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ABSTRACT

A Lambert series is a series of the form L(q) = ∑
∞
n=1 a(n) qn

1−qn , where a(n) is an arith-

metic function and q ∈ C. By setting b(n) = ∑d|n a(d) and q = e−y, the series will take

the form L(y) = ∑
∞
n=1 b(n)e−ny. In 1981, Zagier, conjectured that the Lambert series

y12
∑

∞
n=1 τ2(n)e−4πny, which is the constant term of the automorphic form y12|∆(z)|2,

where ∆(z) is the Ramanujan cusp form of weight 12, has an asymptotic expansion

when y → 0+, and it can be expressed in terms of the non-trivial zeros of the Riemann

zeta function ζ (s). In 2000, Hafner and Stopple under the assumption of the Riemann

Hypothesis proved this conjecture. In this thesis, we consider a Lambert series asso-

ciated to a cusp form and the Möbius function. Using the functional equation of the

L-function associated to the cusp form and the functional equation of the Riemann zeta

function, we prove an exact formula for the Lambert series. As a consequence, we also

derive an asymptotic expansion for the same. We extend our work to higher level cusp

forms by considering a more general twisted Lambert series. We also establish an exact

formula and asymptotic expansion for a Lambert series associated with the Symmetric

square L-function.

Rankin–Cohen brackets are bilinear differential operators defined on the space of

modular forms. In 2015, Herrero constructed the adjoint map of some linear maps de-

fined by using the Rankin–Cohen brackets. In this thesis, we generalize the work of

Herrero to the case of Hermitian Jacobi forms over Q(i). Given a fixed Hermitian Ja-

cobi cusp form, we define a family of linear operators between spaces of Hermitian

Jacobi cusp forms using Rankin–Cohen brackets. We compute the adjoint maps of such

family with respect to the Petersson scalar product. The Fourier coefficients of the Her-

mitian Jacobi cusp forms constructed using this method involve special values of certain

Dirichlet series associated to Hermitian Jacobi cusp forms.

Keywords: Lambert series, Riemann zeta function, non-trivial zeros, modular form,

cusp form, Dirichlet L-function, Symmetric square L-function, Rankin-Selberg L-function,

Hermitian Jacobi forms, Rankin–Cohen bracket, Adjoint map.
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CHAPTER 1

INTRODUCTION

A Lambert series is a series of the form

L(q) =
∞

∑
n=1

a(n)
qn

1−qn ,

where a(n) is an arithmetic function and q ∈ C. If the series ∑
∞
n=1 a(n) converges,

then L(q) converges for all q with |q| ̸= 1. Otherwise, it converges whenever the series

∑
∞
n=1 a(n)qn converges. For |q|< 1, by setting b(n) = ∑d|n a(d), we can show that

L(q) =
∞

∑
n=1

b(n)qn.

If we take a(n) = 1 for all n, then we get b(n) = ∑d|n 1, which is the divisor function of
n. If we take q = e−z, then the series will take the form

L(z) =
∞

∑
n=1

b(n)e−nz.

Lambert considered this series in relation with the convergence of power series. Over
the years, this family of series has been studied by various mathematicians. Readers
may refer to Berndt (1999) for more details. Hardy and Ramanujan (1918) used the
behaviour of a certain Lambert series as q → 1 to derive an asymptotic expansion for
the general partition function.

Ramanujan, during his stay at Trinity College, communicated an identity involving
the Möbius function to Hardy and Littewood. For any positive real number r,

∞

∑
n=1

µ(n)
n

e−r/n2
=

√
π

r

∞

∑
n=1

µ(n)
n

e−π2/n2r.

Unfortunately, this formula is not true. A nice explanation about the incorrectness of
the above formula was given by Berndt (1998). Later, Hardy and Littlewood (1916)
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established the following corrected version of the above formula:

Let α1 and α2 be two positive real numbers such that α1α2 = π . Assume that all the
non-trivial zeros of the Riemann zeta function ζ (s) are simple. Then

√
α1

∞

∑
n=1

µ(n)
n

e−α2
1/n2

−
√

α2

∞

∑
n=1

µ(n)
n

e−α2
2/n2

=− 1
2
√

α2
∑
ρ

Γ

(
1−ρ

2

)
α2

ρ

ζ ′(ρ)
, (1.0.1)

where the sum on the right hand side runs over all the non-trivial zeros of ζ (s). This
infinite sum is convergent under the assumption of bracketing the terms such that the
non-trivial zeros ρ1 and ρ2 are included in the same bracket if they satisfy

|ℑ(ρ1)−ℑ(ρ2)|< e−
C0ℑ(ρ1)

log(ℑ(ρ1)) + e−
C0ℑ(ρ2)

log(ℑ(ρ2)) ,

where C0 is some positive constant. Hardy and Littlewood also mentioned that it is quite
possible that this series may converge without the assumption of bracketing the terms,
but they were unable to prove it even after assuming the Riemann Hypothesis. Over the
years, formula (1.0.1) has attracted many mathematicians. Readers can also see detailed
discussions on this corrected formula in (Berndt, 1998, p. 470), (Paris and Kaminski,
2001, p. 143), and (Titchmarsh, 1986, p. 219). As an application of the above formula
(1.0.1), Hardy and Littlewood showed that the following condition

∞

∑
n=1

µ(n)
n

e−
x

n2 =
∞

∑
n=1

(−x)n

n! ζ (2n+1)
= O

(
x−

1
4+ε

)
, as x → ∞, (1.0.2)

is actually equivalent to the Riemann Hypothesis (Hardy and Littlewood, 1916, p. 161).
Bhaskaran (1997) connected the formula (1.0.1) with Wiener’s Tauberian theory and the
Fourier reciprocity. Dixit in (Dixit, 2012, Theorem 1.9) obtained a character analogue
of the identity (1.0.1) and later he also established (Dixit, 2013, Theorem 1.7) a one
variable generalization of (1.0.1) under the assumption that the series

∑
ρ

Γ

(
1−ρ

2

)
ζ ′(ρ)

1F1

(
1−ρ

2
;
1
2

;−z2

4

)
π

ρ/2
α

ρ ,

where 1F1(a; b; c) defined in (1.5.1) below, is convergent. Again, Dixit, Roy, and Za-
harescu (Dixit et al. (2015)) gave a generalization of (1.0.1) in the setting of Hecke
eigenform. In the same paper, they also obtained a Riesz-type criterion for the Riemann
Hypothesis similar to (1.0.2). Recently, Roy et al. (2016) studied an identity similar to
(1.0.1), corresponding to an arithmetic function, which is the convolution of Dirichlet
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characters and the Möbius function.

In 1981, Zagier, conjectured that the Lambert series y12
∑

∞
n=1 τ2(n)e−4πny, which is

the constant term of the automorphic form y12|∆(z)|2, where ∆(z) is the Ramanujan cusp
form of weight 12, has an asymptotic expansion when y → 0+, and it can be expressed
in terms of the non-trivial zeros of the Riemann zeta function ζ (s). In thesis, inspired
by the conjecture of Zagier (1981), we study some interesting Lambert series associated
with cusp forms.

Let k1,k2 > 0 and ν ≥ 0. Let f and g be modular forms of weight k1,k2 on the full
modular group SL2(Z). The ν-th Rankin–Cohen bracket [ , ]ν is a bilinear differential
operator defined by

[ f ,g]ν :=
ν

∑
l=0

(−1)l
(

k1 +ν −1
ν − l

)(
k2 +ν −1

l

)
f (l)g(ν−l).

Then [ f ,g]ν is a modular form of weight k1+k2+2ν . Works of Rankin (1956) and ex-
plicit examples given by Cohen (1975) led to the development of Rankin–Cohen brack-
ets. Over the years, Rankin–Cohen brackets have been defined and studied for various
automorphic forms such as Jacobi forms, Siegel forms etc. In the case of Hermitian
Jacobi forms, the Rankin–Cohen brackets were introduced by Kim (2002). However
her results are incorrect if the underlying field is the Gaussian number field. Later,
Martin and Senadheera (2017) corrected the results of Kim for the Gaussian number
field. Also, Martin (2016), in his thesis, introduced a different kind of Rankin–Cohen
bracket on Hermitian Jacobi forms for the Gaussian number field. This definition of
Rankin–Cohen bracket by Martin is similar to the definition of Rankin–Cohen bracket
introduced by Choie (1997, 1998) in the case of Jacobi forms. In this thesis, we de-
fine a family of linear operators between spaces of Hermitian Jacobi cusp forms using
Rankin–Cohen brackets defined by Martin (2016). We compute the adjoint maps of
such family with respect to the Petersson scalar product.

We start with some basic definitions and results. This is to facilitate the readability
of the thesis. For details regarding analytic number theory and modular forms, the
readers are referred to Iwaniec and Kowalski (2004), Diamond and Shurman (2005)
and Murty et al. (2015).
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1.1 SOME ARITHMETIC FUNCTIONS

1.1.1 DIRICHLET CHARACTERS

Let M be a natural number. A Dirichlet character χ of modulus M is a homomorphism
from the multiplicative group (Z/MZ)∗ into C∗. It can be extended to N by defining

χ(n) =

χ(n (mod M)) if gcd(n,M) = 1

0 otherwise.

For a divisor d of M, if there exists a character χ ′ of modulus d and χ(n) = χ ′(n) for all
n with gcd(n,M) = 1, then we say χ is induced by χ ′. A character which is not induced
by any other character is called a primitive character. If the homomorphism χ is trivial,
that is, if χ(n) = 1 for all n with gcd(n,M) = 1, then χ is called the principal character
of modulus M.

1.1.2 THE MÖBIUS FUNCTION

The Möbius function µ(n) is an arithmetic function defined as

µ(n) =



1 if n is a square-free positive integer with

an even number of prime factors,

−1 if n is a square-free positive integer with

an odd number of prime factors,

0 if n has a squared prime factor.

1.2 MODULAR FORMS

Let H= {z ∈C | ℑ(z)> 0} be the complex upper half-plane in the Euclidean topology.

The group GL+
2 (Q)=

{(
a b

c d

)
∈M2(Q)

∣∣∣ ad−bc> 0

}
acts on H by fractional linear

transformation, that is,(
a b

c d

)
z =

az+b
cz+d

, ∀ z ∈H and

(
a b

c d

)
∈ GL+

2 (Q).

4



1.2.1 THE MODULAR GROUP AND THE CONGRUENCE SUB-
GROUPS

The subgroup SL2(Z) of GL+
2 (Q), defined by

SL2(Z) =

{(
a b

c d

)
∈ M2(Z)

∣∣∣ ad −bc = 1

}

is called the full modular group, or simply the modular group. For N ∈ N the principal
congruence subgroup of level N, Γ(N), is defined by

Γ(N) =

{(
a b

c d

)
∈ SL2(Z)

∣∣∣ (a b

c d

)
≡

(
1 0
0 1

)
(mod N)

}
.

Note that Γ(1) = SL2(Z).
A subgroup Γ of SL2(Z) is called a congruence subgroup if there exists N ∈N such that
Γ(N)⊂ Γ. The least such N is called the level of Γ. Note that, since Γ(N) is a subgroup
of finite index in SL2(Z), every congruence subgroup is also of finite index in SL2(Z).

Example 1.2.1. For N ∈ N, let

Γ0(N) =

{(
a b

c d

)
∈ SL2(Z)

∣∣∣ c ≡ 0 (mod N)

}
.

The group Γ0(N) is a congruence subgroup, called the Hecke subgroup.

Example 1.2.2. Consider the surjective homomorphism Γ0(N)→
(
Z/NZ

)∗ defined by(
a b

c d

)
→ d (mod N).

The kernel of this map, denoted by Γ1(N), is given by

Γ1(N) =

{(
a b

c d

)
∈ Γ0(N)

∣∣∣ d ≡ 1 (mod N)

}
,

and is also a congruence subgroup.

1.2.2 THE SPACE OF MODULAR FORMS

The extended upper half-plane is defined by H∗ = H∪Q∪ {i∞}. By identifying ∞

with 1
0 , the action of a congruence subgroup can be extended to H∗ in a natural way by

5



defining (
a b

c d

)
r
s
=

ar+bs
cr+ds

, for
r
s
∈Q∪{i∞}.

The equivalence classes in Q∪{i∞} under the action of a congruence subgroup Γ are
called the cusps of Γ.
This group action extends to a family of actions on the set of complex valued functions
on H. Let k be a positive integer. For a complex function f defined on H, the action of
the congruence subgroup Γ is given by the k-slash operator as follows:

f |k γ(z) = (cz+d)−k f (γz), ∀ z ∈H, γ =

(
a b

c d

)
∈ Γ.

A holomorphic function f :H→C is called a modular form of weight k on a congruence
subgroup Γ if it satisfies the following conditions:
(1) For all γ ∈ Γ and z ∈H,

f |k γ(z) = f (z).

(2) For γ ∈ SL2(Z), f |kγ has a Fourier expansion of the form

f |kγ(z) =
∞

∑
n=0

a f |kγ(n)q
n
h,

where qh = e2πiz/h, z∈H, and h is the smallest positive integer such that

(
1 h

0 1

)
∈Γ.

If a f |kγ(0) = 0 for all γ ∈ SL2(Z) then f is called a cusp form. We say that the cusp form
is normalised if a f (1) = 1. The finite dimensional complex vector space of all modular
forms of weight k on a congruence subgroup Γ is denoted by Mk(Γ). The subspace of
Mk(Γ) consisting of all cusp forms is denoted by Sk(Γ).
Let χ be a Dirichlet character modulo N. A function f is called a modular form of
weight k, level N and character χ (or Nebentypus χ) if f ∈ Mk(Γ1(N)) and satisfies

f (γz) = χ(d)(cz+d)k f (z),

for all γ ∈ Γ0(N), z ∈H.

The space of all such modular forms is denoted by Mk(Γ0(N),χ) and the corresponding
space of cusp forms is denoted by Sk(Γ0(N),χ). In particular, if χ is a principal char-
acter then we get Mk(Γ0(N),χ) = Mk(Γ0(N)) and Sk(Γ0(N),χ) = Sk(Γ0(N)).

6



1.2.3 THE RAMANUJAN CUSP FORM

Let q = e2πiz, z ∈ H. The Ramanujan cusp form ∆ is given by the infinite product
q∏

∞
n=1(1− qn)24. Then ∆ is indeed a modular form of weight 12 on the full modular

group SL2(Z). Moreover, it is a cusp form with the Fourier series expansion

∆(z) =
∞

∑
n=1

τ(n)qn,

where τ(n) is famously known as the Ramanujan tau function. Ramanujan (2000) stud-
ied this infinite series ∆. His conjectures on its Fourier coefficients τ(n) resulted in
development of Hecke theory for modular forms.

1.2.4 EISENSTEIN SERIES OF LEVEL ONE

Let k ≥ 4, z ∈H. The Eisenstein series of weight k for SL2(Z) is defined by

Gk(z) = ∑
Z2\(0,0)

1
(mz+n)k .

Then the series Gk(z) converges absolutely. Moreover, Gk(z) ∈ Mk(SL2(Z)). The nor-
malized Eisenstein series is given by

Ek(z) =
1

2ζ (k)
Gk(z),

where ζ (s) is the Riemann zeta function (see 1.4.1).

1.2.5 THE PETERSSON SCALAR PRODUCT

Let Γ be a congruence subgroup of SL2(Z) with index [SL2(Z) : Γ]. The Petersson
scalar product ⟨ , ⟩Γ is defined by

⟨ f ,g⟩Γ =
1

[SL2(Z) : Γ]

∫
Γ\H

yk f (z)g(z)
dxdy

y2 ,

where Γ\H is any fundamental domain for the action of Γ on H, and z = x+ iy. We
see that this integral is convergent and its evaluation is independent of the choice of
the fundamental domain. With respect to this scalar product, Sk(Γ) becomes a finite
dimensional Hilbert space.

7



1.2.6 THE HECKE OPERATORS AND HECKE EIGENFORMS

Let m be a positive integer. The Hecke operators Tm are linear operators on the space
Mk(Γ0(N),χ) which are defined as follows:
If f (z) = ∑

∞
n=0 a f (n)qn ∈ Mk(Γ0(N),χ), q = e2πiz, then

Tm( f (z)) =
∞

∑
n=0

(
∑

d|gcd(m,n)
χ(d)dk−1a f (

mn
d2 )

)
qn,

where a f (
mn
d2 ) is taken to be zero unless mn

d2 is a non-negative integer.
If f ∈ Sk(Γ0(N),χ) is an eigenfunction for all Hecke operators Tm, then it is called a
Hecke eigenform. If f (z) = ∑

∞
n=0 a f (n)qn ∈ Mk(Γ0(N),χ) is an eigenform, then it is

known that, a f (n) ∈ R, for every n.

