherence. The quantum states are said

to be orthogonal if and only if the vectors of the states are at a right angle. It is called

normalized if the sum of its magnitudes is equal to 1. The orthogonality concept needs

to be included to modify the classical error correction strategies into quantum models,

which is quite difficult to implement (Hornberger, 2009). Thus till the early 90’s, the

researchers (Flynn, 1966; Pendry, 1983; Ebison, 1985; Josephson, 1988) felt that it is

challenging to develop the error correction mechanism for quantum systems.

The first error correction code named quantum repetition code was introduced by

Calderbank & Shor (1996) with reference to the classical repetition code in 1996. In this

code, to perform error correction a single logical qubit will be encoded into three phys-

ical qubits by appending two extra qubits to the logical qubit with the same quantum

state. To measure the error, two ancilla qubits were used. Based on the combination of

ancilla qubits the errors will be measured. The main drawback is that if the error occurs
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on two qubits, it results in incorrect output. In order to overcome this problem, Shor

et al. (1998) proposed a 9-qubit Shor’s code. It will be used where a single logical qubit

is encoded into nine physical qubits. Even though this performs better than the 3-qubit

repetition code, there will be an increase in quantum cost due to the more number of

qubits. Quantum cost represents the cost of a quantum circuit that is used to perform

the operations with various quantum gates. Single and multi-qubit gates are used for

the development of Quantum circuits. The cost of the quantum circuit is measured by

calculating the cost of each gate associated with it. The 9-qubit Shor’s code is further

simplified into 7-qubit Steane’s code (Steane, 1996a) which is also called as CSS code.

This code uses seven qubits to perform error detection and correction. In this, a single

logical qubit is encoded into seven physical qubits to detect and correct the quantum

error. Later the additive codes are introduced (Gottesman, 1997). These codes stated

that the minimum number of qubits required to perform error correction is 5. Along

with these codes, Non-additive, Asymmetric and Entanglement assisted Quantum Error

Correction codes were also introduced by the researchers which are explained clearly

in the following sub-sections.

2.2.1 Additive Quantum Error Correction codes

Additive Quantum Error Correction codes are also called as Stabilizer codes which

correct the local errors. Till 1997, most of the developed quantum error correction

codes were stabilizer-based codes only (Cleve, 1997). The error correction process of

stabilizer codes is depicted in the following Figure 2.2.

Quantum Information

Encoding Generated
Codewords

Quantum Channel

Corrupted
Codewords

Occurrence of errors

Correcting the error

Decoding

Original Quantum Information

Figure 2.2: Error correction procedure in Additive Codes (Ezerman et al. (2011)).
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As Figure 2.2 shows, additive code encodes the data into codewords. A codeword

is a set of encoded states that are presented in code space. It can be represented as

|ψ⟩ ∈ ζ where ζ represents the code space. It is a subset of Hilbert space H with n

number of qubits, i.e. ζ ⊆ H⊗n (Ezerman et al. (2011)). The generated codewords will

be transmitted through the quantum channel. If any error occurs then the codeword will

get corrupted. To detect and correct the error in a codeword, error correction methods

will be applied. Once the error is corrected, the data will be decoded into the actual

quantum information. Usually, a k-qubit quantum state will be encoded into n-qubit

codewords. It means the extra (n-k) qubits are used to strengthen the qubit in order to

resist errors. Along with these, the codeword distance is also considered for represent-

ing the error correction codes. The distance represents the distinguishable codewords,

i.e. the number of codewords separated from each other. Let us assume the codeword

distance is d. To detect minimum t errors the value of d must be ⩾ t+ 1. According to

this, the code will be represented with the notation [n,k,d].

The authors Glaudell et al. (2016) proposed a stabilized Quantum error correction

using the measures [n, k, d]D with level D=2. It is an improvised CSS code. In this

code, the Quantum Non-Demolition (QND) measures are used to measure the erasure

errors. The quantum noise will be added to the phase of a photon. Even after applying

the noise, if the photon state is not modified during the measurement, then it is called a

QND measurement. To measure the stabilizers of ancilla qubits, Quantum R gates and

CPHASE gates are used. With this structure, the overheads are reduced compared to

the non-additive codes. But by using R gates the cost of the quantum architecture will

increase. The proposed model is efficient for Quantum repeaters.

Jackson et al. (2016) adapted the codeword-based stabilizer code framework to per-

form QEC. Moreover, the authors proposed Pauli error models for amplitude damping

and phase damping noise using local Clifford gates. Here, amplitude and phase damp-

ing are possible noises in superconducting quantum systems. When the quantum states

are transmitted through the amplitude or phase-damping channels, it leads to errors due

to the existing background noise. To mitigate these errors, [6,4] measures are word sta-

bilizers and word operators are used to perform error correction. The proposed method

(Jackson et al., 2016) detects the single amplitude damping error or multiple phase er-

rors using Pauli Kraus operators. Due to the asymmetry between the Pauli errors, the

proposed method cannot perform efficiently on more qubits.

Ofek et al. (2016) implemented a full-fledged QEC by using the real-time feedback
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system. The real-time feedback is used to encode the data and monitor throughout the

transmission for error occurrences. These errors will be corrected and information will

be decoded. To perform these operations, cat code is used; moreover, the proposed

method is hardware efficient. It extends the lifetime of a qubit to 320 microseconds

from 180 microseconds. But it does not apply to traditional error correction methods

even though it works extraordinarily on hardware-efficient architectures.

Pan & Nguyen (2016) proposed an error correction model for a 3-qubit system.

This model performs the error correction and stabilization of a three-qubit repetition

code using dissipation control. Dissipation control can be defined as the utilization of

the energy of quantum states for required operations in spite of wasting it. With the

help of the dissipation control, it is possible to perform the automatic quantum error

correction by stabilizing the ground states. To do so, the tensor product operation will

be performed on Hilbert space to model the errors using arbitrary error operations.

The major problem with this method is detecting errors when two or more qubits are

modified.

Roffe (2019) provided an overview of the implementation of various quantum error

correction methods, fundamental concepts, and error correction and detection exam-

ples. The authors focused on the implementation of surface codes. Surface codes are

dual-containing CSS codes that are defined on a 2D lattice. In this [4,2,2] code is used

to detect the errors. To encode the information, multi-dimensional Hilbert spaces are

considered for producing efficient results. Before encoding the information, a single

qubit is parameterized into two-dimensional Hilbert space. After encoding the informa-

tion, the qubit occupies four-dimensional Hilbert space to increase the accuracy. The

proposed code was mainly used for detecting and correcting a single qubit error. If

multiple errors occur at a time, it is difficult to find using this code.

Quantum Topological Quantum Error Correction codes (QTECC) were proposed

by Chandra et al. (2017). To implement QTECC, authors performed the classical to

quantum isomorphism. As we discussed earlier, classical codes cannot be applied di-

rectly to quantum systems. Based on the properties of quantum information the classical

methods need to be modified and then applied on a quantum system. The authors im-

plemented the classical-based quantum codes by including the orthogonality concept.

After that to perform the error correction, quantum stabilizer codes formalism was used

to reduce the Quantum bit error rate (QBER). It has achieved efficient results using

[7,4,3] hamming bound. The proposed system’s cost is higher than the existing works
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although the results are better.

The authors Babar et al. (2018) also discussed about the various designing principles

of the duality of classical and quantum codes. Authors discussed that the Entanglement

could be used to copy the quantum information and Hadamard gates are used to per-

form phase flips. But coming to the practical scenario, there are many problems that

exist while performing the proposed operations like weak entanglement, noise, and de-

coherence. To store the measured information parity check matrices (PCMs) are used.

The increase in the dimensions of the PCMs leads to an increase in the error rate which

in turn leads to low efficiency.

Ahsan & Naqvi (2020) proposed re-configurable quantum error correction codes

for the real-time errors using [7,1,3] transversal gates. Transversal gates are different

when compared to the other quantum gates. A quantum gate is called as a traversal

gate if it is possible to achieve a logical CNOT gate by applying a CNOT gate on each

qubit. Traversal gates are beneficial in QEC for transmitting a logical qubit into phys-

ical qubits. In Ahsan & Naqvi (2020), authors implemented a decoupling transversal

gate and applied that to decoupling transversal logical gate errors which are generated

from state-preparation noise. The experimental results show betterment compared to

the CSS codes. The role of CSS codes in Quantum key distribution for error correction

is investigated by Jia et al. (2019). In this, the authors proposed a classical linear code-

based quantum CSS code. They applied this in the BB84 protocol to perform quantum

key distribution. The theoretical results show that the proposed method improves the

security of the key.

Holmes et al. (2020) discussed the role of quantum error correction in boosting

quantum computing power. The proof of the proposed concept is demonstrated using

single flux quantum (SFQ) technology. This technology was used to avoid the decod-

ing backlogs and this uses the T gates in order to increase the simple quantum volume

(SQV) of quantum systems. A 5% of improvement is observed in decoder operations

due to the reduced overheads. The overhead is calculated using the values of the error

generation rate and decoder processing rate. To implement the proposed error correc-

tion model, T gates are used. T gate is also called as a phase gate with angle π
4
. Due to

the inbuilt system noise, if the phase fluctuations are more, it leads to more errors and

decreases the quantum volume (SQV).

Li (2020) investigated various quantum error correction models. They categorized

21



all the error models into discrete and continuous models. According to them, the per-

formance of discrete error models like stabilizer codes, AQECCs, and EAQECCs was

high compared to the continuous codes like direct continuous-time QEC (CTQEC) and

indirect CTQEC. CTQEC error models correct the errors which occur continuously in

time. They also discussed about the optimization-based error correction approaches in

terms of fidelity and the importance of the perturbation error model in the present era

of quantum systems.

Cane et al. (2020) quantified the lower probability bound for the transversal QECCs

using low complexity repetition code and 7-qubit Steane’s code. To perform the error

correction, encoding needs to be performed. The authors used transversal CNOT gates

and Clifford gates with the steane code stabilizers to encode the quantum states. A

single transversal gate has been used in every error correction step instead of using

multi gates. The use of multi-transversal gates will increase the circuit depth. This

scheme has reduced the frame error rate in transmission. Unknown quantum states

need to be encoded in order to implement fault-tolerant QECCs, which is not possible

with the proposed scheme.

Roffe et al. (2022) introduced a novel framework for QEC based on the classical

methods named as Coherent Parity Check (CPC) codes with a symmetric structure by

implementing a parity check matrix for QEC. This method separates the coded Qubits

into two types corresponding to the data register and the parity register. Based on these,

the CPC scheme performed a round of cross-checks between the parity qubits for QEC

at the decoder side using [10,4,1] qubits. It helps the researchers to apply the classi-

cal model on quantum to perform error correction. The main issue with the proposed

method is to detect a single qubit error when more number of physical qubits are used.

It increases the quantum cost and depth of the proposed CPC model.

Hanks et al. (2020) investigated the role of local variance in decoding the quantum

information using surface and repetition codes. The authors claimed that the results

would be improved by using local information while performing decoding operations.

It also reduces the code distance and error rate. The authors applied Kolmogorov’s

Blossom V algorithm to reduce the logical error rate. The performance of the proposed

model degrades when a depolarization channel is used for the information transmission.

It is also observed that the impact of measurement error in QEC leads to high error rates.

Most of the QEC mechanisms are implemented based on imperfect parity check
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measurements which may return incorrect results or inject faults into the quantum states

(Steane, 1996b). To overcome this, Shor (1996) introduced fault-tolerant error correc-

tion. The sequence of parity check measurements will be repeated until the same out-

come is observed many times. The proposed fault-tolerant error correction takes the

Ω(rd2) time for the d-distance code determined by the r parity checks. To reduce the

time complexity, Delfosse et al. (2021) proposed fault tolerance quantum error correc-

tion using parity check measurements. The authors achieved this by considering a noise

model for parity check measurement by assuming that each codeword bit contains a bit

flip error with an error rate of p. With the proposed model, the error correction can

be achieved in O(dlogd) time. The proposed fault-tolerant error correction efficiently

finds the errors in small codes, Low-density parity check (LDPC) codes, etc. But the

proposed method works efficiently on bit flip error correction.

Cuvelier et al. (2021) proposed the QEC code using space-time block codes for

non-coherent multiple-input multiple-output (MIMO) communication. The authors de-

veloped a framework to analyze the usage of QEC code in a non-coherent classical com-

munication channel. Also developed a mathematical structure of quantum encoder to

perform QEC in MIMO framework. Mathematically derived the decoder and compared

the results with the coherent QEC models. To perform the experiments, an experimen-

tal setup is developed with multiple antennas and transmitters. Although the results are

effective, space-time block codes restrict the number of transmitters and antennas to be

equal or power of two. With this the bandwidth efficiency reduces.

Wagner et al. (2021) proposed QEC by estimating Pauli channels from the quantum

syndrome measurements. In order to do that, the authors used stabilizer codes and

Quantum data syndrome codes. Using Pauli channels makes it difficult to perform the

operations due to the varying noise and fluctuations in the quantum phase. Quantum

state decoherence is also a major reason for quantum errors. When the quantum state

is in Hilbert space, it has to maintain coherence to protect the information stored in

it. Once the coherence of the quantum state is lost, then the data stored in it will be

lost or leads to errors. Martinez (2022) proposed a QEC algorithm to overcome the

issue. Photonic qubits are used to develop the proposed QEC. An experimental setup

is required to develop and perform the operations with photonic qubits. It performs

efficiently in correcting errors but leads to data loss due to the very less lifetime of a

photonic qubit.

From the above discussed papers, it has been observed that the additive codes per-
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form the QEC operations using more number of qubits. When more number of qubits

are used, the Quantum cost and depth will increase which in turn leads to an increase in

the overall cost of the system and reduces the efficiency.

2.2.2 Non-additive Quantum codes

The non-additive codes are also called as non-stabilizer codes. These are implemented

by combining multiple additive codes. The additive codes are implemented to correct

the local errors using the classical linear codes. Non-additive codes are implemented

based on the non-linear quantum codes to improve the parameters of Quantum Error

Correction codes. The first non-additive quantum code is implemented by Rains et al.

(1997) with parameters [5,6,2]. In 2008, Yu et al. (2008) performed experiments on

non-additive codes and designed new codes with parameters [9,12,3]. This code cor-

rects a single qubit error using a 12-dimensional subspace with a 9-qubit Hilbert space.

The experimental results show that the [9,12,3] performs more efficiently than the sta-

bilizer code of the same length to correct a single-qubit error. To design encoder and

decoder circuits, the authors used Controlled Phase and Toffoli gates. Toffoli gate is a

three-input and three-output gate with a quantum cost of 5 units. The overall cost and

depth of the proposed QEC method are increased by using higher-cost quantum gates.

The proposed architecture can be further optimized by using unit-cost quantum gates.

Smolin et al. (2007) discussed about the family of non-additive codes with code

distance 2. Authors developed QEC code with parameters [n,3x2n−4,2] using Pauli op-

erations. The proposed QEC code outperformed the existing codes when n ≥ 9, but for

n ≥ 11 the performance of the code is degraded. Grassl & Beth (1997), Roychowd-

hury & Vatan (1998) examined various non-additive quantum codes and their impact on

existing quantum codes. Lang & Shor (2007) proposed non-additive codes to prevent

errors from the amplitude damping channel. This code performs the error correction

using a self-complementary structure. The decoding architecture of this code does not

perform syndrome measurement and recovery operations.

Grassl & Rotteler (2008) proposed Preparata and Goethal-based non-additive quan-

tum codes. The Preparata and Goethals codes are rectangular codes and are described

from the Data loss prevention (DLP) of the Bose–Chaudhuri–Hocquenghem (BCH)

codes. Authors derived union stabilizer codes with parameters [5,6,2] from the stabi-

lizer states. CNOT, Toffoli, X and Z gate operations are performed to encode the data.

These codes were useful in higher-dimensional quantum systems. With the usage of
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higher-cost quantum gates, the quantum cost of the proposed error correction method

increases. Ball & Puig (2021), Leditzky et al. (2022) discussed about the geometric

framework of graphical non-additive codes.

From the literature, it has been observed that non-additive quantum codes are more

difficult to implement than additive quantum codes, as they require additional qubits

and more complex error correction procedures. However, they can provide better error

correction performance in certain situations where independent errors on individual

qubits are not the dominant source of error. Compared to the other error correction

methods, non-additive codes require more number of parameters with that the cost of

the quantum circuits increases.

2.2.3 Entanglement Assisted Quantum codes

The entanglement-assisted quantum error correction codes (EAQECC) perform the er-

ror correction using entangled qubits. Entangled qubits are used to reduce the effect of

noise and errors on the transmitted information. Brun et al. (2006) discussed about the

role of entanglement in correcting quantum errors. The authors proved that EAQECCs

do not require dual-containing constraints. With this, it will be easy to implement

EAQEC codes using classical linear codes. Wilde et al. (2007) proposed continuous

variable EAQEC code with linear optics. Entangled qubits are used to encode the infor-

mation and recover the errors. In this EAQEC, optical elements are used to implement

the encoder circuit. For large applications, the proposed QEC algorithm requires more

number of squeezers to construct an encoder circuit. Squeezer states are used to main-

tain the uncertainty between quantum states.

Wang et al. (2019) proposed Quantum Maximum Distance Separable (QMDS) code

for error correction. q-ary QMDS codes have a minimum distance of length n = q2+1.

A detailed investigation on EAQEC codes with length n = q2+1 was also presented. In

the proposed EAQEC, more number of entangled bits are required if the minimum dis-

tance between code words is larger. Due to this, the flexibility to generate entanglement

between qubits will be improved.

Matsumoto (2020) presented the Gilbert-Varshamov (GV) -Type existential theo-

rem for Entanglement Assisted Quantum error Correction (EAQEC). GV bound per-

forms the direct products of two linear spaces and Euclidean inner product to detect and

correct the error. In this code, they used an entangled pair in QIP to transmit the in-

formation. The method gives efficient results when compared to the GV-type EAQEC.
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When the entangled qubits are used in error correction, there will be a possibility of

generating weakly entangled qubits. In such cases, the error rate increases, leading

to data loss. In Matsumoto (2020), authors didn’t discuss about the weak entanglement

and the steps to overcome this problem. The authors Şahinkaya et al. (2022), Allahmadi

et al. (2022), Sidana & Kashyap (2022), Chen (2022) proposed novel architectures for

EAQEC codes with local rings, arbitrary lengths & distances and singleton bounds.

All these codes are implemented based on the GV bound. They also investigated the

possibility of combining multiple codes to develop an efficient code.

Fan et al. (2022) proposed an Entanglement-Assisted Concatenated Quantum Code

(EACQC) by concatenating two different quantum error correction codes. When the

multiple quantum codes are combined, the non-degenerated hamming bounds will be

violated. EACQC outperforms Concatenated Quantum Code (CQC) and corrects the

error that is occurred on ebit. The authors Grassl et al. (2022) extended the existing

EAQECs by including the singleton bounds. In this, they used Catalytic QECCs along

with EAQECCs. To develop these codes, block length and distance between qubits are

considered. If the distance between qubits is more then the proposed method may not

detect the errors properly. The increasing distance weakens the entanglement between

qubits. As a solution to this, authors Ouyang & Lai (2022) proposed EAQECCs with

linear programming bounds. Linear programming bounds are mainly used to implement

non-trivial upper-bound quantum codes and will not be suitable for detecting all types

of errors.

From the literature, it is observed that the EAQEC codes perform well. But when

we depend entirely on entangled qubits, the error rate and the possibility of data loss

increase. The major problem we encounter in EAQEC codes is the external noise due

to which the entanglement between qubits becomes weak. In QIP, the data has to be

transmitted to longer distances. In such cases, the error correction using entangled

qubits will degrade the efficiency because maintaining the entanglement between the

two parties across greater distances is challenging.

2.2.4 Asymmetric Quantum codes

In asymmetric quantum error correction, the quantum information is encoded in a way

that makes it more resilient to certain types of errors, while other types of errors are

more easily correctable. In quantum computation, the possibility of getting phase flip

errors is more due to the phase fluctuations in quantum states. In such cases, it is es-
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sential to concentrate more on phase-flip errors. However, Asymmetric Quantum Error

Correction Codes are used to detect and correct both bit and phase flip errors but gives

more priority to phase flip errors. The authors Chiani & Valentini (2020a) proposed

generic Pauli error correction using stabilizer codes. Most of the existing QEC meth-

ods are designed to correct generic errors. Generic errors are the combination of Pauli

operators like X, Y, and Z. The authors used [9,1] stabilizer code to detect and correct

Z-type Pauli errors. [9,1] stabilizer code performs efficiently when there is an asymme-

try between quantum channels. The proposed method used a generic hamming bound to

define the minimum distance between the codewords while performing the error correc-

tion. With this modified hamming bound, the proposed error correction method shows

efficient results than the [13,1] code (Ma et al., 2019). If the code word distance is less,

the performance of the proposed generic Pauli error correction code degrades. With

[9,1] stabilizer code, the quantum cost and depth of the proposed architecture increases.

Lv et al. (2021) proposed AQECCs using Quasi-Cyclic (QC) construction. Quasi-

cyclic codes are generated from the cyclic codes. QC codes are one of the good

AQECCs over small fields. The authors discussed r-generator-based QC codes and

the dual-containing representation of 1-generator-based QC codes. The authors also

embedded the QC codes into 2-generator-based and 3-generator-based QC codes. The

major limitations of the QC codes are as follows: The maximum number of errors that

can be corrected by a QC code is limited by its distance. QC codes can able to cor-

rect errors that occur on a subset of the qubits in the encoded state. This means the

errors that occur on the remaining qubits will not be corrected, and the encoded quan-

tum information will be lost. These limitations reduce the performance of the QC codes

compared to the existing AQECCs.

Authors Roffe et al. (2022) proposed bias-tailored Low-Density Parity Check (LDPC)

codes. LDPC code is an alternative error correction code to surface code. LDPC codes

are playing a major role in implementing fault-tolerant quantum systems. LDPC codes

have advantages over the existing quantum codes and at the same time, it has some

limitations. Usually, LDPC codes are also called as a family of multiple codes with

more number of qubits. Even though it is showing excellent results theoretically, it

is difficult to say when good LDPC codes exist while doing the experiments with the

quantum states. The bias tailoring operation performs the QEC by considering the

asymmetry between quantum errors. The proposed method modified the existing sur-

face code with Pauli operators XZZX with biased noise. The theoretical results show
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that the bias-tailored LDPC codes perform efficiently in depolarizing noise channels.

But practically, it is difficult to bias the quantum phase noise.

Sundaresan et al. (2022) proposed a fault-tolerant syndrome extraction protocol by

developing a decoder with a real-time feedback system. The experiment was performed

on superconducting qubits which are connected in a heavy-hexagon lattice. The logical

error is reduced with the proposed decoder. The major problem observed here is the

possibility of sampling error which is increased with the proposed real feedback sys-

tem. Most of the existing fault-tolerant architectures are implemented by using Clifford

gates. Ryan-Anderson et al. (2021) proposed fault-tolerant QEC with [7,1,3] code and

without using Clifford gates. The encoder and real-time decoder perform efficiently in

detecting and correcting quantum errors. The proposed method requires seven qubits

to correct a single qubit error. With this, the quantum cost and depth of the architecture

increases.

The author Fuentes (2022) discussed about the Quantum Low-Density Generator

Matrix (QLDGM) CSS codes for depolarizing quantum channels. QLDGM code gives

efficient results compared to the Quantum low-density parity check (QLDPC) codes.

