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ABSTRACT 

The present study investigates the static bending, buckling, and vibration behavior of 

functionally graded (FG) sandwich beams and plates with a viscoelastic interlayer. 

Finite element (FE) and analytical methods are used for the formulations. The metal-

ceramic gradation of FG stiff layers along the thickness is governed by the rule of 

mixture and power law index. The kinematics of the sandwich beam stiff layers are 

based on the Euler-Bernoulli beam theory. The viscoelastic interlayer is assumed to 

undergo only shear. Lagrange density functions for sandwich beams have been 

deduced, taking into account the effect of strain energies of the stiff and core layers 

along with the corresponding translational energies and work done by external forces. 

Static and dynamic equilibrium equations of sandwich beams are derived using Euler-

Lagrange equations.  

FE solutions are developed to solve equilibrium equations. The developed FE sandwich 

beam model is validated with an analytical model. Navier’s solution method is used to 

solve simply supported sandwich beams. Further porosity models and viscoelastic 

boundary conditions (VBCs) are incorporated into the study; bending, buckling, and 

vibration studies are carried out. A complex stiffness model is adopted for VBCs. 

Various types of porosity patterns, such as H, O, V, and X, across the thickness 

directions are assumed. The effect of porosities and VBCs on transverse deflection, 

natural frequency (NF), and loss factor (LF) of the FG sandwich beam is investigated. 

The results convey that VBCs contribution to vibration damping is more predominant 

when the supports are less stiff (more viscous). In addition, the effect of temperature on 

buckling and free vibration of FG porous sandwich beams with VBCs is discussed.  

The study also addresses the geometric nonlinearity of sandwich beams due to thermal 

stresses. Accordingly, temperature-dependent material properties are considered for FG 

stiff layers and viscoelastic interlayers. The study investigates the sandwich beam’s 

critical buckling temperature (CBT), natural frequency, and loss factors in thermal 

environment.  

Further, the proposed sandwich beam model is used to study the vibration and damping 

behavior of the disc brake pad. In the first case, only the back plate with brake insulator 

is considered as a sandwich beam.  
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A comparison study is presented in terms of the free and forced vibration characteristics 

of different back plate-brake insulator sandwich beams such as Steel-Acrylic-Steel, 

FGM-Acrylic-Steel, FGM-Acrylic-Aluminium, and Steel-Acrylic-Aluminium. The 

study reveals that the natural frequency, loss factor, and with regard to dynamic loading, 

the imaginary part of transverse deflection, axial displacement, stress, and strain of 

FGM-Acrylic-Steel are higher. As a result, FGM-Acrylic-Steel is a suitable 

combination for back plate and brake insulator assembly that enhances the overall disc 

brake system’s damping capacity and helps to reduce brake squeal problems associated 

with the operation of the disc brake system.  

In the second case, a complete brake pad (including friction material) is considered as 

a sandwich plate. Free and forced vibration studies are carried out on the brake pad for 

simply supported case (SSSS) using an analytical sandwich plate model. A comparative 

examination is provided among the brake pads with conventional steel and Al-Al2O3 

FG back plates. The influence of several parameters on fundamental frequency and loss 

factors is also discussed. In addition, transient and steady-state analysis is carried out 

for the brake pad subjected to uniformly distributive transverse load (UDL) using the 

Newmark method. The results and analysis reveal that the brake pad with an Al-Al2O3 

FG back plate having 0 to 100% Al2O3 variation is as stiff as a pad with a steel back 

plate and withstands the transverse load (brake load) effectively. The replacement of 

the steel back plate with an Al-Al2O3 FG enhances energy dissipation in the brake pad 

and is more efficient in vibration reduction.  
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CHAPTER 1 

1 INTRODUCTION 

1.1 FUNCTIONALLY GRADED MATERIALS (FGMs) 

Functionally graded materials (FGMs) are developed as a replacement for conventional 

metals and alloys. FGMs exhibit non-homogenous properties along the dimensions 

because of which, FGMs have potential use in automobile, aerospace, marine, and 

biomedical applications (Mahamood et al. 2012), (Miyamoto et al. 2013), (Pompe et al. 

2003), (Sayyad and Ghugal 2019). FGMs can be fabricated in two different ways: 

continuous gradation and stepwise gradation, as shown in Figure. 1.1 and Figure. 1.2, 

respectively. 

 
Figure 1.1: FG beam with continuous gradation. 

 
Figure 1.2: FG beam with stepwise gradation. 

1.1.1 Applications of Functionally graded materials 

In the year 1984, a class of new composite materials called FGMs was developed by 

Japanese scientists for the structural application of spacecraft. The main reason for this 

new invention was to sustain high temperatures and strength.  
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As time went on, the area of application expanded, now the FGMs are being used in 

many of the applications (Mahamood et al. 2012): 

 Aerospace: FGM can sustain a very high thermal gradient of loading, making it 

suitable for structures and re-entry space plane bodies, rocket engine parts, etc. 

 Medicine: Living human tissues like bones and teeth can be modeled as FGM. To 

replace these tissues, a well-matched material will serve the original bio-tissue's 

purpose.  

 Defense: One of the essential properties of FGM is the ability to restrain crack 

propagation. This property makes it useful in defense as a penetration-resistant 

material for armor plates and bullet-proof vests. 

 Optoelectronics: FGM also finds its application in optoelectronics as graded 

refractive index materials, highly efficient photodetectors, lenses, and audio-video 

disc magnetic storage media.  

 Energy: FGM is applicable in energy conversion devices. They provide thermal 

barriers and are used as a protective coating on turbine blades used in gas turbine 

engines.  

Other prospective areas of application are cutting tool insert coating, nuclear reactor 

components, heat exchangers, sensors, fire retardant doors, etc. 

1.2 VISCOELASTIC MATERIALS 

Viscoelastic materials are a special type of material comprising viscous and elastic 

properties. The relationship between stress and strain in viscoelastic materials depends 

on time (time domain) and frequency (frequency domain)(Lakes 2009). Viscoelastic 

materials include amorphous polymers, semi-crystalline polymers, biopolymers, metals 

at very high temperatures, and bitumen materials. Some of the phenomena of 

viscoelastic materials are listed as follows: 

 The strain increases with time even though the stress is constant (creep). 

 The stress decreases with time even though the strain is constant (relaxation). 

 The material stiffness changes with the rate of the applied load. 

 Viscoelastic material undergoes hysteresis in cyclic loading, which leads to energy 

dissipation. 
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Viscoelastic materials are used in aircraft and automobiles to reduce interior noise and 

vibration. These are also utilized as mechanical energy dissipaters in machines. 

1.2.1 Creep and stress relaxation 

Viscoelastic materials exhibit unique characteristics called creep and relaxation. When 

the constant load is applied to viscoelastic materials, the instantaneous strain will 

develop upon loading, including elastic and plastic strain. The strain increases with 

decreasing strain rate over time even though the load is constant. This time-dependent 

response is known as creep. As the loading time is prolonged, a constant strain rate is 

achieved. A part of the strain accumulated during creep will be recovered instantly 

(elastic strain) when the load is removed, and some parts will recover over a certain 

period (anelastic). Finally, some strain remains permanent, called plastic strain or creep 

strain. Figure 1.3 (i) shows the creep behavior of viscoelastic material. If the constant 

strain is applied to viscoelastic materials, decreasing stress is observed over time, as 

shown in Figure 1.3 (ii), which is stress relaxation.  

  
i) ii) 

Figure 1.3: Transient phenomena: i) Creep and ii) Stress relaxation (Lakes 2009). 

1.2.2 Dynamic response of viscoelastic materials 

When the periodic sinusoidal load ( (t)) is applied to a viscoelastic material, the strain 

( (t)) induced in the material is also sinusoidal, but the strain response lags by a certain 

phase angle ( ), as shown in Figure 1.4. 
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Figure 1.4: Stress and strain plot of viscoelastic material under dynamic loading 

(Lakes 2009).

The phase lag between stress and strain leads to complex dynamic stiffness (E*).  

*E E iE                                                                                                         (1.1) 

where E  is storage modulus and E  is loss modulus. 

The phase angle is also called the loss angle ( ), and the tangent of ' ' is called the loss 

tangent or loss factor ( ). The loss factor is given as, 

tan E
E

                                                                                                        (1.2) 

1.3 POROSITY AND VISCOELASTIC BOUNDARY CONDITIONS 

Porosity is the most common defect affecting the structure's mechanical properties (Al-

Maharma et al. 2020). 

Usually, in any fabrication process, there is every possibility of existing fabrication 

defects in the structures, such as porosity, due to the significant difference in the 

solidification temperature of constituents. The percentage of porosity is higher at the 

surface in some cases due to the difference in temperature of the die and pouring 

material; in others, the porosity distribution is higher at the center of samples due to the 

higher solidification time (Vynnycky 2020), (Xu et al. 2017). Both phenomena are 

possible in the case of FGMs, so it is essential to carry out studies on FGM considering 
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porosity. Various components need to be assembled to develop any engineering 

equipment or machines. Fasteners, rivets, and various viscoelastic components such as 

washers, gaskets, and seals are used in the assembly process. In many instances, 

fasteners fail to constrain the component firmly, which causes slack in the assembly 

and affects a component's static and dynamic behavior. In applications like aeronautical 

and aerospace, a minute error may lead to failure. Therefore, studying the behavior of 

structures constrained by supports with varying stiffness is essential. Turbine and 

compressor blades with viscoelastic blocking pads (Wang et al. 2018), as shown in 

Figure 1.5, and Fluidlastic dampers used in vibration reduction in helicopter rotor 

blades (Han et al. 2013), as shown in Figure 1.6 are the engineering examples for 

structures with viscoelastic boundary conditions. 

i) ii) 

Figure 1.5: Turbine and compressor blades with viscoelastic blocking pads: i) Blade 

disc with pad ii) Schematic diagram of blade (Wang et al. 2018).

     

 
Figure 1.6: Schematic diagram of fluidlastic damper in helicopter rotor blade (Han 

et al. 2013).
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1.4 ORGANIZATION OF THE DISSERTATION 

The thesis presents static and dynamic studies of FG porous sandwich beams with 

viscoelastic boundary conditions (VBCs). The static analysis comprises transverse 

bending and buckling, and dynamic studies include free and forced vibration. The rule 

of mixture and power law index governs the variation of FG properties. A complex 

shear modulus is considered for the viscoelastic core. 

Further, FG stiff layers with temperature-dependent material properties are presumed 

imperfect due to various porosities. The effect of porosity and temperature on the 

bending, buckling, and vibration characteristics of FG sandwich beams with 

viscoelastic boundary conditions is discussed. Finally, the developed sandwich beam 

and plate formulations are incorporated to study the vibration behavior of brake pad 

assembly of a disc brake system akin to a sandwich beam and plate. The study proposes 

an Al–Al2O3 metal-ceramic functionally graded stiff layer as a back plate, with 

conventional steel being the constraining layer for brake insulators that enhances the 

damping characteristics of the brake pad. In initial studies, the Al–Al2O3 FG back plate, 

brake insulator, and constraining steel layer are presumed to be a three-layered 

sandwich beam, and then the complete brake pad is considered as a sandwich plate. The 

free and forced vibration of the brake pad is examined in both cases. The results 

conclude that the damping behavior of the brake pad is improved by replacing the steel 

back plate with Al–Al2O3 FG back plate. The whole thesis is divided into six chapters, 

and the contents of each chapter are summarized as follows: 

Chapter-1: In this chapter, a brief introduction of functionally graded materials and 

viscoelastic materials is given with their applications. The chapter also described 

porosity, VBCs, and engineering examples for VBCs. 

Chapter-2: The chapter thoroughly explains the literature review carried out for the 

present work. Further, the motivation, research gap, and research objectives are also 

discussed. 

Chapter-3: The finite element (FE) formulations for static bending, buckling, and 

vibration behavior of FG sandwich beams in a thermal environment are explained in 

this chapter. Further, an analytical solution is developed for the FG sandwich beam to 
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validate the FE model. Further, the porosity models and viscoelastic boundary 

conditions (VBCs) are incorporated into the formulation to study the effect of porosity 

and VBCs on the bending and vibration characteristics of FG sandwich beams. Finally, 

an analytical model is developed for the sandwich plate to study the vibration and 

damping response of the disc brake pad with the FG back plate and brake insulator. 

Chapter-4: In this chapter, the effect of porosity and VBCs on static bending, buckling, 

and vibration studies of FG sandwich beams in a thermal environment is investigated. 

The impact of several parameters, such as support stiffness, loss factor, porosity 

dispersion, and power-law variation, on the static and dynamic behavior of sandwich 

beams is also discussed in this chapter. 

Chapter-5: This chapter discusses the vibration and damping studies of FG back plates 

with brake insulators of a disc brake pad. In this chapter, comparison studies are 

presented between steel back plate and Al-Al2O3 FG back plate with brake insulator 

using sandwich beam and sandwich plate models.  

Chapter-6: This chapter summarizes the overall research work carried out. The 

important findings and conclusions are presented, and the scope for future work is also 

discussed in this chapter. 
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CHAPTER 2 

2 LITERATURE REVIEW 

2.1 INTRODUCTION 

Many research works have been carried out on sandwich structures over the years. 

Different types of stiff layers, such as metals, alloys, and composites; core materials, 

such as honeycomb and viscoelastic materials, are used to develop sandwich structures. 

The literature review mainly focuses on theoretical studies, including static bending, 

buckling, and vibration of sandwich beams and plates. The literature is studied in which 

the effect of temperature, porosity models, and viscoelastic boundary conditions on the 

static and dynamic behavior of beams and plates are discussed. The literature review 

also extends to study vibration characteristics of disc brake pads with brake insulators. 

2.2 STATIC BENDING AND VIBRATION STUDIES ON 

SANDWICH BEAMS AND PLATES 

A lot of research work has been done on static bending and vibration studies of 

sandwich beams and plates. The authors did experimental and numerical studies to 

determine transverse deflection and natural frequencies of sandwich beams and plates.  

Kao (1968) studied the static deflection of a simply supported sandwich beam. The 

minimization of energy approach was used to derive the governing differential 

equations (GDE), and trigonometric displacement fields were used to solve GDEs. The 

results were compared with results obtained by Liaw and Little (1967). 

Mead and Markus (1969) derived the sixth-order differential equation of motion to 

analyze the transverse deflection of a beam under forced vibration. The authors 

extended the forced vibration field analysis based on DiTaranto's (1965) formulation. 

Three layered sandwich beam with two stiff layers and a viscoelastic core in between 

was considered for the study. The governing differential equations were derived, and 

the derived differential equations were solved for various boundary conditions. The 

axial displacements obtained in the upper and lower stiff layers were equal and opposite 

in direction because of zero axial loads on the beam.  
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The schematic representation of the kinematics of the viscoelastic beam after 

deformation was presented. The total transverse load on the beam was assumed to be a 

summation of inertia and external loads. The viscoelastic layer was assumed to have a 

complex shear modulus. The study concludes with the remark that modes, resonate 

frequency, and loss factors are identifiable with DiTaranto and Blasingame (1967) 

discussions. 

Khatua and Cheung (1973) derived the stiffness and mass matrix of multilayer 

sandwich beams and plates using the finite element method. The study considered 

different rigidities such as coupling, bending, and extensional rigidities for stiff layers. 

Some of the assumptions were considered to derive the governing differential equations 

of motions. For example, the stiff layers experience only tensile and compressive 

stresses, whereas the cores are subjected to pure shear. The authors considered a 

common shear angle for all cores, which Kao (1968) neglected. For the study, a five-

layered simply supported sandwich beam is considered as defined in Azar (1968). 

Johnson and Kienholz (1982) developed finite element (FE) models for the vibration 

of three-layered sandwich beams, rings, and plates with a viscoelastic core. The author 

used the modal strain energy method (MSE) to determine the modal damping ratios and 

implemented the MSE method in commercially available finite element software 

(NASTRAN). Finally, the obtained results are validated with analytical solutions and 

experimental results. 

Lall et al. (1987) studied partially covered sandwich beams using three methods: two 

numerical methods (one developed by Markus (1974) and the other using a Rayleigh–

Ritz formulation) and one exact method. The mode shapes satisfying the boundary 

conditions are assumed in forms with unknown coefficients, leading to the complex 

eigenvalues defining the resonance frequencies and the associated modal system loss 

factors. 

Kung and Singh (1997) performed the vibration analysis of multiple patched 

constrained layer damping beams. Since all deformation variables in various layers, 
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only flexural shape functions are incorporated in the complex eigenvalue problem in 

the developed model. 

Galucio et al. (2004) studied transient dynamic analysis of sandwich beams with 

viscoelastic core material using fractional derivative constitutive equations. Euler-

Bernoulli's theory is used for stiff layers, and Timoshenko's theory was used for the 

viscoelastic core. The author used the finite element method and Newmark scheme to 

solve the equation of motion.  

Gao and Liao (2005) studied the vibration of simply supported beams with enhanced 

self-sensing active constrained layer damping. Rayleigh-Ritz method was used to solve 

the equilibrium equations. The effects of several key parameters such as control gain, 

location and coverage of the self-sensing actuators on the system performance are also 

studied.  

Tang et al. (2008) performed an analysis on the partially covered beam configurations 

with a constrained damping layer including the normal strain effects 

Arikoglu and Ozkol (2010) investigated the vibration behavior of three-layered 

composite beams with a viscoelastic core. Governing differential equations (GDEs) 

were derived using Hamilton’s principle, and GDEs were solved using the differential 

transform method.  

