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ABSTRACT 

The advancement of healthcare prediction systems has revolutionized the medical field, 

enabling to predict and prevent diseases severity, improve patient care, and enhance 

healthcare efficiency. This requires proper study of historic data in the related field and 

thorough analysis. Greater emphasis is laid on relevance of live data rather than 

repository data available in scholarly database. Again, the causes of a disease may vary 

geographically due to distinct living conditions or environmental conditions. At the 

same time, the ability of a medical practitioner to decipher information out of diagnosis 

procedure followed will be limited by his expert knowledge or experience. It is in such 

situations that a reliable accurate prediction system based on Artificial Intelligence (AI) 

comes as an assisting tool to the medical fraternity in conflict resolution. An AI-based 

diagnostic system will definitely help the medical expert in arriving at remedial 

solution, since knowledge base contained in it is based on sound design. The prediction 

system attempted in the present work consists of two stages. In the first stage, prediction 

system was developed for classification of undifferentiated fever symptomatic disease. 

The motivation of good results at this stage led to the development of full-fledged end-

to-end predictive system for identification and classification of coronary artery disease 

(CAD), with consideration of electrocardiogram (ECG) and treadmill test 

electrocardiogram (TMT-ECG, stressed ECG) signals. It is then validated with 

angiography results. 

Accurate diagnosis of undifferentiated fever symptomatic disease at the earliest is a 

challenging task necessitating extensive diagnostic tests. The aim of the present study 

was to apply Artificial Intelligence (AI) algorithm using temperature information for 

the prediction of major categories of diseases among undifferentiated fever 

symptomatic disease cases. Illnesses like tuberculosis, non-tubercular bacterial 

infection, dengue fever, and non-infectious diseases have regular manifestations of 

fever symptoms. The present work uses only temperature data of the patient being 

referred in predicting the nature of fever symptomatic disease, with the highest degree 

of accuracy, instead of several self-defined parameters over an interval of time. This 

was an observational study carried out in tertiary care hospital and validated with the 



help of experienced physicians. Back-propagation algorithm was used to train the 

network. A good relation was found between the target data set and output data set, 

purely based on the observed 24 hrs. continuous tympanic temperature of the patients. 

An accuracy of 99% was achieved from the Artificial Neural Network (ANN) 

prediction model. Prediction model with different classifiers (logistic regression, 

decision tree classifier, k-nearest neighbor’s classifier, linear decrement analysis, 

Gaussian Naive Bayes classifier, and Support Vector Machine) were experimented for 

optimization. The optimized prediction model deals with lesser time intervals and 

shows good performance of results when it is combined with additional medical 

parameters which may be considered during medical testing. A result of predictive 

system defines with a good classifier adaptation will show a strong performance in 

identification of fever-symptomatic diseases. Accuracy score and other salient 

parameters describe the complete picture of the system. No other investigation has ever 

been carried out so far taking temperature as the only parameter in classification of 

diseases achieving an accuracy of as high as 99.9%. 

Based on the success attained here, a more complicated problem is taken up for 

investigation related to coronary artery disease. Coronary artery disease (CAD) is one 

of the major cardiovascular diseases and is a cardiac condition where plaque formed in 

arteries leads to death worldwide. The identification of CAD in the traditional approach 

needs a report of ECG, TMT ECG, Pharmacological test, and echocardiogram. The 

confirmation of CAD leads to the next stage of cardiac catheterization. An accurate 

prediction system that can detect the existence of CAD with an initial test like an ECG 

or TMT ECG report can assist doctors during periodic health monitoring of patients. It 

may be challenging and time-consuming to visually assess the ECG signals. 

Identification of abnormal ECG morphology, especially in low amplitude curves may 

be prone to error. Initially, an image processing method has been developed and 

implemented for the extraction of data from ECG and TMT-ECG reports. The 12 lead 

TMT-ECG report provides cardiac information of abnormality under medication. This 

information plays a vital role in automated cardiac analysis. Any small discontinuity in 

the ECG/TMT-ECG images will be patched up by the developed method. The data 

extraction method involves scanning of ECG and TMT-ECG images, masking, 



binarization, and morphological operation, etc. These extracted data are compared with 

the available output of commercial software (IM2GRAPH) In addition to data 

extraction, a part of the algorithm based on hybrid method is used to identify and 

classify important major features namely P, Q, R, S, T, PQ segment, QRS complex, QT 

segment, and ST segment. A convolutional neural network model is developed which 

works on the data extracted from ECG signals (one-dimensional data). The developed 

Convolutional Neural Network (CNN) architecture deals with single-lead and multi-

lead (12 Lead) ECG and TMT-ECG data effectively. The highlight of the CNN system 

developed is that entire data is collected from the clinical lab of a renowned neighboring 

hospital. The automated computer-assisted system helps in the detection of CAD with 

an accuracy of 99%. 

The study also focused on developing a prediction system for CAD disease based on 

raw and filtered, single-lead and twelve-lead ECG signal images (two-dimensional), by 

passing data extraction. The algorithm results are compared with transfer learning 

algorithms. The novelty of the work is highlighted by the fact that the prediction 

accuracy of the developed algorithm, with a single lead and twelve lead ECG or TMT 

ECG signals (accuracy of approximately 93.5% for single lead and 94% for twelve 

lead) is much higher compared to transfer learned algorithms. The developed model 

exhibited better accuracy with lesser number of layers compared to deeper pre-trained 

algorithms. Further improvement is achieved by developing a novel multi-headed 

model which deals with both one-dimensional data and two-dimensional data 

simultaneously. This hybrid deep multi-headed model is built with a combination of 

two prediction models which work parallelly. The outcomes of these models are 

concatenated at the end part of model before flowing to the output layer. This process 

helps to extract and collect more featuristic information related to disease with all 

possibilities during prediction. To generalize this methodology, it is further tested over 

a repository dataset and has shown good performance and acceptable results. For good 

accessibility, a user-friendly Graphical User Interface (GUI) is developed based on 

proposed algorithm to support healthcare experts in classifying CAD ECG signals 

without much effort. The prototype model which is developed can be tested with a still 

larger dataset before implementation for clinical usage. 



Keywords: Diseases, Prediction, Fever, Artificial Intelligence, Neural network, 

classifiers, Coronary Artery Disease (CAD), ECG, TMT-ECG, Digitization, 

Convolutional Neural Network (CNN), Prediction algorithm Transfer learning, Pre-

processing, GUI, etc. 
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CHAPTER 1 

INTRODUCTION 

 

Artificial Intelligence (AI) based prediction systems are gaining prominence in each 

and every field, assisting the domain experts in evaluation and inferencing. These 

systems are backed by huge amount of context sensitive data and decision making 

capabilities, along with domain knowledge of the concerned experts. Nowadays, these 

techniques are popular in the healthcare domain to identify and classify diseases. Based 

on this concept, the present research work is carried out in two stages. At first, an AI 

system for classifying different types of fever symptomatic disease is developed to 

explore the relevance of AI in medical diagnosis. In the next stage, a full-fledged 

prediction system for cardiovascular disease detection has been developed and 

validated, with live data from a reputed hospital.  As a result, an attempt is made to 

investigate the relevance of AI in medical diagnosis, both in terms of one-dimensional 

and multidimensional data analysis.  

 

1.1 INTRODUCTION OF ARTIFICIAL INTELLIGENCE 

 

Artificial intelligence (AI) is an ability of system or machine to mimic or improve 

human performance, such as reasoning and experience-based learning.  Machine 

learning (ML) is defined as development of systems that are able to learn and adopt 

without following explicit programming. These ML models are classified into four 

categories i.e. supervised learning, unsupervised learning, reinforcement learning and 

artificial neural networks (ANN) to handle both structured data (data classification, 

segmentation, and anomaly detection, etc.) and unstructured data (text analysis, speech 

recognition and image classification, etc.). 

  

1.2 CLASSIFIERS 

 

According to the supervised learning technique, each and every set of patterns is 

predefined with a known class. These class labels will represent the output decision. 
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(Boden 2014) states that input data should match with given labelled data to obtain 

good accuracy so that newer observations will effectively be classified based on past 

learnt experience.  

 

A classifier based on the machine learning algorithm is a supervised learning technique 

that automatically arranges or categorizes data into one or more of a set of "classes". 

(Hartmann et al. 2019) mentioned that comparative results of classifiers are to be 

studied for understanding the behavior of every classifier. There are many statistical 

and machine learning approaches hidden in the principle of these classifiers. All the 

major classifiers are considered in implementation to classify fever symptomatic 

disease. 

 

(Fujino et al. 2007) segregated classifiers into two bases: discriminative model 

classifier and generative classifier. The term discriminative model describes a group of 

statistical classification models that primarily use supervised machine learning 

techniques. As a result of their ability to identify the borders between classes or labels 

in a dataset, these models are often referred to as conditional models. In discriminatory 

modelling 𝑃(y|x), matching the specified unobserved variable (target) x into a class 

label y based on the observed variables is represented as equation 1.1, 

 

      𝑃(y|𝑥) = x     (1.1) 

 

A Generative Model learns from the joint probability distribution p(x,y) which helps to 

distribute each class. This model predicts conditional probability using Bayes Theorem 

(Stylianides and Kontou 2020). For a variable X (features) and target variable Y 

(labels), a generative model is a statistical model of the joint probability distribution on 

X × Y and is represented as,  

 

          𝑃(𝑋, 𝑌)                                             (1.2) 

 

The major classifiers which are leading in both the categories are as discussed below: 
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1.2.1 Logistic Regression (LR): 

 

In LR method, the model is used to rectify the data, which belong to the same and other 

categories. The probabilistic score which varies from 0 to 1 is assigned based on the 

type of the data. (Marker et al. 2019) explained classifications are made depending on 

the probabilistic score. The binary logistic regression model (equation 1.3) works on 

the decision of main content (whether pass or fail). Logistic regression for multi-label 

categorization is done in two ways: either by Multinomial or by Ordinal Logistic 

Regression. The general logistic function 𝜎: 𝑅 → (0,1) is defined as, 

 

𝜎(𝑡) =
𝑒𝑡

𝑒𝑡+1
=

1

1+𝑒−𝑡
=

1

1+𝑒−(𝛽0+𝛽1Χ1+𝛽2Χ2+⋯++𝛽𝑛Χ𝑛)
   (1.3) 

 

Where, 𝛽𝑖 are parameters of the model and Χ𝑖are the observation of the logistic model. 

 

1.2.2 K-Nearest Neighbor Classifier (KNN): 

 

The k-nearest neighbor algorithm, also referred to as KNN or k-NN, is a supervised 

learning classifier that uses similarity to make classifications or predictions about the 

grouping of every data point. k-nearest neighbor is known as one of the non-parametric 

methods of classifier. (Adeniyi et al. 2016; Hmeidi et al. 2008) assigns the available 

data to one particular class, on the basis of the majority of votes of its neighbors (Figure 

1.1). It is commonly employed as a classification algorithm because it relies on the 

assumption that comparable points can be discovered close to one another. 

 

  

 

Figure 1.1 Data classification in kNN classifier 
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1.2.3 Linear Discriminant Analysis (LDA) 

 

Linear discriminant analysis (LDA) or Discriminant function analysis is a 

generalization of Fisher's linear discriminant (Rani et al. 2013), a method used in 

statistics, pattern recognition, and machine learning to find the linear combination of 

features that characterize the object. It is preferable during is the presence of more than 

two classes of target values. 

 

When there are more than two classes, the analysis used in the derivation of the Fisher 

discriminant (equation 1.4) can be extended to find a subspace which appears to contain 

all of the class (C) variability. The scatter between class variability may be defined by 

the sample covariance of the class means μ in a direction 𝜓, 

 

J(ψ) =
ψTSBψ

ψTSWψ
                                (1.4) 

 

Where,                            SB = ∑ ni(μi − μ)(μi − μ)
TC

i=1
 

 

SW =∑Si

C

i=1

∑ ni(x − μi)(x − μi)
T

X∈Di

 

 

Class scatters matrix SB and SW defined with the function of μ are the k-dimensional 

samples. Mean for the whole set, μi is the sample mean and Si is the scatter matrix for 

ith class. Di and ni are discriminant class and number of samples in class I respectively. 

 

 

1.2.4. Gaussian Naive Bayes (Gaussian NB): 

 

In the Gaussian Naive Bayes algorithm, (Haq et al. 2018) explains probabilities of each 

attribute which belong to each class being considered for a prediction. The assumption 

of the algorithm is, all the other attributes are not depending on that the probability of 

a given class value attribute (equation 1.5). In case, the value of the attribute is known, 

then the probability of a class value is defined as the conditional probability. Prediction 

is based on the calculation of each class instance probability and selection of the highest 

probability class value. 
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P(M N⁄ ) = P(N M⁄ ) ∗ P(M) P(N⁄ )    (1.5) 

 

Where, 𝑃(𝑀 𝑁⁄ ) is the probability of attribute M given the data (values) N. This is 

called the posterior probability. 𝑃(𝑁 𝑀⁄ ) is the probability of data N given that the 

attribute M was true. 𝑃(𝑀) is the probability of attribute M being true (regardless of 

the data). This is called the prior probability of M. 𝑃(𝑁) is the probability of the data 

or values (regardless of the attribute). 

 

1.2.5. Support Vector Machine (SVM) 

 

Support vector machine algorithm or SVM is one of the most well-known supervised 

machine learning techniques. It is helpful in both classification and regression-type 

problems. The objective of SVM is identification of a hyperplane in N-dimensional 

space to distinctly classify the data (Figure 1.2). (Saleh 2011) considered N-

dimensional feature space to plot each data value as a point, with the value of each 

feature as a particular coordinate. Hyper-plane is used to get better output of 

classification. In the case of SVM training, samples are classified into different subsets 

as support vectors. The decision function is specified by these support vectors.  

 

   

 

Figure 1.2 Data classification in SVM classifier 
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1.2.6. Decision Tree Classifier (CART) 

 

Another well-known supervised learning technique is called as decision tree algorithm 

which suits both classification and Regression problems and is most preferable for 

classification problems. (Lee et al. 2017) explains about this prediction modelling 

approach which flows from source observation to the target conclusion. (Seera and Lim 

2014) Figure out in the classification tree (Figure 1.3), leaves will represent class labels, 

and branches will be conjunctions of the features.  

 

Among well-known classifiers such as logistic regression (Belavagi and Muniyal 

2016), decision tree classifier, k-neighbors classifier (Trstenjak et al. 2014), linear 

decrement analysis (Rani et al. 2013), Gaussian Naive Bayes (Haq et al. 2018), SVM 

(Saleh 2011), etc, the SVM and decision tree classifiers (Classification and regression 

tree (CART) algorithm) are considered as a major classifier (Lee et al. 2017). 

 

 

 

Figure 1.3 Flow chart of Decision tree classifier (Mahamdi et al. 2022) 

 

1.3 DEEP LEARNING MODEL  

 

Deep learning is a machine learning system that triggers the computer or system to learn 

from experience and interpret in terms of a hierarchy of concepts. These models are 

cable to extract the low- and high-level features automatically which are required for 

categorization. Deep learning is made up of a number of layers of neurons, to learn a 

structured representation of big data, layer by layer. Generally, for analyzing structured 

data types, either dense deep neural network or the one-dimensional deep convolutional 

neural network is used. But during analysis of unstructured data types,  (like images, 
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speech recognition, etc.)  two-dimensional convolutional networks are used popularly 

to automatically detect the features and classify the categories.  

 

1.4 CONVOLUTIONAL NEURAL NETWORKS 

 

Convolutional Neural Networks (CNNs) are feed-forward Artificial Neural Networks 

(ANNs) which consist of alternative convolutional and subsampling layers. which 

are used for deep learning algorithms and for computer vision techniques over the past 

ten years.  A two-dimensional deep convolutional network (Conv2D) with multiple 

hidden layers and more feature parameters has the ability to learn complex objects, 

images, and patterns with the availability of large data.    The trained system can play 

a significant role in many technical applications for 2D signals, such as 

photos.  However, these systems are not a feasible alternative for one-dimensional 

signals or data, particularly if the training data is limited. 1D CNNs have recently been 

proposed as a solution to the above problem and have already attained state-of-the-art 

performance levels in a number of applications, including the classification and early 

diagnosis of personalized biomedical data, health monitoring, and anomaly detection. 

Another significant benefit of Conv1D is it can easily be incorporated into real-time 

analysis because Conv1D is configured only with 1D convolutions. Hence it is simple 

to monitor various hyperparameters and is widely used for data analysis. The various 

hyper parameters generally used in deep learning algorithms are discussed in appendix.  

 

1.5 TRANSFER LEARNING APPROACH OF PRE-TRAINED MODELS 

 

Transfer learning approach is similar to person sharing the knowledge of known things 

to unknown one. Similarly here, if the model is trained over large dataset, the gained 

knowledge is compiled as weights of the model. These weights can be extracted and 

transferred to any other network model known as transfer learned feature network. This 

will help to avoid training it from scratch and obtain better results. The best known pre-

trained models are as discussed in appendix. 
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1.6 FEVER SYMPTOMATIC DISEASES 

 

A fever is an indication of body temperature higher than normal and even known as 

high temperature, hyperthermia, or pyrexia. Normal body temperature differs from 

person to person and lies within the range of 97 to 99 oF. If the temperature is 100.4 of 

or higher, it is considered as fever. A body temperature is regulated by the 

hypothalamus, a region of the brain. The hypothalamus can reset the body temperature 

and the failure of this will result in an increase in temperature.  

 

Nowadays, fever diseases are common and universal. Symptoms (Frieden et al. 2014) 

of many fever diseases (majorly Tuberculosis, Non-tubercular bacterial infections, 

Dengue fever, Non-infectious diseases, etc.) are similar and the prediction of the exact 

type of fever will be based on several types of tests. This procedure is time-consuming 

and cost-intensive. Even inaccurate identification may lead to some other type of 

problem. To bring down such uncertainties, many researchers have worked on the 

accurate prediction of diseases using different parameters. In this study, only 

temperature data as a parameter is considered, for the prediction of Tuberculosis, Non-

tubercular bacterial infections, Dengue fever, and Non-infectious diseases, which is 

very unique development.  

 

1.6.1 Tuberculosis (TB): 

 

From the World Health Organization (WHO) report, it is observed that Tuberculosis 

(TB) is one of the top ten diseases causing death worldwide. From a survey in 2017, it 

is found that approximately 10.5 million people get affected by Tuberculosis, and 

nearly two million people die due to this. Death counts are much more in low and 

middle-income countries (nearly 95%). (Doshi et al. 2017) Out of this, India with 64% 

of the total count leads the world, followed by China, Indonesia, Pakistan, the 

Philippines, Nigeria, and South Africa. 

 

Artificial Intelligence (AI) and machine learning play an important role in identifying 

different types of TB like latent TB and active TB (Luger 2005; Samuel 1969) 

(Machuca et al. 2018). In recent days, diagnosis of tuberculosis is effectively done 
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through Chest X-rays, especially in the case of pulmonary tuberculosis, which is one of 

the most common forms of tuberculosis. (Lakhani and Sundaram 2017) Although chest 

X-ray does not provide the root cause for confirming TB, they still offer a high 

sensitivity method for detecting tuberculosis-related abnormalities in the lungs. 

 

1.6.2 Nontuberculous mycobacteria (NTM) 

 

Nontuberculous mycobacteria (NTM), which is ubiquitous and affects both airways and 

lung tissue will cause inflammation of the respiratory system. NTM lung infection 

occurs when a person inhales the organism from the surrounding environment. In the 

case of a few susceptible individuals, the slowly progressive and destructive disease 

can occur (Falkinham 2003; Mirsaeidi et al. 2014). 

 

Additionally, (Marras et al. 2007; Mirsaeidi et al. 2014) studies show that NTM-related 

lung infections, particularly in persons over 50 years of age, are on the rise in North 

America. Some patients, however, do not require treatment in case of less severe 

infections (Lyman et al. 2017).  

 

1.6.3 Dengue 

 

Compared to the above two types of diseases, dengue fever stands second on the list of 

dangerous diseases. Dengue fever is a mosquito-borne tropical disease caused due to 

the dengue virus (Diagnosis 2009; Scott 2009). Symptoms are headache, high fever, 

vomiting, muscle & joint pain, and characteristic rashes on the skin (Dr.N.Kannathasan 

2018). WHO stated that dengue fever widely spreads all over tropical areas, with local 

risk variations affected by rainfall, temperature, and unwell-planned urbanization. 

Mosquitoes are known as one of the causes of human suffering than any other organism. 

A large number of people die from mosquito-borne diseases worldwide each year (Scott 

2009). Increasing environmental temperature due to global warming could cause the 

growth rates of larval mosquitoes (Bayoh and Lindsay 2003, 2004), resulting in a large 

number of adult mosquitoes leading to mosquito-borne diseases (Nazareth et al. 2016). 

 

In a few cases (Selvaretnam et al. 2016; Singla et al. 2015), the life-threatening dengue 

hemorrhagic fever is developed because of this, resulting in continuous bleeding, blood 
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platelet levels becoming low, and leakage of blood plasma. Also, in some situations, 

blood pressure drops to a dangerously low level, resulting in dengue shock syndrome 

(Lee et al. 2017), which may affect life of people. More than a hundred countries are 

affected by this type of disease; dengue is one pandemic-prone viral disease that is fast 

spreading its tentacles in many parts of the world (Pe et al. 2011). Dengue is getting 

boom in areas like urban unhygienic places, suburbs, and the countryside but also in 

well-developed countries (Marras et al. 2007; Guzman et al. 2010). Early detection of 

this type of infectious disease is predicted by artificial intelligence (Laureano-rosario 

et al. n.d.; Story 2018; Diagnosis 2009; Guzman et al. 2010; Lee et al. 2017). 

 

1.6.4 Non-infectious Disease 

 

Non-infectious diseases are not caused by pathogens. Hence, it won’t spread from 

person to person. The main factors affecting non-infectious diseases are genetics, 

malnutrition, environment, and lifestyle. Examples of non-infectious diseases include 

cancer, Alzheimer’s disease, and epilepsy. Non-infectious diseases are considered as 

diseases which are not caused by pathogens. But non-infectious diseases are caused due 

to genetic or environmental factors, either by toxic environmental exposures or 

unhealthy lifestyles. Major non-infectious diseases have a multifactorial set of complex 

causes (Susilawati and McBride 2014), and a mix of genetic and environmental 

variables. Examples of non-infectious diseases include most cancers, cardiovascular 

diseases such as coronary artery disease, and diabetes mellitus (Dakappa et al. 2017 ; 

Dakappa et al. 2018). 

 

The proper diagnosing technique adaptation will help to detect and diagnose these 

diseases in the early stage with consideration of these risk factors. One of the major 

fever symptomatic disease identification methods is a periodic temperature measuring 

device. This will provide a pictorial view of the temperature graph of the patients over 

the interval of time.  

A sensor based (digital ear) thermometer is used to measure  the gradient of temperature 

(i.e. degree of hotness or coldness of an object). A thermometer contains two essential 

components: a temperature sensor (Dakappa et al. 2018) (either the bulb of a mercury-
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in-glass thermometer or the pyrometric sensor in an infrared thermometer in a digital 

thermometer) and a display unit.  

 

1.7 HEART DISEASES  

 

The term ‘heart disease’ refers to a variety of heart disorders. The most frequent heart 

conditions are arrhythmia, Coronary artery disease (CAD), Atrial fibrillation (AF), and 

Myocardial infarction (MI). These heart diseases are commonly rectified with the help 

of heart tests like electrocardiogram (ECG), treadmill test - electrocardiogram (TMT-

ECG), echocardiography, etc.  

  

1.7.1 Arrhythmia 

 

A cardiac arrhythmia is a deviation from the regular heartbeat's rhythm (Figure 1.4), 

i.e. is fast (tachycardia - greater than 100 beats a minute), slow (bradycardia- less than 

60 beats a minute), and rapid changing (irregular). The rapid ventricular rates that 

interrupt atrial and ventricular output, may cause ventricular systolic dysfunction 

 

   

Figure 1.4 Arrhythmia heart condition  Figure 1.5 Plaque formation under CAD 

 

1.7.2 Coronary Artery Disease (CAD)  

 

The coronary arteries, are arteries which carry blood to heart, affected leads to coronary 

artery disease (CAD). i.e. Due to formation plaque in artery blocked or gradually 

decrease blood flow (as shown in Figure 1.5). The most frequent symptom is angina 



12 

 

(chest discomfort), which causes chest pain and may lead to heart attack or other 

consequences like arrhythmia or heart failure. 

 

1.7.3 Arterial Fibrillation 

 

Atrial fibrillation is an irregular and rapid heart rhythm (arrhythmia) that may cause 

heart blood clots. Which is asymptomatic and difficult to rectify, due to this formation 

which intern leads to stroke, heart failure, and other heart-related issues. The heart's 

upper chambers (atria), which pulse asynchronous with the lower chambers 

(ventricles).  

 

1.7.4 Myocardial infarction 

 

Myocardial infarction popularly known as a heart attack, is a very serious condition that 

occurs due to the blockage of flow of blood to the heart muscle (severe CAD). 

However, the injured cardiac muscle will start deteriorating. If the treatment related to 

the restoration of blood flow fails, a heart attack can lead to permanent heart damage 

and patient death. 

 

1.8 ELECTROCARDIOGRAM (ECG OR EKG) 

 

An electrocardiogram (ECG) is a test that measures the electrical activity of the 

heartbeat. An electrocardiogram, commonly known as an ECG or EKG, is frequently 

performed by a health care professional, clinic, or hospital. An electrical impulse flows 

through the heart represented with each beat. The muscle contracts and pumps blood 

from the heart in response to this impulse. An ECG of a normal heartbeat will indicate 

the timing of the upper and lower chambers (Hong et al. 2020). An ECG is a depiction 

of the electrical activity of the heart muscle over time, commonly written on paper for 

ease of interpretation. Similar to skeletal muscle, cardiac muscle contracts in response 

to electrical depolarization of the muscle cells. An ECG is the sum of this electrical 

activity when amplified and recorded for the time interval. 

 

Nowadays,  ECG monitoring is available on several gadgets apart from health centres 

like smartwatches, mobile phones, smart bands, etc (Ebrahimi et al. 2020; Haverkamp 
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et al. 2019). An ECG provides two types of information. First, based on time intervals 

on the ECG, the doctor can predict how long the electrical wave takes to pass through 

the heart. This indicates whether the electrical activity is normal or abnormal. In another 

method, by measuring the amount of electrical activity passing through the muscles of 

the heart, a cardiologist can effectively determine the proper working of the heart. The 

electrical depolarization pulse travels from the atria to the ventricles through the IVS 

(intact ventricular septum). This overall direction of travel of the electrical 

depolarization through the heart is known as the electrical axis.  

 

Figure 1.6 Structure of the heart and ECG (Al-ani 2014) 

 

An ECG  plot is given in Figure 1.6. An ECG plot has amplitude along the Y axis and 

the time along the X-axis. Amplitude refers to voltage and scale of Y-axis is 5 mm = 

0.5 mV or 10 mm = 1 mV (Virgin and Baskar 2018). The X-axis refers to time, with 5 

mm = 0.2 sec or 10 mm = 0.4 sec. An ECG plot is divided into the P wave, the PR 

segment ranges between 120 to 200ms, the QRS complex which ranges from 80 to 

100ms, the ST segment, and the T wave which lasts 160ms. Furthermore, there is also 

the QT interval which is measured from the beginning of the QRS complex to the end 

of the T wave. Acceptable ranges vary with heart rate. So it must be corrected to the 

QTc by dividing by the square root of the RR interval, the time elapsed between two 

successive R waves of the QRS signal on the electrocardiogram.  
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1.9 TREADMILL TEST - ELECTROCARDIOGRAM (TMT-ECG) 

 

A treadmill test (TMT) or cardiac stress test determines how far the heart can run before 

experiencing an irregular rhythm or a reduction in blood flow to the heart muscle. It 

allows doctors to learn how the heart reacts when it is pressurized. TMT will be 

performed in accordance with the Bruce protocol, (Akinpelu 2015; Viliane Vilcant; 

Roman Zeltser . 2022) i.e. a treadmill walk that will be gradually increased. 

 

Various protocols are used, including Naughton and ramp protocols, but the most 

common is the Bruce protocol. A Modified Bruce technique is another adoptable 

method for patients. The standard Bruce procedure has three-minute phases. The 

gradient (Treadmill inclination) is 10% in stage I and increased by 2% each stage. The 

beginning speed is 1.7 mph and increases in 0.8 to 0.9 mph increments at every stage. 

Stage I of the Modified Bruce procedure has a gradient of zero, whereas stage II has a 

gradient of 5%. The first three phases of the Modified Bruce procedure have the same 

speed (1.7 mph). Stage 3 of the Modified Bruce procedure corresponds to Stage I of the 

regular Bruce protocol., Further stages are similar to Bruce's protocol (Akinpelu 2015). 

 

 The voltage values of ECG or TMT-ECG between an electrode as well as the muscle 

activity that measures from different prospects are stored as vector values. Behavior of 

these shows the overall beat of the heart as well as abnormalities in various regions of 

the heart muscle.   Usually, ECG will be the greatest method for measuring and 

diagnosing irregular cardiac rhythms, specifically for abnormal rhythms produced by 

damage to the tissue that conducts electrical signals.   

 

A computerised solution to interpret the ECG signal will involve digitization of the 

image for further processing. Investigation of the digitized ECG profile will be able to 

extract lot of useful information, indicative of the nature of heart condition. Since the 

data extracted is combinatorially complex in structure, a proper AI based analysis will 

be highly beneficial. Understanding the basic concepts of these algorithms leads to the 

development on specific application-based AI systems. Major applications (related to 

fever and ECG) which are correlated with this theory concepts are briefly discussed in 

the literature review, individually.   
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CHAPTER 2 

LITERATURE REVIEW 

 

The study is mainly focused on development of prediction system for two types of 

common health issues generally faced by the public. These two types of issues namely 

(i) Undifferentiated fever symptomatic diseases (like tuberculosis, non-tubercular 

bacterial infection, dengue fever, and non-infectious diseases) and (ii) cardiovascular 

disease (like coronary artery disease and heart attack). Monitoring these health issues 

periodically will help to prevent the major causes. These challenges effectively deal 

with intelligent system development. This intelligent system will help to predict the 

disease status based on input provided by user. These systems are train-based on 

features extracted related to diseased patients and normal patients’ conditions. The 

detailed literature study related to these diseases, data collection, prediction system, and 

outcomes is discussed as follows. 

 

2.1 UNDIFFERENTIATED FEVER SYMPTOMATIC DISEASE 

 

Healthcare sectors in the current decade are primarily focusing on intelligent systems. 

(Joshi, R; Kalantri 2014) discussed about the major reason for implementing intelligent 

systems in medical applications is the necessity of accurate way of prediction related to 

critical health issues. Primary studies extending the use of these systems under 

undifferentiated fever symptomatic disease conditions will reduce the risk and help to 

provide a proper diagnosis for the disease.  

 

Machine learning algorithms have been applied in the field of medicine for predicting 

certain classification type of diseases. Among artificial neural networks (ANN), 

machine learning (ML) algorithms have been found to be the most efficient method for 

predicting certain diseases like heart diseases (Atkov et al. 2012; Baxt 1991), 

neurological diseases (Podgorelec 2012), cancer (Maclin and Dempsey 1994), etc., 

based on certain parameters like Electroencephalogram, clinical data (Amato et al. 

2013), X-ray photographs, etc. In this study, research is mainly focused on fever 

symptomatic diseases and heart disease as shown in Figure 2.1. 
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Figure 2.1 Literature study layout related focused area of research 

 

(Ogoina 2011) discussed related fevers can be arbitrarily classified into acute, sub- 

acute and chronic fevers based on duration and fever pattern observation. 

Undifferentiated fever symptomatic disease is the most common disease in developing 

countries like India, Nepal, Thailand, etc. Undifferentiated fever symptomatic disease 

is associated with nonspecific clinical symptoms, which are usually difficult to 

diagnose and treat at the earliest. Additionally, factors like age, blood pressure, and 

possessing diabetes may come as affecting parameters with symptoms. (Shaukat Dar 

and Ulya Azmeen 2015) stated that illness like tuberculosis and dengue are the most 

common death-causing diseases. Medication methods to rectify or classify these 

diseases will have a time and cost-consuming procedure. (Johnson and Odell. 2014) 

defined disease like non-tuberculosis myocardial bacterial infection affects the lungs 

and is very challenging to diagnose. The importance of recognition initial stage is 

highly essential before it becomes severe.  (Anggraeni et al. 2017) shares the 

information about, on the basis of experience, it is reported that temperature based 

prediction is more power full tool to predict in the early stage of these typical types of 

diseases. Even during changes in the condition of health with respect to time, the 

present patient condition may lead to wrong decision making due to miscommunication 

between patient and health checker. This may disturb the accuracy of prediction system.  
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Moreover, it requires extensive invasive and noninvasive diagnostic tests for early 

differential diagnosis of undifferentiated fever symptomatic disease. Several 

researchers (Ittyachen and Ramachandran 2015; Joshi, R; Kalantri 2014; Mourad et al. 

2003; Roth and Basello 2003) states the prediction system algorithm for clinical 

diagnostic problems will helps identify at early stage. These algorithms were developed 

based on results of basic hematological tests, x-rays, invasive tests, etc. (Roth and 

Basello 2003). The major drawback of traditional approach as discussed by (Joshi, R; 

Kalantri 2014) is the delay in arriving decision about diagnosis and the increased 

financial burden to the patients on account of the expensive tests involved. This can be 

improved by applying advanced prediction techniques relying on machine learning 

algorithms or artificial neural network models.  

 

2.2 APPLICATION OF CLASSIFIERS IN DISEASE PREDICTION  

 

(Dakappa et al. 2018) explains two major categories of fever symptomatic diseases, 

namely infectious and non-infectious diseases can be effectively classified using an 

artificial network algorithm. Similarly, a machine learning algorithm can also be 

applied to predict the undifferentiated fever symptomatic disease cases using 

temperature as the primary parameter. (Shaukat Dar and Ulya Azmeen 2015) discussed 

different types of classifier applications which are developed for the identification of 

dengue disease. Since there is no major work related to the classification of these fever 

symptomatic diseases, provide lead work with classifiers to classify the different 

diseases based on the same type of data. (Dakappa et al. 2017) states study used 

temperature and basic hematological data as parameters for differentiating 

undifferentiated fever into four categories of diseases (tuberculosis, dengue fever, 

intracellular bacterial infections, and noninfectious diseases) by applying a machine 

learning algorithm. 

 

The Table lists several studies which deal with individual disease detection or 

prediction with a classifier-based AI approach (Table 2.1). These AI or machine 

learning approaches help to classify the disease with consideration of several symptoms 

of disease, temperature pattern of disease, Mosquito abundance (Lee et al. 2016; Young 

et al. 2016), etc. Datasets used for the prediction algorithm in the Table are derived 
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from hospitals (Dakappa et al. 2017; Shaukat Dar and Ulya Azmeen 2015) and 

repository data (Mourad et al. 2003; Sarma et al. 2020). (Dakappa et al. 2018) study 

shows SVM and (Sarma et al. 2020) shows decision tree (DT)s  as powerful 

applications in the classification of fever symptomatic disease. (Dyego et al. n.d.) states 

the application of classification further extends to deep neural networks to improve the 

accuracy of the system.  
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 Table 2.1 Application of Machine learning and AI approach for classifications of Undifferentiated fever   

Sl. 

No. 

Authors & Year Disease Dataset Classification Accuracy 

1 (Dakappa et al. 