But with the increasing complexity of QEC, it is difficult to optimize the Quantum Bit

Error Rate (QBER) for asymmetric quantum channels. Initially, surface codes are de-

signed for the symmetric error channels. But Azad et al. (2021) modified the surface

code so that it can work in asymmetric quantum channels by measuring pseudo thresh-

old values. This code performs the operations with less number of qubits compared to

the existing works.

Fan et al. (2021) amalgamated Concatenated Codes (CCs) and Tensor Product Codes

(TPCs) to develop Asymmetric quantum concatenated and tensor product codes (AQCT-

PCs). The Concatenated Codes are able to find phase-flip errors and TPCs are able to

find bit-flip errors. Combining these two codes makes it possible to correct both bit and

phase flip errors. The AQCTP codes perform the inner and outer product operations us-

ing different codes. Because Tensor Product Codes are developed by performing inner

and outer products using different quantum codes. AQCTPCs are highly degenerative

codes. Thus they can passively correct the bit flips compared to the phase flip errors. In

Fan et al. (2021) authors focused on quantum decoder circuit architecture. To improve

the performance of the encoder circuit, the authors Fan et al. (2021) proposed Asym-

metric Quantum Concatenated codes (AQCCs) with a novel encoder circuit to detect

and correct degenerative errors.
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Apart from the above-categorized codes, other QEC codes like Binary QEC codes,

Non-binary QEC codes and Coherent Parity Check (CPC) codes were also discussed by

the authors Sarvepalli et al. (2009); La Guardia (2013); Ezerman et al. (2013); Verma

et al. (2022); Pang et al. (2022); Kuo et al. (2022). The authors Aly (2008); Ezerman

et al. (2013) investigated on the logical errors and proposed techniques to mitigate logi-

cal errors. Along with the logical errors it is also crucial to discuss about physical errors.

While performing the error correction the possibility of data leakage is more. During

the computation, if the qubits are at high energy levels then those may excite and leads

to the leakage of information. As a solution to this, McEwen et al. (2021) investigated

on the leakage during the error correction and proposed a reset protocol to reset the

qubit from a higher level to ground level. In order to implement this, a bit flip stabilizer

code was used. Bit flip stabilizer code is a simplified version of the surface code. The

proposed method leads a path towards scalable computing, but the proposed method

is helpful for finding only bit-flip errors. Even it is difficult to use reset protocols in

practical QEC with the correlated nature of the leakage-induced errors.

Cao et al. (2022) developed a variational quantum algorithm to search cost-effective

quantum codes. This algorithm can find QEC codes for any error model like pure or

impure, degenerate or non-degenerate, etc. Fuentes (2022) also investigated various

quantum codes and proposed sparse codes for error correction. Sparse codes are im-

plemented by taking the base of classical error correction codes. Khalifa et al. (2021)

discussed the digital design of QEC. The authors discussed about 9-qubit Shor’s code

and developed a modified QEC circuit by adding Hadamard gates to the existing one.

Convy et al. (2022) proposed a machine learning algorithm for the continuous QEC

based on the Recurrent neural networks (RNN). The proposed algorithm identifies the

bit flips from the continuous syndrome measurements. The results of this algorithm are

compared with the double threshold scheme and Bayesian classifier. After comparing

the results, it has been observed that the proposed algorithm outperforms the existing

methods.

Das et al. (2022) developed a Lightweight Low-Latency Lookup-Table (LILLIPUT)

decoder for QEC. It mainly performs two operations. They are - First, it converts syn-

dromes into error detection events and those will be stored in the Look Up Table (LUT).

Next, LUTs will be programmed with error assignments to find the errors. LILLIPUTs

will be programmed on FPGA and utilizes the 7% of logic space on FPGA. The model

currently concentrates on detecting bit flips only. It can be further extended to find
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all types of errors. Bhoumik et al. (2021) proposed a two-level decoding method for

QEC using machine learning. From the results, it has been observed that the proposed

method shows an excellent performance with the train and test ratio.

From the extensive literature, it has been observed that the AQEC with entangled

qubits (ebits) produces better results and also provides more security while communi-

cating the data. Thus the AQEC can be performed with qubits and ebits for efficient

results. When the entangled qubits are used, it is necessary to check whether the entan-

glement between qubits is maximal or not. If the qubits are weakly entangled, it leads

to more errors and data loss. To develop maximally entangled qubits, entanglement

purification techniques need to be performed. A detailed discussion on Entanglement

Purification and the existing EPPs is presented in the following sections.

2.3 Entanglement purification

Entanglement is a principal resource for various applications like secure communica-

tion, quantum error correction, QKD, etc. The entangled qubits will be shared between

multiple parties to perform operations like data transmission, key distribution and etc.

The critical question here is whether an entangled qubit is secured from the inbuilt noise.

Noise weakens the entanglement between qubits. In order to overcome this problem,

entanglement purification techniques are introduced. Entanglement purification is a

process that is used to generate highly entangled quantum states that are resistant to

noise and other forms of error. There are several different entanglement purification

methods have been developed to date which are discussed below.

Yan et al. (2022) proposed Measurement-based Entanglement Purification Protocol

(MBEPP) for the entangled coherent states (ECS). This protocol distils the strong ECSs

from a large number of weak ECSs. The bell states are used to measure the entan-

glement between the qubits. MBEPP was implemented based on the Quasi-bell states.

Quasi-bell states are introduced by Horoshko et al. (2019). Quasi-bell states are ex-

plicitly entangled coherent states and are used to measure the entanglement between

coherent states. In MBEPP, to generate entanglement between coherent states GHZ

method has been used. Behera et al. (2019) also proposed an EPP using GHZ states and

experimented with it on the IBM quantum system. The entanglement between GHZ

states is measured using Schmidt decomposition. Schmidt decomposition is a mathe-

matical tool used for understanding a quantum state’s entanglement structure. It is also

used to identify and eliminate errors in the quantum state. Due to the high degree of
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entanglement, GHZ states are sensitive to noise and other forms of error. This can make

it difficult to maintain the integrity of the quantum state over time. This can limit their

usefulness in certain applications.

Liu et al. (2022) proposed a two-way entanglement purification technique for quan-

tum key distribution. Gottesman, Lo, Lütkenhaus, and Preskill (GLLP) provided the

quantum key security proof using coherent quantum states and estimated the result in

terms of error rate and photon gain. To prove this, a two-way entanglement purification

protocol (EPP) is used as it performs efficiently and reduces the bit and phase error rate.

The problem observed here is weak coherent states. To perform the experiment, authors

considered coherent states. With weak coherent states, the results will be degraded.

Yin et al. (2022) developed an entanglement purification technique for polarization-

entangled photon pairs using heralded high-fidelity parity-check detectors (PCDs). These

are constructed by double-sided quantum-dot-microcavity (QD-microcavity) systems

and linear-optical elements. In this method, spin states are used along with quantum

states to perform entanglement purification. It generates the entanglement between a

mixture of the various quantum states and can be very useful in quantum networks.

With the proposed EP method, it is difficult to maximize the fidelity after a certain

range.

To improve the fidelity, Lu et al. (2020) developed an EPP for mixed states with

bit and phase flip errors using the Controlled Phase Flip gate (CPF). CPF gates perform

efficiently in purifying the entanglement between two quantum systems in long-distance

communication. CPF gates reduce resource consumption but the problem of double-

sided optical cavities increases with the photon emission in real-time quantum systems.

While working with EPP, it is also important to consider the phase fluctuations that arise

while performing the operations on qubits. For that, Zhi & Zheng (2020) investigated

the effect of phase fluctuations in entanglement purification. According to them, this

problem can be reduced by dividing the convergence pattern of the initial quantum

states into two regions. Convergence patterns are used to measure the degree of the

electron beam. The fractal-like framework is used between these two regions to purify

the entanglement into maximally entangled states (MES). The number of iteration steps

used to perform these operations must be less; otherwise the quantum cost increases.

Till now, the discussed EPPs distil the high-quality entanglement from low-quality

entangled states in the same ensemble. The authors Zhou et al. (2020) proposed a
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purification protocol that purifies the entanglement of the quantum states which are in

different ensembles. Ensembles describe the group of entangled states which are in

the same bell pair, i.e. either in |ψ⟩+ or |ϕ⟩+. Proposed EPP performs operations on

different ensembles, i.e., on both |ψ⟩+ and |ϕ⟩+. These are also called mixed entangled

pairs. The entanglement between different ensembles on mixed quantum states leads to

phase flips and degrades the entangled pair’s fidelity. Moreover, the performance of the

different ensemble EPP needs to be investigated on the measurement-based EPP.

Chuu et al. (2021) discussed the purification of single and entangled photons us-

ing wave-packet shaping. Wave-packet shaping is a quantum optics tool that is used

to manipulate the wave functions of single and entangled photons. To perform the ex-

periments, colloidal quantum dots are used at room temperature. With the results, it

has been observed that the wave-packet shaping method gives better results compared

to the non-degenerate entangled pairs and spatial entanglement. The proposed EPP is

hardware efficient and requires a special setup to perform the entanglement purification.

The authors Huang et al. (2022), Lu et al. (2022) proposed one step polarized entan-

glement purification method using spatial mode entanglement. The existing EPPs are

implemented to purify the entanglement using at least two pairs. But a single pair of

the hyperentangled qubits are used in the proposed experiment. Hyperentanglement is a

type of entanglement between quantum states with multiple degrees of freedom (DOF).

The proposed method shows efficient results in spatial mode. For time-bin entangle-

ment, the results are degraded because of multiple DOF. Even in practical communica-

tion, the noise which is generated due to the environmental interaction leads to multiple

DOF. It results in various effects which in turn leads to errors or data loss.

The authors Ghosh et al. (2018); Hu et al. (2021) proposed entanglement purifi-

cation using hyperentangled states. Instead of using two entangled pairs, single hy-

perentangled pair is considered for performing entanglement purification. To generate

hyperentangled pair a specific experimental setup is required where the light beam is

used to generate the quantum states. Hadamard and CNOT operations are performed on

these quantum states to prepare hyperentanglement and reduce QBER. This experiment

is hardware dependent and can be improvised to utilize it in applications like quantum

repeaters, QKD, etc. Most of the existing EPP used spatial mode entanglement but

time bin entanglement also plays an important role in EPPs. Time-bin entanglement

(Sheng & Zhou, 2014) is a type of entangled quantum state that is characterized by a

high degree of entanglement between two modes of a single photon. These modes can
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be considered as ”time bins,” corresponding to different time intervals.

Yan et al. (2021) proposed EPP based on time-bin entanglement. Time bin entan-

gled qubits are ideal for long-distance communications. Spontaneous parametric down-

conversion (SPDC) sources are used in the realization of the EPP. The noise emitted

from the SPDC source can be eliminated automatically. The CNOT or similar gates are

used in existing EPPs to generate entanglement. In the EPP, feasible sum frequency gen-

eration (SFG) is used. Feasible sum frequency generation (SFG) (Landes et al., 2021)

is a nonlinear optical process that involves the combination of two or more optical fre-

quencies to produce a new frequency. Time bin entanglement gives high generation

rates and can be proficient in various applications compared to spatial mode entangle-

ment. The proposed EPP is hardware dependant. Time bin entanglement requires a

complex experimental setup involving beam splitters, detectors, and other specialized

equipment. This can make it challenging to implement and may limit its practicality in

certain applications.

Luo et al. (2021) proposed multipartite entanglement purification protocol (MEPP)

using time-bin entangled pairs. The GHZ states are used to generate the entanglement

between quantum states. Generally, in MEPP two polluted entangled pairs will be used

and those will be purified using purification techniques. Unlike these, the proposed

MEPP requires a single pair of noisy time bin hyperentangled qubits to purify the en-

tanglement. With this, the efficiency of the proposed EPP will be increased but if time

bin and polarization DOFs occur on different types of photons, then the EPP can correct

only the bit flip errors even though there exist phase flip errors.

Zhou & Sheng (2021) developed a 2-step EPP for the polarization entanglement

using single hyperentangled states in spatial, time bin and polarization DOFs. Initially,

the purification process will be performed on two identical quantum pairs. In this step,

the bit flip errors will be purified. To purify phase flips, Hadamard operations were

performed. If the purification step fails, then it leads to mixed quantum states. To

purify the mixed quantum states, photon detectors will be used in the second step. This

step generates highly entangled qubits. The proposed method increases the fidelity of

the entangled pairs. But if both steps fail, then it leads to residual entanglement. It is

also difficult to generate multiple hyperentangled pairs simultaneously.

To protect the entangled qubits in quantum networks, Yan et al. (2022) proposed

EPP using optical fibre channels. While transmitting the entangled qubits through the
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optical fibre-based quantum channels, noise will be generated. It leads to amplitude

damping errors that degrade the entangled qubits’ fidelity. To distil the highly entangled

pair from weak ones, authors used frequency bias pulses in EPP. These pulses purify the

entanglement. It performs efficiently for meter-scale quantum networks. If the distance

is more, the performance of the proposed EPP degrades.

Ecker et al. (2022) discussed the establishment of polarization-based entanglement

over the noisy quantum channels. In this entangled pair, one DOF will be remotely

transferred to the other DOF through the noisy channel. Multiple DOFs are entangled

using CNOT operations. It provides versatility in entanglement transfer. To develop

and experiment with EPP, a specific setup with photon detectors and light emitters is

required. Xu et al. (2022) discussed the use of Quantum neural networks (QNN) for

entanglement purification. The authors applied QNN to reduce the noise. Here the

noise is divided into unitary and non-unitary noises based on the depolarization and

amplitude damping noise. From the experiments, it has been observed that fidelity

improves in non-unitary noise channels. But when it is applied in the depolarization

channel, the results are degraded.

From the detailed literature, it has been observed that most of the entanglement

purification methods are implemented using GHZ states. With the Schmidt decompo-

sition, the GHZ entangled states will become separable. It weakens the entanglement

between quantum states which leads to data loss. It is also difficult to generate the

entanglement between a large number of qubits using GHZ states. GV bound, hyper-

entanglement, time bin, or spatial mode entanglement were also used for developing

EPP. These methods increase the phase fluctuations. In order to develop an efficient

quantum architecture, it is essential to optimize the quantum cost. Otherwise, the cost

of the entire system increases and that leads to more power consumption.

2.4 Quantum Cost Optimization

Quantum cost optimization is a method for minimizing the number of quantum re-

sources to implement a quantum algorithm or perform a specific task. It is impor-

tant as quantum resources are often limited and expensive, and minimizing their use

can reduce the overall cost and complexity of quantum architecture. Quantum com-

puter performs reversible operations. The importance of reversible computation has

increased with emerging technologies. According to the Launders principle (Landauer,

1961), irreversible operations lead to energy loss. The loss of information in irreversible
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computation will generate the ln2kT Jouls of heat energy. Where k is the Boltzmann

constant, ln2 is the natural logarithm of 2 and T is the temperature. With the devel-

opment of reversible computation (Bennett, 1973), it became easy to perform various

operations that are difficult with classical computation. Operations like Super dense

coding (Harrow et al., 2004), Entanglement (Horodecki et al., 2009) and Quantum tele-

portation (Bouwmeester et al., 1997) are not easy to perform with classical computation

but made easy with reversibility concept. The reversibility concept is the major advan-

tage of quantum computation. Conventional computer performs irreversible operations.

With this, the input bits will be lost once the output is generated. The classical gates like

AND, OR, NAND, NOR, and EX-OR are multi-input and single-output gates and are

not reversible (Caves, 1999). A logical gate is called reversible if and only if it contains

an equal number of inputs and outputs. In this each output is represented with a unique

input combination. The inputs can be restored easily even after generating the outputs

(Nielsen & Caves, 1997). The energy-efficient reversible gates are used to implement

reversible circuits in quantum computation. These circuits play a crucial role in appli-

cations like Optical computing, Nanotechnology, Secure communications, etc. Where

the need for extremely low power consumption is desirable (Razeghi, 2010).

The reversible logic operations run the system in both forward and backward di-

rections. This helps to generate the input information from the retrieved outputs. The

energy dissipation will be reduced or sometimes eliminated with lossless operations in

reversible computing. Various reversible gates like Fredkin (Patel et al., 2016), Feyn-

man (Remón et al., 2009), Peres (Donald & Jha, 2008), Toffoli (Fedorov et al., 2012)

gates etc., exist in literature. The computational complexity of reversible logic gates

is often represented by Quantum cost. Quantum cost represents the technological cost

to build any quantum circuit or architecture using single as well as multi-input gates.

The quantum cost of single input and single output gates is equal to 1 unit. Quantum

cost increases with the increasing number of inputs and outputs. The reversible cir-

cuits are optimized by replacing the multi-input and multi-output gates with a single or

fewer number of input and output gates. Quantum cost optimization models were im-

plemented by many authors for reversible sequential circuits (Wille et al., 2010), Shor’s

algorithm (Paler & Basmadjian, 2022), decoder (Slimani et al., 2022), dense coding

(Qiu & Chen, 2022) and many more. The importance of quantum cost optimization

methods has increased for the development of energy and cost-efficient architectures.

Quantum cost optimization is essential to build cost-effective quantum circuits.
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Quantum cost represents the technological cost to build any quantum circuit or archi-

tecture. Mamun et al. (2014) proposed quantum cost optimization model for reversible

sequential circuits like latches, SR & JK flip flops. Feynman gate (FG), Double Feyn-

man gate (DFG), and Modified Peres Gate(MPG) were used to optimize the sequential

circuits. Szyprowski & Kerntopf (2011) proposed an optimization method for four in-

put and four output gates. The optimization can be performed by splitting multi-input

Toffoli gates into Smaller size Peres gates or CNOT gates.

The authors Basak et al. (2019) developed a cost minimization method using the

merger rules of the Exclusive Sum of Product(ESOP) method. K-maps are consid-

ered along with various gates like CNOT gate, Peres gate, TR gate, and Mixed Polarity

Multiple Control Toffoli (MPMCT) gates. MPMCT gates gave an efficient result for

large-size reversible circuits. Maity et al. (2020) proposed an optimized cost architec-

ture for 2x4 decoder using reversible logic blocks. Similarly, the authors Maity et al.

(2018), Montaser et al. (2015), Heranmoy et al. (2018), Ali et al. (2015), Majumder

et al. (2015), Mohammadi et al. (2008), Kheirandish et al. (2021), Slimani et al. (2022)

proposed quantum cost optimization models for 4-bit reversible universal shift regis-

ter, decoder, BCD to excess-3 code converter, Memory circuits, Comparator, adder and

subtractors using Peres and Toffoli gates. Pandey et al. (2022) proposed an optimized

circuit for Arithmetic Logic Unit using reversible gates. Wang & Wilde (2020) dis-

cussed about quantum entanglement cost simplification with the help of properties like

additivity and faithfulness. The authors developed the cost simplification method for the

mathematical scenarios but not applicable to physical experiments and cost calculation

methods were also not discussed.

Hogg & Portnov (2000) developed a quantum cost optimization algorithm for the

travelling salesman problem and satisfiability problem. This algorithm shifts the am-

plitude from higher-cost states to lower-cost states in order to reduce the cost of the

model. The proposed work gives an efficient result for smaller instances. Banerjee &

Pathak (2009) proposed quantum cost optimization circuits for quantum teleportation,

EPR pair, and decoders using mathematical calculations. In all the architectures, Tof-

foli gates were used. The quantum cost of Toffoli gates is more. The overall cost would

have been reduced if the authors had used single-unit cost gates instead of Toffoli gates.

Banerjee (2010) proposed cryptographic architecture using optimized reversible gates.

For this, they used Toffoli and CNOT gates. Qiu & Chen (2022) proposed an opti-

mization algorithm for quantum teleportation and super dense coding using Hadamard
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and CNOT gates. To calculate the quantum cost and optimize it, mathematical opera-

tions were performed using U, H, and CNOT gates. Feng et al. (2022) discussed the

parameterized quantum circuits for teleportation.

From the literature, it has been observed that most of the optimized circuits are

proposed using Toffoli and Peres gate. Toffoli and Peres gates are three input and

three output gates with a quantum cost of 5 units. These gates can be replaced with

single-unit cost gates like CNOT, Hadamard, U, S and T gates to reduce the cost and

optimize the architecture. The optimized architectures of Entanglement Purification

and Quantum error correction are very useful in applications like Teleportation, Secure

communication and Quantum key distribution(QKD). QKD is a secure communication

protocol that uses quantum states to generate a key for secure data communication. The

existing QKD protocols and their limitations are discussed in the following section.

2.5 Quantum Key Distribution

Quantum key distribution (QKD) is a method for securely distributing cryptographic

keys between two parties using the principles of quantum mechanics. It allows two

parties to communicate securely by generating and exchanging a shared secret key.

This key can be used to encrypt and decrypt messages. The security of QKD is based

on the fundamental principles of quantum mechanics, which make it impossible for an

eavesdropper to intercept and measure the key without introducing detectable errors

in the system. This allows communicating parties to detect any attempts to intercept

the key and take steps to protect their communication. Several different quantum key

distribution (QKD) protocols have been developed over the years, which are discussed

as follows.

Bennett (Bennett & Brassard, 1984) proposed the first key distribution protocol

named as BB84 protocol based on the Einstein-Podolsky-Rosen (EPR) (Song, 2004)

and Clauser-Horne-Shimony-Holt (CHSH) (Bruß, 1998) experiments. BB84 protocol

was implemented to transmit the information between two parties like Alice and Bob

safely using classical and quantum channels. The key was generated using a polariza-

tion basis and can be transmitted through the quantum channel. Both the communi-

cating parties discuss about the key through the classical channel. The actual quantum

state will be modified if an attacker tries to measure the key. The state modification will

be known by the communicating parties by which the new key will be shared. BB84

protocol is proved to be the best method for secure communication. Ekert Ekert (1992)
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re-proposed the protocol and named it as E91. Once the E91 has come into existence,

the actual quantum key distribution era started. In 1992, the first experimental demon-

stration was performed and in the same year, B92 QKD protocol Bennett (1992) was

proposed. In the BB84 protocol, four different polarization basis were used for generat-

ing the quantum key but B92 proved that two different basis are sufficient for generating

a secure key.

The authors Gisin & Pellaux (1992); Guo et al. (2006); Dušek et al. (2006) reviewed

various QKD methods and their limitations. In 2002, the authors Gao (2008); Honjo

et al. (2008); Ji et al. (2022) presented about the role of entanglement swapping in

quantum key distribution. It is also observed that the entangled pairs play a crucial

role in QKD for secure key transmission. The entangled qubits are mainly used to

transmit the data for longer distances. The QKD protocol proposed in Ribordy et al.

(2000) produces the 8.6% error rate using the Franson-type setup which was used to

monitor the quantum correlations between the entangled qubits. The trusted party and

untrusted party QKD protocols were proposed by the authors Yin et al. (2017); Peloso

et al. (2009); Shi et al. (2020); Jogenfors et al. (2015); Dong & Teng (2010); Liu et al.

(2020). Device-independent QKD protocols were discussed by the authors Ursin et al.

(2007); Liu et al. (2022); Wang & Huberman (2022); Li et al. (2022); Nadlinger et al.

(2022); Wen-Zhao et al. (2022).

Researchers are experimenting with the QKD via quantum networks to evolve point-

to-point communication (Zhou et al., 2022; Molotkov, 2022; Nadlinger et al., 2022).