The authors considered hypothetical problems from other literature for simply 

supported and clamped-free conditions. Studies were carried out on composite beams 

with glass fiber reinforced polymer (GFRP) stiff layers and VIB 12 (commercial name) 

viscoelastic interlayer. The effect of different parameters like the orientation of 

laminates, beam length, viscoelastic core location, and core thickness on loss factors 

was discussed.  

Galuppi and Royer-Carfagni (2012) conducted analytical studies on the time-dependent 

behavior of a three-layered sandwich beam with polymeric film as core material. 

Prony’s series of Maxwell elements were used to model viscoelastic structures. An 

interlayer was considered linear elastic, assuming its equivalent elastic moduli (E*) to 
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be stored ( E ) and relaxed moduli ( E ) under constant strain using a secant stiffness 

solution (SSS). The author compared the results with a full viscoelastic FE solution 

(FVS). The comparison of results showed a considerable difference in the characteristic 

curves obtained from FVS and SSS methods. 

Li et al. (2014) developed an analytical model to study the time-dependent behavior of 

sandwich beams with laminated functionally graded beams (FGM) as stiff layers and 

viscoelastic material as interlayers. The formulation of the sandwich beam’s governing 

differential equations (GDEs) was obtained using Euler-Lagrange equations, and 

further GDEs were solved by the Fourier series method. 

After studying all the literature regarding the bending and vibration of sandwich beams 

and plates, it is observed that various solution methods, such as the finite element 

method, analytical method, and differential quadrature, are used to solve the equation 

of motion of sandwich beams and plates. Various materials, such as metals and fiber-

reinforced composites, are used as stiff layers with flexible cores. Still, the researchers 

have less explored sandwich structures with FG stiff layers and viscoelastic cores. 

2.3  BUCKLING AND VIBRATION OF SANDWICH BEAMS 

AND PLATES IN THERMAL ENVIRONMENT 

The metal-ceramic FG structures are used in high-temperature applications. Therefore, 

studying the static and dynamic behavior of FG sandwich structures in a thermal 

environment is important. 

Ganesan and Pradeep (2005) studied the buckling and vibration behavior of sandwich 

beams under a thermal environment. The author used Khatua and Cheung formulations 

for the study. Temperature-dependent and independent shear modulus is considered for 

the core. 2D steady-state Fourier heat conduction equations are used to define the 

variation of temperature across the thickness and along the length. 

Bhangale and Ganesan (2006) discussed the buckling and vibration behavior of 

functionally graded (FG) sandwich beams with a constrained viscoelastic layer in a 

thermal environment using finite element formulation. The FG sandwich beam was 
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assumed to be clamped on both edges. The material properties of the stiff layer were 

functionally graded in the thickness direction according to power law distribution. 

Sharnappa et al. (2007) carried out a vibration analysis of active constrained layer 

damped (ACLD) composite beams under a thermal environment. The author discussed 

the effect of core thickness, fiber angle, and temperature on the sandwich beam's natural 

frequency and loss factor. The behavior of natural frequency and loss factor at buckling 

temperature is also discussed in this work. 

Vangipuram and Ganesan (2007) investigated the buckling and vibration of composite 

sandwich plates with a viscoelastic core. Temperature-dependent shear modulus and 

loss factor are considered for the core material, and inherent damping is considered for 

composite stiff layers. Parametric studies are also carried out by changing fiber angle, 

ply layup, and core thickness. The results reveal a shift in vibration modes with 

temperature rise. 

Jeyaraj et al. (2011) studied the vibroacoustic behavior of sandwich plates with 

viscoelastic cores in a thermal environment.  

The author obtained critical buckling temperature, natural frequency, and loss factor of 

sandwich beam for thermally pre-stressed sandwich beam using the finite element 

method. Further sound radiation characteristic study is also conducted using the 

boundary element method. From the results, the author concluded that vibroacoustic 

response decreases with a rise in temperature.  

Joseph and Mohanty (2019) investigated buckling and free vibration of sandwich plates 

with FG stiff layers and viscoelastic core in high temperatures. The author used first-

order shear deformation theory and FE formulation to derive static and dynamic 

equilibrium equations. The author concludes that a temperature rise reduces critical 

buckling temperature and natural frequency but enhances the loss factor. 

The literature study on the buckling and vibration of sandwich beams and plates in a 

thermal environment reveals that geometric nonlinearity due to thermal stresses is a 

crucial parameter that changes a structure’s static and dynamic behavior.  
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2.4 EFFECT OF POROSITY AND VISCOELASTIC BOUNDARY 

CONDITIONS ON BEAMS AND PLATES 

Porosity and boundary conditions are two important parameters that can change any 

structure's static and dynamic behavior. Porosity is a defect that occurs during the 

fabrication processes, such as casting, welding, powder metallurgy, coating, etc. 

Viscoelastic boundary conditions (VBCs) exist when a structure is supported by 

viscoelastic material. Viscoelastic supports contribute to the damping of the structure 

along with stiffness, so incorporating these two parameters is essential. There are few 

literature studies in which porosity and boundary conditions with varying stiffness are 

discussed.  

Lin (1962) investigated the vibration behavior of continuous beams on equally spaced 

elastic supports. The author modeled the support with displacement and torsional 

springs and obtained the beam's natural frequency and mode shapes.  

Wattanasakulpong and Ungbhakorn (2014) used the differential transform method 

(DTM) to discuss linear and nonlinear vibration of functionally graded (FG) beams 

having porosity restrained by elastic supports.  

The authors addressed the effect of parameters such as volume fraction distribution, 

spring constant variation, and property distribution on nonlinear frequencies. 

Demir and Oz (2014) studied the free vibration of FG beams supported by viscoelastic 

supports. The author modeled viscoelastic supports using springs and dampers. The 

study concludes that resonance frequencies increase with increasing elastic moduli ratio 

between the top and bottom surface of the FG beam and power law index. Still, the 

increasing trend can be seen at higher modes of low stiffness values and all modes of 

high stiffness values.  

Singh et al. (2015) discussed the dynamic characteristics of axially vibrating rods and 

transversely vibrating beams with viscoelastic supports analytically in the article. The 

author modified the location and material parameters to get the desired vibration level. 

Fazzolari (2018) discussed free vibration and elastic stability of 3D FG sandwich beams 

with porosity resting on an elastic foundation. The author used the Ritz method to solve 
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governing equations and orthogonalized the Ritz functions to enhance accuracy. The 

effect of various parameters such as slenderness ratio, beam typology, boundary 

conditions, and elastic foundation coefficients on vibration and stability of FG 

sandwich beam. 

Daikh and Zenkour (2019) studied the effect of porosity on the static deflection of FG 

sandwich plates. The author used the variable kinematic method to apply the properties 

of functionally graded carbon nanotubes (FG-CNTs). The authors proposed a new 

higher-order deformation theory for simply supported FG sandwich plates.  

Zhang et al. (2020) studied the vibration behavior of FG porous sandwich plates for 

different boundary conditions. The author used a modified Fourier-Ritz method to 

derive governing equations; even and uneven porosities are considered for the study. 

The author concludes that porosity plays a vital role in the vibration and damping 

performance of the FG sandwich plate. 

Hadji and Avcar (2021) investigated the free vibration behavior of FG porous sandwich 

plates having a ceramic core layer.  

The authors considered various patterns of porosity distributions. The natural 

frequencies are calculated for different boundary conditions by varying the viscoelastic 

stiffness values. The study concludes that the natural frequency reduces with increased 

porosity volume fraction. The porosity effect will be maximum for the sandwich plate 

with higher side-to-thickness ratios.  

The extensive literature study on porosity and viscoelastic boundary conditions in beam 

and plate structures exhibit that very few works have discussed the effect of viscoelastic 

boundary conditions (VBCs) on the damping of beam and plate structures. The 

combined effect of porosity and VBCs on the static and dynamic behavior of FG 

sandwich beams and plates is the area to be explored. 

2.5 BRAKE PAD AND BRAKE INSULATORS OF DISC BRAKE 

SYSTEM  

New inventions and innovations are happening in the automobile sector to improve the 

performance of vehicles. Drum brakes are replaced with disc brakes to improve the 
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braking operation. There are some ongoing problems with the disc brake system, and 

brake squeal or brake noise is one among them. Research works are going on worldwide 

to address the brake squeal issue. Brake insulators are being used to suppress the squeal. 

Many theoretical and experimental studies are documented by researchers on vibration 

analysis of disc brake systems and the influence of brake insulators on the braking 

operation. 

Triches Jr et al. (2004) studied the reduction in squeal noise of disc brake systems using 

constrained layer damping. The author conducted experiments on inertial 

dynamometers. Modal analysis of brake pads is also discussed in the article. The study 

concludes that low-frequency squeal occurs due to the coupling of out-of-plane rotor 

modes and brake pad bending modes. 

Glisovic and Miloradovic (2010) discussed the brake system's noise, vibration, and 

harshness (NVH). The authors discussed the brake insulator types: single-layer, 

constrained-layer, multilayer constrained, double-sticky, and clip-on insulators.  

The study concludes that brake pad damping is a vital parameter in suppressing squeal 

compared to material damping. 

Wang et al. (2011) investigated the root cause of brake squeal of the disc brake of a car 

and illustrated a few methods to avoid or reduce the noise problem from brake system 

design. The author did both experimental and numerical studies on the disc brake 

system. The study concludes that disc surface finish, quality of installation, 

contaminations, and weather conditions contribute to noise.  

Festjens et al. (2012) did a numerical study on the effectiveness of multilayer 

viscoelastic insulators in preventing brake squeals. The author used Abaqus for the 

simulation of the braking mechanism. The study concludes that the brake insulator 

attached to the back plate of the disc brake pad reduces brake squeal by dissipating the 

vibration energy 

Abdullah et al. (2017) investigated the effectiveness of brake insulators in suppressing 

brake noise using Abaqus. The author considered various configurations of insulators 
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and insulation materials for the study and predicted the brake system's modal 

frequencies and mode shapes. 

The literature survey reveals that the vibration and passive damping of sandwich 

structures with the viscoelastic core is an important area of research. The replacement 

of conventional stiff layers with functionally graded materials (FGMs) in the sandwich 

structures adds supplementary properties to the base material. 

2.6 MOTIVATION AND RESEARCH GAP 

After the literature review, it is found that static and dynamic studies on FG sandwich 

structures with the viscoelastic core have been a hot research topic in recent years. Most 

of the literary works are focused on analytical and numerical studies on bending, 

buckling, and vibration of sandwich beams having different cores with conventional or 

ideal boundary conditions such as simply supported or pinned-roller (P-R), clamped-

clamped (C-C), and clamped-free (C-F), etc. In many cases, due to the slack in the 

assembly of the structure, machine, or mechanism, ideal boundary conditions are not 

able to achieve (C-F, C-C, and P-R).  

A small slack can vary the structure's overall stiffness, leading to a change in the 

dynamic behavior of components. Moreover, porosity is a common defect that can be 

seen in any fabrication method, such as casting, powder metallurgy, coating, layups, 

etc. The difference in melting points of graded components in FG structures leads to 

porosities. Most of the previous studies considered FG stiff layers to be perfect. Few 

works address the effect of temperature on static buckling and vibration characteristics 

of FG porous sandwich structures with varying support stiffness. Keeping these things 

in mind, the finite element (FE) model is developed for FG sandwich beams with the 

viscoelastic core. The static and dynamic behavior of sandwich beams is studied with 

porous and non-porous FG stiff layers. Also, the effect of temperature on buckling and 

free vibration of the FG sandwich beam is investigated. Finally, the Al-Al2O3 FG back 

plate is proposed as a replacement for the steel back plate based on vibration and 

damping studies on the brake pad of the disc brake system. 
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2.7 OBJECTIVES OF RESEARCH WORK 

 To develop finite element formulation for static deflection and vibration response of 

FG sandwich beams with the viscoelastic core.  

 To study the effect of porosity on static deflection and vibration characteristics of 

FG sandwich beams with the viscoelastic core. 

 To investigate the effect of viscoelastic boundary conditions on static deflection and 

vibration response of FG sandwich beams with the viscoelastic core. 

 To investigate the influence of the thermal environment on buckling and vibration 

response of FG porous sandwich beams under viscoelastic boundary conditions. 

 To study the vibration and damping characteristics of disc brake pad with FG back 

plate and brake insulator. 
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CHAPTER 3 

3 METHODOLOGY 

3.1  INTRODUCTION 

In this chapter, theoretical models are discussed to study the static and dynamic 

behavior of FG sandwich beams and plates with a viscoelastic core. The energy 

equations are derived for FG sandwich beams, and equilibrium equations are obtained 

for static bending, free, and forced vibrations. The derived equilibrium equations are 

solved using the FE approach. The accuracy of the developed FE model is validated 

with an analytical model. Further, the study incorporates porosity, viscoelastic 

boundary conditions (VBCs), temperature, and geometric nonlinearity due to thermal 

stresses. The developed model discusses the bending, buckling, and free vibration of 

FG porous sandwich beam with viscoelastic boundary conditions (VBCs) in a thermal 

environment. Finally, the analytical sandwich plate model is discussed, which is used 

to study vibration and damping characteristics of disc brake pads with FG back plate 

and brake insulator. Figure 3.1 shows the flow chart of the project work carried out. 

 
Figure 3.1: Flow chart of project work. 
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3.2 FE MODEL FOR STATIC AND DYNAMIC STUDIES OF FG 

SANDWICH BEAM  
Consider a three-layered sandwich beam with two stiff and a viscoelastic core of length 

l and breadth b, as shown in Figure 3.2. The upper, lower stiff layer and core thickness 

are hf1, hf2, and hv, respectively. The overall thickness of the sandwich beam is HT. The 

neutral axis of the upper and lower stiff layers is at the distance z1 and z2, respectively, 

from the center of the core. H is the distance between the neutral axis of stiff layers. E1 

and E2 are Young's modulus of upper and lower stiff layers, respectively. h1, h2, h3, and 

h4 are measured from the center of the core. Complex shear modulus Gv is considered 

for the viscoelastic core. When the beam vibrates, the stress and strain in the beam vary 

sinusoidally with respect to time, but there will be a phase lag between stress and strain, 

which leads to the dissipation of mechanical energy, due to which damping occurs. 

Therefore, properties like Young's modulus and shear modulus of the viscoelastic core 

are represented in the complex form (Lakes 2009). For FG stiff layers, Young's 

modulus and density vary with the z coordinate (Thickness). Some of the assumptions 

are made in order to get equilibrium equations (Li et al. 2014), such as: 

 The upper and lower stiff layers behave according to the Euler-Bernoulli beam 

theory. 

 Equal transverse deflection and rotation are considered for the two stiff layers; 

however, axial displacements for both layers differ along the neutral axis. 

 Viscoelastic core undergoes only shear deformation due to axial displacements 

of stiff layers, and its normal stress and strain are neglected. 

 There is no slip between the layers. 

A two-noded 1D beam element with four degrees of freedom is taken for FE 

formulation, as shown in Figure 3.2. Temperature (T in kelvin) dependent properties in 

FG stiff layers can be defined as 
1 2 3

0 1 1 2 3( ) ( 1 )P T P P T PT PT PT ,                                                                     (3.1) 

where P-1 to P3 are temperature coefficients. 
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Figure 3.2: Two-noded FG Sandwich beam. 

Eq. (3.2) shows the nodal parameter of an element where the numbers in subscripts and 

superscripts represent layers and nodes, respectively. 

1 1 1 1 2 2 2 2
1 2 1 2

t
T

b x x

u
q u u u w u u w

w
,                                   (3.2) 

where u1, u2, w, and x are displacement of the neutral axis in the upper and lower stiff 

layers along the x-axis, displacement along the z-axis, and rotation of normal, 

respectively. 

The kinematics of the sandwich beam subjected to transverse loading is shown in Figure 

3.3, according to which the kinematic relations are derived as follows: 

 
Figure 3.3: Kinematics of sandwich beam subjected to transverse deflection. 



22 
 

The axial and transverse displacements of a sandwich beam element at each node can 

be written as:  

1 1

1
1 2 1

1 2
1

ax ax

u
u N N

u
                                                                                   (3.3) 

2 2

1
1 2 2

2 2
2

ax ax

u
u N N

u
                                                                                   (3.4) 

1

1

1 2 3 4 2

2

b b b b

w

w N N N N
w

                                                                        (3.5) 

where 1
1axN  and 1

2axN  are the Lagrange shape functions and bN  is the Hermit 

shape function for axial and transverse displacements of upper and lower stiff layers, 

respectively, for node one. The Hermite interpolation is used if the curve needs to be 

fit for ordinate (variable) and its slope (derivative of variable) whereas Lagrange 

interpolation is used if the curve needs to be fit only for ordinate (variable) without 

concerning its derivatives. In the study, only axial displacement is considered and its 

slope is not considered at the nodes, so, the Lagrange shape functions satisfy the 

variable (displacement) condition, whereas both transverse displacement and its slope 

are considered at the nodes and the Hermite shape functions satisfy the variable 

(displacement) as well as slope at the nodes.  

The Lagrange shape functions and Hermit shape functions are given by, 

1 2
1 1 1ax ax

x xN N
L L

                                                              (3.6) 

3 2 3 2 3 2 3 2

1 2 3 4 3 2 2 3 2 2

2 3 2 2 3 21b b b b
x x x x x x x xN N N N x

L L L L L L L L
      

                                                                                                                                  (3.7) 

Hence global displacements are written in the form: 

1 1 1axu N u                                                                                  (3.8) 

2 2 2axu N u                                                     (3.9) 

bw N w                                                             (3.10) 
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where 1u , 2u  and w are elemental displacements 

The displacement fields for the sandwich beam are written as follows:  

1 1 3 4

2 2 1 2

.......
.....