2018) 

Infectious & Non-

infectious disease 

Local hospital data & 

features (Temperature data) 

DNN 91.3% 

2 (Young et al. 2016) Mosquito abundance 

(malaria & dengue) 

Digital mosquito ANN & 

monitoring 

ANN & multilinear 

regression 

Avg 90% 

3  (Shaukat Dar and 

Ulya Azmeen 2015) 

Dengue fever 

prediction 

Hospital data (with 

additional features of 

disease) 

Naïve basics, random 

tree, regression tree 

Avg 92% 

4 (Sarma et al. 2020) Dengue WHO-2019 

Database 

Decision tree (DT) & 

Random Forest (RF) 

79% 

 

5 (Salim et al. 2021) Dengue Local hospital data SVM 70% 

6 (Hooda et al. 2017) Tuberculosis Features and data DNN 82% 

7 (Dyego et al. n.d.) Dengue Revised observations ML & DL (RF, SVM 

etc) 

85% 

8 (Xing et al. 2020) NTM Data of 116 patients & 103 

patient 

ML 85% 
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2.3 LITERATURE STUDY RELATED TO HEART DISEASES 

 

The accountable major cardiac disease considered are Arrhythmia, CAD, Arterial 

Fibrillation, and Myocardial infarction. Arrhythmia is an irregular heartbeat (Chen et 

al. 2020), that occurs due to the improper functionality of a heart which is rectified by 

observation of electrical signals. In addition to this, another major common type of 

heart disease increasing rapidly in the United States and even in Asian countries is 

known as coronary artery disease (CAD), which affects the blood vessels through the 

formation of plaque (Cholesterol deposition) in arteries. This can lead to chest pain, 

stroke, or heart attack (Myocardial infarction), i.e., decreasing or stopping of blood flow 

to the coronary artery of the heart. Arterial fibrillation (AF) is another heart disease that 

occurs due to irregular or rapid variation of heart rhythm leading to clot of the blood in 

the heart. The existence of these types of diseases (Figure 2.2) can easily be identified 

using ECG, TMT-ECG, etc. (Martis et al. 2014) about ECG, which is a simple test to 

check the heart's rhythm (Repolarisation and Depolarisation) and electrical activity of 

the heart. Stressed ECG or TMT-ECG (Treadmill ECG) is an advanced ECG, helpful 

during the condition when normal ECG can’t provide sufficient information. 

 

 

Figure 2.2 Overall literature study layout focused on heart related issues 
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Analysis of ECG/ TMT-ECG can be performed either based on the traditional approach 

or based on Artificial intelligence approach (AI). The traditional approach is based on 

time or frequency-domain. (Fariha et al. 2020; Pan and Tompkins 1985) explained 

regarding classification ECG rhythms as normal or abnormal offered a modified Pan- 

Tompkins based adaptive thresholding technique and (Ebrahimzadeh and Pooyan 2011; 

Gupta and Mittal 2021) explained discrete wavelet transform (DWT) is used to 

categorize ECG using Principle Component Analysis (PCA).  

Classification of abnormality-based experts votes and handcrafted features related 

study as listed in Table 2.3. Various irregularities of ECG behavior which are not 

rectified through the traditional approach can be solved through AI approach. (Pławiak 

2018; Sannino and De Pietro 2018) discussed related to modern deep learning models 

are designed to train from end to end, is difficult to combine with traditional expert 

feature-based approaches. There are two main approaches for addressing this issue. The 

first one is to develop DNN architectures using current expert knowledge  (Khatibi and 

Rabinezhadsadatmahaleh 2019). The second approach is considering deep learning 

models as feature extractors and directly extract hidden encoded information. As a 

result, expert features and deep features may be simply combined, help to build classic 

machine learning methods on such features. The Table 2.4 describes machine learning 

approaches discussed in (Celin and Vasanth 2018; Haq et al. 2018; Khatibi and 

Rabinezhadsadatmahaleh 2019) like decision tree algorithm, K-nearest neighbours, 

artificial neural networks, etc. These results refer to the compatibility of the approach 

compare to previous traditional-based approaches. Periodical monitoring will be easier 

with the application of the AI approach using smart devices and mobile applications as 

discussed in Table 2.2 with respect to cardiologist analysis. 
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Table 2.2 Prediction of heart disease based on different feature parameters and smart approaches 
 

Sl.No. Author & Year Consideration Disease Method Features Accuracy 

1 (Marston et al. 

2019) 

 

ECG Arrhythmia CNN, LSTM, RNN, 

Gated RN, Deep belief 

network (Smart device) 

P wave 

QRS complex 

99.3% 

2 (Haverkamp et al. 

2019) 

144 Subject Lead I 

ECG (30 sec) & 94 

patient 12 ECG 

Arterial 

fibrillation 

Smartphone ECG 

(anonymized data) 

Lead-I 

12 Lead(Standard ECG & 

smartphone ECG) 

97% & 94% 

3 (McManus 2019) 121 participants, 2 

minutes recordings 

Arterial  

fibrillation 

Recorded iPhone 4s 

(PULSE-Smart) 

Root Mean Square of 

successive R-R difference, 

Shanon entropy, point care plot 

95% 

4 (Kruger et al. 

2019) 

M-health device -

68 

MIT-BIH -dataset -

48 

Arterial  

fibrillation 

Frequency dispersion 

metric (FDM) 

R-R Interval variability 

M-health ECG feature reading 

device 

M.Health 

shows good 

accuracy 

5 (Acharya et al. 

2014) 

BioPAC TM 

equipment (10 

CAD & 10 Normal) 

CAD- 

Heart rate 

Heart rates from ECG Time domain, frequency 

domain, Non-linear Technique 

(SVM) 

75% 
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Table 2.3 Prediction of heart disease based on different parameters and traditional approaches 

Sl. 

No. 

Author & Year Disease Dataset Parameters Accuracy 

1 

 

(Pławiak 2018) Cardiac disorder MIT-BIH Arrhythmia at 

single lead 29 patients 

Selection of expert votes & sum 98.94% 

2 (Clifford et al. 2017) Artificial 

fibrillation 

Physio-net 2017 XG boost, CNN, RNN approach with 

or without LASSO & LASSO& 

additional feature algorithm 

Avg 82% 

With 85.57% 

3 (Arafat et al. 2005) Coronary Artery 

Disease 

(ECG & TMT-ECG) 

University of Missouri 

Fuzzy, probability & combined Combined better 

than fuzzy & 

probability 

4 (Sannino and De Pietro 

2018) 

Arrhythmia MIT-BIH Arrhythmia 

from 115 patients 

Extracting handcrafted features with 

SVM 

99.83% 

5 (Khatibi and 

Rabinezhadsadatmahaleh 

2019) 

Arrhythmia MIT-BIH Arrhythmia 

(MIT DB)47 patients 48 

recording 

Features extraction with CNN, 

handcrafted features & classification 

with DT, SVM, RF 

99.77% 
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Table 2.4 Prediction of heart disease based on different machine learning and AI approaches 

 

Sl. 

No. 

Author & Year Disease Data set Classifier Accuracy 

1 (Haq et al. 2018) Heart disease Clevel and heart disease 

dataset 2016 (303 patients & 

76 feature considered) 

(297&13) 

LK, KNN, ANN, SUM, NB, DT Avg-80% 

Accuracy 

Max accuracy-Sum-

86% 

2 (Pławiak 2018) Cardiac 

disorder 

MIT-BIH Arrythmia 

database for one lead of 29 

patients 

SVM & Novel Sum + genetic 

tracking 

98.99% 

3 (Khatibi and 

Rabinezhadsadatmahaleh 

2019) 

Arrhythmia MIT-BIH Arrythmia DT, SVM {random Forest, KNN, 

DNN} 

99% 

4 (Celin and Vasanth 2018) Normal or 

abnormal 

MIT-BIH Arrythmia SVM, Ada boost, ANN & Naïve 

bases. 

Avg-94% 

5 (Qibin Zhao and Liqing 

Zhang 2005) 

Heart rhythm 

types 

MIT-BIH Arrythmia Wavelet transformation & sum 99% 
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In the importance of early detection of cardiovascular diseases, (Jahmunah et al. 2019) 

listed as ECG is the most cost-efficient and least invasive of all heart disease detection 

procedures. It gives comprehensive information about various kinds of diseases that 

affect humans and the need to detect them early in order to prevent the possibility of 

fatality later on.  

 

The diagnostic procedures are faster while at the same time retaining the accuracy of 

the diagnosis. (Amato et al. 2013) according to this, accuracy of the ECG is of critical 

importance and inaccurate ECGs can lead to a wrong diagnosis by doctors, leading to 

wrong treatment. In spite of this, (Li and Boulanger 2020) explains the  ECG  

monitoring system is one of the most significant monitoring systems to diagnose 

cardiovascular diseases.  

 

During critical illness conditions like arrhythmia (Vilcant and Zeltser 2019) and 

coronary artery disease (Miller et al. 2016), etc, interpretation of disease by healthcare 

experts is done based on normal ECG and TMT ECG (which is recorded based on Bruce 

protocol as explained in (Badawy and Muaidi 2019; Shaw et al. 2015)). (Vasudeva et 

al. 2020) explained ECGs signals which are printed on thermal paper have shorter shelf 

life due to ink evaporation, mishandling, etc. Data in the signal are extracted through 

the data extraction method for future reference and these data are used in training the 

intelligent systems to classify the abnormality. The image processing technique is one 

of the best methods to extract data from the graph and store it. 

 

There are a variety of diagnostic tools that can be used to detect CAD, like 

electrocardiogram (ECG), exercise stress test (Treadmill test (TMT)), echocardiogram, 

pharmacological test, and Cardiac catheterization (angiogram). Cardiac catheterization 

is a time-consuming and invasive procedure requiring experts for inserting a catheter 

into the arteries to remove plaque formation. Electrocardiogram and Tread Mill Test 

(TMT-ECG) are the usual techniques for the initial examination of the heart. These will 

help doctors to assess cardiovascular problems, abnormal heartbeat and identify the 

requirement for cardiac catheterization. 
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The electrocardiogram (ECG) is one of the most widely used procedures for detecting 

problems related to the electrical, vascular, and muscle systems of the heart. The 

voltage (millivolts) versus time (millisecond) graph generated from the 

Electrocardiography equipment is known as an electrocardiogram. (Jovic et al. 2019; 

Kumar et al. 2017; Wang et al. 2020) discussed about the automated analysis allows for 

the detection of electrocardiogram results associated with pathological problems 

without human involvement. To do this, digital electrocardiograms must be processed 

to quantify the amplitudes (mV) and durations (ms) of waves and intervals.  

 

A modular feature extraction procedure will do away with the access rights issues which 

are likely to be encountered while using ECG machines with digitally recorded ECG 

data. It also enhances the utility value of ECG machines which otherwise just generate 

ECG graphs, by supplementing with high sampling rate data extraction. Most of the 

ECG machines available in developing or underdeveloped countries do not allow 

sharing of the digital form of ECG data. In the voltage versus time graph obtained from 

the Electrocardiography, automated analysis allows for the identification of ECG 

findings and assessment of pathological anomalies without the need for human 

involvement. (Badilini et al. 2003) findings, digitization through image processing is 

one of the methods to store ECG and TMT ECG data. The pre-processing of an image 

is primarily determined based on pixel information. The image's pixel dimension is 

determined by the size of the pixels array. The height and width of an image are 

determined by the array's number of rows (N) and columns (M). M X N is the size of 

the pixel array. The fundamentals of image processing for digitization are image 

segmentation, color correction, point, line, and edge detection, aid in the region-

dependent threshold system, the removal of paper noise with a filter, morphological 

image processing operations for image dilation, erosion, and pixel indexing to store the 

data. 

 

ECG analysis utilizing time-domain characteristics is challenging due to noise and the 

lack of knowledge of healthcare professionals. An intelligence system with effective 

signal pre-processing techniques before feature extraction is necessary to extract time-

domain properties from ECG successfully as mentioned in (Ebrahimzadeh and Pooyan 
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2011). (Jian et al. 2021; Martis et al. 2014) expressed generally time-domain properties 

of ECG signals do not provide crucial information on non-linear interrelationships. A 

efficient computer-aided prediction system helps to recover non-linear features, which 

handle the inherent complexity of the time series and the non-linear behavior of ECG 

signals.  

 

 

Figure 2.3 Flow chart of literature study focused on digitisation and prediction 

models 

 

2.4 ECG DIGITIZATION 

 

The computer vision method as explained by (Khleaf et al. 2015) to extract the ECG 

scan's paper is helpful to find data that used to predict arrhythmia disease with the help 

of the artificial intelligence system. Data extracting accuracy is good when compared 

with the manual extracting method. (Ravichandran et al. 2013) mentioned scanned 

image with OCR (Optical Character Recognition) digitization technique (Table 2.5). It 

uses the threshold method to eliminate gridlines  and the median filter to remove noise 

before converting the data to a 1D vector. (Virgin and Baskar 2018) noted digital 
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transformation index in the form of matrices is used to turn images into data using 

image processing techniques with the aid of Matlab. The matrix is then transformed 

into digital data, which is a copy of the ECG picture input.  

 

Fabio Badilini (Badilini et al. 2005) carried out digitization by adopting digital ECG 

technology active contour modelling. ECG Scan was validated using a set of 60 ECG 

graphs. Validation is done based on the PQRS complex with the data scan from the 

scanner and the digitized data. Further, Deepak Kumar (Garg 2012) worked on 

digitization based on pixel interpolation. The scanned image is processed through 

various image processing tools. Then the pixel is interpolated through the column. The 

method involves a calculation of Heart rate, QRS Width, and Stability (variation in R-

R peaks) from the extracted signal. The result is compared with the manually calculated 

parameter showing an accuracy of 96.4%. A fuzzy system was developed, from digital 

image processing, and color corrections, and the filter was used with the help of 

experience. Image segmentation is based on color, point, line, and edge detection. 

(Virgin and Baskar 2018) discuss on region-based thresholding, Removal of the noise 

with the help of the filter. Morphological image processing for the dilation of the image, 

erosion, and Hit-or-miss transformation. Matlab to convert images to (x, y) data  by 

using image processing techniques. The fine details of the image are extracted and the 

equivalent digital information is indexed in the form of matrices. This matrix is 

converted into digital data which is a fine replica of the input ECG image. The digitized 

ECG data is saved as a (.dat) file.  

 

The Tompkins Algorithm (Jambukia et al. 2015) was created in 1985-1986 to find 

features such as QRS complex using the low pass and high pass filters, squaring signal, 

integration, and adaptive thresholding with 95% accuracy. (Luukka and Lampinen 

2010) adopt the common approach to obtain features of these ECG signals using  

Principal Component Analysis (PCA), while (Li et al. 2017) discussed about the 

wavelet packet decomposition (WPD) method combined with statistical methods can 

yield better outcomes. Digitization tool as explained (Badilini et al. 2005; Garg 2012; 

Sassi et al. 2017) is used to digitize ECG graphs and measure features such as heart 

rate, QRS distance, R-R peak variance, and PQRS complex with 90% accuracy.  
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Table 2.5 Parameters and techniques adopted for digitisation ECG. 

 

Sl. 

No. 

Author & Year Disease Data Consideration Technique Scanni

ng 

Correlation 

1 (Tabassum and 

Ahmad 2020) 

Arrhythmia 

Dataset 

MIT-BIH scanned 

ECG strip 

Matlab,12 Lead, 

ECG paper record 

300 dpi 98% 

2 (Ravichandran et al. 

2013) 

 

New data GE health care. 

Finland (Muse 

cardiology system) 

OCR(Matlab) 

{Optical Character 

Recognition} 

300 dpi 85.90% 

3 (Sharma et al. 2012) Arrhythmia 

Dataset 

MIT-BIH Image threshold 

Technique 

300 dpi 98% 

4 (Baydoun et al. 

2019) 

Cardio Vascular 

disease 

American University 

of Beirut Medical 

Center 

Image processing 300 dpi 95% 

5 (Badilini et al. 2005) Heart disease Paper printouts Contour modeling 300 dpi Good 

6 (Sassi et al. 2017) Heart disease Paper printouts Proof-of-concept 

test 

300 dpi Electronic health record and 

pdf-ECG have good correlation 

7 (Khleaf et al. 2015) Arrhythmia 

Dataset 

MIT-BIH Image processing 

technique 

200dpi 96-98% 
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A real-time QRS detection algorithm explained (Hamilton and Tompkins 1986) uses a 

digital filtering approach, with a few modifications from earlier research by Pan and 

Tompkins (Pan and Tompkins 1985). The algorithm consists of linear, nonlinear filters 

and decision rules. It also includes low pass filter, high pass filter, derivative, and 

moving window integration with linear filter whereas squaring block is a nonlinear 

filter. 

 

The ECG signal has to be interpreted in terms of specific quantitative features, i.e. P: 

arterial systole contraction Pulse, R is the peak of the ventricular contraction, S refers 

to downward deflection immediately after the ventricular contraction, Q is the 

downward deflection immediately preceding the ventricular contraction, and T defines 

the recovery of the ventricles. The method is defined in terms of locating the P, Q, R, 

S, and T waves in electrocardiograms, which are then measured with the R-peak (Fan 

et al. 2020; Gupta et al. 2021; Gupta and Mittal 2021), PR, and R-R segments (Akula 

and Mohamed 2019; Ghiasi et al. 2017). The ECG processing system discussed 

(Mathews et al. 2018) is capable of reading a wide range of pathological situations, 

including P, Q, R, S, T wave directions, T wave greater than R wave, and absence of Q 

wave in amplitude. 

 

Since interpreting variations of ECG or TMT-ECG manually is difficult, a computer-

aided diagnostic system may assist in cardiac health monitoring. Because of its 

nonlinear nature, (Cairns et al. 2016; Subbiah and Patro 2015) explains the nonlinear 

extraction approach which is ideally suited for extracting information from the ECG 

signal. Based on the wavelet transformation method (Al-ani 2014; Yochum et al. 2016), 

the QRS complex and QRS-T segments (30ms before 240ms after QRS position) are 

automatically detected. Thus, the selection of the best method delivers effective 

digitized ECG signal data by implementing the state-of-the-art technique. 

 

Several researchers have focused on CAD to improve diagnostic tool efficiency by 

using either normal ECG or exercised ECG recordings. (OH et al. 2017; U.R., Acharya, 

sree, vinitha, swapna 2014) discussed on ECG signal analysis in normal and CAD 

people with AI, linear and non-linear approaches. But, The expert cardiologist analyses 

(Price et al. 2010; Yildirim et al. 2019) ECG signal patterns for medication. 
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Cardiologists examine time-domain elements(ECG features) such as T and Q wave 

amplitudes, and ST level segment (Li and Boulanger 2020) fluctuations as indicators 

of heart illness during traditional medical conditions. 

 

In the past twenty years, a huge number of intelligent systems have evolved related to 

analyzing these ECG and TMT-ECG signals of the heart to assist health care experts. 

These intelligent systems developed to analyze ECG signals are primarily based on 

single-lead (Mathews et al. 2018; Rubin et al. 2018) and 12-lead ECG signals (Chen et 

al. 2020; Donida Labati et al. 2018; Fan et al. 2020; Liang et al. 2020; Ribeiro et al. 

2020; Sassi et al. 2017). Several neural networks and machine learning algorithms are 

discussed to analyze the ECG or TMT-ECG. Extension of neural network called deep 

neural network helps to optimize the accuracy of the neural network. The major deep 

neural networks applied to obtain optimized solution are  CNN (B. et al. 2019; 

Schmidhuber 2015), Recurrent neural network (RNN) (Ebrahimi et al. 2020; Swapna 

et al. 2018), Deep belief network (DBN) (Ebrahimi et al. 2020; Mathews et al. 2018),  

fully connected neural network (FC) (Fan et al. 2020) to predict the electrocardiogram 

(ECG) related issues like arrhythmia (Jiang and Kong 2007; Marston et al. 2019; 

Rahhal et al. 2016; Ullah et al. 2020; Wu et al. 2021) (Table 2.6), atrial fibrillation (AF) 

(Acharya et al. 2017b; Haverkamp et al. 2019; Li et al. 2019) (Table 2.7) myocardial 

infarction (MI) (Hao et al. 2020; jian, j.-z.;Ger, T.-R.;Lai, H.-.;Ku, C.-m.;Chen 2021) 

(Table 2.8), ST-elevation (Mishra et al. 2021), coronary artery disease (CAD) (Kurt et 

al. 2008; OH et al. 2017; Russo 2002; U.R., Acharya, sree, vinitha, swapna 2014) 

(Table 2.9), etc.   
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Table 2.6 Prediction of arrythmia disease based on different techniques and different parameters 

 

Sl. 

No. 

Author & Year Arrhythmia 

Disease analysis  

Data Parameters Technique Accuracy 

1 (Acharya et al. 2017c) Arrhythmia MIT-BIH 2’s & 5’s ECG data (without 

QRS) 

CNN 94.9% 

2 (Acharya et al. 2017d) Classify 

heartbeats 

MIT-BIH Lead II ECG signal DCNN 94.05% & 

93.4% 

3 (Oh et al. 2018) Arrhythmia MIT-BIH Lead II ECG signal CNN +LSTM 98.107% 

4 (Ullah et al. 2020) Arrhythmia MIT-BIH Converting 1D to 2D and 

used 

Deep CNN 99.11% 

5 (Xu et al. 2019) Arrhythmia MIT-BIH ECG load II +handcraft ECG 

features 

DNN 99% 

6 (Khatibi and 

Rabinezhadsadatmahaleh 

2019) 

Arrhythmia MIT-BIH ECG head II handcraft + 

feature extraction algorithm 

Feature engineering, 

comparison of deep 

learning and KNN 

99.7% 

7 (Sannino and De Pietro 

2018) 

Arrhythmia-heart 

beat classification 

MIT-BIH 24-hour ECG from 32 to 89  

year age group 

DNP 99% 

8 (Yildirim et al. 2019) Arrhythmia-heart 

beat classification 

Lead II ECG 

MIT-BIH 

Auto encoder+ LSTM CAD-LSTM 99% 
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Table 2.7 Prediction of coronary artery disease (CAD) based on different techniques and different parameters 

 

Sl. 

No. 

Author & 

Year 

CAD 

Analysis  

Data Parameters Technique Accuracy 

1 (Tan et al. 

2018) 

CAD Physio-net database 

(7CAD,40 Normal) 

Lead II, ECG 

Segments,5Sec data. 

Blindfold C/S validation 

8 layered stacked (CNN-

LSTM) 

99.8% 

2 (Kumar et al. 

2017) 

CAD Physio-net database 

(7CAD,40 Normal) 

(Data filtered) Flexible 

analytic wavelet transform 

to fold cross validation 

Least square SVM 99.6% 

3 (OH et al. 

2017) 

CAD Physio-net database 

(7CAD,40 Normal) 

Higher order statistics & 

Spectra (HOS) 

Feature extracted PCA 

KNN & DT classifier 

KNN-98.17% 

DT- 98.99% 

4 (Acharya et al. 

2017a) 

CAD Physio-net database 

(7 CAD,40 Normal) 

2Sec-Data, 5 Sec- Data 

ECG + (age, sex, condition 

diabetes, blood pressure, 

mental state) 

Deep CNN 94.95% (2 

Sec) 95.11% 

(5 Sec) 

5 (Acharya et al. 

2014)  

CAD- Heart 

rate 

BioPAC TM 

equipment (10 CAD 

& 10 Normal) 

Heart rates from ECG Time domain, frequency 

domain, Non-linear 

Technique (SVM) 

75% 
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6 (Babaoglu et 

al. 2009) 

CAD & 

Lesion 

localization 

330 patients (health 

care) 

(Exercise stress Testing) 

TMT (EST)& coronary 

angiography 

ANN (MLD) 91-65% 

(Left 

coronary, left 

anterior, left 

circumflex) 

7 (Kurt et al. 

2008) 

CAD 1245 ECG TMT or ECG, including 

age, sex, family history, 

smoking, diabetes, 

hypertension etc. 

ML & ANN (LR, CART, 

MLD, RBF) 

78% 

8 (Fathima and 

Vimina 2022) 

CAD Statlog & Cleveland 

dataset UCI Data 

repository 

ECG DNN 98.77%-

statlog 

96.7-

Cleveland 
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Table 2.8 Prediction of myocardial infarction (MI) disease based on different techniques and different parameters 

 

Sl. No Author & 

Year 

Disease Data Consideration Technique Accuracy 

1 (Jian et al. 

2021) 

MI PTB-12 lead ECG database 12- Lead ECG N-Net network 

(Feature Concentrate 

Network) 

95.76% 

2 (Han and Shi 

2020) 

MI PTB Dataset (312 records of MI 

80 normal) 

12- Lead ECG ML-Res Net 99.92% 

3 (Hao et al. 

2020) 

 

MI Zhejiang second people’s 

hospital at China. (483 MI & 

474 Non-MI) 

12- Lead ECG Multi-branch fusion 

network 

94.72% 

4 (Baloglu et al. 

2019) 

MI PTB (483 MI & 474 Non-MI) 12- Lead ECG Deep CNN 99% 

5 (Mirza et al. 

2022) 

MI PTB-ECG Physio-net (148 MI & 52 

normal) 

1D – Deep Neural 

network 

99.98% 
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Table 2.9 Prediction of atrial fibrillation (AF) disease based on different techniques and different parameters 

 

 

Sl. 

No. 

Author & Year Disease Data Consideration Technique Accuracy 

1 (Wang et al. 2021) AF MIT-BIH AF 

Database & FZU-

FPH data 

PDF of ECG 

waveform 

Hybrid model, IQPSO-

SVM algorithm 

99.2% 

2 (Kruger et al. 2019) AF M-health device -68 

MIT-BIH -dataset -

48 

M-health ECG 

reading device 

Frequency dispersion 

metric (FDM) 

R-R Interval variability 

M.Health shows 

good accuracy 

3 (Acharya et al. 

2017c) 

AF MIT-BIH 2 Sec & 5 Sec ECG II-layer deep CNN 92.5% for 2s 

94.9% for 5s 

4 (Wang et al. 2020) AF MIT-BIH 10 Sec ECG ML Technology 98.8% 

5 (Haverkamp et al. 

2019) 

 

AF ECG for smart 

Phone (144 subjects) 

Single Lead ECG 

(Lead I) 

Comparing QRs +QT 

interval variation 

97% 
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2.5 APPLICATION NEURAL NETWORK ON HEART DISEASE 

 

An artificial neural network is a network which in a way simulates the functioning of 

human brain.  The neural network model receives digitized data of ECG and TMT-ECG 

signals and generates proper recommendations as output. (Maniruzzaman et al. 2020; 

Sannino and De Pietro 2018; Xu et al. 2019) discussed about basic features (age, QRS 

complex, ST segment drop, etc.) in addition to input data lead to improved performance 

of the neural network. The deep neural network is an automatic learning process 

consisting of multiple layers and activation functions from the lower level to higher-

level representation data. The automated convolutional neural network is a version of 

the deep neural network applied for the prediction of medical diseases. CNN models 

have been developed to analyze ECG signals to detect arrhythmia condition (Rahhal et 

al. 2016; Ullah et al. 2020), detects intervals of ECG segment (Acharya et al. 2017b), 

AF (atrial fibrillation) (Wang et al. 2020), and classes of ECG signals (Yildirim et al. 

2018). With using  4 layers (Murat et al. 2020; Rajeswari et al. 2012), 11 layers 

architecture (Acharya et al. 2017b), 16 layers (Yildirim et al. 2018) architecture, and 

34 layers (Fan et al. 2020) layer architecture respectively. The performance of any 

convolution neural network is assessed by the nature of data. The CNNs find wide 

applications in the area of image processing (Al-ani 2014), object recognition (Oquab 

et al. 2015), and handwriting data classification (Cireşan et al. 2011). In ECG-related 

analysis, the CNNs are mostly designed for arrhythmia, AF, and MI diseases under 

MIT-BIH (Alarsan and Younes 2019; Kruger et al. 2019; Liang et al. 2020) dataset.  

 

CNN (Convolutional Neural network) is a popular form of deep neural network (DNN) 

that is commonly used in nonlinear problems. The CNN model effectively deals with 

the sound recordings of normal and abnormal heartbeats (82% accuracy). The use of 

CNN has been extended to the field of detection of arrhythmia (79% accuracy) 

(Andreotti et al. 2017) and atrial fibrillation (80% accuracy) (Ghiasi et al. 2017). CNNs 

are effectively applied for automatic CAD recognition, and (Alzubaidi et al. 2021) 

proposed that CNNs remain powerful despite moving and scaling invariance, making 

them advantageous.  
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Multi-perceptron neural network (Lehtinen et al. 1998)  for coronary artery disease 

classification was evaluated on 347 people, 127 with confirmed CAD and 220 without 

CAD. The data was gathered using an exercise stress test that focused on ST segment 

depression, ST segment depression/Heart rate index, and ST/HR hysteresis of leads I, 

II, III, aVF, V2, V3, V4, V5, and V6 and have given great end result with a 91.5% 

accuracy. The (Babaoglu et al. 2010) objective of the research is to assess a radial basis 

function neural network as a tool for coronary artery disease diagnosis using the data 

of a standard ECG and exercise stress test (TMT-ECG). Each record describes the 

patient’s condition and provided input data for the neural network, which included the 

level and slope of an ST segment of a 12-lead ECG signal recorded at rest and after 

exercise. Together with heart rate, blood pressure, load during the test, and the 

occurring of coronary pain, coronary arteriography results.  

 

(Arafat et al. 2005) dealt on (Table 2.10) the diagnosis of coronary artery disease with 

fuzzy and probabilistic signals as mixed uncertainty. The results are computed using 

simply fuzzy or probabilistic ECG stress signals. The developed model with combined 

uncertainty achieves better results. A sample of 15 patients was chosen from a database 

of ECG stress test patient data obtained at the University of Missouri Department of 

Diagnostic Cardiology between 2002 and 2004. Researchers (Kaveh and Chung 2013) 

presented an automated technique for classifying subjects with atherosclerosis using a 

single lead of ECG sensors data. This approach not only optimizes sensor construction, 

but it also automates classification to deal with data overload. The system exhibits high 

accuracy and diagnostic performance using the MIT-BIH database, demonstrating the 

clinical utility of this unique classification method. Using machine learning, 

specifically support vector machines (SVM), researchers proposed a method for 

automating ECG categorization for atherosclerosis and early CHD identification, with 

a classification accuracy of 88 percent. In another study (Çolak et al. 2008), developed 

eight different learning algorithms for creating artificial neural network (ANN) models, 

for coronary artery disease (CAD) prediction. The data was collected from 237 patients 

(114 NOCAD, 124 CAD) considering 17 variables sex, age, hypertension, blood 

pressure, etc., and achieved an accuracy of 81% as the best out of eight algorithms.  
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(Davari Dolatabadi et al. 2017) developed an optimized SVM classifier for CAD using 

heart rate variability (HRV), extracted from ECG. discuss on features are extracted 

from HRV in time, frequency, and non-linear domains. The data set chosen from the 

long-term ST segment database having 80 human subjects achieved an accuracy of 

79.1%. (Lee et al. 2007) tried out a methodology to develop the multi-parametric 

characteristics, including linear and nonlinear features, of HRV (Heart Rate Variability) 

for cardiovascular disease. The data set includes ninety-nine with CAD and ninety-four 

patients with normal and accomplished it an accuracy of 90 percent patients in the 

automatic detection of normal and Coronary Artery Disease conditions using heart rate 

signals. The heart rate signals are decomposed into frequency sub-bands using Discrete 

Wavelet Transform (DWT). (Giri et al. 2013) proposed model results showed that the 

ICA coupled with GMM classifier combination resulted in the highest accuracy of 

96.8%, the sensitivity of 100%, and the specificity of 93.7%. The data set consists of 

10 CAD and 15 normal subjects. 
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Table 2.10 ANN and DNN Techniques adopted to develop the prediction model for CAD. 

Sl. 

No. 

Author & Year Database Technique Accuracy 

1 (Lehtinen et al. 

1998)  

Lead: 9 leads  
Subjects: 127 CAD, 220 

Normal   

Artificial neural network (ANN) (ST segment, ST/HR index, 

ST/HR hysteresis)  

91.5%   

2 (Arafat et al. 2005)

  

Lead: lead v5  
Subjects: 8CAD, 7 Normal  

Combined uncertainty (Fuzzy uncertainty, Probabilistic 

uncertainty) (ST segment, R-wave) 

84% 

3 (Kaveh and Chung 

2013)  

Lead: Lead II  
Subjects:43 CAD,49 Normal  

(ST –segment depression, T –wave inversion) 
Classifier SVM  

88%   

4 (Çolak et al. 2008) Subjects: 124 CAD, 114 

Normal 

Artificial Neural Network (ANN) 

17 input variables (sex, age, hypertension, blood pressure etc.,) 

81% 

5 (Lee et al. 2007) Lead: Lead II, Subjects: 99 

CAD, 94 Normal. 
Classifier SVM 
(Linear and non-linear features). 

90% 

6 (Giri et al. 2013) HRV signals, Subjects: 10 

CAD, 15 Normal. 
DWT, PCA, 
Classifier SVM 

79.1% 

7 (Poddar et al. 2015) Lead: lead II 
Subjects: 64 CAD, 60 

NOCAD. 

Linear and non-linear features. (R-R interval) 
PCA, KNN, SVM 

91.67% 
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2.6 TRANSFER LEARNING APPROACH 

 

Transfer learning is a part of the machine learning method and artificial intelligence 

approach. Application of this approach helps to gain knowledge (weights) from the 

existing trained model (source data trained model) to predict different but similar 

problems (target data prediction similar to source data). A portion of the ImageNet 

database is used to train the majority of the pre-trained networks (transfer learning 

method).  

 

The proposed work focused on dealing with both 12 lead and single lead signal images 

with the inclusion of image pre-processing and classification of image signals. The 

work extended to study the behavior in noise signal conditions and pre-processed signal 

conditions, and are compared. In the literature, there are several well-developed image 

categorization prediction algorithms. To determine the work's novelty, the suggested 

image classification prediction algorithm is compared with respect to the accuracy of a 

well-developed pre-trained algorithm (VGG16, Inception, MobileNetV2, ResNet, 

EfficientNet) generated by transfer learning methods. In terms of training loss and 

accuracy, the outcomes of the pre-trained algorithm and the proposed approach are 

compared. These outcomes are derived with consideration of raw(noisy) signal images 

and pre-processed images, and results are developed based on both single and multi-

lead (12-lead) signal images. 

 

2.7 MULTI-HEADED MODEL APPROACH 

 

The input data are considered hybrid data types that deal with 1D time series data and 

signal images of clinical data of single-lead ECG signals. The developed multi-head 

CNN model's ability is also tested by considering the repository dataset of the 

physionet. The configuration of a (Rai and Mitra 2021; Suresh et al. 2020) proposed 

multi-head convolution neural network model consists of two or more convolution 

layers and pooling layers in parallel connection. Depending on the input, either a single 

input shared with parallel sub-layers or a number of conditional inputs linked to the 

same issue and shared with parallel sub-layers are taken into consideration. This 

sublayer’s output is concatenated in series to obtain a long vector (more parameters). 
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These vectors are fed into a fully connected layer to get the final classification. These 

models perform better than single-head or sequential training models because they have 

handled more input heads and can learn higher-order features, which allow for greater 

flexibility in processing input data.  

 

2.8 SUMMARY OF THE LITERATURE 

 

2.8.1 Summary of Undifferentiated fever diseases study 

 

The summary of the Undifferentiated disease literature states the application of machine 

learning algorithms to classify undifferentiated fever symptoms of diseases including 

tuberculosis, nontuberculosis, dengue, and non-infectious disorders. The study displays 

numerous research that use classifier-based artificial intelligence to detect or forecast 

specific diseases. Most of the classification algorithms are discussed for specific disease 

detection or classification.  This classification methodology is adaptable for both 

extracted hospital data and repository data with consideration of various disease 

parameters.  

 

2.8.2 Summary of heart diseases study 

 

The electrocardiogram (ECG/EKG) is One of the most popular non-invasive diagnostic 

tools for recording the physiological processes of the heart over time. Many 

cardiovascular diseases, including atrial fibrillation (AF), premature contractions of the 

atria or ventricles (PVC), myocardial infarction (MI), coronary artery disease (CAD), 

and congestive heart failure, can be diagnosed using ECG data (CHF). A summary of 

the literature discusses the source databases, collection of data, number of leads 

considered for observation, traditional approach, AI-based approach, and pre-trained 

model approach.  

 

2.8.2.1 Sources of data: In recent years, study shows that there is a huge development 

of portable ECG monitors and ECG machine in the medical field, and wearable or smart 

devices in various healthcare areas. Therefore, detection and analyzing ECG data/image 

automatically with accurate results will become a trending research topic. 

Datasets were extracted and collected from hospital medical ECG devices, In addition 
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to this, some were from mobile healthcare devices. The difference between such 

devices is that medical device data is a more valuable and complex collection of data. 

