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ABSTRACT

A Lambert series is a series of the form L(g) =Y, a(n)lf—r;n, where a(n) is an arith-
metic function and g € C. By setting b(n) = Y 4, a(d) and g = e, the series will take
the form L(y) = Y7 b(n)e™™. In 1981, Zagier, conjectured that the Lambert series
y12¥=  2(n)e~*, which is the constant term of the automorphic form y'2|A(z)|?,
where A(z) is the Ramanujan cusp form of weight 12, has an asymptotic expansion
when y — 0T, and it can be expressed in terms of the non-trivial zeros of the Riemann
zeta function (s). In 2000, Hafner and Stopple under the assumption of the Riemann
Hypothesis proved this conjecture. In this thesis, we consider a Lambert series asso-
ciated to a cusp form and the Mobius function. Using the functional equation of the
L-function associated to the cusp form and the functional equation of the Riemann zeta
function, we prove an exact formula for the Lambert series. As a consequence, we also
derive an asymptotic expansion for the same. We extend our work to higher level cusp
forms by considering a more general twisted Lambert series. We also establish an exact
formula and asymptotic expansion for a Lambert series associated with the Symmetric
square L-function.

Rankin—Cohen brackets are bilinear differential operators defined on the space of
modular forms. In 2015, Herrero constructed the adjoint map of some linear maps de-
fined by using the Rankin—Cohen brackets. In this thesis, we generalize the work of
Herrero to the case of Hermitian Jacobi forms over Q(i). Given a fixed Hermitian Ja-
cobi cusp form, we define a family of linear operators between spaces of Hermitian
Jacobi cusp forms using Rankin—Cohen brackets. We compute the adjoint maps of such
family with respect to the Petersson scalar product. The Fourier coefficients of the Her-
mitian Jacobi cusp forms constructed using this method involve special values of certain

Dirichlet series associated to Hermitian Jacobi cusp forms.

Keywords: Lambert series, Riemann zeta function, non-trivial zeros, modular form,
cusp form, Dirichlet L-function, Symmetric square L-function, Rankin-Selberg L-function,

Hermitian Jacobi forms, Rankin—Cohen bracket, Adjoint map.
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CHAPTER 1
INTRODUCTION

A Lambert series is a series of the form

n

S q

n=1 q
where a(n) is an arithmetic function and g € C. If the series )~ ; a(n) converges,
then L(q) converges for all ¢ with |g| # 1. Otherwise, it converges whenever the series

Y- a(n)q" converges. For [g| < 1, by setting b(n) = Y4, a(d), we can show that

Lig) = ilb<n>q".

If we take a(n) = 1 for all n, then we get b(n) =Y 4, 1, which is the divisor function of

n. If we take g = e~ %, then the series will take the form
L(z) = Z b(n)e ™.
n=1

Lambert considered this series in relation with the convergence of power series. Over
the years, this family of series has been studied by various mathematicians. Readers
may refer to Berndt (1999) for more details. |Hardy and Ramanujan (1918) used the
behaviour of a certain Lambert series as ¢ — 1 to derive an asymptotic expansion for

the general partition function.

Ramanujan, during his stay at Trinity College, communicated an identity involving

the Mobius function to Hardy and Littewood. For any positive real number r,

i ‘Ll(l’l) efr/n2 _ \/Ei Il(”) efnz/nzr.
n=1 n r n=1 n

Unfortunately, this formula is not true. A nice explanation about the incorrectness of
the above formula was given by Berndt (1998). Later, Hardy and Littlewood| (1916)
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established the following corrected version of the above formula:

Let a; and o be two positive real numbers such that ;0 = 7. Assume that all the

non-trivial zeros of the Riemann zeta function {(s) are simple. Then

F(12p> P
2\/_2 ) , (1.0.1)

2

,al \/_Z —ocg n* _

\/oc_li p(n)
n=1

where the sum on the right hand side runs over all the non-trivial zeros of {(s). This
infinite sum is convergent under the assumption of bracketing the terms such that the
non-trivial zeros p; and p; are included in the same bracket if they satisfy

Co3(p1) _ GS(p)
’S(pl) (p2)| <e log(S(Pl)) +e log(S(pz))7

where Cj is some positive constant. Hardy and Littlewood also mentioned that it is quite
possible that this series may converge without the assumption of bracketing the terms,
but they were unable to prove it even after assuming the Riemann Hypothesis. Over the
years, formula (1.0.1) has attracted many mathematicians. Readers can also see detailed
discussions on this corrected formula in (Berndt, |1998, p. 470), (Paris and Kaminski,
2001}, p. 143), and (Titchmarsh, 1986, p. 219). As an application of the above formula
(1.0.1)), Hardy and Littlewood showed that the following condition

o K(n)

_L_ > ,l+
e ; 2n+1)—0(x i E), as X — oo, (1.0.2)

is actually equivalent to the Riemann Hypothesis (Hardy and Littlewood,|1916, p. 161).
Bhaskaran|(1997) connected the formula (1.0.T]) with Wiener’s Tauberian theory and the
Fourier reciprocity. Dixit in (Dixit, 2012, Theorem 1.9) obtained a character analogue
of the identity (1.0.I) and later he also established (Dixit, 2013, Theorem 1.7) a one

variable generalization of (I.0.T)) under the assumption that the series

I (1%’)> 1 2
—p. 1 z ) /2P
1F1 ( s 5y —— | 7T al,
%" '"(p) 2 2 4

where | Fj(a; b; ¢) defined in (I.5.1)) below, is convergent. Again, Dixit, Roy, and Za-
harescu (Dixit et al.| (2015))) gave a generalization of (1.0.I)) in the setting of Hecke
eigenform. In the same paper, they also obtained a Riesz-type criterion for the Riemann
Hypothesis similar to (I.0.2). Recently, Roy et al|(2016) studied an identity similar to

(T.0.1), corresponding to an arithmetic function, which is the convolution of Dirichlet
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characters and the Mobius function.

In 1981, Zagier, conjectured that the Lambert series y'2 Y2 72(n)e~*™, which is
the constant term of the automorphic form y'2|A(z)|?, where A(z) is the Ramanujan cusp
form of weight 12, has an asymptotic expansion when y — 07, and it can be expressed
in terms of the non-trivial zeros of the Riemann zeta function {(s). In thesis, inspired
by the conjecture of [Zagier (1981)), we study some interesting Lambert series associated

with cusp forms.

Let k1,ko > 0and v > 0. Let f and g be modular forms of weight k1, k, on the full
modular group SLy(Z). The v-th Rankin—Cohen bracket [, ]y is a bilinear differential
operator defined by

L 4 ! k1+V—1 k2—|—V—1 () (v—=I)
= R (T (BT 0,

=0

Then [f, g]y is a modular form of weight k; + k; + 2v. Works of Rankin|(1956) and ex-
plicit examples given by Cohen|(1975) led to the development of Rankin—Cohen brack-
ets. Over the years, Rankin—Cohen brackets have been defined and studied for various
automorphic forms such as Jacobi forms, Siegel forms etc. In the case of Hermitian
Jacobi forms, the Rankin—Cohen brackets were introduced by Kim| (2002). However
her results are incorrect if the underlying field is the Gaussian number field. Later,
Martin and Senadheeral (2017) corrected the results of Kim for the Gaussian number
field. Also, Martin| (2016), in his thesis, introduced a different kind of Rankin—Cohen
bracket on Hermitian Jacobi forms for the Gaussian number field. This definition of
Rankin—Cohen bracket by Martin is similar to the definition of Rankin—Cohen bracket
introduced by (Choie (1997, |1998) in the case of Jacobi forms. In this thesis, we de-
fine a family of linear operators between spaces of Hermitian Jacobi cusp forms using
Rankin—Cohen brackets defined by Martin| (2016). We compute the adjoint maps of

such family with respect to the Petersson scalar product.

We start with some basic definitions and results. This is to facilitate the readability
of the thesis. For details regarding analytic number theory and modular forms, the
readers are referred to Iwaniec and Kowalski| (2004)), |Diamond and Shurman| (2005))
and Murty et al. (2015).



1.1 SOME ARITHMETIC FUNCTIONS

1.1.1 DIRICHLET CHARACTERS

Let M be a natural number. A Dirichlet character ¥ of modulus M is a homomorphism

from the multiplicative group (Z/MZ)* into C*. It can be extended to N by defining

x(n (mod M)) if ged(n,M) =1
x(n) = ,
0 otherwise.

For a divisor d of M, if there exists a character y’ of modulus d and ) (n) = x’(n) for all
n with ged(n, M) = 1, then we say x is induced by x’. A character which is not induced
by any other character is called a primitive character. If the homomorphism y is trivial,
that is, if x(n) = 1 for all n with ged(n,M) = 1, then % is called the principal character

of modulus M.

1.1.2 THE MOBIUS FUNCTION

The Mobius function pt(n) is an arithmetic function defined as

(
1 if n is a square-free positive integer with

an even number of prime factors,
p(n) = —1 if nis a square-free positive integer with
an odd number of prime factors,

0 if n has a squared prime factor.

1.2 MODULAR FORMS

Let HH={z € C|3(z) > 0} be the complex upper half-plane in the Euclidean topology.
b
The group GL; (Q) = { (a d> €M (Q) ‘ ad —bc > 0} acts on Hl by fractional linear
C

transformation, that is,

b b
(“ )z—“”b Vze Hand (“ d)eGL;(@).

c d)” cz+d c

4



1.2.1 THE MODULAR GROUP AND THE CONGRUENCE SUB-
GROUPS

The subgroup SL,(Z) of GL; (Q), defined by

SLy(Z) = { (Z’ Z) € My(Z) ‘ad—bc: 1}

is called the full modular group, or simply the modular group. For N € N the principal
congruence subgroup of level N, I'(N), is defined by
a b a b
(N) = € SLa(Z) |
w={ (1 1) esum|(* 1)

10
(0 1) (mod N) }
Note that I'(1) = SL,(Z).

A subgroup I" of SL,(Z) is called a congruence subgroup if there exists N € N such that
['(N) C T. The least such N is called the level of I'. Note that, since I'(NV) is a subgroup

of finite index in SL,(7Z), every congruence subgroup is also of finite index in SL,(Z).

Example 1.2.1. For N € N, let

[o(N) = { (“ Z) € SLy(Z) ‘ c=0 (mod N)}

c

The group T'g(N) is a congruence subgroup, called the Hecke subgroup.

Example 1.2.2. Consider the surjective homomorphism T'o(N) — (Z/NZ) * defined by

((CZ Z>—>d (mod N).

The kernel of this map, denoted by I'|(N), is given by

FI(N):{C Z) EFO(N)‘ d=1 (mod N) }

and is also a congruence subgroup.

1.2.2 THE SPACE OF MODULAR FORMS

The extended upper half-plane is defined by H* = HU QU {iee}. By identifying oo

with %, the action of a congruence subgroup can be extended to H* in a natural way by

5



defining

a b\r ar-+bs r
- = —  for - U{ioo}.
(c d) s cr+ds’ or s € QU{ie}

The equivalence classes in Q U {ico} under the action of a congruence subgroup I' are
called the cusps of T".

This group action extends to a family of actions on the set of complex valued functions
on H. Let k be a positive integer. For a complex function f defined on H, the action of

the congruence subgroup I" is given by the k-slash operator as follows:

a b
Flev(@) = (cz+d)“f(yz), VzeH, y= (c d) el
A holomorphic function f : H — C is called a modular form of weight k on a congruence
subgroup I if it satisfies the following conditions:
(1)Forall ye I and z € H,

[ lev(2) = f(2).
(2) For vy € SLy(Z), f|ry has a Fourier expansion of the form

flev(@) =Y ag,(n)g),
n=0

2miz/h

1 h
where g, = e , z € H, and A is the smallest positive integer such that 0 1 el

Ifas),4(0) =0 forall y € SLy(Z) then f is called a cusp form. We say that the cusp form
is normalised if a(1) = 1. The finite dimensional complex vector space of all modular
forms of weight k on a congruence subgroup I' is denoted by M, (I"). The subspace of
M, (T") consisting of all cusp forms is denoted by Sy (T").

Let ¥ be a Dirichlet character modulo N. A function f is called a modular form of
weight k, level N and character y (or Nebentypus y) if f € M (I'1(N)) and satisfies

f(vz) = x(d)(cz+d)* f(2),

forall ye I'g(N), z € H.

The space of all such modular forms is denoted by My (I'o(N), x) and the corresponding
space of cusp forms is denoted by Si(I'g(N), x). In particular, if ) is a principal char-
acter then we get My(I'o(N), x) = My(To(N)) and S (To(N), x) = Sk(To(N)).



1.2.3 THE RAMANUJAN CUSP FORM

2miz

Let g = e“™*, z € H. The Ramanujan cusp form A is given by the infinite product
g2, (1 —¢")?*. Then A is indeed a modular form of weight 12 on the full modular

group SL,(Z). Moreover, it is a cusp form with the Fourier series expansion
Az) =} t(n)q",
n=1

where 7(n) is famously known as the Ramanujan tau function. Ramanujan (2000) stud-
ied this infinite series A. His conjectures on its Fourier coefficients 7(n) resulted in

development of Hecke theory for modular forms.

1.2.4 EISENSTEIN SERIES OF LEVEL ONE

Let k > 4, z € H. The Eisenstein series of weight k for SL,(Z) is defined by

1

Gr(z) = mz+n)t

72\(0,0)

Then the series Gi(z) converges absolutely. Moreover, Gi(z) € My(SLy(Z)). The nor-

malized Eisenstein series is given by

L
26 (k)

where {(s) is the Riemann zeta function (see [1.4. 1)

E(z) = Gi(2),

1.2.5 THE PETERSSON SCALAR PRODUCT

Let ' be a congruence subgroup of SLy(Z) with index [SLy(Z) : I']. The Petersson
scalar product (, )r is defined by
o Pp—

I\H

where T'\H is any fundamental domain for the action of I on H, and z = x+iy. We
see that this integral is convergent and its evaluation is independent of the choice of
the fundamental domain. With respect to this scalar product, Si(I") becomes a finite

dimensional Hilbert space.