( ) ( )
( ) ).(

x

x

u z z h z h
u

u z z h z h
,                                                                        (3.11) 

1 2w w w .                                                                                                           (3.12) 

Strain associated with FG stiff layers is given by, 

0

0 ( )

0( ) ( ) ( )

( )
xx xx xx

yy yy i yy

xy xy xyi i i

z z  ,                                                                      (3.13) 

where subscript i=1, 2 represents the upper and lower FG stiff layers. Constitutive 

relations of stress and strains are given as: 

11 12

12 22

66
( ) ( )

( )0
( )0

0 0 ( )

xx xx xx

yy yy yy

xy xy xyi i

TC C
TC C

C T
,                                                          (3.14) 

where 11 22 12 11 662

( , ) ( , ), ,
1 ( ) 2(1 )
E z T E z TC C C C C , E(z,T) is temperature-dependent 

Young's modulus varies across the thickness, and ' ' is poison's ratio. T and (z,T) are 

the temperature rise and coefficient of thermal expansion, respectively.  

Integration of stresses over thickness results in in-plane stress and moment resultants:  

( ) ( )

( ) ( )( ) ( )

..., .
st i st i

xx xxxx xx

yy yy yy yy
h h

xy xyxy xyi ii i

N M
N dz M zdz
N M

,                                            (3.15) 

0
11 12 11 12

0
21 22 21 22

0
66 66

11 12 11 12

21 22 21 22

66 66( ) ( )

0 0
0 0

0 0 0 0
0 0
0 0

0 0 0 0

xx Txxxx

yy Tyyyy

xy Txyxy

xx xx

yy yy

xy xyi i

N NA A B B
N NA A B B
N NA B
M MB B D D
M B B D D
M B D

( )

Txx

Tyy

Txy i

M
M

,                            (3.16) 

where Ajk, Bjk, and Djk are stiffness coefficients for extension, coupling, and bending, 

respectively, which are given as: 
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1

2
( )( , , ) (1, ( ), ....( ) , 1,2,6

i

i

h

kl kl kl i kl i i
h

A B D C z z z z dz k l ,                                        (3.17) 

1 11 12

12 22

66 ( )( )

0
0

0 0 0

i

i

Txx xxh

Tyy yy
h

Txy ii

N C C
N C C T dz
N C

,                                                  (3.18) 

1 11 12

12 22

66 ( )( )

0
0

0 0 0

i

i

Txx xxh

Tyy yy
h

Txy ii

M C C
M C C T zdz
M C

.                                               (3.19) 

Eq. (3.16) is divided into two parts: Eq. (3.20) and Eq. (3.21), 
00

11 11 12 12

11 11 12 12

xx Txxyyxx

xx Txxyyxx

N NA B A B
M MB D B D

,                                           (3.20) 

 
00

12 12 22 22

12 12 22 22

yy Tyyyyxx

yy Tyyyyxx

N NA B A B
M MB D B D

.                                       (3.21)  

Since the problem described is a one-dimensional beam, the force and moment 

resultants are zero ( 0; 0yy xy yy xyN N M M ) in the y and xy axis.  

Eq. (3.21) is redefined into a 1D beam as follows:                                                  
10 0

22 22 12 12

22 22 12 12

Tyyyy xx

Tyyyy xx

NA B A B
MB D B D

.                                                (3.22) 

After simplification and rearranging Eq. (3.20), Nxx and Mxx are written in the form: 

 
0

11 11

11 11( ) ( ) ( )

ee e
xx xx Txx

ee e
xx xx Txxi i i

N NA B
M MB D

,                                                              (3.23) 

where 11 11 11, ,e e eA B D are the effective stiffness coefficients of the FG stiff layer, which is 

given as: 
1

11 11 12 12 22 22 21 21* 11 11
( )

11 11 12 12 22 22 21 2111 11

e e

i e e

A B A B A B A BA B
D

B D B D B D B DB D
,               (3.24) 

 and are effective thermal stress and moment resultants: 

1
12 12 22 22*

( )
12 12 22 22

e
Tyy txxtxx

T i e
Tyy txxtxx

N NA B A BN
D

M MB D B DM
.                              (3.25) 

e
txxN e
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D* and DT
* are effective stiffness coefficient matrices for mechanical and thermal 

stresses. 

The shear strain and stress for the viscoelastic core are given as follows: 

1 2
1

v
v

wu u H
h x

; 1 2
v

v
v

G wu u H
h x

; (1 )s
v vG G i ,                   (3.26) 

H is the distance between the neutral plane of the upper and lower stiff layers. The shear 

stiffness coefficient of the core is given by, 
*

v

v v
h

D G dz .                                                                                                            (3.27) 

The total potential energy in a thermal environment is given by, 

pt strain thrm extU U U U ,                                                                                                   (3.28) 

where Ustrain and Uthrm are total strain energy due to mechanical and thermal effects, 

respectively, and Uext is energy due to external mechanical load: 

 

*
1 1 1

*

*0
2 2 2

0 0
1 0 0
2

0 0

T
xx xxL

strain v v v

xx xx

D
U b D dx

D
,                                                         (3.29) 

*
1 1

*

*0
2 2

T
xx TL

thrm v Tv

xx T

D
U b D dx

D
,                                                                                       (3.30) 

1

2

2
1

2 2

2

2

xx

v xz

xx

u
dx

w
dx

B q
u

dx
w

dx

.                                                                                         (3.31) 

Eq. (3.29) and Eq. (3.30) are replaced with Eq. (3.31).  

The potential energy shown in Eq. (3.28) is minimized to get the static equilibrium 

equation of the sandwich beam with initial stresses due to the thermal environment and 

mechanical load: 
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R I T MK iK q F F ,                                                                                 (3.32a) 

 T MF F F ,                                                                                                     (3.32b) 

where stiffness matrix [K] involves real [KR] parts and imaginary [KI] parts because of 

the complex shear modulus of the viscoelastic layer. {FT} and {FM} are thermal and 

mechanical force vectors, respectively.  

The loss factor and accompanying loss modulus are only valid for dynamic conditions; 

the imaginary stiffness matrix vanishes ([KI]=0) for static conditions ( Lakes 2009). 

3.2.1 Geometric stiffness matrix 

The initial stress resultants ( 0
xN ) due to temperature rise and nonlinear strains are 

involved in the nonlinear strain energy equation (Ugeo) as given by, 
2

10 0
1 2 2

0

2

1 ( ) ( )
2

L

geo x x

w
x

U b N N dx
w
x

 ;  

2

1
2

2

[ ]geo

w
x

B q
w
x

.                               (3.33) 

Solving and rearranging Eq. (3.33) leads to the following: 

1 [ ]
2

T
geo geoU q K q ,                                                                                         (3.34) 

where [Kgeo] is the geometric stiffness matrix given as, 

0
0

[ ] [ ]
L

T

geo geo geoK b B B dx .                                                                              (3.35) 

3.2.2 Thermal buckling 

Thermal buckling occurs when thermal stresses are induced in the sandwich beam. The 

classical stability equation for buckling is given by,    

[[ ] [ ]] 0R geoK K ,                                                                                              (3.36) 

where  is the critical buckling parameter (CBP), is the eigenvector. 

Critical buckling temperature (CBT) is given by,   

b roomT T T ,                                                                                                        (3.37) 

where Tb is critical buckling temperature (CBT), and Troom is room temperature. 
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3.2.3 Free and forced vibration

The kinetic energy (KE) is written as:

1 1 1

2 2 2

{ } 0 0 { }
1 { } 0 0 { }
2

{ } 0 0 { }

T

c c c
V

q q
KE b q q dv

q q

T} 0 0 { }0 0 1
T 0 0 {1}11 1 11} { }1 1 1111 }111 111111

dv{ }{{ }}}} 0 00 00 00 00 00 00 00 00 00 00 00 0 cc }c{ }{c}} cccc

{ }} 0 02 2 22} 0 0 { }2 2 22 {2}2 { }{}} 20 00 00 00 00 00 0
.                                                                    (3.38)                        

Minimizing the total energy to arrive equilibrium equation of the sandwich beam in 

dynamic conditions as:
2[[ ] [ ]] [ ]R I geoK iK K M F ,                                                                        (3.39)

Solving the equilibrium equation considering the dynamic force zero (F=0), the 

sandwich beam's natural frequency and loss factors can be obtained. The loss factor of 

the sandwich beam is given by, 

( ) ( )
( )

( ) ( )

[ ]
([ ] [ ])

T
m I m

b m T
m R geo m

K
K K ,                                                                                 (3.40)

where (m) is the Eigenvector for the mth mode number. 

3.2.4 Functional gradation of FG Stiff layers

FG stiff layer is a blend of metal (MT) and ceramic (CM). The ceramic content is 

gradually graded with metal as per the rule of the mixture through the layer thickness. 

The effective material property Peff at any point of the thickness of FG layer is given 

by the relation,

( ) ( )eff CM MT CM MTP P P V z P ,                                                                                (3.41)

where P is the property of metal (MT) and ceramic (CM); VCM is the volume fraction of 

ceramic which varies with power law distribution (p) as follows:

(1) 2
3 4

3 2

( )
2 3

(2) 1
1 2

1 0

...... ...

..................

( ) for z [ , ]

( ) 0 for z [ , ]

( ) f

... ...

or z [ ,.... . ].. . .

p

CM

c
CM

p

CM

z hV z h h
h h

V z h h

h zV z h h
h h

.                                                              (3.42)

Figure 3.4 shows the ceramic volume fraction variation along the thickness of the FG 

stiff layer.                                                               
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a) b)

Figure 3.4: Functional gradation along the thickness: a) Ceramic volume fraction 

along the thickness and b) metal and ceramic contents along the thickness of beam.

3.3 ANALYTICAL MODEL FOR FG SANDWICH BEAM

The analytical model is developed to validate the FE model. The equilibrium equations 

are derived considering only mechanical stresses (temperature independent). The 

assumptions, kinematics (Figure 3.3), and displacement equations (Eqs. 3.11-3.12) 

considered for the analytical model remain the same as that of the FE model. Based on 

the kinematics, the strain energy (Ustrain), energy due to external force (Uext), and kinetic 

energy (KE) of a sandwich beam are given by, 

1 1 2 2
0

1
2

l

strain xx xx xx xx xz xz
A

U dAdx ,                                                                    (3.43)

extU Fw ,                                                                                                                    (3.44)

2 2 2 2 2
1 1 2 2

0

1 ( )
2

l

v
A

KE u w u w w dAdx2 2 2 2 2
1 2 2 ( )v w dAdx2 2 2 2 2( )v1 2 2 w1 2 21 2
2 2 2 22 2 2u w u ww u w2 2 2 22 2 2

1 2 21 2 ,                                                         (3.45)

where A is the cross-section area, l is the beam's length, and F is the transverse load 

acting on the sandwich beam, which remains constant for the static bending case and 

varies with time (F(t)) for the forced vibration case. The total energy of the sandwich 

beam is written as,

0
( ( ))

l

strain extKE U U dx ,                                                                                                    (3.46)

The total energy can be written using the Lagrange density function (L)as,
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0

l
Ldx ,                                                                                                              (3.47)          

where ( )strain extL KE U U .                                                                                               

Substituting displacements and energies in Eq. (3.47), the Lagrange density function is 

derived in the form of displacements as follows:
2 22 2 2 2

1 2 1 2
1 2 1 2

2 22

1 2

2
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bG u u w H F t w
h

(3.48)   

where A1, A2, B1, B2, D1, and D2 are stiffness coefficients, IA1, IA2, IB1, IB2, ID1, and ID2 are 

inertial coefficients of upper and lower stiff layers due to extension, coupling, and 

bending effects, respectively and Iv is the inertial coefficient for the core. These are 

given as follows:
2

1 1 1 1 1 1( , , ) ( ) (1), ( ), ( )
A

A B D E z z z z z dA ,                                                             (3.49)

2
2 2 2 2 2 2( , , ) ( ) (1), ( ), ( )

A

A B D E z z z z z dA ,                                                             (3.50)

2
1 1 1 1 1 1( , , ) ( ) (1), ( ), ( )A B D

A

I I I z z z z z dA ,                                                          (3.51)

2
2 2 2 2 2 2( , , ) ( ) (1), ( ), ( )A B D

A

I I I z z z z z dA ,                                                       (3.52)

V v
A

I dA .                                                                                                                (3.53)

To obtain the governing differential equations, Euler-Lagrange equations are used, 

which are as follows:

1 11

0L L L
x t u uu 1 1u1u1

,                                                                             (3.54)
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2 2 2

0L L L
x u t u u2 2u2u2

,                                                                            (3.55)
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2 2 0L L L L L L
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0
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,                      (3.56)

where 
t

and '
x

. 

Substituting Eq. (3.48) in Eqs. (3.54-3.56) leads to equations of motion in the 

equilibrium condition of the sandwich beam as follows:

1 1 1 1 2 1 1 1' 0v
A B

v

bGAu B w u u w H I u I w
h 1 01 111 111

,                                              (3.57)

2 2 2 1 2 2 2 2' 0v
A B
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,                                          (3.58)
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A A v B B D D

bGD D w B u B u u u w H H
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I I I w I u I u I I w( )( )2 )2B B D D1 1 2 2 111 1 2 2 11 )21 1 2 2 11 w( )(( 2(((1 1 2 2 111 2 1( )

.                                          (3.59)

The above equilibrium equations are solved analytically by assuming trigonometric 

displacement fields.

3.3.1 Analytical solution for simply supported sandwich beam

Navier’s solution method is followed to develop an analytical model for simply 

supported conditions. The boundary conditions for the simply supported beam at x=0, 

l is as follows:

1 1(0) ( ) 0u u l                                                                                                             (3.60)
   

2 2(0) ( ) 0u u l                                                                                                                            (3.61)

(0) ( ) 0w w l                                                                                                                                 (3.62)

Trigonometric displacement fields which satisfy the boundary conditions are as 

follows:

1 1 cos( ) i t
mu U x e                                                                                                    (3.63)

2 2 cos( ) i t
mu U x e                                                                                                   (3.64)

sin( ) i t
mw W x e                                                                                                    (3.65)
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where m
l

, m is the mode number and  is the frequency of vibration. Substituting 

Eqs. (3.63-3.65) into Eqs. (3.57-3.59), equilibrium equation of the sandwich beam in 

the dynamic condition is obtained as follows: 

11 12 13 11 12 13 1
2

21 22 23 21 22 23 2

31 32 33 31 32 33

0
0
( )

m

m

m

K K K M M M U
K K K M M M U
K K K M M M W F t

,                                       (3.66) 

where 2
11 1 v
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, 12 21 v
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, 3
13 31 1 v

v
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h
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2
22 2 v

v
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h

, 3
23 32 1 v

v

bHK K B G
h

,

2 2
4

33 1 2 v
v

bHK D D G
h

,  

11 1AM I , 12 21 0M M , 13 31 1BM M I , 22 2AM I , 23 23 2BM M I ,  

2
33 1 2 1 2( )A v A D DM I I I I I .  

Eq. (3.66) is written in a simplified form as follows, 
2([ ] [ ])R I ij ijK iK M F ,                                                                              (3.67) 

where Kij, Mij, F, and  are stiffness, mass, force matrices, and Eigenvector, 

respectively.  

Force (F) is considered zero for free vibration, and natural frequencies for different 

modes are obtained by solving Eq. (3.67). Since complex shear modulus is considered 

for viscoelastic core, the obtained natural frequencies are complex in nature with real 

and imaginary parts, 
* (1 )n n bi .                                                                                                         (3.68) 

where b is the loss factor of the sandwich beam 

Once natural frequencies are obtained, the loss of mechanical energy in the form of loss 

factor is given by Arikoglu and Ozkol (2010), 

Loss Factor ( b ) =
2

2

( )
( )

n

n

imag
real

.                                                                                         (3.69) 
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Neglecting kinetic energy (KE) vanishes inertia terms in the Lagrange density function 

(L). Also, the imaginary stiffness matrix is zero ([KI]ij=0) in static conditions. This 

leads to the static equilibrium equation ([Mij]=0) as follows: 

[ ]ijK F .                                                                                                        (3.70) 

The force (F) can be represented in Fourier form as, 

1
sin

m

j
j

m xF F
l

,                                                                                                     (3.71) 

where Fj is the force coefficient that varies with the type of load. For point load and 

harmonic load, Fj is F0 and 0 sin( )F t respectively. 

3.4 Validation study for sandwich beam models 

3.4.1 Example-1: Sandwich beam with isotropic stiff layer and viscoelastic core 

In order to validate the FE and analytical models, an example from Arikoglu and Ozkol 

(2010) is considered. The thermal stresses are considered zero for the problem. The 

example consists of two sandwich beams with isotropic stiff layers and a viscoelastic 

core. The properties and dimension details of the beams are given in Table 3.1. The 

natural frequencies and the loss factors for different modes are listed in Tables 3.2 and 

3.3. respectively. The tables show that the results of both FE and analytical models 

agree well with referred literature. 
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Table 3.1: Material properties and dimensions of example 1.
 

Layers Properties Problem 1 Problem 2 

 

Stiff layers 

Young's Modulus 

(GPa) 

E1=E2=207 E1=E2=207 

Density (kg/m3) 1= 2 =7800 1= 2 =7800 

Thickness(mm) hf1=0.5 

hf2=5 

hf1=0.5 

hf2=5 

 

Viscoelastic 

Layer 

Shear Modulus 

(MPa) 

Gv=0.2615 Gv=4 

Density (kg/m3) v=2000 v=2000 

Thickness(mm) hv=2.5 hv=2.5 

Loss Factor v=0.38 v =0.38 

Whole Beam Length(mm) l=300 l=242.5 

Table 3.2: Natural frequencies of example 1 (rad/sec).
 