Healthcare ECG monitor gadgets, such as smart devices, applications, and smart bands, 

are widely available and quickly record ECG data, which are less accurate than medical 

equipment. Additionally, there are a lot of emerging applications, such as biometric 

human identification and sleep staging, can be implemented based on ECG data.  

 

There are some of the open-source datasets are available in repositories for analysis. 

Some of the well-known datasets are as discussed over study, such that (i) The MIT-

BIH Arrhythmia Database, which contains ECG recordings of 47 patients from Beth 

Israel Deaconess Medical Centre patient. (ii) The Physio-Net Computing in Cardiology 

Challenge 2017 dataset contains ECG recordings sampled at 300 Hz by an AliveCor 

healthcare device with durations ranging from 9 s to 60 s. (iii) The PTB Diagnostic 

ECG Database, which contains ECG data from 12 lead-related 290 subjects. 216 of 

these people have one of the 8 major types of cardiac disorders, 52 have health control, 

and 22 are unknown. The MIT-BIH Atrial Fibrillation Database contains AF-related 

ECG recordings. Which were obtained from the Beth Israel Hospital in Boston.  

 

2.8.2.2 Number of leads: A 12-lead ECG system can detect more abnormalities than a 

single-lead ECG system (like lead I of a 12-lead ECG). For example, posterior wall MI 

can only be detected by chest leads (V1 to V4), and a single lead will not detect this 

type of abnormality. AI-based approaches with a single lead and twelve lead ECG 

classification are helpful to detect and classify more abnormalities easily. 

 

2.8.2.3 Duration: Short-term ECG data and long-term ECG data can be used for 

analysis. Short-term ECG data is less complex and may detect many heart disorders 

and the development of fast detection AI-based approach with moderate accuracy.    

Long-term ECG, on the other hand, can aid in the detection of disorders with 

intermittent symptoms, such as paroxysmal ventricular fibrillation (VF), and atrial 

fibrillation (AF) disease which are not predictable through short-term ECG. 

 

2.8.2.4 Annotations: detection of ECG measurement annotations (peak R and end 

markers for P-, QRS-, T-, and U-waves), beat level annotations (PVC, etc.), and 
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rhythm-level annotations (combination of both beat-level annotations and other 

diseases such as AF and VF) are difficult to predict orally. Derivation of Annotations 

using the oral approach requires a specialized field expert. This limitation can 

effectively be overcome through the AI-based approach.  

 

2.8.2.5 Pre-processing: The authors deal with various types of pre-processing which 

can be done on the sample data plots available in the repository data set as well as 

clinical data types in order to filter the unwanted signal and also decompose the signal 

to get the exact ECG signal. That can be extracted to get the time series data and desired 

classified feature characteristics. 

 

2.8.2.6 Prediction algorithms: These plays major role in the early detection of 

cardiovascular diseases. ECG is the most cost-efficient and least invasive of all the 

detection procedures. It gives comprehensive information about various kinds of 

diseases that affect humans and the need to detect them early in order to prevent the 

possibility of fatality later on. The main problem with the manual analysis of ECG 

signals, similar to many other time-series data, lies in the difficulty of detecting and 

categorizing different waveforms and morphologies in the signal. This is easily 

overcome with automatic prediction algorithms. 

 

This can be achieved as two-step process, in which cardiology professionals derive 

the features based on raw ECG data, known as "expert features," and based on 

these, decision rules or other machine learning approaches to generate final findings are 

framed. Expert characteristics are classified as statistical features (such as heart rate 

variability (Ebrahimzadeh and Pooyan 2011), sample entropy (Acharya et al. 2014)), 

time-domain, and frequency domine features. In practice, expert characteristics are 

retrieved automatically by utilizing computer-based techniques. However, these are 

still insufficient because they are limited by data quality and human expert knowledge 

(Cairns et al. 2016; Hong et al. 2020). A literature study discussed different machine 

learning and Deep learning approaches that have yielded promising results in a wide 

range of applications in the identification of ECG diseases. The fundamental benefit of 

deep learning approaches is that no explicit feature extraction stage involves related 

to human expertise. Deep learning models are capable to do feature extraction 
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automatically, implicitly based on their extensive data learning capabilities and flexible 

processing architectures.  

 

2.9 RESEARCH GAP 

 

Initial study of undifferentiated fever analysis, based on the temperature data is a unique 

study, which provided motivation for further research on coronary artery disease 

detection.    

 

In India, heart disease has also recently become the leading factor of death in all parts 

of India. The cause for this is the growing use of cigarettes and inadequate fruit and 

vegetable diet. Symptoms of coronary heart disease include chest pain and breathing 

trouble, during physical activity. However, even people not exhibiting symptoms could 

still have a chance of heart disease. Screening helps to provide timely treatment in the 

early stages of the disease. This may reduce the risk of death and other complications 

later. Although screening and treatment assist persons against higher risk of 

cardiovascular disease, a routine examination might aid in the early detection of heart 

disorders in children and adults. Hence, scans like ECG/TMT-ECG are very crucial for 

the early detection of the disease. However, TMT-ECG scans are typically unaffordable 

to those living in rural areas. Moreover, the equipment for conducting it may not be 

available in hospitals in rural areas. This is one of the motivations behind this project. 

 

Majority of ECG research use data from a publicly accessible archive. Archived data 

sets from the repository (MIT-BIH, Physio-net) are readily available with noise 

cancelation, features extracted, and with proper data format, unlike clinical lab data. 

For example, one of the CAD repository datasets available is the Physio-net dataset 

which is derived from 8 CAD patients and 40 Normal patients. But this is a very limited 

dataset and not sufficient to develop an end-to-end generalized CAD prediction model. 

Likewise, there are other research which concentrated ECGs either in time domain 

based or image-based analysis. These analyses are carried out based on consideration 

of single lead, specific leads, specific parameters and twelve leads. Major drawback of 

algorithms which are developed based on repository dataset are limited number of data 

set and failed in generalization ability. One-dimensional data analysis over limited 
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number of datasets will end with either lower accuracy or the overfitting error. This is 

overcome with either larger clinical data or additional clinical parameter with available 

repository data consideration. The literature study discussed about work done on one 

dimensional and two dimensional individually, clinical data with limited number of 

trails and repository data. Major work carried out over literatures for detection of 

coronary artery disease based on clinical data with an average accuracy of 90% over 

limited dataset trails. There is no work related to CAD which carried out with large 

number of clinical trials, under consideration of one dimensional, two dimensional and 

hybrid analysis. This is one of the motivation to develop a novel study of automated 

hybrid multi headed model with consideration of both types of data with leading 

accuracy will helps to monitor CAD by healthcare experts. 

 

The purpose of the present study is to develop a novel, accurate AI-based prediction 

system for CAD detection. The well-suited end to end CAD disease prediction with 

consideration of both time domain based (automatic feature extraction and traditional 

feature extraction) and image analysis based (Fully automatic) prediction model 

development for clinical data. Initially these clinical data are preprocessed and 

converted to one dimensional for time domine model analysis. The development neural 

model is unique in terms of exhaustive live patients’ dataset, higher frequency of 

sampling of feature data and unique combination of activation functions across layers 

of the neural networks to derive optimized time domine based network, reflecting 

novelty. In parallel to this the other analysis which deals the images of ECG and TMT-

ECG to obtain good prediction model for CAD diagnosis. There is a lag in research for 

deriving TMT-ECG based prediction model, stands as novel approach for development. 

Validate the model with pretrained (transfer learned) network provides a proof to the 

suitability. Further the study can extend to derive multi-headed model which can deal 

simultaneously both time domine signal data (1D) and image data (2D) analysis stands 

as a very unique study related to this type of disease.  

 

Since there is no systematic reviews/study focusing on proper deep learning methods 

(for both 1D and 2D), the promising methods for ECG data mining or collection. 

Provides the motivation that it is crucial to conduct a systematic review of existing deep 
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learning methods with single lead and multi lead for ECG/TMT-ECG data from the 

perspectives of CAD model architectures and application. The overcome of these 

challenges and problems related to the current research helps to develop a system which 

will assist the healthcare expert in accurately predicting the presence or absence of CAD 

among patients during periodic tests.  

 

RESEARCH OBJECTIVES 

1. Development of a Neural Network based prediction system for the identification 

or classification of unidentified fever symptomatic diseases.  

2. Development of a novel strategy for automatic data extraction from ECG and 

TMT-ECG graph. 

3. Developing a recommendation system for the identification, classification, and 

diagnostic assistance tool for coronary artery disease (CAD). 

4. Validation of CAD prediction system results against angiography results. 

5. Modular integration of different phases of DNN models into a reliable 

comprehensive diagnostic system. 
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CHAPTER 3 

RESEARCH METHODOLOGY 

 

Vast knowledge of domain experts can be embedded in the knowledge base of an 

intelligent system. Such knowledge can be used in future prediction of disease through 

well-established algorithms, so that medical experts can be supported with infusion of 

reliable diagnostic inputs, Of course the model’s development. This regard needs to be 

data used are to be carefully preprocessed and results are thoroughly validated.  

 

Accordingly, a neural network (NN) model is developed in the first stage, taking the 

case of fever for analysis for medical diagnosis. In the next stage, an intelligent 

prediction model (DNN) is developed for the detection of cardiac disease.  

 

3.1 DEVELOPED ECG SYSTEM – AN EXPERIMENTAL SETUP OF ECG 

 

ECG is a test helps to identify the cardiac abnormalities through electrical activity which 

is measured from heart. There are plenty of ECG measuring devices are available 

commercially. The device identified as either a single lead ECG or twelve lead ECG, 

based on the number of electrodes used for sensing cardiac signals while mounting on 

the human body. This can be achieved based on the multiple ways one is with  Arduino 

Uno microcontroller, in addition AD8232 sensor with three Ag/AgCl electrodes (Kanani 

and Padole 2018), Agatsa (Sanket Life) ECG Sensor (Davalagi et al. 2020) which is 

commercially available,  Healthcare center ECG machine and GE healthcare diagnostic 

ECG MAC 5500 HD machine. With consideration of all, the optimized method of ECG 

extraction was used for further process. 

 

3.1.1 Arduino Uno microcontroller 

 

The Arduino Uno is an open-source microcontroller board based on the Microchip 

ATmega328P microcontroller and developed by Arduino. Arduino Uno is used to 

control the M7112 sensor and also theAD8232 sensors. The board is equipped with sets 

of digital and analog input/output (I/O) pins that may be interfaced to various expansion 

boards (shields) and other circuits. The board has 14 digital I/O pins (six capable of 

https://en.wikipedia.org/wiki/Open-source
https://en.wikipedia.org/wiki/Microcontroller_board
https://en.wikipedia.org/wiki/Microchip_Technology
https://en.wikipedia.org/wiki/ATmega328P
https://en.wikipedia.org/wiki/Arduino
https://en.wikipedia.org/wiki/Expansion_board
https://en.wikipedia.org/wiki/Expansion_board
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PWM output), 6 analog I/O pins, and is programmable with the Arduino IDE (Integrated 

Development Environment), via a type B USB cable. It can be powered by the USB 

cable or by an external 9-volt battery, though it accepts voltages between 7 and 20 volts.  

The ATmega328 on the board comes pre-programmed with a bootloader that allows 

uploading new code to it without the use of an external hardware programmer. It uses 

the Atmega16U2 (Atmega8U2 up to version R2) programmed as a USB-to-serial 

converter. 

 

3.1.2 AD8232 Sensor (3 lead ECG sensor) 

 

The AD8232 ECG sensor is used to determine the electrical activity of the human heart. 

The ECG sensor's works similarly to an operational amplifier. Three AD8232 sensors 

in parallel were connected together to obtain ECG data. That is Ag/ AgCl electrodes 

consist of non-invasive stickers which can be attached to the body to extract the signals. 

The code is written in Arduino and the data is plotted using a serial monitor. This will 

helps replicate ECG and record the time interval data directly from the model. The 

signals are recorded from the sensor once the signal becomes stable. The three sensors 

(Figure 3.1 and Figure 3.2) are connected in parallel using a breadboard and jumper 

wires.  

 

 

Figure 3.1 The three sensors connected in parallel 

 

The script written in python extracts the data from the sensor and writes it into a .csv 

file which can be visualized using a plotting software like MATLAB and also through 

Python functions. The circuit design of the above setup as shown in Figure 3.2. 

 

https://en.wikipedia.org/wiki/Pulse-width_modulation
https://en.wikipedia.org/wiki/Arduino#Software
https://en.wikipedia.org/wiki/USB_cable
https://en.wikipedia.org/wiki/9-volt_battery
https://en.wikipedia.org/wiki/Bootloader
https://en.wikipedia.org/wiki/Usb_to_serial_adapter
https://en.wikipedia.org/wiki/Usb_to_serial_adapter
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In the above circuit, the 3.3-volt connections of the Arduino and the three sensors are 

connected in parallel with the help of breadboard. The same is done for the ground 

connections. The outputs of the three sensors are connected to ports A1, A2 and A3 of 

the Arduino. The L0- is connected to ports 13,11 and 9 of the Arduino whereas L0+ is 

connected to ports 12,10 and 8.  

 

 

 

Figure 3.2 Circuit design for AD8232’s in parallel using Arduino and breadboard 

 

3.1.3 Plot obtained using single AD8232 sensor 

 

The plot is obtained by connecting a single AD8232 sensor (Figure 3.3) to the setup 

containing an Arduino as microcontroller and the plot is obtained with the help of a 

python script which reads the data serially and plots it. 
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Figure 3.3 AD8232 single senor output 

 

Here, three AD8232 sensors are connected in parallel. The set up consists of Arduino, 

breadboards, jumper wires and three sensors. The readings are obtained using the python 

script and plotted as shown in Figure 3.4. Further, this process extends to twelve lead 

ECG machine (GE MAC 5500HD) to gather the entire information related to heart.  

 

 
 

Figure 3.4 Output from three AD8232 sensors in parallel 

 

3.2 AGATSA (SANKET LIFE) ECG SENSOR 

 

The 12 lead ECG sensor by Agatsa  can be used to obtain ECG signals through the built-

in app and generate customized reports (Figure 3.5). Based on the reports, it is possible 

to obtain ECG data points. These ECG data points were used to validate the data in the 

customized Arduino based ECG sensor. The device doesn’t provide information on 

disease screening.  
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Figure 3.5 Agatsa ECG sensor report 

 

3.3 GE MAC 5500HD Machine 

 

The MAC 5500 HD Resting ECG is a high-end ECG system that provides advanced 

disease management capabilities via an industry-leading collection of algorithms and 

advanced networking. This is well known for Acute Coronary Syndrome (ACS) 

detection, accurate pacemaker detection for advanced interpretation of paced rhythms, 

and improved efficiency. Connected to treadmill will help to access the accurate TMT-

ECG signals.  
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3.4 CLINICAL DATASET    

 

Accurate and reliable clinical data is very vital to the medical team in timely diagnosis 

and treatment for patients. In many of the cases, number of health parameter and 

complexity of data relation may make the task of doctors and medical experts really 

challenging. The decision and effectiveness of the treatment depends purely on the 

expertise and depth of knowledge of the concerned team of doctors. So, an assisting tool 

having historic data for diagnosis, especially in critical situations will be highly 

beneficial, both medical expert as well as the patients. AI based prediction models fed 

with reliable clinical data can accurately give inferences. 

 

This work primarily deals with temperature data for classification using machine 

learning algorithm and heart related data (ECG, TMT-ECG and Angiogram) for rectify 

and predict the coronary artery disease. 

 

3.4.1 Temperature data  

 

To study the efficacy of AI models in disease prediction, symptomatic fever data is takes 

up for investigations. The relevant data are collected from a reputed neighboring 

hospital (KMC Mangalore). These data are extracted through temperature sensors over 

equal interval of time (every minute) for twenty-four hours. 103 patients suffering from 

dengue fever, tuberculosis, non-tuberculosis bacterial infection, and non-infectious 

disease are considered for the observation. Out of 103 patients, 28 patients belong to 

tuberculosis, 31 patients are non-tuberculosis bacterial infection, 16 are dengue, and 28 

are Non-infectious diseases. Hence there are 1440 temperature data extracted from each 

patient (samples as shown in Figure 3.6 (a-f), 3.7 (a-f), 3.8 (a-f) and 3.9 (a-f) 

respectively) and in total 1440*103 data matrices are used in the prediction algorithm. 

These algorithms are further optimized with consideration of 30 minutes and 60 minutes 

of temperature data with feature data (ESR (Erythrocyte sedimentation rate), WBC 

(White blood cell count), Neutrophils, Basophils, Eosinophils, Monocytes, 

Lymphocytes, Platelets, Age, Body mass index (BMI), Spontaneous bacterial peritonitis 

(SBP), Diastolic blood pressure (DBP), Pulse) and without features data.  
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The fever temperature variation of all the four types of disease is plotted with 

respect to the time interval over a 24-hour duration and sample plots of all the diseases 

are shown in the following Figure: 

 

3.4.1.1 Tuberculosis Diseases 

    

       (a)               (b) 

    

        (c)              (d) 

    

                               (e)                      (f) 

   Sample size (readings per min) 

 

Figure 3.6 (a-f) sample datasets temperature distribution pattern for Tuberculosis 

disease 
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3.4.1.2 Non-tubercular bacterial infection 

    

        (a)      (b) 

    

        (c)                              (d) 

     

        (e)      (f) 

Sample size (readings per min) 

 

Figure 3.7 (a-f) sample datasets temperature distribution pattern for Non-tubercular 

bacterial infections diseases  
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3.4.1.3 Dengue fever case 

     

        (a)      (b) 

     

        (c)      (d) 

      

             (e)                 (f) 

Sample size (readings per min) 

 

Figure 3.8 (a-f) sample datasets temperature distribution pattern for dengue fever 

diseases. 
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3.4.1.4 Non-infectious diseases 

       

            (a)                  (b) 

        

             (c)                   (d) 

         

             (e)                   (f) 

Sample size (readings per min) 

 

Figure 3.9 (a-f) sample datasets temperature distribution pattern for non-infectious 

diseases  
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3.4.2 ECG and TMT-ECG data 

 

The research focused on the development of a prediction system, involving twelve lead 

ECG and TMT ECG signal images and single lead ECG and TMT ECG signal images. 

The study concentrated on people who lived in remote areas, and without considering 

any other parameters except ECG and TMT ECG signal images. The ECG information 

is gathered from a well-known nearby hospital that specializes in cardiac problems 

(KMC Mangalore, Karnataka, India). The data set includes horizontally scanned signal 

images of 236 healthy volunteers and 316 CAD patients (considering male and female 

patients) with angiography confirmation. A 12-lead ECG in resting state and a TMT 

ECG image (Figure 3.10) for normal and CAD participants are shown in Figure 3.11. 

The collected datasets are 1sec duration signal of each lead, will help to identify the 

disease in a short time. The analysis is carried out with consideration of raw signal 

images and filtered signal images; the raw signal images are the images that are directly 

obtained from scanned images without being subjected to any pre-processing methods. 

The pre-processed image signals are derived from a raw signal image with the 

application of the following pre-processing procedure. 

 

 

Figure 3.10 The scanned ECG signal of 12 lead signals  
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Figure 3.11 The scanned paper ECG of 12 lead signals for normal (Left) and 

confirmed CAD (Right) which have resting and treadmill test ECG signal images 

 

3.4.3 Repository data 

 

There are large repository datasets available related to heart diseases such as arrhythmia 

(MIT-BIH (Moody and Mark 2001), Arterial fibrillation (Moody 2004), and 

cardiovascular diseases such as CAD (Alizadehsani et al. 2019), but compared to the 

first two, coronary artery disease-related datasets are rare. The CAD dataset which is 

available in repository contains limited trails of 7 CAD patients and 40 normal patients  

reading (Arafat et al. 2005).  

 

CAD repository datasets available is the Physio-net dataset are derived from 7 CAD 

patients and 40 Normal patients (sample of data set is plotted as shown in Figure 3.12). 

The public domain data Physio-Net 2017 is inbuilt in the MATLAB interface (Clifford 

et al. 2017; Ghiasi et al. 2017; Tan et al. 2018). These data sets are available in the 

digital signal format. This data set consists of 5788 ECG signal data samples. Data 

points are with 1000 sampling rates which consists of a minimum of four heartbeats. 

Using this data, an image file of ECG was created in MATLAB and the image was 

saved in a format suitable for the application of the developed data extraction method.  
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Figure 3.12 ECG distribution plot over a time of period for the repository dataset 

 

3.5 UNDIFFERENTIATED FEVER ANALYSIS 

 

The fever symptomatic analysis which is carried out as an initial study with limited 

amount of data. This study is concentrated on one dimensional machine learning 

analysis of 24 hours temperature data in its first stage. Further this analysis is extended 

to carry over the dataset, which is increased by splitting 30 minutes and 60 minutes 

temperature data, with and without consideration of additional features. On the basis of 

results, the best suitable machine learning classifier is opted for future data 

classification. 

 

3.5.1 Analysis of 24-hour temperature data pattern 

 

Intelligent systems are emerging as an important component in the area of medical 

science, owing to its significant assistance to doctors in the identification of crucial 

diseases.  Major diseases like Tuberculosis, Non-tubercular bacterial infections, Dengue 

fever, and Non-infectious diseases have fever as common symptoms due to the variation 

in white blood cells level. The common way to find the fever symptomatic disease is, 

by observing the temperature variation along with other symptoms. Because of this, 

identifying the nature of fever may be a challenging task. The present work deals with 

the development of a prediction model for such type of diseases with the help of a single 

A
m

p
li

tu
d

e 
(m

V
) 



62 

 

parameter i.e. temperature data, without consideration of any other symptoms. The 

temperature was recorded every single minute over 24-hours as a total of 1440 data sets.  

The fever diseases considered for prediction are  

 

1. Tuberculosis 

2. Non-tubercular bacterial infections 

3. Dengue fever 

4. Non-infectious diseases 

 

In neural networks, the adjustment of the network’s weights and biases will be done 

automatically through mathematical procedures like training and learning functions. 

The training function is defined by a general algorithm that affects all the weights and 

biases of a defined network. In pattern recognition problems, the data are represented 

as input vectors.  

 

In this study, prediction of fever symptomatic disease was done with help of 

temperature data as input. The temperature data of 103 patients captured over 1440 

intervals is enriched with statistical data like mean, standard deviation, etc. so as to 

reduce the problem of overfit. In the output layer, the target vector consists of 4 

elements (namely, tuberculosis, non-tuberculosis, dengue, and non-influencing 

diseases). These targets are defined like (1 0 0 0), (0 1 0 0), (0 0 1 0) and (0 0 0 1) 

corresponding to four types of fever as named earlier. For deciphering such information 

in the output layer, the manual classification of temperature data for four different 

fevers provided by medical case history records is used. Hence, these data are 

preprocessed for vector classification.  

 

The ANN model developed is trained with MATLAB neural network pattern 

recognition program. In pattern recognition, sigmoid hidden and softmax (transfer 

function to calculate layer’s output through net input) output neuron (patternnet) layers 

are used in the feed-forward network (Dr.N.Kannathasan 2018).  Training of this 

network is done with a scaled conjugate gradient backpropagation method. General 

Flow chart of undifferentiated fever prediction analysis is as shown in Figure 3.13. 
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 Figure 3.13 Flow chart of undifferentiated fever prediction analysis 

 

In preprocessing stage, input data are derived using available temperature data. For the 

given set of data, statistical data like mean, standard deviation, square roots of means, 

and square roots of standard deviations of incremental 30min data set are calculated. In 

addition to this, the results of kurtosis, skewness, above mean value, and below mean 

value of the parent dataset and incremental dataset are also determined and added to 

parent data for effective prediction. This results in a total of 4534 input neurons in the 

network. Output results are identified based on probability score which is related to 

defined disease. Out of the values obtained in the output neurons, the output neuron 

having maximum numeric value is selected. The disease pertaining to the selected 

neuron is the right prediction.  

 

Thus, there are 4534 neurons containing time-dependent temperature data as input. The 

hidden layer and classification layer are represented as shown in the Figure 3.14.  

 

Figure 3.14 Simple neural network 
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Initially, input and target column matrices are imported to the neural network 

tool of MATLAB. 75% of data are considered for training, 5% of data are used for 

validation, and remaining 20% of data are used for testing.  Patternnet layer consists of 

10 hidden neurons. The Training network process depends entirely on the scaled 

conjugate gradient backpropagation method (Sankar et al. 2013). At the end of training, 

the error is analyzed using a performance plot and confusion plot.  

 

3.5.2 Refinement of undifferentiated fever analysis 

 

A known medical classified disease data used for development of model in order to 

identify new data which lie under pre-known category. A supervised learning method 

(Kusuma and J 2018) is used to develop the prediction model for these types of diseases 

classification. Steps involved in the proposed method are data collection, preprocessing 

and feature extraction, training with different classifier algorithms, comparing results of 

various algorithms, identification of best model and real-time data analysis with the 

selected model (Figure 3.15). 

 

Figure 3.15 Generalized methodology of fever symptomatic disease analysis 

 

Data collection is the process of recording temperature with the help of temperature 

measuring devices (sensors). Every subject or patient has undergone observation for 

about 30 minutes or 60 minutes. Temperature data has been collected for 30 minutes 

Data Collection

Preprocessing and Feature 

Extraction

Training with Different Classifier 
Algorithms

Comparison Results of Various 
Algorithms

Developing the Prediction Model for 

Best Algorithm

Real Time Data Analysis with Saved 
Best Model.

Identification of Best Algorithm 
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with an interval of 1 minute without considering any other risk factors or symptoms 

(Figure 3.16).   

 

 

 

 

Figure 3.16 Temperature variation versus time for ten random samples of 

(a).Tuberculosis, (b).Non-tubercular bacterial infection, (c).Dengue fever and (d).Non-

infectious diseases (Different Colors are defined in the graph which indicates the ten 

individual patents temperature data for 30min under different disease conditions). 

 

The collection of 30-minute temperature data of a patient is a real-time challenge. 

Placing a patient in observation for a long period, noting down changes in symptoms, 

temperature, and decisions based on these changes in symptoms is a long process 

(Ogoina 2011). To overcome this issue, the temperature measuring device has been 

(a) (b)

(c) (d)
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placed over recommended locations on the body, and temperature variation data has 

been collected continuously for 30 minutes. 

 

Pre-filtered patient data are collected with help of the laboratory facility of Kasturba 

Medical College in Mangaluru, Karnataka. To avoid the noise contained in data 

collection process, the Savitzky-Golay filter has been used. These data have directly 

undergone a training process to understand the nature of training accuracy for the 

dissimilar temperature behavior of the patient.  

 

The above-mentioned filtered data set is considered for training the neural network 

model without considering mean, median, standard deviation, and other statistical 

conditions with respect to set of array data. These data were classified into two 

categories; training (80% of data) and testing & validation (remaining 20% of data). 

Once a set of training and testing data are ready, the different required classifier models 

are defined with their respective parameters and limitations. 

 

3.5.3 Prediction system development based on machine learning technique 

 

The prediction system (Figure 3.17) developed is based on a single variable i.e. 

temperature. The major classifiers which are helpful to classify the type of disease with 

a supervised learning method are used for the development of a network based on data 

considered. The major classifiers recommended to study were generative and 

discriminative classifiers. These are named logistic regression, decision tree classifier, 

k-nearest neighbor’s classifier, linear decrement analysis, Gaussian Naive Bayes 

classifier, and Support Vector Machine. With the help of Python IDE, the analyses were 

done for adopting the best classifier based on the accuracy of these classifier models.  
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Figure 3.17 Prediction model methodology. 

 

Accuracy is stated based on the obtained output of a defined model. The performance 

of these models is analyzed with help of a confusion matrix. It defines the entire model 

behavior under the classification of categories. The comparisons (Steinmetzer et al. 

2019) of the above-mentioned algorithms are initially made based on the accuracy score 

of the model. The best-suited model for initial data is then taken into account for further 

processing in the classification of diseases.  

 

The analysis of temperature data is purely a one-dimensional data analysis. Which are 

cannot directly applicable for on the image type data (ECG data). During the image type 

data analysis, either using direct image (ECG image) or by convert the two-dimensional 

image (ECG image) into a one-dimensional data (ECG time series data) for analysis. 

Digital image processing (used for ECG digitization) is the method to convert two-

dimensional image into one dimensional data. The step-by-step procedure followed for 

ECG digitization with a help of digital image processing are explained in subsequent 

section.   
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CHAPTER 4 

DIGITAL IMAGE PROCESSING 

 

Image processing is the refinement of the image with a help of suitable algorithm. The 

processing of an image depends on the pixel details. The pixel is the smallest element 

of the digital image and is also named a picture element. The selection of pixel array 

size is one of the important steps in digital image processing (Badilini et al. 2005).  The 

dimension of the picture is decided by the dimension of the pixels array. It may be 

rectangular or square. The width of image is decided based on the number of columns 

(M) and the image height is decided by the number of rows (N) (Shrivastava et al. 

2014). The pixel array is represented in the form of M*N. The coordinate system of the 

image is different from the coordinate system in mathematics. In the Coordinate system 

in the image, x increases left to right, and y increases from top to bottom. The resolution 

factor helps to match the size of the real-world image (Pratt 2003) and digital image. 

 

For example, an image of 4500 x 3000 pixels with a resolution of 300 pixels (Tabassum 

and Ahmad 2020) per inch (PPI) would be a real-world image size of 15" x 10". In 

resolution terms, “ppi” is pixels per inch and “dpi” is dots per inch. ppi and dpi are 

interchangeable (1dpi = 1ppi). “dpi” is used in the printer and the “ppi” is used in the 

digital image. Another effective parameter considered is, “intensity”, which is needed 

to truly define an image. Each pixel has its own intensity value or brightness. If all the 

pixels have the same value, the image will be a uniform shade; all black, white, gray, 

or some other shade. It is in the type of intensity used for each pixel that image types 

vary. Black and white images only have intensity from the darkest gray (black) to the 

lightest gray (white) (Debasish Biswas. et. al. 2011). Color images, on the other hand, 

have intensity from the darkest and lightest of three different colors, Red, Green, and 

Blue (Figure 4.1). The various mixtures of these color intensities produce a color image. 

Thus, two most basic types of digital images, BW and Color, are known as gray-scale 

and "RGB" images respectively. In addition to the intensity type of each pixel, the range 

of intensity values also varies. Intensity values in digital images are defined by bits. A 

bit is binary and has only two possible values, 0 or 1. An 8-bit intensity range has 256 
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possible values, 0 to 255. (Mishra et al. 2021) This can be seen mathematically by 2(x 

of bits). For 1-bit or binary image: 21= 2 possible values and for an 8-bit image: 28= 

256 possible values.  

 

The standard digital photo uses an 8-bit range of values; RGB images (Figure 4.1) use 

8-bit intensity ranges for each color and BW images have a single 8-bit intensity range. 

Since RGB images contain 3 x 8-bit intensities they are also referred to as 24-bit color 

images. When considering of interval between the values: Theoretically, an 8-bit range 

could occupy values from 0 to 1 using 1/256th increment, but practically, 8-bit images 

are defined to use only integer values from 0 to 255. 

 

 

Figure 4.1 RGB color distribution in M*N*3 array 

 

4.1 ECG IMAGE PRE-PROCESSING AND DIGITIZATION 

 

The nonlinear dynamic behavior of the electrocardiogram (ECG) signal is well known, 

and it was a key feature that is used in this study. Since the CNN system needs feedback 

in the form of digitized signals, the digitization process was implemented, wherein the 

data were extracted from ECG and TMT-ECG graphs. The digital image processing 

will help to analyze the ECG graph in 1D format. i.e conversion of scanned ECG/ TMT-

ECG into one-dimensional vector data. Digitalization process applied on a scanned 

image of TMT ECG graph. The method of digitization was also recommended to 

overcome various paper degradation problems, in addition to the reasons cited in the 

introduction. The graph sheet includes two sets of the graph, one which belongs to 

resting ECG and another one noted as the excited state of stressed ECG (Excited TMT 

condition).  
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According to literature analysis, the digitization of ECG graphs was applied only for 

single-lead ECGs, and the majority of cases were treated with only resting condition 

ECGs. However, TMT-ECG was measured while the patient was running on the 

treadmill, based on the Bruce protocol. This plays a key role in predicting arrhythmia, 

CAD, and other heart-related conditions. The proposed approach was designed to 

digitize both the resting and TMT-ECG conditions (TMT-ECG). This novel approach 

will include digitized ECG data and features for each of the 12 leads individually. 

 

The electrical signal of the heart was printed as a waveform (TMT report), which was 

collected through 10 electrodes and printed as 12-lead heart signals. The ECG and 

TMT-ECG reports used for data extraction were of resting (ECG) and exercised (TMT-

ECG) conditions, aided in the study of the entire pattern of heart disease activity. 

Different stages of data extraction in the study are discussed as shown in Figure 4.2. 

Digitization methodology is adopted by consideration of single-lead ECG and twelve 

lead ECG image processing techniques and adaptation of the best suitable approach. 

 

The raw twelve lead ECG image was filtered out during the pre-processing stage in 

order to obtain a clear signal image. This pre-process includes skew detection and 

correction (scanned image orientation correction), color-based image segmentation for 

background removal (grid removal) i.e.  making a threshold to darken the main data 

region and lighten the background for removal of the grid line and helps to remove all 

the color content and make the image black and white with the help of threshold values. 

This binarized image is filtered with the help of black and white area open method or 

application of a median filter to remove salt and pepper noise, printed text detection 

using easy OCR (Optical Character Recognition), and application of OpenCV to erase 

the text or masking which is applied to an image to remove all the string elements which 

are included in the area of the digitalization field, image dilation or morphological 

operation to improve pixel quality, and multi-cropping based on single lead image 

position by giving height and width. These images are further processed by pixel 

indexing method to extract the digitalization value (1D) of that particular image and 

medical features related images are extracted using hybrid method feature extraction 

process. The final processed ECG/TMT-ECG signal is obtained by the pixel values 
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(1D) and the signal is validated by computing specific pixel per column and application 

correlation relationship. 

  

 

 

Figure 4.2 Overview of the block diagram related to pre-processing 

 

The pre-processing step assists in obtaining the whole dataset (i.e., a single lead raw 

image to extract 1D data and pre-processed (filtered) image and 12 lead filtered images 

for image analysis) that is needed to develop the prediction algorithm. The detailed 

procedure of pre-processing methods is stated as follows in Figure 4.3. 

 

 

 

Figure 4.3 Single-lead TMT-ECG digitization 

 

Based on the above two procedures, the best optimal method is selected for data 

extraction from scanned paper (Figure 4.4). The detailed explanation of the method is 

explained as follows. 
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Figure 4.4 Twelve-lead TMT-ECG ECG report 

 

4.1.1. Image Scanning 

 

The combined ECG and TMT-ECG report was taken from the GE healthcare diagnostic 

ECG MAC 5500 HD machine at the neighboring hospital. The thermal paper-printed 

ECG data were scanned using a flatbed HP A4/A5 scanner with a 600 dpi scanner 

resolution (Jayaraman et al. 2012) (Figure 4.4). Any errors in inclination while placing 

the report on the scanning bed is identified as skew. 

 

Skewed images are slanted images (Figure 4.5a) that are typically found in 

scanned/captured photos. The slanted images could have a negative impact on accuracy. 

One of the finest methods for de-skewing an image (Figure 4.5b)  is to use the Hough 

transformation (which is a basic linear transformation function) (Mukhopadhyay and 

Chaudhuri 2014). The background grid lines of the scanned ECG image are used to 

compute the skew rotation angle of the image. A straight line can be detected using the 

Hough transform (Al-Khatatneh et al. 2015). In image space, the slope intercept model 

is defined by the straight-line equation 4.1 shown below. 