1.3 HERMITIAN JACOBI FORMS

Eichler and Zagier (1985), in their monograph, studied a class of functions called Ja-
cobi forms. They are holomorphic functions on H×C. These functions appear as
Fourier-Jacobi coefficients of Siegel modular forms. They play a very important role in
establishing Saito-Kurokawa conjecture which gives a connection between the space of
elliptic modular forms and the space of Siegel modular forms.

Hermitian Jacobi forms are holomorphic functions on H×C×C. They appear
as Fourier-Jacobi coefficients of Hermitian modular forms which are generalisation of
Siegel modular forms. Haverkamp (1995, 1996) systematically studied Hermitian Ja-
cobi forms. Later Das (2010a,b) and Sasaki (2007) contributed further to the theory of
Hermitian Jacobi forms over Q(i). In the case of the classical Jacobi forms, the action
of the heat operator can be “corrected" so that Jacobi forms of weight k are mapped to
Jacobi forms of weight k+2 (see Richter (2009)). In the case of the Hermitian Jacobi
forms, the heat operator Lm for any integer m is defined by

Lm :=
1

(2πi)2

(
8πim

∂

∂τ
−4

∂ 2

∂w∂ z

)
.

Richter and Senadheera (2015) showed that with the original definition of Hermitian
Jacobi forms over Q(i), the action of the heat operator cannot be “corrected" as in
the case of the classical Jacobi forms. The authors introduced the concept of parity
for Hermitian Jacobi forms over Q(i) such that the action of the heat operator can be
"corrected".

8



1.3.1 BASIC DEFINITIONS

Let O :=Z[i], the ring of integers of Q(i). Let O# := i
2O be the inverse different of Q(i)

over Q. That is, O# = {x ∈Q(i) | tr(xy)∈Z[i], for all y ∈Z(i)}. Let O× = {±1,±i} be
the set of units in O . Let Γ(O) := {εM | ε ∈ O×, M ∈ SL2(Z)}. The Hermitian Jacobi
group is defined by

Γ
J(O) := Γ(O)⋉O2 = {γ = (εM,X) | εM ∈ Γ(O), X ∈ O2}.

The action of the Hermitian Jacobi group ΓJ(O) on H×C2 is defined by

γ · (τ,z,w) =

(
ε

(
a b

c d

)
, [λ ,µ]

)
· (τ,z,w) =

(
aτ +b
cτ +d

,ε
z+λτ +µ

cτ +d
, ε̄

w+ λ̄ τ + µ̄

cτ +d

)
,

where ε ∈ O×,

(
a b

c d

)
∈ SL2(Z) and λ ,µ ∈ O . This action extends to a family of

actions on the set of functions from H×C2 to C. Let φ : H×C2 →C. Let δ ∈ {+,−},
k be a positive integer and m be a non-negative integer. We define the action of ΓJ(O)

on φ by

(
φ |k,m,δ γ

)
(τ,z,w)=σ(ε)ε−k(cz+d)−ke2πim(λλ̄τ+λ̄ z+λw)− c(z+λτ+µ)(w+λ̄ τ+µ̄)

cτ+d φ(γ ·(τ,z,w))
(1.3.1)

where

σ(ε) =

1 if δ =+,

ε2 if δ =−,

and γ =

(
ε

(
a b

c d

)
, [λ ,µ]

)
∈ ΓJ(O).

Definition 1.3.1. (Richter and Senadheera (2015)) A holomorphic function φ : H×
C2 → C is a Hermitian Jacobi form of weight k, index m and parity δ on ΓJ(O) if for

each γ =

(
ε

(
a b

c d

)
, [λ ,µ]

)
∈ ΓJ(O) we have

φ |k,m,δ γ = φ ,

and φ has a Fourier expansion of the form

φ(τ,z,w) = ∑
n∈Z,r∈O#

nm−|r|2≥0

c(n,r)e2πi(nτ+rz+rw). (1.3.2)
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A Hermitian Jacobi form is called a Hermitian Jacobi cusp form if c(n,r) = 0 whenever

nm−|r|2 = 0 in the Fourier expansion given in (1.3.2).

We denote by Jδ
k,m(Γ

J(O)) the complex vetor space of Hermitian Jacobi forms of

weight k, index m and parity δ on ΓJ(O). We denote by Jδ ,cusp
k,m (ΓJ(O)) the vector space

of Hermitian Jacobi cusp forms of weight k, index m and parity δ on ΓJ(O).

1.3.2 POINCARÉ SERIES FOR HERMITIAN JACOBI FORMS

It is easy to check that for any positive integer k, m and δ ∈ {+,−}, we have

e2πi(nτ+rz+r̄w) |k,m,δ γ = e2πi(nτ+rz+r̄w)

for n ∈ Z and r ∈ O#, if and only if

γ ∈ Γ
J
∞(O) :=

{((
1 t

0 1

)
, [0,µ]

)
| t ∈ Z,µ ∈ O

}
.

For fixed m,n,r with nm− |r|2 > 0, the (n,r)-th Poincaré series of weight k > 4,
index m, and parity δ on ΓJ(O) is defined by

Pk,m,δ
n,r (τ,z,w) = ∑

γ∈ΓJ
∞(O)\ΓJ(O)

(
e2πi(nτ+rz+r̄w) |k,m,δ γ

)
(τ,z,w).

It is known that Pk,m,δ
n,r ∈ Jδ ,cusp

k,m (ΓJ(O)).

1.3.3 THE PETERSSON SCALAR PRODUCT ON HERMITIAN
JACOBI FORMS

Let τ = u+ iv ∈H,z = x1 + iy1 ∈ C,w = x2 + iy2 ∈ C. The measure

dV = v−4dudvdx1dy1dx2dy2,

is invariant for the action of ΓJ(O) on H×C2.

Definition 1.3.2. (Haverkamp (1995)) Let φ ,ψ ∈ Jδ
k,m(Γ

J(O)) such that at least one

among them is a cusp form. The Petersson scalar product of φ ,ψ is defined by

⟨φ ,ψ⟩=
∫

ΓJ(O)\H×C2

φ(τ,z,w)ψ(τ,z,w)e
−πm

v |w−z|2vkdV.
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With respect to the above scalar product Jδ
k,m(Γ

J(O)) becomes a finite dimensional
Hilbert space.

We have the following lemma (Kumar and Ramakrishnan, 2018, Lemma 2.2).

Lemma 1.3.3. Let φ ∈ Jδ
k,m(Γ

J(O)) with Fourier coefficients c(n,r). Let n,r be such

that nm−|r|2 > 0. Then

⟨φ ,Pk,m,δ
n,r ⟩= c(n,r)

mk−3Γ(k−2)
πk−2(4(nm−|r|2))k−2 .

1.3.4 RANKIN–COHEN BRACKETS FOR HERMITIAN JACOBI
FORMS

Let φ(τ,w,z),ψ(τ,w,z) be holomorphic functions on H×C2. Let k1,k2,m1 and m2 be
positive integers and ν ≥ 0 be an integer. Martin (2016) defined the ν-th Rankin–Cohen
bracket as

[[φ ,ψ]]ν :=
ν

∑
l=0

(−1)l
(

k1 +ν −2
ν − l

)(
k2 +ν −2

l

)
mν−l

1 ml
2Ll

m1
(φ)Lν−l

m2
(ψ), (1.3.3)

where Lm = 1
(2πi)2

(
8πim ∂

∂τ
−4 ∂ 2

∂w∂ z

)
is the heat operator.

Martin proved that if φ ∈ Jδ1
k1,m1

(ΓJ(O)) and ψ ∈ Jδ2
k2,m2

(ΓJ(O)) then [[φ ,ψ]]ν ∈
Jδ1δ2(−1)ν

k1+k2+2ν ,m1+m2
(ΓJ(O)). If one of these is a cusp form then the resultant Rankin–Cohen

bracket is also a cusp form.

1.4 DIRICHLET SERIES AND L-FUNCTIONS

1.4.1 THE REIMANN ZETA FUNCTION

Let s ∈ C with ℜ(s)> 1. The Riemann zeta function is given by the series

ζ (s) =
∞

∑
n=1

1
ns .

The series converges absolutely, and hence defines an analytic function in the region
ℜ(s)> 1. Euler proved that ζ (s) has a product expansion:

ζ (s) = ∏
p:prime

(1− p−s)−1.

11



Riemann established the meromorphic continuation of ζ (s) to the whole complex plane
with a simple pole at s = 1. He also established the following functional equation:

π
−s/2

Γ

( s
2

)
ζ (s) = π

(s−1)/2
Γ

(
1− s

2

)
ζ (1− s). (1.4.1)

From the functional equation we can see that ζ (s) has zeros at s = −2,−4, .... These
are called the trivial zeros of ζ (s). Any other zero of ζ (s) is called a non-trivial zero.
From the functional equation it can be observed that all the non-trivial zeros lie in the
open strip 0 < ℜ(s) < 1. Riemann conjectured that all the non-trivial zeros lie on the
the line ℜ(s) = 1/2, called the critical line. The conjecture is famously known as the
Riemann hypothesis and is unsolved till date.

1.4.2 DIRICHLET L-FUNCTIONS

Let χ be a Dirichlet character of modulus M. Dirichlet introduced the following series
associated to χ:

L(s,χ) =
∞

∑
n=1

χ(n)
ns .

This converges absolutely in ℜ(s) > 1, and can be continued analytically to the entire
complex plane, unless it is a principal character, in which case the meromorphic contin-
uation of L(s,χ) will have a simple pole at s = 1. The generalized Riemann hypothesis
states that all the non-trivial zeros of L(s,χ) lie on the the line ℜ(s) = 1/2.

1.4.3 THE L-FUNCTION ATTACHED TO MODULAR FORMS

Let f (z)∈ Sk(SL2(Z)) be a normalized Hecke eigenform with the Fourier series expan-
sion

f (z) =
∞

∑
n=1

a f (n)e2πinz, ∀z ∈H. (1.4.2)

The L-function associated to the cusp form f is defined as

L( f ,s) :=
∞

∑
n=1

a f (n)n−s.

That this series is absolutely convergent for ℜ(s) > k+1
2 immediately follows from

Deligne’s bound a f (n) = O(n(k−1)/2 + ε) for any ε > 0 (see Deligne (1974)). It is also
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well-known that L( f ,s) has an Euler product representation

L( f ,s) = ∏
p:prime

(1−αp p−s)−1(1−βp p−s)−1, ℜ(s)>
k+1

2
,

where αp and βp are complex conjugates with αp + βp = a f (p) and αpβp = pk−1.
Hecke proved that L( f ,s) can be analytically continued to an entire function and it
satisfies the following functional equation:

(2π)−s
Γ(s)L( f ,s) = ik(2π)−(k−s)

Γ(k− s)L( f ,k− s). (1.4.3)

This functional equation is equivalent to the following transformation formula:

∞

∑
n=1

a f (n)e−ny =

(
2π

y

)k ∞

∑
n=1

a f (n)e
(
−4π2n

y

)
,

for ℜ(y) > 0. For more details on this equivalence, the reader is referred works of
Bochner (1951) andChandrasekharan and Narasimhan (1961).

1.5 SOME SPECIAL FUNCTIONS

1.5.1 THE GAMMA FUNCTION

Let z be a complex number with ℑ(z)> 0. The Gamma function is defined by

Γ(z) =
∫

∞

0
e−ttz−1dt.

This extends meromorphically to the whole complex plane with simple poles at z =−n

of residue (−1)n/n!. The function doesn’t vanish anywhere in the complex plane.

1.5.2 THE GENERALIZED HYPERGEOMETRIC FUNCTION

Let a1, · · · ,ap and b1, · · · ,bq be complex numbers. We denote pFq
(
a1, · · · ,ap; b1, · · · ,bq; z

)
as the generalized hypergeometric series (Olver et al., 2010, p. 404, Equation 16.2.1)
defined by

pFq
(
a1, · · · ,ap; b1, · · · ,bq; z

)
:=

∞

∑
n=0

(a1)n · · ·(ap)n

(b1)n · · ·(bq)n

zn

n!
, (1.5.1)
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where (a)n := Γ(a+n)
Γ(a) . If p ≤ q, this series converges for all complex values of z. When

p = q+ 1 it converges for |z| < 1, but it can be analytically continued to the whole
complex plane if we introduce a branch cut from 1 to +∞.

1.5.3 THE MEIJER G-FUNCTION

Definition 1.5.1. (Olver et al., 2010, p. 415, Definition 16.17)

Let m,n, p,q be four non-negative integers such that 0≤m≤ q, 0≤ n≤ p. Let a1, · · · ,ap

and b1, · · · ,bq be p+ q complex numbers such that ai − b j ̸∈ N for 1 ≤ i ≤ n and 1 ≤
j ≤ m. Then the Meijer G-function is defined by the following line integral:

Gm,n
p,q

(
a1, · · · ,ap

b1, · · · ,bq

∣∣∣z)=
1

2πi

∫
L

∏
m
j=1 Γ(b j − s)∏

n
j=1 Γ(1−a j + s)zs

∏
q
j=m+1 Γ(1−b j + s)∏

p
j=n+1 Γ(a j − s)

ds, (1.5.2)

where the line of integration L separates the poles of the factors Γ(b j − s) from those of

the factors Γ(1−a j + s). We consider the line of integration L going from −i∞ to +i∞.

Note that the integral converges if p+q < 2(m+n) and |arg(z)|< (m+n− p+q
2 )π .

Now we shall state Slater’s theorem (Olver et al., 2010, p. 415, Equation 16.17.2),
which will enable us to write the Meijer G-function in terms of generalized hypergeo-
metric functions. If p ≤ q and b j −bk ̸∈ Z for j ̸= k, 1 ≤ j,k ≤ m, then

Gm,n
p,q

(
a1, · · · ,ap

b1, · · · ,bq

∣∣∣z)

=
m

∑
k=1

Am,n
p,q,k(z)pFq−1

(
1+bk −a1, · · · ,1+bk −ap;1+bk −b1, · · · ,

∗, · · · ,1+bk −bq ;(−1)p−m−nz
)
, (1.5.3)

where ∗ indicates that the entry 1+bk −bk is omitted and

Am,n
p,q,k(z) :=

zbk ∏
m
j=1, j ̸=k Γ(b j −bk)∏

n
j=1 Γ(1+bk −a j)

∏
q
j=m+1 Γ(1+bk −b j)∏

p
j=n+1 Γ(a j −bk)

.

1.6 ORGANIZATION OF THE THESIS

This thesis consists of six chapters. In Chapter 1 we have given the mathematical back-
ground which is necessary to understand the subsequent chapters. In Chapter 2, we have
investigated a Lambert series associated to the Fourier coefficients of a cusp form on the
full modular group and the Möbius function µ(n). We derive an exact formula for the
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Lambert series in terms of the non-trivial zeros of the Riemann zeta function, and the
error term is expressed as an infinite series involving generalized hypergeometric se-
ries 2F1(a,b;c;z) using the functional equations of the L-function associated to the cusp
form and the Riemann zeta function. In Chapter 3, we have generalized the works of
Chapter 2 to higher level modular forms, and also have obtained a character analogue.
By continuing our investigation of Lambert series, in Chapter 4 we have investigated a
Lambert series associated with the Symmetric square L-function. In Chapter 5, we have
defined a family of linear operators between spaces of Hermitian Jacobi cusp forms us-
ing Rankin–Cohen brackets. We have computed the adjoint maps of such family with
respect to the Petersson scalar product. The conclusion and scope for future work is
given in the final chapter.
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CHAPTER 2

LAMBERT SERIES ASSOCIATED TO A
CUSP FORM AND THE MÖBIUS
FUNCTION

Zagier conjectured (Zagier, 1981, p. 417) that the constant term of the automorphic form
y12|∆(z)|2, where ∆(z) is the Ramanujan cusp form of weight 12, that is, the Lambert
series

a0(y) := y12
∞

∑
n=1

τ
2(n)e−4πny, (2.0.1)

has an asymptotic expansion when y → 0+, and it can be expressed in terms of the non-
trivial zeros of the Riemann zeta function ζ (s). Interestingly, he also observed that the
graph of a0(y) has an oscillatory behaviour when y → 0+. His main prediction was that
a0(y) will have the following asymptotic expansion:

a0(y)∼C+∑
ρ

y1− ρ

2 Aρ ,

where C is some constant, and the sum over ρ runs through all the non-trivial zeros of
ζ (s), and Aρ are some complex numbers. Assuming the Riemann Hypothesis, that is,
writing ρ = 1

2 ± itn, above expression becomes

a0(y)∼C+ y3/4
∞

∑
n=1

an cos
(

φn +
tn log(y)

2

)
, as y → 0+,

where an and φn are some constants. Due to the presence of cosine functions in the
above asymptotic expansion, Zagier mentioned that a0(y) will have an oscillatory be-
haviour as y → 0+. In 2000, Hafner and Stopple (2000), under the assumption of the
Riemann Hypothesis, proved both the asymptotic expansion as well as oscillatory be-
haviour of the Lambert series (2.0.1). Recently, Chakraborty et al. (2017) proved that,
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under the assumption of the Riemann Hypothesis, the following series

b0(y) := yk
∞

∑
n=1

|a2
f (n)|e−ny,

also has an asymptotic expansion when y → 0+ and that it can be expressed in terms
of the non-trivial zeros of ζ (s), where a f (n) is the nth Fourier coefficient of a Hecke
eigenform f of weight k over SL2(Z). In Chakraborty et al. (2018), authors observed
that the same phenomenon also occurs for any cusp form over the congruence subgroup
Γ0(N) and derived an asymptotic expansion of the corresponding Lambert series. Re-
cently, Banerjee and Chakraborty (2019) also studied the asymptotic behaviour of a
Lambert series associated to Maass cusp forms.