 Mode numbers 
Problem 1 2 3 4 

 
 
 
 

1 
 
 
 

FE model 740.415 2947.82 6624.05 11765.029 

Analytical model 740.2 2947.15 6623.95 11765.7 

Arikoglu et al. 2010) 740.489 2947.775 6623.477 11763.052 
Mead et al. (1970) 740.564 2949 6629.680 11782.60 
Lall et al. (1988) 740.56 2948.290 6629.660 11782.60 
Kung et al.(1998) 741 2949 6630 11783 
Tang et al. (2008) 740.564 2949 6629.680 11782.61 
Gao et al. (2005) 740.6 2949 6629.7 11783 
Yang et al. (2005) 741 2952 6647 - 

 
 
 

2 
 

 

FE model 1187.671 4570.05 10193.805 18052.497 
Analytical model 1187.1 4570.92 10192.98 18052.63 

Arikoglu et al. (2010) 1187.942 4570.224 10192.643 18047.992 
Mead et al. (1970) 1187.960 4573.080 10207.220 18093.90 
Lall et al. (1988) 1187.930 4573.050 10207.190 18093.870 
Tang et al. (2008) 1187.980 4573.140 10207.350 18094.130 
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Table 3.3: System loss factor values (%) of example 1.
 

Problem Mode 1 Mode 2 Mode 3 Mode 4 
 
 
 
 

1 
 
 
 

FE model 0.44900 0.11505 0.050783 0.028645 

Analytical model 0.44900 0.11480 0.051640 0.028800 
Arikoglu et al. (2010) 0.44180 0.11477 0.051232 0.028859 

Mead et al. (1970) 0.44825 0.11484 0.051306 0.028932 
Lall et al. (1988) 0.45000 0.11000 0.051000 0.029000 
Kung et al.(1998) 0.45000 0.11000 0.051300 0.028900 
Tang et al. (2008) 0.44790 0.11470 0.051209 0.028850 
Gao et al. (2005) 0.45000 0.11000 0.051000 - 
Yang et al. (2005) 0.44819 0.11478 0.051243 0.028870 

 
 

2 
 
 
 

FE model 3.4249 1.0681 0.49622 0.28347 
Analytical model 3.4660 1.0600 0.49800 0.28152 

Arikoglu et al. (2010) 3.4257 1.0679 0.49577 0.28317 
Mead et al. (1970) 3.4271 1.0691 0.49693 0.28431 
Lall et al. (1988) 3.4250 1.0677 0.49577 0.28324 
Tang et al. (2008) 3.4261 1.0682 0.49597 0.28336 

 

3.4.2 Example-2: Sandwich beam with FG stiff layer and viscoelastic core 

An FG sandwich beam with a viscoelastic core with pinned-roller (P-R) support is 

considered as a validation problem. The properties and dimensions of the problem are 

given in Table 3.4. The natural frequency and loss factors of both FE and analytical 

models are well in agreement, as shown in Table 3.5. 

Table 3.4: Properties of example 2. 

Layer Material Young’s 
modulus 

(GPa) 

Shear 
modulus 
(MPa) 

Density 
(kg/m3) 

Poisons 
ratio 

FGM Aluminium 69 - 2698 0.3 
Al2O3 348.5 - 3800 0.3 

Core Viscoelastic 
core 

- 0.2615 2000 - 

Dimensions (mm) L=500, b=25, hf1=hf2=5,hv=1 
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Table 3.5: Natural frequency and loss factors of example 2.

Power law 
index (p)

Mode number

1 2 3
NF LF NF LF NF LF

1 FE model 68.01 3.17 263.28 0.871 588.49 0.394
Analytical model 68.18 3.08 264.21 0.836 590.94 0.377

5 FE model 60.75 4.79 230.80 0.14 513.79 0.643
Analytical model 60.65 4.65 230.93 0.132 514.62 0.605

10 FE model 58.71 4.68 223.31 1.37 497.21 0.632
Analytical model 58.67 4.62 223.39 1.33 497.80 0.607

3.5 Porosity models and viscoelastic boundary conditions
Various porosity patterns (Hadji and Avcar 2021), such as H, V, O, and X for FG stiff 

layers and viscoelastic boundary conditions (VBCs), are incorporated into the FE 

formulation.

3.5.1 Porosity patterns

Porosity is a common defect in manufacturing processes such as casting, powder 

metallurgy, and coating. The porosity may exist in FG structures due to the difference 

in melting temperature of the metal and ceramic constituents. Some of the possible 

types of porosities are shown in Figure 3.5. In H-type, porosity dispersion is equal at 

every point across the thickness. In O-type, porosity is maximum at the neutral axis and 

minimum at the top and bottom ends. In X-type, porosity is maximum at either end of 

the FG layer and minimum at the center. In V-type, porosity is maximum in the 

ceramic-rich region and minimum in the metal-rich region. The variation of effective 

material properties, such as elastic modulus and density in various porosity types, are 

given in Eq. (3.72) to Eq. (3.75).

H-Type O-Type X-Type V-Type

Figure 3.5: Porosity distribution models.
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 Homogeneous (H-Type) porous stiff layers 

(1) (1)
2 3

(2) (2)
0 1

( ) ( ) ( ) ( )
2

( )

......

......( ) ( ) ( )
2

eff CM MT CM MT CM MT

eff CM MT CM MT CM MT

P z P P V z P P P h z h

P z P P V z P P P h z h
.                 (3.72) 

 O-Type porous stiff layers 

2 3(1) (1)
2 3

3 2

1 0(2) (2)
0 1

0 1

2
( ) ( ) 1 ( )

2 ( )

2
( ) ( ) 1 ( )

......

..
2 ( )

....

eff CM MT CM MT CM MT

eff CM MT CM MT CM MT

z h h
P P P V z P P P h z h

h h

z h h
P P P V z P P P h z h

h h

.                                        

                 (3.73)  
 X-Type porous stiff layers 

2 3(1) (1)
2 3

3 2

1 0(2) (2)
0 1

0 1

......

......

(
2

) ( ) ( )
2 ( )

2
( ) ( ) ( )

2 ( )

eff CM MT CM MT CM MT

eff CM MT CM MT CM MT

z h h
P P P V z P P P h z h

h h

z h h
P P P V z P P P h z h

h h

. (3.74)                                 

 V-Type porous stiff layers 
(1) (1) 2

2 3
3 2

(2) (2) 1
0 1

0 1

( ) ( ) ( )
2

( ) ( )

.......

..... )
2

.(

eff CM MT CM MT CM MT

eff CM MT CM MT CM MT

z hP P P V z P P P h z h
h h

z hP P P V z P P P h z h
h h

(3.75)                                       

3.5.2 FE formulation for viscoelastic boundary conditions for beam 

Viscoelastic supports or boundaries consist of four complex stiffness terms (Singh et 

al. 2015) at the beam's first and last node, as shown in Figure 3.6, to constrain four 

degrees of freedom at each node.  

 
Figure 3.6: Two-noded beam element with viscoelastic boundary condition. 



37 
 

In FE modeling, supports at the boundaries are considered separate two-noded 

elements. During the assembly of elemental beam stiffness matrices of the beam, a 

support stiffness matrix is added to the first and last element of the beam. The support 

stiffness matrix is complex in nature, having real and imaginary parts added to the real 

and imaginary parts of the beam stiffness, respectively. The elemental support stiffness 

matrix is given by, 

 sp1,2

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

[ ]
0 0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

u u

u u

w w

u u

u u

w w

K K
K K

K K
K K

K
K K

K K
K K

K K

.                            (3.76) 

where Ku, Kw, and K  are complex support stiffness coefficients, ku, kw and k  are storage 

stiffness values for longitudinal, transverse, and rotation, respectively. sp is the loss 

factor of viscoelastic support, as shown in Eq. (3.77). 

(1 )
(1 )
(1 )

u u sp

w w sp

sp

K k i
K k i
K k i

.                                                                                                     (3.77) 

In the present study, arbitrary stiffness and loss factors are considered so that the study 

can be relatable to a sandwich beam supported by various viscoelastic materials with 

different properties. The variation of boundary stiffness values to achieve some of the 

common boundary conditions are as follows: 

At Support 1 = 0
 Clamped Free (C-F)

At Support 2: = 0  
sp1 u w

sp2 u w

: K k k k
K k k k

 

At Support 1 = 0
 Clamped-Clamped (C-C)

At Support 2: = 0  
sp1 u w

sp2 u w

: K k k k
K k k k

 

At Support 1 = 0
 Clamped-Pinned (C-P)

At Support 2: = 0 0  =
sp1 u w

sp2 u w

: K k k k
K k k & k
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At Support 1 = 0 0 
 Pinned-Pinned (P-P)

At Support 2: = 0 0
=

 =  
sp1 u w

sp2 u w

: K k k & k
K k k & k

 

At Support 1 =
 Pinned-Roller (P-R)

At Support 2: = 0  0 =   
u w sp1 u w

u sw p2 w

: k 0;k k 0 & K k k
k k ; k & K k

 

3.5.3 Validation and convergence study of viscoelastic boundary conditions 

The validation and convergence study is done considering two cases. In case 1 (free 

vibration), the stiffness matrix and mass matrix accuracy is examined. Case 2 analyzes 

the geometric nonlinear matrix and temperature effects on sandwich beams. 

3.4.1.1 Case-1: Free vibration of sandwich beam 

As the exact problem statement is not documented in previous works of literature, the 

model is simplified to an isotropic sandwich beam (Arikoglu and Ozkol 2010) with a 

viscoelastic core by considering the power law index (p), porosity volume fraction ( ), 

viscoelastic boundary loss factor ( sp) and rise in temperature ( T) as zero. Table 3.6 

shows the material properties of the problem. Figure 3.7 and Figure 3.8 depict the 

natural frequency (NF) and loss factor (LF) for varying support stiffness values (SSVs) 

for case 1, Table 3.7. and 3.8. show the converged natural frequency and loss factor for 

case 1. The results are good and in agreement with referred works of literature. 

Table 3.6: Material properties and dimensions of case 1.
 

Layers Properties Case 1 
 

Stiff layers 
Young's Modulus (GPa) E1=E2=207 

Density (kg/m3) 1= 2=7800 
Thickness(mm) hf1=0.5, hf2=5 

 
Viscoelastic 

Layer 

Shear Modulus (MPa) Gv=0.2615 
Density (kg/m3) v=2000 

Thickness(mm) hv=2.5 

Loss Factor v=0.38 

Whole Beam Length(mm) l=300 
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Figure 3.7: The natural frequency of 
case 1 (P-R). 

Figure 3.8: The loss factor of case 1 
(P-R). 

Table 3.7: Natural frequency of case 1 (rad/sec).
 

 Mode numbers 

Problem 1 2 3 4 

 

 

 

1 

 

 

 

FE model 740.415 2947.82 6624.05 11765.029 

Analytical model 740.2 2947.15 6623.95 11765.7 

Arikoglu et al. (2010) 740.489 2947.775 6623.477 11763.052 

Mead et al. (1970) 740.564 2949 6629.680 11782.60 

Lall et al. (1988) 740.56 2948.290 6629.660 11782.60 

Kung et al.(1998) 741 2949 6630 11783 

Tang et al. (2008) 740.564 2949 6629.680 11782.61 

Gao et al. (2005) 740.6 2949 6629.7 11783 

Yang et al. (2005) 741 2952 6647 - 

Table 3.8: System loss factor values (%) of case 1.
 

Problem Mode 1 Mode 2 Mode 3 Mode 4 
 
 

1 
 
 
 

FE model 0.44900 0.11505 0.050783 0.028645 

Analytical model 0.44900 0.11480 0.051640 0.028800 

Arikoglu et al. (2010) 0.44180 0.11477 0.051232 0.028859 

Mead et al. (1970) 0.44825 0.11484 0.051306 0.028932 

Lall et al. (1988) 0.45000 0.11000 0.051000 0.029000 

Kung et al.(1998) 0.45000 0.11000 0.051300 0.028900 

Tang et al. (2008) 0.44790 0.11470 0.051209 0.028850 

Gao et al. (2005) 0.45000 0.11000 0.051000 - 

Yang et al. (2005) 0.44819 0.11478 0.051243 0.028870 



40 
 

3.4.1.2 Case-2: Thermal buckling of sandwich beam 

The clamped-clamped (C-C) sandwich beam with isotropic stiff layers and viscoelastic 

core is considered for the study (Bhangale and Ganesan 2006). The power law index 

(p), porosity volume fraction ( ), and viscoelastic boundary loss factor ( sp) are 

assumed as zero to validate with literature problem. The material properties of the 

problem are given in Table. 3.9.  

Table 3.9: Material properties and dimension of case 2 (Bhangale and Ganesan 2006). 

Material Young's 
modulus 

(GPa) 

Shear 
modulus 

(GPa) 

Density 
(kg/m3) 

Poisons 
ratio 

Loss 
factor 

( v) 

Coefficient 
of thermal 
expansion 
x10-6/0C 

Viscoelastic 
Core 

- 9.8 2600 0.49 0.1 - 

Steel 206 - 7850 0.3 - 14 
Dimensions  L=500mm, b=50mm, hf1=hf2= hv=3mm 

Figures 3.9 and 3.10 show the critical buckling parameter (CBP) and critical buckling 

temperature (CBT) (Troom=300C), respectively, for varying support stiffness values. 

Table 3.10. gives converged CBT which is good and in agreement with referred 

literature.  

  
Figure 3.9: CBP of the case 2. Figure 3.10: CBT of the case 2. 

Table 3.10: Convergence of CBT of the sandwich beam. 

 Critical buckling temperature (0C)  
Number of elements 10 elements 20 elements 30 elements 40 elements 

Present 142.00 139.336 138.85 138.85 
Bhangale and 

Ganesan (2006) 
142.55 139.16 138.55 - 
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3.6 ANALYTICAL MODEL FOR FG SANDWICH PLATE 

Consider a three-layered sandwich plate with two stiff and a viscoelastic core of length 

l and breadth b, as shown in Figure 3.11. The thickness of the upper stiff layer, core, 

and lower stiff layer is hf1, hf2, and hv, respectively.  

The overall thickness of the sandwich plate is HT. The neutral axis of the upper and 

lower stiff layers is at the distance z1 and z2, respectively, from the core's center. H is 

the distance between the neutral axis of stiff layers. E1 and E2 are Young's modulus of 

upper and lower stiff layers, respectively. h1, h2, h3, and h4 are measured from the center 

of the core. Complex shear modulus Gv is considered for the viscoelastic core. For FG 

stiff layer Young's modulus and density vary with z coordinate (thickness).  

 

Figure 3.11: FG Sandwich plate.

 
Figure 3.12: Kinematics of sandwich plate subjected to transverse load. 
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The kinematics of the sandwich plate is derived based on the same assumptions as that 

of the sandwich beam. Figure 3.12 shows the kinematics of the sandwich plate.  

The axial and transverse displacements are given as follows: 

1 1 3 4

2 2 1 2

.......

.....

( ) ( )

( ) (. )

wu z z h z h
xu
wu z z h z h
x

,                                                                        (3.78) 

1 1 3 4

2 2 1 2

.......

.....

( ) ( )

( ) (. )

wv z z h z h
y

v
wv z z h z h
y

 ,                                                                         (3.79) 

1 2w w w ,                                                                                                           (3.80) 

where u1, u2, v1, and v2 are the axial displacement at the neutral axis along the length 

and breadth of stiff layers (upper and lower). z1 and z2 are the distance of the neutral 

axis of stiff layers from the center of the core, and w is transverse deflection. 

3.6.1 Static and dynamic equilibrium equations of sandwich plate 

 The strains associated with axial displacements are given by, 

0

0

0( ) ( ) ( )

( )
xx xx xx

yy yy i yy

xy xy xyi i i

z z ,                                                                                  (3.81) 

2

2

0 2

0 2

0 2( ) ( )

,

2

i

xx xx
i

yy yy

xy xyi ii i

wu
xx

v w
x y

u v w
y x x y

,                                                                 (3.82) 

where i=1 and 2  

From constitutive relations for stress and strains of the plate are given as follows: 

11 12

12 22

66
( ) ( )

0
0

0 0

xx xx

yy yy

xy xyi i

C C
C C

C

,                                                                             (3.83) 
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where, 11 22 12 11 662

( ) ( ), ,
1 ( ) 2(1 )

E z E zC C C C C .    

Strain energy (Ustrain), kinematic energy (KE), and energy due to external work done 

(Uext) by the force F are written as:

( )

1
2strain xx xx yy yy xy xy xz xz yz yz i

V

U dV ,                                          (3.84)

Where; 1 2
v

xz
v

G u u H
xh
w

; 1 2
v

yz
v

G v v H
yh
w .