 

Z = bx + c     (4.1) 
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The slope of the line is defined by the parameter b, while the intercept (Z-intercept) 

point is defined by the parameter c. The Hough transform is used to express the 

properties of straight lines in terms of slope-intercept model parameters, rather than 

discrete points (𝑥0, 𝑦0), (𝑥1, 𝑦1). As a result, the straight-line Z = bx + c can be 

represented in the Hough space as a point (c, b). Using the transform function as in 

equation 4.2, every point  (x, y) in cartesian space is mapped into sine curve in  ρ – θ 

Hough space. The coordinates of a point   when shifted by an angle   around   becomes   

and is defined as    

 

x = Cos(θ) × (x1 − x0) + Sin(θ)  × (y1 − y0) 

y = −Sin(θ) × (𝑥1 − 𝑥0) + Cos(θ)  × (y1 − y0) 

ρ =  𝑥𝑐𝑜𝑠θ + y sinθ 

 

 

 (4.2) 

 

(a)                                                            (b) 

 

Figure 4.5 (a) skewed Image of ECG (b) De-skewed image of ECG 

 

4.1.2. Image Masking 

 

The scanned report contains string values pertaining to electrode locations and general 

information about the patient. Such information and the electrode position are printed 

which need not be digitized. These string values needed to be removed from the image 

as redundant data. This can be removed manually but it will be time-consuming. After 

adding a mask to the image (Figure 4.6), such information can be removed. The image 

masking helps to remove such redundancies from the images (Figure 4.7). This process 

can be automated with the help of a text detection and removal process. 
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Figure 4.6 Masking image 

 

 

 

Figure 4.7 ECG graph after adding the mask 

 

4.2 THRESHOLD SETTING OR COLOR IMAGE SEGMENTATION 

 

The background grid in the graph image should be removed in order to extract the signal 

image from the scanned image. When it comes to removing the backgrounds from 

graph images, a color histogram comes is to be referred. The color distribution over an 

image is represented by a histogram. In the ECG graph, the intensity of the red pixel is 

shown in Figure 4.8. The histogram (Figure 4.8) was generated with the help of  

MATLAB R2020b module, namely “Color Threshold GUI” (Carolina Sparavigna 

2015). Every digital image has three colors that are used a color image, RED, GREEN, 

and BLUE (RGB). 

• RED 

Will lighten very dark color while also changing the tone. 

• GREEN 
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Will darken light color while also changing the tone. 

• BLUE 

Will darken light color while also changing the tone. 

 

 

 

Figure 4.8 Histogram of RED color of ECG  

 

A color histogram represents the number of pixels that have colors in each of a fixed 

list of color ranges. The histogram of the image gives the idea about which color should 

be removed so that it will be clean and dark. Red color erosion makes black darker. Ten 

different ECG/TMT-ECG scanned images were selected randomly to achieve proper 

red pixel erosion. In the above color threshold module, the threshold value for the red 

pixel intensity was determined to be 145–255 by the trial-and-error method i.e. 

removing 0-145 intensity pixels of the red, black line becomes darker. Removing the 

red pixel threshold for the red color starts from 145 to 255. 

 

Define thresholds for channel 1 based on histogram settings 

channel1Min = 145.000; 

channel1Max = 255.000; 

Define thresholds for channel 2 based on histogram settings 

channel2Min = 0.000; 

channel2Max = 255.000; 

Define thresholds for channel 3 based on histogram settings 

channel3Min = 0.000; 

channel3Max = 255.000; 
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Once the threshold was identified, the system automatically removes the lesser range 

of red pixels from the image. Finally, a black line ECG graph was retained at the end 

of red pixel intensity filtering. The same is also achieved based on color-based image 

segmentation method, which gives combined results of thresholding and binarization.  

 

This process is optimized with consideration of background grids, which are often 

lighter in shade compared to ECG signal images. The image is processed column by 

column, with each column's darkest pixels being replaced with black pixels, while the 

remainder pixels being kept as white pixels. This results in binary image formation 

(Figure 4.9). During the process, there is a possibility of obtaining unwanted printed 

characters which can be removed (kaisJameel and R. Manza 2012). 

 

 

 

Figure 4.9 Binary ECG image with noise 

 

4.3 BINARIZATION 

 

Binary images are images that have been quantized to two values, usually 0 and 1. But, 

often color image belongs to 0 to 255 color range (8 bits image). Before converting 

images to Black and White, those have to be converted into the grayscale image. The 

GIMP image software has three algorithms (4.3, 4.4 and 4.5) which are used to convert 

images into black and white. These are; 

 

1. The lightness method averages the most prominent and leads to prominent 

colors:  
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(max(R, G, B) + min(R, G, B)) /2  (4.3) 

 

2. The average method simply averages the values: 

(R + G + B)/3.     (4.4) 

 

3. The luminosity method 

Luminosity = 0.21R + 0.72G + 0.07B      (4.5) 

 

The luminosity method (4.5) is a more sophisticated version of the average method 

(Debasish Biswas. et. al. 2011). It also averages the values, but it forms a weighted 

average to account for human perception. It is more sensitive to green when compared 

with other colors. So green is weighted most heavily. After converting all layers of the 

image in the grayscale, it is available for converting into the binary image (Figure 4.10). 

In binary, if pixel intensity is less than threshold value, it is set to 0 (black) and else set 

to 1 (white). Equation (4.5) shows the luminosity formula, where R refers to red, G 

refers to green, and B represents the blue pixel values.  

 

 

 

Figure 4.10 Binary image of ECG 

 

4.4 OPEN AREA DELETION 

 

The use of a binarization Gaussian filter can reduce the clarity of the image. To prevent 

this, the open areas of the image were deleted by a process that combined the removal 

of noise and image dilation. Such an open area deletion feature eliminates the pixel 

cluster of lesser than fifty pixels for binary images and leads to better clarity of the image 

(Figure 4.11). 
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Figure 4.11 Clean binary image of ECG 

 

4.5 MORPHOLOGICAL OPERATION  

 

The ECG signal, after the elimination of open areas is represented by a thick line. A 

morphological operation was used to retrieve the typical data segment out of this. The 

morphological operation algorithm chooses the averaged pixels in a row of pixels. 

Consequently, the morphological operation’s output will be a thin binarized image, 

resulting in a clean, thin graph (Figure 4.12). Mathematically, it is written as (equation 

4.6 ) (Pratt 2003). 

 

thin(X, Y) = X − (X⨂Y) (4.6) 

 

This operation is a form of hit-and-miss transform, where the thinning of a set X by 

structuring elements (SE) Y is denoted by X ⨂ Y. The thinning by a sequence of SEs is 

as in (equation 4.7) 

 

(X⨂Y) = [X − ((X ⊖ Y1)⋂ (X
C⊝ Y2) (4.7) 

 

Where z in universe X belongs to the output 𝑌1 fits in X (hit) and 𝑌2 misses X, and the 

erosion of an image by dilation of background is referred by 𝑋𝐶 . 
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Figure 4.12 After a morphological operation. 

 

After the application of color-based segmentation, the resultant images are used for 

filtering. This is an automatic optimized method to obtain a clear image. This will 

provide the same result of open area deletion and morphological operation.  

 

4.6 FILTERING 

 

The removal of background degrades the actual ECG signals due to the presence of 

noise called as salt and pepper noise. Image noise is defined as the random variation of 

small pixel values of an image. Because noisy signals might lead to misdiagnosis, it's 

important to minimize the noise effectively using filters. Visual inspection (Zhu and 

Wang 2012) yields the best results when a median filter is used to remove the majority 

of the noise. This image filtering technique scans the image with a tiny matrix and 

recalculates the center pixel value by taking the median of all pixel values within the 

matrix. The resulting image is shown in Figure 4.13. 

 

 

 

Figure 4.13 Filtered ECG image 
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This procedure helps to optimize the methodology of digitization. Once this process is 

completed, image can be considered for text detection and removal, if it is not removed 

in the masking methodology. Text detection and removal will be one of the sophisticated 

automated methods for removing all string values compared to the image masking 

procedure.   

 

4.7 TEXT DETECTION AND REMOVAL 

 

This procedure aids in the removal of undesired string element pixels that do not 

correspond to the signal image (Printed characteristics not considered for analysis). 

Optical Character Recognition (OCR) is a useful technique for converting text in 

photographs into computer-readable text (Figure 4.14). Easy OCR algorithm is 

developed in python with the help of Pytorch to detect readable text. In addition to this, 

CRAFT (Baek et al. 2019) algorithm is used for detecting phase with the help of CRNN 

Recognizing model. It consists of three main phases i.e. Feature extraction, sequence 

labeling, and decoding. The character location score and character affinity score which 

are generated by the easy OCR method will help to fully cover various text shapes over 

the image in a bottom-up approach. 

 

 

 

Figure 4.14 Text detected image 

 

Inpainting operation developed using OpenCV helps to remove the recognized text. 

Deletion of the text leads to masking the original image where the text has to be erased. 

To achieve this, the dimensions of the mask image and the input image must be the 

same. The mask will show non-zero pixels (detected text) in parts of the input image 
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that contain text and would be in-painted (using Navier-Strokes algorithm) (Bertalmio 

et al. 2001), while zero pixels(signal image) will remain unchanged(Figure 4.15). 

 

 
 

Figure 4.15 Text erased ECG image 

 

4.8 DILATION AND MULTI-CROPPING. 

 

The dilation is an operation that helps to improve the image features with consideration 

of 2 inputs, one which is related to dilated image and the other one corresponding to a 

two-dimensional structuring segment. The dilation also helps to amplify features in the 

signal image (Raid et al. 2014). The multi-cropping method makes it possible to extract 

a single lead ECG and TMT ECG signal image from a 12-lead ECG and TMT ECG 

signal images. The OpenCV is used to crop each individual lead by determining the lead 

image's height and width (Figure 4.16). The input signals for the prediction model 

developed based on a single lead are derived based on this multi-cropping method. This 

method is also extended to derive raw single-lead ECGs and TMT ECGs from raw 

twelve lead signal images. 

 

              

 

Figure 4.16 Cropped single lead images 
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These cropped signals are used to extract one-dimensional data with the help of 

pixel indexing methodology.  

 

4.9 SIGNAL DATA STORAGE USING PIXEL INDEXING 

 

 

 

Figure 4.17 Flow chart for pixel indexing 

 

The binary signal (ECG) graph is turned into an array sequence using the pixel indexing 

approach (Jufriadif Naama, Catur Suharintob 2017), which corresponds to the amplitude 

(mV) and time series (ms) on the ECG graph. The 2-D array contains the results of all 

non-zero column and row items. The row value (time series) of the pixel is stored in the 

first column of the array. Similarly, the second column of the array contains the 

associated row pixels of a particular column value (amplitude). If a single column 

contains more than one number of pixels for a given period, the pixel with the highest 

pixel index value is stored. The flow chart of the algorithm is represented as shown in 

Figure (Figure 4.17). 

 

Pixel indexing data is saved in a readable file format (.dat and. excel) and converted 

from dots per inch to millimeters using the equation below for future uses (equation 

4.8). 

 

𝑙 = 𝑙𝑑 × 25.4/600           (4.8) 
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where 𝑙 is the length in millimeters and 𝑙𝑑 is the length in dots per inch (1 inch = 

25.4mm) at 600 dots per inch (dpi), with each dot equaling to 0.0423 mm. The grid unit 

along the amplitude axis equates to 0.1mV, and the same along the time series axis (i.e 

a grid unit) corresponds to 0.02s in the ECG graph (Tabassum and Ahmad 2020). The 

extracted data from all 12 lead plots are compared with the original 12 lead image's ECG 

graph, as seen below (Figure 4.18). 

 

 

 

Figure 4.18 12 Lead ECG data comparison between original data and extracted data 

 

4.10 ECG FEATURE PARAMETER EXTRACTION 

 

The combination of several methods is used to detect the amplitude values of P, Q, R, 

S, T, and related segment interval values (QT interval, QRS complex interval, and ST 

interval segment). The method used to derive the QRS interval is Pan-Tompkins’s 

method and is validated with slope-based R-value detection method. P and T values are 

derived based on the statistical method. 

 

The Pan-Tompkins is one of the finest methods for extracting the QRS feature from 

ECG data with a very good accuracy (Pan and Tompkins 1985). The breadth, slope, and 

amplitude of the QRS complex are used to analyze the ECG signal during diagnosis. 

The following filter stages are included in the Pan- Tompkins algorithm to find QRS 

complex: (i) low pass filter and high pass filter, (ii) derivative (differentiator), (iii) 

squaring, (iv) integration, (v) adaptive thresholding.  
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4.10.1 Low Pass and High Pass Filters 

 

A bandpass filter is used to boost the signal-to-noise ratio. A filter bandwidth of 5-15 

Hz is ideal for maximizing QRS contribution while simultaneously reducing muscle 

noise, baseline drift, powerline interference, and the frequency content of the P and T 

waves. The second-order low pass filter's (Figure 4.19) transfer function is given by 

equation 4.9 

 

H(z) =  
(1 − z−6)2

(1 − z−1)2
 

 

The differential equation (equation 4.10) is given by  

 

        y(nT) = 32x(nT − 16) − [y(nT − T) + x(nT) − x(nT − 32T)] 
 

where T is the sampling period and the cut-off frequency and gain of the filter are 11 

Hz and 36 respectively. The delay of the filter is given by 6 samples. The transfer 

function (equation 4.11) of second-order high pass filter is given by 

 

H(z) =  
−1 + 32z−16 + z1 − 32

1 + z−1
 

 

The differential equation (equation 4.12) is given by  

 

y(nT) =  
1

8T
{−x(nT − 2T) − 2x(nT + T) + x(nT + 2T)  

 

 

                

 

 

 

 

Figure 4.19 (a) Before application of low pass filter, (b) After application of low pass 

filter, and (c) After application of high pass filter 

(4.9) 
 

  (4.10) 
 

 (4.11) 
 

  (4.12) 
 

(b) (a) (c) 
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4.10.2 Squaring 

 

 When a differentiated output signal is squared (which is achieved by equation 4.13), 

the result is a positive signal with a larger QRS complex than other signal waves. The 

maximum amplitude value will provide the R-value. 

  

𝑦(𝑛𝑇) = [𝑥(𝑛𝑇)]
2
 

 

4.10.3 Moving Window Integration 

 

In addition to the R wave, moving window integration (Figure 4.20) collects information 

about the QRS complex. The window size must be considered carefully. If it is too large, 

the QRS complex and T wave will combine with integration, if it is too small, a single 

QRS complex creates several peaks. 

 

 

 

Figure 4.20 Application Moving Window Integration  

 

This can effectively be implemented based on the differential equation (equation 4.14) 

 

y(nT) = 
1
N
[x(nT− (N− 1)T)+x(nT− (N−2)T)+x(nT)] 

 

A window width n=30 is suitable for sampling frequency fs=100Hz 

 

4.10.4 Adaptive Thresholding 

 

Once window width is fixed, then the value of the QRS complex is determined by the 

thresholding method adopting. This method will determine two threshold values based 

(4.14) 
 

(4.13) 
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on signal peak and noise peak values. Based on these threshold values, the QRS (Figure 

4.21) complex is determined. 

 

 

 

Figure 4.21 QRS Feature parameters 

  

The R-value obtained from the Pan-Tomkins method is validated with the help of the 

slope-based R-value detection method. Once the QRS interval is fixed, Then R-value is 

calculated by applying the slope-based method to find the slope of the QRS wave. 

Where the slope of the QRS wave will become zero that point is considered a peak value 

i.e. maximum amplitude value (R-value). Based on the QRS interval and slope-based 

method, the statistical method is adopted to find the values of P and T by choosing the 

closest maximum amplitude value before Q and the closest maximum amplitude value 

after the S value.  

 

4.10.5 Feature Extraction 

 

The literature studies have highlighted several algorithms developed to extract ECG 

features. In the majority of cases, the data used in these algorithms were QRS complex 

and ST sections of the ECG graph. In this work, The Pan–Tompkins method (Pan and 

Tompkins 1985; Sedghamiz 2014), with the combination of a slope-based and statistical 

method (Li et al. 2017), was used in the feature extraction analysis. The Tompkins 

extraction method is ideally suited for extracting from the QRS complex. 

 

The accuracy of an intelligent system in the prediction of the disease depends on lead 

data (1D) and key features extracted from ECG graph data. The lead data with the QRS 

complex and the ST section were inadequate to create an efficient framework. 

Additional segmentation of lead data (time series data) helps to improve the efficiency 
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of the system. The segments were extracted using a statistical procedure that selects, 

neighboring maximum and minimum values of the known segment data. This was 

achieved by knowing the QRS complex (QRS segment) position and the P and T 

amplitudes (Figure 4.22). Using these amplitude values, the other segments (PQ, QT, 

ST) could easily be determined. 

 

 

 

Figure 4.22 Extracted feature data of the ECG. 

 

one-dimensional data and features of ECG/TMT-ECG extracted through image 

processing are used for development of coronary artery disease prediction model. These 

one-dimensional data are saved as array type which is helpful for dealing of one-

dimensional prediction model. In following section, a detailed discussion related to 

development of prediction model based on these one-dimensional data and even related 

to two-dimensional and hybrid models.     
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CHAPTER 5 

PREDICTION MODEL FOR CORONARY ARTERY DISEASE 

 

The feature data extracted from the ECG and TMT-ECG signals were used to develop 

the prediction system for the CAD, using convolution neural network (CNN) modeling. 

The prediction model to detect the CAD are developed based consideration of both types 

of data i.e structured and unstructured data. Structured data type analysis by considering 

time line data extracted from ECG/ TMT-ECG graph for both single and twelve lead 

ECG/TMT-ECGs with a help of one-dimensional convolutional prediction system. 

Unstructured data type analysis is carried out with consideration of image data ECG/ 

TMT-ECG graph for both single and twelve lead ECG/TMT-ECGs with a help of two-

dimensional convolutional prediction system. Further an optimized hybrid multi-headed 

prediction model is developed based on consideration of both types of data with respect 

to single and twelve lead ECG/ TMT-ECGs.  The detailed discussion related to these 

concepts are as discussed below.  

 

5.1 ONE-DIMENSIONAL ECG PREDICTION ANALYSIS 

 

The one-dimensional prediction system was developed on two considerations. The first 

one was based on single-lead signals and the other on 12-lead signals (I, II, III, aVR, 

aVL, aVF, V1, V2, V3, V4, V5, V6). In the design of the CNN model, array of the time 

series voltage datasets obtained through the data extraction procedure, including the 

ECG feature data, were used as input. The amplitude values of the signal, QRS complex, 

ST segment, P, Q, R, S, and T values are also part of the input. 

 

Initially, in the single-lead CNN model, a total of 815 time-series data extracted from 

individual ECG graphs were normalized and fed into the input layer to generate an 

output during the training cycles. Iterations were repeated for the designated number of 

training data in a similar way. These data were obtained as a one-dimensional dataset 

and were used in the development of the CNN model. CNN architectures, each with 

different number of layers and different combinations of activation functions were 

analyzed to arrive at an optimal CNN network. Three subcategories were made based 
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on the number of layers used for the optimization procedure, i.e., (1) a one-layer CNN 

architecture, (2) two-layer CNN architecture, and (3) three-layer CNN architecture 

(Figure 5.1) (Sannino and De Pietro 2018). 

 

 

Figure 5.1 Generalized three-layer convolutional neural network architecture  

 

5.1.1 Single-Lead ECG/TMT-ECG-Based CNN Architecture 

 

Single lead ECG / TMT-ECG architectures is, consideration individual leads (limb 

leads, augmented leads or precordial leads) for analysis which are extracted from the 

twelve lead ECG/ TMT-ECG with help of preprocessing. The preprocessed data are the 

input to the development of optimized convolutional neural network. The mathematical 

representation of the generalized convolution operation is given by: 

𝑥𝑛 = ∑ 𝑦𝑘𝑓𝑛−𝑘

𝑛 − 1

𝑘=0

 

 

 

(5.1) 

where the variable y corresponds to the input signal, f denotes the filter, and n represents 

the number of data/feature elements in y, respectively. The variable ‘x’ represents the 

output vector. These layers were convoluted with a kernel size of 1 and a stride of 1 

using equation 5.1 (Acharya et al. 2017d). Four activation functions adopted in the CNN 

model across the different layers were: ReLU, SoftMax, LeakyReLU, and linear.  
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Table 5.1 Detailed CNN architecture for a single-lead ECG with one-convolutional, two-convolutional, and three-convolutional layers 

respectively 

 Single Layer CNN Two Layer CNN Three Layer CNN 

 Network (N) 

N-1 N-2 N-3 N-4 N-5 N-6 N-7 N-8 N-9 N-10 

Input (815,1) (815,1) (815,1) (815,1) (815,1) (815,1) (815,1) (815,1) (815,1) (815,1) 

Hidden_1 

Layer 

Conv1D 

+ RELU 

(814,64) 

Conv1D + 

LeakyRELU 

(814,64) 

Conv1D 

+ 

Softmax 

(814,64) 

Conv1D 

+ Linear 

(814,64) 

Conv1D 

+ 

RELU 

(814,64) 

Conv1D + 

LeakyRELU 

(814,64) 

Conv1D + 

LeakyRELU 

(814,64) 

Conv1D + 

RELU 

(814,64) 

Conv1D + 

LeakyRELU 

(814,64) 

Conv1D + 

RELU 

(814,64) 

Hidden_2 

Layer 

None None None None Conv1D 

+ 

RELU 

(813,32) 

Conv1D + 

LeakyRELU 

(813,32) 

Conv1D + 

RELU 

(813,32) 

Conv1D + 

RELU 

(813,32) 

Conv1D + 

RELU 

(813,32) 

Conv1D + 

LeakyRELU 

(813,32) 

Hidden_3 

Layer 

None None None None None None None Conv1D + 

LeakyRELU 

(812,16) 

Conv1D + 

RELU 

(812,16) 

Conv1D + 

RELU 

(812,16) 

Flatten [52096] [52096] [52096] [52096] [26016] [26016] [26016] [156624] [156624] [156624] 

Fully 

Connected 

Dense + 

RELU 

(16) 

Dense + 

RELU (16) 

Dense + 

RELU 

(16) 

Dense + 

RELU 

(16) 

Dense + 

RELU 

(16) 

Dense + 

RELU (16) 

Dense + 

RELU (16) 

Dense + 

RELU (16) 

Dense + 

RELU (16) 

Dense + 

RELU (16) 

Output Dense + 

Sigmoid 

(1) 

Dense + 

Sigmoid (1) 

Dense + 

Sigmoid 

(1) 

Dense + 

Sigmoid 

(1) 

Dense + 

Sigmoid 

(1) 

Dense + 

Sigmoid (1) 

Dense + 

Sigmoid (1) 

Dense + 

Sigmoid (1) 

Dense + 

Sigmoid (1) 

Dense + 

Sigmoid (1) 
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The following approach was adopted to arrive at a proper CNN architecture for effective 

prediction. Initially, four independent single-layer CNN models (N-1 to N-4), each with 

different activation functions, were developed, as shown in Table 5.1. All of the 

developed CNN models have inputs of sequential models (sequential model is a stack 

of plain layers, each contain one input and one output tensor) (Zhang et al. 2019b) 

(Figure 5.2a). As shown in Figure 5.2a, the output of the independent CNN architecture 

passes through a flattened layer and a fully-connected dense layer with sixteen filters. 

The sigmoid activation function was used in the output layer to classify the CAD and 

normal data. By this stage, the effective activation functions for the next step were 

identified. 

 

Table 5.1 shows the layer-wise details of the output shape with the number of filters 

under one-dimensional data conditions. For example, the output shape of Conv1D + 

ReLU (814, 64) implies 814 numbers of the one-dimensional data flow from a particular 

layer and 64 channel filters to analyze these data to generate the corresponding output. 

The system was trained with 5304 (out of 6630) patients’ data -a single-lead dataset, 

i.e., 80% over -an interval of time, and the data had 815 elements recorded, with respect 

to time. The dataset included all of the features (P, Q, R, S, T, QRS complex, and ST 

segment for training and testing purposes. The convolutional neural network model, 

which is trained for a standard ratio of 80% and 20% for training and testing, was 

validated based on CNN methodology. 

 

Out of the four activation functions, the best two (ReLU and Leaky ReLU) were 

identified in the previous step. The two-layer CNN architecture with different 

combinations of these activation functions was developed (ReLU–ReLU, Leaky ReLU–

Leaky ReLU, Leaky ReLU–ReLU) as shown in Figure 5.2b to obtain the best result. In 

the next step, the three-layer CNN architecture (Figure 5.2c) was developed from the 

knowledge of these results, leading to better results. Overfitting problem was observed 

with a higher number of layers after this and, hence, the three-layer CNN architecture 

(Figure 5.3) was finalized as the best one. 
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Figure  5.2 (a) Single CNN layer, (b) double CNN layer, and (c) triple CNN layer for the single-lead ECG/TMT-ECG 
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Figure 5.3 The proposed CNN architecture for single-lead and multi-lead (twelve lead) ECG/TMT-ECG respectively  
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5.1.2 Multi (12)-Lead ECG/TMT-ECG Based CNN Architecture 

 

ECG machines in general will provide 12-lead ECG/TMT-ECG signals as output, i.e., 

I, II, III, aVR, aVF, aVL, V1, V2, V3, V4, V5, and V6, which correlate to the entire 

behavior of the heart, and each lead has different amplitude curves. The study of 12-

lead ECG signals consists of all 12-lead ECG signal data, which are collected by the 

same procedure as with the single-lead ECG. These are in the form of a one-dimensional 

dataset. The resulting combined 12-lead one-dimensional dataset was used in the 

development of CNN architecture. 

 

Since CNNs perform more effectively on nonlinear datasets (Acharya et al. 2017b), 

similar architectures that are used in single-lead ECG datasets are applied to 12-lead 

ECGs. The defined CNN architecture worked with the input of data gathered from 552 

patients. Here, each sample had 9792 parameters instead of 815 as was the case in 

single-lead architecture as shown in Figure 5.4a, which was recorded over time 

intervals. Based on a standard protocol, 80% of the data were used for training and 20% 

for testing conditions. 

 



98 

 

 

 



99 

 

 

 



100 

 

 

Figure 5.4 (a) Single CNN layer, (b) double CNN layer, and (c) triple CNN layer for the single-lead ECG/TMT-ECG 
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As mentioned in Table 5.2, four different independent single-layer convolutional 

networks were developed, each using different activation functions (ReLU, leaky ReLU, 

SoftMax, and linear, respectively) having a kernel size of 1 and stride of 1. The output 

in each of the CNN models (with a shape of (9791,   64)) was flattened and flown to the 

output layer through a fully-connected dense layer as illustrated in Figure 5.4a. The 

output function defined with a dense layer consisted of the sigmoid activation function 

(Rahhal et al. 2016). The sequential model is considered as input for all of the CNN 

models and the output classifications of these models were carried out through the 

binary classification process. Hence, all of the models were compared using the binary 

cross-entropy loss function (Rajeswari et al. 2012) with the Adam optimizer (The 

Theano Development Team et al. 2016). This process was most suitable to classify the 

data for ‘CAD’ or ‘normal data’. 

 

The same procedure was extended to the two-layer CNN architecture, i.e., the sequential 

model followed by two CNN layers. The first-layer CNN architecture output shape of 

(9791, 64) was input to the second-layer CNN. This two-layer CNN architecture was 

developed using the best two of the effective activation function combinations (Table 

5.2). Its output shape (9790, 32) was flattened (313280) and flown to the final dense 

layer (through a fully-connected layer) with a sigmoid activation function, as illustrated 

in Figure 5.4b. 

 

In the next step, the three-layer CNN architecture was designed based on the knowledge 

gained from the development of the two-layer CNN architecture. The three-layer CNN 

architecture has a sequential model of three CNN layers with output shapes of (9791,   

64), (9790, 32), and (9789, 16), respectively, and with the best combination of two 

activation functions. The flattened output of the last CNN layer was fed to the fully-

connected layer. The final output function consists of a dense layer with a sigmoid 

activation function, with an output of ‘0’ or ‘1’. A value of ‘0’ indicates ‘normal health’ 

with respect to the ECG and a value of ‘1’ indicates the presence of ‘CAD’ (Figure 

5.4c). Since it is a binary classification, the predefined binary cross-entropy loss 

function and Adam optimizer were used to analyze the 12-lead ECG data. To avoid the 

overfitting error and to obtain the best-optimized classification model, all convolutional 
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neural network models (10 networks) were analyzed using a constant number of epoch 

values (25 epochs). The results of these combinational will help to derive an effective 

and suitable CNN system that is valid over both types of datasets (single-lead and multi-

lead datasets) (Figure 5.3). 
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Table 5.2 Detailed CNN architecture for multi (12)-lead ECG with one-convolutional, two-convolutional, and three-convolutional layers, 

respectively 

 
 

Single Layer CNN Two Layer CNN Three Layer CNN 

Network (N) 

N-1 N-2 N-3 N-4 N-5 N-6 N-7 N-8 N-9 N-10 

Input (9792,1) (9792,1) (9792,1) (9792,1) (9792,1) (9792,1) (9792,1) (9792,1) (9792,1) (9792,1) 

Hidden_1 

Layer 

Conv1D 

+ RELU 

(9791,64) 

Conv1D + 

LeakyRELU 

(9791,64) 

Conv1D 

+ 

Softmax 

(9791,64) 

Conv1D 

+ Linear 

(9791,64) 

Conv1D 

+ RELU 

(9791,64) 

Conv1D + 

LeakyRELU 

(9791,64) 

Conv1D + 

LeakyRELU 

(9791,64) 

Conv1D + 

RELU 

(9791,64) 

Conv1D + 

LeakyRELU 

(9791,64) 

Conv1D + 

RELU 

(9791,64) 

Hidden_2 

Layer 

None None None None Conv1D 

+ RELU 

(9790,32) 

Conv1D + 

LeakyRELU 

(9790,32) 

Conv1D + 

RELU 

(9790,32) 

Conv1D + 

RELU 

(9790,32) 

Conv1D + 

RELU 

(9790,32) 

Conv1D + 

LeakyRELU 

(9790,32) 

Hidden_3 

Layer 

None None None None None None None Conv1D + 

LeakyRELU 

(9789,16) 

Conv1D + 

RELU 

(9789,16) 

Conv1D + 

RELU 

(9789,16) 

Flatten [626624] [626624] [626624] [626624] [313280] [313280] [313280] [156624] [156624] [156624] 

Fully 

Connected 

Dense + 

RELU 

(16) 

Dense + 

RELU (16) 

Dense + 

RELU 

(16) 

Dense + 

RELU 

(16) 

Dense + 

RELU 

(16) 

Dense + 

RELU (16) 

Dense + 

RELU (16) 

Dense + 

RELU (16) 

Dense + 

RELU (16) 

Dense + 

RELU (16) 

Output Dense + 

Sigmoid 

(1) 

Dense + 

Sigmoid (1) 

Dense + 

Sigmoid 

(1) 

Dense + 

Sigmoid 

(1) 

Dense + 

Sigmoid 

(1) 

Dense + 

Sigmoid (1) 

Dense + 

Sigmoid (1) 

Dense + 

Sigmoid (1) 

Dense + 

Sigmoid (1) 

Dense + 

Sigmoid (1) 
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5.2 TWO-DIMENSIONAL CAD ECG IMAGE PREDICTION ANALYSIS 

 

A prediction algorithm developed with the help of a deep learning algorithm, to predict 

the CAD disease. Since Convolutional neural networks are more suitable to deal image-

based dataset (two dimensional), a deep learning model is uses convolutional neural 

networks to develop prediction algorithm for ECG and TMT ECG signal images. This 

prediction algorithm is primarily developed in Python utilizing Keras with TensorFlow 

back-end and Sci-Kit learn modules. In comparison to the central processing unit (CPU), 

these algorithms can effectively perform in a Graphical Processing Unit (GPU). Because 

the GPU considerably reduces the image-based (two dimensional) algorithm's 

computation time. The proposed network model (Figure 5.5) is developed with 

accounting twelve lead ECG and TMT ECG signal images (raw and filtered) as well as 

single lead ECG and TMT ECG signal images extracted from the twelve lead signal 

images (raw, filtered).      

 

 

Figure 5.5 Generalized architecture of developed deep neural network for single lead 

and twelve lead ECG/TMT-ECG signal images     

 

The prediction model here includes ECG and TMT ECG signal images of CAD and 

normal patients input. A total of 552 twelve lead signal images and 6,624 extracted 

single lead signal images comprise input. 85% of the total dataset for training, 10% are 

used validation, and 5% are used testing. The classification technique is developed 

based on two concepts: one with a consideration of the raw signal images immediately 

derived from the scanned ECG signal images, and the other one is considered as a 

filtered image, i.e., the preprocessed image. 

 

  



105 

 

5.2.1 Two-dimensional ECG prediction model 

 

Two-dimensional prediction model, here is a deep learning model which is developed 

based on single lead ECG and twelve lead ECG signals. The model which is designed 

for CAD prediction is based on the effective factors that are considered in pre-trained 

models (transfer learned) to improve model accuracy (i.e. include effective depth, 

effective convolutional layer for feature extraction, and effective feature parameter 

selections in layer by layer). Based on this information, the designed architecture uses 

5 convolutional layer blocks (64, 32, 32, 32 and 128 neurons) with a kernel size of 5x5 

along with a ReLU activation function. The output of each convolution layer is 

processed through a max pooling layer with a size of 2x2. The layer-by-layer 

optimization is achieved by avoiding over fitting, with the application of dropout layer 

after the convolution layer and followed by max pooling layer. The flattened output of 

convolutions is considered as input to fully connected layers with 128, 128 and 64 

neurons with in between 10% and 30% dropout respectively (Figure 5.6). 

 

The fully connected layer designed with ReLU activation function is connected to 

output layer which consists of single neuron to represent one of the classes using 

sigmoid activation function. The model architecture was trained using the Adam 

optimizer with a learning rate of 0.001 with consideration of small parameter values 

(batch size = 128, epochs, callbacks, etc.). The developed model architecture is as shown 

in Figure 5.7. The designed model and pre-trained model are supported with two types 

of datasets (with image size 150 x 150 pixels). One is twelve lead dataset which consists 

of 512 patients’ signal image data including normal and CAD patients corresponding to 

state of rest and exercised condition. The other one is similar dataset but it is related to 

single lead data (1 sec durational data) which are in total 6,624 signal images. 

 

The performance of the proposed convolutional based deep neural network is compared 

with pre-trained networks. Pre-trained models use the weights learned from previous 

datasets (ImageNet) to apply on the current data set to achieve the desired accuracy.  

During the development of designed deep neural network condition, weights are 

generated over the dataset which are imported as current data.  The standard protocol of 
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data segregation is considered for both single and multi-lead data, i.e 85% for training, 

10% for validation, and 5% for testing.  

        
  

Figure 5.6 Layer details of deep  

convolutional neural network   Figure 5.7 Developed deep convolutional 

neural network layer wise input and output 

parameter details 
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5.2.2 Transfer Learning approach 

 

Transfer learning algorithm is implemented to analyze the full behavior of cardiac 

disease under single lead and twelve lead conditions for comparative purpose. The 

accuracy and computation loss of the proposed model were compared to a well-known 

pre-trained algorithm (VGG16, MobileNetV2, Inception, ResNet, and EfficientNet) in 

the field of image classification using the transfer learning methods (Figure 5.8). The 

implementation of these pre-trained algorithms with the help of transfer learning method 

for present data are discussed as follows and compared with proposed algorithm.   

 

 

Figure 5.8 Generalized architecture of pre-trained neural network adopted for transfer 

learning approach 

 

5.2.2.1 VGG16 transfer learning 

 

VGG16 is made up of five convolution layer blocks which are then linked to a multi-

layer perceptron (MLP) classifier. The first three convolution layer blocks of VGG16 

are not altered during transfer learning adaptation, as they were previously trained on 

ImageNet dataset. The fourth and fifth block of the convolution are trained based on 

current dataset. This process is known as fine-tuning. This is because, the model 

architecture allows the model to adjust the weights which is more relevant to the current 

dataset. Fourth and fifth layers of the convolutional block are encoded with generic and 

reusable features, whereas the first three layers are encoded with specialized, trained 

dataset features. The weight updates in the fourth and fifth convolutional blocks will 

help to learn the changes of features present in the current dataset.   
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The last convolution block is connected to three layers of a multi-layer perceptron, the 

first two of which are hidden layers and the third one is the output layer. The first two 

hidden layers each have 128, 64 nodes, using a rectified linear unit (ReLU) as the 

activation function. The hidden layers are followed by dropout layer, which removes 

randomly 40% of the parameters. The output layer is made up of a single node with a 

sigmoid activation function that classifies data into any one out of two classes. 