1.2.6 THE HECKE OPERATORS AND HECKE EIGENFORMS

Let m be a positive integer. The Hecke operators 7, are linear operators on the space
M;(To(N), x) which are defined as follows:

If f(z) =YX gar(n)g" € Mi(To(N), %), g = e*™=, then

Tm<f<z>>=i( )3 x(d)d“af(;i?))q",

n=0 \d|gcd(m,n)

where a¢(*77) is taken to be zero unless “7 is a non-negative integer.

If feSi(To(N),x) is an eigenfunction for all Hecke operators 7;,, then it is called a
Hecke eigenform. If f(z) = Y~ ar(n)q" € Mi(I'o(N), x) is an eigenform, then it is
known that, a f(n) € R, for every n.

1.3 HERMITIAN JACOBI FORMS

Eichler and Zagier| (1985), in their monograph, studied a class of functions called Ja-
cobi forms. They are holomorphic functions on H x C. These functions appear as
Fourier-Jacobi coefficients of Siegel modular forms. They play a very important role in
establishing Saito-Kurokawa conjecture which gives a connection between the space of
elliptic modular forms and the space of Siegel modular forms.

Hermitian Jacobi forms are holomorphic functions on H x C x C. They appear
as Fourier-Jacobi coefficients of Hermitian modular forms which are generalisation of
Siegel modular forms. Haverkamp| (1995, |1996) systematically studied Hermitian Ja-
cobi forms. Later |Das (2010alb) and Sasaki| (2007)) contributed further to the theory of
Hermitian Jacobi forms over Q(i). In the case of the classical Jacobi forms, the action
of the heat operator can be “corrected" so that Jacobi forms of weight k are mapped to
Jacobi forms of weight k4 2 (see |Richter| (2009)). In the case of the Hermitian Jacobi

forms, the heat operator L,, for any integer m is defined by

1 . d 0?
L, := —(271_1,)2 (87rlm% _4—8w8z> .

Richter and Senadheera (2015) showed that with the original definition of Hermitian
Jacobi forms over Q(i), the action of the heat operator cannot be “corrected” as in
the case of the classical Jacobi forms. The authors introduced the concept of parity
for Hermitian Jacobi forms over QQ(i) such that the action of the heat operator can be

"corrected".



1.3.1 BASIC DEFINITIONS

Let & := Z][i], the ring of integers of Q(i). Let &* := £ be the inverse different of Q(i)

over Q. Thatis, 0% = {x € Q(i) | tr(xy) € Z[i],for all y € Z(i)}. Let 0* = {41, +i} be
the set of units in 0. Let I'(0) := {eM | e € 6, M € SLy(Z)}. The Hermitian Jacobi
group is defined by

IV(0):=T(0)x 0* = {y=(eM,X) | eM € T(0), X € 0?}.

The action of the Hermitian Jacobi group I'/ (&) on H x C? is defined by

b b A AT+
’}/.(T’Z’W):<8<a d),[l,u]>'(T,Z,W):(aT+ 8Z+ T—I—,u,éw—k T"‘u),

c ct+d’ cT+d cT+d

C

b
where € € 0, (a d) € SLy(Z) and A,u € 0. This action extends to a family of

actions on the set of functions from H x C?>to C. Let ¢ : H x C> — C. Let § € {+,—},

k be a positive integer and m be a non-negative integer. We define the action of I'V(©)
on ¢ by

_ _ . 3,7 _c(zHATH) (WHATH)
(0lims7) (T,2,w) = o(€)e K (cz+d) *ePmmAAriAztin) e+ ¢(v-(7,2,w))

(1.3.1)

where
1 if 0=+,

e if §=-—,

and y = (a (j Z) ,[A,M) c’(0).

Definition 1.3.1. (Richter and Senadheeral (2015)) A holomorphic function ¢ : H x
C? — C is a Hermitian Jacobi form of weight k, index m and parity 8§ on TV (0) if for

each y = (8 (a 2) ,[l,u]) € IV(0) we have
c

(P |k,m,5 Y= ‘P,

o(e) =

and @ has a Fourier expansion of the form

(P(T,Z,W) — Z C(n,r)eZEi(”T+rz+7W). (1.3_2)

nez,rec*
nm—|r|>>0

9



A Hermitian Jacobi form is called a Hermitian Jacobi cusp form if c(n,r) = 0 whenever

nm — |r|? = 0 in the Fourier expansion given in (I1.3.2).

We denote by J,fm (I'V(0)) the complex vetor space of Hermitian Jacobi forms of
weight k, index m and parity § on I/ (&). We denote by J,f “UP(IV(0)) the vector space

of Hermitian Jacobi cusp forms of weight k, index m and parity & on IV (&).

1.3.2 POINCARE SERIES FOR HERMITIAN JACOBI FORMS

It is easy to check that for any positive integer k, m and 0 € {+,—}, we have

eZm’(nr—i—rz—i—fw 2ri(nT+rz+iw)

) ‘k,m,5 Y=e

forn € Z and r € 0%, if and only if

yerl(o) :{((é i) ,[0,;4]) \teZ,ueﬁ}.

For fixed m,n,r with nm — |r|> > 0, the (n,r)-th Poincaré series of weight k > 4,
index m, and parity § on I'V(©) is defined by

PErd(twy= Y (ezm("wr”fw) lkm.6 Y) (T,2,w).
YELL(ON\IY (0)

It is known that P,Ifjﬁ"’(s € JEZMSP(FJ(ﬁ)).

1.3.3 THE PETERSSON SCALAR PRODUCT ON HERMITIAN
JACOBI FORMS

Lett=u+ive H,z=x;+iy; € C,w=x+1iy, € C. The measure
dV = v~ *dudvdx;dydx,dy,
is invariant for the action of IV (&) on H x C2.

Definition 1.3.2. (Haverkamp| (1995)) Let ¢,y € J,f (IY(0)) such that at least one

among them is a cusp form. The Petersson scalar product of ¢,y is defined by

o= [ oewmwmame T
IV (6)\HxC?

10



With respect to the above scalar product J ,f . (IY(©)) becomes a finite dimensional
Hilbert space.

We have the following lemma (Kumar and Ramakrishnan, 2018, Lemma 2.2).

Lemma 1.3.3. Let ¢ € J (IV(0)) with Fourier coefficients c(n,r). Let n,r be such
that nm — |r|*> > 0. Then

mk 3T (k—2)

km, 6\ __
<¢7Pn,r > _C(n’r)n.k_2(4(nm_|r|2))k_2'

1.3.4 RANKIN-COHEN BRACKETS FOR HERMITIAN JACOBI
FORMS

Let ¢(7,w,z), w(T,w,z) be holomorphic functions on H x C2. Let ki, kp,m; and m, be
positive integers and v > 0 be an integer. Martin (2016) defined the v-th Rankin—Cohen

bracket as

o= X o (M) (7)) m bt oz . a33)

= v—I
where L,, = ﬁ (SEim% — 4%) is the heat operator.
Martin proved that if ¢ € JZ‘ml (IV(0)) and y € J,iz.mz(l"f(ﬁ)) then [[¢,y]]y €

J6182(—1)V
k1+ky+2v,m+my

bracket is also a cusp form.

(I (0)). If one of these is a cusp form then the resultant Rankin—-Cohen

1.4 DIRICHLET SERIES AND L-FUNCTIONS

14.1 THE REIMANN ZETA FUNCTION

Let s € C with R(s) > 1. The Riemann zeta function is given by the series

The series converges absolutely, and hence defines an analytic function in the region

R(s) > 1. Euler proved that {(s) has a product expansion:

()= [T a-p™)"

p:prime
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Riemann established the meromorphic continuation of § () to the whole complex plane

with a simple pole at s = 1. He also established the following functional equation:

1—
x/2T (%) ¢(s) = nt=1/20 (TS> C(1—s). (1.4.1)
From the functional equation we can see that {(s) has zeros at s = —2,—4,.... These

are called the trivial zeros of {(s). Any other zero of {(s) is called a non-trivial zero.
From the functional equation it can be observed that all the non-trivial zeros lie in the
open strip 0 < R(s) < 1. Riemann conjectured that all the non-trivial zeros lie on the
the line R(s) = 1/2, called the critical line. The conjecture is famously known as the

Riemann hypothesis and is unsolved till date.

1.4.2 DIRICHLET L-FUNCTIONS

Let x be a Dirichlet character of modulus M. Dirichlet introduced the following series

associated to x:

n

Lis.z) = ilx(zl)_

This converges absolutely in R(s) > 1, and can be continued analytically to the entire
complex plane, unless it is a principal character, in which case the meromorphic contin-
uation of L(s, x) will have a simple pole at s = 1. The generalized Riemann hypothesis
states that all the non-trivial zeros of L(s, x) lie on the the line R(s) =1/2.

1.4.3 THE L-FUNCTION ATTACHED TO MODULAR FORMS

Let f(z) € Sx(SLy(Z)) be a normalized Hecke eigenform with the Fourier series expan-
sion .
f@) =Y ap(n)e*™, VzeH. (1.4.2)
n=1

The L-function associated to the cusp form f is defined as
L(f,s):=) as(n)n""
n=1

That this series is absolutely convergent for R(s) > kizl immediately follows from

Deligne’s bound a(n) = O(n'*~1)/2 4 ¢) for any € > 0 (see Deligne| (1974)). It is also
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well-known that L(f,s) has an Euler product representation

L) = TT (=) =B ), 95)> 2,

p:prime

where o, and f3, are complex conjugates with @, + 8, = ar(p) and a,f, = p*~'.

Hecke proved that L(f,s) can be analytically continued to an entire function and it

satisfies the following functional equation:
(27) T (s)L(f,s) = i*(2m) "% )T (k — s)L(f, k — s). (1.4.3)

This functional equation is equivalent to the following transformation formula:

i ap(nje™™ = (—)k i af(n)e<%’~”2">7

for R(y) > 0. For more details on this equivalence, the reader is referred works of
Bochner| (1951]) andChandrasekharan and Narasimhan| (1961)).

1.5 SOME SPECIAL FUNCTIONS

1.5.1 THE GAMMA FUNCTION

Let z be a complex number with 3(z) > 0. The Gamma function is defined by

['(z) = / e ' dr.
0

This extends meromorphically to the whole complex plane with simple poles at z = —n

of residue (—1)"/n!. The function doesn’t vanish anywhere in the complex plane.

1.5.2 THE GENERALIZED HYPERGEOMETRIC FUNCTION

Letay, -+ ,apandby,--- , b, be complex numbers. We denote ,F, (al, ce,apy by, by z)
as the generalized hypergeometric series (Olver et al., 2010, p. 404, Equation 16.2.1)
defined by

< (a1)n-- (ap)n
pFy (@i, ap;br, - by 2) ::%W% (1.5.1)
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where (a), := F&fl(:)" ) It p < g, this series converges for all complex values of z. When

p = g+ 1 it converges for |z| < 1, but it can be analytically continued to the whole

complex plane if we introduce a branch cut from 1 to +oe.

1.5.3 THE MEILJER G-FUNCTION

Definition 1.5.1. (Olver et al.| 2010, p. 415, Definition 16.17)

Letm,n, p,q be four non-negative integers such that0 <m<q, 0<n<p. Letay,--- ,a,
and by,--- by be p+q complex numbers such that a;—b; N for 1 <i<nand 1 <
Jj < m. Then the Meijer G-function is defined by the following line integral:

1 moL(b;— i F(l—aj+s)Z
Gm.,n<a17 vap‘z)_ [Tj=1 T'(b; —5) ( i+s) ds, (1.5.2)

b, b, T 2w r 1 T —b; +S)Hj nr1L(aj—s)

where the line of integration L separates the poles of the factors I'(bj — s) from those of

the factors I'(1 —aj+s). We consider the line of integration L going from —ioo to +ico.

Note that the integral converges if p+q < 2(m+n) and |arg(z)| < (m+n— 239)m.