2 2

(

2

)

1
2 V

i
KE u v w dVdV

(

2

)i
w22u v2u2 2v w2 w ,                                                                                       (3.85)

extU Fw .                                                                                                                 (3.86)

The total energy of a sandwich plate is defined as:

0 0

l b

Ldxdy .                                                                                                            (3.87)

The Lagrange density function for the system in vibration is given as,

( )strain extL KE U U .                                                                                                (3.88)

Substituting displacements and energies in Eq. (3.88), L can be rewritten as:    

2 2 2 2 2
( ) ( )

22

2 22 21 ( )

( )
11

2

1
2

i ii i i i
A B

v
i i

D

i i

u v u vw w wI I
t t t t t x t t y wI

tw wI
t x t y

uA
xL

22 2 2
( ) ( ) ( ) ( ) ( )
22 11 12 22 122 2

2 22 2 2 2
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11 22 12 122 2 2 2

( )
66

2( ) 2( )

2 2

i i i i ii i i

i i i ii i

i i

v u vw wA B B B B
y x x y y

u vw w w wD D A D
x y x y x y

uA
x

2

222 2 2 41 ( ) ( )
66 66 2 2

22

1 3 1 3

2 4
i i ii i i i i

v v

v v

v u v u vw w wB D
y x y x x y y x y x y

G Gw wu u H v v H Fw
h x h y                  

                                                                                                                                (3.89)
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where A, B, and D are stiffness coefficients, and IA, IB, and ID are inertial coefficients of 

graded stiff layers: 
4

3

(1) (1) (1) 2 (1)
1 1( , , ) 1, ( ), ( )

h

jk jk jk jk
h

A B D z z z z C dz ,                                                      (3.90) 

2

1

(2) (2) (2) 2 (2)
2 2, , ) 1, ( ), ( )

h

jk jk jk jk
h

A B D z z z z C dz ,                                                     (3.91)                                     

4

3

(1) (1) (1) 2 (1)
1 1( , , ) 1, ( ), ( )

h

A B D
h

I I I z z z z dz ,                                                         (3.92) 

2

1

(2) (2) (2) 2 (2)
2 2( , , ) 1, ( ), ( )

h

A B D
h

I I I z z z z dz ,                                                       (3.93)                                    

where,  j= 1, 2, 6; k=1, 2. 

The energy equation has five functions (u1, u2, v1, v2, and w) and three variables (x, y, 

and t). Governing equations of motion for each function are derived using the Euler-

Lagrange equation. 

If there is a single unknown functional f dependent on three variables, X1, X2, and X3, 

and if the functional depends on second-order derivatives of f such that: 

1 2 3 1 11 12 13[ ] ( , , , , , , , ......, , , )m mm mnI f L X X X f f f f f f f f d ,                                      (3.94) 

m
m

ff
X

, 
2

mn
m n

ff
X X

,                                                                                        (3.95) 

2 2

0
m m m m mm m n mn

L L L L
f X f X X f X X f

.                                       (3.96) 

m=1, 2 & 3 and n=1, 2 & 3 

By substituting Eq. (3.89) in Eq. (3.96), partial differential equations of motion are 

derived: 
2 2 2 23 3

(1) (1) (1) (1) (1) (1)1 1 1 1
11 11 12 12 66 662 3 2 2

2 3
(1) (1)1

1 2 2 2

2

0v
A B

v

u v u vw wA B A B B A
x x x y x y y x y

G uw wu u H I I
h x t x t

,               (3.97) 
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2 2 2 23 3
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                                                                                                                              (3.101) 

3.6.2 Analytical solution for the sandwich plate with simple support 

Navier's approach solves the derived governing equations for all side simply supported 

(SSSS) conditions. The trigonometric displacement fields are considered as follows: 

1 1 cos( )sin( ) i t
mnu U x y e   ; 2 2 cos( )sin( ) i t

mnu U x y e , 

1 1 sin( ) cos( ) i t
mnv V x y e     ; 2 2 sin( ) cos( ) i t

mnv V x y e , 

sin( )sin( ) i t
mnw W x y e ,                                                                                    (3.102) 

where 1i , m
l

, n
b

and  is the natural frequency. 

where m and n are mode numbers of the sandwich plate in dynamic conditions 

Substituting Eq. (3.102) in Eqs. (3.97-3.101), the solution is obtained in the form of the 

matrix: 
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(1)
11 Am I ;  12 13 14 0;m m m (1)

15 Bm I ;  (2)
22 Am I ; 

23 24 0m m ; (2)
25 Bm I ; (1)

33 Am I ; 34 0m ; (1)
35 Bm I ; 

 (2)
44 Am I ; (2)

45 Bm I ; (1) (2) (1) (2) 2 2
55 A A v D Dm I I I I I .                  (3.105) 

Eq. (3.103) is written in a simplified form as follows, 
2([ ] [ ])R I ij ijK iK M F ,                                                                           (3.106) 

where, * (1 )n n pi ,                                                                                      (3.107) 

p is the loss factor of the sandwich plate.                       

The loss factor of the sandwich plate is given by, 

Loss Factor ( p ) =
2

2

( )
( )

n

n

imag
real

 .                                                                          (3.108) 
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Neglecting kinetic energy (KE) vanishes inertia terms in the Lagrange density function 

(L). Also, the imaginary stiffness matrix is zero ([KI]ij=0) in static conditions. This leads 

to the static equilibrium equation ([Mij]=0) as follows: 

[ ]ijK F .                                                                                                       (3.109) 

The force (F) can be represented in Fourier form as, 

1 1
sin sin

m n

jk
j k

m x n yF F
l b

.                                                                                    (3.110) 

where Fjk is the force coefficient that varies with the type of load.  

For UDL and harmonic load,  

0
0 0

4 sin sin
l b

jk
m x n yF F dxdy

lb l b
 , 0 sin( )F t .                                                 (3.111) 

3.6.3 Validation of analytical sandwich plate model 

The proposed model is validated for different combinations of sandwich plates by 

considering various examples from available works of literature. 

3.6.3.1 Example-1: FG stiff layers with homogeneous flexible core 

In this example, a square simply supported sandwich plate is considered with Al-Al2O3 

FG upper and lower stiff layers in which Al2O3 volume fraction (VCM) varies as per the 

power law index (p=1). The core is made of aluminium. The properties of each 

component of the sandwich plate are given in Table 3.11. The rule of mixture governs 

the properties along the thickness of FG stiff layers. Three different stiff layer and core 

thickness ratios are considered (1-2-1, 1-1-1, and 2-1-2). The non-dimensional natural 

frequencies ( ) of example 1 for various modes are tabulated in comparison with 

previous works of literature in Table 3.12. Non-dimensional natural frequency ( ) is 

defined as: 
2

0

0

l
h E

, where 3
0 1 /kg m and 0 1E GPa                                                    (3.112) 
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Table 3.11: Properties of sandwich plate materials of example 1. 

Material Young's 
modulus (GPa) 

Density 
(kg/m3) 

Poisons 
ratio 

Aluminium (Al) 70 2707 0.3 
Aluminium oxide (Al2O3) 380 3800 0.3 

 

Table 3.12: Non-dimensional natural frequency of example 1. 

Source l/h=10 l/h=100 
1-1-1 1-2-1 2-1-2 1-1-1 1-2-1 2-1-2 

Present model 1.675 1.568 1.71 1.744 1.644 1.791 
Moita et al. (2018) 1.661 1.587 1.699 1.747 1.644 1.785 

Liu et al. (2015) 1.656 1.562 1.674 1.746 1.644 1.790 
Li et al. (2008) 1.631 1.558 1.674 1.754 1.675 1.792 

Table 3.12 shows that an increase in core thickness reduces the natural frequency, 

whereas an increase in stiff layer thickness enhances the frequency. It means the 

structure's stiffness is inversely proportional to the softcore thickness and directly 

proportional to the stiff layer thickness.   

3.6.3.2 Example-2: Isotropic stiff layers with viscoelastic core 

In this example, isotropic stiff layers are considered with the viscoelastic core. Table 

3.13 gives the material properties and dimensions of example 2. The natural frequency 

and loss factors, for example 2, are presented in Tables 3.14 and 3.15, respectively. 

After discussing two examples, it is seen that the results obtained from the present 

solution method agree well with the available works of literature. The developed 

sandwich beam and plate formulations are used to study the static and dynamic behavior 

of FG sandwich structures with the viscoelastic core.  

Table 3.13: Dimensions and material properties of example 2. 

Material Density 
(kg/m3) 

Young's 
modulus 

(GPa) 

Shear 
modulus 
(MPa) 

Poisons 
ratio 

Loss 
factor 

Stiff layers 2740 68.9 - 0.3 - 
Viscoelastic core 999 - 0.896 0.49 0.5 

Dimensions l =348mm; b=304.8mm; hstiff=0.762mm; hcore=0.254mm 
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Table 3.14: Natural frequency (Hz) of example 2 in different modes of vibration. 

Source 1,1 2,1 1,2 2,2 1,3 
Present model 60.506 115.81 131.072 179.19 196.167 

Wang et al. (2000) 60.300 115.40 130.600 178.70 195.700 
Johnson et al. (1982) 57.400 113.20 129.300 179.30 196.000 
Huang et al. (2014) 57.270 112.12 127.240 - - 

Table 3.15: Loss factor of example 2 in different modes of vibration. 

Source 1,1 2,1 1,2 2,2 1,3 
Present model 0.190 0.203 0.199 0.181 0.174 

Wang et al. (2000) 0.190 0.203 0.199 0.181 0.174 
Johnson et al. (1982) 0.176 0.188 0.188 0.153 0.153 
Huang et al. (2014) 0.178 0.192 0.195 -` - 

3.7 SUMMARY 

In this chapter, a detailed formulation of the static and dynamic behavior of FG 

sandwich beams and plates with a viscoelastic interlayer is presented. In the first 

section, the FE model is developed to study the static bending, buckling, free, and 

forced vibration of FG sandwich beams with a viscoelastic core in a thermal 

environment. The developed FE model is validated with an analytical model, shown in 

the second section. Once the model is examined for accuracy, various porosity patterns 

for FG stiff layers and viscoelastic boundary conditions (VBCs) are incorporated into 

the FE model. The validation and convergence study of VBCs is carried out with 

available literature. In the last section, an analytical sandwich plate model is developed 

for static bending and free vibration of the FG sandwich plate with a viscoelastic core. 

The model is validated with various literature. The results show that the developed 

sandwich plate model is accurate enough to give appropriate results.  
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CHAPTER 4 

4 RESULTS AND DISCUSSION 

4.1 INTRODUCTION 

In this chapter, an FG sandwich beam with a viscoelastic interlayer is considered in a 

thermal environment for static bending, buckling, and vibration studies. Different types 

of porosity models (H, O, V, X) are incorporated into the study. The FG sandwich beam 

is presumed to have viscoelastic boundary conditions (VBCs) with varying support 

stiffness. First static bending and free vibration studies are carried out at room 

temperature. This section also discusses the effect of several parameters, such as 

support stiffness, loss factor, porosity dispersion, and power-law variation, on the 

sandwich beam's bending and vibration. Further, thermal buckling and free vibration 

studies are carried out for various working temperatures. The temperature effect on 

critical buckling temperature (CBT), natural frequency (NF), and loss factor (LF) of the 

FG porous sandwich beam is also discussed. 

4.2 STATIC BENDING AND FREE VIBRATION OF FG 

SANDWICH BEAM (ROOM TEMPERATURE) 

For the study, Ti-6Al-4V/ZrO2 FG sandwich beam is considered with the DYAD606 

core. Young's modulus (E) and coefficients of thermal expansion ( ) of FG stiff layers 

are temperature dependent; density remains constant in all temperatures. The 

temperature coefficients and densities of FG constituents are given in Table 4.1. Figures 

4.1 and 4.2 show the temperature-dependent shear modulus and loss factor of 

DYAD606. Figures 4.3 and 4.4 show variations of Young’s modulus and density of FG 

stiff layers along the thickness of the sandwich beam for different porosity dispersion 

models and power-law index. 
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Figure 4.1: Temperature-dependent 

shear modulus of DYAD 606 core. 

Figure 4.2: Temperature-dependent loss 

factor of DYAD 606 core. 

  
i) ii) 

 
iii) 

Figure 4.3: Young's modulus of Ti-6Al-4V/ZrO2 FG stiff layers with various porosity 

patterns at =0.2: i) p=0.5, ii) p=1 and iii) p=3) 
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i) ii) 

 
iii) 

Figure 4.4: Density of Ti-6Al-4V/ZrO2 FG stiff with various porosity patterns at 

=0.2: i) p=0.5, ii) p=1 and iii) p=3) 

Calculation of Young’s modulus of ZrO2 at T=300K 
1 2 3

0 1 1 2 3( ) ( 1 )P T P P T PT PT PT

2

39 3 6 2 10(300 ) 244.27 10 (1 1.37 10 (300) 1.214 10 (300) 3.68 10 300 )ZrOE K X X X X  

2ZrO (300 ) 168.063E K GPa  

Similarly, properties such as Young’s modulus and coefficient of thermal expansion for 

each constituent at a temperature of 300K are calculated, and the properties are listed 

in Table 4.1. 

for FG constituents (Reddy and Chin (1998). 
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4.2.1 Static bending studies 

A static deflection study is carried out for the FG sandwich beam with a viscoelastic 

interlayer. The power law is considered unity (p=1) for the first case. The variation of 

Young’s modulus and density for power law index p=1 are shown in Figures 4.3 (ii) 

and 4.4 (ii). The beam is assumed as non-porous ( =0), and a constant point load of 

10N is applied at the free end of the C-F beam and at the center of the C-C, P-R beam. 

Since the complex shear modulus phenomenon is seen only in dynamic conditions, the 

loss factor will not come into the frame for both viscoelastic support and core ( sp= v=0) 

for static studies.  

Accordingly, the maximum transverse deflection (wmax) is plotted in Figure 4.5 for 

different support conditions. The transverse deflection diagrams for symmetric 

boundary conditions (C-C) can be drawn using 2D and 3D graphs, but for unsymmetric 

boundary conditions (P-R), only 3D graphs are suitable to show transverse deflections. 

It is observed that resistance to deformation is enhanced at either end by increasing the 

boundary stiffness of the beam. Therefore, transverse deflection reduces with an 

increase in boundary stiffness. The deflection reaches a constant value at higher support 

stiffness.  

  
i) ii) 
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iii) iv) 
Figure 4.5 Transverse deflection (wmax) of sandwich beam under varying support 

stiffness: i) C-F, ii) C-C (2D). iii) C-C (3D) iv) P-R (p=1, F=10N, =0.0). 

The deflection reaches a constant value at higher support stiffness. Based on the 

deflection results, the critical support stiffness values (SSVs) to achieve conventional 

boundary conditions are tabulated in Table 4.2. Once the conventional boundary 

conditions are known, further study is carried out for C-F, C-C, and P-R conditions.  

Table 4.2: Support stiffness values (SSVs) for various boundary conditions of Ti-6Al-

4V/ZrO2 FG sandwich beam 

 Ksp1 
(N/m) 

Ksp2 
(N/m) 

Clamped-Free (C-F) 1011 0 
Clamped-Clamped (C-C) 109 109 

Pinned-Roller (P-R) 1011 108 
 
Figure 4.6 shows the transverse deflections with varying point loads for various power 

law indices. The higher power law indicates higher metal content in the FG stiff layers. 

Since Young's modulus of metal is less compared to ceramic, FG stiff layers with high 

metal content are less stiff compared to FG layers with more ceramic content. So, the 

FG sandwich beam deflection enhances with the power law index, and the C-F beam 

yields maximum deflection compared to C-C and P-R beams. 
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i) ii) 

 
iii) 

Figure 4.6 Transverse deflection (wmax) of sandwich beam under varying point loads: 

i) C-F, ii) C-C. iii) P-R ( =0.0). 

Further porosity dispersion models are incorporated, and transverse deflection is 

determined for various porosity volume fractions under C-C support. For a constant 

point load of 10N, V and H-type porosities give minimum and maximum transverse 

deflection, respectively, for a given porosity volume fraction. The transverse deflection 

of V-type porosity is 23.07% and 27.77% less than H-type porosity for power-law (p) 

0.5 and 3, respectively.  

From Figure 4.7, it is observed that when the porosity is more at the metal-rich part of 

the FG stiff layer, the stiffness of the beam is reduced considerably, which leads to 

higher deflection; when porosity is maximum at ceramic rich part, the reduction in 

beam stiffness is comparatively less which leads in lower deflection.  
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i) ii) 

 
iii) 

Figure 4.7: Transverse deflection (wmax) of C-C sandwich beam for various porosity 

distribution models: i) p=0.5, ii) p=1. iii) p=3 (F=10N). 

Figure 4.8 shows the transverse deflection of the FG porous sandwich beam along the 

length of the beam for conventional boundary conditions. As the constant point load of 

10N is applied at the center of the C-C and P-R beam, the deflection is maximum at the 

center and reduces to zero at either end of the beam. The C-F sandwich beam deflection 

is zero at the clamped end and maximum at the free end where the load is applied. The 

C-F beam yields higher deflection than P-R and C-C beams as the C-F support is less 

stiff than the other two. The porosity patterns play an important role in deciding the 

stiffness of the sandwich beam. If the porosity is maximum away from the neutral axis 

of stiff layers, the stiffness reduces drastically, and transverse deflection will be 

maximum (H and X pattern). If the porosity is more at the neutral axis (O and V 

pattern), the reduction in stiffness is less. 
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i) ii) 

 
iii) 

Figure 4.8: Transverse deflection of sandwich beam for varying x/l ratio: i) C-F, ii) C-

C. iii) P-R (p=1, F=10N, =0.2). 

4.2.2 Vibration studies 

Free vibration study is carried out for the FG sandwich beam with a viscoelastic 

interlayer. In the first case, non-porous FG stiff layers are considered ( =0) with power-

law variation p=1. The core is considered viscoelastic ( v=0.388), and the supports are 

treated as elastic ( sp=0). Figures 4.9 and 4.10 indicate the natural frequency (NF) and 

loss factor (LF) of the C-F sandwich beam, respectively. The natural frequency 

increases gradually with an increase in elastic support stiffness (ESS), and the 

frequency enhancement rate reduces when the ESS nears the beam stiffness (BSS). 