2.1 AN ASYMPTOTIC RESULT FOR LAMBERT SE-
RIES ASSOCIATED TO A CUSP FORM AND THE
MÖBIUS FUNCTION

Define, a∗f (n) := (a f ∗ µ)(n) = ∑d|n a f (d)µ( n
d ). It is easy to observe that the Dirichlet

series ∑
∞
n=1 a∗f (n)n

−s is absolutely convergent for ℜ(s) > k+1
2 . In the present chapter,

we study the Lambert series ∑
∞
n=1 a∗f (n)e

−ny for y > 0. Chakraborty et al. (2018) stated
that the asymptotic expansion of this Lambert series can also be expressed in terms of
the non-trivial zeros of the Riemann zeta function ζ (s). Here we find that their predic-
tion is correct. Not only that, we also establish the oscillatory behaviour of the Lambert
series y1/2

∑
∞
n=1 a∗f (n)e

−ny as y → 0+.

Let us define the arithmetic function A∗
f (n) associated to a f (n) and µ(n) by

A∗
f (n) :=

(
a f ∗µk

)
(n), where µk(n) = µ(n)nk−1. (2.1.1)

Note that the Dirichlet series ∑
∞
n=1 A∗

f (n)n
−s is absolutely convergent for ℜ(s)> k.

The following theorem gives an exact formula for the Lambert series ∑
∞
n=1 a∗f (n)e

−ny,
which eventually yields an asymptotic expansion of the Lambert series.

Theorem 2.1.1. (Juyal et al. (2022b)) Let f ∈ Sk(SL2(Z)) be a cusp form with the n-th

Fourier coefficient a f (n). Assume that all the non-trivial zeros of ζ (s) are simple. Then
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for any positive y,

∞

∑
n=1

a∗f (n)e
−ny = P(y)+2Γ(k)

(
i

2π

)k ∞

∑
n=1

A∗
f (n)

nk

[
2F1

(
k
2
,
k+1

2
;
1
2

;− y2

4n2π2

)
−1
]
,

where

P(y) = ∑
ρ

L( f ,ρ)Γ(ρ)
ζ ′(ρ)

1
yρ

, (2.1.2)

and that the sum over ρ which runs through all the non-trivial zeros of ζ (s), involves

bracketing the terms so that the terms corresponding to ρ1 and ρ2 are included in the

same bracket if they satisfy

|ℑ(ρ1)−ℑ(ρ2)|< e−C |ℑ(ρ1)|
log(|ℑ(ρ1)|) + e−C |ℑ(ρ2)|

log(|ℑ(ρ2)|) ,

where C is some positive constant.

An immediate consequence of the above theorem under the Riemann Hypothesis is
the following asymptotic result:

Corollary 2.1.2. Let M be a positive integer and f ∈ Sk(SL2(Z)) be a normalized Hecke

eigenform with the n-th Fourier coefficient a f (n). Assume the Riemann Hypothesis and

all the non-trivial zeros of ζ (s) are simple. Then for y → 0+, we have

y
1
2

∞

∑
n=1

a∗f (n)e
−ny = 2

∞

∑
n=1

rn cos(θn − tn log(y))+
M−1

∑
m=1

Cmy2m+ 1
2 +O f ,k(y2M+ 1

2 ),

where Cm are absolute constants depending only on f , and rneiθn is the polar represen-

tation of L( f ,ρn)Γ(ρn)(ζ
′(ρn))

−1 with ρn =
1
2 + itn denoting the nth non-trivial zero of

ζ (s) in the upper critical line.

Remark 2.1.3. Theorem 2.1.1 can be extended by analytic continuation for ℜ(y)> 0,

and also note that Theorem 2.1.1 is true for any cusp form, whereas Corollary 2.1.2 is

true for any normalized Hecke eigenform. In Table 2.1, we have numerically verified

Theorem 2.1.1 for the Ramanujan cusp form.

Remark 2.1.4. Due to the presence of the cosine functions in Corollary 2.1.2, one can

observe that the Lambert series y1/2
∑

∞
n=1 a∗f (n)e

−ny also has an oscillatory behaviour

as y → 0+.

In the next section, we state a few well-known results which will be useful through-
out the chapter.
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2.2 WELL-KNOWN RESULTS

Lemma 2.2.1. Suppose there exists a sequence of arbitrarily large positive numbers T

with |T −ℑ(ρ)| > e−A|ℑ(ρ)|/ log(|ℑ(ρ)|) for every non-trivial zero ρ of ζ (s), where A is

some suitable positive constant. Then,

1
|ζ (σ + iT )|

< eBT ,

for some suitable constant 0 < B < π/4.

Proof. A proof of this lemma can be found in (Titchmarsh, 1986, p. 219).

Lemma 2.2.2. In any vertical strip σ0 ≤ σ ≤ b, there exists a constant C(σ0), such that

|L( f ,σ + iT )| ≪ |T |C(σ0)

as |T | → ∞.

Proof. One can see this result in (Iwaniec and Kowalski, 2004, p. 97, Lemma 5.2).

Lemma 2.2.3 (Stirling’s formula for the Gamma function). For s = σ + iT in a

vertical strip α ≤ σ ≤ β ,

|Γ(σ + iT )|=
√

2π|T |σ−1/2e−
1
2 π|T |

(
1+O

(
1
|T |

))
as |T | → ∞. (2.2.1)

Proof. One can see a proof of this result in (Iwaniec and Kowalski, 2004, p. 151).

Lemma 2.2.4 (Duplication formula for the Gamma function). For any complex num-

ber z, we have

Γ(2z) =
Γ(z)Γ(z+ 1

2)22z

2
√

π
. (2.2.2)

Lemma 2.2.5 (Inverse Mellin transform for the Gamma function). Let y and c be

two positive real numbers. Then

e−y =
1

2πi

∫ c+i∞

c−i∞
Γ(s)y−sds.

Now we are ready to give the proof of Theorem 2.1.1.
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2.3 PROOF OF THEOREM 2.1.1 AND COROLLARY
2.1.2

Proof of Theorem 2.1.1. Using inverse Mellin transform for the Gamma function, we
write

∞

∑
n=1

a∗f (n)e
−ny =

1
2πi

∫ c+i∞

c−i∞

Γ(s)L( f ,s)
ζ (s)

y−sds, (2.3.1)

for any c > k+1
2 . The functional equation (1.4.3) of L( f ,s) implies that Γ(s)L( f ,s) is

an entire function, and thus poles of the integrand function will be at the zeros of the
Riemann zeta function. To simplify (2.3.1), we consider the contour C determined by
the line segments [c− iT,c+ iT ], [c+ iT,λ + iT ], [λ + iT,λ − iT ], and [λ − iT,c− iT ],
where T is some large positive real number and −1 < λ < 0. Now appealing to the
Cauchy residue theorem, we get

1
2πi

∫
C

Γ(s)L( f ,s)
ζ (s)

y−sds = PT (y), (2.3.2)

where PT (y) denotes the residual function consisting of finitely many terms con-
tributed by the non-trivial zeros ρ of ζ (s) with |ℑ(ρ)| ≤ T . Our first goal is to prove
that the horizontal integrals

H1 :=
1

2πi

∫
λ+iT

c+iT

Γ(s)L( f ,s)
ζ (s)

y−sds, H2 :=
1

2πi

∫ c−iT

λ−iT

Γ(s)L( f ,s)
ζ (s)

y−sds,

tend to zero as T → ∞. One can write

H1 =
1

2πi

∫
λ

c

Γ(σ + iT )L( f ,σ + iT )
ζ (σ + iT )yσ+iT dσ .

Thus

|H1| ≪
1

2π

∫
λ

c

|Γ(σ + iT )||L( f ,σ + iT )|
|ζ (σ + iT )|yσ

dσ .

Now invoking Lemmas 2.2.1, 2.2.2, and 2.2.3, one can show that

|H1| ≪ |T |AeBT− π

2 |T |,

where 0 < B < π/4. This implies H1 vanishes as T → ∞. Similarly one can show that
H2 also vanishes as T → ∞. Therefore, letting T → ∞ in (2.3.2) and using (2.3.1), we
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have

∞

∑
n=1

a∗f (n)e
−ny =

1
2πi

∫
λ+i∞

λ−i∞

Γ(s)L( f ,s)
ζ (s)

y−sds+P(y). (2.3.3)

Now if we assume all the non-trivial zeros of ζ (s) are simple, we can evaluate P(y) as

P(y) = ∑
ρ

lim
s→ρ

(s−ρ)Γ(s)L( f ,s)
ζ (s)

y−s = ∑
ρ

Γ(ρ)L( f ,ρ)
ζ

′
(ρ)yρ

, (2.3.4)

where ρ runs through all the non-trivial zeros of ζ (s) in the critical strip. In general, if
mρ is the multiplicity of ρ , then

P(y) = ∑
ρ

1
(mρ −1)!

lim
s→ρ

dmρ−1

dsmρ−1

{(s−ρ)mρ Γ(s)L( f ,s)
ζ (s)ys

}
.

Now we shall concentrate on the following integral:

J :=
1

2πi

∫
λ+i∞

λ−i∞

Γ(s)L( f ,s)
ζ (s)

y−sds. (2.3.5)

Use functional equation (1.4.3) of L( f ,s) to get

J =

(
i

2π

)k 1
2πi

∫
λ+i∞

λ−i∞

Γ(k− s)L( f ,k− s)
ζ (s)

( y
4π2

)−s
ds,

change the variable s ↔ k− s, to obtain

J =

(
i

2π

)k 1
2πi

∫ k−λ+i∞

k−λ−i∞

Γ(s)L( f ,s)
ζ (k− s)

( y
4π2

)s−k
ds. (2.3.6)

Here we make use of the functional equation of ζ (s), that is, (1.4.1) and replace s by
k− s to see

1
ζ (k− s)

=
πs−k+ 1

2 Γ
(k−s

2

)
Γ
( s−k+1

2

)
ζ (s− k+1)

. (2.3.7)

Substitute (2.3.7) in (2.3.6) and simplify to obtain

J =
√

π

(
2i
y

)k 1
2πi

∫ k−λ+i∞

k−λ−i∞

Γ(s)Γ
(k−s

2

)
Γ
( s−k+1

2

) L( f ,s)
ζ (s− k+1)

( y
4π

)s
ds. (2.3.8)

Note that, k < k−λ < k+1 as −1 < λ < 0, so L( f ,s) and 1
ζ (s−k+1) both are absolutely

convergent on the line ℜ(s) = k−λ . Therefore, using the definition (2.1.1) of A∗
f (n),
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we can see that

L( f ,s)
ζ (s− k+1)

=
∞

∑
n=1

a f (n)
ns

∞

∑
n=1

µk(n)
ns =

∞

∑
n=1

A∗
f (n)

ns , (2.3.9)

where µk(n) and A∗
f (n) are as defined in (2.1.1).

Using (2.3.9) in (2.3.8) and interchanging the order of summation and integration,
we get

J =
√

π

(
2i
y

)k ∞

∑
n=1

A∗
f (n)

1
2πi

∫ k−λ+i∞

k−λ−i∞

Γ(s)Γ
(k−s

2

)
Γ
( s−k+1

2

) ( y
4nπ

)s
ds.

Next, replace s by 2s, and then employ duplication formula (2.2.2) for the Gamma
function Γ(2s), to deduce

J =

(
2i
y

)k ∞

∑
n=1

A∗
f (n)

1
2πi

∫ k−λ

2 +i∞

k−λ

2 −i∞

Γ(s)Γ(s+ 1
2)Γ
( k

2 − s
)

Γ
(
s+ 1−k

2

) (
y2

4n2π2

)s

ds. (2.3.10)

At this juncture, our main aim is to simplify the integral

I :=
1

2πi

∫ k−λ

2 +i∞

k−λ

2 −i∞

Γ(s)Γ(s+ 1
2)Γ
( k

2 − s
)

Γ
(
s+ 1−k

2

) zsds,

where z = y2

4n2π2 . Observing the poles of the integrand, one can verify that the line of
integration ℜ(s) = (k−λ )/2 does not separate all the poles of the factors Γ(s)Γ(s+ 1

2)

from those of the factor Γ( k
2 −s). Thus we have to choose a new line of integration such

that it separates the poles of Γ(s)Γ(s+ 1
2) from that of Γ( k

2 −s). Consider the contour C
′

determined by the line segments [k−λ

2 − iT, k−λ

2 + iT ], [k−λ

2 + iT,d+ iT ], [d+ iT,d− iT ],
and [d− iT, k−λ

2 − iT ], where T is some large positive real number and 0 < d < k
2 . Now

again utilizing the Cauchy residue theorem, we have

1
2πi

∫
C ′

Γ(s)Γ(s+ 1
2)Γ
( k

2 − s
)

Γ
(
s+ 1−k

2

) zsds = Res
s= k

2

Γ(s)Γ(s+ 1
2)Γ(

k
2 − s)

Γ(s+ 1−k
2 )

zs.

Letting T → ∞ and using Stirling’s formula (2.2.1) for the Gamma function, one can
show that horizontal integrals vanish. Finally, calculating residue at k/2, we have

I =
1

2πi

∫ d+i∞

d−i∞

Γ(s)Γ(s+ 1
2)Γ
( k

2 − s
)

Γ
(
s+ 1−k

2

) zsds−
Γ( k

2)Γ(
1+k

2 )

Γ(1
2)

z
k
2 . (2.3.11)

Now we make use of the definition (1.5.2) of the Meijer G-function. Considering
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m = 1,n = 2, p = 2,q = 2, and a1 = 1,a2 =
1
2 ,b1 =

k
2 ,b2 =

k+1
2 , and verifying all the

conditions for the Meijer G-function, we will have

1
2πi

∫ d+i∞

d−i∞

Γ(s)Γ(s+ 1
2)Γ
( k

2 − s
)

Γ
(
s+ 1−k

2

) zsds = G1,2
2,2

(
1, 1

2
k
2 ,

1+k
2

∣∣∣z) . (2.3.12)

Employing Slater’s theorem (1.5.3), one can derive

G1,2
2,2

(
1, 1

2
k
2 ,

1+k
2

∣∣∣z)=
z

k
2 Γ( k

2)Γ(
1+k

2 )

Γ(1
2)

2F1

(
k
2
,
k+1

2
;
1
2

;−z
)
. (2.3.13)

Combine (2.3.11), (2.3.12), and (2.3.13) to deduce that

I =
z

k
2 Γ( k

2)Γ(
1+k

2 )

Γ(1
2)

[
2F1

(
k
2
,
k+1

2
;
1
2

;−z
)
−1
]
.

Now substitute the above representation of I in (2.3.10) to obtain

J =

(
2i
y

)k ∞

∑
n=1

A∗
f (n)

z
k
2 Γ( k

2)Γ(
1+k

2 )

Γ(1
2)

[
2F1

(
k
2
,
k+1

2
;
1
2

;−z
)
−1
]
. (2.3.14)

Finally, substituting z = y2

4n2π2 , and combining (2.3.14), (2.3.5), and (2.3.4) in (2.3.3),
and using duplication formula, we can complete the proof of Theorem 2.1.1.