Now we shall state Slater’s theorem (Olver et al., 2010, p. 415, Equation 16.17.2),
which will enable us to write the Meijer G-function in terms of generalized hypergeo-
metric functions. If p < gand b; — by & Z for j # k, 1 < j,k < m, then

al s A
Gmr ' 7p‘z
2] <b1,-'-,b
Zquk Fq- 1(1+bk—01, 1 +br—ap;1+by—by,---,

by — by (1P ), (1.5.3)
where * indicates that the entry 1 + by — by is omitted and

DI (b= bi) [Tj— T(1+ by —a;)

pax(®) = '
jem1 L1 +be = b)) j:n—l—lr(aj_bk)

1.6 ORGANIZATION OF THE THESIS

This thesis consists of six chapters. In Chapter 1 we have given the mathematical back-
ground which is necessary to understand the subsequent chapters. In Chapter 2, we have
investigated a Lambert series associated to the Fourier coefficients of a cusp form on the

full modular group and the Mobius function pt(n). We derive an exact formula for the

14



Lambert series in terms of the non-trivial zeros of the Riemann zeta function, and the
error term is expressed as an infinite series involving generalized hypergeometric se-
ries o F| (a, b; c;z) using the functional equations of the L-function associated to the cusp
form and the Riemann zeta function. In Chapter 3, we have generalized the works of
Chapter 2 to higher level modular forms, and also have obtained a character analogue.
By continuing our investigation of Lambert series, in Chapter 4 we have investigated a
Lambert series associated with the Symmetric square L-function. In Chapter 5, we have
defined a family of linear operators between spaces of Hermitian Jacobi cusp forms us-
ing Rankin—Cohen brackets. We have computed the adjoint maps of such family with
respect to the Petersson scalar product. The conclusion and scope for future work is

given in the final chapter.
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CHAPTER 2

LAMBERT SERIES ASSOCIATED TO A
CUSP FORM AND THE MOBIUS
FUNCTION

Zagier conjectured (Zagier, [1981, p. 417) that the constant term of the automorphic form
y'2|A(z)|?, where A(z) is the Ramanujan cusp form of weight 12, that is, the Lambert

series -
ap(y) = y'? Z 72 (n)e 4", (2.0.1)
n=1

has an asymptotic expansion when y — 0, and it can be expressed in terms of the non-
trivial zeros of the Riemann zeta function {(s). Interestingly, he also observed that the
graph of ag(y) has an oscillatory behaviour when y — 0. His main prediction was that

ao(y) will have the following asymptotic expansion:
_p
aop(y) ~ C+Zyl 7Ap,
0

where C is some constant, and the sum over p runs through all the non-trivial zeros of
(s), and A, are some complex numbers. Assuming the Riemann Hypothesis, that is,

writing p = % =+ it,,, above expression becomes

> t,lo
ao(y) ~ C+y*/* Z ay cos (q),ﬂr#) , asy— 07,

n=1

where a, and ¢, are some constants. Due to the presence of cosine functions in the
above asymptotic expansion, Zagier mentioned that ag(y) will have an oscillatory be-
haviour as y — 0. In 2000, Hafner and Stopple (2000), under the assumption of the
Riemann Hypothesis, proved both the asymptotic expansion as well as oscillatory be-
haviour of the Lambert series (2.0.1)). Recently, [Chakraborty et al.|(2017) proved that,

17



under the assumption of the Riemann Hypothesis, the following series
bo(y) :=y* Y lat(n)]e™™,
n=1

also has an asymptotic expansion when y — 0" and that it can be expressed in terms
of the non-trivial zeros of {(s), where as(n) is the nth Fourier coefficient of a Hecke
eigenform f of weight k over SL,(Z). In|Chakraborty et al.| (2018), authors observed
that the same phenomenon also occurs for any cusp form over the congruence subgroup
I'o(N) and derived an asymptotic expansion of the corresponding Lambert series. Re-
cently, Banerjee and Chakraborty| (2019) also studied the asymptotic behaviour of a

Lambert series associated to Maass cusp forms.

2.1 AN ASYMPTOTIC RESULT FOR LAMBERT SE-
RIES ASSOCIATED TO A CUSP FORM AND THE
MOBIUS FUNCTION

Define, aj(n) := (ag* 1) (n) = Lappar(d)u(3). Itis easy to observe that the Dirichlet
series Y~y a}y(n)n™" is absolutely convergent for %R(s) > ’%1 In the present chapter,
we study the Lambert series } " a;'i-(n)e*”y for y > 0. Chakraborty et al. (2018) stated
that the asymptotic expansion of this Lambert series can also be expressed in terms of
the non-trivial zeros of the Riemann zeta function {(s). Here we find that their predic-
tion is correct. Not only that, we also establish the oscillatory behaviour of the Lambert

series y!/2 Y| ap(n)e™™ asy — 07

Let us define the arithmetic function A%(n) associated to ay(n) and p(n) by

A%(n) = (ap* i) (n), where py(n)= w(n)n* ! (2.1.1)

Note that the Dirichlet series },;” ; A%(n)n™" is absolutely convergent for R(s) > k.

The following theorem gives an exact formula for the Lambert series Y, ; a}(n)e ™™,

which eventually yields an asymptotic expansion of the Lambert series.

Theorem 2.1.1. (Juyal et al. (2022b)) Let f € Si(SL2(7Z)) be a cusp form with the n-th

Fourier coefficient ay(n). Assume that all the non-trivial zeros of §(s) are simple. Then
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for any positive y,

o0 A\ & A%(n) k k+1 1 2
I i f kk+1 1y _
T ajlne ™ = 20)+200) (57 ) X L bri (555 g ) 1.

k
n=1 n

where

9@)=Z%i, 2.1.2)
)

4 yP

and that the sum over p which runs through all the non-trivial zeros of {(s), involves
bracketing the terms so that the terms corresponding to py and p; are included in the

same bracket if they satisfy

_c_ Byl _c_ 13
’S(Pl) —3(P2)| <e 1B 4 TloeBp2))

where C is some positive constant.

An immediate consequence of the above theorem under the Riemann Hypothesis is

the following asymptotic result:

Corollary 2.1.2. Let M be a positive integer and f € Sx(SLy(Z)) be a normalized Hecke
eigenform with the n-th Fourier coefficient as(n). Assume the Riemann Hypothesis and

all the non-trivial zeros of (s) are simple. Then for y — 0%, we have

RS = M—1 ] 1
yZ Z a}(”)efny =2 Z I"nCOS<9n —l’nlog<y>) + Z Cmy2m+§ + 0f7k(y2M+§)7
n=l n=l m=1

where Cy, are absolute constants depending only on f, and r,e'®

tation of L(f, pn)l“(pn)(é"(pn))*1 with p, = % + it,, denoting the nth non-trivial zero of

is the polar represen-

$(s) in the upper critical line.

Remark 2.1.3. Theorem can be extended by analytic continuation for R(y) > 0,
and also note that Theorem [2.1.1is true for any cusp form, whereas Corollary2.1.2]is
true for any normalized Hecke eigenform. In Table [2.1] we have numerically verified

Theorem[2.1.1)for the Ramanujan cusp form.

Remark 2.1.4. Due to the presence of the cosine functions in Corollary one can

observe that the Lambert series y'/? Yo a}(n)e_”y also has an oscillatory behaviour

asy— 0T,

In the next section, we state a few well-known results which will be useful through-
out the chapter.
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2.2 WELL-KNOWN RESULTS

Lemma 2.2.1. Suppose there exists a sequence of arbitrarily large positive numbers T
with |T —3(p)| > e AR3W@)I/102(30)) for every non-trivial zero p of {(s), where A is

some suitable positive constant. Then,

1 BT
— <P
|8(0+iT)|

for some suitable constant 0 < B < 1w /4.
Proof. A proof of this lemma can be found in (Titchmarsh, 1986, p. 219). O

Lemma 2.2.2. In any vertical strip 6y < 6 < b, there exists a constant C(0y), such that
IL(f, 0 +iT)| < |T|(®)

as |T| — oo.
Proof. One can see this result in (Iwaniec and Kowalski, 2004, p. 97, Lemma 5.2). [

Lemma 2.2.3 (Stirling’s formula for the Gamma function). For s = 6 +iT in a
vertical strip a < ¢ < B,

ID(c +iT)| = V2x|T|° /2277 (1+0<%>) as |T|—o.  (22.1)

Proof. One can see a proof of this result in (Iwaniec and Kowalski, 2004, p. 151). [

Lemma 2.2.4 (Duplication formula for the Gamma function). For any complex num-

ber z, we have

[(z)[(z+5)2%

I'(2z) = NG

(2.2.2)

Lemma 2.2.5 (Inverse Mellin transform for the Gamma function). Let y and c be

two positive real numbers. Then

. 1 c—l—ioor 54
e —%/C_iw (s)y *ds.

Now we are ready to give the proof of Theorem[2.1.1]
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2.3 PROOF OF THEOREM 2.1.1 AND COROLLARY
2.1.2

Proof of Theorem[2.1.1} Using inverse Mellin transform for the Gamma function, we

i ay(n)e ™ = L/CH(>o L)L) y~*ds, (2.3.1)
n=1 ¢

write

for any ¢ > k+1 . The functional equation (I.4.3) of L(f,s) implies that I'(s)L(f,s) is
an entire functlon, and thus poles of the integrand function will be at the zeros of the
Riemann zeta function. To simplify (2.3.1)), we consider the contour % determined by
the line segments [c — iT,c+iT],[c+iT,A +iT],[A +iT,A —iT], and [A —iT,c —iT],
where T is some large positive real number and —1 < A < 0. Now appealing to the

Cauchy residue theorem, we get

L [ TOLS)
— | — "y Yds =& 232
e e AR ] (232)
where Zr(y) denotes the residual function consisting of finitely many terms con-
tributed by the non-trivial zeros p of {(s) with [3(p)| < T. Our first goal is to prove

that the horizontal integrals

_ L MTT()L(f,s) s _ L TL(s)L(f,s)
H, = 2_717i/c+iT (:(s) ds, H,:= 2717i/)L—iT Z0) y ds,

tend to zero as 7 — o. One can write

1 /?L I(c +iT)L(f,0 +iT)
| =

amiJe  C(o+iT)yo+T

Thus

el /1 IT(6 +iT)||L(f,0 +iT)|

do.
| (o +iT)|y°

Now invoking Lemmas[2.2.1] [2.2.2] and 2.2.3] one can show that

\Hy| < |T[AePT2171,

where 0 < B < /4. This implies H; vanishes as 7' — co. Similarly one can show that
H, also vanishes as T — oo. Therefore, letting T — oo in (2.3.2) and using (2.3.1)), we
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have

S o ay L AR T()L(f,s)
r;af(n)e y_z_m/_,-m SRy s 20) (23.3)

Now if we assume all the non-trivial zeros of {(s) are simple, we can evaluate Z(y) as

_ Y jim STPITOLUS) sy T(P)L(/.P)
L@(y)—;}%p O ; Tl (2.34)

where p runs through all the non-trivial zeros of {(s) in the critical strip. In general, if

mp 18 the multiplicity of p, then

mp=l (s —p)"eT(s s

o (mp —1)! s=p ds™e~! C(s)y

Now we shall concentrate on the following integral:

_ 1 AH”F()(f,)_s
V= /)L T s (2.3.5)

Use functional equation (1.4.3) of L(f,s) to get

N oo s 7S
=(g) —/ M ) e

change the variable s <+ k — s, to obtain

i \" 1 FAHED()L(fs) ¢y sk
J:(ﬂ> %/H_iw s (47[2) ds. (2.3.6)

Here we make use of the functional equation of {(s), that is, (1.4.1) and replace s by

k — s to see
L i)
Clk—s) F(—“—’;“) C(s—k+1)
Substitute (2.3.7) in (2.3.6) and simplify to obtain

k k=2+ieo T'(5)T (K52 s s
s f(y) 2;/“% e ’g%))c(ifkll) (%) ds. (23.8)

(2.3.7)

Note that, k <k—A <k+1as—1<A <0,soL(f,s)and m both are absolutely

convergent on the line R(s) = k — A. Therefore, using the definition (2.1.1) of A%(n),
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we can see that

L(f,s) S - - A
(2.3.9)
Cls—k+1) g’ ; r;
where i (n) and A% (n) are as defined in (2.1.1).

Using (2.3.9) in (2.3.8) and interchanging the order of summation and integration,

we get

the T () (v 3
o \/_( ) Z yln 27:1/1; FF(Q)) <4,);7[) ds.

Next, replace s by 2s, and then employ duplication formula (2.2.2)) for the Gamma
function I'(2s), to deduce

u o 1 k
Z / LWL+ CG-9) (% Vo o310
r(n 271'1 k=A o I'(s+ %) 4n’r? ' o

where z = 2~ 22 5. Observing the poles of the integrand, one can verify that the line of
integration R(s) = (k— A)/2 does not separate all the poles of the factors I'(s)I"(s + 5)
from those of the factor F(% —s). Thus we have to choose a new line of integration such
that it separates the poles of T'(s)I'(s+ 1) from that of F(% —s). Consider the contour ¢’
determined by the line segments [— —iT, K~ l +iT], ["_2’1 +iT,d+iT|,[d+iT,d —iT],
and [d —iT, % —iT], where T is some large positive real number and 0 < d < % Now

again utilizing the Cauchy residue theorem, we have

1 / (s)I( +%)F(’§‘—s)
1

2wl J¢'

Letting T — o and using Stirling’s formula (2.2.1)) for the Gamma function, one can
show that horizontal integrals vanish. Finally, calculating residue at k/2, we have

d-tieo Hrk— Ot
1 /+ T(s)I( +2)1F 375) g LOTCE) 4 (23.11)
d

s
C2iJacie T+ 1) r(3)
Now we make use of the definition (I.5.2) of the Meijer G-function. Considering
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by = %, and verifying all the

[NSTEd

m=1n=2p=2q=2anda; = l,ap = 1,b =

conditions for the Meijer G-function, we will have

1 d+i=T(s)T(s+ )T (5 —s) | Nan
27i ds=Gyy| , 1] ‘ : 23.12
Zni/d_,-w F(SJF%) zds 25 % Lk |7 ( )

11 ATOCAERY ke k41 1
1,2 ) o 2 0
Gy} (k &k ‘Z) = 2F (2 L z>. (2.3.13)
7

Zér(?iﬁ |:2F1 (g,%;%;—z) - 1] :

Now substitute the above representation of 7 in (2.3.10) to obtain

( ) ZAf % [2F1 (]; %,;,—z) —1] : (2.3.14)

Finally, substituting z = %, and combining (2.3.14), (2.3.3), and (2.3.4) in (2.3.3),

and using duplication formula, we can complete the proof of Theorem 2.1.1] O

Remark 2.3.1. Here we point out that the series involving »F) in Theorem that

= A7) kk+1 1 32
Fly =52 —1 2.3.1
n; {2 1<2’ 2 7 4n27r2> ] (2.3.15)

is absolutely convergent for any y > 0. For any fixed positive real number y, we can

is,

2
always find a large natural number N such that 4ny2_ﬂz < 1 for all n > N. Therefore,

using the definition of the generalized hypergeometric series, for n > N, we write

k kvl 1 ) Yoo B, AN\
2F1< — 5 —>—1‘§ Y - ;1") ’zn,m 22
!