 

The Adam optimizer was used to train the model architecture, with a learning rate of 

0.001. With standard split methodology, all datasets (training, validation, and testing) 

are flowing to model as per defined batch-size. For the lacking performance of the 

validation loss for two consecutive epochs, the model architecture is programmed to 

reduce learning rate by a factor of 0.5, and to cease training the model for future epochs 

if the validation loss does not improve for next 5 epochs. 

 

5.2.2.2 MobileNetV2 transfer learning 

 

During the implementation of the MobileNetV2 model, the classification layer 

parameter is determined by the very last layer before the flattening process. This layer 

response will alter based on changes in upper layer parameter. Since it keeps feature 

parameters related to importance of image rather than the generality features of the 

image, it is not crucial alterable as compared to bottom layer. The frozen convolutional 

layer is considered as a base model used for feature extraction process. These feature 

vector values are converted into actual prediction with application of global average 

pooling method. At the end of the process, this will transform feature vectors into 1280 

element vectors. 

 

Then, to forecast the existence of disease, these vectors are connected to dense layers 

consisting of 512 neurons with ReLU activation function and output layer consisting of 

single neuron with sigmoid activation function respectively. The model's performance 

is assessed by stacking it into a binary cross entropy loss function and an Adam 

optimizer, and the outcomes measured in terms of accuracy and loss function values 

with the help of previously defined trainable parameters and conditions. 
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5.2.2.3 Inception transfer learning 

 

The 42 layers in the Inception model are known to consider this as deeper neural 

network for classification, and the performance of a class in Inception is primarily 

determined by the layer before the flatten layer. The initial learning technique is 

identical to MobileNetV2 and both networks are varied only in terms of considering the 

parameter values. During feature extraction, the weight of the convolution layer is 

frozen and are used to transform into real prediction, with the help of element vector 

(18432) parameter is extracted from the feature vector using global average pooling 

method. These element vectors are connected to output layer consisting of one neuron 

with sigmoid activation function followed by dense layer (512 neurons) having ReLU 

activation function with a 40% dropout. The trainable parameters (batch-size, learning 

rate etc.) considered are the as same as proposed network condition.  

 

5.2.2.4 ResNet transfer learning  

 

The ResNet model is built using dimensional convolutional layers with three different 

types of filters. The first and third filter have 1x1 kernel sizes, while the second filter 

has a 3x3 kernel size. All the three filters have the same stride. The residual blocks have 

three main stages. Except for the first stage, which has a 2x2 maximum pooling layer 

after the initial Conv2d layer, batch normalization is applied between two subsequent 

Conv2d layers having ReLU activation function. Output of each stage is combined with 

original data and is passed through ReLU activation function before moving to next 

stage. 

 

A 2X2 average pooling layer’s output is connected to two dense layers together with 

output of third stage, the first of which has 4096 neurons and the second of which has 

2048 neurons. During transfer learning, another three layers are mounted on ResNet's 

final layer. The first two layers of the three dense layers with 1024 and 512 neurons 

respectively are coupled to the ReLU activation function. The third one in the output 

layer which has single neuron with sigmoid activation function, followed by dropout 

layer of 40%, will helps to identify and classify the disease. To find the optimal model 

during classification, the model performance evaluation is carried out using the Adam 
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optimizer and binary cross entropy loss function with the help of defined trainable 

parameter values considerations. 

 

5.2.2.5 EfficientNet transfer learning 

 

In general, any deep neural network is constructed with the goal of improving model 

performance, which leads to an increase in the number of units or layers. However, this 

method may or may not improve the performance. The EfficientNet aids in the provision 

of an effective compound scaling strategy (which scales all dimensions, i.e., 

depth/width/resolution) for increasing model size in order to obtain maximum accuracy.  

 

The study covers only the optimum method (EfficientNet-B0) and its application to the 

current data. EfficientNet model is a pre-trained model that uses an image with a size of 

(224, 224).  The distribution value of feature in the image are depends on all color 

channels (RGB) which can be avoided by normalizing. The image with dividing 255 

(max pixel value) to each color segment along with pixels resulting rescaled image have 

features in the range of 0 to1. The EfficientNet pre-trained model is originally trained 

with ImageNet. These weights are used in training present data to extract current 

features. Then these features are fed into fully connected layers having 512 neurons with 

ReLU activation function. These are then connected to output layer with one neuron 

having sigmoid activation function to classify the CAD and normal patient ECG’s 

signals. The binary cross entropy loss function and adam optimizers are used to evaluate 

the performance of two classes with the help of standard trainable parameters. 

 

5.3 MULTI-HEADED PREDICTION MODEL 

 

The present chapter focuses on the development of a multi-headed, hybrid input CNN 

model for single-lead ECG classification. The literature (Mahmud et al. 2022) discusses 

utilizing 1D input data to for categorization of disease using a 1D multi-headed model. 

The developed multi-headed CNN model can process hybrid ECG data types 

concurrently, including ECG image data (2D) and time series data (1D). These input 

ECG data correspond to normal & coronary artery disease patients, which are collected 

as scanned signal images. A total of 6624 single-lead ECG readings from 552 people 
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were collected and used as input. The input data are pre-processed in the previous stage 

to obtain noise-free signal images (Figure 5.9). The inputs for the multiheaded hybrid 

CNN model are divided into two categories: one category is one-dimensional time series 

data obtained from corresponding pre-processed image, and the other category is pre-

processed single-lead ECG signal images of one-second duration (amplitude value of 

one second, ie. 815). These data are input into the model in the respective heads and are 

analyzed in parallel to create the prediction model (Multi-headed CNN model) (Figure 

5.10). 

 

The prediction model is concentrated mainly on two concepts, feature extraction and 

classification. Hence the model was built with the help of the convolutional neural 

network (CNN) because CNN is the most popular feature extractor model, but one 

drawback of CNN is that of losing spatial information in the training process. This can 

be compensated by using the Maxpooling layer, which holds only major information 

while training. Hence, it prevents the loss of some valuable feature parameters (Serhani 

et al. 2020; Wang et al. 2020). The dropout layer followed by the Maxpooling layer is 

implemented under necessary conditions to avoid the effect of overfitting problems 

during the training stage. The output of these models is merged and connected to fully 

connected layers to classify signals. 

 

 

Figure 5.9 Pre-processed noise-free ECG/ TMT-ECG signal image extraction for multi-

headed hybrid model 
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Figure 5.10 Generalized architecture of multi-headed hybrid ECG/ TMT-ECG 

prediction model 

 

The multi-headed model is commonly defined as a two or more prediction models 

system processing simultaneously. This type of model is also known as the functional 

model. That models deal with coronary artery disease and normal data, i.e., a person’s 

correlated pre-processed signal images and time series data. The coronary artery disease 

images are labeled as ‘One’ and the normal ones are labeled as ‘Zero’. Hence it is 

evaluated as a binary problem by converting the problem's structure to binary.  

 

The derivation best hybrid multiheaded model to predict coronary artery disease based 

on ECG alone and combined ECG & TMT-ECG data with a consideration of three 

ways,  

1) ECG signal image (2D data) +Extracted ECG time series Data (1D data) 

2) ECG signal image (2D data) + ECG flattened image (1D data) 

3) ECG signal image (2D data) + ECG flattened image in (1D) + ECG 1D time 

series data 

 

All these three combinations rely on two types of datasets – single lead filtered data and 

twelve lead filtered data. The single lead data consist of 3312 ECG signal images and 

3312 TMT ECG signal images. The twelve-lead data consist of 256 ECG signal images 

& 256 TMT ECG signal images. The first analysis is carried out (as discussed above) 

based on the consideration of ECG & ECG +TMT-ECG signal images together with 

corresponding ECG and ECG +TMT- ECG one-dimensional time series data. This 
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study is carried out to identify the behavior of the multiheaded models under ECG alone 

and ECG with TMT-ECG data condition. This will help to identify the importance of 

the requirement of ECG and TMT- ECG in order to rectify the disease. The 

methodology also helps to study the behaviour of the multiheaded models under 

different data conditions. The different combinations of data being tried out here are:  

Single lead ECG, Single lead ECG + TMT-ECG, twelve lead ECG, twelve lead ECG 

+ TMT-ECG.  

 

Of the three conditions listed above, the first two corresponds to Two headed prediction 

model (Figure 5.11 and 5.12) and the last one will act as a three-headed model (Figure 

5.13) with consideration of all types of data.  

 

In development of first hybrid multiheaded model, the input of the pre-processed ECG 

signal images is scaled and transferred to feature extraction (encoded features of image) 

using a convolution neural network. The 2D convolution neural network (conv2D) with 

6 layers is used as a feature extractor from input ECG signal images. Out of the six 

conv2D layers, every even layer is coupled to the Maxpooling and dropout layers. These 

convolutional layers extract the features of the ECG signal image. These convolution 

layers are made up of 32, 32, 64, 64, 128 and 128 filters, respectively. These 

convolutional layers are activated using the kernel size (2,2) & Rectified linear unit 

(ReLu) activation function. The encoded output of these convolutional layers is 

flattened and connected to fully connected layers with a filter size of 128, and 32 

respectively having a ReLu activation function. The output parameters of these fully 

connected layers are combined with feature parameters obtained from a 1-dimensional 

convolutional network-based second functional head of the prediction model. Since the 

one-dimensional time series ECG data is used as input to the second head, extraction of 

features is done easily using a one-dimensional convolutional network (Conv1D). These 

features are extracted from 1-dimensional data using six conv1d layers.  

 

Since convolution loses the important feature parameters, the max-pooling layers 

together with Conv1D are used to retain important features. The dropout layer is 

followed by the max-pooling layer to reduce the overfitting error. These Conv1D layers 

with filter dimensions of 32, 32, 64, 64, 128 and 128 are activated using the ReLu 
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activation function and a kernel size of 2, respectively. Convolutional layer output is 

flattened and coupled to three fully connected layers with filters of 256, and 128 

correspondingly. These layers are triggered with the ReLU activation function and the 

overfitting of results is controlled with the dropout layer. In order to connect the final 

output layer for classification, the output features of the fully connected layer are 

concatenated with the output features of the final layer of the first functional prediction 

model. The final output layer has a single filter with a sigmoidal activation function 

that indicates whether the findings belong to 1 (CAD) or 0 since the analysis is 

considered as a binary classification. The flow of the process is indicated in the Figure 

5.11. The binary cross-entropy loss function and Adam optimizer are used to effectively 

categorize the outcomes of concatenated two sub-models. This analysis is carried out 

with consideration of the initial call-back function, i.e. reducing learning rate 

(lr.0.0001). If validation loss doesn’t improve in five successful epochs, the best model 

is saved in terms of validation loss and with early stop condition, iteration is stopped. 

 

The developed prediction model is also examined using the CAD data set obtained from 

the repository (Physio net dataset). These 1D time series data sets were collected from 

40 healthy participants and 7 patients with CAD. As explained in the data preparation, 

two-dimensional images are created from these one-dimensional data types, due to the 

requirement of one-dimensional and two-dimensional data types as input to the 

multiheaded model. The initial pre-processing stage is bypassed since the two-

dimensional data ECG image of a single lead is created using the one-dimensional time 

series noise-free data that has already been recorded. 

 

Under the current input conditions, the same multiheaded prediction model architecture 

is taken into account. This analysis is mainly carried out to find the behavior of the 

model under generalization conditions. The multiheaded hybrid prediction model has 2 

types of input, the first one being the two-dimensional single lead signal image which 

is constructed from physio net data, and another one being the one-dimensional time 

series dataset of the corresponding single lead signal image which is provided in the 

parallel head. A prediction model was created by using 810 samples as input (where 360 

are related to CAD  and the remaining 450 are related to NOCAD), apportioning 85% 
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for training, 5% for validation, and 10% for testing. The model architecture, activation 

function, and hyper-parameters remain the same like in the earlier study. The trained 

multiheaded model with the Physio net dataset is also validated by adopting 10 fold 

cross-validation function. This helps to find a state of generalized model for the 

prediction of coronary artery diseases. Hence, model will capable analyzing any type of 

ECG signal image which are related to coronary artery disease classification.  

 

The prediction algorithm model discussed above with the combination of ECG or ECG 

& TMT ECG’s image and one-dimensional time series data is maintained same further 

all the three data type conditions. i.e model architecture which is mentioned in ECG / 

TMT-ECG data analysis is unaltered to remaining data type conditions. The condition 

maintained over above model are unaltered during analysis of other two multi headed 

models. This will help to maintain uniformity during the analysis of the model under 

all four types of data conditions over different networks. 
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Figure 5.11 Multi headed deep neural network model architecture for (a) ECG signal 

image (2D data) +Extracted ECG time series Data (1D data) (b) ECG signal image (2D 

data) + ECG flattened image (1D data) 
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Figure 5.12 Multi headed deep neural network model architecture for ECG signal 

image (2D data) + ECG flattened image (1D data) 
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Figure 5.13 Multi headed deep neural network model architecture for ECG signal 

image (2D data) + ECG flattened image in (1D) + ECG 1D time series data 
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Figure 5.12 shows the methodology of data flow during the second multi headed 

algorithm which deals input with ECG signal image (2D image Data) and ECG 

flattened image (one-dimentional image data) in corresponding heads of the 

multiheaded model. As explained in the first multi headed algorithm, the model has two 

headed which are handled with two different types of data & data feature handling 

algorithms. The end results of these are concatenated and connected to a fully connected 

& output layer to obtain the desired output. Here the one head of multiheaded algorithm 

input with ECG or ECG & TMT-ECG image (2D data) will be processed the same as 

explained in the first algorithm.  

 

Another corresponding head which deals with the same ECG image type which is used 

in the previous head, but instead of extracting a feature of ECG. The image is flattened 

with the help of a flattening layer and imported to the model. This will helps to convert 

the two-dimensional image to a single dimensional image data and these data are fed to 

the fully connected network to study end-to-end features. These fully connected layers 

are made up of 16, 64, 256, & 32 filters respectively. The major unwanted features 

which effecting the output of the model is removed with the help of the dropout layer, 

which is inserted after 256 filtered layers. The resulting output parameters which are 

obtained over both heads are concatenated and connected to the output layer with a 

filter size of one. This will help to collect important information from both heads, which 

treat data in different ways and are combined to make end accuracy results 

improvement. Which may further optimize by using three headed model.  

 

The third multi headed algorithm is one of the additional approaches which is 

considered. This is also a multi-headed model which deals with all the conditions 

discussed earlier in simultaneously. Unlike the previous two approaches of CAD, the 

prediction algorithm deals with all three conditions of data handling in three 

corresponding heads. The study investigates the behaviour of the model over different 

types of data parallelly. The study is conducted over both types of data, that is single 

lead and twelve lead with consideration of ECG or ECG& TMT-ECG signals. This 

multiheaded model has three heads to deal with three different data types. The 

algorithm used for these three data types is similar to the algorithm which is used for 
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the two-headed model. This will helps to study uniformity related to the particular data 

handling method validation approach. 

 

In the three-headed model (Figure 5.13), the first head of the algorithm deals with two-

dimensional ECG image data. Another parallel head which handles 1D ECG time series 

data is input to the one-dimensional convolution network. It also combines results of 

the third head which is processed through flattened image analysis. The result of all 

these three heads is concatenated to combine all feature parameters and passed through 

the output layer to classify the disease.  

 

The adoption of all three types of hybrid prediction models is focused on all the 

datatypes which include both single lead and multi-lead with ECG alone and combined 

ECG and TMT-ECG data, results are compared and stated in the results and discussion 

section. Based on these results best suitable hybrid algorithm is adopted. The following 

section is discussed about the detailed explanation related to results of one-dimensional 

datasets, two-dimensional dataset and multiheaded models for the all types of datasets 

(i.e. small, large). 
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CHAPTER 6 

RESULTS AND DISCUSSIONS 

 

As already mentioned earlier, the development of AI system is carried out in two phases. 

In the first phase, an AI system is implemented for classifying symptomatic fever based 

on time dependent data. Based on the success of this AI system, a full-fledged AI based 

diagnostic prediction model for ECG analysis is implemented in the second phase. 

 

6.1 FEVER SYMPTOMATIC DISEASE PREDICTION SYSTEM 

 

The fever symptomatic disease prediction system was developed under MATLAB 

neural net pattern recognition environment based on the analysis of 24 hours of 

temperature data. The network was finalized for the least value of error at the end of 

training and validation. During this stage, results of several parameters like confusion 

plot, performance plot, and error histogram were taken into consideration. The 

confusion plot defines the relation between the output of trained network values and 

predetermined target values. The first four rows, columns of Table 6.1a - Table 6.1d 

represent the four types of disease which were initially defined. The final row and 

column define the percentage of correctness in identification. Diagonal values in the 

matrix define the number of patients suffering from the pre-defined disease of a 

particular category identified by the row number in the matrix.  

 

Table 6.1a refers to the training performance of the given dataset for four types of 

diseases. This trained network was initially validated (Table 6.1b) and tested (Table 

6.1c) through the initially defined percentage of the dataset from an overall data set. The 

acceptability of the results was verified by the overall Table 6.1d. The combination of 

the all three processes is defined in this overall Table. The bottom-right corner cell of 

this Table represents the overall accuracy of the trained network. A total of 99% 

accuracy was obtained from the trained network in predicting disease. 
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Table 6.1 Confusion matrix of 24-hour temperature prediction model during (a) 

training, (b) validation, (c) testing, and (d) overall, respectively [Note: Row ‘1’ 

represents Tuberculosis, Row ‘2’ represents Non-Tuberculosis, Row ‘3’ represents 

Dengue fever and Row ‘4’ represents Non-infectious disease] 

 

       
 

 

The plotting of Receiver Operating Characteristics (ROC) (Azar and El-Metwally 2013; 

Vijayashree and Sultana 2018) is a technique to visualize, organize and classify diseases 

based on the performance of data. It represents the specificity and sensitivity of the data. 

In the ROC curve represented in Figure 6.1, the curve tends to the left and top edges of 

the plot indicating better classification. ROC graphs are commonly used in medical 

decision-making.  
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Figure 6.1 ROC plot of 24-hour temperature prediction model during overall condition  

 

Figure 6.2. Represents the performance plot of the trained network, defining the nature 

of error reduction. Generally, the errors reduce after several epochs (46 epochs) of 

training. An increasing trend of the validation plot signifies the onset of overfitting. 

 

 

 

Figure 6.2 Performance plot of 24-hour temperature prediction model 
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Figure 6.3 Error histogram plot of 24-hour temperature prediction model 

 

Because of the default setting, the training process is shut down once six consecutive 

increases in the validation error are observed. The epoch with the lowest validation error 

indicates good performance as shown in Figure 6.3. Frequency histogram of error 

distribution (Jacobé de Naurois et al. 2019) (Figure 6.3) also represents the error 

variations between target (real) values and predicted (estimated) values in a better way. 

99% of training errors are below 0.1, and validation and testing errors are below 1, 

resulting in good prediction. 

 

Matlab mainly deals with support vector machine classifiers. Hence to understand the 

behavior of all classifiers over a defined data, it is further analyzed with major 

generative and discriminative classifiers with the application of machine learning 

technique using Python workbench (Jupiter Notebook). For most of the practical data, 

discriminative classifiers (kNN and decision tree) have shown better accuracy than the 

generative classifier. Learning the parameters of a prediction function for a data set and 

testing it on the same data is a methodological mistake.  The model would just try to 

repeat labels of sample data, which automatically results in a perfect score. But it will 

fail to predict anything useful on untried data, where the situation is called overfitting. 

To avoid this, evaluating estimator performance (cross-validation) is a common practice 

while performing supervised machine learning, by using a part of the test data set.      
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Table 6.2 Comparison of results between discriminative type classifier and generative 

type classifier-based model  

 

Approached Model 

 

 

Accuracy Score 

 

        Error 

 

F1-Score 

 

Logistic Regression 0.2461 0.7539 (75.3%) 0.2 

Decision Tree 

Classifier 

0.996 0.0051 (0.5%) 1 

K-Neighbors 

Classifier 

0.79 0.21(21%) 0.78 

Linear Discriminant 

Analysis 

0.281 0.719 (71.9%) 0.3 

Gaussian Naive 

Bayes classifier 

0.3007 0.6993 

(69.93%) 

0.28 

Support Vector 

Machine 

0.366 0.6464 (0.67%) 0.39 

 

Table 6.2 explains the classification prediction in terms of ‘Medically classified’ and 

‘Model predicted’ for the total number of four disease cases among classifiers such as 

logistic regression, decision tree classifier, k-nearest neighbors classifier, linear 

decrement analysis, Gaussian Naive Bayes and Support Vector Machine.  

 

From the Table 6.2, it is observed that the results of the decision tree model provide the 

best behavior for such type of data. In addition to the accuracy score of all the models, 

F1 score provides proof of the suitability of the model. The weighted average of 

precision (Figure 6.4a) and recall (Figure 6.4b) is known as F1 score (equation 6.1). It 

takes both false negative and false positive data into account. In case of an uneven class 

of distribution, F1 score will be more accountable when compared to the accuracy score. 

F1 score is calculated as,  

 

𝐹1 𝑆𝑐𝑜𝑟𝑒 =  
2×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×𝑅𝑒𝑐𝑎𝑙𝑙

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙)
      (6.1) 

 

Models which have good precision value and recall ability will end with better results 

of F1 score. Results of other models have failed to provide good results of data 

prediction due to lack of common pattern behavior, dissimilarity in nature and absence 

of preprocessing methods to improve the accuracy of the model. These abnormal 
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behavioral data are predicted in a better way in case of discriminative classifiers (Zhang 

et al. 2019a). 

 

    

 

Figure 6.4 (a) Precision score and (b) Recall ability of diseases with different classifier 

conditions. 

 

The accuracy of results varies based on the training methods adopted by the classifier. 

The errors depend on this variation and F1 score. The accuracy value (close to 1) defines 

the best-suited method for these types of data (Table 6.2). Upon observation of the above 

comparison results, the decision tree classifier (Azar & El-Metwally, 2013) and kNN 

provided good classification accuracy and F1 score results. 

 

Two sets of confusion matrix have been constructed using the kNN as well as decision 

tree classifier results. The category specific data distribution in the confusion matrix 

cells gives an indication of the accuracy of the model. Overall percentage (Table 6.3) is 

obtained by summing the diagonal cell values of the confusion matrix. The excellent 

model will have distribution of prediction values in the diagonal matrix only. If it does 

not show a diagonal matrix, then it is an indication of the error quantity. This may be 

due to improper handling of equipment (temperature measurement), improper 

observation, error due to wrong labeling, etc… 
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Table 6.3a Confusion matrix results for best classifier algorithm. 

 k- Nearest 

neighbor 

Algorithm 

(%) 

Decision Tree 

Algorithm 

(%) 

Training 82% 100% 

Validation 79% 100% 

Testing 77% 99% 

Overall 79% 99.6% 

 

 

As can be seen above, kNN and decision tree classifier provided significantly very good 

results. Model from the decision tree classifier is saved for future, for a similar type of 

data prediction application. Classification metrics of decision tree classifier is showed 

in the table 6.3b. By saving these trained models for the future, need for further training 

is avoided. 

 

Table 6.3b Confusion matrix of Decision tree model 

 
 

6.2 REFINEMENT OF FEVER PREDICTION SYSTEM 

 

Continuous collection of patient data for 24 hours is a tedious process. To overcome this 

problem, short-duration data are considered for the same algorithms. Short-duration data 
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sets are formed based on the method of splitting. Analysis is done with and without 

additional features. The additional features considered for refinement are ESR 

(Erythrocyte sedimentation rate), WBC (White blood cell count), Neutrophils, 

Basophils, Eosinophils, Monocytes, Lymphocytes, Platelets, Age, Body mass index 

(BMI), Spontaneous bacterial peritonitis (SBP), Diastolic blood pressure (DBP) and 

Pulse. 

 

Specifically, the two conditions are: 

 (i) Diagnostic prediction system with temperature data alone 

 (ii) Diagnostic prediction system with temperature data and additional features.  

 

 

6.2.1 Diagnostic prediction system with temperature data alone 

 

Prediction system is developed based on temperature data of the patient. Prediction 

system training and testing are fully on the single data set called temperature data. The 

model is tried out for 30min and 60min of temperature data, for final comparison with 

the 24 hours data-based model.  30 minutes and 60 minutes data of 103 patients results 

in a total of 4944 and 2472 sets of data respectively.  

 

Case-1: In this case, a system with 30min data with one-minute interval from 103 

patients has been developed. Out of 4944 data sets, 20% data is selected for testing (i.e 

989 sample data sets collected each having 30 minutes of temperature variation 

information). Out of this, 132 were cases of Dengue fever, 273 belong to Non-infectious 

diseases, and 314 correspond to non-tubercular bacterial infection and the remaining 

270 belong to Tuberculosis. For most of the practical unsymmetrical data, 

discriminative classifiers (kNN, decision tree) have shown better results than the 

generative classifier. Based on the literature, major types of discriminative classifiers 

with one generative classifier have been considered for study. 

 

Accuracy is defined based on the required output for the predefined model. The 

confusion matrix is defined for the entire model to understand the behavior of the model. 

The comparisons of the above-mentioned algorithms are initially made based on the 
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accuracy score of the model (Table 6.4). The best-suited model for initial data is then 

taken into account for further processing on the classification of diseases.  

 

In addition to the accuracy score of all the models, the F1 score will provide proof of 

the suitability of the model. F1 score results varied based on the training methods for all 

the classifiers. The F1 score value (close to 1) defines the best-suited method for these 

types of data (Figure 6.4). Upon observation of the above comparison results, decision 

tree and kNN classifiers provided good classification accuracy and F1 score (Figure 

6.5), with the consideration of additional features.  

 

Table 6.4 Accuracy Score obtained for all the classifiers under all four prediction system 

categories. 

 

 

 

Results of other models have failed to provide good results in prediction due to lack of 

common pattern behavior, dissimilarity in nature, insufficient features, and no 

preprocessing methods which are adopted to improve the accuracy of the model. These 

abnormal behavioral data are predicted in a better way in the case of discriminative 

classifiers. 
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Case-2: In this case, a system with data for a duration of 60min with one-minute interval 

for 103 number of patients has been developed. Out of 2472 data sets, 20% data is 

selected for testing (i.e 495 sample data sets collected each having 60 minutes of 

temperature variation information). Out of this, 69 were cases of Dengue fever, 126 

belong to Non-infectious diseases, and 159 correspond to Non-tubercular bacterial 

infection and the remaining 141 belong to Tuberculosis. Even in this case, 

discriminative classifiers (kNN, decision tree) have shown better results than the 

generative classifier. The accuracy score of different classifiers is as listed in the Table 

6.4. To improve the accuracy of prediction, the dataset is enriched with a set of 

additional parameters corroborating the temperature data.  

 

 
 

Figure 6.5 Evaluation of F1 scores for Dengue fever, Non-infectious diseases, Non-

tubercular bacterial infection, and tuberculosis disease under the different prediction 

systems.  

 

6.2.2 Diagnostic Prediction System with Temperature Data and Additional 

Features 

 

As observed from Table 6.4, the single parameter dependent prediction system has not 

yielded accurate results for most of the cases in testing. Accuracy drops (around 28% 
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under 30min data with decision tree classifier and around 27% under 60min data with 

decision tree classifier) with untried data indicates the data samples used for training are 

not sufficient to make a proper classification, thus hampering the ethical standards. An 

error occurred in a defined system is reduced by either increasing the data set quantity 

or consideration of known compulsory medical test details as additional features. Added 

additional features are helping the system to learn effectively and accurately predict for 

unseen data with trained experience. Additional features which are considered for 

refinement of the temperature prediction system are ESR (Erythrocyte sedimentation 

rate), WBC (White blood cell count), Neutrophils, Basophils, Eosinophils, Monocytes, 

Lymphocytes, Platelets, Age, BMI, SBP, DBP, Pulse. A combination of additional 

features and temperature data is good enough to produce better results under training 

and implementation over unseen data. 

 

Table 6.5 Confusion Matrix of Decision Tree (CART), kNN and Support vector 

machine for Dengue fever, Non-infectious diseases, Non-tubercular bacterial infection, 

and tuberculosis disease under thirty minutes with additional features. 

 

  

 

Results of the trained system with additional features vastly improves the results of all 

the classifiers. Results are improved due to higher volume of information during training 
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like unique features in addition to previous temperature data. In both the cases (30min 

and 60 min) as listed in the Table 6.4, major classifiers show 100% accuracy in 

prediction. Prediction systems developed based on these classifiers are also showing a 

good fit for unseen data classification. 

 

Table 6.6 Behavior of kNN and CART-based prediction system over unseen data with 

consideration of additional features.  

   

 

 

Here, in the training phase the decision tree, kNN and SVM are showing 100% result. 

But, SVM classifier consumes more time for training in both the cases and achieved 

zero F1 score for dengue in case of only temperature parameter. Hence SVM classifier 

is discarded. Remaining methods (kNN, CART) show similar good results and hence 

considered for future study of testing. Data classification represented in confusion 

matrix for both of these cases for 30min and 60min duration, with additional features is 

showing 100% result (Table 6.4). But during testing, 30min data with additional features 

shows better results (Table 6.6) when compared with 60min data with additional 

features. 
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The confusion matrix (Table 6.5) shows the classification of undifferentiated fevers 

under kNN and Decision Tree (CART) prediction classifier for 30min duration with 

additional features. Implementation results reveal how well the models perform with 

respect to unseen data. Unseen data classification accuracy is found to be about 97% 

(Table 6.6) for the decision tree classifier trained for 30-minute temperature data with 

additional features namely ESR (Erythrocyte sedimentation rate), WBC (White blood 

cell count), Neutrophils, Basophils, Eosinophils, Monocytes, Lymphocytes, Platelets, 

Age, BMI, SBP, DBP, Pulse. 

 

6.3 ONE DIMENSIONAL DATA BASED AI SYSTEM FOR LARGE DATA 

HANDLING 

 

Once the fever classification system has been successfully developed based on AI 

techniques, investigation is carried out on coronary artery disease for the purpose of 

developing a reliable and accurate diagnostic prediction model, where the data size is 

huge. This data is extracted from the ECG graphs of more than 500 patients. 

 

6.3.1 Correlation study on ECG signals 

The signal data of 552 patients are considered as input to the digitization procedure with 

a sampling rate of 700 over a single lead. To validate these results, randomly selected 

100 patient samples are considered. The combined study of Pearson’s correlation 

coefficient and least square fit analysis is carried out, with the original data extracted 

from the manual method as the reference data. The results of the mean (mean ∆) and 

median (median ∆) of the sample by sample difference (derived ECG minus original 

ECG) of a single lead of 100 samples are presented in Table 6.7. It is observed from the 

Table that the mean difference (mean ∆) and maximum value (∆) difference are very 

less and the other two are comparatively better than the IM2GRAPH method (Siegel et 

al. 2016). The obtained data of both methods are further compared with the results of 

the manual data extraction method, based on protocols established by healthcare experts 

and the WebPlotDigitizer tool (Figure 6.6 and Figure 6.7). The correlation between the 

data extracted from the present method, software tool, and manual method is as shown 

in Figure 6.8.  Results show a good fit and good correlation between the developed 

method and original data in terms of mean, standard deviation, and maximum values. 
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The efficiency of correlation between IM2GRAPH data results and original data drops 

is due to the failure of the software to extract the data if there is a small discontinuity 

present in the TMT-ECG graph. 

 

(a)Normal condition 

 

 

         

   

 

 

Figure 6.6 Comparison ECG plot obtained different methods for all limb leads (I, II, 

III), augmented leads (aVR, aVL, aVF) and Precordial leads (V1, V2, V3, V4, V5, V6) 

 

 

 

(b) Stressed condition: 
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Figure 6.7 Comparison Stressed ECG (TMT-ECG) plot obtained different methods for 

all limb leads (I, II, III), augmented leads (aVR, aVL, aVF) and Precordial leads (V1, 

V2, V3, V4, V5, V6) 

 

 

MANUAL IM2GRAPH

OURS

Stressed ECG aVR

MANUAL IM2GRAPH

OURS

Stressed ECG V1
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(a) 

 

(b) 

 

Figure 6.8 Comparison (a) data flow and (b) data distribution for all the three types of 

data extraction method 
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Table 6.7 Correlational results of the developed method and IM2GRAPH method with 

respect to original data 

 

Extracted 

data vs 

original 

data 

Mean (∆) Median (∆) Correlation (∆) 

Proposed IM2GRAPH Proposed IM2GRAPH Proposed IM2GRAPH 

Mean -0.0311 -0.0628 0.02102 0.06902 0.98 0.92 

Standard 

Deviation 

0.02423 0.06456 0.03541 0.1243 0.9 0.66 

Minimum -0.06378 -0.1048 0.06784 0.1676 0.89 0.86 

Maximum 0.02785 0.2014 0.02516 0.3447 0.97 0.91 

 

The developed system plays major role in the case of TMT-ECG data extraction due to 

its uniqueness of (i) no requirement of the definition of graph axis for data extraction 

(ii) Compensation for small data discontinuity in the graph with its data learning 

algorithm. Very close pattern-matching proved that data extracted through the image 

process showed good behavior when compared with the original graph (some example 

Figures of comparison is as showed in Figure 6.6 and 6.7, which explain cases of both 

the condition normal and stressed with all three types of leads i.e. limb, augmented and 

precordial). The observed error is very less.  Hence, the method which is adopted for 

data extraction is considered as one of the best methods and these extracted data further 

flow to the algorithm as features for the prediction of ECG/TMT-ECG. Based on these 

algorithms, decision can be taken whether the patent suffers from CAD (coronary artery 

disease) or not. 

 

The results are also validated by adopting the proposed method of data extraction to the 

public domain data PhysioNet 2017 inbuilt in the Matlab interface (Baydoun et al. 2019; 

Clifford et al. 2017). The data extraction is studied on two concepts, one based on single-

lead correlation and the other one based on the multi-lead concept. The digital image of 

this public domain dataset is shown in Figure 6.9c. Figure 6.9a shows an area of interest 

selected from Figure 6.9c, for applying the developed method to extract data. The 

correlation of data points of PhysioNet and extracted data set for a single lead are as 
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shown in Figure 6.9b. The correlation of data points of PhysioNet and extracted data set 

for repetitive-lead ECG is as shown in Figure 6.9c. Here, repetitive lead refers to a 

continuous sequence of leads for a wider duration of time. 

 

                                  

                            (a)                                                  (b)                 

                  

 

 (c) 

 

Figure 6.9 (a) Plot of Area of interest selected from Physio-net data set, (b) Comparison 

plot of extracted result and original data related to area of interest, (c) Comparison plot 

of extracted result and original data for large data.  

 

During extraction of features, initially features are extracted through time interval basis 

and to achieve this, input is obtained through field experts. These results are compared 

with derived results to find the correlation.  
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Figure 6.10 Comparison of features of the ECG sample and digitized ECG for the 

sample data. 

 

Moreover, Pearson’s correlation coefficient (Schober et al. 2018) was also adopted to 

find the similarity between normalized original features of data and extracted data 

features for the selected leads. These were one-dimensional datasets, such as in the 

earlier case. The result of the averaged correlation was found to be 93.6%. Thus, the 

developed prediction model for CAD incorporated a better approach for feature 

extraction in terms of PQRST and data extraction from the ECG signals as shown in 

Figure 6.10 and Table 6.9. 

 

The hybrid method of feature parameter extraction (Pan-Tompkins, slope-based and 

statistical method) is more effective. This method is evaluated based on feature 

parameters obtained for the same hundred samples utilized in data extraction, with the 

help of health care experts. The resultant values of feature parameters for Figure 6.11 

are presented in Table 6.8. 

 

Table 6.8 Feature parameter of Extracted data and Manual data for single lead TMT-

ECG. 

 

Features Amplitude Values(mV) 

(Present Method) 

Amplitude Values(mV) 

(Manual Method) 

P 0.01271 0.01 

Q -0.02542 -0.025 

R 0.42487 0.42 

S -0.11015 -0.12 

T 0.02118 0.02 
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Table 6.9 Correlation of feature parameter values of hybrid method. 