Remark 2.3.1. Here we point out that the series involving 2F1 in Theorem 2.1.1, that

is,
∞

∑
n=1

A∗
f (n)

nk

[
2F1

(
k
2
,
k+1

2
;
1
2

;− y2

4n2π2

)
−1
]

(2.3.15)

is absolutely convergent for any y > 0. For any fixed positive real number y, we can

always find a large natural number N such that y2

4n2π2 < 1 for all n ≥ N. Therefore,

using the definition of the generalized hypergeometric series, for n ≥ N, we write∣∣∣∣2F1

(
k
2
,
k+1

2
;
1
2

;− y2

4n2π2

)
−1
∣∣∣∣≤ y2

4n2π2

∞

∑
m=1

( k
2

)
m

(k+1
2

)
m(1

2

)
m m!

(
y2

4n2π2

)m−1

≤ y2

4n2π2

∞

∑
m=1

( k
2

)
m

(k+1
2

)
m(1

2

)
m m!

(
y2

4N2π2

)m−1

≤ N2

n2

∞

∑
m=1

( k
2

)
m

(k+1
2

)
m(1

2

)
m m!

(
y2

4N2π2

)m

.
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Hence, we have∣∣∣∣2F1

(
k
2
,
k+1

2
;
1
2

;− y2

4n2π2

)
−1
∣∣∣∣≤ N2

n2

(
2F1

(
k
2
,
k+1

2
;
1
2

;
y2

4N2π2

)
−1
)
,

for all n ≥ N. Now separate the first N − 1 terms in the series (2.3.15) and then use

the above bound for remaining infinitely many terms to see the absolute convergence of

the series (2.3.15). Note that we have to use the fact that the Dirichlet series (2.3.9) is

absolutely convergent for ℜ(s)> k.

Proof of Corollary 2.1.2. Using the definition of the generalized hypergeometric series
(Olver et al., 2010, p. 404, Equation 16.2.1) for y→ 0+, one can write following asymp-
totic expansion of 2F1:

2F1

(
k
2
,
k+1

2
;
1
2

;− y2

4n2π2

)
−1 =

M−1

∑
m=1

Bm

(y
n

)2m
+Ok

((y
n

)2M
)
, (2.3.16)

where Bm =
(−1)m( k

2)m(
k+1

2 )m

( 1
2)m(m)!(4π2)m , and M is any positive integer. Now use (2.3.16) in Theo-

rem 2.1.1 to see that

∞

∑
n=1

a∗f (n)e
−ny = 2Γ(k)

(
i

2π

)k M−1

∑
m=1

∞

∑
n=1

A∗
f (n)

nk+2m Bmy2m +Ok

(
∞

∑
n=1

|A∗
f (n)|

nk+2M y2M

)
+P(y)

=
M−1

∑
m=1

Cmy2m +O f ,k(y2M)+P(y), (2.3.17)

where Cm = 2Γ(k)
( i

2π

)k Bm ∑
∞
n=1

A∗
f (n)

nk+2m . Note that Cm’s are finite quantities since the
Dirichlet series ∑

∞
n=1 A∗

f (n)n
−s is absolutely convergent for ℜ(s) > k. From the func-

tional equation of the Riemann zeta function it is immediate that if ρn =
1
2 + itn denotes

the nth non-trivial zero, then 1
2 − itn is also a non-trivial zero. Therefore, one can write

the infinite series expression (2.1.2) of P(y) as

P(y) = ∑
ρn=

1
2+itn,

tn>0

2ℜ

(
L( f ,ρn)Γ(ρn)

yρnζ ′(ρn)

)
.

Here we have used the fact that f is a normalized Hecke eigenform. To simplify P(y)

even more, we write rneiθn = L( f ,ρn)Γ(ρn)(ζ
′(ρn))

−1 to see

√
yP(y) = ∑

ρn=
1
2+itn,

tn>0

2rn cos(θn − tn log(y)). (2.3.18)
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Now combine (2.3.18) and (2.3.17) to complete the proof of Corollary 2.1.2.

Table 2.1 : Verification of Theorem 2.1.1: We took f (z) = ∆(z), the Ramanujan cusp
form. Here, in the left-hand side and right-hand side in the sum over n we considered
only the first 5000 terms. In the sum over ρ for P(y), we considered only 20 terms.

y Left-hand side Right-hand side
0.123 −0.0004629993871... −0.0004629912383...
1 −0.0204523567610... −0.0204523567622...
1.1234 −0.0223212278858... −0.0223212278873...√

3 −0.0185761774446... −0.0185761774481...
2.543 +0.0035666059027... +0.0035666058953...
π +0.0124169011322... +0.0124169011209...
2
√

2 +0.0062298234741... +0.0062298234660...
10+

√
5 4.8516617384×10−6 4.8514902993×10−6

We note that it was enough to take only the first 20 zeros in order for the first eight
digits on both sides of the Theorem 2.1.1 to coincide. This indicates that the residual
term P(y) is indeed rapidly convergent.
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CHAPTER 3

TWISTED LAMBERT SERIES
ASSOCIATED TO A CUSP FORM AND THE
MÖBIUS FUNCTION

In this chapter we continue our study of Lambert series and generalize the results of the
previous chapter. Here, we investigate the following Lambert series:

A f (y) :=
∞

∑
n=1

[a f (n)ψ(n)∗µ(n)ψ ′(n)]e−ny, (3.0.1)

where a f (n) is the nth Fourier coefficient of a cusp form f of weight k, level Q and
Nebentypus χ , and ψ,ψ ′ are primitive Dirichlet characters. We derive an exact formula
for the above Lambert series (3.0.1) involving the non-trivial zeros of L(s,ψ ′) and a
generalized hypergeometric function, and thereby generalize Theorem 2.1.1 in two dif-
ferent directions. On the one hand, our work generalizes Theorem 2.1.1 for congruence
subgroups and on the other hand, we also get a character analogue. As an applica-
tion, we also derive an asymptotic expansion and establish an oscillatory behavior of
y1/2A f (y) as y → 0+. Let k and Q be two positive integers. Let χ be a Dirichlet char-

acter modulo Q and the Gauss sum εχ is defined by εχ := ∑
Q
j=1 χ( j)e

2πi j
Q . Consider

f (z) ∈ Sk(Γ0(Q),χ) with the Fourier series expansion

f (z) =
∞

∑
n=1

a f (n)e2πinz, ∀z ∈H. (3.0.2)

It is known that for a positive integer r such that (Q,r) = 1 and a primitive Dirichlet
character ψ modulo r, the ψ-twist of f is defined by

fψ(z) =
∞

∑
n=1

a f (n)ψ(n)e2πinz,
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is an element of Sk(Γ0(N),χψ2), where N = Qr2. Hence it is natural to consider the
following Dirichlet series:

L f (s,ψ) :=
∞

∑
n=1

a f (n)ψ(n)
ns .

The above series converges and hence defines an analytic function in ℜ(s) > k+1
2 . It

is known as the ψ-twist of L f (s), where L f (s) = ∑
∞
n=1

a f (n)
ns , the L-function attached

to f . We can analytically extend L f (s,ψ) into an entire function and the completed

L-function Λ f (s,ψ) =
(√

N
2π

)s
Γ(s)L f (s,ψ) satisfies the following functional equation

(Murty et al., 2015, p. 131)

Λ f (s,ψ) =
ikε2

χ

r
χ(r)ψ(Q)Λg(k− s,ψ), (3.0.3)

where

g(z) = Qk/2(Qz)−k f
(
− 1

Qz

)
:=

∞

∑
n=1

ag(n)e2πinz ∈ Sk(Γ0(Q),χ)).

3.1 THE MAIN IDENTITY

For a fixed natural number k, let µk(n) = µ(n)nk−1. Let ψ ′ be a primitive Dirichlet
character modulo M, and

a :=

0, ψ ′(−1) = 1,

1, ψ ′(−1) =−1.

The following result gives an exact formula for the Lambert series 3.0.1.

Theorem 3.1.1. (Maji et al. (2022)) Let f ∈ Sk(Γ0(Q),χ) be a cusp form with the n-th

Fourier coefficient a f (n). Let ψ and ψ ′ be primitive Dirichlet characters of modulus r

and M respectively. Assume that all the non-trivial zeros of L(s,ψ ′) are simple. For any

positive y, we have

∞

∑
n=1

[a f (n)ψ(n)∗µ(n)ψ ′(n)]e−ny = 2Nk/2
Γ(k+a)

(
yN
M

)a( i
2π

)k+a χ(r)ψ(Q)ε2
ψ

rεψ ′

×
∞

∑
n=1

[ag(n)ψ(n)∗µk(n)ψ ′(n)]
nk+a

[
2F1

(
k+a

2
,
k+1+a

2
;
1+2a

2
;− N2y2

4M2n2π2

)
− (1−a)

]
+R(y)+R0,
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where N = Qr2, and the terms R0 and R(y) are defined as

R0 =


L′

f (0,ψ)

L′(0,ψ ′) , if a = 0 and M > 1,

0, otherwise
and R(y) = ∑

ρ

L f (ρ,ψ)Γ(ρ)

L′(ρ,ψ ′)

1
yρ

, (3.1.1)

where the sum over ρ in R(y), running through all the non-trivial zeros of L(s,ψ ′),

involves bracketing the terms so that the terms corresponding to ρ1 and ρ2 are included

in the same bracket if they satisfy

|ℑ(ρ1)−ℑ(ρ2)|< e−
C|ℑ(ρ1)|

log(|ℑ(ρ1)|+3) + e−
C|ℑ(ρ2)|

log(|ℑ(ρ2)|+3) , (3.1.2)

where C is some positive constant.

First we collect some preliminary results which we use in the proof of the above
theorem. The following lemma gives an important bound for the inverse of the Dirichlet
L-function.

Lemma 3.1.2. Assume there exists a sequence of arbitrarily large positive numbers T

satisfying |T −ℑ(ρ)| > e−A|ℑ(ρ)|/ log(|ℑ(ρ)|+3) for every non-trivial zero ρ of L(s,ψ ′),

where A is some suitable positive constant. Then,

1
|L(σ + iT,ψ ′)|

< eBT ,

for some suitable constant 0 < B < π/4.

Proof. A proof of this lemma can be given along similar lines to that in (Titchmarsh,
1986, p. 219).

The next result says that any L-function associated to a cusp form can be bounded
by a suitable polynomial in a vertical strip.

Lemma 3.1.3. In any vertical strip σ0 ≤ σ ≤ b, there exists a constant C(σ0), such that

|L f (σ + iT,ψ)| ≪ |T |C(σ0)

as |T | → ∞.

Proof. One can see this result in (Iwaniec and Kowalski, 2004, p. 97, Lemma 5.2).

Next we state the functional equation for the Dirichlet L-function.
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Lemma 3.1.4. Let ψ ′ be a Dirichlet character Modulo M. Then the Dirichlet L-function

L(s,ψ ′) = ∑
∞
n=1

ψ ′(n)
ns analytically extends to the whole complex plane and satisfies the

functional equation:

(
π

M

)− s+a
2

Γ

(
s+a

2

)
L(s,ψ ′) =

ε ′ψ

ia
√

M

(
π

M

)− 1−s+a
2

Γ

(
1− s+a

2

)
L(1− s,ψ ′).

Now we are ready to give the proof of Theorem 3.1.1.

Proof of Theorem 3.1.1. First, we note that the Lambert series

∞

∑
n=1

[a f (n)ψ(n)∗µ(n)ψ ′(n)]e−ny

converges absolutely and uniformly for any y > 0. Now using inverse Mellin transform
for Γ(s), one can write

∞

∑
n=1

[a f (n)ψ(n)∗µ(n)ψ ′(n)]e−ny =
∞

∑
n=1

[a f (n)ψ(n)∗µ(n)ψ ′(n)]
1

2πi

∫ c+i∞

c−i∞

Γ(s)
(ny)s ds

=
1

2πi

∫ c+i∞

c−i∞

Γ(s)L f (s,ψ)

L(s,ψ ′)
y−sds. (3.1.3)

Here the interchange of summation and integration is possible only for ℜ(s) = c > k+1
2 .

Next, to simplify this line integral we shall take help of contour integration and use
Cauchy’s residue theorem. Consider the contour CT determined by the line segments
[c− iT,c+ iT ], [c+ iT,λ + iT ], [λ + iT,λ − iT ], and [λ − iT,c− iT ], where T is some
large positive real number and −1 < λ < 0. Before using Cauchy’s residue theorem, let
us identify the poles of the integrand function. From (3.0.3), it follows that Γ(s)L f (s,ψ)

has no poles since Λ f (s,ψ) is an entire function. Hence poles of the integrand are only
due to the zeros of L(s,ψ ′). Note that, if ψ ′ is an even character of modulus M > 1, then
L(s,ψ ′) has trivial zeros at 0,−2,−4, · · · . And if ψ ′ is an odd character, then L(s,ψ ′)

has trivial zeros at −1,−3,−5, · · · . Again, we know that the non-trivial zeros of L(s,ψ ′)

lie in the strip 0 < ℜ(s)< 1. Therefore, applying Cauchy’s residue theorem, we have

1
2πi

∫
CT

Γ(s)L f (s,ψ)

L(s,ψ ′)
y−sds = RT (y)+R0, (3.1.4)

where RT (y) denotes the residual function, which includes finitely many terms con-
tributed by the non-trivial zeros ρ of L(s,ψ ′) with |ℑ(ρ)| < T and R0 is the residue at
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s = 0. Now, we can write

∫
CT

Γ(s)L f (s,ψ)

L(s,ψ ′)
y−sds =

(∫ c+iT

c−iT
+
∫

λ+iT

c+iT
+
∫

λ−iT

λ+iT
+
∫ c−iT

λ−iT

)
Γ(s)L f (s,ψ)

L(s,ψ ′)
y−sds.

(3.1.5)
Next, utilizing Lemmas 2.2.3, 3.1.2 and 3.1.3, one can show that both of the horizontal
integrals

H1(T,y) :=
1

2πi

∫
λ+iT

c+iT

Γ(s)L f (s,ψ)

L(s,ψ ′)
y−sds, H2(T,y) :=

1
2πi

∫ c−iT

λ−iT

Γ(s)L f (s,ψ)

L(s,ψ ′)
y−sds,

tend to zero as T → ∞ through those values of T which satisfy

|T −ℑ(ρ)|> e−A|ℑ(ρ)|/ log(|ℑ(ρ)|+3).

Therefore, letting T → ∞ in (3.1.4) and in view of (3.1.3) and (3.1.5), we have

∞

∑
n=1

[a f (n)ψ(n)∗µ(n)ψ ′(n)]e−ny =
1

2πi

∫
λ+i∞

λ−i∞

Γ(s)L f (s,ψ)

L(s,ψ ′)
y−sds+R(y)+R0,

(3.1.6)
where the contribution of the residual term R0 will be taken into account only when ψ ′

is an even character with modulus M > 1. Therefore, we have

R0 = lim
s→0

sΓ(s)
L f (s,ψ)

L(s,ψ ′)
y−s =


L′

f (0,ψ)

L′(0,ψ ′) , if a = 0, M > 1,

0, otherwise.
(3.1.7)

The function R(y) is the sum of the residual terms coming from the non-trivial zeros ρ

of L(s,ψ ′). This term can be evaluated in the following way:

R(y) = ∑
ρ

lim
s→ρ

(s−ρ)
Γ(s)L f (s,ψ)

L(s,ψ ′)
y−s = ∑

ρ

Γ(ρ)L f (ρ,ψ)

L′(ρ,ψ ′)y−ρ
, (3.1.8)

where the summation runs over the non-trivial zeros ρ of L(s,ψ ′). Here we note that
we have used the assumption that all the non-trivial zeros of L(s,ψ ′) are simple. Even
if we do not assume the simplicity of zeros, then also we can figure out this residual
term. Now we shall try to evaluate the left vertical integral

V (y) :=
1

2πi

∫
λ+i∞

λ−i∞

Γ(s)L f (s,ψ)

L(s,ψ ′)
y−sds, (3.1.9)
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where −1 < λ < 0. The functional equation (3.0.3) of L f (s,ψ) suggests that

Γ(s)L f (s,ψ) = ik
(√

N
2π

)k−2s
ε2

ψ

r
χ(r)ψ(Q)Γ(k− s)Lg(k− s,ψ). (3.1.10)

Again, Lemma 3.1.4 yields that

1
L(s,ψ ′)

=
ia
√

M
εψ ′

(
π

M

) 1−2s
2 Γ( s+a

2 )

Γ(1−s+a
2 )

1
L(1− s,ψ ′)

. (3.1.11)

Now substituting (3.1.10) and (3.1.11) in (3.1.9) and simplifying, we get

V (y)=

√
πik+aN

k
2 ε2

ψ χ(r)ψ(Q)

2kπkrεψ ′

1
2πi

∫
λ+i∞

λ−i∞

Γ( s+a
2 )Γ(k− s)

Γ(1−s+a
2 )

Lg(k− s,ψ)

L(1− s,ψ ′)

(
Ny

4πM

)−s

ds.