22 2 anPn?




Hence, we have

k k+1 1 y? N? k k+1 1 »?
= D= — — 1| < — [ 1F , -1,
: 1(2’ 2 2 4nln? =n2 P\ 2 2 2N
for all n > N. Now separate the first N — 1 terms in the series (2.3.15) and then use
the above bound for remaining infinitely many terms to see the absolute convergence of

the series (2.3.13). Note that we have to use the fact that the Dirichlet series (2.3.9)) is
absolutely convergent for R(s) > k.

Proof of Corollary Using the definition of the generalized hypergeometric series
(Olver et al., 2010, p. 404, Equation 16.2.1) for y — 0™, one can write following asymp-
totic expansion of > F7:

kk+1 1 2 S L\ y\M
2k (5’ > ,5,—4,12”2)—1—23'"(;) +0"(<Z> ) (23.10)

m=1

(2)., ().,

1
where B,,, = (;) \a2ym

rem 2.1.1]to see tha

2}5 Je ™ =2 (k (#)kMZliA;zm (i

m=1 n=

and M is any positive integer. Now use (2.3.16)) in Theo-

2M> +2()

= Z Coy™" + 0k (PM) + 2(), (2.3.17)

m=1

where C,, = 2T°(k) ( ) By, Zn 17 +(2r21 Note that C,,’s are finite quantities since the

Dirichlet series Y.” | A%(n)n™* is absolutely convergent for R(s) > k. From the func-
tional equation of the Riemann zeta function it is immediate that if p, = % + it,, denotes
the nth non-trivial zero, then % — it, 1s also a non-trivial zero. Therefore, one can write
the infinite series expression (2.1.2) of Z(y) as

= T m(LBre)

Pl
Pu=3 Fitn, yor!(pn
t,>0

Here we have used the fact that f is a normalized Hecke eigenform. To simplify Z(y)

even more, we write r,e'® = L(f, p,)T(0,) (£ (pn)) " to see

V2G) =Y, 2rycos(6, —1alog(y)). (2.3.18)

Pn= % +itn7
t,>0
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Now combine (2.3.18)) and (2.3.17) to complete the proof of Corollary O

Table 2.1 : Verification of Theorem We took f(z) = A(z), the Ramanujan cusp
form. Here, in the left-hand side and right-hand side in the sum over n we considered
only the first 5000 terms. In the sum over p for &(y), we considered only 20 terms.

y Left-hand side Right-hand side

0.123 —0.0004629993871... | —0.0004629912383...
1 —0.0204523567610... | —0.0204523567622...
1.1234 | —0.0223212278858... | —0.0223212278873...
V3 —0.0185761774446... | —0.0185761774481...
2.543 +0.0035666059027... | +0.0035666058953...
T +0.0124169011322... | +0.0124169011209...
V2 +0.0062298234741... | +0.0062298234660...
10++/5 | 4.8516617384 x 107° | 4.8514902993 x 10~°©

We note that it was enough to take only the first 20 zeros in order for the first eight
digits on both sides of the Theorem [2.1.1| to coincide. This indicates that the residual
term Z(y) is indeed rapidly convergent.
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CHAPTER 3

TWISTED LAMBERT SERIES
ASSOCIATED TO A CUSP FORM AND THE
MOBIUS FUNCTION

In this chapter we continue our study of Lambert series and generalize the results of the

previous chapter. Here, we investigate the following Lambert series:
Ap(y) =} lap(n)w(n)*p(n)y'(n)le™, (3.0.1)
n=1

where ay(n) is the nth Fourier coefficient of a cusp form f of weight k, level Q and
Nebentypus y, and v,y are primitive Dirichlet characters. We derive an exact formula
for the above Lambert series involving the non-trivial zeros of L(s,y’) and a
generalized hypergeometric function, and thereby generalize Theorem [2.1.1]in two dif-
ferent directions. On the one hand, our work generalizes Theorem [2.1.1|for congruence
subgroups and on the other hand, we also get a character analogue. As an applica-
tion, we also derive an asymptotic expansion and establish an oscillatory behavior of
Y1724 #(y) asy — 0. Let k and Q be two positive integers. Let x be a Dirichlet char-
acter modulo Q and the Gauss sum €, is defined by €, := ngzl x( j)ez%. Consider
f(z) € Sk(To(Q), x) with the Fourier series expansion

f2)=Y as(n)e?™=, vzeH. (3.0.2)
n=1

It is known that for a positive integer r such that (Q,r) = 1 and a primitive Dirichlet

character ¥ modulo r, the y-twist of f is defined by

fole) = ilaf<n>w<n>e2ma
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is an element of S;(I'o(N), x w?), where N = Qr?. Hence it is natural to consider the

following Dirichlet series:

o)

L= X 2y,

The above series converges and hence defines an analytic function in R(s) > % It
is known as the y-twist of L¢(s), where L¢(s) = Y. 4" " the L-function attached

n=1 pns

to f. We can analytically extend Ls(s,y) into an entire function and the completed

2

(Murty et al., 2015 p. 131)

N
L-function A (s, y) = (‘/N) I(s)Ls(s, ) satisfies the following functional equation

As(s,¥) = =22 (NY(Q)Ag (k= 5,W), (3.03)

where

3.1 THE MAIN IDENTITY

For a fixed natural number k, let i (n) = p(n)n*~!. Let ' be a primitive Dirichlet
character modulo M, and

0, ¥(=1)=1,

1, y(-1)=-1.

The following result gives an exact formula for the Lambert series

Theorem 3.1.1. (Maji et al. (2022)) Let f € Si(T'0(Q), x) be a cusp form with the n-th
Fourier coefficient az(n). Let W and W' be primitive Dirichlet characters of modulus r
and M respectively. Assume that all the non-trivial zeros of L(s, ') are simple. For any

positive y, we have

e x(nw(Q)ey
}’81[,/

=1
i lag(n)W(n) * W (n)y'(n))] [2F1 (k—l—a k+1l+a 1+2a  N*? ) y —a)}

S

X ) s
Z pkta 2 2 2 A

+Z(y) + Ro,
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where N = Qr?, and the terms Ry and % (y) are defined as

—L}(OM) ifa=0and M > 1
/ AW - ) L ) F
Ry={ DOwy AT and %(y):}j—f(’,) V) ,(p)—l, (3.1.1)
0, otherwise 5 L (P, y') P

where the sum over p in %#(y), running through all the non-trivial zeros of L(s,y'),
involves bracketing the terms so that the terms corresponding to py and p, are included
in the same bracket if they satisfy

C3(py) ClS(pp)|

1S(p1) — S (p2)| < ¢ PES@II 4 ¢ BElSR2)3) (3.1.2)

where C is some positive constant.

First we collect some preliminary results which we use in the proof of the above
theorem. The following lemma gives an important bound for the inverse of the Dirichlet

L-function.

Lemma 3.1.2. Assume there exists a sequence of arbitrarily large positive numbers T
satisfying |T —3(p)| > e ARW@I/10e(3(P)43) for every non-trivial zero p of L(s, y'),

where A is some suitable positive constant. Then,

1 BT
— e < )
Lo+ T,y ¢

for some suitable constant 0 < B < /4.

Proof. A proof of this lemma can be given along similar lines to that in (Titchmarsh,
1986, p. 219). []

The next result says that any L-function associated to a cusp form can be bounded

by a suitable polynomial in a vertical strip.

Lemma 3.1.3. In any vertical strip 6y < 0 < b, there exists a constant C(0y), such that
Ly(o +iT, y)| < |T|%)

as |T| — oo.

Proof. One can see this result in (Iwaniec and Kowalski, 2004, p. 97, Lemma 5.2). [

Next we state the functional equation for the Dirichlet L-function.

29



Lemma 3.1.4. Let ' be a Dirichlet character Modulo M. Then the Dirichlet L-function
(S 1’4 ) Zn 1 ll/( )

functional equatton.

T A+a S+a N 81/[1 T _IAJ 1—S+a —
(M) F( 2 )L(S’W)_iam<ﬂ> 77— ) ti=sv).

Now we are ready to give the proof of Theorem[3.1.1]

Proof of Theorem[3.1.1] First, we note that the Lambert series
Y lap(n)w(n)+p(n)y' (n)]e"™
n=1

converges absolutely and uniformly for any y > 0. Now using inverse Mellin transform

for I'(s), one can write

y —ny _ S 1 C+ioo F(S)
;[af *1(n)y'(n)]e™ _’;[af(n)y/(n) *“(n)"/(")]z_m/c_m (ny)sds
B ﬁ /_+: %st- (3.1.3)
k+1

Here the interchange of summation and integration is possible only for R(s) = ¢ >
Next, to simplify this line integral we shall take help of contour integration and use
Cauchy’s residue theorem. Consider the contour 47 determined by the line segments
[c—iT,c+iT],[c+iT,A +iT],[A +iT,A —iT], and [A —iT,c —iT], where T is some
large positive real number and —1 < A < 0. Before using Cauchy’s residue theorem, let
us identify the poles of the integrand function. From (3.0.3)), it follows that I'(s)L¢(s, y)
has no poles since A(s, ¥) is an entire function. Hence poles of the integrand are only
due to the zeros of L(s, y'). Note that, if ¥’ is an even character of modulus M > 1, then
L(s,y') has trivial zeros at 0,—2,—4,---. And if ¥’ is an odd character, then L(s,y’)
has trivial zeros at —1,—3,—35, - - -. Again, we know that the non-trivial zeros of L(s, y’)

lie in the strip 0 < R(s) < 1. Therefore, applying Cauchy’s residue theorem, we have

L/ My*st:%T(y)—i—Ro, (3.1.4)

2mi Jo  L(s,y')

where Zr(y) denotes the residual function, which includes finitely many terms con-
tributed by the non-trivial zeros p of L(s,y’) with |[3(p)| < T and Ry is the residue at
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s = 0. Now, we can write

T(s)Ly (s, ) ‘I/) . ( cHT — pA+T c— zT) Lf 5,¥)
[& L(s,y’) ds = / +/+1T A+iT / V) y(3dls'5)

Next, utilizing Lemmas[2.2.3] [3.1.2]and [3.1.3] one can show that both of the horizontal
integrals

H\(T,y) =

1 /AH.T F(S)Lf(sa V) 1 /CiT F(S)Lf(s> V) y~¥ds

y ’ds, Ho(T
27 Jerir L(s,y") $, o (T,y) 1= 2mi Jair L(s,y')
tend to zero as T — oo through those values of 7" which satisfy

1T —3(p)| > e AP/ 1oe(S(P)+3),

Therefore, letting 7 — oo in (3.1.4) and in view of (3.1.3)) and (3.1.5), we have

1 (A= T(s)Ls(s, y)
L A SWLs(s, ¥)

=) , B B
Elag )yl sy e ™ = 5 |7 =L s 0)+ Ro
(3.1.6)

where the contribution of the residual term Ry will be taken into account only when v’

is an even character with modulus M > 1. Therefore, we have

LI(OJV) .
L L ifa=0, M >1,
Ry = limsT(s) -2 (s, ",’) y 5= YOy (3.1.7)
=0 L(s, ') 0, otherwise.

The function Z(y) is the sum of the residual terms coming from the non-trivial zeros p

of L(s,y’). This term can be evaluated in the following way:

M _Z L’ p, ), (3.1.8)

Z(y) =) lim(s—p
) ; s—>p( ) L(s,y") )y
where the summation runs over the non-trivial zeros p of L(s,y’). Here we note that
we have used the assumption that all the non-trivial zeros of L(s, ') are simple. Even
if we do not assume the simplicity of zeros, then also we can figure out this residual

term. Now we shall try to evaluate the left vertical integral

y *ds, (3.1.9)

V(y) = — A L)Ly (s, y)

27i Jo—io  L(s,¥)
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where —1 < A < 0. The functional equation (3.0.3) of L/(s, y) suggests that

k—2s .2
g) 87"’% (NY(Q)T (k—s)Lg(k—s, ). (3.1.10)

o)L G5.v) =

Again, Lemma [3.1.4] yields that

1 _ia\/A71<n>lf°‘ r(s$9) 1
M

L(s.y) &y L) L =5, 9)

Now substituting (3.1.10) and (3.1.T1) in (3.1.9) and simplifying, we get

(3.1.11)

V(y)=

VRN 2 (NY(Q) 1 /“imF(”T")F(k—s)Lg(k—s,W) N\ s
2kmkre,, 2mi Jr—ieo T(I5H) L(1—s,y') \47M '

After a change of variable from s to k — s, V (y) takes the following form:

l/k—’Hiwr(S)r(l%M) Ly(s, ¥) (Ny

N
S _ ds, (3.1.12

where

VEFTagl x(rw(Q) [ 2M \*

(y\/ﬁ ) '
Note that the Dirichlet series expansions of Ly(s, %) and L(s — k+ 1, y/) are absolutely
convergent on the line R(s) =k — A since k—A >k as —1 < A < 0. Therefore, on the

Cry oy = rey (3.1.13)

line R(s) = k— A, with the help of the Dirichlet series expansion, one can write

Le(s,¥) i ag(n)y(n) *Nk(n)V(n)_

— 3.1.14
L(S —k+ 1, ll//) n=1 n® ( )

Now, substituting (3.1.14)) in (3.1.12)) and then taking summation outside of integration,

we get

— —A+ico T(s k=s+a s
VO) =Gy T las Tl [ L (= )( o)