The error rate has been increased with the presence of inbuilt noise in quantum states

although entangled qubits are used for QKD. The error correction methods need to

be applied along with the QKD protocols to reduce the error rate. It is difficult to

apply error correction strategies on fragile entangled qubits. There are various quan-

tum error correction (QEC) strategies like Shor’s 9-qubit QEC (Shor, 1995), repetition

code (Wootters & Zurek, 1982), Quantum BCH codes (Aly et al., 2007), Steane’s QEC

(Steane, 1996b), Stabilizer codes (Pan & Nguyen, 2016), LDPC codes (Zhou et al.,

2022) and many more. It is not so easy to apply all these codes in QKD due to the

higher error rates. It has been observed from the literature that the error rate in QKD

increases with the noise in the quantum system. The communication efficiency and

quantum key length are also affected by the noise while transmitting the quantum infor-

mation.

From the extensive literature on various Quantum Error Correction methods, Entan-
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glement Purification protocols and Quantum Cost Optimization models, the observed

limitations and research gaps are outlined in the following section.

2.6 Research gaps

Quantum error correction plays an important role in quantum computation. Various er-

ror correction methods were proposed by the authors to detect and correct the quantum

errors. After the extensive literature review on existing quantum error correction meth-

ods, we observed the following open issues and research gaps for further simplification.

• Most of the QEC codes are symmetric. Symmetric error correction codes are
implemented by keeping in mind that the probability of getting bit and phase flip
errors is the same. But in reality, the probability of getting phase errors is more
compared to the bit flips. The development of an asymmetric error correction
code is required to reduce phase errors.

• The entanglement plays an important role in QEC. Entangled pairs are used for
secure data transmission. Still, weak entanglement leads to more errors.

• Most of the existing QEC codes are developed to detect and correct only bit-flip
errors but not phase-flip or both.

• The noise in the channel will increase the Quantum Bit Error Rate (QBER) and
reduce the quantum state’s fidelity.

• Error correction codes like Repetition code, CWS Code and Decoupling transver-
sal code work efficiently on 3 qubit systems. The performance of these codes will
be degraded if the number of qubits is increased.

• The QEC codes with parameters [n,k,d] increases the quantum cost and depth
with a higher value of n (i.e. with more number of qubits), which in turn increases
the hardware requirements of the quantum system.

• Developed QEC architectures must be of low cost; otherwise, the hardware re-
quirements and power consumption of the quantum system increases.

• Many existing QEC methods are implemented using higher-cost quantum gates.
It increases the overall cost and also affects the performance of the quantum sys-
tem.
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2.7 Problem Statement

Based on the understanding of the gaps identified from the review of existing literature

in the domain of Quantum Error Correction, the research problem is defined as follows:

”To design and develop an Enhanced Architecture for Asymmetric Quantum
Syndrome Error Correction”

2.8 Objectives

Based on the outcome of the literature survey and defined problem statement, three

objectives are defined as follows:

1. To design and develop an efficient Entanglement Purification method to distil the
maximally entangled pair.

2. To design and develop an efficient Asymmetric Quantum Syndrome Error Cor-
rection in a multi-input Quantum system.

3. To design and develop a Quantum Cost Optimization model for the proposed
Asymmetric Quantum Syndrome Error Correction.

2.9 Summary

In this chapter, we discussed in detail about Quantum computing and the significance

of error correction methods in quantum systems. Also presented extensive literature

on Quantum Error Correction, Entanglement Purification, Quantum Cost Optimization

and Quantum Key Distribution protocols with their merits and demerits by considering

current scenarios. The research gaps and challenging issues arised based on the litera-

ture are clearly listed along with the problem statement and research objectives. In the

next chapter, we formally define the research problem addressed in this thesis. Also

briefly discuss the proposed methodologies designed to address the observed research

gaps. The details of these are presented in subsequent chapters of this thesis.
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Chapter 3

Architecture for Asymmetric quantum Syndrome Error

Correction

We have discussed the problems of the preset classical systems and a way towards the

development of various Quantum architectures in the previous chapter. This chapter

briefly discusses the architecture of Asymmetric Quantum Syndrome Error Correction

required for secure quantum communication using the entangled qubits, encoding, er-

ror detection and correction and decoding operations along with the quantum system

requirements from one system to another system. Also explains in detail the Quantum

communication required for error detection and correction and the importance of the

QKD in Quantum Communication.

From the extensive literature review of the existing state-of-the-art methods to de-

sign quantum error correction strategies, it is observed that the implementation of asym-

metric quantum error correction methods is crucial in current NISQ-level quantum sys-

tems to detect and correct both bit and phase flip errors. It was also observed that the

effectiveness of Quantum error correction would be improved with the usage of entan-

gled qubits while performing the error detection and correction in a quantum system.

With this objective and with the aim of reconciling the observed gaps, the research work

proposed in this thesis has been briefly explained with proposed research objectives in

the following section.

3.1 Brief overview of Proposed Methodology

The overall architecture of the proposed Asymmetric Quantum syndrome error cor-

rection is depicted in Figure 3.1. The various contributions made towards the defined

research objectives are indicated with respect to the individual thesis chapters in which

they are discussed in more detail. Here, a brief outline of the overall research work

presented in this thesis is discussed.

3.1.1 Entanglement Purification

Entanglement is an essential property of Quantum particles, which plays an important

role in developing Quantum error correction methods. However, from the existing lit-
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Figure 3.1: Architecture for Asymmetric Quantum Syndrome Error Correction

erature, it has been observed that the quantum error correction using entangled qubits

overcomes the drawbacks of symmetric quantum error correction. When we use en-

tangled qubits to develop an error correction method, we need to consider a maximally

entangled pair. Otherwise, it leads to more errors and data loss. To reduce these er-

rors, we propose a novel and efficient entanglement purification method to distil the

maximally entangled pairs from weak ones. The generic workflow of the proposed

entanglement purification method is depicted in Figure 3.2.
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As shown in Figure 3.2, the research contributions to develop an entanglement pu-

rification method include Entanglement generation and Entanglement swapping. To

generate the entanglement, various quantum gates will be applied on multi-input quan-

tum information. After generating the entanglement, entanglement swapping will be

performed on generated entangled pairs to distil the maximally entangled pair. A de-

tailed discussion of the proposed entanglement purification method is given in Chapter

4.

3.1.2 Asymmetric Quantum Syndrome Error Correction

Quantum error correction plays an important role in current Noisy Intermediate Scale

level Quantum systems. The error rates in these quantum systems are very high due to

the inbuilt noise, which in turn leads to errors. Error correction methods must be imple-

mented to protect the information and detect & correct errors. It has been observed from

the literature that there is a huge requirement for asymmetric quantum error correction.

We observed in the literature most of the existing error correction methods are sym-

metric and can detect either bit-flip or phase-flip errors. To address these problems an

efficient asymmetric quantum error correction method is required which is proposed.

A methodology for Asymmetric Quantum Syndrome Error Correction is depicted in

Figure 3.3.
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Figure 3.3: Methodology for Asymmetric Quantum Syndrome Error Correction

As shown in Figure 3.3, the research contributions to develop asymmetric quan-

tum error correction includes Encoding the logical quantum state into multiple physical

quantum states, Error detection and Correction using syndrome measurement, and fi-

nally decoding the quantum information by performing various quantum operations. A
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detailed discussion of these contributions is presented in Chapter 5.

3.1.3 Quantum Cost Optimization

Cost is one of the major parameters that need to be considered while developing an

efficient algorithm or architecture to solve a specific problem. Similarly in Quantum

computation, quantum cost optimization plays an important role in optimizing the ar-

chitecture in terms of quantum gates and operations. After implementing the error

correction method, it is important to optimize the cost to reduce the hardware require-

ments. It has been observed from the literature that the quantum cost of the existing

state-of-the-art methods is high. This proves that there is enormous scope to develop an

efficient algorithm to optimize the quantum cost. To address this, an efficient method for

Quantum cost optimization is required. A methodology for Quantum cost optimization

is depicted in Figure 3.4.

Quantum Cost
Measurement

Quantum cost
Optimization 

Quantum
Circuit

Optimized
Quantum Circuit

Figure 3.4: Methodology for Quantum Cost Optimization

As shown in Figure 3.4, the research contributions to develop a quantum cost opti-

mization algorithm includes Quantum cost measurement and Quantum cost optimiza-

tion. To perform these operations, the input will be considered as a quantum circuit and

the outcome will be an optimized quantum circuit. The detailed elucidation on quantum

cost optimization is presented in Chapter 6.

3.1.4 Quantum Key Distribution

Entanglement purification and Quantum error correction play a prominent role in var-

ious applications like Quantum key distribution, Secure communication, Quantum re-

peaters, etc. To prove the efficiency of the proposed methods, the Quantum key distribu-

tion protocol is developed using the Asymmetric Quantum Syndrome Error Correction.

The workflow of the proposed Quantum key distribution with an error correction mech-

anism is depicted in Figure 3.5. The detailed discussion on the design and development

of Quantum key distribution protocol is presented in Chapter 7.
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Figure 3.5: Process of Quantum Key Distribution

3.2 Research Contributions

This thesis presents a framework for detecting and correcting quantum errors using an

asymmetric quantum error correction method with the advantage of entanglement. The

objectives are to design efficient approaches for entanglement purification, Quantum

error correction, and Quantum cost optimization using appropriate quantum operations.

With regard to the outcomes gleaned from the literature review and the scope of work

presented, the major contributions of our research work presented in the subsequent

chapters of this thesis are as follows:

• An empirical study on the various quantum gates and the implementation of an
efficient approach to generate entanglement from the quantum information.

• Implementation of Entanglement swapping by performing quantum operations
using quantum gates to purify the entanglement.

• Developing an efficient encoding method by performing phase operations to strengthen
the original quantum information.

• Development of quantum error detection and correction with syndrome measure-
ment using the hamming bound.

• Perform decode operation to decode the encoded information into originally trans-
mitted information.

• Development of quantum cost optimization algorithm to optimize the overall cost
of the proposed error correction method.

• Development of Quantum key distribution protocol using Quantum error correc-
tion to analyze the efficiency of the proposed error correction method.
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3.3 Summary

In this chapter, we have presented the proposed methodology for Asymmetric Quantum

Syndrome Error Correction. Discussed briefly about the research objectives with the

proposed workflow. The significant contributions of the research work are outlined.

The detailed discussion of each objective along with the proposed methodology are

presented in the subsequent chapters.
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Chapter 4

Entanglement Purification using Entanglement

Swapping

In the previous chapter, a brief overview of the Asymmetric Quantum Syndrome Er-

ror Correction mechanism and required methodology has been presented. This chapter

explains about Entanglement Purification using Entanglement Swapping which is re-

quired for efficient Quantum communication. The main goal of this chapter is to discuss

in detail about the development of Entanglement Purification along with Entanglement

Swapping and compare the performance analysis with the currently available methods.

4.1 Importance of Entanglement Purification

Entanglement is a principal resource for Quantum Information Process. It plays a key

role in applications like Quantum Communication, Teleportation, Quantum Key Dis-

tribution, Quantum Repeaters and etc. Strong entangled pairs are required for efficient

data transmission in these applications. System impurities during the data transporta-

tion weaken the entanglement and reduce the fidelity of the entangled pair (Pan et al.,

2001). Therefore the necessity of entanglement purification techniques is very high

to distil strong entangled pairs from weakly entangled ones. Moreover, entanglement

plays an important role in quantum error correction because it significantly increases

the quality of the operations between qubits. Since the error rate in quantum commu-

nication is very high due to the noise and decoherence (Shnirman et al., 2002). The

entangled qubits give an efficient result in protecting the qubit and performing error

correction. The entanglement between qubits must be robust; otherwise, it leads to er-

rors. Entanglement purification methods need to be implemented to solve the issue. To

develop the Entanglement Purification technique, two major steps need to be performed.

These are entanglement generation and entanglement Swapping.

4.2 Entanglement Generation

As per the Information theory, Shannon’s entropy is used to generate and measure the

entanglement. Shannon Entropy represents the probability distribution of pure events
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d1, d2, d3,−−−, dn in a Hilbert spaceH. It is defined as follows.

H(d1, d2,−−−, dn) = −
∑
k

dklog2dk (4.1)

When the operations are performed on pure quantum states, those will be converted to

the mixed states (let us say ρ) due to the external interaction and noise. In such cases,

the probability distribution of Shannon’s entropy is modified as follows.

V (ρ) = −Tr(ρlog2ρ) (4.2)

The above equation is further simplified by calculating the eigenvalues of ρ. Let us say

Λ1,Λ2,−−−−,Λn in a Hilbert spaceH is as follows.

V (ρ) = −
∑
k

Λklog2Λk (4.3)

In Shannon’s entropy, Eigenvalues are used to specify the limit of information to be

transmitted over the communication channel. Here eigenvalues are also used to calcu-

late the entanglement between quantum states and to retrieve the maximum value by

performing uniform probability distribution. Thus to measure the entanglement, the

equation (4.3) will be modified as follows.

Entanglement measurement = 1√
2
(|a⟩⊗N + |b⟩⊗N)

(4.4)

Where |a⟩ and |b⟩ are the quantum states and N is the total number of quantum states.

Before transmitting the data using ebits(entangled qubits), it is necessary to develop

a maximally entangled channel to generate maximal ebits. The noise and decoher-

ence present in the channel leads to weak entanglement and degrades communication

efficiency. Thus the implementation of entanglement purification (EP) methods is in-

evitable. Usually, bell states are used to represent ebits. For example a, b are two parties

and maximally entangled, then the total possible bell states to represent ebits are four.

The equations to measure bell states can be written by simplifying the equation (4.4) as

follows.

|ψ+⟩ab =
1√
2
(|0a⟩|0b⟩+ |1a⟩|1b⟩) (4.5)
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|ψ−⟩ab =
1√
2
(|0a⟩|0b⟩ − |1a⟩|1b⟩) (4.6)

|ϕ+⟩ab =
1√
2
(|0a⟩|1b⟩+ |1a⟩|0b⟩) (4.7)

|ϕ−⟩ab =
1√
2
(|0a⟩|1b⟩ − |1a⟩|0b⟩) (4.8)

Here |0⟩ and |1⟩ are the Quantum States. Quantum states are represented with vectors.

A tensor operation will be performed on these vectors to represent the entangled states.

Tensor operations are used to represent the vectors with higher dimensions and to per-

form operations on them. Let us assume a 4-qubit quantum system in which first and

second qubits, third and fourth qubits are entangled in |ψ−⟩ bell state. Then the result-

ing entangled pair can be represented by performing a tensor operation on vectors as

follows.

|ψ⟩1234 = |ψ−⟩|ψ−⟩

=
1√
2
(|0a⟩|0b⟩ − |1a⟩|1b⟩)⊗

1√
2
(|0a⟩|0b⟩ − |1a⟩|1b⟩)

=
1√
2


1

0

0

−1

⊗
1√
2


1

0

0

−1


=

1

2

(1 0 0 −1 0 0 0 0 0 0

0 0 −1 0 0 1)T

(4.9)

In the above equation (4.9), the tensor operation is performed on two vectors of size

4x1, 4x1. After performing the operation the resulted vector is of size 16x1. In quantum

operations, whenever the operations are performed on more number of qubits then the

vector size of the resulted state will be increased. Similarly, we can also use Bell states

as in equations (4.5), (4.7) and (4.8) based on the requirement. In a quantum system,

entanglement is generated using Hadamard and Controlled-NOT (CNOT) gates. As

discussed in section 1.3.1, the Hadamard gate is a single input and single output gate. It

is mainly used to represent the superposition of a qubit. CNOT gate is a two-input and

two-output gate. The CNOT gate contains 2 inputs called Control and Target inputs and

2 outputs called Control and Target outputs. If the control input is |0⟩ then the Target
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output will be the same as the target input but if the control input is |1⟩ then the target

output will be the complement of the target input as discussed in section 1.3.2. The

matrix representation of the CNOT gate is as follows.

CNOT Gate =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0


CNOT operations can also be performed using Hadamard Basis. For an example, con-

sider a two-stage quantum system with states |0⟩, |1⟩. The output of a Hadamard gate

for any input either |0⟩ or |1⟩will be the superposition of both. It can also be represented

for both +ve and -ve phases, which we call as Hadamard basis and can be represented

as H = |0⟩±|1⟩√
2

.

4.2.1 Entanglement generation using 2-Qubits (Bell pair |ϕ+⟩AB)

In this experiment, we considered the bell pair |ϕ+⟩AB to generate the entanglement

between 2 qubits. Initially, two inputs |0⟩, |1⟩ are considered to generate |ϕ+⟩01 us-

ing Hadamard and CNOT gates. The detailed circuit diagram of |ϕ+⟩01 is depicted in

following Figure 4.1.

Figure 4.1: Quantum Circuit diagram for 2-Qubit Entanglement. q0 and q1 are input variables
and c2 is an output variable. This circuit illustrates the Bell state |ϕ+⟩ with inputs |0⟩ and |1⟩.

As per the Hadamard operation, for input |0⟩ the resulted outcome will be |0⟩±|1⟩√
2

.

If we try to measure the outcome of Hadamard gate, it will be lost into either state |0⟩
or |1⟩ based on the highest probability. For example, if the output of the Hadamard

gate is |0⟩, then the target output of the CNOT gate is the same as input q1 that is state

|1⟩. Then the final outcome of the circuit will be |01⟩. Otherwise, if the Hadamard gate

output is |1⟩, then the final output of the circuit after the CNOT operation will be |10⟩.
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The mathematical equation for Hadamard and CNOT operations is as follows.

c2 = CNOT [H(|0⟩), |1⟩]

= CNOT

[
|0⟩ ± |1⟩√

2
, |1⟩

]
= [|01⟩, |10⟩]

(4.10)

As simplified in equation (4.10), the estimated result of the 2-Qubit entanglement

circuit should result in states |01⟩ and |10⟩ only. But after running the circuit (Fig-

ure 4.1) in IBM Quantum Computer using the Qiskit tool (Qiskit (Qiskit, 2019) is an

open-source platform developed by IBM to perform operations with their Quantum

Computer), the retrieved results are shown in the form of a probability measurement

chart as in Figure 4.2.

Figure 4.2: Probability Measurement Chart of 2-Qubit Entanglement Circuit after running in
the IBM Quantum System.

The expected outcome of the circuit (Figure 4.1) is |01⟩, |10⟩ states with the prob-

ability of 50%. From Figure 4.2, it is observed that the generated entanglement is not

maximal. i.e the probability of resulting states |01⟩, |10⟩ for |ϕ+⟩ are modified. Along

with the expected output states, we also retrieved states |00⟩ and |11⟩ with probabilities

3% and 1% respectively. The outcome is transpiled due to the occurrence of phase or

bit shifts while running the circuit in Quantum Computer due to the noise. The detailed

transpiled circuit with impurities is represented in Figure 4.3.

In Figure 4.3, RZ represents the rotation of the qubit over the Z-axis. The phase

shift in a qubit, and
√
X represents the rotation over the X-axis, i.e., the bit shift. These
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Figure 4.3: Transpiled Circuit diagram of 2-Qubit Entanglement.

are generated due to the noise or error associated with the quantum gates in the Quan-

tum System. To observe the results of the two entangled pairs, the experiments are

performed with 4-qubit entanglement using two entangled pairs.

4.2.2 Entanglement generation using 4-Qubits (Bell pair |ϕ+⟩AB)

To implement 4-qubit entanglement, two entangled pairs are required with Hadamard

and CNOT operations. The circuit representation of 4-qubit Entanglement using Hadamard

and CNOT gates is depicted in Figure 4.4.

Figure 4.4: Quantum Circuit diagram for 4-Qubit Entanglement. Here q0, q1, q2, q3 represents
the inputs and c4 represents the output

The mathematical calculation of the 4-qubit entanglement with bell state |ϕ+⟩ is as
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follows.

c4 = CNOT [H(|q0⟩), |q1⟩] , CNOT [H(|q2⟩), |q3⟩]

= CNOT [H(|0⟩), |1⟩] , CNOT [H(|0⟩), |1⟩]

= CNOT

[
|0⟩ ± |1⟩√

2
, |1⟩

]
, CNOT

[
|0⟩ ± |1⟩√

2
, |1⟩

]
= [|01⟩, |10⟩], [|01⟩, |10⟩]

= [|0101⟩, |0110⟩, |1001⟩, |1010⟩]

(4.11)

As in equation (4.11), the output of a 4-qubit entanglement circuit as in Figure 4.4

should contain only the states |0101⟩, |0110⟩, |1001⟩ and |1010⟩ with equal probabili-

ties. After running the circuit on Quantum System, the results have deviated as shown

in Figure 4.5. Its transpiled diagram with system impurities is depicted in Figure 4.6.

Figure 4.5: Probability Measurement Chart of 4-Qubit Entanglement after running in Quantum
system.

Figure 4.6: Transpiled Circuit diagram of 4-Qubit Entanglement.
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From Figures 4.5 and 4.6, it is observed that the output of 4-qubit entanglement

after running it in a Quantum computer is different when compared to the theoretical

calculations. This is because of the inbuilt noise of the quantum system which in turn

leads to imperfect or weak entanglement. As shown in Figure 4.5, the output contains

the extra states |0001⟩, |0010⟩, |0100⟩, |0111⟩, |1000⟩, |1011⟩, |1101⟩ and |1110⟩ along

with the expected output states |0101⟩, |0110⟩, |1001⟩ and |1010⟩. The Transpiled cir-

cuit diagram of phase and bit shifts along with the X, Y, and Z-axis is shown in Figure

4.6. The bit and phase shifts result in weak entanglement. Hence it is necessary to ap-

ply entanglement purification techniques to reduce the errors and to generate maximal

entanglement. The steps to measure the probability, error rate and fidelity of the entire

system are discussed in the following section.

4.3 System Probability, Error rate and Fidelity Measurement

The probability measurement of the entire system will be used to calculate the error rate.

In the current era of quantum systems, the experimental results and actual results may

not be the same. Fidelity measurement is used to calculate the fidelity of the current

state to the target state.

4.3.1 Probability and Error rate Measurement

To perform entanglement purification, it is essential to calculate the probability of the

entire system along with the error rate. The error (Phase or Bit) rate must be reduced in

order to maximize the entanglement between qubits. The steps to measure the system

probability with noise are as follows.

The system probability ρ can be measured using the following equation.

ρ =
∑
k

Pk|ϕk⟩⟨ϕk|

Where |ϕ⟩ represents the quantum state, k is the number of stages, and P is the proba-

bility of becoming state |ϕ⟩.

Let us consider k=2, i.e., a 2-stage quantum system. The final probability along

with probability Pi of the entire system with noisy or error states is calculated by using
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the following equation.

ρ = Pi|ϕab⟩⟨ϕab|+ (1− Pi)|ab⟩⟨ab|

Where Pi is the probability of noise state, and 1 − Pi is the probability of the entire

system. After measuring the probability of the system, it is also important to calculate

the fidelity of the system.

4.3.2 Fidelity Measurement

At present, the quantum systems which we are using to perform experiments are in the

Noisy Intermediate Scale Quantum (NISQ) Level. The result of a quantum architecture

executed on a NISQ level quantum system will never be 100% due to the inbuilt noise.

There is a difference between actual and retrieved outputs. Fidelity measurement is

used to measure the closeness between the expected and retrieved outcomes. Fidelity

measurement is also used to measure the efficiency of a quantum architecture after

running it on a Quantum computer (Ouyang & Lai, 2022).