After a change of variable from s to k− s, V (y) takes the following form:

V (y) =Ck,χ,ψ,ψ ′
1

2πi

∫ k−λ+i∞

k−λ−i∞

Γ(s)Γ
(k−s+a

2

)
Γ
( s−k+1+a

2

) Lg(s,ψ)

L(s− k+1,ψ ′)

(
Ny

4πM

)s

ds, (3.1.12)

where

Ck,χ,ψ,ψ ′ :=

√
πik+aε2

ψ χ(r)ψ(Q)

rεψ ′

(
2M

y
√

N

)k

. (3.1.13)

Note that the Dirichlet series expansions of Lg(s,ψ) and L(s− k+1,ψ ′) are absolutely
convergent on the line ℜ(s) = k−λ since k−λ > k as −1 < λ < 0. Therefore, on the
line ℜ(s) = k−λ , with the help of the Dirichlet series expansion, one can write

Lg(s,ψ)

L(s− k+1,ψ ′)
=

∞

∑
n=1

ag(n)ψ(n)∗µk(n)ψ ′(n)
ns . (3.1.14)

Now, substituting (3.1.14) in (3.1.12) and then taking summation outside of integration,
we get

V (y)=Ck,χ,ψ,ψ ′

∞

∑
n=1

[ag(n)ψ(n)∗µk(n)ψ ′(n)]
1

2πi

∫ k−λ+i∞

k−λ−i∞

Γ(s)Γ
(k−s+a

2

)
Γ
( s−k+1+a

2

) ( Ny
4πMn

)s

ds.

(3.1.15)
To simplify V (y) further, we shall concentrate on the following integral:

Un,a(y) :=
1

2πi

∫ k−λ+i∞

k−λ−i∞

Γ(s)Γ
(k−s+a

2

)
Γ
( s−k+1+a

2

) ( Ny
4πMn

)s

ds. (3.1.16)
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By a change of variable from s to 2s and invoking (2.2.2), we get

Un,a(y) =
1√
π

1
2πi

∫ k−λ

2 +i∞

k−λ

2 −i∞

Γ(s)Γ
(
s+ 1

2

)
Γ
(k+a

2 − s
)

Γ
(
s+ 1−k+a

2

) zsds, (3.1.17)

where z =
(

Ny
2πMn

)2
. To get a more comprehensible form for Un,a(y), we must employ

the definition of the Meijer G-function. Unfortunately, by analysing the poles of the
integrand of Un,a(y) we can verify that the line of integration ℜ(s) = k−λ

2 does not
distinguish all the poles of Γ

(k+a
2 − s

)
from the poles of Γ(s)Γ

(
s+ 1

2

)
. Note that k

2 <
k−λ

2 < k+1
2 as −1 < λ < 0. Thus, we shift the line of integration ℜ(s) = k−λ

2 to the line
ℜ(s) = c′ where k

2 −1 < c′ < k
2 . Now we can see that the line of integration ℜ(s) = c′

does separate the poles. At this moment, we construct a new rectangular contour C

joining the line segments [c′− iT, k−λ

2 − iT ],
[

k−λ

2 − iT, k−λ

2 + iT
]
,
[

k−λ

2 + iT,c′+ iT
]
,

and [c′+ iT,c′− iT ] and employing Cacuchy’s residue theorem, we have

1
2πi

∫
C

Γ(s)Γ
(
s+ 1

2

)
Γ
(k+a

2 − s
)

Γ
(
s+ 1−k+a

2

) zsds = R k
2
, (3.1.18)

where R k
2

is the residue at s = k
2 , and it can be evaluated as

R k
2
=

−Γ( k
2)Γ( k+1

2 )
Γ( 1

2+a)
z

k
2 if a = 0,

0, if a = 1.
(3.1.19)

Now using Stirling’s formula for the Gamma function, one can show that the contribu-
tion of the horizontal integrals vanish as T → ∞. Therefore, letting T → ∞ in (3.1.18),
we have

1
2πi

∫ k−λ

2 +i∞

k−λ

2 −i∞

Γ(s)Γ
(
s+ 1

2

)
Γ
(k+a

2 − s
)

Γ
(
s+ 1−k+a

2

) zsds =
1

2πi

∫ c′+i∞

c′−i∞

Γ(s)Γ
(
s+ 1

2

)
Γ
(k+a

2 − s
)

Γ
(
s+ 1−k+a

2

) zsds

+R k
2
. (3.1.20)

Now utilizing the definition (1.5.2) of the Meijer G-function and verifying all the nec-
essary conditions, one can show that

1
2πi

∫ c′+i∞

c′−i∞

Γ(s)Γ
(
s+ 1

2

)
Γ
(k+a

2 − s
)

Γ
(
s+ 1−k+a

2

) zsds = G1,2
2,2

(
1, 1

2
k+a

2 , 1+k−a
2

∣∣∣z) . (3.1.21)

Next, we shall invoke Slater’s theorem (1.5.3) to simplify Meijer G-function in terms
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of hypergeometric functions. Thus after a significant simplification, we obtain

G1,2
2,2

(
1, 1

2
k+a

2 , 1+k−a
2

∣∣∣z)= z
k+a

2
Γ
(k+a

2

)
Γ
(1+k+a

2

)
Γ
(1

2 +a
) 2F1

(
k+a

2
,
k+1+a

2
;
1+2a

2
;−z
)

(3.1.22)

Now substituting z =
(

Ny
2πMn

)2
in (3.1.22) and in view of (3.1.19), (3.1.20) and (3.1.21),

the integral Un,a(y) becomes

Un,a(y) =
2√
π

(
Ny

2πMn

)k+a
Γ(k+a)

2k

[
2F1

(
k+a

2
,
k+1+a

2
;
1+2a

2
;−z
)
− (1−a)

]
.

(3.1.23)

Substituting the above expression of Un,a(y) in (3.1.15), the final expression for the left
vertical integral V (y) reduces to

V (y) = 2N
k
2+a

Γ(k+a)
( y

M

)a
(

i
2π

)k+a χ(r)ψ(Q)ε2
ψ

rεψ ′

∞

∑
n=1

[ag(n)ψ(n)∗µk(n)ψ ′(n)]
nk+a

×
[

2F1

(
k+a

2
,
k+1+a

2
;
1+2a

2
;− N2y2

4M2n2π2

)
− (1−a)

]
.

(3.1.24)

Finally, combining (3.1.6), (3.1.7), (3.1.8) and (3.1.24), we finish the proof of Theorem
3.1.1.

Remark 3.1.5. The identity in Theorem 3.1.1 can be extended analytically for ℜ(y)> 0.
Also, by substituting Q = r = M = 1 in Theorem 3.1.1, one can immediately recover

Theorem 2.1.1.

Remark 3.1.6. Note that the series in Theorem 3.1.1involving generalized hypergeo-

metric function is indeed convergent. To see this, first we take a = 0. Then using series

definition of 2F1 for large n, we have 2F1

(
k
2 ,

k+1
2 ; 1

2 ;− N2y2

22M2n2π2

)
− 1 = O f ,ψ,ψ ′

(
1
n2

)
.

Hence we get a natural number L such that,

∞

∑
n=L

[ag(n)ψ(n)∗µk(n)ψ ′(n)]
nk

[
2F1

(
k
2
,
k+1

2
;
1
2

;− N2y2

22M2n2π2

)
−1
]

≪
∞

∑
n=L

[ag(n)ψ(n)∗µk(n)ψ ′(n)]
nk+2 ,

which is a convergent series. On the other hand, when a = 1 for large n, we have
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2F1

(
k+1

2 , k+2
2 ; 3

2 ;− N2y2

22M2n2π2

)
=O f ,ψ,ψ ′(1). Hence we get a natural number L′ such that,

∞

∑
n=L′

[ag(n)ψ(n)∗µk(n)ψ ′(n)]
nk+1

[
2F1

(
k+1

2
,
k+2

2
;
3
2

;− N2y2

22M2n2π2

)]

≪
∞

∑
n=L′

[ag(n)ψ(n)∗µk(n)ψ ′(n)]
nk+1 ,

which is also convergent.

3.2 SOME SPECIAL CASES

As a special case of Theorem 3.1.1, by taking M = r = 1, we get a higher level analogue
of Theorem 2.1.1. We note this special case as a corollary.

Corollary 3.2.1. Let f ∈ Sk(Γ0(Q),χ) be a cusp form. Assume that all the non-trivial

zeros of ζ (s) are simple. Then for y > 0, we have

∞

∑
n=1

[a f (n)∗µ(n)]e−ny =
ikΓ(k)Q

k
2

2k−1πk

∞

∑
n=1

[ag(n)∗µk(n)]
nk

[
2F1

(
k
2
,
k+1

2
;
1
2

;− Q2y2

4n2π2

)
−1
]

+R(y),

where R(y) = ∑ρ

L f (ρ)Γ(ρ)

ζ ′(ρ)
1
yρ , the sum over ρ runs through all the non-trivial zeros of

ζ (s) involving bracketing as in (3.1.2).

On the other hand, if we let Q = 1,M = r, and ψ = ψ ′ in Theorem 3.1.1, we get a
character analogue of Theorem 2.1.1, as given below:

Corollary 3.2.2. Let f ∈ Sk(SL2(Z)) be a cusp form. Let ψ be a primitive Dirichlet

character modulo r. Assume that all the non-trivial zeros of L(s,ψ) are simple. For

y > 0, we have

∞

∑
n=1

ψ(n)[a f (n)∗µ(n)]e−ny = R0 +R(y)+2yark+a−1
εψ

(
i

2π

)k+a

×
∞

∑
n=1

ψ(n)[a f (n)∗µk(n)]
nk+a

[
2F1

(
k+a

2
,
k+1+a

2
;
1+2a

2
;− r2y2

4n2π2

)
− (1−a)

]
,

where R0 is defined as in Theorem 3.1.1 and R(y) = ∑ρ

L f (ρ,ψ)Γ(ρ)

L′(ρ,ψ)
1
yρ , where the sum

over ρ involves bracketing as in (3.1.2).

Now letting Q = r = 1 in Theorem 3.1.1, we obtain the following result.
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Corollary 3.2.3. Let f ∈ Sk(SL2(Z)) be a cusp form. Let ψ ′ be a primitive Dirichlet

character modulo M. Assume that all the non-trivial zeros of L(s,ψ ′) are simple. Then

for any positive y, we have

∞

∑
n=1

[a f (n)∗µ(n)ψ ′(n)]e−ny = R0 +R(y)+
2

ε ′ψ
Γ(k+a)

( y
M

)a
(

i
2π

)k+a

×
∞

∑
n=1

[a f (n)∗µk(n)ψ ′(n)]
nk+a

[
2F1

(
k+a

2
,
k+1+a

2
;
1+2a

2
;− y2

4M2n2π2

)
− (1−a)

]
,

where R0 and R(y) are defined as in Theorem 3.1.1.

At the end we have given a Table 3.1, which includes numerical evidences for this
corollary.

3.3 AN ASYMPTOTIC RESULT INVOLVING THE NON-
TRIVIAL ZEROS OF L(s,ψ ′)

Now we state an asymptotic expansion for the Lambert series (3.0.1) as an application
of Theorem 3.1.1.

Corollary 3.3.1. With notations as in Theorem 3.1.1, we have, for y → 0+,

∞

∑
n=1

[a f (n)ψ(n)∗µ(n)ψ ′(n)]e−ny = R0 +R(y)+
M′−1

∑
m=0

Bm,ay2m+a +O f ,ψ,ψ ′(y2M′+a)

where M′ is any large positive integer and Bm,a’s are some explicit constants. Further,

if f is a normalized Hecke eigenform and χ,ψ and ψ ′ are real, then under the as-

sumption of simplicity of the non-trivial zeros of L(s,ψ ′) and the Generalized Riemann

Hypothesis we have

y
1
2

∞

∑
n=1

[a f (n)ψ(n)∗µ(n)ψ ′(n)]e−ny = y
1
2 R0 +

∞

∑
n=1

rncos(θn − tn logy)

+
M′−1

∑
m=0

Bm,ay2m+a+ 1
2 +O f ,ψ,ψ ′(y2M′+a+ 1

2 ).

Here rneiθn denotes the polar representation of 2L f (ρn,ψ)Γ(ρn)(L′(ρn,ψ
′))−1, and the

n-th non-trivial zero of L(s,ψ ′) in the upper critical line is given by ρn = sn + itn.
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Proof of Corollary 3.3.1. Making use of the asymptotic expansion of 2F1, for y → 0+

we have

2F1

(
k+a

2
,
k+1+a

2
;
1+2a

2
;− N2y2

22M2n2π2

)
=

M′−1

∑
m=0

(k+a
2

)
m

(k+1+a
2

)
m(1+2a

2

)
m m!

(
−Ny

2Mnπ

)2m

+O f ,ψ,ψ ′

((y
n

)2M′)
, (3.3.1)

where M′ is any large positive integer. Now employing (3.3.1) in Theorem 3.1.1, we
get

∞

∑
n=1

[a f (n)ψ(n)∗µ(n)ψ ′(n)]e−ny = R0 +R(y)+
M′−1

∑
m=0

Bm,ay2m+a +O f ,ψ,ψ ′(y2M′+a),

(3.3.2)
where the constants Bm,a can be evaluated by the following formula:
For m = 0,

Bm,a = 2aNk/2
Γ(k+a)

(
yN
M

)a( i
2π

)k+a χ(r)ψ(Q)ε2
ψ

rεψ ′

∞

∑
n=1

[ag(n)ψ(n)∗µk(n)ψ ′(n)]
nk+a+2m ,

and for m ≥ 1,

Bm,a =
2Nk/2Γ(k+a)

(2π)2m

(
yN
M

)a+2m( i
2π

)k+a χ(r)ψ(Q)ε2
ψ

rεψ ′

(k+a
2 )m(

k+1+a
2 )m

(1+2a
2 )mm!

×
∞

∑
n=1

ag(n)ψ(n)∗µk(n)ψ ′(n)
nk+a+2m . (3.3.3)

Here we note that both of the above infinite series are absolutely convergent. Now we
assume f is a normalized Hecke eigenform and χ,ψ and ψ ′ are real characters. Then
for any complex number s, we get

L f (s,ψ)Γ(s)
L′(s,ψ ′)

1
ys =

(
L f (s,ψ)Γ(s)

L′(s,ψ ′)

1
ys

)
.

Another important observation is that if 1
2 + itn is a non-trivial zero of L(s,ψ ′), then

1
2 − itn is also a non-trivial zero of L(s,ψ ′) since ψ ′ is a real character. Therefore,
assuming the Generalized Riemann Hypothesis and the simplicity of the non-trivial
zeros of L(s,ψ ′), we can write

R(y) = ∑
ρn=

1
2+itn,tn>0

2ℜ

(
L f (ρn,ψ)Γ(ρn)

L′(ρn,ψ ′)
y−ρn

)
,
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where the sum is running over all the non-trivial zeros of L(s,ψ ′) in the upper critical
line. Finally, representing 2L f (ρn,ψ)Γ(ρn)L′(ρn,ψ

′)−1 in the polar form by rneiθn and
simplifying we complete the proof of Corollary 3.3.1.

Remark 3.3.2. The cosine functions in Corollary 3.3.1 suggests the oscillatory behav-

ior of the Lambert series y
1
2 ∑

∞
n=1[a f (n)ψ(n)∗µ(n)ψ ′(n)]e−ny as y → 0+, which is also

consistent with the observation of Zagier (1981) for a0(y).