 

 

 
 

Figure 6.11 Extracted feature data of TMT-ECG 

 

Table 6.9 shows the average of mean, standard deviation, and correlation values of 

feature parameters i.e. of P, Q, R, S, T, and segmentation values (PR, QRS, ST) of 100 

samples. The results are analyzed using Pearson’s correlation coefficient method. Table 

6.9, shows the good correlation values between the proposed method of feature 

parameter and the original feature parameter. This proves the effectiveness of the 

proposed method to extract feature parameters. The resulting values of feature 

parameters with respect to isoelectric reference line of a single lead which is considered 

as an example are shown in Figure 6.11 and Table 6.8. 

 

There are a good number of studies of the ECG data and feature parameter value 

extractions (Baydoun et al. 2019; Ravichandran et al. 2013; Sassi et al. 2017), which 

Feature Parameter Mean Standard Deviation Correlation Value 

P value (mV) 0.0124 0.0568 0.872 

Q value (mV) -0.1542 0.0244 0.935 

R value (mV) 2.8767 0.2213 0.981 

S value (mV) -0.1121 0.0322 0.913 

T value (mV) 0.06218 0.0483 0.898 

PR interval (ms) 0.1385 0.0255 0.946 

QRS interval (ms) 0.8643 0.1224 0.988 

ST interval (ms) 0.03792 0.0268 0.958 



141 

 

show similar results. Similar validation has been done by one of the studies (Baydoun 

et al. 2019) using the same Physionet dataset. But the limitation of the study by Baydoun 

is that it is applicable only if the single lead exists on the particular row of the voltage 

(mV) vs Time (ms) graph and this limitation is easily overcome with the proposed 

method with improvement results as shown in Table 6.10.  

 

Table 6.10 Correlation coefficient values of developed method for physio-net data and 

results developed by Baydoun.  

 

Feature Parameter 

of Physio-net dataset 

Correlation Value 

Proposed method Results of (Baydoun et 

al. 2019) 

Overall data 0.975 0.952 

P value (mV) 0.847 0.833 

Q value (mV) 0.953 0.927 

R value (mV) 0.982 0.838 

S value (mV) 0.893 0.822 

T value (mV) 0.918 0.781 

PR interval (ms) 0.986 0.984 

QRS interval (ms) 0.981 1 

 

As observed by the literature survey, few studies (Badilini et al. 2005; Ravichandran et 

al. 2013; Sassi et al. 2017; Virgin and Baskar 2018) have been done on data and feature 

extraction for ECG graphs but the results are lagging in accuracy. The current study has 

focused on a limited region of the graph (area of interest) with a large sampling size that 

helps to improve the accuracy of the method over other methods. In the present study, 

the correlation accuracy of data extraction is about 98% (based on repository data) and 

which is better than other methods. 

 

The limited area of interest for high accuracy is one of the drawbacks to the study for 

consideration of large-size ECG images.  Large-sized ECG images may consume more 

time for long durational ECG data extraction, with a high sampling rate. But it can be 
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fine-tuned by the end user for desired accuracy by proper customization. Since the 

present system has been developed on Matlab and Python platform, the same can be 

accessed for use by other users also. The current method will be more helpful, since it 

is adaptable for all types of ECG and TMTECG graph images because it is developed 

and validated with all 12 leads of 552 patients’ data. Therefore, the application of this 

data extraction tool will be more powerful to develop a good intelligent system based 

on ECG and TMTECG data. This may act as an assisting tool for healthcare experts and 

doctors to predict disease based on ECG and TMTECG very effectively. 

  

6.3.2 Performance metrics evaluation of one-dimensional data analysis 

 

The convolutional neural network (CNN) is an extended part of artificial neural 

networks (ANN) and machine learning. Which is more helpful over image recognition 

and classification tasks. Usually, convolutions are the process helps to represent the 

images as a combination of numbers and identify the key features within the image. The 

convolution networks are also applicable for one-dimensional dataset, this is one of the 

advantages over other networks (i.e. applicable to both one-dimensional and two-

dimensional data). These importance leads to selection of convolutional neural networks 

over analysis of ECG/ TMT-ECG datasets. 

 

The CNN model over this application was developed on a system that was configured 

with the AMD Ryzen processor consisting of SSD and 24 GB RAM with a 2GB 

graphics card (Cireşan et al. 2011; Tripathy et al. 2017). The training algorithm ran with 

TensorFlow and Keras backend (Abadi et al. 2016; The Theano Development Team et 

al. 2016). Each epoch approximately took an average of 5 to 10 s. Tables 6.11 and 6.12 

show the results of the single-lead and multi-lead ECG/TMT-ECG for the single-, two-

, and three-layer convolutional neural networks, respectively (precision, recall, F1-

score, accuracy, and validation loss), depending on the classification of CAD and 

normal ECG segments based on the single-lead ECG and 12-lead ECG data (one-

dimensional). In Tables 6.11 and 6.12, one could see that very high diagnostic accuracy 

was obtained with a defined number of training samples. 
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Table 6.11 Results of the single-lead ECG for the single-, two-, and three-convolutional layer networks. 

 

 Single-Layer CNN Two-Layer CNN Three-Layer CNN 

 Network (N) 

 N-1 N-2 N-3 N-4 N-5 N-6 N-7 N-8 N-9 N-10 

Precision 72.50% 84% 32% 97% 97.50% 98% 99% 100% 96.50% 99% 

Recall 74.50% 81.50% 50% 95.50% 98% 98% 99% 99% 98% 99% 

F1-Score 72.50% 82% 39% 96% 97.50% 97.50% 98% 100% 97.50% 99% 

Accuracy 73% 84% 64% 96% 98% 98% 99% 100% 97% 100% 

Validation Loss. 0.4825 0.37 0.65 0.1269 0.0773 0.069 0.022 0.00075 0.0098 0.00412 

               *N= Network 
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Table 6.12 Results of the multi (12)-lead ECG for the single-, two-, and three-convolutional layer networks. 

 

 Single-Layer CNN Two-Layer CNN Three-Layer CNN 

 Network (N) 

 N-1 N-2 N-3 N-4 N-5 N-6 N-7 N-8 N-9 N-10 

Precision 29.50% 98% 29.50% 97% 29.50% 97.00% 98% 99% 99% 99% 

Recall 50.00% 97.50% 50.00% 96.50% 50.00% 97.50% 97% 99% 99% 99% 

F1-Score 37.00% 96.50% 37.00% 97% 37.00% 96.50% 97% 100% 100% 100% 

Accuracy 59% 98% 59% 97% 59% 97% 98.30% 99% 99% 99% 

Validation 

Loss 

0.68 0.054 0.6878 0.079 0.68 0.052 0.025 0.00022 0.00017 0.00028 

*N= Network 
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The data were of two types (i) single-lead signal and (ii) 12-lead signal data. These data 

were used for system training; the detailed evaluation (Sedghamiz 2014) of the model 

was performed based on testing and validation data using a standard protocol. The 

commonly used performance metrics were accuracy (equation 6.2), sensitivity (equation 

6.3), f1 score (equation 6.1), specificity (equation 6.4), and precision (equation 6.5). 

(Liang et al. 2020; Ribeiro et al. 2020) 

 

Accuracy = 
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
             

 

(6.2) 

Sensitivity/Recall = 
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
                             

 

(6.3) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = 
𝑇𝑁

𝐹𝑃 + 𝑇𝑁
                              

 

(6.4) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
                                (6.5) 

 

These are related to the true positive (TP), true negative (TN), false positive (FP), and 

false negative (FN) rates of the confusion matrix (Figures 6.13 and 6.14). 
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Table 6.13 Confusion matrix of developed model for the single-lead ECG. 

 

      

 

     Table 6.14 Confusion matrix of developed model for the 12-lead ECG. 
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6.3.3 Identification of the Optimal Model for one-dimensional ECG data 

 

The CNN system learns from the empirical set of data features automatically with 

multiple levels of abstraction. Hence, it allows learning the complex functions of the 

input data with features accessed automatically. The results of the different CNN layers 

and activation function scenarios, which were used for experimentations, are compared 

in Tables 6.11 and 6.12, considering accuracy, precision, validation loss, F1 score, and 

recall. Network-8 exhibited good accuracy during the training and testing phases (99% 

and 100%), with less validation loss (0.00022 and 0.00075) for both single-lead and 12-

lead ECGs. The results are acceptable, owing to the good precision and recall rates. The 

model by (Tan et al. 2018), of the long short-term memory (LSTM) network with a 

convolutional neural network (CNN), provided good results in automatically detecting 

CAD ECG signals with the inclusion of only specific lead II and ECG segments. The 

specific lead limitation was easily overcome with the application of the present method 

(consideration of all leads) by retaining the same and better accuracy. The prediction 

method of single-lead and twelve-lead includes data extraction and data classification. 

Since it is a complex methodology, the processing time might be higher compared to a 

normal repository dataset analysis. This model can further be tested for patients located 

in geographically-far locations, so that generality can be ensured for a wider diaspora. 

A technically experienced person can effectively manage these types of prediction 

systems. The three-layer CNN network model (Network-8) (Figure 6.12) is preferred 

for the classification of CAD due to its superiority in performance. 
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Figure 6.12 The best CNN model for the single-lead ECG and the multi (12)-lead ECG.
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The results of Tables 6.11 and 6.12 indicate that a three-layered network with ReLU, 

ReLu, and LeakyReLU activation functions assigned to the first, second, and third 

hidden layers, was the best-suited architecture for the model, which was not attempted 

earlier. The developed three-layer CNN model worked equally well for both the single-

lead and 12-lead ECG signal data, exhibiting generality. The performances of the 

developed model in terms of training and validation accuracies are plotted in Figures 

6.13a, and 6.13b for the single-lead. Figure 6.14a, and 6.14b show good convergence of 

validation loss; it is an ideal fit for twelve-lead ECG/TMT-ECG data, which were 

extracted from the ECG/TMT-ECG graph. The model achieved a training accuracy of 

99% and validation about 98.8% with a very small validation loss of less than 0.0008% 

on the 25th epoch. 

 

 
 

Figure 6.13 (a) Accuracy and (b) validation loss of developed model for single-

lead ECG and TMT-ECG. 

 

 
 

Figure 6.14 (a) Accuracy and (b) validation loss of developed model for twelve-

lead ECG and TMT-ECG. 
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6.3.4 k-Fold Cross Validation technique 

 

This is a standardized method of estimating the performance of the evaluation of the 

prediction model. This is usually applied during a smaller number of data samples that 

are present as input. The k-fold cross-validation process contains a single parameter, k, 

which designates how many groups should be created from a given data sample. Here, 

the k-fold parameters were considered as 5, i.e., k = 5, which indicates that splitting the 

given data samples into 5 groups is known as the 5-fold cross-validation, as explained 

in Figure 6.15. 

 

 
 

Figure 6.15 Five-fold cross-validation technique adopted for single lead ECG and 

TMT-ECG. 

 

Each split contains five-fold values, out of that, four are used for training and the 

remaining one is used for validation. 

 

Table 6.15 shows the detailed information about accuracy and standard deviation scores 

obtained during each split for the single-lead ECG data and twelve-lead ECG data. 

Results show the validation scores of Network-8, considering single-lead and 12-lead 

data. The average accuracies were obtained as 99.5% and 99.1%, respectively, for 

single-lead and 12-lead data. Hence, this is one of the best methods to deal with clinical 

lab datasets. The model shows good accuracy during the validation phase for both single 

and 12-lead ECG data.  
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Table 6.15 Accuracies of the k-fold cross validation over single lead and twelve lead 

ECG and TMT-ECG data. 

 

 

6.4 ANALYSIS OF THE TWO-DIMENSIONAL PREDICTION MODEL  

 

The analysis of two-dimensional data (image) is carried out for developed and pre-

trained algorithm by using single lead and twelve lead data with consideration of normal 

ECG and TMT ECG under raw signal image conditions and filtered signal images which 

are obtained through image pre-processing. These algorithms are implement through 

python by exploiting the graphical processing unit (GPU) to reduce the computation 

time required to obtain the trained model. The developed algorithm is back-ended with 

TensorFlow and helps to optimize the network. The data which are considered for 

analysis are twelve lead data, of 552 image samples and single lead data, of 6,624 image 

samples of patients which includes normal ECGs and exercised ECGs.  These data are 

fed into 6 types of algorithms, five are pre-trained (transfer learned) and one is 

developed. The performance of algorithm is evaluated and compared based on the 

accuracy, loss function, roc value, and confusion matrix.  

 

The trainable parameters (batch size, learning rate, optimizers, and loss functions) are 

considered for all six similar algorithms. That is batch size considered for the training 

algorithm is 128 and the learning rate is defined as 0.001 with consideration of Adam 

 

Single-Lead ECG Data Twelve-Lead ECG Data 

Accuracy (%) 
Standard  

Deviation 
Accuracy (%) 

Standard  

Deviation 

Split-1 99.8 0.006 98.7 0.021 

Split-2 99.5 0.011 99.4 0.013 

Split-3 99.3 0.01 99.3 0.011 

Split-4 99.3 0.012 98.8 0.019 

Split-5 99.7 0.008 99.1 0.017 

Average 99.5% 0.009 99.1% 0.016 
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optimizer and binary cross entropy loss function.  These algorithms are trained with an 

early stop condition if the performance does not improve (Validation loss) after 5 

successful epochs. Tables 6.13 and 6.14 show the accuracy of the model throughout 

training, validation, and testing for raw and filtered single lead ECG signal images. 

 

6.4.1 Analysis of Single Lead 

 

The Table 6.16 indicates performance evaluation of the single lead raw ECG signal 

image in terms of accuracy and loss function. The results indicate that the comparison 

of all pre-trained models and developed networks shows that the developed network 

with raw ECG signal image conditions shows less accuracy due to an insufficient feature 

parameters availability for prediction because of a lot of noise. The accuracy drop under 

raw ECG signal condition implies that the prediction model is not good enough to 

predict the CAD disease under raw signal image condition which can be overcome with 

filtered ECG signal image (Figure 6.16).  

 

Table 6.16 Comparison of transfer learned and developed models' accuracies of raw 

data for single lead signal images 

 

Model Training Validation Testing 

accuracy loss accuracy loss accuracy loss 

VGG16 90.20% 0.25 86.10% 0.30 89.16% 0.24 

Inception 76.79% 0.45 77.05% 0.47 81.02% 0.40 

Mobile net 89.57% 0.23 85.62% 0.31 89.16% 0.27 

ResNet 57.38% 0.64 56.63% 0.64 57.53% 0.66 

Efficient Net 73.85% 0.52 75.69% 0.49 79.82% 0.45 

Developed CNN 87.74% 0.38 86.95% 0.38 88.13% 0.37 
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Table 6.17 Comparison of Transfer learned and developed models' accuracies of filtered 

data for single lead signal images  

Model Training Validation Testing 

accuracy loss accuracy loss accuracy loss 

VGG16 88.16% 0.27 85.94% 0.33 84.34% 0.34 

Inception 86.73% 0.31 84.75% 0.37 87.05% 0.35 

Mobile net 90.58% 0.23 86.10% 0.32 87.95% 0.27 

ResNet 84.5% 0.35 82.4% 0.39 83.1% 0.41 

Efficient Net 84.32% 0.34 86.18% 0.32 87.95% 0.30 

Developed CNN 93.22% 0.17 92.7% 0.21 93.9% 0.21 

 

The filtered signal images are obtained by the pre-processing method, and are used to 

train all six models which help to compare the results under the condition of raw ECG 

signal image and filtered one.  When these pretrained models' result is compared to the 

developed prediction model, shows that it performs far better in prediction than the other 

pre-trained models and raw single lead ECG signal condition. The developed model's 

accuracy increased to 93.2 percent during training and 93.9 percent during testing when 

filtered images were used instead of the raw image, and making it more suitable for the 

implementation of the prediction system. 

             

 

Figure 6.16 Accuracy plot and Validation loss of developed network for filtered single 

lead two-dimensional image data 

 



154 

 

The results are nearly similar to those of Mobile Net and VGG16. However, these two 

pre-trained models are complex in nature compared to the developed model (layers of 

Mobile Net= 53 and VGG16=16) and require more computational time for analysis. 

With the developed network, it is possible to overcome these issues effectively.  

 

Even the models are evaluated by taking account of the testing (unseen) samples i.e., 

5% (190 CAD and 142 NOCAD) in terms of the confusion matrix and ROC (Receiver 

Operating Characteristics). The ROC curve for filtered single-lead ECGs and TMT-

ECG with all conditions (six algorithms) that are considered for prediction analysis is 

shown in Figure 6.17a to 6.17f. The ROC plot curve is supposed to be in the left upper 

corner which reflects its effective performance in True positive classification (Effective 

prediction of CAD and NOCAD images). The developed network has a very good ROC 

plot, indicating that it has excellent binary classification diagnosis capabilities. 

 

                                

        (a) ROC of VGG16                                            (b) ROC of MobileNetV2 

 

                                 

(c) ROC of ResNet                                                (d) ROC of EfficientNet 
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(e) ROC of Inception                                       (f) ROC of developed model 

 

Figure 6.17 (a-f): Receiver Operating Characteristics (ROC) plot of transferred learning 

model and developed model for single lead filtered two-dimensional data. 

 

Along with ROC, the confusion matrix (Table 6.18a to 6.18f) demonstrate a number of 

the image data lies on the True positive, True negative, False positive, and False 

negative columns. Table 6.18a to 6.18f represent the percentage of filtered single lead 

ECG signal images that were successfully classified in the confusion matrix. Out of 142 

NOCAD images, the developed method achieved a high true positive classification 

number of 132 images successfully classified, while 177 CAD images are correctly 

classified against 190 images. The computational and analysis duration is significantly 

reduced because the network is not as deep as compared to other pre-trained algorithms. 

 

Table 6.18 (a-f): Confusion matrix plot of transferred learning model and developed 

model for single lead filtered two-dimensional data 

 

              



156 

 

      (a)  Confusion matrix of VGG16                    (b) Confusion matrix of MobileNetV2 

 

              

      (c) Confusion matrix of ResNet                   (d) Confusion matrix of EfficientNet 

 

              

   (e) confusion matrix of Inception                     (f) confusion matrix of Proposed model 

 

For each epoch, the model classification accuracy score and loss score for testing and 

validation sets are examined. The basic idea behind having a loss score in deep network 

learning is, to use it as a feedback signal to alter the model's weights in order to reduce 

the loss score in the following train epoch. The test set (5%) are essential to provide to 

know the model's generalizability to new and unknown data. Over-fitting occurs when 

a model achieves a high accuracy score in the training set but performs poorly in the 

validation set. This occurs when the model over-optimizes in its learning phase of the 

training image samples. This can be mitigated by tuning a network that improves model 

accuracy during training and validation by reducing loss function. 

 

The mathematical representation of classification accuracy equation 6.6 is as follows: 
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Classification accuracy =
correctly predicted samples

total number of samples
          (6.6) 

 

Additional to classification accuracy, the model performance was evaluated in terms of 

precision, recall, and F1 score. The precision, recall, and F1-score are derived using the 

confusion matrix. These parameter values provide a visual representation of the 

algorithms' evaluation. These parameters are calculated from all the pre-trained and 

developed models. Equations 6.1 to 6.5 shows the mathematical definition of F1 score, 

accuracy, sensitivity/recall, specificity, and precision respectively. 

 

The precision score reveals how many samples the model correctly predicted as positive 

class and the recall score provides the information related to how many truly positive 

samples were correctly predicted as positive. The F1 measure score is frequently 

employed in conjunction with accuracy and recall scores since it functions as a harmonic 

mean and provides a more accurate and balanced score indicator. 

 

The accuracy score and confusion matrix performance are used to determine whether a 

prediction model is effective for classifying CAD disease based on ECG or TMT-ECG 

signal images. The Table 6.19 shows the filtered single lead ECG images precision, 

recall, and F1- Score values for CAD and NOCAD conditions.  

 

Table 6.19 Precision, Recall and F1 Score of transfer learned and developed network 

for single lead signal image data 

 

Model Precision Recall F1-score 

NOCAD CAD NOCAD CAD      NOCAD CAD 

VGG16 79 87 84 84 81 86 

MobileNetV2 84 91 88 88 86 89 

Inception 84 90 87 87 85 89 

ResNet  72 83 78 77 75 80 

Developed CNN 91 95 93 93 92 94 

 



158 

 

The precision, which specifies how many samples of images that the model predicts 

belong to the real class, was around 95 percent for CAD and 91 percent for NOCAD. 

The recall reflects how many real samples of images were properly predicted by the 

algorithm (model), and the score obtained for CAD and NOCAD images is 93 percent. 

Similarly, the F1-Score functions as a harmonic mean of precision and recall, and the 

developed model achieves a very good and acceptable score when compared to other 

pre-trained models (i.e., 94 for CAD and 92 for NOCAD images). 

 

6.4.2 Analysis of Twelve Lead 

 

The same methodology is adopted for 12 lead ECG signal images, as is used for single 

lead signal images, with consideration of raw and filtered signal images including both 

normal ECG and TMT-ECG signal images. Since it is a comparison study, the same 

parameters are used to evaluate the pre-trained and developed algorithm results like 

single lead signal images. The parameters taken into account to deal with the twelve 

lead signal images are accuracy, loss, ROC, confusion matrix, precision, recall, and f1-

score. 

 

There are 552 images in 12 lead signal images, including CAD 316 and NO-CAD 236 

in which both resting and TMT ECG (exercised ECG) are taken into account. The 

analysis is done in two ways: one using raw ECG signal images, and the other one 

filtered signal images. Different algorithms (such as pre-trained (5) and developed (1) 

algorithms) are used to analyze ECG and TMT ECG signal conditions. The results of 

training, validation, and testing accuracy are taken into account while evaluating pre-

trained and developed algorithms. The accuracy and validation loss of VGG16, 

Inception, MobileNetV2, ResNet, EfficientNet, and developed networks are compared 

in Table 6.20 and Table 6.21 with respect to raw ECG and TMT-ECG signal images 

and Filtered ECG and TMT-ECG signal images respectively. 

 

The Table 6.20 shows the accuracy and validation loss results of the developed 

algorithm against the transferred learned algorithms for raw data. But, the developed 

algorithm for raw images does not show good performance. The filtered images are 

derived from the raw image using a defined image pre-processing methodology. These 
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filtered signal images are considered as input to the developed algorithm (Table 6.21). 

The accuracy of the result for the developed algorithm is better than the pre-trained 

algorithm (94.03 percent). 

 

Table 6.20 Comparison of Transfer learned and developed models' accuracies of raw 

data for twelve lead signal images 

Model Training Validation Testing 

accuracy loss accuracy loss accuracy loss 

VGG16 92.99% 0.17 86.79% 0.35 78.87% 0.40 

Inception 97.03% 0.07 88.68% 0.33 82.14% 0.53 

Mobile netv2 97.66% 0.08 90.57% 0.28 85.71% 0.29 

ResNet  57.11% 0.68 60.38% 0.67 53.57% 0.72 

Efficient Net 91.08% 0.23 84.91% 0.29 85.71% 0.31 

Developed CNN 56.90% 0.68 60.38% 0.68 53.57% 0.69 

 

Table 6.21 Comparison of Transfer learned and developed models' accuracies of filtered 

data for twelve lead signal images 

 

Model Training Validation Testing 

accuracy loss accuracy loss accuracy loss 

VGG16 90.87% 0.20 88.68% 0.21 89.2% 0.36 

Inception 85.77% 0.46 88.68% 0.5496 92.86% 0.37 

Mobile netv2 95.97% 0.12 96.23% 0.22 89.28% 0.32 

ResNet 57.11% 0.69 60.38% 0.69 53.57% 0.67 

Efficient Net 86.62% 0.37 90.57% 0.23 85.7% 0.37 

Developed CNN 94.03% 0.17 94.34% 0.21 100% 0.04 

 

The filtered image (ECG& TMT ECG) condition, the accuracy plot, and the validation 

loss plot generated for the developed algorithm demonstrate good accuracy compared 

to pre-trained or transfer learning models. The correlation between training and 

validation accuracy as shown in Figure 6.18 (a) with respect to epochs. It also shows the 
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relationship between validation loss, during the time of training and validation as shown 

in Figure 6.18 (b) with respect to epochs.  

 

                  

 

Figure 6.18 (a) Accuracy plot and (b) Validation loss of developed network for twelve 

lead two dimensional image data 

 

The algorithms which are developed and transfer learned are further evaluated based on 

the ROC plot and confusion matrix as similar to the analysis of single lead image 

condition. The ROC is a plot which is used to evaluate the performance of binary 

classification. Since the study is focused on the differentiation of CAD and normal 

patients based on signal images, the ROC plot will help to evaluate the performance of 

the algorithms effectively.  

 

The Figures 6.19a to 6.19f show the performance of six algorithms (five pre-trained 

transfer learned and one developed) in terms of the ROC plot. The curve that tends to 

the left most top corner relates to the true positive rate of prediction. The ROC plot of 

the developed algorithm demonstrates a good True positive rate of 100 percent for the 

categorization of CAD and NO-CAD images. 
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             (a) ROC of  VGG16                                       (b)  ROC of MobileNetV2 

 

               

            (c) ROC of ResNet                                         (d) ROC of EfficientNet 

 

               

              (e) ROC of Inception                                    (f) ROC of proposed model 

 

Figure 6.19 (a-f): Receiver Operating Characteristics (ROC) plot of transferred learning 

model and developed model for twelve lead filtered two-dimensional signal images 
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The confusion matrix helps to visualize the quantity of data which are classified for the 

same class and opponent class. Table 6.22a to 6.22f show the confusion matrix for the 

transfer learned algorithms and developed algorithm for test images of 12 lead ECG 

signals.  The confusion matrix parameters (True Positive, True Negative, False Positive, 

and False Negative), indicate the efficiency of the developed algorithm to classify CAD 

and NOCAD.  Under the filtered 12 lead signal image condition, the developed 

algorithm shows the clear classification of test images for CAD and NOCAD classes 

(100 percent accuracy of test images).  

 

Table 6.22 (a-f): Confusion matrix plot of transferred learning model and developed 

model for twelve lead filtered two-dimensional signal images 

 

              

       (a) Confusion matrix of VGG16                 (b) Confusion matrix of MobileNetV2 

 

              

      (c) Confusion matrix of ResNet                  (d) Confusion matrix of Efficient Net 
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      (e) Confusion matrix of Inception                 (f) Confusion matrix of developed model 

 

 

The parameters precision, recall, and f1-score which are derived from the confusion 

matrix are used to further evaluate all six algorithms. Table 6.23 represents the precision, 

recall, and f1-score values of the developed algorithm and pre-trained algorithms for 

filtered 12 lead ECG and TMT-ECG signal image conditions.    

 

Table 6.23 Precision, Recall and F1 Score of transfer learned and developed network 

for 12 lead signal image data 

 

Model Precisio n  Recall F1-score 

CAD NOCAD CAD NOCAD CAD NOCAD 

VGG16 88% 100% 100% 85% 94% 92% 

MobileNetV2  87% 85% 87% 85% 87% 85% 

Inception  87% 85% 87% 85% 87% 85% 

ResNet  93% 86% 87% 92% 90% 89% 

Efficient Net 88% 92% 93% 85% 90% 88% 

Developed CNN 100% 100% 100% 100% 100% 100% 

 

The developed algorithm shows very good and acceptable results for all the parameters 

under test image conditions. Hence, the developed algorithm can be implemented as a 

prediction tool in medication conditions to identify the existence of coronary artery 

disease and normal (NOCAD) patients. These may extend to include an examination of 

a large medical ECG/TMT ECG image dataset in order to consider a full-fledged 
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prediction tool. However, this will aid doctors operating in remote places to identify the 

severity of the disease. The algorithm can also help to take a second opinion for doctors 

when they are dealing with crucial CAD patients.  

 

6.5 MULTI-HEADED MODEL 

 

Every model consists of as a backbone plus a head. If the backbone trained for an added 

random head results for the better performance, then the model is known as multiheaded 

model. Majority of the literature studies deal with one-dimensional ECG signal data or 

ECG signal images (both the repository and are clinical data of ECG which anticipated 

from the ECG signal) (Nejedly et al. 2022; Suresh et al. 2020). These literatures focuses 

on signal image categorization using one-dimensional data and two-dimensional 

handling algorithms such as sequential models or pre-trained models. The major 

disadvantage of these studies is that they deal with only one data type and optimization 

will be limited. To overcome this, the current study concatenates images of single-lead 

ECG signals and extracted data from corresponding signals to build a multiheaded 

hybrid prediction model using functional modeling approach. 

 

With the use of the supervised learning approach, this prediction system is deployed in 

a real-time application according to ethical standards and uses data from a reputed 

hospital [KMC Cardiology dept]. This helps to segregate CAD and normal patients 

effectively with respect to angiographic report. 

 

To check the versatality of the model, the repository data set is also used to validate a 

model. The multiheaded hybrid prediction model is built with data extracted from 

single-lead ECG signal image(1D) and pre-processed single-lead ECG signal image 

(2D). The extracted time series data from single-lead ECG signal images are validated 

by reconstructing the image and finding Pearson’s correlation as described in the dataset 

preparation method. 

 

The initial multiheaded prediction system is developed based on pre-processed single-

lead ECG signal image which collected from the health care center. A total of 3312 ECG 

single-lead signals are taken into account, of which 1896 are related to CAD and 1416 
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are normal patient data. These are collected over the duration of one second. The related 

time series data for the images are utilized as 1D data in another head in parallel as per 

standard protocol. Out of 3312 data sets, 85% are used for training, 5% are used for 

validation and 10% are used for testing. The complete multi-headed hybrid prediction 

model setup is constructed, trained, and tested on a Collaboratory platform, known as 

Google collab developed by Google Research. This is well suited for Python-based 

Machine learning & deep learning algorithm as well as helpful for data analysis 

performance. 

 

The developed hybrid model with hyper parameters, with a fixed batch size of 34 

samples, and the maximum number of 50 epochs are provided using an early stopping 

pre-defined callback function. The model is trained with the Adam optimization 

algorithm with a learning rate of 0.0001. Since it's a two-label classification, binary 

cross-entropy is adopted as loss function. Binary cross-entropy is expressed 

mathematically as in equation 6.7 (Rai and Mitra 2021). 

 

L(P, T) =  −Tc  ln Pc − Tn  ln Pn   (6.7) 

 

Where L is the loss function,  Pc and Pn are predicted the probability of CAD and Normal 

cases. Tc  & Tn are target or expected probability of CAD & Normal case respectively.  

 

The multiple call-back functions are used to monitor the data flow process and accuracy 

improvement of the model. Based on callback function response the reducing the 

learning rate command is induced over no improvement in validation loss with two 

successive epochs. The goal of the model checkpoint is to preserve the best, and 

optimized model. 
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Table 6.24 Performance accuracy of multi headed model with all the data types during 

different combinational approach 

 

                                                                           

Model 

             

            

               Dataset 

ECG signal 

image (2D) + 

Extracted  ECG 

time series data 

(1D)  (%) 

ECG signal 

image (2D) + 

ECG flattened 

image (1D) 

      (%) 

ECG signal image 

(2D) + Extracted  

ECG time series data 

(1D) + ECG flattened 

image (1D)   (%) 

Single  

Lead 

Only ECG 

(3320) 

 

91 

 

82 

 

90 

ECG +TMT-

ECG (6640) 

 

93 

 

87 

 

93 

Multi- 

Lead 

Only ECG 

(276) 

 

93 

 

89 

 

96 

ECG +TMT-

ECG (552) 

 

93 

 

93 

 

96 

Repository  

Data 

 

ECG 

 

--- 

 

           --- 

 

88 

 

The Table 6.24 shows the average performance accuracy of the model during training. 

The multiheaded hybrid deep neural network model is built with clinical data and its 

generalization ability is tested by considering 810 samples collected from the repository 

dataset where 360 are related to CAD  and the remaining 450 are related to NOCAD 

patients. The results of repository data are drawn from the same model which is 

developed for clinical data. The classification ability (accuracy) of the model during 

training and testing are good and acceptable for both data types (as shown in Figure 6.20 

and Figure 6.21). 
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Figure 6.20 Clinical data multi headed model performance based on single lead with 

consideration of ECG and TMT signal image (2D) + Extracted  ECG and TMT time 

series data (1D) +ECG flattened image (1D). 

 

 

   

Figure 6.21 Repository data multi headed model performance based on single lead with 

consideration of ECG signal image (2D) + Extracted ECG time series data (1D) + ECG 

flattened image (1D). 

 

This model is evaluated by applying the k-fold validation methodology. Usually, this 

methodology is used to assess the model when there is a limited data set condition, i.e. 

when there aren't enough data sets to segregate (train, validation, and test). The K-fold 

methodology is adopted for a model to understand the behavior of the model over an 

entire dataset. The K-fold approach divides the data into K subsets and repeats the 

process, where each time K-subset is used as a test set, and others are used as training 

data.  In this study K-value is considered as ten, i.e. ten-fold cross-validation approach 

is used to evaluate the model reliability. The data set is divided into 10 subsets, of which 

9 are utilized for training and 1 for testing. This 9:1 ratio fluctuates depending on the 

subset chosen for testing, indicating that all subsets other than the test subsets are used 
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for training. The average accuracy drawn for this method is 96.1 for clinical data and 

88.1 for repository data respectively, which indicates that the model is good and stable 

for the study of hybrid datatypes. 

 

Table 6.25 Accuracies of the k-fold cross validation over multi headed model  

 

 

                                                                           

Model 

             

            

               Dataset 

ECG signal image 

(2D) + Extracted  

ECG time series data 

(1D)  (%) 

ECG signal image 

(2D) + ECG flattened 

image (1D) 

      (%) 

ECG signal image 

(2D) + Extracted  

ECG time series data 

(1D) + ECG flattened 

image (1D)   (%) 

Average K fold 

results  

Accuracy  

% 

Standard 

Deviation 

Accuracy  Standard 

Deviation 

Accuracy  Standard 

Deviation 

Single  

Lead 

Only ECG 

(3320) 

 

91.7 

 

0.064 

 

82.2 

 

0.2268 

 

90.3 

 

0.076 

ECG 

+TMT-ECG 

(6640) 

 

92.8 

 

0.056 

 

87.4 

 

0.138 

 

93.1 

 

0.053 

Multi- 

Lead 

Only ECG 

(276) 

 

93.5 

 

0.051 

 

88.9 

 

0.095 

 

96.1 

 

0.037 

ECG 

+TMT-ECG 

(552) 

 

92.6 

 

0.057 

 

93.1 

 

0.051 

 

96.2 

 

0.032 

Reposi

tory  

Data 

 

ECG 

 

--- 

  

          --- 

  

88.1 

 

0.104 

 

 

The ROC curve used as performance metrics states that how True-positive and False-

positive values are predicted by the model (equation 6.8 and equation 6.9). 

True positive rate (TPR) = 
𝑇𝑃

(𝑇𝑃+𝐹𝑁)
    (6.8) 

False positive rate (FPR)= 
𝐹𝑃

(𝐹𝑃+𝑇𝑁)
    (6.9) 

Where TP is True Positive, Tn is True Negative, FP is False Positive and FN is False 

Negative. ROC is the curve of TPR Vs FPR. For the model's best result outcomes, the 

plot of the curve should be lying on the left top corner. The Figures 6.22, 6.23 and 6.24 
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show the ROC plot of the model considering clinical data for all the conditions and 6.25 

shows the ROC plot of the model considering repository data respectively.  