For example, if we want to transmit the information |ϕ⟩ from one end to another.

But after running the architecture in the quantum system, the retrieved result is |ρ⟩. The

fidelity of the resulting quantum state is measured using the following equation.

F = ⟨ϕ|ρ|ϕ⟩ (4.12)

Where ρ represents the density matrix of the state we received. It can be measured as

follows.

ρ =
∑
i

pi|ϕi⟩⟨ϕi| (4.13)

Here pi is the probability of the state |ϕi⟩. The final value of the fidelity lies between 0

& 1 and will be converted into percentages by considering maximum achievable fidelity

which is equal to 1 as 100%.

One possible way to reduce the noise and generate the maximally entangled pair is

entanglement swapping. Entanglement purification can be realized by using entangle-

ment swapping.
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4.4 Entanglement Swapping

Entanglement Swapping plays a vital role in Entanglement purification and long-distance

communication. Due to the decoherence, it is difficult to transmit the maximally entan-

gled qubits to longer distances. It leads to the decay in Quantum information transmis-

sion. To overcome this problem, entanglement swapping can be performed. Swapping

operation divides the longer distances into shorter distances by maintaining the maximal

entanglement between entangled qubits. Swapping is not only a principal resource for

entanglement purification but also plays a vital role in various applications like quantum

repeaters, quantum teleportation, etc. Entanglement purification is achieved for discrete

and continuous variables using single-stage photons. But multistage swapping provides

higher quantum state protection over noise and errors. The process of entanglement

swapping is realized in the following Figure 4.7.

Entanglement Swapping

BSM BSM BSM

EP1 EP2 EP3 EP4

Figure 4.7: Representation of 4-stage Entanglement Swapping with Bell State Measurement
(BSM). Here total 4 Entangled Pairs(EP’s) and 3-BSM’s are used to perform Entanglement
Swapping.

Figure 4.7 shows the entanglement swapping procedure. To explain clearly about

the process we have considered 4-entangled pairs. The primary goal of entanglement

swapping is to distil the maximally entangled pairs. In order to do this, bell state mea-

surements (BSM) will be performed. Swapping is used to transfer the entanglement

for longer distances by combining the maximally entangled qubit of the first entangled

pair with the maximally entangled qubit of the last entangled pair. The entanglement

swapping process can be explained clearly with the help of Figure 4.7. In Figure 4.7,

EP1 represents the entanglement between qubits 1 and 2. EP2 represents the entangle-

ment between qubits 3 and 4, EP3 represents the entanglement between qubits 5 and

6, and EP4 represents the entanglement between qubits 7,8. BSM represents the Bell-

State Measurement. BSM measures the maximal and weaker entangled qubits in an
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entangled pair. Based on the outcome of the BSM, the maximally entangled qubits are

connected by swapping the entanglement between weaker entangled qubits. For exam-

ple, if the entangled qubits 2, and 3 of EP1, and EP2 are weak, then the entanglement

will be swapped between qubits 1 and 4 and qubits 2, and 3. Similarly, the entangle-

ment between qubits 2 and 3, 4 and 5, 6 and 7 of different EP’s are swapped. Finally,

the entanglement will be generated between qubits 1 and 8 by performing swapping op-

eration. The mathematical representation of the entanglement swapping is given below.

|ϕ⟩ = Σn

√
Λn|Pn⟩ ⊕ |Qn⟩ (4.14)

Here
√
Λn is the Schmidt coefficient.

√
Λn is used to measure the entanglement. Its

value must be
√
Λn ≥ 0. It is calculated by performing the inner product on the quantum

states. For example, if a state |δ⟩ contains only one Schmidt coefficient then it is called

as a separable state. If it contains more than one Schmidt coefficient, then it is known

as an entangled state. If all the Schmidt coefficients of a state are non-zero’s, then it is

represented as a maximally entangled state.

Let us consider entanglement swapping with four entangled pairs as in Figure 4.7

with bell state |ϕ+⟩. Then the equation (4.14) is modified as follows.

|ϕ+⟩12345678 = |ϕ+⟩12 + |ϕ+⟩34 + |ϕ+⟩56 + |ϕ+⟩78

= ((|0⟩1|1⟩2 + |1⟩1|0⟩2)/
√
2)

+ ((|0⟩3|1⟩4 + |1⟩3|0⟩4)/
√
2)

+ ((|0⟩5|1⟩6 + |1⟩5|0⟩6)/
√
2)

+ ((|0⟩7|1⟩8 + |1⟩7|0⟩8)/
√
2)

(4.15)

After performing the entanglement swapping between 4 entangled pairs(EP’s), the

equation 4.15 is further simplified as follows.
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|ϕ+⟩12345678 = |ϕ+⟩14 + |ϕ+⟩23 + |ϕ+⟩58 + |ϕ+⟩67

= ((|0⟩1|1⟩4 + |1⟩1|0⟩4)/
√
2)

+ ((|0⟩2|1⟩3 + |1⟩2|0⟩3)/
√
2)

+ ((|0⟩5|1⟩8 + |1⟩5|0⟩8)/
√
2)

+ ((|0⟩6|1⟩7 + |1⟩6|0⟩7)/
√
2)

(4.16)

The equation 4.16 is further simplified as follows by removing the weaker entangled

qubits.

|ϕ+⟩12345678 = |ϕ+⟩14 + |ϕ+⟩58

= ((|0⟩1|1⟩4 + |1⟩1|0⟩4)/
√
2)

+ ((|0⟩5|1⟩8 + |1⟩5|0⟩8)/
√
2)

(4.17)

The equation of the final maximal entangled pair of qubits 1 and 8 after performing

the entanglement swapping is as follows.

|ϕ+⟩18 = (|0⟩1|1⟩8 + |1⟩1|0⟩8)/
√
2 (4.18)

With the advantage of entanglement swapping, we proposed an entanglement pu-

rification method to distil the maximal entanglement from the weaker one. The detailed

algorithm for the entanglement purification method with Entanglement generation and

Entanglement swapping is represented in Algorithm 4.1.

Algorithm 4.1 An algorithm for Entanglement Purification
Input: Quantum States
Output: Maximally Entangled Pair

1: Initialize Quantum Register q and Classical Register c with size 4
2: Initialize the Number of qubits n as 4
3: q[1]← X
4: q[3]← X
5: q[0] & q[1]← CNOT
6: q[0]← H
7: q[0] & q[3]← CNOT
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8: q[3]← H
9: q[0] & q[1]← CNOT

10: q[0]← H
11: q[2] & q[3]← CNOT
12: q[2]← H ▷ Entanglement Generation & Bell State Measurement
13: q[0] & q[3]← CNOT
14: q[3] & q[0]← CNOT
15: q[0] & q[3]←CNOT
16: q[2]← H
17: q[1] & q[2]← CNOT
18: q[2] & q[1]← CNOT
19: q[1] & q[2]← CNOT
20: for i=0 to n-1 do
21: c[i]← q[i]
22: end for
23: for i=0 to n-1 do
24: Measure c[i] ▷ Entanglement Swapping and Purification
25: end for

As written in Algorithm 4.1, the entanglement generation and swapping steps are

performed to purify the entanglement. We considered the input combination as |1010⟩
for the experiment. CNOT and Hadamard gates are used to generate the entangle-

ment between pairs |q0⟩, |q1⟩ & |q2⟩, |q3⟩. Bell state measurement will be performed

by measuring the probabilities of Entangled pairs after generating the entanglement.

Based on these values, entanglement swapping is performed to swap the entanglement

between strongly entangled qubits by performing CNOT gate operations. CNOT gate

swaps the entanglement between pairs |q0⟩ & |q3⟩ by separating the quantum states

|q1⟩ & |q2⟩ from its entangled pairs as described in equation (4.15) for the input states

|0⟩, |1⟩, |0⟩, |1⟩. The CNOT operations between |0⟩|1⟩ with Hadamard gate produce the

output as the first entangled pair i.e. |1⟩|0⟩. The CNOT and Hadamard operations on

the input states |0⟩|1⟩ produce the second entangled pair i.e. |1⟩|0⟩. Thus the output of

the CNOT gate for input states |1⟩|0⟩ can be represented in the form of a density matrix

which is given below.

|0⟩|1⟩ 7→


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0


After that Hadamard operation will be performed on the outcome of the CNOT gate.
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After performing the operation, the density matrix is modified as follows.

1√
2


1 0 0 0

0 1 0 0

1 0 −1 0

0 1 0 −1


The final result of CNOT and Hadamard operations on the input states |1⟩|0⟩ can be

represented as |01⟩ 7→ (|01⟩+ |10⟩)/
√
2.

Similarly, the CNOT and Hadamard operations will be performed on |q2⟩, |q3⟩. The

output after the first part is |1010⟩. The remaining algorithm in the second part swaps

the entanglement between |q0⟩ & |q3⟩ and |q1⟩ & |q2⟩. The CNOT operation on states

|q0⟩, |q3⟩ can be represented as |q0⟩, |q3⟩ = |10⟩ CNOT |10⟩. The outcome of this op-

eration will be given to the Hadamard gates which are applied on |q0⟩ and |q3⟩. These

operations swap and strengthen the entanglement between the first and last qubits by

increasing the fidelity. The entire process of entanglement purification is developed

and executed on a real Quantum system. The detailed result analysis of the proposed

method along with the experimental setup are described in the following section.

4.5 Experimental Setup

The classical and Quantum systems are used for performing the experiments. The con-

figuration details of the Classical system are given below.

• Processor: Intel core I3

• RAM: 4GB

• Operating System: Windows 7 Ultimate

The proposed Entanglement purification algorithm is implemented on IBM Quantum

System using the Qiskit tool. The configuration details of the IBM quantum system are

as follows.

• System Name: ibmq manila

• Operating System: Darwin
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• Tool used: Qiskit tool

• Simulator: ibmq qasm simulator

• Processor type: Falcon r5.11L

4.6 Discussion and Result Analysis

4.6.1 Discussion

After running the proposed algorithm (as in Algorithm 4.1) in the Quantum system, the

retrieved results before and after entanglement swapping are depicted in Figure 4.8 &

4.9.

Figure 4.8: Quantum results for 4-Qubit Entanglement generation.

From Figures 4.8 and 4.9, we observed that there is an enormous difference between

entangled qubits with and without swapping. Figure 4.8 represents the entanglement

generation between two pairs using Hadamard and CNOT operations. The probability

of resulting entangled pairs is very less. The probabilities of the 2nd and 3rd entangled

qubits are less compared to the 1st and 4th entangled qubits. To improve the probability

and generate a maximally entangled pair, entanglement swapping has been performed

between qubits 1st, 4th and 2nd, 3rd. The results after swapping are depicted in Figure

4.9 where it is clearly observed that there is an improvement in entangled pair probabil-

ity. The comparison between the measured probabilities of results depicted in Figures

4.8 & 4.9 is demonstrated in Figure 4.10.
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Figure 4.9: Quantum results for 4-Qubit Entanglement purification after swapping.

For the experiment, we have considered two entangled pairs with states |B2A2B1A1⟩ =
|1010⟩ as input states with bell state representation of |ϕ+⟩. From Figure 4.9, it is ob-

served that the entanglement between the pairs A1, B1 & A2, B2 has been swapped and

resulted in a maximally entangled pair A1, B2. Whereas the entanglement between pair

A2, B1 is weakly entangled. It can also be represented using the Bloch sphere. Bloch

sphere represents the exact position of the quantum state in Hilbert space with X, Y,

and Z axis. The Bloch sphere representation of the resulted maximally entangled pair

is depicted in Figure 4.11.

The Bloch sphere represents the entanglement between quantum states in a graph-

ical way. From Figure 4.11, it is clear that the first and last quantum states are entan-

gled. Along with these, we measured the entanglement between the first and last qubits

(|q0q3⟩) and also the second and third qubits (|q1q2⟩). The probability measurement of

the entangled pairs |q0q3⟩, |q1q2⟩ are represented in Figure 4.12 & 4.13.

Figures 4.12, 4.13 shows the entanglement between pairs |q0⟩ & |q3⟩, |q1⟩ & |q2⟩.
It is observed that the pair |q0⟩ & |q3⟩ is maximally entangled compared to the |q1⟩ &

|q2⟩ pair. The fidelity measurement of the entangled pairs |q0⟩ & |q3⟩, |q1⟩ & |q2⟩ using

the equation (4.12) is equal to 0.871, 0.772. Most of the existing methods have exper-

imented on Simulators. To analyze the results of proposed and existing methods, we

developed and executed the proposed method on a Quantum simulator. The observed

results of entangled pairs are illustrated in Figure 4.14 & 4.15.
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Figure 4.10: Probability comparisons of Figures 4.8, 4.9

Figure 4.11: Bloch sphere representation of 4-Qubit Entanglement purification with swapping.

Figures 4.14 and 4.15 shows the Quantum simulator results for the entanglement

between pairs |q0⟩& |q3⟩, |q1⟩& |q2⟩. From the results, it is observed that the pair |q0⟩&

|q3⟩ is maximally entangled compared to the |q1⟩ & |q2⟩ pair. The fidelity measurement

of the entangled pairs |q0⟩& |q3⟩, |q1⟩& |q2⟩ using the equation (4.12) is equal to 0.9926

and 0.983.
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Figure 4.12: Probability measurement of the first and last entangled qubits (|q0⟩ & |q3⟩) in
Quantum system

Figure 4.13: Probability measurement of the second and third entangled qubits (|q1⟩ & |q2⟩) in
Quantum system

4.6.2 Result Analysis

In recent years, very few researchers have developed and executed quantum experiments

on real quantum systems. From the literature, we found a paper Behera et al. (2019)

where the authors implemented and experimented entanglement purification method

in the IBM Quantum system using Greenberger–Horne–Zeilinger(GHZ) states. The

rest of the papers (Yan et al., 2022; Zhang & Zheng, 2021; Huang et al., 2022) and

many others are discussed the theoretical and simulator results. We compared the quan-

tum results of the proposed entanglement purification method with the existing results

Aleksandrowicz (2019), Behera et al. (2019). To perform entanglement purification,

the authors performed entanglement swapping between the two entangled pairs. After

applying swapping protocols, the fidelity of the resulting entangled pairs are 0.625 and

64



Figure 4.14: Probability measurement of the first and last entangled qubits (|q0⟩ & |q3⟩) in
Quantum simulator

Figure 4.15: Probability measurement of the second and third entangled qubits (|q1⟩ & |q2⟩) in
Quantum simulator

0.563, 0.8086 and 0.7840. The fidelity of the entangled pairs with the proposed entan-

glement swapping protocol are 0.8710 and 0.7720. In proposed method, entanglement

has been swapped between 1st, 4th and 2nd, 3rd qubits. The proposed method also ex-

perimented on a Quantum simulator. The observed fidelity of the entangled pairs in

the quantum simulator are 0.9926 and 0.983. We also compared the simulator results

of the proposed method with existing works Yan et al. (2022); Zhang & Zheng (2021);

Huang et al. (2022) and others. The Quantum system and Simulator result analysis of

the proposed and existing methods are depicted in Figure 4.16 & 4.17.

From the analysis shown in Figures 4.16, 4.17, we can say that the proposed method

gives efficient results compared to the existing ones. The proposed method is beneficial

for efficient quantum communication and error correction. It mainly focuses on finding

high-fidelity entangled pairs from weak ones. This method can also be helpful in various
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Figure 4.17: Fidelity Analysis of Existing and Proposed Methods with Simulator Results.

applications where data transmission is required for longer distances with less number

of Hadamard and CNOT gates.

4.7 Summary

In this chapter, we proposed an efficient entanglement purification method using en-

tanglement swapping. Entanglement purification distils the strong entangled pairs from

weak ones. CNOT and Hadamard gates were used to develop the proposed Entangle-
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ment purification method. When the entanglement has been generated between two dif-

ferent pairs, it is observed that the fidelity of the entangled pair was less. After perform-

ing the swapping operation the fidelity of the entangled pair was increased to 0.8710 and

0.7720 in the quantum system and 0.9926 and 0.983 in the quantum simulator. From

the quantum system and simulator results, it has been observed that the proposed archi-

tecture increases the fidelity of entangled pairs by reducing the system impurities when

compared with the existing state-of-the-art methods. The proposed method is beneficial

for efficient Quantum communication and Quantum error correction. This focuses on

finding high-fidelity entangled pairs from weak ones. The maximally entangled pairs

can be used in Quantum error correction models to develop efficient error detection and

correction methods.
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Chapter 5

Asymmetric Quantum Syndrome Error Correction

In the previous chapter, we discussed the entanglement purification method with en-

tanglement generation and entanglement swapping operations. Entangled qubits play a

significant role in Quantum Error Correction. In the following chapter, we explain in

detail the Asymmetric Quantum Syndrome Error Correction with encoding, error cor-

rection and decoding operations. The role of entangled qubits in reducing the error rate

and result analysis with the existing state-of-the-art methods were also detailed in this

chapter.

5.1 Importance of Quantum Error Correction

Quantum Error Correction(QEC) is a principal resource for Quantum computation and

communication. The current quantum systems are in the Noisy Intermediate Scale

Quantum (NISQ) level (Singh Gill et al., 2020). The possibility of errors due to NISQ

is bit and phase flips with the presence of noise and decoherence. Noise and decoher-

ence arise when the qubits interact with the external environment while performing the

operations (Hornberger, 2009). To address these issues and to reduce the error rate,

Quantum Error Correction methods are required. Error detection and correction is an

easy task in Quantum computation. As per the no-cloning theorem, it is not possible to

copy the information. If we try to measure the error, its actual state will be disturbed

(Wootters & Zurek, 1982). The existence of noise in the quantum system leads to er-

rors like Bit flip errors (X), Phase flip errors (Z) and Bit & Phase flip errors (Y). The

detailed discussion on Quantum errors with matrix representations are given in section

1.4. In order to detect and correct these errors and to reduce the error rate in Quantum

Information Process (QIP), error correction methods need to be implemented (Hayashi,

2006).

5.2 Quantum Information Process (QIP) with Error Correction Method

The Quantum Information Process focuses on information process and computation by

encoding information into quantum bits. QIP includes three major steps as depicted in

Figure 5.1.
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Figure 5.1: Quantum Information Process with error correction approach

As shown in Figure 5.1, logical qubits will be encoded into more number of physical

qubits to process the information. If any error occurs while transmitting the information,

that will be detected and corrected using the error correction process. After performing

error correction, the information will be decoded into originally transmitted information

by performing decoding operations. Based on this architecture, the QEC methods were

implemented. Most of the quantum error correction methods are symmetric in nature.

i.e. the symmetric methods are implemented by considering the probability of bit flip

(X) and phase flip (Z) errors as the same (Wagner et al., 2018). From the literature

(Ma et al., 2019; Chiani & Valentini, 2020b; Lv et al., 2021; Fan et al., 2021; Azad

et al., 2021; Sundaresan et al., 2022), it has been observed that the possibility of phase

shifts is more while transmitting the information. In order to overcome this problem,

it is necessary to implement asymmetric quantum error correction methods. Thus, an

efficient asymmetric quantum error correction method for detecting and correcting a

single arbitrary error using syndrome measurement is proposed in this chapter.

Before discussing in detail about the proposed methodology, it is important to know

about the phase operations, Quantum channel and Channel noise. Thus a detailed dis-

cussion of these topics is given in the following section.

5.3 Phase gate(S) and Unitary operations

5.3.1 S gate

S gate is used to modify the phase of a quantum state with 90-degree rotation along with

the Z-axis to prevent phase shifts while encoding the information. It is a single input

and single output gate (Zulehner et al., 2018).
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The matrix representation of the S gate is

1 0

0 e
iπ
2


5.3.2 Unitary operation

It is also a single input and single output gate. A unitary gate performs the phase

changes on a quantum state along with the X, Y, and Z-axis (Barabasi et al., 2019). For

the experiment, we have considered phase angle as π/4 for better results as shown in

the following equation.

U(δ, ϕ, γ) = RX(δ − π/4)RY (ϕ− π/4)RZ(γ − π/4) (5.1)

Matrix representation of Unitary gate is U(δ, ϕ, γ) =

 cos(δ/2) −eiγsin(δ/2)
eiϕsin(δ/2) ei(ϕ+γ)cos(δ/2)


5.4 Quantum Channel & Channel Noise

A Quantum channel is a transmission medium that is used to transmit quantum infor-

mation from one place to another. When the quantum states are transmitted through the

quantum channel, the noise will be generated due to the external interaction. In QIP

two quantum channels will be used for data transmission which are called as the Depo-

larization quantum channel and the Amplitude damping channel. Based on the effect of

transmitted quantum information on these quantum channels, the noise is divided into

two types - Depolarization noise and Amplitude damping noise (Grassl et al., 2022).

5.4.1 Depolarization noise

When the information is transmitted through the Depolarization quantum channel, the

noise will be generated and that leads to the depolarization noise. Depolarization noise

does not completely destroy the quantum states but adds the bit and phase flip errors to

the original information. It is also called as unitary noise. In the quantum channel, pure

quantum states interact with the external environment which leads to mixed quantum

states with different flip noises. There are three possible flip errors that arise due to

the noise are represented in equation 1.19. A channel with depolarization noise can be
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described as follows.

ϵ(ρ) = (1− p)ρ+ p

3
(ΓxρΓx + ΓyρΓy + ΓzρΓz) (5.2)

Where Γx,Γy,Γz are the Pauli operators, p is the probability and ρ is the density oper-

ator of the input state in the quantum channel.

5.4.2 Amplitude Damping Noise

When the information is transmitted through an Amplitude damping quantum channel,

the noise will be generated and that leads to the amplitude damping noise. Amplitude

damping noise is also called as non-unitary noise where the entire quantum state will

get disappeared. A Quantum channel with amplitude damping noise is represented as

follows.

ϵ(ρ) = A0ρA†
0 +A1ρA†

1 (5.3)

Where A0 =

1 0

0
√
1− p

 and A1 =

0 p

0 0

 are operational elements and ρ is

density operator of the input state.

5.5 Proposed Methodology

Asymmetric quantum syndrome error correction architecture is capable of finding both

bit and phase flip errors. It also prevents phase flips by performing phase operations

on the encoding side. In the error correction method, three steps are to be performed,

Those are Encoding, Error detection and correction using syndrome measurement, and

Decoding. The overall architecture of the proposed Asymmetric Quantum Syndrome

Error Correction (AQSEC) is represented in Figure 5.2.

Figure 5.2 shows the three major steps of the proposed AQSEC. Initially, an en-

coding operation is performed. In the encoding process, additional redundancy will be

added in advance to handle the noise with extra qubits and quantum gate operations.

After encoding the information |ϕ⟩E , it will be transmitted through the quantum chan-

nel. If any error occurs while transmitting the information |ϕ⟩Er, those will be measured

using syndrome measurement with bounding function. After detecting and correcting

the errors, the data will be decoded by performing decoding operations.
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Figure 5.2: Asymmetric Quantum Error Correction with Encoding, Syndrome measurement,
and Decoding procedure

5.5.1 Encoding the Quantum Information

To perform QEC, a single logical qubit is encoded into five physical qubits. In exist-

ing QEC methods, Hadamard (H) and phase shift (Z) gates are used for encoding the

information. But in the proposed method, a single X gate is used to perform the HZH

operations. We considered the logical quantum information that has to be transmitted

as state |1⟩. To encode the quantum information phase (S), Unitary (U) and Controlled-

NOT operations are performed on the logical qubit. After performing S and Unitary

operations on input data |1⟩, the possibility of phase flip will be reduced. CNOT op-

erations will be performed on logical data to encode it into five physical qubits. The

mathematical representation of S, U, and CNOT operations on quantum state |1⟩ are

given below.