Table 3.1 : Verification of Corollary 3.2.3. Let ψ ′ be a Dirichlet character modulo 5
with ψ ′(1̄) = ψ ′(4̄) = 1 and ψ ′(2̄) = ψ ′(3̄) =−1. We took f (z) = ∆(z) as Ramanujan
delta function, and the left-hand side and right-hand side series over n with only first
2000 terms, and the sum over ρ for R(y) is taken over only 22 terms.

y Left-hand side Right-hand side
1.589 0.02160533841 0.02160532545
1+

√
5 0.01599519746 0.01599520708

0.0749 0.03507904537 0.03507917507
4−π 0.01767636417 0.01767636262
π

√
3 0.00069009521 0.00069009799

5.7395 0.00298669912 0.00298669847
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CHAPTER 4

LAMBERT SERIES ASSOCIATED TO THE
SYMMETRIC SQUARE L-FUNCTION

Let f (z) ∈ Sk(Γ0(N),χ) be a normalized Hecke eigenform with the Fourier series ex-
pansion

f (z) =
∞

∑
n=1

a f (n)e2πinz, ∀z ∈H. (4.0.1)

The L-function associated to f (z) satisfies the following Euler product representation:

L(s, f ) =
∞

∑
n=1

a f (n)
ns = ∏

p:prime

(
1−a f (p)p−s +χ(p)pk−1−2s

)−1

= ∏
p:prime

(1−αp p−s)−1(1−βp p−s)−1, ℜ(s)>
k+1

2
,

where the complex conjugates αp and βp satisfy the relations αp + βp = a f (p) and
αpβp = χ(p)pk−1. Shimura, with the help of these complex numbers (Shimura, 1975,
Equation (0.2)), defined a new L-function associated to a Hecke eigenform f (z), namely
the symmetric square L-function, which is given below:

L(s,Sym2( f )⊗ψ) := ∏
p:prime

(
1−ψ(p)α2

p p−s)−1 (
1−ψ(p)β 2

p p−s)−1 (
1−ψ(p)αpβp p−s)−1

.

This is one of the important examples of an L-function associated to a GL(3)-automorphic
form and its analytic continuation and functional equation has been studied by Shimura.
For ℜ(s)> k, L(s,Sym2 f ) has a absolutely convergent series representation of the form

∑
∞
n=1 aSym2( f )(n)n

−s. More generally, we can define the symmetric power L-function
associated to f (z) as follows:

L(s,Symn( f )⊗ψ) := ∏
p:prime

n

∏
i=0

(
1−ψ(p)α i

pβ
n−i
p
)−1

.

39



Interested readers can see Murty’s lecture notes (Murty (2004)) for more information
on the symmetric power L-function. Upon simplification of the Euler product of the
symmetric square L-function, Shimura observed that

L(s,Sym2( f )⊗ψ) = L(2s−2k+2,χ2
ψ

2)
∞

∑
n=1

a f (n2)ψ(n)
ns , (4.0.2)

where L(s,χ) is the usual Dirichlet L-function. In the same paper, Shimura established
following important result:

Theorem 4.0.1. Let us define

L∗(s,Sym2( f )⊗ψ) := Ns
π
− 3s

2 Γ

( s
2

)
Γ

(
s+1

2

)
Γ

(
s− k+2−λ0

2

)
L(s,Sym2( f )⊗ψ),

where λ0 =

0, if χψ(−1) = 1,

1. if χψ(−1) =−1.
Then L∗(s,Sym2( f )⊗ψ) can be analytically continued to the complex plane except

for simple poles at s = k and at s = k−1.

Rankin (1939) and Selberg (1940) independently studied following interesting Dirich-
let series associated to the cusp form f (z), namely,

RS(s, f ⊗ f̄ ) :=
∞

∑
n=1

a2
f (n)n

−s, ℜ(s)> k.

This Dirichlet series is known as Rankin-Selberg L-function associated to f (z). For
a general construction of the Rankin-Selberg L-function, readers can see the paper of
Li (1979). The Rankin-Selberg L-function and the symmetric square L-function are
intimately connected with each other. This connection was established by Shimura. He
observed that the following relation holds:

L(s,Sym2( f )⊗ψ)L(s− k+1,χψ) = RS(s, f ⊗ f̄ ⊗ψ)L(2s−2k+2,χ2
ψ

2).

For simplicity, now onwards we assume χ and ψ both are trivial characters. Thus, the
above relation becomes

L(s,Sym2( f ))ζ (s− k+1) = RS(s, f ⊗ f̄ )ζ (2s−2k+2).

Since χ and ψ both are trivial, one can see that λ0 = 0. In this case, Shimura showed
that the completed symmetric square L-function L∗(s,Sym2( f )) is entire and satisfies
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the following beautiful functional equation:

L∗(s,Sym2( f )) = L∗(2k−1− s,Sym2( f )). (4.0.3)

The normalized version of the above functional equation can be found in Iwaniec and
Michel (2001).
The following lemma gives an important bound for symmetric square L-function on a
vertical strip.

Lemma 4.0.2. In a vertical strip σ0 ≤ σ ≤ d, we have

|L(σ + iT,Sym2( f ))|= O(|T |A(σ0)), as |T | → ∞,

where A(σ0) is some constant that depends on σ0.

Proof. One can find the proof of this lemma in (Iwaniec and Kowalski, 2004, p. 97).

In this chapter, we investigate an asymptotic expansion of the Lambert series

yk
∞

∑
n=1

a f (n2)e−ny

as y → 0+. Interestingly, we observe that the asymptotic expansion of this Lambert
series can also be written in terms of the non-trivial zeros of the Riemann zeta function
ζ (s). The functional equation (4.0.3) will play a crucial role to obtain our main result.

4.1 AN IDENTITY INVOLVING NON-TRIVIAL ZE-
ROS OF ζ (s) AND GENERALIZED HYPERGEO-
METRIC FUNCTIONS

We define an arithmetic function, B f (n), connected with the symmetric square L-function
by the relation:

B f (n) := (aSym2( f ) ∗b)(n), where b(n) =

m2k−1, if n = m2,

0, otherwise.
(4.1.1)

One can show that the Dirichlet series associated to B f (n) is absolutely convergent for
ℜ(s)> k. Now we are ready to state the Main Theorem of this section.
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Theorem 4.1.1. (Juyal et al. (2022a) Let f (z)∈ Sk(SL2(Z)) be a Hecke eigenform with

the n-th Fourier coefficient a f (n). Assume all the non-trivial zeros of ζ (s) are simple.

Then for any positive real number y, we have

∞

∑
n=1

a f (n2)e−ny =
Γ(k)y1−k

2π2

∞

∑
n=1

B f (n)
nk

[
3F2

(
k
2
,
k+1

2
,1;

1
4
,
3
4

;−
( y

8nπ

)2
)
−1
]

+Q(y),

where

Q(y) =
1

2yk−1 ∑
ρ

Γ
(

ρ

2 + k−1
)

L(ρ

2 + k−1,Sym2( f ))

y
ρ

2 ζ ′(ρ)
, (4.1.2)

and the sum over ρ runs through all the non-trivial zeros of ζ (s) and bracketing the

terms so that the terms corresponding to ρ1 and ρ2 are included in the same bracket if

they satisfy

|ℑ(ρ1)−ℑ(ρ2)|< e−
C|ℑ(ρ1)|

log(|ℑ(ρ1)|) + e−
C|ℑ(ρ2)|

log(|ℑ(ρ2)|) ,

where C is some positive constant.

Proof of Theorem 4.1.1. First, we show that the Mellin transform of the Lambert series

∑
∞
n=1 ψ(n)a f (n2)e−ny is equal to

Γ(s)L(s,Sym2( f )⊗ψ)

L(2s−2k+2,χ2ψ2)
for ℜ(s)> k.

That is, for ℜ(s)> k, we write

∫
∞

0

∞

∑
n=1

ψ(n)a f (n2)e−nyys−1dy =
∞

∑
n=1

ψ(n)a f (n2)
∫

∞

0
e−nyys−1dy

= Γ(s)
∞

∑
n=1

ψ(n)a f (n2)n−s

=
Γ(s)L(s,Sym2( f )⊗ψ)

L(2s−2k+2,χ2ψ2)
.

In the last step we have used the identity (4.0.2). By inverse Mellin transform, we can
see that for y > 0,

∞

∑
n=1

ψ(n)a f (n2)e−ny =
1

2πi

∫ c+i∞

c−i∞

Γ(s)L(s,Sym2( f )⊗ψ)

L(2s−2k+2,χ2ψ2)
y−sds, (4.1.3)

where ℜ(s) = c > k. As mentioned before, for simplicity of calculation, we assume that
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χ and ψ are trivial characters. Thus, the above equation (4.1.3) becomes

∞

∑
n=1

a f (n2)e−ny =
1

2πi

∫ c+i∞

c−i∞

Γ(s)L(s,Sym2( f ))
ζ (2s−2k+2)

y−sds. (4.1.4)

Now we shall analyze the poles of the integrand function. Note that Γ(s)L(s,Sym2( f ))

is an entire function since L∗(s,Sym2( f )) is entire as we are dealing with trivial char-
acter χ . In general, L∗(s,Sym2( f )) may not be an entire function. Assuming the Rie-
mann Hypothesis, one can see that the integrand function has infinitely many poles
on ℜ(s) = k − 3

4 . Furthermore, the integrand function has simple poles at k − n for
n ≥ 2 due to the trivial zeros of ζ (2s− 2k + 2). Consider the following rectangular
contour C : [c− iT,c+ iT ], [c+ iT,d + iT ], [d + iT,d − iT ], and [d − iT,c− iT ], where
k− 2 < d < k− 1 and T is a large positive real number. We can observe that the inte-
grand function has finitely many poles inside this contour C due to the non-trivial zeros
ρ of ζ (2s−2k+2) with |ℑ(ρ)|< T and the poles at k−n, for n ≥ 2, are lying outside
the contour. Therefore, employing Cauchy residue theorem, we have

1
2πi

∫
C

Γ(s)L(s,Sym2( f ))
ζ (2s−2k+2)

y−sds = QT (y), (4.1.5)

where QT (y) denotes the residual term that includes finitely many terms that are sup-
plied by the non-trivial zeros ρ of ζ (2s−2k+2) with |ℑ(ρ)|< T . We denote the two
vertical integrals as

V1(T,y) :=
1

2πi

∫ c+iT

c−iT

Γ(s)L(s,Sym2( f ))
ζ (2s−2k+2)

y−sds,

V2(T,y) :=
1

2πi

∫ d+iT

d−iT

Γ(s)L(s,Sym2( f ))
ζ (2s−2k+2)

y−sds,

and the horizontal integrals are denoted as

H1(T,y) :=
1

2πi

∫ d+iT

c+iT

Γ(s)L(s,Sym2( f ))
ζ (2s−2k+2)

y−sds,

H2(T,y) :=
1

2πi

∫ c−iT

d−iT

Γ(s)L(s,Sym2( f ))
ζ (2s−2k+2)

y−sds.

We show that the contribution of the horizontal integrals vanish as T → ∞. One can
write

H1(T,y) =
1

2πi

∫ d

c

Γ(σ + iT )L(σ + iT,Sym2( f ))
ζ (2σ −2k+2+2iT )

y−σ−iT dσ .
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Thus,

|H1(T,y)|<<
∫ d

c

|Γ(σ + iT )||L(σ + iT,Sym2( f ))|
|ζ (2σ −2k+2+2iT )|

y−σ dσ .

Use Lemmas 2.2.3, 2.2.1 and 4.0.2, to derive that

|H1(T,y)|<< |T |CeC2T− π

4 |T |,

where C and C2 are some constants with 0 <C2 < π/4. This immediately implies that
H1(T,y) goes to zero as T → ∞. Similarly we can show that H2(T,y) also vanishes as
T → ∞. Now allowing T → ∞ in (4.1.5) and using (4.1.4), we have

∞

∑
n=1

a f (n2)e−ny = Q(y)+
1

2πi

∫ d+i∞

d−i∞

Γ(s)L(s,Sym2( f ))
ζ (2s−2k+2)

y−sds, (4.1.6)

where Q(y) = limT→∞ QT (y) is the residual function consisting of infinitely many
terms. Assuming the simplicity hypothesis, that is, all the non-trivial zeros of ζ (s)

are simple, one can show that

Q(y) = ∑
ρ

lim
s→ ρ

2 +k−1

(
s− ρ

2
− k+1

)
Γ(s)L(s,Sym2( f ))

ζ (2s−2k+2)
y−s

=
1

2yk−1 ∑
ρ

Γ
(

ρ

2 + k−1
)

L(ρ

2 + k−1,Sym2( f ))
ζ ′(ρ)

, (4.1.7)

where the sum over ρ runs through all the non-trivial zeros of ζ (s), bracketing the terms
as before.
Now we shall try to simplify the left vertical integral:

V2(y) = lim
T→∞

V2(T,y) =
1

2πi

∫ d+i∞

d−i∞

Γ(s)L(s,Sym2( f ))
ζ (2s−2k+2)

y−sds. (4.1.8)

First we shall make use of the functional equation of the symmetric square L-function
(4.0.3) and with the help of the duplication formula for the Gamma function (2.2.2),
one can obtain

V2(y) =
1

2π3k−1
1

2πi

∫ d+i∞

d−i∞

Γ
(2k−1

2 − s
2

)
Γ
(
k− s

2

)
Γ
(k+1

2 − s
2

)
Γ
(2−k

2 + s
2

)
ζ (2s−2k+2)

×L(2k−1− s,Sym2( f ))
(

yN2

2π3

)−s

ds. (4.1.9)
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Replace s by 2s−2k+2 in (1.4.1) to see

ζ (2s−2k+2) =
π2s−2k+2

√
π

Γ
(2k−2s−1

2

)
Γ(1− k+ s)

ζ (2k−2s−1). (4.1.10)

Substituting (4.1.10) in (4.1.9) and simplifying, we have

V2(y) =
1

2πk+ 1
2

1
2πi

∫ d+i∞

d−i∞

Γ
(2k−1

2 − s
2

)
Γ
(
k− s

2

)
Γ
(k+1

2 − s
2

)
Γ(1− k+ s)

Γ
(2−k

2 + s
2

)
Γ
(2k−1

2 − s
)

ζ (2k−2s−1)

×L(2k−1− s,Sym2( f ))
( y

2π

)−s
ds.

At this juncture, we would like to shift the line of integration. To do that we change the
variable, namely, 2k−1− s = w. We obtain

V2(y) =
1

2πk+ 1
2

1
2πi

∫ d′+i∞

d′−i∞

Γ
(w

2

)
Γ
(w+1

2

)
Γ
(w

2 + 2−k
2

)
Γ(k−w)

Γ
(1+k

2 − w
2

)
Γ
(
w+ 1−2k

2

)
× L(w,Sym2( f ))

ζ (2w−2k+1)

( y
2π

)w−2k+1
dw, (4.1.11)

where k < d′ = ℜ(w) < k+1 as k−2 < d = ℜ(s) < k−1. One can easily check that
the symmetric square L-function L(w,Sym2( f )) and ζ (2w−2k+1) are both absolutely
convergent on the line ℜ(w) = d′. Therefore, we write

L(w,Sym2( f ))
ζ (2w−2k+1)

=
∞

∑
n=1

aSym2( f )(n)

nw

∞

∑
n=1

n2k−1

n2w

=
∞

∑
n=1

B f (n)
nw , (4.1.12)

where B f (n) is defined as in (4.1.1). Implement (4.1.12) in (4.1.11) and interchange the
order of integration and summation to derive

V2(y) =
1

2πk+ 1
2

( y
2π

)1−2k ∞

∑
n=1

B f (n)Ik,y(n), (4.1.13)

where

Ik,y(n) :=
1

2πi

∫ d′+i∞

d′−i∞

Γ
(w

2

)
Γ
(w+1

2

)
Γ
(w

2 + 2−k
2

)
Γ(k−w)

Γ
(1+k

2 − w
2

)
Γ
(
w+ 1−2k

2

) ( y
2nπ

)w
dw.