 

(a) Single lead 

       

      (ECG)     (TMT- ECG) 

(b) Multi-Lead 

          

(ECG)     (TMT- ECG) 

Figure 6.22 ROC plot for ECG signal image (2D data) +Extracted ECG time series Data 

(1D data) of (a) single lead hybrid multi headed model and (b) Multi-lead hybrid multi 

headed model 
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(a) Single lead 

        

      (ECG)     (TMT- ECG) 

(b) Multi-Lead 

       

(ECG)     (TMT- ECG) 

Figure 6.23 ROC plot for ECG signal image (2D data) + ECG flattened image (1D data) 

of (a) single lead hybrid multi headed model and (b) Multi-lead hybrid multi headed 

model 
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(a) Single lead 

         

      (ECG)     (TMT- ECG) 

(b) Multi-Lead 

       

(ECG)     (TMT- ECG) 

Figure 6.24 ROC plot for ECG signal image (2D data) + ECG flattened image in (1D) 

+ ECG 1D time series data of (a) single lead hybrid multi headed model and (b) Multi-

lead hybrid multi headed model 
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Figure 6.25 ROC of Repository data for single lead hybrid multi headed model 

 

The AUC (Area under the ROC Curve) measures the overall effectiveness of every 

classification that could be used. This measures the model's accuracy and quality of 

prediction. Performance metric (Hameed et al. 2020; Seera and Lim 2014) measurement 

is most suitable for multi-class imbalanced data, and the macro-F1 score is the most 

important metric for measuring the performance of the classification model.  
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Table 6.26 Precision, Recall and F1 Score of multi headed model with all the data types during different combinational approach 

 

 

 

                                                                           

Model 

             

            

               Dataset 

ECG signal image (2D) + 

Extracted  ECG time series 

data (1D)  (%) 

ECG signal image (2D) + ECG 

flattened image (1D) 

(%) 

ECG signal image (2D) + Extracted  

ECG time series data (1D) + ECG 

flattened image (1D)   (%) 

 

Precision 

 

 

Recall 

 

F1-Score 

 

Precision 

 

 

Recall 

 

F1-Score 

 

Precision 

 

 

Recall 

 

F1-Score 

 

 

Single Lead 

Only ECG 

(3320) 

 

92 

 

91 

 

91 

 

81 

 

82 

 

82 

 

89 

 

90 

 

90 

ECG +TMT-

ECG (6640) 

 

93 

 

93 

 

93 

 

86 

 

87 

 

87 

 

93 

 

93 

 

93 

 

 

Multi- Lead 

Only ECG 

(276) 

 

93 

 

93 

 

93 

 

90 

 

90 

 

90 

 

97 

 

97 

 

97 

ECG +TMT-

ECG (552) 

 

93 

 

93 

 

93 

 

93 

 

93 

 

93 

 

97 

 

97 

 

97 

Repository  

Data 

 

ECG 

 

-- 

 

-- 

 

-- 

 

-- 

 

-- 

 

-- 

 

88 

 

88 

 

88 
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The other performance metrics which are considered for analysis are  

1) Precision 

2) Recall (Recall is a sensitivity of the model which is defined as a true positive 

rate) 

3) F1-score 

The Table 6.26 shows the values of all these performance metrics for all the three cases 

over ECG and ECG+TMT-ECG of clinical data and repository data sets. 

The classification performance of the testing data set is defined with the help of a 

confusion matrix. The Table 6.27, 6.28, 6.29 and 6.30 show performance of the 

confusion matrix for clinical data with consideration of all the conditions and repository 

data respectively under multiheaded hybrid model conditions. Here TN and TP 

corresponds to binary classified records (0,1) respectively, and FP and FN corresponds 

to wrongly classified records. 
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Table 6.27 Confusion matrix of ECG signal image (2D data) +Extracted ECG time 

series Data (1D data) for (a) single lead hybrid multi headed model and (b) Multi-lead 

hybrid multi headed model 

 

(a) Single lead 

       

            (ECG)                      (TMT- ECG) 

 

(b) Multi-Lead 

                                         

(ECG)            (TMT- ECG) 
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Table 6.28 Confusion matrix of ECG signal image (2D data) + ECG flattened image 

(1D data) for (a) single lead hybrid multi headed model and (b) Multi-lead hybrid multi 

headed model 

 

(a) Single lead 

             

           (ECG)                         (TMT- ECG) 

 

(b) Multi-Lead 

            

                       (ECG)              (TMT- ECG) 
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Table 6.29 Confusion matrix of ECG signal image (2D data) + ECG flattened image in 

(1D) + ECG 1D time series data for (a) single lead hybrid multi headed model and (b) 

Multi-lead hybrid multi headed model 

 

(a) Single lead 

              

              (ECG)               (TMT- ECG) 

 

(b) Multi-Lead 

               

                       (ECG)       (TMT- ECG) 
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Table 6.30 Confusion matrix of repository data for single lead hybrid multi headed 

model 

 

 

 

Here, the data lying on TN, TP, FP & FN indexes can easily visualize. By studying these 

performance metrics, it is observed that multiheaded hybrid DNN model is the most 

suitable model for the classification of single lead ECG signals and twelve lead ECG 

signals, towards detecting coronary artery disease. But, the computation time in this 

model is higher when compared to normal sequential CNN model due to complex nature 

of hybrid data. The system is suitable for real-time clinical implementation with a 

suitable GUI and doctors can access it as the assisting tool for continuous evaluation of 

periodic diagnosis of patients during medication. 

 

6.6 GRAPHICAL USER INTERFACE (GUI) 

 

A simple graphical user interface (GUI) (Cairns et al. 2016) (Figure 6.26 home page) is 

developed for image prediction model, taking into account the trained weights, with 

consideration of single lead and twelve lead ECG and TMT ECG signal images. The 

GUI is developed using Visual Studio software. It provides an option to select whether 

the prediction is to be performed with the help of single lead ECG images (ECG and 

TMT ECG) or 12 lead ECG images (ECG & TMT ECG). 
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Figure 6.26 GUI home page of prediction model 

 

The GUI incorporates a module for preprocessing imported raw ECG and TMT (single 

lead or twelve lead) signals. Once the raw image (either single lead or twelve lead 

signals) has been imported into the GUI, the image is automatically filtered by pre-

processing step insertion. These filtered images are analyzed based on the weights which 

corresponds to trained single lead or twelve lead signal images algorithms.  

Figure 6.27 and Figure 6.28 depicts the selection of single lead and twelve lead raw 

ECG signal images respectively. The “predict” button invokes will generation of results 

through the proper selection of image preprocessing. The results are in terms of binary 

prediction type, i.e either “predicted positive” or “predicted negative”. 
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Figure 6.27 Single lead ECG image selection page  
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Figure 6.28 Twelve lead ECG image selection page  
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Figure 6.29 Indication model results in terms of “Predicted Positive” for Single lead 

and multi lead ECG/ TMT-ECG selected image  

 

 
 

Figure 6.30 Indication model results in terms of “Predicted Negative” for Single lead 

and multi lead ECG/ TMT-ECG selected image  

 

The protocol suggestions are defined as either “suggestion for angiography treatment” 

or “you don’t have CAD, you are safe” (as shown in Figure 6.37 and Figure 6.38). This 

will help to sort out the categories and even helps doctors in rural area to take 

preliminary actions as well as judge the need to consult cardiology experts for possible 

treatment related to CAD.  
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RESEARCH SUMMARY  

Prediction systems prove to be powerful tool for doctors in correlating disease 

behavioral cases. The study involved the development of two types of prediction 

systems, one for the undifferentiated fever cases and the other one for the coronary 

artery disease (CAD).  

The presented method of analysis and prediction can reduce diagnostic complications 

and aid in the early diagnosis of diseases. Using only the temperature data of disease as 

an input to the system, and with the help of a noninvasive model, the prediction of major 

diseases like Tuberculosis, Non-tubercular bacterial infections, Dengue fever, and Non-

infectious diseases can be done accurately without any other clinical parameters. 

The prediction model is initially developed with single variable data (temperature) 

captured for 24 hours duration. Accuracy of this system is found to be 99%. In the next 

step, to reduce the size of data being handled and refine the present system, 30 minutes’ 

and 60 minutes’ duration data (i.e. temperature) are considered with and without 

additional features, which are commonly adopted in medical practice. Various 

classifiers are tried out for the prediction system. 

The results have shown good outcome characteristics in a prediction system with 

decision tree classifiers over other classifiers. Decision tree and k-Nearest neighbor 

classifiers provided a good resultant accuracy is 100% and the F1 score is 1 and has 

dominated using its effective way of classification of Tuberculosis, Non-tubercular 

bacterial infection, Dengue fever, Non-infectious diseases over 30 minutes of 

temperature data with additional feature consideration. Thus, this diagnostic system can 

be of great assistance to doctors treating patients with symptomatic fever diseases and 

saving lives in crucial instances. 

In the next stage, an intelligent prediction system is developed for the binary 

classification of coronary artery disease. The basic data used are the live data in the form 

of ECG and TMT-ECG signals gathered from a reputed hospital. A novel image 

processing approach is implemented for relevant feature extraction, optimally.  
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Data extraction is necessary to store thermal paper data for future data analysis securely. 

The developed image processing and data extraction method are the reliable and the best 

fit for all the cases of ECG and TMT-ECG data extraction. The data extracted are 

compared and validated with commercially available software tool and manual method, 

and the accuracy is found to be 98%. The proposed data extraction method is also 

validated with the digitally available dataset (Physio-net data set) and the results here 

are promising with a correlation coefficient of 0.975. The algorithm further enriched 

with support for additional features is capable to extract the major important features 

with 93.6% accuracy. A hybrid feature extraction method is used here. These extracted 

data and features help to build a good intelligent prediction model to support doctors 

and healthcare experts to diagnose cardiovascular diseases. 

Thus, prediction model based on CNN architecture is developed for both single-lead 

and 12-lead ECG datasets compiled from clinical data. While 6630 datasets are used for 

the single-lead prediction model, 552 datasets are used for the 12-lead model. A hybrid 

method combining Pan–Tompkins, slope-based and a statistical method involving 

feature extraction is implemented, which resulted in extracting all of the features related 

to the ECG. During the modeling, the CNN model with a single layer, two layers, and 

three layers are experimented with different activation functions in different layers. 

Later, the three-layer CNN model was found to be the best architecture, with ReLU, 

ReLU, and LeakyReLU activation functions in the first, second, and third layers, 

respectively. This model showed an accuracy of 99% during the training phase, while it 

exhibited an accuracy of 98.6% in the validation trials. Thus, the three-layer CNN 

model, with ReLU, ReLU, and LeakyReLU activation functions works well for single-

lead as well as 12-lead ECG datasets and is able to predict the CAD much more reliably 

than any other models. Hence, the present model has proved to be the best fit for the 

classification of CAD.  

The diagnosis of CAD at an early stage will help the doctors during medication stage. 

The sequential deep learning model developed based on CNN optimization effectively 

classifies the disease over the single lead and multi-lead (12 lead) ECG and TMT ECG 

signal image dataset. The image dataset considered are raw image and filtered image 

dataset (which are achieved from pre-processing methodology). The developed 
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algorithm results are compared in terms of accuracy, confusion matrix, and ROC with 

the well-known transfer learned algorithms (VGG16, MobileNetV2, Inception, ResNet, 

EfficientNet) in the field of signal image classification. The developed solution is 

dominating with 93.2% accuracy over a single lead and 94% for twelve lead ECG, TMT 

ECG signal images.  

To analyze the combined effects of ECG and TMT-ECG extracted time series data (1D) 

and image dataset (2D), multi headed model is opted. These multi-headed models are 

analyzed based on different conditions like extracted time series dataset (1D) + image 

dataset (2D), flattened image dataset (1D) + image dataset (2D) and extracted time series 

dataset (1D) + flattened image dataset (1D) + image dataset (2D) with ECG alone and 

combined ECG and TMT-ECG datasets respectively. The three headed model deals 

with all (extracted time series dataset (1D) + flattened image dataset (1D) + image 

dataset (2D)) and shows an acceptable result (96%) which is further validated with 

repository dataset. This confirms the generalization ability of the model. Thus, the 

developed multi-headed model can reliably predict either using ECG data alone or ECG 

combined with TMT-ECG also, once again proving its generalization.   

This prediction system, with good graphical user interface (GUI) when used with a 

portable ECG unit can be of immense use in primary health care centers. Thus, all 

possibilities of combination of data, relevance to classify CAD have been investigated, 

with proper integration of signal input, image processing, analysis and detection of 

CAD, with graphical user interface. 
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Conclusion  

1. The study revealed that 24 hours temperature data is sufficient to predict fever 

symptomatic disease (namely Tuberculosis, Non-tubercular bacterial 

infections, Dengue fever, Non-infectious diseases) in a patient. Refinement of 

the study for 30 min temperature data, with medical protocol provide good 

results. 

2. The data extracted through the novel hybrid feature extraction method (i.e. P, 

Q, R, S, T, PQ-segments, QRS complex and ST segments) closely resemble to 

the actual ECG feature values. 

3. Prediction model dealing with 1D data provides 98.6%, the 2D data provides 

94% and the novel scheme of multidimensional approach provides 96% 

accuracy in classification of CAD and NoCAD. 

4. K-fold (5-fold) validation is adopted to each model and achieved overall 

validation accuracy more than 98%. 

5. An end-to-end modular integration system is developed by combining all phases 

of algorithm. This integrated GUI helps the doctors to interact with the model 

through data effectively and conveniently.  
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FUTURE WORK 

The developed prediction models (machine learning algorithm for fever symptomatic 

disease classification, deep neural networks deals ECG and TMT-ECG data and ECG 

and TMT-ECG signal images) is tried to cover all the possibility of area used for the 

analysis. The analysis of work also deals with multi headed models which are parallelly 

deals both the data and images to at time with different algorithms to better identification 

and classification of disease. Which may further improve with  

 

1.   Including more clinical data with irrespective to ECG machines, 

2.   Generalization ability by analyzing more repository data or clinical data, 

3. Development of full-fledged application helps to access the model through 

smartphone, and 

4.  The web based graphical user interface helps to access the model with respective of 

places.  

 

These are major improvement can implement and even the comparative deep neural 

network for already classified fever symptomatic diseases is one of the studies to 

analyze the behavior of data. This improvement will helps overcome especially like over 

rural areas health issues.  
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APPENDIX – I 

ALGORITHMIC CODE FOR MULTI-DIMENSIONAL ANALYSIS 

(1) Algorithm code for fever analysis 

import pandas 

import numpy 

import scipy 

import sys 

import sklearn 

import matplotlib.pyplot as plt 

# Load libraries 

from pandas.plotting import scatter_matrix 

from sklearn import model_selection 

from sklearn.metrics import classification_report 

from sklearn.metrics import confusion_matrix 

from sklearn.metrics import accuracy_score 

from sklearn.linear_model import LogisticRegression 

from sklearn.tree import DecisionTreeClassifier 

from sklearn.neighbors import KNeighborsClassifier 

from sklearn.discriminant_analysis import LinearDiscriminantAnalysis 

from sklearn.naive_bayes import GaussianNB 

from sklearn.svm import SVC 

from sklearn.model_selection import cross_val_score 

from sklearn.model_selection import train_test_split 

from sklearn.metrics import log_loss 

data = pandas.read_excel (r"C:\Users\SHRI\Videos\PhD\temparature\Temp clasifi pyt

hon code\Untitled Folder\data12.xlsx", sheet_name=0) 

dta1= [data,data] 

dta12 = pandas.concat((dta1), axis = 1) 

dta12.to_csv ('newdata312.csv',  index=False) 

df12= pandas.read_csv ("newdata312.csv") 
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trans12= df12.T 

trans12.to_csv ('newtrans12.csv',  index=False) 

df=pandas.read_csv("newtrans12.csv") 

dff=df.values 

X = dff[:,:-1] 

array12 = trans12.values 

X2 = array12[:,:-1] 

Y2 = array12[:,-1] 

# Split-out validation dataset 

validation_size = 0.20 

seed = 10 

X_train, X_validation, Y_train, Y_validation = model_selection.train_test_split(X2, 

Y2, test_size=validation_size, random_state=seed) 

# Test options and evaluation metric 

seed = 10 

scoring = 'accuracy' 

# Spot Check Algorithms 

models = [] 

models.append(('LR', LogisticRegression(solver='liblinear', multi_class='ovr'))) 

models.append(('LDA', LinearDiscriminantAnalysis())) 

models.append(('KNN', KNeighborsClassifier())) 

models.append(('CART', DecisionTreeClassifier())) 

models.append(('NB', GaussianNB())) 

models.append(('SVM', SVC(gamma='auto'))) 

# evaluate each model in turn 

results = [] 

names = [] 

for name, model in models: 

  kfold = model_selection.KFold(n_splits=10, random_state=seed) 

  cv_results = model_selection.cross_val_score(model, X_train, Y_train, cv=kfold, sc

oring=scoring) 

  results.append(cv_results) 
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  names.append(name) 

  msg = "%s: %f (%f)" % (name, cv_results.mean(), cv_results.std()) 

  print(msg) 

# Compare Algorithms 

fig = plt.figure() 

fig.suptitle('Algorithm Comparison') 

ax = fig.add_subplot(111) 

plt.boxplot(results) 

ax.set_xticklabels(names) 

plt.show() 

# Make predictions on validation dataset 

cart = DecisionTreeClassifier() 

decesiontree = cart.fit(X_train, Y_train) 

predictions = cart.predict(X_validation) 

predictions 

print(accuracy_score(Y_validation, predictions)) 

print(confusion_matrix(Y_validation, predictions)) 

print(classification_report(Y_validation, predictions)) 

y_pred = cart.fit(X_train, Y_train).predict(X_validation) 

pred = decesiontree.predict(X_validation) 

class_names =  Y_validation  

cm=confusion_matrix(class_names,pred) 

from sklearn import preprocessing, model_selection, tree 

model = tree.DecisionTreeClassifier() 

model.fit(X_train, Y_train) 

accuracy = model.score(X_validation, Y_validation) 

print("Accuracy = %g" % (accuracy)) 

print("Test Error = %g" % (1.0 - accuracy)) 

print("Test score: {0:.2f} %".format(100 * accuracy)) 

 

(2) ALGORITHM CODE FOR ECG ANALYSIS 

1. Data collection 
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(a) Folder renaming 

import os 

import pandas as pd 

#i=136 

#C:\Users\SHRI\Videos\Final DATA\DATA F\CAD 

 

os.chdir(r'C:\Users\SHRI\Videos\Final DATA\DATA F\NoCAD\103N\EXCER') 

for file in os.listdir(): 

    src=file 

    if src=='aVR.xlsx': 

           dst="4r.xlsx" 

           os.rename(src,dst) 

    if src=='aVL.xlsx': 

           dst="5l.xlsx" 

           os.rename(src,dst) 

    if src=='aVF.xlsx': 

           dst="6f.xlsx" 

           os.rename(src,dst) 

os.chdir(r'C:\Users\SHRI\Videos\Final DATA\DATA F\NoCAD\103N\NO_EXCER') 

for file in os.listdir(): 

    src=file 

    if src=='aVR.xlsx': 

           dst="4r.xlsx" 

           os.rename(src,dst) 

    if src=='aVL.xlsx': 

           dst="5l.xlsx" 

           os.rename(src,dst) 

    if src=='aVF.xlsx': 

           dst="6f.xlsx" 

           os.rename(src,dst) 

 

(b) Data collection 
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#Combining multiple excel files in to single excel file containg in single folder 

import matplotlib as plt 

import numpy as np 

import openpyxl 

from openpyxl import load_workbook, Workbook 

import os 

for i in range(1, 158): 

    print('ECG {}:'.format(i)) 

    data1 = pd.read_excel (r'C:\Users\SHRI\Videos\Final DATA\DATA F\CAD\{}C\E

XCER\1st.xlsx'.format(i)) 

    data2 = pd.read_excel (r'C:\Users\SHRI\Videos\Final DATA\DATA F\CAD\{}C\E

XCER\2nd.xlsx'.format(i)) 

    data3 = pd.read_excel (r'C:\Users\SHRI\Videos\Final DATA\DATA F\CAD\{}C\E

XCER\3rd.xlsx'.format(i)) 

    data4 = pd.read_excel (r'C:\Users\SHRI\Videos\Final DATA\DATA F\CAD\{}C\E

XCER\4r.xlsx'.format(i)) 

    data5 = pd.read_excel (r'C:\Users\SHRI\Videos\Final DATA\DATA F\CAD\{}C\E

XCER\5l.xlsx'.format(i)) 

    data6 = pd.read_excel (r'C:\Users\SHRI\Videos\Final DATA\DATA F\CAD\{}C\E

XCER\6f.xlsx'.format(i)) 

    data7 = pd.read_excel (r'C:\Users\SHRI\Videos\Final DATA\DATA F\CAD\{}C\E

XCER\V1.xlsx'.format(i)) 

    data8 = pd.read_excel (r'C:\Users\SHRI\Videos\Final DATA\DATA F\CAD\{}C\E

XCER\V2.xlsx'.format(i)) 

    data9 = pd.read_excel (r'C:\Users\SHRI\Videos\Final DATA\DATA F\CAD\{}C\E

XCER\V3.xlsx'.format(i)) 

    data10 = pd.read_excel (r'C:\Users\SHRI\Videos\Final DATA\DATA F\CAD\{}C\

EXCER\V4.xlsx'.format(i)) 

    data11 = pd.read_excel (r'C:\Users\SHRI\Videos\Final DATA\DATA F\CAD\{}C\

EXCER\V5.xlsx'.format(i)) 

    data12 = pd.read_excel (r'C:\Users\SHRI\Videos\Final DATA\DATA F\CAD\{}C\

EXCER\V6.xlsx'.format(i)) 
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    ecgxt = data1.iloc [:,0] 

    ecgya = data1.iloc [:,1] 

    PR_int= ecgya.iloc[98:197] 

    QRS_comp= ecgya.iloc[197:252] 

    ST_seg= ecgya.iloc[252:319] 

    T_seg= ecgya.iloc[319:418] 

    QT_seg= ecgya.iloc[197:418] 

    P= max(PR_int)   # P-value 

    R= max(QRS_comp)  # R-value 

    S= min(QRS_comp)  # S-value 

    T= max(T_seg) # T-value 

    s = pd.Series([P, R, S, T]) 

    frames= [ecgya, QRS_comp,ST_seg, s] 

    result1 = pd.concat(frames) 

    #result.to_excel("output.xlsx", sheet_name='ecg_modify_data', index=False)   

    . 

    .  

    .  #Similarlly continued for twelve leads 

    . 

    ecgxt = data12.iloc [:,0] 

    ecgya = data12.iloc [:,1] 

    PR_int= ecgya.iloc[98:197] 

    QRS_comp= ecgya.iloc[197:252] 

    ST_seg= ecgya.iloc[252:319] 

    T_seg= ecgya.iloc[319:418] 

    QT_seg= ecgya.iloc[197:418] 

    P= max(PR_int)   # P-value 

    R= max(QRS_comp)  # R-value 

    S= min(QRS_comp)  # S-value 

    T= max(T_seg) # T-value 

    s = pd.Series([P, R, S, T]) 
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    frames= [ecgya, QRS_comp,ST_seg, s] 

    result12 = pd.concat(frames) 

    combineN= [result1, result2, result3, result4, result5, result6, result7, result8, result

9, result10, result11, result12] 

    result=  pd.concat(combineN) 

 

    path = r'C:\Users\SHRI\Videos\Final DATA\DATA F\data_prepare\CAD_ecg_exw

ithfe\CAD_ecg_exwithfe.xlsx' 

    book = load_workbook(path) 

    writer = pd.ExcelWriter(path, engine = 'openpyxl') 

    writer.book = book 

 

    result.to_excel(writer, sheet_name = '{}'.format(i), index=False) 

    #result.to_excel(writer, sheet_name = 'c2') 

    writer.save() 

    writer.close() 

 

Or Second code 

# Give an excel filename and worksheet name  

output=r'C:\Users\SHRI\Videos\PhD\Ecg\ECG python\Untitled Folder\data_prepare\

output.xlsx' 

worksheet = 'Sheet' 

wb = Workbook()  

 

# If file not present at location, then create one 

if os.path.isfile(output): 

    print('File Present') 

else: 

    print('Creatted New file') 

    ws = wb.create_sheet(worksheet) 

    wb.save(output) 
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# Loop for all 350 files 

for i in range(1, 13): 

    print('File {}:'.format(i)) 

    data24 = pd.read_excel(r'C:\Users\SHRI\Videos\PhD\Ecg\ECG python\KMC_ecg_

data\CAD_DATA\1C_C\EXCER\{}.xlsx'.format(i)) 

   

    ecgxt = data24.iloc [:,0] 

    ecgya = data24.iloc [:,1] 

    PR_int= ecgya.iloc[98:197] 

    QRS_comp= ecgya.iloc[197:252] 

    ST_seg= ecgya.iloc[252:319] 

    T_seg= ecgya.iloc[319:418] 

    QT_seg= ecgya.iloc[197:418] 

    P= max(PR_int)   # P-value 

    R= max(QRS_comp)  # R-value 

    S= min(QRS_comp)  # S-value 

    T= max(T_seg) # T-value 

    s = pd.Series([P, R, S, T]) 

    frames= [ecgya, QRS_comp,ST_seg, s] 

    result = pd.DataFrame(pd.concat(frames)) 

    ws = wb.active 

    result_list = result.to_numpy() 

    print('Total rows = ', len(result_list)) 

    for row in result_list.tolist(): 

        ws.append(row) 

    wb.save(output) 

 

(c) Combine all the sheets of excel into single sheet 

import pandas as pd  

import numpy as np 

import os, collections, csv 

from os.path  import basename 
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#df = [] 

dat = r'C:\Users\SHRI\Videos\Final DATA\DATA F\data_prepare\NOCAD_ecg_ex\

NOCAD_ecg_ex.xlsx' 

#C:\Users\SHRI\Videos\Final DATA\DATA F\data_prepare\CAD_ecg_exwithfe\CA

D_ecg_exwithfe 

list_sheets = [] 

#numberOfSheets = 125 #Modify this (n+1). 

for i in range(1,119): 

#for i in range(1,158): 

    data = pd.read_excel(dat, sheet_name = str(i), header=None)  

    list_sheets.append(data) 

     

#remember python is very strict on how you arrange stuff so be aware of this 

final = r'C:\Users\SHRI\Videos\Final DATA\DATA F\data_prepare\NOCAD_ecg_ex

\To_NOCAD_ecg_ex.xlsx' 

out_data= pd.concat(list_sheets,axis = 1) 

out_data.to_excel(final) 

 

2. Image preprocessing 

(a) Background removal 

# white background 

from scipy import ndimage, misc 

import numpy as np 

import os 

import cv2 

from PIL import Image 

import PIL.ImageOps  

import matplotlib.pyplot as plt 

import skimage 

from skimage import io 

from google.colab.patches import cv2_imshow 
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path = "/content/drive/MyDrive/1C.jpg" 

 

# iterate through the names of contents of the folder 

 

# create the full input path and read the file 

input_path = path 

img1= cv2.imread(input_path) 

 

print(BLACK_MIN) 

print(BLACK_MAX) 

 

BLACK_MIN = np.array([0,0,0],np.uint8) 

BLACK_MAX = np.array([255,255,160],np.uint8) 

hsv_img = cv2.cvtColor(img1,cv2.COLOR_BGR2HSV) 

frame_threshed = cv2.inRange(hsv_img, BLACK_MIN, BLACK_MAX) 

cv2.imwrite('threshed.jpg', frame_threshed) 

image = Image.open('threshed.jpg') 

inverted_image = PIL.ImageOps.invert(image) 

inverted_image.save('invert.jpg') 

img2=cv2.imread("invert.jpg") 

kernel = np.ones((2,2), np.uint8) 

dilate = cv2.morphologyEx(img2, cv2.MORPH_DILATE, kernel) 

 

(b) Selection of Images 

import os 

import random 

import shutil 

 

files_list = [] 

for root, dirs, files in os.walk(r'C:\Users\SHRI\Videos\Final DATA\Shri ECG images\

single_lead_bw_crop_final\Validation\CAD'): 
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##for root, dirs, files in os.walk(r'C:\Users\SHRI\Videos\Final DATA\Shri ECG imag

es\single_lead_bw_crop_final\Validation\NOCAD'): 

 

    for file in files: 

        #all  

        if file.endswith(".jpg"): 

            files_list.append(os.path.join(root, file)) 

 

#print images 

#lets me count and print the amount of jpeg,jpg,pmg  

file_count = len(files_list) 

print (file_count) 

 

#print files_list    

# Get the remaining files 

 

selected_files = random.sample(files_list, 3015)  #assign to a list 

##selected_files = random.sample(files_list, 2265)  #assign to a list 

 

dest_path = r'C:\Users\SHRI\Videos\Final DATA\Shri ECG images\single_lead_bw_

crop_final\Train\CAD' 

 

for src_path in selected_files: 

    shutil.move(src_path, os.path.join(dest_path, os.path.basename(src_path))) 

 

3. Hyperparameter tuning 

INPUT_SHAPE=(SIZE,SIZE,3) 

NUM_CLASSES=1 

 

from kerastuner import HyperModel 
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class CNNHyperModel(HyperModel): 

    def __init__(self, input_shape, num_classes): 

        self.input_shape = input_shape 

        self.num_classes = num_classes 

 

    def build(self, hp): 

        model = keras.Sequential() 

        #conv_1 

        model.add( 

            Conv2D( 

                filters=hp.Choice( 

                    'num_filters_conv_1', 

                    values=[16,32, 64,128], 

                    default=64, 

                ), 

                activation='relu', 

                kernel_size=hp.Int('conv1_kernel_size', min_value=3, max_value=9),paddi

ng='same' 

            ) 

        ) 

        model.add(MaxPooling2D(pool_size=hp.Int('pool1_pool_size', min_value=2, ma

x_value=7),padding='same')) 

 

        model.add( 

            Conv2D( 

                filters=hp.Choice( 

                    'num_filters_conv_2', 

                    values=[16,32, 64,128], 

                    default=32, 

                ), 

                activation='relu', 
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                kernel_size=hp.Int('conv2_kernel_size', min_value=3, max_value=9),paddi

ng='same' 

            ) 

        ) 

# Similarly add number of layers need to tune. 

        model.add( 

            Dropout( 

                rate=hp.Float( 

                    'dropout_7', 

                    min_value=0.2, 

                    max_value=0.8, 

                    default=0.4, 

                    step=0.5 

                ) 

            ) 

        ) 

        model.add(Dense(self.num_classes, activation='sigmoid')) 

 

        model.compile( 

            optimizer=keras.optimizers.Adam( 

                hp.Float( 

                    'learning_rate', 

                    min_value=1e-9, 

                    max_value=1e-1, 

                    sampling='LOG', 

                    default=1e-3 

                ) 

            ), 

            loss='binary_crossentropy', 

            metrics=['accuracy'] 

        ) 

        return model 
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hypermodel = CNNHyperModel(input_shape=INPUT_SHAPE, num_classes=NUM_

CLASSES) 

 

from kerastuner.tuners import RandomSearch 

SEED=42 

MAX_TRIALS=10 

EXECUTION_PER_TRIAL=5 

NUM_CLASSES = 1  

INPUT_SHAPE = (SIZE, SIZE, 3)  

 

hypermodel = CNNHyperModel(input_shape=INPUT_SHAPE, num_classes=NUM_

CLASSES) 

 

tuner = RandomSearch( 

    hypermodel, 

    objective='val_accuracy', 

    seed=SEED, 

    max_trials=MAX_TRIALS, 

    executions_per_trial=EXECUTION_PER_TRIAL, 

    directory='SHRI', 

    project_name='CAD', 

    overwrite=True 

) 

 

tuner.search_space_summary() 

 

N_EPOCH_SEARCH = 40 

 

tuner.search(X_train, y_train, epochs=40, validation_data=(X_val,y_val)) 

 

4. ONE DIMENSIONAL NEURAL NETWORKS 
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(a) Data Calling 

import pandas 

from numpy import loadtxt 

from tensorflow.keras.models import Sequential 

from tensorflow.keras.layers import Dense 

from tensorflow.keras.layers import Activation 

 

data2 = pandas.read_excel (r'C:\Users\SHRI\Videos\Ecg\ECG python\Untitled Folder

\data_prepare\final data1\step-

4 data for algorithm\Random data selection\ecg_ex_nonex_sup_train.xlsx', sheet_nam

e=0) 

 

df1 = data2.sample(frac=0.20,axis='columns') 

df2 = df1.sample(frac=1,axis='columns') 

df1.to_excel("testp2.xlsx") 

trans1= df1.T 

array1 = trans1.values 

X1 = array1[:,:-1] 

y1 = array1[:,-1] 

 

df3 = data2.drop(df2.columns,axis=1) 

df3.to_excel("trainp2.xlsx") 

trans2= df3.T 

array2 = trans2.values 

X2 = array1[:,:-1] 

y2 = array1[:,-1] 

 

(b) Training Algorithm with three convolutional layers 

 

import tensorflow as tf 

from functools import partial 
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from tensorflow.keras.layers import Dense, Dropout 

from tensorflow.keras.layers import Flatten 

from tensorflow.python.keras.layers import Conv1D 

n_features = 1 

X22 = X2.reshape((X2.shape[0], X2.shape[1], n_features)) 

 

X11 = X1.reshape((X1.shape[0], X1.shape[1], n_features)) 

 

# from keras.utils import normalize 

# X22 = normalize(X22, axis=1) 

# X11 = normalize(X11, axis=1) 

 

 

# define model 

#n_steps = 9792 

n_steps = 815 

model = Sequential() 

model.add(Conv1D(filters=64, kernel_size=2, activation='relu', input_shape=(n_steps

, n_features))) 

model.add(Conv1D(filters=32, kernel_size=2, activation='relu')) 

model.add(Conv1D(filters=16, kernel_size=2, activation= tf.keras.layers.LeakyReLU

(alpha=0.1))) 

model.add(Flatten()) 

model.add(Dense(16, activation='relu')) 

model.add(Dense(1, activation='sigmoid')) 

model.summary() 

model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) 

 

# fit model 

X11 = X1.reshape((X1.shape[0], X1.shape[1], n_features)) 

history1 = model.fit(X11,y1,epochs = epoch, batch_size=10, verbose=2, validation_d

ata = (X22, y2)) 
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score, acc = model.evaluate(X22, y2, 

                            batch_size=10, 

                            verbose=1) 

print('Test score:', score) 

print('Test accuracy:', acc) 

 

# plot training and validation accuracy along with training and validation loss 

import matplotlib.pyplot as plt 

from sklearn.metrics import classification_report,confusion_matrix 

 

acc = history1.history['accuracy'] 

val_acc = history1.history['val_accuracy'] 

loss = history1.history['loss'] 

val_loss = history1.history['val_loss'] 

 

epochs_range = range(epoch) 

 

plt.figure(figsize=(15, 15)) 

plt.subplot(2, 2, 1) 

plt.plot(epochs_range, acc, label='Training Accuracy') 

plt.plot(epochs_range, val_acc, label='Validation Accuracy') 

plt.legend(loc='lower right') 

plt.title('Training and Validation Accuracy') 

 

plt.subplot(2, 2, 2) 

plt.plot(epochs_range, loss, label='Training Loss') 

plt.plot(epochs_range, val_loss, label='Validation Loss') 

plt.legend(loc='upper right') 

plt.title('Training and Validation Loss') 

plt.show() 
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# print out the classification report to see the precision and accuracy. 

predictions = model.predict_classes(X22) 

predictions = predictions.reshape(1,-1)[0] 

print(classification_report(y2, predictions, target_names = ['CAD (Class 0)','NOCAD 

(Class 1)'])) 

 

 

5  TWO-DIMENSIONAL CONVOLUTIONAL NETWORK 

 

from sklearn.model_selection import train_test_split 

from tensorflow.keras.preprocessing.image import ImageDataGenerator 

#from keras.utils import to_categorical 

 

(a) Model definition 

X_train, X_test, y_train, y_test = train_test_split(dataset, label, test_size = 0.15, rando

m_state = 1,) 

X_train = X_train / 255. 

X_test = X_test / 255. 