2700 Jk— ) —ioo I‘(%) 4tMn
(3.1.15)

To simplify V (y) further, we shall concentrate on the following integral:

k— A oo k—s+a s
Unay) ::i/ He LN (= )( Ny )ds. (3.1.16)

2700 Jk— A —ioo F(S*’H%) 4nMn
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By a change of variable from s to 2s and invoking (2.2.2), we get

5% +ie T(s) _|_l)r u_s)
U, 2 2 5d 3.1.17
) \/_Zﬂlﬁ —ico (s+ 1-kta) ° ( )

2

Ny > . To get a more comprehensible form for U, ,(y), we must employ

2nMn
the definition of the Meijer G-function. Unfortunately, by analysing the poles of the

where 7z = (

integrand of U, ,(y) we can verify that the line of integration R(s) = kEl does not
dlstlngmsh all the poles of I (k+a — ) from the poles of I'(s ( ) Note that 15‘ <

2 <Hlas—1<2<o0. Thus we shift the line of integration R(s) = 21 to the line
R(s) = ¢ where % s-l<d< E' Now we can see that the line of integration R(s) = ¢/
does separate the poles. At this moment, we construct a new rectangular contour €
joining the line segments [¢’ —iT, % —iT], [% —iT, % +iT] , [% +iT,c —|—iT] ,
and [¢' +iT,c’ —iT] and employing Cacuchy’s residue theorem, we have

1 /r(s)r( + (ke -
1

$) s
— =R 1.1
27i Je Zds ks 3 8)

— F( +a o (3.1.19)

Now using Stirling’s formula for the Gamma function, one can show that the contribu-

tion of the horizontal integrals vanish as 7 — co. Therefore, letting 7 — oo in (3.1.18),

we have

Y e e P g UG D

27T %71&) F(S_i_lf];l»a) 2 as = 271 S F(s—|—17]2<+a) Z as
+R (3.1.20)

Now utilizing the definition (I.5.2)) of the Meijer G-function and verifying all the nec-

essary conditions, one can show that

L/C/+i°°r(s)r(~‘+%)l" 58 g2 ba (3.1.21)
2700 Jor—ieo I (s++5%) A ) B

Next, we shall invoke Slater’s theorem (1.5.3)) to simplify Meijer G-function in terms
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of hypergeometric functions. Thus after a significant simplification, we obtain

2 1,3 _ e D(BY)r () k+a k+1+a 1+2a
Go kta 1tk—a || =% F(l+a) 2 5 T, T, %
20 2 2
(3.1.22)

2
Now substituting z = <%> in (3.1.22)) and in view of (3.1.19), (3.1.20) and (3.1.21),

the integral U, 4(y) becomes

2 ([ Ny \""T(k+a) k+a k+1+a 1+2a
U, . (y) = —— F ; —z)—(1-a)|.
nay) ﬁ(mm) o P\ T2 T2 5 2 —(1-a)

(3.1.23)

Substituting the above expression of U, 4(y) in (3.1.13), the final expression for the left

vertical integral V (y) reduces to

. k+a %) -
kta YN[ 1 X(r)‘lf la * W (n)y'(n
V() = 2N T (k+a) () (%) Z s nk+a"( ny'(n)
k+a k+1+a 1—|—2a Nzy2
X {2F1 ( IR ;_4M2n27t2) —(1 —a)} .
(3.1.24)

Finally, combining (3.1.6), (3.1.7), (3.1.8) and (3.1.24)), we finish the proof of Theorem
BL1 O

Remark 3.1.5. The identity in Theorem can be extended analytically for R(y) >0
Also, by substituting Q =r =M =1 in Theorem [3.1.1} one can immediately recover

Theorem[21.1)

Remark 3.1.6. Note that the series in Theorem [3.1.1jnvolving generalized hypergeo-

metric function is indeed convergent. To see this, first we take a = 0. Then using series
k k+1.1. Ny? _ 1

definition of oF) for large n, we have ,F) (— =3 ——) —1=0fyw (?) .

Hence we get a natural number L such that,

5 5000 )V () lel ]

- nk 202’2 22MZn2q?
> [ag(n) W (n) * p(n) Y ()]
< Z nk+2 )

which is a convergent series. On the other hand, when a =1 for large n, we have
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2.2
2 F (k“ 2.3, —%) = Of.y.y (1). Hence we get a natural number L' such that,

k1

< [ag(P(n) < ()Y ()] [ (k1 k423 N
= 241 2 2 D 2022 n2

which is also convergent.

3.2 SOME SPECIAL CASES

As a special case of Theorem[3.1.1] by taking M = r = 1, we get a higher level analogue
of Theorem [2.1.1] We note this special case as a corollary.

Corollary 3.2.1. Let f € S;(T'o(Q), x) be a cusp form. Assume that all the non-trivial
zeros of € (s) are simple. Then for y > 0, we have

= Ly PT(R)QE & [ag(n) * ()] kk+1.1. 0%

Z,l[af(”)*“(”)]e T = 2h—1 7k Z«l nk [ZFI (5’7;5;_4112%2) a 1]
+Z(y),

where Z(y) =¥, Ly (C’? ();)(p ) yip, the sum over p runs through all the non-trivial zeros of

{(s) involving bracketing as in (3.1.2).

On the other hand, if we let Q = 1,M = r, and ¥ = ¥ in Theorem [3.1.1] we get a

character analogue of Theorem [2.1.1] as given below:

Corollary 3.2.2. Let f € Si(SLa(Z)) be a cusp form. Let y be a primitive Dirichlet
character modulo r. Assume that all the non-trivial zeros of L(s, ) are simple. For

y > 0, we have

- i k+a
¥ wlolastn) s(nle ™ = Ry 20+ 2 ey ()

= Y(n)lap(n) * u(n)] k+a k+14a 1+2a  r’y?
X; nkta i\ g g )Y

Le(p,¥)T'(p)

where Ry is defined as in Theorem|3.1.1| and Z(y) =Y, o)

over p involves bracketing as in (3.1.2).

yip, where the sum

Now letting Q = r = 1 in Theorem [3.1.1] we obtain the following result.
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Corollary 3.2.3. Let f € Si.(SLo(Z)) be a cusp form. Let W' be a primitive Dirichlet
character modulo M. Assume that all the non-trivial zeros of L(s,y’) are simple. Then

for any positive y, we have

ni:l[aj-(n) «1W(n)y' (n)]e ™ = Ro+ Z(y) + ei’r(kJra) <1‘l/1>a <§>k+a

%
>, [ar(n)* w(n)y'(n))] k+a k+1+a 142a y?
X; nkta P\ 52 T T amee) "1

where Ry and % (y) are defined as in Theorem[3.1.1]

At the end we have given a Table which includes numerical evidences for this

corollary.

3.3 AN ASYMPTOTIC RESULT INVOLVING THE NON-
TRIVIAL ZEROS OF L(s, ')

Now we state an asymptotic expansion for the Lambert series (3.0.1]) as an application
of Theorem [3.1.11

Corollary 3.3.1. With notations as in Theorem we have, fory — 0,

oo M -1
Y. lap () y(n) « (W (W)]e ™ = Ro+ )+ L. B+ 0p 6P +)
n=1 m=0

where M' is any large positive integer and By, ;s are some explicit constants. Further,

if f is a normalized Hecke eigenform and ¥,y and ' are real, then under the as-

sumption of simplicity of the non-trivial zeros of L(s, ') and the Generalized Riemann

Hypothesis we have

1 — _ 1 -
y2 Y lag(n)w(n)« u(n)y' (n)]e™ = y2Ro+ Y racos(6, —t,1ogy)
n=1 n=1
M1 1 / 1
+ BmﬂyZm—ﬁ—a—l—j + Of,lll,llll (yZM —Q—a—l—j)‘
m=0

Here rye'% denotes the polar representation of 2L (pn, W)T(0,) (L' (P, W)™\, and the

n-th non-trivial zero of L(s, ') in the upper critical line is given by p, = s, + it,.
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Proof of Corollary Making use of the asymptotic expansion of ,Fy, for y — 0T

we have

- <k+a k+l+a 142a N*? ) :Mi' (5, (55579, ( —Ny >2’"

2 2 2 2mwimr) & (BE) ml \2Mnx
y 2M’
+ 0y <Z> , (33.1)

where M’ is any large positive integer. Now employing (3:3.1) in Theorem [3.1.1} we
get

M -1

Y lar(m)y(n)«u(n)y' (n)]e™ =Ro+Z() + Y, Buay™ “+ 0y ™),
— m=0
(3.3.2)
where the constants B, , can be evaluated by the following formula:
For m =0,
k+a oo o)

o k)2 yN X(r)‘/’( Y(n)* w(n)y'(n)]
Bma = 2aN / F<k+ ) (M) (271.) Z nk+a+2m ’
and form > 1,

CONMP(k+a) (yN\ (i N Ox () w(Q)ey () m(H)
" (2n)tm M 2m rey (1+220)mmv
& ag(n)W(n) * e (n) ' (n)
<Y e 333

n=1

Here we note that both of the above infinite series are absolutely convergent. Now we
assume f is a normalized Hecke eigenform and ¥,y and ¥’ are real characters. Then

for any complex number s, we get

L, y)lG) 1 _ (Lf(s,W)F(S) 1).

L'(s,y') y L(s,y) »

Another important observation is that if % + if,, is a non-trivial zero of L(s,y’), then
% — it, is also a non-trivial zero of L(s,y’) since ¥’ is a real character. Therefore,
assuming the Generalized Riemann Hypothesis and the simplicity of the non-trivial

zeros of L(s, y’), we can write

e, B BEEI)

Pn= % +itn ta>0
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where the sum is running over all the non-trivial zeros of L(s, y’) in the upper critical
line. Finally, representing 2L ¢(py,, W)I'(pn)L (P, ¥/ )~!in the polar form by r,e® and
simplifying we complete the proof of Corollary [3.3.1] O

Remark 3.3.2. The cosine functions in Corollary suggests the oscillatory behav-

o0

ior of the Lambert series y% Yo lar(n)y(n)«u(n)y'(n)le™™ asy — 0F, which is also
consistent with the observation of \Zagier| (1981) for ay(y).

Table 3.1 : Verification of Corollary Let v’ be a Dirichlet character modulo 5
with /(1) = y/(4) = 1 and y/(2) = ¥/'(3) = —1. We took f(z) = A(z) as Ramanujan
delta function, and the left-hand side and right-hand side series over n with only first
2000 terms, and the sum over p for Z(y) is taken over only 22 terms.

y Left-hand side | Right-hand side
1.589 | 0.02160533841 | 0.02160532545
1++/5 | 0.01599519746 | 0.01599520708
0.0749 | 0.03507904537 | 0.03507917507
4—m | 0.01767636417 | 0.01767636262
V3 0.00069009521 | 0.00069009799
5.7395 | 0.00298669912 | 0.00298669847
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CHAPTER 4

LAMBERT SERIES ASSOCIATED TO THE
SYMMETRIC SQUARE L-FUNCTION

Let f(z) € Sk(I'o(N), x) be a normalized Hecke eigenform with the Fourier series ex-

pansion

flz)= i a_f(n)ezmnz, Vz € H. 4.0.1)
n=1

The L-function associated to f(z) satisfies the following Euler product representation:

L(s’f):ilaf(sn): [l <1—af(P)PS+X(P)pk12s>1

n p:prime
—s\— —s\— k+1
- H (l_app ) I(I_Bpp ) 17 %(S>>—,

i 2
p:prime

where the complex conjugates ¢, and 3, satisfy the relations a, + 8, = a(p) and
o8, = x(p)p*~!. Shimura, with the help of these complex numbers (Shimura, 1975,
Equation (0.2)), defined a new L-function associated to a Hecke eigenform f(z), namely

the symmetric square L-function, which is given below:

Lis,Sym*(f)oy):= [] (1-w(padp™) " (1=y(p)B2r™) " (1-v(p)aBr~) "
p:prime

This is one of the important examples of an L-function associated to a GL(3)-automorphic

form and its analytic continuation and functional equation has been studied by Shimura.

For R(s) > k, L(s,Sym?f) has a absolutely convergent series representation of the form

Yo Agym?(f) (n)n™*. More generally, we can define the symmetric power L-function

associated to f(z) as follows:
n - i qn—iy—1
Lis,Sym"(f)@w):= [T [TO-wp)ep™) -

p:prime i=0
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Interested readers can see Murty’s lecture notes (Murty| (2004)) for more information
on the symmetric power L-function. Upon simplification of the Euler product of the
symmetric square L-function, Shimura observed that
oo 2
ar(n n
L(s,Sym*(f) @ y) = L(2s —2k+2,2°y*) ) w (4.0.2)
n=1

where L(s, x) is the usual Dirichlet L-function. In the same paper, Shimura established

following important result:

Theorem 4.0.1. Let us define

s-l-l)r(s—k—l-Z—?LO

' ) Lissynl () )

L*(s,Sym*(f) @ ) := N°m 3 T (%) r (
0, if —-1)=1,
where Ay = 2y(=1)
1. ifyy(—1)=-1.
Then L* (s, Sym? (f) ® W) can be analytically continued to the complex plane except

for simple poles at s =k and at s = k — 1.

Rankin (1939) and Selberg|(1940) independently studied following interesting Dirich-

let series associated to the cusp form f(z), namely,
S(s, f®f): Z 5 R(s) > k.

This Dirichlet series is known as Rankin-Selberg L-function associated to f(z). For
a general construction of the Rankin-Selberg L-function, readers can see the paper of
Li (1979). The Rankin-Selberg L-function and the symmetric square L-function are
intimately connected with each other. This connection was established by Shimura. He

observed that the following relation holds:

L(s,Sym*(f) @ W)L(s —k+ 1, xy) = RS(s, f ® f @ W)L(2s — 2k + 2, x*y?).