Now one of our main goals shall be to evaluate this line integral explicitly. First replace
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w → 2w,

Ik,y(n) :=
1

2πi

∫ d′
2 +i∞

d′
2 −i∞

Γ(w)Γ
(
w+ 1

2

)
Γ
(
w+ 2−k

2

)
Γ(k−2w)

Γ
(1+k

2 −w
)

Γ
(
2w+ 1−2k

2

) ( y
2nπ

)2w
2dw. (4.1.14)

To simplify more we use the duplication formula for the Gamma function. We use the
following two identities:

Γ(k−2w) =
2k−2w

2
√

π
Γ

(
k
2
−w

)
Γ

(
1+ k

2
−w

)
, (4.1.15)

Γ

(
2w+

1−2k
2

)
=

22w+ 1−2k
2

2
√

π
Γ

(
w+

1−2k
4

)
Γ

(
w+

3−2k
4

)
. (4.1.16)

Invoking (4.1.15) and (4.1.16) in (4.1.14) we have

Ik,y(n) :=
1

2πi

∫ d′
2 +i∞

d′
2 −i∞

Γ(w)Γ
(
w+ 1

2

)
Γ
(
w+ 2−k

2

)
Γ
( k

2 −w
)

22k−4w− 1
2

Γ
(
w+ 1−2k

4

)
Γ
(
w+ 3−2k

4

) ( y
2nπ

)2w
2dw

=
22k+ 1

2

2πi

∫ d′
2 +i∞

d′
2 −i∞

Γ(w)Γ
(
w+ 1

2

)
Γ
(
w+ 2−k

2

)
Γ
( k

2 −w
)

Γ
(
w+ 1−2k

4

)
Γ
(
w+ 3−2k

4

) ( y
8nπ

)2w
dw. (4.1.17)

To write this integral in terms of the Meijer G-function, we shall analyze the poles of the
integrand function. We know that the poles of Γ(w) are at 0,−1,−2, · · · ; poles of Γ(w+

1/2) are at −1/2,−3/2,−5/2, · · · ; and the poles of Γ
(
w+ 2−k

2

)
are at k/2− 1,k/2−

2,k/2− 3, · · · ; whereas the poles of Γ
( k

2 −w
)

are at k/2,k/2+ 1,k/2+ 2, · · · . So, we
can not write the integral (4.1.17) in terms of the Meijer G-function since the line of in-
tegration does not separate the poles of the Gamma factors Γ(w)Γ

(
w+ 1

2

)
Γ
(
w+ 2−k

2

)
from the poles of the Gamma factor Γ

( k
2 −w

)
. Hence, we construct a new line of inte-

gration so that it separates the poles of the Gamma factors Γ(w)Γ
(
w+ 1

2

)
Γ
(
w+ 2−k

2

)
from the poles of the Gamma factor Γ

( k
2 −w

)
. Now consider the contour C ′ con-

sisting of the line segments [d′− iT,d′+ iT ], [d′+ iT,d′′+ iT ], [d′′+ iT,d′′− iT, ], and
[d′′− iT,d′− iT ], where d′′ ∈ (k/2−1,k/2), T is some large positive real number. Use
Cauchy residue theorem to obtain

1
2πi

∫
C ′

Fk(w)dw = Res
s= k

2

Fk(w), (4.1.18)

where

Fk(w) =
Γ(w)Γ

(
w+ 1

2

)
Γ
(
w+ 2−k

2

)
Γ
( k

2 −w
)

Γ
(
w+ 1−2k

4

)
Γ
(
w+ 3−2k

4

) ( y
8nπ

)2w
.
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Again, with the help of Stirling’s formula for the Gamma function, one can show that
the horizontal integrals tend to zero as T tends to infinity. Therefore, letting T → ∞ in
(4.1.18) and calculating the residual term and substituting it in (4.1.17), we get

Ik,y(n) =
22k+ 1

2

2πi

∫ d′′+i∞

d′′−i∞
Fk(w)dw−

22k+ 1
2 Γ
( k

2

)
Γ
(k+1

2

)
Γ
(1

4

)
Γ
(3

4

) ( y
8nπ

)k
. (4.1.19)

Now we shall try to write the line integral along (d′′) in terms of the Meijer G-function
and to do that we reminisce the definition of the Meijer G-function (1.5.2). We consider
m = 1, n = 3, p = 3, q = 3 with a1 = 1, a2 = 1/2, a3 = k/2; and b1 = k/2, b2 = (1+
2k)/4, b3 = (3+2k)/4. One can easily check that ai−b j ̸∈N for 1 ≤ i ≤ n, 1 ≤ j ≤ m

and the inequality p+q < 2(m+n) is also satisfied. Hence, one can write

1
2πi

∫ d′′+i∞

d′′−i∞
Fk(w)dw = G1,3

3,3

(
1, 1

2 ,
k
2

k
2 ,

1+2k
4 , 3+2k

4

∣∣∣( y
8nπ

)2
)
. (4.1.20)

Utilize Slater’s theorem (1.5.3) to write the above Meijer G-function in terms of the
hypergeometric function:

G1,3
3,3

(
1, 1

2 ,
k
2

k
2 ,

1+2k
4 , 3+2k

4

∣∣∣z)=
z

k
2 Γ
( k

2

)
Γ
(k+1

2

)
Γ
(1

4

)
Γ
(3

4

) 3F2

(
k
2
,
k+1

2
,1;

1
4
,
3
4

;−z
)
. (4.1.21)

Substituting z =
( y

8nπ

)2 in (4.1.21) and together with (4.1.20) and (4.1.19), we achieve

Ik,y(n) =
22k+ 1

2 Γ
( k

2

)
Γ
(k+1

2

)
Γ
(1

4

)
Γ
(3

4

) ( y
8nπ

)k
[

3F2

(
k
2
,
k+1

2
,1;

1
4
,
3
4

;−
( y

8nπ

)2
)
−1
]
.

(4.1.22)

Finally, substituting (4.1.22) in (4.1.13) and together with (4.1.6), (4.1.7) and (4.1.8),
we complete the proof of Theorem 4.1.1.

Remark 4.1.2. Using the definition (1.5.1) of the hypergeometric series one can show

that the above infinite series is indeed convergent with similar arguments as in Remarks

2.3.1 and 3.1.6.

4.2 AN ASYMPTOTIC EXPANSION

The asymptotic result given below is an immediate application of this theorem.
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Corollary 4.2.1. Let N be a positive integer and f (z) be a normalized Hecke eigenform

defined as in Theorem 4.1.1. Assume the Riemann Hypothesis and simplicity of the

non-trivial zeros of ζ (s). For y → 0+, we have

yk
∞

∑
n=1

a f (n2)e−ny = y3/4
∞

∑
n=1

bn cos
(

δn −
tn
2

log(y)
)
+

N−1

∑
j=1

A jy2 j+1 +O f ,k(y2N+1),

where the absolute constants A j depend only on f and the polar representation of

Γ
(

ρn
2 + k−1

)
L(ρn

2 + k − 1,Sym2( f ))(ζ ′(ρn))
−1 is considered as bneiδn , where ρn =

1
2 + itn denotes the nth non-trivial zero of ζ (s).

Proof. With the help of definition (1.5.1) of the hypergeometric series, for any positive
integer N, we have

3F2

(
k
2
,
k+1

2
,1;

1
4
,
3
4

;−
( y

8nπ

)2
)
−1 =

N−1

∑
j=1

C j

(y
n

)2 j
+Ok

((y
n

)2N
)

as y → 0+,

(4.2.1)

where C j = (−1) j ( k
2) j(

k+1
2 ) j

( 1
4) j(

3
4) j(8π)2 j . Now invoke (4.2.1) in Theorem 4.1.1 to derive that

yk
∞

∑
n=1

a f (n2)e−ny =
Γ(k)
2π2

N−1

∑
j=1

C jy2 j+1
∞

∑
n=1

B f (n)
nk+2 j +Ok

(
y2N+1

∞

∑
n=1

B f (n)
nk+2N

)
+ ykQ(y)

=
N−1

∑
j=1

A jy2 j+1 +O f ,k
(
y2N+1)+ ykQ(y), (4.2.2)

where A j =
Γ(k)
2π2 C j ∑

∞
n=1

B f (n)
nk+2 j are computable finite constants, since the Dirichlet series

associated to B f (n) is absolutely convergent for ℜ(s) > k. Assuming the Riemann
hypothesis and using the fact that the non-trivial zeros appear in conjugate pairs to
write the residual term as

ykQ(y) =
y
2 ∑

ρn=
1
2+itn,

tn>0

2ℜ

(
Γ
(

ρn
2 + k−1

)
L(ρn

2 + k−1,Sym2( f ))

y
ρn
2 ζ ′(ρn)

)

= y3/4
∑

ρn=
1
2+itn,

tn>0

bn cos
(

δn −
tn
2

log(y)
)
. (4.2.3)

Here we have considered bneiδn as the polar representation of Γ
(

ρn
2 + k−1

)
L(ρn

2 + k−
1,Sym2( f ))(ζ ′(ρn))

−1. Employ (4.2.3) in (4.2.2) to the complete the proof.
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CHAPTER 5

RANKIN–COHEN BRACKETS ON
HERMITIAN JACOBI FORMS AND THE
ADJOINT OF SOME LINEAR MAPS

Kohnen (1991) considered certain linear maps between spaces of modular forms using
the product map by a fixed cusp form and then computed the adjoint maps of these
linear maps with respect to the Petersson scalar product. The Fourier coefficients of
the image of a form constructed by using this method involve special values of certain
Dirichlet series attached to this form. The work of Kohnen has been generalized to other
automorphic forms (see Choie et al. (1995), Sakata (1998) and Wang and Pei (1995)).

Herrero (2015) generalized the work of Kohnen within the theory of modular forms.
The author constructed the adjoint map of similar linear maps defined by using the
Rankin–Cohen brackets by a fixed modular form instead of the usual product map.
The work of Herrero has been generalized to the case of Jacobi forms, Jacobi forms of
several variables and Siegel modular forms of degree 2 by Jha and Sahu (2016, 2017,
2019).

In this chapter we generalize the work of Herrero (2015) to the case of Hermitian
Jacobi forms over Q(i).

5.1 ADJOINT CONSTRUCTION PROBLEM
Suppose ψ ∈ Jδ2,cusp

k2,m2
(ΓJ(O)) is fixed. Define the map

Tψ,ν : Jδ1,cusp
k1,m1

(ΓJ(O))→ Jδ1δ2(−1)ν ,cusp
k1+k2+2ν ,m1+m2

(ΓJ(O))

by Tψ,ν(φ) = [[φ ,ψ]]ν . Then Tψ,ν is a C-linear map between finite-dimensional Hilbert
spaces and therefore there exists a unique adjoint map

T ∗
ψ,ν : Jδ1δ2(−1)ν ,cusp

k1+k2+2ν ,m1+m2
(ΓJ(O))→ Jδ1,cusp

k1,m1
(ΓJ(O))
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such that
⟨ϕ,Tψ,ν(φ)⟩= ⟨T ∗

ψ,ν(ϕ),φ⟩,

for all φ ∈ Jδ1,cusp
k1,m1

(ΓJ(O)) and ϕ ∈ Jδ1δ2(−1)ν ,cusp
k1+k2+2ν ,m1+m2

(ΓJ(O)).

Theorem 5.1.1. (S and Singh (2021) Let k1,k2 > 4. Let m1,m2 be positive integers.

Suppose ψ ∈ Jδ2,cusp
k2,m2

(ΓJ(O)) has Fourier expansion

ψ(τ,z,w) = ∑
n1∈Z,r1∈O#

n1m2−|r1|2>0

a(n1,r1)e2πi(n1τ+r1z+r1w).

Then the image of ϕ ∈ Jδ1δ2(−1)ν ,cusp
k1+k2+2ν ,m1+m2

(ΓJ(O)) with Fourier expansion

ϕ(τ,z,w) = ∑
n2∈Z,r2∈O#

n2(m1+m2)−|r2|2>0

b(n2,r2)e2πi(n2τ+r2z+r2w)

under T ∗
ψ,ν is given by

T ∗
ψ,ν(ϕ)(τ,z,w) = ∑

n∈Z,r∈O#

nm1−|r|2>0

c(n,r)e2πi(nτ+rz+r̄w)

where

c(n,r) =
(m1 +m2)

k1+k2+2ν−3

mk1−3
1

Γ(k1 + k2 +2ν −2)
Γ(k1 −2)

(nm1 −|r|2)k1−2

(4π)k2+2ν

×
ν

∑
l=0

Al(k1,m1,k2,m2;ν)(4nm1 −4|r|2)l

× ∑
n1>0

r1∈O#

n1m2−|r1|2>0
(n+n1)(m1+m2)−|r+r1|2>0

(4n1m2 −4|r1|2)ν−la(n1,r1)b(n+n1,r+ r1)

((n+n1)(m1 +m2)−|r1 + r2|2)k1+k2+2ν−2

and Al(k1,m1,k2,m2;ν) = (−1)l(k1+ν−2
ν−l

)(k2+ν−2
l

)
mν−l

1 ml
2.

We state the following two lemmas which will be required to prove Theorem 5.1.1.
The proof of Lemma 5.1.2 follows from a direct computation. The proof of Lemma
5.1.3 follows from the usual Rankin unfolding argument and Lemma 3.9 of Martin
(2016).
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Lemma 5.1.2. Let φ ,ψ : H×C2 → C be holomorphic functions. For δ1,δ2 ∈ {±1},

we have

[[φ |k1,m1,δ1γ,ψ|k2,m2,δ2γ]]ν = [[φ ,ψ]]ν |k1+k2+2ν ,m1+m2,δ1δ2(−1)ν γ.

Lemma 5.1.3. Let ψ,ϕ be as in Theorem 5.1.1. The sum

∑
γ∈ΓJ

∞(O)\ΓJ(O)

∫
ΓJ(O)\H×C2

(∣∣ϕ(τ,z,w)[[e2πi(nτ+rz+rw)|k1,m1,δ γ,ψ(τ,z,w)]]ν

×e
−π(m1+m2)

v |w−z|2vk1+k2+2ν
∣∣)dV

converges.

5.2 PROOF OF 5.1.1 AND SOME REMARKS
Proof. Let

T ∗
ψ,ν(ϕ)(τ,z,w) = ∑

n∈Z,r∈O#

m1n−|r|2>0

c(n,r)e2πi(nτ+rz+rw).

By the definition of adjoint map, we have

⟨T ∗
ψ,ν(ϕ),P

k1,m1,δ1
n,r ⟩= ⟨ϕ,Tψ,ν(Pk1,m1,δ1

n,r )⟩= ⟨ϕ, [[Pk1,m1,δ1
n,r ,ψ]]ν⟩.

By Lemma 1.3.3, we have

⟨T ∗
ψ,ν(ϕ),P

k1,m1,δ1
n,r ⟩= c(n,r)

mk1−3Γ(k1 −2)
πk1−2(4m1n−4|r1|2)k1−2 .

This implies that

c(n,r) =
πk1−2(4m1n−4|r1|2)k1−2

mk1−3Γ(k1 −2)
⟨ϕ, [[Pk1,m1,δ1

n,r ,ψ]]ν⟩. (5.2.1)

Now we shall compute ⟨ϕ, [[Pk1,m1,δ1
n,r ,ψ]]ν⟩. From the definition of the Petersson scalar

product we have

⟨ϕ, [[Pk1,m1,δ1
n,r ,ψ]]ν⟩=

∫
ΓJ(O)\H×C2

ϕ(τ,z,w)[[Pk1,m1,δ1
n,r ,ψ]]νe

−π(m1+m2)
v |w−z|2vk1+k2+2νdV

=
∫

ΓJ(O)\H×C2

(
ϕ(τ,z,w)[[ ∑

γ∈ΓJ
∞(O)\ΓJ(O)

e2πi(nτ+rz+rw)|k1,m1,δ1γ,ψ]]ν
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× e
−π(m1+m2)

v |w−z|2vk1+k2+2ν

)
dV

=
∫

ΓJ(O)\H×C2

∑
γ∈ΓJ

∞(O)\ΓJ(O)

(
ϕ(τ,z,w)[[e2πi(nτ+rz+rw)|k1,m1,δ1γ,ψ]]ν

× e
−π(m1+m2)

v |w−z|2vk1+k2+2ν

)
dV.

By Lemma 5.1.3, the last expression converges absolutely and hence we can interchange
the integral and the sum. Therefore we have

⟨ϕ, [[Pk1,m1,δ1
n,r ,ψ]]ν⟩= ∑

γ∈ΓJ
∞(O)\ΓJ(O)

∫
ΓJ(O)\H×C2

(
ϕ(τ,z,w)[[e2πi(nτ+rz+rw)|k1,m1,δ1γ,ψ]]ν

× e
−π(m1+m2)

v |w−z|2vk1+k2+2ν

)
dV.

Changing variable (τ,z,w) to γ−1 ·(τ,z,w) in the above identity and using the definition
1.3.1 and Lemma 5.1.2, we have

⟨ϕ, [[Pk1,m1,δ1
n,r ,ψ]]ν⟩= ∑

γ∈ΓJ
∞(O)\ΓJ(O)

∫
γ·(ΓJ(O)\H×C2)

(
ϕ(τ,z,w)[[e2πi(nτ+rz+rw),ψ]]ν

× e
−π(m1+m2)

v |w−z|2vk1+k2+2ν

)
dV.

Applying the Rankin unfolding argument, the above identity is equivalent to

⟨ϕ, [[Pk1,m1,δ1
n,r ,ψ]]ν⟩=

∫
ΓJ

∞(O)\H×C2

(
ϕ(τ,z,w)[[e2πi(nτ+rz+rw),ψ]]ν

× e
−π(m1+m2)

v |w−z|2vk1+k2+2ν

)
dV.