Once the ESS crosses the BSS, a rise in frequency can be seen, and the frequency line 

flattens when the beam achieves the conventional C-F boundary condition. 

On the other hand, the beam loss factor nearly equals zero ( 0) until the ESS values 
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reach a critical value ( 104 N/m), which means the shear strain or shear deformation in 

the core is negligible as the ESS fails to offer remarkable resistance at the ends. As the 

ESS increases beyond 104 N/m and nears beam stiffness, the strain energy stored in the 

viscoelastic core and associated loss factor of the beam reaches their maximum. Once 

the ESS crosses BSS, there will be a reduction in the strain energy stored and the 

associated loss factor. The loss factor remains unchanged once the C-F boundary is 

achieved.  

  

Figure 4.9 Natural frequency of 

sandwich beam under varying C-F 

support stiffness (p=1, =0.0, sp=0.0). 

Figure 4.10 Loss factor of sandwich 

beam under varying C-F support stiffness 

(p=1, =0.0, sp=0.0). 

Figures 4.11 and 4.12 depict the natural frequency, and loss factor of C-C supports. The 

frequency, as well as the loss factor curve, remains flat ( 0) till the support offers some 

resistance to the load applied ( 104 N/m). Beyond the critical support value (>104 N/m), 

the natural frequency and loss factor increase and attain a constant value at higher ESS. 

The frequency and loss factor trends resemble the C-F beam when ESS is considerably 

high at one end and low at the other end of the C-C beam. Figures 4.13 and 4.14 indicate 

the P-R sandwich beam's natural frequency and loss factor. The natural frequency and 

loss factor curves follow similar trends in the P-R beam. The natural frequency and loss 

factor curves remain flat till the supports offer some resistance ( 104 N/m); after that, 

the values increase continuously till the P-R boundary is achieved and remain constant. 
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Figure 4.11: Natural frequency of 

sandwich beam under varying C-C 

support stiffness (p=1, =0.0, sp=0.0). 

Figure 4.12: Loss factor of sandwich 

beam under varying C-C support 

stiffness (p=1, =0.0, sp=0.0). 

  

Figure 4.13: Natural frequency of 

sandwich beam under varying P-R 

support stiffness (p=1, =0.0, sp=0.0). 

Figure 4.14: Loss factor of sandwich 

beam under varying P-R support 

stiffness (p=1, =0.0, sp=0.0). 

Figure 4.15 shows the mode shapes of the C-F, C-C, and P-R beams. Mode shapes are 

extracted for different stiffness values at both ends, where the frequency and loss factor 

curves exhibit drastic changes in their trends.  

The mode shapes substantiate that there is hardly any shear deformation in the core 

until the supports offer some resistance to the applied forces. At 104 N/m, the supports 

offer some resistance but are not enough to hold the beam completely, because of which 

the negative deformation (mode shape) is observed. Once the critical value (104 N/m) 

is crossed, the shear deformation and strain energy associated with the viscoelastic core 

increase, enhancing the natural frequency and loss factor. In C-F mode shapes, shear in 
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the core is high when the ESS nears the BSS, because of which the loss factor of the 

beam is high, as shown in Figure 4.10.  

  
i) ii) 

 
iii) 

Figure 4.15: Mode shapes of sandwich beam under varying support stiffness: i) C-F, 

ii) C-C. iii) P-R (p=1, =0.0, sp=0.0). 

The variation of beam loss factors for different viscoelastic support loss factors is 

shown in Figure 4.16. From the figure, it is noted that viscoelastic support contributes 

to the overall damping of the sandwich beam considerably when the support is more 

viscous (soft). The increase in viscoelastic support stiffness (VSS) makes the support 

more elastic (hard) than viscous. When the sandwich beam is on highly stiff supports, 

only the core contributes to the vibration damping of the beam. The maximum loss 

factor of the sandwich beam is noted at VSS 104 N/m, and the negative or positive signs 

depend on the beam's direction of deformation (mode shape).  
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i) ii) 

 
iii) 

Figure 4.16: Sandwich beam loss factor under varying viscoelastic support stiffness: i) 

C-F, ii) C-C. iii) P-R (p=1, =0.0). 

In the second case, various porosity dispersion models are incorporated into the study. 

The Natural frequency (NF) and loss factor (LF) are plotted for different power-law 

variations. Figure 4.17 depicts the natural frequency of sandwich beams for varying 

porosity volume fractions.  

The C-C sandwich beam with V and X-type porosities portrays maximum and 

minimum natural frequency. The natural frequency of V-type porosity escalates from 

5.177% to 6.63% at =0.3 compared to X- type porosity when power law (p) is 

enhanced from 0.5 to 3. The natural frequency results show that if the porosity content 

is higher in the metal-rich-part, the reduction in beam stiffness is more compared to its 

mass, which leads to a reduction of natural frequency. As the porosity volume fraction 

increases, the mass reduction dominates the stiffness reduction up to a certain level, 
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leading to natural frequency enhancement. A further increase in porosity reduces the 

natural frequency as discerned in H-type and X-type distribution.  

  
i) ii) 

 
iii) 

Figure 4.17: Natural frequency of C-C sandwich beam for various porosity 

distribution models: i) p=0.5, ii) p=1. iii) p=3 ( sp=0.1). 

Figure 4.18 shows the sandwich beam loss factor for varying porosity volume fractions. 

The C-C sandwich beam with V and H-type porosities portrays maximum and 

minimum loss factors for a given porosity volume fraction. The loss factor of V-type 

porosity enhances from 12.42% to 17.54% at =0.3 compared to H- type porosity when 

the power law (p) is increased from 0.5 to 3.  
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i) ii) 

 
iii) 

Figure 4.18: Loss factor of C-C sandwich beam for various porosity distribution 

models: i) p=0.5, ii) p=1. iii) p=3 ( sp=0.1). 

Figure 4.19 shows the loss factor of the sandwich beam with varying viscoelastic 

support loss factors ( sp). If the support is more viscous (high loss factor), it offers high 

damping to the structure. So overall loss factor of the sandwich beam increases with an 

increase in the support loss factor.  
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i) ii) 

 
iii) 

Figure 4.19: Loss factor of C-C sandwich beam for various VES loss factors ( sp): i) 

p=0.5, ii) p=1. iii) p=3 ( =0.3, v=0.388). 

4.3 BUCKLING AND FREE VIBRATION OF FG SANDWICH 

BEAM IN UNDER THERMAL ENVIRONMENT  

A SUS304/Si3N4 FG sandwich beam is considered for the study with a DYAD606 

viscoelastic core. The temperature coefficients and densities of SUS304/Si3N4 FG 

constituents are given in Table 4.1. 

4.3.1 Thermal buckling 

In this section, the buckling of the sandwich beam in a thermal environment is studied. 

Critical buckling temperature and buckling mode shapes are extracted for various 

boundary conditions.  
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The effect of parameters such as temperature, porosity volume fraction, ceramic 

gradation, and boundary conditions (BCs) on critical buckling temperature (CBT) is 

discussed. The room temperature (Troom) is considered as 270C throughout the study. 

Buckling is a static phenomenon, so the support loss factor ( sp) is zero (elastic support 

) for buckling. Figure 4.20 shows the CBT of the sandwich beam for various boundary 

conditions with varying support stiffness values (SSVs). The figure shows that as the 

SSVs increase, the beam's overall stiffness increases, leading to a rise in CBT. The CBT 

will remain unchanged after the SSVs hit a critical value, and the trend line will remain 

flat beyond that point. This phenomenon is referred to as ideal BCs or conventional 

BCs (C-C, C-P, P-P, and P-R). C-C shows the highest CBT, and P-R shows the lowest 

among the four BCs. Table 4.3. shows the critical support stiffness values to achieve 

conventional BCs.  

  
i) ii) 

  
iii) iv) 

Figure 4.20: CBT of sandwich beam: i) C-C, ii) C-P, iii) P-P, and iv) P-R (p=1,  

=0.0, T=50 0C and sp=0.0). 
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Table 4.3: Support stiffness values for various conditions (BCs) of SUS304/Si3N4 FG 

sandwich beam. 

Boundary conditions Ksp1 
(N/m) 

Ksp2 
(N/m) 

C-C 1012 1012 
C-P 1014 1014 
P-P 1013 1013 
P-R 1012 108 

Figure 4.21 shows the buckling mode shapes for various BCs. From the figure, it is 

noticed that when the SSVs are significantly less (101 N/m to 105 N/m), the boundary 

fails to provide sufficient support to the beam, which means the thermal stresses are 

easing out without any resistance from the supports (nearly free-free condition), so 

buckling mode shape remains flat. Buckling peak can be observed when the SSVs are 

considerably high, and the peak attains maximum for a given temperature rise at a 

critical value. Once the beam attains conventional BCs, the peak remains unchanged.  

  
i) ii) 

  
iii) iv) 

Figure 4.21: Buckling mode shape of sandwich beam: i) C-C, ii) C-P, iii) P-P, and iv) 

P-R (p=1, =0.0, T=50 0C and sp=0.0). 
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The buckling takes a positive shape (Figure 4.21 i and ii) when the rotation degrees of 

freedom (DoF) are constrained at the boundaries (fixed), whereas buckling takes a 

negative shape (Figure 4.21 iii and iv) when the rotation DoF is not constrained (P-R). 

Further, the studies are carried out for the C-C sandwich beam. 

Figure 4.22 shows the CBT of porous sandwich beams of various patterns at different 

temperatures. As the temperature increases, the thermal stresses increase, reducing the 

beam's stiffness and CBT. The presence of porosity reduces the effective coefficient of 

thermal expansion, and intern, reduces thermal stresses in the beam. Hence, the CBT 

increases with an increase in porosity volume fraction, as shown in Figure 4.23. A 

porous sandwich beam with H-pattern displays the highest CBT, and the V-pattern 

displays the lowest CBT among all four porosity patterns. Figure 4.24 shows the 

influence of the power law index on the CBT of the sandwich beam. The increase in p-

value increases the metal content in FG stiff layers. Since the metal has a higher 

coefficient of thermal expansion, the thermal stresses induced will also be higher, 

reducing the sandwich beam’s CBT.  

  
Figure 4.22: CBT of C-C sandwich 

beam at different temperature rise (p=1, 

=0.3, and sp=0.0). 

Figure 4.23: CBT of C-C sandwich 

beam at different porosity (p=1, T=50 
0C, and sp=0.0). 
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Figure 4.24: CBT of C-C sandwich beam at different power law index ( =0.3, 

T=50 0C, and sp=0.0). 

Table 4.4. shows the CBT of porous sandwich beams at various temperatures and BCs 

(C-C, C-P, P-P, and P-R). The C-C condition offers more stiffness to the beam 

compared to P-R, and the C-C condition exhibits maximum stiffness, which leads to 

higher CBT compared to the P-R beam among the four BCs. 

Table 4.4: CBT for various boundary conditions ( =0.3, p=1, and sp=0.0). 

  T (0C) 
BCs Porosity 

patterns 
10 40 70 80 

 
 

C-F 

NP 626.27 607.41 596.74 592.71 
X 730.96 709.77 697.12 692.38 
V 683.60 664.10 652.30 647.87 
O 755.31 733.71 720.63 715.72 
H 941.85 915.84 899.19 893.02 

 
 

C-P 

NP 624.79 602.77 592.20 588.22 
X 729.46 704.94 692.40 687.71 
V 682.42 660.39 648.68 644.28 
O 753.45 727.78 714.83 709.98 
H 939.84 909.19 892.69 886.58 

 
 

P-P 

NP 623.32 598.19 587.73 583.78 
X 727.97 700.18 687.74 683.09 
V 681.24 656.72 645.08 640.72 
O 751.60 721.93 709.11 704.30 
H 937.84 902.61 886.27 880.21 

 
 

P-R 

NP 332.92 323.19 317.75 315.69 
X 386.44 375.48 369.03 366.61 
V 362.34 352.50 346.48 344.21 
O 398.69 387.15 380.49 377.99 
H 494.03 480.03 471.53 468.40 
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4.3.2 Free vibration 

In this section, the free vibration of the sandwich beam in a thermal environment is 

studied. The natural frequency (NF), loss factor (LF), and mode shapes of the sandwich 

beam in the first mode of vibration are plotted for various boundary conditions. A 

parametric study is conducted to know the effect of temperature, porosity volume 

fraction, power law distribution, and boundary conditions (BCs) on natural frequency 

and loss factors. Figures 4.25 and 4.26 show the natural frequency and loss factor of 

sandwich beams with various BCs, respectively. C-C sandwich beam yields maximum 

natural frequency and minimum loss factor among four BCs. When the support stiffness 

values (SSVs) of one support are higher and nearly the same as beam stiffness, whereas 

the SSVs of another support are lower than beam stiffness, the thermal stresses induced 

in the beam dominate the beam stiffness, because of which the negative loss factor can 

be observed in Figure 4.26. 

  
i) ii) 

  
iii) iv) 

Figure 4.25: Natural frequency of sandwich beam: i) C-C, ii) C-P, iii) P-P, and iv) P-

R (p=1, =0.0, T=10 0C and sp=0.0). 



72 
 

  
i) ii) 

  
iii) iv) 

Figure 4.26: Loss factor of sandwich beam: i) C-C, ii) C-P, iii) P-P, and iv) P-R (p=1, 

=0.0, T=10 0C and sp=0.0). 

Figure 4.27 shows the transverse mode shapes of sandwich beams for various BCs. The 

amplitude of mode shapes changes with SSVs. It is observed that as SSVs increase, the 

peak of the mode shape increases in the case of all BCs. 

Figures 4.28 and 4.29 show the natural frequency and loss factor of FG sandwich beams 

with various porosity models at different temperatures. The temperature rise enhances 

the beam's thermal stresses, which reduces the beam's overall stiffness. This leads to a 

reduction in natural frequency. The loss factor of the beam follows a similar trend of 

the viscoelastic core loss factor, as depicted in Figure 4.2. The natural frequency and 

loss factor are almost equal to zero and infinity, respectively, as the temperature gets 

close to the buckling temperature. FG porous beams with H and V patterns exhibit 

maximum and minimum natural frequency, and X and H patterns show maximum and 

minimum loss factors among the porosity patterns. The presence of higher porosity 

reduces the thermal stresses induced in the beam, because of which the reduction in the 
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frequency of the H-pattern slows down and gives better natural frequency at higher 

temperatures compared to the O-pattern. 

  
i) ii) 

  
iii) iv) 

Figure 4.27: Transverse mode shape of sandwich beam in vibration: i) C-C, ii) C-P, 

iii) P-P, and iv) P-R (p=1, =0.0, T=10 0C and sp=0.0). 

 
 

Figure 4.28: Natural frequency of C-C 

sandwich beam at different temperatures 

(p=1, =0.3, and sp=0.2). 

Figure 4.29: Loss factor of C-C 

sandwich beam at different temperatures 

(p=1, =0.3, and sp=0.2). 
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Figures 4.30 and 4.31 show the natural frequency and loss factor for different porosity 

volume fractions. In H and O-pattern porosity, the mass reduction rate dominates the 

stiffness reduction rate. This improves natural frequency, whereas it is vice-versa in 

other patterns (V and X), which reduces the natural frequency for higher porosity 

volume fractions which is clearly observed in V-pattern. As the porosity volume 

fraction increases, energy dissipation of the sandwich beam decreases, which is 

indicated by the loss factor trend in Figure 4.31. The influence of the power law index 

on the natural frequency and loss factor of the porous sandwich beam is observed in 

Figures 4.32 and 4.33. The stiffness of FG layers and shear in the core reduces with an 

increase in the power-law index, which reduces the natural frequency and loss factor.  

  
Figure 4.30: Natural frequency of C-C 

sandwich beam at different porosity 

(p=1, and sp=0.2). 

Figure 4.31: Loss factor of C-C 

sandwich beam at different porosity 

(p=1, and sp=0.2). 
 

  
Figure 4.32: Natural frequency of C-C 

sandwich beam at different power law 

index ( =0.3 and sp =0.2). 

Figure 4.33: Loss factor of C-C 

sandwich beam at different power law 

index ( =0.3 and sp =0.2). 
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Figures 4.34 and 4.35 depict the natural frequency and loss factor behavior near the 

buckling temperature. The increase in temperature reduces the beam stiffness, which 

diminishes the natural frequency. The natural frequency approaches zero at CBT, 

whereas the loss factor increases with temperature and approaches infinity at CBT. 

  

Figure 4.34: Natural frequency of C-C 

sandwich beam at CBT (p=1, =0.3, and 

sp=0.2). 

Figure 4.35: Loss factor of C-C 

sandwich beam at CBT (p=1, =0.3, and 

sp=0.2). 

Figure 4.36 shows the change in the loss factor of the porous sandwich beam with 

boundary loss factor ( sp). The viscoelastic boundaries contribute to energy dissipation 

in vibrating structures, increasing the loss factor of the beam with the boundary loss 

factor. Table 4.5 displays the natural frequency and loss factor of porous sandwich 

beams for various BCs. C-C and P-R show the maximum and minimum natural 

frequency, respectively, and P-P and C-C beams show the highest and lowest loss 

factors among the four BCs. 

 
Figure 4.36: Loss factor of C-C sandwich beam with change in support damping 

( sp) (p=1, =0.3). 
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Table 4.5: Natural frequency and loss factor for various boundary conditions at 

T=10 0C ( =0.3, p=1, and sp=0.2). 