The S gate changes the phase of the input state with π/2 angle which is represented

as follows.

S|1⟩ =

1 0

0 e
iπ
2

0

1

 = e
iπ
2 |1⟩ (5.4)

Unitary operation on n quantum states with 2n possible combinations can be derived

as follows.

U2n|τ⟩ → e2iπϕ2
n|τ⟩ (5.5)

The above equation (5.5) is further simplified as follows for all possible operations.
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U2n|τ⟩ → 1

2
n
2

2n−1∑
l=0

|γ⟩ ⊗ e2iπϕlτ |τ⟩

→ 1

2
n
2

[|0⟩+ e2iπϕ(2
n−1)|1⟩]

(5.6)

Equation (5.6) represents all possible outputs with states |0⟩ and |1⟩. For input state |0⟩,
detecting phase changes is difficult because the phase change of |0⟩ → |0⟩. Therefore

the phase modifications mainly affect the state |1⟩. After applying unitary operations

on input state |1⟩ with π/4 angle, the above equation (5.6) will be modified as follows.

U |1⟩ → e2πi
π
4 |1⟩ (5.7)

Equation (5.7) modifies the quantum state and prevents phase shifts in advance. If any

phase shift occurs while transmitting the information, it can be detected by performing

phase measurements using the following equation.

Phase measurement =
√
1− pr|γ⟩+ eiPh

√
pr|τ⟩ (5.8)

Equation (5.8) is used to calculate the phase of the quantum states |γ⟩, |τ⟩ with proba-

bility pr and phase Ph. For a quantum system with states |0⟩ & |1⟩, the above equation

is modified as follows.

Phase measurement =
√
1− pr|0⟩+ eiPh

√
pr|1⟩

The error rate is calculated using the formulaM(pr)−E(pr). It represents the difference

between the maximum probability to the probability of the expected output state. After

performing S and U operations on the quantum state, the CNOT gate will be applied to

convert a single logical qubit into multiple physical qubits using the given equation.

Encoded Information ϕE =
∑
i

CNOT (|qi⟩, |qi+1⟩) (5.9)

Here |qi⟩, |qi+1⟩ represents the Quantum states. The detailed algorithm for encoding

quantum information using S, U and CNOT operations is represented in Algorithm 5.1.
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Algorithm 5.1 Procedure for Encoding the Quantum Information

Input: Quantum Information |ϕ⟩
Output: Encoded Quantum Information |ϕ⟩E

1: Initialize the number of qubits n as 5
2: Initialize Quantum register q and Classical register c with size 5
3: Apply NOT operation on initial qubit
4: Apply S and U operations along with X, Y, and Z axis
5: for i = 0 to n− 2 do
6: Perform CNOT operation on q[i] & q[i+1]
7: end for
8: for i = 0 to n− 1 do
9: Store the information from Quantum register to Classical register

10: end for
11: Measure the information stored in the Classical register
12: Transmit the encoded information through the Depolarization Quantum Channel.

As written in Algorithm 5.1, a single logical qubit |ϕ⟩ is considered for transmitting

from one end to another. To strengthen the logical information from noise and phase

fluctuations, the S gate with angle π/2 has been applied to the initial qubit. It rotates

the quantum state along the Z-axis with π/2 angle (as in equation 5.4). After that, the

unitary operation with angle π/4 is applied on the same qubit to perform the rotation

over the X, Y, and Z-axis (as in equation 5.1) to prevent the logical qubit from phase

shifts. The combination of S and U gates leads to the U3 gate with the rotation along

with X, Y, and Z gates with 3π/4, π/2 and π/2 angles respectively. With these rotations,

the phase of the quantum state will be maintained. To encode the logical qubit into five

physical qubits, CNOT gate operations are performed. After encoding the quantum

information, it will be transmitted through the depolarization quantum channel.

Algorithm 5.1 is developed and experimented on a quantum system. In the quantum

system, the default input state will be considered as |0⟩. It is difficult to measure the

phase shifts on input state |0⟩ because the phase shift on state |0⟩ → |0⟩ and for state

|1⟩ → −|1⟩. Thus X gate is used to generate the input state as |1⟩. After performing

phase and unitary operations on qubit q[0], CNOT operations will be performed on

q[0] & q[1], q[1] & q[2], q[2] & q[3], q[3] & q[4] to encode it into 5 qubits. After

running the Algorithm 5.1 in a quantum system, the retrieved results for logical input

|1⟩ are shown in Figure 5.3. All possible quantum states of the proposed method with

the achieved probabilities are represented with the density matrix in Figure 5.4.

75



Figure 5.3: Quantum results for Encoding Quantum Information

The density matrix is used to represent all possible quantum states of the system

with measured probabilities. Mathematically it is simplified by using the equation 1.18.

For example, the possible outcomes of a single qubit system will be either |0⟩ or |1⟩.
To represent all possible quantum states, the equation 1.18 is simplified with 21 states

as follows

ρ = P1|0⟩⟨0|+ P2|1⟩⟨1|

The vector simplification of the above equation results in the density matrix with all

possible states with 21 x 21 matrix with probabilities P1, P2. For the n qubit system, the

density matrix of all possible outcomes will be of size 2n x 2n. The calculated density

matrix of the proposed encoding method with a 5-qubit system with a 32x32 matrix is

graphically represented in Figure 5.4.

The error that is occurred due to the noise is measured by performing Positive Oper-

ator Value Measures (POVMs). POVM is used to measure the probability of a random

outcome generated in quantum experiments. It is expressed as follows.

Err = (1− P )|ϕa⟩⟨ϕa|+ P |ϕb⟩⟨ϕb| (5.10)

Here Err is the Error measurement and P represents the probability of error.

Bit and Phase error measurement probability for a two-qubit system with quantum
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Figure 5.4: Density matrix of encoding method with all possible states with real and imaginary
values Re[ρ], Im[ρ] respectively

states |0⟩, |1⟩ is graphically represented in the following figure.

Figure 5.5: Bit and Phase error representations a) Represents the actual state |ϕ⟩ and bit flip of
state X|ϕ⟩ with probabilities Pr and 1− Pr b) Represents the actual state |ϕ⟩ and phase flip of
state Z|ϕ⟩ with probabilities Pr and 1− Pr .

Figure 5.5 shows that, if the quantum information with state |ϕ⟩ = p0|0⟩+p1|1⟩ has

been transmitted through the quantum channel, then the qubit X|ϕ⟩ or phase Z|ϕ⟩ flips

may occur with a probability of 1 − Pr. According to this, the error measurement for

the proposed encoding method is as in the following equation.

Err = (1− P )|00000⟩⟨00000|+ P |11111⟩⟨11111|

After running the encoding algorithm in a quantum computer, the resulting probability

of state |11111⟩⟨11111| is 0.852, i.e., P = 85.2%. From this we can calculate the error

rate with equation 1-P = 0.148, i.e., 14.8%. The same result is expressed using the

density matrix represented in Figure 5.4 with all noisy states. The proposed encoding

method is also developed and executed on various quantum systems like Manila, Lima,

Quito, Belem and so on to find an efficient quantum system to perform the experiments.

From the results, it has been observed that the Manila system performs efficiently com-
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pared to other systems. A detailed analysis of various system results is presented in

Appendix-A (refer the Appendix-A).

After encoding the information, the next step is to transmit the information through

the quantum channel. For the experiment, we used IBM Quantum System. A depo-

larization quantum channel is used to transmit the information. As per the properties

of the depolarization quantum channel, whenever the data is transmitted through this

channel it may lead to the bit flip, phase flip, or bit and phase flip errors as discussed

in 5.4.1. If any errors occur, those will be detected and corrected by performing error

detection and correction operations.

5.5.2 Error Detection and Correction

Error detection and correction are two necessary and challenging steps in Quantum

Information Process because the detection of phase flips is difficult. Before performing

the error correction, it is essential to know the type of error due to which the encoded

state has corrupted. This can be performed using syndrome measurements. Here the

word syndrome represents the presence of an error and the error type, i.e., bit flip or

phase flip or both and on which input state the error has occurred. Thus, the syndrome

measurement is used to retrieve the error information like which Pauli error (X, Y or Z)

has occurred and on which physical qubit. Based on this information error correction

will be performed by applying the same Pauli operator on the corrupted qubit to revert

the error effect.

Syndrome measurement and Error correction

To measure the syndrome five physical qubits will not be sufficient. Extra qubits are

required to detect and correct the error. For that, 3-ancilla qubits |A⟩ are used. Ancilla

qubits are extra qubits that are used to perform intermediate operations and store partial

results in quantum computation. Mainly ancilla qubits are used to convert complicated

gate architectures into simple ones. In the proposed method, the combination of ancilla

qubits is used to detect the error and also to find out exactly on which qubit it has

occurred. Then the error correction will be performed to correct it. To perform these

operations, we have considered hamming bound as a base and then it has been modified

by considering the phase flips with the highest probability.
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Bounding function calculation

CNOT operations are performed by applying hamming bound with parameters [n,k,d]

for the detection of errors. Where n is the total number of physical qubits, k is the

number of logical qubits and d is the distance between code words. Hamming bound

represents the parameter limit for the arbitrary code. For example, if Hb is a set of

symbols with b elements. The set of n length strings on Hb can be represented as

Hn
b where it will have bn distinct strings. The block code of b of length n is a subset

of Hn
b . The hamming distance between code words can be represented as Hb(n, d).

It represents that the maximum size of block code with length n is b and the minimum

hamming distance between code words is d. With these conditions, the hamming bound

for code bn with at least two distinct strings should satisfy the following equation.

Hb(n, d) ⩽ bn/
t∑

w=0

n
w

 (e− 1)w (5.11)

Where t = d−1
2

. The equation (5.11) is further simplified as follows.

Hb(n, d)×
t∑

w=0

n
w

 (e− 1)w ⩽ bn

To satisfy the above equation the value of Hb(n, d) = bk. Where k is the number of

logical qubits. The modified equation after substituting Hb(n, d) = bk is as follows.

bk ×
t∑

w=0

n
w

 (e− 1)w ⩽ bn

Here e represents all the possible non-trivial 1-qubit errors. The total number of possible

1-qubit errors are 4 (identity, bit, phase, bit and phase flips) as explained in equation

(1.19). According to this, the above equation is simplified as follows.

bk ×
t∑

w=0

n
w

 3w ⩽ bn
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For 2-dimensional Hilbert space with n qubits, the above equation can be further sim-

plified as follows.

2k ×
t∑

w=0

n
w

 3w ⩽ 2n

To apply this bounding function, the minimum n value must be 5. After encoding the

data, if any syndrome is observed while transmitting the information that can be mea-

sured and corrected with the help of the bounding function and CNOT operations. The

step-by-step procedure for syndrome measurement with error correction is described in

the following Algorithm 5.2.

Algorithm 5.2 Step by step procedure for Syndrome measurement
Input: Encoded Quantum Information transmitted through quantum channel
|ϕ⟩Er, Ancilla qubits |A⟩
Output: Encoded information with the syndrome measurement |A⟩ & |ϕ⟩E

1: Initialize number of qubits n as 8
2: Initialize Quantum register q, Classical register c with size 5
3: Initialize Ancilla Register a with size 3
4: q[0] & q[(n/2) + 1]← Controlled NOT operation
5: q[1] & q[(n/2) + 2]← Controlled NOT operation
6: q[2] & q[(n/2) + 1]← Controlled NOT operation
7: q[3] & q[(n/2) + 3]← Controlled NOT operation
8: q[2] & q[(n/2) + 2]← Controlled NOT operation
9: q[4] & q[(n/2) + 1]← Controlled NOT operation

10: q[4] & q[(n/2) + 3]← Controlled NOT operation
11: for i = (n/2) + 1 to n− 1 do
12: Store the information from Quantum register to Ancilla register
13: end for
14: Measure the information stored in Ancilla register
15: Initialize Ar with the combination of Ancilla qubits
16: Measure the Ar

17: if Ar! = 0 then
18: Add Pauli gate(s) on qubit
19: end if
20: for i = 0 to n− 1 do
21: Store the information from Quantum register to Classical register
22: end for
23: Measure the information stored in the Classical register

After running the Algorithm 5.2 in Quantum computer with phase error at initial

qubit q[0], the obtained results are depicted in Figure 5.6.
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Figure 5.6: Quantum results for Syndrome measurement

As shown in Figure 5.6, the first 5 qubits (right to left) represent the encoded infor-

mation and the remaining 3 qubits represent the ancilla qubits. To check the efficiency

of the proposed algorithm, a phase error is added on the first qubit of the encoded

information. After running the algorithm 5.6, the observed results contain the state

|00111111⟩ with maximum probability. The resulting state |00111111⟩ represents that

the error has occurred at first qubit q[0] with ancilla combination 001. CNOT opera-

tions are performed to detect and correct the error. The probability of the obtained result

is 84.28%. Due to the noise quantum states |00000000⟩, |00011011⟩, |00110000⟩ and

so on are obtained. The measured error rate for the syndrome measurement algorithm

using the equation (5.10) is 15.82%. After performing the error detection and correc-

tion, the next step is to decode the information into the original quantum information

by performing decoding operations.

5.5.3 Decoding the Quantum Information

Decoding operation is very important for transmitting the information from one place

to another. Even though the encoding and error correction operations show excellent re-

sults, if the decoder is unable to decode the originally transmitted information then the

entire results will be affected. It may transmit the wrong information. In the proposed

AQSEC, phase and unitary operations were performed along with CNOT gate opera-
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tions to encode the information. Hence to decode the information, phase and unitary

operations need to be performed. Therefore the encoding operations are performed in

the backward direction to decode the originally transmitted information. After detecting

and correcting the errors, the actual data will be decoded using the decoding operations

as explained in algorithm 5.3.

Algorithm 5.3 Procedure for Decoding the Quantum Information

1: Input: Encoded information with the syndrome measurement |A⟩ & |ϕ⟩E
2: Output: The original information that has been shared initially |ϕ⟩
3: Initialize the number of qubits n as 5
4: Initialize Quantum register q, Classical register c with size 5
5: for i = n− 1 to 0 do
6: Perform CNOT operation on q[i] & q[i-1]
7: end for
8: q[0]← Unitary operation
9: q[0]← S

10: for i = 0 to n− 1 do
11: Store the information from Quantum register to Classical register
12: end for
13: Measure the information stored in the Classical register

After running the Algorithm 5.3 in a quantum system, the retrieved results in terms

of probability measurement chart and density matrix are outlined in Figure 5.7 & 5.8.

Figure 5.7: Quantum results for Decoding the quantum information

The initial input state considered for the proposed AQSEC is |00001⟩ with logical
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qubit |1⟩. After applying the encoding method, the state |00001⟩ has been modified to

|11111⟩. By performing decoding operations, we obtained the same state as an output

along with some noisy states as represented in Figure 5.7. From the results, it is ob-

served that the proposed decoding algorithm achieved 88.3% probability with a 11.7%

error rate. These are measured using the equation (5.10). The result of the final Quan-

tum Error Correction algorithm by combining encoding, syndrome measurement, and

decoding algorithms and the result analysis with existing works are discussed in the

next section.

Figure 5.8: Density matrix of Decoding method with all possible states with real and imaginary
values Re[ρ], Im[ρ] respectively

5.6 Experimental Setup

The classical and Quantum systems are used for performing the experiments. The con-

figuration details of the Classical system are given below.

• Processor: Intel core I3

• RAM: 4GB

• Operating System: Windows 7 Ultimate

The proposed Asymmetric Quantum Syndrome Error Correction algorithm is developed

and experimented on IBM Quantum System using the Qiskit tool. The configuration

details of the IBM quantum system are as follows.

• System Name: ibmq guadalupe

• Operating System: Darwin
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Figure 5.9: Quantum results for the proposed Asymmetric Quantum Syndrome Error Correction
with Encoding, Error Detection & Correction and Decoding steps.

• Tool used: Qiskit tool

• Simulator: ibmq qasm simulator

• Processor: Falcon r5.11L

5.7 Discussion & Result Analysis

The proposed Asymmetric Quantum Syndrome Error Correction method is used to

transmit the single logical qubit information using 5-physical qubits and 3-ancilla qubits.

The overall algorithm of QEC contains the Encoding, Error detection & Correction us-

ing Syndrome measurement and Decoding operations. After running all these opera-

tions combinedly in the quantum system, the retrieved final output is shown in Figure

5.9.

The proposed AQSEC algorithm considers quantum state |1⟩ as an input. To trans-

mit this information, the encoding operation has been performed by adding extra phys-

ical qubits to strengthen the quantum information. After this operation, the output will

be |11111⟩. While transmitting the encoded information through the depolarization

quantum channel, if any error occurs, it will be detected and corrected by performing

syndrome measurement operations. The resulting state after performing this operation
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is |00111110⟩, where it detects the error at qubit q[0]. After detecting the error, it will

be corrected by performing CNOT and Pauli gate operations. The result after this step

is |00111111⟩. It represents the error detected and corrected at the first qubit. Finally,

the data will be decoded by performing the decoding operations. The final output after

this stage is |00100001⟩ with 85.89% probability. In resulted state |00100001⟩, the first

five qubits represent the quantum information and the remaining three qubits represent

ancilla qubits.

Fidelity Measurement

Fidelity is measured by using the mathematical formula F = ⟨ϕ|ρ|ϕ⟩ as in equation

(4.12). Here |ϕ⟩ represents the expected output and ρ represents the density matrix of

the resulting output. The value of ρ is calculated by using the equation
∑

i pi|ϕi⟩⟨ϕi|.
Where |ϕi⟩ is resulted quantum state and pi is the probability of the state |ϕi⟩. The

resulted state |ϕi⟩ = |00100001⟩. The inner product of |ϕi⟩ = |ϕi⟩⟨ϕi| will be per-

formed on the |ϕ⟩ state vector. Here the outcome is of 8-qubits, so the vector of state

|ϕ⟩ can be represented by 28x1 matrix. After simplifying equation F with the prob-

ability of the resulted state and the density matrix of size 28x28, the final outcome

will be equal to 0.8589. Hence the fidelity of the proposed experiment is 0.8589. In

the quantum system, we have calculated the fidelity of the proposed experiment using

qiskit.quantum info.state fidelity function.

Thus the retrieved results are efficient in terms of fidelity, number of ancilla qubits

and circuit depth. Circuit depth is used to represent the number of quantum gates used

in the longest path of a quantum operation. Quantum circuit depth represents the num-

ber of quantum gates in the circuit’s longest path from the input to the output. In Qiskit,

circuit depth is calculated by using qiskit.circuit.QuantumCircuit.depth function.

The circuit depth and the fidelity of the quantum operations are inversely proportional

to each other. According to this, if the circuit depth is reduced, the fidelity will increase.

The proposed QEC method produces an efficient result compared to the existing meth-

ods as represented in Figure 5.10.

From Figure 5.10, it is observed that the proposed QEC model improves the fidelity

of the expected outcome with less number of ancilla qubits and reduced circuit depth.
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Figure 5.10: Result Analysis of proposed AQEC with existing methods

5.8 Asymmetric Quantum Syndrome Error Detection and Correction using En-

tangled qubits

Entanglement plays a crucial role in quantum error correction by providing a way to en-

code quantum information in a redundant manner. It allows for detecting and correcting

errors that may occur during a computation. In a quantum system, the property of en-

tanglement allows for the creation of correlations between qubits that are not possible

in classical systems. These correlations can be used to encode quantum information in

a more robust way against noise and errors. Thus, the entangled qubits are used in the

proposed AQSEC to improve the performance and reduce the error rate. After adding

the entangled qubits, the AQSEC architecture is modified as illustrated in Figure 5.11.

As depicted in Figure 5.11, Entanglement purification will be performed to purify

the entanglement and generate the maximally entangled pair. These maximally entan-

gled qubits are shared between the encoder and decoder to efficiently perform encoding

and decoding operations on quantum information. Entangled qubits improve the ef-

ficiency of logical operations by reducing noise. To perform the error correction, the

encoding operation will be performed on the initial qubit along with the entangled qubit.
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Figure 5.11: The process of Asymmetric Quantum Error Correction (AQEC) using Entangle-
ment

The unitary and CNOT operations are performed on these qubits to generate physical

qubits. The physical qubits are transmitted through the quantum channel after the en-

coding process. The quantum channel used here is depolarizing quantum channel. It

leads to depolarization noise while transmitting the qubits. As a result, bit flip, phase

flip or both errors may occur to the transmitted information. To detect and correct these

errors, syndrome measurement will be performed using ancilla qubits. To perform the

intermediate operations and store the partial results ancilla qubits are used along with

the physical qubits. Finally, the decoding operation will be performed to get the ini-

tially transmitted information. The proposed AQSEC algorithm with entangled qubits

is represented in Algorithm 5.4.

The result analysis of the proposed algorithm with the experimental setup is dis-

cussed in the following section.

5.8.1 Experimental Setup

The classical and Quantum systems are used for performing the experiments. The con-

figuration details of the Classical system are given below.

• Processor: Intel core I3

• RAM: 4GB

• Operating System: Windows 7 Ultimate

The proposed algorithm is developed and experimented on IBM Quantum System using

Qiskit tool. The configuration details of IBM quantum system are as follows.
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Algorithm 5.4 Asymmetric Quantum Error Correction using Entangled Qubits

Input: Quantum Information |ϕ⟩
Output: Detection and correction of quantum errors in transmitted information

1: Initialize the number of qubits n as 8
2: Initialize Quantum register Qr, Classical register Cr with size 5
3: Initialize Ancilla register Ar with size 3
4: Perform Hadamard and CNOT operations on qubits
5: Measure the entangled pairs of state |ψ±

ab⟩ or |ϕ±
ab⟩

6: Perform bell state measurements
7: Perform NOT operation on second and fourth qubits
8: Perform CNOT operations on Qr[0, 1], [0, 2], [0, 3]
9: Perform H operation on Qr[0], Qr[3]

10: Perform CNOT operation on Qr[0, 3]
11: Measure the information stored in Classical register Cr[0− 3]
12: Find the maximally entangled pair and share it between the encoding and decoding

operations
13: Apply NOT operation on initial qubit
14: Apply S and U operations along with X,Y and Z axis on initial
15: Add entangled qubit |ϕ+

ab⟩ to Qr[1]
16: for i = 0 to n− 2 do
17: Perform CNOT operation on Qr[i] & Qr[i+ 1]
18: end for
19: for i = 0 to n− 1 do
20: Store the information from the Quantum register to the Classical register
21: end for
22: Transmit the encoded information through the quantum channel.
23: Perform Controlled NOT operations on quantum states and store the result in quan-

tum registers.
24: for i = (n/2) + 1 to n− 1 do
25: Store the information from the Quantum register to the Ancilla register
26: end for
27: Measure the information stored in ancilla register
28: if Ar! = 0 then
29: Add Pauli gates on qubit
30: end if
31: for i = n− 1 to 0 do
32: Perform CNOT operation on Qr[i] & Qr[i− 1]
33: end for
34: Qr[0]← Unitary operation
35: Qr[0]← S
36: Qr[1]← |ϕ+

ab⟩
37: for i = 0 to n− 1 do
38: Store the information from Quantum register to Classical register
39: end for
40: Measure the information stored in Classical register Cr
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• System Name: ibmq guadalupe

• Operating System: Darwin

• Tool used: Qiskit tool

• Simulator: ibmq qasm simulator

• Processor: Falcon r5.11L

5.8.2 Result Analysis

After running the Algorithm 5.4 in the quantum system and simulator, the observed

results are depicted in Figure 5.12 & 5.13.