For simplicity, now onwards we assume ) and y both are trivial characters. Thus, the

above relation becomes

L(s,Sym*(f))¢(s —k+1) = RS(s, f ® f)§ (25 — 2k +2).

Since ) and y both are trivial, one can see that A9 = 0. In this case, Shimura showed

that the completed symmetric square L-function L*(s,Sym?(f)) is entire and satisfies
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the following beautiful functional equation:
L*(s,Sym?(f)) = L*(2k — 1 —s,Sym>(f)). (4.0.3)

The normalized version of the above functional equation can be found in Iwaniec and
Michel (2001).
The following lemma gives an important bound for symmetric square L-function on a

vertical strip.

Lemma 4.0.2. In a vertical strip oy < ¢ < d, we have
|L(0 +iT,Sym?(f))| = O(|T[*™),  as|T| — e,

where A(0y) is some constant that depends on oy.

Proof. One can find the proof of this lemma in (Iwaniec and Kowalski, 2004, p. 97). [

In this chapter, we investigate an asymptotic expansion of the Lambert series
K\ 2, —ny
Y Y ap(n®)e ™
n=1

as y — 0T. Interestingly, we observe that the asymptotic expansion of this Lambert
series can also be written in terms of the non-trivial zeros of the Riemann zeta function

{(s). The functional equation (4.0.3) will play a crucial role to obtain our main result.

4.1 AN IDENTITY INVOLVING NON-TRIVIAL ZE-
ROS OF {(s) AND GENERALIZED HYPERGEO-
METRIC FUNCTIONS

We define an arithmetic function, B7(n), connected with the symmetric square L-function

by the relation:

m*=1 if n=m?,

By¢(n) := (Agymz(f) *b) (n), where b(n) = 4.1.1)

0, otherwise.

One can show that the Dirichlet series associated to By(n) is absolutely convergent for

R(s) > k. Now we are ready to state the Main Theorem of this section.
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Theorem 4.1.1. (Juyal et al.|(20224) Let f(z) € Sx(SL2(Z)) be a Hecke eigenform with
the n-th Fourier coefficient ay(n). Assume all the non-trivial zeros of {(s) are simple.

Then for any positive real numbery, we have

i .y D)y ™% & By(n) k k+1 13 y \2
(2 ny _ (= 1: = 2. L= -1
r;aj(n N = Ml LA G T el bie <8n7t>

n=1
+2(y),
where (p ) (p 2( ))
1 L(24+k—1)L(%+k—1,Sym>(f
2(y) = = 2 2 : (4.1.2)
2y 1; y28'(p)

and the sum over p runs through all the non-trivial zeros of {(s) and bracketing the
terms so that the terms corresponding to p and p; are included in the same bracket if
they satisfy

_ CSepl ()
1S(p1) = 3(p2)| < e PeBPID 4 ¢ P32

where C is some positive constant.

Proof of Theorem First, we show that the Mellin transform of the Lambert series
Yo w(n)ag(n?)e™™ is equal to

L(s)L(s,Sym*(f) ® y)

L0252k 1 2. 27%) for R(s) > k.

That is, for R(s) > k, we write
| X winartdye v tay = Y wimaso?) [ ey
0 =1 n=1 0

=T(0) X ylmay ()

_ T(s)L(s, Sym®(f) ® y)
CL(2s—2k+2,x%y?)

In the last step we have used the identity (4.0.2). By inverse Mellin transform, we can
see that for y > 0,

oo _ 1 c+ioo F(S)L(S, SymZ (f) ® l[/) -
2 ny _ S
n; y(n)as(n’)e — /Ciw 13y ) 4.1.3)

where R(s) = ¢ > k. As mentioned before, for simplicity of calculation, we assume that
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x and y are trivial characters. Thus, the above equation (4.1.3)) becomes

C (2N ,—hny __ 1 C+i°°F(s)L(s,Sym2(f)) —s
n;af(n Je y_2—m/c_iw Cs 2k i2) ds. (4.1.4)

Now we shall analyze the poles of the integrand function. Note that I'(s)L(s, Sym?(f))
is an entire function since L* (s, Sym?(f)) is entire as we are dealing with trivial char-
acter x. In general, L*(s,Sym?(f)) may not be an entire function. Assuming the Rie-
mann Hypothesis, one can see that the integrand function has infinitely many poles
on R(s) =k — %. Furthermore, the integrand function has simple poles at k —n for
n > 2 due to the trivial zeros of {(2s — 2k +2). Consider the following rectangular
contour ¢ : [c —iT,c+iT|,[c+iT,d+iT|,[d +iT,d —iT], and [d — iT,c — iT], where
k—2<d<k—1andT is alarge positive real number. We can observe that the inte-
grand function has finitely many poles inside this contour %" due to the non-trivial zeros
p of §(2s—2k+2) with |3(p)| < T and the poles at k — n, for n > 2, are lying outside

the contour. Therefore, employing Cauchy residue theorem, we have

S S Il’l2
sz lg F?éi iszyk n g))y_sds = 2r(y), (4.1.5)

where 27 (y) denotes the residual term that includes finitely many terms that are sup-
plied by the non-trivial zeros p of {(2s —2k+2) with |3(p)| < T. We denote the two

vertical integrals as

1 el T(s)L(s,Sym?(f)) _,
Vi(Ty) = 21i /c—iT $(2s—2k+2) &

1 (4T T(s)L(s, Sym>(f)) _,
Va(T'y): 27;,/ Cas—2k+2) > 9

and the horizontal integrals are denoted as

1 (4T T(s)L(s, Sym*(f))
Hi(T,y): 2m/m Cas—2k+2) > &

1 [T T(s)L(s,Sym*(f)) _,
Bo(T,y) 2m/ o Cls—2k+2) YW

We show that the contribution of the horizontal integrals vanish as T — oo. One can

write

1 /d ['(6 +iT)L(c +iT,Sym?(f))

Hi(T
(T'y) =55 £(20 —2k+2+2iT)

nyfdeG'
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Thus,

4|[0(6 +iT)||L(0 + iT, Sym?(f))
[H\(T,y)| <</C |£(20 — 2k +2+2iT)|

|y*6d6.

Use Lemmas [2.2.3] 2.2.1]and 4.0.2] to derive that

H(T,y)| << |T|CeS2T =51,

where C and C; are some constants with 0 < C, < /4. This immediately implies that
H\(T,y) goes to zero as T — oo, Similarly we can show that H,(7',y) also vanishes as
T — . Now allowing T — oo in (4.1.5)) and using (4.1.4)), we have

y *ds, (4.1.6)

1 pd+i= D(s)L(s, Sym?(f))
/|

- 2y ,—ny _ _
,;af(n)e =20t 2 o T Cs—2k12)

where 2(y) = limr_. Z7(y) is the residual function consisting of infinitely many
terms. Assuming the simplicity hypothesis, that is, all the non-trivial zeros of {(s)

are simple, one can show that

_ : p L(s)L(s,Sym*(f))
Q@)_;Hgﬂq(“‘_i_k“) C(2s—2k+2)

_ 1 T E+k-1) L5 +k—1,Sym’(f))

= 5 ; o) , 4.1.7)

where the sum over p runs through all the non-trivial zeros of {(s), bracketing the terms
as before.

Now we shall try to simplify the left vertical integral:

y ds. (4.1.8)

o 1t T(s)L(s,Sym?(f))
Va(y) = lim V(T y) = Tm/d_iw C(2s —2k+2)

First we shall make use of the functional equation of the symmetric square L-function
(4.0.3) and with the help of the duplication formula for the Gamma function (2.2.2)),

one can obtain

L eTCE T iy

V() = ===
20 = 57T 27 e T'(5E+35)¢(2s—2k+2)



Replace s by 2s — 2k + 2 in (1.4.1) to see

g25—2k+2 (M)
Vo T(1—k+s)

Substituting @.1.10) in (#.1.9) and simplifying, we have

£(25—2k+2) = E(2k—2s—1). (4.1.10)

1 1/d+i°°r(2’<—1—g)r(k—g)r(kgl—g) I(1—k+s)
orkts 2mi Jamie T (3 +35)T(EF —5) $(2k—25—1)
)

w L(2k — 1 —5,Sym> f)( )

Va(y) =

At this juncture, we would like to shift the line of integration. To do that we change the

variable, namely, 2k — 1 —s = w. We obtain

S Sy 14 DGR, (el
R G
L(w,Sym*(f)) ( y \w-2k+!1
“Caw—2k+1) (27:) dw, (4.L11)

where k < d' =R(w) <k+1ask—2<d=R(s) <k—1. One can easily check that
the symmetric square L-function L(w, Sym?(f)) and { (2w — 2k + 1) are both absolutely

convergent on the line R(w) = d’. Therefore, we write

L(w,Sym*(f)) & dsymr(p)(n) & n*!
Cw—2k+1) ; nv n; nv
_ v By(n)
_n; T 4.1.12)

where By (n) is defined as in (4.1.1). Implement @.1.12)) in (4.1.11)) and interchange the

order of integration and summation to derive

- 1 y 1-2k
Va(y) = MT% (27r> ;Bf(n)lky(n), (4.1.13)

where

1 pd+isT (YT (BT
Ik7y(n) — / (2) (1 )m
2

22K\ Tk — w y
. (5+5°) T )<y>dw'

Now one of our main goals shall be to evaluate this line integral explicitly. First replace



1/‘g+i°°F(w)F(w+l)F(w+25k) I'(k—2w)

y 2w
270 J4 o F(ﬂ_w)l—‘(zw_’_l 2k) <2n717> 2dw. (4.1.14)

Ik7y (l’l) =

To simplify more we use the duplication formula for the Gamma function. We use the

following two identities:

k=2w /| 1+k
I'(k—2w)= NG (——W)F(T—W>, (4.1.15)
1—2k 22W+122k 1—2k 32k
F(2w+ 5 )_ N <w+T)F(w+T>. (4.1.16)

Invoking (4.1.15)) and (4.1.16)) in (4.1.14) we have

1St T(w)T (w2 T (wt22) T (E—w) 2241y 2w
iy (n) = Zm/loo F(W+142k) (w—i—34 ) <2n7r> 2dw
U+t 4o 1 k_ 2
. /,2 | F(W)F(W+%)2F,((W+ >Fk(2 )( ) dw. @117)
2mi %—ioo T (w + T) T (w + ) 8nrm

To write this integral in terms of the Meijer G-function, we shall analyze the poles of the
integrand function. We know that the poles of I'(w) are at 0,—1,—2,---; poles of I'(w+
1/2) are at —1/2,-3/2,-5/2,---; and the poles of I (w + %‘) are at k/2 — 1,k/2 —
2,k/2 —3,---; whereas the poles ofl“(% — w) are at k/2,k/2+ 1,k/2+2,---. So, we
can not write the integral in terms of the Meijer G-function since the line of in-
tegration does not separate the poles of the Gamma factors I' (w) I (w + %) r (w + #)
from the poles of the Gamma factor I' (’5‘ — w). Hence, we construct a new line of inte-
gration so that it separates the poles of the Gamma factors I'(w) " (w+ 1) T (w + 25%)
from the poles of the Gamma factor I' (% —w). Now consider the contour 4" con-
sisting of the line segments [d' —iT,d' +iT|,[d' +iT,d" +iT],[d" +iT,d" —iT,], and
[d" —iT,d —iT], where d’ € (k/2—1,k/2), T is some large positive real number. Use

Cauchy residue theorem to obtain

1 Fk( )dW:ReSFk(W), (4118)

where




Again, with the help of Stirling’s formula for the Gamma function, one can show that
the horizontal integrals tend to zero as T tends to infinity. Therefore, letting 7 — oo in
(4.1.18) and calculating the residual term and substituting it in {.1.17), we get

224} pdtieo 2 2k+5T ( k ) r ( k+1 ) v \k
I (n) = Fo(w)dw — 2)_ 12 ( ) . 41.19
() =70 /dn_l-m (w)dw T(3)T(3) 87 L9

Now we shall try to write the line integral along (d”) in terms of the Meijer G-function
and to do that we reminisce the definition of the Meijer G-function (1.5.2). We consider
m=1,n=3,p=3,g=3witha;=1,a,=1/2, a3 =k/2;and by =k/2, b, = (1 +
2k)/4, b3 = (34 2k) /4. One can easily check that a; —b; ¢ Nfor 1 <i<n, 1 <j<m

and the inequality p 4+ g < 2(m+n) is also satisfied. Hence, one can write

(o)

1 d”+i°° 1.3 17 %7% y 2
E/dl Fi(w)dw = G (k o e ) <8n—ﬂ) . (4.1.20)
27

Utilize Slater’s theorem (1.5.3) to write the above Meijer G-function in terms of the
hypergeometric function:

k Kk
G1,3 la i) _ZZF(E
33| &k 142k 32k [ T r(l)
204 04 1

= NI—=

Substituting z = (ﬁ)z in (4.1.21)) and together with (4.1.20) and (4.1.19), we achieve

2T ()T (&) oy (& kk+1 13 /7y 2
ley(n) = r(Hr@) (8n71'> [3F2<§’ 2 ’I’Z’Z’_<%>)_I}

(4.1.22)

Finally, substituting (#.1.22) in #.1.13) and together with (@.1.6), @.1.7) and @.1.8),

we complete the proof of Theorem4.1.1 [

Remark 4.1.2. Using the definition (1.5.1) of the hypergeometric series one can show

that the above infinite series is indeed convergent with similar arguments as in Remarks

23Tland B1.6

4.2 AN ASYMPTOTIC EXPANSION

The asymptotic result given below is an immediate application of this theorem.
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Corollary 4.2.1. Let N be a positive integer and f(z) be a normalized Hecke eigenform
defined as in Theorem Assume the Riemann Hypothesis and simplicity of the

non-trivial zeros of {(s). For y — 0T, we have
kv W o—ny _ 3/4 v In N 2t N1
Y ag(n?)e ™ =y Y bucos (8, Tlog(v)) + ¥ AR 40, (),
n=1 n=1 j=1

where the absolute constants A; depend only on f and the polar representation of
L(&+k—1)L(% +k—1,Sym*(f)) (&' (pn)) " is considered as bye'®, where p, =
1 + ity denotes the nth non-trivial zero of { (s).