 BCs 
 Porosity 

patterns 
C-C C-P P-P P-R 

 
Natural 

frequency 
(Hz) 

NP 647.81 646.10 649.39 441.89 
X 647.79 646.33 644.87 442.56 
V 628.10 626.88 625.67 429.00 
O 659.03 657.26 655.49 450.13 
H 661.09 659.57 658.06 452.31 

 
Loss 

factor 
(%) 

NP 0.131 0.311 0.491 0.250 
X 0.115 0.273 0.432 0.220 
V 0.109 0.243 0.376 0.192 
O 0.11 0.296 0.481 0.244 
H 0.094 0.258 0.422 0.214 

4.4 SUMMARY 

In this chapter, the bending, buckling, and vibration of FG porous sandwich beams with 

viscoelastic boundary conditions (VBCs) in a thermal environment are discussed. 

Initially, bending and free vibration studies are done at room temperature. Transverse 

deflection, natural frequency, loss factors, and mode shapes are studied for various 

boundary conditions (C-F, P-R, and C-C) of the sandwich beams with varying support 

stiffness. Further porosity dispersion patterns (H, O V, and X) and VBCs are 

incorporated into the studies. The effect of various parameters such as power law index, 

porosity volume fraction, and viscoelastic support loss factor on transverse deflection, 

natural frequency, and loss factor of C-C FG porous sandwich beams are also discussed. 

In the next section, the temperature effect is incorporated into the studies; buckling and 

free vibration studies are carried out in a thermal environment. Finally, the effect of 

various parameters (porosity volume fraction, power law index, and VES loss factor) 

on critical buckling temperature (CBT), natural frequency, and loss factor is also 

investigated in a thermal environment.           
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CHAPTER 5 

5 STUDIES ON DISC BRAKE PAD WITH Al-Al2O3 FG 

BACK PLATE AND BRAKE INSULATOR 

5.1  INTRODUCTION 

In recent years, many advancements have taken place in the automobile sector. As a 

result, the performance and comfort of new vehicles have improved compared to old 

vehicles. Disc brake squeal is one of the significant and challenging problems in 

automobiles which reduces both performance and comfort of the vehicle. The vibration 

induced by the friction between the wheel disc and brake pad generates the squeal. 

Brake insulators are being used to suppress the squeal. Different types of brake 

insulators are available in the market in which single-layer insulators, constrained-layer 

insulators, and multilayer-constrained insulators are primarily used in automobiles. A 

single-layer insulator combines a metal (steel) and a viscoelastic layer (Acrylic rubber 

or NBR rubber) (Glisovic and Miloradovic 2010). The back plate is a significant part 

of the disc brake system. In the actual case, the back plate is bound with friction material 

on one face and the brake insulator on the other. The whole assembly is treated as a 

brake pad. 

In general, brake pads are rectangular in shape. The dimensions of brake pads vary with 

vehicles. This brake pad is held in a caliper by an anchor bracket. The maximum 

thickness of the brake insulator will be 1-1.2mm (Glisovic and Miloradovic 2010). 

Figure 5.1 shows the schematic diagram of the disc brake system and its mechanics. 

The brake pad attached to the brake insulator is held in a caliper by an anchor bracket. 

Generally, commercial softwares are being used to analyze the complete disc brake 

system in which various types of constraints are used along with boundary conditions 

to achieve the exact working environment of the disc brake system. When a vibration 

study of any individual part is to be done, the study can be carried out with any boundary 

condition (Patil et al. 2020).  
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The present study proposes Al-Al2O3 functionally graded (FG) back plate as a 

replacement for a steel back plate, which enhances the damping capacity of the overall 

disc brake pad by providing similar mechanical properties as that of a conventional 

steel back plate. The reason behind the proposal of FG back plate over steel back plate 

are listed as follows: 

 Al-Al2O3 FG back plate improves the vibration-damping capability of the 

overall disc brake pad  

 The ceramic-rich face of the Al-Al2O3 FG back plate resists the friction that 

occurs between the wheel disc and pad when the brake is applied. 

 Al-Al2O3 FG back plate provides a high stiffness-to-mass ratio compared to 

steel. 

The study is divided into two parts. In the first case, only the back plate with brake 

insulator is considered as a sandwich beam; a free and forced vibration study is 

carried out for a simply supported or pinned-roller case (P-R). In the second case, a 

complete brake pad (including friction material) is considered as a sandwich plate; 

free and forced vibration studies are carried out on the brake pad for a simply 

supported case (SSSS). 

 
Figure 5.1: Disc brake system. 
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5.2 CASE-1: VIBRATION OF STEEL AND AL-AL2O3 FG BACK 

PLATE WITH BRAKE INSULATOR 

In this section, a three-layered sandwich beam is considered, which consists of a back 

plate with a brake insulator (viscoelastic material + steel constraining layer), as shown 

in Figure 5.2.  

Accordingly, a comparison study is presented in terms of free and forced vibration 

characteristics of different material combinations for sandwich beams such as Steel-

Acrylic-Steel, FGM-Acrylic-Steel, FGM-Acrylic-Aluminium, and Steel-Acrylic-

Aluminium as shown in Figure 5.2. The material properties and dimensions of 

sandwich beams are given in Table 5.1. The Loss factor for Acrylic rubber is 0.38 at 

300C (Wu et al. 2008). 

 
Figure 5.2: Back plate with brake insulator. 

Table 5.1: Material properties and dimensions of sandwich beams. 

Material Density 
(kg/m3) 

Young's modulus 
(Pa) 

Poisons 
ratio 

Loss 
factor 

Steel 7624 2.02X1011 0.29 - 
Acrylic 1100 1.25 X107 0.48 0.38 

Aluminium (Al)  2698 0.69 X1011 0.26 - 
Aluminium oxide (Al2O3) 3750 3.4855 X1011 0.33 - 

Dimensions (mm) 
(McDaniel et al. 2005) 

hf1=0.37, hv= 0.13, hf2==5, l=400, b=50 

Al-Al2O3 metal-ceramic combination is such that one surface is metal-rich, and the 

other is partly ceramic-rich. Accordingly, Al2O3 varies from 0 to 40% more or less in a 

smooth gradation (Figure 1.1) such that one outer surface is Aluminium rich (100%) 

and the other is 40% Aluminium oxide (Al2O3), and the remaining is 60% Aluminium.  
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As the percentage gradation of Al2O3 with Aluminium base metal varies along the 

thickness, the properties like Young's modulus and density also vary. The natural 

frequency and loss factors are discussed for steel and Al-Al2O3 FG back plates with 

brake insulators. Further, a forced vibration study is also carried out for the back plate-

brake insulator combinations under transverse point harmonic load in order to examine 

the maximum transverse deflection of back plates.  

5.2.1 Free Vibration results 

Free vibration study of back plate-brake insulator assembly akin to a sandwich beam is 

carried out with different material combinations. The natural frequencies of sandwich 

beams for the first three bending modes are given in Figure 5.3. The natural frequency 

of FGM-Acrylic-Steel is around 25.6%, 6.3%, and 25.3% higher than Steel-Acrylic-

Steel, FGM-Acrylic-Aluminium, and Steel-Acrylic-Aluminium, respectively, as the 

rigidity and inertia coefficient ratio due to bending (D/ID) is higher for FGM-Acrylic-

Steel, as shown in Table 5.2. Figure 5.4 shows the loss factor of sandwich beams for 

bending modes. The loss factor of the FGM-Acrylic-Steel combination is around 

80.21%, 303.1%, and 90.6% higher than Steel-Acrylic-Steel, FGM-Acrylic-

Aluminium, and Steel-Acrylic-Aluminium, respectively. The sandwich beam loss 

factor depends on the core loss factor and strain energy stored in the core. The 

difference in axial displacement of upper and lower stiff layers at the core and stiff layer 

interface is more in FGM-Acrylic-Steel. Subsequently, the strain energy stored in the 

core is also more. The high-strain energy yields a high loss factor.  

 
Figure 5.3: Natural frequency of 

sandwich beams. 

 
Figure 5.4: Loss factor of sandwich 

beams. 
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Table 5.2: Rigidity and inertia coefficients of sandwich beams for different material 

combinations. 

Material 
Combination 

A B D IA IB ID 

Steel-Acrylic-
Steel 

5.37X107 0 104.588 2.047 0 3.97 X10-6 

FGM-Acrylic-
Steel 

3.5 X107 1.4 X104 65.202 0.868 5.03 X10-5 1.51 X10-6 

FGM- Acrylic-
Aluminium 

3.253 X107 1.4 X104 65.174 0.7769 5.03 X10-5 1.51 X10-6 

Steel-Acrylic-
Aluminium 

5.177 X107 0 104.1745 1.9559 0 3.97 X10-6 

Figures 5.5 and 5.6 show the effect of beam length on the system's natural frequency 

and loss factor. The trend in Figure 5.6 implies that the loss factor is maximum for a 

particular beam length, and the deviation of beam length from that critical value reduces 

the loss factor. The figure affirms that finding the critical beam length is significant in 

sandwich beams to get high vibration damping. They are owing to the fact that an 

increase in beam length increases the mass and reduces the stiffness, the curves in 

Figure 5.5 exhibit continuous reduction of natural frequencies with an increase in beam 

length.  

 
Figure 5.5:Variation in frequency with 

beam length. 

 
Figure 5.6: Variation in loss factor with 

beam length. 

Figures 5.7 and 5.8 show the effect of core thickness on the natural frequency and loss 

factor of the beam in the second mode of vibration. A steady reduction in natural 

frequency shown in Figure 5.7 is due to a beam's stiffness reduction with an increase in 

core thickness, which leads to a reduction in natural frequency.  



82 
 

As previously reported loss factor of the sandwich beam is dependent on the core loss 

factor as well as the strain energy stored by the core. There will be an increase in the 

core loss factor and a decrease in strain energy stored by the core with the rise in core 

thickness. Up to a certain point, an increase in the core loss factor dominates the loss of 

strain energy in the core, leading to an increase in the beam loss factor, as shown in 

Figure 5.8. Once the beam loss factor reaches a global maximum, strain energy loss 

dominates the core loss factor, leading to a continuous decrease in the sandwich beam’s 

loss factor.  

 Figure 5.7: Variation in natural 

frequency with core thickness 

(l=400mm). 

 Figure 5.8: Variation in loss factor with 

core thickness (l =400mm). 

After the free vibration, it is essential to study the behavior of back plate-brake insulator 

assembly under dynamic loading for different material combinations. For the present 

study, harmonic load of 1N is considered, which is applied at the frequency of 

10rad/sec. In a sandwich beam under vibration, the shear stress and strain in the core 

vary sinusoidally with time 't,' but the strain response lags the stress by a certain phase 

angle. As a result, the shear modulus is treated as a complex number. Viscoelastic 

material's dynamic behavior is referred to as internal friction or mechanical damping. 

The displacement, strain, and stress will have two parts called real and imaginary due 

to the complex shear modulus of the core. The imaginary part of displacements, strains, 

and stresses always tries to resist the real part. So, the displacement, strain, and stress 

amplitude reduce with respect to time; in other words, damping occurs.  
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Initially, real and imaginary displacements, strains, and stresses are plotted separately 

for the backplate at its neutral axis to interpret the behavior of imaginary parts and their 

contribution to damping. Further, only real parts of displacements, strains, and stresses 

are plotted for backplate-brake insulator assembly (sandwich beam) along the thickness 

to analyze the behavior of the back plate and constraining layers in the presence of the 

core. Figures 5.9 and 5.10 exhibit the real and imaginary parts of transverse deflection 

with time, respectively. The real transverse deflection of Steel-Acrylic-Steel is less, 

meaning the particular combination gives better stiffness among the combinations. The 

imaginary transverse deflection of FGM-Acrylic-Steel is more, meaning the 

combination gives better damping results among all four combinations.  

 Figure 5.9: Real part of transverse 

deflection of sandwich beams (x/l=0.5).
 Figure 5.10: Imaginary part of transverse 

deflection of sandwich beams (x/l=0.5).

Figures 5.11-5.12 show real and imaginary axial displacements, Figures 5.13-5.14 

show real and imaginary axial strains, and Figures 5.15-5.16 show real and imaginary 

axial stresses at the neutral axis of back plates. The real part of axial displacement, axial 

strain, and axial stress at the neutral axis of the FG back plate is marginally higher than 

steel, but the imaginary part of displacement, strain and stress of the FG back plate is 

significantly higher compared to steel. This indicates that up to 40% ceramic-rich FG 

back plate behaves similar to steel in terms of deformation, but the damping behavior 

of FG back plate is considerably improved compared to steel. So, the FG back plate 

improves the damping capacity of the disc brake pad compared to steel. The axial 

displacement and strain at the neutral axis vary with the constraining layer 

(steel/aluminium), even though the back plate remains the same (steel).  
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Figure 5.11: Real part of axial 

displacement of back plate at neutral 

axis of back plates (x/l=0.5). 

 
Figure 5.12: Imaginary part of axial 

displacement of back plate at neutral 

axis of back plates (x/l=0.5). 
 

 
Figure 5.13: Real part of axial strain at 

neutral axis of back plates (x/l=0.5). 

 
Figure 5.14: Imaginary part of axial strain 

at neutral axis of back plates (x/l =0.5). 

 

 
Figure 5.15: Real part of axial stress at 

neutral axis of back plates (x/l =0.5). 

 
Figure 5.16: Imaginary part of axial stress 

at neutral axis of back plates (x/l =0.5). 
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Figure 5.17 shows that the axial displacement's real part varies linearly along the 

thickness. Figures 5.18 and 5.19 show the linear variation of the real part of axial strain 

and stress of the sandwich beams along the thickness of the beam, respectively. The 

reduction in axial displacement is observed in the constraining layer due to the higher 

shear deformation in the core. Figures 5.20 and 5.21 show the real part of shear strain 

and stress in the core along the length of the sandwich beam. Since the axial 

displacement and rotation at the supports are maximum, the shear stress and shear strain 

are maximum at the supports. In the middle of the beam, there will be zero rotation and 

zero axial displacements. So, the shear strain and stresses are zero. Figures 5.20 and 

5.21 show that the FGM-Acrylic-Steel combination shows higher shear stress and 

strain, implying that the core's strain energy stored is maximum for that combination 

compared to the other three. The higher the stored strain energy higher will be the loss 

factor. In other words, damping is more for the FGM-Acrylic-Steel combination. 

 
Figure 5.17: Axial displacement along the thickness direction z (x/l =0.25, t=0.157sec). 

 
Figure 5.18: Axial strain along the 

thickness direction z (x/l =0.25, 

t=0.157sec). 

 
Figure 5.19: Axial stress along the 

thickness direction z (x/l =0.25, 

t=0.157sec). 
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Figure 5.20: Shear strain in core along 

the length of beam (t=0.157sec).

Figure 5.21: Shear stress in core along 

the length of beam (t=0.157sec). 

5.3 CASE-2: VIBRATION OF COMPLETE BRAKE PAD 

(STEEL/AL-AL2O3 FG BACK PLATE AND FRICTION 

MATERIAL) WITH BRAKE INSULATOR  

A comparison study presented in terms of the free and forced vibration characteristics 

of different material combinations for back plate-brake insulator sandwich beams in the 

previous section confirms the enhancement in damping capacity of disc brake pad by 

replacing steel back plate with Al-Al2O3 FGM. Still, the stiffness of Al-Al2O3 FGM 

with a maximum ceramic volume fraction of 40% is marginally less than steel.  

To overcome the limitations of the previous analysis, in this section, the vibration study 

is carried out with some modifications as listed below: 

 The study is elaborated to complete the brake pad (including friction material) 

instead of only the back plate, as shown in Figure 5.22.  

 The sandwich plate model is adopted instead of the beam model to make the study 

more appropriate and convincing.  

 The acrylic rubber is replaced with NBR rubber to show the significance of the 

brake insulator loss factor on the overall damping of the disc brake pad, which has 

similar shear modulus and density but a different loss factor. 
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 Uniformly distributive load (UDL) is considered instead of point load since, in 

actual conditions, the brake force is distributed to the whole surface of the brake 

pad  

The properties of NBR rubber and frictional material with the dimension of the brake 

pad are shown in Table 5.3 (McDaniel et al. 2005).  

 
Figure 5.22: Brake pad with brake insulator. 

Table 5.3: Material properties of brake insulator and friction materials. 

Material Young's 
Modulus (Pa) 

Density 
(kg/m3) 

Loss 
factor 

Poisons 
ratio 

NBR (Liu et al. 2006) 1.51 X107 1100 0.126 0.48 
Friction material (Nouby 

et al. 2011) 
4 X109 2045 - 0.26 

Dimensions (mm) hf1=0.37, hv= 0.13, hf2a==5, hf2b=10, l=400, b=160 
 

5.3.1 Free vibration 

In free vibration studies, natural frequency and loss factors are obtained for a brake pad 

with a steel (steel-NBR-steel) and FG back plate (FGM-NBR-steel), and a parametric 

study is carried out for sandwich plate combinations. Figure 5.23 shows the natural 

frequency, and Figure 5.24 shows the loss factor of brake pads. The ratio of stiffness to 

inertia coefficients (Aij/IA, Dij/ID) of FGM-NBR-steel is higher, as shown in Tables 5.4 

and 5.5. Therefore, the natural frequencies of FGM-NBR-Steel are 21.21%, 20.75%, 

19.52%, and 19.37% higher than Steel-NBR-Steel for the first four modes of vibrations. 