Now using the definition of the Rankin–Cohen bracket (1.3.3), we have

⟨ϕ, [[Pk1,m1,δ1
n,r ,ψ]]ν⟩=

∫
ΓJ

∞(O)\H×C2

(
ϕ(τ,z,w)

ν

∑
l=0

(−1)l
(

k1 +ν −2
ν − l

)(
k2 +ν −2

l

)
mν−l

1 ml
2

× Ll
m1
(e2πi(nτ+rz+rw))Lν−l

m2 (ψ)e
−π(m1+m2)

v |w−z|2vk1+k2+2ν

)
dV. (5.2.2)
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We have
Lm1(e

2πi(nτ+rz+rw)) = (4nm1 −4|r|2)e2πi(nτ+rz+rw).

By induction we have

Ll
m1
(e2πi(nτ+rz+rw)) = (4nm1 −4|r|2)le2πi(nτ+rz+rw) (5.2.3)

and

Lν−l
m2

(ψ) = ∑
n1∈Z,r1∈O#

m2n1−|r1|2>0

(4n1m2 −4|r1|2)ν−la(n1,r1)e2πi(n1τ+r1z+r1w). (5.2.4)

Substituting the Fourier expansion of ϕ and (5.2.3), (5.2.4) in (5.2.2), we have

⟨ϕ, [[Pk1,m1,δ1
n,r ,ψ]]ν⟩=

ν

∑
l=0

Al(k1,m1,k2,m2;ν)
∫

ΓJ
∞(O)\H×C2

(
∑

n2∈Z,r2∈O#

(m1+m2)n2−|r2|2>0

b(n2,r2)

× e2πi(n2τ+r2z+r2w)
∑

n1∈Z,r1∈O#

m2n1−|r1|2>0

(4m2n1 −4|r1|2)ν−l(4nm1 −4|r|2)l

×a(n1,r1)e2πi((n+n1)τ+(r+r1)z+(r+r1)w)e
−π(m1+m2)

v |w−z|2vk1+k2+2ν

)
dV.

Taking out the summation outside the integral we have

⟨ϕ, [[Pk1,m1,δ1
n,r ,ψ]]ν⟩=

ν

∑
l=0

Al(k1,m1,k2,m2;ν) ∑
n2∈Z,r2∈O#

(m1+m2)n2−|r2|2>0

∑
n1∈Z,r1∈O#

m2n1−|r1|2>0

a(n1,r1)

×b(n2,r2)(4m2n1 −4|r1|2)ν−l(4nm1 −4|r|2)l

×
∫

ΓJ
∞(O)\H×C2

(
e2πi(n2τ+r2z+r2w)e2πi((n+n1)τ+(r+r1)z+(r+r1)w)e

−π(m1+m2)
v |w−z|2vk1+k2+2ν

)
dV,

where τ = u+ iv, z = x1 + iy1, w = x2 + iy2. Choose the fundamental domain for the
action of ΓJ

∞(O) on H×C2 to be F = ([0,1]× (0,∞))× ([0,1]× [0,1])× (R×R).

53



Integrating on this region and substituting z′ = w− z = α + iβ we have

⟨ϕ, [[Pk1,m1,δ1
n,r ,ψ]]ν⟩=

ν

∑
l=0

Al(k1,m1,k2,m2;ν) ∑
n2∈Z,r2∈O#

(m1+m2)n2−|r2|2>0

∑
n1∈Z,r1∈O#

m2n1−|r1|2>0

a(n1,r1)b(n2,r2)

×(4m2n1 −4|r1|2)ν−l(4nm1 −4|r|2)l
∞∫

−∞

∞∫
−∞

1∫
0

1∫
0

∞∫
0

1∫
0

(
e−2πv(n2+n1+n)e2πiu(n2−(n1+n))

×e4πiRe((r2−(r+r1))z)+2πi(r2z′−(r+r1)z′)e
−π(m1+m2)

v |z′|2vk1+k2+2νv−4)dudvdx1dy1dαdβ .

Integrating with respect to u, x1 and y1 first, we have

⟨ϕ, [[Pk1,m1,δ1
n,r ,ψ]]ν⟩=

ν

∑
l=0

Al(k1,m1,k2,m2;ν) ∑
n1∈Z,r1∈O#

m2n1−|r1|2>0
(m1+m2)(n+n1)−|r+r1|2>0

a(n1,r1)b(n+n1,r+r1)

×(4m2n1 −4|r1|2)ν−l(4nm1 −4|r|2)l
∞∫

0

∞∫
−∞

∞∫
−∞

(
vk1+k2+2v−4e−4πv(n+n1)

×e2πi((r+r1)z′−(r+r1)z′)e
−π(m1+m2)

v |z′|2
)

dαdβdv.

Suppose r+ r1 =
t1
2 + i t2

2 . We have

⟨ϕ, [[Pk1,m1,δ1
n,r ,ψ]]ν⟩=

ν

∑
l=0

Al(k1,m1,k2,m2;ν) ∑
n1∈Z,r1∈O#

m2n1−|r1|2>0
(m1+m2)(n+n1)−|r+r1|2>0

a(n1,r1)b(n+n1,r+ r1)

×(4m2n1 −4|r1|2)ν−l(4nm1 −4|r|2)l

×
∞∫

0

vk1+k2+2v−4e−4πv(n+n1)

 ∞∫
−∞

e−4π

(
(m1+m2)

4v α2−t2α/2
)
dα

 ∞∫
−∞

e−4π

(
(m1+m2)

4v β 2−t1β/2
)
dβ

dv.

(5.2.5)

For a ≥ 0 and b ∈ R, we have

∞∫
−∞

e−(at2+bt)dt =
√

π

a
e

b2
4a .

Using the above identity to solve integrations with respect to α and β in (5.2.5), we
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have

⟨ϕ, [[Pk1,m1,δ1
n,r ,ψ]]ν⟩=

ν

∑
l=0

Al(k1,m1,k2,m2;ν) ∑
n1∈Z,r1∈O#

m2n1−|r1|2>0
(m1+m2)(n+n1)−|r+r1|2>0

a(n1,r1)b(n+n1,r+ r1)

m1 +m2

×(4m2n1 −4|r1|2)ν−l(4nm1 −4|r|2)l
∫

∞

0
vk1+k2+2v−3e

−4πv
m1+m2

((n+n1)(m1+m2)−|r+r1|2)dv.

This implies that

⟨ϕ, [[Pk1,m1,δ1
n,r ,ψ]]ν⟩=

(m1 +m2)
k1+k2+2ν−3Γ(k1 + k2 +2ν −2)
(4π)k1+k2+2ν−2

ν

∑
l=0

Al(k1,m1,k2,m2;ν)

×(4nm1 −4|r|2)l
∑

n1∈Z,r1∈O#

m2n1−|r1|2>0
(m1+m2)(n+n1)−|r+r1|2>0

a(n1,r1)b(n+n1,r+ r1)(4m2n1 −4|r1|2)ν−l

((m1 +m2)(n+n1)−|r+ r1|2)k1+k2+2ν−2 .

Substituting the value of ⟨ϕ, [[Pk1,m1,δ1
n,r ,ψ]]ν⟩ in (5.2.1) we get the required result.

Remark 5.2.1. As an illustration of the above theorem, we consider the following ex-

ample:

Let S =

{
0, 1

2 ,
i
2 ,

(1+i)
2

}
be the set of coset representatives of O#/O . For s∈ S, we define

θ1,s(τ,z,w) = ∑
r∈O#, r≡s (mod O)

e|r|
2τ+rz+rw.

We define the Hermitian Jacobi forms φ
+
k,1 ∈ J+k,1(Γ

J(O)) for k = 4,8 by

φ
+
4,1 =

1
2
(x6 + y6)θ1,0 +

1
2

u6(θ1,1/2 +θ1,i/2)+
1
2
(x6 − y6)θ1,(1+i)/2,

φ
+
8,1 =

1
2
(x14 + y14)θ1,0 +

1
2

u14(θ1,1/2 +θ1,i/2)+
1
2
(x14 − y14)θ1,(1+i)/2

and

φ
+,cusp
10,1 =

1
64

x6y6u6(θ1,1/2 −θ1,i/2) ∈ J+,cusp
10,1 (ΓJ(O)),

where

x = 1+2
∞

∑
n=1

e
n2
2 τ , y = 1+2

∞

∑
n=1

(−1)ne
n2
2 τ , u = 2e

1
8 τ

∞

∑
n=0

e
n(n+1)

2 τ .

Let ψ ∈ Jδ2,cusp
k2,m2

(ΓJ(O)) be fixed. Suppose that Jδ1,cusp
k1,m1

(ΓJ(O)) is a one dimensional
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space generated by φ . Then by 5.1.1, for each ϕ ∈ Jδ1δ2(−1)ν ,cusp
k1+k2+2ν ,m1+m2

(ΓJ(O)) we have

T ∗
ψ,ν(ϕ)(τ,z,w) = βϕφ(τ,z,w),

where βϕ is a constant depending on ϕ . Now equating the (n,r)-th Fourier coefficient

on each side, we get a relationship among special values of Rankin–Selberg type con-

volutions of the Hermitian Jacobi forms ϕ and ψ with the Fourier coefficients of φ .

For example, we take ψ = φ
+
8,1 −E4φ

+
4,1 ∈ J+,cusp

8,1 (ΓJ(O)), where E4 is the normalized

Eisenstein series of weight 4 for SL2(Z). We take k1 = 10, m1 = 1 and δ = + such

that J+,cusp
10,1 (ΓJ(O)) is a one-dimensional Hermitian Jacobi cusp space generated by

φ
+,cusp
10,1 . Then we get the following relation

βϕc(n,r) = 215+2ν Γ(16+2ν)(n−|r|2)8

Γ(8)(4π)8+2ν

ν

∑
l=0

Al(10,1,8,1;ν)(4n−4|r|2)l

× ∑
n1∈Z,r1∈O#

n1−|r1|2>0
2(n+n1)−|r+r1|2>0

(4n1 −4|r1|2)ν−la(n1,r1)b(n+n1,r+ r1)

(2(n+n1 −|r+ r1|2))16+2ν
,

for all n ∈ Z, r ∈ O# such that n−|r|2 > 0, where a(p,q), b(p,q) and c(p,q) are the

(p,q)-th Fourier coefficients of φ
+
8,1 −E4φ

+
4,1, ϕ and φ

+,cusp
10,1 respectively. Also if ν = 0

in the above example, we get the special values of Rankin–Selberg type convolutions of

ϕ and φ
+
8,1 −E4φ

+
4,1 in terms of the Fourier coefficients of φ

+,cusp
10,1

βϕc(n,r) =
Γ(16)(n−|r|2)8

Γ(8)2π8 ∑
n1∈Z,r1∈O#

n1−|r1|2>0
2(n+n1)−|r+r1|2>0

a(n1,r1)b(n+n1,r+ r1)

(2(n+n1 −|r+ r1|2))16 .

Remark 5.2.2. Martin and Senadheera (2017) have studied Rankin–Cohen type differ-

ential operators for Hermitian Jacobi forms. The method used in the proof of Theorem

5.1.1 can also be used in the computation of the adjoint linear functions constructed

using these operators.
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CHAPTER 6

CONCLUSION AND FUTURE SCOPE

Inspired by the conjecture of Zagier (1981), works of Hafner and Stopple (2000) and
Chakraborty et al. (2017), we have considered a few interesting Lambert series in Chap-
ter 2, Chapter 3 and Chapter 4. In the second chapter, we have studied a Lambert
series associated to a cusp form and the Möbius function. Using the functional equa-
tion of the L-function associated to the cusp form and the functional equation of the
Riemann zeta function, we have established an exact formula for the Lambert series

∑
∞
n=1[a f (n) ∗ µ(n)]e−ny in terms of the non-trivial zeros of the Riemann zeta function

and as a consequence, under the assumption of the Riemann Hypothesis and simplicity
of the non-trivial zeros, we have also observed that y1/2

∑
∞
n=1[a f (n)∗µ(n)]e−ny has an

oscillatory behaviour when y → 0+.

In the third chapter, we have established an exact formula for the Lambert series

∑
∞
n=1[a f (n)ψ(n) ∗ µ(n)ψ ′(n)]e−ny in terms of the non-trivial zeros of L(s,ψ ′), where

a f (n) is the nth Fourier coefficient of a cusp form f over a congruence subgroup, and
ψ and ψ ′ are primitive Dirichlet characters, thereby generalizing our earlier result to
congruence subgroups.

In the fourth chapter, we have established an exact formula for the Lambert series
yk

∑
∞
n=1 a f (n2)e−ny, and we found that the main term can be expressed in terms of the

non-trivial zeros of ζ (s), and the error term is expressed in terms of the hypergeometric
function 3F2(a,b,c;d;z).

In the identity (1.0.1) of Hardy and Littlewood, and also in Theorem 2.1.1 and The-
orem 4.1.1, we have assumed that all the non-trivial zeros are simple, whereas Corollary
2.1.2 and Corollary 4.2.1 is true under the additional assumption of the Riemann Hy-
pothesis. Similarly, while Theorem 3.1.1 requires only the assumption of simplicity
of zeros of the Dirichlet L-function L(s,ψ ′), the Corollary 3.3.1 requires an additional
assumption of generalized Riemann Hypothesis. In 2013, Bui and Heath-Brown (2013)
proved that at least 70% of the non-trivial zeros are simple, under the assumption of the
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Riemann Hypothesis. This was previously established by Conrey et al. (1998) under the
assumption of the Generalized Riemann Hypothesis. Simplicity of the non-trivial zeros
implies |ζ ′(ρ)| > 0, but till today we do not have much information about the lower
bound for |ζ ′(ρ)| without the assumption of any hypothesis. Due to this difficulty, even
after assuming Riemann Hypothesis, Hardy and Littlewood mentioned that the conver-
gence of the infinite series over ρ in (1.0.1) is not immediate. We know |ζ ′(ρ)|≫ |ρ|−1

under the assumption of a weak Mertens Hypothesis (Titchmarsh, 1986, p. 377, Equa-
tion (14.29.3)). In a private communication, Prof. Steven Gonek had informed us that
he had previously conjectured that |ζ ′(ρ)| ≫ |ρ|− 1

3+ε for any ε > 0. If we assume one
of these two results, then using Stirling’s formula (2.2.1) for the Gamma function, one
can straight away prove the convergence of the series over ρ present in (1.0.1), (2.1.2),
(4.1.2). Not only that, these series converge very rapidly. Over the years there has
been a lot of research going on the distribution of the moments of the derivative of the
Riemann zeta function at the non-trivial zeros. Interested readers can see Fujii (2012),
Gonek (1984), Hejhal (1989), Hiary and Odlyzko (2011) and the references therein.

In 2018, Banerjee and Chakraborty (2019) established an asymptotic expansion for
the Lambert series ∑

∞
n=1 a f (n)ag(n)e−ny, where a f (n) and ag(n) are nth Fourier coef-

ficients of Hecke-Maass cusp forms f and g respectively. Recently, the same Lambert
series corresponding to the Fourier coefficents of Hilbert modular forms has been stud-
ied by Agnihotri (2021). It would be an interesting problem to study a more general
Lambert series yk

∑
∞
n=1 |a f (n)|Ne−ny for N ≥ 3. It would also be a challenging prob-

lem to classify automorphic forms for which constant terms will have an asymptotic
expansion in terms of the non-trivial zeros of ζ (s) or the Dirichlet L-function.

In the fifth and the penultimate chapter, inspired by the works of Kohnen (1991),
Herrero (2015) and Jha and Sahu (2016), we have defined a family of linear operators
between spaces of Hermitian Jacobi cusp forms using Rankin–Cohen brackets for a
fixed Hermitian Jacobi cusp form. We have computed the adjoint maps of such a family
with respect to the Petersson scalar product. The Fourier coefficients of the Hermi-
tian Jacobi cusp forms constructed using this method involve special values of certain
Dirichlet series associated to Hermitian Jacobi cusp forms. Krieg (1985) has developed
the theory of Modular forms on half-spaces of quaternions. It would be interesting to
define and study Rankin–Cohen brackets on this space.
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LIST OF SYMBOLS

N : Set of natural numbers

Z : Set of integers

Q : Set of rational numbers

R : Set of real numbers

C : Set of complex numbers

H : Complex upper half plane

H∗ : Extended complex half plane

Z[i] : {a+ ib | a,b ∈ Z}

Q[i] : {a+ ib | a,b ∈Q}

ℜ(z) : Real part of a complex number z

ℑ(z) : Imaginary part of a complex number z

Mn(R) : Set of all n×n matrices with elements in a ring R

SLn(R) : Set of all n×n matrices with elements in a ring R with determinant 1

µ(n) : Möbius function

ζ (s) : Riemann zeta function

∆ : Ramanujan cusp form

τ(n) : Ramanujan tau function
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