Proof. With the help of definition (1.5.1) of the hypergeometric series, for any positive

integer N, we have

k k+1 13 y \2 NZb N2 Y\ 2N
By tipr- (o) )~ 1= X G(2) (2) :,
3 2(2 2 44 \8am ) LG(;) to((;) )wyoo0

j=1
4.2.1)

kY (Kl
—<2) (), 5- Now invoke @.2.1) in Theorem @4.1.1|to derive that

3 y _ TN oy Br(0) \ Br(n)
yk Z af(nZ)e ny _ oA Z ij2J+1 Z l{+2j + O [y Z 1{+2N _'_ykg(y)
n=1 = n=1 =1
N 4 it N+
= Y AT 0. () +y520), 4.2.2)
j=1
where A; = g(—jrkz)C iy ’j{ﬁ’;} are computable finite constants, since the Dirichlet series

associated to By(n) is absolutely convergent for R(s) > k. Assuming the Riemann
hypothesis and using the fact that the non-trivial zeros appear in conjugate pairs to

write the residual term as

L y L(%+k—1)L(8 +k—1,Sym*(f))
ek m( %)
Pu=4-+itn, Y26 Pn
>0
_ 34 I
y ; by COS (5n 21og(y)). 4.2.3)
Pnzj‘f‘lfn,
t,>0

Here we have considered b,e'® as the polar representation of I (%” +k— 1) L(% +k—
1,Sym?(f)) (Z_,”(pn))_l. Employ (#.2.3) in (4.2.2)) to the complete the proof. O
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CHAPTER 5

RANKIN-COHEN BRACKETS ON
HERMITIAN JACOBI FORMS AND THE
ADJOINT OF SOME LINEAR MAPS

Kohnen| (1991)) considered certain linear maps between spaces of modular forms using
the product map by a fixed cusp form and then computed the adjoint maps of these
linear maps with respect to the Petersson scalar product. The Fourier coefficients of
the image of a form constructed by using this method involve special values of certain
Dirichlet series attached to this form. The work of Kohnen has been generalized to other

automorphic forms (see Choie et al.[(19935)), Sakata (1998) and Wang and Pei1 (1993)).
Herrero|(2015) generalized the work of Kohnen within the theory of modular forms.

The author constructed the adjoint map of similar linear maps defined by using the
Rankin—Cohen brackets by a fixed modular form instead of the usual product map.
The work of Herrero has been generalized to the case of Jacobi forms, Jacobi forms of
several variables and Siegel modular forms of degree 2 by Jha and Sahu (2016, 2017,

2019).
In this chapter we generalize the work of |[Herrero| (2015) to the case of Hermitian

Jacobi forms over Q(i).

5.1 ADJOINT CONSTRUCTION PROBLEM

Suppose y € J. 0, cusp (IV(0)) is fixed. Define the map

kp,my

Oy ,cus 616:(—1)Y cus
Ty Jp P (D (0)) = SO e (T ()

by Ty v(¢) = [[¢, v]]v. Then Ty y is a C-linear map between finite-dimensional Hilbert
spaces and therefore there exists a unique adjoint map

x . p016(=1)Y cusp J o1, J
Ty iy i s2vimy 1y (T(0)) = Tl PP ((0)

49



such that

(0. Tyv(0)) = (Tyv(9),9),
for all ¢ € J2-“P(1Y(6)) and @ € IO 2L )P (1Y(6
ora ¢ = ki,my ( ( )) and ¢ € k1+k2+2v,m1+m2( ( ))

Theorem 5.1.1. (S and Singh (2021) Let ky,ky > 4. Let my,my be positive integers.

Suppose Yy € J]f;%szn(rl (0)) has Fourier expansion
W(T,Z,W) = Z a(f’ll,rl)ezni(nlr+rlz+ﬁw).
n1EZ,rleﬁ#

n|m27‘r| |2>0

]5152(— 1) cusp

ks L2V 1 L (IV(0)) with Fourier expansion

Then the image of ¢ €

o(t,z,w) = Z b(nz,rz)ezﬂz(nzr+rzz+ﬁw)
ngEZ,}’zEﬁ#
nz(m|+m2)f|r2\2>0
under Ty, ,, is given by
Tl;,v((p)(T7 Z, W) _ Z C(l’l, r)eZm(n’c-i-rz-i-fw)
nez,rec*
nmy—|r|*>>0

where

(my +m2)k'+k2+2"*3 (ki +ky+2v—2) (nm) — |r|2)kl -2

c(n, l’) = m/qu3 F(kl _ 2) (4n)k2+2v
\%
X Al(kl,ml,kz,mz;v)(4nm1 —4‘I’|2)l
=0
" Z (4nymy —4|r1|2)V*la(n1,rl)b(n+n1,r+r1)
m"=0 ((n+n1)(my +ma) = [ry 4 rp2)lHhat2v=2
rleﬁ#

n1m2—|r1|2>0
(nny) (my+ma)—|r+r|>>0

and Aj(ky,my,ky,my;v) = (—l)l(klj,'fl_z) (k2+l‘/_2)m‘1’_lm12.

We state the following two lemmas which will be required to prove Theorem [5.1.1]
The proof of Lemma [5.1.2] follows from a direct computation. The proof of Lemma
[5.1.3] follows from the usual Rankin unfolding argument and Lemma 3.9 of Martin
(2016).
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Lemma 5.1.2. Let ¢,y : H x C> — C be holomorphic functions. For §,5, € {+1},

we have

[[¢|k1,m1,51 Y lVlkz,mz,&zY]]V = [[(P? IIJHV |k1+k2+2v,m1+m2,5152(71)"Y'

Lemma 5.1.3. Let y, ¢ be as in Theorem[5.1.1} The sum

5 / (‘ (7,2, w)[[emilnTtrztre)
YELL(ONM(O) rv(g)\mxce

ki ,m 75’}/5 II/(T, e W)]]V

—m(my+my) —2
Xe%lw_zl vk1+k2+2V ‘) dv

converges.

5.2 PROOF OF 5.1.1AND SOME REMARKS

Proof. Let
Tl;,v(q)) (T,2,w) = Z c(n, r)eZRi(nT—i-rz—i-?w).

nez,reo*
myn—|r[>>0

By the definition of adjoint map, we have

(T (@), By™0) = (0, Ty v (B"0)) = (@, [P % y]y).

By Lemma|[I.3.3] we have

k=30 (ky —2)
* kl m1,51 m 1
This implies that
k1—2(4 _4| ‘Z)kl—z
T min—4|r| S
= p Lo . 5.2.1

C(I’l, r) mk1—3F(k1 . 2) <(P, H n,r ) l//]]v> ( )

Now we shall compute (¢ [[Pk1 o1 v]]v). From the definition of the Petersson scalar

product we have

—m(my+my) 212
%M—Z‘ Vk1+k2+2vdv

P vl = [ e(naw) [P vilve
IV (0)\HxC2

S G M AT
IV (6)\HxC? YeIL(ONTY(0)
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—n(m)+my) o2
xe v I vk‘+k2+2v)dv

S B M (20 AT
IV (0)\HxC2 YeLL(O\IY(0)

—m(my+my) o2
X e v [lw—7] Vk1+k2+2v>dV.

By Lemmal[5.1.3] the last expression converges absolutely and hence we can interchange

the integral and the sum. Therefore we have

< [[Pk1,m1,51 ]]v> — Z / <¢(T7Z7w)[[eZni(nT—i-rz—l—rw)
YELL(O\IY (0) IV (0)\HxC2

—m(my+mp) 2
xe v w7 vk1+k2+2v) dv.

Changing variable (7,z,w) to y~!-(1,z,w) in the above identity and using the definition

[[.3.T]and Lemma[5.1.2] we have

<(p, [[P’f’lrvml,&’ II/”V> — Z / (‘P(@& W)Hezm(nr+rz+7w), 1//]]\,
YEFZo(ﬁ)\FJ(ﬁ) y~(FJ(ﬁ)\H><(C2)

—m(my+my) 2
Xe v |W Z| vk1+k2+2V> dv.

Applying the Rankin unfolding argument, the above identity is equivalent to

kvl = [ (e[,
TL(O)\HxC2

—m(my+mp) 2
xe v w7 vk1+k2+2") dv.

Now using the definition of the Rankin—Cohen bracket (1.3.3)), we have

O N B B (TN ) MV G T G T

T (G)\HxC2 1=0

- — —m(my+my) _
% Lim (eZm(nT-i-rz-l-rW))L,‘;lzl(l//)eiz|wz|2vkl+k2+zv> dv. (5.2.2)
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‘We have

Lo, ( ezni(nr+rz+7w)) = (4nmy — 4|r?) P2 mi(nTHretiw)
By induction we have
Linl (ezm(nr+rz+7w)> = (4nm) _4’r‘2)le27ri(n‘r+rz+7w) (5.2.3)
and
Lilwyy= Y (dmma—4|n 2 a(ny, ) T, (5.2.4)

n1€Z7r1€ﬁ#
mong —|r1 ‘2>0

Substituting the Fourier expansion of ¢ and (5.2.3), (5.2.4) in (5.2.2)), we have

<<p,[[P,i‘};”’“5‘,w]]v>=iAz(k1,m1,kz,m2;v) / ( Y b(na,r)
[=0

F‘L(ﬁ)\HXCZ HZEZ,}”ZEﬁ#
(m1+m2)n2—|r2\2>0

% 2MilnT+raztTaw) Z (4many —4|ry ‘2)‘/71(4711’111 — 4‘7”2)1
nE€L,reCt
mani—|ri[*>0

— _ -+ _
xa(nh,,1)ezm((n+n1)r+(r+r1)z+(r+r1)w)87”(mi ) |W—szk1+k2+2v) av.

Taking out the summation outside the integral we have

\4

<(P7[[P;i€,lr7ml7617W]]V> = ZAl(k17m1>k27m2;v) Z Z a(nl,m)

1=0 n€Z,ryel* nm€L,ri€0*
(mi+ma)ny—|ra|*>0mayn; —[r; [*>0

xb(ny,ry)(dmyny —4|ry |2)V_l(4nm1 — 4|r|2)l

77[(}11] +my
v

% / e27ri(n2‘c+r2z+72w) eZm'((n—i—n] )T+ (r+ry)z+(r+r )w)e ) |W*2|2vk1 +k2+2\’> dV,

IV, (6)\HxC2

where T = u+1iv, z = x| +iy;, w = x2 +iy2. Choose the fundamental domain for the
action of I',(¢) on H x C? to be .Z = ([0,1] x (0,00)) x ([0,1] x [0,1]) x (R x R).
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Integrating on this region and substituting 7/ =w —z = a + i3 we have

\% -
(@, ([P 2 Wllv) = Y Ar(kr,ma ko, mos v) ) Y, alm,r)b(n,r)
=0 nzGZ,QE@# n1€Z,r1€ﬁ#
(my+ma)np—|ra|*>0myn; —|ry|>>0

o oo | 1 o 1
(41’1’12}11 4|rl| )v l(4_nm1 4|r| l/ ///// —2nv(ny+ni+n) 27z:zu(n2 (n1+n))
——0 () 0 0 0

Xe4m’Re((r27(r+r1))z)+2ﬂi(@f(r+r1 )Zl)e;n("1‘l,+m2) ‘Zl‘zvk1+k2+2vv74)dudvdxl dyldadﬁ

Integrating with respect to u, x; and y; first, we have

v
<¢7[Pr]1<,1r7m17817l//]]v>:ZAl(k17mlak27m2;V) Z a(n1,r1)b(n—|—n1,r+r1)
=0 n €Z,r €0
mony—|ri|?>>0
(mi+m3)(n+ny)—|r+r|*>0

o)

X (4myn) — 4|r1| W l(4nm1 4|r\ l//

k1 +k2+2v74ef4ﬂ:v(n+n1)

8\8

y ezm(m—(wn)i)ewk/@dadﬁdv.

Suppose r+r; = % + i%. We have

v —
<(pa[[Pr]z(,lr’ml761ﬂW]]V> = ZAl(k17m17k2am2;v) Z a(n17r1)b(n+n17r+rl)
=0

n1€Z,r1€ﬁ#
mony —|r1 ‘2>0
(m1+my)(n+ny)—|r+ri|*>0

X (4myny —4|ry |2)V_l(4nm1 — 4|r\2)l

= = (my+my) o s (my+my) n2
X/Vk1+k2+2v—4e—47tv(n+n1) /e—4ﬂ(4v05 —tza/2)da /6—47?(4‘,13 _llﬁ/2>dﬁ dv.