The shear deformation of the viscoelastic core influences the loss factor of the sandwich 

plate. The shear deformation is directly proportional to the difference in in-plane 

displacements (xz and yz) of upper and lower stiff layers at the interface (Khatua and 

Cheung 1973).  
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Since the difference in upper and lower stiff layer in-plane displacements are higher for 

FGM-NBR-Steel, the loss factors of that combination are 4.7%, 4.78%, 5.25%, and 

4.66% higher than Steel-NBR-Steel for the first four modes of vibrations. 

 
Figure 5.23: Natural frequency of 

brake pad assembly. 
 Figure 5.24: Loss factor of the brake 

pad assembly. 

Table 5.4: Stiffness coefficients of brake pad with steel/FGM back plates. 
Back plate 

material 

( )3
11A  

( )3
12A  ( )3

66A  ( )3
11B  ( )3

12B  ( )3
66B  ( )3

11D  ( )3
12D  ( )3

66D  

Steel 1.15E9 3.48E8 4.03E8 -5.43E6 -1.62E6 -1.9E6 3.07E4 9242.1 1.07E4 

FGM 1.28E9 3.86E8 4.47E8 -5.35E6 -1.6E6 -1.87E6 2.70E4 8139.7 9452.4 

Table 5.5 Inertia coefficients of brake pad with steel/FGM back plates. 

Back plate material ( )3
AI  ( )3

BI  ( )3
DI  

Steel 59.45 -0.143 1.35E-3 

FGM 36.71 -0.028 7.16E-4 

Figures 5.25 and 5.26 show the natural frequency and loss factor variation with change 

in the b/l ratio of sandwich plates (length is constant). The volume of the sandwich plate 

increases with breadth, increasing the plate's mass. So natural frequency reduces with 

an increase in breadth. The result trend in Figure 5.26 shows that the loss factor 

increases with an increase in breadth until the breadth reaches 0.4l; after that, the loss 

factor reduces continuously with an increase in breadth beyond 0.4l. This indicates that 

the shear deformation in the core is maximum if the breath is less than half its length.  
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Figure 5.25: Effect of b/l ratio on 

natural frequency (l =400mm). 

  

Figure 5.26: Effect of b/l ratio on loss 

factor (l =400mm).
 
 

Figures 5.27 and 5.28 show the effect of core thickness on the sandwich plate's natural 

frequency and loss factor. The higher the core thickness, the lower the sandwich plate's 

stiffness, reducing the natural frequency. An increase in core thickness increases the 

strain energy stored up to a certain value, resulting in a higher loss factor; if the 

thickness is increased beyond the critical value, compression of the core dominates the 

shear during transverse deflection. This leads to a reduction in the loss factor. Figures 

5.29 and 5.30 show the effect of constraining layer thickness on the sandwich plate's 

natural frequency and loss factor, respectively. The natural frequency reduces with 

increasing constraining layer thickness due to increased inertia. In contrast, the inplane 

displacement reduces with increasing constraining layer thickness, which results in 

higher shear deformation in the core. The increase in shear deformation results in a high 

loss factor for the sandwich plates. 

  
Figure 5.27: Influence of core 

thickness on natural frequency. 

  
Figure 5.28: Influence of core 

thickness on loss factor. 
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Figure 5.29: Influence of constraining 

layer thickness on the natural 

frequency. 

 
Figure 5.30: Influence of constraining 

layer thickness on loss factor. 

Figures 5.31 and 5.32 show the sandwich plate's natural frequency and loss factor, 

respectively, with varying core loss factors. The core loss factor hardly affects the 

natural frequency of the sandwich plate, as seen in Figure 5.31. In contrast, the 

sandwich plate loss factor increases with the core loss factor, as shown in Figure 5.32. 

The variation of natural frequency and loss factor with power law index p is shown in 

Figures 5.33 and 5.34. Higher the p-value, the lower the Al2O3 content in FGM, leading 

to reduced stiffness. This results in a reduction of the natural frequency with an increase 

in p, whereas the less stiff FG layer shows higher in-plane displacement, which leads 

to an increase in the loss factor of the sandwich plate.  

 
Figure 5.31: Influence of core loss 

factor on natural frequency. 
 Figure 5.32: Influence of core loss 

factor on sandwich plate loss factor. 
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Figure 5.33: Influence of power law 

index on natural frequency.
Figure 5.34: Influence of power law 

index on loss factor.

5.3.2 Transient response and steady state response

A transient study is carried out for simply supported sandwich plates to analyze the 

behavior of brake pads with a brake insulator under dynamic load. Initially, the plate is 

subjected to a uniformly distributed transverse load (UDL) of 10000N/m2, which is

applied as step load ( tstep=0); the load is removed at tstep=1E-4 sec to set the plate 

into vibration. The Newmark method (Bathe K. 2016) is used to obtain the transient 

response. Since the viscoelastic core properties are complex in nature, the stiffness 

coefficients [K] are also complex with the real part [KR] and imaginary part [KI]. It is 

shown in the equation:

[ ]R IK  K   K                                                                                                            (5.1)

In the time domain, the imaginary stiffness coefficients are considered as damping 

coefficients (Moita et al. 2018) and are given as,

1[ ] IC K                                                                                                                          (5.2)

The Eqn. 28 can be rewritten in the time domain as,

MX CX KX FMX CX KXCX KXCX KX                                                                                                             (5.3)

Where [M] is the mass matrix, [C] is the damping matrix, KR is the stiffness matrix 

(consists of only real parts) and [F] is the force matrix, and [X] is the displacement 

matrix.

Figures 5.35 and 5.36 show the central transverse deflection of Steel-NBR-Steel and 

FGM-NBR-Steel, respectively, for damped and undamped conditions.
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The shear deformation in the core for FGM-NBR-Steel is higher than Steel-NBR-Steel, 

which increases the dissipation of energy in the particular combination, resulting in 

high damping.  

  
Figure 5.35: Damped and undamped 

transverse deflection of Steel-NBR-Steel 

at the center of plate ( v=0.126). 

Figure 5.36: Damped and undamped 

transverse deflection of FGM-NBR-Steel 

at the center of plate ( v=0.126). 

Table 5.6 shows the depletion in the transverse deflection of brake pad with FG back 

plate is 89.61% higher compared to pad with steel back plate at 0.2 sec. The transverse 

deflection is reduced by 98.45% and 84.43% in FGM-NBR-Steel and Steel-NBR-Steel, 

respectively, in 0.2sec when compared with their respective initial displacements as 

shown in Table 5.7, also replicates the maximum damping in FGM-NBR-Steel.  

Table 5.6: Damped transverse deflection of FGM-NBR-Steel and Steel-NBR-Steel at 

different points of time. 

Time 
sec 

Displacement (mm) Difference in (%) 
FGM-NBR-Steel 

 
Steel-NBR-Steel 

0 0.01564 0.01497 0.4 
0.2 0.000242 0.00233 89.61 

Table 5.7: Percentage damping of transverse deflection in FGM-NBR-Steel and Steel-

NBR-Steel in 0.2 sec. 

Material 
combination 

Displacement (mm) Damping (%) 
0 sec 0.2 sec 

FGM-NBR-Steel 0.01564 0.000242 98.45 
Steel-NBR-Steel 0.01497 0.00233 84.43 
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Figure 5.37 shows the influence of the viscoelastic core on the dynamic behavior of the 

FGM-NBR-Steel back plate-brake insulator assembly. It is seen that as the core loss 

factor increases from 0.05 to 0.3 ( v = 0.05, 0.1, 0.2, 0.3), the damping time decreases. 

A higher loss factor indicates a higher phase difference of stress compared to strain, 

which causes energy loss in the system.  

  
(i) (ii) 

  
(iii) (iv) 

Figure 5.37: Influence of core loss factor on damping of central transverse deflection 

of FGM-NBR-Steel ( v= 0.05, 0.1, 0.2, 0.3). 

Further, the study is extended to forced vibration. A uniformly distributed sinusoidal 

load of 10000 N/m2 is considered with a 10 Hz frequency ( F 10000 sin( t) ). Figure 

5.38 shows the transverse deflection of brake pads with FG and steel back plates. The 

figure shows that the displacement of the FG back plate is only 0.4% higher than steel, 

which means both steel and FG back plates undergo similar deformation under brake 

loads. 
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Figure 5.38: Transverse deflection of brake pad under UDL harmonic loading. 

5.4 SUMMARY 

In this chapter vibration behavior of a disc brake pad is discussed. Initially, only the 

back plate-brake insulator assembly is considered as sandwich beam, free and forced 

vibration studies are carried out. Four combinations of sandwich beam akin to the 

sandwich beam are considered; their natural frequency and loss factor is obtained. 

Further, forced vibration studies are also done on the sandwich beams under a 

sinusoidal load. Similarly, in the next section, a complete brake pad (including friction 

material) is considered as a sandwich plate; free and forced vibration studies are carried 

out. The free and forced vibration results in both studies confirm that the steel back 

plate can be replaced with Al-Al2O3 functionally graded material, enhancing the brake 

pad's damping capacity without compromising the back plate's stiffness. 
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CHAPTER 6 

6 SUMMARY AND CONCLUSIONS 

6.1  SUMMARY 

The present work discusses FE and analytical formulations of functionally graded (FG) 

sandwich structures with viscoelastic interlayers. FE model is developed for bending, 

buckling, and free vibration of FG sandwich beams with viscoelastic boundary 

conditions in a thermal environment. The developed FE model is validated with the 

analytical model. The strain and kinetic energies of the stiff and core layers and work 

done by external forces are derived based on certain assumptions, as discussed in 

previous sections. Static and dynamic equilibrium equations of sandwich beams are 

derived using Euler-Lagrange equations. FE and Navier's solution methods are used to 

solve the equilibrium equations of sandwich beams. 

Further porosity models and viscoelastic boundary conditions are incorporated into the 

study; bending, buckling, and vibration studies are carried out in a thermal environment 

using the FE model. Similarly, an analytical sandwich plate model is developed FG 

sandwich plate with a viscoelastic interlayer. Finally, sandwich beam and plate models 

are used to study the free and forced vibration of the disc brake pad. The results reveal 

that replacing back plate material from steel to Al-Al2O3 FGM with a ceramic variation 

of 0% to 100% along the thickness enhances the damping capacity of the disc brake 

pad and resists the transverse load (Stiff) as effectively as steel back plate.   

6.2 CONCLUSIONS 

The conclusions of bending, buckling and free vibration of FG sandwich beam and 

vibration studies on disc brake pad with Al-Al2O3 FG back plate with brake insulators 

are discussed as follows:  
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6.2.1 Studies on FG porous sandwich beam with viscoelastic boundary 

conditions in thermal environment 

The complex shear modulus and complex stiffness are taken into account to model the 

viscoelastic core and supports (boundaries), respectively. The FG stiff layers are 

assumed to have various porosity patterns (H, O, V and X), which influence the material 

properties such as modulus of elasticity and density. Some of the critical observations 

from the static bending and free vibration study of FG sandwich beams at room 

temperature are listed as follows: 

 The viscoelastic supports (VES) with variable stiffness act as conventional 

constraints (C-F, C-C, and S-S) as the viscoelastic support stiffness (VSS) reaches 

a critical value. The deflection, natural frequency, and loss factors of the sandwich 

beam remain constant beyond the critical values. 

 VES contributes to the overall damping of the sandwich beam along with the 

viscoelastic core, and the effect of support damping is predominant when the VSS 

is less (soft support). In contrast, the core damping dominates with increased VSS 

(Hard support). 
 The stiffness of the sandwich beam reduces considerably when the porosity 

percentage is higher in the metal-rich region of the FG stiff layer, which results in 

the reduction of natural frequency. 
 For a constant point load of 10N, The C-C sandwich beam with V and H-type 

porosities gives maximum and minimum transverse deflection. The transverse 

deflection of V-type porosity is 23.07% and 27.77% less than H-type porosity for 

power-law (p) 0.5 and 3, respectively, at =0.3. 

 The C-C sandwich beam with V and X-type porosities portrays maximum and 

minimum natural frequency. V-type porosity natural frequency escalates from 

5.177% to 6.63% at =0.3 when power law (p) is enhanced from 0.5 to 3 compared 

to X- type porosity. 

 The C-C sandwich beam with V and H-type porosities portrays maximum and 

minimum loss factors for a given porosity volume fraction. The loss factor of V-

type porosity is 12.42% and 17.54% high compared to H- type porosity for the 

power law (p) 0.5 and 3 at =0.3. 
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Some of the important observations from the static buckling and free vibration study of 

FG sandwich beams in a thermal environment are listed as follows: 

 Critical buckling temperature (CBT) changes with viscoelastic boundary conditions 

(VBCs). The support which provides high stiffness shows higher CBT. For the 

present problem, the CBT of the C-C beam is the maximum among the four VBCs 

(C-C, C-P, P-P, and P-R). 

 The existence of porosity reduces the thermal stress induced in the beam, which 

intern enhances the CBT. The C-C beam having H-porosity shows high CBT  

(941.850C) for the T=500C, which is 27.42%, 22.40%, and 19.80% higher than 

V, X, and O-porosities. 

 The CBT of porous sandwich beams reduces with an increase in the power law 

index (p). An increase in the p-value results in higher metal content in FG stiff 

layers, which reduces the beam's stiffness. 

 The natural frequency decreases with an increase in temperature and becomes zero 

at CBT, whereas the loss factor increases with an increase in temperature and 

becomes infinity at CBT. 

 The natural frequency of the C-C sandwich beam with H-porosity is 661.09 Hz for 

the T=100C, which is 4.99%, 2.01%, and 0.0031% higher than V, X, and O-

porosities, respectively. The loss factor of the beam with X-porosity is 0.115% for 

the T=100C, which is 18.26%, 5.22%, and 4.34% than V, X, and H-porosities, 

respectively. 

 The increase in VBCs damping enhances the overall damping of the sandwich 

beam. X-porosity exhibits maximum damping (0.1032% to 0.2197%), and H- 

porosity exhibits minimum damping (0.0853% to 0.1806%) for the variation of 

VBCs loss factor ( sp) from 0 to 2. 

6.2.2 Studies on disc brake pad with Al-Al2O3 functionally graded back plate and 

brake insulator of a disc brake system 

Free and forced vibration studies of disc brake pads with Al-Al2O3 functionally graded 

back plates and brake insulators are carried out.  
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The whole study is carried out for two cases. In the first case, up to 40% ceramic-rich 

Al-Al2O3 functionally graded back plate with brake insulator is considered as a 

sandwich beam. In the second case, a complete brake pad includes up to 100% ceramic-

rich Al-Al2O3 back plate, brake insulator, and friction material. The conclusions of both 

studies are listed as follows: 

6.2.2.1 Al-Al2O3 back plate with brake insulator (sandwich beam) 

Sandwich beams resemble the back plate and brake insulator assembly are considered 

for vibration studies with different material combinations such as Steel-Acrylic-Steel, 

FGM-Acrylic-Steel, FGM-Acrylic-Aluminium, and Steel-Acrylic-Aluminium. 

 Free vibration affirms that the back plate's natural frequency and loss factor with 

brake insulator can be improved by around 26% and 82%, respectively, by replacing 

the steel back plate with Al-Al2O3 FGM.  

 Even though the magnitude of the real part of transverse deflection is 10% higher 

in FGM-Acrylic-Steel, the respective imaginary part is improved by 150%.  

 The imaginary axial strain and stress of FGM-Acrylic-Steel are 240% and 54% 

higher than Steel-Acrylic-Steel. This implies the damping capacity of FGM-

Acrylic-Steel is more compared to Steel-Acrylic-Steel.  

 Functionally graded Al2O3 offers excellent wear resistance and withstands high 

temperatures due to frictional heat generation during braking. Al2O3 is gradually 

graded with Aluminium rich layers to compromise for brittleness of Al2O3. 

6.2.2.2 Complete Brake pad with Al-Al2O3 back plate, brake insulator, and friction 

material (sandwich plate) 

A comparison study is carried out between brake pads with Al-Al2O3 FG back plates 

and conventional steel back plates.  

 Free vibration study brings out that the natural frequency and loss factor of the brake 

pad associated is ameliorated by 21.21% and 4.7% in the first mode of vibration, 

respectively, by replacing the steel back plate with Al-Al2O3 FGM.  

 Al-Al2O3 FG back plate with 0 to 100% ceramic gradation is as stiff as steel back 

plate and withstands transverse load (brake load) as effectively as steel.  
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 FG back plate with power law index p=3 to 5 yields higher loss factors, implying 

the damping capacity of FG back plate with power law index p=3 to 5 ceramic 

gradations is higher. 

 The transient results show that the vibration amplitude is reduced by 98.45% and 

84.43% in 0.2 sec for FG and steel back plates, respectively, which means energy 

dissipation will be more if steel is replaced with an FG back plate. 

6.3 SCOPE FOR FUTURE STUDIES 

The present work focuses on theoretical studies on the bending, buckling, and vibration 

behavior of FG sandwich beams with viscoelastic boundary conditions (VBCs) in the 

thermal environment using a FE model. The scope for future studies is listed as follows: 

 The bending, buckling, and vibration studies with VBCs can be extended to various 

FG sandwich structures, such as sandwich plates, shells, and circular and annular 

discs. 

 Studies on geometric nonlinearity due to thermal stresses and the effect of 

geometric nonlinearity on the bending, buckling, and vibration characteristics of 

various structures (sandwich plates, shells, and circular discs) can be studied. 

 Experimental investigation of FG sandwich structure bending, buckling, and 

vibration behavior can be conducted. 

 Thermo-mechanical investigation can be performed on brake pad with FG back 

plate with brake insulator.  
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