Figure 5.12: Quantum system result for AQSEC with Entangled qubits.

From Figure 5.12, it is observed that the measured probability of the proposed algo-

rithm using equation (5.10) is 90.5%. The measured error rate is 9.5%, due to the noise

that arises while performing the operations on qubits. The quantum state fidelity of

the proposed algorithm is calculated using the equation (4.12), which is equal to 0.905.

The experiment is also performed on a QASM simulator. From the simulator results as

shown in Figure 5.13, it is observed that the fidelity of the resulting state is 0.9896. The

retrieved results are efficient in terms of fidelity, number of ancilla qubits, and circuit
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Figure 5.13: Quantum Simulator result for AQSEC with Entangled qubits.

depth. It also performed efficiently when compared to the proposed Asymmetric quan-

tum syndrome error correction(AQSEC) algorithm with syndrome measurement. The

result analysis with existing methods is represented in Figure 5.14.

Figure 5.14: Result Analysis of proposed Asymmetric Quantum syndrome Error correction
using Entangled Qubits with existing methods
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Figure 5.14 shows that the proposed AQEC with entangled qubits improves the fi-

delity of the expected outcome with less number of ancilla qubits and reduced circuit

depth. It also performed efficiently compared to the proposed AQSEC. The proposed

method has also been experimented on a QASM simulator. From the experimental re-

sults shown in Figure 5.13, it has been observed that the achieved fidelity in the quantum

simulator is 0.9896.

5.9 Summary

In this chapter, We have implemented a novel and efficient Asymmetric Quantum Error

Correction (AQSEC) method with syndrome measurement with and without entangled

qubits. The proposed AQSEC detects and corrects both bit and phase flip errors. The

operations like encoding, decoding, and error correction are discussed clearly with al-

gorithms. Syndrome measurement is performed using ancilla qubits to detect the type

of error and on which qubit error has occurred. The required number of qubits in the

proposed experiment is calculated using the bounding function. With the experimen-

tal results, it is observed that the proposed AQSEC outperforms when compared to the

existing state-of-the-art methods. Further, to improve the efficiency of the proposed

AQSEC, entangled qubits are used. The entangled qubits are shared at the encoder and

decoder to perform the error correction. After running the Asymmetric Quantum Syn-

drome Error correction with entangled qubits in a quantum system, it has been observed

that the final results are more efficient than the existing results. The experiments were

also performed in the QASM simulator to test the methodology of the error correction

mechanism. The results are analyzed in terms of fidelity, circuit depth and the number

of qubits and ancilla qubits. It is also essential to optimize the architecture in terms

of quantum cost. Quantum cost is used to measure the overall cost of the quantum ar-

chitecture based on the number of quantum gates used in it. A detailed discussion of

Quantum cost and Cost optimization methods is presented in the next chapter.
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Chapter 6

Quantum Cost Optimization

In the previous chapter, we discussed the Importance of Asymmetric Quantum Syn-

drome Error Correction in the present era of Quantum Systems and the detailed process

to develop an efficient AQSEC with entangled qubits. After developing an efficient

QEC approach, it is important to check whether the model is cost-efficient or not. As

a solution to this, it is necessary to develop quantum cost optimization methods. The

following chapter discusses the quantum cost and cost optimization methods using re-

versible quantum gates. The main goal of this chapter is to propose efficient and opti-

mized Entanglement purification and AQSEC methods.

6.1 Importance of Quantum Cost Optimization

Quantum cost optimization methods are essential as they allow the efficient and effec-

tive use of quantum resources in order to solve problems and perform specific tasks.

In the field of quantum computing, cost optimization methods are used to minimize

the number of quantum operations and quantum resources (such as qubits and quantum

gates) that are required to solve a particular problem. Quantum computers are currently

limited by the number of available qubits and the complexity of quantum circuits. This

makes it important to minimize the use of quantum system resources by developing

quantum cost optimization methods (Hogg & Portnov, 2000). Optimization methods

are also crucial in the field of quantum communication as they are used to minimize

the number of quantum states. Quantum operations that are required to transmit a mes-

sage from one party to another. Because of it, quantum cost optimization methods are

an important tool for maximizing the efficiency of quantum systems and are essential

for enabling the practical use of quantum technologies in a wide range of applications.

The operations performed in quantum systems are reversible (Mamun et al., 2014).

Reversible computing performs the reversal of computational steps which allows the

recovery of the original input data from the output data. This is achieved by designing

algorithms and circuits that do not destroy the information or generate any entropy. Re-

versible computing has several potential benefits in the context of quantum computing.

It helps to reduce the number of quantum resources required to implement a quantum
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algorithm, as reversible algorithms can be implemented using fewer qubits and gates

than non-reversible algorithms. This is important to consider in the context of quantum

cost optimization, as it allows to perform effective quantum operations. In addition to

this, reversible computing will help to reduce the error rate in quantum algorithms. It

eliminates the need for error correction and fault tolerance measures that are required

in non-reversible algorithms (Banerjee & Pathak, 2009). This can be important for

applications that require high accuracy and reliability such as Quantum cryptography,

Quantum communication, Optical computing, Nanotechnology and scientific simula-

tions. Reversible computing will enable the development of new quantum algorithms

and applications that were previously thought to be impractical due to the high imple-

mentation cost. By finding ways to optimize the use of quantum resources through

reversible computing, researchers can explore new areas of quantum computing and

potentially discover new ways to solve various complex problems.

6.2 Quantum Cost and Unit cost Quantum gates

Classical computers perform irreversible operations in which the input information will

be lost and unable to restore once the output is generated. Classical gates like AND, OR,

EX-OR, NAND and NOR are irreversible gates with multi inputs and a single output

(Caves, 1999). Reversible gates contain an equal number of inputs and outputs; each

output is represented by a unique input combination. With this, it will be easy to restore

the information in the case of data loss. Quantum gates like Fredkin, Feynman, Peres

and Toffoli gates are reversible. The computational complexity of reversible logic gates

is measured in terms of Quantum cost (Streltsov et al., 2012).

6.2.1 Quantum cost

The quantum cost of a reversible logic circuit is determined by the number of gates that

are required to perform the desired operation. Quantum circuits need to be implemented

by using low-cost quantum gates to develop cost-effective architectures. The Quantum

cost of single input and single output (1x1) and two input and two output (2x2) gates is

equal to 1 unit (Rahman et al., 2011). The cost increases with the increasing number of

inputs and outputs. To optimize the quantum cost, higher-cost gates must be replaced

with their equivalent lower-cost gates. The reversible gates like Hadamard (H), NOT,

CNOT, Controlled-V, and Controlled-V + gates are unit cost gates. The Controlled-V,
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Controlled-V + gates are reversible gates and equivalent to quantum gatesControlled−
√
X and Controlled −

√
X

†
(Slimani et al., 2022). Every reversible gate is measured

in terms of quantum cost. Reducing the quantum cost is a challenging task. Thus

the research in this area has been increased to develop cost-effective architectures for

various applications.

6.2.2 Unit cost Quantum Gates

A classical computer performs the operations with irreversible logic gates. In order to

perform the operations in a Quantum computer, irreversible gates need to be converted

into reversible gates. Reversible gates contain an equal number of inputs and outputs.

The extra input and output lines will be added to the irreversible gates in order to convert

them to reversible gates. The basic and fundamental reversible gates like NOT, CNOT,

Controlled V and Controlled V + gates (Sasanian et al., 2012; Garipelly et al., 2013) are

discussed in detail as follows.

NOT gate

NOT gate is a single input and single output gate. The operation of a reversible NOT

gate is the same as the classical NOT gate. The output of this gate is the complement

of its input. It means if the input is |0⟩, the output is |1⟩, and vice versa. NOT gate is

represented with the symbol X. It is a unit-cost quantum gate.

CNOT gate

Controlled NOT or CNOT gate is a two-input (I1, I2) and two-output (O1, O2) gate. It

is also called Feynman gate as represented in 1.3.2. The Quantum cost of this gate is

equal to 1 unit.

Controlled V and V + gates

Controlled V and V + gates are two input (I1, I2) and two output (O1, O2) gates. The

Quantum cost of these gates is equal to 1. The block diagram of Controlled V and V +

gates are illustrated in Figure 6.1.

As shown in Figure 6.1, The first output of Controlled V and V + gates are equal to

its first input, i.e. O1 = I1. The second output of the controlled V gate depends on its
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Figure 6.1: a) Controlled V gate b) Controlled V + gate

first input, i.e. if I1 = 0 then O2 = I2, otherwise O2 = V (I2). Similarly for controlled

V + gate O2 = V +(I2) for I1 = 1.

V and V + are calculated by using the equations (i+1)
2
∗
(

1 −i
−i 1

)
and (−i+1)

2
∗
(
1 i
i 1

)
.

From these equations, we can say that V + = V −1. The quantum cost of these gates

is equal to 1 unit. The quantum cost of other single input and single output gates like

Hadamard gate (H), Phase gate, and unitary gate is equal to 1 unit.

√
x gate and

√
x
† gate

In quantum, V gate is represented with
√
x gate and V + gate is represented with

√
x
†

gate.
√
x,
√
x
† gates are single qubit gates with unit cost. The matrix representation of

these gates is as follows:

√
x =

1

2

1 + i 1− i
1− i 1 + i

 ,√x† = 1

2

1− i 1 + i

1 + i 1− i

 (6.1)

√
x,
√
x
† gates are useful in optimizing the reversible circuits. The properties of these

gates are represented in the form of lemmas as follows:

Lemma 6.2.1. Consider a quantum
√
x,
√
x
† gates. The multiplication between these

two gates produces the Identity gate.

To prove this the operations are to be performed using matrix representation of
√
x,

√
x
† gates as follows.

√
x ∗
√
x
†
=

1

2

1 + i 1− i
1− i 1 + i

 ∗ 1
2

1− i 1 + i

1 + i 1− i
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√
x ∗
√
x
†
=

1

4

2− 2i2 2 + 2i2

2 + 2i2 2− 2i2


=

1

4

4 0

0 4


=

1 0

0 1


= Identity gate

Lemma 6.2.2. Consider a quantum
√
x
† gate. The multiplication between two

√
x
†

gates is equal to the Quantum NOT gate.

To prove this the operations need to be performed using a matrix representation of
√
x
† gate as follows.

√
x
† ∗
√
x
†
=

1

2

1− i 1 + i

1 + i 1− i

 ∗ 1
2

1− i 1 + i

1 + i 1− i


=

1

4

2 + 2i2 2− 2i2

2− 2i2 2 + 2i2


=

1

4

0 4

4 0


=

0 1

1 0


= NOT gate

The quantum cost optimization algorithms for various reversible logic gates using

unit cost quantum gates are discussed in the following section.

6.3 Proposed methodology for Quantum cost optimization

The optimization algorithms are used to develop cost and energy-efficient circuits.

Quantum gates like the Double Feynman gate, Fredkin gate, Peres gate, and Toffoli

97



gates are used to develop sequential circuits. All these are three input and three out-

put gates with a quantum cost of 5 units. The cost-effective sequential circuits can be

designed by optimizing above mentioned gates using low-cost quantum gates. The pro-

posed methodology for the quantum cost optimization algorithm is depicted in Figure

6.2.

Reversible Architecture

Convert reversible architecture in to quantum
circuit using quantum gates

Find the equivalent lower-cost quantum gates to perform
the same operations

Replace the higher cost quantum gates with lower
cost gates

Repeat the step until the Quantum
cost is optimized

Are Adjacent Gates 
Commuting ?

Perform Delete Operation

Yes

No

Measure the final quantum cost of the
optimized circuit

Measure the final quantum cost of the
optimized circuit

Figure 6.2: Procedure for Quantum Cost Optimization

As shown in Figure 6.2, to optimize the quantum cost, initially reversible architec-

tures will be converted into quantum circuits using fundamental quantum gates. If the

quantum cost of the circuit is high, then that will be reduced by replacing the higher-

cost quantum gates with equivalent lower-cost gates. This step will be repeated until

the higher-cost quantum gates are replaced with possible lower-cost gates. After that,

it is necessary to observe the adjacent gates. If they are commuting, then the delete

operation will be performed. Adjacent gate commuting refers to the property of certain

quantum gates to commute with one another when they are applied to adjacent qubits.
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Commuting gates are gates that can be applied in any order without changing the over-

all result. In other words, if two gates are commuting, then the order in which they are

applied does not matter. In such cases, the deletion operation can be performed to delete

any one of the commuting gates to minimize the number of gates that are required to

perform operations. The optimized cost of the circuit will be measured after performing

these operations. This procedure can be used to optimize the quantum or reversible ar-

chitectures in order to reduce the hardware requirements. We have applied the proposed

optimization algorithm on the entanglement purification method (discussed in Chapter

4), AQSEC (discussed in Chapter 5) and higher cost quantum gates like Toffoli and

Peres gates to minimize the cost. The proposed algorithms for the same are discussed

in the following sections.

6.3.1 Optimization algorithm for Toffoli gate

Toffoli gate is a three input (I0, I1, I2) and three output (O0, O1, O2) gate. Each output

is calculated using unique input combinations which are expressed with the equations

O0 = I0, O1 = I1, O2 = I0I1 ⊕ I2. The block diagram of the Toffoli gate is illustrated

in Figure 6.3.

Toffoli Gate

I0

I1

O0 = I0

O1 = I1

I2 O2 = I0 I1 ⊕ I2

Figure 6.3: Block diagram of Toffoli gate

The quantum cost of the Toffoli gate is five units. This gate plays an important role

in implementing various gates like TR, Fredkin, Peres, R gates and sequential circuits.

The optimized Toffoli gate will be helpful in designing cost-optimized quantum circuits.

The quantum circuit diagram for the Toffoli gate is shown in Figure 6.4.

The proposed optimization algorithm for the Toffoli gate with unit cost gates is

given below.

The Algorithm 6.1 performs the Toffoli gate operations with the two Controlled−
√
X gates(csx) and one CNOT and sxdg gate. CNOT gate is a two-input and two output

gate and csx, sxdg gates are one input and one output gate with unit quantum cost. The
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q0

q1

q2

Figure 6.4: Quantum Circuit diagram of Toffoli gate. Here q0, q1, q2 represents the quantum
states

Algorithm 6.1 Optimization algorithm for Toffoli gate
Input: Three Inputs
Output: Three Outputs

1: Initialize the number of qubits n as 3
2: Initialize the size of Quantum register q and Classical register c as 3
3: Perform csx operation on q[1],q[2]
4: Perform csx operation on q[0],q[2]
5: Perform sxdg operation on q[2]
6: Perform cx operation on q[0],q[1]
7: Store the output in the Classical register
8: Measure the information stored in the Classical register

overall quantum cost of the optimized Toffoli gate is reduced to 4 units compared to

the existing one which is of 5 units. After running the algorithm for input combination

|010⟩ in a quantum system, the retrieved results are exemplified in Figure 6.5.

Figure 6.5: State vector diagram of Optimized Toffoli gate algorithm in Quantum system for
input combination |010⟩.

From Figure 6.5, it has been observed that the optimized gate performs the Toffoli

gate operations efficiently using the low-cost quantum gates. It also optimizes the quan-

tum depth. Quantum depth is used to measure the total number of gates in the longest
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path from input to output.

6.3.2 Optimization algorithm for Peres gate

Peres gate is a three input (I0, I1, I2) and three output (O0, O1, O2) gate. Each output

is represented using the unique input combinations as expressed with the equations

O0 = I0, O1 = I0 ⊕ I1, O2 = I0I1 ⊕ I2. The block diagram of the Peres gate is

illustrated in Figure 6.6.

Peres Gate

I0

I1

O0 = I0

O1 =I0 ⊕ I1

I2 O2 = I0 I1 ⊕ I2

Figure 6.6: Block diagram of Peres gate

Peres gate is developed by using Toffoli and CNOT gates. The quantum cost of

Peres gate is six units. Peres gate plays an important role in implementing quantum

memory architectures. The optimized Peres is useful for designing cost-optimized cir-

cuits. The quantum circuit diagram for Peres gate is depicted in Figure 6.7.

Figure 6.7: Quantum Circuit diagram of Peres gate

The optimized Toffoli gate is used to optimize the cost of the Peres gate. The pro-

posed optimization algorithm for Peres gate using unit cost gates is given below.

The Algorithm 6.2 performs the Peres gate operations with the two controlled −
√
X (csx) and controlled-NOT gates(cx) and one

√
X

†
gate(sxdg). csx, sxdg gates are

single input and single output gates and cx is a two input and two output gate with unit

quantum cost. Thus the overall quantum cost of the optimized Peres gate is 5 units

which is less compared to the existing one with 6 units. After running the Algorithm

6.2 for input combination |001⟩ in a quantum system, the retrieved results are depicted

in Figure 6.8.
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Algorithm 6.2 Optimization algorithm for Peres
Input: Three Inputs
Output: Three Outputs

1: Initialize the number of qubits n as 3
2: Initialize the size of Quantum register q and Classical register c as 3
3: Perform csx operation on q[1],q[2]
4: Perform csx operation on q[0],q[2]
5: Perform cx operation on q[0],q[1]
6: Perform sxdg operation on q[2]
7: Perform cx operation on q[0],q[1]
8: Store the output in Classical registers
9: Measure the information stored in the Classical register

Figure 6.8: State vector diagram of Optimized Peres gate algorithm in Quantum system for
input combination |001⟩.

From Figure 6.8, it has been observed that the optimized gate performs the Peres

gate operations with unit cost quantum gates. It also optimizes the quantum depth. With

the help of unit cost gates, it is also possible to optimize the quantum cost of reversible

gates like Fredkin gate, TR gate, etc to reduce the overall cost of the circuits.

6.3.3 Optimization algorithm for Entanglement purification method

Entanglement purification is an important tool for maintaining the integrity of quantum

states and is essential for the reliable storage and transmission of quantum information.

It is especially used to create highly entangled quantum states to perform quantum

error correction. Highly entangled quantum states are essential for getting efficient

results while performing the operations. For that, we proposed an efficient entanglement

purification (EP) method in Chapter 4. The algorithm for the proposed EP is represented

in Algorithm 4.1.
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As mentioned in Algorithm 4.1, CNOT and Hadamard Operations were performed

to generate the entanglement and purify it. After applying the proposed optimization

method on Algorithm 4.1, it is observed that the CNOT gates are commuting. The

commuted CNOT gates are removed by performing a deletion operation. It leads to the

optimization of quantum cost. The proposed optimization algorithm EP method is as

follows.

Algorithm 6.3 Optimization algorithm for Entanglement purification
Input: Two entangled pairs
Output: Maximally entangled pair

1: Initialize Quantum Register q[] with size 4
2: Initialize Classical Register c[] with size 4
3: Initialize the Number of qubits n as 4
4: q[1]← X
5: q[3]← X
6: Perform H operation on q[0]
7: Perform CNOT operation on q[0], q[1]
8: Perform H operation on q[2]
9: Perform CNOT operation on q[2], q[3]

10: Perform H operation on q[0]
11: q[2]← H
12: q[0]← H
13: Perform CNOT operation on q[0], q[3]
14: Perform CNOT operation on q[3], q[0]
15: Perform CNOT operation on q[0], q[3]
16: q[2]← H
17: Perform CNOT operation on q[1], q[2]
18: Perform CNOT operation on q[2], q[1]
19: Perform CNOT operation on q[1], q[2]
20: for i=0 to n-1 do
21: c[i]← q[i]
22: end for
23: for i=0 to n-1 do
24: Measure c[i]
25: end for

To optimize the entanglement purification algorithm, commuting CNOT gate opera-

tions are removed. After running the Algorithm 6.3 in a quantum system, it is observed

that the proposed algorithm performs the entanglement purification with less number of

quantum gates with better efficiency. The results of the quantum system are illustrated

in Figures 6.9 & 6.10.
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Figure 6.9: Quantum system Results of Entangled pair [q0,q3]

Figure 6.10: Quantum system Results of Entangled pair [q1,q2]

From Figures 6.9 & 6.10, it is observed that the fidelity of the pair [q0,q3] is 0.887

and pair [q1,q2] is 0.7792.

6.3.4 Optimization algorithm for Entanglement based Asymmetric Quantum Error Cor-

rection

Quantum error correction plays a crucial role in Quantum Information Process. More-

over, the error rate is high in quantum computing due to the delicacy of quantum par-

ticles. When the operations are performed on quantum particles, it results in noise and

decoherence due to external interactions. Because of these, the error rate increases

which in turn results in information loss. Error correction strategies are performed in

order to overcome this issue. with the experimental results of chapter 5, it has been
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observed that the asymmetric quantum error correction with entangled qubits performs

efficiently in detecting and correcting the errors while transmitting the information. We

considered the entanglement-based quantum error correction method and applied the

optimization techniques as per figure 6.2 in order to optimize it. After applying all the

steps, it has been observed that the entanglement-based quantum error correction can

be optimized further as depicted in Figure 6.11.
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Figure 6.11: Architecture of optimized Entanglement based Quantum Error Correction

As shown in Figure 6.11, a total of five steps are performed to implement quantum

error correction using entangled qubits. These are Entanglement generation, entangle-

ment purification, encoding, syndrome measurement, and decoding. In the initial stage,

entangled qubits are generated and transmitted at encoding and decoding processes. It

is necessary to observe whether the qubits are maximally entangled or not in order to

transmit the entangled qubits. Due to the noise and delicacy of qubits, the entanglement

between qubits leads to weak entanglement. Entanglement purification techniques are

performed to overcome this kind of problem. The entire cost of the error correction

depends on each step. If the operations in each step are optimized, then that leads to the

optimization of the final cost. Hence here we use the optimized entanglement purifi-

cation technique as written in Algorithm 6.3 to generate maximal entanglement. After

that, the encoding, syndrome measurement, and decoding operations are optimized as

written in the following algorithm.
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Algorithm 6.4 Entanglement based Asymmetric Quantum Error Correction

Input: Quantum Information |ϕ⟩
Output: Detection and correction of quantum errors in transmitted information

1: Initialize the number of qubits as 5
2: Initialize Quantum register Qr, Classical register Cr with size 5
3: Initialize Ancilla register Ar with size 3
4: Apply Hadamard and CNOT operations on qubits
5: Measure the entangled pairs of state |ψ±

ab⟩ or |ϕ±
ab⟩

6: Apply NOT operation on second and fourth qubits
7: Apply CNOT operations on Qr[0, 1]
8: Apply H operation on Qr[0], Qr[3]
9: Apply CNOT operation on Qr[0, 3]

10: Perform Bell State Measurement
11: Measure the information stored in Classical register Cr[0− 3]
12: Find the maximally entangled pair from two entangled pairs and share those be-

tween the encoder and decoder
13: Apply NOT operation on initial qubit
14: Apply S and U operations along with X, Y and Z axis on initial
15: Transmit entangled qubit |ϕ+

ab⟩ to second qubit
16: for i = 0 to n− 2 do
17: Perform CNOT operation on Qr[i] & Qr[i+ 1]
18: end for
19: for i = 0 to n− 1 do
20: Store the information from the Quantum register to the Classical register
21: end for
22: Measure the information stored in the Classical register
23: Qr[0]← Z
24: Qr[0]&Ar[0]← cx
25: Qr[1]&Ar[1]← cx
26: Qr[2]&Ar[0]← cx
27: Qr[2]&Ar[1]← cx
28: Qr[3]&Ar[2]← cx
29: Qr[4]&Ar[2]← cx
30: Qr[4]&Ar[0]← cx
31: for i = (n/2) + 1 to n− 1 do
32: Store the information from the Quantum register to the Ancilla register
33: end for
34: Measure the information stored in Ancilla register
35: if Ar! = 0 then
36: Append phase gate on initial qubit
37: end if
38: for i = 0 to n do
39: Store the information from Quantum register to Classical register
40: end for
41: Measure the information stored in the classical register
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42: for i = n− 1 to 0 do
43: Perform CNOT operation on Qr[i] & Qr[i− 1]
44: end for
45: Qr[0]← Unitary operation
46: Qr[0]← S
47: Qr[1]← |ϕ+

ab⟩
48: for i = 0 to n− 1 do
49: Store the information from Quantum register to Classical register
50: end for
51: Measure the information stored in Classical register Cr

After running the Algorithm 6.4 in quantum system, the observed results are de-

picted in Figure 6.12.