 

INPUT_SHAPE = (SIZE, SIZE, 3)   #change to (SIZE, SIZE, 3) 

# create model 

model = Sequential() 

 

model.add(Conv2D(64, (3, 3), input_shape=INPUT_SHAPE)) 

model.add(Activation('relu')) 

model.add(MaxPooling2D(pool_size=(2, 2))) 

 

model.add(Conv2D(32, (3, 3), kernel_initializer = 'he_uniform')) 

model.add(Activation('relu')) 

model.add(MaxPooling2D(pool_size=(2, 2))) 

model.add(Dropout(0.2) 

model.add(Conv2D(32, (3, 3), kernel_initializer = 'he_uniform')) 
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model.add(Activation('relu')) 

model.add(MaxPooling2D(pool_size=(2, 2))) 

model.add(Dropout(0.2)) 

model.add(Conv2D(32, (3, 3), kernel_initializer = 'he_uniform')) 

model.add(Activation('relu')) 

model.add(MaxPooling2D(pool_size=(2, 2))) 

model.add(Dropout(0.2)) 

model.add(Conv2D(128, (3, 3), kernel_initializer = 'he_uniform')) 

model.add(Activation('relu')) 

# Number of layers 

model.add(Dense(1)) 

model.add(Activation('sigmoid'))   

# load weights 

model.load_weights("model.weights.best.hdf5") 

# Compile model (required to make predictions) 

model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) 

print("Created model and loaded weights from file") 

 

(b) Optimizer Definition  

import tensorflow as tf 

opt=tf.keras.optimizers.Adam( 

    learning_rate=0.00001, 

    beta_1=0.1, 

    beta_2=0.1, 

    epsilon=1e-07, 

    amsgrad=False, 

    name="Adam", 

     

) 

 

model.compile(loss= 'binary_crossentropy', 
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              optimizer='adam',  #'adam',              

              metrics=['accuracy']) 

 

print(model.summary()) 

 

(c) Print Model Plot 

import tensorflow as tf 

from tensorflow import keras 

from tensorflow.keras import layers 

keras.utils.plot_model(model, show_shapes=True) 

 

(d) Model Fit 

import tensorflow as tf 

from tensorflow.keras.callbacks import ModelCheckpoint 

es=tf.keras.callbacks.EarlyStopping( monitor="val_loss", patience=3, 

                                     verbose=1,  restore_best_weights=True) 

rlronp=tf.keras.callbacks.ReduceLROnPlateau( monitor="val_loss", factor=0.5, patie

nce=2, 

                                             verbose=1) 

checkpointer = ModelCheckpoint(filepath='model.weights.best.hdf5', verbose = 2, sav

e_best_only=True) 

callback_list=[es, rlronp, checkpointer] 

 

history = model.fit(X_train,  

                         y_train,  

                         batch_size = 32,  

                         verbose = 2,  

                         epochs = 25,       

                         validation_split=0.10, 

                         shuffle = False,callbacks=[callback_list]) 

 

(e) Random Testing  
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#Test the model on single images  

n = random.randint(0, len(X_test)-1) 

img = X_test[n] 

plt.imshow(img) 

input_img = np.expand_dims(img, axis=0) #Expand dims so the input is (num images

, x, y, c) 

print("The prediction for this image is: ", model.predict(input_img)) 

print("The actual label for this image is: ", y_test[n]) 

 

*Testing dataset 

_, acc = model.evaluate(X_test, y_test) 

print("Accuracy = ", (acc * 100.0), "%") 

 

*Cross Validation 

from sklearn.model_selection import StratifiedKFold 

import numpy 

# fix random seed for reproducibility 

seed = 7 

numpy.random.seed(seed) 

kfold = StratifiedKFold(n_splits=10, shuffle=True, random_state=seed) 

cvscores = [] 

# evaluate the model 

for train, test in kfold.split(x_train,y_train): 

  scores = model.evaluate([x_test], [y_ test], verbose=0) 

  print("%s: %.2f%%" % (model.metrics_names[1], scores[1]*100)) 

  cvscores.append(scores[1] * 100) 

print("%.2f%% (+/- %.2f%%)" % (numpy.mean(cvscores), numpy.std(cvscores))) 

 

#ROC 

from sklearn.metrics import roc_curve 

y_preds = model.predict(X_test).ravel() 
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fpr, tpr, thresholds = roc_curve(y_test, y_preds) 

plt.figure(1) 

plt.plot([0, 1], [0, 1], 'y--') 

plt.plot(fpr, tpr, marker='.') 

plt.xlabel('False positive rate') 

plt.ylabel('True positive rate') 

plt.title('ROC curve') 

plt.show() 

 

#Threshold  

import pandas as pd 

i = np.arange(len(tpr))  

roc = pd.DataFrame({'tf' : pd.Series(tpr-(1-

fpr), index=i), 'thresholds' : pd.Series(thresholds, index=i)}) 

ideal_roc_thresh = roc.iloc[(roc.tf-

0).abs().argsort()[:1]]  #Locate the point where the value is close to 0 

print("Ideal threshold is: ", ideal_roc_thresh['thresholds']) 

 

#Confusion matrix 

mythreshold=float(ideal_roc_thresh['thresholds']) 

from sklearn.metrics import confusion_matrix, classification_report 

import seaborn as sns 

y_pred = (model.predict(X_test)>= mythreshold).astype(int) 

cm=confusion_matrix(y_test, y_pred)   

clr = classification_report(y_test, y_pred, labels=[0, 1], target_names=["CAD", "NOC

AD"]) 

plt.figure(figsize=(6, 6)) 

sns.heatmap(cm, annot=True, fmt='g', vmin=0, cmap='Blues', cbar=False) 

plt.xticks(ticks=[0.5, 1.5], labels=["CAD", "NOCAD"]) 

plt.yticks(ticks=[0.5, 1.5], labels=["CAD", "NOCAD"]) 

plt.xlabel("Predicted") 

plt.ylabel("Actual") 
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plt.title("Confusion Matrix") 

plt.show() 

 

print("Classification Report:\n----------------------\n", clr) 

 

6 TRANSFER LEARNING APPROACH 

(a) EFFICIENT NET B0 

import tensorflow as tf  

from tensorflow.keras.preprocessing.image import ImageDataGenerator  

from tensorflow.keras import layers  

from tensorflow.keras import Model  

import matplotlib.pyplot as plt 

 

!pip install git+https://github.com/qubvel/segmentation_models 

import efficientnet.tfkeras as efn 

base_model = efn.EfficientNetB0(input_shape = (150, 150, 3), include_top = False, w

eights = 'imagenet') 

for layer in base_model.layers: 

    layer.trainable = False 

# Flatten the output layer to 1 dimension 

x = layers.Flatten()(base_model.output) 

# Add a fully connected layer with 512 hidden units and ReLU activation 

x = layers.Dense(512, activation='relu')(x) 

# Add a dropout rate of 0.5 

x = layers.Dropout(0.5)(x) 

 

# Add a final sigmoid layer for classification 

x = layers.Dense(1, activation='sigmoid')(x) 

 

model = tf.keras.models.Model(base_model.input, x) 

model.compile(loss='binary_crossentropy',#BinaryFocalLoss(gamma=5) 
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              optimizer='adam',  #'adam',             #also try rmsprop or custom optimizer "o

pt" 

              metrics=['accuracy']) 

print(model.summary()) 

 

(b) Inception V3 

from tensorflow.keras.applications.inception_v3 import InceptionV3 

base_model = InceptionV3(input_shape = (150, 150, 3), include_top = False, weights 

= 'imagenet') 

 

(c) Mobilenet V2 

import tensorflow as tf 

base_model = tf.keras.applications.MobileNetV2(input_shape = (150, 150, 3), include

_top = False, weights = "imagenet") 

 

(d) ResNet50 

from tensorflow.keras.applications import ResNet50 

base_model = ResNet50(input_shape=(150, 150,3), include_top=False, weights="ima

genet") 

 

(e)   VGG16 

from tensorflow.keras.applications.vgg16 import VGG16 

base_model = VGG16(input_shape = (150, 150, 3), # Shape of our images 

include_top = False, # Leave out the last fully connected layer 

weights = 'imagenet') 
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7. MULTI HEADED MODEL 

(a) Data handling  

from google.colab import drive 

drive.mount('/content/drive') 

import os 

import cv2 

from PIL import Image 

import numpy as np 

#Single Lead Images 

image_directory = '/content/drive/MyDrive/PhD Data File/Images/' 

#Twelve Lead Images 

image_directory = '/content/drive/MyDrive/PhD Data File/12lead/' 

SIZE = 256 

 

dataset = []  #Many ways to handle data, you can use pandas. Here, we are using a list

 format.   

label = []  #Place holders to define add labels. We will add 0 to all parasitized images 

and 1 to uninfected. 

 

CAD_images = os.listdir(image_directory + 'CAD/') 

for i, image_name in enumerate(CAD_images):    #Remember enumerate method add

s a counter and returns the enumerate object 

     

    if (image_name.split('.')[1] == 'jpg' or 'JPG'): 

        image = cv2.imread(image_directory + 'CAD/' + image_name) 

        #image=cv2.medianBlur(image,1) 

        #image=~image00 

        image = Image.fromarray(image, 'RGB') 

        image = image.resize((SIZE, SIZE)) 

        dataset.append(np.array(image)) 

        label.append(1) 
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#Iterate through all images in Uninfected folder, resize to 64 x 64 

#Then save into the same numpy array 'dataset' but with label 1 

 

NOCAD_images = os.listdir(image_directory + 'NOCAD/') 

for i, image_name in enumerate(NOCAD_images): 

    if (image_name.split('.')[1] == 'jpg' or 'JPG'): 

        image = cv2.imread(image_directory + 'NOCAD/' + image_name) 

        #image=cv2.medianBlur(image,1) 

        #image=~image 

        image = Image.fromarray(image, 'RGB') 

        image = image.resize((SIZE, SIZE)) 

        dataset.append(np.array(image)) 

        label.append(0) 

 

dataset = np.array(dataset) 

label = np.array(label) 

 

#Sanity check, view few mages 

import random 

import numpy as np 

import matplotlib.pyplot as plt 

 

image_number = random.randint(0, len(dataset)-1) 

plt.imshow(np.reshape(dataset[image_number], (SIZE, SIZE, 3))) 

print("Label for this image is: ", label[image_number]) 

 

*Training images split 

from sklearn.model_selection import train_test_split 

#from keras.utils import to_categorical 

x_train, x_val, y_train, y_val = train_test_split(dataset, label, test_size = 0.016, rando

m_state=41, stratify = label) 
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*Data handling 

# multivariate multi-headed 1d cnn example 

from numpy import array 

from numpy import hstack 

from tensorflow.keras.models import Model 

from tensorflow.keras.layers import Input 

from tensorflow.keras.layers import Dense 

from tensorflow.keras.layers import Flatten 

from tensorflow.keras.layers import Conv1D 

from tensorflow.keras.layers import MaxPooling1D 

from tensorflow.keras.layers import concatenate 

import tensorflow as tf 

import matplotlib as plot  

import pandas 

from numpy import loadtxt 

from tensorflow.keras.models import Sequential 

from tensorflow.keras.layers import Dense 

from tensorflow.keras.layers import Activation 

 

# load the dataset 

# Single lead data 

data1 = pandas.read_excel (r'/content/drive/MyDrive/PhD Data File/CAD_NC_wi_fe

at_1lde.xlsx', sheet_name=0) 

 

# Twelve lead data 

 

data1 = pandas.read_excel (r'/content/drive/MyDrive/PhD Data File/CAD_NC_wi_fe

at.xlsx', sheet_name=0) 

 

datad= data1.T 

datasetd= datad.values 



244 

 

data1= datasetd[:,:-1] 

label1= datasetd[:,-1] 

 

*Training data split 

x_traind, x_vald, y_traind, y_vald = train_test_split(data1, label1, test_size = 0.016, ra

ndom_state=41, stratify = label1) 

 

(b) Data correlations  

 

# calculate the Pearson's correlation between two variables 

from scipy.stats import pearsonr 

 

# calculate validation Pearson's correlation 

corr, _ = pearsonr(y_val, y_vald) 

print('Pearsons correlation: %.3f' % corr) 

 

# calculate train Pearson's correlation 

corr, _ = pearsonr(y_train, y_traind) 

print('Pearsons correlation: %.3f' % corr) 

 

(c) Scaling data  

from sklearn.preprocessing import StandardScaler 

X11= rescaledX1 =  StandardScaler().fit_transform(X1) 

X22= rescaledX2 = StandardScaler().fit_transform(X2) 

 

(d)  Algorithm code 

from tensorflow.keras.layers import Dense, Conv2D , MaxPool2D , Flatten , Dropout,

 BatchNormalization 

from tensorflow.python.keras.layers import MaxPooling2D, GlobalMaxPooling2D 

from tensorflow.keras.applications.mobilenet_v2 import preprocess_input 
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# first input model 

visible1 = Input(shape=(815,1)) 

cnn1 = Conv1D(filters=8, kernel_size=5, activation= 'relu')(visible1) 

cnn1 = MaxPooling1D(pool_size=2)(cnn1) 

cnn1 = Conv1D(filters=16, kernel_size=5, activation= 'relu')(cnn1) 

cnn1 = MaxPooling1D(pool_size=2)(cnn1) 

cnn1 = Dropout(0.2)(cnn1) 

cnn1 = Conv1D(filters=32, kernel_size=5, activation='relu')(cnn1) 

cnn1 = MaxPooling1D(pool_size=2)(cnn1) 

cnn1 = Conv1D(filters=32, kernel_size=5, activation='relu')(cnn1) 

cnn1 = MaxPooling1D(pool_size=2)(cnn1) 

cnn1 = Dropout(0.2)(cnn1) 

cnn1 = Conv1D(filters=64, kernel_size=5, activation='relu')(cnn1) 

cnn1 = MaxPooling1D(pool_size=2)(cnn1) 

cnn1 = Conv1D(filters=64, kernel_size=5, activation='relu')(cnn1) 

cnn1 = MaxPooling1D(pool_size=2)(cnn1) 

cnn1 = Dropout(0.2)(cnn1) 

cnn1 = Conv1D(filters=128, kernel_size=5, activation='relu')(cnn1) 

cnn1 = MaxPooling1D(pool_size=2)(cnn1) 

cnn1 = Dropout(0.2)(cnn1) 

cnn1 = Flatten()(cnn1) 

cnn1 = Dense(256, activation='relu')(cnn1) 

cnn1 = Dropout(0.4)(cnn1) 

cnn1 = Dense(128, activation='relu')(cnn1) 

 

# second input model 

visible2 = Input(shape=(100, 100, 3)) 

cnn2 = Conv2D(filters=8,kernel_size= (5,5),activation='relu',padding='same')(visible

2) 

cnn2 = Conv2D(filters=16,kernel_size= (5,5),activation='relu',padding='same')(cnn2) 

cnn2 = MaxPooling2D(pool_size=(2,2))(cnn2) 

cnn2 = Dropout(0.2)(cnn2) 



246 

 

cnn2 = Conv2D(filters=32,kernel_size= (5,5),activation='relu',padding='same')(cnn2) 

cnn2 = Conv2D(filters=32,kernel_size= (5,5),activation='relu',padding='same')(cnn2) 

cnn2 = MaxPooling2D(pool_size=(2,2))(cnn2) 

cnn2 = Dropout(0.2)(cnn2) 

cnn2 = Conv2D(filters=64,kernel_size= (5,5),activation='relu',paddi 

cnn2 = Conv2D(filters=64,kernel_size= (5,5),activation='relu',padding='same')(cnn2) 

cnn2 = MaxPooling2D(pool_size=(2,2))(cnn2) 

cnn2 = Dropout(0.2)(cnn2) 

cnn2 = Conv2D(filters=128,kernel_size= (5,5),activation='relu',padding='same')(cnn2

) 

cnn2 = Conv2D(filters=128,kernel_size= (5,5),activation='relu',padding='same')(cnn2

) 

cnn2 = MaxPooling2D(pool_size=(2,2))(cnn2) 

cnn2 = Dropout(0.2)(cnn2) 

cnn2 = Flatten()(cnn2) 

cnn2 = Dense(256, activation='relu')(cnn2) 

cnn2 = Dropout(0.4)(cnn2) 

cnn2 = Dense(128, activation='relu')(cnn2) 

 

# third input model 

visible3 = Input(shape=(100, 100, 3)) 

cnn3 = Flatten()(visible3) 

cnn3 = Dense(8, activation='relu')(cnn3) 

cnn3 = Dense(32, activation='relu')(cnn3) 

cnn3 = Dense(256, activation='relu')(cnn3) 

cnn3 = Dropout(0.4)(cnn3) 

cnn3 = Dense(128, activation='relu')(cnn3) 

 

# merge input models 

merge = concatenate([cnn1, cnn2, cnn3]) 

output = Dense(1, activation='sigmoid')(merge) 

model = Model(inputs=[visible1, visible2, visible3], outputs=output) 
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model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy']) 

model.summary() 

 

(e) Model Architecture 

from tensorflow.keras.utils import plot_model 

# plot graph 

plot_model(model, to_file='multiple_inputs.png') 

 

(f) Model Fitting and End conditions  

from tensorflow.keras.callbacks import ModelCheckpoint 

checkpointer = ModelCheckpoint(filepath='model.weights.best.hdf121', verbose = 2, 

save_best_only=True) 

Es= tf.keras.callbacks.EarlyStopping(monitor='val_loss',patience=10,restore_best_we

ights=True) 

# fit model 

Deepmod = model.fit([x_traind, x_train, x_train], y_train, epochs=100, verbose=2, ba

tch_size=18, callbacks=[checkpointer, Es], validation_data = ([x_vald, x_val, x_val], 

y_val)) 

 

#plot the training and validation accuracy and loss at each epoch 

loss = Deepmod.history['loss'] 

val_loss = Deepmod.history['val_loss'] 

epochs = range(1, len(loss) + 1) 

plt.plot(epochs, loss, 'y', label='Training loss') 

plt.plot(epochs, val_loss, 'r', label='Validation loss') 

plt.title('Training and validation loss') 

plt.xlabel('Epochs') 

plt.ylabel('Loss') 

plt.legend() 

plt.show() 
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acc = Deepmod.history['accuracy'] 

val_acc = Deepmod.history['val_accuracy'] 

plt.plot(epochs, acc, 'y', label='Training acc') 

plt.plot(epochs, val_acc, 'r', label='Validation acc') 

plt.title('Training and validation accuracy') 

plt.xlabel('Epochs') 

plt.ylabel('Accuracy') 

plt.legend() 

plt.show() 

plt.plot(epochs, loss, label='Training Loss') 

plt.plot(epochs, val_loss, label='Validation Loss') 

plt.legend(loc='upper right') 

plt.title('Training and Validation Loss') 

plt.show() 

 

(g) Cross Validation 

from sklearn.model_selection import StratifiedKFold 

import numpy 

# fix random seed for reproducibility 

seed = 7 

numpy.random.seed(seed) 

kfold = StratifiedKFold(n_splits=10, shuffle=True, random_state=seed) 

cvscores = [] 

# evaluate the model 

for train, test in kfold.split(x_train,y_train): 

  scores = model.evaluate([x_vald, x_val, x_val], [y_val], verbose=0) 

  print("%s: %.2f%%" % (model.metrics_names[1], scores[1]*100)) 

  cvscores.append(scores[1] * 100) 

print("%.2f%% (+/- %.2f%%)" % (numpy.mean(cvscores), numpy.std(cvscores))) 

 

(h) ROC Plot 

#ROC can help identify the right threshold. 
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 from sklearn.metrics import roc_curve 

y_preds = model.predict([x_vald, x_val, x_val]).ravel() 

 

fpr, tpr, thresholds = roc_curve(y_val, y_preds) 

plt.figure(1) 

plt.plot([0, 1], [0, 1], 'y--') 

plt.plot(fpr, tpr, marker='.') 

plt.xlabel('False positive rate') 

plt.ylabel('True positive rate') 

plt.title('ROC curve') 

plt.show() 

 

(i) Confusion matrix 

#We compare labels and plot them based on correct or wrong predictions. 

#Since sigmoid outputs probabilities we need to apply threshold to convert to label. 

x_test = x_val 

x_testd = x_vald 

y_test = y_val 

mythreshold=float(ideal_roc_thresh['thresholds']) 

 

from sklearn.metrics import confusion_matrix, classification_report 

import seaborn as sns 

y_pred = (model.predict([x_testd, x_test, x_test])>= mythreshold).astype(int) 

cm=confusion_matrix(y_test, y_pred)   

clr = classification_report(y_test, y_pred, labels=[1, 0], target_names=["CAD", "NOC

AD"]) 

plt.figure(figsize=(6, 6)) 

sns.heatmap(cm, annot=True, fmt='g', vmin=0, cmap='Blues', cbar=False) 

plt.xticks(ticks=[0.5, 1.5], labels=["NOCAD", "CAD"]) 

plt.yticks(ticks=[0.5, 1.5], labels=["NOCAD", "CAD"]) 

plt.xlabel("Predicted") 

plt.ylabel("Actual") 
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plt.title("Confusion Matrix") 

plt.show() 

print("Classification Report:\n----------------------\n", clr) 
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APPENDIX – II 

WORKING PRINCIPLE OF DEEP LEARNING MODELS 

(A) Hyperparameter of Convolutional neural networks 

A.1 Activation functions 

Activation function generates a scalar value from a weighted sum of inputs in artificial 

neural networks(Pandey and Gupta 2018). These are basically divided into two types: 

a. Linear Activation Function 

b. Non-linear Activation Functions 

 

a. Linear activation function: The function, where the input values are linearly related 

(Figure A1) to output is known as linear activation function. That is mathematically 

represented as: 

f(x) = x    

 

 

Figure A1: Linear activation function 

 

b. Non-linear Activation Functions: These types of activation functions show 

nonlinearity behavior between input and output values. These functions help in stacking 

of multiple layers of neurons and generating non-linear output from the input passed 

through multiple layers. Some of the major nonlinear activation functions are  

 

(i) Sigmoid Activation Functions: 

The output of sigmoid activation function is always in the range of 0 -1. The function 

assumes the shape shown in Figure A2 and is mathematically represented as: 

      f(x) =  
1

1+ex
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Figure A2: Sigmoid activation function (Rai and Mitra 2021) 

 

(ii) Rectified Linear Unit (Relu) Activation Functions: 

The rectified linear activation function (He et al. 2015) is similar to the linear function 

but the difference is, it generates output directly if the input is positive. Otherwise, it 

remains zero (Figure A3). It is the default activation function for many types of neural 

networks due to the ease of training and often achieves better performance. This is 

mathematically represented as: 

 

𝑓(𝑥) = max (0, 𝑥)    

 

 
 

Figure A3: Relu activation function (Rai and Mitra 2021) 

 

(iii) Softmax Function: 

The softmax function is similar to the sigmoid function with a range of -1 to +1 (Figure 

A4) but it is flexible to handle multi-class classification algorithms. It is mathematically 

represented as: 

f(x) =  
exi

∑ e
xj

j
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Figure A4: Softmax activation function (Rai and Mitra 2021) 

 

(iv) Leaky Relu Activation Functions 

Leaky ReLU indicates the upgraded behavior compared to the ReLU activation function 

and shows a small slope in the negative area (Figure A5) which is indicated as zero in 

Relu activation. This is mathematically expressed as: 

 

f(x) = max (0.1x, x)     

 

 
 

Figure A5: Leaky Relu activation function (Rai and Mitra 2021) 

 

A.2 Filters  

A filter is like a single pattern, which convolves across the input and finds similarities 

between the stored template which is related to different regions in the input image. The 

common range of filters defined is 16 to 512. 

 

A.3 Kernel Size 

Kernel size refers to the width and height of the filter matrix. Commonly used kernel 

sizes will be varying from 1x1 to 5x5.  
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A.4 Stride and padding 

Stride (Steinmetzer et al. 2019) defines the size of the step consideration of the kernel 

when sliding through the image. The Padding describes the addition of zero pixels 

around the edges of an image. The requirement of padding is to maintain the original 

size of an image during the application of a convolutional filter. 

 

A.5 Weight and Bias  

Weights and biases (Li et al. 2017) are initially unknown, learnable parameters in any 

prediction model. Weights are parameters which determine how strongly each of the 

neurons affects other neurons (strength of connection). Bias are constant values, which 

are additional input parameter into the next layer. 

 

A.6 Normalization 

Normalization is one of the preprocessing (rescaling technique) operations of data. 

 

A.7 Regularization  

Regularization is a technique related to modification of the prediction model to 

overcome overfitting problems. 

 

A.8 Overfitting and Underfitting 

Overfitting errors occur when the model tries to learn all the data points or more than 

defined data points from given dataset. But underfitting errors occur when model is 

unable to rectify the underlying trend of the dataset.  

 

A.9 Maxpooling 

A pooling operation which calculates the maximum/largest, value in the region of each 

feature map selected by the filter is known as max-pooling. If it is considered as an 

averaged value of region, then it is known as average pooling.  

 

A.10 Dropout 

Dropout is a regularization technique, which affects the training process and is ideal for 

evaluation. The dropout minimizes the unnecessary feature which effects the network, 

making the network simpler and improves its generalization capabilities. 
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A.11 Learning rate 

Learning rate is a tuning parameter to optimize the algorithm which determines the step 

size at each iteration to achieve a minimum of a loss function. 

 

A.12 Optimizer  

Optimizers are algorithms or mathematical methods used to minimize loss (cost) 

function (error function) and maximize the efficiency of the model. These mathematical 

functions depend on the model's learnable parameters. The major optimizer used for the 

development of the model is Gradient descent (Srivastava et al. 2015; Yoo et al. 2020). 

Gradient Descent is the commonly known iterative optimization algorithm. This 

optimization algorithm works based on a convex function (Figure A6) and squeezes the 

parameters by iteration process to minimize a loss function to its local minima. One of 

the famous variants of the gradient decent optimizer is the Adam optimizer algorithm. 

The method uses the computing adaptive learning rates for every parameter. It is based 

on the combination of RMS-Prop (Patil and Karandikar 2018) and Adadelta optimizer 

function (which are other variants of gradient descent optimizer). It saves the i.e. 

decaying average of the past gradients (momentum), as well as a decaying average of 

the past squared gradients. 

 

 

 

Figure A6: General principle of Gradient descent. (Ghosh et al. 2020) 

 

A.13 Loss Function 

The loss function provides the comparative relation between the target and predicted 

output values. The well-known loss functions are cross-entropy, mean square error, 

mean absolute error, etc. The cross-entropy loss function measures the difference 

between two probability distribution functions. Major classes of cross entropy functions 
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are binary cross entropy function used for binary classification, and categorical cross-

entropy for multiclass classification. 
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A.14 Deep convolutional neural network 

The conceptual methodology followed in one dimensional and two-dimensional ECG 

analysis. 

 

 

 

Sample  
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A.15 Neural network working principle 

 

 
 

Forward Propagation: 

 

 Input Layer 

                    𝐴(0) = 𝑋 (815 x 𝑚) 
 

 Obtain first layer Linear combination of weight and bias  

      𝑍(1)    =       𝑤(1)             𝐴(0)      +     𝑏(1) 
(64 x m)     (64 x 815)     (815 x m)      (64 x m)  

 

 Appling the activation function  (Nonlinear function) 

𝐴(1)   =    𝑔 ( 𝑍(1) ) =    𝑅𝑒𝐿𝑈( 𝑍(1)) 
 

ReLU (𝑥)  = {
𝑥   𝑖𝑓 𝑥 > 0

𝑜𝑟
0  𝑖𝑓 𝑥 ≤ 0

 

 

 

 

 Obtain Second layer Linear combination of weight and bias  

      𝑍(2)    =       𝑤(2)             𝐴(1)    +     𝑏(2) 
(32 x m)     (32 x 64)       (64 x m)       (32 x m)  

 

𝐴(2)   =    𝑔 ( 𝑍(2) ) =    𝑅𝑒𝐿𝑈( 𝑍(2)) 
 

 Obtain Third layer Linear combination of weight and bias  

      𝑍(3)    =       𝑤(3)             𝐴(2)    +     𝑏(3) 
(32 x m)     (32 x 32)       (32 x m)       (32 x m)  

 

[3] [2] [1] 

[0] 

[4] 

Y 
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𝐴(3)   =    𝑅𝑒𝐿𝑈 ( 𝑍(3)) 
 

 Obtain Forth layer Linear combination of weight and bias  

      𝑍(4)    =       𝑤(4)             𝐴(3)    +     𝑏(4) 
(2 x m)       (2 x 32)       (32 x m)        (2 x m)  

 

𝐴(4)   =    𝑠𝑖𝑔𝑚𝑜𝑖𝑑 ( 𝑍(4)) 
 

              Sigmoid Activation Function           Probabilities 

                   

{
 
 

 
 
1.2
5.6
2.1
0.8
2.3}
 
 

 
 

       

{
 
 

 
 
0.03
0.91
0.06
0.01
0.07}

 
 

 
 

 

 

Backword Propagation:  

From Predictions getting errors to update Algorithm 

Error related to final layer 

                  𝑑𝑍(4)  =       𝐴(4)       −   𝑌 

   (2 x m)       (2 x m)       (2 x m)  

Error related to weights of forth layer  

                               𝑑𝑤(4)  =         
1

𝑚
       𝑑𝑍(4)           𝐴(3)𝑇       

(2 x 32)                 (2 x m)       (m x 32) 

Error related to bias of forth layer  

   𝑑𝑏(4)   =      
1

𝑚
       𝑑𝑍(4)     

 (2 x 1)                    (2 x 1) 

 

Error related to third layer 

   𝑑𝑍(3)   =      𝑊(4)𝑇         𝑑𝑍(4)  *      𝑔′ ( 𝑍(3) ) 

(32 x m)       (32 x 2)      (2 x m)          (32 x m) 

Error related to weights of third layer  

                               𝑑𝑤(3)  =         
1

𝑚
       𝑑𝑍(3)      𝐴(2)𝑇       

(32 x 32)                    (32 x m)       (m x 32) 

Error related to bias of third layer  

   𝑑𝑏(3)   =      
1

𝑚
       𝑑𝑍(3)     

(32 x 1) (32 x 1) 

 

Error related second layer 

   𝑑𝑍(2)   =      𝑊(3)𝑇         𝑑𝑍(3)  *      𝑔′ ( 𝑍(2) ) 
(32 x m)       (32 x 32)   (32 x m)          (32 x m) 

Error related to weights of second layer   

                𝑑𝑤(2)   =         
1

𝑚
       𝑑𝑍(2)      𝐴(1)𝑇       

(32 x 64)                    (32 x m)       (m x 64) 

1

1 − 𝑒−𝑧
 

 

Output Layer
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Error related to bias of second layer  

 

  𝑑𝑏(2)    =      
1

𝑚
       𝑑𝑍(2)     

(32 x 1) (32 x 1) 

 

Error related first layer 

 𝑑𝑍(1)  =      𝑊(2)𝑇         𝑑𝑍(2)  *      𝑔′ ( 𝑍(1) ) 
(64 x m)       (64 x 32)   (32 x m)          (64 x m) 

Error related to weights of first layer   

               𝑑𝑤(1)  =         
1

𝑚
       𝑑𝑍(1)      𝑋𝑇        

(64 x 815)            (64 x m)     (m x 815) 

Error related to bias first layer  

    𝑑𝑏(1)  =      
1

𝑚
       𝑑𝑍(1)     

    (64 x 1) (64 x 1) 

 

Updating learning parameters: 

  𝑊(1) = 𝑊(1)− ∝  𝑑𝑊(1) 

  𝑏(1) = 𝑏(1)− ∝  𝑑𝑏(1) 

  𝑊(2) = 𝑊(2)− ∝  𝑑𝑊(2) 

  𝑏(2) = 𝑏(2)− ∝  𝑑𝑏(2) 

  𝑊(3) = 𝑊(3)− ∝  𝑑𝑊(3) 

  𝑏(3) = 𝑏(3)− ∝  𝑑𝑏(3) 

  𝑊(4) = 𝑊(4)− ∝  𝑑𝑊(4) 

  𝑏(4) = 𝑏(4)− ∝  𝑑𝑏(4) 
 

 

Where, 

 ∝   =  Learning Rate 

              𝐴(0)  = Input Layer 

  𝑍(1),  𝑍(2),  𝑍(3),  𝑍(4)  = Results of First Layer, second layer, third layer, forth 

layer respectively. 

  𝑑𝑍(1),  𝑑𝑍(2)  ,  𝑑𝑍(3)  ,  𝑑𝑍(4)    = Error of first layer, second layer, third 

layer, forth layer respectively. 

   Y    = Prediction = [
0
1
] = Binary prediction 
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(B) Different transfer learning approaches 

B.1 VGG16 

Model VGG16 is based on a convolutional neural network and is one of the best vision 

model architectures. Compare to normal networks VGG resolves problems, in dealing 

with large data with a huge number of hyper-parameters. (Aqib Haqmi Abas et al. 2018; 

Sharma and Mehra 2020) which concentrated on a tiny convolution layer with filter 

size (3x3) and stride one. Even, the padding and max-pool layers have filters(2x2) and 

stride two. A similar arrangement is repeated throughout the complete architecture. At 

the end of the architecture, it is connected to the output followed by two fully connected 

layers. For the classification, the output layer is coupled to a sigmoid activation 

function. The number 16 in VGG16 refers to the number of weighted layers present in 

the network and the network stands as large with over 138 million parameters. 

The transfer learning method is used to get a pre-trained configuration of VGG16 

architecture (Figure B1) with the ImageNet dataset to predict the collected ECG signal 

image dataset. Initially, the architecture model is trained with a large labelled image 

dataset (1.4 million) with thousand different classes. This helps to get a good pre-trained 

model and feature learned model to classify defined ECG signal images. 

 

                            

Figure B1 Architecture of   Figure B2 MobileNetV2 Architecture  

VGG16 (Sharma and Mehra 2020)        (Sandler et al. 2018) 
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B.2 MobileNetV2 

MobileNetV2 is a Google-built model architecture to give real-time categorization 

capabilities in devices such as smartphones with limited computational capabilities. 

The network architecture uses an inverted residual structure as the input and output of 

the residual block are like thin bottle neck layers. It also employs lightweight 

convolution filters to increase the features in the expansion layer, as well as to remove 

the non-linearities in the narrow layer.  This implementation of leverage is done by 

transfer learning method from ImageNet data to a defined dataset (Sandler et al. 2018). 

This Mobile Net improves the efficiency based on the state-of-the-art performance of 

mobile models across the spectrum of different model sizes. The overall architecture of 

Mobile Net is represented as shown in Figure B2. 

 

B.3 Inception 

Inception is a more advanced version of Google-Net (Szegedy et al. 2015), which was 

first demonstrated in the ImageNet recognition competition. Using the transfer learning 

(Mehrotra et al. 2020) approach, the network also obtained good classification 

performance in numerous bio-medical applications. The inception model is used to 

combine multiple different-sized convolutional filters into a single filter, reducing the 

number of parameters that must be learned (i.e. during a deeper network with 

controlling parameters under 25  million compared better against 60 million for Alex-

Net (Li et al. 2021)). This resulted in reduction of computational complexity throughout 

the network. Figure B3 depicts the overall architecture of inception. 

                              

Figure B3 Architecture of Inception     Figure B4 Canonical form of a  

 (Szegedy et al. 2015)      residual neural network. 

       (Sharma and Mehra 2020)                                                  
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B.4 ResNet 

Residual neural network is another well-known network for transfer learning (ResNet). 

This network utilizes skip connections, shortcuts, and bypass links to optimize layer 

weights. The non-linearity activation function (ReLu) and batch normalization are 

incorporated in the middle layers of the architecture in general ResNet models 

(Loganathan et al. 2021). The extra weight matrix may be used to train or learn skip 

weight method adaptation. Hence this model is also called Highway Nets (Srivastava 

et al. 2015). Figure B4 illustrates the Architecture of ResNet. 

 

B.5 EfficientNet 

The EfficientNet is a family of CNN-based architecture developed by the google team. 

The EfficientNet is a part of the baseline model neural network developed based on the 

ImageNet dataset. This architecture not only improves the accuracy but also provides 

better efficiency by reducing number of parameters as compared to state of art methods. 

(Tan and Le 2019) states about several models developed from a baseline models by 

performing compound scaling methods (EfficientNet B1 to B7). Figure B5 depicts the 

baseline efficient model.  

 

Figure B5 EfficientNet baseline architecture. (Tan and Le 2019) 

 

Deep learning and machine learning models have already shown remarkable success in 

some medical disease data analysis (Acharya et al. 2017c), enabling more accurate 

diagnosis and treatment of a wide range of diseases, from infectious diseases to 

neurodegenerative disorders. As the field continues to evolve, it is likely that it will see 

even more exciting applications of deep learning models in the field of healthcare. 
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Application of these machine learning, deep learning and transfer learning models are 

considered to evaluate and classify the fever symptomatic diseases condition and heart 

related diseases condition based on the respective data types (temperature and ECG 

respectively). The understanding of the behavior of diseases and datasets will help to 

analyze the problem. The following sections briefly explain the cases related to the 

diseases and terminologies which are considered in the application machine learning/ 

deep learning algorithm. 
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