—00 —00

(5.2.5)

For a > 0 and b € R, we have

< 2
/e(mzﬂ”)dt = \/Eeza.
a

Using the above identity to solve integrations with respect to & and f in (5.2.5), we
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have

Z a(l’lhrl)b(n—f—nl,l’—f—l"l)

v
<(P, [[Piﬁlr’ml’& ) W]]V> = ZAl(k17m17k2vm2; V) mp +myp

1=0 n€L,rec*
mon| 7‘1‘1 |2>0
(m1+my)(n+ny)—|r+r \2>0

4my 2
X (4man, —4|I’1|2)v_l(4nm1 —4|r|2)1/ yhithot+2v— 3 gim +my () (mtma)=|r+n1 ) 4
0
This implies that

(my +my)I ket 2V=30 (k) 4 ky 4-2v — 2)

mp,0
<(P7[[Pr]f71r’m1, Lylly) = (4m)ki+hkat2v=2 ZX‘()AZ ky,my,ky,ma; V)
X(4I’Zm1 —4‘r|2)l Z mb(ﬂ+nl,r+rl)(4m2n] _4|I’°] ‘2)\/_1

n €L, r c0* ((ml +m2)(n+n1) - |r+r1|2)kl+k2+2v_2 ‘

mony—|ry |2>O
(my+my)(ntny)—|r+r|>>0

Substituting the value of (¢, [[Pn}r’m"(s1 ,¥|]v) in (5.2.1) we get the required result. [

Remark 5.2.1. As an illustration of the above theorem, we consider the following ex-

ample:

Let S = {O, %, %, (I;i) } be the set of coset representatives of O* | O. For s € S, we define

2 —
9175(T,Z,W) = Z e‘r\ THIZHTW
red* r=s (mod O)

We define the Hermitian Jacobi forms ¢,", € J.",(IV (0)) for k = 4,8 by

1 1
¢ = ( +y )910+2” (O1,1/2+01,i2) + (x — )01 (141)2:

1 1
P =5 (x +y! )91,O+_”14(61,1/2+617i/2)+§(x14_y14)917(1+i)/2

2
and
‘P;B’,Clusp 6_14x You (6112 —61,12) € J%’,iusp(ﬂ(ﬁ))’
where
x:1+2ie% = i 71’ uzze%fie"“‘;‘)
n=1 n=1 =0

Lety e J, &.cusp (IV(0)) be fixed. Suppose that J,i ! ’;ZSP (I'V(0)) is a one dimensional

ko ;mao
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space generated by ¢. Then by|5.1.1} for each ¢ € J,fl 13(2112)‘\,’ ’zsfmz (IV(0)) we have

TI;,V((P)(Tazv"V) = ﬁ‘P(p(T7Z’W)’

where By is a constant depending on ¢. Now equating the (n,r)-th Fourier coefficient
on each side, we get a relationship among special values of Rankin—Selberg type con-
volutions of the Hermitian Jacobi forms @ and W with the Fourier coefficients of ¢.
For example, we take y = (l)g | — E4¢1: | € J; “SP(TV(0)), where Ey is the normalized
Eisenstein series of weight 4 for SLy(Z). We take ky =10, my = 1 and 6 = + such
that J;Bﬁ”w (IV(0)) is a one-dimensional Hermitian Jacobi cusp space generated by

‘P;B’clmp . Then we get the following relation

_ 152y (16 +2V)(n — ")° ¢

Poctm1) [(8)(4m)3+2v ZAl(lO,1,8,1;\;)(4”_4‘,,’2)1
X Z (4n, —4|r1|2>v—1m19(n+n1,r+ r)
ni€Z,rec* (2(n+n1 — |r—|—r1|2))16+2v )
”1—\;1|2>0

2(n+n1)—|r+r1|2>0

foralln € Z, r € 6* such that n— |r|* > 0, where a(p,q), b(p,q) and c(p,q) are the
(p,q)-th Fourier coefficients of (])gL L —E49, . ¢ and (Pf(r)’imp respectively. Also if v =0
in the above example, we get the special values of Rankin—Selberg type convolutions of

¢ and q)g |~ E4¢I | in terms of the Fourier coefficients of ¢]+O’Clus”

(16)(n—|r]?)® a(ny,r))b(n+ny,r+ry)
Poc(n:r) = =gy L Q(n+n—[r+r )6
n€Z,riec* 1 1
ni—|ri|*>0
2(n4ny)—|r4r1>>0
Remark 5.2.2. Martin and Senadheera|(2017) have studied Rankin—Cohen type differ-
ential operators for Hermitian Jacobi forms. The method used in the proof of Theorem
can also be used in the computation of the adjoint linear functions constructed

using these operators.
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CHAPTER 6

CONCLUSION AND FUTURE SCOPE

Inspired by the conjecture of Zagier| (1981), works of [Hafner and Stopple| (2000) and
Chakraborty et al.|(2017), we have considered a few interesting Lambert series in Chap-
ter 2, Chapter 3 and Chapter 4. In the second chapter, we have studied a Lambert
series associated to a cusp form and the Mobius function. Using the functional equa-
tion of the L-function associated to the cusp form and the functional equation of the
Riemann zeta function, we have established an exact formula for the Lambert series
Yo ilag(n)* u(n)le”™ in terms of the non-trivial zeros of the Riemann zeta function
and as a consequence, under the assumption of the Riemann Hypothesis and simplicity
of the non-trivial zeros, we have also observed that y'/2¥>_, [a r(n)* p(n)le™™ has an
oscillatory behaviour when y — 0.

In the third chapter, we have established an exact formula for the Lambert series
Yo ilag(n)y(n)* u(n)y'(n)]e™™ in terms of the non-trivial zeros of L(s, y’), where
ay(n) is the nth Fourier coefficient of a cusp form f over a congruence subgroup, and
v and Y’ are primitive Dirichlet characters, thereby generalizing our earlier result to
congruence subgroups.

In the fourth chapter, we have established an exact formula for the Lambert series
YYe a f(n2)e*”y , and we found that the main term can be expressed in terms of the
non-trivial zeros of {(s), and the error term is expressed in terms of the hypergeometric
function 3F(a,b,c;d;z).

In the identity of Hardy and Littlewood, and also in Theorem [2.1.1{and The-
orem.1.T| we have assumed that all the non-trivial zeros are simple, whereas Corollary
[2.1.2] and Corollary 4.2.1]is true under the additional assumption of the Riemann Hy-
pothesis. Similarly, while Theorem [3.1.1| requires only the assumption of simplicity
of zeros of the Dirichlet L-function L(s, y’), the Corollary requires an additional
assumption of generalized Riemann Hypothesis. In 2013, |Bui and Heath-Brown| (2013))

proved that at least 70% of the non-trivial zeros are simple, under the assumption of the
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Riemann Hypothesis. This was previously established by |Conrey et al. (1998) under the
assumption of the Generalized Riemann Hypothesis. Simplicity of the non-trivial zeros
implies |§'(p)| > 0, but till today we do not have much information about the lower
bound for |{’(p)| without the assumption of any hypothesis. Due to this difficulty, even
after assuming Riemann Hypothesis, Hardy and Littlewood mentioned that the conver-
gence of the infinite series over p in (T.0.1]) is not immediate. We know ['(p)| > |p|~!
under the assumption of a weak Mertens Hypothesis (Titchmarsh, 1986, p. 377, Equa-
tion (14.29.3)). In a private communication, Prof. Steven Gonek had informed us that
he had previously conjectured that [{/(p)| > |p ]’%“ for any € > 0. If we assume one
of these two results, then using Stirling’s formula (2.2.T)) for the Gamma function, one
can straight away prove the convergence of the series over p present in (1.0.1), (2.1.2),
(@.1.2). Not only that, these series converge very rapidly. Over the years there has
been a lot of research going on the distribution of the moments of the derivative of the
Riemann zeta function at the non-trivial zeros. Interested readers can see |Fujii (2012),
Gonek] (1984), Hejhal| (1989), Hiary and Odlyzko| (2011) and the references therein.

In 2018, Banerjee and Chakraborty (2019) established an asymptotic expansion for
the Lambert series )~ _;a f(n)me’”y , where ay(n) and ag(n) are nth Fourier coef-
ficients of Hecke-Maass cusp forms f and g respectively. Recently, the same Lambert
series corresponding to the Fourier coefficents of Hilbert modular forms has been stud-
ied by |Agnihotri (2021). It would be an interesting problem to study a more general
Lambert series YY", las(n)[Ne™ for N > 3. It would also be a challenging prob-
lem to classify automorphic forms for which constant terms will have an asymptotic
expansion in terms of the non-trivial zeros of {(s) or the Dirichlet L-function.

In the fifth and the penultimate chapter, inspired by the works of Kohnen| (1991),
Herrero (2015) and Jha and Sahu|(2016), we have defined a family of linear operators
between spaces of Hermitian Jacobi cusp forms using Rankin—Cohen brackets for a
fixed Hermitian Jacobi cusp form. We have computed the adjoint maps of such a family
with respect to the Petersson scalar product. The Fourier coefficients of the Hermi-
tian Jacobi cusp forms constructed using this method involve special values of certain
Dirichlet series associated to Hermitian Jacobi cusp forms. |Krieg| (1985) has developed
the theory of Modular forms on half-spaces of quaternions. It would be interesting to

define and study Rankin—Cohen brackets on this space.
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Set of natural numbers

Set of integers

Set of rational numbers

Set of real numbers
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Extended complex half plane
{a+ib|a,becZ}
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Imaginary part of a complex number z

Set of all n x n matrices with elements in a ring R
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Mobius function
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Ramanujan cusp form

Ramanujan tau function

65



66



PUBLICATIONS

. Abhishek Juyal, Bibekananda Maji, and Sumukha Sathyanarayana, An exact for-
mula for a Lambert series associated to a cusp form and the Mobius function,

Ramanujan J., 57, 769-784, 2022. doi: 10.1007/s11139-020-00375-7.

. Bibekananda Maji, Sumukha Sathyanarayana, and B. R. Shankar, An asymptotic
expansion for a twisted Lambert series associated to a cusp form and the Mobius
function: level aspect, Results Math., 77, 123, 2022. doi:10.1007/s00025-022-
01655-y.

. Abhishek Juyal, Bibekananda Maji, and Sumukha Sathyanarayana, An asymp-
totic expansion for a Lambert series associated to the symmetric square L-function,

Int. J. Number Theory, 2022. doi.org/10.1142/S1793042123500264

. Sumukha S and Sujeet Kumar Singh , Rankin-Cohen brackets on Hermitian Jaobi

forms and the adjoint of some liner maps, Funct. Approx. Comment. Math.,

65(1): 61-72, 2021. doi: 10.7169/facm/1890.

67



68



BIODATA

Name : Sumukha S

Email : neerugarsumukha@gmail.com
Date of Birth :  March 21, 1995

Permanent address : Sumukha S,

S/o Y. S. Sathyanarayana,
Neerugaru, Bhanukuli(Post),
Sagar(Taluk), Shivamogga(District),
Karnataka-577421.

Educational Qualifications

Degree Year Institution/University

M.Sc. 2017 Mangalore University, Mangalore, India
(Mathematics) Aggregate: 87.95 %

B.Sc. 2015 PPC, Udupi-Mangalore University, Mangalore, India

Aggregate: 91.28 %

PUC 2012 PPC, Udupi- Department of PU Education Karnataka, India

Aggregate: 87 %

SSLC 2010 GHS Biligaru- SSLC Board Karnataka, India
Aggregate: 93.12 %

69



	Abstract
	INTRODUCTION
	SOME ARITHMETIC FUNCTIONS
	DIRICHLET CHARACTERS
	THE MÖBIUS FUNCTION

	MODULAR FORMS
	THE MODULAR GROUP AND THE CONGRUENCE SUBGROUPS
	THE SPACE OF MODULAR FORMS
	THE RAMANUJAN CUSP FORM
	EISENSTEIN SERIES OF LEVEL ONE
	THE PETERSSON SCALAR PRODUCT
	THE HECKE OPERATORS AND HECKE EIGENFORMS

	HERMITIAN JACOBI FORMS
	BASIC DEFINITIONS
	POINCARÉ SERIES FOR HERMITIAN JACOBI FORMS
	THE PETERSSON SCALAR PRODUCT ON HERMITIAN JACOBI FORMS
	RANKIN–COHEN BRACKETS FOR HERMITIAN JACOBI FORMS

	DIRICHLET SERIES AND L-FUNCTIONS
	THE REIMANN ZETA FUNCTION
	DIRICHLET L-FUNCTIONS
	THE L-FUNCTION ATTACHED TO MODULAR FORMS

	SOME SPECIAL FUNCTIONS
	THE GAMMA FUNCTION
	THE GENERALIZED HYPERGEOMETRIC FUNCTION
	THE MEIJER G-FUNCTION 

	ORGANIZATION OF THE THESIS

	LAMBERT SERIES ASSOCIATED TO A CUSP FORM AND THE MÖBIUS FUNCTION 
	AN ASYMPTOTIC RESULT FOR LAMBERT SERIES ASSOCIATED TO A CUSP FORM AND THE MÖBIUS FUNCTION 
	WELL-KNOWN RESULTS
	PROOF OF THEOREM 2.1.1 AND COROLLARY 2.1.2 

	TWISTED LAMBERT SERIES ASSOCIATED TO A CUSP FORM AND THE MÖBIUS FUNCTION
	THE MAIN IDENTITY
	SOME SPECIAL CASES
	AN ASYMPTOTIC RESULT INVOLVING THE NON-TRIVIAL ZEROS OF L(s,')

	LAMBERT SERIES ASSOCIATED TO THE SYMMETRIC SQUARE L-FUNCTION
	AN IDENTITY INVOLVING NON-TRIVIAL ZEROS OF (s) AND GENERALIZED HYPERGEOMETRIC FUNCTIONS
	AN ASYMPTOTIC EXPANSION

	RANKIN–COHEN BRACKETS ON HERMITIAN JACOBI FORMS AND THE ADJOINT OF SOME LINEAR MAPS
	ADJOINT CONSTRUCTION PROBLEM
	PROOF OF 5.1.1 AND SOME REMARKS

	CONCLUSION AND FUTURE SCOPE
	BIBLIOGRAPHY
	LIST OF SYMBOLS
	PUBLICATIONS