Figure 6.12: Quantum system results for optimized AQSEC using entangled Qubits

The results in Figure 6.12 shows that the fidelity of the optimized AQSEC using

Entangled qubits is increased to 0.918 and error rate reduced to 8.2%

6.4 Experimental Setup

To perform the experiment, we have considered classical and quantum systems. The

configuration details of the classical system are given below.

• Processor: Intel core I3

• RAM: 4GB
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• Operating System: Windows 7 Ultimate

The proposed algorithm is developed and experimented on IBM Quantum System

using the Qiskit tool. The configuration details of the IBM quantum system are as

follows.

• System Name: ibmq guadalupe

• Operating System: Darwin

• Tool used: Qiskit tool

• Processor: Falcon r5.11L

Along with these, we also used RCViewer+ Tool to measure the Quantum cost. The

tool description is given below.

• Tool Name: RCViewer+ Tool

• Input file format: .tfc

• Version: Real format version 1

6.5 Result Analysis and Discussion

To implement cost-effective quantum circuits, optimized gates are crucial. In quantum

computation, the quantum cost is measured based on the number of single and multi-

qubit gates. One more measure to check the circuit optimization is quantum depth.

Quantum depth is an integer number that represents the number of gates present in the

longest path of a circuit. If the circuit is having only single input and single output

gates, then the value of Quantum cost and quantum depth are almost the same. There

will be a difference between quantum cost and depth values with multi-input and multi-

output gates. For example, a circuit Cr is implemented using CNOT and Hadamard

gate, then the quantum cost and quantum depth are equal i.e. 2 units. But if circuit

Cr is implemented using Toffoli and Hadamard gates, then the quantum cost is 6 units

and the Quantum depth is 2 units. Qiskit tool is used to calculate the Quantum depth.

RCViewer tool is used to calculate the Quantum cost.
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6.5.1 Quantum Cost Calculation using RCViewer tool

RCViewer is an analyzer and viewer tool for reversible and quantum circuits. It takes

the input in .tfc (texture format cache files also called as textual input file) format. It

supports NCTSF and NCT gate libraries. With this, it supports NOT, Toffoli, CNOT,

Fredkin, Hadamard, Controlled V and V + and other reversible and quantum gates. We

used the RCViewer tool to calculate the Quantum cost of the existing and optimized

circuits and also to check the mathematical equivalence between existing and optimized

architectures.

The detailed result analysis of the optimized entanglement purification method with

the existing works in terms of quantum cost, quantum depth and gate count are depicted

in Figure 6.13.
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Figure 6.13: Result analysis of optimized Entanglement Purification method with existing works

From Figure 6.13, it is observed that the value of quantum cost and depth and gate

count are reduced with the optimized entanglement purification method.

The optimized purification method is used to develop the optimized AQSEC using

entangled qubits. The result analysis of optimized AQSEC with the existing state-of-

the-art works is illustrated in Figure 6.14.

Figure 6.14 shows that the quantum cost, depth and gate count are reduced with the
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optimized AQEC algorithm compared with the existing ones. The optimized architec-

tures are produced efficient results with less number of quantum gates compared to the

existing state-of-the-art methods.

6.6 Summary

This chapter discusses in detail the significance of Quantum cost optimization methods

in present NISQ quantum systems. We also defined Quantum cost and discussed about

various unit cost gates and their importance in developing optimized architectures. Fur-

ther, we proposed an optimized algorithm for multi-input gates like the Toffoli gate,

and Peres gate by using unit-cost reversible gates. The optimized Toffoli and Peres

gates play a key role in developing reversible sequential circuits and many other appli-

cations. We also applied the cost optimization methods on the proposed entanglement

purification and AQSEC methods for further optimization in terms of quantum cost,

quantum depth and gate count. The proposed algorithms are developed and executed in

a quantum system. The experimental results show that the proposed cost optimization

algorithms of Entanglement purification and Entanglement-based Quantum Error Cor-

rection with unit cost gates optimize the existing circuits to 18% & 5.4% in terms of

quantum cost and depth. The result analysis of optimized algorithms with the existing

state-of-the-art methods is also demonstrated in this chapter. The optimized algorithms
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can be proficient in developing sequential circuits which are used in various applications

like secure communication, teleportation, quantum cryptography, etc.

111





Chapter 7

Quantum Key Distribution

In the previous chapter, we discussed the importance of quantum cost optimization

and the proposed quantum cost optimization algorithms for Entanglement Purification

and Quantum Error Correction methods. The Entanglement Purification and Quantum

Error Correction methods play a prominent role in various applications like Quantum

Key Distribution, Quantum Repeaters, Teleportation, Secure communications, etc. To

check the efficiency of the proposed Error Correction method, we have applied it in the

application, i.e., Quantum Key Distribution. This chapter gives a detailed discussion

of Quantum Key Distribution and Quantum Error Correction’s importance in securely

transmitting the key.

7.1 Significance of Quantum Error Correction in Quantum key Distribution

Quantum key distribution (QKD) is a secure communication protocol. With the exis-

tence of QKD, a new era of cryptosystems called quantum cryptography has emerged.

QKD has the greatest potential to secure data from unauthorized users and possible to

develop unbreakable cryptosystems. Classical cryptography, also known as symmetric-

key cryptography, involves the use of a shared secret key to encrypt and decrypt mes-

sages. It is a method of secure communication that has been used for centuries and has

played a significant role in the development of modern cryptography. While classical

cryptography can be effective at protecting the confidentiality of messages, it is not nec-

essarily unbreakable. In fact, many classical cryptographic methods have been broken

over time as new techniques or technologies have been developed. This is because the

security of any cryptographic system is dependent on the underlying assumptions and

mathematical principles. As these assumptions or principles are challenged or proven to

be flawed, the security of the system can be compromised. For example, in the year of

1917, Vernam (Vernam, 1926) introduced one-time pad encryption that shares a random

key between the sender and receiver. When this was introduced, it was one of the ef-

fective strategies for secure data transmission. After a few decades, Shannon (Shannon,

1949) proved that the Vernam method is not optimal and there is no encryption method

for the key with less size. The key shared between two parties can be breakable with
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high computational powers. The researchers started working on implementing cryp-

tosystems with the largest key size so that to break these key’s high-end computational

powers are required. Current cryptosystems are implemented based on this strategy.

With the experiments, it has been proved that the existence of a quantum system makes

it easy to break the cryptosystem for which the classical computers will take some thou-

sands of years. Most security systems in the current scenario adopt the RSA algorithm.

RSA is one of the best and most highly secured algorithms. In the year of 2018, it was

proved that Quantum Shor’s algorithm breaks the RSA encryption in just 200 seconds

whereas a supercomputer requires 10000 years to break the same (Singh Gill et al.,

2020). With this, people came to know about quantum computers and how the current

security systems will be in trouble. The computational power of quantum computers

is exponentially high when compared to classical computers. There is a lot of scope

for research in Quantum Cryptography. But it is not easy to develop new strategies for

Quantum Cryptography. Quantum cryptography is entirely different when compared

to classical cryptography. In classical cryptography, only classical channel is used to

share the key between the sender and the receiver. In quantum cryptography, classical

and quantum channels are used to share the information between two parties as shown

in Figure 7.1. The key generated through the quantum particles is called quantum key.

The process of sharing it between two parties through the quantum channel is called as

quantum key distribution(QKD) (Sharma et al., 2021).

Classical Channel

Quantum Channel
|Φ⟩ |ψ⟩

Sender Receiver

Figure 7.1: Process of Quantum key distribution

As shown in Figure 7.1, Sender generates the quantum states with polarization basis

and will be sent to the receiver. The receiver uses random polarization basis to mea-

sure the quantum states sent by the sender. If the receiver uses the same basis, then the

measured quantum states match with the sender’s quantum states else the state changes.

The matched quantum states can be considered the key and can be used in further op-

erations. When the key has been shared, there is a possibility of an intruder who can

observe the information. In a quantum system, if anyone tries to observe or measure

the quantum state, then its actual state will get disturbed. Therefore the communicating
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parties will be able to know the third-party intervention and they can eradicate the key

and restart the communication by sharing a new key.

In QKD, we observed one more case, i.e., at the receiver side even by using the same

basis the key may not be the same as the sender. This is due to the noise raised from the

external environment while transmitting the quantum keys. Therefore we categorized

the reasons for unmatched keys even by using the same basis as follows:

• Presence of third party/eavesdropper.

• Presence of noise.

If a key is not matched due to the presence of a third party, then the communication will

be restarted by sharing another key. In some cases even though it is due to the noise,

the communicating parties consider it as the presence of the third party and drops that

message and shares the new key. In the present era of Noisy Intermediate Scale Quan-

tum (NISQ) Systems, the error rate is high due to the inbuilt noise of quantum particles.

Noise leads to errors by adding the bit or phase flips which results in modifications of

the actual quantum state and also degrades the length of the quantum key. As a solution

to this, it is essential to apply quantum error correction strategies to detect and correct

the errors while transmitting the quantum keys.

7.2 Proposed Methodology

As explained in the above section, to reduce the error rate and increase the efficiency of

QKD, we propose two major operations. They are:

1. Maximal entanglement generation using entanglement purification method.

2. Performing error detection and correction while transmitting the quantum key.

Entangled pairs play an important role in secure data transmission. The entangled

pairs used in QKD operations must be maximally entangled; otherwise leads to errors.

Entanglement purification methods are required to distil maximally entangled pairs. To

detect and correct the errors generated from the inbuilt noise of qubits, quantum error

correction techniques need to be applied. Based on this, we propose a QKD protocol
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Figure 7.2: Quantum key distribution with Entanglement purification and Asymmetric Quantum
Error correction

with an Entanglement purification method and Asymmetric Quantum Error Correction.

The detailed architecture is depicted in Figure 7.2.

As in Figure 7.2, At first, entanglement purification is performed at the sender side

to distil the maximally entangled pair from the weak ones. For that two major steps

must be performed which are Entanglement generation and Entanglement Purification.

A detailed discussion of these steps is presented in the following section.

7.2.1 Entanglement Generation and Entanglement Purification

Entangled pairs are represented with the help of Bell states. In a 2-level quantum sys-

tem, there are a total number of four possible bell states that can be generated which are

represented as follows:

|ψ±⟩ = 1√
2
(|00⟩ ± |11⟩) (7.1)

|ϕ±⟩ = 1√
2
(|01⟩ ± |10⟩) (7.2)

After simplifying the equations for each entangled quantum state, the equations will be

modified as follows:

|00⟩ = 1√
2
(|ψ+⟩+ |ψ−⟩) (7.3)

|01⟩ = 1√
2
(|ϕ+⟩+ |ϕ−⟩) (7.4)

|10⟩ = 1√
2
(|ϕ+⟩ − |ϕ−⟩) (7.5)
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|11⟩ = 1√
2
(|ψ+⟩ − |ψ−⟩) (7.6)

Hadamard and CNOT gates are used to generate entanglement. To purify the generated

entanglement we perform a swapping operation on entangled qubits. This method is

mainly used to distil the maximally entangled pairs and to transmit the data to longer

distances without interrupting the entanglement between qubits. The detailed discus-

sion on Entanglement Purification is discussed in chapter 4. The proposed QKD exper-

iment with entangled qubits and entanglement swapping is demonstrated as follows:

Let us consider four qubits (1,2,3,4) of two-qubit pairs (1,2)&(3,4) are entangled in

same basis |ϕ+⟩. Then the equation for |ϕ+⟩ can be written as follows:

|ϕ+⟩1234 = |ϕ+⟩12 + |ϕ+⟩34 (7.7)

Above equation can be further simplified based on equation(7.2.1) as follows:

|ϕ+⟩1234 =
1√
2

[
(|01⟩12 + |10⟩12) ∗

1√
2
(|01⟩34 + |10⟩34)

]
=

1

2
[|0101⟩1234 + |0110⟩1234 + |1001⟩1234 + |1010⟩1234]

=
1

2
[|01⟩14|10⟩23 + |00⟩14|11⟩23 + |11⟩14|00⟩23 + |10⟩14|01⟩23]

The above equation further simplified by substituting the values of |00⟩, |01⟩, |10⟩, |11⟩
as per the equations (3),(4),(5),(6) is as follows:

|ϕ+⟩1234 =
1

2

[
1√
2
[(|ϕ+⟩14 + |ϕ−⟩14)(|ϕ+⟩23 − |ϕ−⟩23)

+ (|ψ+⟩14 + |ψ−⟩14)(|ψ+⟩23 − |ψ−⟩23)

+ (|ψ+⟩14 − |ψ−⟩14)(|ψ+⟩23 + |ψ−⟩23)

+ (|ϕ+⟩14 − |ϕ−⟩14)(|ϕ+⟩23 + |ϕ−⟩23)]

After simplifying the equation through algebraic manipulations, the final equation is as

follows:

|ϕ+⟩1234 =
1√
2

[
|ϕ+⟩14|ϕ+⟩23 − |ϕ+⟩14|ϕ+⟩23 + |ψ+⟩14|ψ+⟩23 − |ψ+⟩14|ψ+⟩23

]
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The above equation shows the measurement outcomes of qubits 2 & 3 are completely

random which shows the weak entanglement between qubits. Qubits 1 & 4 are cor-

related and highly entangled. Hence the entanglement between qubits 1,2 & 3,4 is

swapped and the final maximal entangled pair resulting after the swapping is 1,4. This

qubit pair is used in the proposed QKD protocol for secure key transmission. Above

explained operations are performed in a quantum computer using quantum gates like

Hadamard and CNOT gates as written in the following quantum algorithm.

Algorithm 7.1 Process of Entanglement purification for QKD
Input: Two entangled pairs
Output: Maximally entangled pair

1: Initialize the size of Quantum register q[] and Classical register c[] as 4
2: Initialize the Number of qubits n as 4
3: q[1]← X
4: q[3]← X
5: q[0]← H
6: q[0] & q[1]← cx
7: q[2]← H
8: q[2] & q[3]← cx
9: q[0]← H

10: q[2]← H
11: q[0]← H
12: Observe the correlation between entangled pairs by performing Bell State Measure-

ment
13: q[0] & q[3]← cx
14: q[3] & q[0]← cx
15: q[0] & q[3]← cx
16: q[2]← H
17: q[1] & q[2]← cx
18: q[2] & q[1]← cx
19: q[1] & q[2]← cx
20: for i=0 to n-1 do
21: c[i]← q[i] ▷ Store the information from Quantum register to Classical register
22: end for
23: for i=0 to n-1 do
24: Measure c[i] ▷ Measure the information stored in Classical register
25: end for

As written in algorithm 7.1, initially two entangled pairs are generated by perform-

ing CNOT (cx) and Hadamard operations. After generating the entanglement, entan-

glement swapping is performed to distil the maximally entangled pair from the two

entangled pairs. Once the maximally entangled pair is generated at the sender side, that

118



will be shared with the receiver to perform decoding operation. The quantum polariza-

tion basis is used to measure the quantum information. Usually rectilinear or diagonal

basis are used to generate and measure the quantum states. Using this, the sender ran-

domly generates the qubits and those will be encoded and sent to the receiver through

the quantum channel. In between if any third party tries to measure the information

with the quantum basis, then the actual quantum state will get disturbed and the mod-

ified qubit will be sent to the receiver. There are cases where the quantum states will

get modified even without the interruption of a third party. That is due to the noise

which is generated while transmitting the information through the quantum channel. In

such cases, the error correction mechanism plays a crucial role to detect and correct the

errors. To do so, the encoding, error correction, and decoding operations are performed

on transmitted data to correct the errors like bit flip, phase flip, or both. We have im-

plemented an asymmetric quantum error correction method which is represented in the

following algorithm.

Algorithm 7.2 Quantum key generation steps at sender side

Input: Quantum Information |ϕ⟩
Output: Quantum key transmission in the form of encoded information

1: Initialize Quantum register Qr, Classical register Cr

2: Initialize the Size of the key as n
3: Apply entanglement purification protocol (as in algorithm ??)
4: Generate qubits randomly using polarization basis (X or Z) with function
randint(2, size = n)

▷ Sender will have the information about the basis used to generate random
qubits

5: for i=0 to n do
6: if polarization base[i] == 0 then ▷ Prepare qubit in Z-basis
7: if qubit[i] == 0 then
8: Transfer the qubit
9: else

10: Apply polarization basis X on Q[0]
11: Apply polarization basis X on Q[0]
12: end if
13: else
14: if qubit[i] == 0 then ▷ Prepare qubit in X-basis
15: Apply Hadamard basis on Q[0]
16: else
17: Apply polarization basis X on Q[0]
18: Apply Hadamard basis on Q[0]
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19: end if
20: end if
21: end for
22: Apply NOT operation on initial qubit ▷ Encoding Quantum Information
23: Apply S and U operations along with X, Y, and Z axis on initial
24: for i = 0 to n− 2 do
25: Perform CNOT operation on Qr[i] & Qr[i+ 1]
26: end for
27: for i = 0 to n− 1 do
28: Store the information from the quantum register to the Classical register
29: end for
30: Measure the information stored in the classical register
31: Transfer the encoded information to the receiver through the quantum channel

As explained in the above algorithm 7.2, a single logical qubit is considered which

has been generated at the sender side using a random basis. Later it will be encoded

into five physical qubits to strengthen the logical qubit. This encoded data will be

transmitted through the quantum channel. If any errors are detected, then those will be

corrected and decoded at the receiver side using the following algorithm 7.3.

Algorithm 7.3 Quantum key generation steps at receiver side

Input: Encoded quantum information |ϕ⟩
Output: Quantum key generation

1: Initialize number of qubits
2: Initialize Quantum register Qr, Classical register Cr

3: Initialize Ancilla register Ar

▷ Error detection and correction
4: Qr[0]← Z
5: Perform CNOT operations on quantum states and Ancilla qubits.
6: for i = 0 to n/3 do
7: Store the information from the quantum register to the Ancilla register
8: end for
9: Measure the information stored in ancilla register

10: if Ar = 0 then
11: Q[0]← Z
12: end if
13: for i = 0 to n do
14: Store the information from Quantum register to Classical register
15: end for
16: Measure the information stored in the classical register

120



17: for i = n− 1 to 0 do
18: Qr[i] & Qr[i− 1]← CNOT
19: end for
20: Qr[0]← Unitary operation
21: Qr[0]← S
22: Qr[1]← |ϕ+

ab⟩
23: for i = 0 to n− 1 do
24: C[i]← Q[i]
25: end for
26: Measure the information stored in Classical register Cr

27: Measure the quantum states using a random basis
28: if (sender base[Qi] == receiver base[Qi]) then
29: Add it to an array of key bits
30: end if
31: Quantum key is generated and stored in key array ▷ It can be used for further

operations

Finally, the data will be measured by the receiver with the polarization basis as

written in algorithm 7.3. If the receiver uses the same basis as the sender, then the

data measured on the receiver side will be the same as the sent data. Once this process

has been done, then the sender and receiver will discuss the basis they have used for

measuring the qubit through the classical channel. The qubits which are matched with

both parties can be considered as a quantum key. The result analysis of the proposed

methods is discussed in the following section.

7.3 Experimental setup and Result Analysis

7.3.1 Experimental Setup

To perform the experiment, we have considered classical and quantum systems. The

classical system configuration is given below

• Processor: Intel core I3

• RAM: 4GB

• Operating System: Windows 7 Ultimate

The proposed algorithm is developed and experimented on IBM Quantum System

using the Qiskit tool. The configuration details of the IBM quantum system are as
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follows:

• System Name: ibmq guadalupe

• Operating System: Darwin

• Tool used: Qiskit tool

• Processor: Falcon r5.11L

• Simulator Name: QASM Simulator

7.3.2 Result Analysis

The proposed QKD protocol is implemented on the IBM quantum system using the

Qiskit tool. After running the algorithm 7.1 on the Quantum system, the retrieved

results are depicted in the following figure.

Figure 7.3: Quantum key distribution results with and without entanglement purification

Figure 7.3 shows the result analysis of the proposed entanglement purification method

in QKD with the efficient result in the literature. When entangled qubits are shared be-

tween two parties, the measurement outcome of both entangled states must be 50%, i.e.

0.5. But when we implemented it in the quantum system, the measurement outcome

was reduced due to the inbuilt noise. The proposed QKD protocol without entangle-

ment purification resulting the 97.4% accuracy. Whereas, with entanglement purifica-

tion, accuracy is increased to 99.6% with a reduced error rate of 0.4%, which is an

efficient result compared to all the existing methods.
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Even after generating the maximally entangled qubits, the quantum key length will

be affected by the higher error rate of the quantum channel. The error rate has been

reduced and the Quantum key length has been increased by applying the asymmet-

ric quantum error correction in the proposed QKD protocol. We have performed ex-

periments on a real Quantum system and Quantum simulator. The result analysis of

quantum key length with the existing QKD protocol with and with Quantum Error Cor-

rection(QEC) mechanism on the Quantum system and Quantum simulator are depicted

in Figure 7.4, 7.5
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Figure 7.4: Result analysis of Quantum key length in Quantum System

Figures 7.4, 7.5 shows that the key length has improved by applying Quantum error

correction along with QKD protocol. With the increasing number of qubits, the key

length also increases by around 25%. As a result, QKD’s communication efficiency

also improved compared to the existing QKD protocols.

7.3.3 Calculation of QKD communication efficiency

Cabello (Cabello, 2000) has proposed an equation for calculating communication effi-

ciency as follows:

ρ =
En

Cb + Tb
(7.8)

Where En is the expected number of secret keys obtained by the sender/receiver, Tb
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Figure 7.5: Result analysis of Quantum key length in quantum Simulator

represents the number of qubits transmitted and Cb represents the number of classical

bits sent (if any). According to this, we have analyzed the communication efficiency of

the proposed protocol with existing ones. The result analysis table is given as follows.

The analysis of the communication efficiency of proposed and existing QKD proto-

cols have been shown in Table 7.1. We compared our results with the existing state-of-

the-art works Song (2004); Li et al. (2018); Qin et al. (2021); Wen-Zhao et al. (2022)

and many others. The authors used different methods like Bell state Preparation (BSP),

Random Number Generator (RNG) and QKD as represented in Table 7.1 to transmit the

data from one end to another. From the results, it has been observed that the proposed

protocol improves communication efficiency compared to the existing state-of-the-art

techniques. In most of the existing papers, researchers have concentrated on improving

the quantum key rate and key length. But while doing that, the parameters like the num-

ber of classical bits, and quantum generated and transmitted bits using QKD affects the

communication efficiency. But the proposed protocol was implemented by considering

all the points to improve efficiency and the quantum key length. The error rate analysis

is depicted in the following Figure 7.6.
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Table 7.1: Analysis of QKD Communication Efficiency
S.No QKD Protocol Method Used Efficiency(ρ)

1 Song (2004) BSP 0.5
2 Guo et al. (2006) BSP 0.58
3 Gao (2008) BSP 0.67
4 Dong & Teng (2010) QKD 0.61
5 Shalm et al. (2015) BSP 0.7515
6 Giustina et al. (2015) BSP 0.774
7 Liu et al. (2018) RNG 0.794
8 Bierhorst et al. (2018) RNG 0.755
9 Li et al. (2018) BSP 0.7875
10 Zhang et al. (2020) RNG 0.76
11 Zhang & Zheng (2021) BSP 0.78
12 Qin et al. (2021) BSP 0.71
13 Shalm et al. (2021) RNG 0.763
14 Liu et al. (2021) RNG 0.8135
15 Wen-Zhao et al. (2022) QKD 0.8749
16 Proposed Method QKD 0.892
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Figure 7.6: Analysis of Error rate

7.4 Third party Risk Analysis

It is also important to analyze the risk of third-party interference. For instance, consider

Figure 7.7 which shows the third-party interference in key distribution from sender to

receiver. The third-party risk analysis in secure quantum communication is depicted in

Figure 7.8.
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Figure 7.7: Third party Interference in QKD

As shown in Figure 7.7, if any third person tries to observe the information trans-

mitted between sender and receiver, then the possibility of him/her detecting the key is

depicted in Figure 7.8.

Third party
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Key not 
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Observed by the
communicating
parties = 25%

Not observed by the
communicating
parties = 25%

Key not
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detected

Figure 7.8: Third party risk analysis

Figure 7.8 represents the probability of detecting a key when a single qubit is trans-

mitted from the sender to the receiver. According to this, 25% (i.e. 0.25) possibility

is there for a third person to detect the key. If the Quantum communication is made

up of 2 qubits, then the probability of detecting the key will be 0.25 ∗ 0.25 = 0.0625.

This is very less compared to the single qubit transmission. For n-qubits, the equation

can be modified as 0.25n. If we consider 10 qubits for transmission, the third-party key

detection probability will be negligible.

7.4.1 Third party detection rate

Even though the possibility of detecting the key is very negligible with more number of

qubits, it is important to find the third-party intervention. If any third party measures the
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information before the receiver receives it, then it is crucial to detect his/her intervention

by the sender and receiver. In the case of single qubit transmission, the probability of

detecting the third-party intervention can be calculated by considering the following

cases:

1. The possibility of a third party using the same basis as sender and receiver is 50%.
In such cases, the third party may not be detected.

2. The possibility of a third party using a different basis than the sender and receiver
is 50%. In such cases, the detection of the third party depends on the receiver’s
measurement.

(a) If the receiver uses the same basis as the sender then the possibility of de-
tecting third-party intervention is 25%

(b) If the receiver uses a different basis than the sender, the third party goes
undetected. The possibility to happen this is 25%

From all the above-mentioned points, it is clear that the total probability of third-

party detection is 75%. This is in the case of single qubit transmission. If 2 qubits

are transmitted, the probability of third-party detection is 75% ∗ 75% = 0.75 ∗ 0.75 =

0.5625. Similarly, for n-qubits, the formula will be modified as 0.75n. For n=10, the

probability of third-party detection is 0.05 which is very negligible. Therefore the pro-

posed quantum key distribution protocol provides higher security with a reduced third-

party detection rate and quantum key detection rate by using a minimum of 10 qubits.

If more than 10 qubits are used for QKD, then the security levels will be high compared

to the existing key distribution strategies.

7.5 Summary

This chapter discussed the Quantum Key distribution protocol using Entanglement Pu-

rification and Quantum Error Correction strategies. Two algorithms were proposed for

Sender side key generation and key finalization at the receiver side along with the entan-

glement purification algorithm (discussed in Chapter 4) in order to perform QKD. The

proposed algorithms improve the quantum key length and communication efficiency

compared to the existing works. It also reduces the third-party error detection rate. The

proposed algorithms are developed and executed on the IBM Quantum Computer using

the Qiskit tool. The conclusions and future work of the proposed methods are described

in the next chapter.
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Chapter 8

Conclusion and Future Work

Quantum Error Correction(QEC) plays a key role in fault-tolerant quantum computa-

tion in order to reduce the effects of quantum noise on quantum gates, quantum circuits,

stored information, and measurements. In classical computation, error correction oper-

ations are performed by adding redundancies to the computation. An example of this

is classical repetition code. It is not possible to add redundancy in quantum compu-

tation as per the no-cloning theorem. Quantum Error Correction(QEC) methods are

introduced to solve the issue of redundancy. In QEC, quantum encoders will be used to

convert a single logical qubit into multiple physical qubits. With this, it is possible to

detect and correct errors. There are various methods to perform QEC. Most of the QEC

methods are symmetric. The research work in this thesis is directed towards the design

and development of the Asymmetric Quantum Syndrome Error Correction(AQSEC)

using Entangled qubits.

We proposed an Entanglement purification (EP) algorithm to distil the maximally

entangled pairs from weak ones for the development of AQSEC using entangled qubits.

Entanglement generation and Entanglement swapping operations were performed to

develop the EP method. These operations are performed using Controlled-NOT and

Hadamard gates and Measurement operations. The proposed method is developed and

experimented on a Quantum system and Quantum simulator. The fidelity of the maxi-

mally entangled pairs in the Quantum system is 0.871 with an error rate of 0.129. From

the Quantum simulator results, it is observed that the fidelity of the maximally entan-

gled pair is 0.9926. Simulator results are affected due to the sampling error. From

the Quantum system and simulator results, it has been observed that the proposed EP

method outperforms the existing methods. The next step is to develop Asymmetric

Quantum Syndrome Error Correction. The proposed AQSEC method performs encod-

ing, error detection, correction, and decoding operations. Encoding operation is an

initial and important step in AQSEC. It encodes the single logical qubit into multiple

physical qubits. In the proposed algorithm, Phase, Unitary, and Controlled NOT opera-

tions are performed to encode the quantum information and to strengthen the data from

phase flip errors. The encoded information is transmitted through the quantum channel.
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To avoid data loss, depolarizing quantum channel is considered for data transmission.

Whenever the data is transmitted through the quantum channel, there is a possibility

of getting bit flip, phase flip, or both bit and phase flip errors. A syndrome measure-

ment algorithm is developed to detect the type of error and exactly on which physical

qubit it has occurred along with the error correction process. An algorithm is developed

to decode the encoded information to know the original(logical) quantum state once

the error is corrected. From the experimental results, it is observed that the fidelity of

the proposed AQSEC is 0.8589. The entanglement is added to the AQSEC in order

to improve fidelity. The maximally entangled pair is shared at encoding and decoding

operations. By adding these qubits, it is observed that the final results were more effi-

cient than the proposed AQSEC algorithm. The AQSEC with entangled qubits achieved

0.905 fidelity. The proposed AQSEC using entangled qubits has also experimented on

a Quantum simulator. The achieved fidelity of the proposed algorithm in the simulator

is 0.9896.

After developing new architectures, it is necessary to examine whether the archi-

tectures are optimized in terms of quantum cost and depth. Quantum cost optimiza-

tion models are developed for proposed Entanglement purification and AQSEC algo-

rithms to address this. A circuit’s quantum cost and depth are optimized by replac-

ing the higher-cost quantum gates with lower-cost gates. The proposed quantum cost

optimization methods for the Toffoli gate, Peres gate, Entanglement purification and

Entanglement-based Quantum Error Correction with unit cost gates optimize the exist-

ing circuits by 20% in terms of quantum cost, quantum depth and gate count. Finally,

the proposed AQSEC using entangled qubits is used to develop a Quantum key dis-

tribution(QKD) protocol. Quantum key distribution plays a key role in secure data

transmission. In the proposed QKD protocol, three operations are performed. These

are entanglement purification, Sender side key generation and key finalization at the re-

ceiver side. It has been observed that the proposed QKD outperforms the existing QKD

protocols in terms of communication efficiency with a reduced third-party key detection

rate based on the experimental results.

All the proposed algorithms are developed and executed on the IBM Quantum Com-

puter using the Qiskit tool. RCViewer tool is used to calculate the quantum cost. From

the experimental results, it is observed that the proposed entanglement Purification,
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AQSEC, Quantum cost optimization method, and QKD protocol outperform the state-

of-the-art methods. Improvement of the proposed methods can be considered in the

future research directions.

• The proposed Error correction methods can be improvised to perform fault toler-

ance quantum computation with the longest period of data storage facilities.

• Once the quantum systems are made available, then the proposed AQSEC can be

experimented using less number of qubits to achieve better performance and to

reduce the error rate.

• The proposed AQSEC method can be extended to reduce the inbuilt noise in the

Quantum states.

• Asymmetric quantum syndrome error correction method can be further impro-

vised by adding the ability to correct a large number of errors, as this would

enable more reliable quantum information processing and communication.

• The proposed AQSEC can be applied in various applications like drug design,

repeaters, longer-distance data transmission, etc.
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Appendix-A

Experimental Analysis of a Quantum Encoder in

Various Quantum Systems

Quantum computer performs operations by adopting the principles of quantum physics

and quantum mechanics. With these principles, it performs operations exponentially

faster compared to classical computers. The major problem observed in quantum com-

putation is noise and decoherence. The noise and decoherence generate errors while

performing the operations on quantum states. As a solution to this, Quantum error

correction(QEC) methods are introduced. Encoding plays a key role in QEC. In the en-

coding process, the logical qubits are encoded into physical qubits by appending extra

qubits to them. With this, the logical qubit will be strengthened and can be transferred

safely. Initially, the experimental results of quantum computation are theoretical or

mathematical. But with the existence of quantum computers, it is possible to develop

and run new quantum architectures on publicly available quantum computers. Thus, we

developed an efficient algorithm for encoding quantum information using various quan-

tum gates. The developed algorithm is executed on various quantum systems and the

performance is analyzed in terms of frequency, run time, error rate, number of qubits,

and quantum volume. This analysis helps the researchers to opt an efficient quantum

system to perform the experiments.

A.1 Proposed Encoder and its implementation in Quantum systems

In QEC, encoding plays a vital role in transmitting quantum information safely. Quan-

tum encoding is a process of encoding a single logical qubit into multiple physical

qubits to strengthen the actual quantum state. The extra qubits are added to the logical

qubit in this stage. If we will perform efficient operations to encode the information

then it leads to fewer errors. While implementing the new architecture for encoding,

we can perform the error reduction procedure prior. With this, we can strengthen the

quantum state and prevent errors. Even if the error occurs then those can be detected

easily with this process. In the proposed method, initially, we have considered a single

logical qubit that will be encoded into 5 physical qubits. The step-by-step procedure for

implementing the quantum encoder is represented in Algorithm 5.1 in Chapter 5.

As written in algorithm 5.1, initially a single logical state |1⟩ is taken as an input. To

133



encode it into 5 physical qubits, Phase(S), Unitary and CNOT operations are performed.

S and Unitary operations are performed on single input and single output gates. These

operations are used to rotate the quantum state along with the X, Y, and Z axis. CNOT is

a two-input and two-output gate. It is implemented with Not and XOR operations. With

S, Unitary, and CNOT operations it is easy to detect the bit and phase flip errors. After

performing S and Unitary operations, CNOT operations will be applied on quantum

states to convert a single logical qubit into multiple physical qubits. After performing

these operations, the resulted outcome with input state |1⟩ is |11111⟩. The proposed

algorithm is developed and experimented in various quantum systems using the Qiskit

tool. After running this algorithm on various IBM quantum systems named Quito,

Lima, Belem, Bogota, Manila, Jakarta, and Perth the retrieved results are depicted in

the figures A1, A2, A3, A4, A5, A6, A7.

Figure A1: Encoder results on system ibmq quito

Figure A1 represents the quantum results of the proposed encoder in the Quito sys-

tem. It is a 5-qubit system with a volume of 16. The output frequency of the proposed

encoder in the Quito system is 786 out of 1000 cycles. Quantum volume represents the

largest circuit a quantum system can implement successfully. i.e., Quito can implement

a quantum circuit with size 16 and can run it.

Figure A2 represents the quantum results of the proposed encoder in the Lima sys-

tem. It is a 5-qubit system with volume 8. The output frequency of the proposed encoder

in the Lima system is 735.

Figure A3 represents the quantum results of the proposed encoder in the Belem sys-
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Figure A2: Encoder results on system ibmq lima

Figure A3: Encoder results on system ibmq belem

tem. It is a 5-qubit system with a volume of 16. The output frequency of the proposed

encoder in the Belem system is 761.

Figure A4: Encoder results on system ibmq bogota
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Figure A4 represents the quantum results of the proposed encoder in the Bogota sys-

tem. It is a 5-qubit system with a volume of 32. The output frequency of the proposed

encoder in the Bogota system is 757.

Figure A5: Encoder results on system ibmq manila

Figure A5 represents the quantum results of the proposed encoder in the Manila sys-

tem. It is a 5-qubit system with a volume of 32. The output frequency of the proposed

encoder in the Manila system is 852.

Figure A6: Encoder results on system ibmq jakarta

Figure A6 represents the quantum results of the proposed encoder in the Jakarta sys-

tem. It is a 7-qubit system with a volume of 16. The output frequency of the proposed

encoder in the Jakarta system is 794.
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Figure A7: Encoder results on system ibm perth

Figure A7 represents the quantum results of the proposed encoder in the Perth sys-

tem. It is a 7-qubit system with a volume of 32. The output frequency of the proposed

encoder in the Jakarta system is 810.

The analysis of all the above-mentioned quantum systems results in terms of the

number of qubits, run time, frequency of getting expected output, and the average error

rate are discussed in the following section.

A.2 Result analysis of various Quantum systems

The proposed encoder algorithm is implemented and executed on IBM Quantum ex-

perience(QE). It is a quantum platform and provides cloud access to its quantum com-

puters. It helps researchers to perform experiments on real-time quantum systems. It

provides public access to 5 and 7-qubit quantum systems, on which we can perform the

experiments. All these systems are designed with different quantum volumes. Quantum

volume represents the largest circuit a quantum system can implement successfully. It

also represents the maximum number of CLOPS i.e., the maximum number of circuit

operations performed on a quantum computer. The detailed analysis of each system

with obtained results is represented in Table A1.

From Table A1, it is observed that the 5-qubit system Manila gives an efficient result

due to the less error rate and high quantum volume. Lima gives inefficient results due

to the high error rate and lower quantum volume. It is observed that to perform 5-

qubit experiments Manila will be a better choice. For 7-qubit operations, Perth gives

efficient results with less error rate and high quantum volume. The number of qubits
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Table A1: Comparison of results with various quantum systems
Name of
the system

No.of
Qubits

Run
time

Average As-
signment error

Output
Frequency

Quantum
Volume

Quito 5 4.1s 2.598e−2 786 16
Lima 5 4.4s 4.164e−2 735 8
Belem 5 3.9s 2.852e−2 761 16
Bogota 5 7.1s 3.982e−2 757 32
Manila 5 5.7s 2.562e−2 852 32
Jakarta 7 6.1s 3.354e−2 794 16
Perth 7 3.5s 2.906e−2 810 32

and quantum volume also affect the run time. The analysis between these three are

depicted in the following Figure A8.

Run time(sec) No.of Qubits Quantum Volume

Figure A8: Analysis between Number of qubits, Quantum Volume and Program Run time.

At present, the research in quantum computing has increased because of its expo-

nential computational power. With this many researchers are performing experiments

on quantum systems to develop applications in various fields. In such instances, the

analysis of various systems will help the researchers to opt an efficient system to per-

form the experiments.

A.3 Summary

The implementation and the result analysis of a quantum encoding method on various

quantum systems have been discussed in this chapter. Encoding plays an important
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role in Quantum Error Correction. The proposed encoding method can be beneficial

in implementing an efficient QEC model to detect and correct errors. The proposed

algorithm is executed on various quantum systems and the retrieved results are analyzed

to find an efficient quantum system to perform operations.

From the results. it has been observed that the noise increases with the increasing

number of qubits. We performed the experiment on 5-qubit and 7-qubit quantum com-

puters. The result mainly depends on the quantum volume and the number of circuit

operations performed per second. These are specified in the processor structure of each

quantum system. Based on this the results are affected even though the operations per-

formed are the same. Finally from the results, it is observed that the proposed encoding

method performs well and gives an efficient result in the 5-qubit system Manila with

the highest frequency of 852.
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Li, M., Tromp, J., & Vitányi, P. (1998). Reversible simulation of irreversible computa-
tion. Physica D: Nonlinear Phenomena, 120(1-2), 168–176.

Li, M.-H., Wu, C., Zhang, Y., Liu, W.-Z., Bai, B., Liu, Y., Zhang, W., Zhao, Q., Li, H.,
Wang, Z., et al. (2018). Test of local realism into the past without detection and locality
loopholes. Physical review letters, 121(8), 080404.

147



Li, W., Wang, L., & Zhao, S. (2022). Extended single-photon entanglement-based
phase-matching quantum key distribution. Quantum Information Processing, 21(4),
1–12.

Liu, B., Liu, X., & Jia, W. (2022). Gllp proof with two-way entanglement purification
in quantum key distribution. The European Physical Journal Plus, 137(4), 412.

Liu, W.-Z., Li, M.-H., Ragy, S., Zhao, S.-R., Bai, B., Liu, Y., Brown, P. J., Zhang, J.,
Colbeck, R., Fan, J., et al. (2021). Device-independent randomness expansion against
quantum side information. Nature Physics, 17(4), 448–451.

Liu, X., Liu, J., Xue, R., Wang, H., Li, H., Feng, X., Liu, F., Cui, K., Wang, Z., You,
L., et al. (2022). 40-user fully connected entanglement-based quantum key distribution
network without trusted node. PhotoniX, 3(1), 1–15.

Liu, X., Yao, X., Xue, R., Wang, H., Li, H., Wang, Z., You, L., Feng, X., Liu, F.,
Cui, K., et al. (2020). An entanglement-based quantum network based on symmetric
dispersive optics quantum key distribution. APL Photonics, 5(7), 076104.

Liu, Y., Yuan, X., Li, M.-H., Zhang, W., Zhao, Q., Zhong, J., Cao, Y., Li, Y.-H., Chen,
L.-K., Li, H., et al. (2018). High-speed device-independent quantum random number
generation without a detection loophole. Physical review letters, 120(1), 010503.

Lu, L.-C., Ren, B.-C., Wang, X., Zhang, M., & Deng, F.-G. (2020). General quan-
tum entanglement purification protocol using a controlled-phase-flip gate. Annalen der
Physik, 532(4), 2000011.

Lu, X. Q., Feng, K. H., & Zhou, P. (2022). Deterministic remote preparation of an
arbitrary single-qudit state with high-dimensional spatial-mode entanglement via linear-
optical elements. International Journal of Theoretical Physics, 61(2), 1–13.

Luo, C.-C., Zhou, L., Zhong, W., & Sheng, Y.-B. (2021). Multipartite entanglement
purification using time-bin entanglement. Laser Physics Letters, 18(6), 065205.

Lv, J., Li, R., & Yao, Y. (2021). Quasi-cyclic constructions of asymmetric quantum
error-correcting codes. Cryptography and Communications, 13(5), 661–680.

Ma, F., Gao, J., & Fu, F.-W. (2019). New non-binary quantum codes from constacyclic
codes over\begin {document} \mathbb {F} q [u, v]/\langle uˆ{2}-1, vˆ{2}-v, uv-
vu\rangle

\

end {document}. Advances in Mathematics of Communications, 13(3), 421.

Maity, H., Biswas, A., Bhattacharjee, A., & Pal, A. (2018). Quantum cost optimized
design of 4-bit reversible universal shift register using reduced number of logic gate.
International Journal of Quantum Information, 16(02), 1850016.

Maity, H., Biswas, A., Bhattacharjee, A. K., & Pal, A. (2020). The quantum cost
optimized design of 2: 4 decoder using the new reversible logic block. Micro and
Nanosystems, 12(3), 146–148.

148



Majumder, A., Singh, P. L., Mishra, N., Mondal, A. J., & Chowdhury, B. (2015). A
novel delay & quantum cost efficient reversible realization of 2 i× j random access
memory. In 2015 International Conference on VLSI Systems, Architecture, Technology
and Applications (VLSI-SATA), 1–6. IEEE.

Mamun, M., Al, S., & Menville, D. (2014). Quantum cost optimization for reversible
sequential circuit. arXiv preprint arXiv:1407.7098.

Martinez, J. E. (2022). Decoherence and quantum error correction for quantum com-
puting and communications. arXiv preprint arXiv:2202.08600.

Matsumoto, R. (2020). Improved gilbert-varshamov bound for entanglement-assisted
asymmetric quantum error correction by symplectic orthogonality. arXiv preprint
arXiv:2003.00668.

McClean, J. R., Jiang, Z., Rubin, N. C., Babbush, R., & Neven, H. (2020). Decoding
quantum errors with subspace expansions. Nature communications, 11(1), 1–9.

McEwen, M., Kafri, D., Chen, Z., Atalaya, J., Satzinger, K., Quintana, C., Klimov, P. V.,
Sank, D., Gidney, C., Fowler, A., et al. (2021). Removing leakage-induced correlated
errors in superconducting quantum error correction. Nature communications, 12(1),
1–7.

Mohammadi, M., Eshghi, M., Haghparast, M., & Bahrololoom, A. (2008). Design and
optimization of reversible bcd adder/subtractor circuit for quantum and nanotechnology
based systems. World Applied Sciences Journal, 4(6), 787–792.

Molotkov, S. (2022). ‘pushing’keys through quantum networks and the complexity of
search of the true key. Laser Physics Letters, 19(4), 045201.

Montaser, R., Younes, A., & Abdel-Aty, M. (2015). Improving the quantum cost of
nct-based reversible circuit. Quantum Information Processing, 14(4), 1249–1263.

Nadlinger, D., Drmota, P., Nichol, B., Araneda, G., Main, D., Srinivas, R., Lucas,
D., Ballance, C., Ivanov, K., Tan, E.-Z., et al. (2022). Experimental quantum key
distribution certified by bell’s theorem. Nature, 607(7920), 682–686.

Nielsen, M. A. & Caves, C. M. (1997). Reversible quantum operations and their appli-
cation to teleportation. Physical Review A, 55(4), 2547.

Ofek, N., Petrenko, A., Heeres, R., Reinhold, P., Leghtas, Z., Vlastakis, B., Liu, Y.,
Frunzio, L., Girvin, S., Jiang, L., et al. (2016). Extending the lifetime of a quantum bit
with error correction in superconducting circuits. Nature, 536(7617), 441–445.

Ouyang, Y. & Lai, C.-Y. (2022). Linear programming bounds for approximate quantum
error correction over arbitrary quantum channels. IEEE Transactions on Information
Theory.

Paler, A. & Basmadjian, R. (2022). Energy cost of quantum circuit optimisation: Pre-
dicting that optimising shor’s algorithm circuit uses 1 gwh. ACM Transactions on Quan-
tum Computing, 3(1), 1–14.

149
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